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Abstract: For remanufacturing to be more economically attractive, there is a need to develop au-
tomatic disassembly and automated visual detection methods. Screw removal is a common step
in end-of-life product disassembly for remanufacturing. This paper presents a two-stage detection
framework for structurally damaged screws and a linear regression model of reflection features that
allows the detection framework to be conducted under uneven illumination conditions. The first
stage employs reflection features to extract screws together with the reflection feature regression
model. The second stage uses texture features to filter out false areas that have reflection features
similar to those of screws. A self-optimisation strategy and weighted fusion are employed to connect
the two stages. The detection framework was implemented on a robotic platform designed for disas-
sembling electric vehicle batteries. This method allows screw removal to be conducted automatically
in complex disassembly tasks, and the utilisation of the reflection feature and data learning provides
new ideas for further research.

Keywords: robotic disassembly; screw detection; illumination condition; reflection feature; data learning

1. Introduction

Remanufacturing is part of a circular economy, returning end-of-life (EOL) products to
at least like-new conditions through a group of operations, beginning with disassembly [1,2].
The benefits of remanufacturing for the environment, society, and economy have been
widely confirmed through reducing carbon emissions, energy consumption, etc. [3–6].
Recently, research on remanufacturing electric vehicle (EV) batteries has attracted much
attention. As an environmentally friendly option for transportation, the proportion of EVs
to all sold cars has increased considerably in the last two years across the world. However,
this increase has led to the rapid disposal of EV components, which is also a threat to the
environment, society, and economy. Among these components, EV batteries are valuable
for recycling because of their expensive and hazardous materials (e.g., lithium and cobalt).
In addition, the lifespan of EV batteries is approximately 10 years, which also intensifies
the need for remanufacturing them with the growing demand for EVs [7].

Disassembly is the first and inevitable operation in the remanufacturing process due
to stricter environmental regulations and growing demand for effective product reman-
ufacturing [8–10]. In current applications, manual disassembly is still the main strategy,
which consumes a large amount of energy and exposes operators to dangerous materials.
The utilisation of robotics has been considered to be an important method in realising
automatic disassembly because of its intelligent perception system and effective execution
system [11]. As the most widely used perception system, robot vision can automatically
investigate the structural information of EOL products and contributes to the decision mak-
ing in the disassembly process, such as disassembly sequence planning [12,13]. However,
there are still some challenges in disassembly tasks for robot vision, mainly caused by
the uncertainty and complexity of EOL products [14]. The structural information of EOL

Micromachines 2023, 14, 946. https://doi.org/10.3390/mi14050946 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14050946
https://doi.org/10.3390/mi14050946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3148-2404
https://orcid.org/0000-0001-6884-7935
https://doi.org/10.3390/mi14050946
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14050946?type=check_update&version=1


Micromachines 2023, 14, 946 2 of 21

products is usually changed and difficult to estimate, which is a barrier to setting detection
criteria. In addition, 2-dimensional (2D) cameras are the mainly adopted sensors in robot
vision systems, and 2D images are widely used to accurately and efficiently describe the
structural information of EOL products. However, the image quality is closely related to the
lighting conditions. It is difficult to create a stable lighting condition, which is significant
for accomplishing disassembly tasks stably and accurately. The study of robot vision is
ponderable for disassembly.

Screw detection and removal are necessary for almost all EOL products, and the
structures of used screws are usually damaged, such as cracks, fractures, and wear and
tear, as shown in Figure 1. The uncertain conditions of used screws pose challenges to
stable and accurate detection in disassembly tasks. In existing screw detection methods,
the detection criteria are mainly designed and concluded based on the texture features of
the original screws or a small number of used screws. The performance of these methods
in disassembly tasks is limited due to the following challenges:

(1) The texture features obtained from the original screws cannot characterise the used
screws accurately due to the unavoidable structural damage during the use of the
product.

(2) The robustness of texture features extracted from a small number of available used
and damaged screws is limited due to the uncertain conditions of used screws.

(3) The texture features are easily affected by illumination conditions. Current detection
methods cannot operate stably under uneven illumination conditions.
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Figure 1. Examples of used and structurally damaged screws.

To address these issues, this paper presents a novel screw detection method contain-
ing a two-stage detection framework and a reflection feature regression model to detect
structurally damaged screws in EOL products under uneven illumination conditions. The
contributions of this paper are as follows:

(1) It presents a robust feature descriptor for structurally damaged screws by integrating
reflection features and texture features. This is beneficial in weakening the influence
of structural damage on modelling screws.

(2) It proposes a linear regression model that enables the reflection features to be updated
based on the illumination conditions automatically, which contributes to the stable
operation of feature modelling under various illumination conditions. In addition, an
illumination label is defined to measure illumination conditions automatically and
conveniently from the point of view of the image.

(3) It details a two-stage detection framework based on the proposed feature descriptor.
With the help of the linear regression model, the two-stage detection framework can
extract used screws from EOL products under uneven illumination conditions.

Based on the proposed screw detection method, automatic screw removal was realised
for an EOL EV battery using a robotic disassembly platform. The experimental results
demonstrate the satisfactory accuracy and stability of the proposed screw detection method.

The remainder of this paper is organised as follows. Section 2 reviews the visual
detection work in disassembly cases. Section 3 introduces the proposed screw detection
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method. Section 4 describes the equipment and experiments, while the results are discussed
in Section 5. Section 6 summarises this paper and lists future work.

2. Related Work
2.1. Screw Detection for Disassembly

In disassembly tasks, screw detection plays a vital role by providing the position for
later disassembly. The existing screw detection methods can be classified into experience-
based methods and data-driven methods. Experience-based methods utilise prior product
information provided by skilled operators to set detection criteria and then extract the
screw. Knowledge and model are the most widely used types of experience because they
are user-friendly to summarise. Gli et al. [15] set detection criteria based on screw contour
information and adopted well-known strategies (e.g., polygonal approaches) to detect
screws from EOL Computers. Bdiwi et al. [16] utilised Kinect to collect and characterise
screws in the form of greyscale, depth, and HSV values and then proposed a three-stage
screw detection framework for removing screws from EOL EV motors. DiFilippo et al. [17]
combined Gaussian blur, Prewitt edge detection, region erosion, and Hough and circle
detection methods in screw detection, which successfully removed 96.5% of the screws from
EOL laptops. The parameters in the above methods were all determined by the structural
information of the original screws. Under this situation, the developed criteria cannot
represent used screws well due to the uncertainty of EOL products, and the detection
criteria are also hard to conclude because of the complexity of EOL products.

The detection criteria of data-driven methods are obtained through data learning
represented by deep learning models. In existing studies, researchers are focusing on
utilising and optimising state-of-the-art models. DiFilippo et al. [18] designed a cognitive
architecture based on Soar’s long-term and semantic memory function, which performed
well in determining the label and position of screws in laptops. Using this cognitive
architecture, the inference time was decreased by up to 60% and the average inference
time was decreased by 10% for most EOL laptops. Foo et al. [19] employed the residual
network (ResNet) in unfastening crosshead screws from EOL LCD monitors and achieved
optimal precision and recall rates of 91.8% and 83.6%. Mangold et al. [20] used the you only
look once (YOLO) model to detect screws in a vision-based robotic disassembly platform.
The achieved mean average precision was around 0.98. During the application of these
models, some strategies (e.g., transfer learning and dropout) were adopted to reduce
the randomness of training. However, these detection models require a large amount of
labelled data in the training process, which poses great challenges to disassembly tasks.
The robustness of the deep learning models is unsatisfactory due to the uncertainty of the
EOL products. There is no guarantee that the feature extractor trained on poorly diversified
datasets can accurately characterise the unseen EOL products.

Some researchers have combined experience-based methods and data-driven methods.
Li et al. [21] proposed an accurate screw detection method based on the faster region with
convolutional neural network features (R-CNN) model and rotation edge similarity, where
faster R-CNN is a deep learning model and rotation edge similarity is designed based on
the former experience provided by operators. This strategy improves the robustness of the
detection method and reduces the number of training data used. It also reached up to a
90.8% success rate in the disassembly process. The proposed screw detection method is
based on this strategy.

On the other hand, existing studies designed detection criteria mainly based on texture
features, which are easily changed and difficult to estimate in used screws. Furthermore,
the lighting condition has not been fully considered, which is also an important problem
in utilisation. These two problems are considered in this study, where a robust feature
descriptor is designed to characterise the used screws.
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2.2. Reflection Feature for Object Detection

Reflection features can be used to represent illumination conditions and object char-
acteristics. Currently, reflection removal and detection are the two main methods used in
the object detection field. In reflection removal, reflection features are regarded as noises
that damage object characteristics. Here, researchers proposed various reflection removal
methods mainly based on retinex theory, which assumes that an image can be decomposed
into reflection and illumination components [22–24]. In reflection detection, reflection
features are utilised as intrinsic features. Sudo et al. [25] proposed a glass detection method
by focusing on the reflective properties of the glass surface. Wu et al. [26] used reflec-
tion features to track and locate moving objects in videos and proved the contribution
of reflection features to detecting non-line-of-sight objects. Zhang et al. [27] presented a
reflective learning model, and the reflection features were extracted to detect salient objects.
Zhang et al. [28] also employed reflection features in designing a loss function to learn the
saliency feature in object detection.

In summary, reflection features play a vital role in characterising objects, especially
in some cases where texture features cannot perform well. However, previous studies
seldom considered the impact of illumination conditions on reflection features, which is
important in industrial tasks. This paper presents a reflection feature regression model to
automatically determine the reflection feature based on the illumination conditions.

3. Method

This paper proposes an illumination-adaptive detection method for removing screws
from EOL products, as shown in Figure 2. In the form of screw region extraction, this
method can stably detect structurally damaged screws under nonuniform illumination
conditions. The main idea is to characterise and merge the reflection and texture features
of the screw regions in the two-stage detection framework. The reflection features are
utilised here to model the overall screw regions and then employed to extract screw
regions in the reflection stage, which is composed of the measure illumination condition
node, the set reflection feature node, and the extract reflection-based screw region node.
Compared with texture features, reflection features are less affected by structural damage
and can be used to represent structurally damaged screws [29]. In the texture stage, texture
features are employed to remove false areas (e.g., exposure areas) extracted before, through
the match scale-invariant feature transform (SIFT) features node and the extract texture-
based screw region node. The extracted screws of the two stages are then fused in the
weighted fusion node, where the screw region with the lowest fused detection confidence
is named the detected screw. The detected screw is continuously updated based on a
self-optimisation strategy through the compare neighbour detected screws node. Here,
the problem of detecting damaged screw structures under a fixed illumination condition
is solved. However, in disassembly tasks, controlling lighting conditions is difficult and
labour-intensive. To improve the robustness of the proposed detection method under
uneven illumination conditions, a reflection feature regression model is developed to
draw the relationship between reflection features and illumination conditions. Finally,
by incorporating the two-stage detection framework and the reflection feature regression
model, the detection of structurally damaged screws under uneven illumination conditions
is realised. The detailed process is illustrated in the following subsections. Table 1 shows
the important notations used in this paper.
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Table 1. The important notations used in this paper.

Notation Description

R Reflection features
P Reflection abilities
I Illumination conditions

Iscrew The illumination condition of the screw region
Ilabel The illumination condition of the illumination label

LRscrew The L value of the reflection component for the screw region
LRlabel The L value of the reflection component for the illumination label
LSscrew The L value of the screw region
LSlabel The L value of the illumination label
LIscrew The L value of the illumination component for the screw region
LIlabel The L value of the illumination component for the illumination label
Pscrew The reflection ability of the screw region
Plabel The reflection ability of the illumination label

The L values of the reflection components for the screw region and the illumination label are used to represent the
reflection features of the screw region and the illumination label, while the illumination conditions of the screw
region and the illumination label are recorded by the L values of the illumination components for the screw region
and the illumination label. The L values are extracted from the Lab colour space in this study.

3.1. Characterise Reflection Features

In screw detection tasks, the texture features of screws in EOL products are easily
changed by structural damage, which decreases the accuracy of texture features to describe
used screws. In this paper, it is proposed to characterise used screws by using reflection
features, which are mainly determined by illumination conditions and the object’s reflection
abilities as

R = f (P, I) (1)
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where f represents the mapping function. With a fixed illumination condition, the difference
in reflection features between screws and other components can be regarded as the detection
criteria. The reflection ability is highly related to roughness, transparency, and refractive
index, while the impact of structural damage on reflection abilities is limited. In addition,
the reflection feature of screws is modelled from the point of view of regions, which is
also beneficial to reduce the influence of structural damage on feature modelling. In the
proposed method, the size of the screw region is determined by the size of the screw in the
original products.

3.2. Measure Illumination Conditions

To promote the robustness of reflection features under uneven illumination conditions,
the reflection features are expected to be automatically updated based on illumination
conditions. The measurement accuracy of illumination conditions determines the repre-
sentation ability of reflection features. However, it is difficult to set the position of light
sensors (e.g., light meters) due to the uncertain and complex image capture environments
(e.g., the relative position between cameras and targets, the angular relationship between
cameras and targets). Under this situation, the efficiency and accuracy of adopting sensors
to measure illumination conditions are unsatisfactory. This paper proposes an illumina-
tion label to reflect the illumination condition and describe the relationship between the
reflection features of screw regions and illumination conditions from the point of view of
images. The introduction of illumination labels is beneficial for accurately and efficiently
measuring the illumination condition of screws and is less likely to be affected by complex
capture conditions (e.g., shadowing) [30–32]. The illumination label extraction algorithm
is defined as Algorithm 1, where the position of the screw region ([Ms, Me, Ns, Ne]) is de-
scribed by its top-left point (Ms, Ns) and the bottom-right point (Me, Ne). Through the
illumination label extraction algorithm, the nonfeature region (there are no extracted edge
feature points in this region) closest to the screw region is defined as the illumination label.

Algorithm 1: illumination label extraction algorithm

Input:
Captured image S;
Screw region Sm;
Screw region position [Ms, Me, Ns, Ne];
Output:
Illumination label Slabel ;

1: Use Sobel operators [33] to extract the edge features of captured image S and obtain the
edge feature map S f ;

2: Select the m-neighbourhood region of screw region Sm with the same size as the screw
region (Me −Ms, Ne − Ns), as shown in Figure 3a;

3: For m = 8 ∗ loop (loop is initially set to 1) do

4: For neigh in m-neighbourhood regions do

5: If there is no edge feature in neigh do

6: Slabel = neigh;

7: Go to Step 12;

8: End

9: End

10: loop = loop + 1;

11: End

12: Return Slabel .
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The screw region is unknown in the inference process, where we present a self-
optimisation strategy to solve this problem, as illustrated in Section 3.4. Figure 3b gives an
example of an extracted illumination label by using Algorithm 1.

Iscrew = Ilabel (2)
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Figure 3. Distribution of the m-neighbourhood region of the screw region and the example of an
extracted illumination label using Algorithm 1. (a) The distribution of the m-neighbourhood region
of the screw region, where the green rectangle denotes the screw region, and the orange rectangles
denote m-neighbourhood regions with m recorded in the centre (e.g., m = 8, m = 16). (b) An example
of an extracted illumination label using Algorithm 1. In (b), the green rectangle denotes the screw
region, the grey rectangles denote m-neighbourhood regions where there are extracted edge features,
and the blue rectangles denote m-neighbourhood regions where there is no extracted edge feature.
The blue rectangle with ‘label’ recorded in the centre denotes the extracted illumination label. The
size of each neighbourhood region is the same as the size of the screw region. Due to the adjacent
location of the illumination label and the screw region, the illumination condition of the extracted
illumination label is the same as the illumination condition of the screw region.

The changes in the illumination condition of the screw region can be represented by
the changes in the reflection feature of the illumination label. Therefore, the relationship be-
tween the reflection feature of the screw region and the illumination condition is described
by the relationship between the reflection feature of the screw region and the reflection
feature of the illumination label. In this study, we use the L value in the Lab colour space to
represent the illumination conditions and reflection features.

The relationship between the reflection feature of the screw region and the illumination
condition is determined by the relationship between LRscrew and LRlabel , where LSscrew and
LSlabel are first calculated as

LSscrew =
1

i ∗ j

i=srl

∑
i=1

j=srw

∑
j=1

LSscrew(i, j) (3)

LSlabel =
1

i ∗ j

i=lrl

∑
i=1

j=lrw

∑
j=1

LSlabel(i, j) (4)

srl and srw denote the size of the screw region.

srl = Me −Ms (5)

srw = Ne − Ns (6)

lrl and lrw denote the size of the extracted illumination label, and LSscrew(i, j) and LSlabel(i, j)
denote the L value of pixel point (i, j) in the screw region and the illumination label,
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respectively. Then, LSscrew and LSlabel are divided into reflection components (LRscrew,
LRlabel) and illumination components (LIscrew, LIlabel) based on retinex theory as

LSscrew = LRscrew•LIscrew (7)

log(LSscrew) = log(LRscrew) + log(LIscrew) (8)

LSlabel = LRlabel•LIlabel (9)

log(LSlabel) = log(LRlabel) + log(LIlabel) (10)

Finally, by introducing Equation (2), the relationship between LRscrew and LRlabel can
be represented by the relationship between LSscrew and LSlabel as

log(LSscrew) = log(LRscrew) + log(LSlabel)− log(LRlabel) (11)

LSscrew

LSlabel
=

LRscrew

LRlabel
(12)

Therefore, the relationship between LRscrew and LRlabel is represented by the relation-
ship between LSscrew and LSlabel .

3.3. Reflection Feature Regression Model

To set the relationship between the reflection feature of the screw region and the reflec-
tion feature of the illumination label, a reflection feature regression model is established,
where the regression function is determined by LRscrew

LRlabel
. In deducing the regression function,

LRscrew and LRlabel are first expressed based on Equation (1) as

LRscrew = f (Pscrew, LIscrew) (13)

LRlabel = f (Plabel , LIlabel) (14)

Here, the relationship between the reflection ability of the screw region (Pscrew) and
the reflection ability of the illumination label (Plabel) can be assumed as

Pscrew = k ∗ Plabel (15)

where k is a constant value. Therefore, LRscrew evolves to

LRscrew = f (Pscrew, LIscrew) = f (k ∗ Plabel , LIlabel) (16)

and f can be described by a polynomial function as

f (x) = anxn + an−1xn−1 + . . . + a0 (17)

where [an, an−1, . . . , a0] denotes LIscrew and LIlabel , and x denotes Pscrew and Plabel . By
combining Equations (13)–(17), the relationship between LRscrew and LRlabel is confirmed as

LRlabel = anPn
label + an−1Pn−1

label + . . . + a0 (18)

LRscrew = anPn
screw + an−1Pn−1

screw + . . . + a0
= anknPn

label + an−1kn−1Pn−1
label + . . . + a0

(19)

where kn, kn−1, . . . , k are the constant value. Considering the constraints of the highest
power for Pscrew (Pn

screw) and Plabel (Pn
label) and limited training data in industrial tasks, a

linear regression model of the reflection feature is constructed as

LRscrew = wr ∗ LRlabel + br (20)
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aiming to find the optimal weight (wr) and bias (br) that can minimise the difference between
anknPn

label + an−1kn−1Pn−1
label + . . . + a0 and anwrPn

label + an−1wrPn−1
label + . . . + wra0 + br by data

learning. It can also be expressed based on Equation (12) as

LSscrew = w ∗ LSlabel + b (21)

where w and b denote the weight and bias of the linear regression function, respectively.
In the following, Equation (21) is adopted to construct the regression model due to the
availability of LSscrew and LSlabel , where the optimiser used is the Adam optimiser [34] and
the loss function is defined as

loss =
1
U

U

∑
i=1

(LSscrewi − LSpred
screwi )

2
(22)

where LSpred
screw denotes the predicted L value of the screw region and U denotes the

data length.
In addition, the above discussion indicates that the reflection features of the screw

region and the illumination label can be represented by the L value of the screw region and
the illumination label.

3.4. Two-Stage Detection Framework

With a trained reflection feature regression model, the reflection feature of the screw
region is defined and utilised in a proposed two-stage detection framework, which is
composed of the reflection stage and the texture stage, as shown in Figure 4.
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In the reflection stage, the centre region of the captured image is defined as the initial
screw region, and the illumination label is extracted using Algorithm 1. Then, the reflection
feature of the illumination label is modelled and used to predict the reflection feature of the
screw region with the help of a trained reflection feature regression model. At the same
time, the captured image is divided into different candidate regions with the same size as
the screw region, while the Euclidean distance between the reflection features of candidate
regions and the predicted reflection features of the screw region is calculated [35], named the
reflection confidence (CR). Here, each candidate region is assigned a reflection confidence.
Finally, rn regions with smaller detection confidences are extracted as reflection-based
screw regions.

In the texture stage, the reflection-based screw regions are further analysed based on
their texture features, which aims to filter out the false regions. First, the texture features of
those reflection-based screw regions are detected by using the SIFT descriptor [36], where
a SIFT feature matrix of each reflection-based screw region (B) is constructed. Then, by
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calculating the SIFT feature matrix of an introduced screw template (T), the distance (D) in
SIFT feature matrices between the reflection-based screw region and the screw template is
obtained as

D(x, y) =

√√√√i=sn

∑
i=1

(T(x, i)− B(y, i))2, x ∈ [1, p], y ∈ [1, q] (23)

where T is a {p, sn} feature matrix, B is a {q, sn} feature matrix, and D is a {p, q} feature
matrix. D(x, y), T(x, y), and B(x, y) denote the value of point (x, y) for D, T, and B, respec-
tively. p and q denote the number of extracted feature points from the introduced screw
template and the reflection-based screw region, respectively, while each extracted feature
point is described by a {sn} vector. Based on the distance matrix, a texture confidence
matrix (CT) for each reflection-based screw region is expressed as

CD(x, y) = D(x, y)/
i=p

∑
i=1

D(i, y) , x ∈ [1, p], y ∈ [1, q] (24)

CT(x) = min(CD[x, :]), x ∈ [1, p] (25)

where CD records the ratio between different texture feature distances, CT is a {p} vector,
and CT(x) denotes the value of point (x) for matrix CT. Finally, the texture confidence (CT)
for each reflection-based screw region is computed as

CT =
i=p

∑
i=1

CT(i) (26)

and tn regions with smaller texture confidences are extracted as texture-based screw regions.
Through the reflection stage and the texture stage, tn texture-based screw regions

are extracted, and each extracted region is assigned a reflection confidence and a texture
confidence. Then, the total reflection confidence (totalCR) and the total texture confidence
(totalCT) are calculated by adding up these tn reflection confidences and texture confi-
dences, respectively. Finally, each texture-based screw region is assigned a fused detection
confidence (C) as

C =
CR

2 ∗ totalCR
+

CT
2 ∗ totalCT

(27)

The screw region with the lowest fused detection confidence is extracted and named
the detected screw.

In addition, the initial screw region is randomly defined, and thus, the corresponding
extracted illumination label cannot be used to determine the reflection features of the screw
region in the inference process. A self-optimisation strategy is proposed to continuously
update the screw region and illumination label by forming the reflection stage and the
texture stage into a loop, where the difference in detection results between the neighbouring
iterations is employed as a judgement.

∣∣Mt
s −Mt+1

s
∣∣/Mt+1

s ≤ td∣∣Mt
e −Mt+1

e
∣∣/Mt+1

e ≤ td∣∣Nt
s − Nt+1

s
∣∣/Nt+1

s ≤ td∣∣Nt
e − Nt+1

e
∣∣/Nt+1

e ≤ td

: no difference (28)

where td is a given threshold. If there is no difference, the detected screw of the current
iteration will be accepted as the final detected screw. Otherwise, this detected screw is
regarded as a falsely detected screw and would be utilised to update the illumination label
by using Algorithm 1 for the new iteration.

By integrating the reflection feature regression model and the two-stage detection
framework, a screw detection method is achieved for detecting structurally damaged
screws in EOL products under nonuniform illumination conditions.
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4. Experiments
4.1. Experimental Setup

The proposed screw detection method was implemented in removing used screws
from an EOL plug-in hybrid EV battery in a robotic disassembly platform, as shown in
Figure 5. The utilised equipment contains an industrial robot, a 2D industrial camera, an
electrical nut runner, and an electromagnetic gripping system. The control of the above
equipment was achieved by programming on TM flow v1.82 software [37], while the
detection method was realised through Python v3.8 and MATLAB v9.1 programming on
an equipped workstation.
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position of adopted screws in the experiments.

4.2. Experimental Procedure

Considering the training process of the designed reflection feature regression model, an
experimental procedure containing an offline process and an online process was developed,
as shown in Figure 6. In the offline process, a robot holding a camera was used to collect
training images. The screw regions in the collected images were labelled by human
operators and then utilised to extract illumination labels by running Algorithm 1. Finally,
the reflection features of screw regions and illumination labels were calculated to construct
the dataset for training the reflection feature regression model. In the online process, a robot
holding a camera was also employed to collect the structural information of the screws
used. Next, by inputting the trained reflection feature regression model and captured
image to the two-stage detection framework, the locations of screw regions in the image
coordinate system were obtained. Finally, by transforming the position of screw regions
in the image coordinate system to the position in the world coordinate system, the robot
holding an electromagnetic gripping system was able to remove detected screws from an
EOL plug-in hybrid EV battery.
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In the experiments, the removal of hexagonal-headed screws (M6 nuts) in 6 different
positions was used as an example to discuss the detection performance. The distribution
of the 6 positions is shown in Figure 5b, while the screws located in these positions are
named P1 screws, P2 screws, P3 screws, P4 screws, P5 screws, and P6 screws. In addition,
to quantitatively validate the detection performance, 9 training datasets and 40 test datasets
were constructed for P1 screws, P2 screws, P3 screws, P4 screws, P5 screws, and P6
screws. The numbers of images in one training dataset and one test dataset are 200 and
50, respectively. The data collection was conducted under various illumination conditions,
and the condition of screws (e.g., the degree of structural damage) was updated constantly
during the collection process. Table 2 records the experimental parameters of the detection
method in the screw removal case.

Table 2. Experimental parameters of the detection method in the screw removal case.

The Length of the
Screw Region (srl)

The Width of
the Screw

Region (srw)

The Number of
Extracted

Reflection-Based
Screw Regions (rn)

The Size of the
Extracted Texture
Feature Point (sn)

The Number of
Extracted

Reflection-Based Screw
Regions (tn)

The Difference
Threshold for

Comparing
Neighbouring

Detected Screws (td)

100 100 20 128 10 0.05

4.3. Evaluation System

The detection performance was first evaluated based on the mean average precision
(mAP) [38] at different values of the interaction over union (IOU) between the detected
screw region Sd and the actual screw region Sr. Here, IOU is calculated as

IOU = (Sd ∩ Sr)/(Sd ∪ Sr) (29)
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As the most commonly used evaluation indicator in the object detection field, mAP
can reflect the performance of the proposed screw detection method considering recall
and precision.

Then, the operation range of the designed socket in the gripping system was taken into
account, and the proposed detection method based on the disassembly accuracy (accuracy)
was evaluated as

accuracy = T/(T + F) (30)

where the centre of the operation range is the same as the centre of the detected screw
region. T is the number of samples whose actual screw region is completely covered by
the operation range, and F is the number of samples whose actual screw region is not
completely covered by the operation range. By introducing the operation range of sockets,
the success rate of unfastening screws based on the screw detection results can be evaluated
using accuracy.

Apart from analysing the performance of the proposed detection method, the R-
squared value was also used to validate the goodness-of-fit of the developed reflection
feature regression model [39]. The range of the R-squared value is from 0 to 1, and a higher
value indicates a better fitting performance. The performance of the reflection feature
regression model is closely related to the stability of the proposed screw detection method.
When the reflection feature regression model achieves satisfactory fitting performance
represented by a high R-squared value, the proposed screw detection method is more likely
to accurately and stably detect screws under uneven illumination conditions.

5. Results and Discussion
5.1. Performance of the Reflection Feature Regression Model

To evaluate the fitting performance of the reflection feature regression model, the
capability of using illumination labels to reflect illumination conditions for P1 screws was
first analysed. Figure 7 shows the images captured in three different positions, and Table 3
tabulates the reflection features of screws and the illumination conditions of screws mea-
sured by light meters and illumination labels. The capture positions for the three images
are different from each other, and the reflection features of screws (LSscrew) in the three
images are 58.4615, 59.3731, and 56.8118. The difference in reflection features indicates
that the screw was captured under different illumination conditions. However, the light
meters cannot measure the difference and obtain the same value of illumination conditions
(770 lx). Using the illumination label, the tiny differences in illumination conditions were
successfully detected, where the illumination conditions of screws (LSlabel) are 14.7876,
14.9791, and 12.1517. With the satisfactory performance of measuring illumination condi-
tions, the relationship between the reflection features of screw regions and the illumination
conditions can be accurately described by the relationship between the reflection features
of screw regions and the reflection features of illumination labels.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 22 
 

 

illumination conditions can be accurately described by the relationship between the re-
flection features of screw regions and the reflection features of illumination labels. 

 
(a)      (b)      (c) 

Figure 7. Example captured images for P1 screws. (a–c) The images captured in three different po-
sitions at the same time. 

Table 3. Performance of measuring illumination conditions by light meters and illumination labels 
for P1 screws. 

 
Capture Position 

(X, Y, Z, Rx, Ry, Rz) screwLS  labelLS  Illumination Conditions 
Measured by Light Meters 

Figure 7a (140 mm, −534 mm, 424 mm, 179°, −3°, −8°) 58.4615 14.7876 770 lx 
Figure 7b (160 mm, −534 mm, 424 mm, 179°, −3°, −8°) 59.3731 14.9791 770 lx 
Figure 7c (140 mm, −515 mm, 424 mm, 179°, −3°, −8°) 56.8118 12.1517 770 lx 

The adopted light meter is CA 1110 developed by Chauvin Arnoux. Measurement range: 0.1 lx to 
200,000 lx; ±  3% of reading on incandescent sources; ±  6% of the reading on LEDs; ±  9% of the 
reading on fluorescent sources. 

In validating the reflection feature regression model, the reflection feature regression 
model was trained on 9 training datasets, and the 9 trained models were then tested on 40 
test datasets for P1 screws. Figure 8 shows the detailed R-squared value and Table 4 rec-
ords the maximum value, minimum value, and average value. In the experiments, the 
maximum R-squared value, the minimum R-squared value, and the average R-squared 
value are approximately 0.91, 0.80, and 0.86, respectively, which reflects the excellent fit-
ting ability of the proposed reflection feature regression model. The small differences in 
the maximum R-squared value, the minimum R-squared value, and the average R-
squared value among the nine subgraphs confirm the satisfactory robustness of the pro-
posed reflection feature regression model. 

 
 (a) (b) (c) 

Figure 7. Example captured images for P1 screws. (a–c) The images captured in three different
positions at the same time.



Micromachines 2023, 14, 946 14 of 21

Table 3. Performance of measuring illumination conditions by light meters and illumination labels
for P1 screws.

Capture Position
(X, Y, Z, Rx, Ry, Rz) LSscrew LSlabel

Illumination Conditions
Measured by Light Meters

Figure 7a (140 mm, −534 mm, 424 mm, 179◦, −3◦, −8◦) 58.4615 14.7876 770 lx
Figure 7b (160 mm, −534 mm, 424 mm, 179◦, −3◦, −8◦) 59.3731 14.9791 770 lx
Figure 7c (140 mm, −515 mm, 424 mm, 179◦, −3◦, −8◦) 56.8118 12.1517 770 lx

The adopted light meter is CA 1110 developed by Chauvin Arnoux. Measurement range: 0.1 lx to 200,000 lx; ±3%
of reading on incandescent sources; ±6% of the reading on LEDs; ±9% of the reading on fluorescent sources.

In validating the reflection feature regression model, the reflection feature regression
model was trained on 9 training datasets, and the 9 trained models were then tested on 40
test datasets for P1 screws. Figure 8 shows the detailed R-squared value and Table 4 records
the maximum value, minimum value, and average value. In the experiments, the maximum
R-squared value, the minimum R-squared value, and the average R-squared value are
approximately 0.91, 0.80, and 0.86, respectively, which reflects the excellent fitting ability of
the proposed reflection feature regression model. The small differences in the maximum
R-squared value, the minimum R-squared value, and the average R-squared value among
the nine subgraphs confirm the satisfactory robustness of the proposed reflection feature
regression model.
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6, training dataset-7, training dataset-8, and training dataset-9, respectively.

Table 4. The maximum, minimum, and average R-squared values of 9 trained reflection feature
regression models on 40 test datasets for P1 screws.

Maximum R-Squared Minimum R-Squared Average R-Squared

Training dataset-1 0.909 0.797 0.860
Training dataset-2 0.915 0.806 0.856
Training dataset-3 0.920 0.802 0.858
Training dataset-4 0.914 0.800 0.862
Training dataset-5 0.918 0.804 0.867
Training dataset-6 0.898 0.801 0.855
Training dataset-7 0.910 0.804 0.851
Training dataset-8 0.907 0.802 0.861
Training dataset-9 0.904 0.804 0.844

Overall, the proposed reflection feature regression model performed well in estab-
lishing the relationship between the reflection features of screw regions and the reflection
features of illumination labels under uneven illumination conditions. This attractive fitting
performance is mainly contributed by the suitable linear regression function, which was
deduced in designing the reflection feature regression model. In the following experiments,
the reflection feature regression model trained on training dataset-1 was used to determine
the reflection features of screw regions in running the two-stage detection framework for
P1 screws.

5.2. Performance of the Two-Stage Detection Framework

The determined reflection features were adopted to extract screw regions together
with texture features in the designed two-stage detection framework. The output of the
two-stage detection framework is the final result of the proposed screw detection method.
Figure 9 and Table 5 validate the detection performance of the proposed two-stage detection
framework on 40 test datasets for P1 screws in terms of mAP@IOU (IOU = 0.5, 0.6, 0.7)
and accuracy. The maximum mAP@0.5, minimum mAP@0.5, and average mAP@0.5 are
1.00, 0.80, and 0.99, respectively, which demonstrate the reliable detection performance of
the two-stage detection framework. The maximum mAP@0.6, minimum mAP@0.6, and
average mAP@0.6 are 1.00, 0.02, and 0.78, respectively, while the maximum mAP@0.7,
minimum mAP@0.7, and average mAP@0.7 are 0.68, 0.00, and 0.25, respectively. The
downward trend from mAP@0.5 to mAP@0.7 is caused by the stricter settings in IOU.
In addition, Figure 9d and Table 5 show the detection performance based on accuracy.
Here, the maximum accuracy, minimum accuracy, and average accuracy are 1.00, 0.80, and
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0.99, respectively. The satisfactory accuracy proves that the two-stage detection framework
enabled the screw removal tasks to be operated accurately under nonuniform illumination
conditions. The remarkable detection capability is granted by the integration of reflection
features and texture features, which has stronger representation ability for structurally
damaged screws. On the other hand, no significant difference was found in evaluating the
detection performance between using mAP@0.5 and accuracy. Under this situation, it was
concluded that mAP@0.5 is more suitable for evaluating the detection performance com-
pared with mAP@0.6 and mAP@0.7 in the experimental case. In the following experiments,
the detection performance was mainly discussed based on mAP@0.5 and accuracy.
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Table 5. The maximum, minimum, and average mAP@0.5, mAP@0.6, mAP@0.7, and accuracy of the
two-stage detection framework for P1 screws.

Maximum Value Minimum Value Average Value

mAP@0.5 1.00 0.80 0.99
mAP@0.6 1.00 0.02 0.78
mAP@0.7 0.68 0.00 0.25
accuracy 1.00 0.80 0.99

To study the contribution of reflection features and texture features to the two-stage
detection framework, the reflection stage and the texture stage were used to detect P1
screws on the 40 test datasets. Figure 10 and Table 6 compare the difference in mAP@0.5
and accuracy between using the two-stage detection framework and using the reflection
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stage and between using the two-stage detection framework and using the texture stage.
A higher difference denotes that the stage makes fewer contributions to the detection
framework. As shown in Table 6, the maximum difference, minimum difference, and
average difference in mAP@0.5 between using the two-stage detection framework and the
texture stage are 1.00, 0.76, and 0.98, while the maximum difference, minimum difference,
and average difference in mAP@0.5 between using the two-stage detection framework and
the reflection stage are 0.24, −0.02, and 0.02, respectively.
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Figure 10. Contributions of the reflection stage and the texture stage to the two-stage detection
framework for P1 screws. The blue lines record the differences between using the two-stage de-
tection framework and using the texture stage, while the red lines record the differences between
using the two-stage detection framework and using the reflection stage. (a) Difference in mAP@0.5;
(b) difference in accuracy.

Table 6. The maximum, minimum, and average differences in mAP@0.5 and accuracy between using
the two-stage detection framework and using the texture stage and between using the two-stage
detection framework and using the reflection stage.

Difference between Using the Two-Stage
Detection Framework and Using the Texture Stage

Difference between Using the Two-Stage
Detection Framework and Using the

Reflection Stage

Maximum mAP@0.5 1.00 0.24
Minimum mAP@0.5 0.76 −0.02
Average mAP@0.5 0.98 0.02
Maximum accuracy 1.00 0.06
Minimum accuracy 0.82 −0.02
Average accuracy 0.99 0.01

These results demonstrate that the satisfactory detection performance of the two-stage
detection framework is mainly achieved by using reflection features. Specifically, there are
some points with a mAP@0.5 value of 1.00 in the difference between using the two-stage
detection framework and using the texture stage and some points with a mAP@0.5 value
of 0.00 in the difference between using the two-stage detection framework and using the
reflection stage. In the testing experiments corresponding to these points, accurate detection
is completely accomplished by the reflection stage.

Furthermore, some points were found with negative mAP@0.5 values in the difference
between using the two-stage detection framework and using the reflection stage. Here, the
utilisation of the texture stage limited the detection capability of the two-stage detection
framework. The experimental conclusions drawn from Figure 10b are consistent with those
concluded from Figure 10a. In conclusion, the reflection stage is a major contributor, and
the texture stage is an optimiser in the two-stage detection framework. This is caused by
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the properties of structurally damaged screws in EOL products. As discussed before, the
texture features of screws used in EOL products are not reliable because they are easily
damaged, while the representation capability of reflection features for used screws is more
accurate and robust. The significant contribution of the reflection stage to the two-stage
detection framework also indicates the satisfactory measuring ability of illumination labels
and the remarkable learning capability of the reflection feature regression model.

5.3. Generalisation

Considering the impact of background information on screw detection, it was decided
to retest the proposed screw detection method comprising the reflection feature regression
model and the two-stage detection framework with P2 screws, P3 screws, P4 screws, P5
screws, and P6 screws, as recorded in Table 7. In the experiments, the testing environments
(e.g., illumination conditions, capture positions), object conditions (e.g., the degree of struc-
tural damage, the level of tightness), and surrounding objects of each testing experiment
are different from each other.

Table 7. mAP@0.5 and accuracy of the proposed detection method on different screws.

mAP@0.5 accuracy

P1 screws 0.99 0.99
P2 screws 0.97 0.97
P3 screws 0.97 0.97
P4 screws 0.82 0.82
P5 screws 0.84 0.84
P6 screws 0.86 0.86
average 0.91 0.91

The average mAP@0.5 (0.91) and accuracy (0.91) confirm the satisfactory detection
performance under various illumination conditions. The small fluctuations in mAP@0.5
and accuracy among the six experiments show the robustness of the proposed detection
method. In addition, the mAP@0.5 and accuracy for P4 screws, P5 screws, and P6 screws
are lower than those for P1 screws, P2 screws, and P3 screws. This is because the testing
environment, object conditions, and surrounding objects are more complex, which creates
more false screw regions. However, their performance is also acceptable. In conclusion,
the proposed detection method realised accurate and stable detection for structurally dam-
aged screws in EOL products under uneven illumination conditions, where the reflection
feature regression model empowered the reflection feature to be adjusted automatically
and the two-stage detection framework integrated the reflection information and texture
information to comprehensively and accurately characterise the screws used. Table 8
summarises the performance of the reflection feature regression model and the two-stage
detection framework.

Table 8. The performance of the reflection feature regression model and the two-stage detection framework.

Average R-Squared Average mAP@0.5 Average accuracy

Reflection feature
regression model 0.857 \ \

Two-stage detection
framework \ 0.91 0.91

5.4. Comparison

The proposed screw detection method was also compared with existing methods, as
shown in Table 9. As mentioned before, the existing screw detection methods are generally
divided into experience-based methods and data-driven methods. In experience-based
methods, the detection criteria are designed based on the specific properties of different
EOL objects. It is not reasonable to adopt existing experience-based methods in this case
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and compare their performance directly. Here, the detection performance of various feature
descriptors utilised in [15–17] was tested, and the optimal mAP@0.5 and accuracy were
recorded. In addition, the optimal detection performance of the aforementioned data-
driven methods [18–21] was also recorded, where YOLO [20] achieved higher mAP@0.5
and accuracy.

Table 9. Comparison of the detection performance with existing methods.

mAP@0.5 accuracy

Experience-based methods
[15–17] 0.10 0.17

Soar [18] 0.76 0.78
ResNet [19] 0.80 0.80
YOLO [20] 0.94 0.94

Faster R-CNN [21] 0.87 0.87
Proposed 0.91 0.91

As shown in Table 9, the proposed screw detection method performed much better
than the existing experience-based methods, which mainly benefits from the adoption of
reflection features and the reflection feature regression model. The mAP@0.5 and accuracy
have been significantly improved by 0.81 and 0.74. The experience-based methods are still
used in various disassembly tasks due to the lower requirement for labelled data. The
proposed screw detection method also performed better than some data-driven methods,
such as Soar, ResNet, and faster R-CNN. The increases in mAP@0.5 are 0.15, 0.11, and 0.04,
respectively, and the increases in accuracy are 0.13, 0.11, and 0.04, respectively. Although
YOLO performed slightly better than the proposed method (the differences in mAP@0.5
and accuracy are 0.03 and 0.03), the demanding requirement of YOLO for training data
poses great challenges to screw removal tasks, as shown in Table 10. The mAP@0.5 of the
YOLO model trained on 200 images is 0.23, which is significantly lower than the mAP@0.5
of the proposed method trained on 200 images. The proposed screw detection method is
not greedy for training data due to the development of the lightweight reflection feature
regression model and the integration of human experience and training data in the designed
two-stage detection framework. The demanding requirement of complex deep learning
models (e.g., YOLO) for training data can be partially addressed by transfer learning.
However, the detection performance is closely related to the diversity of training samples.
The collected training samples are expected to provide a comprehensive characterisation
of the structural information for unseen used screws, which is impossible due to the
uncertainties of EOL products. The proposed screw detection method adopts reflection
features to deal with the uncertainties in the structural information and obtained robust
detection performance. Consequently, the proposed screw detection method is reliable to
help accomplish complex screw removal tasks under uneven illumination conditions.

Table 10. Number of utilised training data in the proposed screw detection method and existing
data-driven methods.

YOLO [20] Proposed

Number of used training data 6720 200

6. Conclusions and Future Work

Research on screw detection is essential for automatic removal. This paper realises the
aim of accurately and stably detecting structurally damaged screws in EOL products under
uneven illumination conditions by presenting a reflection feature regression model and a
two-stage detection framework. The utilisation of reflection features addresses the problem
of characterising damaged screw structures caused by the uncertainty and complexity of
EOL products, and the reflection features are automatically determined by data learning



Micromachines 2023, 14, 946 20 of 21

according to the illumination conditions. The texture feature helps the proposed screw
detection method filter out falsely detected screws. In addition, an innovative illumination
condition measurement method is proposed in employing the reflection feature by defining
the illumination label. The detection method is optimised by a developed self-optimisation
strategy. Finally, a vision-guided robotic disassembly platform designed to disassemble EV
batteries is utilised to evaluate the detection performance. This study realises stable and
accurate screw detection on a battery disassembly task and contributes to the research and
application of object detection in other disassembly cases.

The developed method has two issues requiring research in the future. First, this study
takes the influence of structural damage on screw detection into account. However, the
problem of detecting rusty screws needs to be researched further. Future work plans to
optimise the proposed method by designing a stronger data-driven network to describe
the reflection characteristics of rusty screws. Second, the proposed illumination condition
measurement method lacks a quantitative assessment. Future work plans to adopt sensors
to describe the trend of illumination conditions to reflect the performance of the proposed
measurement method.

Author Contributions: Conceptualization, Q.L. and W.D.; methodology, W.D. and D.T.P.; valida-
tion, W.D.; investigation, J.H.; resources, D.T.P. and Z.Z.; writing—original draft preparation, W.D.;
writing—review and editing, D.T.P., J.H. and Y.W.; funding acquisition, W.D., D.T.P. and J.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council under
grant EP/N018524/1, the National Natural Science Foundation of China under Grant 52075404, and
the China Scholarship Council under Grant 202006950054.

Data Availability Statement: The data in this study are available from the corresponding author
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ijomah, W.L.; McMahon, C.A.; Hammond, G.P.; Newman, S.T. Development of design for remanufacturing guidelines to support

sustainable manufacturing. Robot. Comput.-Integr. Manuf. 2007, 23, 712–719. [CrossRef]
2. Li, R.; Pham, D.T.; Huang, J.; Tan, Y.; Qu, M.; Wang, Y.; Kerin, M.; Jiang, K.; Su, S.; Ji, C.; et al. Unfastening of hexagonal headed

screws by a collaborative robot. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1455–1468. [CrossRef]
3. Zhang, X.; Zhang, M.; Zhang, H.; Jiang, Z.; Liu, C.; Cai, W. A review on energy, environment and economic assessment in

remanufacturing based on life cycle assessment method. J. Clean. Prod. 2020, 255, 120160. [CrossRef]
4. Yuksel, H. Design of automobile engines for remanufacture with quality function deployment. Int. J. Sustain. Eng. 2010, 3,

170–180. [CrossRef]
5. Hashemi, V.; Chen, M.; Fang, L. Modelling and analysis of aerospace remanufacturing systems with scenario analysis. Int. J. Adv.

Manuf. Technol. 2016, 87, 2135–2151. [CrossRef]
6. Zheng, H.; Li, E.; Wang, Y.; Shi, P.; Xu, B.; Yang, S. Environmental life cycle assessment of remanufactured engines with advanced

restoring technologies. Robot. Computer-Integr. Manuf. 2019, 59, 213–221. [CrossRef]
7. Ahmed, F.; Almutairi, G.; Hasan, P.M.Z.; Rehman, S.; Kumar, S.; Shaalan, N.M.; Aljaafari, A.; Alshoaibi, A.; AIOtaibi, B.; Khan, K.

Fabrication of a biomass-derived activated carbon-based anode for high-performance li-ion batteries. Micromachines 2023, 14, 192.
[CrossRef] [PubMed]

8. Ong, S.K.; Chang, M.M.L.; Nee, A.Y.C. Product disassembly sequence planning: State-of-the-art, challenges, opportunities and
future directions. Int. J. Prod. Res. 2021, 59, 3493–3508. [CrossRef]

9. Hu, Y.; Liu, C.; Zhang, M.; Jia, Y.; Xu, Y. A novel simulated annealing-based hyper-heuristic algorithm for stochastic parallel
disassembly line balancing in smart remanufacturing. Sensors 2023, 23, 1652. [CrossRef]

10. Bahubalendruni, M.V.A.R.; Varupala, V.P. Disassembly sequence planning for safe disposal of end-of-life waste electric and
electronic equipment. Natl. Acad. Sci. Lett. 2021, 44, 243–247. [CrossRef]

11. Poschmann, H.; Brueggemann, H.; Goldmann, D. Disassembly 4.0: A review on using robotics in disassembly tasks as a way of
automation. Chem. Ing. Tech. 2020, 92, 341–359. [CrossRef]

12. Nowakowski, P. A novel, cost efficient identification method for disassembly planning of waste electrical and electronic equipment.
J. Clean. Prod. 2018, 172, 2695–2707. [CrossRef]

13. Chen, W.H.; Foo, G.; Kara, S.; Pagnucco, M. Automated generation and execution of disassembly actions. Robot. Comput.-Integr.
Manuf. 2021, 68, 102056. [CrossRef]

https://doi.org/10.1016/j.rcim.2007.02.017
https://doi.org/10.1109/TASE.2019.2958712
https://doi.org/10.1016/j.jclepro.2020.120160
https://doi.org/10.1080/19397038.2010.486046
https://doi.org/10.1007/s00170-016-8566-8
https://doi.org/10.1016/j.rcim.2019.04.005
https://doi.org/10.3390/mi14010192
https://www.ncbi.nlm.nih.gov/pubmed/36677253
https://doi.org/10.1080/00207543.2020.1868598
https://doi.org/10.3390/s23031652
https://doi.org/10.1007/s40009-020-00994-0
https://doi.org/10.1002/cite.201900107
https://doi.org/10.1016/j.jclepro.2017.11.142
https://doi.org/10.1016/j.rcim.2020.102056


Micromachines 2023, 14, 946 21 of 21

14. Vongbunyong, S.; Kara, S.; Pagnucco, M. Learning and revision in cognitive robotics disassembly automation. Robot. Comput.-
Integr. Manuf. 2015, 34, 79–94. [CrossRef]

15. Gli, P.; Pomares, J.; Diaz, S.T.P.C.; Candelas, F.; Torres, F. Flexible multisensorial system for automatic disassembly using
cooperative robots. Int. J. Comput. Integr. Manuf. 2007, 20, 757–772. [CrossRef]

16. Bdiwi, M.; Rashid, A.; Putz, M. Autonomous disassembly of electric vehicle motors based on robot cognition. In Proceedings of
the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016. [CrossRef]

17. DiFilippo, N.M.; Jouaneh, M.K. A system combining force and vision sensing for automated screw removal on laptops. IEEE
Trans. Autom. Sci. Eng. 2017, 15, 887–895. [CrossRef]

18. DiFilippo, N.M.; Jouaneh, M.K. Using the soar cognitive architecture to remove screws from different laptop models. IEEE Trans.
Autom. Sci. Eng. 2018, 16, 767–780. [CrossRef]

19. Foo, G.; Kara, S.; Pagnucco, M. Screw detection for disassembly of electronic waste using reasoning and retraining of a deep
learning model. Procedia CIRP 2021, 98, 666–671. [CrossRef]

20. Mangold, S.; Steiner, C.; Friedmann, M.; Fleischer, J. Vision-based screw head detection for automated disassembly for remanufac-
turing. Procedia CIRP 2022, 105, 1–6. [CrossRef]

21. Li, X.; Li, M.; Wu, Y.; Zhou, D.; Liu, T.; Hao, F.; Yue, J.; Ma, Q. Accurate screw detection method based on faster R-CNN and
rotation edge similarity for automatic screw disassembly. Int. J. Comput. Integr. Manuf. 2021, 34, 1177–1195. [CrossRef]

22. Sun, Y.; Chang, Z.; Zhao, Y.; Hua, Z.; Li, S. Progressive two-stage network for low-light image enhancement. Micromachines 2021,
12, 1458. [CrossRef] [PubMed]

23. Tang, Q.; Yang, J.; He, X.; Jia, W.; Zhang, Q.; Liu, H. Nighttime image dehazing based on retinex and dark channel prior using
taylor series expansion. Comput. Vis. Image Underst. 2021, 202, 103086. [CrossRef]

24. Cui, Y.; Sun, Y.; Jian, M.; Zhang, X.; Yao, T.; Gao, X.; Li, Y.; Zhang, Y. A novel underwater image restoration method based on
decomposition network and physical imaging model. Int. J. Intell. Syst. 2022, 37, 5672–5690. [CrossRef]

25. Sudo, H.; Yukushige, S.; Muramatsu, S.; Inagaki, K.; Chugo, D.; Hashimoto, H. Detection of glass surface using reflection
characteristic. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16
October 2021. [CrossRef]

26. Wu, J.; Ji, Z. Seeing the unseen: Locating objects from reflections. In Proceedings of the Annual Conference Towards Autonomous
Robotic Systems, Bristol, UK, 25–27 July 2018. [CrossRef]

27. Zhang, P.; Liu, W.; Lei, Y.; Lu, H. Hyperfusion-Net: Hyper-densely reflective feature fusion for salient object detection. Pattern
Recognit. 2019, 93, 521–533. [CrossRef]

28. Zhang, P.; Liu, W.; Lu, H.; Shen, C. Salient object detection with lossless feature reflection and weighted structural loss. IEEE
Trans. Image Process. 2019, 28, 3048–3060. [CrossRef] [PubMed]

29. Tan, L.; Tang, T.; Yuan, D. An ensemble learning aided computer vision method with advanced colour enhancement for corroded
bolt detection in tunnels. Sensors 2022, 22, 9715. [CrossRef] [PubMed]

30. Lalonde, J.F.; Efros, A.A.; Narasimhan, S.G. Estimating the natural illumination conditions from a single outdoor image. Int. J.
Comput. Vis. 2012, 98, 123–145. [CrossRef]

31. Barron, J.T.; Malik, J. Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1670–1687.
[CrossRef]

32. Zhou, T.; Krahenbuhl, P.; Efros, A.A. Learning data-driven reflectance priors for intrinsic image decomposition. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [CrossRef]

33. Lee, H.W. The study of mechanical arm and intelligent robot. IEEE Access 2020, 8, 119624–119634. [CrossRef]
34. Sanakkayala, D.C.; Varadarajan, V.; Kumar, N.; Soni, G.; Kamat, P.; Kumar, S.; Patil, S.; Kotecha, K. Explainable AI for bearing

fault prognosis using deep learning techniques. Micromachines 2022, 13, 1471. [CrossRef]
35. Deng, S.; Du, L.; Li, C.; Ding, J.; Liu, H. SAR automatic target recognition based on Euclidean distance restricted autoencoder.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3323–3333. [CrossRef]
36. Zeng, X.; Wang, X.; Chen, K.; Zhang, Y.; Li, D. Dividing the neighbours is not enough: Adding confusion makes local descriptor

stronger. IEEE Access 2019, 7, 136106–136115. [CrossRef]
37. Dmytriyev, Y.; Zaki, A.M.A.; Carnevale, M.; Insero, F.; Giberti, H. Brain computer interface for human-cobot interaction in

industrial applications. In Proceedings of the International Congress on Human-Computer Interaction, Optimisation and Robotic
Applications, Ankara, Türkiye, 11–13 June 2021. [CrossRef]

38. Song, Q.; Li, S.; Bai, Q.; Yang, J.; Zhang, X.; Li, Z.; Duan, Z. Object detection method for grasping robot based on improved
YOLOv5. Micromachines 2021, 12, 1273. [CrossRef]

39. Gong, C.S.A.; Su, C.H.S.; Chen, Y.H.; Guu, D.Y. How to implement automotive fault diagnosis using artificial intelligence scheme.
Micromachines 2022, 13, 1380. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rcim.2014.11.003
https://doi.org/10.1080/09511920601143169
https://doi.org/10.1109/ICRA.2016.7487404
https://doi.org/10.1109/TASE.2017.2679720
https://doi.org/10.1109/TASE.2018.2860945
https://doi.org/10.1016/j.procir.2021.01.172
https://doi.org/10.1016/j.procir.2022.02.001
https://doi.org/10.1080/0951192X.2021.1963476
https://doi.org/10.3390/mi12121458
https://www.ncbi.nlm.nih.gov/pubmed/34945308
https://doi.org/10.1016/j.cviu.2020.103086
https://doi.org/10.1002/int.22806
https://doi.org/10.1109/IECON48115.2021.9589219
https://doi.org/10.1007/978-3-319-96728-8_19
https://doi.org/10.1016/j.patcog.2019.05.012
https://doi.org/10.1109/TIP.2019.2893535
https://www.ncbi.nlm.nih.gov/pubmed/30668473
https://doi.org/10.3390/s22249715
https://www.ncbi.nlm.nih.gov/pubmed/36560084
https://doi.org/10.1007/s11263-011-0501-8
https://doi.org/10.1109/TPAMI.2014.2377712
https://doi.org/10.1109/ICCV.2015.396
https://doi.org/10.1109/ACCESS.2020.3003807
https://doi.org/10.3390/mi13091471
https://doi.org/10.1109/JSTARS.2017.2670083
https://doi.org/10.1109/ACCESS.2019.2942087
https://doi.org/10.1109/HORA52670.2021.9461383
https://doi.org/10.3390/mi12111273
https://doi.org/10.3390/mi13091380
https://www.ncbi.nlm.nih.gov/pubmed/36144003

	Introduction 
	Related Work 
	Screw Detection for Disassembly 
	Reflection Feature for Object Detection 

	Method 
	Characterise Reflection Features 
	Measure Illumination Conditions 
	Reflection Feature Regression Model 
	Two-Stage Detection Framework 

	Experiments 
	Experimental Setup 
	Experimental Procedure 
	Evaluation System 

	Results and Discussion 
	Performance of the Reflection Feature Regression Model 
	Performance of the Two-Stage Detection Framework 
	Generalisation 
	Comparison 

	Conclusions and Future Work 
	References

