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Abstract: The degenerate versions of special polynomials and numbers, initiated by Carlitz, have
regained the attention of some mathematicians by replacing the usual exponential function in the
generating function of special polynomials with the degenerate exponential function. To study the
relations between degenerate special polynomials, A-umbral calculus, an analogue of umbral calculus,
is intensively applied to obtain related formulas for expressing one A-Sheffer polynomial in terms of
other A-Sheffer polynomials. In this paper, we study the connection between degenerate higher-order
Daehee polynomials and other degenerate type of special polynomials. We present explicit formulas
for representations of the polynomials using A-umbral calculus and confirm the presented formulas
between the degenerate higher-order Daehee polynomials and the degenerate Bernoulli polynomials,
for example. Additionally, we investigate the pattern of the root distribution of these polynomials.
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1. Introduction

Special polynomials play a significantly important role in the development of several branches of
mathematics, engineering, and physics by providing us with useful identities and properties. The
study of special polynomials provides many useful identities, their relations, and representations
associated with special numbers and polynomials. One of the powerful tools in this study is to
investigate their generating functions [1, 2] and connections [3—6] using the umbral calculus [7].
Furthermore, to better understand generating functions in special polynomials, the degenerate type of
special polynomials has been extensively studied in many areas such as probability theory, fuzzy


http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023155

3065

theory, connection problems, and other combinatorial theories in recent years by many
mathematicians [8—11]. Since the introduction of degenerate versions of special polynomials and
numbers by Carlitz [12], many researchers have been interested in the relationships between them. In
addition, the degenerate version of umbral calculus, called A-umbral calculus, plays a very powerful
role in studying the relationships between degenerate versions of special polynomials and numbers.
Recently, the Daehee polynomials and numbers were originally introduced as a new type of special
polynomials by Kim and Kim [13] and thereafter their related properties and relationships with other
polynomials have been extensively studied.

In this study, we derive the formulas expressing degenerate higher-order Daehee polynomials in
terms of the degenerate versions of other special polynomials by making use of A-umbral calculus.
These formulas provide the degenerate Daehee polynomials by taking » = 1 and the Daehee
polynomials by letting 4 — 0. We first review the A-analogue of umbral calculus: a class of A-linear
functionals on the polynomials, A-differential operators based on the family of A-linear functionals,
and also A-Sheffer sequences. See [14] and the references therein for more details on these contents.

The rest of this section briefly recalls some necessary notations and definitions that are needed
throughout this paper. Throughout this paper, we assume that A € R\{0} for simplicity.

The degenerate exponential function e)(7) is defined by

(o8] (o8]

n

exn) = (l+/lt)%:Z(x)M%, ext) = ei(z)zz"(l)n,ﬂ%, (see [10,13,15,16]),  (L.1)

n=0 ’ n=0

where (x),, 1s a A-analogue of the falling factorial sequence which is given by
Dpr=x(x=A) - (x—(m—-—DA) forn>1and (x)o, =1, (see[14,17]). (1.2)

Also, the degenerate logarithm function is given by log (¢) := %(t‘ — 1), which is the compositional
inverse of e;(1), i.e.,

log, (e,(1)) = e, (log,(1)) = .

In this study, we consider the degenerate higher-order Daehee polynomials Dfl”)d(x) which are given
by the generating function to be

(logi(l +1)

[

) (1+0) = ZDXQ@)%, reN, (see[10,15,16]). (1.3)

4 n=0

Especially, we call D, ,(x) := Dfi;(x) the degenerate Daehee polynomials when r = 1 and D, :=
D, 2(0) the degenerate Daehee numbers when x = 0.
The degenerate Stirling numbers of the first kind S, 4(n,m) and the second kind S, ,(n,m) are

respectively given by

1 = n
— (log,(1+1)" = ZSM(n,m)%, (m=>0), (see[9,18]) (1.4)
and "
%(ex(f) - = Z So.(n, m)t—', (m=>0), (see[9,18)). (1.5
m! — n!

Electronic Research Archive Volume 31, Issue 6, 3064-3085.



3066

Note that the falling factorial sequence (7), is given by

0, - {t(t —D(=2)---(t—(n—-1)) forn>1, (see [19])

(1) =1 when n = 0,

which provides the relation with the A-analogue of the falling factorial sequence such as
(Ona = ) S2alt,m)D), (12 0).
m=0

The main contribution of this paper is to provide various representations of the degenerate
higher-order Daehee polynomials and numbers using A-umbral calculus in terms of other well-known
special polynomials and numbers. In more detail, we derive formulas for the n-th order of degenerate
Daehee polynomials with the degenerate falling factorial polynomials, the degenerate type 2
Bernoulli polynomials, the degenerate Bernoulli polynomials, the degenerate Euler polynomials, the
degenerate Mittag-Leffer polynomials, the degenerate Bell polynomials, and the degenerate
Frobenius-Euler polynomials (see Theorems 2.1-2.7) as well as their inversion formulas. Therefore,
we see that this technique enables us to represent various well-known polynomials in terms of
degenerate higher-order Daehee polynomials and vice versa as a classical connection problem. In
addition, to confirm the formulas, we present computational results between the degenerate
higher-order Daehee polynomials and the degenerate Bernoulli polynomials for fixed variables.
Moreover, we investigate the pattern of the root distribution of the polynomials.

2. Representations of degenerate higher-order Daehee polynomials

Now, we provide brief review of A-umbral calculus: Let P be the algebra of polynomials in ¢ over
C,i.e.,

(o8]

P=C[t] = {Z a,t"

n=0

a, € C with a,, = 0 for all but finite number of n} .

and let ¥ be the algebra of formal power series in ¢ over the field C of complex numbers

& n

?:{f(t):Zan% aneC}.

n=0

Then, the A-linear functional (f(¢)|-), on P for f(¢) = 3", an;—n! € ¥ is given by

SOIXn00 = an, (n20), (see[14]), 2.1)

and it satisfies
(1(X)pada = n'0us,  (see [14]), (2.2)

where 6, 1s the Kronecker delta.

Note that the order of the formal power series for a nontrivial f(z), o(f(¢)), is represented by the
smallest integer k for which a; does not vanish. Especially, we call f(¢) a delta series when o(f(¢)) = 1,
and also we say f(¢) an invertible series when o(f(¢)) = 0, (see [1,7, 14] for details).
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For a non-negative integer order k, the A-differential operator (), on P is defined by

(mxnﬂ—{”“”“ Ok e [14,20)). 2.3)
0, if k > n,

In general, for (1) = Y77, ak% € ¥, the A-differential operator (f(7)), is satisfied with

n

(f@)(Ona = Z (Z)ak(x)n—k,/l- 2.4)

k=0

Or equivalently, one can express (f(#)), as
oo a )
(F0), = kz(; IR

For a delta series f(¢) and an invertible series g(7), i.e., o(f(¢)) = 1 and o(g(¢)) = 0, there exists a
unique sequence p, ,(x) of polynomials deg(p,..(x)) = n satisfying the orthogonality condition

(s(F@))*

Here, p, ,(x) is called the A-Sheffer sequence for (g(z), f(#)) denoted by p, .(x) ~ (g(?), f(1)),.
We recall that p, 1(x) ~ (g(?), f(?)), if and only if

Pua(x)) = n6us,  (nk > 0). 2.5)

(ﬂ»AﬂD zhmu) (see [7,20]). (2.6)

Here f(t) represents the compositional inverse of f(), i.e., f ( f(t)) = f(f() =t
For given a pair of A-Sheffer sequences p, ,(x) ~ (g(1), f(?)), and g, 1(x) ~ (h(?), £(?)) ,, we have the
relation:

Pna(x) = Z,un,ka,/l(x)» 2.7
k=0

where (1, is obtained by

(eFan)

1 <h(f(t))
T g (f)

Likewise, if g, 1(x) is expressed in terms of p, ,(x) as

(x)n,/l> .

A

() = Y Vapra(x), 2.8)

then v, can be obtained by

(r@ay)

(x)n,/l> .

A
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It is easily shown that for f(¢), g(t) € ¥ and p(x) € P,

(fOgDIp(x)a = DI (f (D) p(x))a = (F DI (1) P(X))as  (see [14]).

We also note that from (x),, ~ (1,1),, any A-Sheffer sequence p, .(x) ~ (g(?), f(#)), is represented
by

(X)n /l> (X)k.2- (2.9)

P

o1
Pua(®) = Z < Gy o

Now, we want to present representations of the degenerate higher-order Daehee polynomials D (r) 20
by using the algebraic properties of A- Sheffer sequences.

From (1.3), we have that ;> OD(r) = (wy e’ (log,(1 + 1)), so that we consider f(1) =
ety =1, f(t) = log,(1 +¢), and g(¢) = e‘(’) 1 in the view of (2.6) to obtain
; ei)—1Y
Dy)\(x) ~ (( — ),em—l). (2.10)
bl

If we let p,(x) = X/, ,ugD%(x), then, by using (2.5) we have

-1\ - — 1Y
([“9=) st = 0| puac) = el (2O ean - 14| Do)
! =0 t A
= Z wel!S s
=0
:k!/“l/w
which implies
1 - 1Y
M = ] <(€A(t)t ) (ea(®) — 1 Pn,/l(x)>/1-

Thus, for p, ,(x) € P we have

n 1 _ 1 r
Dna(x) = Z 0 <(€A(t)t ) (ea(®) — 1)F
=0 <

Then, the formula between D(r) 1(x) and (x),,; is obtained.

pn,ﬁ(x)> D\ (x).
A

Theorem 2.1. Forn € NU {0} and r € N, we have

DY) =Y (Z ( 5) L6, DY “J (X
k=0 \'t=k
Reversely, we have the inversion formula given by

n\(r r— (.])n+r €,A r
(xm—Z[ZZ( )( )( 17850t k>ﬁ] DY),

k=0 \t=k j=0
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Proof. Let D\(x) = iy tax(x)i1. Then, by (1.4), (2.3), and (2.9), we can obtain

Unk :% <(M) (log,(1 + f))k (x)n,/l>
t A
«3@912)( 0%ﬂ1+m)(ﬁm>
t A A

:%‘ Zsu(f k)<(10g4(1 + t))
=k

B log,(1 +1)
) PR (e [

n I’l .
= ()&Aﬁ@d&ﬁ
=k

UxuMQ

A

which shows the first formula.
For the inversion formula, we first note that

(eﬂ(t)t— 1) Z’:( )( 1y~ ]Z(J)"”

e

which implies
r r—iy s (n-0)!
(x)nl’,/l> = ) ( )( D ](.])n+r7[,/lm
Jj=0 (2.11)

. 1
(j(UHUM+m

\

n—C€0+r),

J=
Now, let (x),.1 = Yoo vn,kD(r/l(x) Then, from (1.5), (2.7), and (2.11), v, satisfies

vM——<t*” ﬂ (ea(r) — D
A

et —1
:«At )(E@w_mhmmk
N (n et —1 "
S, (f,k)<( ) (X)n—e, >
gk(g) 2.1 P 0,1 .

n\ <« (r s (Dn+r—t.2
()% hevseng iz

J=0

(x)n,/l>

s |l

(=

which shows the second result.

Next, we consider the degenerate Bernoulli polynomials S, ,(x), which is defined by the generating
function to be

- o
el(t) — 16/1(1‘) = Z,Bn,/l(x)ﬁ, (see [21]).

Then, the connection formulas between D(r) 1(x) and B, 1(x) are as follows.
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Theorem 2.2. For n € N U {0}, we have

(k+r—1),
=0 (I’l +7r— 1)r—l

DY (x) = Sian+r—1,k+r—1)B,forreN.

As the inversion formula, we have

S r_l (_l)r_l_j(j)n—t’+r—l,/l r
ﬁn,ﬂ(x)—Z[ZZ( )( ; ) et Sz,ﬁ(&k))D,((jl(X)forr> L

=k j=0
and

Bra(x) = Z So.(n, k)Dy (x) for r = 1.
k=0

Proof. First, note that S, 1(x) is the A-Sheffer sequence for
e(n—1
Bra(x) ~ ( - ,t) :
4 2

Let us consider D(r) 1) = Z UniBra(x). By (1.4), (2.9), (2.10) and (2.12), we obtain

1 o

ok =75 & (log,(1 + 1)) [
k! ( )
10g1(1+t)

1
=27 {7 (ogy (1 + 1) ),

k ! = - +r—
A (0 ot 0 o),
_ktr=Dm

= S +r—1,k+r-1),
(n+r-1)_ Laln+r ’ )

which implies the first formula.
To find the inversion formula, we first note that from (1.1) for r > 1

r—1
(e”“) - 1) (’" )( 1y~ e
Jj=0
r-1 r— m+] —-r
( )( 1y on)M
Jj=0 J
Thus, by (2.2) and (2.13)
exn) -1\ ST \V (n—10)!
<( p ) (-x)n—f,/l>/l = < ( j )(—1) J(])n—f+r—1,/l n—C+r—1)!
r—1
(B
S ifr=1.

(2.12)

(2.13)

(2.14)
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Now, if we consider 8, 1(x) = 3 v,xD(x), then by (1.5), (2.7), and (2.14), v, satisfies
k=0 ’

e(t)—lr
1 (49) )
——< L exn-1)

t

"\ (n e t)—1\""
Sl

n r—1 C Dtoria )
_JZ()saa k) z R e R (P §
S2.a(n, k) ifr=1,

(x)n,/l>

A

(x)n—t’,/l>

which provides the formula.

Next, we consider the degenerate type 2 Bernoulli polynomials b, ;(x), which are defined by the
generating functions to be

t

o0 tn
— (1) = b, —, see [22]).
PEpETAY ZO ). (see [22])
Note that b, ,(x) satisfies

bn,/l(x) ~

(M,t) ) (2.15)
4 2

Then, we can have the following relation between Df{;(x) and b, (x).

Theorem 2.3. Forn e NU {0} and r € N, we have

n n n - n—m -
> (m)s La(m, k) [D;_,;L + 3 (=D = m) D! _,j}_m] ba  forr> 1.
t=0

Dilrzl(x) — ) k=0 m=k

S1an k) + Z ( )Su(m, (=1 (n = m)y_p forr=1.
m=k

n
m
For the inversion formula, we have

IS (e E m\(r-1\(n+r -1 (=1 (ma
=35 (S 8 B e G

k=0 =k j=0 m

=0
1
X Enertom (E)) D) for r > 1
and

1 < g 1
bua(x) = 5 ( (:1)5 2.4(m, k)gnfm,/l (5)] Dy a(x) forr = 1.
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Proof. Let us consider D,(x) = Yo nibia(x). By (1.4), (2.9), (2.10), and (2.15), we get

1+r- -
1 og (1+1
o =37 Jﬁglﬂbaﬂ+0Y@M»
' (log/l(1+t)) A
:<(?:?Mb&f+”)%a%ﬁvwﬂ”(@m>
1 ' 4 (2.16)
2\/(1 1 1
_ < (: 1)( ogﬂ(t +r)) L (tog, 1+ ) (x)m>
' 2
n r—1 00
::ZE](”)Slﬁ(nuk><(5¥343—if3) (14-221(—rfJ (xxﬁmﬁ> :
m=k m t =0 2 1
From (2.3), it is noted that
(1+}§oﬁf)cwwmﬂ:cmwmﬂ+jgc—nﬁn—nﬂxwmm4J. (2.17)
£=0 2 =0

By applying the note (2.17) in (2.16), we have

n n - n—m .
> (m)S La(m, k) [D; o D (=D = m),D _,}1)_“] forr > 1,
— ) m=k =0
Mnk = n n
S 1,/1(7’1, k) + Z ( )S 1’,1(171, k)(—l)n_m(n - m)n—m forr = 1.
m=k m

To find the inversion formula, let us consider b, (x) = X2, vn,kD,(:;(x). From (1.5), (2.7), and

(2.15), v, satisfies
(-x)n,/l>

e (t)-1 r
1
Vak :E< ( ! ) (log,(t + 1))k

ex(n—e' (1

: 1
= (n e (t e ) =1\
=5 (s aate iy | 2 (e (Ot (2.18)
4 e, +1 t
=k h
1
1 & (n 2e: (1) ety —1\"
=3 (5)52,1(5, k)< T 4 — ( ! . (On-t2) -
=k e () +e,* (D) A
Since ei(?_l = 02 Yi L e have that for 7 > 1
e ) —1\"" < (r-1)
i
— J
- (2.19)
Lo (r-1 PRI S I
=t' ( . )(—1) ! JZ (])m,/l_’-
= i o nm.:
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Then, (2.19) implies that for r > 1

21(1)  (eaty— 1\ Lafr=1 (S ) 1\ #
T (‘t ) =t' (J.)(—l) ”(Z(;)m%)[zam(i)ﬁ]

e;()+e,* (1) =0 m=0 k=0
< (r—1 ShN 1\ ¢
— .0(’]. )(—1)’-1 ’Z)Z;( )mmam(z)m! (2.20)
= P
r-1 r— ) o Mn 1\ gr1-r
(-1~ ( )(J'),Sm-, (—) —_—,

where &, ,(x) are the type 2 degenerate Euler polynomials defined by the following generating function

eyt = Z 8,,,1(x) (see [23]). (2.21)
e/l(t) + eﬂz(t)

Here we call &, := &,.,(0) the type 2 degenerate Euler numbers if x = 0. Thus, form=n—-€+r—1
in (2.20) forr > 1

< 2¢; (1) (em . 1)"‘

r—1 r— n—{+r—1 n—C+r—1
(x)n—m> ( )( 1y~ Z ( X )(J')k,z
A

eé () + e;%(t) ! =0 k=0
1 n!
Sntir- —_—
X o+ lk/l( )(n+r—1)'
(-1 T -1
=y ( . )(—1)"1" D ( )(j)m
— J — k
]—0 k=0
1 1
811 r—
% "”“()(n—mr—l),1

and
< 2¢2 (1)
HOR: 612(1?)

which provides the inversion formula with (2.18).

1
(X)n- m> = En-t (5) forr=1,

A

We consider the degenerate Euler polynomials & , that is defined by the generating function to be

2 . il m
(e/l(t) n l)eﬂ(t) = ;Sn,A(X)E, (see [12,21]),

which satisfies that

(2.22)

E,1(6) ~ (e,l(l‘) + 1,1‘) .
1

2

Then, the representation formula between Dﬁ: )A(x) and &, ,(x) holds true.
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Theorem 2.4. Forn € NU {0} and r € N, we have

DY) = = Z [Z S, k)(’;) (n-0DP, ., + 2Df[_>f,ﬁ)) Exa(x).
k=0 \ =k

As the inversion formula, we have

Eni0= Y [Z y 3 (”)(’)(” ’ r)Su(f D1 Uj’j) Ensr-t

k=0 \ (=k j=0 [=0

Dy a(x).

Proof. Let D (x) = ¥ ttnkEx.1. Then, By (1.4), (2.9), (2.10), and (2.22), we can obtain

1 (1+0)+1
Hnie =77\ 7 (og,(1 + )’ (x>n,ﬁ>
(log4(1+t)) 1
< +2 (log4(1+l‘)) (log,(1 + 1)) (X)M> (2.23)
2 t A
l — | 1
32 ( )Suw, 0 <<r +2) (M) <x>n_m>l ,
where
r n k+1
<;(—l°gﬂ“”)) > :<ZD§:;I, (- “> =D, (=0 (2.24)
t L \& TRk )
and
<Z D,i’; 7| - “> =D?, .. (2.25)
k=0 1

Therefore, combining (2.24) and (2.25) to (2.23), we have
1 (n ; ;
EED ( {))S Ltk ((n=0DY, | +2D7, ).
=k

To find the inversion formula, let &, ,(x) = X2, v,,,kD,(:;(x), where v, satisfies

e (-1
1
Yk :E<(MH) (eat) - 1) (x>m>

4 (2.26)

5 (n e () -1\ 2
2. (f)sz,z(f, k) <( ; ) o)+ 1 (X)n,/l>/l :

(e/l(t) - 1) —— (r)e/l(t)( 1)’” J

t j:O

We note that
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= Z (;)<—1>"f' i (j>m,ﬂ;7m!
= (r)( oy (Dt

m=0
and
ean) — 1 ' 2 _ ~ (r i = u T
( t ) et)y+1 ]ZO:(]‘)(_I) Jﬂ;(;( )(])l/lgm 1/1) T
Thus,
an=1)_ 2 gy S ) G
<( t ) e/l(t) +1 (x)n,/l>/1 - JZ:(;( )( 1) i ;}:( I )m8n+r_l’/l. (227)

Combining (2.27) to (2.26) gives

eIV (n)(r)(” . r)suw O T

=k j=0 =0

The degenerate Mittag-Leffer polynomials M, ,(x) are given by the generating function to be

efl(log/l(l-i_t)) ZMM(x)— (see [24]).

It is noted that

(2.28)

M A(x)~(1 e*(t)_l) .

A0+ 1
Then, we have the representation formulas between D(r)l(x) and M, (x).
Theorem 2.5. Forn e NU {0} and r € N, we have
n 1 n n\(n—m-—1 (_1)n—m—k
(r) (r)
D —m—-m)! | M,,.
a = kZ; [k! mZO ’“(m)(n —m— k) g (1= m) ) b

As the inversion formula, we have

Mn,/l(x) — Z [Z o K (/l)2m+k+r 1]D(r)( ),

k=0 \m=0

where K,(x|1) are the Korobov polynomials of the first kind given by the generating function

At

mﬂ +0" = ZK (xw— (see [25]).

In particular, when x = 0 K, (1) := K,(0|1) are called Korobov numbers of the first kind, that is,

[

t I
—— = K,(1)—.
log,(1 + 1) ; ( )n!
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Proof. Let DY(x) = Yo tniMi.a. Then, by (1.4), (2.9), (2.10), and (2.28), we can obtain

1 1 (1+r=1) »
ok =y (<1+z>—1 )’ T+r+1) |
log,(1+1) 1
(x)n,/l>
A

_l<(10g4(1+t))*( t )k
k! t 1+2
1 2o () |,

where
o\ o (=Difk+€-1
T n—-m = TAk+l tk+€ n-m
<(t + 2) * ’A>ﬂ <€:0 2k ( ¢ ) e p (2.29)
-1 n—m—k _ -1 '
_ DT nmm =)
2nm \n—m—k
Thus,
_1 NG n\(n —m— 1\(=1)""* |
Hnde = k_mz ( )(n—m—k) 2n-m (n = m)l.
To find the inversion formula, let M, ,(x) = >;2g Va, kD(r) (x), where
S (o
Yk = X)n,a
Tk ty\1—
log/l( ) 2
I <(W) (1+t—1+t)k . >
=7 X)n,A
k! Lt 1-1¢ ’
log, (1 ) 1
1<(f_’,) (2t)k()>
=7 X)n,A
k! Ly \1 —¢ ’
log, (1 ) 2
1 n 1 2l m+k+r—1
=7 ZO EKm(/l) <(:) (-x)n,/l> ,
m=| A
where
¢ m+k+r—1 co
<(1__t) (-x)n,/l> :2m+k+r—1 <Z t£+m+k+r—1 (x)n,/l>
Pl =0 Pl
:2m+k+r—]n!.
Thus,

n

1 n! m+k+r— 1
vk = 7 D K02

m—O
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Next, let us consider the degenerate Bell polynomials Bel, ,(x), which are defined by the generating
function to be

[Se] l‘n
i = Z:; Bel,a(x)—.  (see[26,27)).
Note that Bel, ,(x) are the A-Sheffer sequences of

Bel, ,(x) ~ (1,log,(1 +1)),, (2.30)

which satisfies that

Belya() = ) S2a(m,K)(x)ia,  (see [26]).
k=0

Then, we have the representation formulas between Dflr)ﬂ(x) and Bel, ,(x).

Theorem 2.6. For n € NU {0} and r € N, it holds:

OEDY (Z > (’;)S Lam, K)S A€, m)DfQM) Bely(x).

k=0 \m=k t=m

Also the inversion formula are established

Belyi(0 = Y [Z 3y (;)S 24, K)S 2,41, £) (_;)!r_j (Desroma

k=0 \m=k =0 j=0

DO

Proof. Let D\(x) = Y_o tniBelia(x). Then, by (1.4), (2.9), (2.10), and (2.30), we can obtain

1 1
Hdk =1 W(logﬂ(l +log, (1 + 1)))" (x)n,ﬂ>
log,(1+1) 2
1 [{log,(1+ 1)\
= <(%) (log,(1 + log,(1 + )" <x>,m>
’ A

1 k
((E log,(1 +log,(1 + t))) ) (x)m>
: 2 2

(x)n—é’,/l>
A

B <(logﬂ(l + t))r
t

n n 1 1 r
=) S1amb) ) (’;)Sl,xf, m)<(w)
m=k

{=m

n n n ,
=> . ( f)s LA(m, S 1 a6, mD, .

m=k {=m

r)

To find the inversion formula, let Bel, 1(x) = Y;_, vn,kD,(( (x), then v, satisfies

A
1 1V
Vak =77 <(eﬁ(t)t ) (eat) — 1) Beln,,l(x)>/l
N ) -1\ M| <
) mZ=k S2a0m: 10 <(7) m! ;0 S2.(n, 5)(3C)t’,/1>/l
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n n _ 1 r tm
= Z Soa(m, k) Z So.a(n,0) <(eﬂ(t)t ) %‘ (x)m> ,
m=k =0 : A

where
-1 l+m r
<(”(’) ) (x)“> :<Z (;)( - JZ o (X)m>
2 -0 R
r L 1
= ( )( l)r J(])€+r—m,/l_'-
i\ m!
Therefore, we have
n n r 1N
Yk = (r)SZ/l(m k)SZ/l(n 5)( ) (])€+r m,A-
m=k (=0 j=0

The degenerate Frobenius-Euler polynomials hffj(xlu) of order a are defined by the generating
function as

I—u \" | _oo @ "
( u) e/l(t)—ZhM(xlu)a, u(# 1) € C.

e ) — s

When x = 0, h(")( )= h(”)(Olu) are called the degenerate Frobenius-Euler numbers.
We note that h(“)(xlu) satisfy

ietotn ~ (4255 ) 231)
)

Then, we have the representation formulas between D%(x) and hffj (x|u) .

Theorem 2.7. For n € N U {0} and r € N, the representation holds:

D(%)‘Z[ZZ( )( ) m)fsm k)ij_)m_f,ﬂ]h(“)(xm)

k=0 \m=k ¢=0

As the inversion formula, we have

iy (xlu) = Z [Z ( " )(r+—k)!52,4(r +k+ €+ kh® (u)] D\ (x).
{=

n—k—{,A
-\ k+ k(€ +r1r+k)!
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(r)
Proof. Let D, (x) =

L+t—u \*
1 ( 1-u )

(log, (1 + 1))*

oo Hnih)(xlu). By (1.4), (2.9), (2.10), and (2.31), we have

Mn :E ﬁ (X)n,/1>
log,(1+1) 21
log,(1 +1) ro\ 1
<( 24 t ) (1 o ) (—' (log,(1 + r))") (x),,,ﬂ>
1 1
" (n log (1 +1) o\
= Z m S 1.a(m, k) <( 24 ) + T) (x)n—m,/l>
m=k A
=~ (n lo (1 +0\ a t o\
=3 (M5 am o (20D S0 (+=) | @nma
I\l —u
m=k (=0 7 1
= (n a\(n—m), [(log,(1 + t))r >
= S m,k X)n—-m—
;m 1.( )Z(;(f)(l o <( ; (x) mﬂ
5 (n S (@) (n —m), o
= S 1,/1(1’1’1, k) ( ) Dn_m_ H
Zm ;fﬂ—u)f
which implies the first formula.
Conversely, we assume that h;‘ﬁ(xlu) Dieo Ny ka A(x) Then, v, satisfies
1 eﬂ(t) 1
_2 Y
Vik i < o u ( A0 —1) (X)n,/1>
1-u P
(- e - 1)+ -
k!'\\e(t) —u t A A
n (r+k)! —u \"
= —_—S k+€,r+k n—k—
2\ + f)k!(f Trap o tkr b )<(€,1(t) - u) (Dt “>A
- n (r+k)! o
= 4+ [)mSQ,A(I’ +k+ f, r+ k)h;_)k_&ﬂ(l/t),
e ! !

which shows the second assertion.

3. Illustrations of formulas

3.1. Distribution of roots of the polynomials

In this subsection, we present the pattern of the zeros of the polynomials. The understanding of

patterns of zeros of degenerate polynomials

polynomials which can be obtained as limit of A approaches zero.

Electronic Research Archive

can provide useful information about the original
For example, the first three
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consecutive degenerate higher-order Daehee polynomials of degree r are given by

. r(A-1)
D(l’)ﬂ(x) =x+ 7

DY\ (x) =x" + (A= 1) = Dx + %r(ﬂ ~DBr(A-1)+A1-79),
DY (x) =x* + %(3;»(1 —1)-9)x* + %(8 +r(A=DBr(A-1)+A-11)x

+ ér(/l -Dr(A-1)=2)(r(1-1)+ 1= 3),

which approach to the higher-order Daehee polynomials of degree r as 1 — 0. We observe the patterns
of roots by the changing parameters A and r on the polynomials. In order to do this, we fix the degree
of the polynomials as n = 40, and compute the roots of Df{& 1(x) with fixed r = 3 and six different
parameters 4 = +1, £10, +£100 with the help of the Mathematica tool. The results are displayed in
Figure 1. Next, we increase the degree of the polynomials and investigate the distribution of the roots
of the polynomials.

(aA=1 (b) 1=10 (c) 4 =100
1.0 r r r r r r r r .
100 1000
L] L]
0.5 50, : 500! :
[ ]
- % =
X o = 0 ¢ o o o o e o o o o = 0
EN E £
50 ° -500 °
_0.5 3 L] [ ]
L] L]
=100 -1000
TS T s 20 25 30 3% o 2 4 6 8 10 1 250 200 150 100 -50 0
Re(x) Re(x) Re(x)
(d 1=-1 (e) A=-10 ) 41=-100
1.0 r r r r
100 1000
L] L]
0.5 50, : 500 :
-~ >y %
lE", 0.0 E 0 ¢ o o o o e o o o o E 0
=
L]
-50 o -500 °
-0.5 o °
L] L]
-100 -1000
-10 ; 1l0 1l5 ZIO 2l5 3l0 3IS 4IO 30 32 34 36 38 40 42 0 50 100 150 200 250 300
Re(x) Re(x) Re(x)

Figure 1. The computed roots of Dfo), 1(x) with variable A.

For further investigation, we computed the roots of the polynomials by increasing the degree n of
polynomials from 1 to 40 in Figure 2.
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(b) 1=10

Re(x)  _13s
—130

(f) 1=-100

Figure 2. The roots of ij(x) with variable A and different degree n = 1, 2, - - -, 40.

Finally, we investigated the distribution of the roots of Df{& 1(x) with a fixed 4 = 10 and three
different parameters r = 3, 4, 5 and the results were displayed in Figure 3.

(@) r=3 b)) r=4 c)r=5
100
. 100 . 100 .
L] L] :
50 o 50 H 50 H
E L] L] L] L] L] L] L] L] L] L] 8 E
E 0 g 0 ° ° g 0
o -
_50 o -50 H -50 H
L] [ ] L]
° ° -100 °
~100 -100
0 2 4 6 8 10 12 00 05 10 15 20 25 30 -6 -5 -4 -3 -2 -1 0
Re(x) Re(x) Re(x)

Figure 3. The roots of Dyo)’lo(x) when r = 3, 4, and 5.

3.2. Examples of formulas

In this subsection, we provide the explicit formulas presented in Theorem 2.2 that show the
representations of the degenerate higher-order Daehee polynomials in terms of the degenerate
Bernoulli polynomials and vice versa. To better understand, we present the graphs of DZ;(x) with
A=01landr=3forn=0,1,---,5and ofDE:)A(x) with A = 0.1 for various orders r = 1,2, ---, 51in
Figure 4.
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Next, we compute the combinatorial results of y, and v, ; presented in the proof of Theorem 2.2
to confirm the connection formulas presented. To do this, we compute Dﬁl’,;(x) and B, ,(x) for r = 3,
A=0.1,andn =0, 1, ---, 5 and expand them using the coefficients y,; and v, ;, which are computed
with two decimal place accuracy. The expressions presented confirm the results of Theorem 2.2.

(@ 1=01,r=3,n=0,1,---,5 by A=01,n=5r=1,2,---,5

Figure 4. Graph of degenerate higher-order Daehee polynomials Df[ l (x).

The degenerate higher-order Daehee polynomials Dﬁl' )A(x) withA=0.1,r=3forn=1,2,---,5 are
expressed in terms of 3, ,(x) as follows:
67 419 30083 3868143 68088951
DY (x) =45 — 2L 4 3 2 _
300 == T = 00 10000 ¢ T 400000
1749843 6312807
——————fo.(x),

27 819
=B5.(x) — 7,34,/1()6) + 69063,.(x) — Tﬂz,a(x) + —10000 Bra(x) = 100000

57, 179 , 34941 1749843
D) =x' =+ ot = St o
1413 8883 707427
=Ba.(x) — IB3.2(x) + 50 Bra(x) — 750 Bra(x) + 50000 Bo.a(x),

141 , 593 8883

D) =2 = 258 + 55~ To00

B34(3) = 2 Bra() + 2o B a(3) ~ S ()
D(ﬂ(x) =x’ - ?—gx + %

=Br.a(x) — %ﬁl,zl(x) + %ﬂo,z(x),
D =5

9
=L1a(x) — 1—0,30,/1()6)-

Conversely, the degenerate Bernoulli polynomials 3, ,(x) withA =0.1,r =3 forn=1,2,---,5 are
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represented in terms of DS)A(X):

T 2, 3 o0
4 20 25 50 400000

105 6579 13527 2898
N E)) i » 18 3) 3) 3) 3)
—Dﬁ()+ D() D() 1OOD() 625Dﬂ()3125Dﬂ()
12 41 2 6 2673
Baaln) =x' = 2 + 5o’ = pox = qonees:
017 459 5751
=D)(x) + DT (x) + — =Dy (x) + =Dy + =D (),
33 N 13 99
,33/1(x) =x — 2—0 2_Ox_ —4000,
1161
_D(3)( )-l- (3)( ) + 200 (3)( ) + (3)()6)
33
B2.(x) =x’— x+ m
177
:D(3) D(3) D(3)
(X )+ (0 + 200 (0,
Bi.a(x) x_29_0

=D (x )+ D“)(x).
4. Conclusions

The study of special polynomials provides useful tools in differential equations, fuzzy theory,
probability, orthogonal polynomials, and special functions and numbers. These researches are
conducted using various tools, including generating functions, p-adic analysis, combinatorial
methods, and umbral calculus. Recently, degenerate versions of special polynomials and numbers
have been investigated using A-analogues of these methods, and their arithmetical and combinatorial
properties and relations have been studied by several mathematicians. These degenerate versions of
special polynomials and numbers have been applied in differential equations and probability theories,
providing new applications. In this paper, we explore the connection problems between the
degenerate higher-order Daehee polynomials and other degenerate types of special polynomials. We
present explicit formulas for representations with the help of umbral calculus and vice versa. In
addition, we illustrate the results with some explicit examples. In order to better understanding the
polynomials, the distribution of roots are presented.
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