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Recent developments in machine learning have greatly facilitated the design of
proteins with improved properties. However, accurately assessing the
contributions of an individual or multiple amino acid mutations to overall
protein stability to select the most promising mutants remains a challenge.
Knowing the specific types of amino acid interactions that improve energetic
stability is crucial for finding favorable combinations of mutations and deciding
which mutants to test experimentally. In this work, we present an interactive
workflow for assessing the energetic contributions of single and multi-mutant
designs of proteins. The energy breakdown guided protein design (ENDURE)
workflow includes several key algorithms, including per-residue energy analysis
and the sum of interaction energies calculations, which are performed using the
Rosetta energy function, as well as a residue depth analysis, which enables
tracking the energetic contributions of mutations occurring in different spatial
layers of the protein structure. ENDURE is available as a web application that
integrates easy-to-read summary reports and interactive visualizations of the
automated energy calculations and helps users selecting protein mutants for
further experimental characterization. We demonstrate the effectiveness of the
tool in identifying the mutations in a designed polyethylene terephthalate (PET)-
degrading enzyme that add up to an improved thermodynamic stability. We
expect that ENDURE can be a valuable resource for researchers and
practitioners working in the field of protein design and optimization. ENDURE
is freely available for academic use at: http://endure.kuenzelab.org.
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1 Introduction

The design of proteins with improved stability and activity is a critical aspect of research
in biotechnology and related fields. It holds the potential to revolutionize a wide range of
applications (Arnold, 2018), from developing enzymes for industrial processes (Chen and
Arnold, 2020), antibodies and antivirals for medicine (Sevy and Meiler, 2014; Willis et al.,
2015) to molecular switches and biosensors (Stein and Alexandrov, 2015; Quijano-Rubio
et al., 2021). Protein design has been demonstrated to play a crucial role in many different
areas of biotechnology (Castro et al., 2022; Habibi et al., 2022; Reetz, 2022).

Two widely used protein design approaches are directed evolution and computer-aided
protein design. The former approach mimics the natural gene diversification and selection
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process and involves iterative rounds of mutagenesis, which create a
library of mutants, and selection of mutants with desired functions
(Arnold, 2018). Computer-aided protein design typically involves
algorithms that suggest mutations for experimental testing (Pan and
Kortemme, 2021). These algorithms may be based on in-depth
molecular modeling, e.g., with the Rosetta software suite (Leman
et al., 2020), or machine learning predictions (Dauparas et al., 2022).
The experimental testing of the designed proteins is time-, cost-, and
labor-intensive. Thus, prioritizing the most probable candidates for
experimental testing is necessary. To facilitate mutant selection, it
can be informative to determine the specific types of amino acid
interactions that contribute to protein stability and assess the
energetic impact of mutations (Goldenzweig et al., 2016).

Machine learning algorithms have revolutionized the field of
protein design, enabling researchers to generate novel proteins with
improved properties more efficiently (Dauparas et al., 2022; Ferruz
and Höcker, 2022). Two current state-of-the-art methods are the
evolutionary and structure-based design method PROSS
(Goldenzweig et al., 2016; Weinstein et al., 2021), and the deep
learning method ProtMPNN (Dauparas et al., 2022). Both methods
can yield tens to hundreds of candidate structures or sequences.
Selecting the best candidates for experimental testing is a rather
tricky task, particularly for designed proteins with multiple
mutations, as the effect of each mutation is dependent upon the
presence of other mutations—a phenomenon referred to as epistasis
(Starr and Thornton, 2016). Yet the selection process determines the
success of the overall design process. Thus, it is essential to have
reliable, comprehensive, and easy-to-use methods for evaluating and
selecting the most probable designs, based on the energetic
magnitude and type of interactions (hydrogen bonds, salt bridges,
etc.) introduced by the mutations.

Some existing tools for protein design and mutant selection
include Rosetta (Leman et al., 2020), HotSpotWizard3.0 (Sumbalova
et al., 2018), ProteinSolver (Strokach et al., 2021), and FoldX
(Schymkowitz et al., 2005). Scoring functions and modeling
algorithms from Rosetta were previously tested for the prediction
of protein stability and affinity changes (ΔΔG). Kellogg et al. (2011)
investigated the role of conformational sampling in computing
mutation-induced changes in protein stability and compared the
predictions to experimental ΔΔG values. Barlow et al. (2018)
developed the Flex ddG method using Rosetta ensemble-based
estimation of changes in protein-protein binding affinity upon
mutation. Frenz et al. (2020) focused on improving the
prediction of protein mutational free energy using Cartesian
coordinate minimization. However, all these tools often require
extensive knowledge of the software, leaving non-expert users
without easy access to analyze the outcomes of their protein
design experiments. In the field of de novo protein design, DE-
STRESS (Stam and Wood, 2021) has been developed to help non-
expert users evaluate the plausibility of such designs. Unfortunately,
equivalent tools for assessing the results of sequence design
experiments operated on a provided structure are lacking. To
address this gap, we have developed ENergy breakDown gUided
pRotein dEsign (ENDURE), a modular web application that
provides an interactive and user-friendly interface for analyzing
the energetic contributions of protein designs. ENDURE integrates
easy-to-read summary tables and interactive visualizations of
automated energy calculations, helping users to explore and

reveal mutational hotspots—which confer stabilization or
destabilization—and compare the specific types of interactions
that a particular mutation is introducing. In that way, ENDURE
helps selecting the best protein mutants for further experimental
characterization.

The application workflow (Figure 1) integrates several key
algorithms, which analyze the protein structure using the Rosetta
energy function, including per-residue energy breakdown and the
sum of interaction energies calculations. Additionally, the tool
provides a residue depth analysis, which enables users to track
the energetic contributions of mutations occurring at different
spatial layers of the protein structure, thus easily shedding light
on the particular strategies that a design pipeline might have used
and assessing its particular energetic impact. We demonstrate the
use of ENDURE in assessing a previously designed version of a
polyethylene terephthalate (PET)-hydrolyzing enzyme from
Ideonella sakaiensis (IsPETase), called DuraPETase (Cui et al.,
2021), carrying ten mutations compared to the wildtype IsPETase
(Yoshida et al., 2016). We expect that ENDURE will be a valuable
resource for protein designers, filling a crucial gap in assessing and
explaining the outcomes of protein design calculations.

2 Methods

The architecture and interface of the ENDURE web-app are
designed in such a way that users are guided through the process of
analyzing the energetic contributions of their protein designs in an
intuitive and user-friendly manner. As shown in Figure 1, the whole
workflow consists of several pages implemented in Streamlit
(https://streamlit.io), a web application framework for Python.
Starting from the File Upload page, the user uploads the PDB
files of the designed protein and the reference protein structure.
Alternatively, users can choose to provide amino acid sequences of
the reference and mutant protein, and ENDURE will automatically
predict their structures using ESMFold (Rives et al., 2021). The app
then guides the user through three analysis steps, including pairwise
interaction analysis, residue depth analysis, and inspection of all
pairwise interaction changes by means of an energy difference
heatmap. The results of these analyses are presented to the user
in an interactive way that can be easily adapted to suit their specific
needs using the controls on the left sidebar. The resulting tables can
also be exported and downloaded as CSV file. Streamlit abstracts
both front-end and back-end programming, making the application
easily extensible by users with Python programming knowledge.
Finally, the source code of ENDURE is packaged in a Docker
container for easy installation and replication of the tool across
different compute environments such as servers or HPC clusters.
More details on the technological implementation of the app and the
computational algorithms are provided in the following paragraphs.

2.1 Front end/backend in streamlit

The application’s front end consists of the user interface (UI),
which includes the welcome page, file upload section, and interactive
visualizations. The UI is designed to be user-friendly and easy to
navigate, allowing users to upload their protein structure file,
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prepare the structure, and run the energy breakdown and residue
depth calculations. Since Streamlit is our web development
framework, the front and backend are managed under the hood.
We do include several analysis modules, which are either pure
Python functions or Python functions that call other auxiliary
executables. The names of important internal functions in the
ENDURE app are written in typewriter font in the
following sections.

2.2 Processing structures with ENDURE

The protocol consists of two main stages: 1) structure pre-
processing actions and 2) structure analysis actions. Those
actions are run on the File Upload page.

The pre-processing is an important step in the ENDURE web
tool as it ensures that the uploaded protein structure is in the correct
format and ready for analysis. The pre-processing actions include
cleaning of the PDB files to remove any ligands, ions, or water
molecules, relaxing of the protein structures to remove any steric
clashes or unfavorable interactions, and determining the mutations
for the designed protein relative to the reference protein.
Additionally, the PDB file is renumbered in this step so that the
first residue in the file is at position 1. Relaxing the protein structures
is the second important action in preparing the protein structures
for analysis. This ensures that the protein structure is in a low energy
state according to the Rosetta energy function (Alford et al., 2017),
which can help to minimize false positive results. The ENDURE web
tool uses RosettaScripts (Fleishman et al., 2011) to perform a single
iteration of FastRelax (Khatib et al., 2011) by default, taking a
previously minimized protein structure and optimizing its energy
landscape further. Overall, the input preparation protocol is crucial
for ensuring that the protein structure is in the correct format and

ready for analysis. (See Supplementary Material for the specific relax
and energy breakdown commands).

The analysis actions include the energy breakdown (EB)
calculations, which provide information about the energetics of
each residue’s interaction in the two analyzed protein structures,
and the residue depth (RD) calculations. These algorithms are
powered by the Rosetta energy function (Alford et al., 2017) and
the Biopython (Cock et al., 2009) library, respectively. The EB
calculations are performed using the Rosetta EB executable. In
short, EB determines the one-body and two-body energies for
each residue and decomposes them further into individual score
term contributions, thus allowing the simultaneous exploration of,
e.g., sidechain and backbone interactions. By clicking on the
Calculate Energy button on the File Upload page, the Rosetta EB
calculation is run in a subprocess. Internally, the run function is
launched with four parameters as input: the input PDB file name, the
location to save the result file, the location to save the log file, and the
file path of the Rosetta executable. The output of the protocol is
converted to a downloadable CSV file using the convert_

outfile function, which saves the CSV file as a dictionary in
the current session state.

These actions are followed by the RD calculation, which uses the
MSMS algorithm (Sanner et al., 1996) from Biopython to calculate
the distance of each residue to the molecular surface. The MSMS
software computes the solvent-excluded surface from a set of
spheres, representing the atoms in a protein structure. The
reduced surface is calculated, and an analytical description of the
solvent-excluded surface is derived from it. The calculation is done
in the calculate_depth function.

The processing and analysis actions launched from the File
Upload page are run in the background to prevent the UI from
freezing, and their results are integrated into the interactive
visualizations in the front end.

FIGURE 1
Overview of the ENDURE application architecture. Each colored box represents a subpage that performs a specific task, such as structure pre-
processing and Rosetta calculations (File Upload page), pairwise interactions and residue depth analyses, and lastly visualization of an energy difference
heatmap. The symbols represent the tools and libraries used for analysis and visualization. The Rosetta software is used for residue interaction analysis, the
Biopython library is used for residue depth calculation, and the 3Dmol.js library is used for generating the visualization of the 3D structures. The
process starts with uploading the protein structures, and then proceeds to processing and analysis of the structures. Pairwise interactions and residue
depth are analyzed, and a CSV report can be generated. Finally, an energy difference heatmap is created.
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2.3 Analysis of ENDURE outputs: pairwise
interactions analysis

The Interaction Analysis page allows users carrying out a
comprehensive analysis of the energetic changes in pairwise
interactions of single- and multi-mutant protein designs. The user can
select and analyze interactions from different categories (A to F explained
below) and from different physical interaction types (salt bridges, etc.)
through different control parameters on the side bar. Individual residue
pairs, affected directly or indirectly by the mutations, can be selected and
displayed in interactive 3D visualizations.

We defined six categories of residue pair interactions to identify
the regions in the protein structures most affected by the mutations.

Category A: residue pairs that are interacting in the reference
structure have different interaction energy in the mutant, even
though neither of the two residues were mutated.

Category B: residue pairs that are interacting in the reference
structure have one member replaced, resulting in a different
interaction energy in the mutant.

Category C: residue pairs that are interacting in the reference
structure no longer interact in the mutant, even though neither of
the two residues was mutated.

Category D: residue pairs that are interacting in the reference
structure no longer interact in the mutant because one member was
mutated.

Category E: residue pairs that are not interacting in the reference
structure interact in the mutant, even though neither of the two
residues was mutated.

Category F: residue pairs that are not interacting in the reference
structure interact in the mutant because one member was mutated.

In order for ENDURE to detect the different interaction
categories A-F and different physical interaction types, there are
several functions implemented on the page that users can execute by
clicking the Start Calculations button (after having run all the pre-
processing actions on the File Upload page). Such functions perform
a post-processing and filtering of the scorefile generated by the
Rosetta EB calculations.

The energy_calc function is used to identify the essential
changes in interaction energies between the mutant and the
reference protein structure. It takes the outputs of the residue EB
computation performed for the mutant and reference structures, the
list of mutations between the reference and mutant, and a streamlit
progress bar. The function calls several sub-functions to perform
various interaction energy comparisons for each interaction
category and physical interaction type. The former is managed by
the interaction_analysis function and the latter is managed
by the following functions: salt_bridges, disulfide_bonds,
and hydrogen_bonds. As the names suggest, these functions
calculate the energy differences for different types of interactions,
such as salt bridges, disulfide bonds, and hydrogen bonds.

The interaction_analysis function calculates the
difference in interaction energies between a mutant and a reference
protein structure for a given list of mutations. The interaction_

analysis function processes the outputs of the per-residue EB
performed on the reference and mutant structures. It calculates the
differences in all single-body (i.e., within a single residue) and two-body
(i.e., between two residues) energies for all categories (A to F) between
the two proteins.

In analyzing the interaction energy changes between the
wildtype and mutant protein, it is important to distinguish
between total energy changes and significant energy changes. The
former is the sum of all energy changes, including those with a small
value. However, since thousands of small changes can occur, it is
possible for insignificant changes to mask chemically important
changes. To overcome this issue, the significant energy change is
calculated, which is the sum of only those interaction energy changes
that exceed a minimum magnitude. In ENDURE changes that are
larger than +1.0 Rosetta Energy Units (REU) or smaller
than −1.0 REU are considered significant. By focusing only on
significant energy changes, the mutations that are likely to have a
significant impact can be more easily detected.

For the REF2015 scoring function for soluble proteins, there is
an approximate 1:1 correspondence of REU and kcal/mol (Alford
et al., 2017). However, for other Rosetta scoring functions, which
include statistically derived potentials, the correspondence of
Rosetta score units to thermodynamic energies is convoluted. For
compatibility with other Rosetta scoring functions, which we plan to
add to ENDURE in the future, we decided to report energy values on
the ENDURE web page in REU.

The total energy change for all interactions and the sum of the
subset of significant changes, is calculated using the total_

energy_changes and significant_changes functions,
respectively. These functions operate on a dictionary returned by
interaction_analysis and sum all as well as the significant
energy changes for each interaction category specified in an
interaction list. Interactions from categories A-F can be selected
from a list and the change for a given interaction type (salt bridges,
disulfide bonds, sidechain-sidechain hydrogen bonds, sidechain-
backbone hydrogen bonds, backbone-backbone short-range
hydrogen bonds, backbone-backbone long-range hydrogen bonds,
and all interactions) can be furthered inspected.

2.4 Analysis of ENDURE outputs: residue
depth analysis

Mutation-induced energetic changes can have different effects
on different layers of the protein structure. Therefore, we
implemented a residue depth analysis and combined it with the
per-residue energy breakdown analysis to distinguish changes
occurring on the protein surface from those occurring in buried
regions of the protein structure.

The Residue Depth page of the ENDURE app allows the user to
analyze and compare the effect of mutations on the energy and
spatial location of residues. Specifically, the user can select a residue
pair that displays a strong negative energetic contribution and
visualize the interaction in the protein structure. By adjusting the
threshold slider, the user can see which residues have a significant
impact on stability and select the most promising mutations for
further analysis. Once the user selects a particular mutation by
clicking on a point in the scatter plot, the app displays a side-by-side
3D visual comparison of the residue in the mutant and reference
structures, which allows for a direct comparison of the effect of
mutations on the protein structure. This analysis provides valuable
insights into the structural and energetic changes resulting from
mutations.
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3 Results

The Welcome page (Figure 2) is the first page users will
encounter when accessing the web application. This page
provides an overview of the tool and its functionality, allowing
new users to quickly familiarize themselves with the interface. The
Welcome page includes a brief description of the purpose of
ENDURE and the steps involved in using the tool to analyze
protein designs. The Welcome page is designed to be user-
friendly and intuitive, providing a clear and concise introduction
to the tool and its capabilities, making it easier for users to get started
and use the tool most effectively for their particular research
questions.

Figure 3 presents the File Upload section, where users can
upload their protein structure files in PDB format. The interface
is designed to be intuitive and user-friendly, with options for either
selecting the file from the local file system or dragging and dropping
the file into the designated area. After uploading the file, the user is
prompted to run five important pre-processing actions: 1) cleaning
PDBs, which ensures that the files are correctly parsed, and the
residues are renumbered so that the first residue is at position 1. 2)
Relaxing PDB files, which prepares the files for the analysis. 3)
Determining mutations by identifying the amino acid differences
between the reference and mutant sequences. This information is
crucial for many components of the analysis, as it allows tracking the
position of mutations. 4) Calculating residue depth determines the

average distance of residues from the solvent-accessible surface. This
is a key factor in understanding the energetic contributions of
mutations. The calculation is performed using the Biopython
library and is executed in a separate thread to avoid hanging the
GUI. 5) Creating energy breakdown files, which provide a detailed
breakdown of the energy contributions of individual residues. This
calculation is performed using the Rosetta EB executable, as
explained above, and is run in the background to prevent the
GUI from being frozen.

3.1 ENDURE use case: analysis of an in silico-
designed PET-degrading enzyme

To demonstrate the workflow and scope of application of
ENDURE, we present here the results obtained for a previously
reported designed PET-degrading enzyme, called DuraPETase
(PDB ID: 6KY5) (Cui et al., 2021), which has higher
thermostability than the wildtype IsPETase enzyme (PDB ID:
5XJH) (Yoshida et al., 2016; Joo et al., 2018). As can be seen in
Figure 4A, ENDURE confirms that the particular mutant (carrying
ten mutations) has favorable total and significant energy changes
(−5.8 REU), indicating improved stability. This result is in line with
the experimentally determined increase in the apparent melting
temperature (Tm) of DuraPETase by 31°C compared the wildtype
IsPETase (Cui et al., 2021). In addition, we calculated the significant

FIGURE 2
Welcome page. On the left-hand side, the side bar containing the subpages and status bars is given. The latter indicate, by turning from red to green,
if the pre-processing and analysis actions on the File Upload page are completed. The main section of the Welcome page contains a brief description of
the tool and of each subpage.
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energy changes for two other designed PET hydrolases, FastPETase
(Lu et al., 2022) and HotPETase (Bell et al., 2022), using ENDURE
(Supplementary Table S1). The favorable energy changes for
FastPETase (−10.2 REU) and HotPETase (−27.6 REU) confirmed
their higher stability of Tm = 67°C and Tm = 82°C, respectively,
compared to wildtype IsPETase. This shows the utility of ENDURE
in estimating overall stability changes.

In addition to the overall energy comparison, ENDURE also
provides detailed information about the specific amino acid
interactions that contribute to the improved stability of the
selected mutant. The interaction analysis feature allows focusing
on and visualizing specific residue interactions in the protein
structure, which help to rationalize the underlying molecular
mechanisms contributing to the improved stability of the selected
mutant. These features will be described next.

3.1.1 Interaction analysis—Changes in pairwise
interactions

The Interaction Analysis page of ENDURE enables performing a
detailed examination of the energetic changes for residue pairs of
different types (see Figure 4B). With this help, the user can identify
the particular interactions contributing to improved or impaired
energetic stability.

For example, Figure 4B shows a salt bridge interaction between
residues Arg135 and Asp153, which causes a significant energy
improvement of −3.32 REU in DuraPETase compared to wildtype
IsPETase. This salt bridge isn’t present in the wildtype protein but is
in DuraPETase—i.e., it belongs to interaction category F. IsPETase
has an isoleucine (Ile135) at the same position, which cannot form a
salt bridge. In addition, as shown in the left-hand table in the
screenshot in Figure 4B, there are two more salt bridges detected by

FIGURE 3
File Upload page. (A) Interface before uploading PDB files or using the example files. The latter action can be activated by clicking the “Use Example
File” button. (B) Interface after running all pre-processing and analysis actions. Note that the color of the status boxes turned from red to green.
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ENDURE, which contribute significant energy changes in
DuraPETase: Asp187-Arg252 (−2.52 REU) and Arg120-Asp230
(−1.99 REU). These two interactions belong to category E,
i.e., they do not involve a mutated residue but are probably an
indirect effect of nearby mutations in the environment of the four
residues. Information like this provides valuable insight into protein
structure and can help guide the user in their efforts to design a
better-functioning mutant protein.

The different categories of interaction changes (A to F) allow the
user to quickly identify the changes in interactions that have
occurred and to focus their attention on the most important
ones. For example, if a user observes that most changes are of
type E or F, this might suggest that new interactions have formed,
which could also significantly affect function. By providing this

information, the Interaction Analysis page helps the user to quickly
understand and prioritize the changes in interactions that have
occurred and guide their efforts in protein design.

3.1.2 Residue depth analysis
The residue depth analysis feature allows determining the depth

of each residue in the protein structure, which reflects its
accessibility to the solvent. By analyzing the energetic changes of
mutations occurring in different spatial layers of the protein
structure, the location of mutations that improve or impair
stability can be determined. In Figure 5, the aforementioned
mutation Ile135Arg is displayed as an example. In wildtype
IsPETase, Ile135 is located on the protein surface, indicated by a
low residue depth value of ~2Å (Figure 5A). This surface-exposed

FIGURE 4
Interaction Analysis page. (A) Summary table of the number of significant energy changes for residue pairs belonging to different interaction
categories (A-F, explained in the text) and types of physical interactions in the DuraPETase enzyme. (B) 3D visualization of a salt bridge interaction
(Arg135-Asp153) in DuraPETase from interaction category F (i.e., significant energy improvement due to mutation of one residue in the pairwise
interaction). Other salt bridges with improved energy in DuraPETase compared to the wildtype IsPETase are listed in the table on the left side. The
selected Arg135-Asp153 salt bridge is visually represented in the structure viewer window on the right side, highlighting the selected residue pair in sticks.
Residue pairs from other physical interaction types (hydrogen bonds between backbone or side chain atoms, disulfide bonds) can also be selected, as
explained in the text.
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location is unfavorable for a hydrophobic amino acid. By contrast,
the Arg135 residue in DuraPETase can form favorable interactions
on the protein surface. In addition to the alreadymentioned Arg135-
Asp153 salt bridge, the side chain of Arg135 interacts with the side
chain of Gln155 through a hydrogen bond (Figure 5B). The table in
Figure 5B, which lists the interacting residues for Ile135 or Arg135,
respectively, and highlights their respective energy contributions
(blue: high energy, red: low energy), confirms these visual
observations. These extra interactions, can explain the lower net

energy of −14.16 REU for Arg135 in DuraPETase compared
to −13.32 REU for Ile135 in IsPETase (Figure 5A).

Information like this is important because it can help decide
which residues to mutate in order to improve protein stability. For
example, mutations in the protein core may have a greater impact on
stability than those located near the surface, and thus targeting core
residues for mutagenesis can considerable impact the stability of the
designed protein. Additionally, the residue depth analysis feature
can be used to select the most promising mutants for further

FIGURE 5
Residue depth analysis. (A)Net interaction energy versus residue depth plots for wildtype IsPETA (left) and DuraPETase (right). The blue data point in
the lower left corner of the plot, corresponding to Ile135 in IsPETase or Arg135 in DuraPETase, respectively, has been selected. (B) Side-by-side
comparison of the location and surrounding amino acids of Ile135 and Arg135, respectively. The interacting residues and their energy contributions are
listed above the 3D viewer.
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characterization, by identifying mutations that have an improved
net interaction energy and are located in favorable positions within
the protein structure.

3.1.3 Energy difference heatmap
This feature allows the user to quickly represent all residue pairs

that have a significantly changed interaction energy in the mutant
protein compared to the wildtype, and selectively track specific pair
interactions. The user can select interactively from the residue pair
interaction matrix on the left side in Figure 6 a pair of residues that
display a large negative energetic contribution. The relevance threshold
for the energy can be adjusted with the threshold slider present above.
Once the user has selected a residue pair (Figure 6A), the corresponding
pair (Arg135-Asp153 in this example) will be highlighted in the
structure viewer in the middle of the page (Figure 6B), and a
breakdown of the interaction energy change into individual score
terms from the Rosetta energy function will appear (Figure 6C). For
visual clarity only none-zero score terms are displayed to the user.

4 Discussion

The ENDURE web application provides a user-friendly interface
for analyzing protein structures to facilitate mutant selection in
protein design workflows. The study has shown that the application
can accurately and efficiently process PDB files, clean and renumber
them, determine mutations, calculate residue depth, and generate
energy breakdown files. The interaction analysis section allows users

to view changes in pairwise interactions between residues in the
wildtype and mutant structures by providing visual representations
of the significant and total energy changes.

One of the key innovations of the ENDURE web application is its
ability to group changes in residue pairwise interactions into different
types and categories, ranging from residues that are interacting in the
reference and mutant protein structure with different interaction
energies (category A), to residues that aren’t interacting in the
reference structure but make interactions in the mutant due to a
mutation (category F). These different categories of changes provide a
useful way for the user to identify which mutations have the strongest
impact on the protein structure, and consequently focus design efforts
on specific areas of the protein structure.

Compared to previous research, our web application offers a
user-friendly and accessible solution for analyzing protein structures
and interaction changes. Prior research in this field has typically
been focused on developing computational tools for protein
structure prediction and analysis (Schymkowitz et al., 2005;
Leman et al., 2020; Stam and Wood, 2021) or the analysis of the
effects of single point mutations (Yin et al., 2007). For instance, the
Eris web server (Yin et al., 2007) is an estimator of protein stability
that primarily focuses on single mutations. In contrast, our
ENDURE server is specifically designed to handle multiple
mutations simultaneously while assessing the introduction of
significant pairwise interactions. ENDURE provides a unique
solution by incorporating advanced Rosetta modeling and
analysis algorithms into a user-friendly interface and making
them more broadly accessible.

FIGURE 6
Energy difference heatmap. (A) 2D matrix of residue pair energy changes between IsPETase and DuraPETase. Negative values indicate that an
interaction has a lower (more negative) energy in DuraPETase. The 2D matrix is illustrated as a heatmap with larger negative changes colored blue and
smaller negative energy changes colored red. Users can zoom in the 2D matrix and interactively select a residue pair for further analysis. (B) 3D
visualization of the Arg135-Asp153 residue pair after selecting it in the heatmap in (A). The structure is colored according to the positional energy
difference. (C) Breakdown of the energy change for the selected pairwise interaction into individual Rosetta score terms, representing different physical
interactions.
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It is important to note that the tool is limited by the accuracy of
the underlying computational tools and algorithms used for protein
structure prediction and analysis. Additionally, the interaction
analysis section is based on a static protein structure analysis.
Accuracy in predicting mutation-induced energy changes could
benefit from a model ensemble approach (Peccati et al., 2023), in
which protein dynamic changes like loop rearrangements can be
considered. These limitations should be taken into consideration
when interpreting the results of the analysis.

Despite these limitations, it represents a significant advancement
in the field of protein structure and interaction analysis. The
integration of computational tools into a user-friendly interface
makes it possible for scientists outside the field of computational
structural biology to quickly and efficiently analyze protein structures
and identify potential areas for improvement. In future versions,
ENDURE could be expanded to include additional features and
improvements, such as the ability to examine other kinds of
proteins, including membrane proteins and proteins with
noncanonical amino acid modifications, through the incorporation
of different energy functions. It could also be enhanced to consider
ligand molecules in the design analysis, allowing the identification of
designs with improved binding affinity. These features are currently
planned for the next version of ENDURE, which will be released in the
future. Additionally, the tool could be further developed to
incorporate machine learning techniques to improve the accuracy
of the analysis. With these advancements, ENDURE could become an
even more powerful tool for protein design and analysis.

In conclusion, the ENDURE web application provides a unique
and accessible solution for analyzing protein structure and
interaction changes and, in that way, represents a significant
advancement for the field of protein design. Categorizing changes
in pairwise interactions for different interaction types provides a
straightforward way for the user to guide their protein design
strategies. Integrating computational tools into a user-friendly
interface makes it possible for a broader audience to quickly and
efficiently analyze protein structures. The future direction of the
research will focus on further developing the application to
incorporate analysis on protein dynamics, support for non-
standard amino acid residues, and application of machine
learning techniques. Furthermore, a command line interface
integrated in the front end is planned, which will help further
customize some of the analyses.
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