
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Jian Lian,
Shandong Management University, China

REVIEWED BY

Weiyang Chen,
Qufu Normal University, China
Bin Yang,
Huaiyin Normal University, China

*CORRESPONDENCE

Weikuan Jia

jwk_1982@163.com

Xinting Ge

xintingge@163.com

RECEIVED 16 March 2023
ACCEPTED 05 April 2023

PUBLISHED 08 May 2023

CITATION

Jia W, Xu Y, Lu Y, Yin X, Pan N, Jiang R and
Ge X (2023) An accurate green fruits
detection method based on optimized
YOLOX-m.
Front. Plant Sci. 14:1187734.
doi: 10.3389/fpls.2023.1187734

COPYRIGHT

© 2023 Jia, Xu, Lu, Yin, Pan, Jiang and Ge.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 May 2023

DOI 10.3389/fpls.2023.1187734
An accurate green fruits
detection method based on
optimized YOLOX-m

Weikuan Jia1,2*, Ying Xu1, Yuqi Lu1, Xiang Yin3, Ningning Pan1,
Ru Jiang1 and Xinting Ge1,4*

1School of Information Science and Engineering, Shandong Normal University, Jinan, China,
2School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China, 3School of
Agricultural Engineering and Food Science, Shandong University of Technology, Zibo,
Shandong, China, 4School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
Fruit detection and recognition has an important impact on fruit and vegetable

harvesting, yield prediction and growth information monitoring in the automation

process of modern agriculture, and the actual complex environment of orchards

poses some challenges for accurate fruit detection. In order to achieve accurate

detection of green fruits in complex orchard environments, this paper proposes an

accurate object detection method for green fruits based on optimized YOLOX_m.

First, the model extracts features from the input image using the CSPDarkNet

backbone network to obtain three effective feature layers at different scales. Then,

these effective feature layers are fed into the feature fusion pyramid network for

enhanced feature extraction, which combines feature information from different

scales, and in this process, the Atrous spatial pyramid pooling (ASPP) module is used

to increase the receptive field andenhance thenetwork’s ability to obtainmulti-scale

contextual information. Finally, the fused features are fed into the head prediction

network for classification prediction and regression prediction. In addition, Varifocal

loss is used tomitigate the negative impact of unbalanced distribution of positive and

negative samples to obtain higher precision. The experimental results show that the

model in this paper has improved on both apple and persimmon datasets, with the

average precision (AP) reaching 64.3% and 74.7%, respectively. Comparedwith other

models commonly used for detection, themodel approach in this study has a higher

average precision and has improved in other performance metrics, which can

provide a reference for the detection of other fruits and vegetables.

KEYWORDS

green fruits, YOLOX_m, Atrous spatial pyramid pooling, varifocal loss, object
detection (OD)
1 Introduction

In the world, the annual consumption of fruits in all countries is huge and has been

showing an increasing trend, so the production and planting area have been expanding in

recent years, which requires a lot of human resources. In order to reduce labor costs, the

production and management of modern agriculture is gradually developing in the direction
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of automation. In recent years, computer vision technology is

gradually being applied to modern agriculture because of its role

in vision systems for agricultural automation equipment, such as

pest and disease identification and detection (He et al., 2013;

Fuentes et al., 2017; Johnson et al., 2021), automated harvesting

of fruits and vegetables (Jia et al., 2020; Wang et al., 2022; Tang et al.,

2023), crop growth information monitoring and yield estimation

(Apolo-Apolo et al., 2020; Li et al., 2020), and so on. The precision

of the vision system detection determines the efficiency of the

automated equipment, and the complexity of the modern orchard

environment makes its ability to accurately detect the target fruit

dependent on a variety of factors, such as the angle of light, weather

conditions, and the overlap of shading between fruits, etc. In

addition, the color of most immature fruits is green, so the

research on the detection of green fruits is important for the

subsequent operation of fruits, such as yield estimation and fruit

harvesting, etc., but the similar color of immature green fruits and

leaves will cause the boundary to be more difficult to distinguish,

which will also have an impact on the precise detection of fruits.

These problems have attracted the attention of many domestic and

international scholars, who have carried out some relevant research

and achieved some results.

Traditional machine learning plays an important role in the

field of computer vision, and many results have been achieved in

machine learning detection research in agricultural fruit detection.

Linker (Linker et al., 2012) proposed a green apple recognition

model based on fruit characterization information with a correct

detection rate close to 95%. Wu (Wu et al., 2020) proposed a fruit

point cloud segmentation method combining color and 3D

geometric features, where local descriptors were used to obtain

candidate regions and global descriptors were used to obtain the

final segmentation results. Wang (Wang et al., 2021) proposed a

new kernel density clustering (KDC) to better realize the accurate

identification of green apples. Tian (Tian Y. et al., 2019) proposed a

fruit localization algorithm based on image depth information,

which fits the detection region by introducing a segmentation

algorithm to locate the center and radius of the apple circle,

respectively, through the gradient information obtained from the

depth apple image and the corresponding RGB spatial information.

Moallem (Moallem et al., 2017) used the multilayer perceptron

(MLP) and k-nearest neighbors (KNN) to classify the apples with

92.5% and 89.2% recognition rates for the extracted features,

respectively. Traditional machine learning for agricultural fruit

detection is relatively well established, but the limitations of

machine learning also limit the speed and precision of

object detection.

In recent years, with the rapid development of deep learning

and convolutional networks, they have eliminated some of the

limitations and complex operations of traditional machine

learning. Computer vision has also shifted its research focus to

deep learning and convolutional networks, and has been widely

used in many fields. At present, research on vision systems for

agricultural automation equipment has also focused on deep

learning models, and some results have been achieved. Sun (Sun

et al., 2022) proposed a balanced feature pyramid for small apple

detection, which achieved an average detection accuracy of 35.6%
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for small targets on the Pascal VOC benchmark with good

generalization performance. Wang (Wang and He, 2019)

proposed an apple object detection and recognition algorithm

based on R-FCN. The model uses ResNet-44 as the backbone

network, which improves the detection accuracy and simplifies

the network. Triki (Triki et al., 2021) proposed a Mask RCNN-

based leaf detection and pixel segmentation technique that can

segment leaves of different families, measure the length and width of

leaves, and reduce the recognition error. Mu (Mu et al., 2020)

performed detection of highly shaded unripe tomatoes based on

deep learning techniques, combined with regional convolutional

networks (R-CNN) and Resnet-101, for ripeness detection and yield

prediction of tomatoes. Jia (Jia et al., 2022b) proposed a Mask R-

CNN based segmentation model RS-Net, which achieves robust

segmentation of green apples to meet the accuracy and robustness

of vision systems in agronomic management. Kang (Kang and

Chen, 2020) obtained DASNet-v2 by improving DASNet, which

uses visual sensors to segment apple instances, so it can achieve

segmentation of fruits more robustly and efficiently.

Compared with traditional machine learning, the detection

accuracy of the above research has been greatly improved, but

due to the complex environment of real orchards, the existence of

difficult detection conditions such as leaves obscuring fruits,

overlapping fruits, and the similar color of fruits and branches,

the accuracy of the above methods for fruit detection still does not

meet the needs of modern automated agriculture, and the precision

needs to be further improved.

Therefore, in order to simulate the actual environment of the

orchard as much as possible, this paper collects images of green

apples and persimmons in various complex situations to make two

datasets and proposes an improved YOLOX-m network model to

improve the detection accuracy of the fruits. The model uses the

CSPDarknet backbone network to better extract image features. In

the multi-scale feature fusion stage, referring to the PAnet structure,

it will not only upsample the features to achieve feature fusion, but

the features are also downsampled to achieve feature fusion, and

ASPP (Atrous spatial pyramid pooling) is used to increase the

receptive field during fusion, so that each convolution output

contains a larger range of information, thereby improving network

performance and reducing the rate of missed and wrong detections.

In addition, Varifocal loss is used instead of BCE (binary cross-

entropy) loss to mitigate the negative effects of sample imbalance and

better optimize the model parameters to improve the detection

accuracy of green fruits in complex orchard environments.
2 Datasets production and
experimental setup

2.1 Datasets collection

The datasets used in this paper are the immature green

persimmon and green apple datasets. The persimmon images

constituting the dataset were collected from the back mountains

of Shandong Normal University (Changqing Lake Campus) and the

southern mountainous region of Jinan, using a Canon EOS 80D
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SLR camera with a CMOS image sensor, and the apple images were

collected from the apple production base in Longwang Mountain,

Fushan District, Yantai City, Shandong Province, using a Sony

Alpha 7 II camera. The image resolution was 6000 pixels × 4000

pixels, saved in.jpg format, and 24-bit color image. Figure 1 list

several collected images of apples and persimmons in different

complex situations.
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The actual environment of the orchard is more complex, and in

order to simulate the real situation as much as possible, the dataset

collects images of different complex situations. It is not easy to

discriminate overlapping fruit boundaries by shading, water drops

on fruits after rain can be a factor affecting detection, and different

lighting can also affect the final detection effect. Considering, a total

of 553 images of green persimmons and 1361 images of green
   

Daylighting        LED lighting at night     Distance-shot 

   

Leaves cover          Fruit overlap           After the rain 

 Green apple images

Green persimmon images

 

    

Frontlighting          Backlighting       Overlapping occlusion 

   

After the rain            Night               Daylighting 

A

B

FIGURE 1

Images of green fruit in different situations. (A) Green apple images (B) Green persimmon images.
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apples were finally collected under different situations, including

down-lighting, back-lighting, daytime and nighttime LED lighting,

overlapping fruits, and leaf shading. Among them, the persimmon

and apple datasets contained 2524 and 7137 fruits, respectively, and

Table 1 shows the number and proportion of fruits of different scale

sizes, where the ground truth box area less than 322 belongs to the

small-scale target fruits, the ground truth box area between 322 and 

962 belongs to the medium-scale target fruits, and the ground truth

box area greater than 962 belongs to the large-scale target fruits.
2.2 Datasets production

The collected apple and persimmon images were divided into

training set and test set in the ratio of 7:3. After the division, the apple

training set included953 images and the test set included408 images; the

persimmon training set included 388 images and the test set included

165 images. And in order to reduce the computational effort and the

subsequent experiment time, the image resolutionwas uniformly scaled

from 6000×4000 pixels to 600×400 pixels. The labeling software used is

LabelMe, and the edge contours of the fruit are labeled with labeling

points, so that the fruit can be separated from the background. The

labeling information of the image and the coordinates of the labeling

points are saved in the corresponding.json file, and the completed json

file is finally converted into a coco format dataset (Lin et al., 2014).
3 Optimized YOLOX-m network

The actual orchard environment is complex and variable, and

the color of green fruits is similar to the leaves, which further makes

the boundary between the background and the fruits blurred and

unclear, not easy to decide, causing the detection of fruits to be more

difficult and affecting the final accuracy of detection. In order to

improve the object detection accuracy of green fruits and improve

the vision system of agricultural automation equipment, this paper

proposes an improved YOLOX_m (Ge et al., 2021) model for

efficient detection of green fruits, and the specific detection

framework is shown in Figure 2.

The model in this paper uses CSPDarknet (Bochkovskiy et al.,

2020) as the backbone network for feature extraction of apple and
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persimmon images, and the input images will get three effective

feature layers C1, C2, and C3 through the backbone network. The

bottom feature layer has less semantic information, but accurate

target location information, and the higher-level features have rich

semantic information, but locate the target location more roughly, so

the feature map needs to go through a feature fusion pyramid (Lin

et al., 2017a) for feature fusion before classification and regression

prediction, combining feature information of different scales. As

shown in Figure 2, in the feature fusion stage, the model in this

paper introduces the Atrous Spatial Pooling Pyramid (ASPP) module

before the upsampling operation, which sets different dilation rates to

construct convolution kernels with different receptive fields, and

increases the receptive fields by parallelizing multiple Atrous

convolution layers with different dilation rates to obtain multi-scale

information of the target, so as to more effectively enhance feature

extraction and improve the detection accuracy of the target green

fruits. The three fused feature layers are input to the prediction head,

and the prediction head of the model is decoupled to perform

classification and regression to determine whether the target is a

green fruit or a background, and to accurately locate the target fruit.

In addition, although the original model reduces the number of

negative samples, the target fruit still only accounts for a small portion

of the entire input image, and the number of positive samples is still

far less than the number of negative samples. To further alleviate the

negative impact of sample imbalance, the loss function was replaced

from BCE (binary cross-entropy) loss to Varifocal loss (Zhang et al.,

2021) to make the model focus more on difficult to classify samples

and to focus training on positive samples, which can better optimize

the model parameters, improve detection accuracy and reduce the

false detection rate, thus improving the fruit picking and yield

prediction and other aspects of accuracy.
3.1 Backbone network CSPDarkNet

Taking into account the difficult detection problems such as the

similarity of green fruits to the background and the overlapping of

fruit occlusion, in order to extract the features of the images more

effectively, the model in this paper uses CSPDarkNet as the

backbone network, and the input immature green persimmon

and green apple images use the backbone network CSPDarkNet
TABLE 1 The divided results of datasets by area size of fruit.

Area Small Medium Large Fruit Total Image Total

Apple Dateset

Train 1701/34% 2007/41% 1235/25% 4943 953

Val 851/39% 816/37% 527/24% 2194 408

Total 2552/36% 2823/39% 1762/25% 7137 1361

Persimmon Dataset

Train 272/15% 1111/59% 482/26% 1865 388

Val 47/7% 415/63% 197/30% 659 165

Total 319/13% 1256/60% 679/27% 2524 553
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for feature extraction to obtain three effective feature layers of

different scales, using them for subsequent training and prediction.

The residual module in CSPDarkNet is based on the network

structure of residual network and CSPNet (Wang et al., 2020).

The jump link in the residual network can effectively mitigate the

gradient disappearance problem as the network depth increases,

while the use of CSP structure can enhance the learning ability of

the convolutional neural network and speed up the inference. First,

the input image is passed through the Fcous network to reduce the

number of parameters and improve the running speed of the model,

then, after a series of operations of convolutional regularization and

activation function for a channel expansion, and finally, three

effective feature layers of different scales are output in turn

through four residual modules, and the structure of CSPLayer in

the residual module is shown in Figure 3.

The green persimmon and apple images are continuously

feature extracted by four residual modules in the backbone

network CSPDarkNet. During this process, the width and height

of the feature maps are continuously halved and the number of
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channels is expanded to twice. When passing through the last three

residual modules, three effective feature layers at different scales are

output respectively. Although the semantic information is gradually

enriched during the feature extraction process, the image resolution

decreases and the boundary information is lost, so the information

contained in the three feature layers will be different. Therefore,

before inputting the feature map into the head for prediction, it is

necessary to fuse the features of different scales through the feature

pyramid, so as to better predict the fruit for classification regression.
3.2 Feature pyramid network

Originally, Atrous convolution andASPP (Atrous Spatial Pyramid

Pooling) (Sullivan and Lu, 2007) were proposed in the semantic

segmentation model DeepLabv2 (Chen et al., 2017). Compared with

ordinary convolution, atrous convolution has an additional parameter

dilation rate, which increases the receptive field of the convolution

kernel without causing information loss. Atrous convolution is an

important part of the ASPP module, which sets different dilation rates

to construct convolution kernels with different receptive fields, and

obtains multi-scale information of the target by parallelizing multiple

atrous convolution layers with different dilation rates. In this way, the

receptive field can be increased while ensuring that there is not much

loss of resolution. If the loss of resolution is too large, the information

of the fruit image boundary will be lost, which is not beneficial to the

detection of green fruits. The module specifically consists of a 1×1

convolution, three atrous convolution layers with different dilation

rates, and an atrous pooling layer in parallel, and the obtained results

are concatenated in the channel dimension, and then, the output is

obtained after another 1×1 convolution layer for channel number

reduction. The specific structure as shown in Figure 4.

When feature extraction is performed on apple and persimmon

images, the semantic information and location detail information of
FIGURE 2

Improve YOLOX-m network detection framework.
FIGURE 3

CSPLayer structure schematic diagram.
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the feature layers change continuously because of the need for

constant convolution and down sampling. The initial low-level

feature layer C1 is rich in spatial information and locates the

location more accurately, but contains less semantic information,

so the green fruits with similar color to the branches and leaves are

more difficult to be determined and easy to detect incorrectly. The

feature layer from C1 to C3, the semantic information becomes

richer, but the resolution gradually decreases and the detail

information such as boundary is lost, so the localization of the

target fruit is rougher, and the higher feature layer C3 can

determine the target species more accurately, but it is not

conducive to the localization of the target fruit. Therefore, to

improve the accuracy of final classification and localization, a

feature pyramid network is used to enhance feature extraction,

and the feature layers of different scales of green fruit images are

complemented with advantages to make the information of feature

layers more comprehensive. The feature fusion pyramid network

used in this model refers to the structure of PANet (Liu et al., 2018).

In the process of feature fusion, it will not only start from the high

level features, perform up-sampling operation and fuse with the low

level features, but also perform down-sampling operation on the

three feature layers after up-sampling and fusion from the low level,

and perform feature fusion again to get the final input head for

prediction of feature layers.

Before the upsampling operation, the feature layer needs to be

down-dimensioned by a 1×1 convolution to reduce the number of

channels. In order to increase the receptive field, capture multi-scale

information, and better extract features at different scales, the model

in this paper adds a 1×1 convolution layer, atrous convolution

layers with different dilation rates, an atrous pooling layer, etc. in

parallel before the dimensionality reduction operation, and

concatenates the results together. Therefore, Atrous Spatial

Pyramid Pooling (ASPP) is introduced to replace the 1×1

convolutional layer before upsampling to obtain more accurate

localization and classification information of the target green fruits.
3.3 Loss function

The construction of the loss function has an important

significance to the training of the model, and the main role is that
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during training, the model will use the loss values obtained during

forward propagation to update the training parameter weights

through backward propagation. After continuous iterations, the

loss difference between the prediction box and the ground truth box

is gradually reduced, and the loss function will gradually reach the

minimum value, so that the prediction box gradually overlaps close

to the ground truth box, thus achieving accurate localization of the

target green fruits. In this paper, the loss of the model during

training mainly contains classification loss, regression loss and

confidence loss. The IOU (intersection of union) loss is used for

the regression loss, and the Varifocal loss is used for the

classification and confidence loss, and the formula for the overall

loss function of the model is shown in equation (1).

Loss  =
1

Npos
(Lcls + lLreg + Lobj) (1)

Where Npos refers to the number of feature points that are

assigned as positive sample points, Lcls refers to the classification

loss, Lreg refers to the regression loss, and Lobj refers to the

confidence loss, l is the balance coefficient of the regression loss,

set to 5.0.

The regression loss refers to the IOU loss between the ground

truth box and the predicted box, and is calculated as shown in

equation (2).

IOU loss  =   − ln
Intersection(Bgt, Bpred)

Union(Bgt, Bpred)
(2)

where Intersection(Bgt ,Bpred) refers to the area where the real

frame intersects the prediction frame, and Union(Bgt,Bpred) refers to

the area where the real frame and the prediction frame are

combined and summed.

In the actual training phase of the model, the target green fruit

only accounts for a small portion of the whole input image, so the

number of negative samples is much larger than the number of

positive samples, and there will be an unbalanced distribution of

positive and negative samples, which will lead to a decrease in

training accuracy and the optimization direction of the model is not

as desired. In addition, the commonly used loss function BCE loss

does not distinguish between samples that are difficult to classify

and those that are easy to classify. When the negative samples that

are easy to classify are much more than the positive samples, the
FIGURE 4

Atrous spatial pyramid pooling structure.
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model will focus more on these negative samples and drown out the

impact of the positive samples that help training, causing a loss in

the final detection precision. In order to alleviate the above negative

effects and improve the detection accuracy of fruits, the

classification and confidence loss function of the model in this

paper adopts Varifocal loss, which is based on BCE loss, and the

specific formula of the loss function is shown in equation (3).

VFL(p, q) =
−q(qlog(p) + (1 − q)log(1 − p)     q > 0

−apg log(1 − p)                                     q = 0

(
(3)

In the formula, a, g are hyperparameters, a is the balance

parameter to adjust the weight of positive and negative samples, and

the tempering factor pg can reduce the influence of easy to classify

samples on the loss and make the model focus more on difficult to

classify samples, such as targets in the image that are obscured by leaves

or overlapped with other fruits. Varifocal loss is treated differently for

positive and negative samples compared to focal loss. For negative

samples, q=0, in this case, pg can be used to reduce the loss

contribution of negative samples, and for positive samples, which is

the case of q>0, the value of q is the IOU between the prediction box

and the ground truth box, and q is used to weight the positive samples,

so that when the positive sample has a higher IOU, its contribution to

the loss is also large, and it allows the model to focus its training on

high-quality positive samples, which can result in better detection

accuracy and better detection of the target green fruits.
4 Experiments

4.1 Experimental design and
operation platform

The server environment used for model training in this paper is

Ubuntu 18.04 OS, NVIDIA A30 graphics card and 11.1 CUDA
Frontiers in Plant Science 07
environment. The programming language used in the model is

python, and the Pytorch 1.8 (Paszke et al., 2019) deep learning

library is also used in this process, and the implementation is built

with the help of MMdetection (Chen et al., 2019) related modules.

Before formal training, the pre-training weights obtained using

the ImageNet dataset are imported as initialization parameters to

accelerate the detection speed and improve the robustness of the

model. In the formal training phase, the model parameters are

optimized and updated using the SGD optimizer. The learning rate,

momentum factor, and weight decay factor are set to 0.00125, 0.9,

and 0.0005, respectively, and 300 epochs are trained iteratively, and

the parameter results are saved once every 10 iterations. The

variation of the loss during training is shown in Figures 5A, B,

where the x-axis represents the number of iterations and the y-axis

indicates the value of the loss function, and different colors are used

to distinguish the various types of losses.
4.2 Assessment metrics

In order to comprehensively evaluate the performance of the

model, this paper uses a variety of assessment metrics to evaluate

the effect, among which the main consideration is the average

precision (AP) of detection. The precision (P) is the probability of

the samples being correctly predicted among all samples, calculated

as shown in equation (4), and the recall (R) is the probability of the

positive samples being correctly predicted among the prediction

results, calculated as shown in equation (5).

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)
A B

Loss curve of green apples Loss curve of green persimmon

FIGURE 5

Loss function change curve. (A) Loss curve of green apples. (B) Loss curve of green persimmon.
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Where TP, FP, and FN are the number of true positive samples,

the number of false positive samples, and the number of false

negative samples, respectively. Further it is possible to calculate

the AP (Average precision) under a specific IOU threshold, and the

calculation formula is shown in equation (6).

APIOU=i = 1=101or∈R max p(

r
∼
: r
∼
≥ r

r
∼
) (6)

where i is the value of the settable IOU threshold, whose value

can be set in a range greater than or equal to 0.5 less than 1, i ∈I

[0.5,0.55,0.6, ……, 0.95], with a total of 10 values, p(r) denotes the

accuracy rate associated with the recall, R ∈ [0, 0.01, 0.02, ……, 1]

with 101 values, and r denotes the value taken as the recall rate.

Continuing to average the 10, the final AP metric used can be

obtained, and the formula is shown in equation (7).

AP =
1
10oi∈I

APIOU=i (7)

In order to evaluate the performance of the model approach in

more detail, a number of other evaluation metrics are used. AR refers to

the average recall; APIOU=0:5 and APIOU=0:75 refer to the AP value when

the IOU threshold is over 0.5 and 0.75, respectively; APS, APM  and APL

refer to the average detection accuracy for small, medium and large scale

target fruits, respectively, where the ground truth box area less than 322

belongs to the small-scale target fruits, the ground truth box area

between 322 and 962 belongs to the medium-scale target fruits, and the

ground truth box area greater than 962 belongs to the large-scale target

fruits; In addition, Time refers to the speed of validation set detection to
Frontiers in Plant Science 08
evaluate an image in ms; Params refers to the total parameters to

measure the size of the model; and FLOPs refers to floating point

operations to measure the computational complexity of the model.
4.3 Results and analysis

4.3.1 Green fruit detection effect
In this paper, we use the improved yolox_m network model to

analyze the target fruit detection effect on the collected immature

green persimmon and green apple datasets. The pictures contained

in the datasets restore the complex environmental conditions of real

orchards as much as possible, considering different shooting

distances, different situations such as overlapping fruit shading,

after rain, at night and smooth backlighting, etc. The detection effect

under several situations is selected for analysis, and the specific

detection effect is shown in Figures 6A, B.

As can be seen from Figure 6, we can see that the sparse and

independent fruits will have a clearer and more complete outline, so

the detection accuracy of such target fruits is better, and the

detection effect of the images collected at night can also reach a

better level. In terms of distance, the detection effect of close-range

fruit is better than that of distant target fruit. For those densely-

distanced fruit or occluded and overlapping target fruit, the

detection is relatively difficult, and the accuracy is slightly

reduced, but there are almost no omissions and errors.

In Figures 7A, B, it can be seen that True Positive is 89% and

96% for apples and persimmons, respectively, which is an
   

   

   

   

   

   

   

Original images     Dataset annotated images   Detection effect images 

 Performance of green persimmon detection 

   

Original images    Dataset annotated images   Detection effect images 

 Performance of green apple detection 

A B

FIGURE 6

Green fruits detection effect images. (A) Performance of green apple detection (B) Performance of green persimmon detection.
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improvement of 2%, and False Negative is a decrease of 2%. Overall,

although the complex reality of orchards brings some negative

effects on detection, the model in this paper achieves a good level of

detection accuracy for target fruits, and some target fruits that were

not labeled at the time of dataset labeling can be detected, with a

decrease in the rate of omission and error.

In order to fully verify the performance of the model in this

paper, the model was tested on two datasets, apple and persimmon,

and the model detection effect basically reached the highest

accuracy after the last epoch. In order to validate the

improvement effect, the original network without improvement is

recorded as yolox_origin, the network with only the improved

feature pyramid is recorded as yolox_A, the network with only

the improved loss function is recorded as yolox_V, and the network

with all the improvements is recorded as yolox_after, and the results

of various evaluation indicators on the validation set are shown in

Table 2, and the change curve of mAP is shown in Figure 8.

From Table 2 and Figure 8, it can be found that the final

detection average precision of the method in this paper for green

apple and green persimmon images is 64.8% and 74.7%, and the
Frontiers in Plant Science 09
average recall rate is 72.6% and 81.5%, respectively. It can be seen

from the table that using the atrous spatial convolution pooling

pyramid (ASPP) and the loss function using the Varifocal loss can

improve the detection accuracy of the model and improve the

model performance on both datasets. In addition, APIOU=0:5 and A

PIOU=0:75 have also been greatly improved, and in both data sets, the

average accuracy of large, medium and small targets has been

improved to a certain extent. The detection accuracy on large

targets can also reach about 90%.

4.3.2 Comparison of model detection effects
In order to objectively analyze and compare the performance of

the model in this paper, we compare the model with several

common and representative object detection model algorithms.

The selected models are FCOS (Tian et al., 2019), Faster-RCNN

(Ren et al., 2015), YOLOv3 (Redmon and Farhadi, 2018), SSD (Liu

et al., 2016), FSAF (Zhu et al., 2019) and ATSS (Zhang et al., 2020),

where Faster-RCNN is a two-stage detection model based on

anchor frames, YOLOv3, SSD and ATSS are single-stage

detection models based on anchor frames, and FCOS as well as
A

B
Confusion matrix for green apple

Confusion matrix for green persimmon

FIGURE 7

Confusion matrix. (A) Confusion matrix for green apple. (B) Confusion matrix for green persimmon.
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FSAF belong to the detection model with anchor-free. The above

models will be trained and validated for evaluation on two datasets

of apples and persimmons, respectively, and the specific evaluation

index results obtained are shown in Table 3. In addition, a picture

with high detection difficulty is randomly selected in each of the two

datasets and detected with the above models, respectively, and the

detection effect images are shown in Figures 9A, B.

From the images of different model detection effects on the two

datasets, it can be seen that some target fruits in the images that are

not labeled because they are not easily labeled or forgotten at the

time of labeling can basically be detected at the time of model

detection, among which the detection effect of the model method in

this paper is better. For the fruits that are severely obscured by

leaves in the figure, several other models did not detect them, but

this model can still detect them, and it can be seen that the detection

accuracy of this model is higher compared with several other

detection models in the case of overlapping obscured fruits with

LED lighting at night.
Frontiers in Plant Science 10
From the comparison results of various evaluation indexes of

different models shown in Table 3, it can be seen that the average

detection accuracy of this model is better than several other

detection models on two datasets, the average accuracy is 2.6-7.2

percentage points higher than othermodels on the apple dataset, and

the average accuracy is 1.9-5 percentage points higher than other

models on the persimmon dataset. For APIOU=0:5 and AR, the results

of this model are also basically better than other models. In addition,

the model results are most similar to the model in this paper for

ATSS, and the average precision of the model in this paper is also

2.6% and 1.9% higher than ATSS on both datasets, and the average

recall is 3.3% and 1% higher, respectively. When evaluating on the

validation set, it is also necessary to consider the detection time for

recognizing an image. Through Table 3, the average precision and

average recall of FSAF and ATSS are closest to the results of the

models in this paper, but the detection time used by the models in

this paper to recognize an image is only about 45% of theirs. Overall,

the model in this paper has a better real-time performance with

higher average accuracy and average recall than the other models.

As can be seen from Tables 3, 4, the model in this paper

introduces some parameters, but the number of parameters is still

lower than the anchor-based models Faster-RCNN and YOLOv3.

The FLOPs and detection times of these two models are also higher

than those of the model in this paper, and the average precision and

average recall of the detection of the model in this paper on the

green apple and green persimmon datasets are also significantly

higher than those of these two models. In addition, compared with

other models, the FLOPs of this model are only about 50% of those

of the other models with some improvement in the average

precision and recall rate.
5 Conclusion

In order to improve the accuracy of fruit detection in modern

orchards, this paper proposes an efficient target detection and
FIGURE 8

mAP curve for each epoch.
TABLE 2 Image detection and evaluation results.

Network

Metric

AP APIOU=0.5 APIOU=0.75 APS APM APL AR

Apple Dataset %

yolox_origin 62.9 87.3 68.4 44.3 69.4 91.9 68.6

yolox_A 63.7 88 70 46.6 69.8 90.9 69.7

yolox_V 63.8 87.4 69.8 46.4 70.2 91.4 69.5

yolox_after 64.8 88.4 71.2 47.7 70.7 92.1 72.6

Persimmon Dataset %

yolox_origin 72.7 91.3 82.1 36.6 73.9 86.7 78.5

yolox_A 74 91.6 84.6 39.2 74.8 88.2 79.6

yolox_V 73.6 91.5 83.3 36.6 74.5 88.3 80.5

yolox_after 74.7 91.9 84 39 75.6 89.4 81.5
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FIGURE 9

Different model detection effect. (A) Green apple detection effect. (B) Green persimmon detection effect.
TABLE 3 Comparison results of detection of different models.

Network
Metric

AP/% APIOU=0.5/% AR/% Time/ms

Apple Dataset

FCOS 57.6 86.6 65.1 50.3

Faster-RCNN 59.2 85.9 65.1 54.5

YOLOv3 59.1 84.3 65.2 19.4

SSD 59.6 86.6 66.2 22.3

FSAF 61.7 87.6 68.5 54.2

ATSS 62.2 88.3 69.3 54.6

Ours 64.8 88.4 72.6 25.6

Persimmon Dataset

FCOS 69.7 92.3 76.1 50.1

Faster-RCNN 70.7 91.3 76.1 54.3

YOLOv3 70.5 87.9 76.2 18.8

SSD 71.2 91.6 76.4 22.2

FSAF 72.1 92.1 78.1 54

ATSS 72.8 91.6 79.2 54.7

Ours 74.7 92 80.2 26.7
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recognition method with improved yolox-m. The model uses two

datasets, unripe green persimmon and green apple, for training

detection. Considering the complex situation of real orchards, the

images collected in the dataset include leaf occlusion, fruit overlap

and after rain. In this paper, we use Atrous Spatial Pyramid Pooling

(ASPP) in the feature pyramid network to increase the receptive

field and combine the feature information at different scales to

improve the detection accuracy of the model, in addition, in order

to mitigate the negative impact of sample imbalance and make the

model focus more on positive samples to optimize the updated

model parameters. For the loss function, the original binary cross-

entropy (BCE) loss is replaced by varifocal loss to better optimize

the model, improve the model performance and increase

the precision.

The experimental results prove that the average precision,

average recall and real-time performance of the model in this

paper are better than those of several other models, and the

computational complexity is also lower, which can achieve the

detection and recognition of fruits accurately and in real time. It

meets the needs of agricultural automation equipment. The model

achieves a good level of detection on both datasets, however, it also

has certain limitations, as follows:

(1) The number of images contained in the dataset used is

relatively small due to realistic experimental conditions, and

therefore we will consider continuing to expand the dataset.

(2) In order to improve the accuracy of the model, some

parameters are introduced in this paper, and we will try to reduce

the parameters of the model and reduce the size of the model in the

future, while continuing to improve the accuracy.
Frontiers in Plant Science 12
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

WJ, YX, and XG conceived the idea for the paper; YX, YL, and NP

with contributions for data curation; YL and XY wrote the code,

designed and conducted the experiments; YX and RJ with

contributions for visualization and validation; WJ, YX, and XG with

contributions for writing- original draft preparation. All authors

contributed to the article and approved the submitted version.
Funding

This work is supported by the Natural Science Foundation of

Shandong Province in China (No.: ZR2020MF076); Young

Innovation Team Program" of Shandong Provincial University

(No.: 2022KJ250); Natural Science Foundation of Jiangsu

Province (No.: BK20170256); National Nature Science

Foundation of China (No.: 62072289); New Twentieth Items of

Universities in Jinan (2021GXRC049); Taishan Scholar Program of

Shandong Province of China.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
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