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Abstract: Modern block ciphers deal with the development of security mechanisms to meet the 
security needs in several fields of application. The substitution box, which is an important constituent 
in block ciphers, necessarily has sufficient cryptographic robustness to counter different attacks. The 
basic problem with S-box design is that there is no evident pattern in its cryptographic properties. This 
study introduces a new mathematical algorithm for developing S-box based on the modular group 
coset graphs and a newly invented mathematical notion “matrix transformer”. The proficiency of the 
proposed S-box is assessed through modern performance evaluation tools, and it has been observed that 
the constructed S-box has almost optimal features, indicating the effectiveness of the invented technique. 

Keywords: coset graphs for the modular group; cryptography, block cipher; S-box; matrix transformer; 
security of the cryptosystem; image encryption 
 

1. Introduction 

Over the last few decades, the number of organizations and individuals working on the web has 
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increased remarkably. Because of the widespread availability of data and information in every field, 
which is accessible to everyone, serious issues such as unauthorized access to confidential information 
have cropped up. As a result of this massive quantity of work and traffic, the risks of valuable data 
theft have significantly increased, and preventing these situations is a challenging task. Various 
researchers in their respective fields have worked to secure data by employing various cryptographic, 
watermarking, and stenographic schemes. Cryptography is a technique that restricts access to original 
information to the sender and recipient only [1]. It contains algorithms to block potential unauthorized 
access. Cryptographic algorithms are mathematical tools that helps in protection of data. The 
cryptography has two main types, symmetric and asymmetric cryptography. A symmetric 
cryptography [2] involves the procedures requires sole key to encrypt and decrypt the related content, 
while the algorithm in asymmetric cryptography contains two different keys for the process of 
encryption and decryption [3]. The symmetric cipher is further classified into two types: stream cipher 
and block cipher. The stream cipher modifies the original information bit-by-bit or byte-by-byte while 
the block cipher does so in blocks involving several bits or bytes simultaneously [4]. Data Encryption 
Standard (DES), GOST, Advanced Encryption Standard (AES), BLOWFISH, etc., are the well-known 
block ciphers. The substitution box (S-box) is a pertinent non-linear ingredient in block cipher that 
plays a very decisive role in encrypting the plaintext [5]. An 𝑛 × 𝑛  S-box is a Boolean function 𝑓: ℤ ⟶ ℤ  which maps an input of 𝑛 bits to an 𝑛 bits output. It generates perplexity and responsible 
for the complex relationship between actual and encrypted contents [6]. Therefore, it is not an 
overstatement to state that the security level of a block cipher can be determined by analyzing the 
performance of S-box. 

Considering the importance of the S-box in the security of cryptosystems, designing complex 
mathematical techniques to construct robust S-boxes has become a goal of cryptographers. The 
scientists working in this field are primarily interested in improving the performance of block ciphers. 
For this purpose, thousands of studies have been conducted and published in leading journals in recent 
years. A novel approach of S-box creation is introduced in [7]. The authors developed their proposed 
S-box using a chaotic system and fitness function. Javeed et al. [8] developed an effective framework 
for generating strong S-boxes relying on chaotic maps and symmetric groups. The authors designed 
an initial S-box with the help of chaotic dynamical system. Then the final proposed S-box is obtained 
by applying a permutation of 𝑆 . In [9] a specific type of graphs based the concepts of group theory 
were employed to develop a new S-box. Multiple performance evaluation metrics validate the 
resilience of the suggested S-box.  

In [10] Si et al. proposes a method to create a secure S-Box for symmetric cryptography using a 2D 
enhanced quadratic map, and an algorithm is designed to eliminate vulnerabilities. Experimental 
results confirm the method’s effectiveness. Lambic [11] used usual multiplication and circular shift to 
generate an innovative discrete-space chaotic map which further employed in the construction of S-
box having good security properties. Anees and Ahmed [12] designed a potent S-box by investigating 
the behavior of van der pol oscillator. Firstly, the author used a numerical technique to obtain the 
iterative solution of chaotic map. Then the ceiling function is employed to those solution to achieve 
the task. Liu et al. [13] proposes a strong S-Box construction method using a non-degenerate 3D 
improved quadratic map. The proposed algorithm satisfies six criteria and eliminates fixed points, 
reverse fixed points, and short cycles. Results show effectiveness in encrypting color images and 
verified security. A systematic scheme to evolve a S-box with high non-linearity value is given in [14]. 
The chaotic map iteration yields a 16 × 16 matrix on which the genetic technique is applied to obtain 
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the suggested S-box. We recommend to read [15–20] for further information on S-box generation 
methodologies. In [21], a secure image encryption method was introduced. It used a new framework 
to create chaotic signals with finite computer precision, and includes circular diffusion and local/global 
scrambling. In [22] the authors introduced a new encryption algorithm for color images using DNA 
dynamic encoding, self-adapting permutation, and a new 4D hyperchaotic system. Zhou et al. [23] 
proposes a secure color image cryptosystem using deep learning to train hyper-chaotic signals, which 
are then applied to increase the system’s security. Liu et al. [24] developed a secure color image 
encryption algorithm using a conservative chaotic system without attractors. They employed 
techniques such as plane element rearrangement, dynamic selection row-column cross scrambling, and 
cross-plane diffusion to enhance the encryption's security and mixing. The study [25] proposed a 2D 
hyperchaotic map to generate S-boxes and combine them to create a secure image encryption algorithm 
that passed NIST and TestU01 tests and resists common attacks. In [26], a new n-dimensional 
conservative chaos was designed to address security issues with encryption algorithms based on 
dissipative chaos. A new image encryption system using true random numbers and chaotic systems has 
been proposed in [27]. The method is found to be more secure and resistant to classical attacks 
compared to existing models.  

The study presents a novel method for constructing robust S-boxes for use in block ciphers. The 
following factors were considered during the creation of the S-box: 
i. The generated S-box must be cryptographically robust and comply with the mandatory 

information security standards. 
ii. The S-box must exhibit a sufficient level of confusion and complexity, while the method used to 

construct it remains simple and computationally efficient. 
iii. The S-box should demonstrate good performance when evaluated using modern cryptographic 

performance assessment parameters. 
iv. The S-box must meet the requirements for suitability in multimedia image encryption, as 

determined through a thorough evaluation of its cryptographic properties and performance under 
relevant metrics. 
The following paragraph summarizes the main contributions and proposed scheme of this article. 
By utilizing the action of the modular group on a Galois field of order 1024, 𝐺𝐹(2 =0, 𝜅 , 𝜅 , 𝜅 , … , 𝜅 } a coset graph is constructed. The vertices of the coset graph are utilized 

in a specific manner to generate a random sequence of the elements in 𝐺𝐹(2 ∗ = 𝜅 , 𝜅 , 𝜅 ,… , 𝜅 } , which is presented in a 16 × 16  matrix. Then, a bijective mapping from the group 𝐺𝐹(2 ∗ to 𝐺𝐹(2  yields an initial S-box that exhibits reasonable security. A new notion named 
“matrix transformer” which transforms a matrix into another matrix has been introduced. By applying 
a specific matrix transformer to the initial S-box, we obtain a proposed S-box with almost optimal 
features. Furthermore, a series of well-established analyses are carried out to establish the potential 
effectiveness of the proposed S-boxes for image encryption in the context of multimedia encryption.  

The arrangement of the remaining content of this paper is as follows: The purpose of Section 2 is 
to discuss the newly developed matrix transformer and modular group-based coset graphs over finite 
fields. Using the concepts described in Section 2 as a foundation, we propose our S-box design scheme 
in Section 3. Assessing the algebraic robustness of the constructed S-box is the focus of Section 4. This 
section also includes a comparison with some recently developed S-boxes. Sections 5–7 are devoted 
to examining the suitability of constructed S-box for image protection. We reveal the concluding 
remark in Section 8. 
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2. Preliminaries 

In this section, we will discuss some fundamental concepts that are required to comprehend the 
proposed S-box construction scheme. 

2.1. Coset diagrams for modular group 

The modular group ℳ is an infinite non-cyclic group of linear transformations. It is generated 

by 𝑥  and 𝑦  such that (𝑠 𝑥 =   and (𝑠 𝑦 =  . The finite presentation of ℳ  is ⟨𝑥, 𝑦: 𝑥 =𝑦 = 1⟩. Let 𝑝 be a prime number and 𝑛 ∈ ℕ. Then 𝐺𝐹(𝑝  denote a Galois field of order 𝑝 , it 

is well known that ℳ cannot act directly on 𝐺𝐹(𝑝  as (0 𝑥 = ∉ 𝐺𝐹(𝑝 , so the action of ℳ 

is possible if ∞  is adjoined with 𝐺𝐹(𝑝  , that is ℳ  acts on 𝐺𝐹(𝑝 ∪ ∞} . The graphical 
interpretation of the action of ℳ is described with the help of coset graphs [28–31]. As (𝑠 𝑦 = 𝑠, 
so 𝑦 has cycles of length three which are represented by triangles whose vertices are elements of 𝐺𝐹(𝑝 ∪ ∞}  are permuted counter-clockwise by 𝑦 . Moreover, since (𝑠 𝑥 = 𝑠 , therefore an 
undirected line connecting a pair of vertices of the triangles is drawn to represent 𝑥. The heavy dots 
are used to denote fixed points of 𝑥 and 𝑦, if they exist. For the better understanding of readers, here 
we describe the action of ℳ on 𝐺𝐹(23 ∪ ∞} and draw the corresponding coset graph. We apply (𝑠 𝑥 =   and (𝑠 𝑦 =   on each element of 𝐺𝐹(23 ∪ ∞}  and obtain permutation 

representations of 𝑥  and 𝑦 . For example, (1 𝑥 = ≡ 22  and (22 𝑥 = ≡ 1  mean a cycle (1,22   of 𝑥 . Moreover, (2 𝑦 = ≡ 12 , (12 𝑦 = ≡ 22  and (22 𝑦 = ≡ 2  give rise to a 

cycle (2,12,22  of 𝑦. In a similar way, all other cycles of 𝑥 and 𝑦 can be computed and we have 
the following permutation representations of 𝑥 and 𝑦. 𝑥: (0, ∞ (22,1 (11,2 (15,3 (17,4 (9,5 (19,6 (13,7 (20,8 (16,10 (21,12 (18,14 ; 𝑦: (1,0, ∞ (2,12,22 (11,3,16 (15,4,18 (17,5,10 (9,6,20 (19,7,14 (13,8,21 . 

The permutation representation of 𝑦 consists of 8 cycles. Consequently, the resulting coset graph 
has eight triangles. The graphical version of the cycle (1,0, ∞  in 𝑦 is a triangle with the vertices 1,0 
and ∞ permuted counter-clockwise by 𝑦. In a similar way, we can draw and label all triangles. The 
permutation representation of 𝑥 contains 12 transpositions which correspond to12 undirected lines 
joining all 24 vertices of 8 triangles. For instance, (1, 22  means the vertices 1 and 22 are connected 
through an undirected line. Similarly, the remaining vertices can be joined with each other through 𝑥 
and the following coset graph is emerged (See Figure 1). 

In the next subsection, we have introduced a new notion namely matrix transformer to generate a 
strong S-box from an initial S-box. 
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Figure 1. Coset graph of ℳ on 𝐹 ∪ ∞}. 

2.2. Matrix transformer 

Suppose 𝑀 is a square matrix of order 𝑛. Let us define the position of the elements of 𝑀 as follows; 

kth element = mth element of  row 

where 𝑚 = 𝑛                   𝑖𝑓 𝑛 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑚𝑘 𝑚𝑜𝑑(𝑛            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, and  means ceiling of . 

For example, in a 3 × 3 matrix, we have 1st element means 1st element of 1st row, 2nd element 
means 2nd element of 1st row, 3rd element means 3rd element of 1st row, 4th element means 1st element 
of 2nd row and so on. 
Definition 2.1. A square matrix 𝐴  of order 𝑛  with entries from 1,2,3, … , 𝑛 }  is called matrix 
transformer of square matrix 𝑀 of order 𝑛 if the action of 𝐴 on 𝑀 evolves a new matrix 𝑀  of 
order 𝑛 in the following way; 𝑡 ∈ 1,2,3, … , 𝑛 } is the ith element of the matrix transformer 𝐴 ⟺tth 
element of 𝑀  is equal to ith element of 𝑀. 
Example 2.1. Consider 𝑀 = 𝑓 𝑑 𝑔𝑐 𝑎 𝑖𝑒 ℎ 𝑏   and 𝐴 = 3 9 78 6 24 1 5  . Then the action of of 𝐴  on 𝑀 

generates 𝑀 = ℎ 𝑖 𝑓𝑒 𝑏 𝑎𝑔 𝑐 𝑑 . 

3. S-box generation 

In this section, we propose our S-box construction method based on the concepts describe in the 
previous section. 
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3.1. Coset graphs used in the proposed scheme 

The proposed S-box generation scheme involves coset graph of the modular group ℳ  on 𝐺𝐹(2 ∪ ∞}. So, in the 1st phase, we have to construct the Galois field 𝐺𝐹(2 ). It is well-known 
that a primitive irreducible polynomial of degree 10 over ℤ  is required to compute all the elements 
of 𝐺𝐹(2  ) [32]. For that purpose, we choose 𝑝(𝜅 = 𝜅 + 𝜅 + 1  and obtain 𝐺𝐹(2 =0, 𝜅 , 𝜅 , 𝜅 , … , 𝜅 = 1}. In Table 1, we present some of the elements of 𝐺𝐹(2 ) along with their 
binary and decimal form. 

To draw the coset graph of ℳ on 𝐺𝐹(2 ∪ ∞, we firstly apply the generators (𝑠 𝑥 =  and (𝑠 𝑦 =   of ℳ on all elements of 𝐺𝐹(2 ∪ ∞ to get permutation representations of 𝑥 and 𝑦. 

For instance, (𝜅 𝑥 = = = = 𝜅   and (𝜅 𝑥 = = = = 𝜅   yield a 

cycle (𝜅 , 𝜅   of 𝑥 . Moreover, (𝜅 𝑦 = = = 𝜅  , (𝜅 𝑦 = = = 𝜅  

and (𝜅 𝑦 = = = 𝜅 , generate a (𝜅 , 𝜅 , 𝜅  of 𝑦. 

Similarly, the remaining cycles of 𝑥 and 𝑦 can be found and some of them are presented below; 𝑥: (0, ∞ (1 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅  (𝜅 , 𝜅 … (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 (𝜅 , 𝜅 ； 𝑦: (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅  (𝜅 , 𝜅 , 𝜅 … (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (𝜅 , 𝜅 , 𝜅 (0, ∞, 1 (𝜅 ( 𝜅 . 
Both permutations of 𝑥 and 𝑦 produced a disconnected coset graph which contains 172 number 

of patches. It is important to note that out of these 172 patches, 170 are of the same type, denoted by 𝜂 , 𝜂 , 𝜂 , … , 𝜂 . The other two patches are denoted by 𝜂  and 𝜂 . We denote this coset graph 
by 𝐷  and 𝐷 = 𝜂 ∪ 𝜂 ∪ 𝜂 ∪ … ∪ 𝜂 ∪ 𝜂 ∪ 𝜂   The Figures 2–4 represent 𝜂 , 𝜂   and 𝜂  respectively. 

 

Figure 2. A copy of the patches 𝜂  of constructed graph. 
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Table 1. Structure of 𝐺𝐹 (2 ). 

Binary form Decimal 𝐺𝐹(2  Binary form Decimal 𝐺𝐹(2 ) Binary form Decimal 𝐺𝐹(2 ) Binary form Decimal 𝐺𝐹(2 ) 

0000000000 0 0 0000000001 1 1 0000000010 2 𝜅  0000000100 4 𝜅  

0000001000 8 𝜅  0000010000 16 𝜅  0000100000 32 𝜅  0001000000 64 𝜅  

0010000000 128 𝜅  0100000000 256 𝜅  1000000000 512 𝜅  0010000001 129 𝜅  

0100000010 258 𝜅  1000000100 516 𝜅  0010001001 137 𝜅  0100010010 274 𝜅  

1000100100 548 𝜅  0011001001 201 𝜅  0110010010 402 𝜅  1100100100 804 𝜅  

1011001001 713 𝜅  0100010011 275 𝜅  1000100110 550 𝜅  0011001101 205 𝜅  

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

1010111011 699 𝜅  0111110111 503 𝜅  1111101110 1006 𝜅  1101011101 861 𝜅  

1000111011 571 𝜅  0011110111 247 𝜅  0111101110 494 𝜅  1111011100 988 𝜅  

1100111001 825 𝜅  1011110011 755 𝜅  0101100111 359 𝜅  1011001110 718 𝜅  

0100011101 285 𝜅  1000111010 570 𝜅  0011110101 245 𝜅  0111101010 490 𝜅  

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

0100110000 304 𝜅  1001100000 608 𝜅  0001000001 65 𝜅  0010000010 130 𝜅  

0100000100 260 𝜅  1000001000 520 𝜅  0010010001 145 𝜅  0100100010 290 𝜅  

1001000100 580 𝜅  0000001001 9 𝜅  0000010010 18 𝜅  0000100100 36 𝜅  

0001001000 72 𝜅  0010010000 144 𝜅  0100100000 288 𝜅  1001000000 576 𝜅  
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Figure 3. The patch 𝜂  of constructed graph. 

 

Figure 4. The patch 𝜂  of constructed graph. 

3.2. The proposed scheme 

Step I: We first construct a square matrix of order 16 using vertices of coset graph in a specific way. 
Consider a patch 𝜂   containing 𝜅   as vertex from the coset graph 𝐷 . The application of 𝑥𝑦𝑥𝑦 𝑥 on 𝜅  carries us to 𝜅  by following the route 𝜅 → 𝜅 → 𝜅 → 𝜅 ⎯ 𝜅 → 𝜅  

(see Figure 2). So, in this way, we generate a sequence 𝜅 , 𝜅 , 𝜅 , 𝜅 , 𝜅 , 𝜅  of vertices. 

Consider a sub-sequence 𝜅 : 𝑖 ≡ 1 𝑚𝑜𝑑 (4 = 𝜅 , 𝜅 } of this sequence and place 𝜅  and 𝜅  at 1st 

and 2nd position of the first row respectively. Thereafter, we find the vertex from 𝐷 − η } having the 
smallest power of 𝜅, that is, 𝜅 . Let us denote the copy from 𝐷 − η } containing 𝜅  by η . Note 
that if 𝜅  would been exhausted in η , then η  is a copy from 𝐷 − 𝛤 } containing 𝜅 . Generate a 
sequence of the vertices of the type 𝜅 : 𝑖 ≡ 1 𝑚𝑜𝑑 (4 , present in η , in a similar way as done in the 
case of η . Write this sequence at the 1st row after 𝜅  by maintaining the order of sequence. After 
that, we chose a copy from 𝑑 − η , η }  possessing a vertex 𝜅  , where 𝑚  is the least positive 
integer. In a similar way, continue to select the copies 𝜂  and write vertices of the type 𝜅  such that 𝑖 ≡ 1 𝑚𝑜𝑑 (4  in the matrix until all copies η  are used. So, a square matrix of 256 distinct entries 
from 𝐺𝐹(2 ∗ = 𝜅 , 𝜅 , 𝜅 , … , 𝜅  } is generated (see Table 2). 

We can generate 3 more tables simply by replacing the type of vertices in step I, from 𝜅 : 𝑖 ≡ 1 𝑚𝑜𝑑 (4  to 𝜅 : 𝑖 ≡ 0 𝑚𝑜𝑑 (4 , 𝜅 : 𝑖 ≡ 2 𝑚𝑜𝑑 (4  and 𝜅 : 𝑖 ≡ 3 𝑚𝑜𝑑 (4 . 
Step II: The outcome of Step I yields a 16 × 16  matrix of distinct element from 𝐺𝐹(2 ∗ =𝜅 , 𝜅 , 𝜅 , … , 𝜅 } . To bring all the element in the range of 0 to 255, we define a mapping 𝑓: 𝐺𝐹(2 ∗ ⟶ 𝐺𝐹(2   by 𝑓(𝜅 = 𝛽  . Note the Galois 𝐺𝐹(2   is generated by primitive 

irreducible polynomial 𝛽 + 𝛽 + 𝛽 + 𝛽 + 1. Table 3 shows some of the elements of 𝐺𝐹(2 ) and 
their binary and decimal form. 

In this manner, we have designed our initial S-box (See Table 4). We have examined its 
cryptographic strength via some well-known performance evaluation criteria and found that it provides 
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adequate security for transmitting sensitive information. To increase its security even further, let us 
proceed to step III. 
Step III: Since an S-box is a square matrix of order 16. Therefore, the newly defined notion “matrix 
transformer” (see Section 2.2) can be used on initial S-box to enhance the security level. For this purpose, 
we tried several matrix transformers on our initial S-box by using MATLAB program and found that 
the matrix transformer displayed in Table 5 is the most suitable. The application of this matrix 
transformer on our initial S-box gives rise an S-box (See Table 6) with very high NL value 111. We 
call it our proposed S-box. An algorithm illustrating the process of using matrix transformers on the 
initial S-box is presented in Figure 5, while a flowchart can be found in Figure 6 to facilitate comprehension. 

 

Figure 5. Algorithm describing step III. 

 

Figure 6. Flow chart of Step III. 
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Table 3. Structure of 𝐺𝐹 (2 ). 

Binary 

form 

Decimal 𝐺𝐹 
(2 ) 

Binary 

form 

Decimal 𝐺𝐹
(2 ) 

Binary 

form 

Decimal 𝐺𝐹
(2 ) 

Binary 

form 

Decimal 𝐺𝐹
(2 ) 

00000000 0 0 00000001 1 1 00000010 2 𝛽  00000100 4 𝛽  

00001000 8 𝛽  00010000 16 𝛽  00100000 32 𝛽  01000000 64 𝛽  

10000000 128 𝛽  01101001 105 𝛽  11010010 210 𝛽  11001101 205 𝛽  

11110011 243 𝛽  10001111 143 𝛽  01110111 119 𝛽  11101110 238 𝛽  

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

10101100 172 𝛽  00110001 49 𝛽  01100010 98 𝛽  11000100 196 𝛽  

11100001 225 𝛽  10101011 171 𝛽  00111111 63 𝛽  01111110 126 𝛽  

11111100 252 𝛽  10010001 145 𝛽  01001011 75 𝛽  10010110 150 𝛽  

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

11010111 215 𝛽  11000111 199 𝛽  11100111 231 𝛽  10100111 167 𝛽  

00100111 39 𝛽  01001110 78 𝛽  10011100 156 𝛽  01010001 81 𝛽  

10100010 162 𝛽  00101101 45 𝛽  01011010 90 𝛽  10110100 180 𝛽  
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Table 4. Initial S-box. 

24 41 1 180 2 140 113 52 32 4 190 42 125 102 90 60 
8 128 205 45 253 16 250 86 162 109 17 115 244 81 217 64 
238 48 101 57 156 59 148 78 35 105 122 98 100 39 210 182
104 167 50 239 46 231 38 13 243 221 213 97 72 132 199 143
248 164 83 215 119 55 214 223 219 181 177 200 3 135 224 235
111 216 6 54 80 99 108 241 12 73 30 94 27 76 149 185
96 232 87 129 192 195 67 116 240 166 233 188 254 23 69 58 
7 187 133 51 203 63 212 29 68 31 153 186 62 74 93 79 
124 157 28 173 154 141 77 14 92 146 171 91 229 137 144 85 
5 155 193 10 82 36 20 168 174 230 18 121 21 40 71 249
227 130 196 9 252 61 176 134 201 160 178 43 88 117 107 44 
22 208 11 150 33 19 66 236 114 246 112 202 118 152 34 194
138 251 197 169 237 26 145 158 56 179 95 15 255 161 159 106
234 120 220 198 110 222 147 183 142 218 123 191 228 131 139 151
245 165 89 163 209 189 206 65 47 225 175 103 53 247 207 75 
211 136 226 25 170 242 70 184 126 84 172 49 37 127 204 0 

Table 5. Matrix Transformer. 

102 62 108 235 184 163 44 240 53 89 70 150 160 155 220 164
191 172 135 79 174 109 12 201 144 251 133 186 134 71 228 147
96 14 50 114 65 32 106 120 255 218 94 177 136 233 115 219
226 250 211 176 68 230 6 199 156 61 9 165 26 196 139 41 
1 22 209 125 215 180 63 113 193 192 241 43 17 127 20 67 
169 208 256 198 33 28 243 54 234 45 247 101 73 202 252 248
246 154 207 78 19 3 232 236 224 131 59 31 171 39 238 34 
40 24 142 72 83 217 103 82 187 52 210 23 7 205 124 123
64 110 170 153 57 112 253 189 56 229 188 60 86 42 36 121
30 140 76 168 122 141 97 152 146 137 27 16 162 195 145 25 
221 105 111 69 81 13 194 15 107 48 249 119 8 74 254 35 
117 128 173 2 18 242 90 84 167 116 143 132 11 26 99 46 
138 88 190 77 104 231 200 204 151 197 178 158 183 213 87 222
55 58 92 161 37 95 100 166 157 85 148 245 91 179 181 4 
75 214 38 98 212 149 5 130 244 175 21 203 51 227 182 66 
185 225 47 10 129 206 118 49 80 223 216 237 239 126 93 159



2719 

Electronic Research Archive  Volume 31, Issue 5, 2708–2732. 

Table 6. Proposed S-box. 

248 150 195 151 206 38 62 88 213 25 118 250 61 48 134 121
3 33 192 224 175 164 186 187 249 152 18 99 72 5 188 59 
80 58 44 144 110 89 23 7 143 137 200 113 73 194 226 160
184 101 53 31 32 241 234 92 154 120 233 91 221 41 214 124
156 75 235 46 9 190 81 51 27 117 245 193 169 129 45 126
252 29 203 236 218 229 159 251 4 66 228 220 204 122 222 238
20 163 34 147 94 24 212 237 130 148 201 1 16 157 196 141
223 57 210 246 22 70 43 78 85 82 79 93 215 127 135 208
170 65 166 202 17 244 205 100 230 138 199 155 36 133 112 162
71 174 64 123 189 42 56 168 173 232 102 243 142 15 0 125
198 21 140 60 97 183 114 10 111 28 254 128 11 253 225 239
98 95 131 55 139 207 255 2 211 115 68 171 14 197 8 181
219 176 40 132 179 54 13 145 86 76 103 158 74 242 87 216
83 153 50 209 161 165 119 172 63 105 182 90 227 106 84 240
136 104 247 217 146 231 26 67 39 12 180 116 49 69 37 52 
177 19 108 47 191 96 30 185 178 167 109 149 77 107 35 6 

4. Performance evaluation 

This section contains performance evaluation of the suggested S-box through different state of 
the art metrics such as the nonlinearity test, differential uniformity, bit independence criterion, strict 
avalanche criterion and linear approximation probability. We see that the outcome scores of our S-box 
obtained via these analyses are nearly equals to the ideal ones, demonstrating the effectiveness and 
capability of the proposed scheme. The analyses applied on our S-box are detailed below. 

4.1. Nonlinearity (NL) 

Nonlinearity is a key factor to determine the robustness of a substitution box. If an S-box maps 
input to output linearly, its resistance is very low [33]. A powerful S-box nonlinearly maps input to 
output. Any S-box with a higher nonlinearity value guarantees more security against cryptanalytic 
attacks. In the case of Boolean function of the form 𝜃 ∶ 𝐹 ⟶ 𝐹 , The nonlinearity is calculated as 

 𝑁 = 2 − ( ∈ 𝐺𝐹(2        |𝑆 (ℎ | (4.1) 

Note that, 𝑆 (ℎ = ∑ (−1 ( ⊕ .∈ (   represents the Walsh spectrum of 𝜃(𝑔  . Table 7 

indicates the nonlinearity values of all Boolean functions of the proposed S-box. The average Non-
linearity of our S-box is 110.75. 
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Table 7. Nonlinearities of all Boolean mappings involved in the suggested S-box. 

Boolean mapping 𝜃  𝜃  𝜃  𝜃  𝜃  𝜃  𝜃  𝜃  Mean
NL score 110 112 110 112 110 110 110 112 110 

4.2. Strict Avalanche Criteria (SAC) 

SAC is another effective tool to judge the security of an S-box. It was proposed by Webster and 
Tavares [34]. To meet this requirement, the input bit of any cryptosystem must change along with 
a 50% change in the output bits. The SAC performance of the S-box is determined by the dependency 
matrix. The perfect SAC score for the best cryptographic confusion is 0.5. Table 8 shows the 
dependency matrix of SAC values obtain by proposed S-box. The mean SAC value of proposed S-box 
is 0.5051, which differs slightly from the optimal value. Therefore, the suggested S-box fulfills the 
SAC criterion. 

Table 8. SAC values of constructed S-box. 

0.4844 0.5469 0.4688 0.5625 0.5312 0.5312 0.5156 0.4844 
0.4531 0.4844 0.5469 0.5 0.5 0.4844 0.4844 0.5625 
0.5312 0.4688 0.5312 0.5312 0.4375 0.4688 0.5156 0.5 
0.4375 0.5 0.5469 0.5 0.5469 0.5312 0.4844 0.5156 
0.4531 0.5625 0.5625 0.4688 0.4688 0.5156 0.4375 0.5312 
0.5781 0.4844 0.5312 0.5469 0.5156 0.5 0.5156 0.5 
0.5 0.4531 0.4531 0.4219 0.5156 0.5469 0.5312 0.4844 
0.5 0.4844 0.5312 0.5312 0.5 0.5312 0.4375 0.5469 

4.3. Bit independence criterion (BIC) 

This test [34] is satisfied if the output bits operate independently, i.e., do not depend on each other. 
More specifically, no statistical dependencies or patterns should be present in the bits of the output 
vectors. It is intended to boost output bit autonomy for greater security. An S-box is said to be meet 
the BIC criterion if it satisfies SAC and possess nonlinearity score for all Boolean mappings. The 
Tables 9 and 10 depict the dependency matrices for BIC-nonlinearity and BIC-SAC respectively. The 
results show that the proposed S-box conforms to the required BIC standards. 

Table 9. BIC outcomes for nonlinearity related to newly constructed S-box. 

- 110 110 112 112 110 112 110 
110 - 108 110 112 112 108 110 
110 108 - 110 112 110 110 112 
112 110 110 - 110 110 110 112 
112 112 112 110 - 110 110 110 
110 112 110 110 110 - 112 110 
112 108 110 110 110 112 - 112 
110 110 112 112 110 110 112 - 
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Table 10. BIC outcomes for SAC related to newly constructed S-box. 

- 0.4805 0.5098 0.4941 0.4902 0.498 0.5215 0.4824 
0.4805 - 0.5195 0.5176 0.4922 0.4922 0.4766 0.4902 
0.5098 0.5195 - 0.5 0.4902 0.5137 0.4922 0.498 
0.4941 0.5176 0.5 - 0.4961 0.5117 0.5273 0.4902 
0.4902 0.4922 0.4902 0.4961 - 0.4922 0.5293 0.5195 
0.498 0.4922 0.5137 0.5117 0.4922 - 0.4707 0.4863 
0.5215 0.4766 0.4922 0.5273 0.5293 0.4707 - 0.4883 
0.4824 0.4902 0.498 0.4902 0.5195 0.4863 0.4883 - 

4.4. Linear Probability 

Modern block ciphers are designed to create as much complexity among the bits as possible to 
protect the privacy of the information and to offer protection against various decryption techniques 
employed by the cryptanalysts. It is accomplished by S-box. The lower the value of LP, the better the 
capability of S-box to withstand linear attacks. The LP value of an S-box can be calculated by using 
the following equation [35]; 

 𝐿𝑃 = ( , Γ𝑤 ≠ 0  # ∈ : . ( . −  (4.2) 

where 𝐾 = 0,1, . . . , 2 } and Γw and Γ𝑤  are the input mask and output mask respectively. The 
designed S-box has an LP score of 0.0781. 

4.5. Differential uniformity (DU) 

Table 11. DU scores of newly constructed S-box. 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 
4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 6 4 4 6 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
4 4 4 4 4 6 4 6 4 4 4 4 4 4 4 4 
6 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 - 



2722 

Electronic Research Archive  Volume 31, Issue 5, 2708–2732. 

The resistance of S-box to differential cryptanalysis is investigated by DU [35]. To determine DU, 
a input differential ∆𝜎  is uniquely linked to an output differential ∆𝜌 , for all 𝑖. For a given S-box, 
its value can be calculated by using the following equation: 

 𝐷𝑈 = (∆ ≠ 0, ∆𝜌 𝜎 ∈ Γ: 𝑆(𝜎 ⨁𝑆(𝜎 + ∆𝜎 = ∆𝜌 } (4.3) 

It is necessary to develop an S-box with smaller DU values in order to withstand differential 
cryptanalysis attacks. The maximum DU score of the proposed S-box is 6 (See Table 11), indicating 
its ability to counter differential attacks. 

According to the performance study and comparative analysis, our S-box has better cryptographic 
properties than many recently designed S-boxes based on optimization, chaos and algebraic techniques. 
The comparison present in Table 12 demonstrates the suggested technique of designing S-boxes 
outperforms many of the available approaches. Here are our findings: 
1. The S-box must have a high nonlinear value to resist linear attacks. According to Table 12, the 

average nonlinearity of our S-box is almost equal to AES, outperforming all other S-boxes show 
in Table 12. Therefore, there is considerable confusion, which makes the proposed method 
resistant to all the existing linear cryptanalysis. 

2. The prime goal of every S-box designer is to achieve a SAC score close to the optimal value 
(0.50). From Table 12 demonstrates that the suggested S-box satisfies the requirements of strict 
avalanche criterion. 

3. The reading of BIC-NL and BIC-SAC obtained from the prosed S-box are very encouraging are 
better than those of most of the S-boxes in Table 12 

4. A potent S-box has a smaller DU value. As seen in Table 12, the DU score of the suggested S-
box is less than the S-boxes developed in [37–44]. 

5. A smaller LP score makes an S-box more resistant to linear cryptanalysis. The LP score of our S-
box is 0.0781, which is slightly higher than AES but lower than the LP values of all S-boxes in 
Table 12. 

Table 12. Comparison of the various analyses between different S-boxes. 

S-box Nonlinearity 
Min    Max   Average 

SAC BIC-SAC BIC-NL DU LP 

Suggested S-box 110 112 110.75 0.5051 0.4989 110.55 6 0.0781 
AES [36] 112 112 112 0.5058 0.5046 112 4 0.0625 
Reference [37] 106 108 106.25 0.5112 0.4975 103.93 12 0.1484 
Reference [38] 106 110 106.5 0.5010 0.4987 103.93 10 0.125 
Reference [39] 106 108 107 0.4949 0.5019 102.29 12 0.141 
Reference [40] 106 110 108.5 0.4995 0.5011 103.85 10 0.109 
Reference [41] 108 110 109.75 0.5042 0.4987 110.6 6 0.0859 
Reference [42] 102 110 106.5 0.4943 0.5019 103.35 12 0.1468 
Reference [43] 104 108 105.5 0.5065 0.5031 103.57 10 0.1328 
Reference [44] 104 110 107 0.4993 0.5050 103.29 10 0.1328 
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5. Majority logic criterion 

The evaluating the suitability of an S-box to be employed in an encryption process using the 
majority logic criteria (MLC) is a useful approach [45]. Randomness in the encoded picture is assessed 
using these five analyses energy, entropy, homogeneity, contrast and correlation.  

Homogeneity and energy are utilized to identify the features of the encoded picture. The 
correlation test assesses the resemblance level between the host and encrypted picture. The lower 
correlation value implies more distortion caused by encryption. Through contrast, the decrease of 
brightness of the plaintext image is assessed. The greater the contrast value, the more efficient the 
encryption procedure. The process of encryption distorts the plaintext, and statistical parameters 
characterize the resiliency of S-box. The S-box that is formed is utilized to encrypt digital photos. To 
conduct MLC four 256 × 256 JPEG photos of Cameraman, Pepper, Lena and Baboon are selected. 
Two steps of substitution using our S-box are performed in the encrypting process. Encryption is 
accomplished through two steps of S-box substitution. During the 1st phase, the substitution is 
performed in a forward direction (from the start pixel to the end pixel) and subsequently in an opposite 
way. All simulations were conducted using the MATLAB programming. The original and encrypted 
photos are shown in Figure 7. The distorted pictures differ significantly from their corresponding 
undistorted versions. The level of visual distortion is quite large, since the graphics lack a pattern that 
promotes security breaches from the host picture. Table 13 shows the findings of all MLC testing 
performed. Table 14 presents the calculated correlation coefficients for pictures. 

The results suggest that the created substitution box is suitable for encryption purposes and are 
good enough to be used in the systems designed to ensure the reliability and security of sensitive data. 

            

          

Figure 7. Plain and distorted images using proposed S-box. 
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Table 13. Results of MLC for our S-box. 

Image Correlation Entropy Energy Homogeneity Contrast 
Cameraman Host 0.9227 7.0097 0.1805 0.8952 0.5871 
Cameraman-Enc 0.0394 7.9972 0.0149 0.3999 10.0509 
Pepper Host 0.9312 7.5326 0.1096 0.8880 0.3849 
Pepper-Enc 0.0021 7.9972 0.0156 0.3902 10.4802 
Baboon Host 0.7983 7.2649 0.0943 0.7820 0.6326 
Baboon-Enc 0.0071 7.9975 0.0156 0.3945 10.3994 
Lena Host 0.9024 7.4439 0.1127 0.8622 0.4482 
Lena-Enc −0.0379 7.9976 0.0157 0.3822 10.8896 

Table 14. Horizontal and vertical correlation matrices for S-box. 

Image Cameraman Pepper Baboon Lena 
Vertical Plain Image 0.9745 0.9137 0.9090 0.9321 

Distorted Image 0.0310 −0.0392 −0.0128 −0.0117 
Horizontal Plain Image 0.9610 0.9204 0.8727 0.883 

Distorted Image −0.0026 −0.0015 0.0039 −0.0021 

6. Measurement of encrypted image quality 

The experimental assessments of the proposed image encryption technique are discussed in this 
section. The 256 × 256 pixel grayscale photos of Cameraman, Pepper and Baboon are picked for the 
experiment. Table 15 contains a variety of image quality measurements that have been suggested for 
use with two rounds of encryption using S-boxes. These methods have been thoroughly discussed. The 
findings indicate that the recommended S-box is robust enough to survive various attacks. 

6.1. Mean Square Error (MSE) 

During encryption MSE analysis assesses the unpredictability of the encrypted picture [46]. This 
technique computes the squared difference between the original and distorted picture. It can be 
computed as follows: 

 𝑀𝑆𝐸 = × ∑ ∑ 𝑂(𝑦 , 𝑦 − 𝐸(𝑦 , 𝑦  (6.1) 

where U and V represent the dimensions of original 𝑂(𝑦 , 𝑦   and distorted 𝐸(𝑦 , 𝑦   pictures 
respectively. For effective encryption methods, the MSE rating must be as high as conceivable [46].  

6.2. The Peak Signal-to-Noise Ratio (PSNR) 

The PSNR test [38] is an ideal criterion for assessing the quality of picture encryption techniques. 
It estimates how well the original picture matches the ciphertext. PSNR value is calculated using the 
following formula; 
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 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔 √  (6.2) 

where 𝑉 is the amount of variance that was at its highest in the original picture data. It is necessary 
to have a higher value of PSNR in order to get a superior encoded picture [47]. 

6.3. Average & Maximum Difference (AD & MD) 

To determine the average and maximum dissimilarities between the unencrypted 𝑂  and 
encrypted 𝐸 pictures, researchers used the AD and MD test [47]. AD and MD values are determined 
using the following formulas; 

 𝐴𝐷 = ∑ ∑ ( , ( ,×  (6.3) 

 𝑀𝐷 = max|𝑂(𝑦 , 𝑦 − 𝐸(𝑦 , 𝑦 | (6.4) 

6.4. Mutual Information (MI) 

MI measures how much information can be retrieved about the original picture from a distorted 
version of it. Let us denote the joint probability function of 𝑂 and 𝐸 by 𝜌(𝑦 , 𝑦 , then the value of 
MI can be determined by using the formula below; 

 𝑀𝐼 = ∑ ∑ 𝜌(𝑦 , 𝑦 𝑙𝑜𝑔 ( ,( (∈∈  (6.5) 

The MI value must always be kept to a minimum in a decent encryption system [48]. 

6.5. Universal Quality Index (UQI) 

As stated in reference [49], the UQI method partitions the evaluation of image distortion into 
three components: luminance, structural comparisons and contrast. The UQI metric for a pair of images 𝑂 and 𝐸 can be expressed as follows; 

 𝑈𝑄(𝑂, 𝐸 =  (6.6) 

where 𝜌 , 𝜌  represent the mean values of the original and distorted images, respectively, and 𝜑 , 𝜑  represent the standard deviation of the original and distorted images, respectively. 

6.6. Structural Similarity (SSIM) 

SSIM is an enhanced version of the UQI designed to assess the similarity between two images. In 
particular, SSIM evaluates the fidelity of one of the images by assuming that the other image is free 
from errors. The computation of the SSIM score involves analyzing a pair of windows (𝑅, 𝑆  of the 
image using the following formula: 
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 𝑆𝑆𝐼𝑀(𝑅, 𝑆 = ( (  (6.7) 

where 𝜑  and 𝜑  are the variances of R and S and 𝜈  and 𝜈  are the average scores of R and S 
respectively. The range of the SSIM score lies between -1 to 1, where a score of 1 indicates that the 
images are identical. A score close to 0 indicates a strong encryption scheme [48]. 

6.7. Normalized Cross Correlation (NCC) 

As stated in citation [49], the correlation function provides a means of measuring the proximity 
of two digital images. The NCC method is a well-established technique for assessing the similarity 
between two images. Its calculation is based on the following formula: 

 𝑁𝐶𝐶 = ∑ ∑ ( , × ( ,∑ ∑ | ( , |  (6.8) 

6.8. Normalized Absolute Error (NAE) 

NAE [49] can be used to assess the efficiency of an image encryption process by comparing the 
pixel values of the original image with those of the encrypted (ciphered) image. To calculate the NAE 
between the plain and ciphered image, the formula is: 

 𝑁𝐴𝐸 = ∑ ∑ | ( , ( , |∑ ∑ | ( , |  (6.9) 

6.9. Root Mean Square Error (RMSE) 

The assessment of an image encryption algorithm’s effectiveness can be facilitated by utilizing 
RMSE as a performance metric. The calculation of RMSE involves determining the square root of the 
average of all the squared errors [49]. Its frequent use and flexibility make it a versatile and valuable 
error metric for numerical forecasting. The mathematical expression for RMSE is indicated below; 

 𝑅𝑀𝑆𝐸 = ∑ ∑ | ( , ( , |×  (6.10) 

6.10. Structural Content (SC) 

SC is a correlation-based measure that quantifies the similarity between two images. The 
following mathematical equation is used to compute its score; 

 𝑆𝐶 = ∑ ∑ | ( , |∑ ∑ | ( , |  (6.11) 
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Table 15. Outcomes of various image quality measures. 

Test Cameraman-Enc Pepper-Enc Baboon-Enc Lena-Enc 
MSE 9212.16 8656.41 7854.44 8414.71 
MSE [6] 9079.09 8190.01 8011.23 8239.51 
MSE [15] 9189.41 8612.09 7599.03 7930.39 
MSE [17] 9187.38 8423.61 7865.21 8274.13 
PSNR 8.4723 8.8563 9.8912 8.9912 
PSNR [6] 8.1129 8.9710 8.5539 9.1902 
PSNR [15] 8.2897 8.7091 8.1331 8.9500 
PSNR [17] 8.2891 8.3353 8.9361 8.0032 
SSIM1 0.0009 0.0012 0.0010 0.0011 
SSIM1 [6] 0.0013 0.0008 0.0011 0.0012 
SSIM1 [15] 0.0010 0.0012 0.0008 0.0014 
SSIM1 [17] 0.0009 0.0015 0.0012 0.0013 
NCC 0.8633 0.8710 0.9121 0.8803 
NCC [6] 0.8537 0.8675 0.8912 0.9016 
NCC [15] 0.8733 0.8712 0.8543 0.8461 
NCC [17] 0.8640 0.87134 0.9001 0.8692 
AD −7.4523 −4.9812 −2.3419 −5.3881 
AD [6] −3,4511 −5.6634 −1.4529 −2.3319 
AD [15] −6,7819 −3.8873 −2.8827 −4.1198 
AD [17] −3.4429 −4.9821 −2.3872 −7.6594 
SC 0.8496 0.8345 0.8456 0.8247 
SC [6] 0.8455 0.8451 0.8401 0.8342 
SC [15] 0.8341 0.8489 0.8465 0.8231 
SC [17] 0.8436 0.8111 0.8265 0.8490 
MD 240 238 212 234 
MD [6] 211 231 233 241 
MD [15] 223 227 227 228 
MD [17] 234 238 221 219 
NAE 0.6358 0.6273 0.6147 0.6384 
NAE [6] 0.6455 0.5932 0.5813 0.6459 
NAE [15] 0.6040 0.6193 0.6388 0.6026 
NAE [17] 0.6219 0.6243 0.6012 0.5856 
RMSE 94.6682 91.7245 84.9561 87.9349 
RMSE [6] 90.6638 92.3402 88.3476 86.7938 
RMSE [15] 93,4428 89.7690 91.2398 87.3947 
RMSE [17] 90.4582 85.1109 84.8934 88.1831 
UQI 0.0218 0.0332 0.0314 0.0338 
UQI [6] 0.0127 0.0412 0.0279 0.0178 
UQI [15] 0.0347 0.0456 0.0127 0.0391 
UQI [17] 0.0234 0.0401 0.0298 0.0281 
MI −1.0292 −1.0187 −1.0184 −1.0281 
MI [6] −1.0195 −1.0490 −1.0328 −1.0402 
MI [15] −1.0371 −1.0197 −1.0294 −1.0406 
MI [17] −1.341 −1.0198 −1.0384 −1.0327 
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7. Differential analysis of image protection  

A robust cryptosystem is extremely sensitive to modifications in one bit of the plaintext. Through 
UACI, NPCR and BACI testing, the sensitivity of the system is assessed.  

UACI indicates the unified mean intensity change between original and encrypted image while 
NPCR calculates the number of pixels change rate of the encrypted image if a single pixel is altered in 
the original image. In BACI analysis, the image difference ∆= 𝑎𝑏𝑠(𝐸 − 𝐸  is partitioned into blocks 
of pixels and arranged in a 2 × 2 matrix. This involves dividing the image into smaller, non-overlapping 
regions, or “blocks”, to facilitate the comparison of pixel values before and after the intervention. 

The following formulae are used to compute the values of UACI, NPCR and BACI: 

 𝑈𝐴𝐶𝐼 = ∑ ( , ( ,, × 100% (7.1) 

 𝑁𝑃𝐶𝑅 = ∑ ( , × 100% (7.2) 

 𝐵𝐴𝐶𝐼 = ( ( ∑( ( × 100% (7.3) 

where 𝐸 (𝑗, 𝑘   and 𝐸 (𝑗, 𝑘   denote the grayscale values of pixels obtained (𝑗, 𝑘  th position and 𝐷(𝑗, 𝑘 = 0           𝑖𝑓 𝐸 (𝑗, 𝑘  and 𝐸 (𝑗, 𝑘  𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙1                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   and 𝑍 = (|𝑎 − 𝑎 | + |𝑎 − 𝑎 | + |𝑎 −𝑎 | + |𝑎 − 𝑎 | + |𝑎 − 𝑎 | + |𝑎 − 𝑎 |  and ∆ = 𝑎 𝑎𝑎 𝑎 . 

Table 16 depicts the findings of the differential analysis for NPCR, UACI, and BACI, confirming 
the excellent performance of encryption effect provided by the designed S-box. 

Table 16. NPCR, UACI and BACI outcomes. 

Image NPCR UACI BACI 
Cameraman 99.63% 33.12% 24.60% 
Pepper 99.81% 33.21% 26.38% 
Baboon 99.76% 32.86% 24.25% 
Lena  99.79% 33.16% 23.09% 

8. Conclusions 

Summing up, the present work has discussed and examined the development of modular group 
coset graphs over a finite field of order 1024 and a matrix transformer for application in S-box 
construction. An initial S-box is formed through coset graphs and after that the application of a matrix 
transformer on it enhances its working efficiency significantly, resulting in a robust S-box. Comparison 
of proposed method with other state-of-the-art S-box construction algorithms shows that the proposed 
mechanism outperforms other algorithms in terms of mean nonlinear score, LP, SAC, BIC and DU 
scores. In addition, the performance of the designed S-box when applied to encrypt certain plaintext 
graphics has been determined to be extraordinary using a variety of assessment tools. 
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As our experience with applying matrix transformer to coset graph S-box to improve its resilience 
has been promising, we plan to research novel ways for designing S-boxes combining matrix transformers 
and chaotic systems. Moreover, we intend to evaluate the application of S-box to cloud encryption. 
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