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The field of multi-robot systems (MRS) has recently been gaining increasing
popularity among various research groups, practitioners, and a wide range of
industries. Compared to single-robot systems, multi-robot systems are able to
perform tasks more efficiently or accomplish objectives that are simply not
feasible with a single unit. This makes such multi-robot systems ideal candidates
for carrying out distributed tasks in large environments—e.g., performing object
retrieval, mapping, or surveillance. However, the traditional approach to multi-
robot systems using global planning and centralized operation is, in general, ill-
suited for fulfilling tasks in unstructured and dynamic environments. Swarming
multi-robot systems have been proposed to deal with such steep challenges,
primarily owing to its adaptivity. These qualities are expressed by the system’s
ability to learn or change its behavior in response to new and/or evolving
operating conditions. Given its importance, in this perspective, we focus on the
critical importance of adaptivity for effective multi-robot system swarming and
use it as the basis for defining, and potentially quantifying, swarm intelligence. In
addition, we highlight the importance of establishing a suite of benchmark tests
to measure a swarm’s level of adaptivity. We believe that a focus on achieving
increased levels of swarm intelligence through the focus on adaptivity will further
be able to elevate the field of swarm robotics.

KEYWORDS

adaptivity, collective robotics, multi-agent systems, multi-robot systems, swarm
robotics, swarm intelligence

1 Introduction

The field of multi-robot systems (MRS) has recently been gaining popularity among
various research groups, practitioners, and industrial actors, seeking productivity gains
through advanced automation.MRS are able to perform tasksmore efficiently and effectively
and accomplish missions that, in some cases, are simply out of reach for a single unit.
This makes MRS the ideal candidate for carrying out distributed tasks in large and
rapidly changing environments—e.g., performing object retrieval, search-and-rescue, and
surveillance (Darmanin and Bugeja, 2017). However, the classical centralized approach to
MRS can rapidly becomeunfeasiblewhen dealingwith tasks in unstructured and/or dynamic
environments. Swarming MRS have been utilized to address some of these shortcomings
and challenges, given that swarming robots exhibit the highly desirable features of flexibility,
robustness, and scalability, thereby giving a system’s agents to carry out complex tasks as a
collective unit (Dorigo et al., 2021). Moreover, given the ease of mass production of robotic
units, many researchers and industries alike are turning toward the use of low-cost and
easy-to-manufacture robotic units in swarms (Bouffanais, 2016). The versatility of robot
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swarms is attested by a wealth of applications spanning from
environmental monitoring (Thenius et al., 2016; Vallegra et al.,
2018; Zoss et al., 2018) to area mapping (Kit et al., 2019; Mitchell
and Michael, 2019) and area defense (Strickland et al., 2018;
Shishika and Paley, 2019).

The popularity of swarming MRS can partly be credited to
the three main advantages that such systems have over their
centralizedMRS counterparts: scalability, robustness, and flexibility.
Of the three key properties, the word “flexibility” has often been
used interchangeably with “adaptivity.” However, as defined by
Dorigo et al. (2021), flexibility is the system’s capacity to perform
tasks that depart from those chosen at design time, while adaptivity
is the system’s capacity to learn or change its behavior to respond to
new operating conditions. In its current state, swarming MRS have
been demonstrated to be flexible; swarms using the same strategies
and behavioral parameters have demonstrated their ability to carry
out a given task over a wide range of scenarios (Esterle, 2018a;
Kit et al., 2019), albeit with varying levels of performance.

Despite their flexibility, current swarms have only shown limited
levels of adaptivity; the development of swarm strategies and
behaviors has mostly been limited to optimizing a system to fit
a narrow range of pre-specified environmental conditions. This
has been achieved through the modification of various behavioral
and strategy parameters, according to locally or globally measured
metrics, and endows the swarming MRS with what could be
qualified as “narrow” adaptivity (Pang et al., 2019; Birattari et al.,
2020; Nauta et al., 2020). Although doing so allows a swarm to adapt
its behavior and maximizes its performance within a narrow range
of conditions, the MRS will be unable to adequately operate should
the environment vary outside these conditions or in an unexpected
manner. A truly adaptive swarm, i.e., one that displays a “general”
swarm intelligence, would be able to cope and adapt its behaviors
to any conditions presented to it, and be able to achieve different
types of tasks depending on an agent’s physical capabilities (e.g., one
cannot expect an areamapping swarm to carry out an object retrieval
task).

In this perspective, we give a preliminary definition of the
concept of general swarm intelligence and address what we believe
is required to achieve true adaptivity, i.e., a system’s ability to learn
or change its behavior in response to new operating conditions. We
also discuss the inherent challenges in evaluating a concept, such
as adaptivity, and propose the use of a benchmark test suite for its
quantification and comparison. Finally, we discuss what is needed
for a general swarm intelligence algorithm to be obtained. In light
of this, we firmly believe that future research in the field of swarm
robotics should focus on making robotic swarms more adaptive,
thereby increasing their viability.

2 General intelligence

2.1 Strong and weak artificial (swarm)
intelligence

Thekey feature of flexibility that defines the effectiveness ofMRS
can be seen as reminiscent of “weak” or “narrow” AI. Consider the
flexibility exhibited by a school of fish when it carries out a rapid
evasive maneuver, following a predator’s attack: swarm intelligence

at its best. Searle (1980) stated that with weak AI, “the principal
value of the computer in the study of the mind is that it gives us
a very powerful tool.” For our school of fish, the group’s collective
escape strategy from its predators is indeed a powerful survival tool.
However, this particular strategy would have to be adapted if it were
to remain as effective and relevant for a different species; a flock
of birds would have to use a different strategy, given that they live
in different mediums and deal with different predators. In contrast,
with artificial general intelligence (AGI)—also referred to as “strong”
AI—“the computer is not merely a tool in the study of the mind:
rather, the appropriately programmed computer really is a mind, in
the sense that computers, given the right programs, can be literally
said to understand and have other cognitive states” (Searle, 1980). As
such, systems with AGI should be able to generalize their knowledge
and use them in various different contexts (Goertzel, 2014). General
swarm intelligence would then be akin to AGI, one in which a
system demonstrates high levels of adaptivity, thereby allowing it to
effectively function in any highly dynamic environment under any
given set of circumstances.

It is worth reminding that AI is usually defined and constructed
using some characteristics associated with human intelligence.
Interestingly, natural swarm intelligence (SI) exhibited by animal
groups constitutes yet another form of intelligence—albeit a
collective and decentralized one—that can be seen as distinct from
individual human intelligence. To better appreciate the concept of SI,
it can be useful to consider each bird in a flock of birds as a neuron
within a brain, with the intelligence emerging from the repeated
interactions between the constituting units. As a matter of fact, the
current framework for AI does not always lend itself to SI with
its decentralized information gathering, social information transfer,
and distributed processing. Nonetheless, there is broad consensus
within the scientific community about SI being a particular subset
of AI, as currently defined, without necessarily knowing where
SI exactly fits (Bonabeau et al., 1999; Sadiku et al., 2021). It is
important to note that the central difference between AI and SI is
more than a simple question of application. The key distinction is
that collective intelligence emerges from the actions of the swarm’s
agents that ultimately lead to complex collective behaviors that are
greater than the sum of its parts. The macro-level behavior cannot
be directly programmed. Instead, the algorithm must be designed
to empower individual agents to come together as an emergent
swarm to accomplish a desired task. This extra layer of separation
between the programming and the desired output behavior generally
makes achieving swarm intelligence much more complicated than
the equivalent AI behavior (Birattari et al., 2020; Nguyen et al., 2020;
Bianconi et al., 2023).

Following this line of thought, the development of current non-
adaptive swarming algorithms can be compared to that of current
non-adaptive narrow AI algorithms. In both cases, some form of
reprogramming or intervention is required by a human operator to
match a system to its environment and/or task (Goertzel, 2014).This
parallel leads us to believe that breakthroughs in AGI development
will concomitantly lead to more adaptive outcomes for swarms. For
instance, Butz (2021) argues that current (narrow)machine learning
“optimizes the best possible strategy within the status quo” and that
current algorithms are “reflective rather than prospective.” On the
other hand, strong AI needs to be predictive to infer the hidden
causes behind its observations and explain the reasoning behind
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TABLE 1 List of AI definitions selected from Legg and Hutter (2007).

Definition Source

“Any system…that generates adaptive behavior to meet goals in a range of environments can be said to be intelligent.” Fogel (1995)

“Achieving complex goals in complex environments.” Goertzel (2006)

“Intelligence measures an agent’s ability to achieve goals in a wide range of environments.” Legg and Hutter (2006)

“…in any real situation, behavior appropriate to the ends of the system and adaptive to the demands of the environment can
occur, within some limits of speed and complexity.”

Newel and Simon (1976)

“(An intelligent agent does what) is appropriate for its circumstances and its goal, it is flexible to changing environments
and changing goals, it learns from experience, and it makes appropriate choices, given perceptual limitations and finite
computation.”

Poole et al. (1998)

“Intelligence is the ability of an information processing system to adapt to its environment with insufficient knowledge and
resources.”

Wang (1995)

its decision-making process. This offers us prospective routes to
improve the current SI status quo.

2.2 Defining swarm intelligence

Currently, there is no concise and universally accepted definition
of SI. Given the search for a definition of intelligence by both the
SI and AI communities, we have taken inspiration from the various
definitions proposed by the AI community to develop one for SI.
To this end, we have made a selection of definitions from Legg and
Hutter (2007) shown in Table 1. In this table, it can be seen that the
key common element shared across definitions is a system’s ability to
make necessary behavioral adjustments to cope with the changing
environment and to achieve its goals that may vary over time.
Together with the importance of collective behavior and adaptivity
discussed previously, we believe that swarm intelligence can be
defined as follows: “Swarm Intelligence is the emergent ability of a
decentralized system of agents to make the appropriate adjustments
to its collective behavior, thereby allowing the system to achieve
changing goals in dynamic environments.”

3 Adaptivity

3.1 Current state of the art

Our proposed definition of SI is strongly linked with a system’s
level of adaptivity—i.e., the system’s ability to learn or change its
behavior in response to new operating conditions (Dorigo et al.,
2021). Despite the importance of adaptivity for swarm intelligence,
the vast majority of research carried out on swarm robotic
systems aims to optimize a strategy or a certain set of behavioral
parameters to maximize its performance for a task-specific and/or
environmental conditions. In these works, adaptivity is usually
demonstrated as an afterthought, with systems exhibiting that they
are able to function in various operating conditions, albeit with
a certain degree of performance degradation (Coquet et al., 2019;
Kwa et al., 2022a).

Adaptive swarms can be achieved through either offline or
online swarm designmethods, as suggested by Birattari et al. (2020).
These two radically different approaches toward adaptivity have also
been described by Hasbach and Bennewitz (2022) as two different

controllers—(1) a robust controller that allows a system to control
its behavior when the environmental conditions vary within the
expected range (i.e., offline methods) and (2) an adaptive controller
that allows the system to implement rules and new system goals
to adjust the robust controller when the fit between the robust
controller and the situation set is not optimal (i.e., online design
methods). A visual representation of the differences between these
two controllers is shown in Figure 1.

Currently, adaptivity in swarms is mostly achieved using
robust controllers. In doing so, swarms develop a base set of
strategies that can be further optimized to maximize the system’s
performance over a specific range of task conditions, thereby
achieving narrow adaptivity. Such a systemwas used by Rausch et al.
(2019), who identified an optimal degree of connectivity between
agents and varied the communication ranges of the individual
agents to maintain a consistent number of neighbors, thereby
maintaining the coherence of the system. Similarly, by optimizing
an individual agent’s movements to maintain the inter-agent
spacing and a constant Voronoi cell area, Vallegra et al. (2018) and
Kouzeghar et al. (2023)were able tomaintain a high level of coverage
of two different types of dynamic environments using swarms
composed of autonomous buoys and UAVs, respectively. Using this
approach, systems will be able to perform well within a specific
range of conditions. However, should the operating conditions vary
outside this range—i.e., when a high level of adaptivity is demanded
from the system—the performance of the swarm will inevitably
suffer due to the fact that the system has been optimized prior to
its implementation (Hunt, 2020).

3.2 Toward general adaptivity

We believe that attaining general swarm intelligence would
require a system to have general adaptivity. This would, therefore,
involve using adaptive controllers. In doing so, systems will be
able to optimize, learn, or develop new behavioral and strategy
parameters as the mission progresses, thereby allowing systems to
display the sought-after general adaptivity. This naturally allows
for a higher degree of adaptivity due to the increased abilities of
an MRS to modulate and vary its behavior, better allowing the
system to maintain its performance should the operating conditions
change. It is worth noting that a few initial attempts have been
made in using these methods, for instance, in systems making
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FIGURE 1
Flowchart of controllers used in swarming MRS to promote adaptivity. (A) Robust controllers. (B) Adaptive controllers.

use of Lévy walks, individual agents autonomously varying their
individual Lévy parameters to modulate the level of exploration
and exploitation being carried out (Pang et al., 2019; Nauta et al.,
2020; Garcia-Saura et al., 2021; Kwa et al., 2022a). Along the same
vein, Esterle (2018b) developed a swarm robotic system with agents
autonomously switching between two states, thereby allowing the
system to track targets that continuously appear and disappear in
the environment.This was achieved using a variable threshold value
that was calculated based on the number of targets currently tracked
and the number of targets to be tracked.

In making swarms more adaptive, regardless of the approach,
systemdesigners need to identify the correct set of cues to determine
if adaptation should be triggered and how these cues will be
sensed (Hunt, 2020). In addition, designers should also be wary
of agents responding to false alarms when detecting these cues,
i.e., systems adapting to changes in the operating conditions that
have not actually taken place. This usually entails a process, where
a system’s responsiveness to environmental changes needs to be
balanced against its resilience to false alerts, also known as the
stability–flexibility dilemma in neural systems (Liljenström, 2003;
Wahby et al., 2019; Leonard and Levin, 2022).

4 Swarm intelligence benchmark
framework

4.1 The need for a swarm intelligence
benchmark

Given the need to push toward increasing levels of swarm
intelligence, i.e., system adaptivity, we believe that a common
benchmark is required to facilitate the comparison between different
strategies, a belief also shared by Dorigo et al. (2021). The concept
of benchmarking is rather common and already exists in other
more mature research fields such as optimization, where algorithms
are tested against various benchmark functions (Huband et al.,
2006; Li et al., 2013). Similarly, various test environments have
been created to evaluate control strategies developed by means of
reinforcement learning algorithms for single agents (Duan et al.,
2016; Cobbe et al., 2020) and multiple agents (Lowe et al., 2017).
The introduction of such a benchmark for a system’s adaptivity
has the potential to unify the research community by providing a

basis for measurement and comparison, and allow practitioners to
understand how high levels of adaptivity are derived.

Although swarm intelligent solutions have been established
for multiple problems (Kit et al., 2019; Kwa et al., 2022b; Esterle
and King, 2022; Kouzeghar et al., 2023), they are often evaluated
based on their own operational performance for a specified
scenario and fixed conditions. This is to be expected as such
systems are developed and applied to solve a particular problem
or carry out a specific task. Therefore, the evaluation of a system’s
operational performances allows it to be compared to previous
solutions and strategies found in the literature. However, measuring
the operational performance in one scenario cannot possibly be
considered equivalent to measuring swarm intelligence. Indeed, a
system displaying high levels of operational performance may not
necessarily have swarm intelligence. Take, for example, a multi-
robot system tasked with retrieving and delivering packages to and
from designated locations within a warehouse. When operating
within a predictable, organized, and mostly static environment,
a centralized pre-planned strategy that has been optimized for
a specific warehouse is often the ideal solution (Ma et al., 2017;
Bredeche and Fontbonne, 2022). Recently, attempts have also
been made at developing decentralized strategies that feature
reduced optimization times when the number of robots in the
system is increased while maintaining similar levels of performance
(Claes et al., 2017). However, both strategies would be unable to
deliver the same level of performance should they be deployed in
different warehouses without another round of optimization and
planning. On the other hand, while swarm intelligent strategies may
not perform as well as the situation-optimized solutions, they are
able to adapt to changes in the environment autonomously and
deliver similar levels of performances across different operating
conditions. The use of an adaptivity benchmark test suite would
highlight this higher level of adaptivity present within swarm
intelligent MRS.

4.2 Testing narrow and general swarm
intelligence

As previously stated, current MRS are capable of displaying
narrow adaptivity, where a system is able to carry out one specific
task in a dynamic environment. As such, to test for adaptivity, the
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FIGURE 2
Flowchart describing our proposed benchmark framework. The systems to be compared are tested in multiple environments (environments 1, 2,…, n),
each with different environmental parameters (a,b,…,x). Their performances are determined by various metrics specific to each environment, thereby
allowing the ranking of the systems’ adaptivity in different contexts.

system must be able to demonstrate that it is able to perform over a
possiblywide range of different environmental conditions for a given
class of problems. For example, in a target tracking scenario, anMRS
using an adaptive strategy should be able to maintain a certain level
of performance should there be changes in the number of targets
to be tracked, target speed, target movement profile, etc. (Esterle,
2018a; Kwa et al., 2020; Kwa et al., 2021; Kwa et al., 2022b). In many
engineered systems, there often exist performance indicators and
metrics, such as those for first- and second-order linear time-
invariant (LTI) controllers that allow a system’s properties to be
fully understood by its users and also facilitate its comparison
to other similar systems. Similar benchmark frameworks and
characteristic graphs could also be developed for MRS that could
reveal how a system’s performance is expected to evolve over varying
environmental conditions, thereby giving an indication of a system’s
level of adaptivity.

To progress from narrow adaptivity toward general swarm
intelligence, the community should focus its efforts on developing
systems with general adaptivity. This will endow systems with
not just the ability to adapt to different environmental conditions
but also with the ability to adjust their behaviors to accomplish
different tasks, e.g., changing behaviors from a set suited to collective
mapping to another set suited to target tracking. This taps into the
central concept of transferability, where one can evaluate the system’s
ability to operate in different scenarios while maintaining its level
of performance. Measuring general adaptivity requires more than
one class of benchmark environment. In view of this, a suite of
benchmark tests should be developed and implemented, similar to
the Procgen Benchmark proposed and developed by OpenAI for
the testing of reinforcement learning agents (Cobbe et al., 2020).
Specifically, with the benchmark, developers are able to measure
how quickly their agents learn generalizable skills in 16 procedurally
generated environments, in effect measuring their agent’s level of
general adaptivity. It is worth adding that these 16 environments
have been selected to assess different characteristics. In our proposed
benchmark framework, as shown in Figure 2, each benchmark test
environment would be associated with its own set of environmental

parameters and performance metrics, thereby allowing the user
to determine which system is more adaptive in any of the given
contexts.

Although more standardized benchmarks can improve the
development of adaptivity in swarms, it is not a panacea. The
existence of such benchmarks may give clear targets and methods
to evaluate a given set of strategies, which may inadvertently
lead to other factors not included by the benchmark to be
ignored. As stated by Raji et al. (2021), there is no test dataset or
environment that can capture the full details and complexity of all
the possible scenarios in which an MRS can be deployed. Hence,
any implemented benchmark framework must, like general swarm
intelligence algorithms, evolve to prevent what is essentially the
overfitting of strategies to particular benchmarks. Such evolving
environments have already been implemented by Cobbe et al.
(2020); the benchmark uses procedurally generated environments,
essentially offering a “near-infinite supply of randomized content,”
preventing an agent from memorizing an optimal policy. The
ultimate goal of any proposed benchmark framework should not
be to declare if an algorithm has attained general adaptivity but to
enable practitioners to understand how systems are able to adapt to
their immediate surroundings and compare different systems while
they are executing similar tasks.

5 Discussion

Many parallels can be established between the development of
artificial general intelligence and general swarm intelligence. This
includes the search for a general (swarm) intelligence algorithm and
a fixation of the community on developing tailor-made strategies
for very specific circumstances. However, we believe that these
two are contradictory objectives. Developing environment-specific
strategies will essentially maximize the performance of a swarming
MRS for a particular set of conditions. However, these high levels of
performance would most likely falter should the conditions deviate
from those considered at the design stage. A system designed for

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1163185
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kwa et al. 10.3389/frobt.2023.1163185

adaptivity would avoid such declines in performancewhen changing
conditions, and thereby, moves us closer to developing general
swarm intelligence algorithms.

We believe the key to unlocking these general swarm intelligence
algorithms is through increasing the system’s level of adaptivity.This
would allow a swarm to categorize and understand its environment,
thereby giving it the ability to change its collective behavior to
match its changing goals in dynamic environments. As previously
mentioned, such a system needs to be multipurpose and be able
to optimize its own behavioral parameters, or even develop new
ones, to achieve its new objectives in the most efficient manner
(Birattari et al., 2020; Hasbach and Bennewitz, 2022). For example,
in the absence of any targets, a swarm with general SI originally
performing a target tracking task may find it more appropriate to
transition to carry out area mapping and, therefore, optimize its
actions and behavior for this new task. Should a single target appear
in the environment, the system may even deem it appropriate to
carry out both tracking and mapping tasks concurrently.

As a first step toward general SI, adaptivity must be embedded
into the system design process, essentially allowing the system to
learn to be adaptive. From the AI standpoint, this means that
the robotic system is capable of dealing with an open world,
such that techniques to enable adaptivity during operation—and
not at the design stage—will be the key. To this end, we
expect designers to train their agents in gradually more open
environments using multi-agent reinforcement learning (MARL),
allowing for the effects of dynamic environmental factors to
be included in the training process. Indeed, several research
groups have already started using MARL techniques to develop
policies for their swarming agents in dynamic environments
(Kouzehgar et al., 2020; Wang et al., 2022a; Wang et al., 2022b;
Kouzeghar et al., 2023). Learning from demonstration, experience
replay, and transfer learning offer promising opportunities to exploit
prior knowledge, e.g., from another domain or task (Karimpanal
and Bouffanais, 2018; Karimpanal and Bouffanais, 2019). However,
these powerful techniques will have to be extended to multi-agent
systems.

Although current MARL-trained swarms only focus on
achieving a single objective, enabling a swarm to switch between
tasks or carry out tasks simultaneously can possibly be achieved
by setting the swarm’s priorities. Doing so would allow a system to
identify environmental cues to trigger the switch between scheduled
tasks, thereby allowing it to ascertain when and how to accomplish
different tasks as it learns and adapts to its environment. However,
to attain such a high level of adaptivity, a system needs to account
for a wide range of factors and missions while simultaneously
being able to avoid reacting to false alarms. It is not feasible for
MARL practitioners to handcraft a reward function and perform
hyperparameter tuning for a system with so many parameters and
goals over all possible environments. As such, further advances to
swarm adaptivity may come from the newly established field of
automated reinforcement learning (AutoRL), essentially enabling
a swarming MRS to train itself, i.e., self-learn (Faust et al., 2019;
Parker-Holder et al., 2022).

Given the need to design for adaptivity, it would also be
beneficial to quantify this level of adaptivity and see how different
swarming systems compare with each other. Similar to the testing
of “standard” artificial intelligence and computational optimization

algorithms, there is a critical need for the swarm intelligence
community to implement a suite of evolving benchmark problems,
along with metrics to evaluate the performance of swarming
systems, with a focus on adaptivity. Although there are works that
compare the performance of different swarming algorithms, such
comparisons are usually incomplete, with the two strategies usually
being tested within a narrow range of environmental conditions and
tasks. Since it has previously been shown thatMRS performances are
highly sensitive to the demands of the task and those of the operating
environment, the current limited form of testing may give a false
impression that one swarm strategy is able to outperform another
over all conditions and settings. Therefore, an implementation of
a standardized benchmark framework, consisting of a suite of
benchmark problems, would allow for amore complete and accurate
comparison of different swarm algorithms and also contribute to
faster algorithm development and evaluation.
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