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ARTICLE OPEN

Integrative phosphoproteomics defines two biologically
distinct groups of KMT2A rearranged acute myeloid
leukaemia with different drug response phenotypes
Pedro Casado 1, Ana Rio-Machin 2, Juho J. Miettinen 3, Findlay Bewicke-Copley2, Kevin Rouault-Pierre4, Szilvia Krizsan 5,
Alun Parsons3, Vinothini Rajeeve1, Farideh Miraki-Moud6, David C. Taussig6, Csaba Bödör5, John Gribben4, Caroline Heckman 3,
Jude Fitzgibbon2 and Pedro R. Cutillas 1,7✉

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For
these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor
prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and
drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration
highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we
term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and
phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A
rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases
and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly
represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher
in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar
activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3
karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A
rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients
characterised by the MLLGA phosphoproteomics signature identified in this study.
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INTRODUCTION
Acute Myeloid Leukaemia (AML) is a highly heterogeneous
malignancy characterised by impairment of myeloid progenitor
cell differentiation, leading to their clonal expansion and,
ultimately, bone marrow failure.1 Despite advances in the
development of targeted therapies for AML, current treatments
are not curative for most patients.2 Cases presenting complex
karyotypes, KMT2A-rearrangements (excluding KMT2A-MLLT3)
and alterations on certain chromosomes (e.g. deletions in
chromosomes 5, 7 and 19) and genes (e.g. TP53 mutations)
present particularly poor prognosis and, for these patients,
targeted therapies are not yet available.3 The short overall survival
of AML cases with adverse genetic alterations highlights the need
of new therapies for these patients.4–7

In this work, we subjected a cohort of 74 AML patients with
poor prognosis or KMT2A-MLLT3 karyotypes from two different
centres (in UK and Finland) to proteomic and phosphoproteomic

analysis as well as drug response profiling to 627 drugs. For most
patients, sufficient material was also available for additional
analysis at the genomic and transcriptomics levels. Proteomics
data was additionally mined for proteomic methylation and
acetylation post-translational modification analysis. We focused
our investigation in the characterization of KMT2A\MLL rear-
ranged AML (KMT2Ar-AML) phosphoproteomics because cells
with this karyotype showed distinct phosphoproteomes relative to
other poor-risk AML cases.
The KMT2A gene, also known as mixed lineage leukaemia or

MLL, is located on chromosome 11q23 and encodes a methyl-
transferase for histone H3 at K4. Balanced chromosome rearran-
gements between 11q23 and other chromosomes, present in ~5%
of de novo AML, generate several distinct KMT2A fusion proteins,8

the most frequent of which are MLLT3 (not considered an adverse
karyotype), MLLT1, MLLT10, ELL and MLLT4.9 In KMT2Ar-AML, the
c-terminal portion of KMT2A – responsible for the methyl
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transferase activity of the enzyme – is replaced by a region of the
fusion partner that leads to the recruitment, probably indirectly in
most of the cases, of the DOT1L and TEFb complexes to the
KMT2A fusion binding sites. These complexes have Histone H3
K79 methyltransferase and kinase activities, respectively. Aber-
rantly activated DOT1L and TEFb at regulatory regions of HOXA
and other KMT2A target genes subvert the transcriptional
programmes that promote normal leukaemogenesis.10–12

Although the molecular biology of KMT2Ar-AML is relatively well
understood, it is not clear whether the distinct KMT2A fusion
partners confer cells with different phenotypes. Furthermore,
current knowledge has not yet translated into KMT2Ar-AML
specific therapies. Targeted personalised therapies require the
stratification of cases into phenotypically homogeneous patient
groups predicted to respond or not to given treatments.
Traditionally, the application of genomic approaches to derive
molecular profiles of healthy and pathogenic tissues have driven
the development of biomarkers used for patient stratification.13,14

However, the realisation that non-genomic mechanisms contribute
to drug resistance to anti-cancer therapies15 has spurred the
application of proteomics and phosphoproteomics approaches to
rationalise drug response phenotypes.16,17 These other omic
analytical platforms measure the consequences of several layers
of regulation (protein expression, modification and direct enzy-
matic activity) that determine phenotypes,18–21 and therefore, have

the potential to define biomarkers for the stratification of patients
into phenotypically homogeneous groups with greater precision
than when just using genetic approaches by themselves.22–24

Here, we identified a phosphoproteomics signature that defined
two biologically distinct groups of KMT2Ar-AML patients with
differential sensitivity to multiple approved and experimental
drugs. Focusing on the mode of action of the IMPDH inhibitor
AVN-944, we found that the sensitivity to this compound was
associated to the expression of IMPDH2 in KMT2Ar-AML as well as
to the expression of multiple proteins linked to nucleolar biology
and RNA metabolism. To determine causality, we stablished that
IMPDH inhibition increased the phosphorylation of nucleolar
proteins with roles in ribosomal RNA (rRNA) metabolism only in
cells sensitive to the inhibitor of this enzyme. Overall, our study
uncovers subgroups of biochemically distinct KMT2Ar-AML with
differential drug response phenotypes.

RESULTS
Overview of multi-omic analysis of poor-risk and KMT2A-MLLT3
AML
Our study initially included 74 patient samples with poor-risk or
KMT2A-MLLT3 karyotypes and 4 samples derived from healthy
donors (Fig. 1a and Supplementary Dataset 1). Samples were
collected by the Barts Cancer Institute tissue bank in UK (n= 56)

Fig. 1 Deep multiomic analysis of poor-risk and KMT2A-MLLT3 AML. a Workflow used for the molecular profiling of the patients. b Patient
cohort as a function of karyotype. c Overview of analysed features across the omics layers of the study. d Phosphoproteomics separate healthy
donor from AML samples in PCA. e Number of differentially phosphorylated peptides across karyotype groups and healthy cells.
Phosphopeptides were counted when p-value <0.05 and fold change (log2) > 0.8 (positive values) or < -0.8 (negative values). Statistical
significance was calculated using unpaired two-sided Student’s t-test. Section a was created with BioRender.com
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and the Institute for Molecular Medicine in Finland (n= 18). To
increase the robustness of our analysis, we performed a quality
control analysis which led to the exclusion of 19 samples from our
phospho(proteomic) dataset. Excluded samples were mislabelled
as AML (n= 2) or presented high number of red blood cells
(n= 1), T-cells (n= 12) or low viability (n= 5) (Supplementary
Dataset 1). In the remaining 55 patient samples (BCI, n= 40; FIMM,
n= 15), the most represented karyotypes were complex karyotype
followed by KMT2Ar and alterations in chromosome 7(-7/del(7))
(Fig. 1b). In general, KMT2Ar-AML cases were younger than
patients in other karyotype groups (Supplementary Fig. 1b) and, as
previously described,25 presented leukaemia with morphological
features associated to myelomonocytic (M4) or monocytic (M5)
differentiation (Supplementary Fig. 1b).
Mononuclear cells from AML patients and healthy donors were

collected from peripheral blood or bone marrow aspirates and
subjected to genomics, transcriptomics, proteomics, phosphopro-
teomics and a PTMs analysis that included peptide methylation
and acetylation. Kinase activity was estimated from phosphopro-
teomics data and cells were subjected to an ex vivo drug
screening (Fig. 1a). Our study quantified 26,710 phosphopeptides
4760 acetylated or methylated peptides, 6637 proteins and 84
kinase activities in all 59 individuals (55 patients and 4 healthy
donors) (Fig. 1c). A total of 33,561 mRNAs were quantified in 39
patients, and 54 frequently mutated genes in AML were
sequenced in 40 patients (Fig. 1c). Samples from 47 patients
and 2 independent healthy donors (PBMCs) were subjected to an
ex vivo drug screen consisting of 627 compounds assessed across
a variable number of patients, with 482 compounds assessed in 30
patients or more (Fig. 1c and Supplementary Fig. 1c). These results
provide the community with the most comprehensive multi-omics
dataset of poor-risk AML to date (Supplementary Dataset 1).

Phosphoproteomics defines two subgroups of KMT2Ar-AML
Targeted therapies require the stratification of patients into
phenotypically homogeneous groups. Since phosphorylation
regulates the activity of proteins that determine cell phenotype,
we investigated the use of phosphoproteomics as a means to
classify poor-risk AML patients. We completed a principal
component analysis (PCA) with all identified phosphopeptides to
assess the global quality of our phosphoproteomics data. We
observed no separation of samples as a function of source
(peripheral blood or bone marrow) or origin (UK or Finland)
(Supplementary Fig. 2a, b), showing that the data was normalized
for potential batch effects. In addition, this analysis separated
healthy donors from AML samples (Fig. 1d). Further characteriza-
tion of the phosphoproteome of our patient cohort revealed that
cells from healthy donors showed a substantial alteration of
phosphorylation sites when compared with cells with -7/del(7),
complex and KMT2Ar karyotypes (Fig. 1e, upper panel). In
addition, KMT2Ar-AML cases showed the greater number of
significantly increased phosphorylation sites relative to other
karyotypes (Fig. 1e, lower panel), thus suggesting that the
phosphoproteome of KMT2Ar-AML cases is distinct from those
of other poor-risk AML cases.
To investigate the nature of the KMT2Ar specific phosphopro-

teome in more detail, we generated a KMT2Ar signature which we
used in a machine learning (ML) approach, based on random
forest, to classify AML samples as follows. First, we split our cohort
of patients from the BCI into training (n= 36) and validation sets
(n= 8) and used the FIMM cases as an additional verification set
(n= 15) (Fig. 2a and Supplementary Figure 3a). A feature selection
process was subsequently applied by comparing the phospho-
proteome of cases in the training set with KMT2Ar against samples
with other karyotypes (by t-test, Supplementary Fig. 3b), from
which phosphopeptides with the lowest p-values were selected.
To avoid overfitting, we selected a number of features equal to
half the number of samples in the training set (n= 18) (Fig. 2a). To

define classes, we then analysed by PCA the resulting KMT2Ar
phosphoproteomics signature in all samples in our patient cohort.
PC1 separated KMT2Ar-AML from other AML samples (Fig. 2b).
Sample dispersion in the PCA plot, followed by clustering analysis,
indicated that the group with KMT2Ar could be further subdivided
into two distinctive groups with two samples separated from the
other eight (Fig. 2c). We used the cluster of eight samples to
define an area in the PCA and we labelled all samples in that area
as KMT2A group A (MLLGA) and all samples out of that area as No-
MLLGA (Fig. 2b). Next, a new random forest classification model,
trained using the training set and the phosphoproteomics
signature with MLLGA or No-MLLGA as labels, was used to
reclassify samples (Fig. 2d). Cases that were in the MLLGA area
(T5876 and SF13) or did not present KMT2Ar were correctly
classified as MLLGA or No-MLLGA, respectively. Four samples in
the validation or verification set presented KMT2Ar and were out
of the MLLGA. Cases T2353, SF02 and SF16 were clearly separated
from the MLLGA area and were classified as No-MLLGA, while
sample SF10 that was closed to the MLLGA area was classified as
MLLGA and considered as MLLGA in further analyses (Fig. 2b, d,
lower panel). Of note, samples classified as MLLGA (n= 11) mainly
presented KMT2A fusion proteins involving MLLT4 (n= 6) or
MLLT10 (n= 3), while MLLT3 (n= 1) and TET1 (n= 1) were the
other KMT2A partners represented in this group. Interestingly,
analysis of feature importance showed that the most relevant
features for the ML model were phosphorylation sites on DOT1L
(Fig. 2e), a protein highly associated to the biology of KMT2Ar-
AML.26 Together, this analysis uncovered an 18-phosphopeptide
signature that separates KMT2Ar-AML cases into two groups
based on a ML model in which DOT1L phosphorylation is an
important contributor.

Distinctive DOT1L-TEFb complex phosphorylation and HOXA gene
expression in KMT2Ar groups
Most of the characterised KMT2A fusion proteins directly or
indirectly recruit the DOT1L and TEFb complexes to the regulatory
regions of target genes27 (Fig. 3a). Since the phosphorylation of
DOT1L was an important contributor to MLLGA in our ML model, we
next considered if MLLGA samples presented a specific phosphor-
ylation pattern in DOT1L and TEFb complex components. We found
that MLLGA samples presented a significantly increased phosphor-
ylation of sites in DOT1L, MLLT10, MLLT4 and EAF2 and a
significantly reduced phosphorylation of AFF4 sites when compared
to No-MLL (i.e., non-KMT2Ar cases) and MLLGB (i.e., KMT2Ar-AML
cases that were not classified as MLLGA) (Fig. 3b). In addition,
compared to the No-MLL group, MLLGA and MLLGB presented a
significantly reduced phosphorylation of KMT2A at sites located in
the c-terminal region that is replaced by the fusion partner (Fig. 3b).
There was no difference in KMT2A expression between the different
groups and protein and phosphorylation site abundances were not
significantly correlated (Supplementary Fig. 4a, b). Similarly, changes
in the protein or mRNA levels of DOT1L and TEFb complex
components were not correlated with their extent of phosphoryla-
tion (Supplementary Fig. 4c, d).
DOT1L is an epigenetic modulator that specifically methylates

histone H3 at K79.28 In KMT2Ar-AML, the aberrant activity of
DOT1L and TEFb complexes lead to an increase in the expression
of genes in the HOXA cluster11 (Fig. 3a). Consistent with this, we
found that MLLGA significantly increased mRNAs levels for
multiple HOXA genes (Fig. 3c) and long non-coding RNAs located
in the HOXA cluster when compared to MLLGB or No-MLL samples
(Supplementary Fig. 4e). MLLGA also presented a significantly
increased protein expression and phosphorylation of HOXA10
(Supplementary Fig. 4f, g). Of note, our data show that MLLGA but
not MLLGB presented a reduced methylation of histone H3 at K79
when compared with No-MLL (Fig. 3d). We further found that the
mRNA levels of multiple HOXA genes positively correlated with
the phosphorylation of DOT1L and other components of the

Integrative phosphoproteomics defines two biologically distinct groups of. . .
Casado et al.

3

Signal Transduction and Targeted Therapy            (2023) 8:80 



DOT1L complex and were inversely correlated with the global
methylation of histone H3 at K79 (Fig. 3e). Overall, our data on
DOT1L and TEFb complex phosphorylation, global H3 methylation
at K79 and HOXA gene expression indicate that MLLGA cases have
high activity of DOT1L and TEFb at KMT2A target genes.
AML cases with t(9:11) rearrangements generate a KMT2A-

MLLT3 fusion protein but these cases are not classified as poor-risk.
Intriguingly, however, KMT2A-MLLT3 proteins are also able to
recruit the DOT1L and TEFb complexes to the KMT2A target
genes.29 To investigate if KMT2A-MLLT3 cases resemble MLLGA or
MLLGB, we generated a new phosphoproteomics dataset (Supple-
mentary Dataset 2) for KMT2Ar-AML samples (n= 33) that
comprised all samples previously classified as MLLGA and MLLGB
(n= 16). In addition, we analysed new cases containing the
following karyotypes: KMT2A-MLLT3 (n= 10), MLLT10 (n= 1),
MLLT4 (n= 2), MLLT11 (n= 2), t(11;19) rearrangements that
generates fusions with ELL or MLLT1 (n= 1) and rearrangements
involving 11q23 (Unknown; n= 1). Although we reduced the
amount of starting material by 60% due to sample availability
limitations, we identified and quantified 10,503 phosphopeptides
in this experiment. Unsupervised PCA analysis using phosphopep-
tides differentially expressed between MLLGA and MLLGB showed

that new samples with KMT2A-MLLT4 and MLLT10 fusion proteins
located close to MLLGA samples, whereas the sample with KMT2A-
ELL/MLLT1 fusion located close to MLLGB samples (Fig. 4a).
Interestingly, KMTA2-MLLT3 and MLLT11 formed a new group
located closer to MLLGA than to MLLGB in PCA space (Fig. 4a),
suggesting that the phosphoproteomes of KMT2A-MLLT3 and
MLLT11 samples are more similar to MLLGA than to MLLGB.
To confirm our results showing differences in MLLGA and MLLGB

in independent datasets (Supplementary Dataset 3), we collected
publicly available mRNA expression data in a cohort of 42 young
patients (aged <18 years) with KMT2Ar-AML from Pigazzi et al.30

We considered cases with rearrangements involving MLLT4 and
MLLT10 cytogenetically to be similar to our MLLGA and patients
with rearrangements involving ELL, MLLT1 and SEPTIN6 similar to
our MLLGB. Consistent with our results, we found that patients in
the Pigazzi et al dataset with MLLT4/MLLT10 rearrangements
significantly overexpressed several HOXA genes when compared
to patients with ELL/MLLT1/SEPTIN6 (ELL/M1/S6) rearrangements
(Fig. 4b). MLLT3/MLLT11 patients showed higher expression of
HOXA4 than ELL/M1/S6 patients (Fig. 4b). We also collected
publicly available data for 80 patients of the TARGET-20 dataset.31

We subdivided the dataset in patients with no KMT2A

Fig. 2 Identification of a phosphoproteomics signature that stratifies KMT2A rearranged leukaemia into two biochemically distinct groups.
a Phosphoproteomics signature across samples in the training (BCI, UK) and testing (FIMN, Finland) sets. b PCA using the phosphoproteomics
signature shown in a. c Definition of the KMT2Ar group MLLGA using hierarchical cluster analysis of PC1 and PC2 (in b) in the training set
samples. d Probability of training and testing set samples to belong to MLLGA or No-MLLGA calculated with a random forest classification
model. e Rank of feature relevance in the classification model in d
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rearrangements (No-MLL) and patients with KMT2A rearrange-
ments with MLLT4 or MLLT10 (MLLT4/10), MLLT3 or other genes
(Other-MLL). We found that MLLT4/10 patients overexpressed
HOXA genes when compared to No-MLL and to Other-MLL
patients (with the exception of HOXA7; Fig. 4c). MLLT3 patients also
overexpress HOXA7, HOXA9 and HOXA10 genes when compared to
No-MLL, while no differences in HOXA gene expression were found
between No-MLL and Other-MLL (Fig. 4c). These data confirm our
initial findings on the existence of two biochemically distinct

KMT2Ar groups with distinct patterns of pathway activities and
further suggest the presence of a third group comprising MLLT3
and MLLT11 that is closer to MLLGA than to MLLGB.

MLLGA cases present an increased phosphorylation of proteins
involved in RNA splicing, replication and DNA damage and an
increased activity of CDK1
We next investigated whether, in addition to differences in HOXA
gene expression and DOTL1/TEFb complexes, the MLLGA and

Fig. 3 MLLGA increased the phosphorylation of DOT1L and TEFb complex components and the expression of HOXA genes. a Schematic of
mechanism used by KMT2A fusion proteins to induce HOXA gene expression. b, c, d Phosphorylation of DOT1L, TEFb complex components
and KMT2A, HOXA gene expression and histone H3 K79 methylation across newly identified KMT2Ar groups. e Spearman correlation matrix
for variables shown in a to d. f HOXA gene expression in dataset obtained from.30 Data points represent individual patient observations.
Boxplots indicate median, 1st and 3rd quartiles. Whiskers extends from the hinge to the largest and lowest value no further than 1.5 times the
distance between the 1st and 3rd quartiles (a–d). For phosphoproteomics and methylation analyses, Normal (n= 4), MLLGA (n= 11), MLLGB
(n= 5) and No-MLL (n= 39) (b, d); for mRNA analysis, Normal (n= 0), MLLGA (n= 9), MLLGB (n= 3) and No-MLL (n= 27) (c). Statistical
significance was calculated using unpaired two-sided Student’s t-test. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05. a–d Crossed dots
indicate no statistically significant correlation (e)
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MLLGB subgroups of KMT2Ar cases have other molecular
differences. We found that MLLGA significantly increased or
decreased the expression of multiple transcripts, proteins,
phosphopeptides and acetylated or methylated peptides when
compared to MLLGB or the No-MLL group (Fig. 5a). AML groups
also presented several hundred significant differences across
protein or phosphorylated, methylated or acetylated peptide
levels when compared to normal myeloid cells (Fig. 5b).
Functional differences between groups of patients may be

exploited to design therapies targeted to such subgroups.
However, successful therapies should also aim to target functions
that are not essential for the biology of normal cells. Ontology and
pathway enrichment analysis on the phosphoproteomics dataset
highlighted phosphoproteins linked to GTPase activity, actin
binding and Fc receptor mediated phagocytosis to be significantly
reduced in MLLGA relative to other cases (Fig. 5c). Functions
linked to RNA splicing, replication and the DNA damage response
were enriched in the sets of phosphoproteins significantly
increased in MLLGA compared to other cases (Fig. 5c), and in
MLLGA and No-MLL groups relative to myeloid cells from healthy
donors (Normal) (Fig. 5d), although the significance and the

magnitude of the enrichment was higher in MLLGA cases (Fig. 5d).
DNA damage response proteins that significantly increased in
phosphorylation in MLLGA included BRCA1 at S1466, S1542 and
T1622, ERCC5 at S356, FANCE at S356, MDC1 at S168 and S196 and
RIF1 at S22, among others (Supplementary Fig. 5a). Similarly, the
phosphorylation of proteins involved in DNA replication, such as
RB1 at S37 and the MCM helicase components MCM2 at T106,
MCM4 at S131 and MCM6 at T266, was also higher in MLLGA than
in MLLGB, No-MLL and Normal groups (Supplementary Fig. 5a, b).
Together, these results uncovered biochemical pathways signifi-
cantly enriched in MLLGA cells, including RNA splicing process,
cell replication rate and DNA damage, when compared to the
other AML subgroups and normal myeloid cells.
To identify differences in kinase activities across groups, we derived

values of kinase activity from the phosphoproteomics data using
KSEA.32 The activities of kinases with roles in regulating mitosis and
replication were increased in MLLGA. Specifically, MLLGA cases
showed elevated CDK1 activity relative to all other groups, high CDC7
and CDK2 activities relative to No-MLL and Normal cases and high
mTOR and other CDKs activities relative to Normal cases (Fig. 5e and
Supplementary Fig. 5c). In addition, PRKCD and SRC activities were

Fig. 4 Phosphoproteome of KMT2A-MLL3 samples more similar to MLLGA than to MLLGB a PCA patients with KMT2Ar-AML using
differentially expressed phosphopeptides between MLLGA and MLLGB b HOXA gene expression in the dataset obtained from.30 c HOXA gene
expression in the dataset obtained from.31 Data points represent individual patient observations. Boxplots indicate median, 1st and 3rd
quartiles. Whiskers extends from the hinge to the largest and lowest value no further than 1.5 times the distance between the 1st and 3rd
quartiles (b, c). For mRNA analysis, MLLT4/10/11 (n= 23), MLLT3 (n= 11), ELL/M1/S6 (n= 8) in b, and No-MLL (n= 40), MLLT4/10 (n= 18),
MLLT3 (n= 13), Other-MLL(n= 9) in c. Statistical significance was calculated using unpaired two-sided Student’s t-test. ****p ≤ 0.0001,
***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05. (b, c)
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decreased in No-MLL and MLLGA when compared to MLLGB and
Normal, while MAP2K1 activity was increased in MLLGB compared to
all other groups (Fig. 5e). Finally, several tyrosine kinases including
SYK, EGFR, BTK, FYN and LCK were increased in the Normal group
when compared to No-MLL and MLLGA (Supplementary Figure 5c).
The No-MLL group presented and increased activity of DYRK1A when
compared to the other two groups. These data show that MLLGA
present a higher activity of kinases that positively regulate the cell
cycle and cell proliferation when compared with normal myeloid cells
and other AML groups.
The profound molecular differences between the KMT2Ar groups

could translate into distinct clinical outcomes. A Kaplan-Maier curve
showed that MLLGB cases trend to present a higher overall survival
when compared to MLLGA and No-MLL although the difference
was not statistically significant (Supplementary Fig. 5d). Therefore,

MLLGB cases trend to have a better prognosis than MLLGA and No-
MLL patients.

MLLGA is more sensitive to genotoxic drugs and inhibitors of
mitotic kinases and IMPDH
We next aimed to assess whether differences in the biochemistry
of KMT2Ar-AML subgroups translate into phenotypic differences
that could be exploited clinically. Our multi-omics platform
outlined above (Fig. 1c) included a drug screening for 627
compounds based on the reduction of the cell number as a
function of treatment, where high drug sensitivity scores (DSS)
indicates high sensitivity to the compound. When considering the
whole poor-risk and KMT2A-MLLT3 patient cohort, compounds
that inhibit RNA synthesis and protein degradation were the most
efficient agents on average, while receptor tyrosine kinase (RTK),

Fig. 5 MLLGA increased the phosphorylation of proteins involved in RNA metabolism, replication and DNA damage response. a Expression
levels of mRNA, protein, peptide phosphorylation and peptide methylation and acetylation across KMT2Ar groups. b Term enrichment
analysis across KMT2Ar groups. c Estimation of kinase activity across KMT2Ar groups. d Expression levels of mRNA, protein, peptide
phosphorylation and peptide methylation and acetylation in KMT2Ar groups compared to normal cells. e Term enrichment analysis in KMT2Ar
groups compared to normal cells. Statistical significant was calculated using unpaired two-sided Student’s t-test. For mRNA analysis, Normal
(n= 0), MLLGA (n= 9), MLLGB (n= 3) and No-MLL (n= 27) and for proteomics, phosphoproteomics, KSEA and methylation and acetylation
analyses, Normal (n= 4), MLLGA (n= 11), MLLGB (n= 5) and No-MLL (n= 39) (a, c, d). Phosphopeptides were counted when p-value <0.05 and
fold change (log2) >0.7 (positive values) or <−0.7 (negative values) (a, d). Boxplots indicate median, 1st and 3rd quartiles. Whiskers extend
from the hinge to the largest and lowest value no further than 1.5 times the distance between the 1st and 3rd quartiles.
****p ≤ 0.0001,***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05 c. Statistical difference was calculated using a modified Fisher’s exact test. FDR values
obtained by the adjustment of p-values using the Benjamini-Hochberg procedure (b, e). GA is MLLGA, GB is MLLGB and No-M is No-MLL
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PI3K/AKT/MTOR and epigenetic inhibitors where the most
abundant compound types in our drug panel (Fig. 6a).
Consistent with the increase in the activity of CDKs and pro-

proliferative pathways in the MLLGA subgroup (Fig. 5e), our drug
screening showed mitotic poisons and genotoxic compounds
particularly more effective in cells from MLLGA, relative to other
cases. Specifically, 51 compounds were significantly more effective
in MLLGA cases compared to those in the No-MLL group, while 17
agents, including apoptotic modulators like BCL-XL inhibitors,
were significantly more effective in No-MLL (Fig. 6b and
Supplementary Fig. 6a). Similarly, 25 compounds were significantly
more effective in the MLLGA than in the MLLGB (Fig. 6b and
Supplementary Fig. 6b). A total of 15 agents were significantly
more effective in MLLGA when compared to both MLLGB and No-
MLL (Fig. 6b, c). These included topoisomerase inhibitors

(etoposide and doxorubicin), nucleotide analogues (cytarabine
and gemcitabine) and inhibitors developed to target CHEK1
(prexasertib), PARP1 (nilaparib), IMPDH (AVN-944), c-MET (tivati-
nib), PLK (volasertib), AURKA/B (AZD1152, alisertib, MK-8745 and
TAK-901), CDK4/6 (palbociclib) and Wee1 (AZD1775) (Fig. 6c).
Correlation analysis revealed that the phosphorylation of several
DOT1L/TEFb complex components and the expression of multiple
HOXA genes were significantly associated with the responses to
drugs that were more effective in MLLGA relative to other groups
(Fig. 6d). Interestingly, the phosphopeptides DOT1L(S1001/7) and
EAF2(S159) presented a significantly positive correlation with the
response to all these compounds (Fig. 6d).
Since most of the 15 compounds that are more effective in

MLLGA target mainly proliferative cells,33,34 we then asked
whether the rate of ex vivo cell proliferation determined

Fig. 6 Genotoxic drugs and compounds targeting the DNA damage response and the cell cycle progression are highly effective in MLLGA.
a Overview of the ex vivo response of AML samples to 482 compounds. b Compound response for agents that are more efficient in any of the
KMT2Ar groups. c Compound response for agents that are more efficient in MLLGA than in MLLGB and No-MLL. d Spearman rank correlation
rho values between compound response and proliferation or the mRNA, protein, phosphorylation or methylation/acetylation levels of DOT1L/
TEFb complex components, HOXA genes or Histone H3. e Compound response (DSS) as a function of stratification based on KMT2Ar groups
or proliferation for patients with KMT2Ar-AML. High pro group included samples with proliferation rate higher than the average rate for
KMT2Ar-AML patients, while Low pro group included samples with proliferation rate lower than the average rate for KMT2Ar-AML patients.
Only compounds tested in at least 30 patients were included, and data are represented as mean ± SEM (a). Dot colour indicate karyotype as in
Fig. 3b, and boxplots indicate median, 1st and 3rd quartiles. Whiskers extend from the hinge to the largest and lowest value no further than
1.5 times the distance between the 1st and 3rd quartiles (c). (n) is indicated in brackets (a, c, e). Statistical significance was calculated using
unpaired two-sided Student’s t-test.****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05. b, c Correlation was calculated using Spearman
correlation and crosses denote correlations that are not statistically significant (p > 0.5) (d)
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responses to these agents. In agreement with these cases having
high activity of the cell cycle related kinases CDK1 and CDC7
(Fig. 5c), we found that cells from MLLGA samples proliferated
significantly faster than those from other AML subgroups
(Supplementary Fig. 6c). Proliferation rate also positively corre-
lated with the extent of phosphorylations of DOT1L and EAF2, the
expression of HOXA3, 4 and 7 and the phosphorylation of HOXA9
(Fig. 6d). Of note, cell proliferation rate significantly correlated
with the DSS for 70 compounds (Supplementary Fig. 6d) that
included 13 of the 15 compounds that were more effective in
MLLGA than in MLLGB and No-MLL (Fig. 6d and Supplementary
Fig. 6e). However, when we compared classifications of KMT2Ar
based on our phosphoproteomics signature or on the cellular
proliferation rate, the MLLGA vs MLLGB stratification provided
greater and more significant DSS differences than stratification by
proliferation rate for all the MLLGA-specific compounds (Fig. 6e).
Together, these results uncovered 15 drugs that are particularly
effective in MLLGA cases and indicate that, although contributing,
proliferation rate is not the main determinant in how cells respond
to MLLGA-specific compounds ex vivo.

High expression of IMPDH2 and nucleolar proteins as
determinants of IMPDH inhibitor efficacy in MLLGA
Having identified a set of drugs that are specific for the MLLGA
subgroup of KMT2Ar-AML, we next explored factors, other than
proliferation rate, that could be used to rationalise responses to
these agents in the context of KMT2Ar-AML biology. We focused
on AVN-944 because this compound inhibits the IMPDH enzymes
that are essential for “de novo” synthesis of purine nucleotides,35

and because we observed that AVN-944 DSS significantly
correlates with IMPDH2 protein levels (Fig. 7a, left panel), thus
highlighting a clear link between drug activity and target
expression. This correlation was similar to the correlation between
the DSS for AVN-944 and the cellular proliferation rate (Supple-
mentary Fig. 6a, left panel). In a karyotype-based stratified analysis,
IMPDH2 protein and RNA expression strongly correlated with
AVN-944 DSS in KMT2Ar-AML samples, while no correlation was
observed for samples with other poor-risk karyotypes (Fig. 7a,
right panel and b). In addition, AVN-994 DSS correlated better with
IMPDH2 expression than with cell proliferation in KMT2Ar-AML
samples (Supplementary Fig. 7a, right panel). AVN-944 DSS did not
correlate with IMPDH1 protein levels in KMT2Ar-AML, but it
presented a strong negative correlation with the protein levels of
DPYD, the limiting enzyme for the degradation of pyrimidine
nucleotides36 (Supplementary Fig. 7b, c). No association was
observed between AVN-944 DSS and proliferation or the protein
levels of IMPDH1 or DPYD in the No-MLL group (Supplementary
Fig. 7 a–c). MLLGA, when compared to MLLGB, showed a higher
sensitivity to AVN-944 and IMPDH2 expression and lower DPYD
levels but presented no differences in proliferation and IMPDH1
expression (Supplementary Fig. 7d and Fig. 7c). These data
suggest that IMPDH2 expression is a major determinant of IMPDH
inhibitor sensitivity in KMT2Ar-AML and it is more expressed in
MLLGA cases. In addition, since IMPDH and DPYD are key
regulators of nucleotide metabolism, these data suggest that
nucleotide metabolism is altered in MLLGA.
In addition to IMPDH2 and DPYD, sensitivity to AVN-944

positively or negatively correlated with the levels of 609 and
294 proteins, respectively (Fig. 7d). Ontology and term enrichment
analysis showed a significant enrichment of proteins linked to
focal adhesion and the plasma membrane in the group that
negatively correlated with the response to AVN-944 (Fig. 7e).
Conversely, proteins associated to RNA processing and the
nucleolus were significantly enriched in the set that positively
correlated with AVN-944 DSS (Fig. 7e). Nucleolar proteins, whose
expression correlated with AVN-944 sensitivity and were increased
in MLLGA, included NPM1, NCL, UBF1 among others (Supplemen-
tary Fig. 7e, f). These results show that proteins involved in

nucleolar biology, which are highly expressed in MLLGA, are
associated to the sensitivity to IMPDH inhibitors in KMT2Ar-AML.
Next, to stablish a causative link between high expressions of

nucleolar proteins in MLLGA and high responses to IMPDH
inhibitors seen in this KMT2Ar-AML subgroup, we investigated
whether targeting IMPDH had a higher impact in the nucleolar
activity in MLLGA than in MLLGB. We hypothesised that this
greater interference would manifest as a differential phosphoryla-
tion of nucleolar proteins between MLLGA and MLLB treated with
IMPDH inhibitors.37–39 To this end, we analysed the phosphopro-
teomes of samples R6171 and T2354, which were respectively
classified as MLLGA and MLLGB, treated with AVN-944 for 24 h
(Supplementary Dataset 4). PCA of these data showed that R6171
and T2354 separated in PC1 space, while DMSO treated samples
trended to separate from AVN-944 treated samples in the PC2 axis
for R6171 (Supplementary Fig. 8a). We also observed that AVN-944
significantly increased the phosphorylation of a similar number of
peptides in R6171 and T2354 cells (Supplementary Fig. 8b). More
specifically, 1 µM AVN-994 significantly increased the phosphor-
ylation of 43 phosphopeptides in proteins linked to the nucleolus
in R6171, while it only increased the phosphorylation of 16 in
T2354 (Fig. 7f). Conversely, AVN-994 significantly reduced the
phosphorylation of more peptides in T2354 than in R6171
(Supplementary Fig. 8b). In the specific case of peptides in
proteins linked to the nucleolus, AVN-994 reduced the phosphor-
ylation of 46 peptides in T2354 and only 6 in R6171 (Fig. 7f).
Phosphopeptides located in proteins involved in the ribosome
biology that were only significantly affected by AVN-944 in R6171
included EXOSC9, NCL, NOL8, PWP1, RPL4 and TAF1D among
others (Fig. 7g). After treatment with 1 µM AVN-944, the number
of significantly increased phosphopeptides in proteins linked to
RNA splicing and DNA damage was also higher in R6171 than in
T2354 (Fig. 7f). Overall, we found that the expression of key
nucleolar regulators of rRNA synthesis and metabolism correlates
with IMPDH inhibitor sensitivity. In addition, our results indicate
that IMPDH inhibitors are, at least partially, more effective in
MLLGA than in MLLGB because they have a greater impact on
nucleolar biology in this KMT2Ar-AML subgroup.

DISCUSSION
Recent advances in our understanding of AML biology and
genetics has led to the development of new-targeted therapies to
treat subpopulations of patients.40,41 However, patients with poor-
risk karyotypes still present low overall survival, thus highlighting
the need for new drug targets and biomarkers to improve
precision medicine in these patients.42

Comprehensive analyses of the molecular pathways deregu-
lated in malignant cells have provided substantial new knowledge
of disease biology, from which new drug targets and signatures
for patient stratification can be derived.16,19,21,43 To understand
the molecular and biochemical landscape of poor-risk AML, we
performed an integrative analysis of data obtained from multiple
omics platforms. Unlike previous multi-omics studies, we also
carried out a comprehensive functional phenotypic analysis by
drug sensitivity screening against 627 compounds (Fig. 1a–c,
Supplementary Fig. 1 and Supplementary Dataset 1).44 Detailed
analysis of the other subgroups and data integration will be
described elsewhere.
Here, we focused on the phosphoproteomics data of KMT2Ar

cases because, interestingly, we found large differences in the
phosphoproteomes of the different karyotypes within the poor-
risk cases in our study, with KMT2Ar AML being the most
biologically distinct AML subtype relative to other poor-risk cases
(Fig. 1e). Following this observation, we derived a phosphopro-
teomics signature that classified KMT2Ar-AML patients into two
biochemically distinct groups, which we termed MLL group A
(MLLGA) and MLL group B (MLLGB) (Fig. 2c, d). Of note, these
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results indicate that KMT2Ar-AML is a heterogeneous condition
from the biochemical/proteomic standpoint.
Multiple KMT2A fusion proteins recruit DOT1L and TEFb

complexes to the HOXA cluster and other KMT2A targets to
promote transcription elongation by methylating histone H3 at K79
and phosphorylating the RNA polymerase II.12,13 Aberrant expres-
sion of HOXA genes and other KMT2A targets promotes the
leukaemogenic process.10 In our study, MLLGA cases showed
increased phosphorylation of several components of the DOT1L and
TEFb complexes and elevated expression of multiple genes coded
by the HOXA cluster when compared to other groups (Fig. 3a–c).
HOXA gene expression has been used before to split leukaemia
cases with KMT2A rearrangements. Indeed, ALL cases with KMT2A-
AFF1 have been subdivided in two distinct subgroups based on

HOXA gene expression with the group with low HOXA expression
showing the worst prognosis.45–48 However, our data suggest that
the MLLGA that presented high HOXA gene expression show the
worst overall survival in AML (Supplementary Fig. 5d). In addition,
MLLGA, but not MLLGB, cases presented a reduction of Histone H3
K79 methylation when compared to the No-MLL group (Fig. 3d).
Global reduction of histone H3 K79 methylation has been previously
observed in KMT2Ar-AML patients.49 Cases with KMT2A-MLLT3
rearrangements show much better outcome than the KMT2A-
MLLT4 and MLLT10 cases represented in MLLGA and are not
considered poor risk. However, these rearrangements generate
fusion proteins able to recruit the DOT1L and TEFb complexes to
the KMT2A target genes.29 Our analysis show that KMT2A-MLLT3
cases together with KMT2A-MLLT11 cases are mainly represented in

Fig. 7 IMPDH2 expression and the nucleolar metabolism are significantly associated with responses to AVN-944 in KMT2Ar-AML.
a, b Spearman rank correlation between response to AVN-944 and IMDH2 protein and mRNA expression. c Protein expression of IMPDH2
across MLLGA and MLLGB. d Distribution of Spearman rank correlation values between response (DSS) for AVN-944 and protein expression.
e Term enrichment analysis in the sets of proteins significantly positively or negatively correlated in d. f Number of phosphopeptides
significantly affected by 24 h treatment with 1 µM AVN-944 as a function of term linkage. Phosphopeptides were counted when p-value < 0.05
and fold change (log2) > 0.7 (positive values) or <−0.7 (negative values). g Selection of proteins significantly affected by treatment with 1 µM
AVN-944 and linked to the nucleolus or the ribosome biology. Statistical significance was calculated using unpaired two-sided Student’s t-test
(c, f, g). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01 and *p ≤ 0.05 (c, g). FDR values obtained by the adjustment of p-values using the Benjamini-
Hochberg procedure (c, d). Statistical difference was calculated using a modified Fisher’s exact test (d). In g, n= 4 biological replicates
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a third intermediate group that is more similar to MLLGA than to
MLLGB (Fig. 4a). To validate these results in two independent
datasets based on RNA expression,30 we used the KMT2A fusion
partner to group KMT2Ar-AML cases into MLLGA, MLLGB and the
intermediate MLLT3/MLLT11 group. Consistent with our data, we
found that the groups similar to MLLGA over expressed multiple
HOXA genes when compared to the groups similar to MLLGB while
the MLLT3/MLLT11 group trend to express intermediate levels of
these genes (Fig. 4b, c). In summary, these data suggest that cells
derived from MLLGA cases present a higher activity of the DOT1L
and TEFb complexes recruited to the KMT2A target genes when
compared to MLLGB and No-MLL, while cells from KMT2A-MLLT3
cases would present an intermediate activity more similar to MLLGA
than to MLLGB.
Cells from MLLGA cases also showed an increased phosphor-

ylation of proteins involved in RNA splicing, replication and DNA
damage response (DDR) when compared to MLLGB, No-MLL and
healthy myeloid cells (Fig. 5c, d). CDC7 activity was increased only
in MLLGA cases when compared to No-MLL (Fig. 5e). CDC7 directly
phosphorylates and regulates the activity of MCM, a helicase that
plays a key role in replication,50 and, consistently, we found that
MLLGA presented an increased phosphorylation of three MCM
subunits (Supplementary Fig. 5b). Phosphorylation of key reg-
ulators of the DDR like the BRD1-BRCA1 complex or MDC151 were
also increased in MLLGA (Supplementary Fig. 5a), which suggests
that MLLGA cases are subjected to higher levels of DNA damage. It
is tempting to speculate that the finding of increased phosphor-
ylation of proteins that participate in the replication process may
indicate that replicative stress could lead to an increase in DNA
damage in these cases.
Since our phosphoproteomic signature stratified KMT2Ar-AML

patients into two defined groups (Figs. 2–5 and Supplementary
Figs 4-5), we hypothesised that these subgroups would also
present functional differences that could be exploited therapeu-
tically. We therefore mined our ex vivo high content drug
sensitivity screening against 627 compounds (Fig. 6a).52 This
analysis revealed that MLLGA samples, when compared to other
groups, were more sensitive to 15 agents targeting topoisomerase
II, nucleotide polymerization, CHEK1, PARP1, IMPDH2, c-Met, CDK4/
6, Wee1, PLK and AURK (Fig. 6b, c). Since most of these compounds
target mainly proliferating cells,33,34 we were prompted to
investigate whether responses to these agents were correlated
with the proliferation rate of the treated samples (Fig. 6d and
Supplementary Fig. 5d, e). These experiments revealed that
KMT2Ar-AML cases of the MLLGA, but not MLLGB, group
proliferate at higher rate than those from the No-MLL group.
Consistent with these observations, KSEA analysis of the phospho-
proteomics data showed high activity of the mitotic kinase CDK1 in
MLLGA cells (Fig. 5e and Supplementary Fig. 5c). However, our
phosphoproteomics signature was more accurate than the
proliferation rate in stratifying KMT2Ar-AML samples into respon-
der and non-responder groups to these compounds (Fig. 6e). Thus,
these data indicate that the capacity of cells to proliferate
influenced the response to the compounds that were more
effective in MLLGA but other factors also contribute to the higher
efficacy of these agents in this subgroup of KMT2Ar-AML cases.
MLLGA cases, represented by KMT2Ar involving MLLT4 and

MLLT10 are highly sensitive to “ex vivo” treatment with the
standard chemotherapeutics cytarabine and doxorubicin (Fig. 5c).
However, patients with these karyotypes present poorer outcomes
when compared to other KMT2Ar (Supplementary Fig. 5d).53,54

Discrepancies between outcome and “ex vivo” response to
chemotherapy were also observed in infant ALL cases, where
the presence KMT2Ar is associated with poor prognosis, but ALL
cells with KMT2A-AFF1 rearrangements (the most frequent
KMT2Ar in ALL) are more sensitive to “ex vitro” treatment with
cytarabine.55,56 In AML, high BM blast percentage is linked to
KMT2Ar and low overall survival, but it is also a marker of

increased proliferation, a major factor in the ex vivo response to
chemotherapy.57,58 Therefore, the results of our “ex vivo” assay for
standard chemotherapy are in line with published results.
As for the predictive nature of our “ex vivo” analysis, multiple

publications have shown that the ex vivo drug response platform
used in this study predicts patient response for several, although
perhaps not all, targeted drugs.52,59,60 Our data indicate that MLLGA
are more sensitive to chemotherapeutic drugs than an AML group
that includes cases associated to high chemotherapy resistance
(complex karyotype, TP53 mutations and t(6;9) rearrangements). In
addition, KMT2A-MLLT3 cases who tend to respond to chemotherapy,
are closer to MLLGA than MLLGB (Fig. 4a) and would be expected to
respond better to chemotherapeutics than No-MLL and MLLGB.
These observations are, to some extent at least, compatible with the
results of our ex vivo analysis, but clinical trials will ultimately be
required to confirm the clinical relevance of our findings.
We focused on inhibitors of the inositol monophosphate

dehydrogenase (IMPDH) because we found a clear link between
target expression and drug efficacy within KMT2Ar-AML cases, and
these compounds have been assessed for the treatment of cancer
and other pathologies in multiple clinical trials; the FDA has
consequently already approved their use in transplanted
patients.35 Consistent with our findings, a recent study reported
that an IMPDH inhibitor reduced more effectively the proliferation
in cord blood (CB) cells transformed with KMT2A-MLLT3 than in CB
cells transformed with RUNX1-RUNX1T1 or in non-transformed CB
cells.61 IMPDHs are the rate limiting enzymes for de novo synthesis
of guanosine, a precursor of the GMP required for DNA and RNA
synthesis. Of the two IMPDH isoforms, only IMPDH2 has been
found to be overexpressed in multiple cancer types.35 We found
that IMPDH2 but not IMPDH1 protein and RNA expression
positively correlated with the response to the IMPDH inhibitor
AVN-944 in KMT2Ar-AML cases but, of note, not in the No-MLL
group (Fig. 7a, b and Supplementary Fig. 7b). We also found that
the expression of DPYD, the limiting enzyme for pyrimidine
nucleotide degradation,36 negatively correlated with the response
to AVN-944 in KMT2Ar-AML (Supplementary Fig. 7c). MLLGA
responded better to AVN-944 than MLLGB, overexpressed IMPDH2
and presented lower levels of DPYD (Fig. 7c and Supplementary
Fig. 7d). Taken together, these data indicate that nucleotide
metabolism is a determinant of responses to IMPDH inhibitors in
KMT2Ar-AML but not in other AML cases.
In agreement with these results, we found that proteins whose

expression positively correlated with AVN-944 response were
enriched in nucleolar components. Anti-cancer properties of
IMPDH inhibitors have been attributed to the inhibition of DNA
synthesis.62 However, recent work suggests that the increased
guanosine synthesis in IMPDH2 overexpressing cells enables the
formation of a pathologic nucleolus that uses the excess of
guanosine for tRNA and rRNA synthesis and contributes to the
malignant process. Of relevance, RNA processes and in particular
rRNA synthesis utilize large amounts of nucleotides and generate
vulnerabilities to IMPDH inhibitors. Therefore, cells that present a
pathologic nucleolus are highly sensitive to IMPDH inhibitors.63–65

Consistently, cells from MLLGA cases expressed significantly
higher levels of key nucleolar proteins like nucleophosmin
(NPM1), nucleolin (NCL) and UBF1 than MLLGB cases (Fig. 7e
and Supplementary Fig. 7e, f). Furthermore, treatment with an
IMPDH inhibitor impacted the phosphorylation of nucleolar
proteins involved in rRNA expression and metabolism, like TAF1D
and XRN2, and in the activation of TP53 after nucleolar stress, such
as RPL4 and the MYBBP1-RPP8/NML axis in MLLGA but not in
MLLGB (Fig. 7f, g).66–69 These data suggest that IMPDH inhibitors
produced a greater impairment of ribosome biogenesis in MLLGA
than in MLLGB. Therefore, our study indicates that the ability of
IMPDH inhibitors to interfere with the nucleolar biology is, at least
partially, responsible for the higher efficiency of these compounds
in MLLGA.
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In summary, we performed a deep multilayer molecular
profiling of poor-risk and KMT2A-MLLT3 AML patients matched
to the responses to hundreds of compounds in ex-vivo testing.
Mining this dataset will allow identification of drug targets,
mechanisms of drug action and biomarkers in poor-risk AML. As a
proof of concept, here, we used these datasets to identify a
phosphoproteomics signature that stratified KMT2Ar-AML cases in
two biochemically and functionally distinct subgroups of patients.
Although, ultimately, clinical trials will be required to confirm the
clinical relevance of our findings, our study provides a rationale for
the potential testing of IMPDH inhibitors (and potentially other
mitotic and genotoxic drugs) in KMT2Ar-AML patients positive for
the MLLGA phosphoproteomic signature identified in this study.

MATERIALS AND METHODS
Ethics approval
Patients gave informed consent for the storage and use of their
blood cells for research purposes. Experiments were performed in
accordance with the Local Research Ethics Committee, as
previously described.16

Primary samples
Mononuclear cells from peripheral blood or bone marrow biopsies
were isolated in the BCI or FIMM tissue bank facilities and stored in
liquid nitrogen.

Proteomics, phosphoproteomics and PTM analysis
Thawing of AML primary samples. Cells were thawed at 37 °C,
transferred to 50 mL falcon tubes and incubated for 5 min at 37 °C
with 500 µL of DNAse Solution (Sigma Aldrich, Cat# D4513-1VL;
resuspended in 10 mL of PBS). Then, 10mL of 2% FBS in PBS were
added and the cell suspension was centrifuged at 525 g for 5 min
at RT. Supernatant was discarded and cells were resuspended in
10mL of complete IMDM (IMDM supplemented with 10% FBS and
1% Penicillin/Streptomycin; Thermo-Fisher Scientific Cat#
12440053, 10500-064 and 15140122, respectively), filtered
through a 70 µm strainer and counted. Dilutions of 15 × 106 cells
in 10mL of complete IMDM for each sample were incubated for
3 h in an incubator at 37 °C and 5% CO2. For cell harvesting, cell
suspensions were centrifuged for 5 min at 525 g at 5 °C, pellets
were washed twice with PBS supplemented with phosphatase
inhibitors (1 mM Na3VO4 and 1mM NaF). Pellets were transferred
to low protein binding tubes (Sigma-Aldrich, Cat# Z666513-100EA)
and stored at −80 °C

Purification of myeloid cells from PBMCs. Myeloid cells were
purified from PBMCs using Easy Sep Human Myeloid positive
selection kit (Stem cell technology; Cat# 18653). The kit positively
selects myeloid cells positive for CD33 and CD66b. detailed
explanation of procedure can be found in the supplementary
materials.

ANV-944 treatment. R6171 and T3254 were thawed as described
for thawing AML primary samples. 10 to 15 × 106 cells were
resuspended in 10 mL of complete IMDM and treated with either
vehicle (DMSO) or the indicated concentrations of AVN-944
(MedChemExpress, Cat# HY-13560) for 24 h. The final concentra-
tion of DMSO (Thermo-Fisher Scientific, Cat# 10213810) was
maintained at 0.1%. Cells were harvested as indicated for thawing
AML primary samples and processed for phosphoproteomics
analysis using 250 µg of protein.

Sample processing and MS analysis. Samples were processed and
analysed as previously described.16,32 For the poor risk cohort,
samples were lysed and 250 µg of protein were subjected to
reduction, alkylation and trypsin digestion. Protein extracts from
two healthy donors were pooled to obtain 3 samples with 250 µg

of protein and the fourth sample was obtained by pooling protein
extracts from all 6 donors. After digestion, 220 µg were used for
phoshoproteomics analysis and 30 µg for proteomics analysis.
Samples for phosphoproteomics analysis were subjected to
desalting using Oasis cartridges and phosphoenrichment using
TiO2, while samples for proteomics were desalted using carbon
spin tips. Samples were dried in a speed vac, resuspended in
reconstitution buffer and run in a LC-MS/MS platform. For the
KMT2Ar cohort, 100 µg of protein were subjected to reduction,
alkylation and trypsin digestion. Peptide suspensions were
subjected to desalting and phosphoenrichment using TiO2. The
LC-MS/MS platform consisted of a Dionex UltiMate 3000 RSLC
coupled to Q Exactive™ Plus Orbitrap Mass Spectrometer (Thermo-
Fisher Scientific) through an EASY-Spray source. Peptides and
proteins were identified using Mascot (v2.6.0) and quantified
using Pescal (vBeta2018). A detailed explanation for the genera-
tion and analysis of mass spectrometry data can be found as
supplementary material

DNA sequencing
Total RNA and genomic DNA were extracted from patient PBMC or
BM samples using the RNeasy and DNeasy Blood & Tissue Kits
(Qiagen), respectively, following standard procedures, and con-
centrations were determined using Qubit® 3.0 Fluorometer.
DNA targeted next-generation sequencing (NGS) analysis was

performed using the TruSight Myeloid Sequencing panel (Illumina,
San Diego, CA, USA) targeting 54 genes (full coding exons of 15
genes: BCOR, BCORL1, CDKN2A, CEBPA, CUX1, DNMT3A, ETV6/TEL,
EZH2, KDM6A, IKZF1, PHF6, RAD21, RUNX1/AML1, STAG2, ZRSR2,
and exonic hotspots of 39 genes: ABL1, ASXL1, ATRX, BRAF, CALR,
CBL, CBLB, CBLC, CSF3R, FBXW7, FLT3, GATA1, GATA2, GNAS,
HRAS, IDH1, IDH2, JAK2, JAK3, KIT, KRAS, KMT2A/MLL, MPL,
MYD88, NOTCH1, NPM1, NRAS, PDGFRA, PTEN, PTPN11, SETBP1,
SF3B1, SMC1A, SMC3, SRSF2, TET2, TP53, U2AF1, WT1). Amplicon
sequencing libraries were prepared from 50 ng of DNA per
sample. Input DNA quantitation was performed using a Qubit 3.0
Fluorometer with Qubit 1X dsDNA HS Assay Kit (Life Technolo-
gies). After quality control and equimolar pooling paired-end
sequencing of the libraries was performed on a NextSeq (Illumina,
San Diego, CA, USA) instrument with NextSeq 500 High Output v2
Kit to generate 2 × 150 read lengths according to manufacturer’s
instructions. Sequence data were analyzed using the TruSeq
Amplicon v3.0.0 app in BaseSpace™ Sequence Hub. After
demultiplexing and FASTQ file generation, the software uses a
custom banded Smith-Waterman aligner to align the reads against
the human hg19 reference genome to create BAM files. Variant
calling for the specified regions was performed using the Somatic
Variant Caller (5% threshold, read stitching on).

mRNA sequencing
RNA libraries were prepared using DNBseq sequencing technol-
ogy and sequenced on a BGISEQ-500 sequencer generating
2 x 100 bp paired-end reads. RNA-seq was performed at a depth of
100 million reads per sample. RNA-Seq data was aligned using
HiSat2 v2.1.0 to GRCh38.p10 with the ensembl v91 reference
annotation. Gene level counts were generated using htseq-count
v0.13.5

Drug sensitivity and resistance testing (DSRT)
A library of 627 commercially available chemotherapeutic and
targeted oncology compounds were tested at 5 concentrations in
10-fold dilutions. The library consisted of 180 approved drugs, 334
investigational compounds and 113 probes (Supplementary
Dataset 1). The chemical compounds, DMSO (negative control)
and benzethonium chloride (positive controls) were added to 384-
well plates using an acoustic liquid dispensing system ECHO 500/
550 (Labcyte). Biobanked frozen MNCs were thawed, resuspended
in CM (conditioned medium) constituted of 77.5% RPMI 1640, 10%
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FCS, 12.5% human HS-5 bone marrow stromal cell line derived
conditioned medium and 1% penicillin and streptomycin, let
recover for 3 h, and live cells counted. Compounds were first
dissolved by adding 5 μL of cell free medium, followed by 20 μL
cell suspension containing 5000 viable cells to each well using EL
406 plate washer-dispenser (BioTek). The plates were incubated at
37 °C in 5% CO2 for 72 h. Subsequently, CellTiter-Glo (Promega)
reagent was added to all wells and cell viability was measured
using a PHERA star FS multimode plate reader (BMG Labtech).
The drug responses passing the data quality assessment were

included in further analysis.70 Drug sensitivity scores (DSS) were
calculated as shown previously.44

Estimation of the proliferation rate
Proliferation rate was estimated form drug sensitivity screening
data using the change in luminescence of untreated cells between
day 0 and day 3 of treatment. Thus, Luminescence ratio=
(luminescence at day 0/luminescence at day3)x100.

Statistics
Statistical analysis was carried out in excel or in R-4.0.0 using base
functions or the ggpubr package (https://CRAN.R-project.org/
package=ggpubr). ML model performance was evaluated using
caret package and base functions (https://CRAN.R-project.org/
package=caret). Correlation matrices were generated using the
corrplot package (https://CRAN.R-project.org/package=corrplot)
and cluster dendrograms were generated using factoextra
package (https://cran.r-project.org/web/packages/factoextra/
index.html). Term enrichment analysis of protein subsets was
performed using David Bioinformatics (https://david.ncifcrf.gov/).
Details of the procedure can be found as supplementary material.
David Bioinformatics results were parsed to CSV files and dot
plots were constructed in an R environment using the ggplot2
package (https://CRAN.R-project.org/package=ggplot2).
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NC-ND license (Anyone can share this material, provided it remains unaltered in any
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