
Received 3 February 2023, accepted 28 February 2023, date of publication 6 March 2023, date of current version 13 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3253788

AirLoop: A Simulation Framework for
Testing of UAV Services
JESSICA GIOVAGNOLA 1,2, JUAN B. MORO MEGÍAS2, MIGUEL MOLINA FERNÁNDEZ 1,2,
MANUEL PEGALÁJAR CUÉLLAR 3, AND DIEGO P. MORALES SANTOS 2
1Infineon Technologies AG, 85579 Neubiberg, Germany
2Department of Electronic and Computer Technology, University of Granada, 18071 Granada, Spain
3Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain

Corresponding author: Jessica Giovagnola (Jessica.Giovagnola@infineon.com)

This work was supported in part by the European Union (EU)-Funded Project Airborne Data Collection on Resilient System Architectures
(ADACORSA) (www.adacorsa.eu) through the Electronic Components and Systems for European Leadership (ECSEL) Joint Undertaking
(JU) support from the European Union’s Horizon 2020 Research and Innovation Programme and Germany, The Netherlands, Austria,
Romania, France, Sweden, Cyprus, Greece, Lithuania, Portugal, Italy, Finland, Turkey, under Agreement 876019; in part by the Spanish
Ministerio de Economía y Competitividad under Project TED2021-129949A-I00; and in part by the Junta de Andalucía under Project
P20_00265.

ABSTRACT Sensor fusion is a critical aspect in autonomous drone navigation as several tasks, such as
object detection and self-pose estimation, require combining information from heterogeneous sources. The
performance of these solutions depends on several factors, such as the characteristics of the sensors and
the environment, as well as the computing platforms, which can heavily impact their accuracy and response
time. Carrying out such performance evaluations through real flight tests can be a resource-demanding, time-
consuming, and, at times, risky process, which is why researchers often rely on simulation environments for
testing and validating sensor fusion algorithms. The simulation environment should provide photorealistic
environmental features, as well as a comprehensive set of sensors, in order to allow to test the most extensive
set of sensor fusion algorithms. This paper presents AirLoop, anAirSim-based flight simulator for Hardware-
in-the-Loop and Software-in-the-Loop algorithm testing and validation. AirLoop extends the sensor setup
provided by AirSim with an FMCW RADAR sensor simulation, which has been evaluated based on the
Infineon Technologies BGT60TR13C RADAR. Furthermore, this work provides several Software-in-the-
Loop (SITL) and Hardware-in-the-Loop (HITL) demonstrations, including interfacing with the Pixhawk
2 flight controller and an extensive evaluation of the communication of the engine with the NVIDIA Jetson
Nano, which has been evaluated in various use cases, including dataset creation, object detection, Path
Planning, and Simultaneous Localization and Mapping (SLAM).

INDEX TERMS Drone simulations, sensor fusion, Jetson Nano, RADAR simulation, HITL, SITL.

I. INTRODUCTION
In the past few years, Unmanned Aerial Vehicles (UAVs),
commonly known as drones, have received growing atten-
tion from different industries due to their wide spectrum of
applications, ranging from agriculture to last-mile delivery
and surveillance [1]. However, creating drone-aided services

The associate editor coordinating the review of this manuscript and

approving it for publication was Julien Le Kernec .

needs the design, implementation, and testing of navigation
algorithms.

Navigation algorithms combine information from different
sources to serve various tasks such as environmental per-
ception, obstacle avoidance, trajectory planning and track-
ing, localization, and mapping [2]. Such systems can be
deployed on onboard embedded computing platforms or on
base-station computers that communicate with the drones.
Therefore, the developed algorithms need to be evaluated in
real-time, in terms of both accuracy and response time and the

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23309

https://orcid.org/0000-0003-4627-9425
https://orcid.org/0000-0002-1778-1910
https://orcid.org/0000-0002-9736-1608
https://orcid.org/0000-0002-3294-8934
https://orcid.org/0000-0003-2124-6803


J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

performance of the computing platforms needs to be tested
according to their computational capacity and latency.

However, the testing and validation on real flight scenarios
can be a costly, time-consuming, and rather a risky pro-
cess [3]. First, it might be necessary to assemble a custom
drone to host the computing platforms, the sensor setup, and
power supplies. Such a task usually requires high cost and
deep previous knowledge of the hardware specifications for
each specific application.

Moreover, autonomous drone flights require certified
pilots and the availability of adequate locations where it is
allowed to perform beyond-visual-line-of-sight operations.
Furthermore, possible failures of the tested system might
harm public safety or can lead to the destruction of the drone
itself.

The performance of the algorithms under test is subject to
a number of factors that cannot be controlled by the user in
real life scenarios, such as sensor failure and environmental
conditions.

Therefore, we can state that efficient testing and valida-
tion of sensor fusion algorithms based on real drone flights
requires addressing a number of open problems beyond the
scope of the evaluation of the deployed systems.

Consequently, drone flight simulation frameworks can be
a valuable alternative that allows the evaluation of sensor
fusion pipelines in a repeatable and controllable way with the
sole need of standard hardware components (e.g., personal
laptop), without the need for physical system prototypes [4].
Such simulators should provide a sufficiently detailed model
of the drone together with models of a suitable set of sensors
ensuring proper environmental perception and self-state esti-
mation [5]. Furthermore, the drone model and the simulated
sensors should interact with diverse environments to emu-
late different use case scenarios. Since the developed sensor
fusion algorithms might run on dedicated hardware, it should
be possible to interface the simulator with external computing
platforms and to perform Hardware-in-the-Loop (HITL) and
Software-in-the-Loop (SITL) simulations.

In this paper, we present AirLoop: a UAV simulation
framework based on the well-known platform AirSim, which
can easily run on any sufficiently powerful machine with
either Windows, Linux, or the Robot Operating System
(ROS). The simulator provides a quadcopter model that
can receive actuator signals and interact with different
photo-realistic environmental models including city parks,
forestry, and urban environments.

The functionalities of the simulator are demonstrated with
laptop-based simulations and in context of the validation
of a basic drone architecture, where a Pixhawk 2 serves as
a flight controller and an NVIDIA Jetson Nano executes
different tasks such as object detection, data gathering, and
Simultaneous Localization and Mapping (SLAM).

The available sensor setup consists of both proprio-
ceptive sensors (IMU, GPS) and exteroceptive sensors
(LiDAR, monocular camera, depth camera, RADAR). How-
ever, a state-of-the-art review showed that none of the

off-the-shelf RADAR sensor simulations that could be inter-
faced with AirSim could re-create the raw sensor data with
sufficient accuracy. Therefore, AirLoop provides a novel
RADAR sensor simulation implementation that can re-create
range-doppler images and Frequency Modulated Continuous
Wave (FMCW) RADAR raw data starting from visual data.

The rest of the paper is structured as follows. Section II
provides a literature review of the available drone simula-
tion frameworks (Subsection II-A) and the available RADAR
simulators (Subsection II-B). Section III describes the hard-
ware setup leveraged for the simulator implementation and
the experiments. Section IV discusses the implementation of
the Simulation Framework. In more detail, Subsection IV-A
lists the requirements, Subsection IV-B describes the sys-
tem architecture, Subsection IV-C discusses the communi-
cation protocol between the engine and the NVIDIA Jetson
Nano, and Subsection IV-D tackles the implementation of
a RADAR sensor simulator integrated into the simulation
environment. SectionV provides instructions about the instal-
lation process (Subsection V-A) and reviews the experiments
carried out with the simulator, including dataset cre-
ation (Subsection V-B), object detection (Subsection V-C),
RADARmodel evaluation (SubsectionV-D) and two separate
flight demonstrations (Subsection V-E). Finally, section VI is
dedicated to the conclusion.

II. STATE OF THE ART
This section provides an overview of the currently avail-
able UAV flight simulators. In more detail, Subsection II-A
describes and compares the main general simulation frame-
works for drone flight simulation, while Subsection II-B is
specifically focused on the RADAR sensor simulation and
its possible integration with the simulation system.

A. DRONE FLIGHT SIMULATION ENVIRONMENTS
A flight simulation framework should contain a model of
the drone dynamics, the sensors, and the environment. Each
simulated component can be modeled with a different level
of detail, reaching a trade-off between computational speed,
physical accuracy, and photorealism. In this dissertation,
we discuss only the simulation environments that, after a pre-
liminary state-of-the-art review, have been tested first-hand
by us, as they could better fit the scopes mentioned in Sec-
tion I. A more comprehensive overview of the currently
available UAV simulation frameworks is available at [6].

The simulators have been tested either on Windows
or Linux using a personal laptop equipped with Intel(R)
Core(TM) i5-8250U processor, 8GB Random Access Mem-
ory (RAM), 128GB Solid State Drive (SSD) + 1TB Hard
Drive Disk (HDD), and a GeForceMX130 2GBVideo RAM.
The HDD hosts a Linux partition, while Windows runs on the
processor.

AirSim [7] is an open-source and cross-platform
simulation environment from both aerial and ground vehicles
created by Microsoft. It can be easily installed on differ-
ent operating systems: we tested AirSim’s functioning on

23310 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

Windows 10. AirSim is developed as a plugin for the render-
ing platform Unreal Engine [8], meaning that it can be inter-
faced with any of its environments. Unreal Engine provides
a diversified set of pre-implemented environments that the
user can customize through a Graphical User Interface (GUI).
A Python Application Programming Interface (API) allows
the drone to receive commands and enables data retrieval for
future elaboration using external software tools.

As for the drone dynamics model, AirSim utilizes a cus-
tom kinematic physics engine called FastPhysics, where the
multirotor is modeled as a rigid body equipped with an
arbitrary number of actuators that generate force and torque.
FastPhysics expresses the state of the multi-rotor through
the following parameters: position, orientation (quaternions),
linear and angular velocity, linear and angular acceleration.

AirSim is characterized by outstanding photorealism due
to the leverage of advanced rendering techniques and detailed
environmental designs. For this reason, a rather powerful
machine is necessary to run the simulations smoothly and to
guarantee a reasonable frame rate. Furthermore, a wide set of
sensors is available, including visual sensors (e.g., monocular
camera, depth camera, image segmentation), barometer, IMU
(here consisting of an accelerometer and a gyroscope), mag-
netometer, and GPS. The sensor models are implemented as
C++ libraries and their parameters and characteristics can be
adjusted (e.g., Field of View and resolution for the camera).
However, the addition of a new sensor model from scratch is
not contemplated in the conception of the simulator, which
makes the modification of the sensor setup quite compli-
cated as it has to be done through the direct modification of
the involved libraries. However, AirSim comes with a wide
set of pre-implemented sensors allowing it to cover a wide
set of combinations. However, sufficiently accurate FMCW
RADAR simulation is not included in the standard version of
the simulator frameworks.

In addition, AirSim offers the possibility to easily obtain
pre-labeled data from the simulated exteroceptive sensors,
which is a handy feature to have ground-truth labels for
training and testing supervised learning algorithms.

AirLearning [9] is an extension of AirSim intended for
the deployment and testing of Reinforcement Learning poli-
cies in the context of autonomous drone navigation through
Hardware-in-the-Loop (HITL) simulations.

Like Airsim, Flightmare [10] is another engine-based sim-
ulator using the Unity rendering engine [11]. Flight is made
up of several software components that are decoupled from
each other, namely:

• Flightmare library, containing the drone dynamics and
the sensors;

• Flightmare Rendering Engine, providing photo-realistic
Unity environments. The interface with the quadrotor
dynamics is implemented using the messaging library
ZeroMQ;

• Reinforcement Learning Algorithms and Examples,
a Python wrapper for deep RL algorithms and examples;

• Robot Operating System (ROS) Wrapper for Flightmare
Library.

Flightmare provides four different environments: Indus-
trial Warehouse, Garage and Nature Forest and a set of exte-
roceptive sensors, i.e., Camera (RGBCamera, Depth Camera,
Semantic Segmentation and Optical Flow), Collision Detec-
tor and Optical Flow. To the current state, it is not possible to
add or modify the environments nor the sensors [12].

The installation can be carried out via the pip library or the
Robot Operating system.

Although the environmental rendering is less resource-
demanding than Airsim, the execution of Flightmare is con-
siderably more CPU-intensive: the authors recommend a
machine with a 12-core CPU to perform a smooth simulation.

A rather big family of simulators is based on the Gazebo
framework [13], [14]. Gazebo allows to simulate the flight of
individual or multiple drones within user-defined indoor or
outdoor environments, similarly to AirSim.Multiple APIs are
supported to interface the drone model with external software
tools.

As for the physical modeling, it is possible to choose
between different drone dynamic models and environmental
models, allowing to simulate with different levels of abstrac-
tion. Despite accomplishing a fair level of graphical render-
ing, Gazebo does not outperform AirSim in photorealism.

A broad set of sensors is available, as in AirSim. FMCW
RADAR simulation is not available. The drone frame, sen-
sors, and actuators are modeled as a set of joints and links
in a .urdf format file. Therefore, adding or removing sensors
is still possible, even if with a higher effort in comparison
with AirSim. Gazebo supports multiple platforms, such as
Windows, Linux, Mac, iOS, and ROS.

The last simulator framework we tested is called
RotorS [15]: a Micro Aerial Vehicle (MAV) simulation
framework based on ROS and Gazebo. ROS comes up
with a comprehensive set of open-source libraries and tools
to support the development of robotics applications. The
main idea of ROS is to provide a basic framework with
basic and core functionalities where different developers
can implement solutions concerning different components
of the robotic system. Each executable software model is
called node and can communicate with other nodes within
the system through a custom messaging protocol based on
communication channels called topics. The critical advantage
of ROS lies in the possibility of dividing the code into single
reusable blocks that can be easily interfaced together via a
single messaging tool [16].

The RotorS simulator consists of a ROS package equipped
with plug-and-play libraries implementing various function-
alities such as controllers, basic environments called worlds,
interfacing with joystick controllers, and example launch
files. The libraries are written in C++, but ROS nodes can
be written in Python, too.

When executed, the ROS nodes contained in RotorS can
send messages to Gazebo, enabling system visualization.

VOLUME 11, 2023 23311



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

TABLE 1. Comparison and baseline selection of the State-of-the-Art simulators.

The set of sensors included in RotorS comprises a camera,
a depth camera, and an IMU.

Unlike AirSim, RotorS and the other Gazebo-based sim-
ulators do not provide pre-labeled data. However, this func-
tionality could be achieved using the projection [17].
We have tested and evaluated the performance of the sim-

ulators above based on the parameters displayed in Table 1.
Based on the evaluation stated above, we decided to utilize

AirSim as a base to build up our own simulation framework.

B. RADAR SIMULATION
We now describe the implementation of a simulated Fre-
quency Modulated Continuous Wave (FMCW) RADAR
sensor integrated into the proposed simulation framework.
To the current state, no RADAR simulation model that can
deliver synthetic raw data is available in AirSim. However,
a few RADAR simulation environments are available in the
literature.

ViRA is a real-time FMCW RADAR simulation Frame-
work based on Unity. It comes up as a stand-alone Unity
project with a simple scene, but it can also be inserted into
an existing Unity project. The engine acts as a client that
connects to ROS or a TCP/IP server to fetch data. The main
configurable parameters are the Field of View (FOV), the
number of chirps per frame, the number of receiver antennas,
the bandwidth, the lower frequeny, the sample frequency, and
the radiation pattern mask.

The radiation pattern mask is a property of the emitting
antenna that defines the variation of the radiated power as
a function of the departure direction of the electromagnetic
wave. Such information can usually be found in the datasheet.

The input of the ViRA signal generation pipeline is a depth
image. Every pixel of the image is processed to obtain a signal
contribution. The signal response of the RADAR is obtained
by summing the individual contributions. In more detail, the
signal generation models:

• Wave penetration effects, based on the information
extracted from occluded objects

• Multiple antenna receivers in a uniform linear array
fashion. The linear configuration enables the extraction
of the azimuth and the elevation angle

• Reflection coefficient, to better recreate the reflection of
RADAR waves, which depends on the objects and the
material’s electric properties. A roughness and a normal
value are associated with every pixel of the detected
object.

• Radiation pattern modeling, i.e., a 2D gray-scale image
is applied to the original picture to model the radiation
pattern mask.

The framework was validated by configuring the sys-
tem corresponding to the BGT60TR13C Infineon FMCW
RADAR [18] and comparing the simulated results with the
real measurements.

In [19], a millimeter wave RADAR implementation for
AirSim is proposed. However, its output does not consist of
simulated raw data but of a color-coded point cloud obtained
from the depth image. The processing pipeline requires the
following inputs: a depth image, a segmentation image, and
a surface normal image. A depth image contains both visual
and depth information by assigning to each pixel a numerical
value identifying the distance between the sensor and the
represented object. On the other hand, in a segmentation
image each pixel holds a value between 0 and 255 depending
on themesh each object has. Therefore, assuming that a single
object corresponds to a single mesh, choosing a specific
value allows one to detect a single object in the environment.
Finally, a sufrace normal image is a gray-scale image con-
taining information about the normality of the surfaces with
respect to the camera view.

Currently, an FMCW RADAR sensor model that can give
as an output simulated raw RADAR data is not available
in AirSim. A real-time RADAR simulator based on Unreal
Engine for the Automotive industry called Advanced Mil-
limeter Wave RADAR has been developed by the company
OTSL but has yet to be released [20].

Other RADAR simulation options are available as in [21].
However, they are only based on MATLAB scripts without
the possibility of being easily integrated into a game engine-
based simulator.

III. HARDWARE SETUP
The experiments executed in this paper refer to the validation
of a basic drone flight architecture with Hardware-in-the-
Loop (HITL) and Software-in-the-Loop (SITL) simulations
with the support of a personal laptop.

As mentioned in Section II, the state-of-the-art review
was supported by a Windows laptop with a Linux partition
equipped with Intel(R) Core(TM) i5-8250U processor, 8GB
Random Access Memory (RAM), 128GB Solid State Drive
(SSD) + 1TB Hard Drive Disk (HDD), and a GeForce MX
130 2GB Video RAM.

23312 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

However, a more powerful laptop has been chosen to
carry out the final experiments of the proposed simulator to
improve the performance in terms of frame rate and rendering
smoothness. Thus, the experiments described in Section V
have been performed on an ASUS TUF GAMING F15 with
6 cores, 16GB RAM, and a GeForce RTX 3060 6GB Video
RAM works well for our needs.

The basic flight architecture we consider in this work
comprises a flight controller and an embedded computing
platform that is in charge of carrying out sensor fusion tasks.
In more detail, a well-known commercial-off-the-shelf flight
controller has been selected, i.e., a PH ORANGE SET Pix-
hawk Orange Cube + Pixhawk 2.1. The flight controller
offers good connectivity options for additional peripherals,
a triple redundancy IMU system, and all the features needed
to fly any remotely controlled aircraft, helicopter, or multiro-
tor. It controls the power delivered by the motors (propellers
speed) and performs the low-level control of the vehicle.
Since one of the experiments requires the flight controller
to be initialized with the help of an actual GPS sensor, the
Here + GPS module was leveraged for this purpose.

An NVIDIA Jetson Nano 4GB serves as an onboard com-
puter on which several sensor fusion algorithms are carried
out. Its reduced dimensions and its relatively high computa-
tional power makes it ideal for developing Artificial Intelli-
gence applications on edge.

IV. GENERAL SIMULATOR FRAMEWORK
In this section, we describe the general framework of our
simulator.Wefirst state the user and technical requirements in
Subsection IV-A. Then, we describe the general architecture
of the system in Subsection IV-B, the communication proto-
col with the NVIDIA Jetson Nano (Subsection IV-C). Finally,
subsection IV-D described the proposed RADAR simulation.

A. REQUIREMENTS
The simulator shall provide an effective tool to benchmark
sensor fusion algorithms deployed on a laptop or edge devices
to carry out autonomous navigation tasks. This means that
two main functions have to be accomplished. First, the simu-
lator should enable the creation of synthetic labeled datasets.
In other words, multi-sensor data should be retrieved from the
simulation environment and stored to be processed offline.
Second, commands from other devices, such as the flight
controller and the NVIDIA Jetson Nano, should be sent to
the simulator and interact online with the drone model and
the environment.

Given the problem statement, we formulated some user
functional requirements and technical requirements the sim-
ulator should accomplish to address the problem correctly.

The user functional requirements are stated below:

• High fidelity representation in order to reduce the gap
between real and simulated data.

• Graphical user interface displaying the drone’s state and
the surrounding environment.

• Integration of a quadcopter and possibility to send com-
mands manually (through the keyboard or a controller)
or through dedicated scripts.

• Availability ofmultiplemaps reflecting the reference use
cases, i.e., last-mile delivery and last-mile delivery in
urban environments.

From the user functional requirements stated above,
we extrapolated the following technical requirements:

• Remote connection via Local Area Network (LAN) to
allow external clients to retrieve state information from
the simulator.

• The high-end laptop should be able to train AI algo-
rithms that run on the onboard computer in real-time.

• The data retrieved by the simulator should be either
stored offline on the high-end computer to serve the
creation of a dataset (from now on, we will refer to this
use case as the offline version) or retrieved and processed
by external software or hardware clients (we will refer
to these applications as the online version).

• The simulator has to provide semantic information about
the surrounding environment to guarantee ground-truth
labeling of the acquired data.

• The simulated drone should respond to the changes in
the environment with sufficient speed. Although the
simulation clock speed can be slowed down, the FPS rate
should be high enough.

• Availability of the following sensors: camera, depth
camera, LiDAR, IMU, GPS, and FMCW RADAR.

B. SYSTEM ARCHITECTURE
In this subsection, we explain the system architecture. The
simulation system can be subdivided into three components:

• Graphical engine or simulator, AirSim in this case
• SystemUnder Test (SUT), which extracts the state infor-
mation from the engine, i.e., sensor data

• Client Under Test (CUT), which executes the algorithms
in real-time.

As mentioned in Subsection IV-A, we distinguish between
two versions of the system, namely offline version, in charge
of retrieving and storing data, and online version, capable of
carrying out real-time demonstrations.

1) OFFLINE VERSION
The main goal of the offline version consists of creating a
dataset containing raw data from different sensors. A schema
of this system configuration is available in Fig. 1. As it is
possible to notice, no CUT is involved.

The dataset is stored in a commonly used state-of-the-
art format employed in the ASL dataset [22]. The dataset
comprises a set of folders containing the raw data files as
.csv files and a .yaml file providing the sensor calibration
information. Our simulated data contains ground truth seman-
tic information, too. This type of information is stored in a
.xml file, similarly to the Pascal Visual Object Classes (VOC)

VOLUME 11, 2023 23313



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 1. Offline version schema. SUT receives data from the simulator.

FIGURE 2. Scene created to record data based on the City Park
Environment.

dataset [23], a popular format for image datasets used for
object recognition tasks.

A custom environment has been created based on an exist-
ing environment provided by Unreal Engine, called City Park
Environment as displayed in Fig. 2. The environment has
been enriched with different features, such as buildings, trees,
and people.

The data acquisition task is done through a Python script
running on the laptop. The script takes as input the destination
directory where the data will be stored and the number of
desired frames. The sensor acquisition task has been opti-
mized in terms of acquisition frequency and synchronization
with the use of six processes. The sensor information is
fetched from five processes, while the sixth process controls
the drone by describing a preset trajectory. The five processes,
one per sensor, are mutually independent and synchronized
to align with the slowest sensor before proceeding with the
acquisition of the next frame.

2) ONLINE VERSION
In the online version, the data is gathered and processed in
real-time to adapt the drone model’s behavior to the envi-
ronmental conditions. Following the nomenclature adopted
in [9], we can subdivide the overall processing latency into
three contributions:

• t1: The SUT latency to extract the state information from
the simulator.

• t2: The time taken by the algorithm in the CUT to process
the input data.

FIGURE 3. System architecture - online version.

• t3: The duration of the control action. The desired state
of the CUT is converted in a low-level action with the
AirSim flight controller API. The duration is determined
by a specific function parameter or the necessary time
to perform the action, such as moving to a reference
(x, y, z) position with a certain speed.

The time contribution t1 strongly depends on the comput-
ing platform as it is a CPU-consuming task. The hardware
architecture was chosen in order to minimize t1.
Two different variants of the online version have been

implemented and compared tomaximize the FPS. The system
architecture is schematized in Fig. 3.

The SUT and CUT can run on the same or different
machines. This creates different variants of the software
architecture, which are discussed in the following paragraphs.

a: SUT AND CUT IN THE SAME MACHINE
In this schema, which is displayed in Fig. 4, the onboard com-
puter is in charge of extracting the sensor data and running the
algorithms.

The data gathering and the execution of the algorithm
are based on a multithreaded script in which four threads
implement the data gathering (SUT), and a fifth thread
implements the CUT performing the tested algorithm. The
multithreading approach had been privileged over the multi-
processing approach as the only shared variable consists of a

23314 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 4. SUT and CUT running on the same machine.

list where sensor data is stored by the threads in charge of the
data-gathering and retrieved by the one in charge of the sensor
fusion. Each data-gathering thread reads the sensor data and
stores it in a pre-defined position in the list. The sensor fusion
is executed sequentially and returns as an output the desired
state, which is, in turn, sent back to the simulator.

b: SUT AND CUT IN DIFFERENT MACHINES
This version, schematized in Fig. 5, discharges the onboard
computer of the data extraction task, which is carried out by
the high-end laptop. Therefore, the SUT retrieves data from
the simulator and sends it to the CUT. After the CUT has
elaborated the data, the SUT receives the CUT response and
applies the control action to the drone model. In this configu-
ration, the time contribution t1 can be further subdivided into
two parts:

t1 = tENGINE→SUT + tSUT→CUT (1)

Since the SUT and the engine are deployed on the same
machine, the time contribution tENGINE→SUT is reduced com-
pared to the version described above.

FIGURE 5. SUT and CUT running on different machines.

The pipeline is divided into two scripts, as the SUT and
CUT run on different machines. The script implementing the
SUT comprises one thread per sensor in charge of the data
gathering, while the last thread retrieves the desired state
information from the CUT and applies it to the simulator.

The thread in charge of retrieving the GPS data is taken as
a reference to set a timestamp.

The CUT is implemented in a single sequential function
that receives data, runs the tested algorithm, and sends the
data back to the SUT.

C. COMMUNICATION WITH NVIDIA JETSON NANO
In order to enable communication between the simula-
tion environment and the NVIDIA Jetson Nano, a TCP-
based communication protocol was implemented. TCP is a

connection-oriented protocol that guarantees data delivery in
a FIFO fashion, i.e., the data is received in the same order
it was sent. Therefore, TCP is a reliable protocol thanks to
its flow control, congestion control, and the possibility of
retransmission of lost packets [24].

The high-end laptop and the onboard computer are part of
a LAN and are physically connected via an Ethernet cable.
Using a LAN is meant to reduce the latency and fluctuations
that are more likely to happen when using a wireless network.

FIGURE 6. Communication protocol on TCP sockets - schema.

In the schema reported in Fig. 4, the engine and the onboard
computer are connected through the AirSim API, involving
Remote Procedure Calls (RCPs) over the TCP/IP network.
The RCP technique aims to build a distributed system that
allows a machine to call a subroutine running on another
machine without the necessity to know that it is remote [25].
The API uses a messaging library called MessagePack-RCP
that enables object serialization. At the start-up of the simu-
lator, a default port is opened, which can be changed within
the simulation settings and stored in a .json file.

This settings file contains the fundamental configuration
parameters loaded when launching the simulation, such as the
sensor configurations, the number of vehicles, and the physics
engine.

On the other hand, when SUT and CUT are running on dif-
ferent machines, the two platforms communicate via socket.
Fig. 6 displays a graphical representation of the protocol.
First, the server binds to and listens to a port. Then, the client
attempts to connect with the server and establishes a connec-
tion. The server can start sending sensor data and retrieving
the desired state, and vice versa for the client. Finally, after
the desired number of frames have been recorded, both client
and server cut the connection.

The SUT and the engine are connected with RCPs, while
SUT and CUT are connected via TCP sockets. Since the sen-
sor data do not always have a fixed length (e.g., point clouds
from LiDAR data can have different dimensions depending

VOLUME 11, 2023 23315



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

on the detection), the exchanged messages report the length
of the messages in bytes in a header.

D. SIMULATED RADAR
We now describe the implementation of an FMCW RADAR
sensor model integrated into the framework. The simulated
sensor generates raw data instead of range-velocity 2D plots.
This allows us to simulate the actual hardware; our model can
be parametrized according to high-level RADAR specifica-
tions. Furthermore, the raw data can be leveraged to conduct
research on signal processing techniques.

The state-of-the-art review discussed in Section II showed
that ViRa is the only FMCW simulation based on a game
engine currently available in the scientific literature. There-
fore, our simulation is based on an adaption of its principles
and equations to AirSim and its Python API. The input data
for the RADAR simulator are based on the image set pre-
sented in [19].

The RADAR simulation pipeline is schematized in Fig. 7.
The generation and processing of raw data lead to a signif-
icant latency, which would excessively slow down the data
acquisition if carried out online. Consequently, the relevant
input data, i.e., the timestamped normal and depth images,
are post-processed right after the data acquisition.

FIGURE 7. Simulated RADAR pipeline schema.

The pipeline can be subdivided into two main functional
blocks, each implemented in a separate Python script. The
first functional block is in charge of outputting simulated
RADAR signals, while the second block extracts the range,
velocity, and angle information is extracted through the pre-
processing method proposed in [26], which returns Doppler
images as the one shown in Fig. 8.

1) RADAR SIGNAL GENERATION
This paragraph describes the procedure to produce synthetic
RADAR raw data. The inputs to the RADAR signal genera-
tion pipeline are:

• Stereo image, i.e., a picture containing both visual and
depth information based on stereo-vision principles

• Orthonormal image, containing information about the
orthogonal surfaces with respect to the objects repre-
sented in the simulation

• Segmentation image, a binary image whose pixels con-
tain the value 1 if they contain information related to
a relevant target (we selected trees, people, houses),
0 otherwise. It will act as a mask by being multiplied
by the stereo image and the orthonormal image.

• Radiation pattern, i.e., a 2D gray-scale picture. We are
using the same radiation pattern provided by ViRA
(Fig. 9).

• Timestamp.

FIGURE 8. Simulated RADAR features, person with positive velocity
detected during the flight.

FIGURE 9. Radiation pattern mask in the RADAR simulator [27].

Furthermore, the simulation model requires as inputs a set
of parameters consisting of the ones required in ViRa, with
the addition of the chirp duration time Tc. These parame-
ters influence the RADAR maximum range, velocity, and
resolution. The parameters we used to enable mid-range
object detection, consistently with our use case scenarios, are
shown in Table 2. Just like ViRa, we take as a reference the
BGT60TR13C Infineon FMCW RADAR.

TABLE 2. Simulated RADAR sensor configuration parameters.

The technical characteristics of the simulated RADAR we
obtained are shown in Table 3.

23316 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 10. RADAR raw data structure example.

TABLE 3. Simulated RADAR technical characteristics.

The raw data consists of a matrix of dimensions
(NRX ,Nchirps,Nsamples) containing the voltage amplitude if
the IF signal low filtered and ADC sampled. Fig. 10 shows
the data structure of a frame of dimensions (3, 4, 64). Each
matrix contains information from one receiver antenna, where
each row represents a chirp and each column is a sample of
the chirp.

A signal contribution is computed for each pixel of the
input stereo image, then each value of the signal amplitude
is given by the sum of the individual pixel contribution.
Due to the high complexity of the operations (∼ 109 for a
320×240 pixels image), the operation was parallelized using
GPU features with the Numba Python library [28], shrinking
the computation time from tens of seconds to ∼ 1 second.
We will review the fundamental RADAR FMCW expres-

sions as in [29] to better understand the signal generation
pipeline. The chirp signal can be described with the following
equation:

sT (t) = Aej(2π fct+πSt2)
+ A∗e−j(2π fct+πSt2),

0 < t < Tc (2)

where (.)∗ denotes the complex conjugate. Considering a
single object at a distance d moving at a velocity v, the
received signal is a scaled and time-delayed copy of sT (t)
where TOF is τ =

2(d+vt)
c , with t the 1 of time considered.

sR(t) = Bej(2π fc(t−τ )+πS(t−τ )2)

+ B∗e−j(2π fc(t−τ )+πS(t−τ )2),

τ < t < Tc (3)

This signal is then processed under an electronic mixer and
a low-pass filter to remove high-frequency mixing product,

FIGURE 11. BGT60TR13C FMCW RADAR layout [18].

giving a signal modeled as follows:

sIF (t) = AB∗ej(τ (2π fc+2πSt−πSτ ))

+ A∗Be−j(τ (2π fc+2πSt−πSτ )),

τ < t < Tc (4)

Equation (4) is the main expression we compute. The first
term can be expressed as 2π fcτ = 4π do+vt

λmax
where λmax =

c
fc
.

It can be observed that the velocity varies as a function of
λmax ∼ 1−3m. Thus, although the change in distance due to
the velocity vt barely affects the range detected, the velocity
can be extracted because vt is in the scale of the maximum
wavelength.

Three receiver antennas are simulated as in the
BGT60TR13C FMCW RADAR, whose layout is displayed
in Fig. 11 to extract the horizontal (azimuth) and vertical
(elevation) angles of the objects. Due to the distance between
antennas, the emitted electromagnetic waves arrive at the
receiver with a time delay, resulting in a relative phase
difference.

We simulate the three antennas. Referring to the nomencla-
ture of Fig. 11, the first antenna is taken as a reference, which
means that no phase shift is associated with its signal. The
antenna RX2 is shifted in the horizontal and vertical direction
with respect to RX1; therefore, the relative phase difference
can be expressed as [30]:

1θ2 =
2πdantenna

λmax
sin(θ )cos(φ) +

2πdantenna
λmax

sin(φ) (5)

where θ is the azimuth angle, φ is the elevation angle and
dantenna is the distance between receiver antennas. The phase
difference can be observed in the resulting IF signal. Fig. 12
shows the sensor view ad the IF signal amplitude (64 samples)
of the first chirp or each antenna. In this figure, the only
detected object is the person. Since the first antennas to
receive the signal are RX2 and RX3, the signal received by RX1
is represented as behind in time. The same happens with RX2
andRX3 in the vertical plane. Fig. 13 shows the same behavior
in the case of negative azimuth and elevation angles.

The amplitude of the IF signal is also simulated accord-
ing to the RADAR equations. The electromagnetic waves

VOLUME 11, 2023 23317



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 12. Person with positive azimuth and elevation angles (a) and
corresponding IF Signal amplitude of the 3 RX antennas (b).

propagate with a spherical waveform. The radiated power
density is given by PEGE

4πd2
, where GE is the emitter antenna

gain, and PE is the emitted power. The power reflected by
the object is the radiate power density multiplied by σ , which
is the RADAR Cross-Section (RCS). The RCS measures the
targetB4s ability to reflect the RADAR signal to the RADAR.
The power density at the RX antenna is PEGE

4π2d4
, and the power

captured by the antenna is given by the multiplication of
the power density by the effective aperture area GRλ2

4π , where
GR is the receiver antenna gain [31]. Therefore, the relation
between receiver power PR and emitter power PE is given by:

PR
PE

=
λ2GEGRσ
4π3d4

(6)

In order to adapt the RADAR equation to the simulated
input data (i.e., depth image), we impose that PE

4πd2
= 1.

This is because in depth images, distant objects will appear
as smaller (which means occupying a smaller number of
pixels) and, since we compute the RADAR response by sum-
ming the individual pixel contributions, the response of the
further targets would otherwise be unrealistic. By imposing
the condition above, the signal power per pixel decreases
quadratically with the distance, i.e., in the same way as the
pixel area increases. Therefore, the attenuation information
is included with the reduction of the pixel area of the object
in the image. The output of a RADAR consists of a voltage

FIGURE 13. Person with negative azimuth and elevation angles (a) and
corresponding IF Signal amplitude of the 3 RX antennas (b).

amplitude, which we obtain by:

VR =
2
√
GEGRσ

λ

4πd
(7)

V. EXPERIMENTS AND RESULTS
A. INSTALLATION
The proposed simulation framework is based on AirSim;
therefore, installing the simulator on an adequate machine
is necessary to test its features. We tested our simulator in
Windows 10, but AirSim is also available for Linux and
MAC. In addition, it can also be interfaced with the Robot
Operating System (ROS) through a wrapper. We have chosen
the ASUS TUF GAMING F15 with 6 cores, 16GB RAM,
and a GeForce RTX 3060 6GB Video RAM, as it allows us to
carry out the simulations smoothly. We consider this machine
a reference for the minimum system requirements as long
as the CPU and RAM are fully used during the simulator
execution.

AirSim can be easily installed following the official doc-
umentation at [32]. AirSim is, in turn, a plugin that has to
be deployed in an Unreal project [33]. The scenarios have
been created based on the Unreal Engine packages called
City Park Environment Collection, Scanned 3D People Pack,
Modular Military Operation Urban Training Environment
- Civilian Pack, which can be downloaded from the Epic
Games Launcher application.

The AirSim repository contains a Python API within the
folder called B4PythonClient. The scripts containing the

23318 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

TABLE 4. Drivers and software versions in Windows 10.

TABLE 5. FPS performance comparison - Offline Version.

implementations of our demonstrations have been added to
this folder.

Training deep learning algorithms in the high-end lap-
top requires properly configuring the NVIDIA graphic card
driver and libraries. The drivers and software version in Win-
dows 10 are shown in Table 4

B. DATA ACQUISITION
1) OFFLINE MODE
In this subsection, we evaluate the offline version, which is
intended for the recording of a synthetic multisensor dataset.

The dataset is obtained by recording the drone sensor data
while traveling along a pre-planned square trajectory loop in
a park scene with trees, buildings, and people. The drone’s
linear velocity is set to 3 m/s to avoid aggressive drone
movements when changing directions. The dataset consists
of 500 frames recorded all over the path.

The Environment display offers five different graphic qual-
ity levels, ranging from Low to Cinematic. The graphic qual-
ity depends on various parameters, such as the view distance,
shadow rendering, textures, or shading.

The overall latency can be divided into the following:

• t1: latency to generate and extract the state information
from the simulator

• t2: latency to save data into the SSD.

Since latency t2 mostly depends on the operating sys-
tem, we evaluate the overall performance based on the time
employed to generate and extract the data from the simulator
without considering the storage time. As the RADAR is the
most computationally demanding sensor to simulate, we eval-
uate the FPS with and without the RADAR sensor. Table 5
shows the FPS calculated in each quality mode, calculated by
dividing the number of frames (500) by the total elapsed time.

Only a tiny drop in the FPS can be observed by adding
the data storage phase. The medium quality provides the
best trade-off between achievable acquisition frequency and
graphics fidelity. However, the graphics rendering in the
recorded dataset is delimited by the camera image resolution
(320 × 240 pixels). Consequently, getting higher engine res-
olution is not relevant in this scope. The other experiments
described in the following sections are carried out in Low
quality mode.

TABLE 6. Online Version performance comparison of connection versions.

2) ONLINE MODE
The Data Acquisition procedure is also implemented in the
Online Mode as it provides the input data to the sensor fusion
algorithms.
Three different versions have been evaluated:

• SUT and CUT running in the same machine
• SUT and CUT running on different machines: SUT run-
ning on five threads and CUT running on a single thread
connected through a single port

• SUT and CUT running on different machines: SUT runs
on five different processes, and the CUT runs on five
different threads connected through five ports.

The first two implementations were discussed in
Section IV. As for the third version, five ports are opened
both by the SUT and CUT. Each process in the SUT and
thread in the CUT binds to a specific port. Four processes
are involved in the data gathering, while the fifth applies the
control commands to the drone. The processes are synchro-
nized through a Barrier flag. Four processes of the CUT are
in charge of storing the data retrieved from the SUT in a fixed
position within a Python list. Finally, the fifth thread runs the
tested sensor fusion algorithms and sends the desired state to
the SUT.

The scene configuration is identical to the one described
in the previous subsection, while the drone executes a
360 degrees yaw motion while recording 1000 frames.

The evaluation considers the time employed to gather the
data without processing. The aim is to keep the t2 and t3 laten-
cies constant for every experiment.

Table 6 summarizes the results. We can observe that the
second implementation outperforms the others as it mini-
mizes the t1 latency.

C. OBJECT DETECTION
This section describes the deployment and testing of a people
detection demonstration with the aid of the simulator. The

VOLUME 11, 2023 23319



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

object detection algorithm is based on a Convolutional Neural
Network that was trained on the high-end laptop and deployed
on one onboard computer. The process followed to build and
deploy the object detection algorithm is summarized below:

• Network architecture and design. The design of a neu-
ral network structure can be a time-consuming task due
to its complexity, so it can be preferable to leverage an
existing model. In this case, the mobilenet-Single-Shot
multibox Detection (SSD) [34] model has been selected.
SSD-mobilenet is intended to perform object detection
keeping memory consumption low while guaranteeing
high accuracy [35]. The object detection task is divided
into two steps, namely Classification, performed by the
neural backbone mobilenet, and Location/Detection by
the SSD structure.
Before performing the object detection, the network
must be trained based on rather large and varied datasets
(containing around 10 thousand images). This can be
a rather time-consuming process, which is fortunately
not always necessary thanks to the leverage of Transfer
Learning (TL) techniques. Transfer Learning consists of
using a pre-trained network whose last(s) layer(s) are
re-trained while the rest are frozen. TL saves training
time and guarantees a good level of accuracy provided
that the images contained in the user dataset and the
original one has similar characteristics [36].

• Dataset acquisition. The dataset employed in the train-
ing of the last layers was acquired with the experi-
ment described in Subsection V-B. The resulting dataset
has been later adapted in its format to feed the SSD-
mobilenet model. The frames are divided into three
subsets, namely training (60%), validation (20%), and
test (20%).

• Model Training. The training step has been carried out
on the high-end laptop as it would guarantee higher
accuracy and lower elapsed time thanks to the leverage
ofGPU features. A comparison between the training per-
formance of the Jetson Nano and the high-end laptop is
available in Table 7. The computing power is measured
in Floating Point Operations Per Second (FLOPS).

• Model Deployment. Before the model deployment,
the NVIDIA Jetson Nano followed the instruction in
Table 4. Two different approaches have been considered
to perform the inference.
The first approach uses PyTorch to load the model and
make predictions. We first create the mobilenet-SSD
structure and then load the parameters. Before the simu-
lated drone flight starts, performing an initial prediction
on a previously loaded image is necessary because the
first prediction takes way longer than the others. During
the inference, the successive outputs three variables per
detection: the box coordinates, the label of the class,
and the detection probability. The drone image can be
displayed synchronously in a window and the bounding
box coordinates (xmin, xmax , ymin, ymax) allow to draw a

FIGURE 14. TensorRT inference in real time.

rectangle over the detected object. The inference latency
t2 reduces the number of the achieved FPS.
The second approach aims to optimize the predic-
tion and to reduce latency t2 using TensorRT [37],
an SDK for high-performance deep learning inference.
TensorRT optimizes the neural network model in order
to reduce the inference time. Fig. 14 shows the camera
image processed by the object detection algorithm using
TensorRT.

We run the SUT and CUT in different machines con-
nected through a single port and evaluate the inference using
PyTorch and TensorRT as shown in Table 8.

D. RADAR SIMULATION
The RADAR simulation has been validated by comparing
the simulated data with real measurements collected with the
Infineon BGT60TR13CRADAR sensor in a similar scenario.
The real data acquisitions were recorded outdoors at the Infi-
neon Technologies AG headquarters in Munich (Germany).
A dataset of 500 frames was obtained at 13 FPS with the
support of a laptop and a Python API. The RADAR data
were processed following the same procedure mentioned in
Subsection IV-D.

The real-life experiments have been carried out on two
different scenarios where the RADAR is kept static at the
height of 1.8 m and a person moves along two different
trajectories:

• walking away from the sensor with constant speed along
a straight line until a distance of 7 m is reached;

• walking towards the RADAR with constant speed start-
ing from a distance of 7 m to 1 m.

The same scenarios and movements have been recreated
in AirSim, where only the people and the ground have been
included in the segmentation images. A separate dataset has
been recorded for each scenario to ease the programming
of the target’s trajectory. The two datasets are composed of
100 frames, each collected at a frequency of 7 FPS. The
RADAR model was tuned with the parameters shown in
Table 2.

23320 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

TABLE 7. High-end and on-board computer comparison.

TABLE 8. AI performance comparison of inference versions.

TABLE 9. NCC coefficients obtained in both scenarios.

The real and simulated data were compared based on the
range-doppler images. They consist of matrices of dimen-
sions (36, 64), where each element represents the detection’s
intensity value with a specific velocity-range value normal-
ized between 0 and 1. Each pair of range-doppler images
has been evaluated by calculating the Normalized Cross
Correlation (NCC) coefficient, commonly used to measure
the similarity between two images [38]. The NCC coefficient
can be expressed as:

r =

∑
i
∑

j(xi,j − x̄)(yi,j − ȳ)√∑
i
∑

j(xi,j − x̄)2
∑

i
∑

j(yi,j − ȳ)2
(8)

where x̄ and ȳ are the mean intensities of the simulated and
real range-doppler images, respectively. The images from the
real and simulated data were paired according to the distance
of the human target from the sensor. The resulting correlation
is shown in Table 9.
It is worth pointing out a few elements affecting the NCC

coefficient results. First, the movement of the human target of
the simulator can only partially match themotion of the actual
person. Then, the real data images contain an undesired con-
tribution at zero speed and range, which is absent in the sim-
ulated data. This is due to the absence of noise models in the
simulation, while, in real life, noise can create false detections
and limit the maximum range. Furthermore, the proposed
approach is limited to an approximation of the reflection
properties, taking into account the normality of the surface
but not the roughness and electrical properties of the materi-
als. Fig. 15 displays the doppler images obtained by the real
and simulated measurements, respectively, in the first sce-
nario (person walking towards the sensor). In contrast, Fig.16
represents the second scenario (personwalking away from the

FIGURE 15. Person moving towards the RADAR. Real data and simulated
data.

sensor). Despite the aforementioned undesired contributions,
we can observe that the simulated sensor correctly detected
the targets.

E. SITL AND HITL FLIGHT DEMONSTRATIONS
In this section, we describe two flight demonstrations
carried out with the help of the proposed framework.
First, the experiment described in Subsection V-E1 con-
sists of a Hardware-in-the-Loop flight simulation where the
drone model is commanded by an actual flight controller
(Pixhawk 2) while traveling a user-defined route. Then,
subsection V-E2 discusses a Software-in-the-Loop simula-
tion of navigation in an unknown environment.

We wish to point out that no performance analysis is
provided for the SUTs in this section since the performance
optimization of the involved algorithms is beyond the scope
of this work. Indeed, our aim is exclusively to prove the
possibility to performHITL and SITL simulations of complex
navigation systems with the support of AirLoop.

1) HITL DRONE FLIGHT WITH PIXHAWK 2
Our simulation framework can be interfaced with ArduPilot,
a Commercial-off-the-Shelf Flight Controller Running on a
Pixhawk 2 to carry out Hardware-in-the-Loop Simulations.
In more detail, the Pixhawk 2 is connected to the high-end

VOLUME 11, 2023 23321



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 16. Person moving away from the RADAR. Real data and
simulated data.

FIGURE 17. Autonomous navigation with Pixhawk 2.

laptop via a USB port and the communication between the
drone model and ArduPilot takes place through the Mavlink
messaging protocol. In order to command the drone through
the Pixhawk 2, it is necessary to install the QC Ground Con-
trol Software. A complete Tutorial on the interfacing between
AirSim-based simulators and ArduPilot is available at [39].

In this experiment, four waypoints are set as the vertices
of a rectangular trajectory. The trajectory tracking is carried
out via GPS. Although the navigation is based on the sim-
ulated sensors, QC Ground Control needs to be initialized
with a real GPS receiver. Therefore, although the flight takes
place in a simulated environment, the QC Ground Contol
GUI shows a fictitious trajectory where the drone is in a
real location. In this case, the experiments were carried out
at the Infineon Technologies AG headquarters in Neubiberg
(Germany), as shown in Fig. 17.

2) SITL AUTONOMOUS FLIGHT IN UNKNOWN
ENVIRONMENT
We now describe a Software-in-the-Loop simulation of
a fully autonomous flight demonstration in an unknown

FIGURE 18. Autonomous Navigation pipeline.

FIGURE 19. Autonomous Navigation in Unknown environment
demonstration - frame.

environment. In this experiment, the drone is initially posi-
tioned in a known location and is supposed to reach a
user-defined target point (expressed in map coordinates) in
a completely autonomous way without any previous knowl-
edge of the surrounding environment. Therefore, the follow-
ing problems have to be solved:

• Find a suitable path to reach the target location in the
shortest time possible while avoiding obstacles (path
planning and obstacle avoidance)

• Create a map of the surrounding environment (mapping)
• Provide high-precision self-pose estimation
(localization).

The simulation environment where the flight takes place
is a custom urban-like environment based on the pack-
age Modular Military Operation Urban Training Environ-
ment - Civilian Pack. The drone is equipped with a LiDAR
and a GPS sensor. The data acquisition runs on the high-
end laptop, while the sensor fusion pipeline runs on an
NVIDIA Jetson Nano according to the settings described in
Subsection IV-B2.

In order to plan a suitable trajectory to reach a target
location, at least a partial knowledge of the surrounding
environment is necessary. This means that a partial version
of the map has to be available before starting to plan the path.
This explains the sensor fusion pipeline schema in Fig. 18.
The sensor data coming from the engine (GPS and LiDAR)
are given as inputs to a Rao-Blackwellized Particle Filter
(RBPF) Simultaneous Localization and Mapping (SLAM)
algorithm [40]. RBPF SLAM provides a probabilistic pose
estimation of the drone and a progressively updated environ-
mental map. In more detail, the state estimation is represented

23322 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

FIGURE 20. Obstacle avoidance strategy example. The images shown in
this figures are not taken from the simulator and are only aimed at
providing a graphical representation of the obstacle avoidance strategy.
The known occupied cells are highlighted in black, while the free space is
colored in white. The unexplored cells are highlighted in grey, while the
cells surrounding an obstacle are highlighted in orange. The final target
location is highlighted with a yellow star, while the next planned position
is marked with a red dot. A detailed explanation of the subfigures is
provided in Section V-E2.

by a probability distribution, which, in turn, is approximated
by a set of weighted samples (particles). The output of RBPF
SLAM consists of a pose estimation of the drone and an
environmental representation in the form of an Occupancy
Grid. An Occupancy Grid schematizes the world as a set of
cells with uniform dimensions that can be considered free or
occupied. The cells can be either bidimensional or tridimen-
sional. For the sake of this demonstration, the environment is
approximated as 2D as the drone flies at a constant altitude.

The pose estimation and the updated Occupancy Grid are
the inputs for the path planning algorithm A* [41]. A* is a
widely popular graph-based algorithm based on the Dijkstra
algorithm. Starting from a given node, the A* algorithm
selects the next nodes based on an estimate of their distance
from the target location. The binary Occupancy Grid deliv-
ered by the SLAM algorithm can be schematized as a graph,

where each free cell is considered a node, and the distance
between two adjacent cells is an edge weight. Consequently,
the SLAM algorithm provides a new pose estimation and an
updated map at every iteration, and, with these inputs, A*
plans a new path starting from the current location. Subse-
quently, the first move of the new planned path is actuated by
the drone model.

The creation of the Occupancy Grid can be affected by sev-
eral factors, such as sensor noise or the momentary presence
of moving targets, which could result in some cells being
wrongly considered occupied. In addition, the specific con-
formation of our environment and the constant flight altitude
enables approximating the environmental features as a set of
lines. Therefore, a line detection algorithm is applied to the
Occupancy Grid delivered by the SLAM algorithm to elimi-
nate false detections.Moreover, since themap is continuously
updating, A* can cause the drone to move toward an obstacle.
In addition, the actuators can cause overshooting in the drone
motion, resulting in the drone getting closer to the obstacles
than planned. To prevent this scenario from occurring, the
strategy described below is actuated.

• Based on the current knowledge of the environment, the
cells in the Occupancy Grid are assessed as either free
or occupied, as shown in Fig. 20 (a). In more detail, the
occupied cells are highlighted in black, the free cells
in white and the unexplored cells are colored in grey.
However, to prevent the scenariosmentioned above from
occurring, a larger set of cells are fictitiously considered
occupied (highlighted in orange) to prevent A* from
directing the drone too close to the known obstacles.
The width of the orange area is chosen considering the
drone’s dimensions and speed.

• Once the map is updated, the next pose may fall within
the orange area (Fig. 20 (b) and 20 (c)).

• When this happens, the next move is planned to take
distance from the obstacle. Therefore, the drone will
move away from the obstacles perpendicularly to the
obstacle surface (Fig. 20 (d)).

• Then, the successive moves are regularly planned
according to A* until a similar scenario occurs
(Fig. 20 (e)).

For the sake of this demonstration, the drone is given a ref-
erence speed of 3m/s and a reference height of 10meters. The
sampling frequency of the onboard sensors is set to 10 FPS.
The UAV starts at a known position identified as the map’s
origin (0,0), and the final target location is (70m, 60m).
A frame showing the drone moving within the environment
and the updating map is shown in Fig. 19.

VI. CONCLUSION
In this paper, we presented AirLoop: a UAV simulation envi-
ronment for the testing and validating Sensor Fusion algo-
rithms for autonomous navigation. The proposed simulator is
based on AirSim and offers a variety of sensors, including a
novel simulationmodel of an FMCWRADAR. A key novelty
in the proposed RADAR simulator is the possibility of obtain-

VOLUME 11, 2023 23323



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

ing synthetic raw data. The simulated RADAR has been
evaluated based on the Infineon. Technologies BGT60TR13C
RADAR.

Furthermore, the simulation engine enables the execu-
tion of HITL and SITL simulations. Communication with
NVIDIA Jetson Nano through LAN has been evaluated in
different modalities and exploited to carry out several demon-
strations. Experiments such as the acquisition of synthetic
data, object detection, and autonomous navigation in an
unknown environment have been performed in more detail.

In addition, the possibility of interfacing the proposed
simulation engine with a COTS flight controller has been
demonstrated with a GPS-aided path planning simulation.

LIST OF ABBREVIATIONS
The following abbreviations are used in the manuscript:

ADC Analog-to-Digital Converter
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
ASL Autonomous System Lab
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CUT Client Under Test
CW Continuous Wave
FLOPS Floating Point Operations Per Second
FMCW Frequency Modulated Continuous Wave
FOV Field Of View
FPS Frames Per Second
GPS Global Positioning System
GPU Graphics Processing Unit
GUI Graphical User Interface
HDD Hard Drive Disk
HITL Hardware In The Loop
IF Intermediate Frequency
IMU Inertial Measurement Unit
IP Internet Protocol
LAN Local Area Network
LiDAR Laser imaging Detection and Ranging
MAV Micro Aerial Vehicle
NCC Normalized Cross Correlation
OS Operating System
RADAR Radio detection and ranging
RAM Random Access Memory
RBPF Rao-Blackwellized Particle Filter
RCP Remote Procedure Call
RCS RADAR Cross-Section
RL Reinforcement Learning
ROS Robot Operating System
RX Receive
SDK Software Development Kit
SITL Software in the Loop
SLAM Simultaneous Localization and Mapping
SSD Solid State Drive
SSD Single-Shot multibox Detection

SUT System Under Test
TCP Transmission Control Protocol
TensorRT Tensor RunTime
TL Transfer Learning
ToF Time-of-Flight
TX Transmit
UAV Unmanned Aerial Vehicle
ViRa Virtual RADAR
VOC Visual Object Classes

REFERENCES
[1] M. Hassanalian and A. Abdelkefi, ‘‘Classifications, applications, and

design challenges of drones: A review,’’ Progr. Aerosp. Sci., vol. 91,
pp. 99–131, May 2017.

[2] F. Samadzadegan and G. Abdi, ‘‘Autonomous navigation of unmanned
aerial vehicles based on multi-sensor data fusion,’’ in Proc. 20th Iranian
Conf. Electr. Eng. (ICEE), May 2012, pp. 868–873.

[3] A. Bittar, H. V. Figuereido, P. A. Guimaraes, and A. C.Mendes, ‘‘Guidance
software-in-the-loop simulation using X-plane and simulink for UAVs,’’ in
Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), May 2014, pp. 993–1002.

[4] P. S. Andrews, S. Stepney, and J. Timmis, ‘‘Simulation as a scientific instru-
ment,’’ in Proc. Workshop Complex Syst. Modelling Simulation, Orleans,
France. Citeseer, 2012, pp. 1–10.

[5] A. Mairaj, A. I. Baba, and A. Y. Javaid, ‘‘Application specific drone sim-
ulators: Recent advances and challenges,’’ Simul. Model. Pract. Theory,
vol. 94, pp. 100–117, Jul. 2019.

[6] J. Glossner, S. Murphy, and D. Iancu, ‘‘An overview of the drone open-
source ecosystem,’’ 2021, arXiv:2110.02260.

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘‘AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,’’ in Field and Service
Robotics. Cham, Switzerland: Springer, 2018, pp. 621–635.

[8] N. Valcasara,Unreal Engine Game Development Blueprints. Birmingham,
U.K.: Packt, 2015.

[9] S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, ‘‘Air learn-
ing: A deep reinforcement learning gym for autonomous aerial robot visual
navigation,’’Mach. Learn., vol. 110, no. 9, pp. 2501–2540, Sep. 2021.

[10] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, ‘‘Flight-
mare: A flexible quadrotor simulator,’’ 2020, arXiv:2009.00563.

[11] J. K. Haas, ‘‘A history of the unity game engine,’’ Diss. WORCESTER
Polytech. Inst., vol. 483, p. 484, Mar. 2014.

[12] UZH-RPG. ROS Tutorials · Issue #37 · UZH-RPG/Flightmare.
Accessed: Dec. 12, 2022. [Online]. Available: https://github.com/uzh-
rpg/flightmare/issues/37

[13] C. E. Agüero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, and
B. Gerkey, ‘‘Inside the virtual robotics challenge: Simulating real-time
robotic disaster response,’’ IEEE Trans. Automat. Sci. Eng., vol. 12, no. 2,
pp. 494–506, Apr. 2015.

[14] N. Koenig and A. Howard, ‘‘Design and use paradigms for Gazebo, an
open-source multi-robot simulator,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., vol. 3, Oct. 2004, pp. 2149–2154.

[15] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, ‘‘Rotors—A modular
gazebo MAV simulator framework,’’ in Robot Operating System (ROS).
Cham, Switzerland: Springer, 2016, pp. 595–625.

[16] K. Zheng, ‘‘ROS navigation tuning guide,’’ in Robot Operating System
(ROS). Cham, Switzerland: Springer, 2021, pp. 197–226.

[17] R. Salem. Rohitsalem/Projection: Tools for Auto Generation of Image
Datasets With Annotated Bounding Boxes. Accessed: Dec. 12, 2022.
[Online]. Available: https://github.com/rohitsalem/projection

[18] BGT60TR13C Technical Datasheet, Infineon Technologies, Neubiberg,
Germany, 2021.

[19] M. Ciarambino, Y.-Y. Chen, and N. Peinecke, ‘‘A game engine-based
millimeter wave radar simulation,’’ Proc. SPIE, vol. 11759, pp. 21–29,
Apr. 2021.

[20] Cosmosim: Radar Sensor Simulation Framework. Accessed:
Dec. 12, 2022. [Online]. Available: https://www.otsl.jp/en/product/
cosmosim/

[21] Radar Signal Simulation and Processing for Automated Driving.
Accessed: Dec. 12, 2022. [Online]. Available: https://de.mathworks.
com/help/radar/ug/radar-signal-simulation-and-processing-for-
automated-driving.html

23324 VOLUME 11, 2023



J. Giovagnola et al.: AirLoop: A Simulation Framework for Testing of UAV Services

[22] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, ‘‘The EuRoC micro aerial vehicle
datasets,’’ Int. J. Robot. Res., vol. 35, no. 10, pp. 1157–1163, 2016.

[23] M. Everingham, A. Zisserman, and C. K. I. Williams, ‘‘The 2005 PAS-
CAL visual object classes challenge,’’ in Proc. Mach. Learn. Challenges
Workshop. Berlin, Germany: Springer, 2005, pp. 117–176.

[24] K. C. Leung, V. O. K. Li, and D. Yang, ‘‘An overview of packet reordering
in transmission control protocol (TCP): Problems, solutions, and chal-
lenges,’’ IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 4, pp. 522–535,
Apr. 2007.

[25] A. D. Birrell, ‘‘An assessment of the remote procedure call mechanism,’’
in Proc. 5th Workshop ACM SIGOPS Eur. Workshop Models Paradigms
Distrib. Syst. Structuring (EW), 1992, pp. 1–3.

[26] M. Chmurski, M. Zubert, K. Bierzynski, and A. Santra, ‘‘Analysis of edge-
optimized deep learning classifiers for radar-based gesture recognition,’’
IEEE Access, vol. 9, pp. 74406–74421, 2021.

[27] C. Schoffmann, B. Ubezio, C. Bohm, S. Muhlbacher-Karrer, and
H. Zangl, ‘‘Virtual radar: Real-time millimeter-wave radar sensor simu-
lation for perception-driven robotics,’’ IEEE Robot. Autom. Lett., vol. 6,
no. 3, pp. 4704–4711, Jul. 2021.

[28] S. K. Lam, A. Pitrou, and S. Seibert, ‘‘Numba: A LLVM-based Python
JIT compiler,’’ in Proc. 2ndWorkshop LLVMCompiler Infrastruct. (HPC),
2015, pp. 1–6.

[29] J. Lin Jr., Y.-P. Li, W.-C. Hsu, and T.-S. Lee, ‘‘Design of an FMCW radar
baseband signal processing system for automotive application,’’ Springer-
Plus, vol. 5, no. 1, pp. 1–16, 2016.

[30] G. M. Brooker, ‘‘Understanding millimetre wave FMCW radars,’’ in Proc.
1st Int. Conf. Sens. Technol., vol. 1, 2005, pp. 1–6.

[31] C. Iovescu and S. Rao, ‘‘The fundamentals of millimeter wave sensors,’’
Texas Instruments, Dallas, TX, USA, 2017, pp. 1–8.

[32] Build AirSim on Windows. Accessed: Dec. 12, 2022. [Online]. Available:
https://microsoft.github.io/AirSim/build_windows/

[33] Development Workflow—AirSim. Accessed: Dec. 12, 2022. [Online].
Available: https://microsoft.github.io/AirSim/dev_workflow/

[34] Y.-C. Chiu, C.-Y. Tsai, M.-D. Ruan, G.-Y. Shen, and T.-T. Lee,
‘‘MobileNet-SSDv2: An improved object detection model for embedded
systems,’’ in Proc. Int. Conf. Syst. Sci. Eng. (ICSSE), Aug. 2020, pp. 1–5.

[35] J. Mendez, M. Molina, N. Rodriguez, M. P. Cuellar, and D. P. Morales,
‘‘Camera-LiDAR multi-level sensor fusion for target detection at the net-
work edge,’’ Sensors, vol. 21, no. 12, p. 3992, 2021.

[36] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Jan. 2021.

[37] Dusty-NV. Dusty-NV/Jetson-Inference: Hello AI World Guide to Deploy-
ing Deep-Learning Inference Networks and Deep Vision Primitives With
Tensorrt and NVIDIA Jetson. Accessed: Dec. 12, 2022. [Online]. Avail-
able: https://github.com/dusty-nv/jetson-inference

[38] J.-C. Yoo and T. H. Han, ‘‘Fast normalized cross-correlation,’’ Circuits,
Syst. Signal Process., vol. 28, pp. 819–843, Dec. 2009.

[39] Px4 Setup for AirSim. Accessed: Dec. 12, 2022. [Online]. Available:
https://microsoft.github.io/AirSim/px4_setup/

[40] K. P.Murphy, ‘‘Bayesianmap learning in dynamic environments,’’ inProc.
Adv. Neural Inf. Process. Syst., vol. 12, 1999, pp. 1–7.

[41] H.-Y. Zhang, W.-M. Lin, and A.-X. Chen, ‘‘Path planning for the mobile
robot: A review,’’ Symmetry, vol. 10, no. 10, p. 450, 2018.

JESSICA GIOVAGNOLA received the B.S. and
M.S. degrees in automation and control engineer-
ing from Politecnico di Milano, Italy, in 2018 and
2020, respectively. She is currently pursuing the
Ph.D. degree with Infineon Technologies AG,
Germany, in collaboration with the University of
Granada, Spain, with a focus on sensor fusion
applications for drone technologies.

She joined Infineon Technologies AG, in March
2021. Her current research interests include simul-

taneous localization and mapping (SLAM) techniques in GPS-denied envi-
ronments, edge computing, and sensor fusion for autonomous navigation.

JUAN B. MORO MEGÍAS received the B.Sc.
degree in industrial electronic engineering and
the M.S. degree in industrial electronics from the
University of Granada, Spain, in 2021 and 2022,
respectively.

From 2021 to 2022, he was with Infineon Tech-
nologies AG, Germany, as a working student,
where he worked on real data acquisition and
simulation techniques for machine-learning appli-
cations for unmanned aerial vehicles. In 2022,

he joined MAHLE Electronics, Spain, where he is currently working as a
Hardware Engineer on an electric vehicle charger project.

MIGUEL MOLINA FERNÁNDEZ received the
B.Sc. degree in electronics engineering from the
University of Granada, in 2019, and the M.Sc.
degree in electronic systems engineering from the
Polytechnic University of Madrid, in 2020. He is
currently pursuing the Ph.D. degree with the Uni-
versity of Granada.

He joined Infineon Technologies AG, in August
2020. He is currently working on applications of
sensor fusion for drones and into hardware imple-

mentations of artificial neural networks, especially for spiking neural net-
works (SNNs). His main research interests include field-programmable gate
arrays (FPGAs), edge computing, artificial neural networks, and industry 4.0.

MANUEL PEGALÁJAR CUÉLLAR received the
bachelor’s and master’s degrees in computer sci-
ence from the Department of Computer Science
and Artificial Intelligence, University of Granada,
Spain, in 2003 and 2006, respectively.

Since 2012, he has been a tenured Professor
with the University of Granada, where he is cur-
rently with the Department of Computer Science
and Artificial Intelligence. He has been working in
time series forecasting and neural networks, since

2004. Hismain research interests include neural networks, evolutionary com-
putation and metaheuristics, ambient intelligence, reinforcement learning,
and sensor data gathering and modeling for AI applications. His current
research interests include quantum machine learning and quantum neural
networks and their application to different machine learning fields.

DIEGO P. MORALES SANTOS received the
M.Eng. and Ph.D. degrees in electronics engineer-
ing from the University of Granada, in 2001 and
2011, respectively.

Since 2001, he has been an Assistant Pro-
fessor with the Department of Computer Archi-
tecture and Electronics, University of Almeria.
He joined the Department of Electronics and Com-
puter Technology, University of Granada, in 2006,
where he is currently a tenured Professor. He is

the Co-Founder of the Biochemistry and Electronics as Sensing Technolo-
gies (BEST) Research Group, University of Granada. He has coauthored
more than 80 scientific contributions. His current research interests include
low-power energy conversion, energy harvesting for wearable sensing sys-
tems, and new materials for electronics and sensors.

VOLUME 11, 2023 23325


