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Abstract
Voice biometric systems based on automatic speaker verifi-

cation (ASV) are exposed to spoofing attacks which may com-
promise their security. To increase the robustness against such
attacks, anti-spoofing or presentation attack detection (PAD)
systems have been proposed for the detection of replay, synthe-
sis and voice conversion based attacks. Recently, the scientific
community has shown that PAD systems are also vulnerable to
adversarial attacks. However, to the best of our knowledge, no
previous work have studied the robustness of full voice biomet-
rics systems (ASV + PAD) to these new types of adversarial
spoofing attacks. In this work, we develop a new adversarial
biometrics transformation network (ABTN) which jointly pro-
cesses the loss of the PAD and ASV systems in order to generate
white-box and black-box adversarial spoofing attacks. The core
idea of this system is to generate adversarial spoofing attacks
which are able to fool the PAD system without being detected
by the ASV system. The experiments were carried out on the
ASVspoof 2019 corpus, including both logical access (LA) and
physical access (PA) scenarios. The experimental results show
that the proposed ABTN clearly outperforms some well-known
adversarial techniques in both white-box and black-box attack
scenarios.
Index Terms: Adversarial attacks, automatic speaker verifica-
tion (ASV), presentation attack detection (PAD), voice biomet-
rics.

1. Introduction
Voice biometrics aims to authenticate the identity claimed by a
given individual based on the speech samples measured from
his/her voice. Automatic speaker verification (ASV) [1] is the
conventional way to put voice biometrics into practical usage.
However, in recent years, ASV technology has been shown to
be at risk of security threats performed by impostors who want
to gain fraudulent access by presenting speech resembling the
voice of a legitimate user [2, 3]. Impostors could use either
logical access (LA) attacks [4], such as text-to-speech synthe-
sis (TTS) and voice conversion (VC) based attacks, or physical
access (PA) attacks such as replay based attacks [5].

To protect voice biometrics systems [6], it is common to
develop anti-spoofing or presentation attack detection (PAD)
[7] techniques which allow for differentiating between bonafide
and spoofing speech [8, 9, 10]. Typically, the resulting biomet-
rics system is a score-level cascaded integration of PAD and
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Figure 1: Block diagram of a score-level cascaded integration
biometrics system. sPAD , τPAD and sASV , τASV denote the
scores and thresholds of the PAD and ASV systems, respectively.

ASV subsystems, as depicted in Fig. 1. This is the same in-
tegration as the one used in the last two ASVspoof challenges
[5, 11].

To make things more complex, different investigations
[12, 13] have recently shown that PAD systems are also vulner-
able to adversarial attacks [14]. These attacks can easily fool
deep neural network (DNN) models by perturbing benign sam-
ples in a way normally imperceptible to humans [15]. Adver-
sarial attacks can be divided into two main categories: white-
box and black-box attacks. In this work, we refer to white-
box attacks as those where the attacker can access all the in-
formation of the victim model (i.e., model architecture and its
weights). Likewise, we will use the term black-box for those
attacks where the attacker does not know any information about
the victim model but it can be queried multiple times in or-
der to estimate a surrogate model (student) of the victim model
(teacher), using the binary responses (acceptance/rejection) of
the victim model as ground-truth labels.

The main contributions of this work are:

• Investigate the robustness of full voice biometrics sys-
tems (ASV + PAD) under the presence of adversarial
spoofing attacks.

• Propose an adversarial biometrics transformation net-
work (ABTN) which is able to generate adversarial
spoofing attacks in order to fool the PAD system with-
out being detected by the ASV system.

• To the best of our knowledge, adversarial spoofing at-
tacks have only been studied on logical access scenarios
(TTS and VC based attacks). In this work, we also in-
clude physical access scenarios (replay based attacks).

The rest of this paper is organized as follows. Section 2 out-
lines some well-known adversarial attacks employed as base-
lines in this work. Then, in Section 3, we describe the proposed
ABTN for white-box and black-box scenarios. After that, Sec-
tion 4 outlines the speech corpora, systems details, and metrics
employed in the experiments. Section 5 discusses the experi-
mental results. Finally, we summarize the conclusions derived
from this research in Section 6.



2. Related Work
Adversarial spoofing examples can be generated by adding a
minimally perceptible perturbation to the input spoofing utter-
ance in order to do a refinement of the spoofing attack. In
this work, we focus on targeted attacks, which aim to fool the
PAD system by maximizing the probability of a targeted class
(bonafide) different from the correct class (spoof ). Specifically,
to generate adversarial spoofing attacks, we fix the parameters θ
of a well-trained DNN-based PAD model and perform gradient
descent to update the spoofing spectra of the input utterance so
that the PAD model classifies it as a bonafide utterance. Mathe-
matically, our goal is to find a sufficiently small perturbation δ
which satisfies:

X̃ =X + δ,

fθ(X) = y,

fθ(X̃) = ỹ,

(1)

where f is a well-trained DNN-based PAD model parameter-
ized by θ, X denotes the sequence of speech feature vectors
extracted from the input spoofing utterance (short time Fourier
transform (STFT), typically), y is the true label corresponding
toX , ỹ is the targeted label class of the attack (bonafide class),
X̃ denotes the perturbed input features, and δ is the additive
perturbation. Typically, ∆ is the feasible set of the allowed per-
turbation δ (δ ∈ ∆), which formalizes the manipulative power
of the adversarial attack. Normally, ∆ is a small l∞-norm ball,
that is, ∆ = {δ | ‖δ‖∞ ≤ ε}, ε ≥ 0 ∈ R.

There are multiple ways to generate the perturbation δ,
where the fast gradient sign method (FGSM) [16] and the pro-
jected gradient descent (PGD) [17] methods are the most popu-
lar adversarial attack procedures. The FGSM attack consists of
taking a single step along the direction of the gradient, i.e.,

δ = ε · sign(∇XLoss(θ,X, y)), (2)

where Loss denotes the loss function of the neural network
(θ), and the sign method simply takes the sign of its gradient.
Unlike the FGSM, which is a single-step method, the PGD is
an iterative method. Starting from the original input utterance
X0 =X , the input utterance is iteratively updated as follows:

Xn+1 = clip(Xn + α · sign(∇XLoss(θ,X, y)),

for n = 0, ..., N − 1,
(3)

where n = 0, ..., N − 1 is the iteration index, N is the number
of iterations, α = ε/N , and the clip() function applies element-
wise clipping such that ‖Xn −X‖∞ ≤ ε, ε ≥ 0 ∈ R.

3. Proposed method
The performance of the FGSM and PGD methods are limited
by the possibility of sticking at local optima of the loss func-
tion. Moreover, both methods have a limited search space (∆)
so that the perturbed spoofing speech X̃ is perceptually indis-
tinguishable from the original spoofing speechX .

In this work, we propose the Adversarial Biometrics Trans-
formation Network (ABTN), which is a neural network that
transforms a spoofing speech signal into an adversarial spoof-
ing speech signal against a target biometrics system. Formally,
an ABTN can be defined as a neural network gf,h : X → X̃ ,
where f(X) and h(X) are the PAD and ASV models of the tar-
get biometrics system, respectively. The PAD and ASV models
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Figure 2: Proposed adversarial biometrics transformation sys-
tem for white-box scenarios.

can provide either a probability distribution across class labels
(white-box scenario) or just a binary decision (black-box sce-
nario). In both scenarios, the objective of the ABTN is to gen-
erate adversarial spoofing attacks from spoofing speech in order
to fool the PAD system while not being detected by the ASV
system, i.e., while not modifying the speaker information.

3.1. White-box scenario

The architecture of the proposed ABTN system for the white-
box scenario is depicted in Fig. 2. The output of the ABTN is
fed into the target biometrics system which is composed of a
PAD and an ASV system based on a time-delay neural network
(TDNN) [18] for x-vector extraction (in fact, this is the only
component of the ASV system that we need). The objective of
this system is to train the ABTN so that it can generate adversar-
ial attacks from spoofing speech which are able to fool the PAD
system while, at the same time, it does not cause any changes to
the ASV output (i.e., it does not change the speaker representa-
tion given by the corresponding x-vector). To train the ABTN,
the PAD and ASV network parameters are frozen but the gradi-
ents are computed along them in order to back-propagate them
to the ABTN parameters. To find the optimal parameters of the
ABTN in the white-box (w-box) scenario, we minimize the fol-
lowing loss function:

Lw-box = LPAD w-box(sPAD, s̃PAD)+β ·LASV w-box(xvector, x̃vector),
(4)

where,

LPAD w-box(sPAD, s̃PAD) = ‖rα(sPAD)− s̃PAD‖2 , (5)

LASV w-box(xvector, x̃vector) = ‖xvector − x̃vector‖2 . (6)

LPAD w-box and LASV w-box are the loss components associated
to the PAD and ASV systems, respectively, and β is a hyper-
parameter to weight the importance of the two losses. sPAD and
s̃PAD are the probability output vectors from the PAD system
of the original and adversarial spoofing utterances, respectively.
Likewise, xvector and x̃vector denote the x-vectors of the origi-
nal and adversarial spoofing utterances, respectively, and rα is
a reranking function which can be formulated as

rα(sPAD) = norm

({
α ·max(sPAD) k = 0

sPAD(k) k 6= 0

)
, (7)

where k is the index class variable of the sPAD probability vec-
tor, α > 1 is an additional hyper-parameter which defines how
large sPAD(k = 0), i.e., the probability of the bonafide class,
is with respect to the current maximum probability class, and
norm is a normalizing function which rescales its input to be a
valid probability distribution.



Adversarial
Biometrics

Transformation
Network

Student 
PAD System

MFCCs
Time-delay
Neural
Network

Student
b-vector
System

Black-box
Teacher 

PAD System

Training 

Black-box
Teacher 

ASV System

Training 

ASV System

Figure 3: Proposed adversarial biometrics transformation sys-
tem for black-box scenarios.

3.2. Black-box scenario

The architecture of the proposed ABTN system for the black-
box scenario is depicted in Fig. 3. Similarly to the white-box
scenario, the objective of this system is to generate adversarial
attacks from spoofing speech which are able to fool the target
(teacher) PAD system and, at the same time, bypass the target
(teacher) ASV system by not modifying the speaker information
represented by the corresponding x-vector. However, the limi-
tation of the black-box scenario is that we do not have access to
the parameters of the target biometrics system. Thus, we train a
student PAD and a b-vector [19] based ASV systems by making
requests to the target black-box biometrics system which only
responds with a binary decision of acceptance or rejection, us-
ing these binary decisions as ground-truth labels. Therefore, the
student PAD and b-vector systems are trained as binary classi-
fiers in order to mimick the performance of the teacher PAD and
ASV systems, respectively. Specifically, the student b-vector
system computes the probability that the two input x-vectors
belong to the same speaker, i.e., that P (b(xvector, x̃vector) = 1),
where b denotes the b-vector model.

To train the ABTN in the black-box scenario, the student
PAD and ASV network parameters are also frozen but the gradi-
ents are computed along them in order to back-propagate them
to the ABTN parameters. To find the optimal parameters of the
ABTN in the black-box (b-box) scenario, we minimize the fol-
lowing loss function:

Lb-box = LPAD b-box(s̃PAD) + β · LASV b-box(xvector, x̃vector), (8)

where,

LPAD b-box(s̃PAD) = ‖onehot(k = 0)− s̃PAD‖2 , (9)

LASV b-box(xvector, x̃vector) = 1− P (b(xvector, x̃vector) = 1).
(10)

LPAD b-box and LASV b-box are the loss components associated to
the PAD and ASV systems, respectively. Moreover, the function
onehot denotes the one-hot function and k = 0 is the index of
the bonafide class, so that the PAD system is fooled by firing
the input spoofing utterance as a bonafide utterance.

4. Experimental Setup
This section briefly describes the speech corpora and metrics
employed in our experiments, as well as the details of the pro-
posed system.

4.1. Speech corpora

We conducted experiments on the ASVspoof 2019 database
[20] which is split into two partitions for the assessment of
LA and PA scenarios. This database also includes protocols
for evaluating the performance of PAD, ASV and integration
(biometrics) systems. Thus, we used this corpus for training
the standalone PAD systems in the LA and PA scenarios, sep-
arately. Then, we generated adversarial spoofing attacks using
only the spoofing utterances, so that they can bypass the bio-
metrics system. We did not generate any adversarial examples
from bonafide utterances, since we argue that they would not be
bonafide anymore.

On the other hand, we also employed the Voxceleb1 [21] to
train a TDNN [18] as an x-vector extractor for the ASV system.
Also, following [6], a b-vector [19] ASV scoring system was
trained in the black-box scenario using the bonafide utterances
from the ASVspoof 2019 and Voxceleb1 development datasets.

4.2. Spectral analysis

Speech signals were analyzed using a Hanning analysis win-
dows of 25 ms length with 10 ms of frame shift. Log-power
magnitude spectrum features (STFT) with 256 frequency bins
were obtained to feed all the PAD systems. The ASV systems
were fed with Mel-frequency cepstral coefficients (MFCCs) ob-
tained with the Kaldi recipe [22]. Only the first 600 frames of
each utterance were used to extract acoustic features.

4.3. Implementation details

Two state-of-the-art PAD systems were adapted from different
works, i.e., a light convolutional neural network (LCNN) [2]
and a Squeeze-Excitation network (SENet50) [23]. The PAD
scores were directly obtained from the bonafide class of the
softmax output. For ASV, a TDNN x-vector model [18] was
trained as an embedding extractor. Then, a probabilistic linear
discriminant analysis (PLDA) [24] and a b-vector system [19]
were trained as ASV scoring systems.

The proposed ABTN is formed by five convolutional layers
with 16, 32, 48, 48 and 3 channels, respectively, and a kernel
size of 3×3, followed by leaky ReLU activations. It was trained
using the Adam optimizer [25] with a learning rate of 3 · 10−4.
Also, early stopping was applied to stop the training process
when no improvement of the loss across the validation set was
obtained. The values of α and β were empirically set to 10 and
0.001, respectively, using a grid search on the validation set.

4.4. Evaluation setup

The PAD systems were evaluated using the pooled equal error
rate (EERspoof) across all attacks. Likewise, the ASV systems
were also evaluated using the EERASV, employing both bonafide
utterances (target and non-target) and spoofing utterances. Any
utterance rejected by either the PAD or ASV subsystems was
assigned arbitrarily a −∞ score for computing the integration
performance. Then, the integration (biometrics) systems were
evaluated using the joint EER (EERjoint) and the minimum nor-
malized detection cost function (min-tDCF) [26] with the same
configuration as the one employed in the ASVspoof 2019 chal-
lenge [11]. All the PAD, ASV and biometrics systems were
evaluated using the ASVspoof 2019 test datasets.



System
Logical Access Attacks Physical Access Attacks

EERspoof(%) EERASV(%) EERjoint(%) min-tDCF EERspoof(%) EERASV(%) EERjoint(%) min-tDCF

No Attack 5.91 31.10* 20.13 0.1252 4.77 18.62* 13.37 0.1238

FGSM (ε = 0.1) 5.98 31.14* 20.32 0.1279 7.50 18.65* 15.47 0.2157

PGD (ε = 0.1) 5.95 31.13* 20.25 0.1267 6.08 18.63* 14.38 0.1717

FGSM (ε = 1.0) 8.15 31.53* 25.44 0.1287 35.64 18.71* 26.54 0.9335

PGD (ε = 1.0) 7.02 31.46* 25.37 0.1266 44.42 18.83* 26.77 0.9665

FGSM (ε = 2.0) 2.01 30.11* 14.13 0.0623 1.02 17.61* 11.82 0.0380

PGD (ε = 2.0) 4.97 31.38* 22.62 0.1078 29.29 18.44* 25.28 0.8677

FGSM (ε = 5.0) 0.00 19.46* 2.45 0.0000 0.00 11.37* 11.79 0.0000

PGD (ε = 5.0) 0.16 19.09* 2.56 0.0058 0.00 9.48* 11.79 0.0000

Proposed ABTN 35.19 31.52* 39.15 0.5829 95.17 18.87* 36.63 1.0000
Table 1: Results of the black-box adversarial attacks on the ASVspoof 2019 logical access (LA) and physical access (PA) test sets
in terms of EERspoof(%), EERASV(%), EERjoint(%) and min-tDCF. The target PAD system is based on a LCNN, while the student PAD
system is based on a SENet50. The target ASV system is based on a TDNN + PLDA, while the student ASV system is based on a TDNN
+ b-vector. (*) The ASV evaluation includes both bonafide and spoofing utterances.

Figure 4: EERjoint(%) of the white-box adversarial attacks on
the ASVspoof 2019 logical and physical access test sets.

5. Experimental Results
The performance of the baseline biometrics system is shown in
Table 1 as ’No Attack’. The LA and PA PAD systems are among
the best single systems evaluated in the ASVspoof 2019 chal-
lenge [11]. The ASV system yields an EER of 4.75 and 7.25%
in the LA and PA datasets when evaluating only the target and
non-target bonafide utterances. However, its performance is de-
graded to 31.10 and 18.62% in the LA and PA test datasets when
the spoofing utterances are also evaluated, as shown in Table 1.

5.1. White-box scenario

Fig. 4 shows the EERjoint of the white-box adversarial attacks
evaluated in the ASVspoof 2019 LA and PA test sets. The PAD
and ASV systems are the state-of-the-art LCNN and TDNN +
PLDA, respectively. As it was expected, PGD achieves slightly
better results than FGSM due to its iterative procedure for gen-
erating the adversarial attacks. Moreover, the proposed ABTN
outperforms the rest of adversarial attacks, obtaining 10.28%
and 10.14% higher EERjoint with respect to the best PGD con-
figuration (ε = 1.0) in the LA and PA test sets, respectively.
It is worth noticing that when the hyper-parameter ε of the
FGSM and PGD methods is equal or higher than 2.0, the bio-
metrics system is able to detect the perturbation noise added by
these adversarial attacks. In these cases, the performance of the
spoofing attacks is even worse than when not using any adver-
sarial attack (denoted by ’No Attack’).

5.2. Black-box scenario

Table 1 shows the performance metrics for the black-box sce-
nario. The target biometrics system consists of the same state-
of-the-art LCNN (PAD) and TDNN + PLDA (ASV) systems
evaluated in the previous section. The student PAD and ASV
systems are the SENet50 and the TDNN + b-vector systems,
respectively.

The proposed ABTN attacks outperform the best FGSM
and PGD configurations by 27.04 and 50.75% of EERspoof, and
by 13.71 and 9.86% of EERjoint, respectively. Also, the min-
tDCF metric, which shows the performance of the biometrics
system on a different operating point with respect to the EERjoint

[26], is significatively higher for the proposed ABTN adversar-
ial attacks. As in the white-box scenario, it is worth noticing
that the best adversarial attacks do not affect the performance
of the ASV system with respect to the baseline system, since
the perturbation noise of these attacks is not detected by the
ASV system. However, when the hyper-parameter ε ≥ 2.0,
both the PAD and ASV systems are able to detect the pertur-
bations added by the FGSM and PGD methods, and hence, the
biometrics system performs even better than the baseline sys-
tem (denoted by ’No Attack’). However, the proposed ABTN
method does not suffer from this issue since it is trained so that
the added perturbation noise does not modify the speaker infor-
mation from the spoofing utterance.

6. Conclusion
In this work, we studied the robustness of state-of-the-art voice
biometrics systems (ASV + PAD) under the presence of adver-
sarial spoofing attacks. Moreover, we proposed an adversarial
biometrics transformation network (ABTN) for both white-box
and black-box scenarios which is able to generate adversarial
spoofing attacks in order to fool the PAD system without be-
ing detected by the ASV system. Experimental results have
shown that biometric systems are highly sensitive to adversar-
ial spoofing attacks in both logical and physical access scenar-
ios. Moreover, the proposed ABTN system clearly outperforms
other popular adversarial attacks such as the FGSM and PGD
methods in both white-box and black-box scenarios. In the
future, we would like to use the generated adversarial attacks
for adversarial training in order to make the biometrics system
more robust against these attacks.
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M. Sahidullah, and A. Sizov, “ASVspoof 2015: The first au-
tomatic speaker verification spoofing and countermeasures chal-
lenge,” in Proc. Interspeech, Dresden, Germany, 2015, pp. 2037–
2041.

[5] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. W. D.
Evans, J. Yamagishi, and K.-A. Lee, “The ASVspoof 2017 chal-
lenge: Assessing the limits of replay spoofing attack detection,”
in Proc. Interspeech, Stockholm, Sweden, 2017, pp. 2–6.

[6] A. Gomez-Alanis, J. A. Gonzalez-Lopez, S. P. Dubagunta, A. M.
Peinado, and M. Magimai.-Doss, “On joint optimization of au-
tomatic speaker verification and anti-spoofing in the embedding
space,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 16, pp. 1579–1593, 2021.

[7] “Presentation attack detection.” [Online]. Available:
https://www.iso.org/standard/67381.html

[8] A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, and A. M.
Gomez, “A deep identity representation for noise robust spoof-
ing detection,” in Proc. Interspeech, Hyderabad, India, 2018, pp.
676–680.

[9] A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, and A. M.
Gomez, “Performance evaluation of front- and back-end tech-
niques for asv spoofing detection systems based on deep features,”
in Proc. Iberspeech, Barcelona, Spain, 2018, pp. 45–49.

[10] A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, and A. M.
Gomez, “A light convolutional GRU-RNN deep feature extractor
for ASV spoofing detection,” in Proc. Interspeech, Graz, Austria,
2019, pp. 1068–1072.

[11] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. Lee,
“ASVspoof 2019: Future horizons in spoofed and fake audio de-
tection,” in Proc. Interspeech, Graz, Austria, 2019, pp. 1008–
1012.

[12] S. Liu, H. Wu, H. yi Lee, and H. Meng, “Adversarial attacks
on spoofing countermeasures of automatic speaker verification,”
in Proc. IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2019, pp. 312–319.

[13] Y. Zhang, Z. Jiang, J. Villalba, and N. Dehak, “Black-box attacks
on spoofing countermeasures using transferability of adversarial
examples,” in Proc. Interspeech, 2020, pp. 4238–4242.

[14] K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and
defenses in deep learning,” Engineering, vol. 6, no. 3, pp. 346 –
360, 2020.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural net-
works,” in Proc. International Conference on Learning Represen-
tations (ICLR), Banf, Alberta, Canada, 2014.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proc. International Conference
on Learning Representations (ICLR), San Diego, CA, USA, 2015.

[17] Y. Deng and L. J. Karam, “Universal adversarial attack via en-
hanced projected gradient descent,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2020, pp. 1241–1245.

[18] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khu-
danpur, “X-vectors: Robust DNN embeddings for speaker recog-
nition,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Calgary, Alberta,
Canada, 2018, pp. 5329–5333.

[19] H.-S. Lee, Y. Tso, Y.-F. Chang, H.-M. Wang, and S.-K. Jeng,
“Speaker verification using kernel-based binary classifiers with
binary operation derived features,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, 2014, pp. 1660–1664.

[20] X. Wang, J. Yamagishi, M. Todisco, H. Delgado, A. Nautsch, and
N. E. et al., “ASVspoof 2019: a large-scale public database of
synthetized, converted and replayed speech,” Computer Speech
and Language, p. 101114, 2020.

[21] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-
scale speaker identification dataset,” in Proc. Interspeech, Stock-
holm, Sweden, 2017, pp. 2616–2620.

[22] “SRE16 xvector model.” [Online]. Available: http://kaldi-
asr.org/models/m3

[23] C.-I. Lai, N. Chen, J. Villalba, and N. Dehak, “ASSERT: Anti-
Spoofing with Squeeze-Excitation and Residual Networks,” in
Proc. Interspeech, 2019, pp. 1013–1017.

[24] S. Prince and J. H. Elder, “Probabilistic linear discriminant anal-
ysis for inferences about identity,” in Proc. IEEE International
Conference on Computer Vision, Rio de Janeiro, Brazil, 2007, pp.
1–8.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. International Conference on Learning Repre-
sentations (ICLR), San Diego, CA, USA, 2015.

[26] T. Kinnunen, K. Lee, H. Delgado, N. Evans, M. Todisco,
M. Sahidullah, J. Yamagishi, and D. Reynolds, “t-DCF: A detec-
tion cost function for the tandem assessment of spoofing counter-
measures and automatic speaker verification,” in Proc. Odyssey,
Les Sables d’Olonne, France, 2018, pp. 312–319.


