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26 Abstract

27 Bone is a complex connective tissue that serves as mechanical and structural support for the 

28 human body. Bones' fractures are common, and the healing process is physiologically 

29 complex and involves both mechanical and biological aspects. Tissue engineering of bone 

30 scaffolds holds great promise for the future treatment of bone injuries. However, conventional 

31 technologies to prepare bone scaffolds can not provide the required properties of human 

32 bones. Over the past decade, three-dimensional printing or additive manufacturing 

33 technologies have enabled the control over the creation of bone scaffolds with personalized 

34 geometries, appropriate materials and tailored pores. This paper aims to review the recent 

35 advances in the fabrication of bone scaffolds for bone repair and regeneration. A detailed 

36 review of bone fracture repair and an in-depth discussion on conventional manufacturing and 
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1 three-dimensional printing techniques are introduced with an emphasis on novel studies 

2 concepts, potentials and limitations.

3 1. Introduction
4
5 Bone injuries have recently increased due to ageing, traumatic injuries, and congenital diseases, 

6 making them a global health issue. It's estimated that the number of people aged more than 65 

7 years will increase from 323 million to 1.55 billion by 2050 worldwide. Age intensifies the risk 

8 of osteoporosis and consequently has dangerous effects on people's healthy life, disability, 

9 countries' healthcare systems, and loss of productivity . Globally, over 200 million people have 

10 osteoporosis, with an increased number of patients receiving hospital treatment every year due 

11 to fragility fractures and bone loss, accelerating the demand for bone tissue surgeries. Efficient 

12 and cost-effective strategies to treat bone injuries will help to improve people's quality of life 

13 and relief the economic burden on governments (1, 2). 

14 A bone defect is generally defined as the lack of bone tissue in an area of the body, which results 

15 in pseudarthrosis. Usually, the human body is capable of self-repair, yet when a segmental bone 

16 fracture exceeds a size of 10 mm, the body fails to self-repair (3). Therefore, external 

17 interventions are essential to assist in the self-repairing process by creating bone scaffolds. 

18 These scaffolds act as bridges over bone defect sites and facilitate repair (4). The design of the 

19 bone substitutes must be controlled to avoid excessive bone tissue removal at defect sites and 

20 to allow cell activity and proliferation (5, 6). The latter is facilitated by designing a scaffold 

21 with a porous and linked pore structure. Thus, manufactured bone scaffolds are a promising 

22 solution for treating bone fractures, but this comes with some challenges.

23 Regarding bone scaffolds manufacturing techniques, several methods have been investigated 

24 to create porous scaffolds for bone repair, such as salt leaching, gas foaming, self-assembly, 

25 phase separation, electrospinning, and freezing drying methods. Although these approaches are 

26 capable of fabricating porous structures, they have certain drawbacks, such as restricted pore 

27 structure control and a limited ability to customise for particular defect sites (7). Additionally, 

28 many of these techniques leave behind organic residues of the pore-forming agent, impairing 

29 the scaffolds' biological characteristics and lowering the quality of bone healing. Thus, 

30 developing fabrications technique for scaffolds that are not restricted to obtaining the desired 

31 external shape but also precisely control the pore structure is critical for their future orthopaedic 

32 application. 

33 Given this context, additive manufacturing (AM) technologies are becoming a good alternative 

34 for manufacturing scaffolds as they can create porous scaffolds with customised external design 
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1 and a porous inner structure (8). The use of 3D printing technology for the generation of bone 

2 scaffolds has been gaining more attention from researchers and the biomedical industry in 

3 recent years. The near future of bone regeneration and healing is closely linked to developments 

4 in tissue engineering. Polytherapy, which combines scaffolds, stem cells, and healing promoters 

5 with new advances in tissue-engineered constructs in three-dimensional printing, may be 

6 capable of overcoming current challenges in treating bone injuries. In this review paper, we will 

7 focus on scaffolds as an established treatment for bone fracture using 3D printing technologies 

8 and compare them with conventional manufacturing techniques (Figure 1). 

9
10 2. Bone Fracture Repair
11
12 Bone tissue can undergo biological remodelling as a function of a dynamic process that involves 

13 osteoclasts absorbing mature bone tissue and osteoblasts forming new bone tissue (9, 10). Bone 

14 is a complex connective tissue made up of osteoblasts, osteocytes, bone lining cells, and 

15 osteoclasts. The outer layers of bones are mineralised, giving them significant strength and 

16 rigidity to support the body structure and allow skeletal movement. Bones composition includes 

17 the inorganic phase (60% - 70% of the tissue), (22% - 35%) organic matrix and liquid (5% –

18 8%), where collagen represents the majority of the organic matrix and only 10% non-

19 collagenous proteins (11). Bones strength and stiffness are mainly provided by hydroxyapatite 

20 crystal (Ca10(PO4)6(OH)2) with carbonate ions (12) which are found within and between 

21 collagen fibres in the form of needles, plates and rods with an average diameter of 20–80 nm 

22 and 2–5 nm in thickness [2]. Bone can also modify its structure according to body requirements, 

23 such as in repair, modelling, remodelling, and growth (13, 14). 

24 Bone tissues can be classified into cortical and trabecular (Figure 2). Both have the same matrix 

25 composition; however, they vary in structure and function as well as in relative distribution 

26 between bones. Cortical bone (dense or compact) is composed of layers surrounded by lamellar 

27 bone and vascular channels. This arrangement is known as the Haversian or osteon (15). An 

28 osteon's central channel contains cells, vessels, nerves, and osteon-connecting Volkmann's 

29 channels (15). On the other hand, trabecular bone (spongy or cancellous) is located in the 

30 epiphysis and metaphysis of long bones and inside small or flat bones. Trabecular bone has a 

31 wide network of individual trabeculae, small and interconnected plates and rods guided by 

32 external loading (15). Typically, cortical and trabecular bones have Young's moduli of 

33 approximately 17 and 1 GPa, respectively (15). Cortical bone is a dense structure representing 

34 about 80% of the total skeletal tissue. Yet, cortical bones have some microscopic pores (about 
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1 10% of the total cortical bone volume) to allow vascular and neural supply and enable the 

2 delivery of nutrients (16). The porosity of cortical bone is critical as an increase in intracortical 

3 porosity can reduce the bone strength and consequently increase the chances of fracture (17). It 

4 is evident that cortical bone becomes more fragile at very high strain levels reflecting high-

5 impact trauma (Figure 2). As the strain rate increases, cortical bone shows a ductile to brittle 

6 transition (18), and like any material, the cortical bone could be prone to fatigue failure.

7 On the other hand, trabecular bone has a lower mass and high porosity when compared to 

8 cortical bone. Pores represent 50%-90% of total trabecular bone volume (19). This makes it 

9 considered an open cell porous foam with a  reduced compressive strength to about one-tenth 

10 of the cortical bone (20). It does, however, provide a large surface area that is necessary for red 

11 bone marrow, blood vessels and bone-connected tissues and facilitates hematopoiesis and 

12 homeostasis of minerals. The trabecular bone's physical and mechanical properties vary widely 

13 depending largely on the anatomical location, age and orientation of the cell structures (21, 22). 

14 Depending on the type and orientation of these basic cell structures, the mechanical properties 

15 can differ by a factor of 10. A comparison between the compressive properties of trabecular 

16 and cortical bones is shown in (Figure 3) (21). As shown, the cortical bone acts as a typical 

17 brittle material at which the stress steeply increases at a low strain in the elastic region, and the 

18 fracture occurs without a noticeable change in the strain.

19 On the other hand, trabecular undergoes a ductile behaviour under compression loading with a 

20 substantial increase in the plastic deformation before fracture. Individual trabeculae bone 

21 damage and repair is a physiological process that occurs throughout life and increases with age 

22 (23).

23 Bone fracture healing process can be enhanced using several techniques, such as grafts, which 

24 replace defected bone with another bone from the patient's own body (autografts) or from a 

25 donor, or by using healing growth materials in fabricating bone implants or scaffolds (24). 

26 Autografts are currently the bone regeneration golden standard (24). However, Autografts 

27 techniques have several disadvantages, such as surgical complications and the limited supply 

28 of natural tissue. Tissue-engineered bone scaffolds are a suitable alternative to autografts as 

29 they improve fracture healing and enhance the incorporation of grafts (25, 26). Requirments of 

30 tissue-engineered scaffolds are to have properties close to those of autografts irrespective of 

31 their limitations (27).
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1 Bone scaffolds need to have high porosity with sufficient sizes of pores across all sites of the 

2 scaffold in order to create an ideal environment for the formation of new tissue matrix and bone. 

3 Moreover, growth factors like the basic growth factor of fibroblasts (28, 29) can influence cell 

4 functions, proliferation, or differentiation; Promotive healing agents, for example, Human 

5 platelet-rich plasma (hPRP) (30-32); and also Tarantula cubensis extract (33) could be 

6 incorporated into the scaffolds to improve the damaged connective tissue's ability to repair.

7 The scaffold's vascularity is important as if not present, ischemia will occur in the scaffold, and 

8 hence the cells would die. Therefore, it would be useful to incorporate growth factors such as 

9 FGF, PDGF, and VEGF to promote angiogenesis in scaffolds and grafts (34, 35). A 

10 combination of stem cells and scaffolds with growth factors can be one possible approach 

11 providing all the required characteristics to enhance bone repair and regeneration. Currently, 

12 none of the grafts provided all the desirable requirements such as biocompatibility, size 

13 limitation, cost, osteogenic, osteoconductive, osteoinductive, and angiogenic properties (Table 

14 1). Tissue engineering seeks to provide all or most of these characteristics (36, 37). Also, tissue 

15 engineering can cause bone defects to be repaired and reconstructed (27). Incorporating the 

16 basics of orthopaedic surgery with knowledge from various sciences such as biology, 

17 engineering, chemistry, materials science and physics could overcome current treatments' 

18 shortcomings (25). Advances in biomaterials and tissue engineering can provide more 

19 appropriate tools to support the differentiation and proliferation of bone cells and improve bone 

20 fracture healing. Although there are a large number of studies in the literature on the effects of 

21 different agents on bone healing, it is certain to investigate the best manufacturing techniques 

22 for fabricating the desired scaffolds (38-40).

23

24 3. Conventional manufacturing techniques 
25
26 Conventional techniques used to prepare bone scaffolds are based on subtractive procedures to 

27 get the desired shape by removing sections of the material from an original block. The inability 

28 to manage complex shapes and geometries, as well as to incorporate interior architecture, 

29 cavities or curved channels, is a major disadvantage of these techniques (41). This is of special 

30 importance in the biomedical industry, where complex and organic shapes are usually needed 

31 for the implants to fit well. Additionally, cell viability and function can be affected by the use 

32 of organic solvents, even if only residues remain (42). In order to obtain those geometries, until 

33 now, several conventional manufacturing methods, such as salt leaching, gas formation, phase 

34 separation, freeze-drying, electrospinning, and self-assembly, have been employed in the 
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1 fabrication of porous bone scaffolds despite their limitations (Figure 4). The principles of each 

2 procedure are covered in the following sections. The prevalence of research on each technique 

3 is summarised in (Figure 5). It is evident that more phase separation technique has attracted the 

4 attention of researchers over the last 10 years.

5

6 3.1. Salt leaching
7
8 This process was widely used in the manufacture of tissue-based scaffolds. In this technique, 

9 salt crystals or porogen (e.g. sodium chloride) are put in a mould, and the remaining gaps are 

10 filled with a polymer. The polymer is then solidified, and salt crystals are dissolved in a suitable 

11 solvent like alcohol or water by dissolution (43-45). After all the salt leaches out, a solidified 

12 polymer with porosity is created, as illustrated in (Figure 4a) (46). 

13 β-chitin and collagen have been successfully used to prepare using salt leaching technique. The 

14 prepared membranes achieved a porosity of 77.81% and an average pore size of 260-330 μm. 

15 β-chitin membranes were prepared with NaCl salt-leaching, and then collagen solution crossed 

16 membranes by lyophilisation at −75 ° C (Figure 6a-b) shows the scaffold's cross-sectional and 

17 surface morphologies. In vitro cell culture demonstrated that the human fibroblasts attached to 

18 the collagen sites after 3 days, and proliferation took place within 14 days of cultivation (47).  

19 The salt leaching technique enables the customisation of the pore size by adjusting the porogen 

20 size employed. It is also possible to control the porosity and pore size of the scaffold by 

21 manipulating the volume and size of the salt particles used, respectively (43, 48).  Despite the 

22 mentioned benefits of salt leaching for scaffold fabrication, this process has some limitations. 

23 For instance, it is not possible to control the pore distribution or the shape of scaffolds created 

24 (43). Additionally, this technique requires scaffolding to be manufactured only in the form of 

25 tubes and flat sheets, which means that it is ideal for the manufacture of membrane scaffolds. 

26 Besides, the use of organic solvents can negatively impact the viability of cells and their 

27 biological functions (49). Although the residues of any cytotoxic solvents could be detected 

28 (50), they pose limitations for general applications of salt leaching scaffolds. 

29

30 3.2. Gas foaming
31
32 Gas foaming is a manufacturing approach in which a polymeric material is filled with a foaming 

33 agent such as carbon dioxide, water or nitrogen at high pressure (51-53). Solid polymer disks 
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1 like polyglycolide (PGA) and poly-L-lactide (PLA) are created at high temperatures before 

2 spreading high-pressure carbon dioxide gas through the disks for a few days before decreasing 

3 the pressure down to the ambient level (Figure 4b) (54). 

4 Gas foaming was used by Kim et al. (55) to fabricate porous biphasic calcium phosphate (BCP) 

5 scaffold by using gas-foamed polyurethane as a model achieving a porosity of 75% to 85% and 

6 pore size around 300-800 μm. The BCP scaffold was biocompatible and successfully 

7 differentiated and regenerated bone according to both the in vivo and in vitro experiments 

8 conducted in this study (55). In another study, a biodegradable poly (L-lactic acid) (PLLA) 

9 scaffold with high open porosity was fabricated using a gas-foaming technique along with salt 

10 leaching (56). The scaffold had a porosity of around 90% with pore sizes around 300-400 μm, 

11 which is ideal for high-density seeding of cells (Figure 7). Upon seeding rat hepatocytes into 

12 the scaffold, 40% viability and around 95% seeding efficiency were achieved within 24 hours 

13 (56). 

14
15 The key advantage of using the gas foaming technique is that it does not require the use of 

16 chemical solvents, thus reducing the overall manufacturing time. Nonetheless, it is challenging 

17 to control the internal structure of the scaffolds in terms of pore size and high connectivity using 

18 this technique (57, 58). In addition, high temperatures during the creation of disks often prevent 

19 the use of bioactive molecules in scaffolds (59). Although this technique has the ability to 

20 fabricate scaffolds with 93 % porosity and pore sizes up to 100 μm (59), it has been noted that 

21 the scaffold interconnects only 10–30 % of the pores which may limit the proliferation of 

22 encapsulated scaffold cells (54). 

23
24 3.3. Phase separation
25
26 In phase separation, a polymer is generally dissolved in an appropriate solution and then 

27 deposited in a mould that is gradually cooled till the solution freezes. The solvent is then 

28 removed by freezing, leaving behind a porous matrix, as illustrated in (Figure 4c). Various types 

29 of phase separation methods are available, including thermal-induced, solid-liquid and liquid-

30 liquid phase separation (60, 61).

31 The study by Kim et al. employed thermally induced phase separation (TIPS) for the 

32 manufacture of polyethene-glycol (PEG) poly(l-lactic) acid (PLLA) scaffold to support 

33 MC3T3-E1 osteoblast-like cells (62). It was shown in this study that ageing times and 

34 temperature have a significant effect on the pores morphology of the fabricated scaffold, 
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1 quenching temperatures of 25°C, 30°C, and 35°C (Figure 8a-c). The TIPS technique allowed a 

2 simple control of the scaffold pore size between 100 – 300 μm. Authors noted that MC3T3-E1 

3 cells could proliferate successfully within 4 weeks after being seeded on the microporous 

4 scaffold of PEG-PLLA (62). 

5
6

7 The main merit of using the phase separation technique is that it does not require extra leaching. 

8 However, the use of organic solutions like ethanol or methanol during the scaffold 

9 manufacturing process can prevent the integration of bioactive compounds or cells. 

10 Furthermore, the small pore diameters generated are another constraint for phase-separation 

11 scaffolds. (43, 59).

12

13 3.4. Freeze-drying
14
15 Freeze-drying technique is based on a frozen liquid that sublime directly into the gas phase 

16 leaving behind a porous hydrogel (Figure 4d) (63). The manufacturing approach was first 

17 explored by Whang et al. to produce PLGA scaffolds (64). The literature demonstrates that 

18 fabricated scaffolds' porosity and pore diameter are highly influenced by variables like the 

19 water-to-polymer mixture ratio and the viscosity of the emulsion (59). Also, altering the cooling 

20 temperature can control the scaffold's internal pore structure (65). 

21 In a study conducted by Park et al. (66), freeze-drying was used to fabricate collagen and 

22 hyaluronic acid (HA) membranes and then crosslinked using 1-ethyl-3-(3-

23 dimethylaminopropyl) carbodiimide (EDC). Porosity and pores' size were measured to assess 

24 the effect of freezing temperature and crosslinking on the internal structure of the scaffolds,  

25 freezes dried temperature used were at –20 ° C, −70 ° C, and −196 ° C (Figure 9a-c), (Table 2). 

26 The higher the freezing temperatures, the larger the pore size and the porosity percentage. Also, 

27 the use of EDC has significantly increased both the porosity and pore size. The prepared 

28 membranes were safe and did not exhibit significant toxicity to L929 fibroblast cells upon 

29 testing (66). 

30
31 The main benefit of the freeze-drying technique is that it eliminates many rinsing processes by 

32 immediately removing scattered water and polymer solutions (64). In addition, polymer liquids 

33 can be utilised directly instead of any monomer crosslinking. Nevertheless, in order to increase 
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1 scaffold homogeneity, the freeze-drying method must be managed to minimise heterogeneous 

2 freezing (65). Moreover, this approach is associated with high energy consumption, long 

3 timescales, small irregular pores, and cytotoxic solvents (67, 68).

4 3.5. Electrospinning
5
6 Electrospinning is an innovative electrochemical technology that utilises an electrical charge to 

7 create solid, nano-sized fibres from a liquid solution (69). As illustrated in (Figure 4e), the 

8 electrospinning process begins with a syringe filled with a solution containing a precursor for 

9 the nanofiber material and a connecting polymer being loaded onto a regulated syringe pump. 

10 A metallic needle is attached to the syringe and is connected to a high-voltage power source 

11 (70). As the solution flows through the metallic tip, it becomes electrified, generating a 

12 deformed conical shape known as a Taylor cone. The Taylor cone's tip releases an electrified 

13 fibre jet. As the solution travels to a grounded collector, the solvent evaporates, and the fibres 

14 harden (70). 

15 Wutticharoenmongkol et al. used electrospinning to create a 12% w/v PCL fibrous scaffold 

16 with HA nanoparticle concentrations ranging between 0.5 and 1.0%. The porosity of the 

17 constructed fibre scaffold increased by 82 and 90 %, and had pore sizes ranging from 4.3 to 5.6 

18 μm. The prepared fibrous scaffolds had a tensile strength between 3.6 and 3.8 MPa (71). 

19 Another study by He et al. reported the fabrication of a PCL/HA scaffold with different ratios 

20 of PCL/0.3 HA, PCL/0.4 HA, and PCL/0.5 HA (Figure 10a-c) and an average pore size of 167 

21 μm which is suitable for osteoblasts, by stacking meshes using near-field electrospinning (72).

22
23 Electrospinning  has the advantage of being able to manipulate both the mechanical properties 

24 and the porous structure of the fibre by regulating the voltages and distance between the syringe 

25 and the collectors (73, 74). Pores generated by this approach, however, are often fewer than a 

26 few tens of micrometres in size, making them unsuitable for tissue growth and cell culturing 

27 (72). Also, fabricating complex geometry can be challenging using this technique.

28 3.6. Self-assembly
29
30 Self-assembly is the process by which the components of a system, whether molecules, 

31 polymers, colloids, or macroscopic particles, arrange into ordered and/or functional structures 

32 or patterns without external direction as a result of specific, local interactions among the 

33 components (75). Collagen should be examined to better understand the origins and 
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1 significance of these structural features, as it is one of the most common proteins in the human 

2 body. Collagen is formed within the cell as a triple helix structure by the assembly of three 

3 distinct alpha strands (procollagen) (Figure 4f) (76). Procollagen is enzymatically broken to 

4 generate tropocollagen, which combines and crosslinks with other tropocollagen molecules to 

5 create the characteristic 67 nm banded fibrils after vesicle transit to the exterior of the cell (76). 

6 This fibrillar structure is retained in collagen types I (skin, tendon, and bone), II (cartilage), and 

7 III (skin, muscle) (76).

8 A recent study conducted by [88] demonstrated the self-assembly of a 3D porous Reduced 

9 graphene oxide (RGO) composite scaffold that is composed of graphene oxide (GO) and nano-

10 hydroxyapatite (nHA) with pore sizes ranging from 20–100 μm (Figure 11) (77). The scaffold 

11 significantly improved the proliferation, alkaline phosphatase activity (ALP), and osteogenic 

12 gene expression of rat bone mesenchymal stem cells (rBMSCs) (77). Another study used a 

13 combination of self-assembly and electrospinning techniques to create a hybrid scaffold with a 

14 honeycomb using Polyhydroxybutyrate/poly(-caprolactone)/58S sol-gel bioactive glass 

15 (PHB/PCL/58S) (78). The scaffold was created by changing the solution composition and 

16 concentration during a single electrospinning process (78). The nanofiber contained pores as 

17 small as a few micrometres in diameter, while the structure had pores ranging from 200 μm to 

18 1000 μm. This facilitated the cell ingrowth and infiltration of MG-63 osteoblast-like cells into 

19 the honeycomb-like scaffold (78).

20

21 The self-assembly mechanisms are frequently triggered by the mixing of two elements or by an 

22 external stimulus (pH, ionic strength, or temperature), allowing these materials to be injected 

23 or even used directly to encapsulate cells, compared to the complex processing needed for other 

24 conventional manufacturing methods to fabricate a scaffold (76). In comparison to other 

25 manufacturing processes, the mechanisms governing the development of self-assembled 

26 nanofibers are generally more complex, requiring more careful molecular design and more 

27 intricate synthesis. (Table 3) summarises the main applications, advantages and drawbacks of 

28 the manufacturing techniques presented in this section.

29
30 From the literature review presented above, it can be concluded that conventional 

31 manufacturing methods such as gas formation, salt leaching, freeze-drying, and phase 

32 separation do not allow for accurate regulation of the internal scaffolding design or the 

33 manufacture of complicated structures, which can be accomplished through AM modelled with 
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1 computer-aided design (CAD) (79). Besides, these conventional methods require good 

2 manufacturing skills to maintain a consistent architecture of scaffolds. In addition, special care 

3 must be taken to use toxic solvents that can lead to the death of cells if they are not removed 

4 completely (80). Another limitation is that scaffolds manufactured in accordance with these 

5 conventional processing methods have poor mechanical properties (81). Therefore, alternative 

6 techniques such as 3D printing offer a good opportunity to avoid these issues.

7 4. Three Dimensional Printers 
8
9 Industry 4.0, commonly known as digital technology, is revolutionising industries by making 

10 factories smarter and assisting manufacturers in increasing quality, productivity, and 

11 profitability. 3D printing is a manufacturing tool that has advanced over the last three decades 

12 and is an essential component of digital technology. Charles Hull invented the technology in 

13 1986, employing UV-sensitive polymers and ultraviolet light (UV) to generate three-

14 dimensional structures (82). Stereolithography Apparatus (SLA) was the name given to the 

15 technology later on. Scientists and engineers have since developed a variety of unique 3D 

16 printing techniques. The main advantage of these new technologies is that they enable the 

17 fabrication of complex organic shapes and internal features and cavities in components that 

18 were difficult or even impossible to fabricate with conventional techniques (83). Additional 

19 benefits of 3D printing can include; reduced lead time, elimination of extra processing required 

20 for mass customisation, develop supply chain expertise, printing systems and assemblies, 

21 fabricating complicated designs in functional components, lightweight production of cellular 

22 structures, material recycling and environmentally friendly production, scalable workflow, on-

23 demand production and enhanced service quality (83, 84). (Figure 12) summarises the most 

24 employed 3D printing techniques. Binder Jetting, Fused Deposition Modelling, Selective Laser 

25 Sintering and Stereolithography are the most employed for the manufacturing of scaffolds and, 

26 therefore, will be discussed in detail in the following sections. 

27 In regards to the bio-medical applications, the most significant benefit of 3D printing 

28 technologies is allowing the fabrication of completely customised components. In 3D printing, 

29 different materials such as polymers, metals, or ceramics can be created layer by layer to 

30 produce the desired shape according to a computerised model, in contrast to typical 

31 manufacturing or foaming procedures that demand removing and/or adding, such as cutting, 

32 bending, and drilling (85). 3D printing technologies have been used in many industries, such as 

33 biomedical, automotive, aerospace, defence, and many others. This is due to the capacity of 

34 AM technologies to rapidly build complicated structures with precision and accuracy, as well 
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1 as the ability to recycle materials. Numerous researchers and industrial organisations have 

2 focused their efforts on enabling the widespread implementation of 3D printing and 

3 investigating its potential and limitations. (86-89). Therefore, 3D printing can play a major role 

4 in the future of tissue engineering in general and bone scaffolds in particular. This is evident as 

5 the number of studies employing 3D printing technology for bone scaffolds has increased over 

6 the last decade  (Figure 13). 

7 4.1. Binder jetting
8
9 Binder jetting starts with a powder bed, the composition of which varies according to the 

10 materials employed, which is dispersed over the building platform and flattened with the aid of 

11 a roller system (90). Following that, the printer nozzle spreads binder solution in the powdery 

12 regions indicated by the CAD. The excess powder is extracted (blown off) after the binder 

13 solvent and powder are mixed. The building platform is then lowered, allowing for the deposit 

14 and levelling of a new powder sheet (91). Following that, the process will be repeated till the 

15 required design is fully fabricated (Figure 12a). After the layer deposition, the part generated 

16 that is known as the green part usually has high porosity. In order to reduce the number of pores 

17 and to improve its integrity, the component is subjected to cleaning and post-processing 

18 operations: depowdering, debinding and finally, a sintering process in a furnace with densifying 

19 and strengthening purposes.

20 In a study conducted by Zeltinger et al., chitosan and hydroxyapatite biocomposite scaffolds 

21 were printed using a Z‐Corp, Z-510 3D printer to create dense (solid, nonporous, 37.1% 

22 porosity) and cylindrical scaffolds (92). These scaffolds were fabricated by applying a 40 wt% 

23 lactic acid binder solution to various chitosan/hydroxyapatite composites (20 wt%, 25 wt%, and 

24 30 wt% chitosan) followed by a post-hardening process. The authors observed that the scaffolds 

25 printed with 25% chitosan had good mechanical properties, as evidenced by their compression 

26 strength of 16.32 MPa and 4.4 GPa Young's modulus (92). Nevertheless, only the fabrication 

27 of nonporous scaffolds has achieved the desired mechanical strength. In another study, 

28 CALPHAD (Ca) and biodegradable Fe-Mn alloy were used to achieve higher decomposition 

29 rates (Figure 14a-b) (93). The achieved ultimate tensile strength was 228.1 MPa for the Fe-Mn 

30 and 296.6 MPa for the Fe-Mn-1Ca (93). During tensile testing, a brittle fracture occurred in a 

31 porous Fe-Mn-1Ca scaffold with 52.9 % open porosity. Fe-Mn scaffolds with an open porosity 

32 of 39.3 % had higher ductility than Fe-Mn-1Ca, demonstrating that scaffold Fe-based alloys 

33 with less porosity have higher ductility (Figure 14c-d)  (93). This is a concern since porosity is 

34 a crucial feature as it promotes the diffusion of oxygen, nutrients, and cellular waste. The 
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1 availability and diversity of the powder-binder solutions make the binder jetting attractive for 

2 manufacturing bone scaffold (90). On the other hand, a drawback of this technique is that it 

3 needs post-processing, which may include heat treatment to assure durability (94).

4 4.2. Materials jetting 
5
6 Materials jetting Printing (Bioplotter) is one of the most used 3D printing technologies for 

7 cellular research due to the low temperature it requires and the low volume it uses ( between 3 

8 and 5 mL) (95). This technology is designed for high-precision printing of small objects using 

9 small nozzles with a minimum diameter of 250 μm and low volume (96). The process starts by 

10 loading the printing material in a semi-liquid or liquid form into the syringe. Then, pneumatic 

11 pressure is applied to extrude the material through the printing nozzle (Figure 12b). The 

12 materials are deposited in a layer-by-layer manner, and the process enables the combination of 

13 different materials in each layer. 

14 In the study by Poldervaart et al. VEGF was incorporated into a 3D printed matrigel-alginate 

15 scaffold to promote vascularisation using BioScaffolder pneumatic dispensing system (97). The 

16 incorporation of gelatin microparticles (GMPs) to sustainably regulate the release of VEGF led 

17 to higher vascularisation compared to scaffolds with no growth factors and rapidly released 

18 VEGF scaffolds when implemented in murine models (Figure 15). In another recent study, a 

19 biphasic scaffold model was fabricated with the BioScaffolder by combining the unmodified 

20 calcium phosphate cement (CPC) paste with a highly concentrated alginate-based hydrogel 

21 paste that was embedded with VEGF by two-channel plotting within a single scaffold (98). The 

22 scaffold was designed and manufactured to be used for evaluating a femur defect of size in the 

23 range of 200 µm with a macro porosity of 57%. The scaffolds' size and high porosity made 

24 them suitable for enhancing bone regeneration (98). 

25 A unique feature of materials jetting processes is that it allows the printing of cell-laden gels to 

26 deliver viable and usable scaffolds, often including other polymeric materials like PCL (99, 

27 100). Another advantage of materials jetting is that it enables the growth factors such as platelet-

28 derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) to be added to the 

29 bio-ink to improve cell proliferation and differentiation which promotes angiogenesis (101). 

30 Adding these growth factors will increase the tissue formation rate in scaffolds and generate 

31 robust tissue as a result of increased differentiation. On the other hand, the shear stress from the 

32 nozzles of various sizes can negatively impact cell viability (102). 
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1 4.3. Materials extrusion
2
3 In materials extrusion, thermoresponsive polymers are heated above their glass transition 

4 temperature and then placed on a solid surface. It uses a winding thermoplastic polymer 

5 filament that is unwound and extruded through a heated nozzle on a fabrication platform. The 

6 polymer solidifies and sets after contact with the platform (103). Upon depositing a layer, the 

7 process is repeated in a layer-by-layer process until the part is fully fabricated see (Figure 12c) 

8 (104).

9 Hong et al. employed a multi-head deposition method to combine PCL and PLGA to fabricate 

10 a multi-material scaffold with high compressive strength of 3.2 MPa and pore size of around 

11 300 μm with 66.7% porosity (Figure 16). In combination with mussel adhesive proteins as a 

12 functional material, the fabricated scaffolds facilitated high cell attachment and proliferation of 

13 stem cells derived from human adipose tissue (105). It also yielded positive outcomes in vivo 

14 tests, where increased bone regeneration was observed in a calvarial defect of a rat model  (105). 

15 Overall, FDM was mainly used in combination with other techniques or in indirect 3D printing 

16 for tissue engineering purposes.

17 The key disadvantages of FDM are that it enables multi-material and multi-colour fabrication 

18 processes within one component, and the accuracy can go down to ±0.5 mm (106). However, 

19 it prevents any possible toxicity caused mainly by organic solvents that are required for the 

20 solubilisation of certain polymers, like dichloromethane, used to solubilise PLGA. The 

21 thermoplastic criterion for this technique restricts its application and adaptability in the 

22 production of scaffolds, as acrylonitrile butadiene styrene (ABS) is the most often utilised 

23 material. Other polymers have been used in FDM, like polycarbonate (PC), polyphenylsulfone 

24 (PPSF), and polyetherimide (PEI). However, these materials are not mainly used in tissue 

25 engineering applications. (107). Further investigation is needed to determine whether 

26 alternative thermoplastics, like polyesters, are suitable scaffolding materials for tissue 

27 engineering. Despite this drawback, FDM has been demonstrated to be a viable approach for 

28 manufacturing scaffolds for tissue engineering. Polyester, PLA, PCL, as well as PCL and PLA 

29 composites like PCL-TCP, HA - PCL and HA - PLA are the main option for FDM printed 

30 scaffolds (108-111).

31

32
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1 4.4. Powder bed fusion
2
3 The laser powder bed fusion (L-PBF) technology begins with the powder layer being smeared 

4 on the surface of the base plate, followed by melting powdered particles together using a laser 

5 beam (normally a CO2 laser) in the desired pattern (112). The process is repeated after the first 

6 layer is deposited, and then another layer is added on top of the pre-existing one (Figure 12d) 

7 (113, 114). The  L-PBF technique was used to make scaffolds from biocompatible and 

8 biodegradable polymers like poly(lactic acid), polyvinyl alcohol, polycaprolactone, and 

9 polyetheretherketone (115). With the development of metal 3D printing, this technology is also 

10 employed for the fabrication of metallic scaffolds that can be created out of biocompatible metal 

11 alloys such as Ti6Al4V for the fabrication of implants (116).

12 The use of L-PBF for the manufacturing of scaffolds has been studied by many researchers in 

13 the literature. Liu et al. utilised hydroxyapatite (HA), sodium tripolyphosphate and silica sol 

14 biocomposite slurry to manufacture scaffolds using L-PBF with different heat treatment 

15 temperatures at ambient temperature, 1200 °C, 1300 °C, and 1400 °C (Figure 17a-d). These 

16 scaffolds showed significant mechanical strength (up to 43.26 MPa) but had low porosity with 

17 a pores size of 5-25 μm. The in vitro research, however, suggested the possibility of using these 

18 scaffolds for osteoblast growth, such as cells (117).  In another study by I. Gibson, the authors 

19 optimised the laser beam power, scan spacing and laser thickness to fabricate a nanocomposite 

20 scaffold made of poly(hydroxybutyrate-co-hydroxyvalerate) and calcium phosphate (118). The 

21 analysed parameters were found to have a substantial effect on the mechanical properties of the 

22 scaffold; compressive properties, precision, and durability (119). Nevertheless, the scaffold's 

23 efficiency and utility must be evaluated in vitro and in vivo. Other scholars have fabricated a 

24 scaffold using bioresorbable polycaprolactone (PCL) at high precision and high compression 

25 moduli ranging from 52‐67 MPa. The scaffold was loaded with bone morphogenetic protein-7 

26 (BMP7), and has demonstrated bone generation in vivo (120).

27 When low porosity and high mechanical strength are needed, the use of L-PBF processes can 

28 be beneficial; nonetheless, the need for powdered material to be able to withstand laser heat and 

29 resistant shrinking throughout the melting process are some limitations of this technique. 

30 Another drawback of L-PBF is the pre-heating and post-heating treatments of the powdered 

31 material among the crystallisation glass transition or melting temperatures to lower the 

32 shrinking of the scaffolds induced by the laser (117, 121).   

33
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1 4.5. Vat photopolymerization
2
3 Vat photopolymerisation or stereolithography (SLA) technique is based on the fabrication of 

4 components from a liquid polymer via a chemical reaction mediated by light. A photocurable 

5 polymer is placed on a surface medium and then subjected to UV radiation in the 300–400 nm 

6 wavelength range, forming the first layer (Figure 12e) (122). After the initial layer has been 

7 hardened, the process is repeated, overlaying the preceding layer until the part is completely 

8 fabricated (123, 124). SLA biomaterials include polypropylene fumarate (PPF) with photocross 

9 linkers and polyethylene glycol acrylate.

10 A study conducted by Cooke et al. used the (SLA 250/40) stereolithography for Printing (PPF) 

11 scaffolds together with Irgacure 819 photoinitiator. The manufactured scaffolds had a porosity 

12 of 90% and a pore size range of 150–800 μm (125, 126). Their study demonstrated the 

13 possibility of fabricating scaffolds using (PPF) material (Figure 18). However, in vitro and vivo 

14 studies must be carried out to determine the scaffold cytotoxicity and biocompatibility. Despite 

15 the magnificent results that SLA can achieve in terms of complex geometries fabrication, 

16 Various novel biodegradable and biocompatible photocurable polymers must be developed. In 

17 addition, designing and improving visible light-based STA systems is important in order to have 

18 a list of polymeric materials (125).

19 The advantage of the SLA technology is that it allows for precise control and fabrication of 

20 high-resolution detailed scaffold geometries that almost perfectly mimic the CAD model. 

21 Nonetheless, due to the use of an extra curing phase to enhance the properties of the prototype, 

22 the final resolution is affected by the shrinkage usually occurring in the post-processing phase 

23 (127, 128). However, the drawback of SLA techniques is that it uses only photopolymers that 

24 use photoinitiators (129). In addition, the majority of photoinitiators include radical 

25 photopolymerisation by photocleavage, hydrogen extraction, and cationic photopolymerisation, 

26 with cationic photoinitiators being incompatible with biomedical applications because of the 

27 formation of toxic byproducts. Also, the widely used ultraviolet light source for the 

28 polymerisation process poses another risk as reports indicate that this light source is harmful to 

29 our DNA cells and might be a potential cause of skin cancer (130, 131). (Table 4) summarises 

30 the various 3D printing techniques used in preparing bone scaffolds. 

31

32
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1 4.6 Directed energy deposition  and Sheet lamination 
2

3 The directed energy deposition (DED) technology fabricates the required object by melting 

4 materials using a laser beam while using a nozzle to deposit the material in specific locations, 

5 as demonstrated in (Figure 12f) (132). It mostly uses metal types of materials, such as stainless 

6 steel, aluminum, or copper, in the form of powder or wire (133).  This technique usually require 

7 post-processing due to distortions in the fabricated part (134). Due to the limited types of 

8 materials that can be processed and the poor quality of the fabrication, this technique has not 

9 been utilized much in biomedical applications

10 In sheet lamination (SL), a sheet material is laminated in a layer-by-layer manner and cut using 

11 a laser beam to fabricate the required object as demonstrated in (Figure 12g). It uses different 

12 types of materials such as paper, metal, and plastic (135). Similarly to directed energy 

13 deposition, sheet lamination has not been widely used in biomedical applications due to its poor 

14 fabrication quality, the need for post-processing, and the difficulty in fabricating complex 

15 shapes using this technique (136).
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1 In general, both manufacturing technologies have different advantages and disadvantages, 

2 primarily depending on the application of the fabricated object. For example, when complex 

3 geometries and designs are required, additive manufacturing technology has proven to be a 

4 better option than conventional manufacturing as it allows for the creation of internal structures 

5 (137). In contrast, conventional manufacturing is more precise, can handle a wider variety of 

6 materials, and is better suited for large-scale production than additive manufacturing (138). 

7 Additive manufacturing is a relatively new technology that is still being developed and has 

8 limitations regarding the types of materials it can process and the size of the components it can 

9 produce (138). In fact, researchers have combined conventional and additive manufacturing 

10 technologies into a single machine for bone scaffold fabrication, effectively combining their 

11 respective advantages.

12 The research conducted by Jiankang He and his team, a new printing method was developed 

13 that combines FDM and electrospinning technologies to create 3D tissue-engineered scaffolds 

14 with intricate curved shapes and microscale fibrous structures (Figure 19a). The melting 

15 temperature was optimized to print PCL filaments of around 10 μm, which were stacked to 

16 create 3D walls with smooth surface (139). By adjusting the stage movement speed and 

17 direction, they were able to print PCL scaffolds with curved outlines, predefined fiber spacing, 

18 and orientations at 90° and 45° (Figure 19b-g). Biological experiments demonstrated that the 

19 printed microscale scaffolds were biocompatible and promoted in vitro cellular proliferation 

20 and alignment (139). In another research conducted by H. Hassanin et al., they successfully 

21 produced micro implantable components with the highest density and best surface quality 

22 possible by utilizing a hybrid microfabrication technology that incorporates the design 

23 flexibility of SLM and the exceptional surface quality of μ-EDM (140). Another group of 

24 researchers has developed a new approach to create three-dimensional graphene (3DG) 

25 composites scaffold by combining selective laser melting (SLM) and chemical vapor deposition 

26 (CVD) techniques (141). They fabricated a 3D porous copper template using SLM and grew 

27 graphene in-situ via CVD on the template. This technique allowed for accurate control of the 

28 design and regulation of 3DG, resulting in enhanced electromagnetic interference (EMI) 

29 shielding and improved thermal diffusion (141).

30

31 5. Conclusions
32
33 This paper presents a literature review of the most relevant works and recent advances 

34 concerning manufacturing bone scaffolds. Conventional manufacturing techniques have been 
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1 reviewed, and their main benefits and shortcomings have been addressed. Additionally, 3D 

2 printing technologies that have emerged in the last years have proved to be a feasible alternative. 

3 In this context, the review demonstrated that 3D printing technologies enable the customisation 

4 of bone scaffolds to meet individual patients' unique needs and health situations. Progress in 

5 this area is facilitated by advancements in computer-aided design (CAD) and computer-aided 

6 manufacturing (CAM), which enable rapid and precise organ scanning and design. The 

7 scaffold's structural properties, such as pore size and porosity, have a direct influence on their 

8 functionality in both vitro and vivo. In general, interconnected porous scaffolding networks that 

9 allow nutrient transport and waste disposal and promote cell migration and proliferation are 

10 significant. Pore size and porosity affect the behaviour of the cells and determine the overall 

11 mechanical properties of the scaffold. Presently, the concept of fabricating scaffolds is 

12 concentrated on generating materials with suitable pore size, structure, and porosity for specific 

13 uses. Typically, scaffolds are 3D printed, and cells are grown in/on these scaffolds.  One of the 

14 challenges of 3D printing is using non-biocompatible materials in several 3D printing 

15 techniques, such as binders or photoinhibitors, even after the high-temperature debinding or 

16 sintering process. These components cannot remove entirely after heating or sintering processes 

17 and may compromise the biocompatibility of the constructs. Also, applying the temperature in 

18 some of the technologies restricts the applicability of materials. Incompatibility of the cellular 

19 application with the scaffold would gradually cause the entire scaffolding system to fail. 

20 In addition, 3D printing technology has altered the way bone fractures and has enabled the 

21 utilisation of drug-loaded implants and/or scaffolds of complicated geometries and high 

22 resolution to accelerate the healing procedure and recover bone structure and toughness. Bone 

23 scaffolds have been extensively manufactured using techniques like FDM and binder jetting. 

24 FDM has been demonstrated to be capable of processing a wide variety of scaffolds with 

25 complicated structures and a variety of polymeric materials. On the other hand, techniques like 

26 directed energy deposition and sheet lamination (Figure 12f-g) were not explored in this field 

27 due to their processing characteristics or the quality of their products or materials. Clinical trials 

28 conducted by academia or commerce on the developed systems demonstrate significant 

29 potential. However, challenges such as materials recycling, quality control, and the effect of 

30 inherited issues of 3D printing such as surface roughness, internal defects, and post-processing 

31 are still lacking. 

32

33
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Figure 1. Flowchart of manufacturing technologies. 
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Figure 2. A long bone's macroscopic structure. 
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Figure 3. A comparison between the stress-strain properties of trabecular and cortical bones. Adapted from 
Damien Lacroix (21). 
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Figure 4. Conventional manufacturing techniques of bone scaffolds, (a) Salt leaching, (b) Gas forming, (c) 
Phase separation, (d) Freeze-drying, (e) Electrospinning and (f) Self-assembly. 
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Figure 5. Number of papers published on bone scaffold fabricated by each conventional manufacturing 
technique over the last 10 years.   
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Figure 6. Collagen-coated chitin scaffold morphologies: (a) cross-section and (b) surface.  Adopted from 
Sang Bong Lee (47). 
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Figure 7. SEM images of surface morphology of PLLA scaffolds. Adopted from Nam (56). 
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Figure 8. scanning electron micrograph of PLLA membranes as a function of aging time at quenching 
temperatures of 25°C (A), 30°C (B), and 35°C (C). Adopted from H Do Kim (62). 
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Figure 9. Effect of freezing temperature on morphology of the matrix. Collagen-hyaluronic acid scanning 
electron micrograph freezes dried at –20 ° C (A), −70 ° C (B) and −196 ° C (C) (magnification ×200). 

Adopted from SN Park (66). 
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Figure 10. Morphological characterisation of the PCL/HA composite scaffolds. SEM image of (a) PCL/0.3 HA 
scaffold, (b) PCL/0.4 HA scaffold and (c) PCL/0.5 HA scaffold. Adopted from Feng-LiHe (72). 
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Figure 11. SEM of the nHA@RGO scaffold with the different nHA loading ratios. Reduced graphene oxide 
(RGO) and nano-hydroxyapatite (nHA).  Adopted from WeiNie (77). 
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Figure 12. 3D printing techniques, (a) Binder jetting, (b) Materials jetting, (c) Materials extrusion, (d) 
Powder bed fusion, (e) Vat photopolymerisation, (f) Directed energy deposition, (g) Sheet lamination. 
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Figure 13. Number of papers published on bone scaffold fabricated by each 3D printing technique over the 
last 10 years. 
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Figure 14. Morphology of (a) Fe-Mn powders (b) Fe-Mn-1Ca powders, (c) 3D printed Fe-Mn sample, and (d) 
3D printed Fe-Mn-1Ca sample. Adopted from Hong D (93). 
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Figure 15. 3D printed matrigel-alginate scaffold the two regions (− without VEGF, + VEGF-laden GMPs). 
Adopted from M. T. Poldervaart (97). 
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Figure 16. SFF-based 3-D PCL/PLGA scaffold. Adopted from J. M. Hong (105). 
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Figure 17. SEM images of the scaffold at (a) ambient temperature, (b) 1,200 °C, (c) 1,300 °C, and (d) 
1,400 °C.  hydroxyapatite (HA) and Ceramic-matrix composites (CMCs). Adopted from F.-H. Liu (117). 

114x104mm (216 x 216 DPI) 

Page 45 of 52 Mary Ann Liebert, Inc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only; NOT for Distribution
 

Figure 18. fabricated scaffold using SLA. Adopted from M. N. Cooke (124). 
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Figure 19. Fiber orientation manipulation during the melt electrohydrodynamic printing process. (a) 
Schematic illustration of manipulating fiber orientation through directing stage movement, (b-d) microscopic 

images of the printed scaffold, which have fibers spaced at 1 mm intervals and oriented at 90° and (e-g) 
oriented at 45°. Adopted from Jiankang He (139). 

159x115mm (96 x 96 DPI) 

Page 47 of 52 Mary Ann Liebert, Inc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only; NOT for Distribution
Figure 1. Flowchart of manufacturing technologies.

Figure 2. A long bone's macroscopic structure.

Figure 3. A comparison between the stress-strain properties of trabecular and cortical bones. 

Adapted from Damien Lacroix (21).

Figure 4. Conventional manufacturing techniques of bone scaffolds, (a) Salt leaching, (b) Gas 

forming, (c) Phase separation, (d) Freeze-drying, (e) Electrospinning and (f) Self-assembly.

Figure 5. Number of papers published on bone scaffold fabricated by each conventional 

manufacturing technique over the last 10 years.  

Figure 6. Collagen-coated chitin scaffold morphologies: (a) cross-section and (b) surface.  

Adopted from Sang Bong Lee (47).

Figure 7. SEM images of surface morphology of PLLA scaffolds. Adopted from Nam (56).

Figure 8. scanning electron micrograph of PLLA membranes as a function of aging time at 

quenching temperatures of 25°C (A), 30°C (B), and 35°C (C). Adopted from H Do Kim (62).

Figure 9. Effect of freezing temperature on morphology of the matrix. Collagen-hyaluronic 

acid scanning electron micrograph freezes dried at –20 ° C (A), −70 ° C (B) and −196 ° C (C) 

(magnification ×200). Adopted from SN Park (66). 

Figure 10. Morphological characterisation of the PCL/HA composite scaffolds. SEM image 

of (a) PCL/0.3 HA scaffold, (b) PCL/0.4 HA scaffold and (c) PCL/0.5 HA scaffold. Adopted 

from Feng-LiHe (72).
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Figure 11. SEM of the nHA@RGO scaffold with the different nHA loading ratios. Reduced 

graphene oxide (RGO) and nano-hydroxyapatite (nHA).  Adopted from WeiNie (77).

Figure 12. 3D printing techniques, (a) Binder jetting, (b) Materials jetting, (c) Materials 

extrusion, (d) Powder bed fusion, (e) Vat photopolymerisation, (f) Directed energy deposition, 

(g) Sheet lamination.

Figure 13. Number of papers published on bone scaffold fabricated by each 3D printing 

technique over the last 10 years.

Figure 14. Morphology of (a) Fe-Mn powders (b) Fe-Mn-1Ca powders, (c) 3D printed Fe-Mn 

sample, and (d) 3D printed Fe-Mn-1Ca sample. Adopted from Hong D (93).

Figure 15. 3D printed matrigel-alginate scaffold the two regions (− without VEGF, + VEGF-

laden GMPs). Adopted from M. T. Poldervaart (97).

Figure 16. SFF-based 3-D PCL/PLGA scaffold. Adopted from J. M. Hong (105).

Figure 17. SEM images of the scaffold at (a) ambient temperature, (b) 1,200 °C, (c) 1,300 °C, 

and (d) 1,400 °C.  hydroxyapatite (HA) and Ceramic-matrix composites (CMCs). Adopted 

from F.-H. Liu (117).

Figure 18. fabricated scaffold using SLA. Adopted from M. N. Cooke (124).

Figure 19. Fiber orientation manipulation during the melt electrohydrodynamic printing 
process. (a) Schematic illustration of manipulating fiber orientation through directing stage 
movement, (b-d) microscopic images of the printed scaffold, which have fibers spaced at 1 mm 
intervals and oriented at 90° and (e-g) oriented at 45°. Adopted from Jiankang He (139).
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Table 1. Terms, definitions and examples of bone repair [40].

Term Definition Example

Osteogenesis The process by which new bone is synthesised 

using donor cells taken either from the host or the 

graft donor.

Stem cell, autografts transplants

Osteoconduction The passive ingrowth of host vasculature, tissue, 

and cells into an implanted scaffold.

Phosphate cements or calcium 

sulphate resorption

Osteoinduction Exogenous growth factors enable host 

mesenchymal stem cells (MSCs) to differentiate 

into osteoblasts and chondroblasts capable of 

producing new bone.

Proteins involved in bone 

morphogenesis

Table 2. Morphological properties of collagen-HA membranes. Adopted from SN Park [66].

Freezing 
temperature

Porosity (%) Pore size (μm) 

Before 
crosslinking

After 
crosslinking

Before 
crosslinking

After 
crosslinking

−196°C 58.1±3.4 61.95±3.8 40±7 84±20
−70°C 59.28±4.9 62.3±4.8 90±16 186±29
−20°C 66.46±2.6 64.93±2.3 230±52 190±42

Table 3. summary of conventional manufacturing.

Manufacturing 

technique
Main applications Advantages Disadvantages Ref.

Salt leaching
Forming porosity in part by 

employing salt particles

 Controlled pore size

 Suitable for 

manufacturing of 

membranes

 Lack of pores 

distribution control

 Lack of scaffold shape 

control

[43, 

48] 

[50]
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Gas foaming

Forming porosity in part by 

applying high pressure

 It does not use 

chemical solvents

 It is capable of 

fabricating parts with 

very high porosity

 Pore sizes are difficult to 

control

 It employs a high 

temperature

 Lack of scaffold shape 

control

[57, 

58] 

[59]

Phase separation
Forming porosity in part by 

employing chemical solvents

 It does not require 

post-processing

 Pore sizes are very small

 Lack of scaffold shape 

control

[43, 

59]

Freeze-drying
Forming porosity in part by 

freezing the liquid mixture

 Pore sizes can be 

adjusted by controlling 

the temperatures

 Lack of scaffold shape 

control

 high energy 

consumption

 uses cytotoxic solvents

[67, 

68] 

[66]

Electrospinning
Forming solid nano size 

fibres

 Mechanical and 

porosity properties of 

the fibre can be 

controlled by 

regulating the voltage 

and distance

 Lack of scaffold shape 

control

[73, 

74] 

[72]

Self-assembly

Forming a pattern by the 

interactions of two 

components without external 

direction

 It does not require the 

use of cytotoxic 

solvents

 Pore sizes are very small

 It necessitates greater 

attention to molecular 

design and intricate 

synthesis 

[76] 

[77]
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Table 4. summary of the 3D printing techniques.

AM technology Resolutio
n (μm)

Material Strength Weakness Refs

Binder jetting 200-300 PLGA, PLLA, 
PEEK-HA, 
PCL, starch-
based polymer 

 No support 
structure is 
required 

 Fast processing
 Uses a variety of 

materials 

 Can require post-
processing

 Powdery surface 
finish

 Trapped powder

[142, 
143]

Materials jetting 10-1000 PCL, PLLA, 
TCP, Hydrogel, 
Organic ink

 Uses an enhanced 
range of materials

 Can incorporate 
biomolecule 

 Low mechanical 
strength

 Smooth surface
 Low accuracy
 Slow processing
 Complex design 

requires support 
structure

[144-
149]

Materials extrusion 250 PCL, PP-TCP, 
PCL-HA, PCL-
TCP, PETG-
PBT, PLLA-
TCP, PLA

 Good mechanical 
strength 

 Preparation time is 
reduced

 High temperature
 Need to produce 

filament material
 Narrow processing 

window
 Complex design 

can require support 
structure

[108, 
150-
152]

Powder bed fusion 500 PEEK-HA, 
PCL, titanium, 
Stainless steel, 
cobalt-
chromium 
alloys

 Microporosity 
induced in the 
scaffold 

 Uses an enhanced 
range of materials

 No support 
structure needed

 Fast processing

 Material must be in 
powder form

 High temperature
 Powdery surface 

finish
 Trapped powder
 Thermal damage 

can occur during 
processing

[153-
155]

Vat 
photopolymerisation

366 Resin, PPF, 
polyethylene 
glycol acrylate, 
HA

 Control of both 
external and 
internal 
morphology 

 Uses an enhanced 
range of materials

 High accuracy
 Fast processing

 Multistep involved 
 Poor mechanical 

strength
 Damages cell 

during photo curing
 UV blue light can 

be toxic to cells

[156, 
157]

Poly(lactic-co-glycolic acid) (PLGA), Poly(L-lactide) (PLLA), (polyetheretherketone) (PEEK), Hydroxyapatite (HA), 

Polycaprolactone (PCL), Tricalcium phosphate (TCP), Polypropylene (PP), Polyethylene terephthalate glycol (PETG), 

Polybutylene terephthalate (PBT) and Paint protection film (PPF).
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