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A B S T R A C T   

Unsustainable trade in wildlife is one of the major threats affecting the global biodiversity crisis. An important 
part of the trade now occurs on digital marketplaces and social media. Automated methods to identify trade posts 
are needed as resources for conservation are limited. Here, we developed machine vision models based on Deep 
Neural Networks with the aim to automatically identify images of exotic pet animals for sale. We trained 24 
neural-net models on a newly created dataset, spanning a combination of five different architectures, three 
methods of training and two types of datasets. Model generalisation improved after setting a portion of the 
training images to represent negative features. Models were evaluated on both within and out-of-distribution 
data to test wider model applicability. The top performing models achieved an f-score of over 0.95 on within- 
distribution evaluation and between 0.75 and 0.87 on the two out-of-distribution datasets (i.e., data acquired 
from a source unrelated to training data), therefore, showcasing the potential application of the model to help 
identify content related to the sale of threatened species on digital platforms. Notably, feature-visualisation 
indicated that models performed well in detecting the surrounding context in which an animal was located, 
therefore helping to automatically detect images of animals in non-natural environments. The proposed methods 
are an important step towards automatic detection of online wildlife trade using machine vision models and can 
also be adapted to study more broadly other types of online people-nature interactions. Future studies can use 
these findings to build robust machine-learning models.   

1. Introduction 

The unsustainable trade in wildlife is a major threat to the conser
vation of biodiversity globally (Maxwell et al., 2016) and is increasingly 
turning to online platforms. Wild populations are harvested at levels that 
threaten their persistence in order to supply wildlife markets with live 
animals, plants, and their derived products (‘t Sas-Rolfes et al., 2019). 
Unsustainable trade in wildlife is also often linked to the introduction of 
exotic species that threaten the persistence of native biodiversity (Bel
lard et al., 2016). In addition, wildlife trade can help facilitate the spread 
of zoonotic diseases, such as SARS-CoV-2 (Bezerra-Santos et al., 2021; 
Morcatty et al., 2021). Online markets have created new opportunities 
to illegally trade wildlife at multiple scales, locally to globally (Lav
orgna, 2014; Siriwat and Nijman, 2020). The internet provides cost- 
effective means for sellers to reach out to wildlife users (Siriwat and 
Nijman, 2020; Feddema et al., 2020; Sung and Fong, 2018). In turn, this 
can potentially increase demand for wildlife and their products and 
incentivize unsustainable hunting, collecting, and gathering of species in 

the wild. Innovative solutions are needed to cost-effectively monitor and 
help reduce the illegal global online wildlife trade. 

Effective monitoring of global online wildlife trade requires auto
mated content identification (Di Minin et al., 2019). In conservation 
science and practice, the use of machine learning or digital data analysis 
methods to monitor the online illegal wildlife trade is increasing but is 
still limited (Di Minin et al., 2018; Feddema et al., 2021; Qing et al., 
2019; Microsoft, 2021). Compared to other tasks where machine 
learning methods are being used in conservation science, using machine 
learning to monitor the online trade in wildlife can be more challenging. 
Apart from the difficulty of obtaining high-quality labeled training 
datasets, the partly illegal and hidden nature of the trade, makes data 
discovery a challenging task (Di Minin et al., 2019). While natural lan
guage processing can be used in cases where text content is structured 
for analysis or to drive machine learning algorithms (Kulkarni and 
DiMinin, 2021; Stringham et al., 2021), online text content is often 
unstructured. For example, text scraped from a website is very noisy 
with no clear headings, fields, or relation between the text content. It 
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also contains software tags such as HTML script and/or non alpha- 
numeric characters. This makes analysis of the content very chal
lenging. Automatic image identification can help identify relevant in
formation from online content when text processing is difficult (e.g., 
non-standard language use like colloquial or slang phrases and 
spelling errors, or the requirement of language agnostic tools due to 
multiple languages). Automatic image identification can help identify 
relevant information from online content when text processing is diffi
cult (e.g., in the case of colloquial language and in presence of spelling 
errors, or when the requirement of language agnostic tools are high due 
to multiple languages). To the best of our knowledge this is the first 
study that explores the application of machine vision to identify in a 
generic way whether an animal is in captive or wild environment. 

In this study, we investigate the application of automatic image 
classification using deep neural networks on a new dataset that we 
constructed and that contains images about the sales of live animals on 
the internet (see Fig. 1 for a schematic overview of model application). 
This study presents a novel attempt at building image classification 
models to help identify the trade of exotic live animals on the internet. It 
differs from other image identification studies in conservation science e. 
g., identifying the species from camera trap images (Miao et al., 2019; 
Tabak et al., 2018); or analysing land cover changes through satellite 
imagery (Bellis et al., 2008; Patrignani and Ochsner, 2015; Dube et al., 
2014); or identifying domestic animals from wild on farmland (Chen 
et al., 2019). Our work is unique in terms of image classification for its 
application to monitoring online wildlife trade and its ability to deduce 
the context of the target object. The objective here is not to detect a 
pattern that identifies the animal, but rather to deduce if an animal is 
present in the image along with identifying the context (e.g., a cage) in 
which the animal is present. Image classification models can be sensitive 
to the background information and a change in context adversely affects 
model performance to detect species as shown in (Singh et al., 2020). 
With no existing datasets available for the task, we created a novel 
dataset using online resources such as digital market places and crowd 
sourced databases (see Section 2.2) and obtained images of live animals 
for sale along with images of animals in the wild. Rather than focusing 
on identifying individual species, the models aim to differentiate a post 
showing animals kept in captivity as opposed to posts where animals are 
found in the wild. This is a necessary condition for the practical appli
cability of the models in real world scenarios. Several different models 
were experimented which covered five deep learning architectures, two 
training datasets, three evaluation datasets, three types of training 
methods and different model sizes (see Section 2 for more details). The 
training objective of the models was to classify between images that 
have the presence of an animal in natural surroundings in contrast to 
animals in captive settings. Data were collected from a website1 trading 
exotic animals, iNaturalist,2 Google Image Search3 and Flickr.4 Thus, 
along with evaluating models in a standard manner by splitting training 
and testing data, we also evaluated the models with ‘out of distribution’ 
datasets to measure generalisability, which emphasises the need to go 
beyond the traditional data splits. Model performance was interpreted 
using feature visualisation to highlight areas of the image which impact 
model decision. The best model based on performance metrics and size 
efficiency was established for this task. 

2. Methods 

2.1. Overview 

The three main stages of developing and evaluating machine 
learning models to determine whether an image is of a captive animal, 
are summarised below, with details following in the remainder of the 
section (see also Fig. 1). 

1. Data Collection: We collected images from a website that ad
vertises exotic pets for sale. After manually annotating the species pre
sent in the images, we collected images of the same species verified in 
the wild through iNaturalist (see Section 2.2). Further sets of images 
were collected from Flickr, a social media platform hosting images of the 
targeted species, to evaluate the performance of the model on data that 
models would see in case they were deployed in real-world settings. 

2. Model Building: We constructed various well established archi
tectures of image classification models that use Convolutional Neural 
Networks (CNN). All deep neural architectures essentially function as 
information transfer between cascading layers of the network, where 
each layer encodes different salient features of the input image. In 
repeated training cycles the layers adjust the connecting weights be
tween each other in such a manner that the final layer produces the 
desired output to classify an image. We experimented with three 
training methods which included (i) using a model pretrained on a 
standard image dataset, and training only the final classification layer, 
(ii) training all the layers of the model without pre-training, and (iii) the 
combination of the above techniques (see Section 2.3). 

3. Evaluation: Models were evaluated by comparing the predicted 
class for an image to the ground truth class. This is quantitatively 
measured using the metrics of precision, recall and f-score. Precision 
measures how accurate the prediction is in terms of the proportion of the 
correct predictions to incorrect ones. Precision = TP

TP+FP; where TP = True 
Positive, FP = False Positive, while Recall measures the coverage of the 
correct predictions as a proportion of the correct predictions to all the 
predictions that should have been correct. Recall = TP

TP+FN; where FN =
False Negative. The geometric mean of these measures is termed as the 
F-score, 2 Precision*Recall

Precision+Recall We go beyond the standard practice of evaluating 
the model only on a hold-out set of images (termed as within distribution 
test), and we also evaluate the model on images collected from a 
different source (out of distribution test) as a stronger test for the model 
(see Sections 2.2 and 3). 

We trained a total of 24 deep neural network models which spanned 
a combination of five different architectures, three methods of training, 
two types of datasets and two sizes of network (large and small for some 
architectures). The architectures tested were AlexNet (Krizhevsky et al., 
2012), DenseNet (Huang et al., 2017), ResNet (He et al., 2016), 
Squeezenet (Iandola et al., 2016) and VGG (Simonyan and Zisserman, 
2014). We trained a small and large size model for DenseNet (Dense
Net121 and DenseNet201), ResNet (ResNet18 and ResNet152) and VGG 
(VGG11 and VGG19) (the number after each model indicates the num
ber of layers used in that architecture). These models have been highly 
successful on many image classification tasks and set benchmarks on 
datasets like Imagenet (Deng et al., 2009) and CIFAR (Krizhevsky and 
Hinton, 2009) (i.e., large annotated datasets with thousands of images 
and label categories used widely as standard benchmarks in machine 
vision development), while being implemented widely for other appli
cations (Khan et al., 2020). Models were trained to discriminate between 
animals in captivity and the same species in the wild. Thus, the training 
images consisted of these two classes of data labeled accordingly. As no 
database was readily available for the task, we created ex novo two 
datasets for training: i) one that consisted of examples of wild animals 
(negative class) vs captive animals (positive class) and ii) another one 
where the negative class also included random images consisting of 
possible background objects (indicating non-wild environments such as 
cage, furniture, room of a house, etc.) (see Section 2.2 for details). The 

1 the website is available upon request from the authors, see Methods for 
more information.  

2 www.inaturalist.org.  
3 images.google.com.  
4 www.kaggle.com/hsankesara/flickr-image-dataset. 
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second database was created to investigate the impact of model weights 
being focused solely on spurious image features as opposed to evaluating 
the entire context of ‘animal in captivity’. Three types of training regi
mens were used to investigate the effect on model performance (Section 
2.3): (i) Transfer learning, which entailed using the model pre-trained 
on the Imagenet data (Deng et al., 2009) and only training the last 
layer of the network as a binary classifier (Bengio, 2012); (ii) Training 
from scratch, where the entire model was trained from a blank state for 
the binary classification task; and (iii) Combination training, where the 
model was initially trained as in the transfer learning objective and then 
later the entire model was trained similar to training from scratch. 
Training types (ii) and (iii) were restricted to four models consisting of 
DenseNet and VGG that we found to have best results in type (i). Model 
performance was determined from accuracy and f-score metrics on three 
different test sets, namely one within distribution test data and two other 
test data sets which are out of distribution (see Section 2.2). Evaluating 
based on out of distribution data helps understand if the models can be 
applied in a general scenario that usually involves features not present in 
the training data. As the decision-making of neural networks is not easily 
interpretable (Huang et al., 2020), we used feature visualisation (Olah 
et al., 2017) for the top two best performing architectures (see Section 
2.4) to gain additional insights on how the model was classifying the 
images. Feature visualisation enabled us to highlight parts of the image 
that have the strongest response in calculating the activation of neural 
units responsible for the classification. Therefore, we can determine on 
an abstract level of human cognition, whether the areas of interest (e.g., 
a cage for captive classification or forest for wild classification) are being 
identified by the model during decision making. 

2.2. Data preparation 

The target images for the positive class needed to be of live mammals 
(not domestic pets) for sale. We obtained these images from a peer to 

peer sales website where live mammals are traded and where sellers and 
buyers interact. As the website contains personal and identifiable in
formation about the sellers, we refrain from publicly mentioning the 
website and adhere to data privacy regulations (the website was made 
available to referees during the peer-review of this manuscript). In order 
to assess the validity of the collected images, we compared them to other 
images obtained from general social media sites (Twitter, Facebook 
Marketplace) and Google searches with search queries of the form 
‘(animal name) for sale’. Upon visual inspection, the images from web 
searches were found to be identical in nature to the images of animals 
found on the peer to peer website, and the source of the images appeared 
to be indistinguishable just by looking at the images. However, it is 
challenging to obtain data from these sources at volume needed to train 
models, due to accessibility issues (e.g., automated script blocks in data 
download), website regulations (e.g., terms prohibiting the use of data) 
and overall scarcity. See supplementary Fig. S1 for example of images 
from various sources. Thus, models trained on the collected data can be 
widely applicable to multiple digital platforms. We built a customised 
image downloading script in Python 3.6 (using the library Beau
tifulSoup) that was executed periodically to scan for new listings on the 
website and download images along with the associated text for that 
post. All images for each of the listings were transferred directly onto a 
cloud storage platform5 which hosted all the data for the models. A total 
of 3051 images covering 58 species (including species listed in Appendix 
I, II and III of the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora - CITES, see Supplementary Table S1 for 
the full list) were downloaded over a 4 month period. 

The negative class of images comprised of animals in a non-sale 
context, essentially wild animals in their natural settings. Image classi
fication models are known to be sensitive to small patterns in the image 

Fig. 1. Schematic flow diagram depicting the process from collecting images using four different sources, to training and evaluate the model. A combination of eight 
model designs and three training methods were studied on two types of training datasets. 

5 www.csc.fi. 
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(Olah et al., 2017). Therefore, to avoid positive detection purely based 
on particular species characteristics, we obtained images of the same 
species as in the positive class. We randomly sampled 1000 images from 
the positive class and made a list of all species mentioned for sale. While 
the number of new species found diminished strongly as we manually 
progressed through the images, no new species were found past image 
number 902 from the sample, therefore indicating that the sample 
covered most of the species from the positive class). Wild images were 
obtained from the iNaturalist database6 which is an application allowing 
wildlife observers to record their sightings and including images. Data 
were obtained using the iNaturalist API (Application Programming 
Interface) implemented in Python 3.6 using the library pyinaturalist.7 

Only images with the quality designated as ‘research grade’ were used 
and transferred to the same cloud storage as mentioned above. ‘Research 
grade’ is a designation in the iNaturalist data when an observation 
passes a quality control process and multiple observers agree on the 
identification of the species. A total of 2505 images were obtained, thus 
creating a near balanced class division in the data. The combined 5556 
images formed the first dataset designated as data_no_bg. 

Another set of images was sourced to supplement the negative class 
of images. The model is intended to assign any image other than an 
image containing an animal for sale, as a negative detection. However, 
to test if the model would erroneously base the decisions on random 
objects in the positive class without taking into account the full context, 
we made a list of objects present in the positive class images such as 
table, chair, carpet, cage, human hands etc. (see full list in Supple
mentary Table S2). Negative sampling of the feature space has been 
known to affect learning outcomes of models (Saeidi et al., 2017). The 
list was compiled by manually viewing 500 images of animals in 
captivity and noting down objects in the background. The images were 
sourced using Google images as the search engine8 allows for specific 
and flexible search queries such as ‘empty cage for sale’. A custom built 
script written in Python 3.6 was used to source images based on a search 
query. Search queries were based on the list of background objects. 
Overall, 705 images were collected using this method and the combined 
total of all images (6261) allowed creating a second dataset designated 
as data_bg. Note that for both datasets the binary class division is near 
balanced with a slight tilt towards one class (positive in data_no_bg and 
negative in data_bg). 

Following common practice, the data were split into 80 % train and 
20 % test set. The test set was designated as test_in. However, to gain 
insights into model performance in real life settings we created two 
other test sets which contained images from a different source and 
mimic images from general social media. As the model is intended to 
monitor the sale of wild animals on digital market places and social 
media, the assessment of the model in that scenario (images represent
ing general social media) is important. Thus, we had a test dataset that 
was partly out of distribution (features in the data can be different from 
the training set). As part of the “out of distribution” data, an image is 
made up of several different features that the model learns to detect. 
These features can be lines, curves, abstract shapes, colours and various 
other tiny patterns. The model learns to identify these set of features 
along with their combinations, which affect the classification decision 
made by the model. This set of features makes up the “distribution of 
features” and is akin to a statistical distribution. The model only learns 
the distribution present in the training data and since the test data is 
only a small part removed out of the training data, it tends to have the 
same feature distribution as the training data. Therefore, models tested 
in this manner do not indicate the performance of the model when 
applied in real world conditions as the feature set (or distribution) in the 
real world is potentially unlimited (or at least much wider than the 

training set). Hence, a stronger test of the model is to create an “out of 
distribution” data where test data originate from a source which is not 
the same as the training data. These images were obtained from the 
Flickr dataset hosted on the website Kaggle.9 The first out of distribution 
test data had 998 images from Flickr and 250 from the peer to peer 
website selling exotic animals and was designated as test_out_pet. The 
images from the website were downloaded at a different time as not to 
overlap with the data source used for test_in (total of 1248 images) and 
was designated as test_out_pet. Flickr included images of domestic pets 
such as cats and dogs. Many wild cat species resemble domestic cats, 
especially as kittens, while some dogs resemble wolves. Since the models 
were not trained to detect exact species, it was likely that such images 
tricked the models into making a positive decision for ‘animal in 
captivity’. Thus, we created a second out of distribution test set that did 
not contain images of domestic pets as to measure the impact this could 
have on model performance. This dataset contained 1246 images (same 
250 images sourced from the exotic animal website and 996 from 
Flickr). Flickr images are associated with text that describes the image 
(e.g. “a man walking a dog”). This facilitates filtering of images based on 
the description. We used Wordnet (Fellbaum, 2010) classes to exclude 
all images for which the description had a mention of the Wordnet class 
‘animal’. The Wordnet 'animal' class ensures all dogs and cats are 
covered along with some other domestic pets that may be in the data 
(although a visual inspection of a random sample of 100 images from 
Flickr did not result in any domestic pet other than cats and dogs). We 
called these data test_out_nopet. See Section 3 for the impact of the two 
test sets and the importance to test beyond the 80–20 % split. 

2.3. Model training 

Models were trained with three different training protocols. First, all 
eight models versions (Alexnet, Densenet121, Densenet201, ResNet18, 
ResNet152, Squeezenet, VGG11 and VGG19) were trained with transfer 
learning technique on two datasets (data_bg and data_no_bg) resulting in 
16 models. Model training was carried out using the Pytorch library 
(Paszke et al., 2019) on an NVIDIA GPU (RTX 2070) with a fixed random 
seed. For transfer learning, models were pre-trained on ImageNet data 
and only the final layer of the model was modified to have two linear 
outputs for the two classes. Training was carried out with an early 
stopping protocol. Thus, training was terminated if there was no 
improvement in model performance for 15 consecutive epochs. Models 
with the best performance (lowest Cross-entropy Loss) on the test_in data 
were saved as final models. Supplementary Fig. S2 shows all models tend 
to approach a plateau after roughly 15 epochs (see supplementary 
Table S3 for additional information on training parameters). 

We selected four models that were best performing (accuracy above 
80 %) among the 16 (Densenet121, Densenet201, VGG11 and VGG19) 
and carried out two more training experiments. First, we trained these 
models on the same data as mentioned above but trained the models 
from scratch without pre-training to see if features for this task could be 
better captured. Second, we used the combination of transfer learning 
and training the full model with weights of all the layers modified. For 
the purpose of combination training, we first trained models for 10 
epochs by fine-tuning of final layer but keeping the rest of the weights of 
the deeper layers frozen, as described above, and then unfroze all layers 
for the remaining epochs and applied the early stopping protocol. Early 
stopping was increased to 35 epochs because we had to reduce the 
learning rate for a stable learning progression (see supplementary 
Table S3). Similarly, batch size was reduced from 75 to 15 when all 
layers were trained to avoid memory issues. 

Image augmentation (cropping, flipping, normalising and rotating) 
was used during training to reduce over-fitting to spurious features and 
expanding information in the training image distribution (Shorten and 

6 www.inaturalist.org.  
7 pypi.org/project/pyinaturalist/.  
8 images.google.com. 9 www.kaggle.com/hsankesara/flickr-image-dataset. 
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Khoshgoftaar, 2019). Slightly different augmentation pipelines were 
used for the two classes to remove watermarks in specific places in the 
two classes, so as to reduce the possibility of the models using water
marks as features (see supplementary Table S4 for details on the 
augmentation pipeline). 

2.4. Feature visualisation 

We used feature visualisation to gain insights on how the model was 
classifying the images, thus attempting to explore which aspects of an 
image led to a positive prediction (Olah et al., 2017). A popular method 
for feature visualisation is to generate saliency maps (Simonyan et al., 
2014) which highlight the areas of an image that lead to maximum 
impact on the weight gradients for the target class, thus indicating which 
human interpretable aspects of the image are involved in decision 
making by the model. Feature visualisation was implemented using the 
Flashtorch10 library. We selected the top ten images from the test set 
which led to the highest activation of the output unit class, as they 
indicate the strongest decision bias for identification. We then generated 
saliency maps for those images. 

3. Results 

3.1. Effect of image background on model performance 

Models were evaluated using the f-score and accuracy metrics on 
three different test sets (see Section 2.2 for details and supplementary 
Table S5, Table S6 and Table S7 for all the evaluation figures). Fig. 2 
shows the performance of the eight models trained using two datasets, 
data_bg, in which a proportion of training images (11 %) consisting of 
random background objects, denoted as ‘background’ in the figure, and 
data_no_bg for which no specific background images exist, denoted as ‘no 
background’. Models were then evaluated on three different test sets 
test_in (20 % set aside from training data), test_out_nopet (general images 
outside training distribution but without any pets) and test_out_pet (as 
previous but with some images of pets). Highest performance of all 
models (f-score mean: 0.94, s.d.: 0.01; accuracy mean 94.18, s.d.: 1.31) 
was seen on test_in indicating that the models were fairly successful in 
discriminating the context of the two classes. However, the performance 
dropped when the models were tested outside their range of training 
distribution and the top performing models were Densenet121, Dense
net201, VGG11 and VGG19 with f-scores mean 0.76, s.d. 0.01, and ac
curacy mean 84.19, s.d. 1.53. Squeezenet (f-score 0.63, accuracy 58.39) 
and Alexnet (f-score 0.67, accuracy 66.74) were among the lowest 
performing models. Overall all models performed remarkably better on 
the out of distribution datasets when trained with the data_bg dataset 
compared to data_no_bg even tough the performance on within distri
bution test set(test_in) was similar for all models. When tested in the fine 
tuning paradigm, test_bg had f-score mean: 0.70, s.d. 0.04 and accuracy 
mean: 74.53, s.d 8.65, while test_no_bg had f-score mean: 0.61, s.d. 0.009 
and accuracy mean: 47.67, s.d. 4.19. Thus, indicating the added 
generalisation ability of the model when trained on data_bg, evident only 
when tested out of distribution. Slightly better performance of all 
models was found on the test_out_nopet (f-score mean: 0.72, s.d.: 0.04; 
accuracy mean 76.92, s.d.: 9.1) compared to test_out_pet (f-score mean: 
0.69, s.d.: 0.03; accuracy mean 72.92, s.d.: 7.4). Images of common pets 
caused a drop in performance of the models due to a strong similarity of 
pet images to target positive class animal images. 

3.2. Effect of training methods 

Accuracy and f-score of the four top performing models (Dense
net121, Densenet201, VGG11 and VGG19) is shown in Fig. 3. Models 

trained from scratch consistently under performed (f-score mean: 0.58, 
s.d.: 0.01; accuracy mean 62.85, s.d.: 4.2) compared to the ‘combi_train’ 
method (f-score mean: 0.80, s.d.: 0.04; accuracy mean 86.89, s.d.: 4.3). 
Training from scratch was worse in performance than the fine-tuning 
method, while the ‘combi_train’ method performed better than fine- 
tuning (indicated by horizontal lines in Fig. 3). The two top perform
ing models were VGG11 (f-score: 0.87, accuracy 92.69) and Dense
net121 (f-score: 0.85, accuracy 91.88), which were the smaller versions 
of the respective architectures in size. As for the fine-tune train method, 
evaluation on test_out_nopet was slightly better than test_out_pet for 
‘combi_train’ but comparable for ‘scratch_train’. 

With lower performance on the out of distribution data compared to 
the within distribution data, we tested the precision of models to identify 
positive class images only, since this is of practical importance for the 
application of the models in real life scenarios. Table 1 lists the precision 
values for all the models trained with data_bg for positive class only as 
compared to the mean precision of the positive and negative classes. The 
models showed high precision to detect images of animals in captive 
contexts, except for the ‘scratch_train’ case. Highest precision was seen 
in the ‘combi_train’ case, with VGG19 as the top performer. Thus when 
the model flags the image as positive it has a lower tendency for false 
positives. Identical precision values across the two datasets are due to 
the fact that class distribution is near identical in the two test datasets. 

3.3. Model efficiency 

Fig. 4 shows the gain in performance for every additional parameter 
added to the architecture as calculated for models trained with the fine- 
tune paradigm on test_in. Squeezenet was the lowest performing model 
and also had the lowest number of parameters, thus we used it as the 
baseline to measure the impact of additional parameters on perfor
mance. ‘gain’ is the ratio of the increase in the f-score of the model for 
every additional parameter added over the Squeezenet baseline. See 
supplementary Table S8 for the number of parameters for each model. 
Densenet121 was found to have the highest gain, indicating that each 
additional parameter gave the maximum contribution in boosting the f- 
score above the baseline compared to all other architectures. 

3.4. Feature visualisation 

The two top performing models (Densenet121 and VGG11 with 
‘combi_train’) were selected for feature visualisation to observe which 
features contribute the most for the positive class identification. Images 
which led to high output activation for the class labels were selected for 
visualisation, Fig. 5 (a) shows a prediction of Densenet121 for a fennec 
fox (Vulpes zerda). Along with the prominent features of the fox, like the 
eyes and nose, strong gradients are also found for the cage in the 
background, thus adding context to the animal being in the cage. 
Similarly, in the prediction for a marbled cat kitten (Pardofelis mar
morata) (b), the gradients while being strong on the cat shape and fur 
pattern are also strong on the human hand, again signifying the captive 
context. Along the same lines images for the negative class, example 
shown in Fig. 5 (c), show a strong gradient response for the features of 
the animal, ring-tailed lemur (Lemur catta) and also the surrounding 
features of the forest, while (d) shows that just the presence of an animal, 
whiptail wallaby (Macropus parryi), is not enough to illicit a positive 
class response even though it is a close-up of the wallaby similar to 
captive images. See supplementary Fig. S3 for more examples of images 
of the negative class where human in natural surroundings with no 
animal presence or humans in urban settings including a close-up of a 
face, are not enough to have positive class identification. 

Similarly, we performed feature visualisation for incorrect pre
dictions of the model for images which produce high activation of 
output units for the opposite class with respect to the desired class. Fig. 6 
shows False positives on top (a) European hedgehog (Erinaceus euro
paeus), an image where a wild hedgehog is photographed in an urban 10 https://github.com/MisaOgura/flashtorch. 
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environment, and (b) sika deer (Cervus nippon) again a seemingly wild 
individual in an urban environment. False negative examples are (c) 
bactrian camel (Camelus bactrianus) for sale, although in this image the 
camel appears to be in a natural looking background, the error origi
nates from the model weights focusing on an obscure part of the image 
(sky). While (d) is an image of a serval (Leptailurus serval) where even 
though the cat is in a cage the surroundings are dominated by natural 
looking elements (leaves and branches). 

4. Discussion 

In this study, we introduced a method for automatic identification of 
images pertaining to wildlife trade and evaluated the models by creating 
a bespoke dataset pertaining to the sale of wild animals. We explained 
and applied our methods based on images obtained from a website 

known to post images of mammal species for sale. The novelty of our 
work is in creating a specialised dataset to distinguish between the 
context in which an animal is present and demonstrating that the model 
learns this context as shown by feature visualisation for correct pre
diction of the context. 

Using different models allowed us to learn important aspects useful 
in the implementation of machine vision applications in detecting the 
sale of wild animals on the internet. First, it is crucial to evaluate the 
model on ‘truly’ unseen data as exhibited in Fig. 2 and Fig. 3. It is 
common practice to test the models on a small fraction of data set aside 
from training but derived from the same source as the training data. 
Unless the training data are of a very large size and covering most of the 
possible cases that the model will encounter in real applications, there is 
a high likelihood that models will overfit to the feature set of source 
(Radosavljevic and Anderson, 2013; Subramanian and Simon, 2013). 

Fig. 2. f-score and Accuracy of eight 
models spanning a combination of two 
training methods and three test sets. 
Test methods indicated by ‘back
ground’, in which 11 % of training im
ages consisting of random background 
objects (f-score mean: 0.70, s.d. 0.04; 
accuracy mean: 74.53, s.d 8.65), and 
‘no background’ (f-score mean: 0.61, s. 
d. 0.009; accuracy mean: 47.67, s.d. 
4.19) for which no specific background 
images exist. Three test sets indicated 
by test_in(20 % set aside from training 
data) (f-score mean: 0.94, s.d.: 0.01; 
accuracy mean 94.18, s.d.: 1.31), tes
t_out_nopet (fscore mean: 0.72, s.d.: 
0.04; accuracy mean 76.92, s.d.: 9.1) 
(general images outside training distri
bution but without any pets) and tes
t_out_pet (as previous but with images of 
pets)(fscore mean: 0.69, s.d.: 0.03; ac
curacy mean 72.92, s.d.: 7.4). See main 
text.   

Fig. 3. Four top performing models 
having highest performance in fine- 
tune paradigm (Densenet121, Dense
net201, VGG11 and VGG19) were 
tested for two additional training para
digms, training the full model from 
scratch (i.e. no pre-training), denoted as 
‘scratch_train’ (f-score mean: 0.58, s.d.: 
0.01; accuracy mean 62.85, s.d.: 4.2), 
and combination of fine-tuning and 
then training the full model once the 
final layer is semi-trained, denoted as 
‘combi_train’ (f-score mean: 0.80, s.d.: 
0.04; accuracy mean 86.89, s.d.: 4.3). 
‘combi_train’ training method had 
higher performance than fine-tune 
method. Horizontal lines indicate the 
highest performance in finetune para
digm (Fig. 2) for the three respective 
test sets. Models were trained only with 
the data_bg dataset due to its advantage 
on generalisation and evaluated simi
larly on the three different test sets as 
for the fine-tuning paradigm.   
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Thus, we recommend that a separate test data is created from a source 
different to the training data, and that it mimics real world data. Second, 
it is possible to improve the generalisability of the model and reduce the 
phenomenon of the model basing decisions on spurious objects by 
curating the data to include unrelated images containing the random 
objects that may appear in the target class. As most images of captive 
exotic animals are in a man made surrounding, including random im
ages of man made objects (negative features) improved the performance 
of the model in the out of distribution data. This again emphasises the 
need to evaluate the model on ‘truly’ unseen data as the difference in 
performance and improved generalisability was seen on the out of dis
tribution data and not on the 20 % test split. Third, the three different 

training methods resulted in varying performances of the model. 
Transfer learning and fine-tuning the final layer for the specified task is 
an increasingly popular method in many fields including conservation 
science applications (Miao et al., 2019; Tabak et al., 2018). Training the 
model from scratch led to poor performance, most likely due to the 
smaller size of the data than required to train large models. Training 
deep models requires a large set of data, typically of the order of 106 to 
capture enough basic features of images. In situations for specific tasks 
such as wildlife trade, the datasets are quite small and transfer learning 
can help fill the gap by using pre-trained models. However, even though 
appreciable results were seen by fine tuning the final layer only, the best 
results were obtained using a combination of fine-tuning the last layer 
till the gradient decent becomes slower, and then letting all the layers 
learn the weights for subsequent epochs of training. This prevents the 
deeper layers from being destructively changed during the initial phase 
of learning and seemed to give added benefits on feature learning for the 
task when all layers were trained in a slow manner (reducing the 
learning rate). Fourth, the model is intended to act as an automated 
service to flag sales of wild animals to inform wildlife trade analyses. At 
the same time it can be used by online platforms and law enforcement 
agencies to help prevent the sale of prohibited live animals. In this re
gard, it is important for the model to not have many false positives 
which might affect its utility in real applications. The model showed 
high precision in detecting the images when an animal is present in a 
captive context. Hence, ensuring that when an image is flagged, it is of a 
high likelihood to be of interest. Fifth, as Densenet121 had the highest 
efficiency for the number of parameters used, it might be the best model 
to be used in such tasks of binary classification of context detection. 
Further experiments with diverse datasets are required to confirm the 
efficiency results. 

We foresee a number of applications of the proposed methods in the 
context of helping monitor online wildlife trade. A first important 
application is to cost-effectively ‘flag’ content that requires further 
verification by social media platforms and authorities. In particular, 
focusing on species for which trade is illegal would help identify in real- 
time image content that is potentially connected to illegal wildlife trade, 
(see also (Cardoso, 2023) for another example of computer vision 
models used in the identification of images of pangolins). As machine 
learning methods apply to various forms of data, the proposed methods 
can also be used to potentially identify illegal wildlife trade content from 
X-ray scans (Pirotta et al., 2022; Brandis et al., 2018). Especially in the 
case of trade in bird species that are kept in cages this should be highly 
feasible. While the proposed methods were developed in accordance 
with data privacy and protection principles (Di Minin et al., 2021), they 
could potentially be used by relevant law enforcement agencies. 
Importantly, the proposed methods are openly available and can be used 
and adapted by other scientists and practitioners for the purpose of 
investigating wildlife trade on digital platforms. As these methods 
develop further and are known, illegal wildlife traders may change the 
way they post images as to avoid automated identification of suspicious 
content. Methods to trick a machine learning model and bypass detec
tion are called”adversarial attacks” (Kurakin et al., 2016), however, they 
do require technical expertise to execute. Techniques to make machine 
learning models robust to adversarial attacks is an evolving research 
topic and involves training models with specific adversarial inputs 
(Kurakin et al., 2016). Finally, it remains important to further develop 
multimodal models that can process and relate information from mul
tiple modalities (i.e., text, images, audio, etc.) and that can reduce the 
probability of misclassification. 

5. Limitations 

Using feature visualisation to observe areas of images which lead to 
strong classification decisions, the two top performing models seemed to 
have learned the general concept of combining animal features with 
background contexts of captivity (i.e., cages, human body parts, 

Table 1 
Precision to detect positive class only (animals in captivity) compared with 
mean precision of both the classes combined, for all models trained with data_bg. 
VGG19 in the ‘combi_train’ paradigm has the top performance on detecting 
positive hits.  

Model Precision for positive class Mean Precision for both 
classes 

test_out_nopet test_out_pet test_out_nopet test_out_pet 

Alexnet  0.95  0.94  0.77  0.74 
Densenet121  0.80  0.80  0.82  0.79 
Densenet201  0.82  0.82  0.85  0.82 
ResNet18  0.88  0.88  0.81  0.79 
ResNet152  0.92  0.92  0.83  0.81 
Squeezenet  0.91  0.91  0.71  0.71 
VGG11  0.92  0.92  0.88  0.82 
VGG19  0.91  0.91  0.86  0.80 
Densenet121 - 

scratch_train  
0.63  0.63  0.58  0.61 

Densenet201 - 
scratch_train  

0.52  0.52  0.62  0.63 

VGG11 - scratch_train  0.68  0.68  0.65  0.65 
VGG19 - scratch_train  0.61  0.61  0.62  0.63 
Densenet121 - 

combi_train  
0.94  0.94  0.93  0.88 

Densenet201 - 
combi_train  

0.95  0.95  0.92  0.87 

VGG11 - combi_train  0.92  0.92  0.93  0.88 
VGG19 - combi_train  0.96  0.96  0.91  0.86 

Bold values indicates model with highest precision value. 

Fig. 4. Efficiency of the models measured as the increase in f-score from the 
Squeezenet baseline, for every additional parameter of the model compared to 
the number of parameters for Squeezenet. Squeezenet has the lowest number of 
parameters and also the lowest f-score. Densenet121 even though slightly lower 
f-score than VGG19 (0.95 vs 0.96) has significantly lower number of parameters 
(6,955,906 vs 139,589,442). 
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household items, etc). However, there are also some examples (see 
supplementary Fig. S4) when the strongest predictors are some obscure 
parts of the image. Sometimes, sellers add text to the image (e.g contact 
information) and the model uses parts of the text as features. When the 
text is at a consistent location (e.g., name of the website) it has been 
cropped out during training so the model does not learn the classifica
tion based on watermarks, complete removal of spurious text however is 
not guaranteed. Similarly, text can sometimes be found on the images of 
wild animals and the impact is mitigated using random crop augmen
tation (see Section 2.3). Upon visual inspection of a sample, such cases 
did not appear to be too frequent in the data. It is also difficult to obtain 
images particular to the sale of wild animals and the positive class of 
images are sourced centrally from a single website. The website selected 
is a peer to peer digital sale platform, ensuring that the sales posts come 
from a diverse range of sellers and contains a diverse range of animals. 
Although it is expected that the data represent the nature of digital sales 
posts in general (examined by manual searched over the web), it is 
important for future experiments to source images of wild animals for 
sale from multiple platforms to enhance the model capabilities. 
Furthermore, images of domestic pets, common on social media, have 
the potential to trick the model as seen through the results for tes
t_out_nopet vs test_out_pet (Fig. 2 and Fig. 3). Certain dog and cat breeds, 
especially as cubs, resemble wild canids and felids. Although 

challenging, training models for species detection as in (Miao et al., 
2019; Tabak et al., 2018) will help mitigate the issue to a certain extent 
or an exclusive pet detection model may be required. From an end user 
perspective, many times sales posts can be associated with some text 
information which can be used to further filter and refine relevant posts. 
In addition, wildlife trade exists for a wide variety of species spanning 
different taxonomic groups. The data we gathered of animals for sale 
was restricted by the website for mammals only. Further work is needed 
to expand the data for different taxonomic groups that would allow a 
diverse range of stakeholders to apply automated detection of wildlife 
trade. Finally, while having a strong potential to automatically analyse 
and flag online sale of threatened species, machine learning methods do 
possess implementation hurdles as they require specific infrastructure 
and expert personnel to manage the algorithms. This creates a need for 
the algorithms to be packaged in easy to use software tools that can be 
readily implemented with minimal training of on-field stake holders. 

In conclusion, together with advanced methods for text classifica
tion, our methods offer the potential to investigate online wildlife trade 
in a cost-efficient manner. We foresee their use as part of scientific 
research investigating illegal wildlife trade and online monitoring ac
tivities by law enforcement agencies and online platforms. The same 
methods should now be applied to automatically identify wildlife trade 
images for other taxonomic groups beyond mammals and for multiple 

Fig. 5. Feature visualisation for images with highest output activation. Top two rows for positive predictions (animals in captive settings) while bottom two rows for 
negative prediction (animals in natural settings). (a) A captive fennec fox (Vulpes zerda) shows strong gradient response for facial features such as eyes and nose along 
with the background cage; (b) A marbled cat kitten (Pardofelis marmorata) evokes strong response for facial features along with a human hand holding it; (c) The tail 
pattern of a ring-tailed lemur (Lemur catta) and the surrounding tree pattern contribute the most to a negative decision; (d) Similar to (a), facial features of a whiptail 
wallaby(Macropus parryi) evoke strong gradient response but the absence of man-made surroundings lead to a negative decision. Overall, feature visualisation ex
hibits that model decision is based on ‘animal + surroundings’. 
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online sources at the same time. Future work should now focus on 
creating new training datasets for further improvement of the models. 
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Navarro, Joaquín L., Martella, Mónica B., 2008. Modeling habitat suitability for 
greater rheas based on satellite image texture. Ecol. Appl. 18 (8), 1956–1966. 

Bengio, Yoshua, 2012. Deep learning of representations for unsupervised and transfer 
learning, 02 Jul. In: Guyon, Isabelle, Dror, Gideon, Lemaire, Vincent, 
Taylor, Graham, Silver, Daniel (Eds.), Proceedings of ICML Workshop on 
Unsupervised and Transfer Learning, volume 27 of Proceedings of Machine Learning 
Research. Bellevue, Washington, USA, pp. 17–36. PMLR.  

Fig. 6. Feature visualisation for incorrect predictions (similar to Fig. 5). Top two rows for false positive predictions (animals predicted in captive settings but are 
wild) while bottom two rows for false negative prediction (animals in predicted natural settings but are captive). (a) European hedgehog (Erinaceus europaeus), a wild 
individual in an urban space, has strong gradient response for facial features but lacks discernible background response; (b) sika deer (Cervus nippon), a wild deer 
along a fence evokes strong gradient response for facial features and the fence which appears like a cage, thus leading to an incorrect response; (c) bactrian camel 
(Camelus bactrianus) a captive individual in a natural looking surrounding, however, the incorrect response is likely due to the model focussing on spurious image 
features in the top left corner; (d) serval (Leptailurus serval), a captive cat in a cage but has dominant natural looking elements like a tree branch and leaves. 

R. Kulkarni and E. Di Minin                                                                                                                                                                                                                 

https://doi.org/10.1016/j.biocon.2023.109924
https://doi.org/10.1016/j.biocon.2023.109924
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252123756
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252123756
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252123756
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252132066
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252132066
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255047576
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255047576
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255047576
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253140376
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253140376
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253140376
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253140376
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253140376


Biological Conservation 279 (2023) 109924

10

Bezerra-Santos, Marcos A., Mendoza-Roldan, Jairo A., Andrew Thompson, R.C., Dantas- 
Torres, Filipe, Otranto, Domenico, 2021. Illegal wildlife trade: a gateway to zoonotic 
infectious diseases. Trends Parasitol. 37 (3), 181–184. 

Brandis, Kate J., Meagher, Phoebe J.B., Tong, Lydia J., Shaw, Michelle, 
Mazumder, Debashish, Gadd, Patricia, Ramp, Daniel, 2018. Novel detection of 
provenance in the illegal wildlife trade using elemental data. Sci. Rep. 8 (1). 
October.  

Cardoso, Ana Sofia, Bryukhova, Sofiya, Renna, Francesco, Reino, Luís, Chi, Xu, 
Xiao, Zixiang, Correia, Ricardo, Di Minin, Enrico, Ribeiro, Joana, Vaz, Ana Sofia, 
2023. Detecting wildlife trafficking in images from online platforms: a test case using 
deep learning with pangolin images. Biol. Conserv. 279, 109905. January.  

Chen, Ruilong, Little, Ruth, Mihaylova, Lyudmila, Delahay, Richard, Cox, Ruth, 2019. 
Wildlife surveillance using deep learning methods. Ecol. Evol. 9 (17), 9453–9466. 

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, Fei-Fei, Li, 2009. ImageNet: a 
large-scale hierarchical image database. In: 2009 IEEE Conference on Computer 
Vision and Pattern Recognition. IEEE, pp. 248–255. June.  

Di Minin, Enrico, Fink, Christoph, Tenkanen, Henrikki, Hiippala, Tuomo, 2018. Machine 
learning for tracking illegal wildlife trade on social media. Nat. Ecol. Evol. 2 (3), 
406–407. 

Di Minin, Enrico, Fink, Christoph, Hiippala, Tuomo, Tenkanen, Henrikki, 2019. 
A framework for investigating illegal wildlife trade on social media with machine 
learning. Conserv. Biol. 33 (1), 210–213. 

Di Minin, Enrico, Fink, Christoph, Hausmann, Anna, Kremer, Jens, Kulkarni, Ritwik, 
2021. How to address data privacy concerns when using social media data in 
conservation science. Conserv. Biol. 35 (2), 437–446. March.  

Dube, T., Gumindoga, W., Chawira, M., 2014. Detection of land cover changes around 
lake mutirikwi, Zimbabwe, based on traditional remote sensing image classification 
techniques. Afr. J. Aquat. Sci. 39 (1), 89–95. 

Feddema, Kim, Paul Harrigan, K., Nekaris, Anne Isola, Maghrifani, Dila, 2020. Consumer 
engagement behaviors in the online wildlife trade: implications for conservationists. 
Psychol. Mark. 37 (12), 1755–1770. December.  

Feddema, Kim, Harrigan, Paul, Wang, Shasha, 2021. The dark and light sides of 
engagement: an analysis of user-generated content in wildlife trade online 
communities. Australas. J. Inf. Syst. 25. Jun.  

Fellbaum, Christiane, 2010. Wordnet. In: Theory and Applications of Ontology: 
Computer Applications. Springer, pp. 231–243. 

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian, 2016. Deep residual learning for 
image recognition. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). June.  

Huang, Gao, Liu, Zhuang, Maaten, Laurens Van Der, Weinberger, Kilian Q., 2017. 
Densely connected convolutional networks. In: n Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 4700–4708. 

Huang, Xiaowei, Kroening, Daniel, Ruan, Wenjie, Sharp, James, Sun, Youcheng, 
Thamo, Emese, Min, Wu., Yi, Xinping, 2020. A survey of safety and trustworthiness 
of deep neural networks: verification, testing, adversarial attack and defence, and 
interpretability. Comput. Sci. Rev. 37, 100270. August.  

Iandola, Forrest N., Han, Song, Moskewicz, Matthew W., Ashraf, Khalid, Dally, William 
J., Keutzer, Kurt, 2016. Squeezenet: Alexnet-level Accuracy With 50x Fewer 
Parameters and < 0.5 mb Model Size. arXiv preprint arXiv:1602.07360. 

Khan, Asifullah, Sohail, Anabia, Zahoora, Umme, Qureshi, Aqsa Saeed, 2020. A survey of 
the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53 
(8), 5455–5516. 

Krizhevsky, Alex, Hinton, Geoffrey, 2009. Learning Multiple Layers of Features From 
Tiny Images. 

Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E., 2012. Imagenet classification with 
deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 1097–1105. 

Kulkarni, Ritwik, DiMinin, Enrico, 2021. Automated retrieval of information on 
threatened species from online sources using machine learning. Methods Ecol. Evol. 
12 (7), 1226–1239. May.  

Kurakin, Alexey, Goodfellow, Ian, Bengio, Samy, 2016. Adversarial Machine Learning at 
Scale. 

Lavorgna, Anita, 2014. Wildlife trafficking in the internet age. Crime Sci. 3 (1). May.  
Maxwell, S., Fuller, R., Brooks, T., et al., 2016. Biodiversity: The ravages of guns, nets 

and bulldozers. Nature 536, 143–145. https://doi.org/10.1038/536143a. 

Miao, Zhongqi, Gaynor, Kaitlyn M., Wang, Jiayun, Liu, Ziwei, Muellerklein, Oliver, 
Norouzzadeh, Mohammad Sadegh, McInturff, Alex, Bowie, Rauri C.K., Nathan, Ran, 
Yu, Stella X., Getz, Wayne M., 2019. Insights and approaches using deep learning to 
classify wildlife. Nat. Sci. Rep. 9 (1). May.  

Microsoft, 2021. First-of-its-kind Multispecies Ai Model to Detect Illegal Wildlife 
Trafficking is Ready to Roll Out to Airports. November.  

Morcatty, Thais Q., Feddema, Kim, Nekaris, K.A.I., Nijman, Vincent, 2021. Online trade 
in wildlife and the lack of response to COVID-19. Environ. Res. 193, 110439. 
February.  

Olah, Chris, Mordvintsev, Alexander, Schubert, Ludwig, 2017. Feature visualization. 
Distill 2 (11). November.  

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James, 
Chanan, Gregory, Killeen, Trevor, Lin, Zeming, Gimelshein, Natalia, Antiga, Luca, 
Desmaison, Alban, Kopf, Andreas, Yang, Edward, DeVito, Zachary, Raison, Martin, 
Tejani, Alykhan, Chilamkurthy, Sasank, Steiner, Benoit, Fang, Lu, Bai, Junjie, 
Chintala, Soumith, 2019. Pytorch: an imperative style, high-performance deep 
learning library. In: Advances in Neural Information Processing, 32. Curran 
Associates, Inc, pp. 8024–8035. 

Patrignani, Andres, Ochsner, Tyson E., 2015. Canopeo: a powerful new tool for 
measuring fractional green canopy cover. Agron. J. 107 (6), 2312–2320. 

Pirotta, Vanessa, Shen, Kaikai, Liu, Sheldon, Phan, Ha Tran Hong, O’Brien, Justine K., 
Meagher, Phoebe, Mitchell, Jessica, Willis, Joel, Morton, Ed, 2022. Detecting illegal 
wildlife trafficking via real time tomography 3d x-ray imaging and automated 
algorithms. Front. Conserv. Sci. 3. September.  

Qing, Xu., Li, Jiawei, Cai, Mingxiang, Mackey, Tim K., 2019. Use of machine learning to 
detect wildlife product promotion and sales on twitter. Front. Big Data 2, 28. 

Radosavljevic, Aleksandar, Anderson, Robert P., 2013. Making better maxent models of 
species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41 (4), 
629–643. 

Saeidi, Marzieh, Kulkarni, Ritwik, Togia, Theodosia, Sama, Michele, 2017. The effect of 
negative sampling strategy on capturing semantic similarity in document 
embeddings. In: Proceedings of the 2nd workshop on semantic deep learning 
(SemDeep-2), pp. 1–8. 

Shorten, Connor, Khoshgoftaar, Taghi M., 2019. A survey on image data augmentation 
for deep learning. J. Big Data 6 (1). Jul.  

Simonyan, Karen, Zisserman, Andrew, 2014. Very Deep Convolutional Networks for 
Large-scale Image Recognition. arXiv preprint arXiv:1409.1556. 

Simonyan, Karen, Vedaldi, Andrea, Zisserman, Andrew, 2014. Deep inside convolutional 
networks: visualising image classification models and saliency maps. In: Workshop 
at International Conference on Learning Representations. 

Singh, Abhineet, Pietrasik, Marcin, Natha, Gabriell, Ghouaiel, Nehla, Brizel, Ken, 
Ray, Nilanjan, 2020. Animal detection in man-made environments. In: Proceedings 
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 
March.  

Siriwat, Penthai, Nijman, Vincent, 2020. Wildlife trade shifts from brick-and-mortar 
markets to virtual marketplaces: a case study of birds of prey trade in Thailand. 
J. Asia-Pac. Biodivers. 13 (3), 454–461. September.  

Stringham, Oliver C., Moncayo, Stephanie, Hill, Katherine G.W., Toomes, Adam, 
Mitchell, Lewis, Ross, Joshua V., Cassey, Phillip, 2021. Text classification to 
streamline online wildlife trade analyses. PLOS ONE 16 (7), e0254007. July.  

Subramanian, Jyothi, Simon, Richard, 2013. Overfitting in prediction models – is it a 
problem only in high dimensions? Contemp. Clin. Trials 36 (2), 636–641. Nov.  

Sung, Yik-Hei, Fong, Jonathan J., 2018. Assessing consumer trends and illegal activity by 
monitoring the online wildlife trade. Biol. Conserv. 227, 219–225. November.  

Tabak, Michael A., Norouzzadeh, Mohammad S., Wolfson, David W., Sweeney, Steven J., 
Vercauteren, Kurt C., Snow, Nathan P., Halseth, Joseph M., Di Salvo, Paul A., 
Lewis, Jesse S., White, Michael D., Teton, Ben, Beasley, James C., Schlichting, Peter 
E., Boughton, Raoul K., Wight, Bethany, Newkirk, Eric S., Ivan, Jacob S., Odell, Eric 
A., Brook, Ryan K., Lukacs, Paul M., Moeller, Anna K., Mandeville, Elizabeth G., 
Clune, Jeff, Miller, Ryan S., 2018. Machine learning to classify animal species in 
camera trap images: applications in ecology. Methods Ecol. Evol. 10 (4), 585–590. 
Nov.  

R. Kulkarni and E. Di Minin                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250463787
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250463787
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250463787
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255586045
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255586045
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255586045
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255586045
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252114306
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252114306
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252114306
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252114306
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255172255
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255172255
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251525667
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251525667
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251525667
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254478556
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254478556
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254478556
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254351626
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254351626
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254351626
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300256043865
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300256043865
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300256043865
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255073296
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255073296
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255073296
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250546997
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250546997
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300250546997
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251022947
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251022947
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251022947
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252012606
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252012606
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252200816
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252200816
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252200816
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252191526
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252191526
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252191526
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251596877
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251596877
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251596877
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251596877
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252208676
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252208676
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252208676
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255189775
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255189775
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255189775
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253138496
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253138496
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252184276
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252184276
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251083527
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251083527
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251083527
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253551626
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253551626
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254021806
https://doi.org/10.1038/536143a
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251157747
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251157747
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251157747
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251157747
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252166166
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252166166
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252151246
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252151246
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252151246
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255250345
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255250345
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252039786
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255060855
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255060855
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253439966
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253439966
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253439966
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253439966
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251032197
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251032197
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252051256
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252051256
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252051256
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253145776
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253145776
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253145776
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253145776
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255367425
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255367425
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252219696
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252219696
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253187456
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253187456
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300253187456
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252174056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252174056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252174056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300252174056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254275056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254275056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254275056
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255043835
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255043835
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255043835
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255520705
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300255520705
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254339226
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300254339226
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497
http://refhub.elsevier.com/S0006-3207(23)00024-1/rf202301300251459497

