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Litho-facies classification is an essential task in characterizing the complex
reservoirs in petroleum exploration and subsequent field development. The
lithofacies classification at borehole locations is detailed but lacks in providing
larger coverage areas. The acquired 3D seismic data provides global coverage for
studying the reservoir facies heterogeneities in the study area. This study applies
six supervised machine learning techniques (Random Forest, Support Vector
Machine, Artificial Neural Network, Adaptive Boosting, Xtreme Gradient
Boosting, and Multilayer Perceptron) to 3D post-stack seismic data to
accurately estimate different litho-facies in inter-well regions and compares
their performance. Initially, the efficacy of the said models was critically
examined via the confusion matrix (accuracy and misclass) and evaluation
matrix (precision, recall, F1-score) on the test data. It was found that all the
machine learningmodels performed best in classifying the shale facies (87%–94%)
followed by the sand (65%–79%) and carbonate facies (60%–78%) in the
Penobscot field, Scotian Basin. On an overall accuracy scale, we found the
multilayer perceptron method the best-performing tool, whereas the adaptive
boosting method was the least-performing tool in classifying all three litho-facies
in the current analysis. While other methods also performed moderately good for
the classification of all three litho-facies. The predicted litho-facies using seismic
attributes matched well with the log data interpreted facies on the borehole
locations. It indicates that the facies estimated in inter-well regions are accurate
and reliable. Furthermore, we validated the estimated results with the other
seismic attributes to ascertain the accuracy and reliability of the predicted
litho-facies between the borehole locations. This study recommends machine
learning applications for litho-facies classification to reduce the risk associated
with reservoir characterization.
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1 Introduction

Accurate identification of the lithological types is essential in
discriminating the reservoir facies (sand and carbonate) from the
background (shale facies). It can also be done through advanced
high-resolution image logs as well as laboratory investigations of
drilled core samples. However, such high-resolution field
measurement data is commonly limited (available only at well
positions) and expensive (Kumar et al., 2022; Srivardhan, 2022).
On the other hand, seismic data interpretation provides global
coverage but has lower vertical resolution and non-unique
solutions. In seismic data interpretation, geoscientists always
strive to determine the connection between geophysical datasets
and reservoir properties in order to forecast lithological
distributions. It has been found that obtaining a reliable
lithological model, particularly seismic data, is one of the most
challenging tasks in reservoir studies. In recent years, machine
learning (ML) techniques have emerged as an effective tool in
dealing with geophysical data (MacLeod, 2019; Dramsch, 2020).
As a result, integrating ML algorithms with the inputs of existing
petrophysical and geophysical data enables geoscientists to
categorize the different lithologies precisely. Several studies have
successfully identified litho-facies on geophysical logs using
statistical approaches, and supervised and unsupervised ML
algorithms (Wang and Carr, 2012; Schmitt et al., 2013;
Bhattacharya et al., 2016; Bressan et al., 2020; Xu et al., 2021),
and reservoir characterization in petroleum exploration (Keynejad
et al., 2019; Liu et al., 2021). On the other hand, only a few research
works have been done to determine the various litho-facies and
reservoir properties using seismic data (Zhang and Zhan, 2017;
Chevitarese et al., 2018; Babu et al., 2022).

The supervised ML technique structure primarily consists of
input, hidden, and output layers. Among all, Random Forest (RF),
Artificial Neural Network (ANN), Adaptive Boosting (ADB),
Extreme Gradient Boosting (XGB), Support Vector Machine
(SVM), and Multilayer Perceptron (MLP), etc., are a few
supervised regression and classification algorithms. These
methods use forward and backward propagation to reduce error
between the predicted and original values. In classification problems,
the classifier’s accuracy between the original and predicted values
depends on the confusion matrix (accuracy and misclass) and
evaluation matrix (precession, recall, and F1-score) (Xu et al.,
2021). The seismic-derived attributes listed in Table 2 are input
features, whereas the litho-facies interpreted at wells (log-scale) is
the target feature during the model training (Babu et al., 2022).
Initially, all the input data were randomized and standardized to
avoid bias. ML algorithms have been trained to classify the different
litho-facies on 75% of total data samples, and the left out 25% of data
samples were used for validation purposes. We classified these facies
into three categories which are coded as shale facies (1), sand facies
(2) and carbonate facies (3). We performed six popular classification
algorithms in the current work to predict the litho-facies from the
Penobscot field, Scotian Basin.

The primary objective of the current research work is to evaluate
the performance of the applied ML models (RF, ANN, ADB, XGB,
SVM and MLP) in litho-facies (shale, sand, and carbonate)
prediction away from borehole locations using seismic data.
Secondly, to delineate and characterize the reservoir facies from

Mississauga and Abenaki Formation based on interpreted litho-
facies. Moreover, these predicted litho-facies require further
validation using other seismic attributes to ascertain the models’
predictions in inter-well regions. The present study explained the
practical approach in litho-facies discrimination and provides a
reliable lithological model for hydrocarbon exploration from
Mississauga and Abenaki Formation using seismic data.

2 Geological settings

The Penobscot field is located on the Scotian Shelf (Figure 1). It
has a large-scale carbonate bank that originated during the Jurassic
era as the Sable Delta prograde into the basin (Eliuk and Crevello,
1985). It is approximately 1,200 km south-westward from the
Yarmouth Arch to the north-eastward Avalon Uplift on
Newfoundland’s Grand Banks and contains numerous structural
and stratigraphic features (Jansa et al., 1989; Weissenberger et al.,
2006). Scotian Basin development started after the breakup and
rifting of the North American continent from the African continent
at the end of Triassic period. The study area contains numerous
complex structural and stratigraphic features in the subsurface.
Several minors but two NW-SE and E-W trending major faults
have been identified in the study area (Campbell et al., 2015;
Bhatnagar et al., 2017; Maurya, 2019). Early Jurassic (Mid-
Sinemurian) tectonic activity in the central rift basin led to
complex faulting, erosion of Late Triassic and Early Jurassic
sediments and older deposits. Generalized stratigraphic chart for
Scotian Basin is shown in Figure 2. The region’s sediment
distribution has been greatly influenced by the network of
platforms and subbasins. An initial transition (Anisian to
Toarcian) from terrestrial rift sediments to shallow
marine carbonates and clastic, followed by an initial post-rift

FIGURE 1
Location map of the study area in the Scotian Basin, Canada
Offshore.
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carbonate-dominated phase (Aalenian-Tithonian), characterizes
early deposition in the area (NSDE, 2011). The second post-rift
sequence (Berriasian-Turonian) consists of a thick, rapidly
deposited deltaic wedge (Mississauga Formation) and a series of

thinner, backstepping deltaic lobes (Logan Canyon Formation).
Overall, a vast history of passive-margin deposition dominates
the stratigraphic framework in the region, which is episodic. A
detailed workflow adopted in this work is shown in Figure 3.

3 Data

The study area have two drilled wells (L-30 and B-41). These
wells consist recorded conventional logs viz., gamma-ray (GR),
compressional wave (DT), density (RHOB), spontaneous
potential (SP) and density-porosity (DPHI) and neutron-porosity
(NPHI) logs (Kidston et al., 2005).We interpreted the three different
litho-facies (shale, sand, and carbonate) based on electro-log
interpretation (Figures 4A, B). Manual litho-facies interpretation
is tedious but has the least chance of error. The obtained result was
validated with available core data from well L-30 at 2167 ms (Jansa
et al., 1989), corresponding to the Abenaki Formation. The core data
suggests the presence of Thrombolites, Stromatolites, Mudstone,
and Wackestone, a typical signature of carbonate facies. The seismic
and log data and formation tops and horizons obtained from the
publicly available Canada-Nova Scotia offshore petroleum board
directory have been downloaded from the OpendTect data portal.
3D seismic data acquired during the year 1992 over the Penobscot
field in the Scotian Shelf, Nova Scotia, Canada, has been used in this
study (Figure 5A). The seismic data were recorded over a 90.27 km2

area in a bin size of 12.5 m (inline) × 25 m (crossline). The data was
recorded up to 6s with a sampling interval of 4 ms with good
frequency bandwidth (6–50 Hz) up to 3 s. The seismic signal
below 3s (5 km) is poor (Maurya, 2019; Ray et al., 2022). We
performed well-to-seismic-tie for both wells to establish a time-
depth relationship in the study area (Figure 5B). Table 1 summarises
the specifics of the seismic and well-log data.

4 Different ML algorithms

4.1 Random forest (RF)

A supervised ensemble learning method based on the random
subspace methodology, the RF algorithm was first proposed by Ho
(1995). Later, based on the bagging strategy, Breiman (1996)
updated this method. With this approach, sample subsets are
taken from the main database, and decision trees are generated
for each sample space to classify patterns. The majority of the forest’s
trees’ output is chosen via a vote process. The bagging approach of
RF enhances overall accuracy and reduces overfitting problems since
it uses the mean of predictions generated from numerous choices’
trees (Breiman, 2001).

4.2 Artificial neural network (ANN)

Finding the ideal collection of weight parameter values is the
goal of the neural network procedure. Use of the backpropagation
technique is common in layered feed-forward ANNs. This algorithm
adjusts weights to decrease system error within network.

FIGURE 2
(A) Stratigraphy chart of the Scotian Basin (after MacLean and
Wade, 1993; Wade et al., 1995; NSDE, 2011), and (B) Eustatic curve
indicating the sea-level changes during different geological stages
(Haq et al., 1987).

FIGURE 3
Flow chart for the adopted methodology in litho-facies
prediction in the present study.

Frontiers in Earth Science frontiersin.org03

Narayan et al. 10.3389/feart.2023.1150954

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1150954


It may be organized into four basic steps: a) Set random values as
the connection weights’ initial values. b) Calculate the ANN’s output
by forward propagating each input pattern through the network:

Ek � ∑
n

i�1
ti − ai( )2 (1)

(c) Eq. 1 used to calculate the Mean Square Error (Ek) between the
desired output (ti) and what was actually produced (ai) by the ANN.

Wt+1 � Wt + −ηdEk

dw
(2)

(d) Eq. 2, where Wt is weight,
dEk
dw is the gradient and η is the learning

rate, should be used to adjust the connectionweights. This procedure
is continued until the desired minimum error is achieved.

4.3 Adaptive boosting (ADB)

Freund and Schapire (1997) introduced the AdaBoost or
Adaptive Boosting method after first discussing it in 1995.
Through the multiplicative-weight update technique, weaker ML
“algorithms” performance can be enhanced without any prior
knowledge. Taking into account that the output of a weak
learning algorithm f′ is represented as OP′1, OP′2 . . ..OP′m and
that the goal of the weak learner is to fit a function f′ between TR and
OP by least square error, which is (OP- f′ (x′))2, where x′ € TR. The

error function for adaptive boosting is e−OPf′(xi), which only
considers the final result’s sign. The final error is the
multiplicative addition of all of the previous errors, that is

e
−∑

i

OPif′(x′)
. The method updates the weights at each stage and

segment of the iteration to identify segments that tend to increase
the error and alter the weights in order to reduce the error.

4.4 Extreme gradient boosting (XGB)

According to Chen and Guestrin (2016), the supervised machine
learning algorithm XGB uses gradient boosting to handle massive
data series. This ensemble technique continuously builds new
predictors (decision trees) until the error introduced by its early
predictors is eliminated. XGB uses residual values to create a series of
weak learners before producing a strong one at the end. For
preventing overfitting difficulties and punishing the problem’s
complexity (Sun et al., 2020), a regularisation term is added to
the loss function, which is provided by,

l φ( ) � ∑
i

L yi − ŷi( ) +∑
n

k

Ωf k( ) (3)

Where L, which stands for the loss function, expresses the
discrepancy between the prediction (ŷi) and of the target yi. The
second term (Ω(fk)) penalizes the model’s complexity. The
regularisation term prevents overfitting and reduces the problem’s
complexity. These terms for regularisation are provided as follows:

FIGURE 4
Well panel showing the different logs and interpreted litho-facies from wells (A) B-41 and (B) L-30.
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Ωf k( ) � γT + 1
2
λ w‖ ‖2 (4)

The regularisation parameters in this case, denoting the leaf
number and weight. Whereas w and T, respectively, represent the
leaf node’s value and the number of leaves in the tree.

4.5 Support vector machine (SVM)

For classification and regression issues, the
supervised machine learning method SVM is frequently

utilized (Vapnik, 1995). A hyperplane is built in the SVM
method to divide the datasets into several classes. The support
vectors are the data points that are closer to hyperplane on either
side, and the street is separation between support vectors. A
hyperplane with a wide margin or street is seen to be a decent
classification, while one with a narrow margin is unsatisfactory
and requires further parameter adjustment.

Consider a situation where the data are linearly separable: y =
sign(wTx + b).

D = (x1, y1), (x2, y2), (xn, yn) for training data with n points,
where yiE = (1, 1).

Given by is the Euclidean distance from xi to the hyperplane:

FIGURE 5
(A) An arbitrary line section extracted from the seismic data passing through both wells in the study area (basemap in inset). Frequency bandwidth
(6–50 Hz) found for this seismic data, and (B) well-to-seismic tie at L-30.
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r � wTx + b
∣∣∣∣

∣∣∣∣
�w˥ (5)

SVM seeks to maximize ‖w‖2 and offers the optimal
optimization for the issue as:

w*, b*( ) � agrmin
w,b,ξi

w‖ ‖2
2

+ C∑
m

i�1
ξ i (6)

Where w and b stand for the hyperplane’s normal vector and
intercept, respectively. The penalty and slack parameters, represented by
C and ξi control the trade-off between accurate data classification and
smooth decision boundaries. SVM uses kernel trickery, which is non-
linearly separable data points from the existing dimension to a higher,
linearly separable dimension, for a model where the separation of the
data points is non-linear. The classification problem’s radial basis
function kernel is defined as follows:

K xi, xj( ) � exp −γ xi−xj‖ ‖2( ) (7)

Where, γ � 1
2σ2 determines the degree of bending required for the

decision boundary.

4.6 Multilayer perceptron (MLP)

A perceptron is a popular neural network approach for binary
issue solving through monotonically rising activation functions
(Dixit and Mandal, 2020). A basic perceptron model is a
mathematical representation of how the human brain works. It
takes input data from the input layer, weights it, adds it all up, sends
it to the activation function, and then outputs it through the output
layer. Assume that the input vectors are x1, x2, . . . . . . . xn and the
weights are w1, w2, . . . . . . . wn. A perceptron’s output is
represented by,

y � ∑
n

i�1
wixi + bias (8)

which is also written as,

y � wtx + bias (9)
The performance of the network is determined by the number of

hidden layers. The neural network performs poorly when there are

few layers in between, and when there are many layers, the neural
network memorizes the training data and fails on the unknown
datasets (McCormack, 1991). In order to create a better MLP model,
the number of neurons in the hidden layers between the input and
output layers should be modified together through appropriately
updated weights (Van der Baan and Jutten, 2000).

5 Results

5.1 Evaluation of ML methods in litho-facies
prediction

In this research work, 6 ML classification models (RF, ANN,
ADB, XGB, SVM, andMLP) were trained to predict the clastic (shale
and sand) and non-clastic (carbonate) litho-facies from seismic data

TABLE 1 3D seismic and well log data available in the study area.

Data type: 3D post-stack seismic data Data type: Well-log data

Total area 86.62 Sq. km Log-type (s) L-30 B-41

Survey size 12.03 km*7.2 km Gamma-ray √ √

Processing Pre-stack time migrated (PSTM) Density √ √

Seismic polarity SEG Normal P-Sonic √ √

Inline/crossline (1,000–1,600)/(1,000–1,481) Volumetric √ √

Bin size 12 m*25 m Neutron Porosity √ √

Time range/Sample rate 0–6000 ms/4 ms Effective Porosity √ √

Horizon(s) Five levels Litho-facies √ √

TABLE 2 Input 3D seismic attributes used in litho-facies prediction.

Sr. No. Different seismic attributes

1 Raw seismic

2 Dominant frequency (DF)

3 Instantaneous average amplitude (IAA)

4 Average frequency (AF)

5 Amplitude weightage frequency (AWF)

6 Amplitude envelope (AE)

7 Derivative (DER)

8 Second derivative (SD)

9 Integrate (INT)

10 Dominant instantaneous amplitude (DIA)

11 Instantaneous phase

12 Quadrature trace (QT)

13 Amplitude weightage cosine phase (AWCP)

14 Cosine instantaneous phase (CIP)

15 Amplitude weightage phase (AWP)

16 Acoustic impedance (P-imp)
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in Penobscot field, Scotian Basin. Initially, these models were trained
on 75% of the datasets (termed training data). Further, the trained
models were validated on left out 25% of the datasets (termed as test
data). The seismic-derived attributes utilized in litho-facies
prediction are listed in Table 2. We calculated the evaluation
matrix, such as Precision, Recall, and F1-score of each predictive
method for each litho-type, to assess the model performance on the
test data (Figure 6; Table 3). Additionally, a normalized confusion
matrix (accuracy and misclass) was computed to evaluate each
applied ML technique in this study (Figures 7, 8; Table 4). The
maximum attainable value for the above parameters is 1.

Precision is the measure of correctly predicted litho-facies out of
all litho-facies present in the log data. It also aids in measuring the
model’s ability to classify true/actual litho-facies. It is found that the
precision value ranges between 0.84 and 0.92 for shale facies, 0.65 to
0.78 for sand facies, and 0.82%–0.87% for the carbonate facies for all
the models (Table 3). It is also noticed that the MLP, RF, ANN and
XGB algorithms calculate considerably higher precision than the
ADB and SVM in shale facies classification (Figure 6A). The MLP,
RF and ANN algorithms calculate higher precision than the XGB,

SVM and ADB in sand facies classification (Figure 6A). The MLP,
SVM and XGB algorithms calculate higher precision than ADB,
ANN and RF in carbonate facies classification (Figure 6A). Based on
precision, the MLP method is the best-performing model, followed
by the RF, ANN, XGB, SVM, and ADB methods in categorizing all
three litho-facies.

Recall is the measure of the model correctly identifying the actual
litho-facies as present in the log data. The recall tells us howmany litho-
facies we accurately predicted out of all of them. It is found that the
recall value ranges between 0.87 and 0.93 for shale facies, 0.65 to 0.79 for
sand facies, and 0.68 to 0.78 for the carbonate facies for all the models
(Table 3). It is found that the RF, MLP, ANN, and SVM algorithms
calculate higher recall values than the XGB and ADB in shale facies
classification (Figure 6B). The MLP, RF, ANN, and XGB algorithms
calculate higher precision than the ADB and SVM in sand facies
classification (Figure 6B). The MLP, ANN, XGB, and RF algorithms
calculate higher recall than the ADB and SVM in carbonate facies
classification (Figure 6B). Based on recall, the MLP method is the best-
performing method, followed by the ANN, XGB, RF, ADB, and SVM
methods in categorizing all three litho-facies.

FIGURE 6
Outputs of each predictive model’s evaluation metrics (A) precision, (B) recall, and (C) F1 score, computed for each litho-facies.
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F1-score is the harmonic mean of the precision and recall value.
High F1-score would indicate a high precision and recall value and
can be used as a direct measure of the model’s efficacy in litho-facies
classification. The F1-score value ranges between 0.86 and 0.93 for
shale facies, 0.66 to 0.79 for sand facies, and 0.70 to 0.82 for the
carbonate facies considering all the models (Table 3). It is found that
the MLP, RF and ANNmethods calculate a higher F1-score than the
XGB, SVM and ADB methods in shale facies classification
(Figure 6C). The MLP, RF and ANN methods calculate higher
F1-score than the XGB, SVM and ADB in shale facies classification
(Figure 6C). The MLP algorithm calculates a higher F1-score than
the XGB, ANN, SVM, ADB and RF in carbonate facies classification
(Figure 6C). Based on F1-score, the MLP method is the best-
performing model, followed by the RF, ANN, XGB, SVM and
ADB methods in determining all three litho-facies.

The confusion matrix (Figures 7A–F; Figures 8A,B) is a chart of
actual and predicted results for an ML classifier determined by
statistical parameters that are true positives, true negatives, false
positives, and false negatives (Navin and Pankaja, 2016). The
diagonal values of the confusion matrix indicate the true
positives for each litho-facies. Accuracy and misclass are the
most important parameters used in classification problems.
Accuracy is calculated as the ratio of the correctly predicted and
total records, whereas misclass is calculated by the one minus
accuracy. The high accuracy value hints at a good agreement
between the predicted and actual lithofacies. Accuracy values
ranged between 0.871 and 0.934 for shale facies, 0.648 to

0.785 for sand facies, and 0.600 to 0.779 for the carbonate facies
considering all the models (Table 4). It is found that the RF, MLP
ANN, and SVM algorithms calculate higher accuracy in shale facies
classification than the XGB and ADB methods (Figure 7A–F;
Figure 8A, B). The MLP, RF, ANN, and XGB algorithms
calculate higher accuracy than the ADB and SVM in sand facies
classification (Figure 7A–F; Figure 8A, B). The MLP algorithm
calculates considerably high accuracy in carbonate facies
classification than the ANN, XGB, RF ADB, and SVM
(Figure 7A–F; Figure 8A, B). Overall, the MLP model estimates
maximum accuracy, followed by the RF, ANN, XGB, SVM, and
ADBmethods in classifying all three facies. Subsequently, the lowest
misclass values were recorded for the MLP method, followed by the
RF, ANN, XGB, SVM, and ADB methods. Based on accuracy and
misclass values, the MLP method is again the best-performing
method, followed by the RF, ANN, XGB, SVM, and ADB methods.

5.2 Lithological characterization of
Mississauga and Abenaki Formation

We generated the facies volumes by applying the above-
discussed ML methods on 3D seismic data. Figures 9A–F
demonstrate the arbitrary line of litho-facies with three
lithologies, essentially shale (1-grey), sand (2-yellow) and
carbonate (3-pink), passing through both wells (B-41 and L-
30). We noticed a good correlation between the predicted litho-

TABLE 3 Statistics, i.e., Precision, Recall and F1-score estimated in classification of shale sand and carbonate facies from different machine learning classifier
algorithms.

Classifier machine learning algorithms Facies type Precision Recall F1-score

Random Forest (RF) 1-Shale 0.903 0.934 0.918

2-Sand 0.783 0.762 0.772

3-Carbonate 0.761 0.652 0.702

Artificial Neural Network (ANN) 1-Shale 0.897 0.927 0.912

2-Sand 0.779 0.759 0.769

3-Carbonate 0.766 0.679 0.720

Adaptive Boosting (ADB) 1-Shale 0.849 0.871 0.860

2-Sand 0.653 0.668 0.660

3-Carbonate 0.779 0.650 0.709

Xtreme Gradient Boosting (XGB) 1-Shale 0.892 0.916 0.904

2-Sand 0.735 0.754 0.744

3-Carbonate 0.820 0.673 0.739

Support Vector Machine (SVM) 1-Shale 0.840 0.920 0.878

2-Sand 0.709 0.648 0.677

3-Carbonate 0.868 0.600 0.710

Multilayer Perceptron (MLP) 1-Shale 0.915 0.933 0.924

2-Sand 0.782 0.785 0.784

3-Carbonate 0.868 0.780 0.821
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facies and the overlaid well litho-facies strips. The arbitrary
section determines the spatial and temporal distributions of
the different litho-facies from time equivalent depth of
1,800 ms–3,000 ms (Figures 9A–F). The entire vertical

succession considered in this study was deposited during
Middle Jurassic to Middle Cretaceous geological period.
Abenaki top, a broad carbonate platform formed, is the
boundary of the Jurassic to the Cretaceous period.

FIGURE 7
Normalized Confusion matrix of ML classifiers methods (A) RF, (B) ANN, (C) ADB, (D) XGB, (E) SVM, and (F)MLP used in the present study. The color
variation represents the degree of normalisation and non-normalization as indicated by the data points on the color scale. Lithology code 1 indicates to
shale, 2 indicates to sand, 3 indicates carbonate facies.
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FIGURE 8
Outputs of each predictive model’s confusion matrix (A) accuracy and (B) misclass, computed for each litho-facies and overall, as well.

TABLE 4 Statistics, i.e., accuracy and misclass estimated in classification of shale sand and carbonate facies from different machine learning classifier algorithms.

Classifier machine learning algorithms Facies type Accuracy Misclass Overall accuracy Overall misclass

Random Forest (RF) 1-Shale 0.9337 0.0663 0.8605 0.1395

2-Sand 0.7616 0.2384

3-Carbonate 0.6515 0.3485

Artificial Neural Network (ANN) 1-Shale 0.9266 0.0734 0.8534 0.1466

2-Sand 0.7594 0.2406

3-Carbonate 0.6792 0.3308

Adaptive Boosting (ADB) 1-Shale 0.8709 0.1291 0.7920 0.2080

2-Sand 0.6677 0.3323

3-Carbonate 0.6503 0.3497

Xtreme Gradient Boosting (XGB) 1-Shale 0.9162 0.0838 0.8487 0.1513

2-Sand 0.7535 0.2482

3-Carbonate 0.6728 0.3272

Support Vector Machine (SVM) 1-Shale 0.9203 0.0797 0.8140 0.1860

2-Sand 0.6478 0.3522

3-Carbonate 0.6000 0.4000

Multilayer Perceptron (MLP) 1-Shale 0.9332 0.0668 0.8771 0.1229

2-Sand 0.7850 0.2150

3-Carbonate 0.7798 0.2202
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Mississauga Formation mainly consists of sand facies with
alternating shale and carbonate facies. All six methods’ results
were in good agreement throughout the Mississauga Formation
(Figures 9A–F). These sand facies were deposited in a deltaic
environment and are widespread throughout the Scotian Basin. A
change in tectonism most likely caused the altered Mississauga
sedimentation during the separation of European and North
American plates and regional sea-level rise (Jansa and Wade,
1975). Due to this reason, shale and carbonate facies were also
found deposited in alternation. Previous researchers subdivided
Abenaki Formation into four members, i.e., Scatarie, Misaine,
Baccaro, and Artimon (McIver, 1972; Given, 1977; Eliuk, 1978;
MacLean and Wade, 1993). The Artimon member is the top part of
the Abenaki Formation, mainly characterized by carbonate and

argillaceous facies. Baccaro member is dominated by carbonate
facies deposited in the shallow marine environment. Below this
member, Misaine member is dominated by the transgressive shale
up to 200 m (Eliuk, 1978). Below Misaine member, Scatarie mainly
consists of carbonate and shale facies. In the present study,
carbonate facies from Artimon, Baccaro and Scatarie members,
and shale facies from Misaine member were precisely delineated.
Our results (Figures 9A–F) also agree with litho-facies away from the
boreholes expected to be deposited in different depositional
environments in the Penobscot field (refer to Figure 2).

We also noticed a few significant discrepancies from the
arbitrary sections. First, we found the problem-related resolving
capability of different methods; as a result, some methods estimate
the litho-facies in chunks. Second, an anomalous zone (blue oval)

FIGURE 9
An arbitrary line section is passing through both wells as indicated extracted from the (A) RF, (B) ANN, (C) ADB, (D) XGB, (E) SVM, and (F)MLP facies
volumes. Notice the good correlation between the predicted litho-facies and the well litho-facies strips overlaid.
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was identified, showing different litho-facies in different methods.
These discrepancies arise away from borehole locations, suggesting
the validation of the predicted results.

6 Validation

Validation is an integral part of increasing confidence in a
study’s findings. It can be done by comparing the findings of
other complementary methods or using existing records. In the
present research work, the estimated results from ML methods are
validated by comparing them to the findings of the frequency and
polarity attributes (Figures 10A, B), as explained below.

6.1 Instantaneous frequency

Instantaneous frequency is a proven useful qualitative seismic
attribute for determining stratigraphic terminations, thickness, and

litho-facies changes (Taner et al., 1994; Castagna et al., 2003;
Sukmono et al., 2006; Tai et al., 2009; Lu and Zhang, 2011). It is
calculated as the time change rate of the instantaneous phase divided
by 2π. In general, high-frequency responses signify dense formation
(here, carbonate facies), while low-frequency responses signify loose
formation (here, shale facies). Frequency values are also affected due
to the intergranular pores (high-porosity) and the nature of the fluid
present within them. Figure 10A depicts the arbitrary instantaneous
frequency section passing through both wells. The entire section
shows a significant frequency variation ranging between 7 and
50 Hz. It is found that chaotic and low (8 Hz) to high (42 Hz)
frequency responses from the anomalous zone highlighted in
Figures 9A–F. Based on frequency responses, the presence of all
three litho-facies of thin and discrete nature is expected.

6.2 Apparent polarity

Polarity characteristics are a helpful tool in subsurface litho-
facies delineation. Change in polarity value occurs due to change in
impedance with depth (Brown, 1999; Barnes, 2006; Sukmono et al.,
2006; Sukmono, 2010). The change in impedance indicates the
change in litho-facies in the subsurface. Figure 10B depicts the
arbitrary instantaneous frequency section passing through both
wells. A constant apparent polarity marks the Abenaki top. As
highlighted in Figure 6A–F; Figure 7A, the anomalous zone is
characterized by a random apparent polarity response. It
indicates the termination of Abenaki carbonate facies due to the
possible inclusion of clastic facies (Figures 9A–F). The inferences
drawn based on the polarity attribute are well corroborated with the
observations from the frequency attribute (Figure 9A).

7 Discussion

A qualitative and quantitative attempt has been made to assess
the accuracy of various ML classifier techniques in litho-facies
discrimination. Calculated statistics (precision, recall, F1-score,
accuracy and misclass) provide numerical inputs in the
comparative evaluation of each ML model (Dixit and Mandal,
2020; Kumar et al., 2022; Srivardhan, 2022). Initially, three
different litho-facies (shale, sand, and carbonate facies) were
interpreted by analyzing different wireline logs from both wells.
Further, these litho-facies were predicted throughout the 3D volume
using seismic attributes as input features (Table 2) and litho-log
from wells as target features. Previously, various scientists have
successfully applied supervised and unsupervised ML methods on
well logs and seismic data for litho-facies prediction (Wang and
Carr, 2012; Bhattacharya et al., 2016; Zhang and Zhan, 2017;
Chevitarese et al., 2018; Bressan et al., 2020; Liu et al., 2021; Xu
et al., 2021; Babu et al., 2022). These studies were mostly applied
two- or three-ML methods to interpret the lithological distribution
in hydrocarbon and coal explorations. Here, we performed
comparative assessment of 6 ML methods viz., RF, ANN, ADB,
XGB, SVM, and MLP methods and evaluated their performance in
litho-facies classifications in hydrocarbon exploration purposes.

To assess the model’s efficacy, we examined all the parameters
(evaluation and confusion matrices) together. However, precision

FIGURE 10
The results estimated from predicted litho-facies were validated
with (A) Instantaneous frequency and (B) apparent polarity attributes.
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and recall are often in tension (precision increases, then recall
decreases and vice-versa). Therefore, F1-score, the harmonic
mean of the precision and recall, can be a reliable indicator of
the model’s performance in various litho-facies classifications
(Table 3; Figure 6C). Higher F1-score (0.86–0.92) values found
on test data suggest that all six methods performed well in shale
facies prediction. Relatively lower F1-score values were found in the
estimation of carbonate facies (0.70–0.82) and sand facies
(0.66–0.79). Accuracy and misclassification are the second major
parameters to examine the models’ performance in litho-facies
classification (Table 4; Figure 7A–F; Figure 8A, B). Relatively
higher accuracy and lower misclass values were found for shale
facies (0.87–0.94 and 0.06–0.13), followed by the sand facies
(0.65–0.79 and 0.21–0.35) and the carbonate facies
(0.60–0.78 and 0.22–0.40) considering all the models.
Comparatively, the ML models’ accuracy score for specific
lithologies varies significantly (Kumar et al., 2022). All the
models efficiently classify the shale facies compared to the sand
and carbonate facies. It indicates that the accuracy scores depend
upon the number of samples (facies thickness) of shale, sand, and
carbonate litho-facies used in test data.

In the current analysis, the ML models’ performance was found in
order of MLP > RF > ANN > XGB > SVM > ADB for shale facies
classification, MLP > RF > ANN > XGB > SVM > ADB for sand facies
classification, andMLP>ANN>XGB>RF >SVM>ADB for carbonate
facies classification. On an overall scale, the performance of MLmodels
is in order of MLP > RF > ANN > XGB > SVM > ADB in the
classification of all three litho-facies. A similarmodel performance order
was also found from overall accuracy and misclass values in classifying
all three litho-facies. Incorporating tuned regularization/penalty
parameters in the MLP method is primarily responsible for
improved results (Van der Baan and Jutten, 2000; Dixit and
Mandal, 2020; Kumar et al., 2022). Due to a large number of trees,
RF is an ensemble-basedmethod that avoids overfitting and emerged as
a powerful tool for classification. Xtreme Gradient Boosting emerged as
a highly effective and accurate model by adding numerous trees in
succession and focusing on the errors from the preceding one. Adaptive
boosting algorithm uses empirical evidence and is highly susceptible to
uniform noise, possibly making the model poorly performed in the
present analysis. SVM classifiers are accurate, perform well in high-
dimensional spaces, and need relatively less memory. However, the
major problem associated with the SVMclassifier is poorly handling the
overlapping classes. On the other hand, several other factors affect the
accuracy of the models. Relatively lower frequency bandwidth in
seismic data caused the overlapping responses from different litho-
facies, which caused the misclassification problem in facies estimation
(Narayan et al., 2023). Models’ performance was also affected by
delineating thin and discrete inter-bedded facies. Therefore,
validation of estimated results is necessary to ascertain the accuracy
of the prediction model. Our results agree with the results of
comparative study from Srivardhan, (2022) and Kumar et al. (2022).

8 Conclusion

The present study highlights the efficacy of the machine learning
methods, namely, RF, ANN, ADB, XGB, SVM, andMLP, in classifying
the shale, sand and carbonate facies from the Penobscot field, Scotian

Basin. These ML models were trained and validated on well-based
interpreted litho-facies data. The performance of the ML models was
examined on test data through the confusion matrix (accuracy and
misclass) and evaluation matrix (precision, recall, F1-score). On the
overall scale, the accuracy score suggests that all the models performed
best in classifying the shale facies (87%–94%), followed by the sand
(65%–79%) and carbonate facies (60%–78%), respectively. The
accuracy scores found for different litho-facies also depend on the
thickness of the litho-facies present in the subsurface. Different ML
models’ performances were found in order of MLP > RF >ANN >
XGB> SVM>ADB for shale facies,MLP>RF>ANN>XGB>SVM>
ADB for sand facies and MLP > ANN > XGB > RF > SVM > ADB for
carbonate facies classifications. In the current analysis, theMLPmethod
emerged as the best-performing model, whereas the ADB method was
the least-performing tool in classifying all three litho-facies from Late
Jurassic to Cretaceous deposits in the Penobscot field. The estimated
distribution of the different litho-facies was found to be in good
agreement with the previous geological understandings and eustatic
curve (sea-level changes) from Jurassic to Cretaceous period in this
region.
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