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Introduction: Breast cancer causes the most cancer-related death in women

and is the costliest cancer in the US regarding medical service and prescription

drug expenses. Breast cancer screening is recommended by health authorities in

the US, but current screening efforts are often compromised by high false

positive rates. Liquid biopsy based on circulating tumor DNA (ctDNA) has

emerged as a potential approach to screen for cancer. However, the detection

of breast cancer, particularly in early stages, is challenging due to the low amount

of ctDNA and heterogeneity of molecular subtypes.

Methods: Here, we employed a multimodal approach, namely Screen for the

Presence of Tumor by DNA Methylation and Size (SPOT-MAS), to simultaneously

analyze multiple signatures of cell free DNA (cfDNA) in plasma samples of 239

nonmetastatic breast cancer patients and 278 healthy subjects.

Results: We identified distinct profiles of genome-wide methylation changes

(GWM), copy number alterations (CNA), and 4-nucleotide oligomer (4-mer) end

motifs (EM) in cfDNA of breast cancer patients. We further used all three

signatures to construct a multi-featured machine learning model and showed

that the combination model outperformed base models built from individual

features, achieving an AUC of 0.91 (95% CI: 0.87-0.95), a sensitivity of 65% at

96% specificity.
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Discussion: Our findings showed that a multimodal liquid biopsy assay based on

analysis of cfDNA methylation, CNA and EM could enhance the accuracy for the

detection of early- stage breast cancer.
KEYWORDS

breast cancer early detection, cfDNA (circulating cell-free DNA), ctDNA (circulating
tumor DNA), end motif, whole genome methylation, SPOT-MAS (Screen for the
Presence Of Tumor by DNA Methylation And Size), machine learning model, copy
number aberration (CNA)
Introduction

According to the Global Cancer Statistics 2020, breast cancer

has the highest 5-year prevalence rate in both the U.S. and Vietnam,

with about 640 people in the U.S. and 124 people in Vietnam having

breast cancer per 100,000 people (1). Among all cancers in females,

mortality caused by breast cancer ranked first, even surpassed lung

cancer (1). National cost of medical services and prescription drugs

for breast cancer in the U.S. in 2020 summed up to 28.6 billion

dollars and is the costliest cancer in the U.S (2)..

Breast cancer is divided into five subtypes based on surface

molecule expression: Luminal A, luminal B, human epidermal

growth factor receptor 2 positive (HER2), luminal B-HER2, and

triple negative breast cancer (TNBC) (3). Luminal A subtype is

characterized by the presence of estrogen receptor (ER) or

progesterone receptor (PR) or both, but with the absence of

HER2, and low Ki-67 expression (4). Luminal B subtype is

positive for ER or PR or both, also negative for HER2, but

expresses high levels of Ki-67 (5). HER2 positive breast cancer is

characterized by increased expression of HER2 and negative for ER

and PR. HER2 tumor is also highly proliferative and often

associated with poor prognosis (6). Luminal-HER2 (also known

as luminal B-HER2) subtype is positive for both ER and HER2 and

has worse prognosis than luminal A or B but better prognosis than

HER2 positive (7, 8). TNBC refers to the subtype which stained

negative for all three receptors ER, PR, and HER2. TNBC is

aggressive and associated with adverse prognosis (9–11).

Breast cancer screening is recommended by the U.S. Preventive

Services Task Force, the American Cancer Society, American

College of Obstetricians and Gynecologists, American College of

Radiology and more, although the age to start screening and

frequency of screening vary between organizations (12–14).

Mammography is currently the most common method for breast

cancer screening and has significantly contributed to the reduction

in breast cancer mortality rate (15). The major drawback of this

method is the high false positive rate, especially in young women

(<40 years old) who have dense breasts, resulting in overdiagnosis

(16). In addition, exposure to ionizing radiation from repeated

mammography screening may increase cancer risk (17). A second

method commonly used for screening for breast cancer is Magnetic

Resonance Imaging (MRI). Although MRI can avoid X-ray on the

breast and generally gives higher sensitivity than mammography, it
02
usually has lower specificity (18, 19). To address the clinical

challenges, current research aims to develop alternative screening

methods that are non-invasive and have the potential to improve

sensitivity and specificity for detecting early-stage breast cancer.

Liquid biopsy refers to the sampling of body fluids such as

plasma, urine, saliva, and cerebrospinal fluid (20). Liquid biopsy is

not invasive, enables repeated sampling, and thus allows for

screening and monitoring disease progression. Normal tissues and

tumors release cell free DNA (cfDNA) to the bloodstream mainly

through apoptosis and necrosis (21). The characterization of

circulating tumor DNA (ctDNA) opens the door to many

applications such as profiling tumor genetics, monitoring

treatment response, and especially early cancer screening for

asymptomatic individuals (22). Owing to the reflection of the

genetic and epigenetic alterations in the tumor, ctDNA could

serve as a specific and sensitive biomarker for improving early

detection of breast cancer.

For early cancer screening, the goal is to detect the presence of

ctDNA in the pool of cfDNA. Attempts to do so include mutation-

based and non-mutation-based approaches (23). Our previous

works have demonstrated the utility of massive parallel

sequencing with unique molecular identifier tags for identification

of tumor related mutations on cfDNA. We detected high

concordance rates of mutation profiles between plasma cfDNA

and matched tumor tissues in patients with NSCLC and colorectal

cancer (24, 25). Compared to other cancer types, mutation-based

breast cancer detection had lower sensitive, probably due to the

inherent complexity of breast cancer with many subtypes and the

low amount of ctDNA released by breast tumors in early disease

stages (26, 27). Therefore, ultra-deep sequencing is required to

increase the sensitivity of mutation detection, which is cost

prohibitive for a cancer screening test.

As alternatives to mutation-based approaches, recent studies

focus on other signatures of ctDNA such as methylation, fragment

length (Flen), end motifs (EM), and copy number aberration

(CNA). Methylation is an epigenetic marker of ctDNA with

increasing utility in cancer detection, treatment response and

relapse prediction (28–30). Liu et al. used data from The Cancer

Genome Atlas to derive 9,223 consistently hypermethylated regions

across 32 cancer types. Targeted bisulfite sequencing of cfDNA with

those sites enabled correct identification of 91.7% patients with

breast cancer (29). However, all breast patients recruited in this
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study were at advanced stages, thus the ability of this assay to detect

early-stage breast cancer patients was not reported. Together, these

studies demonstrated the feasibility of using ctDNAmethylation for

detecting breast cancer.

Multiple cfDNA fragmentomic features, including Flen and

EM, have recently been explored to enhance the detection of

early-stage cancers or low shedding ctDNA cancers (31–33). Liu

et al. showed that cfDNA fragments carrying lung cancer associated

mutations are in general shorter than non-cancer cfDNA fragments

(31). Jiang et al. detected higher proportions of short cfDNA

fragments (<150 bp) in plasma samples of hepatocellular

carcinoma (HCC) patients compared to healthy individuals (32).

Likewise, by performing whole genome sequencing (WGS),

Cristiano et al. reported that fragment length profiles could be

exploited to detect multiple cancer types including breast,

colorectal, lung, ovarian, pancreatic, gastric and bile duct cancer

(33). Recently, it has been shown that cancer and normal cells

present different nucleosomal patterns and open chromatin regions,

which determine the level of accessibility and cleavage sites for

DNases (34, 35). Moreover, the activities of different DNases were

also thought to differ between normal to malignant conditions (36,

37). Thus, such differences result in distinct landscapes of motif

sequences at cfDNA fragment ends between cancer and normal

cells, namely EM. Jiang et al. examined the 4-mer motifs at the 5’

end of cfDNA fragments in HCC patients and healthy individuals

and found significant differences in frequencies of certain motifs

between the two groups (38).

CNA in the cancer genome is associated with the initiation and

progression of numerous cancers by altering transcriptional levels

of both oncogenes and tumor suppressor genes (39). While

examining CNA in HCC patients, Meng et al. found that the

CNA profile of cfDNA in HCC patients correlated with the CNA

profile of matched tumor tissue and was distinct from cfDNA CNA

profile of healthy subjects (40). This study further demonstrated

that CNAs detection could identify and quantify the fraction

ctDNA in plasma cfDNA. The strategy of integrating different

signatures of ctDNA to improve cancer prediction has been

shown to be effective in many types of cancer. We previously

showed that integration of genome-wide methylation (GWM),

Flen, and targeted methylation of hypermethylated regions

improved the accuracy for detecting colorectal cancer (41). Other

research groups showed the integration of Flen and CNA (40, 42) or

methylation and CNA (43) in prediction models improved HCC

detection. Hence, we surmised that with breast cancer, a

multimodal approach involving simultaneous analysis of multiple

ctDNA signatures at genome-wide level may overcome the

challenges of low abundance with ctDNA and heterogeneity with

different molecular subtypes.

In this study, we employed the multimodal assay SPOT-MAS

(Screening for the Presence Of Tumor by DNA Methylation And

Size) to simultaneously profile methylomics, fragmentomics, DNA

copy number and end motifs of cfDNA in a single workflow using

targeted and shallow genome-wide sequencing. We extracted

multiple cancer-specific signatures from 239 nonmetastatic breast

cancer patients and 278 healthy subjects to train and validate this

approach. To analyze such large multi-feature datasets of cfDNA,
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we exploited machine learning algorithms to combine them into a

single screening test for breast cancer detection.
Materials and methods

Patient enrollment

A total of 239 breast cancer patients and 278 healthy subjects

were recruited in this study. All breast cancer patients were

confirmed to have breast cancer by abnormal mammograms and

subsequent tissue biopsy confirmation of malignancy. Breast cancer

stages were determined according to the American Joint Committee

on Cancer and the International Union for Cancer Control (44).

This study only recruited breast cancer patients with non-systemic-

metastatic stages (Stage I-IIIA) in which cancer is localized to the

breast and has not spread to other organs. We excluded patients

who were diagnosed with metastatic stage IV breast cancer. All

healthy subjects were confirmed to have no history of breast cancer

at the time of enrollment. They were followed up at six months and

one year after enrollment to ensure that they did not develop breast

cancer. Clinical characteristics of each breast cancer and healthy

participant were presented in Table S1.

Breast cancer patients and control were randomly divided into a

discovery and a validation cohort. The discovery cohort comprised

167 breast cancer patients and 181 healthy controls, from which

data were used for the selection of significant features and model

construction. The validation cohort included 72 breast cancer

patients and 97 healthy controls, from which data were used to

validate model performance (Table 1). In the discovery cohort, the

median age at diagnosis of breast cancer patients was 51 years, while

healthy subjects had a comparable median age of 50 (Table 1).

Cancer patients with stage I (19.2%) and stage II (40.7%) account

for approximately 60% of all cancer patients, while 12% were

diagnosed with stage IIIA. The remaining cancer patients (28.1%)

did not have staging information due to missing records. Those

patients conducted mammograms at the recruitment sites and

agreed to participate in the study but later chose to undergo

tissue biopsy at other clinics, resulting in missing histological

records. Among cancer patients, 15% had luminal A, 23.4% had

luminal B, 18% had luminal B-HER2, 13.8% had HER2, and 6.6%

had TNBC (Table 1). Patients and healthy individuals in the

validation cohort had comparable median age to those in the

discovery cohort. The proportions of tumor stages and subtypes

of the validation cohort were comparable to those of the discovery

cohort (Table 1).

This study also included 87 hepatocellular carcinoma (HCC)

patients whose data were used to confirm previous findings and

verify our analytical methods. Summary of clinical features for HCC

group and clinical characteristics of each HCC patient were

presented in Table S2A and B, respectively. In the HCC group,

23% were female, and 77% were male, ranging from 27 to 86 years

old. The median age of HCC group was 58 years old. All HCC

patients were naïve to treatment at the time of sample collection and

confirmed to have non-metastatic tumors by imaging diagnosis

(Table S2B).
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All study subjects were recruited at two sites, including the

Medic Medical Center and Medical Genetics Institute in Ho Chi

Minh City, Vietnam, from May 2019 to November 2022. The

methodologies conformed to the standards set by the Declaration

of Helsinki. This study was approved by the Ethics Committee of

the Medic Medical Center and Medical Genetics Institute, Ho Chi

Minh City, Vietnam. This study was undertaken with the

understanding and written consent of each subject. All breast

cancer and HCC patients were naïve to treatment at the time of

blood sample collection.
Breast cancer subtype identification

Breast cancers were subdivided into 5 molecular subtypes

including luminal A, luminal B, luminal B-HER2, HER2, and

TNBC based on markers on immunohistochemical staining of

tumor biopsy samples (45). Briefly, luminal A was characterized

by the presence of ER and/or PR receptor, the absence of HER2

receptor, and less than 14% cells staining positive for Ki-67.

Luminal B was identified by the presence of ER and/or PR

receptor, absence of HER2 receptor, and Ki-67 signals in more

than 14% cells. Luminal B - HER2 was identified with the presence

of ER and/or PR receptor, and presence of HER2 receptor, with any

level of Ki-67 expression. HER2 was characterized by the

overexpression of HER2 receptor and the absence of both ER and
Frontiers in Oncology 04
PR receptors. TNBC was identified by the null expression of ER, PR,

and HER2 receptors.
Isolation of cfDNA

Each participant provided 10 ml of peripheral blood, which

were collected in Cell-Free DNA BCT tube (Streck, USA) and

subjected to two rounds of centrifugation (2,000 × g for 10 min and

then 16,000 × g for 10 min) to separate plasma from blood cells. The

plasma fraction was collected, aliquoted (1 ml per aliquot), and

stored at -80°C. Cell free DNA extraction was performed using

plasma aliquots with the MagMAX Cell-Free DNA Isolation kit

(ThermoFisher, USA), following the manufacturer’s protocol. The

acquired cfDNA was quantified using the QuantiFluor dsDNA

system (Promega, USA).
Bisulfite conversion and library preparation

Bisulfite conversion and purification of cell-free DNA samples

were conducted using EZ DNA Methylation-Gold Kit (Zymo

research, D5006, USA), following the manufacturer’s instructions.

Subsequently, bisulfite-converted DNA samples were denatured to

single stranded then processed with Adaptase™ technology adding

adapters and unique dual indexes using xGen™ Methyl-Seq DNA
TABLE 1 Summary of participants’ clinical features in discovery and validation cohort.

Criteria

Discovery cohort (N=348) Validation cohort (N=169)

Breast cancer
(N = 167)

Healthy control
(N = 181)

p-value
(Breast cancer
vs Healthy
control)

Breast cancer
(N = 72)

Healthy control
(N = 97)

p-value
(Breast cancer
vs Healthy
control)N Percentage N Percentage N Percentage N Percentage

Gender
Female 167 100.0% 181 100.0% 72 100.0% 97 100.0%

Male 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Age

Median 51 50
Mann-Whitney

test
p-value=0.22

51 50
Mann-Whitney

test
p-value=0.43

Min 25 30 28 31

Max 80 75 78 77

Stage

I, IA, IB 32 19.2% 12 16.7%

II, IIA,
IIB

68 40.7% 32 44.4%

III, IIIA 20 12.0% 14 19.4%

NA 47 28.1% 14 19.4%

Subtype

HER2 23 13.8% 16 22.2%

Luminal
A

25 15.0% 8 11.1%

Luminal B 39 23.4% 25 34.7%

Luminal
B-HER2

30 18.0% 7 9.7%

TNBC 11 6.6% 2 2.8%

NA 39 23.4% 14 19.4%
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Library Prep Kit (Integrated DNA Technologies, 10009824, USA).

DNA concentrations were measured using the QuantiFlour dsDNA

system (Promega, USA).
Genome-wide hybridization
and sequencing

After library construction, an equal amount of DNA of each

library were pooled together and sequenced on DNBSEQ-G400

DNA sequencing system (MGI Tech, China) to generate sequencing

data with 100-bp paired-end reads, at sequencing depth of ~20

million reads. All FASTQ files were examined by FastQC v 0.11.9

and MultiQC v 1.12 for quality.
Genome-wide methylation analysis

For GWM analysis, we adopted the integrated bioinformatics

pipeline Methy-pipe (46). Briefly, we performed the trimming step by

Trimmomatic with default parameters to remove adapter sequence

and low-quality bases at fragment ends. Sequence alignment was

implemented by the built-in mapping algorithm and generated bsalign

files. We segmented the whole genome into 2734 non-overlapping

bins of 1Mb (1 million bases) long and calculated methylation ratios at

these bins by built-in functions from Methy-pipe.

Methylation ratio ¼ methylated cytosine(C)
methylated C + unmethylated C

Mean methylation ratio was calculated for each bin in both

cancer and control groups and subsequently used to plot GWM

density curves. Similarly, mean methylation ratio was calculated for

bins of each breast cancer subtype then used to plot GWM density

curves of subtypes.
Fragment length analysis

For fragment length (Flen) distributions, we implemented an

in-house python script to convert the bsalign files into BAM files.

All read pairs from the BAM file with fragment length ranging from

100 bp to 250 bp were collected. In the range of 100 to 250 bp, there

were 151 possible fragment lengths, starting from length of 100 bp,

with 1 bp increment, up to 250 bp. With each length, the frequency

of fragment (%) was calculated by getting the percentage of reads

with each length to the total read count in the range of 100 to 250

bp. This calculation resulted in a feature vector of 151 dimensions.

We plotted fragment length (bp) against frequency of fragment (%)

to obtain a Flen distribution curve.
Copy number aberration analysis

CNA analysis was performed using the R-package QDNAseq

(47). The whole genome was again segmented into non-overlapping
Frontiers in Oncology 05
1Mb bins. We excluded bins which felt into the low mappability and

Duke blacklist regions (48). The number of reads mapped to each

bin was calculated by the function “binReadCounts”, and GC-

conten t correc t ion was conduct ed by the func t ion

“estimateCorrection” and “correctBins”. Final CNA feature was

derived by bin-wise normalizing and outlier smoothing with the

function “normalizeBins” and “smoothOutlierBins”. This process

resulted in a feature vector of a length of 2691 bins.

To plot a heatmap, CNA Z-score was calculated as:

CNAZ − score

=
CNA value in each bin of breast cancer  −   CNA value in the corresponding bin of control

SD of the CNA value in corresponding bin of control

To find out which bins had significant DNA gain or loss in the

cancer versus control group, CNA values in each bin of breast

cancer samples were compared with corresponding values in

control samples using Wilcoxon rank sum test. Bins with adjusted

p-value (Benjamini-Hochberg correction) ≤ 0.05 were considered

significant. Those with log2 fold change (cancer vs control) > 0 were

categorized as significant increase. Those with log2 fold change

(cancer vs control) < 0 were categorized as significant decrease.
End motif analysis

During library preparation, Adaptase™ technology (Integrated

DNA Technologies, USA) was used to ligate adapters to ssDNA

fragments in a template-independent reaction. This step involved

adding a random tail to the 5’ end of reverse reads. Although

median length of the tail was 8 bp and thus allow trimming to

obtain information good enough for other analysis, the random-

length tails did not allow exact determination of the 5’ end of the

reverse reads. Therefore, EM features were determined based on the

genomic coordinate of the 5’ end of the forward reads. We

determined the first 4-nucleotide sequence based on the human

reference genome hg19. In 256 possible 4-nucleotide motifs, the

frequency of each motif was calculated by dividing the number of

reads carrying that motif by the total number of reads, generating

an EM feature vector of a length of 256 for each sample.
Construction of machine learning models

All samples in the discovery dataset with either cancer positive

or negative labels were used for model training to classify if a sample

is healthy or cancerous. For every feature type (GWM, CNA, and

EM), three machine learning algorithms including Logistic

regression (LR), Random Forest (RF) and Extreme Gradient

Boosting (XGB) were examined. Hyperparameters were chosen

for each learning algorithm by using the “GridSearchCV”

function in the scikit-learn (v.1.0.2), with ‘CV’ parameter (cross-

validation) set to 10. The best hyperparameters for each algorithm

were found using function ‘best_params_’ implemented in

GridSearchCV. After that, feature selection was performed in

each algorithm as follow: (1) for LR, the “penalty” parameter with
frontiersin.org

https://doi.org/10.3389/fonc.2023.1127086
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pham et al. 10.3389/fonc.2023.1127086
‘l1’ (LASSO regression), ‘l2’ (Ridge regression) and ‘none’ (no

penalty) was examined to select the setting with the best

performance; (2) for RF and XGB, a “SelectFromModel” function

with the ‘threshold’ set to 0.0001 was applied automatically to get all

features that had importance weight. Subsequently, the three

algorithms (LR, RF and XGB) with the best hyperparameters and

selection of features were tested using k-fold cross validation

approach on the training cohort with k-fold set to 10-fold, and

‘scoring’ parameter set to ‘roc_auc’. This split the data into 10

groups, in which 9 groups were fitted and the remaining group was

evaluated, which resulted in 10 ‘roc_auc’ scores. The average of

these scores was used to evaluate the prediction performance of

each model. The model with the highest ‘roc_auc’ average score was

chosen, which was XGB for all feature types. A final combination

model was constructed by combining all probability scores from

three features (GWM, CNA and EM) with LR as based algorithm,

resulting in only one probability score for every sample. The model

cut-off was set based on the threshold specificity of >90% or >95%

to meet the requirement for early cancer detection assays. This

combination model was applied to the independent validation

dataset of 72 breast cancer patients and 97 healthy controls to

evaluate its ability to classify breast cancer patients from controls.
Statistical analysis

In this study, either the Wilcoxon Rank Sum test or t-test was

used to find statistically significant different features between breast

cancer and control. t-test was used whenever features followed

normal distribution, otherwise Wilcoxon Rank Sum test was used.
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Kruskal-Wallis test was used to compare samples from two or more

groups of independent observations. The Kolmogorov-Smirnov test

was used to decide whether two randoms samples have the same

statistical distribution. When applicable, p-values were corrected by

the Benjamini-Hochberg correction for multiple comparisons (with

a corrected p-value cutoff a ≤ 0.05). DeLong’s test was used to

compare the differences between AUCs (49). All statistical analyses

were carried out using R (4.1.0) with some common data analysis

packages: ggplot2, pROC, and caret. 95% confident interval (95%

CI) was presented in a bracket next to a value accordingly.
Results

The multimodal SPOT-MAS assay workflow
in detecting early breast cancer

We obtained higher concentrations of cfDNA from breast

cancer patients than healthy subjects (Figure S1A). However,

there was no significant difference among patients with different

stages (Figure S1A) or subtypes (Figure S1B). We next employed a

workflow named SPOT-MAS, which was described in our previous

publication (41) to simultaneously analyze multiple signatures of

ctDNA by performing low-cost, shallow whole-genome sequencing

from a single library reaction (Figure 1). We achieved comparable

sequencing depth coverages between breast cancer and healthy

samples (0.58X for breast cancer and 0.57X for control, p=0.93,

Wilcoxon test) (Supplementary Figure S2A). Apart from the GWM

and Flen signatures reported in our previous study (41), in this

study, we further characterized two other signatures including CNA
FIGURE 1

SPOT-MAS assay for detection of Breast cancer. In SPOT-MAS assay, cfDNA isolated from peripheral blood was subjected to bisulfite conversion,
followed by library preparation including unique index and adapter ligation. DNA library was then subjected to massive parallel sequencing to
examine four different features of cfDNA: copy number aberration (CNA), genome-wide methylation (GWM), end motif (EM) and fragment length
profile (Flen). Machine learning models were subsequently constructed based on analysis of these features to distinguish breast cancer patients from
healthy individuals.
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and 4-mer EM and examined the possibility of incorporating all

these features into a machine learning model to enhance the

efficiency in detecting early-stage breast cancers.
Fragment length of cfDNA was not
different between breast cancer and
healthy controls

It has been well established that cfDNA shed by cancer cells

(ctDNA) tend to be shorter than cfDNA shed by other normal cells

(33, 50). However, findings were still inconsistent across cancer

types and different tumor stages (51). The aberrant size profile of

DNA fragments in plasma of HCC patients compared to healthy

individuals has been previously described in previous studies (32,

40, 52, 53). By using genome-wide sequencing, these studies

consistently showed that the fragment size of HCC cfDNA was

shorter than that of healthy individuals and short DNA fragments

(< 150 bp) preferentially carried the tumor-associated genetic

variations (52, 54). Therefore, we included cfDNA fragment

length data of 87 HCC patients in this study to confirm previous

findings and verify our analytical methods. Consistent with

previous studies, we found that short DNA fragments (<150 bp)

appeared more frequently in the plasma of HCC patients compared

to healthy individuals (Figure S2B). By contrast, the distribution of

fragment length was comparable between breast cancer and control,

with median fragment length of 167.5 and 168 bp for breast cancer

and control, respectively (p=0.99, Kolmogorov-Smirnov test, Figure

S2B). Therefore, fragment length could not serve as a discriminative

signature between early-stage breast cancer patients and

healthy individuals.
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Plasma cfDNA from breast cancer patients
displayed distinct patterns of DNA copy
number aberration

Since CNA is a hallmark of cancer (55–57), and CNA signal has

been detected in ctDNA of different cancer types (53, 58, 59), we

sought to compare CNA profiles between breast cancer patients and

healthy subjects. Compared to cfDNA from healthy samples, breast

cancer samples had 616 bins with significant increase and 380 bins

with significant decrease in CNA, which could be used to

differentiate them from healthy controls (Figure 2A). After

mapping those significant bins to chromosomes, we observed

significant copy number gains in all 22 chromosomes and copy

number loss in 17/22 chromosomes except for chromosome 8, 16,

17, 20 and 22 in which CNA gain was solely detected (Figure 2B).

When applying similar analysis on different subtypes of breast

cancer, we found that breast cancer associated CNA pattern was

reflected in TNBC and HER2 subtypes whereas it was less apparent

in luminal B. Notably, no significant CNA changes were detected in

the two remaining subtypes including luminal A and luminal B-

HER2 subtypes (Figure 2C). This finding suggested that DNA copy

number changes are heterogenous among different breast cancer

subtypes with TNBC and HER2 subtypes showing CNA profiles

distinct from healthy controls.
Global hypermethylation was detected in
cfDNA of breast cancer patients

To examine GWM, we calculated methylation ratio in each

non-overlapping 1 Mb bin throughout the genome and plotted the
B

CA

FIGURE 2

Genome-wide copy number changes in cfDNA of breast cancer patients and healthy controls. (A) Heatmap displaying CNA Z-scores (cancer vs control)
of 616 significantly increased bins and 380 significantly decreased bins in 167 breast cancer patients and 181 healthy controls in the discovery cohort (t-
test, Benjamini-Hochberg correction, p<0.05). (B) Frequency of bins with significant copy number decrease (blue) and copy number increase (red)
across 22 chromosomes when comparing breast cancer with controls (Wilcoxon test, Benjamini-Hochberg correction, p<0.05). (C) Frequency of bins
with significant copy number decrease (blue) and copy number increase (red) across 22 chromosomes when comparing each breast cancer subtype
with controls. Significant copy number changes were found in TNBC, HER2, and luminal B subtypes (Wilcoxon test, Benjamini-Hochberg correction,
p<0.05). No significant copy number changes were found in luminal A and luminal B – HER2 subtypes.
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frequency distribution of those values for healthy controls, breast

cancer, and HCC (Figure 3A). The distribution of HCCmethylation

ratio shifted left-ward to the distribution of control (p< 0.001,

Ko lmogorov-Smirnov te s t ) , wh ich ind i ca t ed g loba l

hypomethylation, in agreement with previous studies (53, 60). On

the other hand, by using the same analysis, we observed the curve of

breast cancer shifted slightly right to that of control, which

suggested that breast cancer samples displayed genome-wide

hypermethylation (p< 0.001, Kolmogorov-Smirnov test), which

was distinct from healthy individuals and HCC patients
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(Figure 3A). We next plotted the density curves of methylation

ratio for each subtype against control. Among the five subtypes,

TNBC and luminal B-HER2 displayed clear right skewness

compared to control while the curve of HER2 overlapped with

that of control, demonstrating the heterogeneity of global

hypermethylation changes across different subtypes (Figure 3B).

While hypomethylation at genome-wide scale in breast cancer has

been reported in previous studies (61, 62), our analysis revealed

higher proportions of hypermethylated bins in TNBC and Luminal

B-HER2 as compared to healthy subjects.
B

A

FIGURE 3

Genome-wide methylation changes in cfDNA of breast cancer patients in comparison to HCC patients and healthy individuals. (A) Density plots
showing genome-wide methylation ratio distribution of HCC patients (light-blue curve), breast cancer patients (dark-green curve), and healthy
controls (gray curve) (two-sample Kolmogorov-Smirnov test, p< 0.001). (B) Density plots showing genome-wide methylation ratio distribution of
TNBC (red curve), luminal A (yellow curve), luminal B (blue dashed curve), HER2 (purple curve), luminal B – HER2 (black curve), and healthy controls
(gray curve) (two-sample Kolmogorov-Smirnov test, p< 0.05).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1127086
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pham et al. 10.3389/fonc.2023.1127086
Breast cancer patients displayed plasma
DNA 4-mer end motif profile distinct from
healthy subjects

It was reported that cancer and healthy cfDNA differ in

fragment size, nucleotide sequence at fragment end, jagged end,

and genomic location of fragment endpoints (23). Of those

fragmentomic signatures, cancer specific 4-mer EMs were

previously reported to be different in HCC and healthy subject

(38, 53). Here we examined whether breast cancer derived cfDNA

fragments are enriched for any EMs. To do so, we compared the

proportions of each of the 256 possible 4-mer motifs in cfDNA

fragments of breast cancer and healthy samples. We found that 56

motifs appearing more frequently in breast cancer samples

compared to healthy controls while 62 motifs appearing more

frequently in healthy controls compared to breast cancer

(Figure 4A). Interestingly, most EMs with increased frequency in

breast cancer began with guanine (G). Of those, GGAG, GGAA,

GGGA, GGTG and GGCA were identified as the five most

significant increased motifs in breast cancer (Figure 4B; Figure

S3A). On the other hand, EMs with significantly reduced frequency

in breast cancer tended to begin with adenine (A). Of those, ATTT,

ATTA, AATT, AATA and ACTT were identified as the five most

significantly decreased motifs in breast cancer (Figure 4B; Figure

S3B). Those significant EM signatures were clearly detected in

luminal B and HER2 while luminal A and luminal B-HER2 had
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fewer significant changes in EM. By contrast, we did not find any

significant EM change in TNBC samples (Figure 4C). These

findings suggested that preferred end motifs of cfDNA fragments

could serve as potential signatures to differentiate breast cancer,

particularly those with luminal B and HER2 subtypes, from

healthy individuals.
A multimodal analysis combining genome-
wide methylation, copy number aberration,
and end motifs enhances the accuracy for
breast cancer detection

The identification of significant signatures including CNA,

GWM and EM by genome-wide sequencing prompted us to build

a classification model to distinguish breast cancer patients from

healthy people. We employed three different machine learning

algorithms including RF, LR, and XGB to build classification

models using data from CNA, GWM and EM as inputs. Model

construction workflow was summarized in Figure 5A. Briefly, we

performed feature selection, hyperparameter tuning, 10-fold cross

validation, and chose the best performing model with the highest

area under the curve (AUC) value. Subsequently, we employed an

ensemble method stacking probabilities of base models to build a

combination model. Performance of the combination model and

different base models were externally validated using data from the

validation cohort.
B

CA

FIGURE 4

Landscapes of plasma cfDNA end motifs in breast cancer patients and healthy controls. (A) Heatmap displaying EM Z-scores (cancer vs control) of
56 EMs with significantly increased frequencies and 62 EMs with significantly decreased frequencies when comparing 167 breast cancer patients
with 181 healthy controls in the discovery cohort (t-test, Benjamini-Hochberg correction, p<0.05). (B, C) Plots displaying log2 fold change (cancer vs
control) in frequencies of the 256 EMs. EMs were grouped by the first nucleotides, being either A, T, G, or C. Log2 fold change in frequency was
calculated for breast cancer vs controls (B) and each breast cancer subtype vs controls (C), (t-test, Benjamini-Hochberg correction, p<0.05).
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XGB performed better than RF and LR, generating higher

AUC values in all tested cfDNA features in receiver operating

characteristic (ROC) plots (Figure S4A). XGB achieved AUC of

0.79 (95% CI: 0.74-0.83), 0.77 (95% CI: 0.72-0.81), and 0.87 (95%

CI: 0.84-0.9) for GWM, CNA, and EM respectively (Figure 5B).

Hence, we selected XGB to construct classification models.

In the discovery cohort, EM achieved the highest performance

among three significant ctDNA features (Figure 5B). The

combination and EM base model achieved comparable

performance with AUC of 0.88 (95% CI: 0.84-0.9) and 0.87 (95%

CI: 0.85-0.91) respectively. They performed significantly better than

GWM (AUC of 0.79, 95% CI: 0.74-0.83) and CNA (AUC of 0.77,

95% CI: 0.72-0.81) base models (p<0.01, DeLong’s test) (Figure 5B).

In the validation cohort, the combination model and EM base
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model also achieved consistent performance, with AUC of 0.91

(95% CI: 0.87-0.95) and 0.89 (95% CI: 0.85-0.94) respectively, which

were better than GWM and CNA base models in the validation

cohort (Figure 5C).

Furthermore, we observed that combining EM with other

ctDNA features in the combination model could further enhance

the sensitivity of detection at comparable specificity. The model

cutoff value was set to achieve a specificity of at least 90% to

minimize overdiagnosis and reduce false positive rates. In the

discovery cohort with a specificity of at least 90%, the

combination model and EM base model had much better

sensitivity than GWM and CNA model (Figure 5D). Notably, the

combination model showed better sensitivity than the EM base

model (65% sensitivity at 91% specificity versus 63% sensitivity at
B C

A

FIGURE 5

Construction and evaluation of machine learning classifiers to detect breast cancer. (A) Model construction workflow. (B) & (C) ROC curves showing
the performance of the combination model and individual-feature models in the discovery cohort (B) and validation cohort (C). (D, E) Bar graphs
displaying sensitivity and specificity values, when specificity was set as at least 90%, for the combination and individual-feature models in the
discovery cohort (D) and validation cohort (E).
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90% specificity) (Figure 5D). Consistently, in the validation cohort,

with the same cutoff value, the combination model also achieved

higher sensitivity than other models (65% sensitivity at 96%

specificity versus the second best 56% sensitivity at 97%

specificity of EM base model) (Figure 5E). When specificity was

set as at least 95%, the combination model also achieved the highest

sensitivity over ME, GWM, and CNA in both discovery and

validation cohort (Figure S4B).

Together, machine learning using XGB and the multimodal

input of three features of cfDNA yielded the best performing

classification model for distinguishing breast cancer from control.
The multimodal assay enabled effective
detection of breast cancer at early stages
and with heterogenous molecular subtypes

Early breast cancer refers to breast cancer that has not

spread beyond the breast or the axillary lymph nodes; this

includes stage I, stage IIA, stage IIB, and stage IIIA breast

cancers. The detection of early-stage breast cancer remains a

major challenge in the field due to the low abundance of ctDNA

in the blood (26, 27). Hence, we tested the efficacy of the
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combination model in detecting breast cancer at different stages.

In the discovery cohorts, our combination model showed good

performance in detecting stage I and II tumors, with an AUC of 0.84

(95% CI: 0.77-0.91) and 0.89 (95% CI: 0.85-0.93) for stage I

and stage II respectively (Figure 6A). Model performance on

stage I and stage II were slightly better than on stage III where

AUC was 0.77 (95% CI: 0.64-0.89) in the discovery cohort

(Figure 6A). In the validation cohort, the combination model

achieved consistent performance on breast cancer patients with

different stages, with AUCs for stage I, II, and III of 0.84 (95% CI:

0.69-1), 0.93 (95% CI: 0.88-0.98), and 0.86 (95% CI: 0.75-0.96)

respectively (Figure 6B).

Breast cancer is known as a highly heterologous disease which

comprises multiple subtypes manifested by distinct molecular

alterations (4–8). Hence, we assessed whether our models

preferred to detect a particular subtype. We did not observe any

significant differences between AUC values for detecting five

different subtype groups both in the discovery and validation

cohort (Figures 6C, D). Notably, compared to individual-feature

models, the combination model enabled better efficiencies in

detecting overall breast cancer, and luminal B, HER2 and luminal

B-HER2 subtypes (Table 2). This finding further confirmed that the

combination of multiple ctDNA specific signatures could overcome
B

C D

A

FIGURE 6

Performance of the combination model in breast cancer detection at different stages or with different subtypes. (A, B) ROC curves showing the
performance of the combination model for breast cancer stage I to III in discovery cohort (A) and validation cohort (B). (C, D) ROC curves showing
the performance of the combination model on different breast cancer subtypes in discovery cohort (C) and validation cohort (D).
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the heterogeneity of breast tumors, thus enhancing the overall

efficiency of breast cancer detection.
Discussion

This study applied a multimodal approach, known as SPOT-

MAS, to integrate three significant signatures of ctDNA including

CNA, GWM, and EM to construct a multi-featured combination

machine learning model to classify nonmetastatic breast cancer

patients from healthy subjects. The approach enables increased

breadth of ctDNA analysis at shallow sequencing depth to

overcome the limitation of low amount of ctDNA fragments in

plasma samples as well as molecular heterogeneity of breast cancers.

Our analysis of CNA showed significant changes across 22

chromosomes of breast cancer group compared to control. We also

observed that different breast cancer subtypes had varied levels of

CNA, in which TNBC and HER2 had remarkably higher numbers

of bins with copy number changes than other subtypes. Our finding

was consistent with previous studies showing that TNBC and HER2

subtype displayed genomic instability manifested by pronounced

DNA copy gains and losses across the entire genome, dominantly

gain in chromosome 1, 8, 17 and dominantly loss in chromosome 4,

5, and 13 (63, 64). Such CNA profiles are associated with the high

rate of relapse and the poor prognosis of these two subtypes (63, 64).

Interestingly, we did not detect bins with significant copy changes

for luminal A and luminal B-HER2 subtypes, suggesting that these

two subtypes might have lower levels of genomic instability, which

might be linked to the less aggressive nature of those subtypes

compared to TNBC or HER2 (10).

HCC patients, who were previously shown to display genome-

wide signatures such as fragment length and methylation markedly

distinct from healthy subjects (53, 60, 65) were recruited to confirm

previous findings and validate our analysis on those features.

It has been reported that cancer patients display hypomethylated

patterns at genome-wide levels compared to healthy subjects (66, 67),

which was consistently observed in our analysis by comparing GWM

between HCC patients and healthy controls. Interestingly, we

observed an opposite trend for breast cancer which displayed

hypermethylation across the entire genome compared to control.

Thus, our finding suggested that global hypomethylation pattern

might depend on the cancer type, which agrees with a previous

study (68, 69). Paradoxically, several previous studies reported

global hypomethylation in plasma cell free DNA of breast cancer

patients (70–72). The discrepancy could be attributed to differences in

tumor stages or mutation status of cancer patients between our

cohorts and others. Using paired-end whole-genome bisulfite

sequencing (WGBS), Legendre et al. (66) detected global

hypomethylation in cfDNA of breast cancer with metastatic tumors

while our study analyzed nonmetastatic breast cancer. In support to

this notion, a previous study showed that the methylation pattern of

breast cancer DNA changes during breast tumor progression, with

pronounced global methylation in the metastatic stage (73, 74) while

early-stage tumors tend to display hypermethylation. Furthermore, it

is known that DNA methylation is mediated by DNA

methyltransferases (DNMTs) and that mutations in genes encoding
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DNMTs could alter DNA hypermethylation or hypomethylation

profiles of breast tumors (74). Thus, further studies are required to

profile the mutational landscape of DNMT genes and assess whether

such mutations, if detected, are associated with the global

hypermethylation patterns of breast cancer patients in our cohort,

particularly those with TNBC and luminal B-HER2 subtypes. Not

only at genome-wide scale, site-specific methylation changes between

breast cancer patients and healthy controls have been reported in

numerous studies. Those regions are responsible for major changes in

regulating expression of cancer associated genes by impacting the

binding of different transcription factors to regulatory sites and

chromatin structure (75). Therefore, we established a panel of 16

regions based on previous publications and those regions were

mapped to regulatory regions including promoters or enhancers of

tumor suppressor genes involving cancer progression (Table S3). Of

those 16 tested regions, 4 (SOX17_1, RASSF1A, OTX2_1 and OTX2

_2) were confirmed to be significantly hypermethylated in breast

patients as compared to healthy subjects (p<0.005, Figure S5). Thus,

our ongoing study will examine whether these hypermethylation

DMRs could be combined with other genome-wide signatures of

cfDNA to improve the accuracy of our assay for detection of breast

cancer patients.

In our previous study, we employed SPOT-MAS workflow to

compare the fragment length profiles of cfDNA between CRC

patients and healthy individuals (41). In this study, we performed

a similar analysis on HCC and breast cancer patients. Consistent

with CRC patients, we observed higher frequencies of short

fragments (<150 bp) in cfDNA of HCC patients compared to

healthy individuals. However, we did not detect any differences in

the fragment length distribution between breast cancer and healthy

controls. Thus, it is possible that the low abundance of breast cancer

ctDNA precludes the detection of cancer associated fragment length

patterns which could be readily detected in other types of cancer

shedding higher amounts of ctDNA into the bloodstream.

In this study, we identified significant EMs enriched in breast cancer

ctDNA, further confirming that the fragmentation process of breast

cancer ctDNA is a nonrandom process (76).We showed that the feature

of EM achieved higher performance than other ctDNA signatures

including CNA and GWM in discriminating breast cancer from

healthy controls. Of all significant motifs, the top five most significant

frequency increase and decrease were different from the represented

motifs for HCC (57). Thus, our results suggested that EMs could also

serve as novel cancer type specific signatures. Comparing different

breast cancer subtypes, we found that significant EMs were not

detected for all five breast cancer subtypes. In fact, luminal B and

HER2 had the highest numbers of significant EMs among all five

subtypes, while no significantmotif was detected with significant change

in TNBC, further highlighting the heterogeneity of breast cancer.

Despite having higher performance compared to other

signatures, we found that combining EM with other ctDNA

signatures could further improve the sensitivity for detecting

breast cancer samples in the validation cohort. In support of this

notion, we found that the combination model had higher detection

rate for luminal B and HER2 subtypes compared to individual-

feature modes in both discovery and validation cohort. These
Frontiers in Oncology 13
findings highlighted that the multimodal analysis of multiple

ctDNA signatures could overcome the molecular heterogeneity of

breast cancer, thus enhancing the detection sensitivity. We also

compared the performance of our assays with other available

ctDNA-based tests using single features of cfDNA (Table S4).

Our test had comparable specificity (96% versus >98.0%, Table

S4) to the other tests, while it demonstrated higher sensitivity (65%

versus<60%, Table S4). Importantly, our test used a shallow depth

sequencing approach with a lower depth coverage of 0.58X

compared to other assays, resulting in economically feasible for

population-wide screening (Table S4). Despite promises, it is

important to note that current liquid biopsy tests should only be

used as a complementary approach to the available diagnostic tests

to increase rates of cancer detection, especially in the early stage. To

be successfully applied to the clinical programs as a screening test,

SPOT-MAS would need further work to improve its performance,

focusing on high sensitivity and specificity. Moreover, prospective

studies are required to validate the performance and cost-

effectiveness of the test in the clinical setting.

There are several limitations to this study. First, this was a

retrospective study, with small sample sizes for breast cancer and

control groups as well as small number of samples for each breast

cancer subtype in both discovery and validation cohorts. Thus, our

current study could be considered as exploratory analyses and future

studies with a larger prospective cohort are required for robust

validation of clinical performance of our assay. Second, this study

did not include benign breast tumor, thus the ability of the model to

distinguish between benign breast lesions and breast cancer was not

tested. Although patients with early-stage cancer (stage I and II)

account for the majority (>60%), the remaining patients were either

diagnosed with nonmetastatic tumor (stage IIIA) or had unknown

staging status. However, we did not observe significant differences in

the efficiencies of our assay in detecting patients with stage I/II and

those with stage IIIA. Another limitation of our study is the reduction

of the performance of different cancer subtypes in the validation

cohort. This is attributed to the limited sample size available for each

subtype in this cohort. To address the limitation, future studies

should consider incorporating a more diverse range of samples

representing different cancer subtypes. This would enable a

comprehensive and robust evaluation of the performance of the

SPOT-MAS test for detecting and classifying various cancer subtypes.

In summary, this study employed the multimodal approach of

SPOT-MAS assay to profile multiple ctDNA signatures across the

entire genome and incorporate those features in a machine learning

model to develop a blood-based assay for breast cancer screening.

We demonstrated that combining EM, CNA and GWM features

could achieve high accuracy for detecting nonmetastatic breast

cancer with different molecular subtypes.
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