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ON METRIC SPACES WITH NON-EQUIVALENT

HEWITT AND SAMUEL REALCOMPACTIFICATIONS

HEIKKI JUNNILA, ANA S. MEROÑO

Abstract. Let D be a uniformly discrete space, let π be the product uniformity on the countable power
DN of D and let eπ be the uniformity on DN induced by all the countable covers in π. Assume that the
cardinality of D is Ulam measurable. Then (DN, eπ) has a Cauchy filterbase, consisting of closed sets, which
is not countably centered. As a consequence, the Hewitt and Samuel realcompactifications of (DN, π) are not
equivalent.
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1. Introduction

In the theory of uniform spaces, the well-known Hewitt realcompactification υX of a Ty-
chonoff X space is defined as the completion of the uniform space (X,wC(X)) where wC(X)
is the weak uniformity [19] induced by the family C(X) of all real-valued continuous functions
on X. The space X is realcompact if X = υX, that is, if (X,wC(X)) is complete (see [10]).
On the other hand, if we let Uµ(X) denote the set of all real-valued uniformly continuous
functions on a uniform space (X,µ), then the Samuel realcompactification H(Uµ(X)) of (X,µ)
is defined as the completion of (X,wUµ(X)), where wUµ(X) is the weak uniformity induced
by Uµ(X) [9]. We say that the uniform space (X,µ) is Samuel realcompact, and we write
X = H(Uµ(X)), whenever (X,wUµ(X)) is complete.

These two realcompactifications are not equivalent in general. Given two realcompactifi-
cations α1X and α2X of a space X, we write α1X ≤ α2X if there exists a continuous map
ϕ : α2X → α1X which keeps X pointwise fixed. The relation ≤ is a partial order in the family
of all the realcompactifications of a Tychonoff space. Moreover, α1X and α2X are equivalent,
written α1X = α2X, provided that α1X ≤ α2X and α2X ≤ α2X. We have α1X = α2X if,
and only if, there exists an homeomorphism ϕ : α1X → α2X which keeps every point of X
fixed. The following is a simple example of non-equivalence of υX and H(Uµ(X)).

In this paper, we consider every metric space (X, d) also as a uniform space (X,µd), where
µd is the uniformity on X induced by d.

Example 1. Consider the space of the rationals (Q, d), where d is the usual Euclidean metric.
The space Q is realcompact because it is separable. However, (Q, µd) is not Samuel realcom-
pact. Indeed, it is not difficult to see that the weak uniformity wUµd(Q) coincides with the
metric uniformity µd on Q. Therefore, H(Uµd(Q)) = R 6= Q = υQ.

The preceding example depends on non-completeness of the space (Q, µd). However, it
turns out that even for a complete metric space (X, d), we can have H(Uµd(X)) 6= υX. To see
this, we need to recall a characterization of Samuel realcompactness. In [9, Theorem 12], it is
shown that a uniform space (X,µ) is Samuel realcompact if, and only if, (X,µ) is Bourbaki-
complete and (X,µ) does not have a uniformly discrete subspace of measurable cardinality.
Bourbaki-completeness is a uniform property, introduced in [7], which is stronger than usual
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completeness. Besides the above characterization of Samuel realcompactness, the only result
on Bourbaki-completeness that we need in this paper is that every uniformly zero-dimensional
complete space is Bourbaki-complete.

Example 2. Let (J(ω), ρ) be the hedgehog with ω-many spines, equipped with its usual metric
ρ (see [6, Example 4.1.5]). The metric space (J(ω), ρ) is complete, but in [9, Example 20] it is
shown that the space (J(ω), ρ) is not Bourbaki-complete and hence not Samuel realcompact.
Therefore H(Uµρ(J(ω))) 6= J(ω). On the other hand, the separable space J(ω) is realcompact
and so υJ(ω) = J(ω). As a consequence, H(Uµρ(J(ω))) 6= υJ(ω).

The above example depends on non-Bourbaki-completeness of the metric space (J(ω), ρ).
This paper arose from attempts to see whether the failure of Bourbaki-completeness is essential
for this type of examples. It turns out that it is at least consistent with ZFC that the Hewitt
and Samuel realcompactifications agree for every Bourbaki-complete uniform space.

We denote by MC the assumption that there exists a measurable cardinal. If measurable
cardinals exist, then the least measurable cardinal is strongly inaccessible. It follows that it is
consistent with ZFC that there are no measurable cardinals, in other words, the assumption
¬MC is consistent with ZFC.

We refer the reader to [15] for basic properties of measurable cardinals. In this paper, we
also use the weaker property of Ulam measurability. Recall than an Ulam measure on a set
S is a non-trivial {0, 1}-valued σ-additive measure defined for all subsets of S. A cardinal κ
is Ulam measurable if there exists an Ulam measure on the set κ. Measurability and Ulam
measurability are related in the following way: a cardinal κ is Ulam measurable if, and only
if, κ is bigger than or equal to some measurable cardinal.

Proposition 1. Let (X,µ) be a Bourbaki-complete uniform space such that the cardinal |X|
is not Ulam measurable. Then H(Uµ(X)) = υX.

Proof. It follows from a result mentioned above that (X,µ) is Samuel realcompact. On the
other hand, (X,µ) is complete, and it follows from the Katetov-Shirota Theorem that X is
realcompact. As a consequence, H(Uµ(X)) = X = υX. �

Corollary 2. (¬MC) The equivalence H(Uµ(X)) = υX holds for every Bourbaki-complete
uniform space (X,µ).

The above result and and the following example from [16] indicate that the equivalence of
the Hewitt and Samuel realcompactifications of Bourbaki-complete uniform spaces is tightly
connected with measurable cardinals.

Example 3. [16, Example 3.2.13] Let D be a uniformly discrete space of Ulam measurable
cardinality and let π be the product uniformity on D × βD. The uniform space (D × βD, π)
is Bourbaki-complete but H(Uπ(D × βD)) 6= υ(D × βD).

The space D × βD above is non-metrizable. The main result of this paper (Theorem
7) shows that if measurable cardinals exist, then there also exist Bourbaki-complete metric
spaces whose Hewitt and Samuel realcompactifications are non-equivalent. According to the
corollary of the main theorem, if D is a discrete space of Ulam measurable cardinality and ρ is
the first difference metric on DN, then the (Bourbaki-complete) metric space (DN, ρ) satisfies
the non-equivalence υDN 6= H(Uµρ(D

N)).
The results and examples above are related to the Katetǒv-Shirota type Theorems. The

classical Katetǒv-Shirota Theorem states that a Tychonoff space X is realcompact if and only
if X is topologically complete and X has no closed discrete subset of measurable cardinality
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(see [10] or [12]). For uniform spaces and the different realcompactifications that can be
defined for them, there are also results similar to the Katetǒv-Shirota Theorem. For such
“Katetǒv-Shirota type Theorems”, see [5], [17], [8],[13] and [9].

For basic results and concepts, we refer the reader to [6] and [19] on topological and uniform
spaces and to [10] and [4] on realcompactifications.

2. Preliminaries

We start by reviewing some known facts about zu-sets and zu-filters.

Definition 1. A subset Z of a uniform space (X,µ) is a zu-set if there exists some (bounded)
real-valued uniformly continuous function f ∈ Uµ(X) such that f−1({0}) = Z. We denote by
Zu(X) the family of all zu-sets of (X,µ).

Note that the family Zu(X) is closed under countable intersections.
For a uniform space (X,µ), we denote by eµ the uniformity on X induced by all countable

covers from µ. Note that (X,µ) and (X, eµ) have the same zu-sets. (see [2, Lemma 2.4]).
Clearly, every zu-set of a uniform space (X,µ) is a zero-set of the topological space (X, τµ).

On the other hand, every zero-set of a Tychonoff space X is a zu-set when X is endowed with
the fine uniformity. In metrizable uniform spaces the closed sets, the zero-sets and the zu-sets
all coincide.

Definition 2. A filter(base) F of a uniform space (X,µ) is a zu-filter(base) if every member
of F contains some set of the family F ∩Zu(X). A zu-filter F is a zu-ultrafilter if F ∩Zu(X) is
maximal in Zu(X), that is, Z ∈ Zu(X) belongs to F if Z ∩Z ′ 6= ∅ for every Z ′ ∈ F ∩Zu(X).

As is well known, every zu-filterbase is contained in a zu-ultrafilter (see [10, 2.5]).
Note that every (ultra)filter of a set S can be considered as a zu-(ultra)filter when we give

S the discrete topology and the fine uniformity.

Definition 3. A filter(base) F of a uniform space (X,µ) is a Cauchy filter(base) if for every
uniform cover U ∈ µ, some member of U contains a member of F .

Recall that a uniform space is complete if every Cauchy zu-filter converges and that Cauchy
zu-ultrafilters are used in the completion of a uniform space. Indeed, the points in the com-

pletion (X̃, µ̃) of a uniform space (X,µ) are exactly the Cauchy zu-ultrafilters of (X,µ). The

uniformity µ̃ has a base consisting of all covers Ũ = {Ũ : U ∈ U}, where U ∈ µ and

Ũ = {F : F is a Cauchy zu-ultrafilter and F ⊂ U for some F ∈ F} for each U ∈ U (see [1,
Chapter II, Section 3.7] and [10, Sections 15.7, 15.8, 15.9]).

It follows from the foregoing that the points of the Samuel realcompactification H(Uµ(X))
of (X,µ) are the Cauchy zu-ultrafilters of the uniform space (X,wUµ(X)).

We still need names for two properties of filters.

Definition 4. A filterbase F is countably centered (countably complete) if
⋂
E 6= ∅ (

⋂
E ∈ F)

for every countable E ⊂ F .

Note that every countably centered (zu-)ultrafilter is countably complete.
There is a close connection between countably complete ultrafilters and Ulam measures.

If m is an Ulam measure on a set S, then the family {E ⊂ S : m(E) = 1} is a countably
complete free ultrafilter on S. If F is a countably complete free ultrafilter on S, then we
obtain an Ulam measure m on S by setting m(E) = 1 for E ∈ F and m(E) = 0 for E 6∈ F .
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In our study of the equivalence of υX and H(Uµ(X)), it is useful to consider yet an-
other realcompactification υuX, the Wallman realcompactification of (X,µ) (see [18] or [2]
for the definitions). The following lemma, contained in [2, Definition 2.10, Lemma 2.11 and
Proposition 2.12], tells everything we need to know here about the realcompactification υuX.
Additional basic facts on various realcompactifications of uniform spaces can be found in [9],
[13] and [2].

Lemma 3. The realcompactification υuX of a uniform space (X,µ) is the subspace of the
Samuel realcompactification H(Uµ(X)) consisting of all Cauchy zu-ultrafilters of (X,wUµ(X))
which are countably centered.

For a uniform space (X,µ), we have υuX ≤ υX. In general, these two realcompactifications
are not equivalent.

Example 4. Let D be an uncountable discrete space. We assume that the cardinality of D
is not Ulam measurable. Then D is realcompact, that is, υD = D (see [10, 12.1-12.6]). Let
D ∪ {∞} be the one-point compactification of D and let ν be the uniformity on D inherited
from this compactification. We are going to show that υuD = D ∪ {∞}. From this it follows
that υD 6= υuD for the uniform space (D, ν).

Note that complements of finite subsets of D are zu-sets of (D, ν). Let F be the Fréchet
filter {D \A : A is a finite subset of D} of D. Then F is a zu-filter of (D, ν) which converges
to the point ∞ in D ∪ {∞}. As a consequence, F is a Cauchy zu-filter of (D, ν). Since D is
uncountable, F is countably centered. Let U be a zu-ultrafilter of (D, ν) containing F . By [13,
Corollary 1.3], U is countably centered. Moreover, U converges to∞. Since ν is a precompact
uniformity, wUν(D) = ν. By the foregoing, we can write υuD = D ∪ {∞}.

Our next result characterizes the equivalence of the realcompactifications υuX andH(Uµ(X))
of a uniform space (X,µ).

Theorem 4. The following conditions are equivalent for a uniform space (X,µ):

(1) υuX = H(Uµ(X));

(2) Every Cauchy zu-ultrafilter of (X,wUµ(X)) is countably centered;

(3) Every Cauchy zu- filterbase of (X,wUµ(X)) is countably centered.

Proof. (1) ⇒ (2) Suppose that υuX = H(Uµ(X)). Then there exists a homeomorphism
ϕ : υuX → H(Uµ(X)) which keeps the points of X fixed. By Lemma 3, we have υuX ⊂
H(Uµ(X)). Let i : υuX → H(Uµ(X)) be the inclusion map. Since the continuous mappings
ϕ and i agree on the dense subset X of υuX, we have i = ϕ. It follows, since ϕ is an onto
mapping, that υuX = H(Uµ(X)). By Lemma 3, every Cauchy zu-ultrafilter of (X,wUµ(X))
is countably centered.

(2) ⇒ (3) Assume that (2) holds, and let F be a Cauchy zu-filterbase of (X,wUµ(X)).
By the Kuratowski-Zorn Lemma, F can be extended to a zu-ultrafilter G. Note that G is a
Cauchy filter. By (2), G is countably centered. Hence also F has this property.

(3)⇒ (1) This follows from Lemma 3. �

For a metric space (X, d), the Hewitt realcompactification υX can be considered as a topo-
logical subspace of the Samuel realcompactification (see, for instance, [8, Proposition 40]).
This follows from Lemma 3 because υX is equivalent with the realcompactification υuX. It is
shown in [11, Definition 5.1 and Theorem 5.3] and [2, Definition 2.10 and Theorem 2.12] that
both υuX and υX are Wallman realcompactifications : υuX for the Wallman base Zu(X)
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of all zu-sets of (X,µd) and υX for the Wallman base Z(X) of all zero-sets of X. Since
Z(X) = Zu(X) for a metric space (X, d), the equivalence of υuX and υX is immediate.

We will use the following consequence of Theorem 4 and the preceding considerations in the
proof of our main result, Theorem 7.

Corollary 5. Let (X, d) be a metric space such that υX = H(Uµd(X)). Then every Cauchy
zu-filterbase of (X, eµd) is countably centered.

Proof. Assume on the contrary that (X, eµd) has a Cauchy zu-filterbase N which is not count-
ably centered. Since the uniformity eµd is finer that the uniformity wUµd(X), the filterbase
N is also Cauchy in (X,wUµd(X)). It follows from Theorem 4 that υuX 6= H(Uµ(X)). This,
however, leads to a contradiction, because we have υuX = υX for the metric space (X, d). �

The following example shows that the necessary condition given in Corollary 5 for the
equivalence υX = H(Uµd(X)) is not always sufficient, even for a complete metric space (X, d).

Example 5. In Example 2, we saw that the separable hedgehog-space (J(ω), ρ) satisfies the
non-equivalence H(Uµρ(J(ω))) 6= υJ(ω). The space J(ω) is Lindelöf and it follows that the
uniformity µρ has a base consisting of countable covers. As a consequence, we have µρ = eµρ
and thus the space (J(ω), eµρ) is complete. It follows that every Cauchy zu-filter of (J(ω), eµρ)
is fixed and therefore countably centered.

Let D be a discrete space. We denote by u the metric uniformity induced by the 0-1-metric
δ on D, and we note that u is the fine uniformity on D. We say that (D, u) is a uniformly
discrete space. Note that the uniformity u is induced by the collection of all partitions of D. A
base for the countable modification eu of u is given by the collection of all countable partitions
of D. Note that every countable cover of D is in eu.

The content of the following lemma is a part of the folklore in the theory of uniform real-
compactifications.

Lemma 6. Let (D, u) be a uniformly discrete space. The following conditions are equivalent
for a filter F of D.

(1) F is a Cauchy filter of (D,wUu(D))

(2) F is a Cauchy filter of (D, eu);

(3) F is a countably complete ultrafilter;

Moreover, υD = υuD = H(Uu(D)). The uniform space (D, u) is Samuel realcompact if, and
only if, it is realcompact, that is, exactly when the cardinal |D| is not Ulam measurable.

Proof. (1) ⇔ (2) This equivalence follows from the general fact that, for a uniformly 0-
dimensional space (X,µ), the uniformities wUµ(X) and eµ are the same as eµ is induced by
all the countable uniform partitions of (X,µ) (see [14, 1.7]).

(2) ⇒ (3) Assume that F is a Cauchy filter of (D, eu). For every E ⊂ D, the partition
{E,D\E} of D belongs to the uniformity eµ and it follows that either E ∈ F or D\E ∈ F .
Hence, F is an ultrafilter. To show that F is countably complete, let {Fn : n ∈ N} ⊂ F . The
countable cover U = {D\Fn : n ∈ N} ∪ {

⋂
n∈N Fn} of D is a member of the uniformity eu.

Since F is a Cauchy filter and D\Fk 6∈ F for every k ∈ N, we must have
⋂
n∈N Fn ∈ F .

(3)⇒ (2). Assume that (3) holds. To verify (2), let {Un : n ∈ N} ∈ eu. Then {Un : n ∈ N}
covers D and thus

⋂
n∈N(D \ Un) = ∅ 6∈ F . It follows, since F is countably complete, that

there exists k ∈ N such that D \ Uk 6∈ F . Since F is an ultrafilter, we have Uk ∈ F .
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Since D is metrizable, we have υD = υuD. By the foregoing and Lemma 3, it is clear that
υuD = H(Uu(D)). Finally, a well-known result (see [10, Theorem 12.2]) shows that υD = D
if, and only if, the cardinal of D is not Ulam measurable. �

3. The space mN

Corollary 2 shows that we need measurable cardinals if we want to find Bourbaki-complete
metric spaces with non-equivalent Hewitt and Samuel realcompactifications, and Lemma 6
shows that we must go beyond uniformly discrete spaces. In this section, we show that
if measurable cardinals exist, then it is enough to consider countable powers of uniformly
discrete spaces.

Let D be an infinite discrete space. We equip the countable power DN with the product
uniformity π where each factor D is endowed with the uniformity induced by the 0-1 metric.
The uniformity π can be determined by the usual product metric d or by the “first difference
metric” ρ (see [6, Example 4.2.12]). Note that ρ is an ultrametric and hence the uniform space
(DN, π) is uniformly zero-dimensional. It follows, since the metric ρ is complete, that (DN, π)
is Bourbaki-complete. The space (DN, ρ) is known as a Baire metric space of weigth |D|.

Since a cardinal κ is a set of cardinality κ, we can replace the uniformly discrete space D
with the uniformly discrete space λ, where λ = |D|; this will be useful in the following proof.
Hence we will consider cardinals also as uniformly discrete spaces. For every n ∈ N, we denote
by pn the projection from λN onto the uniformly discrete space (λn, u), i.e., the mapping
〈α1, α2, . . .〉 7→ 〈α1, α2, . . . , αn〉. The projection pn is uniformly continuous and sets of the
form p−1

n (A), where A ⊂ λn, are clopen and hence zu-sets in λN. Note that the uniformity eπ
of λN is induced by all partitions of λN of the form {p−1

n (A) : A ∈ A}, where n ∈ N and A is
a countable partition of the uniformly discrete space λn.

In the following proof, we employ the product F · G (sometimes called tensor product or
Fubini product) of two filters F and G: if F is a filter of a set X and G a filter of a set Y ,

then F · G is the family
{
H ⊂ X × Y :

{
x ∈ X : {y ∈ Y : (x, y) ∈ H} ∈ G

}
∈ F

}
of subsets

of X × Y . The family F · G is a filter, and if both F and G are ultrafilters, then F · G is an
ultrafilter. We refer the reader to [3, p. 157-159] for basic facts about product filters.

Note that the filter F · G has a base consisting of all sets of the form
⋃{
{a}×Ba : a ∈ A

}
,

where A ∈ F and Ba ∈ G for every a ∈ A. Using this base, we can easily see that if F and G
are countably complete filters, then so is F · G: if A1, A2, . . . ∈ F and Bn

a ∈ G for all n ∈ N
and a ∈ An, then

⋂
n∈N

⋃{
{a} ×Bn

a : a ∈ An
}

=
⋃{
{a} ×

⋂
n∈NB

n
a : a ∈

⋂
n∈NA

n
}
∈ F · G.

Theorem 7. (MC) Let m be the least measurable cardinal. There exists a closed discrete
subspace X of mN such that υX 6= H(Uπ(X)) .

Proof. There exists a countably complete free ultrafilter F on the measurable cardinal m.
Since m is the least measurable cardinal, the filter F is uniform, i.e., |F | = m for each F ∈ F .

We identify each 1-element sequence 〈α〉 with the element α. Thus we have m1 = m and F
is an ultrafilter on m1. We set F1 = F and we define families F2, F3, ... recursively by the
formula Fn+1 = Fn · F1. Since F1 is a countably complete ultrafilter on m1, induction shows
that each Fn is a countably complete ultrafilter on mn.

For the rest of the proof, we are going to work on the subspace

X = {〈α1, α2, . . .〉 ∈ mN : for every n ∈ N, αn > αn+1 or αn+1 = 0} .
of mN. Note that the subspace X is closed and discrete. We will denote the uniformity
inherited by X from (mN, π) with the same symbol π.
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For every n ∈ N, we denote by pn the projection X → mn, in other words, the mapping
〈α1, α2, . . . , αk, . . .〉 7→ 〈α1, α2, . . . , αn〉, where 〈α1, α2, . . . , αk, . . .〉 ∈ X.

For every n ∈ N, let Xn = pn(X). For all n ∈ N and γ < m, let Xn,γ = {〈α1, . . . , αn〉 ∈
Xn : αn > γ}. For each n ∈ N, let Fn = p−1

n (Xn,0). Note that the sets Fn are non-empty and
that

⋂
n∈N Fn = ∅ as there is no infinite strictly decreasing sequence of ordinals.

By induction on n, we show that Xn,β ∈ Fn for each β < m. For n = 1, this holds because
F1 is a uniform ultrafilter on m and X1,β = {α < m : α > β} for each β < m. Assume
that the claim has been established for n = k. To prove it for n = k + 1, let β < m. Set
A =

{
α < m : {〈α1, . . . , αk〉 ∈ mk : 〈α1, . . . , αk, α〉 ∈ Xk+1,β} ∈ Fk

}
. Note that, for all

α, α1, . . . αk ∈ m, we have 〈α1, . . . , αk, α〉 ∈ Xk+1,β if, and only if, 〈α1, . . . , αk〉 ∈ Xk and
αk > α > β. It follows, since X1,γ ∈ F1 and Xk,γ ∈ Fk for each γ < m, that

A =
{
α : {〈α1, . . . , αk〉 ∈ Xk : αk > α > β} ∈ Fk

}
=
{
α > β : {〈α1, . . . , αk〉 ∈ Xk : αk > α} ∈ Fk

}
= {α > β : Xk,α ∈ Fk} = X1,β ∈ F1

The foregoing shows that Xk+1,β ∈ Fk, and this completes the induction.
The result of the preceding paragraph shows, in particular, that for each n ∈ N, the set

Xn belongs to the countably complete ultrafilter Fn. As a consequence, for each n ∈ N, the
family Gn = {G ∈ Fn : G ⊂ Xn} is a countably complete ultrafilter of Xn.

Let n ∈ N and G ∈ Gn. We show that pn+1(p−1
n (G)) ∈ Gn+1. Denote by Ĝ the set

pn+1(p−1
n (G)) and note that Ĝ = {〈α1, .., αn+1〉 ∈ Xn+1 : 〈α1, .., αn〉 ∈ G}. To prove that

Ĝ ∈ Fn+1, it suffices to show that the set A =
{
α : {〈α1, . . . , αn〉 : 〈α1, . . . , αn, α〉 ∈ Ĝ} ∈ Fn

}
belongs to the family F1. We have

A =
{
α : {〈α1, . . . , αn〉 : 〈α1, . . . , αn, α〉 ∈ Xn+1 and 〈α1, . . . , αn〉 ∈ G} ∈ Fn

}
=
{
α : {〈α1, . . . , αn〉 ∈ G : αn > α > 0} ∈ Fn

}
=
{
α > 0 : {〈α1, . . . , αn〉 ∈ G : αn > α} ∈ Fn

}
= {α > 0 : G ∩Xn,α ∈ Fn} = {α : α > 0} = X1,0

Since X1,0 ∈ F1, we have shown that Ĝ ∈ Fn+1. Moreover, we have Ĝ ⊂ pn+1(X) = Xn+1. As

a consequence, Ĝ ∈ Gn+1, in other words, pn+1(p−1
n (G)) ∈ Gn+1.

When we apply the above result for n+ 1 ∈ N and for the set pn+1(p−1
n (G)) ∈ Gn+1, we get

that pn+2(p−1
n+1(pn+1(p−1

n (G)))) ∈ Gn+2. Since p−1
n+1(pn+1(p−1

n (G))) = p−1
n (G), it follows that

pn+2(p−1
n (G)) ∈ Gn+2. Induction and a repetition of the preceding argument establish the

more general result that pk(p
−1
n (G)) ∈ Gk whenever k > n and G ∈ Gn.

For each n ∈ N, let Nn = {p−1
n (G) : G ∈ Gn}. Set N =

⋃
n∈NNn. We show that the family

N of subsets of X is a filter-base. Let M,N ∈ N . There exist m,n ∈ N, G ∈ Gm and H ∈ Gn
such that M = p−1

m (G) and N = p−1
n (H). Without loss of generality, we may assume that

n ≤ m. If n = m, then G ∩ H ∈ Gn and M ∩ N = p−1
n (G ∩ H) ∈ N . Assume that n < m.

By the result in the preceding paragraph, we have pm(N) ∈ Gm. Since Gm is a filter, the
set K = pm(N) ∩ G belongs to Gm. Now it is easy to see that the member p−1

m (K) of N is
contained in M ∩N . We have shown that the family N is a filter-base. Note that the family
N is not countably centered, since we have Fn ∈ Nn ⊂ N for every n.

To complete the proof, we show that N is a Cauchy filterbase of (X, eπ). For every n ∈ N,
the projection pn(N ) is a filterbase of Xn containing the ultrafilter Gn of Xn; as a consequence,
pn(N ) = Gn. Since Gn is countably complete, Lemma 6 shows that Gn is a Cauchy filter of
(Xn, eu). When we recall the definition of the base of the uniformity eπ of λN from the
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beginning of this section, we see that the clopen filterbase N is Cauchy in (X, eπ). Corollary
5 now shows that υX 6= H(Uπ(X)). �

Note that even though the space X above has Ulam measurable cardinality, it is “uniformly
locally small” in the sense that no member of the uniform partition {Bρ(x, 1) : x ∈ X} of X
has Ulam measurable cardinality.

We close this paper with the following consequence of Theorem 7.

Corollary 8. For a uniformly discrete space D, we have υDN = H(Uπ(DN)) if, and only if,
the cardinal |D| is not Ulam measurable.

Proof. Necessity. Assume that |D| is Ulam measurable. Then m ≤ |D| and it follows that
(mN, ρ) embeds isometrically into (DN, ρ). The embedding transforms the eπ-Cauchy filterbase
N of the closed discrete subset X of mN from the above proof to a closed eπ-Cauchy filterbase
M of DN. Like N , the filterbase M fails to be countably centered. Corollary 5 gives the
conclusion that υDN 6= H(Uπ(DN)).
Sufficiency. Assume that |D| is not Ulam measurable. Then |DN| is not Ulam measurable.
Since (DN, π) is Bourbaki-complete, we have υDN = H(Uπ(DN)) by Proposition 1. �
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