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We consider integral inequalities in the sense of Choquet with 
respect to the Hausdorff content Hδ

∞. In particular, if Ω is 
a bounded John domain in Rn, n ≥ 2, and 0 < δ ≤ n, we 
prove that the corresponding (δp/(δ−p), p)-Poincaré-Sobolev 
inequalities hold for all continuously differentiable functions 
defined on Ω whenever δ/n < p < δ. We prove also that the 
(p, p)-Poincaré inequality is valid for all p > δ/n.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

We are working on Euclidean n-space Rn, n ≥ 2. We recall the definition of Choquet 
integrals over sets E in Rn with respect to the Hausdorff content Hδ

∞ and consider 
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corresponding integral inequalities. In particular, we are interested in the Poincaré and 
Poincaré-Sobolev inequalities in this context.

Our main theorem, Theorem 3.7 gives the following corollary.

1.1 Corollary. Let Ω be a bounded (α, β)-John domain in Rn. If 0 < δ ≤ n and p ∈
(δ/n, δ), then there exists a constant c depending only on n, δ, p, and John constants α
and β such that

inf
b∈R

(∫
Ω

|u(x) − b|
δp

δ−p dHδ
∞

) δ−p
δp ≤ c

(∫
Ω

|∇u(x)|pdHδ
∞

) 1
p (1.2)

for all u ∈ C1(Ω).

We will show that the exponent δp/(δ − p) is the best possible exponent in this 
setting, Example 3.14. Theorem 3.7 states a version of the Poincaré-Sobolev inequality 
(3.8) where the dimension of the Hausdorff content is smaller on the left hand side than 
on the right hand side of the corresponding inequality.

We prove also the Poincaré inequality for any p > δ/n, δ ∈ (0, n], that is, there is a 
constant c which depends only on δ, n, p, and John constants α and β such that the 
inequality

inf
b∈R

∫
Ω

|u(x) − b|p dHδ
∞ ≤ c

∫
Ω

|∇u(x)|p dHδ
∞

holds for all u ∈ C1(Ω) whenever Ω is a bounded (α, β)-John domain, Theorem 3.2.
We state and prove the corresponding Poincaré- and Poincaré-Sobolev -type inequal-

ities for continuously differentiable functions with compact support defined on open, 
connected sets in Theorem 4.2.

If δ = n, our results recover the earlier well-known results, [7]. Although there is a 
wealth literature on Poincaré- and Poincaré-Sobolev -type inequalities in various con-
texts, the authors of the present paper have not been able to find previous results where 
the integrals on the both sides of the corresponding inequalities are in the sense of Cho-
quet with respect to the Hausdorff content Hδ

∞, 0 < δ < n.
We point out that there are Poincaré-type inequalities for C∞

0 (Rn) functions when 
only the left hand side is the Choquet integral with respect to Hausdorff content and the 
right hand side is the usual Lebesgue integral. We recall the following estimate which is 
a special case of the recent result [27, Theorem 1.7] and is called the inequality of D. R. 
Adams. There exists a constant c(n) such that

∫
Rn

|u(x)| dHn−1
∞ ≤ c(n)||∇u||L1(Rn) (1.3)

for every u ∈ C∞
0 (Rn).
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2. Hausdorff content and the Choquet integral

We recall the definition of Hausdorff content of a set E in Rn, [15, 2.10.1, p. 169]. 
We refer to [3] and [4, Chapter 3], too. An open ball centered at x with radius r > 0 is 
written as B(x, r).

2.1 Definition (Hausdorff content). Let E be a set in Rn, n ≥ 2. Suppose that δ ∈ (0, n]. 
The Hausdorff content of E is defined by

Hδ
∞(E) := inf

{ ∞∑
i=1

rδi : E ⊂
∞⋃
i=1

B(xi, ri)
}

(2.2)

where the infimum is taken over all finite or countable ball coverings of E. The quantity 
(2.2) is called also the δ-Hausdorff content or δ-Hausdorff capacity or the Hausdorff 
content of E of dimension δ.

The Hausdorff content has the following properties:

(H1) Hδ
∞(∅) = 0;

(H2) if A ⊂ B then Hδ
∞(A) ≤ Hδ

∞(B);
(H3) if E ⊂ Rn then

Hδ
∞(E) = inf

E⊂U and U is open
Hδ

∞(U);

(H4) if (Ki) is a decreasing sequence of compact sets then

Hδ
∞

( ∞⋂
i=1

Ki

)
= lim

i→∞
Hδ

∞(Ki);

(H5) if (Ai) is any sequence of sets then

Hδ
∞

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

Hδ
∞(Ai).

The proofs of properties (H1)–(H5) are straightforward. Properties (H1), (H2), (H3), 
and (H5) yield that Hδ

∞ is an outer capacity in the sense of N. Meyers [25, p. 257]. By 
properties (H1), (H2) and (H5) the Hausdorff content is an outer measure.

We point out that the Hausdorff content Hδ
∞ does not have the following property: if 

(Ei) is an increasing sequence of sets then

Hδ
∞
( ∞⋃

Ei

)
= lim

i→∞
Hδ

∞(Ei), (2.3)

i=1
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we refer to [10], and also [11,30]. Thus the Hausdorff content Hδ
∞ is not a capacity in 

the sense of Choquet [8].
Let us recall the dyadic counterpart of Hδ

∞, that is

H̃δ
∞(E) := inf

{ ∞∑
i=1

�(Qi)δ : E ⊂
∞⋃
i=1

Qi

}
(2.4)

where the infimum is taken over all dyadic cube coverings of E. Here �(Q) is the side 
length of a cube Q. It is known that Hδ

∞(E) and H̃δ
∞(E) are comparable to each other 

for all sets E in Rn, that is there are finite positive constants c1(n) and c2(n) such that

c1(n)Hδ
∞(E) ≤ H̃δ

∞(E) ≤ c2(n)Hδ
∞(E) ,

we refer to [2] and [28, Chapter 2, Section 7]. By [31, Proposition 2.1 and Proposition 
2.2] the dyadic Hausdorff content H̃δ

∞(E) is a capacity in the sense of Choquet only 
when n − 1 ≤ δ ≤ n. D. Yang and W. Yuan overcame this obstacle by defining a new 
dyadic Hausdorff content ˜̃Hδ

∞(E) by requiring in (2.4) that E is a subset of the interior 
of the set 

⋃
i Qj , [31, Definition 2.1]. Now this new dyadic Hausdorff content ˜̃Hδ

∞(E)
is a capacity in the sense of Choquet for all 0 < δ ≤ n. By [31, Proposition 2.3] this 
new Hausdorff content ˜̃Hδ

∞ is comparable to the Hausdorff content Hδ
∞, and constants 

depend only on n. By [31, Theorem 2.1 and Proposition 2.4] ˜̃Hδ
∞ is a strongly subadditive 

Choquet capacity for all 0 < δ ≤ n. For the strongly subadditivity we refer to [3].
Let 0 < δ ≤ n. We recall the definition of the δ-dimensional Hausdorff measure for 

E ⊂ Rn,

Hδ(E) := lim
ρ→0+

inf
{ ∞∑

i=1
rδi : E ⊂

∞⋃
i=1

B(xi, ri) and ri ≤ ρ for all i
}
,

where the infimum is taken over all such finite or countable ball coverings of E that the 
radius of a ball is at most ρ. Thus there are finite positive constants c1(n) and c2(n) such 
that c1(n)Hn(E) ≤ |E| ≤ c2(n)Hn(E) for all Lebesgue measurable sets E in Rn. For 
the properties of the Hausdorff measure we refer to [13, Chapter 2] and [21, pp. 54–58].

The authors would like to thank Tuomas Orponen for clarifying the relationship be-
tween the Hausdorff measure and Hausdorff content.

2.5 Proposition. There exists a constant c(n) > 0 such that for all E ⊂ Rn hold Hn
∞(E) ≤

Hn(E) ≤ c(n)Hn
∞(E).

Proof. By definitions we have Hn
∞(E) ≤ Hn(E).

For an open ball we have Hn(B(x, r)) ≤ c(n)rn. Fix ε > 0. Let us take an open ball 
B(xi, ri) covering of E such that 

∑
i r

n
i ≤ Hn

∞(E) + ε. Since Hn is an outer measure, we 
have by monotonicity and subadditivity that
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Hn(E) ≤
∑
i

Hn(B(xi, ri)) ≤
∑
i

c(n)rni ≤ c(n)(Hn
∞(E) + ε).

Since this holds for all ε > 0, the claim follows. �
2.6 Remark. We use ball coverings for the definition of the δ-dimensional Hausdorff 
measure. In the definitions of different Hausdorff contents we use also ball coverings and 
dyadic cube coverings as in [2], [3], [9], [26], [31]. If one wishes to take coverings with 
arbitrary sets we refer to the following result. The proof of [13, Theorem 2.5] gives for 
all measurable E ⊂ Rn that

inf
{ ∞∑

i=1
ω(n)

(diamCi

2

)n

: E ⊂
∞⋃
i=1

Ci

}
= |E|,

where the infimum of the left-hand side is taken over all covering of E, and ω(n) :=
π

δ
2

Γ( δ
2+1) .

We recall the definition of the Choquet integral. In the present paper Ω is always 
assumed to be a domain in Rn, n ≥ 2, that is, an open, connected set. For a function 
f : Ω → [0, ∞] the integral in the sense of Choquet with respect to Hausdorff content is 
defined by

∫
Ω

f(x) dHδ
∞ :=

∞∫
0

Hδ
∞
(
{x ∈ Ω : f(x) > t}

)
dt. (2.7)

Note that Hδ
∞ is monotone. Hence, for every function f : Ω → [0, ∞] the corresponding 

distribution function t 
→ Hδ
∞
(
{x ∈ Ω : f(x) > t}

)
is decreasing with respect to t. By 

decreasing property we know that the distribution function t 
→ Hδ
∞
(
{x ∈ Ω : f(x) > t}

)
is measurable with respect to Lebesgue measure. Thus, 

∫∞
0 Hδ

∞
(
{x ∈ Ω : f(x) > t}

)
dt

is well-defined as a Lebesgue integral. The right hand side of (2.7) can be understood 
also as an improper Riemann integral. Although the Choquet integral is well-defined for 
non-measurable functions we study here only measurable functions. We recall that the 
Choquet integral is a nonlinear integral and used in non-additive measure theory.

The Choquet integral with respect to Hausdorff content has the following properties:

(C1)
∫
Ω

af(x) dHδ
∞ = a 

∫
Ω

f(x) dHδ
∞ for every a ≥ 0;

(C2)
∫
Ω

f(x) dHδ
∞ = 0 if and only if f(x) = 0 for Hδ

∞-almost every x ∈ Ω;

(C3)
∫
Ω

χE(x) dHδ
∞ = Hδ

∞(Ω ∩E);

(C4) if A ⊂ B, then 
∫

f(x) dHδ
∞ ≤

∫
f(x) dHδ

∞;

A B
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(C5) if 0 ≤ f ≤ g, then 
∫
Ω

f(x) dHδ
∞ ≤

∫
Ω

g(x) dHδ
∞;

(C6)
∫
Ω

f(x) + g(x) dHδ
∞ ≤ 2

(∫
Ω

f(x) dHδ
∞ +

∫
Ω

g(x) dHδ
∞

)
;

(C7)
∫
Ω

f(x)g(x) dHδ
∞ ≤ 2

(∫
Ω

f(x)p dHδ
∞

)1/p(∫
Ω

g(x)q dHδ
∞

)1/q
when p, q > 1 are 

Hölder conjugates, that is 1
p + 1

q = 1.

For the proofs of these properties we refer to [3] and [4, Chapter 4].
Finally, we note that for a function f : Ω → [0, ∞]

∞∫
0

Hδ
∞
(
{x ∈ Ω : f(x)p > t}

)
dt =

∞∫
0

ptp−1Hδ
∞
(
{x ∈ Ω : f(x) > t}

)
dt.

Namely, by changing of the variables, t1/p = λ we obtain

∞∫
0

Hδ
∞
(
{x ∈ Ω : f(x)p > t}

)
dt =

∞∫
0

Hδ
∞
(
{x ∈ Ω : f(x) > t1/p}

)
dt

=
∞∫
0

pλp−1Hδ
∞
(
{x ∈ Ω : f(x) > λ}

)
dλ.

From now on we study functions with values in [−∞, ∞], and the Choquet integral is 
taken of the absolute value of the function. We need the following lemma.

2.8 Lemma. Let Ω be an open subset of Rn and let 0 < δ ≤ n. Then there exist constants 
c1(n) and c2(n) such that

1
c1(n)

∫
Ω

|f(x)| dHn
∞ ≤

∫
Ω

|f(x)| dx ≤ c1(n)
∫
Ω

|f(x)| dHn
∞ (2.9)

and
∫
Ω

|f(x)| dx ≤ c2(n)
δ

(∫
Ω

|f(x)| δ
n dHδ

∞

)n
δ (2.10)

for all measurable functions f : Ω → [−∞, ∞].

Proof. By Cavalier’s principle we have

∫
|f(x)| dx =

∞∫
|{x : |f(x)| > t}| dt
Ω 0
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and hence the inequalities (2.9) follow by Proposition 2.5.
For the inequality (2.10) we need to show that

∫
Ω

|f(x)| dHn
∞ ≤ c(n)

δ

(∫
Ω

|f(x)| δ
n dHδ

∞

)n
δ

.

Let us estimate the integrand on the right hand side. The rest of the proof follows by 
the proof of [26, Lemma 3]. Since the mapping t 
→ tδ/n is concave on [0, ∞), we have 

the inequality 
(∑m

i=1 r
n
i

) δ
n ≤

∑m
i=1(rni ) δ

n , where ri > 0. Thus (Hn
∞(E)) 1

n ≤ (Hδ
∞(E)) 1

δ . 
We obtain by changing the variables that

∞∫
0

Hn
∞

(
{x : |f(x)| > t}

)
dt = n

δ

∞∫
0

Hn
∞

(
{x : |f(x)| > tn/δ}

)
t
n
δ −1 dt

= n

δ

∞∫
0

Hδ
∞

(
{x : |f(x)|δ/n > t}

)n
δ

t
n
δ −1 dt.

If we write h(t) := Hδ
∞({x : |f(x)|δ/n > t}, the function h is decreasing. Hence, we 

obtain

th(t) ≤
t∫

0

h(t) ds ≤
t∫

0

h(s) ds ≤
∞∫
0

h(s) ds.

Thus, combining the estimates gives

∞∫
0

Hn
∞

(
{x : |f(x)| > t}

)
dt ≤ n

δ

( ∞∫
0

h(s) ds
)n

δ −1
∞∫
0

h(t) dt

≤ n

δ

( ∞∫
0

h(s) ds
)n

δ

= n

δ

(∫
Ω

|f(x)| δ
n dHδ

∞

)n
δ

. �

Let κ ∈ [0, n). If f ∈ L1
loc(Rn), the centered fractional Hardy-Littlewood maximal 

function of f is written as

Mκf(x) := sup
r>0

rκ−n

∫
B(x,r)

|f(y)| dy.

The non-fractional centered maximal function M0f is written as Mf . If f is a defined 
only on Ω in Rn, then f is defined to be zero on Rn \ Ω in the definition of Mκ.
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D. R. Adams in 1986 [2] and J. Orobitg and J. Verdera in 1998 [26] proved boundedness 
of the maximal operator in the sense of Choquet with respect to Hausdorff content for 
p = 1 and p > δ/n, respectively. These papers as well as [3] seem to assume that the 
dyadic Hausdorff content is always a Choquet capacity and they used this to conclude 
that the Choquet integral is sublinear. However, Yang and Yan [31] showed that the 
dyadic Hausdorff content is a Choquet capacity if and only if the dimension δ satisfies 
n − 1 < δ ≤ n. The modified dyadic Hausdorff content ˜̃Hδ

∞ is a strongly subadditive 
Choquet capacity for all 0 < δ ≤ n, and thus [12, Theorem 6.3, p. 75], see also [8, 54.2]
and [6, pp. 248–249], yield

∫
Ω

∞∑
i=1

fi(x)d ˜̃Hδ
∞ ≤

∞∑
i=1

∫
Ω

fi(x)d ˜̃Hδ
∞.

Since ˜̃Hδ
∞ is comparable with Hδ

∞ we obtain

∫
Ω

∞∑
i=1

fi(x)dHδ
∞ ≤ c(n)

∞∑
i=1

∫
Ω

fi(x)dHδ
∞,

as it is pointed out in [31, Remark 2.4]. Hence the following theorem holds.

2.11 Theorem (Adams–Orobitg–Verdera). Let δ ∈ (0, n). Then there exists a constant c
depending only on n, δ, and p such that for every p > δ/n and for every f ∈ L1

loc(Rn)
we have

∫
Rn

(Mf(x))p dHδ
∞ ≤ c

∫
Rn

|f(x)|p dHδ
∞.

Note that in Theorem 2.11 the exponent p can be smaller than 1. We need also the 
next result by Adams that covers the previous theorem. It shows that the fractional 
maximal operator is bounded when the Choquet integrals are taken with respect to the 
Hausdorff content. We point out that the dimension of the Hausdorff content is smaller 
on the left hand side in the following inequality than on the right hand side.

2.12 Theorem (Theorem 7(a) of [3]). Suppose that δ ∈ (0, n] and κ ∈ [0, n). If p ∈
(δ/n, δ/κ), then there exists a constant c depending only on n, δ, κ, and p such that for 
every f ∈ L1

loc(Rn) we have

∫
(Mκf(x))p dHδ−κp

∞ ≤ c

∫
|f(x)|p dHδ

∞.
Rn Rn
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3. Inequalities for C1-functions

We recall the definition of John domains. The notion was introduced by F. John in 
[20] where it was called an inner radius and outer radius property. Later, domains with 
this property were named as John domains.

3.1 Definition. Suppose that Ω is a bounded domain in Rn, n ≥ 2. The domain Ω is an 
(α, β)-John domain if there exist constants 0 < α ≤ β < ∞ and a point x0 ∈ Ω such 
that each point x ∈ Ω can be joined to x0 by a rectifiable curve γx : [0, �(γx)] → Ω, 
parametrized by its arc length, such that γx(0) = x, γx(�(γx)) = x0, �(γx) ≤ β, and

dist
(
γx(t), ∂Ω

)
≥ α

β
t for all t ∈ [0, �(γx)].

The point x0 is called a John center of Ω.

Examples of John domains are convex domains and domains with Lipschitz boundary, 
but also domains with fractal boundaries such as the von Koch snow flake. Outward spires 
are not allowed.

We show that the Poincaré inequality in the sense of Choquet with respect to Haus-
dorff content is valid in John domains. From now on we denote the integral average of a 
function u over a ball B by uB where the integrals are taken with respect to the Lebesgue 
measure.

3.2 Theorem. Suppose that Ω is a bounded (α, β)-John domain in Rn. If δ ∈ (0, n] and 
p ∈ (δ/n, ∞), then there exists a constant c depending only on n, δ, p, and John constants 
α and β such that

inf
b∈R

∫
Ω

|u(x) − b|p dHδ
∞ ≤ c(n, p, δ)βp

(
β

α

)2np ∫
Ω

|∇u(x)|p dHδ
∞ (3.3)

for all u ∈ C1(Ω).

Proof. Suppose that 0 < δ < n. Let u ∈ C1(Ω). We may assume that the right hand 
side of the above inequality is finite. By Lemma 2.8 we have

∫
Ω

|∇u(x)| pnδ dx ≤ c(n, δ)
(∫

Ω

|∇u(x)|pdHδ
∞

)n
δ

.

By the assumption p > δ
n . Hence we have pnδ > 1. This together with the boundedness 

of Ω yields that |∇u| ∈ L1(Ω). Thus the Riesz potential and the maximal function of 
|∇u| are well-defined.
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Since Ω is a John domain we obtain by [29, Theorem], [7], [23], and [18] the pointwise 
estimate

|u(x) − uB | ≤ c(n, α, β)
∫
Ω

|∇u(y)|
|x− y|n−1 dy (3.4)

for every x ∈ Ω. Here, B = B(x0, c(n)α2/β) and c(n, α, β) = c(n)(β/α)2n by [18]. The 
Riesz potential can be estimated by the Hardy-Littlewood maximal operator. Thus by 
[32, Lemma 2.8.3] we have

|u(x) − uB | ≤ c(n, p)
(

β

α

)2n

diam(Ω)M |∇u|(x)

for every x ∈ Ω. Hence, by properties (C5) and (C1) of the Choquet integral we obtain

∫
Ω

|u(x) − uB |pdHδ
∞ ≤ c(n, p)

(
β

α

)2np

diam(Ω)p
∫
Ω

(M |∇u|(x))pdHδ
∞.

Since the maximal operator is bounded in the sense of Choquet with respect to Hausdorff 
content by Theorem 2.11, we obtain

∫
Ω

|u(x) − uB |pdHδ
∞ ≤ c(n, δ, p)

(
β

α

)2np

diam(Ω)p
∫
Ω

|∇u(x)|pdHδ
∞.

Since Ω is a bounded John domain, we have diam(Ω) ≤ 2β.
If δ = n, then by [7], [23], [18] we have

inf
b∈R

∫
Ω

|u(x) − b|pdx ≤ c(n, p)βp

(
β

α

)2np ∫
Ω

|∇u(x)|p dx

for all u ∈ C1(Ω) with |∇u| ∈ Lp(Ω). Now the claim follows by Lemma 2.8. �
3.5 Remark. If Ω is a bounded convex domain then the same proof yields

inf
b∈R

∫
Ω

|u(x) − b|p dHδ
∞ ≤ c(n, δ, p)diam(Ω)np+p

|Ω|p
∫
Ω

|∇u(x)|p dHδ
∞

for all u ∈ C1(Ω). Here we have used [14, Lemma 7.16] instead of the previous estimate 
for functions in a John domain.

Next we estimate the Riesz potential by the Hedberg-type pointwise estimate where 
we have the Choquet integral. The classical version of this pointwise estimate goes back 
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to [17]. We use the fractional maximal function by following the idea of [1]. We also refer 
to [22, Lemma 3.4].

3.6 Lemma. Let κ ∈ [0, 1), δ ∈ (0, n], and p ∈ (δ/n, δ). Then there exists a constant 
c depending only on n, δ, κ, and p such that

∫
Rn

|f(y)|
|x− y|n−1 dy ≤ c

(
Mκf(x)

) δ−p
δ−κp

( ∫
Rn

|f(y)|p dHδ
∞

) 1−κ
δ−κp

for all x ∈ Rn and all f ∈ L1
loc(Rn).

Proof. Let Ak = {y ∈ Rn : 2−kr ≤ |x − y| < 2−k+1r}. We estimate

∫
B(x,r)

|f(y)|
|x− y|n−1 dy =

∞∑
k=1

∫
Ak

|f(y)|
|x− y|n−1 dy

≤
∞∑
k=1

(2−kr)1−n

∫
B(x,2−k+1r)

|f(y)| dy

≤ 2κ−1+n

1 − 2κ−1 r
1−κMκf(x),

where in the last step the sum of a geometric series is used.
Outside the ball B(x, r) we use Hölder’s inequality and Lemma 2.8 to obtain

∫
Rn\B(x,r)

|f(y)|
|x− y|n−1 dy ≤

( ∫
Rn\B(x,r)

|f(y)|np
δ dy

) δ
np
( ∫
Rn\B(x,r)

|x− y|
np(1−n)
np−δ dy

)np−δ
np

≤ c(n, δ, p)
( ∫
Rn\B(x,r)

|f(y)|p dHδ
∞

) 1
p
( ∫
Rn\B(x,r)

|x− y|
np(1−n)
np−δ dy

)np−δ
np

.

The last term on the right hand side is

∫
Rn\B(x,r)

|x− y|
np(1−n)
np−δ dy = ωn−1

(n− 1)np(n−1)
np−δ − n

rn−
np(n−1)
np−δ ,

where ωn−1 is the n −1-dimensional Hausdorff measure of the sphere, [17, Lemma]. Note 
that n − np(n−1)

np−δ < 0, since p ∈ (δ/n, δ). Thus we have

∫ |f(y)|
|x− y|n−1 dy ≤ c

(
r1−κMκf(x) + ‖f‖r1− δ

p
)
,

Rn
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where ‖f‖ :=
( ∫

Rn\B(x,r) |f(y)|p dHδ
∞

) 1
p . By choosing

r =
(Mκf(x)

‖f‖
)− p

δ−κp

we obtain
∫
Rn

|f(y)|
|x− y|n−1 dy ≤ c(Mκf(x))1−

p(1−κ)
δ−κp ‖f‖

p(1−κ)
δ−κp

for all x ∈ Rn. This inequality yields the claim. �
The previous lemma gives our main result. Note that if κ > 0 then the dimension of 

the Hausdorff content is lower on the left and side than on the right hand side.

3.7 Theorem. Let Ω be a bounded (α, β)-John domain in Rn. Suppose that δ ∈ (0, n], 
κ ∈ [0, 1), and p ∈ (δ/n, δ). Then there exists a constant c depending only on n, δ, κ, p, 
and John constants α and β such that

inf
b∈R

(∫
Ω

|u(x) − b|
p(δ−κp)

δ−p dHδ−κp
∞

) δ−p
p(δ−κp) ≤ c

(∫
Ω

|∇u(x)|p dHδ
∞

) 1
p (3.8)

for all u ∈ C1(Ω).

Proof. Suppose that 0 < δ < n and u ∈ C1(Ω). We may assume that the right hand 
side of inequality (3.8) is finite. As in the proof of Theorem 3.2 we have |∇u| ∈ L1(Ω). 
By [29, Theorem], [7], [23], and [18] for an (α, β)-John domain the pointwise estimate

|u(x) − uB | ≤ c(n, α, β)
∫
Ω

|∇u(y)|
|x− y|n−1 dy

holds for every x ∈ Ω. Here B = B(x0, c(n)α2/β) and c(n, α, β) = c(n)(α/β)2n by [18]. 
Next we apply Lemma 3.6 with the understanding that |∇u| is zero outside Ω. We obtain

|u(x) − uB |
p(δ−κp)

δ−p ≤ c

(∫
Ω

|∇u(y)|
|x− y|n−1 dy

) p(δ−κp)
δ−p

≤ c
(∫

Ω

|∇u(y)|p dHδ
∞

) p(1−κ)
δ−p (Mκ|∇u|(x))p

for every x ∈ Ω. Here the constants depend on n, δ, κ, p, α, and β. By integrating with 
respect to Hδ−κp

∞ and using the properties (C5) and (C1) of the Choquet integral we 
obtain
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∫
Ω

|u(x) − uB |
p(δ−κp)

δ−p dHδ−κp
∞ ≤ c

(∫
Ω

|∇u(y)|p dHδ
∞

) p(1−κ)
δ−p

∫
Ω

(Mκ|∇u|)pdHδ−κp
∞ .

Adams’s result for boundedness of the fractional Hardy-Littlewood maximal operator, 
Theorem 2.12 implies

∫
Ω

|u(x) − uB |
p(δ−κp)

δ−p dHd
∞ ≤ c

(∫
Ω

|∇u(y)|p dHδ
∞

) p(1−κ)
δ−p

∫
Ω

|∇u(x)|pdHδ
∞

= c
(∫

Ω

|∇u(x)|p dHδ
∞

) δ−pκ
δ−p

.

Hence the claim follows by raising both sides of the previous inequality to the power 
δ−p

p(δ−κp) . �
The (δp/(δ − p), p)-Poincaré-Sobolev inequality

inf
b∈R

(∫
Ω

|u(x) − b|
δp

δ−p dHδ
∞

) δ−p
δp ≤ c

(∫
Ω

|∇u(x)|pdHδ
∞

) 1
p

in Corollary 1.1 follows now from Theorem 3.7 when we choose κ = 0. When δ = n we 
recover the classical Sobolev inequality.

Choosing δ = n and κ = 1/p in Theorem 3.7 gives the following corollary.

3.9 Corollary. Let Ω be a bounded (α, β)-John domain in Rn. Suppose that p ∈ (1, n). 
Then there exists a constant c depending only on n, p, and John constants α and β such 
that

inf
b∈R

(∫
Ω

|u(x) − b|
p(n−1)
n−p dHn−1

∞

) n−p
p(n−1) ≤ c

(∫
Ω

|∇u(x)|p dx
) 1

p (3.10)

for all u ∈ C1(Ω).

3.11 Remark. We point out that the proofs of Theorem 3.2 and Theorem 3.7 give stronger 
inequalities than (3.3) and (3.8), respectively. If Ω is a bounded (α, β)-John domain in 
Rn, δ ∈ (0, n], κ ∈ [0, 1), and p ∈ (δ/n, δ), then there exist constants c1 = c1(α, β, δ, n, p)
and c2 = c2(α, β, δ, κ, n, p) such that the inequalities

∫
Ω

|u(x) − uB |p dHδ
∞ ≤ c(n, p, δ)βp

(
β

α

)2np ∫
Ω

|∇u(x)|p dHδ
∞

and
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(∫
Ω

|u(x) − uB |
p(δ−κp)

δ−p dHδ−κp
∞

) δ−p
p(δ−κp) ≤ c

(∫
Ω

|∇u(x)|p dHδ
∞

) 1
p

are valid for all u ∈ C1(Ω). We recall that B = B(x0, c(n)α2/β) and the integral average 
has been calculated with respect to the Lebesgue measure.

3.12 Remark. Let Ω be a bounded (α, β)-John domain in Rn. Suppose that p ∈ (1, n). 
Choosing |f(x)| = |u(x) − uB |

np
n−p in Lemma 2.8 gives that there exists a constant c1

such that

(∫
Ω

|u(x) − uB |
np

n−p dx
)n−p

pn ≤ c1

(∫
Ω

|u(x) − uB |
p(n−1)
n−p dHn−1

∞

) n−p
p(n−1)

.

Corollary 3.9 gives that there exists a constant c2 such that we have

(∫
Ω

|u(x) − uB |
np

n−p dx
)n−p

pn

≤ c1

(∫
Ω

|u(x) − uB |
p(n−1)
n−p dHn−1

∞

) n−p
p(n−1)

≤ c2

(∫
Ω

|∇u(x)|p dx
) 1

p

.

This shows some of the benefits which come from using Choquet integrals in Poincaré-
Sobolev inequalities.

3.13 Remark. Note that by Lemma 3.6 and Theorem 2.12 the Riesz potential I1f(x) :=∫
Rn

f(y)
|x−y|n−1 dy is bounded with respect to Hausdorff content. If 0 < δ ≤ n, κ ∈ [0, 1), 

and p ∈ (δ/n, δ), then

( ∫
Rn

(I1(f(x)))
p(δ−κp)

δ−p dHδ−κp
∞

) δ−p
p(δ−κp) ≤ c(n, δ, κ)

( ∫
Rn

|f(x)|p dHδ
∞

) 1
p

for all f ∈ L1
loc(Rn).

Next we show that the exponent p(δ−κp)
δ−p in Theorem 3.7 is the best possible exponent 

in this setting. This example is based on the example, [5, Example 4.41, p. 109].

3.14 Example. Let Ω := Bn(0, 1) \ {0}, 0 < δ ≤ n, κ ∈ [0, 1), and p ∈ (δ/n, δ). Let us 
define v(x) := |x|μ, where μ < 0 is chosen later. Then v ∈ C∞(Ω). We show that, if 
q > p(δ−κp)

δ−p , then there exists μ such that 
∫
Ω |v(x) − a|qdHδ−κp

∞ = ∞ for any a ∈ R and 
at the same time 

∫
|∇v(x)|pdHδ

∞ < ∞.
Ω
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Let a ∈ R. For the function v itself we use Lemma 2.8 to obtain

c(n, δ, κ, p)
(∫

Ω

|v(x) − a|q dHδ−κp
∞

) n
δ−κp ≥

∫
Ω

|v(x) − a|
qn

δ−κp dx

≥
∫

B(0,r)

|12v(x)|
qn

δ−κp dx

= c(n, κ, p, δ, q)
r∫

0

ρ
μqn
δ−κp+n−1 dρ,

for some r > 0. The last integral is infinite whenever μqn
δ−κp + n − 1 ≤ −1, that is if 

μ ≤ − δ−κp
q .

For the gradient we obtain |∇v(x)| = |μ||x|μ−1. Thus, |∇v(x)|p > t provided that 
|x| < ct

1
p(μ−1) . By using the inequality Hδ

∞(B(0, r)) ≤ rδ, we obtain

∫
Ω

|∇v(x)|p dHδ
∞ =

∞∫
0

Hδ
∞({|∇v(x)|p > t}) dt

≤ Hδ
∞(B(0, 1)) +

∞∫
1

Hδ
∞(B(0, ct

1
p(μ−1) ) dt

≤ Hδ
∞(B(0, 1)) + c

∞∫
1

t
δ

p(μ−1) dt.

The last integral is finite provided that δ
p(μ−1) < −1 i.e. if μ > 1 − δ

p . Since q > p(δ−κp)
δ−p , we 

have 1 − δ
p < − δ−κp

q . Thus we may choose the parameter μ such that 1 − δ
p < μ ≤ − δ−κp

q .

3.15 Remark. If Ω is an unbounded domain such that Ω = ∪∞
i=0Ωi where Ωi ⊂ Ωi+1 and 

Ωi is an (αi, βi)-John domain for some 0 < αi ≤ βi < ∞, i = 0, 1, . . . . If βi/αi ≤ c for all 
i, then the (np/n − p), p)-Poincaré-Sobolev inequality holds for all functions u ∈ L1

p(Ω), 
[19, Theorem 4.1]. This result corresponds to the case δ = n.

4. Inequalities for C1
0 -functions

The Poincaré inequality and Poincaré-Sobolev inequality for C1
0 -functions follow in 

a similar fashion as for C1-functions, respectively. The main difference is to use for 
functions u ∈ C1

0 (Ω) the estimate

|u(x)| ≤ c(n)
∫ |∇u(y)|

|x− y|n−1 dy for all x ∈ Rn, (4.1)

Ω
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[24, 1.1.10 Theorem 2], instead of the corresponding inequality (3.4) for C1(Ω)-functions 
defined on a John domain. Inequality (4.1) yields the following theorem, where the part 
(a) holds only in a bounded domain while the part (b) can also be applied for unbounded 
domains. In fact, if the domain is bounded in the part (b), then Hölder’s inequality implies 
the part (a) too.

4.2 Theorem. Let δ ∈ (0, n].

(a) If Ω is a bounded domain in Rn and p ∈ (δ/n, ∞), then there exists a constant c
depending only on n, δ, and p such that

∫
Ω

|u(x)|p dHδ
∞ ≤ cdiam(Ω)p

∫
Ω

|∇u(x)|p dHδ
∞

for all u ∈ C1
0 (Ω).

(b) If Ω is a domain in Rn, κ ∈ [0, 1), and p ∈ (δ/n, δ), then there exists a constant c
depending only on n, δ, κ, and p such that

(∫
Ω

|u(x)|
p(δ−κp)

δ−p dHδ−κp
∞

) δ−p
p(δ−κp) ≤ c

(∫
Ω

|∇u(x)|p dHδ
∞

) 1
p

for all u ∈ C1
0 (Ω).

4.3 Remark. Let κ = 0 and δ = n − 1. Both limit cases p = δ
n and p = δ are excluded 

from Theorem 4.2(b).

• However, by combining the inequality of Adams (1.3) and Lemma 2.8 we obtain the 
inequality

∫
Rn

|u(x)| dHn−1
∞ ≤ c(n, δ)

( ∫
Rn

|∇u(x)| δ
n dHδ

∞

)n
δ

for every δ ∈ (0, n] whenever u ∈ C∞
0 (Rn). Note that if p = δ

n and δ = n − 1, then 
δp
δ−p = 1. Hence, the above inequality can be seen as a limit case if p = δ

n with 
δ = n − 1 for Theorem 4.2(b) where κ = 0.

• Corresponding to the upper limiting case p = δ = n − 1, the authors of the present 
paper showed in [16, Corollary 1.3]: If Ω is a bounded (α, β)-John domain in Rn, 
then there exist positive constants a and b such that

∫
exp

(
a|u(x) − uB |

n
n−1

)
dHn−1

∞ ≤ b
Ω
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for all u ∈ L1
n(Ω) ∩C1(Ω) with ||∇u||Ln(Ω) ≤ 1. Here B = B(x0, c(n)α2/β). Moreover, 

||∇u||Ln(Ω) ≤ c(n)
( ∫

Ω |∇u|n−1 dHn−1
∞

)1/(n−1) by Lemma 2.8. We also refer to [22, 
Corollary 1.4].
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