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For a nonlinear operator T satisfying certain structural as-
sumptions, our main theorem states that the following claims 
are equivalent: i) T is surjective, ii) T is open at zero, and iii) 
T has a bounded right inverse. The theorem applies to nu-
merous scale-invariant PDEs in regularity regimes where the 
equations are stable under weak∗ convergence. Two particu-
lar examples we explore are the Jacobian equation and the 
equations of incompressible fluid flow.
For the Jacobian, it is a long standing open problem to decide 
whether it is onto between the critical Sobolev space and the 
Hardy space. Towards a negative answer, we show that, if the 
Jacobian is onto, then it suffices to rule out the existence of 
surprisingly well-behaved solutions.
For the incompressible Euler equations, we show that, for any 
p < ∞, the set of initial data for which there are dissipative 
weak solutions in Lp

tL
2
x is meagre in the space of solenoidal 
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L2 fields. Similar results hold for other equations of incom-
pressible fluid dynamics.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The open mapping theorem is one of the cornerstones of functional analysis. When 
X and Y are Banach spaces and L : X → Y is a bounded linear operator, it asserts the 
equivalence of the following two conditions:

(i) Qualitative solvability: for all f ∈ Y there is u ∈ X with Lu = f , i.e. L(X) = Y ;
(ii) Quantitative solvability: for all f ∈ Y there is u ∈ X with Lu = f and additionally 

‖u‖X ≤ C‖f‖Y .

In other words, the operator L is surjective if and only if it is open at the origin. More 
generally, following [45], we say that the open mapping principle holds for a surjective 
map T between Banach spaces if T is open at the origin.

In this paper, we obtain a quantitative version of the open mapping principle that 
applies to a large family of nonlinear translation and scale-invariant PDEs. Invariance 
under translations and scalings is an ubiquitous feature of physical processes and, there-
fore, of the associated equations. It is an example of the relativity principle that the 
solutions of a PDE representing a physical phenomenon should not have a form which 
depends on the location of the observer or the units that the observer is using to measure 
the system [15]. We refer the reader to [5] for the general role of scaling symmetries in 
physics and other sciences and to [66] for a systematic study of symmetries in PDEs. We 
also remark that, even from the purely functional analytic viewpoint, our result seems to 
be the first instance of an open mapping principle that is applicable to nonlinear PDEs. 
We refer the reader to Section 1.1 for further discussion.

It often happens that a PDE has not just one but several scaling symmetries: two 
important examples, which will be discussed at length below, are the Jacobian equation 

http://creativecommons.org/licenses/by/4.0/
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(see Section 1.2) and the incompressible Euler equations (see Section 1.3). An important 
theme in this paper is that, whenever a PDE has several scaling symmetries, these 
symmetries must be compatible in order for the equation to be solvable for all data.

Our main result encapsulates the two previous points: many scale-invariant PDEs 
satisfy a nonlinear open mapping principle and, for the equation to be solvable, the 
associated scalings need to be compatible.

Theorem A (Rough version). Consider a constant-coefficient system of PDEs, posed over 
either Rn or Rn × [0, ∞), which moreover is preserved under weak∗ convergence. Let T
be the solution-to-datum operator associated with the PDE.

Suppose that the equation Tu = f is invariant under the scalings

uλ(x, t) ≡ 1
λα

u

(
x

λβ
,
t

λγ

)
, fλ(x, t) ≡ 1

λδ
f

(
x

λβ
,
t

λγ

)
, (1.1)

where α, β, γ, δ ∈ R are fixed and the group parameter is λ > 0. Suppose further that 
the solutions and the data lie in homogeneous dual function spaces X∗ and Y ∗ which 
satisfy, for some r, s ∈ R,

‖uλ‖X∗ ≡ λr‖u‖X∗ , ‖fλ‖Y ∗ ≡ λs‖f‖Y ∗ , where rs > 0.

The following statements are then equivalent:

(i) For all f ∈ Y ∗ there is u ∈ X∗ with Tu = f ;
(ii) For all f ∈ Y ∗ there is u ∈ X∗ with Tu = f and ‖u‖s/rX∗ ≤ C‖f‖Y ∗ .

Moreover, suppose that T is invariant under another pair of scalings u �→ ũλ, ̃fλ, which 
satisfy

‖ũλ‖X∗ ≡ λr̃‖u‖X∗ , ‖f̃λ‖Y ∗ ≡ λs̃‖f‖Y ∗ , where r̃s̃ > 0.

Then solvability of the equation Tu = f requires compatibility of the scalings, i.e.

r/s 	= r̃/s̃ =⇒ T is non-surjective. (1.2)

For a precise and more general version of the theorem we refer the reader to The-
orems 3.5 and 3.8, where some inhomogeneous spaces are also treated. Concerning the 
hypothesis of stability under weak∗ convergence, we note that it is typically satisfied by 
solutions above a certain regularity threshold: for instance, it holds for both the Navier–
Stokes equations and the cubic wave equation in R3 × [0, +∞) in the corresponding 
energy spaces. Moreover, by considering a relaxed version of the PDE, this assumption 
can sometimes be bypassed, as will be discussed in more detail in Section 1.3 below.
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Theorem A gives justification for two ideas ubiquitous in the study of PDEs, cf. [53]. 
Firstly, given a PDE and a space of data, the scaling symmetries of the PDE should 
be exploited fully when one determines the solution space, and secondly, a priori esti-
mates are often paramount to establishing existence of solutions. We describe the use of 
Theorem A more precisely below.

One can often rule out solvability in various function spaces simply by computing 
the scaling symmetries of the PDE and using (1.2): as an example, in Corollary 4.1 we 
recover the main result of [55] on the Jacobian equation. Sometimes, however, the PDE 
has very few scaling symmetries, and so the second part of Theorem A is not applicable. 
To circumvent this issue, it is often useful to relax the nonlinear PDE into a linear one, 
as in the Tartar framework [79,80]: doing so often enlarges the collection of available 
scaling symmetries, allowing Theorem A to be used. We illustrate this general technique 
on the Euler equations in §4 and on the Navier-Stokes equations in §5.

In function spaces that “scale correctly”, the use of Theorem A is two-fold. In the 
direction of non-solvability, it is, in practice, much simpler to disprove an a priori esti-
mate than to find a datum for which solvability fails; see §4 for an application to the 
Jacobian equation. In the direction of solvability, Theorem A justifies fully the method of 
a priori estimates [78, §1.7]. We give examples of evolutionary PDEs to demonstrate that 
the estimates obtained through the open mapping principle agree (up to a multiplica-
tive constant) with well-known estimates such as the energy inequalities for Leray–Hopf 
solutions to the incompressible Navier-Stokes equations.

The rest of this introduction is structured as follows. In the next subsection we present 
a special version of Theorem A in a simple case, and then, in Section 1.2, we apply this 
version to the Jacobian equation. After proving our main theorem in Section 3, we expand 
on the applications of Theorem A to the equations of incompressible fluid dynamics in 
Section 1.3.

1.1. A simple abstract open mapping principle

Deciding whether nonlinear versions of the open mapping principle hold is a classical 
problem. In the bilinear setting, this question goes back to Rudin [71, page 67]:

Question 1.1. If X1, X2 and Y are Banach spaces and T is a continuous bilinear map of 
X1 ×X2 onto Y , does it follow that T is open at the origin?

The origin plays a special role in Question 1.1 since, if T is open at 0, then by 
scaling one obtains quantitative solvability: for all f ∈ Y there exist ui ∈ Xi such that 
T (u1, u2) = f and ‖u1‖2

X1
+ ‖u2‖2

X2
≤ C‖f‖Y . The simple example T : R × L2(Rn) →

L2(Rn), (t, f) �→ tf shows that in general, openness at 0 does not imply openness at all 
points.

It turns out that nonlinear open mapping principles do not hold even in the very 
simple setup of Question 1.1. A first counterexample was found by Cohen [20] and, a 
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bit later, Horowitz [45] gave a finite-dimensional example by taking T : R3 ×R3 → R4

to be

T (x, y) ≡ (x1y1, x1y2, x1y3 + x3y1 + x2y2, x3y2 + x2y1). (1.3)

We also refer the reader to [7,32] for further extensions and discussion.
To reconcile Theorem A with these counterexamples one needs to keep in mind that 

the operators arising in PDEs have additional structure. Here we state a precise, ab-
stract (and simpler to prove) version of Theorem A. It gives conditions under which
Rudin’s question has a positive answer; we replace bilinearity by positive homogeneity 
to incorporate more examples.

Theorem B. Let X and Y be separable or reflexive Banach spaces. We assume that:

(A1) T : X∗ → Y ∗ is a positively homogeneous operator.
(A2) T is weak∗-to-weak∗ sequentially continuous.
(A3) For k ∈ N there are isometric isomorphisms σX∗

k : X∗ → X∗, σY ∗

k : Y ∗ → Y ∗ such 
that

T ◦ σX∗

k = σY ∗

k ◦ T for all k ∈ N,

σY ∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

Then T is onto if and only if T is open at the origin.

Condition (A3) should be thought of as generalised translation-invariance (while con-
ditions (A1)–(A2) are self-explanatory). Indeed, when T is a constant-coefficient partial 
differential operator and X∗ and Y ∗ are function spaces on Rn, natural choices of σX∗

k

and σY ∗

k include translations

σX∗

k u(x) ≡ u(x− ke) and σY ∗

k f(x) ≡ f(x− ke), where e ∈ Rn \ {0}.

Example (1.3) shows that assumption (A3) cannot be omitted, but it is unclear whether 
(A2) is needed. The roles of the conditions (A1)–(A3) are discussed further in Remark 2.2.

The assumptions of Theorem B arise naturally in compensated compactness [65,79], a 
theory dealing with operators which are sequentially weakly continuous over the space of 
solutions to a given linear, underdetermined PDE. Our motivation for Theorem B comes 
from an old problem of Coifman, Lions, Meyer and Semmes: they discovered in [21]
that many compensated compactness operators have improved integrability, and hence 
their range is smaller than expected. In fact, in [42] it was shown that, under natural 
assumptions, all compensated compactness operators have improved integrability, see 
also [43] for a systematic study. These results lead to the following problem:

Question 1.2. What is the range of the operators arising in compensated compactness?
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The most famous examples of operators arising in compensated compactness, all of 
which fall under the scope of Theorem B, are the Jacobian, the Hessian and the div-curl 
product. In the next subsection we will focus on the important case of the Jacobian.

1.2. Applications to the Jacobian equation

We consider the Jacobian equation

Ju ≡ detDu = f in Rn, (1.4)

where the solution is a map u : Rn → Rn. This is a first-order, fully nonlinear, underde-
termined equation, and it appears naturally in Differential Geometry [61] and Optimal 
Transport [12]. Equation (1.4) is also geometric, as formally the change of variables 
formula reads as∫

E

|Ju(x)|dx =
∫
Rn

#
(
u−1(y) ∩ E

)
dy, E ⊂ Rn is measurable. (1.5)

Thus, for a smooth solution of (1.4), f measures the size of its image, counted with 
multiplicity.

Whenever f is positive and sufficiently regular there is a well-posedness theory for 
(1.4) which goes back to the works of Dacorogna and Moser [26,61], and which can 
alternatively be deduced from the regularity theory for the Monge–Ampère equation [17]. 
In fact, one may view the Monge–Ampère equation as the elliptic, determined analogue 
of (1.4). We also note that there is an existence theory for (1.4) for data which are regular 
but have arbitrary sign [25] and we refer the reader to the book [24] for a comprehensive 
bibliography on the subject.

We are interested in studying the existence and regularity of solutions to (1.4) for 
low-regularity data, which is to say that we take f ∈ Lp for some finite p. There are 
essentially no existence results in this setting; moreover, non-existence results are also 
remarkably difficult to obtain, although see [16,60,69] for some endpoint statements as 
well as our recent works [39,40] for results in the general Lp case. One of the difficulties in 
establishing non-existence of regular solutions to (1.4) is that underdetermined equations 
often admit solutions with a surprising amount of regularity, particularly for rough data. 
This is the case for the divergence equation, which one may regard as the linear analogue 
of (1.4): as shown by Bourgain and Brezis in [10], see also [77,81], the divergence 
equation admits solutions with higher regularity than the ones obtained by solving the 
corresponding elliptic problem, i.e. the Poisson equation. In fact, the same is true for 
our nonlinear problem, as the solutions obtained through the Monge–Ampère equation 
are not always optimal, see [40] for further details and discussion.

Extending Question 1.2 in the case of the Jacobian, Iwaniec conjectured in [9,48]
that solutions with optimal regularity exist and can even be selected with a continuous 
dependence on the data:
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Conjecture 1.3. There is a continuous E : H p(Rn) → Ẇ 1,np(Rn, Rn) with J ◦ E = Id.

In Conjecture 1.3 we take p ∈ [1, ∞) and we note that H p(Rn) = Lp(Rn) for p ∈
(1, ∞), while H 1(Rn) is the real Hardy space [75], which is the dual of the separable 
Banach space VMO(Rn) [23]. We also emphasize that Ẇ 1,np denotes a homogeneous
Sobolev space: the third author showed in [56] that the Jacobian is not even onto H p(Rn)
if its domain is taken to be an inhomogeneous Sobolev space.

The appearance of the Hardy space at the endpoint p = 1 of Conjecture 1.3 has to do 
with the improved integrability of the Jacobian, first noticed by Müller [62]. In fact,
Coifman, Lions, Meyer and Semmes proved in [21] that

u ∈ Ẇ 1,n(Rn,Rn) =⇒ Ju ∈ H 1(Rn)

and that H 1(Rn) is the smallest Banach space containing the range of the Jacobian, a 
statement which was recently generalized for p > 1 by Hytönen [46]. It is still an open 
question to determine whether the Jacobian is surjective into H p(Rn). Nonetheless, as 
an immediate consequence of Theorem B, we obtain:

Corollary C. Fix 1 ≤ p < ∞. The following statements are equivalent:

(i) J : Ẇ 1,np(Rn, Rn) → H p(Rn) is surjective;
(ii) there is a bounded operator E : Ẇ 1,np(Rn, Rn) → H p(Rn) such that J ◦ E = Id;
(iii) for all f ∈ H p(Rn) there is u ∈ Ẇ 1,np(Rn, Rn) such that Ju = f and

‖Du‖nLnp(Rn) � ‖f‖H p(Rn). (1.6)

Although Corollary C may appear purely abstract, this is not so, as we now explain.
It appears plausible that Conjecture 1.3 is false: our motivation for considering this 

scenario comes in part from our related works [39,40], see also Section 4.4. For instance, 
in [40] we showed that the analogue of Conjecture 1.3 concerning the Dirichlet problem 
for (1.4) over a bounded domain Ω fails in a very strong sense. Roughly speaking, for 
f ∈ Lp one cannot expect solutions of Ju = f in any space higher than id+W 1,p

0 (Ω, Rn). 
This is proved through a geometric argument, relying on (1.5) and on the condition 
u = id on the boundary ∂Ω.

Let us say that a continuous solution of (1.4) which satisfies (1.5) is admissible; 
here our choice of terminology is inspired by the fluid dynamics literature. Any solu-
tion in Ẇ 1,np(Rn, Rn), for p > 1, is admissible, but there are continuous solutions in 
Ẇ 1,n(Rn, Rn) which are not admissible, see e.g. [58]. Thus, when p = 1, it is possible 
for the PDE (1.4) to hold a.e. in Rn, and hence also in the sense of distributions, and 
yet for its geometric information to be completely lost! We also note that geometric 
information on solutions is essential to study (1.4) beyond disproving Conjecture 1.3: for 
instance, in [39] we used a parametric version of the isoperimetric inequality to identify 
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the energy-minimal admissible solutions of (1.4) in the simple case where f is spherically 
symmetric.

In fact, studying admissible solutions is not necessarily restrictive: Using Corollary C
we can show that the existence of rough solutions implies the existence of admissible 
solutions. This observation is made precise in the following result:

Theorem D. Let Ω ⊂ Rn be an open set and take f ∈ H 1(Rn) such that f ≥ 0 in 
Ω. Assume that J: Ẇ 1,n(Rn, Rn) → H 1(Rn) is onto. Then there is a solution u ∈
Ẇ 1,n(Rn, Rn) of (1.4) such that:

(i) u is continuous in Ω;
(ii) u has the Lusin (N) property in Ω;
(iii)

∫
Rn |Du|n dx ≤ C‖f‖H 1 with C > 0 independent of f .

In particular, u is admissible over Ω, as it satisfies (1.5) there.
Moreover, if n = 2 and there is an open set Ω′ � Ω with f = 0 a.e. in Ω′, then:

(iv) for any set E ⊆ Ω′, we have u(∂E) = u(E);
(v) for y ∈ u(Ω′), if C denotes a connected component of u−1(y) ∩Ω′ then C intersects 

∂Ω′.

Theorem D provides a vital practical tool towards a negative answer to Conjecture 1.3. 
It is proved through a regularisation argument: due to Corollary C, powerful tools from 
Geometric Function Theory become available. In the supercritical regime p > 1, the first 
part of Theorem D holds automatically, although one can still use the a priori estimate 
(1.6) to get solutions with additional structure, see Section 4 for further details. The 
second part of Theorem D also holds in any dimension if p is taken to be sufficiently 
large.

1.3. Applications to the equations of incompressible fluid flow

In order to give a representative application of Theorem A to evolutionary PDEs we 
consider the incompressible Euler equations

∂tu + u · ∇u−∇P = 0, (1.7)

divu = 0, (1.8)

u(·, 0) = u0 (1.9)

in Rn × [0, ∞), for n ≥ 2. Note that (1.7)–(1.9) are invariant under scalings of the form

uλ(x, t) ≡ 1
α
u

(
x
β
,

t
α+β

)
, u0

λ(x, t) ≡ 1
α
u0

( x
β

)
, Pλ(x, t) ≡ 1

2αP

(
x
β
,

t
α+β

)

λ λ λ λ λ λ λ λ
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for any α, β > 0. Recall also that smooth solutions of (1.7)–(1.9), with strong enough 
decay properties at infinity, conserve the kinetic energy 

∫
Rn |u(x, t)|2 dx in time.

Weak solutions of (1.7)-(1.9) can, nevertheless, violate energy conservation and exhibit 
various other kinds of wild behaviour. Scheffer constructed in [72] solutions of the 
Euler equations which are compactly supported and square integrable in space-time and 
a simpler construction on the torus was given by Shnirelman in [73]. A systematic 
study of energy-dissipating solutions via convex integration was initiated by De Lellis

and Székelyhidi in the groundbreaking works [27,28], culminating in the solution of 
the Onsager Conjecture in [27,47]. For more information on Onsager’s conjecture see the 
recent reviews [14,30] and the references contained therein.

In view of the highly underdetermined nature of the Euler equations (in particular, the 
ability of fluids to come to rest in finite time), it is a priori not completely clear at which 
rates energy decay can occur if one starts from a generic square integrable initial datum. 
On the one hand, on the flat torus Tn, Wiedemann has shown in [82] the existence of 
weak solutions of the Euler equations for all solenoidal, square integrable initial data 
by applying the methodology developed in [27,28]. By closely examining the proof, the 
kinetic energy of Wiedemann’s solutions can be chosen to decay exponentially in time. 
On the other hand, in the case of Leray-Hopf solutions of Navier-Stokes equations, it is 
a well-known fact that the exponential energy decay does not carry over from the torus 
to the whole space (see §5.2).

Theorem A rather immediately rules out Lq-type energy decay, q < ∞, for a Baire-
generic square integrable initial datum. The precise statement is given in Corollary E
below; we use the customary notation L2

σ ≡ {v ∈ L2 : div v = 0}. In §5.1 we also make a 
separate smallness statement about the set of initial data for which a solution can come 
to rest within a prescribed time interval.

Corollary E. Let n ≥ 2, 2 < p < ∞ and M > 0. The set of initial data for which 
(1.7)–(1.9) have a solution u with ‖u‖Lp

tL
2
σ,x

≤ M is nowhere dense in L2
σ.

In particular, for a residual set of initial data in L2
σ, the Cauchy problem (1.7)–(1.9)

has no solution in L∞
t L2

x ∩ [
⋃

2<p<∞ Lp
tL

2
x].

To deduce Corollary E from Theorem A we consider a linear relaxation of the equa-
tions (1.7)–(1.9); this is an idea in the spirit of Tartar’s framework for studying 
oscillations and concentrations in conservation laws [79,80]. Such a relaxation is used 
here in order to render the associated solution-to-datum operator weak∗-to-weak∗ con-
tinuous and to introduce extra scaling symmetries into the problem. Corollary E is proved 
in §5.1.

The proof of Corollary E also applies to many other models in fluid dynamics. For 
instance, concerning the Navier–Stokes equations, we prove in an elementary fashion 
upper bounds for the generic energy dissipation rate of distributional solutions. Another 
example is given by the equations of ideal magnetohydrodynamics, for which the analogue 
of Corollary E holds true. In that context bounded solutions with compact support in 
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space-time were constructed in [34]. On the torus T 3, solutions in L∞
t Hβ

x , for a small 
β > 0, violating magnetic helicity conservation were constructed in [6].

2. A nonlinear open mapping principle for positively homogeneous operators

The main goal of this section is to prove Theorem B. A related nonlinear uniform 
boundedness principle is proved in Proposition 2.3 and a precise statement concerning 
atomic decompositions in terms of T is proved in Proposition 2.5.

We already motivate Theorem B in the setting of Corollary C. By adapting the usual 
proof of the standard Open Mapping Theorem to J: Ẇ 1,np(Rn, Rn) → H p(Rn) one 
obtains the following statement: if J(Ẇ 1,np(Rn, Rn)) = H p(Rn), then for every f ∈
H p(Rn) there exist u, v ∈ Ẇ 1,np(Rn, Rn) with

Ju + Jv = f and
∫
Rn

(|Du|np + |Dv|np) dx ≤ C‖f‖pH p . (2.1)

Thus, quantitative control is gained at the expense of introducing an extra term Jv.
One could attempt to show the non-surjectivity of J by disproving the a priori estimate 

in (2.1). However, the extra term Jv makes this a formidable task since the equation 
Ju + Jv = f admits much more pathological solutions than Ju = f . As a prototypical 
example, there exist Lipschitz maps u, v : R2 → R2 vanishing in the lower half-plane 
and satisfying Ju + Jv = 1 in the upper half-plane [49, Lemma 5]. In Theorem B and 
Corollary C, the extra Jacobian Jv is removed, which leads to a dramatically less daunting 
task than disproving (2.1). We explore this further in §4.

2.1. The proof of Theorem B

Here we give a slightly more precise version of Theorem B:

Theorem 2.1. Let X and Y be Banach spaces such that BX∗ is sequentially weak∗ com-
pact. We make the following assumptions:

(A1) T : X∗ → Y ∗ is a weak∗-to-weak∗ sequentially continuous operator.
(A2) T (au) = asT (u) for all a > 0 and u ∈ X∗, where s > 0.
(A3) For k ∈ N there are isometric isomorphisms σX∗

k : X∗ → X∗, σY ∗

k : Y ∗ → Y ∗ such 
that

T ◦ σX∗

k = σY ∗

k ◦ T for all k ∈ N, σY ∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

Then the following conditions are equivalent:

(i) T (X∗) is non-meagre in Y ∗.
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(ii) T (X∗) = Y ∗.
(iii) T is open at the origin.
(iv) For every f ∈ Y ∗ there exists u ∈ X∗ such that

Tu = f, ‖u‖sX∗ ≤ C‖f‖Y ∗ . (2.2)

A sufficient condition for BX∗ to be sequentially weak∗ compact is that X is a weak 
Asplund space [74, Theorem 3.5]. For instance, reflexive or separable spaces are weak 
Asplund [31].

Proof of Theorem B. We have (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) and so we just prove (i) ⇒ (iv).
Assume that (i) holds. We may write T (X∗) as a union ∪∞

�=1K�, where

K� ≡
{
f ∈ Y ∗ : there exists u ∈ X∗ with Tu = f and ‖u‖sX∗ ≤ 


}
.

Since balls in X∗ are sequentially weak∗ compact, by (A1), the sets K� are sequentially 
weak∗ closed, in particular norm-closed. Now, by the Baire Category Theorem, some K�

contains a closed ball B̄r(f0).
Our next aim is to show that B̄r(0) ⊂ K�. Suppose, therefore, that ‖f‖Y ∗ ≤ r. By 

(A3), f + σY ∗

k f0
∗
⇀ f , and thus it suffices to show that f + σY ∗

k f0 ∈ K� for all k ∈ N. 
Given k ∈ N, we note that f0 + (σY ∗

k )−1f ∈ B̄r(f0). Hence, we may choose uk ∈ X∗

such that Tuk = f0 + (σY ∗

k )−1f and ‖uk‖sX∗ ≤ 
. By (A3),

f + σY ∗

k f0 = σY ∗

k (f0 + (σY ∗

k )−1f) = σY ∗

k Tuk = T (σX∗

k uk),

‖σX∗

k uk‖sX∗ = ‖uk‖sX∗ ≤ 
,

which yields f + σY ∗

k f0 ∈ K�, and so B̄r(0) ⊂ K�.
Assumption (A2) now yields B̄R(0) ⊂ K�R/r for all R > 0, and so (iv) holds with 

C = 
/r. �
Remark 2.2. We make some comments on the roles of each assumption of Theorem B. 
Note that we only used (A2) at the very end of the proof to move from the local statement 
B̄r(0) ⊂ K� to the global quantitative solvability statement (iv). This motivates us to 
replace positive homogeneity by more general scaling symmetries, and this is done in §3. 
It is an interesting problem whether (ii) and (iii) continue to be equivalent if one simply 
discards assumption (A2).

Recall that in view of Horowitz’s example (1.3), assumption (A3) cannot be omitted. 
We also note that (A3) never holds if Y is finite-dimensional and that moreover, when 
the target is two-dimensional, it is not needed: Downey has shown that, in this case, 
the answer to Question 1.1 is positive [33, Theorem 12]. The assumption (A1), in turn, 
is not always necessary, but it holds automatically in finite dimensional examples. An 
infinite dimensional case where it is not needed is the following multiplication operator 
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(f, g) �→ fg : Lp × Lq → Lr, where 1/p + 1/q = 1/r: this operator does not satisfy (A1), 
although it verifies the open mapping principle [3,4].

2.2. Examples

The theory of Compensated Compactness provides many nonlinear operators to which 
Theorem B applies. Here we give a general formulation in the spirit of [41], see also [65,79], 
which we then illustrate with more concrete examples.

Let A be an l-th order homogeneous linear operator, which for simplicity we assume 
to have constant coefficients; that is, for v ∈ C∞(Rn, V ),

Av =
∑
|α|=l

Aα∂
αv, Aα ∈ Lin(V ,W ),

where V , W are finite-dimensional vector spaces. For p ∈ [1, +∞) and s ∈ N, s ≥ 2, take

X∗ = Lps
A (Rn,V ), Y ∗ = H p(Rn).

Here Lps
A (Rn, V ) is the space of those v ∈ Lps(Rn, V ) such that Av = 0 in the sense of 

distributions. We will further need the following standard non-degeneracy assumption:

the symbol of A, seen as a matrix-valued polynomial, has constant rank. (2.3)

Whenever (2.3) holds, we say that A has constant rank. We will not discuss this as-
sumption here but it holds in all of the examples below; the reader may find other 
characterizations of constant rank operators in [42,67].

Let T : X∗ → Y ∗ be a homogeneous sequentially weakly continuous operator. Under 
the assumption (2.3), such operators were completely characterised in [41], and they 
are often called Compensated Compactness quantities. They can be realised as certain 
constant-coefficient partial differential operators and so they necessarily satisfy (A3) if 
one takes the isometries σX∗

k , σY ∗

k to be translations. The following are standard examples 
of such operators:

(i) A = curl and T = J. For this example, take V = Rn×n and choose A in such a way 
that Av = 0 if and only if v = Du, for some u : Rn → Rn. For instance, we may take 
(curl v)ijk = ∂kvij − ∂jvik. We also choose s = n and so X∗ = Ẇ 1,np(Rn, Rn). The 
only positively n-homogeneous sequentially weakly continuous operator X∗ → Y ∗

is the Jacobian, and in particular we recover Corollary C.
(ii) A = curl2 and T = H. Here A is chosen similarly to the previous example, but 

now Av = 0 if and only if v = D2u, for some u : Rn → R. Again we take s = n

and so X∗ = Ẇ 2,np(Rn, Rn). We may take T = H: X∗ → Y ∗ to be the Hessian, 
and Theorem B shows that it satisfies the open mapping principle.
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The two previous examples admit a straightforward generalisation, where one considers 
s-th order minors (instead of the determinant) and a j-th order curl (instead of j = 1, 2).

(iii) A = (div, curl) and T = 〈·, ·〉. In this example, s = 2 and T is the standard inner 
product acting on a pair v ≡ (B, E) : Rn → Rn × Rn; here, B is thought of as a 
“magnetic field” and E as an “electric field”. As before, Theorem B shows that T
satisfies the open mapping principle.

We conclude this subsection by comparing the above example with [21]. There, the 
authors address the problem of deciding whether Compensated Compactness quantities 
are surjective, particularly when p = 1. Thus Theorem B can be read as saying that 
openness at zero is a necessary condition for a positive answer to this problem.

2.3. A nonlinear uniform boundedness principle

We also present a nonlinear version of the Uniform Boundedness Principle in the 
spirit of Theorem B; under certain structural conditions, a family of operators which is 
pointwise bounded in a neighbourhood of the origin is uniformly bounded in a (possibly 
smaller) neighbourhood of the origin.

Proposition 2.3. Let X and Z be Banach spaces and let I be an index set. Suppose the 
following conditions hold:

(i) For every i ∈ I, the mapping Ti : X → Z is such that u �→ ‖Tiu‖Z : X → R is 
weakly sequentially lower semicontinuous.

(ii) There is ε > 0 such that supi∈I ‖Ti(u)‖Z < ∞ whenever ‖u‖X ≤ ε.
(iii) For j ∈ N there are isometric isomorphisms σX

k : X → X and σZ
k : Z → Z such 

that

Ti ◦ σX
k = σZ

k ◦ Ti for all i ∈ I and k ∈ N,

σX
k u ⇀ 0 for all u ∈ X.

Then there exists δ > 0 such that

sup
‖u‖X≤δ

sup
i∈I

‖Tiu‖Z < ∞.

Proof. By (ii), we may write εBX = ∪∞
�=1C�, where C� ≡ {u ∈ εBX : supi∈I ‖Tiu‖Z ≤ 
}

and (i) shows that each C� is norm closed. Thus, by the Baire Category Theorem, some 
C� contains a closed ball B̄δ(u0).

Let now ‖u‖X ≤ δ and i ∈ I. By (iii), we have u +σX
k u0 = σX

k [u0+(σX
k )−1u] ∈ B̄(u0, δ)

and moreover u + σX
k u0 ⇀ u. So by (i) and again (iii), we have
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‖Tiu‖Z ≤ lim inf
k→∞

‖Tiσ
X
k [u0 + (σX

k )−1u]‖Z = lim inf
k→∞

‖σZ
k T [u0 + (σX

k )−1u]‖Z ≤ 
.

The proof is complete. �
We note that, in the linear case, it is possible to prove the Banach–Steinhaus Uniform 

Boundedness Principle without using Baire’s Category Theorem: the proof relies, in-
stead, on the so-called “gliding hump method”. For an extension of the classical Uniform 
Boundedness Principle using this method, we refer the reader to [37].

2.4. Atomic decompositions in terms of T

The main motivation behind this subsection is Theorem 2.4. It establishes an analogue 
of the atomic decomposition of H 1(Rn), giving a weak factorization on H p(Rn) in the 
spirit of the classical work of Coifman, Rochberg and Weiss [22]:

Theorem 2.4. Let p ∈ [1, ∞). For every f ∈ H p(Rn) there are functions ui ∈
Ẇ 1,np(Rn, Rn) and real numbers ci such that

f =
∞∑
i=1

ciJui, ‖ui‖Ẇ 1,np(Rn) ≤ 1,
∞∑
i=1

|ci| � ‖f‖H p(Rn). (2.4)

In particular, H p(Rn) is the smallest Banach space containing the range J(Ẇ 1,np(Rn,

Rn)).

Theorem 2.4 was proved in [21] for p = 1, while the case p > 1 is much harder and 
was established only recently by Hytönen in [46]. It is conceivable that the operator 
J: Ẇ 1,np(Rn, Rn) → H p(Rn) is not surjective but (2.4) improves to a finitary decompo-
sition of H p(Rn) in terms of Jacobians. In Proposition 2.5, we formulate a rather precise 
classification of infinitary and finitary decompositions in the setting of Theorem B.

Take ω ∈ N ≡ N ∪{∞}. Given T as in Theorem B, if every f ∈ Y ∗ can be written as

f =
ω∑

j=1
cj Tuj , cj ∈ R, uj ∈ BX∗ , (2.5)

then, following [32], T is said to be 1/ω-surjective. If, furthermore,

ω∑
j=1

|cj | � ‖f‖Y ∗ (2.6)

for all f ∈ Y ∗, then T is said to be 1/ω-open. Dixon [32] generalised Horowitz’s 
example by constructing, for every m ∈ N, a continuous 1/m-surjective bilinear map 
between Banach spaces which is not 1/m-open. In fact, in Dixon’s notation, the constants 
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cj are subsumed by the elements uj. The formalism (2.5)–(2.6) is, however, more standard 
in the context of atomic decompositions.

In Proposition 2.5 we show that, for ω ∈ N, and under the assumptions of Theorem B, 
1/ω-surjectivity implies 1/ω-openness.

Proposition 2.5. Suppose X, Y and T satisfy the assumptions of Theorem B. Let us 
define, for ω ∈ N, the sets

Λω ≡
{ ω∑

j=1
cjTuj : uj ∈ BX∗ , cj ∈ R and

ω∑
j=1

|cj | < ∞
}
.

If Λ∞ is not meagre in Y ∗, there is ω ∈ N such that Λω = Y ∗ and 
⋃

m<ω Λm is meagre 
in Y ∗; moreover, T is 1/ω-open.

Proof. We show that if 
⋃

m<∞ Λm is not meagre in Y ∗, then there is m ∈ N such that 
Λm = Y ∗ and Λm−1 is meagre in Y ∗. Note that, for each m ∈ N, the set Λm is closed; 
it follows from the Baire Category Theorem that one of the sets Λm contains a ball. 
By using the s-homogeneity of T , we write Λm = {

∑m
j=1 dj Tvj : dj ∈ R, vj ∈ X∗}. By 

applying Theorem B to the (s + 1)-homogeneous operator

T̃ : Rm × (X∗)m → Y ∗, T̃
(
{dj}mj=1, {vj}mj=1

)
≡

m∑
j=1

djTvj ,

we find that for each f ∈ Y ∗ there are dj ∈ R and vj ∈ X∗ such that

m∑
j=1

djTvj = f,
m∑
j=1

(|dj |s+1 + ‖vj‖s+1
X∗ ) � ‖f‖Y ∗ . (2.7)

We set cj = dj‖vj‖sX∗ and denote uj = vj/‖vj‖X∗ if vj 	= 0 and uj = 0 if vj = 0. Thus 
cj Tuj = dj Tvj for j = 1, . . . , m. Consequently, through Young’s inequality, (2.7) yields

m∑
j=1

cj Tuj = f,
m∑
j=1

|cj | � ‖f‖Y ∗ , uj ∈ BX∗ . (2.8)

It now suffices choose the smallest m ∈ N such that T : X∗ → Y ∗ is 1/m-surjective; the 
1/m-openness of T is given by (2.8).

We finally show that if 
⋃

m<∞ Λm is meagre but Λ∞ is non-meagre, then in fact 
Λ∞ = Y ∗ and T is 1/∞-open. We denote V ≡ {ε Tu : ε = ±1, u ∈ BX∗} ⊂ Y ∗. Now 
V is bounded and symmetric and, by assumption, {

∑∞
j=1 cjfj : fj ∈ V for all j and∑∞

j=1 |cj | < ∞} is non-meagre in Y ∗. By [56, Lemma 3.1], {
∑∞

j=1 cjTuj :
∑∞

j=1 |cj | =
1, uj ∈ BX∗} ⊂ Y ∗ contains a ball centred at the origin. It immediately follows that 
given f ∈ Y ∗, conditions (2.5)–(2.6) can be satisfied with ω = ∞. �
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Remark 2.6. It is tempting to try and prove the last part of Proposition 2.5 by defin-
ing an auxiliary operator T̃ : 
s+1(N) × 
s+1(N; X∗) → Y ∗ via T ({dj}∞j=1, {vj}∞j=1) ≡∑∞

j=1 djTvj and using Theorem B on T̃ , in analogy to the case ω < ∞. However, such 
an operator is never weak∗-to-weak∗ continuous unless T ≡ 0. Indeed, suppose Tu 	= 0
and set djk = δjk and vjk = δjku. Now T̃ ({djk}∞j=1, {vjk}∞j=1) = Tu for all k ∈ N but 
({djk}∞j=1, {vjk}∞j=1) 

∗
⇀ 0.

Example 2.7. Let us denote by H the Hilbert transform and by T : L2(R, R) → H 1(R)
the operator T (χ, η) ≡ Hχ Hη − χ η. The strong factorization H 1(C+) = H 2(C+) ·
H 2(C+) of analytical Hardy spaces yields the surjectivity result

H 1(R) =
{
T (χ, η) : χ, η ∈ L2(R)

}
, (2.9)

see e.g. [21, page 258]. Thus, in this case, Λ1 = H 1(R).
Another example is obtained by considering the operator J: W 1,np(Rn, Rn) →

H p(Rn), where n ≥ 2 and p ∈ [1, ∞); we emphasise that the Sobolev space is inhomoge-
neous. In this case, Λ∞ is meagre in H p(Rn), see [55] and Corollary 4.1. However, 
if we instead consider the Jacobian as defined on Ẇ 1,np, then Λ∞ = H p(Rn) by 
the results of [46], although it is unclear whether this is optimal. We note that for 
J: Ẇ 1,2p(R2, R2) → H p(R2), the statement Λ1 = H p(R2) is equivalent to

H p(R2) =
{
|Sω|2 − |ω|2 : ω ∈ L2p(R2,R2)

}
,

compare with (2.9). Here S is the Beurling–Ahlfors transform, which one may think of 
as the square of a complex Hilbert transform [50].

We are not aware of operators satisfying the assumptions of Theorem B and for which 
there is 1 < m ∈ N such that Λm = Y ∗ but 

⋃
m′<m Λm′ is meagre in Y ∗.

3. A general nonlinear open mapping principle for scale-invariant problems

The main aim of this section is to formalise Theorem A and generalise Theorem B
to a wider class of translation-invariant, scaling-invariant PDEs. We divide the rigorous 
version of Theorem A into Theorems 3.5 and 3.8.

Our motivation for generalising Theorem B is two-fold. On the one hand, from an 
abstract perspective, obtaining more general nonlinear versions of the open mapping 
principle is of interest in its own right. In particular, we point out that, in Theorem B, 
multi-linearity is only used in order to move from small data to arbitrary data by a 
simple scaling argument. Here we wish to allow more general scaling symmetries. On the 
other hand, solutions to partial differential equations typically satisfy a priori estimates. 
Having at hand a version of Theorem B that ensures the existence of a priori estimates 
can give a heuristic justification for the methods used in the construction of solutions to 
these equations.
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3.1. Two model examples

The formulation of Theorem 3.5 is rather technical, and so we start by motivating it 
via two familiar examples, the Navier-Stokes equations and the cubic wave equation.

Example 3.1. Consider the inhomogeneous, incompressible Navier-Stokes equations in 
R3 × [0, ∞):

∂tu + u · ∇u− νΔu−∇P = 0, (3.1)

divu = 0, (3.2)

u(·, 0) = u0, (3.3)

where u is the velocity field, P is the pressure, ν > 0 is the viscosity and u0 is the initial 
datum. The equations are invariant under the scalings u → uλ, P → Pλ and u0 → u0

λ,

uλ(x, t) ≡ 1
λ
u

(
x

λ
,
t

λ2

)
, Pλ(x, t) ≡ 1

λ2P

(
x

λ
,
t

λ2

)
, u0

λ(x) = 1
λ
u0

(x
λ

)
.

For simplicity, we concentrate on the familiar solution and datum spaces

X∗ = L∞
t L2

σ,x ∩ L2
t Ẇ

1,2
x , Y ∗ = L2

σ.

Note that X∗ and Y ∗ are homogeneous: ‖uλ‖X∗ = λ1/2‖uλ‖X∗ and ‖u0
λ‖Y ∗ =

λ1/2‖u0
λ‖Y ∗ for all λ > 0, u ∈ X∗ and u0 ∈ Y ∗. Recall that u ∈ X∗ is called a weak 

solution of (3.1)–(3.3) if u satisfies

τ∫
0

〈u, ∂tϕ〉 dt+
τ∫

0

〈u⊗ u,Dϕ〉 dt− ν

τ∫
0

〈Du,Dϕ〉 dt+ 〈u0, ϕ(0)〉 − 〈u(τ), ϕ(τ)〉 = 0 (3.4)

for all ϕ ∈ C∞
c (R3 × [0, ∞), R3) with divϕ = 0 and almost every τ > 0. In (3.4), 〈·, ·〉

denotes the inner product in L2
x.

Our aim is to express the solvability of (3.1)–(3.3) equivalently as surjectivity of a 
suitable nonlinear map T from (a subset of) X∗ onto Y ∗. Openness of T at 0 will then 
be equivalent to an a priori estimate as in Theorem 2.1. Up to a multiplicative constant, 
the a priori estimate coincides with the familiar energy inequality.

Formally, we choose T to be the solution-to-initial datum map T (u) = u(·, 0). The 
rigorous formulation of Theorem A is, however, complicated by the fact that T (u) is 
not well-defined for all u ∈ X∗. We overcome this issue by restricting the domain of 
definition of T and setting

D ≡ {u ∈ L∞
t L2

σ,x ∩ L2
t Ẇ

1,2
x : u is a weak solution of (3.1)–(3.3) for some u0 ∈ L2

σ},
T : D → Y ∗, T (u) ≡ u0 if (3.4) holds.
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The set D is not a vector space, but fortunately, the proof of Theorem B does not require 
the additive structure of the domain space; in fact, the proof adapts readily to more gen-
eral scaling invariant problems as long as the sets D� ≡ {u ∈ D : ‖u‖X∗ ≤ 
, ‖Tu‖Y ∗ ≤ 
}
are sequentially weak∗ compact. This latter condition appears as assumption (Â4) in 
Theorem 3.5.

Theorem 3.5 now says that solvability of (3.1)–(3.3) for all u0 ∈ L2
σ is equivalent to 

solvability with the a priori estimate

‖u‖L∞
t L2

x
+ ‖u‖L2

tẆ
1,2
x

≤ C‖u(·, 0)‖L2 .

Such an estimate is well-known to be satisfied by Leray–Hopf solutions [70].

In Example 3.1, we deliberately chose homogeneous domain and target spaces X∗

and Y ∗ for simplicity. However, Theorem 3.5 also incorporates inhomogeneous function 
spaces as well as product spaces. In Example 3.4 we motivate this via the cubic wave 
equation, but first we recall some notions from interpolation theory.

Definition 3.2. Suppose that X1 and X2 are Banach spaces embed into a topological 
vector space Z. We set

‖u‖X1∩X2 ≡ max{‖u‖X1 , ‖u‖X2},
‖u‖X1+X2 ≡ inf{‖u1‖X1 + ‖u2‖X2 : u = u1 + u2, u1 ∈ X1, u2 ∈ X2}.

If X1 ∩X2 is dense in both X1 and X2, then (X1, X2) is called a conjugate couple.

The duals of spaces of the form X1 ∩X2 are well-known, cf. [8, Theorem 2.7.1]:

Theorem 3.3. Let (X1, X2) be a conjugate couple. Then, up to isometric isomorphism, it 
holds that (X1 ∩X2)∗ = X∗

1 + X∗
2 and (X1 + X2)∗ = X∗

1 ∩X∗
2 .

Example 3.4. Consider the cubic wave equation in (1 + 3)-dimensions

∂ttu− Δu + u3 = 0 in [0,+∞) ×R3 (3.5)

(u(·, 0), ∂tu(·, 0)) = (u0, u1). (3.6)

We are interested in initial data in the energy space Y ∗ = [Ḣ1(R3) ∩ L4(R3)] × L2(R3)
and we look for solutions in the space

X∗ = L∞
t Ḣ1

x ∩ L∞
t L4

x ∩ Lρ
tL

σ
x([0,∞) ×R3), where 1

ρ
+ 3

σ
= 1

2 .

Thus we have X∗
1,1 = L∞

t Ḣ1
x, X∗

1,2 = L∞
t L4

x, X∗
1,3 = Lρ

tL
σ
x and Y ∗

1,1 = Ḣ1, Y ∗
1,2 = L4 and 

Y ∗
2,1 = L2. Recall that u ∈ X∗ is a weak solution of (3.5)–(3.6) if, for every test function 

ϕ ∈ C∞
c (R×R3,R3),
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τ∫
0

u ∂ttϕ + 〈Du,Dϕ〉 dt + 〈u3, ϕ〉 dt = 〈u0, ϕ(0, ·)〉 − 〈u1, ϕt(0, ·)〉

− 〈u(τ, ·), ϕ(τ, ·)〉 + 〈u(τ, ·), ϕt(τ, ·)〉

(3.7)

for almost every τ > 0. The equation is invariant under translations as well as the scalings 
u → uλ, u0 → u0

λ and u1 → u1
λ where

uλ(t, x) ≡ λu(λt, λx) u0
λ(x) ≡ λu0

λ(λx) u1
λ(x) ≡ λ2u1

λ(λ2x).

We define

D = {u ∈ X∗ : u is a weak solution of (3.5)–(3.6) for some (u0, u1) ∈ Y ∗},

T : D → Y ∗, Tu = (u0, u1) if (3.7) holds.

It is easy to compute

‖u0
λ‖L4 =λ

1
4 ‖u0‖L4 , ‖(u0

λ, u
1
λ)‖Ḣ1×L2 =λ

1
2 ‖(u0, u1)‖Ḣ1×L2 ,

‖uλ‖L∞
t L4

x
=λ

1
4 ‖u‖L∞

t L4
x
, ‖uλ‖L∞

t Ḣ1
x∩Lρ

tL
σ
x

=λ
1
2 ‖u‖L∞

t Ḣ1
x∩Lρ

tL
σ
x
.

Thus r11 = r13 = 1
2 , r12 = 1

4 and s11 = s21 = 1
2 , s12 = 1

4 in the notation of Theorem 3.5.
Theorem 3.5 now says that solvability of (3.5)–(3.6) for all (u0, u1) ∈ [Ḣ1 ∩ L4] × L2

is equivalent to solvability with the a priori estimate

⎧⎨⎩‖u‖
1
2
L∞

t Ḣ1
x∩Lρ

tL
σ
x

+ ‖u‖L∞
t L4

x
≤ C‖(u0, u1)‖Ḣ1∩L4×L2 , if ‖(u0, u1)‖Ḣ1∩L4×L2 ≤ 1,

‖u‖L∞
t Ḣ1∩Lρ

tL
σ
x

+ ‖u‖2
L∞

t L4
x
≤ C‖(u0, u1)‖Ḣ1∩L4×L2 , if ‖(u0, u1)‖Ḣ1∩L4×L2 > 1.

Taking powers and estimating the right-hand sides, we conclude in particular that solv-
ability of the equation implies the more familiar-looking estimate

‖u‖2
L∞

t Ḣ1
x∩Lρ

tL
σ
x

+ ‖u‖4
L∞

t L4
x
≤ C

(
‖u0‖2

Ḣ1 + ‖u0‖4
L4 + ‖u1‖2

L2

)
.

The estimate in the Strichartz space Lρ
tL

σ
x is known from [38], and the reader may also 

find the stronger estimate

1
2‖u‖

2
L∞

t Ḣ1
x

+ 1
4‖u‖

4
L∞

t L4
x
≤ 1

2‖u
0‖2

Ḣ1 + 1
4‖u

0‖4
L4

in [2, Theorem 8.41].
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3.2. A more general nonlinear open mapping principle

We can now formulate the main result of this section. On a first reading, it is advisable 
to consider I = Ji = M = Nμ = 1 as in Example 3.1. Recall that when a direct sum of 
Banach spaces X = ⊕I

i=1Xi is endowed with the norm ‖w‖X ≡
∑I

i=1 ‖wi‖Xi
, the dual 

norm of X∗ = ⊕I
i=1X

∗
i is of the form ‖u‖X∗ = max1≤i≤I ‖ui‖X∗

i
.

Theorem 3.5. For i = 1, . . . I, j = 1, . . . Ji and μ = 1, . . .M , ν = 1, . . . Nμ let Xi,j and 
Yμ,ν be Banach spaces. Consider X∗, Y ∗ of the form

X∗ =
I⊕

i=1

( Ji⋂
j=1

X∗
i,j

)
, Y ∗ =

M⊕
μ=1

( Nμ⋂
ν=1

Y ∗
μ,ν

)

for some I, M, Ji, Nμ ∈ N. Suppose 0 ∈ D ⊂ X∗.
We make the following assumptions:

(Â1) If uj
∗
⇀ u in D and Tuj

∗
⇀ f in Y ∗, then Tu = f .

(Â2) For λ > 0, there exist bijections u �→ uλ : D → D and f �→ fλ : Y ∗ → Y ∗ such that

T (uλ) = (Tu)λ for all u ∈ D,λ > 0,
‖(uλ)i‖X∗

i,j
= λri,j‖ui‖X∗

i,j
for all λ > 0, i = 1, . . . , I, j = 1, . . . , Ji, u ∈ D,

‖(fλ)μ‖Y ∗
μ,ν

= λsμ,ν‖fμ‖Y ∗
μ,ν

for all λ > 0, μ = 1, . . . ,M, ν = 1, . . . , Nμ, f ∈ Y ∗,

where 0 < ri,j and 0 < s1 ≤ sμ,ν ≤ s2.
(Â3) There exist sequences of isometric bijections σD

k : D → D with σD
k (0) = 0 and 

isometric isomorphisms σY ∗

k : Y ∗ → Y ∗ such that

T ◦ σD
k = σY ∗

k ◦ T for all k ∈ N,

σY ∗

k f
∗
⇀ 0 for all f ∈ Y ∗.

(Â4) For 
 ∈ N, the sets D� ≡ {u ∈ D : ‖u‖X∗ ≤ 
, ‖Tu‖Y ∗ ≤ 
} are weakly∗ sequen-
tially compact in X∗.

The following conditions are then equivalent:

(i) T (D) is non-meagre in Y ∗.
(ii) T (D) = Y ∗.
(iii) T is open at the origin.
(iv) For every f ∈ Y ∗ there exists u ∈ D such that

Tu = f,

⎧⎨⎩
∑I

i=1
∑Ji

j=1 ‖ui‖s2/ri,jX∗
i,j

≤ C‖f‖Y ∗ , ‖f‖Y ∗ ≤ 1,∑I
i=1

∑Ji

j=1 ‖ui‖s1/ri,jX∗ ≤ C‖f‖Y ∗ , ‖f‖Y ∗ > 1.
(3.8)
i,j
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Proof. We first show (i) ⇒ (iii), so assume (i) holds. Write D = ∪∞
�=1D� and note 

that we have T (D) = ∪∞
�=1T (D�). Since each set D� is weak∗ sequentially compact and 

T : D → Y ∗ has weak∗-to-weak∗ sequentially closed graph, the sets T (D�) are closed 
in Y ∗ and, therefore, complete. By the Baire Category Theorem, one of the sets T (D�)
contains a ball B̄η(f0). Clearly η ≤ 
. We first show that

T (B̄D(0, 
)) ⊃ B̄Y ∗(0, η). (3.9)

Here B̄D = B̄X∗ ∩D.
Suppose f ∈ Y ∗ with ‖f‖Y ∗ ≤ η. We show the stronger statement f ∈ T (D�). By 

(Â1) and (Â4), the set T (D�) is weakly∗ sequentially closed, and so, by (Â3), it suffices 
to show that f + σY ∗

k f0 ∈ T (D�) for all k ∈ N. Given k ∈ N we write f + σY ∗

k f0 =
σY ∗

k (f0 + (σY ∗

k )−1f) and note that f0 + (σY ∗

k )−1f ∈ BY ∗(f0, η) ⊂ T (D�). Since σD
k

and σY ∗

k are isometries and T ◦ σD
k = σY ∗

k ◦ T , we get σY ∗

k (T (D�)) ⊂ T (D�), and so 
f + σY ∗

k f0 ∈ T (D�), as claimed.
We are ready to show openness of T at zero. Let ε > 0; our aim is to find δ > 0 such 

that T (B̄D(0, ε)) ⊃ B̄X∗(0, δ). Denoting τDλ ≡ (u �→ uλ) and τY
∗

λ ≡ (f �→ fλ), we first 
note that for each λ > 0 we have

τDλ (B̄D(0, 
)) = {u ∈ D : ‖ui‖X∗
i,j

≤ λri,j
 for i = 1, . . . , I, j = 1, . . . , Ji}.

By choosing λ = min1≤i≤I,1≤j≤Ji
(ε/
)1/ri,j we get max1≤i≤I,1≤j≤Ji

λri,j 
 ≤ ε so that

T (B̄D(0, ε)) ⊃ T (τDλ B̄D(0, 
)) = τY
∗

λ T (B̄D(0, 
)).

By using (3.9) and selecting δ = min1≤i≤I, 1≤i≤Ji
min1≤μ≤M, 1≤ν≤Nμ

η(ε/
)sμ,ν/ri,j we 
get

τY
∗

λ T (B̄D(0, 
)) ⊃ τY
∗

λ (B̄Y ∗(0, η))

= B̄∩N1
ν=1Y

∗
1,ν

(0, λ̃1η) × · · · × B̄∩NM
ν=1Y

∗
M,ν

(0, λ̃Mη) ⊃ B̄Y ∗(0, δ),

where for 1 ≤ i ≤ I, λ̃i ≡ max1≤j≤Ji
λsi,j .

We now prove (iii) ⇒ (iv), so as above take some ε > 0 and get δ > 0 in such a way 
that B̄Y ∗(0, δ) ⊂ T (B̄D(0, ε)). Assume, without loss of generality, that δ ≤ 1. Let f ∈ Y ∗

and define λ > 0 via

‖f‖Y ∗ ≡ μ = min
1≤μ≤M, 1≤ν≤Nμ

λsμ,ν δ =
{
λs2δ, μ ≤ δ,

λs1δ, μ > δ.

In either case, let j0 be such that μ = λsj0 δ. Then

f ∈ τY
∗

λ (B̄Y ∗(0, δ)) ⊂ τY
∗

λ T (B̄D(0, ε)) = TτDλ (B̄D(0, ε))

= T{u ∈ D : ‖ui‖X∗
i,j

≤ λri,jε for i = 1, . . . , I, j = 1, . . . , Ji}.
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Suppose now u ∈ D satisfies ‖ui‖X∗
i,j

≤ λri,jε for i = 1, . . . , I, j, . . . , Ij . Then, for all 
such i, j,

‖ui‖
sj0/ri,j
X∗

i,j
≤ λsj0 εsj0/ri,j ≤ εsj0/ri,j

δ
μ.

We conclude that

f ∈ T
{
u ∈ D : ‖ui‖X∗

i
≤ λriε for all i

}
⊂ T

⎧⎨⎩u ∈ D :
I∑

i=1

Ji∑
j=1

‖ui‖
sj0/ri,j
X∗

i,j
≤ Cμ

⎫⎬⎭ ,

where

C =
I∑

i=1

Ji∑
j=1

εsj0/ri,j

δ
,

which yields (3.8) in the cases ‖f‖Y ∗ ≤ δ and ‖f‖Y ∗ > 1. If ‖f‖Y ∗ ∈ (δ, 1], one obviously 
has λs1 ≈δ λs2 so that (3.8) holds for all f .

We conclude the proof of the theorem by noting that (iv) ⇒ (ii) ⇒ (i). �
Remark 3.6. Inspection of the proof of Theorem 3.5 shows that, in the statement of the 
theorem, one may replace all occurrences of Y ∗ with K, where K ⊂ Y ∗ is a closed convex 
cone. Recall that K is said to be a cone if af ∈ K whenever a > 0 and f ∈ K. Such 
a generalisation is occasionally useful, since it may be interesting to consider smaller 
data sets. For instance, in the case of Conjecture 1.3, it is natural to look at the sets of 
radially symmetric data K = {f ∈ H p(Rn) : f(x) ≡ f(|x|)} as well as, for p > 1, the 
set of non-negative data K = {f ∈ Lp(Rn) : f ≥ 0}.

3.3. A simple linear version

In Theorem 3.5, surjectivity can only hold if all the scaling symmetries are compatible; 
Theorem 3.8 below makes this precise. For our applications, the full nonlinear strength 
of Theorems 3.5 and 3.8 is not always needed, as often we can relax nonlinear PDEs 
into linear ones. We therefore formulate a simple linear variant of Theorem 3.5 in Propo-
sition 3.7. The formulation of Proposition 3.7 aims at compatibility with Theorem 3.5
instead of maximal generality.

Proposition 3.7. Let X∗ = ⊕I
i=1(∩Ji

j=1X
∗
i,j) and Y ∗ = ⊕M

μ=1(∩
Nμ

ν=1Y
∗
μ,ν) be dual Banach 

spaces. Suppose D is a vector subspace of X∗ and the following conditions hold:

(A1) T : D → Y ∗ is linear.
(A2) D� ≡ {u ∈ D : ‖u‖X∗ ≤ 
, ‖Tu‖Y ∗ ≤ 
} is weakly∗ sequentially compact for all 


 ∈ N.
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(A3) If uj ∗
⇀ u and Tuj ∗

⇀ f , then Tu = f .

The following conditions are then equivalent:

(i) T (D) is non-meagre.
(ii) For all f ∈ Y ∗ there exists u ∈ D such that Tu = f and ‖u‖X∗ ≤ C‖f‖Y ∗ .

Proof. Suppose T (D) is non-meagre. Write T (D) = ∪�∈NT (D�). By assumption, each 
D� is weakly∗ sequentially compact. With assumption (A3), this implies that each T (D�)
is norm closed. By the Baire category theorem, some T (D�) contains a closed ball 
B̄Y ∗(f0, r). By linearity, B̄Y ∗(0, 2r) = B̄Y ∗(f0, r) − B̄Y ∗(f0, r) ⊂ T (D�) − T (D�) =
T (D2�). The claim follows by scaling. �
3.4. A general non-solvability result

We are now ready to formalise the part of Theorem A which says that incompatibility 
of two scalings leads to non-surjectivity.

Theorem 3.8. Consider the setup and assumptions of either Theorem 3.5 or Proposi-
tion 3.7. Suppose, additionally, that there exist other bijections u �→ ũλ, f �→ f̃λ satisfying 
(Â2):

T ũλ = (̃Tu)λ for all u ∈ D,λ > 0,
‖(ũλ)i‖X∗

i,j
= λr̃i,j‖ui‖X∗

i,j
for all λ > 0, i = 1, . . . , I, j = 1, . . . , Ji, u ∈ D,

‖(f̃λ)μ‖Y ∗
μ,ν

= λs̃μ,ν‖fμ‖Y ∗
μ,ν

for all λ > 0, i = 1, . . . ,M, ν = 1, . . . , Nμ, f ∈ Y ∗,

where 0 < r̃ij and 0 < s̃1 ≤ s̃μ,ν ≤ s̃2. If

s̃1

r̃i,j
>

s1

ri,j
for all i, j or s̃2

r̃i,j
<

s2

ri,j
for all i, j,

then T (B̄D(0, R)) is nowhere dense in Y ∗ for every R > 0.
Moreover, the conclusion of Theorem 3.8 also follows if s̃1/r̃i,j ≥ s1/ri,j for all i, j

but in addition, for some i0 ∈ {1, . . . , I} and j0 ∈ {1, . . . , Ji0} such that

T (u1, . . . , ui0−1, 0, ui0+1, . . . , uI) ≡ 0,

we have s̃1/r̃i0,j0 > s1/ri0,j0 . An analogous statement holds if s̃2/r̃i,j ≤ s2/ri,j for all 
i, j.

Proof. We prove the case where s̃1/r̃i,j > s1/ri,j for all i, j. Seeking a contradiction, 
assume T (B̄D(0, R)) is not nowhere dense in some ball B̄Y ∗(0, 
), where 
 ≥ R. By 
weak∗ sequential compactness of D� = {u ∈ B̄D(0, 
) : Tu ∈ B̄Y ∗(0, 
)} and since T has 
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a weak∗-to-weak∗ closed graph, the set T (B̄D(0, R)) is closed, and thus T (B̄D(0, R))
contains a ball B̄Y ∗(f0, r). By Theorem 3.5, whenever ‖f‖Y ∗ > 1, there exists u ∈ X∗

such that Tu = f and 
∑I

i=1
∑Ji

j=1 ‖ui‖s1/ri,jX∗
i,j

≤ C‖f‖Y ∗ and ū ∈ X∗ such that T ū = f

and 
∑I

i=1
∑Ji

j=1 ‖ūi‖s̃1/r̃i,jX∗
i,j

≤ C‖f‖Y ∗ . Below, we denote the inverses of u �→ uλ and 
f �→ fλ by u �→ u−λ and f �→ f−λ.

Fix f ∈ Y ∗ with ‖f‖Y ∗ = 2; our aim is to show that T0 = f and derive a 
contradiction. First note that ‖fλ‖Y ∗ = 2λs1 . Choose ū ∈ X∗ with T ū = fλ and ∑I

i=1
∑Ji

j=1 ‖ũi‖s̃1/r̃i,jX∗
i,j

≤ Cλs1 . Choose u ∈ D such that ū = uλ, and note that 
u = (uλ)−λ = ū−λ. Now

Tu = T ū−λ = (T ū)−λ = f,

I∑
i=1

Ji∑
j=1

λri,j s̃1/r̃i,j‖ui‖s̃1/r̃i,jX∗
ij

=
I∑

i=1

Ji∑
j=1

‖ūi‖s̃1/r̃i,jX∗
i,j

≤ Cλs1 .

We conclude that 
∑I

i=1
∑Ji

j=1 λ
ri,j s̃1/r̃i,j−si‖ui‖s̃1/r̃i,jX∗

i,j
≤ C. Thus, by letting λ → ∞

we find a sequence of solutions u� of Tu� = f with 
∑I

i=1
∑Ji

j=1 ‖u�
i‖

s̃1/r̃i,j
X∗

i,j
→ 0. Now 

‖u�‖X∗ → 0 so that u� ∗
⇀ 0, which yields T0 = f . Thus 1 = ‖T0‖Y ∗ = ‖T (0λ)‖Y ∗ =

‖(T0)λ‖Y ∗ = λs1 for all λ > 0. We have reached a contradiction. The case s̃2/r̃i,j <

s2/ri,j has an analogous proof where one sets ‖f‖Y ∗ ≤ 1 and lets λ → 0, and the proof 
of the second claim of the theorem only requires obvious modifications. �
4. Applications to the Jacobian equation

This section expands on the relation between open mapping principles and Ques-
tion 1.3.

4.1. Scaling analysis for the Jacobian equation

We begin with the following question: given p ≥ 1 and q, r ∈ (1, ∞], is there a solution 
u ∈ Lq(Rn, Rn) ∩ Ẇ 1,r(Rn, Rn), or a solution u ∈ Ẇ 1,r(Rn, Rn), of

Ju = f a.e. in Rn (4.1)

for every f ∈ H p(Rn)? One of the motivations for considering this question is that, for 
positive radial data, a radial solution is only in W 1,p

loc ; moreover, in the case of the Dirichlet 
problem, one must have r ≤ p. We also wish to put the main result of [56], namely the 
non-surjectivity of J : W 1,np(Rn, Rn) → H p(Rn), into the general framework of this 
paper. The result is, indeed, deduced from Theorem 3.8 by simple arithmetic:

Corollary 4.1. Suppose n ≥ 2, and p ∈ [1, ∞), q ∈ (1, ∞] and r ∈ [n, ∞). The following 
statements hold:
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(i) J(Ẇ 1,r(Rn, Rn)) ∩ H p(Rn) is meagre in H p(Rn) unless r = np.
(ii) J(Lq(Rn, Rn) ∩ Ẇ 1,r(Rn, Rn)) ∩ H p(Rn) is meagre in H p(Rn) unless q = ∞, 

r = n and p = 1.

In particular, J(W 1,np(Rn, Rn)) is meagre in H p(Rn).

Proof. We prove (ii), claim (i) has a similar proof. Fix p, q, r. The assumptions of The-
orems 3.5 and 3.8 are satisfied once we set D ≡ {u ∈ Lq(Rn, Rn) ∩ Ẇ 1,r(Rn, Rn) : Ju ∈
H p(Rn)}. The scaling uλ = λu(·/λ), fλ = f(·/λ), under which J is invariant, gives

‖uλ‖Lq = λ1+n/q‖u‖Lq , ‖uλ‖Ẇ 1,r = λn/r‖u‖Ẇ 1,r , ‖f‖H p = λn/p‖f‖H p ,

so that s/r1 = (n/p)/(1 + n/q) = qn/(p(q + n) and s/r2 = r/p, whereas the scalings 
u �→ ũλ ≡ λu and f �→ f̃λ ≡ λnf give s̃/r̃1 = s̃/r̃2 = n. The claim follows from 
Theorem 3.8 since if ‖u‖Lq = 0 or ‖u‖Ẇ 1,np = 0, we immediately get Ju = 0. �

Interestingly, we note that if p = 1 the algebra L∞(Rn, Rn) ∩ Ẇ 1,n(Rn, Rn) is not 
ruled out as a solution space. Surjectivity of J: L∞(Rn, Rn) ∩Ẇ 1,n(Rn, Rn) → H 1(Rn)
would be the natural analogue of [10, Theorem 1] for the Jacobian equation on Rn.

4.2. Tools from Geometric Function Theory

Before proceeding further we collect, for the convenience of the reader, useful results 
about Sobolev maps and mappings of finite distortion. The following notions are relevant 
in relation to the change of variables formula:

Definition 4.2. Let u : Ω → Rn be a continuous map which is differentiable a.e. in Ω. 
Then:

(i) u has the Lusin (N) property if |u(E)| = 0 for any E ⊂ Ω such that |E| = 0;
(ii) u has the (SA) property if |u(E)| = 0 for any open set E ⊂ Ω with Ju = 0 a.e. 

in E.

In the one-dimensional case, the Lusin (N) property is well understood: for instance, 
on an interval, a continuous function of bounded variation has the Lusin (N) property 
if and only if it is absolutely continuous. However, in higher dimensions, the situation is 
much more complicated, although we have the following characterisation, proved in [59]:

Proposition 4.3. Let u ∈ W 1,n(Ω, Rn) be a continuous map with Ju ≥ 0 in Ω. Then u
has the Lusin (N) property if and only if it has the (SA) property.

We remark that Proposition 4.3 is in general false if Ju � 0, see [68] for a counterex-
ample. The following result, see [58], is also useful for our purposes:
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Proposition 4.4. Let u ∈ W 1,n(Ω, Rn) be a continuous map such that, for some K ≥ 1,

diam(u(Br(x)) ≤ Kdiam(u(∂Br(x)) for all Br(x) � Ω. (4.2)

Then u has the Lusin (N) property.

The change of variables formula is closely related to the Jacobian determinant:

Theorem 4.5. Let u ∈ C0(Ω, Rn) ∩W 1,n(Ω, Rn) be a map with the Lusin (N) property. 
Then ∫

E

|Ju|dx =
∫
Rn

N (y, u,E) dy for all measurable sets E ⊂ Ω, (4.3)

where N is the multiplicity function, defined as N (y, u, E) ≡ #{x ∈ E : u(x) = y}.

The reader may find the proof of Theorem 4.5, together with a wealth of information 
on geometric properties of Sobolev maps, in [36].

We now recall some useful facts about mappings of finite distortion and, for simplicity, 
we focus on the planar case n = 2, see [1]. The reader can also find these and higher-
dimensional results in [44,50].

Definition 4.6. Let u ∈ W 1,1
loc (Ω, R2) be such that 0 ≤ Ju ∈ L1

loc(Ω). We say that u is a 
map of finite distortion if there is a function K : Ω → [1, ∞] such that K < ∞ a.e. in Ω
and

|Du(x)|2 ≤ K(x) Ju(x) for a.e. x in Ω.

If u has finite distortion, we can set Ku(x) = |Du|2
Ju(x) if Ju(x) 	= 0 and Ku(x) = 1 otherwise; 

this function is the (optimal) distortion of u.

In Definition 4.6, | · | denotes the operator norm of a matrix. We summarise some of 
the key analytic and topological properties of mappings of finite distortion in the plane:

Theorem 4.7. Let Ω ⊂ R2 and let u ∈ W 1,2
loc (Ω, R2) be a map of finite distortion. Then:

(i) u has a continuous representative and, whenever r < R and BR(x0) ⊂ Ω,

(diamu(Br(x0)))2 ≤ C

log(R/r)

∫
BR(x0)

|Du|2 dx;

(ii) u has the Lusin (N) property;
(iii) u is differentiable a.e. in Ω;
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(iv) if Ku ∈ L1(Ω) then u is open and discrete;
(v) if Ku ∈ L1(Ω) then for each Ω′ � Ω there is m = m(Ω′) such that

N (y, u,Ω′) ≤ m for all y ∈ u(Ω′).

Whenever u is a map of finite distortion we always implicitly assume that u denotes 
the continuous representative of the equivalence class in W 1,2

loc (Ω, R2). If u is such that 
Ku ∈ L1(Ω), we say that u has integrable distortion; the theory of such maps was 
pioneered in [51].

We remark that the first three properties of Theorem 4.7 are a consequence of the 
fact that mappings of finite distortion are monotone in the sense of Lebesgue:

Proposition 4.8. Let u ∈ W 1,2
loc (Ω, R2) be a map of finite distortion; then (4.2) holds. In 

fact, if we measure the diameter in R2 with respect to the 
∞ norm, we can take K = 1.

4.3. Existence of admissible solutions

In this subsection we focus on the case n = 2 for simplicity and we assume throughout 
that J: Ẇ 1,2p(R2, R2) → H p(R2) is surjective. We are particularly interested in the case 
p = 1. Our goal is to illustrate the way in which Theorem B yields the following principle:

the existence of rough solutions implies the existence of well-behaved solutions.

The following is an example a rough solution, and something that we would like to avoid:

Example 4.9 ([58]). There is a map u ∈ W 1,2(R2, R2) such that

Ju = 0 a.e. in R2 and u([0, 1] × {0}) = [0, 1]2.

In particular, u does not have the Lusin (N) property and (4.3) does not hold.

The main result of this subsection is the following theorem, which shows that in some 
sense it suffices to deal with non-pathological solutions.

Theorem 4.10. Let Ω ⊂ R2 be an open set and take f ∈ H 1(R2) such that f ≥ 0
in Ω. Assume that J: Ẇ 1,2(R2, R2) → H 1(R2) is onto. Then there is a solution u ∈
Ẇ 1,2(R2, R2) of (1.4) such that:

(i) u is continuous in Ω;
(ii) u has the Lusin (N) property in Ω.
(iii)

∫
2 |Du|2 dx ≤ C‖f‖H 1 with C > 0 independent of f .
R
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In particular, u satisfies the change of variables formula (4.3). Moreover, let Ω′ � Ω be 
an open set such that f = 0 a.e. in Ω′. Then:

(iv) for any bounded set E ⊆ Ω′, we have u(∂E) = u(E);
(v) for y ∈ u(Ω′), if C denotes a connected component of u−1(y) ∩Ω′ then C intersects 

∂Ω′.

Before proceeding with the proof, we note that (iv) is a type of degenerate monotonic-
ity which had already appeared in the study of the hyperbolic Monge–Ampère equation 
[19,52].

Proof. The point of the proof is to perturb f appropriately; then the solution u is 
obtained as a limit of mappings of integrable distortion.

Take an exhaustion of Ω by bounded open sets Ωj : that is, Ωj ⊂ Ωj+1 and 
⋃∞

j=1 Ωj =
Ω. Fix j and let B+

j be a ball containing Ωj and let B−
j be another ball, disjoint from 

Ωj , and with the same volume as B+
j . Consider the perturbations

fε,j ≡ f + εaj , aj ≡ χB+
j
− χB−

j
,

which satisfy fε,j ≥ ε a.e. in Ωj . Clearly aj ∈ H 1(R2), being bounded, compactly sup-
ported and with zero mean. Hence, as ε → 0, fε,j → f in H 1(R2) and, from Corollary C, 
we see that we can choose solutions uε,j of Juε,j = fε,j such that, for all ε > 0,∫

R2

|Duε,j |2 ≤ C‖fε,j‖H 1 ≤ C(j).

Since the maps uε,j have integrable distortion in Ωj, we can apply Theorem 4.7(i) to 
conclude that the family (uε,j)ε is equicontinuous; we also normalise the maps so that 
uε,j(x0) = 0 for some fixed x0 ∈ Ω1. Therefore, by taking a diagonal subsequence of 
(uε,j), we get a sequence (uk) which converges both locally uniformly in Ω and weakly 
in Ẇ 1,2(R2, R2) to a limit u. This already proves (i) and (iii).

To prove (ii) it suffices to show that |u(E)| = 0 whenever E ⊂ Ω is a bounded null set; 
we may therefore assume that E ⊂ Ωj for some large j. We note that, for each ε > 0, the 
map uε,j satisfies (4.2), cf. Proposition 4.8. In Ωj , u is the uniform limit of a subsequence 
of (uε,j)ε, and hence u also satisfies (4.2). Thus, by Proposition 4.4, u has the Lusin (N) 
property in Ωj , which implies (ii).

For (iv) we may again suppose that E ⊂ Ωj ∩Ω′ for some large j. Since j is fixed we 
write for simplicity uε ≡ uε,j in the rest of the proof. As uε has integrable distortion in 
Ωj , it is open in Ωj and hence ∂uε(E) ⊆ uε(∂E). Suppose that there is y ∈ u(E)\u(∂E). 
On the one hand, there is some δ > 0 such that, for all ε small enough,

Bδ(y) ∩ ∂uε(intE) ⊂ Bδ(y) ∩ uε(∂E) = ∅;



A. Guerra et al. / Advances in Mathematics 415 (2023) 108869 29
on the other hand, since y ∈ u(intE), for all ε small enough,

Bδ(y) ∩ uε(intE) 	= ∅.

It follows that Bδ(y) ⊆ uε(intE). We also have that |uε(intE)| → 0 as ε → 0: by the 
change of variables formula,

|uε(intE)| ≤
∫

uε(intE)

N (y, uε, intE) dy =
∫
E

Juε = ε|E| → 0.

Thus, since |Bδ(y)| ≤ |uε(E)|, by sending ε → 0 we see that no such y can exist. Hence 
the sets u(E) and u(∂E) are the same.

Finally, (v) follows from (iv), as shown for instance in [52, Lemma 2.10]. �
In view of the change of variables formula, it is useful to control the multiplicity 

function: this seems crucial, for instance, if one intends to disprove the surjectivity of 
the Jacobian through a geometric argument involving perturbations of an appropriate 
datum. In that direction we have the following proposition, in which we again assume 
that the Jacobian is surjective.

Proposition 4.11. Let Ω ⊂ R2 be an open set and let Y ≡ {f ∈ H p(R2) : f ≥
c a.e. in Ω}, where c > 0. Suppose that fj ∈ Y is a sequence converging weakly to f
in H p(R2). For any maps uj ∈ Ẇ 1,2p(R2, R2) satisfying Juj = fj and the a priori 
estimate (1.6), we have that

sup
j

sup
y∈uj(Ω′)

N (y, uj ,Ω′) < ∞, whenever Ω′ � Ω.

Proof. We claim that the sequence uj is equicontinuous and converges to u ∈
Ẇ 1,2p(R2, R2), a solution of Ju = f , uniformly in Ω′. Once the claim is proved, the 
conclusion follows: u has integrable distortion in Ω and so by Theorem 4.7(v) it is at 
most m-to-one in Ω′, for some m ∈ N. Thus, for all j sufficiently large, uj is also at 
most m-to-one in Ω′: if not, there are arbitrarily large j and points x(j)

1 , . . . , x(j)
m+1 ∈ Ω′

such that uj(x(j)
i ) = y for some y ∈ Rn and all i ∈ {1, . . . , m + 1}. By compactness, we 

can further assume that x(j)
i → xi for i = 1, . . . , m + 1. However, there are at least two 

different points y1 	= y2 such that

{y1, y2} ⊂ u({x1, . . . , xm+1});

for the sake of definiteness, say u(x1) = y1, u(x2) = y2. Let ε < |y1 − y2| and take j
sufficiently large so that, for i = 1, 2,

|uj(x(j)
i ) − uj(xi)| <

ε
, |uj(xi) − u(xi)| <

ε ;
4 4
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this is possible from equicontinuity of the sequence uj and the fact that it converges to u
uniformly. The triangle inequality gives |y1 − y2| = |u(x1) − u(x2)| < ε, a contradiction.

To prove the claim, we assume that the Jacobian is surjective and we use Corollary C. 
If p > 1 we appeal to Morrey’s inequality,

[uj ]C0,1−2/p(R2) �p ‖Duj‖L2p(R2) ≤ C,

while for p = 1 we use Theorem 4.7(i) instead. Either way, after normalizing the maps 
so that uj(x0) = 0, where x0 ∈ Ω, we see that the sequence (uj) is precompact in the 
local uniform topology over Ω′. Hence we may assume that uj converges to some map 
u ∈ Ẇ 1,2p(R2, R2) uniformly in Ω′ and also weakly in Ẇ 1,2p(R2, R2). �
4.4. A case study

We illustrate the use of Corollary C and Theorem D via an example, and as above 
we confine ourselves to the case n = 2. Consider piecewise constant data supported on 
thinning annuli: with A(r, R) ≡ {x ∈ R2 : r < |x| < R}, set

fj ≡ χA(1,
√

1+1/j) − χA(
√

1+1/j,
√

1+2/j) ∈ H 1(R2). (4.4)

We remark that we used similar data to construct counterexamples to the existence of 
solutions with low regularity data in the case of the Dirichlet problem in [40]. For data 
of the type (4.4) it is not entirely clear if solutions uj ∈ Ẇ 1,2(R2, R2) exist; moreover, 
even if we assume that u1 exists, there seems to be no obvious argument to construct uj

from u1.
Using Corollary C, in order to conclude non-surjectivity of J: Ẇ 1,2(R2,R2)→H 1(R2)

it suffices to assume the existence of solutions and to prove that they must satisfy

lim
j→∞

∫
R2 |Duj |2 dx
‖fj‖H 1

= ∞. (4.5)

More specifically, we propose to study the question of whether the solutions uj con-
structed in Theorem D satisfy infj∈N

∫
B(0,1) |Duj |2 dx > 0. Note that despite the fact 

that fj ≡ 0 in B(0, 1), one cannot have uj ≡ 0 in B(0, 1), as then uj would have in-
tegrable distortion in B(0, 

√
1 + 1/j), in contradiction with a theorem of Iwaniec and

Šverák from [51]. Theorem D also puts further conditions on solutions uj which pro-
hibit various kinds of pathological behaviour within B(0, 1). It is also natural to study 
infj∈N

∫
B(0,1) |Dvj |2 dx for energy-minimal solutions, that is, solutions of Jvj = fj satis-

fying 
∫
R2 |Dvj |2 dx = min{

∫
R2 |Du|2 dx : Ju = fj}. Energy-minimal solutions are studied 

at length in [39,55].
We indicate some of the difficulties one would run into without Corollary C and 

Theorem D, even if (4.5) were to be proved. Assuming (4.5), it is by no means clear what 
kind of datum f ∈ H 1(R2) would be outside J(Ẇ 1,2(R2, R2)). By scaling, one could 
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assume that ‖Dvj‖L2 = 1 and pass to a weakly convergent subsequence, but it seems 
difficult to say anything definite about the weak limit.

A plausible way to get a concrete datum f ∈ H 1(R2) \ J(Ẇ 1,2(R2, R2)) would be to 
consider an infinite sum f ≡

∑∞
j=1 cjfj(λjx− xj) of scaled and translated copies of fj

with mutually disjoint supports. If the energy-minimal solutions for fj were compactly 
supported, we could conclude the non-surjectivity of J: Ẇ 1,2(R2,R2) → H 1(R2) from 
(4.5) by patching together maps with mutually disjoint supports. However, in general, 
and for such fj in particular, energy-minimal solutions must be supported on the whole 
plane [55, Proposition 8.4], which rules out such a patching strategy. It also seems rather 
non-trivial to control the supports of the solutions given by Theorem D.

As another candidate collection of data we propose fj ≡ χ(−1,0)×(0,1/j)−χ(0,1)×(0,1/j)
—in this case, a compactly supported Lipschitz solution u1 for f1 was constructed by 
the third author at [55, p. 59]. Now the simple scaling uj(x1, x2) ≡ u1(x1, jx2)/

√
j gives 

a solution for Juj = fj for each j ∈ N, but such solutions satisfy (4.5). It is, again, 
natural to study whether (4.5) holds for the solutions of Theorem D and energy-minimal 
solutions.

5. Applications to incompressible fluid mechanics

This section is dedicated to illustrating the practical use of the nonlinear open mapping 
principles in evolutionary problems. As examples we consider the incompressible Euler 
and Navier–Stokes equations, proving in particular Corollary E. In combination with 
scaling analysis, Theorem 3.8 is used to rule out incorrectly scaling solution spaces. 
Besides being useful to prove non-solvability, this strategy also gives an elementary way 
of proving upper bounds on the energy dissipation rates for Baire-generic initial data.

5.1. The incompressible Euler equations and the proof of Corollary E

Our next aim is to prove Corollary E on the incompressible Euler equations in Rn ×
[0, ∞), n ≥ 2. Recall that given u0 ∈ L2

σ, a mapping u ∈ Lp
tL

2
σ,x, 2 ≤ p ≤ ∞, is a weak 

solution of the Cauchy problem (1.7)–(1.9) if

∞∫
0

∫
Rn

(u·∂tϕ+u⊗u : Dϕ) dx dt+
∫
Rn

u0 ·ϕ(·, 0) dx = 0 ∀ϕ ∈ C∞
c,σ(Rn×[0,∞),Rn). (5.1)

We cannot deduce Corollary E directly via Theorem 3.5. Indeed, the integral condition 
(5.1) leads to a well defined mapping T from a weak solution u ∈ Lp

tL
2
σ,x of (1.7)–(1.9)

to the initial data u0 ∈ L2
σ but does not easily lend itself to a domain of definition 

D ⊂ Lp
tL

2
σ,x satisfying condition (Â4) of Theorem 3.5. We therefore consider a relaxed 

problem, where u ⊗ u ∈ L
p/2
t L1

x is replaced by a general matrix-valued mapping S.
In order to apply Theorem 3.8 we embed L1(Rn, Rn×n) into the space of signed Radon 

measures M(Rn, Rn×n) which is the dual of the separable Banach space C0(Rn, Rn×n). 
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We endow M(Rn, Rn×n) with the dual norm. In the relaxed problem we require u ∈
Lp
tL

2
σ,x and S ∈ L

p/2
t Mx to satisfy

∞∫
0

∫
Rn

(u · ∂tϕ+S : Dϕ) dx dt+
∫
Rn

u0 ·ϕ(·, 0) dx = 0 ∀ϕ ∈ C∞
c,σ(Rn × [0,∞),Rn). (5.2)

Unlike (5.1), due to linearity, condition (5.2) is stable under weak∗ convergence. Further-
more, the linear Proposition 3.7 is applicable to this relaxed problem.

Relaxations such as (5.2) are studied in Tartar’s framework, where a system of non-
linear PDEs is decoupled into a set of linear PDEs (conservation laws) and pointwise 
constraints (constitutive laws) [79,80]. Tartar’s framework has been very useful in con-
vex integration both in the Calculus of Variations [63,64], as well as in fluid dynamics 
[27,28]. Specific constitutive laws do not play a role in the proof of Corollary E, and in 
fact, an analogous result holds for many other incompressible models of fluid mechanics. 
The result also trivially extends to subsolutions, that is solutions of the linear equations 
which take values in the so-called Λ-convex hull. Subsolutions can be interpreted as 
coarse-grained averages, see e.g. [18,29].

Corollary E follows immediately from the next lemma:

Lemma 5.1. Let n ≥ 2, M > 0 and p ∈ (2, ∞). It is only for a nowhere dense set 
of data u0 ∈ L2

σ that there exists a solution (u, S) ∈ Lp
tL

2
σ,x × L

p/2
t Mx of (5.2) with 

‖u‖Lp
tL

2
σ,x

≤ M .

Proof. Denote D = {(u, S) ∈ Lp
tL

2
σ,x × L

p/2
t Mx : (5.2) holds for some u0 ∈ L2

σ} and 
define T : D → L2

σ by T (u, S) ≡ u0. The linear map T clearly satisfies the assumptions 
of Proposition 3.7. Our intention is to verify the assumptions of Theorem 3.8.

Let (u, S) ∈ D. Given λ > 0 we set

uλ(x, t) ≡ u

(
x

λ
,
t

λ

)
, Sλ(x, t) ≡ S

(
x

λ
,
t

λ

)
, u0

λ(x, t) ≡ u0
(x
λ

)
. (5.3)

Now (5.2)–(5.3) imply that (uλ, Sλ) ∈ D and T (uλ, Sλ) = u0
λ. We compute

‖uλ‖Lp
tL

2
x

= λ
n
2 + 1

p ‖u‖Lp
tL

2
x
, ‖Sλ‖Lp/2

t Mx
= λn+ 2

p ‖S‖
L

p/2
t Mx

, ‖u0
λ‖L2 = λ

n
2 ‖u0‖L2 .

We set ũλ ≡ λu and f̃λ ≡ λf . In the notation of Theorem 3.8, we have

s1 = n

2 s̃1 = 1

r1,1 = n

2 + 1
p

r̃1,1 = 1 r2,1 = n + 2
p

r̃2,1 = 1.

Thus the claim follows from Theorem 3.8. �
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We conclude this subsection by briefly comparing Corollary E with the existing litera-
ture and we focus on the case n = 2, where the picture is more complete. Following [28], 
we say that an initial datum u0 is wild if (1.7)–(1.9) admits infinitely many admissible 
weak solutions. Combining the results of [76] with [57, Theorem 4.2], we arrive at the 
following:

Theorem 5.2. When n = 2, the set of wild initial data is a dense, meagre subset of L2
σ.

We also note that some wild initial data admit compactly supported solutions [28], 
while Corollary E shows that such solutions exist only for a meagre set of initial data. 
In fact from Corollary E we deduce immediately the following:

Corollary 5.3. Take τ > 0 and M > 0. A solution u ∈ L∞
t L2

σ,x with supp(u) ⊂ Rn× [0, τ ]
and ‖u‖L∞

t L2
σ,x

≤ M‖u0‖L2
σ

exists only for a nowhere dense set of data u0 ∈ L2
σ.

5.2. Energy decay rate in the Navier–Stokes equations

We also illustrate the use of Theorem 3.8 in the presence of viscosity; we use the 
Navier–Stokes equations in Rn × [0, ∞), n ≥ 2, as an example. Given an initial datum 
u0 ∈ L2

σ, recall that weak solutions of (3.1)–(3.3) were defined in L∞
t L2

σ,x∩L2
t Ḣ

1
x in §3.1. 

Furthermore, a weak solution is called a Leray–Hopf solution if it satisfies the energy 
inequality

1
2

∫
R3

|u(x, t)|2 dx + ν

t∫
s

∫
R3

|Du(x, τ)|2 dx dτ ≤ 1
2

∫
R3

|u(x, s)|2 dx for all t > s

for a.e. s ∈ [0, ∞), including s = 0. Leray showed in his milestone paper [54] that for 
every initial datum u0 ∈ L2

σ there exists a Leray–Hopf solution u ∈ L∞
t L2

σ,x ∩ L2
t Ḣ

1
x

with u(·, 0) = u0. We briefly recall some of the pertinent results on energy decay of 
Leray–Hopf solutions and refer to the recent review [11] for more details and references.

Leray asked in [54] whether E(t) = 1
2
∫
R3 |u(x, t)|2 dx → 0 as t → ∞ for all Leray–

Hopf solutions. An affirmative answer was given by theorems of Kato and Masuda, 
see [11, Theorem 2–3]. Schonbeck has shown that there is no uniform energy decay rate 
for general data u0 ∈ L2

σ; more precisely, for every β, ε, T > 0 there exists u0 ∈ βBL2
σ

such that a Leray–Hopf solution satisfies E(T ) ≥ (1 − ε)E(0). Furthermore, whenever 
u0 ∈ L2

σ \∪1≤p<2L
p, the energy E(t) does not undergo polynomial decay. Several precise 

statements on the decay rate of E(t) under extra integrability assumptions on u0 ∈ L2
σ

are given in [11].
In Corollary 5.5 below, we recover the lack of polynomial decay for a Baire-generic 

datum. The result applies to all distributional solutions of (3.1)–(3.3), which we define 
as mappings u ∈ L2

loc,tL
2
σ,x(R3 × [0, ∞), R3) such that
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∞∫
0

〈u, ∂tϕ〉 dt +
∞∫
0

〈u⊗ u,Dϕ〉 dt + ν

∞∫
0

〈u,Δϕ〉 dt + 〈u0, ϕ(0)〉 = 0

for all ϕ ∈ C∞
c (R3 × [0, ∞), R3) with divϕ = 0.

Proposition 5.4. Let p ∈ (2, ∞) and M > 0. It is only for a nowhere dense set of initial 
data that (3.1)–(3.3) admits a distributional solution with ‖u‖Lp

tL
2
x
≤ M .

Proof. We consider the relaxed problem where we require u ∈ Lp
tL

2
σ,x, S1 ∈ L

p/2
t Mx

and S2 ∈ Lp
t Ḣ

−1
x to satisfy

∞∫
0

〈u, ∂tϕ〉 dt +
∞∫
0

〈S1,Dϕ〉 dt + ν

∞∫
0

〈S2,Dϕ〉 dt + 〈u0, ϕ(0)〉 = 0 (5.4)

for all ϕ ∈ C∞
c ([0, ∞), R3) with divϕ = 0. As before, denote by

D ⊂ Lp
tL

2
σ,x ⊕ L

p/2
t Mx ⊕ Lp

t Ḣ
−1
x ≡ X∗

the set of triples (u, S1, S2) such that (5.4) holds. Again, the assumptions of Proposi-
tion 3.7 are satisfied. We set uλ(x, t) = u(x/λ, t/λ) and Si(x, t) = Si(x/λ, t/λ). A simple 
computation gives

‖uλ‖Lp
tL

2
x

= λn/2+1/p‖u‖Lp
tL

2
x
, ‖S1

λ‖Lp/2
t Mx

= λn+2/p‖S1‖
L

p/2
t Mx

,

‖u0
λ‖L2 = λn/2‖u‖L2 , ‖S2

λ‖Lp
t Ḣ

−1
x

= λn/2+1+2/p‖S2‖Lp
t Ḣ

−1
x

.

As before, we set ũλ ≡ λu and f̃λ ≡ λf . The claim now follows from Theorem 3.8. �
Corollary 5.5. Let ε > 0. For a Baire-generic initial datum u0 ∈ L2

σ, solutions in L∞
t L2

σ,x

satisfy ‖tεE‖L∞(τ,∞) = ∞ for every τ > 0.

Proof. Given ε > 0 choose p > 2/ε. By Proposition 5.4, for a Baire generic initial 
datum u0 ∈ L2

σ there is no solution u ∈ (Lp ∩ L∞)tL2
σ,x. Given such a datum u0, sup-

pose, by way of contradiction, that a solution u ∈ L∞
t L2

σ,x satisfies ‖tεE‖L∞(τ,∞) < ∞. 
Thus there exists M > 0 such that E(t) ≤ Mt−ε for a.e. t ≥ τ . Now 

∫∞
τ

‖u(t)‖pL2 dt ≤
Mp/2 ∫∞

τ
t−pε/2 dt < ∞ so that u ∈ Lp

tL
2
σ,x. We have reached the sought contradic-

tion. �
Remark 5.6. In view of Wiedemann’s results in [82], the analogue of Corollary E is false 
on the torus Tn. An analogous remark applies to the Navier-Stokes equations on R2

and R3. Indeed, on the torus and on smooth, bounded domains, all Leray-Hopf solutions 
have an exponentially decaying kinetic energy from some time point on. More detailed 
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information on the decay rate of energy and enstrophy in bounded domains and the torus 
can be found in [35]. Moreover, recently, Buckmaster and Vicol have constructed CtH

β
x -

regular, β > 0, mild solutions in T 3 × [0, T ] with a prescribed smooth, non-negative 
kinetic energy profile [13]. In particular, mild solutions are non-unique and may come to 
rest in finite time.

6. Concluding discussion

In this section, we discuss the advantages of the nonlinear open mapping principles 
proved in this paper, when compared to the classical Banach–Schauder theorem. We also 
point out some of the limitations of our results, as well as directions for future work.

We begin by recalling the standard proof of the Banach–Schauder open mapping 
theorem in a special case. If a bounded linear map L : X → Y between Banach spaces is 
surjective and X is reflexive, the Baire category theorem then yields a constant C > 0
and a ball BY (f0, r) such that L(BX(0, C)) ⊇ BY (f0, r), and the proof is completed as 
follows. First, by linearity, L(−BX(0, C)) = −L(BX(0, C)) ⊇ −BY (f0, r), so that, by 
linearity again,

L(BX(0, 2C)) = L(BX(0, C)) − L(BX(0, C)) ⊃ BY (f0, r) −BY (f0, r) = BY (0, 2r).

We notice that this proof uses in a fundamental way three properties:

(i) the linearity of the operator L;
(ii) the vector space structure of the domain of definition of L;
(iii) the symmetry of the range of L.

Concerning (i), we note that if one attempts to generalise the above proof to non-
linear operators, then surjectivity only leads to “1/2-openness” and, more generally, 
1/n-surjectivity leads to 1/2n-openness. To our knowledge, Theorem B and Proposi-
tion 2.5 give the first abstract results on Rudin’s problem, cf. Question 1.1, which yield 
1/n-openness from 1/n-surjectivity.

With respect to (ii), another key novelty of our work is that the domain of definition 
D of the operator T need not be a vector space. This is crucial when applying open 
mapping theorems to typical Cauchy problems in nonlinear evolutionary PDEs as is 
done in §3–5.

Finally, we note that (iii) is not needed for our results either. In fact, Theorems B and 
3.5 apply when the target space is a closed convex cone such as {f ∈ Lp(Rn) : f ≥ 0 a.e.}, 
for 1 < p < ∞, cf. Remark 3.6, and also when the symmetry of the range is non-trivial 
to check, as is the case for the Hessian operator H: Ẇ 1,2(R2) → H 1(R2).

We now discuss some of the limitations of our work. From a PDE perspective, the 
main weak point of Theorem 3.5 is that assumption (Â3) seems difficult to adapt to 
function spaces defined over the flat torus Tn or bounded domains. For instance, on 
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Tn, translations σY ∗

k f(x) = f(x − ke) typically fail the condition σY ∗

k f
∗
⇀ 0. On Rn, 

translations can often be replaced by scalings such as σX∗

k f(x) = kαf(kx), but such 
operators are of course not invertible on function spaces over the torus or bounded 
domains.

Despite the fact that Theorem 3.5 applies to many different equations, it would be 
interesting to look for generalisations, in order to account for other physical PDEs. Note, 
for instance, that even if one does not assume that T is positively homogeneous, as in 
Theorem B, the proof of this theorem still provides δ, Mδ > 0 such that T (BX∗(0, Mδ)) ⊇
BY ∗(0, δ). It thus seems natural to ask whether one can achieve openness at the origin, 
i.e., whether one gets limδ↘0 Mδ = 0. Another interesting problem is to decide whether 
the weak∗-to-weak∗ closed graph assumption on the operators is an artifact of our proofs 
or a fundamental requirement for the validity of a nonlinear open mapping principle. We 
hope to address these questions in future work.
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