Ribosomal proteins eL24 and eL19, involved in intersubunit bridges, have the specific roles to ensure the ribosome functionality

Ivan Kisly, Jaanus Remme and Tiina Tamm

Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia

(e-mail: ttamm@ut.ee)

Introduction

- \geq Seventeen bridges are formed during association of yeast ribosome subunits (Ben-Shem *et al.*, 2011). Five intersubunit bridges are eukaryote-specific.
- > Two eukaryote-specific bridges, eB12 and eB13, are structurally similar to each other. Both bridges are formed by the long protein α -helices extending from 60S subunit Eand A-site sides, respectively.
- > Essential protein eL19 (shown in red) is the main component of eB12 bridge.
- \succ Dispensable for cell viability protein eL24 (shown in orange) participates in formation of two intersubunit bridges: eB13 and B6. \succ The C-terminal α -helix and linker region of eL24 form the main part of eB13 bridge. > The conserved B6 bridge is made of only two contacts between N-terminal domain of eL24 and 18S rRNA.

Conclusions

- \succ Essential function of protein eL19, carried by the N-terminal domain and middle region, is in ribosome biogenesis (Kisly *et al.*, 2016). Secondary function of eL19, provided by the C-terminal α -helical domain, is eB12 bridge formation.
- \succ Bridges eB12 and eB13 ensure stable/correct subunit interaction.
- > Bridge B6 does not play a significant role in ribosome functioning. Loss of this bridge has no apparent influence on the yeast cell growth and global level of translation.

eL19 **40S**

Aim of this study was to evaluate the importance of eukaryote-specific bridges eB12 and eB13 in terms of translation.

1. Ribosomal proteins eL19 and eL24

2. Bridges eB12 and eB13 are essential for stable 40S and

- \succ The eB13 bridge is important for initiation and elongation steps of translation.
- > The N-terminal domain of eL24 plays a significant role at the initiation step of translation.

4. eB13 bridge forming region and N-terminal domain of eL24 are required for the efficient in vitro translation

> Cap- and polyA tail-dependent translation of Firefly luciferase (Fluc) mRNA in cell-free translation extracts

60S subunit reassociation in vitro

> In vitro reassociation of wild-type 40S subunits and wild-type or mutant 60S subunits

3. Loss of bridge eB13 leads to cold sensitivity, reduction of protein synthesis and formation of stalled translational initiation complexes

Serial dilutions spot-test assay on YPD

5. Loss of bridge eB13 leads to reduced rate of in vitro elongation

> Cap- and polyA tail-dependent translation of fusion Renilla-Firefly luciferase (Rluc-Fluc) mRNA in cell-free translation extracts

(RFU) 800

Luminescence

800

600

400

200

* P<0.01; NS, not significant

Ribosome-polysome profile analysis

