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Abstract: In the lightweight convolutional neural network model, the pointwise convolutional 
structure occupies most of the parameters and computation amount of the model. Therefore, improving 
the pointwise convolution structure is the best choice to optimize the lightweight model. Aiming at the 
problem that the pointwise convolution in MobileNetV1 and MobileNetV2 consumes too many 
computation resources, we designed the novel Ghost-PE and Ghost-PC blocks. First, in order to 
optimize the channel expanded pointwise convolution with the number of input channels less than the 
output, Ghost-PE makes full use of the feature maps generated by main convolution of the Ghost 
module, and adds global average pooling and depth convolution operation to enhance the information 
of feature maps generated through cheap convolution. Second, in order to optimize the channel 
compressed pointwise convolution with the number of input channels more than the output, Ghost-PC 
adjusts the Ghost-PE block to make full use of the features generated by cheap convolution to enhance 
the feature channel information. Finally, we optimized MobileNetV1 and MobileNetV2 models by 
Ghost-PC and Ghost-PE blocks, and then tested on Food-101, CIFAR and Mini-ImageNet datasets. 
Compared with other methods, the experimental results show that Ghost-PE and Ghost-PC still 
maintain a relatively high accuracy in the case of a small number of parameters. 
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1. Introduction 

Pointwise convolution is widely used in convolutional neural networks because the parameters 
required to process feature maps are far less than the conventional convolution [1–3]. However, with 
the development of research, it is found that pointwise convolution consumes too much computation 
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resources in lightweight CNN models. 
In recent researches, Jia et al. [4] proposed a brand new pointwise convolutional block, called 

“Improved Pointwise Convolution” (IPC) block. The IPC block weighs the size and performance of 
the model with two hyperparameters. Sachin et al. [5] designed the Efficient Channel Fusion (EFuse) 
block to realize the function of fusing channels information with pointwise convolution. EFuse first 
extracts global vector using global average pooling operation, and then using a fully connected layer 
to fuse global vectors. In parallel, the EFuse encodes spatial representation by depth convolution. Yu 
et al. [6] applied efficient shuffle block to HRNet (high-resolution network), introduced conditional 
channel weighting module to replace pointwise convolution in shuffle blocks. Yang et al. [7] proposed 
to prune the first pointwise convolution of the inverted residual unit in the MobileNetV2, and then 
migrate saved computations to the second pointwise convolution. Li et al. [8] used group-adaptive 
convolution to factorize pointwise convolution to reduce the connection between the input feature 
maps and filters. Liang et al. [9] designed four types of linear-phase pointwise convolution to reduce 
the computational complexities of conventional means. Thus, Joao et al. [10] ensured that, in order to 
reduce the number of parameters of pointwise convolution in EfficientNet [11], the pointwise 
convolution was changed to group convolution, and each branch of group convolution processed part 
of the input channel, and the feature maps of the middle layer was mixed. Schwarz et al. [12] 
proposed a scheme of grouped pointwise convolution to reduce the complexity of deep convolutional 
neural networks.  

Although there have been some methods to improve pointwise convolution, few of them are 
optimized from the perspective of channel number variation. But the effect of optimizing pointwise 
convolution depends largely on the change of channel number. At the same time of information fusion 
of channels, the pointwise convolution is also responsible for channel expansion and compression. The 
channel expansion means that the number of channels is more than the output, and the channel 
compression is the opposite.  

MobileNetV1 [13] and MobileNetV2 [14] contain the above two types of structures. Therefore, 
based on Ghost module [15], this paper carries out lightweight optimization on the pointwise 
convolution of MobileNetV1 and MobileNetV2, and the experiment results on Food-101 [16], CIFAR [17] 
and Mini-ImageNet [18] datasets show that the proposed method is feasible. 

Our main contributions can be summarized as follows: 
First of all, in order to optimize the number of input channels less than the number of output 

channels of the extension point convolution, we propose a Ghost-PE module suitable for optimizing 
the pointwise convolution structure on the basis of Ghost module. To make full use of the Ghost main 
convolution generated feature map, Ghost-PE module further use global average pooling and deep 
convolution operation for information extraction. 

Second, in the case of compression point convolution where the number of input channels is more 
than the number of output channels, each feature graph channel contains too much feature information. 
If directly use Ghost-PE to lightweight it, it is difficult to obtain all the information of fusion, which 
will have a great impact on the performance of the model. Therefore, we optimize the Ghost-PE 
module, put forward the Ghost-PC module. 

Finally, the Ghost-PE and Ghost-PC modules are applied to the MobileNetV1 and MobileNetV2 
models. The test results on the data sets Food-101, CIFAR and Mini-ImageNet show that our method 
shows better performance than other methods. 
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2. Methodology 

In this section, we first introduce the proposed Ghost-PE block to reduce parameters of channel 
expanded pointwise convolution. We then adjust the Ghost-PE block to improve channel compressed 
pointwise convolution, got Ghost-PC block. 

2.1. Channel expansion 

We improved the Ghost module to obtain the Ghost-PE block, which optimized the channel expanded 
pointwise convolution in MobileNetV1 and MobileNetV2. The Ghost module has plug-and-play 
characteristics, which can be directly used to replace pointwise convolution to reduce computation resources 
without considering the model performance damage. Therefore, we first just replace pointwise convolution 
in MobileNetV1 by the Ghost module, the result on Food-101 is shown in Table 1. The main convolution of 
the Ghost module is pointwise convolution operation, and the cheap convolution is 1 × 1 depth convolution. 
The number of feature maps generated by the above two operations is the same, and each is half of the original 
module output. 

Table 1. The results of MobileNetV1 on Food-101. 

Model Accuracy (%) Parameters (MB) FLOPs (MB) 
MobileNetV1 82.22 3.3 568 
MobileNetV1+Ghost 80.29 1.7 310 

Compared with pointwise convolution operation in MobileNetV1, the Ghost module yields a better 
compression, over 45% of FLOPs are reduced and 48% of parameters are removed, but the accuracy is greatly 
damage. All in all, the direct replacement method is not feasible. We think the reason is that the main 
convolution of Ghost module only uses half of the number of original filters, so the information contained in 
the fused feature maps is not as rich as before. Although the cheap depth convolution operation also makes 
up the features, it is far from enough. 

In order to make full use of the feature maps generated by the main convolution of Ghost module, we 
introduced the Ghost-PE block, the specific structure is shown in Figure 1. 

The input X∈RC×H×W to Ghost-PE block is a three dimensional tensor, defined by depth C, width W, 
height H, to produce an output Y∈RC×H×W. The Ghost-PE block applies pointwise convolutional kernels 
Wmain∈R1/2×C×C×1×1 along depth to produce Xmain∈R1/2C×H×W that encode information from input X, and then 
utilizes 1 × 1 depth convolution kernels Wmin∈R1/2C×1×1×1 to generate Ymin∈R1/2C×H×W, as shown in Eqs (1) 
and (2), respectively. Furthermore, we squeeze spatial information of Xmain using global average pooling 
(GAP) to extract global vector descriptor Vavg∈R1/2C, and then fuse spatial information by utilizing depth 
convolutional kernels W1×1∈R1/2C×1×1×1 to Vavg to produce an output Vdw, as formulated in Eq (3). Next, 
according to Eq (4), we multiply Vdw and Ymin, and then add Xmain to produce YAdd. Finally, Xmain and YAdd 
are connected in the channel dimension, as shown in Eq (5). 

              ����� = � ∗ ����� (1) 

             ���� = ����� ∗ ���� (2) 

           ��� = ��������(�����)� ∗ ��×� (3) 
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            ���� = ��� × ���� + ����� (4) 

       � = ����������([�����, ����], ���� = 1) (5) 

In the Ghost-PE block, 1 × 1 depth convolution is used for Vavg in order to get the result by learning 
harmonic averaging pooling. Because the function of Vavg is only to supplement the feature information, it is 
necessary to prevent the existence of information in Vavg that will greatly interfere with the Ymin feature map. 
Finally, Xmain is added to Ymin to make the most of the features in it. 

 

Figure 1. An illustration of the proposed Ghost-PE block. Wmain and Wmin represent the 
main and cheap operation respectively. 

We can use the proposed Ghost-PE block to optimize the channel expanded pointwise convolution, and 
reduce the computational cost. Here, we analyze the profit on parameters and FLOPs usage by employing 
the Ghost-PE block. To produce an output of size C × H × W from an input of size C × H × W, the 
conventional pointwise convolution performs HWC2 operations and parameters are C2. In Ghost-PE block, 
the parameters and operations of main convolution are 1/2C2 and HWC2/2 respectively, in cheap convolution 
are C/2 and HWC/2, the W1×1 performs C/2 operations and parameters are C/2. Therefore, the theoretical 
speed-up and compression ratio of pointwise convolution with the Ghost-PE block is shown in Eqs (6) 
and (7), respectively. 

         �� = � �⁄ ×�×�×����×�×� ��� �⁄⁄
�×�×�� ≈ �

�
 (6) 

         �� = �×�×� �×���×�×� ��� �⁄⁄⁄
�×�×�×�

≈ �
�
 (7) 

2.2. Channel compression 

In the above article, we introduced an improved Ghost module called the Ghost-PE block, and used it 
to optimize the MobileNetV1 and MobileNetV2 channel extension point convolution. The channel expanded 



3191 

Electronic Research Archive  Volume 31, Issue 6, 3187-3199. 

pointwise convolution operation output features information evenly distributed in each channel, because the 
number of channels unchanged or increased, so each feature maps after fusion contains less information than 
the compressed pointwise convolution. Thus, we can use Ghost-PE block to get all the knowledge before 
optimization as far as possible. However, after compressed pointwise convolution operation, each feature 
channel contains more information, it is difficult to obtain all the fused information compared with expanded 
operation, if we perform lightweight optimization, which will inevitably cause a great loss on the performance. 
Therefore, it is necessary to further improve and optimize the Ghost-PE module to lightweight the 
compressed pointwise convolution structure. 

In the inverted bottleneck of MobileNetV2, there is a channel compressed pointwise convolution 
structure. In order to carry out lightweight optimization and maximize the acquisition of channel features 
information, we reuse the feature map Ymin generated by Ghost-PE block, designed Ghost-PC module, as 
shown in Eq (8). 

   � = ����������([����� + ����, ���� + ����], ���� = 1) (8) 

We used the Ymin many times, supplemented the feature channel information in feature maps Xmain and 
YAdd, and obtained all the features before optimization as much as possible. By using Ghost-PC blocks, Ymin 
can be reused to get more pre-optimized image information. 

3. Experimental results and analysis 

In this section, we first replace the channel expanded pointwise convolution in MobileNetV1 and 
MobileNetV2 by the proposed Ghost-PE block to verify its effectiveness. Then, the Ghost-PC block 
utilized to substitute for the channel compressed pointwise convolution in MobileNetV2 to prove its 
significance on the image classification task. 

3.1. Datasets and settings 

To verify the effectiveness of the proposed Ghost-PE and Ghost-PC blocks, we use the deep 
learning framework PyTorch [19] to conduct experiments on three popular visual datasets, Food-101, 
CIFAR and Mini-ImageNet. 

Food-101 dataset consists of 75,750 training and 25,250 testing images from 101 different food 
classes. A common data augmentation scheme including random crop [20] and horizontal training on 
Food-101, we use an SGD optimizer with a momentum equal to 0.9 and a weight decay of 1e-4. We 
train MobileNetV1 and MobileNetV2 models for 90 epochs, the initial learning rate is set to 0.1 and 
then decays at epoch 30 and 60 at a rate of 0.1. CIFAR dataset consist of 60,000 color images with 32 
× 32 pixels in 10 or 100 classes, including 50,000 training images and 10,000 test images. Mini-
ImageNet contains a total of 60,000 color images in 100 categories, of which each class has 600 
samples, and each image has a specification of 84 × 84. Since MobileNetV1 and MobileNetV2 are 
originally designed for ImageNet, we use their variants [21], which is widely used in literatures 
for conducting the following experiments. We train MobileNetV1 model for 100 epochs, 
MobileNetV2 for 160 epochs. The remaining training hyperparameters on CIFAR dataset are 
identical to the Food-101.  
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3.2. Experimental results of Ghost-PE block 

Based on the above experimental settings, the experiment results of replacing the channel 
expanded pointwise convolution in MobileNetV1 with Ghost-PE block are shown in Tables 2–5, 
respectively. 

Table 2. Comparison of other methods for compressing MobileNetV1 on Food-101 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 3.3 568 82.22 
MobileNetV1-Ghost 1.7 310 80.29 
MobileNetV1-L1Norm [22] 2.0 349 80.89 
MobileNetV1-Micro [8] 1.7 367 79.99 
MobileNetV1-Ghost-PE 1.7 310 81.85 

Table 3. Comparison of other methods for compressing MobileNetV1 on CIFAR-10 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 3.22 46.34 91.24 
MobileNetV1-Ghost 1.65 24.43 89.58 
MobileNetV1-L1Norm 2.02 31.40 90.37 
MobileNetV1-Micro 1.50 29.04 90.41 
MobileNetV1-Ghost-PE 1.65 24.44 90.70 

Table 4. Comparison of other methods for compressing MobileNetV1 on CIFAR-100 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 3.31 46.34 67.89 
MobileNetV1-Ghost 1.74 24.43 63.58 
MobileNetV1-L1Norm 2.08 31.37 66.01 
MobileNetV1-Micro 1.69 29.04 64.19 
MobileNetV1-Ghost-PE 1.74 24.44 65.77 

Table 5. Comparison of other methods for compressing MobileNetV1 on Mini-ImageNet dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 3.31 583 83.51 
MobileNetV1-Micro 1.69 372 76.21 
MobileNetV1-Ghost-PE 1.74 314 80.79 

Although the traditional Ghost module in parameter optimization has achieved a better effect, its 
accuracy loss is unacceptable. When compared with the Ghost module, L1-Norm-pruning(L1Norm) 
and Micro-Factorized Pointwise Convolution (Micro), the Ghost-PE block delivers better performance 
on Food-101, CIFAR-100 and Mini-ImageNet datasets. It can be seen from the test process curve 
that the ghost-point module is associated with Ghost and L1Norm has certain advantages over 
Micro methods. 
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The testing process of MobileNetV1 model on Food-101, CIFAR-10 and CIFAR-100 datasets is 
shown in Figure 2–4. 

 

Figure 2. Comparison of the testing process of several optimization methods of 
MobileNetV1 on the Food-101 dataset. 

 

Figure 3. Comparison of the testing process of several optimization methods of 
MobileNetV1 on the CIFAR-10 dataset. 
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Figure 4. Comparison of the testing process of several optimization methods of 
MobileNetV1 on the CIFAR-100 dataset. 

In order to further verify the performance of Ghost-PE block, the channel expanded pointwise 
convolution in inverted bottleneck of MobileNetV2 model is optimized by Ghost-PE block, the 
experimental results on Food-101, CIFAR-10 and CIFAR-100 datasets are shown in Tables 6–8, 
respectively. 

Table 6. Experimental results of MobileNetV2 using Ghost-PE block on Food-101 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 2.4 299 81.38 
MobileNetV1-Ghost 1.8 226 77.82 
MobileNetV1-L1Norm 2.2 257 79.51 
MobileNetV1-Micro 1.8 247 79.50 
MobileNetV1-Ghost-PE 1.8 226 81.37 

Table 7. Experimental results of MobileNetV2 using Ghost-PE block on CIFAR-10 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 2.30 91.14 93.33 
MobileNetV1-Ghost 1.69 67.90 92.77 
MobileNetV1-L1Norm 1.77 72.33 92.57 
MobileNetV1-Micro 1.78 71.71 92.46 
MobileNetV1-Ghost-PE 1.70 67.91 92.87 
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Table 8. Experimental results of MobileNetV2 using Ghost-PE block on CIFAR-100 dataset. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV1 2.41 91.14 74.83 
MobileNetV1-Ghost 1.81 67.90 73.02 
MobileNetV1-L1Norm 1.85 72.33 72.71 
MobileNetV1-Micro 1.89 71.71 73.64 
MobileNetV1-Ghost-PE 1.81 67.91 73.55 

As can be seen from Tables 6 and 7, compared with other methods, the Ghost-PE block achieves 
the best precision while reducing the number of parameters and the amount of calculation. In Table 8, 
although the Ghost-PE module is lower than the Micro method experimental results, the optimized 
model has fewer parameters and less computation. 

From Tables 6 and 7, it can be seen that, in the MobileNetV2 network through training on Food-
101 and CIFAR-10 data sets, Ghost-PE module achieves the best accuracy while significantly reducing 
the number of parameters compared with Ghost, L1Norm, Micro and other methods. In Table 8, in the 
training of the CIFAR-100 data set, although the accuracy of the Ghost-PE module is not as good as 
that of the Micro method, it has achieved better parameter optimization effect and is superior in 
reducing the number of parameters and the amount of calculation. 

The testing process of MobileNetV2 model on Food-101, CIFAR-10 and CIFAR-100 data sets is 
shown in Figures 5–7. 

 

Figure 5. Comparison of the testing process of several optimization methods of 
MobileNetV2 on the Food-101 dataset. 
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Figure 6. Comparison of the testing process of several optimization methods of 
MobileNetV2 on the CIFAR-10 dataset. 

 

Figure 7. Comparison of the testing process of several optimization methods of 
MobileNetV2 on the CIFAR-100 dataset. 

3.3. Experimental results of Ghost-PC block 

We used Ghost-PC block to improve the channel compressed pointwise convolution in inverted 
bottleneck of MobileNetV2, and compared it with L1Norm, Ghost module and Ghost-PE. The 
experimental results on Food-101 dataset and Mini-ImageNet dataset are shown in Tables 9 and 10. 
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Table 9. Experimental results of the MobileNetV2 model on the Food-101 dataset 
lightweight optimization of the channel compressed pointwise convolution with Ghost-PC. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV2 2.4 299 81.38 
MobileNetV2-L1Norm 1.8 232 77.65 
MobileNetV2-Ghost 1.9 244 77.45 
MobileNetV2-Ghost-PE 1.9 244 77.92 
MobileNetV2-Ghost-PC 1.9 244 79.48 

Table 10. Experimental results of the MobileNetV2 model on the Mini-ImageNet dataset 
lightweight optimization of the channel compressed pointwise convolution with Ghost-PC. 

Methods Parameters (MB) FLOPs (MB) Accuracy (%) 
MobileNetV2 2.3 319 77.91 
MobileNetV2-Ghost-PC 1.7 245 78.62 

It can be seen from Tables 9 and 10 that optimize channel compressed pointwise convolution has caused 
a great loss to the performance. In Table 9, no matter L1Norm, Ghost module or Ghost-PE, they all decrease 
by nearly 4 percentage points. Although the Ghost-PC block fails to achieve the original accuracy, it 
has better result compared with other methods. 

Combined with the above experimental results, the lightweight optimization of MobileNetV1 and 
MobileNetV2 by Ghost-PE and Ghost-PC modules achieves better performance compared with other 
methods. At the same time, it can be seen that the channel expanded pointwise convolution structure 
is more suitable for lightweight optimization than the compressed structure. 

4. Conclusions 

The pointwise convolution structure plays an important role in the compact model, but it contains a large 
number of parameters and computation resources. Therefore, Ghost-PE and Ghost-PC modules are proposed 
in this paper to improve the channel expanded and compressed pointwise convolution structure, respectively, 
and their effectiveness is verified by experiments. To the channel compressed pointwise convolution, the 
number of output features maps is far less than the input, which would cause each channel of output contains 
a lot of characteristic information. Thus, we use the Ghost-PC to optimize it. In the future, we will further 
analyze the channel compressed pointwise convolution structure and try to optimize it from a different point 
of view to improve its performance. 
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