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combined with 1D-CNN and
information fusion
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1College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2Key Laboratory
of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China,
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Efficient, rapid, and non-destructive detection of pesticide residues in fruits and

vegetables is essential for food safety. The visible/near infrared (VNIR) and short-

wave infrared (SWIR) hyperspectral imaging (HSI) systems were used to detect

different types of pesticide residues on the surface of Hami melon. Taking four

pesticides commonly used in Hami melon as the object, the effectiveness of

single-band spectral range and information fusion in the classification of different

pesticides was compared. The results showed that the classification effect of

pesticide residues was better by using the spectral range after information fusion.

Then, a custom multi-branch one-dimensional convolutional neural network

(1D-CNN) model with the attention mechanism was proposed and compared

with the traditional machine learning classification model K-nearest neighbor

(KNN) algorithm and random forest (RF). The traditional machine learning

classification model accuracy of both models was over 80.00%. However, the

classification results using the proposed 1D-CNN were more satisfactory. After

the full spectrum data was fused, it was input into the 1D-CNN model, and its

accuracy, precision, recall, and F1-score value were 94.00%, 94.06%, 94.00%,

and 0.9396, respectively. This study showed that both VNIR and SWIR

hyperspectral imaging combined with a classification model could non-

destructively detect different pesticide residues on the surface of Hami melon.

The classification result using the SWIR spectrum was better than that using the

VNIR spectrum, and the classification result using the information fusion

spectrum was better than that using SWIR. This study can provide a valuable

reference for the non-destructive detection of pesticide residues on the surface

of other large, thick-skinned fruits.

KEYWORDS

hyperspectral imaging, pesticide residues, convolutional neural network, information
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1 Introduction

Fruits and vegetables are a significant part of people’s daily diet,

providing basic vitamins, edible fiber and minerals, and a large

amount of protein, carbohydrates, and other nutrients. Xinjiang is a

famous Hami melon producing area in China, which has the natural

climatic conditions required for the growth of Hami melon. However,

Hami melon is susceptible to various pests and diseases during the

growing season, such as powdery mildew, bacterial leaf spot disease,

anthrax, and aphids, resulting in reduced yields. Farmers generally use

fungal fungicides and insecticides for disease control. The rational use

of pesticides can effectively prevent and control pests and diseases, but

improper use can cause pesticide residues on the surface of fruits and

vegetables. Some farmers lack common sense in the use of pesticides

and unilaterally pursue high yields, making the irregular use of

pesticides, abuse, and other problems increasingly severe. Moreover,

because Hami melon is large and has a lot of surface reticulation, it is

more likely to cause pesticide residues on the surface. With the

emphasis on food safety, it is, therefore, necessary to accurately

detect pesticide residues on the surface of Hami melon. The

traditional chemical detection methods for pesticide residues mainly

include Ultrahigh-Performance Liquid Chromatography–Hybrid,

immunoassay, and Gas Chromatography-Mass Spectrometry

(Garcia-Febrero et al., 2014; Liu et al., 2021; Jia et al., 2022).

Chemical detection methods for pesticide residues have high

accuracy and sensitivity. Still, most of them are destructive and

have the disadvantages of relying on sample pretreatment, slow

detection speed, and high detection prices.

Hyperspectral imaging (HSI) is a rapid, non-destructive

detection technology. It can obtain the spatial distribution

spectrum information of each pixel of the tested sample; that is, it

can obtain three-dimensional mapping data information,

considered an effective technology to solve the defects mentioned

above of traditional chemical detection methods. Currently, HSI

technology has been widely used in the quality and safety detection

of agricultural products (Li et al., 2018; Yao et al., 2022). Some

researchers measured the content of soluble solids in fruits by

hyperspectral imaging technology (Li et al., 2016a; Gao et al., 2022;

Xu et al., 2022b). Furthermore, some researchers detected aflatoxin

in corn, almond, and other crops by HSI technology (Chu et al.,

2017; Kimuli et al., 2018; Mishra et al., 2022). Besides, HSI

technology was also applied to the non-destructive detection of

crop pests and diseases (López-Maestresalas et al., 2016; Lee et al.,

2016). In recent years, relevant research has shown that HSI

technology has also been widely used to detect pesticide residues

on the surface of fruits and vegetables. Some researchers have used

near-infrared hyperspectral imaging (NIR-HSI) systems for the

qualitative and quantitative detection and analysis of pesticide

residues on the surface of lettuce leaves, achieving non-destructive

and accurate identification of multiple pesticide residues in lettuce

leaves (Sun et al., 2018; Cong et al., 2021). Gui et al. (2018) sprayed

water and three pesticides (imidacloprid, abamectin, and propineb)

on the surface of broccoli and used HSI technology and machine

learning to complete the classification of four categories of pesticide

residues. The extreme learning machine (ELM) model using the
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continuous projection algorithm got the best recognition results,

with the accuracy of 98.33% and 96.67% in the training and test sets,

respectively. Meanwhile, some researchers used the HSI technique

to separately detect different pesticide residues and residue levels on

spinach leaves (Ji et al., 2018; Ren et al., 2018). Other researchers

also used NIR-HSI to detect pesticide residues in mulberry leaves

and to visualize their distribution (Jiang et al., 2017). Li et al.

(2016b) used HSI technology to detect pesticide residues with

different concentrations on the orange surface. The above

literature, showed that the HSI technology has been widely used

for the non-destructive detection of pesticide residues on the surface

of fruits and vegetables. However, there is no research on pesticide

residues in large, thick-skinned melons. Meanwhile, most of the

related studies have been performed using a single band range of

spectral regions for detection. However, the spectral responses of

different band ranges are not the same. Since the two spectral

regions may have complementary information, it is proposed to

explore the fusion of the spectral information of the two bands and

to develop a qualitative discriminative depth model for pesticide

residues on the surface of Hami melon.

HSI can provide a large number of features, including spectral

features and spatial features. As high-dimensional data, HSI has a

large amount of data information, but it is still a difficult task to

mine information effectively. Deep learning is currently a prevalent

data processing method with a wide range of applications in the

field of data processing. Deep learning can learn features quickly

and profoundly and efficiently process large amounts of data

(Signoroni et al., 2019). Its most significant advantage is that it is

deep enough, and the network capacity is large enough. Several

researchers have used Convolutional Neural Networks (CNN) to

process HSI for detecting agricultural products, crop quality and

safety. Al-Sarayreh et al. (2020) studied the potential of HSI and

deep learning (3D-CNN) methods in meat classification, and for

NIR-HSI and VIS-HSI, the accuracy of classification was 96.90%

and 97.10%, respectively. Good results were obtained by Yan et al.

(2021) using a visible/near infrared (VNIR) HSI system and CNN to

identify aphid infection in cotton leaves. Polder et al. (2019)

combined HSI and deep learning for the non-destructive

detection of potato seed viruses with accuracy and recall

exceeding 78.00% and 88.00%, respectively. In addition, deep

learning is also commonly used to extract effective features of

spectral data for modeling classification or regression. Jiang et al.

(2022b) used hyperspectral as well as discrete wavelet transform

and deep learning modeling methods for detecting and identifying

veterinary drug residues in beef, using deep learning for modeling to

shorten the prediction time and greatly improve the accuracy of

classification and identification. Meanwhile, some researchers have

also started combining CNN with HSI to detect pesticide residues

on the surface of fruits and vegetables. Jiang et al. (2022a) used

hyperspectral technology for the detection of pesticide residues on

cabbage, classifying no residues as well as four pesticides

(chlorpyrifos, cypermethrin, methomyl, and dimethoate), and

found that the fusion of hyperspectral with the discrete wavelet

transform and CNN could significantly improve the classification

recognition accuracy, with a recognition accuracy of 91.20%. Ye
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et al. (2022) used HSI combined with CNN to detect pesticide

residue levels in grapes containing no residues and three different

gradients of pesticide residues, and obtained good results. There was

also a related researcher who used a short-wave infrared (SWIR)

hyperspectral imaging system to detect mixed pesticides on the

surface of leek leaves and classified them using 1D-CNN with a test

set accuracy of 97.90% (He et al., 2021). As seen in the above article,

the deep learning performed well in HSI and spectral data. This

indicated that deep learning can indeed eliminate the need for

upfront feature analysis and extraction, and it did improve as the

amount of information increased, the depth of the network

deepened, and appropriate optimization mechanisms were added.

As “pollution-free” and “green” have become important criteria

for consumers to choose fruit and vegetable products, it is urgent to

solve the problem of rapid non-destructive detection of pesticide

residues on the surface of Hami melon. While most of the

traditional chemical detection methods are destructive,

hyperspectral imaging has great potential for the non-destructive

detection of pesticide residues on the surface of fruits and

vegetables, but few studies have been conducted for large melons.

In addition, convolutional neural network models reduce the need

for manual feature engineering and provide a new method for

constructing qualitative pesticide residue discrimination models

with high accuracy and generalization capability. Information

fusion techniques provide a technique that can effectively enhance

the effectiveness of models (Hong et al., 2021a, 2021b). Therefore,

the study took Xinjiang specialty fruit Hami melon as the carrier,

selected commonly used pesticides as the research object, and

explored the feasibility of using hyperspectral imaging technology

and convolutional neural network model for non-destructive

detection of pesticide residues on the surface of Hami melon.

This study aims to use HSI combined with deep learning to

identify different species of pesticide residues on the surface of

Hami melon. The specific objectives are: (1) to investigate the

spectral differences of different species of pesticide residues in

different band ranges; (2) to compare the performance of

hyperspectral imaging in single and fused band ranges for

pesticide residue species identification; (3) to develop a multi-

branch one-dimensional convolutional neural network (1D-CNN)

model with attention mechanism for discriminating different

species of pesticide residues on the surface of Hami melon; (4) to

compare the classification performance of a multi-branch 1D-CNN

model with attention mechanism model with the traditional 1D-

CNN classification model; (5) to compare the classification

performance of a multi-branch 1D-CNN model with attention

mechanism model with traditional chemometric classification

models in terms of their classification performance.
2 Materials and methods

2.1 Sample preparation

The same batch of Hami melon (Xizhoumi No. 25) was

purchased from Shihezi Agricultural Products Trading Center in
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Xinjiang, China, and transported to Shihezi University for sample

preparation. 200 Hami melons with oval shapes weighing about 3-4

kg were randomly selected. Four standard pesticides were

purchased from the local agricultural raw materials market in

Shihezi, Xinjiang, China. They were Acetamiprid (Active

ingredient content 70%, water dispersible granule, Shandong

Baixin Biotechnology Co., Ltd., China.), Malathion (Active

ingredient 70%, emulsifiable oil, Ningbo Sanjiang Yinong

Chemical Co., LTD., China), Difenoconazole (Active ingredient

20%, microemulsion, Chengdu Kelilong Biochemical Co., LTD.,

China) and Beta-cypermethrin (Active ingredient 4.5%, emulsion,

Jiangsu Yixing Xingnong Chemical Products Co., LTD.,

China), respectively.

All Hami melon samples were wiped and numbered before data

collection. Then put them in a well-ventilated laboratory (indoor

temperature 22°C, relative humidity 40%) and let them stand for 24

hours to reduce the influence of environmental factors on the model

accuracy. Two hundred samples were randomly divided into five

equal groups (40 samples in each group). The above four pesticides

were mixed with distilled water to prepare pesticide solutions with a

ratio of 1:1000, which were evenly sprayed on the surface of Hami

melon, and recorded as group 1, group 2, group 3, and group 4. In

addition, the remaining 40 Hami melon samples were used as the

control group, and distilled water was evenly sprayed on the surface

of each sample, recorded as group 0. Finally, all prepared samples

were stored indoors for 12 hours.
2.2 Hyperspectral imaging acquisition

2.2.1 Hyperspectral imaging system
In this study, the hyperspectral imaging system consisted of

VNIR and SWIR hyperspectral imaging systems. VNIR

hyperspectral imaging instruments included an imaging

spectrometer (ImSpector V10E2/3^’’, Specim, Oulu, Finland), a

high-resolution camera (GEV-B1621M, Photon Etc., Montreal,

Canada), and two halogen line light sources. SWIR hyperspectral

imaging instrument consisted of an imaging spectrometer

(ImSpector N25E2/3^’’, Specim, Oulu, Finland), a high-resolution

camera (Zephir-2.5–320, Photon Etc., Montreal, Canada), two

150W halogen surface light sources. Both line and surface sources

were angled at about 45° to illuminate the field of view below the

spectrometer. Two devices shared an electrically positioned sample

stage operated by a stepper motor. When collecting hyperspectral

images, two hyperspectral images with different wave bands can be

scanned with the same attitude. All the above instruments were

placed in a box with a black inner surface to form the hyperspectral

imaging system. In addition, a computer equipped with data

acquisition software (Spectral Image System, Isuzu Optics Corp.,

Taiwan, China) was provided. The hyperspectral imaging system is

shown in Figure 1. Hyperspectral images of Hami melon samples

containing pesticide residues were obtained in diffuse reflection

mode. The measurement was carried out in a dark room to avoid

light interference. In addition, the hyperspectral imaging system is

shown in Figure 1.
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2.2.2 Imaging acquisition and calibration
Proper adjustment of the acquisition parameters is vital to

obtain clear and distortionless hyperspectral images. In this study,

the spectral variability was avoided by setting appropriate

parameters (Hong et al., 2019). The distance between the upper

surface of Hami melon samples and the CCD camera lens was set to

19.7 cm. In this study, the correlation coefficient of VNIR-HSI was

set as follows. The camera’s exposure time and the speed of the

electric moving stage were adjusted to 6.5 ms and 0.803 mm/s,

respectively. The correlation coefficient of SWIR-HSI was set as

follows. The camera’s exposure time and the speed of the electric

moving stage were adjusted to 4.1 ms and 53.4 mm/s, respectively.

The instrument needs to be preheated for 30 minutes before

use. As VNIR and SWIR were assembled in one system, with the

movement of the electric mobile station, the acquisition system

could simultaneously acquire the images and spectral information

of the Hami melon samples in two wave bands and repeat the

operation until all the sample information was obtained. In fact, the

directly obtained hyperspectral images of Hami melon cannot be

immediately used in experiments. They need to be black, and white

corrected first. To reduce the influence caused by uneven light

source intensity distribution and CCD camera dark current noise,

the raw intensity image (Rr) was calibrated into reflectance images

using white and dark references. The white reference image (Rw)

was acquired using a white Teflon bar with nearly 99% reflectance,

and the dark reference image (Rd) was obtained by turning off the

light source and closing the lens cover. The final corrected image
Frontiers in Plant Science 04
(Rc) was calculated according to the following Equation (1):

Rc =
Rr − Rd

Rw − Rd
(1)
2.3 Data analysis

2.3.1 Spectral data extraction
The image resolution of the VNIR-HSI camera is 1632×1232

pixels, and the spectral resolution is 2.03 nm. The spectral range is

374.2847-1033.048 nm, which can collect hyperspectral images of

308 bands. The image resolution of the SWIR-HSI camera is

320×256 pixels, and the spectral resolution is 6.20 nm. The

spectral range is 982.38-2618.37 nm, which can collect

hyperspectral images of 288 bands. After edge band screening, the

obtained bands ranges were 400-1000 nm and 1000-2500 nm,

respectively, and the spectral data of 279 and 233 bands were

retained. For each Hami melon, one hyperspectral image was

collected every 90° rotation along the equatorial direction. So,

four hyperspectral images can be collected from one Hami melon

sample, and 800 hyperspectral images can be collected from 200

Hami melon samples. This hyperspectral imaging system could

collect data from two bands simultaneously, and then 1600

hyperspectral images could be collected. After the hyperspectral

image was collected, the hyperspectral image was imported into

ENVI 5.3 (Exelis Visual Information Solutions, USA), and pixel
FIGURE 1

Collection of hyperspectral images and division of data sets.
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blocks of 50×50 at the equatorial position of Hami melon were

randomly selected as regions of interest. A total of 1600 average

spectra information were collected in the two bands, which were

stored to establish the classification model. That is, the spectral data

was extracted from the collected hyperspectral images, and the

model was trained and verified by using the data differences

between spectral information, so as to quickly and effectively

identify different kinds of pesticide residues. The sample data

were randomly divided into training, validation, and test sets with

a ratio of 5:1:2. In addition, the division of the data set is shown

in Figure 1.

2.3.2 Information fusion
Information fusion, which can be called data fusion or multi-

sensor information fusion, is a multi-level and multi-faceted

process. Compared with the single detection technology, the

information fusion technology has the advantages of more

information and better fault tolerance. Information fusion can

realize the fusion process of multi-source information at multiple

levels. According to the level of data abstraction in the fusion

system, the fusion can be divided into data layer fusion, feature layer

fusion, and decision layer fusion.

Data layer fusion refers to directly associating the original data

of each sensor and sending it to the fusion center to complete the

comprehensive evaluation of the measured object. Feature layer

fusion means that the original data is processed by feature

extraction, correlation, and normalization and then sent to the

fusion center for analysis and synthesis, to complete the tested

object’s comprehensive evaluation. Decision layer fusion means that

the signals from each sensor are processed locally before fusion.

Each sensor’s corresponding processing unit first performs tasks

such as feature extraction and decision-making separately and

independently. Then correlated and sent them to the fusion

center for processing.

When the recognition results are fused at the decision layer, it is

difficult to measure the weights of the two sensors. And it needs a

target knowledge base and massive data preprocessing, which leads

to information loss. The feature layer fusion method may be more

suitable for fusing two different types of sensor data. For data layer

fusion, it needs the requirement of consubstantial sensors, and the

data layer fusion method has the minimum information loss and

high fusion accuracy (Huang et al., 2014). At the same time, the

convolution neural network is used to process and classify the data,

which solves the problems of information redundancy and a large

amount of calculation. In this study, the data layer fusion method

was used for information fusion. In addition, the spectral curve of

data layer fusion is shown in Figure 1.

2.3.3 Spectral data preprocessing
The spectral data information of the two bands expresses the

physical meaning of the spectral reflection value numerically.

However, considering their different numerical ranges, they need

to be normalized before modeling and analysis. As a data

preprocessing method, maximum-minimum normalization can
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limit the data to be processed in a certain range. It can ensure

convergence speed in the process of the program running and

provide convenience for subsequent data processing.

The spectrum needs to be preprocessed after the maximum-

minimum normalization. Raw spectral data usually carry some

information and noise unrelated to the composition of the sample.

Through spectral preprocessing, noise and background interference

can be removed appropriately, thus significantly improving the

performance of the model. Before modeling, it is necessary to

preprocess the original spectrum. All raw spectral data were

preprocessed by Savitzky-Golay (S-G) (Savitzky and Golay, 1964).

The preprocessing treatment was implemented using MATLAB

R2019b (The MathWorks, Natick, MA, USA).

2.3.4 Optimal band selection
Raw spectra in the entire band range and preprocessed spectral

data contain large amounts of redundant information. In many

cases, better classification results can be obtained using the optimal

band rather than the whole band range. When building a traditional

machine learning classification model, if more spectral information

in the model is not related to the pesticide residues on the surface of

Hami melon, it will affect the model’s accuracy and calculation

speed. The selection of spectral characteristic bands has a good

influence on subsequent modeling and classification. In this study,

the genetic algorithm (GA) (Goldberg, 1989) was used to extract

characteristic bands to simplify the model.

The GA simulates the natural selection mechanism of

Darwinian biological evolution through the evolutionary process

of genetic mechanisms. Using this approach, each spectral data

band represents a gene on a chromosome; an encoding of ‘1’means

that the band is selected, whereas a ‘0’means it is not selected. Each

chromosome corresponds to a feature selection scheme. In this

study, the initial population size was set to 50, and individuals were

randomly selected by computer. In the population, the fitness value

of each chromosome was calculated. Chromosomes with high

fitness values were retained for replication, crossover, and

mutation. Mutation probability, crossover probability, and

iteration number were set to 0.01, 0.5 and 100, respectively.
2.4 Classification algorithms

2.4.1 KNN
The K-nearest neighbor (KNN) algorithm is a classification

algorithm in supervised learning that performs classification by

measuring the distance between different feature values

(Abeywickrama et al., 2016). It works by partitioning the feature

vector space using training data and using the partitioning results as

the final algorithmic model. K objects are randomly selected and

assigned to the nearest (most similar) group based on their distance

from the initial mean of each group, and then the new mean of each

group is recalculated. This process is repeated until all objects have

found their nearest group in the K-group distribution. K was set to 3

in this study.
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2.4.2 RF
Random forest (RF) is a classification model that uses multiple

trees to train and predict samples (Witten et al., 2017). It is suitable

for high-dimensional and large numbers of samples when preparing

data. Hence, its advantage lies in its excellent performance in

handling high-dimensional and large numbers of data. In

addition, the random forest does not require any special tuning

during training. Still, it only requiers an appropriate increase or

decrease of the tree, which is more effective in improving the

accuracy. In this study, the n_estimator was set to 100.
2.4.3 Multi branch 1D-CNN model with attention
mechanism

Our study proposed a multi-branch 1D-CNN architecture with

an attention mechanism. The specific structure is shown in Figure 2.

The model was divided into three main parts.

First, the spectral data after normalization and smoothing

denoising preprocessing were input to the model, involving 1D

spectral data, so Conv1D was used. The spectral data was passed

through a convolutional layer, which was then activated by a

rectified linear unit (ReLU) function to complete the non-linear

transformation of the features. Finally, a maximum pooling layer

was added to reduce the over-sensitivity of the convolutional layer.

To expand low-bit data to high-dimensional data and facilitate

feature extraction later, set the parameters as follows. The input

channel of the convolutional layer was 64, the kernel size was 10,
Frontiers in Plant Science 06
and the step size was 1. The maximum pooling layer kernel size

was 2.

The data was then fed into the three residual modules, and

different data features were extracted using different-size

convolution kernels. In the residual block, all three residual

structures contained a convolutional layer, a maximum pooling

layer, and an attention mechanism module. The processing of the

spectral data was repeated twice in this architectural order to

complete a residual block. To extract different data features using

convolution kernels of different sizes, the parameters set were as

follows. The input channels of the convolutional layer for all three

residual modules were 64, and the convolutional kernel sizes were 3,

5, and 10, respectively, with a step size of 1. Multi-scale network

structure can improve the ability of feature expression (Wu et al.,

2023). For the maximum pooling layer, the kernel sizes were 2. The

attention mechanism module used one-dimensional convolution to

efficiently realize the local cross-channel interaction and extract the

dependence between channels. After extracting the depth features

through a series of convolution and pooling operations, the

attention mechanism technology was used to adaptively weight

the features of different information segments for information

screening. At the same time, the screened features were re-

labeled, and the weights of each channel were obtained by the

Sigmoid activation function. The attention mechanism combined

with the convolutional neural network can be used to capture the

correlation between multiple variables and prediction results. It can

enhance the effective information of hidden features extracted by
FIGURE 2

Multi branch 1D-CNN model with Attention Mechanism.
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each branch, suppress the invalid information, and assign the

weights reasonably, which made it easier for the model to capture

the interdependent relationship between spectral features.

Therefore, adding the attention mechanism module can effectively

improve the model efficiency and calculation effect. In this study,

three kinds of residual blocks were constructed. When the data

passed through three parallel residual blocks, identity mapping was

used to avoid the disappearance of the network gradient. This

structure can effectively reduce the gradient loss in the process of

model learning, avoid the occurrence of degradation, and enhance

the network learning ability.

Finally, the data was input to the Flatten layer, and the 1D

multiple vectors were transformed into 1D single vectors through

the Flatten layer and then inputted to the fully connected layer. To

avoid overfitting the model, the Dropout layer was added to

deactivate some neurons randomly. A softmax classifier was used

to output the sample categories.
2.5 Software environment

The computer parameters for training and validation as well as

the model environment resource configuration are listed in Table 1.
2.6 Assessment standard of models

The purpose of model evaluation is to determine the effect of

modeling methods. Different modeling methods will get different

prediction results when modeling on the same data set. Compare

and analyze the predicted situation and the real situation, and use

the following methods to evaluate different algorithms

quantitatively. Take the two-class confusion matrix, as shown

in Table 2.

The short names in the table have the following meanings.TP:

true positive, positive samples are classified as positive samples; FP:

false positive, negative samples are classified as positive samples;

TN: true negative, negative samples are classified as negative

samples; FN: false negative, positive samples are classified as

negative samples.
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Accuracy refers to the percentage of discriminated correct

results in the total sample;

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(2)

Precision refers to the probability of actually positive samples

among all the discriminated positive samples;

Precision =
TP

TP + FP
(3)

Sensitivity refers to the probability of being discriminated as a

positive sample among the actually positive samples;

Sensitivity =
TP

TP + FN
(4)

The F1-score(Chinchor, 1992) is to combine the performance of

precision and sensitivity;

F1� score =
2� Precision� Sensitivity
Precision + Sensitivity

(4)
3 Results

3.1 Spectral characteristics

3.1.1 Spectral features in the VNIR band range
Figure 3 includes the raw and average diffuse reflectance

spectra of different types of pesticide residues on the surface of

Hami melon in the band range of 400-1000 nm. Figure 3A shows

the raw spectrum, and Figure 3B shows the average spectrum. As

seen in Figure 3, the spectral reflectance of the different pesticide

residues is different, but the trends are similar. Four main

absorption peaks (420 nm, 710 nm, 850 nm, 960 nm) can be

seen in Figure 3. Absorption peaks near 420 and 710 nm may be

associated with carotenoid and chlorophyll absorption bands

(Shao et al., 2020). Smaller absorption peaks are present near

850 nm, which may be three-order frequency doubling

absorption characteristics of the C-H group (Sun et al., 2017;

Hu et al., 2019). Absorption peak near 960 nm is associated with

the moisture content of the Hami melon epidermis and may be

second-order frequency doubling absorption characteristics of

the O-H group (Gao et al., 2022).

As can be seen in Figure 3B, malathion has the highest

average spectral reflectance in the entire band range. Taking

780 nm as the dividing point, the spectral reflectance of no

pesticide residues and beta-cypermethrin are relatively close

and have the lowest reflectance before 780 nm. After 780 nm,

the average spectral curves of no pesticide residues and the four

pesticide species are distinctly different. The average spectral

reflectance of acetamiprid and diflubenzuron is slightly close to

each other, near 970 nm. In addition, the differences between the

mean spectra of beta-cypermethrin and the other spectra are

most pronounced. The differences in the mean spectra provide a

basis for identifying different pesticide residues on the surface of

Hami melon.
TABLE 1 Computer parameters and the model environment resource
configuration.

Configuration Parameter

Operating system Windows 10

Development environment Pycharm2019.3.3, MATLAB 2019b

Language Python 3.7

Framework keras 2.0.0, scikit-learn 0.21.3, tensorflow 2.2.0

GPU NVIDIA GeForce RTX 3060

Accelerated environment CUDA 11.1, CUDNN 11.1

CPU AMD Ryzen 7 5800 8-Core Processor
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3.1.2 Spectral features in the SWIR band range
The raw and average diffuse reflectance spectra of different

pesticide residues on the surface of Hami melon in the band range

of 1000-2500 nm are shown in Figure 4. Figure 4A shows the raw

diffuse reflectance spectrum, and Figure 4B shows the average

diffuse reflectance spectrum. As with the results in the SWIR

band range, the spectral reflectance of the different pesticide

residues differ, but the trends in the spectral profiles are similar.

Specifically, in the 1493-2038 nm range, there were relatively

significant spectral differences between samples with different types

of pesticide residues and those without pesticide residues. The

lowest reflectance was found in the 1490-1660 nm range for

Hami melon samples without pesticide residues. The spectral

reflectance of Hami melon samples sprayed with pesticides was

higher than that of samples without pesticide residues, with the

highest reflectance found for Hami melon samples sprayed with

malathion. There were six absorption peaks in this spectral range

(1020 nm, 1270 nm, 1550 nm, 1930 nm, 2430 nm, and 2470 nm).

These absorption peaks may be associated with the periodic

stretching vibrations of the C-H, O-H, and N-H bonds, which are

the most fundamental bonds of organic compounds (Li et al.,

2016a). 1020 nm is in the range of high absorbance and low

reflectance, which corresponds to the second supersonic tone of

the C-H stretching vibration (He et al., 2021). The band near 1270

nm may be associated with a second supersonic tone for C-H

stretching in carbohydrates (Dong and Guo, 2015). 1550 nm is

mainly associated with the chlorophyll absorption band of Hami
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melon and may also be related to the N-H first-order multiplication

frequency (Sun et al., 2016a). The absorption peak for water is

around 1930 nm, which is also the first overtone and combined

mode of O-H group stretching (Siedliska et al., 2018). Absorption

peaks at 2430 nm and around 2470 nm may be associated with the

frequency synthesis of C-H and O-H groups (Sun et al., 2016b).

However, these peaks and valleys cannot simply be used to

distinguish between specific components, as the reflectance values

at each band reflect complex compositional information. In

particular, the spectra of organic pesticides were highly

overlapping. In this study, the implied relationship between

spectra and pesticide residues was discussed through data analysis.
3.2 Comparison of information fusion and
single band detection effect

The 1D-CNN algorithm with attention mechanism was applied

to analyze the spectral data in this stage in three band ranges. The

results are shown in Table 3 below. The spectral data in each band

range were preprocessed with maximum-minimum normalization

and smooth denoising before modeling. Comparing the

identification results of the single-spectrum model and the fusion

of spectral information, it can be found that the combined analysis

using VNIR and SWIR was better. As can be seen from Table 3,

among the detection results in a single band range, the accuracy of

the single-spectrum model in VNIR achieved 84.50%, with the

precision of 84.69%, recall of 84.50%, and F1-score of 0.8433; the

accuracy of the single-spectrum model in SWIR achieved 89.00%,

with the precision of 89.02%, recall of 89.00%, F1-score of 0.8890.

The model built after data fusion had better performance on each

criterion, with the accuracy of 94.00%, precision of 94.06%, recall of

94.00%, and F1-score of 0.9396. The accuracy of information fusion

classification, which was poorly detected in a single band, was also

improved after using information fusion modeling. Among them,
A B

FIGURE 3

Raw spectrum and average reflection spectrum of VNIR. (A) Raw spectra; (B) Average reflectance spectra.
TABLE 2 An illustration of confusion matrix.

Real situation Predicted situation

Positive example Counter examples

Positive example TP FN

Counter examples FP TN
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malathion had the highest classification accuracy of 100.00%, which

was an improvement over the two single band ranges.

The two spectral ranges of VNIR (400-1000 nm) and SWIR

(1000-2500 nm) showed great potential and good results for

detecting different kinds of pesticide residues. The results of

SWIR spectroscopy were slightly better than those of VNIR

spectroscopy, with 4.50% higher accuracy, 4.33% higher precision,

4.50% higher recall, and 0.0457 higher F1-score in the SWIR band
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range than in the VNIR. Meanwhile, some scholars have also used

the SWIR band to detect pesticide residues in fruits and vegetables

and obtained good results (He et al., 2021).

Data layer fusion, as the most fundamental of fusion studies, is a

direct fusion process of the data obtained from the sensors and a

determination study based on the fused data. In this study, the

spectral information obtained from the VNIR hyperspectral

acquisition system (279 bands) and the spectral information
TABLE 3 Classification performance of pesticide residues by single band range and information fusion.

Band(nm) Class Accuracy(%) Precision(%) Recall(%) F1-score

400-1000

all 84.50 84.69 84.50 0.8433

none 70.00 84.85 70.00 0.7671

acetamiprid 92.50 78.72 92.50 0.8506

malathion 95.00 92.68 95.00 0.9383

difenoconazole 80.00 80.00 80.00 0.8000

beta-cypermethrin 85.00 87.18 85.00 0.8608

1000-2500

all 89.00 89.02 89.00 0.8890

none 75.00 83.33 75.00 0.7895

acetamiprid 95.00 95.00 95.00 0.9500

malathion 90.00 90.00 90.00 0.9000

difenoconazole 95.00 84.44 95.00 0.8941

beta-cypermethrin 90.00 92.31 90.00 0.9114

400-2500

all 94.00 94.06 94.00 0.9396

none 90.00 90.00 90.00 0.9000

acetamiprid 95.00 95.00 95.00 0.9500

malathion 100.00 95.24 100.00 0.9756

difenoconazole 97.50 92.86 97.50 0.9512

beta-cypermethrin 87.50 97.22 87.50 0.9211
A B

FIGURE 4

Raw spectrum and average reflection spectrum of SWIR. (A) Raw spectra; (B) Average reflectance spectra.
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obtained from the SWIR hyperspectral imaging system (233 bands)

were united from the data fusion level. The data layer fusion

completely preserved the spectral data information of the Hami

melon surface in two different bands. Although the required data

processing information was large, the convolution neural network

can solve this problem well. And the F1-score of the model after

information fusion was also improved, which showed that the

model was of high quality. The proposed model can make better

use of the different information from two spectral ranges to improve

the classification performance.
3.3 Comparative analysis of the proposed
1D-CNN and traditional 1D-CNN

CNN, a feedforward neural network, is a crucial network

structure in deep learning and has been successfully applied to

qualitative and quantitative spectral data analysis. In this study, a

custom 1D-CNN structure was proposed for classification to

explore the potential information among spectral variables and to

achieve the classification discrimination of different kinds of

pesticide residues on the surface of Hami melon. The

classification results of different pesticide residues using the

traditional LeNet network and the proposed multi-branch 1D-

CNN with attention mechanism are shown in Table 4.

Importing the spectral data into the model after information

fusion, the accuracy of LeNet for pesticide residue classification was

89.50%, precision reached 90.10%, the recall was 89.50%, and F1-

score was 0.8950. The proposed 1D-CNN model for pesticide

residue classification showed 4.50% higher accuracy, 3.96% higher

precision, 4.50% higher recall, and 0.0446 higher F1-score than

LeNet. Among them, the accuracy of malathion and beta-

cypermethrin improved the most by 7.50%. Difenoconazole had a

9.88% improvement in precision. The convergence curve and

confusion matrix of LeNet and the proposed 1D-CNN model are

shown in Figure 5. In Figures 5A, C, we can see that the loss curve of
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LeNet converges faster than that of the proposed 1D-CNN model,

and the loss value is lower. To further explore the detailed

classification performance of each level, Figures 5B, D show the

confusion matrix of the classification results of two classification

models, LeNet and the proposed 1D-CNN model, which were

established by using 200 different spectra of the test set. In the

confusion matrix, 0 in horizontal and vertical coordinates

represents none, 1 represents acetamiprid, 2 represents malathion,

3 represents difenoconazole, and 4 represents beta-cypermethrin.

As far as the overall recognition ability was concerned, the proposed

1D-CNN model misjudged only 12 samples, which was nine

samples less than LeNet. In the LeNet model, beta-cypermethrin

had the largest number of misjudged samples, with a misjudged rate

of 20.00%, which were misjudged as none and difenoconazole,

respectively, and the same number of misjudged types was four.

Difenoconazole had the least number of misjudgments, only one

misjudgment, and the misjudgment was beta-cypermethrin. In the

proposed 1D-CNN model, the misjudgment degree of beta-

cypermethrin was still the highest, with five samples misjudged

(misjudgment rate: 12.50%). However, compared with LeNet, the

misjudgment degree had decreased, which showed that the

proposed 1D-CNN model could indeed improve discrimination

accuracy. In addition, the discrimination of malathion was all

correct, and there was no misjudgment.
3.4 Comparative analysis of the proposed
1D-CNN and traditional machine learning

Machine learning has been widely used in data mining,

computer vision, natural language processing, and speech and

handwriting recognition for qualitative or quantitative analysis. In

this study, the spectral data after smooth denoising preprocessing

were screened for feature bands, and a conventional GA was used

for feature band screening. An appropriate feature selection method

is beneficial to obtain more robust and accurate performance.
TABLE 4 Classification performance of pesticide residues by LeNet and the proposed 1D-CNN model.

Model Class Accuracy(%) Precision(%) Recall(%) F1-score

LeNet

all 89.50 90.10 89.50 0.8950

none 87.50 83.33 87.50 0.8537

acetamiprid 90.00 94.74 90.00 0.9231

malathion 92.50 92.50 92.50 0.9250

difenoconazole 97.50 82.98 97.50 0.8966

beta-cypermethrin 80.00 96.97 80.00 0.8767

Proposed
1D-CNN

all 94.00 94.06 94.00 0.9396

none 90.00 90.00 90.00 0.9000

acetamiprid 95.00 95.00 95.00 0.9500

malathion 100.00 95.24 100.00 0.9756

difenoconazole 97.50 92.86 97.50 0.9512

beta-cypermethrin 87.50 97.22 87.50 0.9211
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Figure 6A shows the distribution of variables using the genetic

algorithm. The red vertical solid line under the average curve

reflects the extracted 179 effective bands. The number of spectral

variables was reduced from 512 to 179 by GA feature bands,

accounting for 34.96% of the entire 512 bands. The extracted

feature bands were input into a traditional machine learning

classification model for species identification.

The classification results of different pesticide residues using

traditional machine learning and the proposed 1D-CNN model are
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shown in Table 5. Since the spectral data were nonlinear information,

two commonly used nonlinear machine learning classification

models, RF and KNN, were selected for detection, and the

classification accuracies of both were higher than 80.00%. As

shown in Table 5, the accuracy of RF was 82.50%, the precision

was 82.70%, the recall was 82.50%, and the F1-score was 0.8251.

Among the single class classification accuracy, the highest

classification accuracy of malathion was 87.50%, and the lowest

classification accuracy of difenoconazole was 77.50%. The accuracy
A B

C D

FIGURE 5

Loss function curve and confusion matrix of two CNN models. (A) Loss function curve of LeNet model; (B) Confusion matrix of LeNet model
classification results; (C) Loss function curve of the proposed 1D-CNN model; (D) Confusion matrix of the proposed 1D-CNN model classification
results.
A B

FIGURE 6

Characteristic bands and classification model results. (A) Distribution map of feature variables. (B) Test set results of four classification models.
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of KNN was 85.50%, the precision was 85.67%, the recall was 85.50%,

and the F1-score was 0.8553. Among the single class classification

accuracy, the lowest classification accuracy of 77.50% was obtained

for difenoconazole. The F1-score of KNNwas 0.0302 higher than that

of RF, indicating that the classification ability of KNN for different

kinds of pesticide residues was better than that of RF.

Deep learning has the advantages of strong learning ability and

generalization ability. In this study, 1D-CNN with the multi-branch

structure was used to extract spectral depth features of different

levels and scales, which improved the ability of spectral data feature

expression after information fusion. In addition, the model can

extract spectral features by superimposing the convolution layer

and pool layer in CNN and did not need preprocessing, such as

feature band screening. The test set classification results of two

traditional machine learning classification models and two deep

learning models are shown in Figure 6B.

Meanwhile, it can be seen from Table 5 that the F1-score of the

proposed 1D-CNN model is 0.0843 higher than that of KNN, and

the F1-score represents the harmonic mean of the precision and

recall, indicating that the 1D-CNN model is more stable. Similar

conclusions were obtained by related researchers in detecting grape

hardness and PH value using VNIR, and deep learning had better

prediction results compared to traditional machine learning (Xu

et al., 2022a). In the field of pesticide residues, some scholars have

used Raman spectroscopy to classify pesticide residue types and

obtained better results using convolutional neural networks and

transfer learning (Hu et al., 2022).
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3.5 Model verification of the proposed
1D-CNN

In order to verify the accuracy of the proposed 1D-CNNmodel,

we re-collected hyperspectral images of another batch of

experimental samples. And 160 spectral data were extracted for

experimental verification. The validation results of the model are

shown in Table 6, in which the results of accuracy, precision, recall

and F1-score are 92.00%, 91.27%, 92.00% and 0.9157, respectively.

After calculation, the time complexity of the proposed model in this

study was 37.15 M measured by FLOPs. The spatial complexity was

measured by parameters of 0.39 M.
4 Discussion

HSI is a fast and non-destructive method to detect pesticide

residues. In this study, VNIR, SWIR, information fusion and

different classification models were used to identify the types of

pesticide residues on the surface of Hami melon.

When VNIR and SWIR were used alone to detect pesticide

residues on the surface of Hami melon, the accuracy of detection in

the SWIR band was higher than that in the VNIR range of spectra,

which may be due to the more pronounced peaks and valleys of the

spectral profile in this band or to the greater reflectivity of this band

for organic matter. Meanwhile, some scholars have also used the

SWIR band to detect pesticide residues in fruits and vegetables and
TABLE 5 Classification performance of traditional machine learning and proposed 1D-CNN model for pesticide residues.

Model Class Accuracy(%) Precision(%) Recall(%) F1-score

RF

all 82.50 82.70 82.50 0.8251

none 82.50 84.62 82.50 0.8354

acetamiprid 85.00 82.93 85.00 0.8395

malathion 87.50 79.55 87.50 0.8333

difenoconazole 77.50 77.50 77.50 0.7750

beta-cypermethrin 80.00 88.89 80.00 0.8421

KNN

all 85.50 85.67 85.50 0.8553

none 87.50 87.50 87.50 0.8750

acetamiprid 87.50 81.40 87.50 0.8434

malathion 87.50 85.37 87.50 0.8642

difenoconazole 77.50 79.49 77.50 0.7848

beta-cypermethrin 87.50 94.59 87.50 0.9091

Proposed
1D-CNN

all 94.00 94.06 94.00 0.9396

none 90.00 90.00 90.00 0.9000

acetamiprid 95.00 95.00 95.00 0.9500

malathion 100.00 95.24 100.00 0.9756

difenoconazole 97.50 92.86 97.50 0.9512

beta-cypermethrin 87.50 97.22 87.50 0.9211
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obtained good results (He et al., 2021). Compared with single-band

detection, information fusion had a better detection effect. The

information fusion data incorporated the differences and

complementary information in the two spectra, resulting in a

better differentiation than single spectral range detection. In

addition, the peaks and valleys reflected by chemical groups in

the two bands were different, reflecting different material

information, which may be the reason why the classification effect

was better after information fusion.

The extracted spectral data was preprocessed and then input

into the classification models. Compared with the classification

ability of LeNet, the classification ability of the proposed 1D-CNN

model has been improved to some extent. The classification ability

of the proposed 1D-CNNmodel has been improved to some extent.

This may be because LeNet belongs to a single-branch neural

network. Although it has some advantages for feature extraction

ability, it cannot fully explore the internal connection of spectral

data of different kinds of pesticide residues. And the single-branch

CNN network may still have problems, such as loss of spectral

feature information and disorder of structural information between

data in the presence of a large amount of spectral information data.

However, the 1D-CNN model proposed in this study was based on

a three-branch parallel structure, and this multi-branch network

structure can improve the performance and robustness of the

model. Some researchers obtained similar results, and Li et al.

(2022) also used a multi-branch architecture for fruit pedicel/calyx

and defect identification of dried Hami jujube and obtained good

detection results.

And three residual blocks of different scales were added to the

multi-branch structure of this model. The number of independent

paths was increased by using the residual structure to increase the

dimensionality of the network. The multi-scale convolutional kernel

was used to extract features to improve the nonlinear representation

of the model and enhance the model’s performance. Besides, the

increase in the number of layers in the network is usually associated

with overfitting, gradient disappearance, and gradient explosion

and consumes many resources. The residual structure used can

solve the performance degradation problem caused by increasing

the number of network layers. Zhang et al. (2019) also used a

hierarchical fusion of residual networks to classify hyperspectral

images and further improved the classification accuracy of

hyperspectral images by adding a residual architecture.

In addition, the attention mechanism was introduced in the

residual block to highlight important information in the spectral data
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rather than focusing on the full information of the spectral data. The

attention mechanism was calculated directly based on the input data,

which focused on the correlation between elements within the input

spectral data and achieved the focus on the spectral data by

highlighting the weights of important correlations. Peng et al.

(2022) used the MobileNet V2 model for grape pest identification

and added the Coordinate Attention (CA) mechanism to enhance the

information characterization ability of the model, and the accuracy of

identification on the grape pest dataset was 89.16%. Therefore,

including the attention mechanism module can effectively improve

the model’s efficiency and computational effectiveness.

Compared with the classification ability of traditional machine

learning, the classification accuracy of CNN was more accurate. The

reason for this may be that the spectral information of the two

bands was fused in the data layer, the hyperspectral data was large

and redundant, and the characteristic bands needed to be screened,

so the preprocessing was complicated. Moreover, traditional

machine learning is suitable for small sample learning and

training, and the generalization ability is not high, so it is difficult

to achieve the demand of classification accuracy using traditional

machine learning classification methods.

In this study, the detection of different pesticide residues on the

surface of Hami melon was realized by combining band

information fusion with the proposed multi-branch 1D-CNN

model with the attention mechanism. Subsequent research can try

other deep learning models for classification, to obtain better

results. This study provided convenience for the non-destructive

detection of pesticide residues on the surface of large thick-skinned

melons, thus promoting the development of food safety detection.
5 Conclusion

In this study, two hyperspectral imaging technologies with

different spectral ranges and information fusion methods were used

to successfully identify different types of pesticide residues on the

surface of Hami melon. The classification performance of traditional

machine learning and 1D-CNN for different kinds of pesticide

residues was compared. Considering that the two spectral regions

have complementary information, the spectral information of the two

bands was fused, and a qualitative discrimination model of pesticide

residues on the surface of Hami melon was developed. The results

showed that the detection results of SWIR spectra were better than

those of VNIR spectra. However, the fused information was better
TABLE 6 Model verification results of the proposed 1D-CNN model.

Model Class Accuracy(%) Precision(%) Recall(%) F1-score

Proposed
1D-CNN

all 92.00 91.27 92.00 0.9157

none 90.00 85.71 90.00 0.8780

acetamiprid 92.50 94.87 92.50 0.9367

malathion 95.00 97.44 95.00 0.9620

difenoconazole 95.00 88.37 95.00 0.9157

beta-cypermethrin 87.50 89.74 87.50 0.8861
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than the single band range detecting different pesticide residues. In

this study, a multi-branch 1D-CNN model with the attention

mechanism was proposed, which used a multi-branch structure to

improve the performance and robustness of the model. Three

different architectures of residual blocks were added to the multi-

branch structure to address the performance degradation caused by

increasing the number of layers in the network. The attention

mechanism was introduced in the residual blocks to highlight

important information in the spectral data. In addition, on the

spectral data of information fusion, the proposed 1D-CNN model

was tested and compared with the traditional machine learning

classification models KNN and RF that applied the GA feature

band screening method. The proposed 1D-CNN gave the best

classification results with the accuracy of 94.00%, precision of

94.06%, recall of 94.00%, and F1-score of 0.9396. Overall, this

study showed that HSI could be used as a non-destructive and

efficient method to detect pesticide residues on the surface of Hami

melon. The use of spectral information fusion and the 1D-CNN

model can effectively improve the classification accuracy for different

kinds of pesticide residues. In addition, this method can provide a

reference for detecting pesticide residues in other fruits and

vegetables. Furthermore, the types of pesticide residues on the

surface of Hami melon differed from Hami melon varieties.

Subsequent attempts will make to introduce other varieties of

Hami melon and multiple pesticide species and increase the

pesticide gradient settings to further validate the effectiveness of the

method. In addition, an attempt will be made to further exploit

the image information in the hyperspectral images to improve the

performance of the prediction model through the fusion of spectral

and image information. So as to realize non-destructive detection of

the quality and safety of Hami melon. The combination of micro-

hyperspectral and other techniques will also be explored to deeply

explore the physicochemical properties of the samples and combine

the fluorescence information of pesticides to more completely

represent the effects of pesticide residues on Hami melon.
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