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Genomic selection has recently become an established part of breeding strategies
in cereals. However, a limitation of linear genomic prediction models for complex
traits such as yield is that these are unable to accommodate Genotype by
Environment effects, which are commonly observed over trials on multiple
locations. In this study, we investigated how this environmental variation can
be captured by the collection of a large number of phenomic markers using high-
throughput field phenotyping and whether it can increase GS prediction accuracy.
For this purpose, 44 winter wheat (Triticum aestivum L.) elite populations,
comprising 2,994 lines, were grown on two sites over 2 years, to approximate
the size of trials in a practical breeding programme. At various growth stages,
remote sensing data from multi- and hyperspectral cameras, as well as traditional
ground-based visual crop assessment scores, were collected with approximately
100 different data variables collected per plot. The predictive power for grain yield
was tested for the various data types, with or without genome-wide marker data
sets. Models using phenomic traits alone had a greater predictive value (R2 =
0.39–0.47) than genomic data (approximately R2 = 0.1). The average improvement
in predictive power by combining trait and marker data was 6%–12% over the best
phenomic-only model, and performed best when data from one full location was
used to predict the yield on an entire second location. The results suggest that
genetic gain in breeding programmes can be increased by utilisation of large
numbers of phenotypic variables using remote sensing in field trials, although at
what stage of the breeding cycle phenomic selection could be most profitably
applied remains to be answered.
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Introduction

The amount of data provided by genotyping technologies
outweighs that provided by phenotyping. This has led to
phenotyping being labelled as the current “bottleneck” in plant
breeding (Furbank and Tester, 2011). In the past decade, the
deployment of remote sensing technologies has resulted in a
large increase in the amount of phenotyping data that can be
collected from plant breeding field trials (Atkinson et al., 2018).
With this advancement came the new problems of how best to utilise
large volumes of phenotype data and how to combine it with
genotyping outputs (Shakoor et al., 2019). In this paper we aim
to show how phenomic data can be used to predict yields and how it
can be combined with genomic prediction to increase the prediction
accuracy of both methods.

Phenomics is the study of physiological, biochemical and
morphological traits of an individual and the corresponding
genetic and environmental factors (Deshmukh et al., 2014). In
plant breeding terms, this is the global study of phenotypes
relating to growth and development throughout the growing
season. Most classic methods of collecting phenotypic data, such
as visual scoring, are slow, subjective, and labour intensive.
Advancements in remote sensing have provided quick and
reliable methods of collecting numerous data points
simultaneously, in a short period of time (Atkinson et al., 2018).
In addition, soil scanning technologies now allow for the
measurement of topsoil depth, soil texture and moisture content
(Doolittle and Brevik, 2014). Together with traditional ground based
visual scoring (e.g., growth staging) it is now possible to produce a
large phenomic data resource, comparable to that produced by
genomics, for each trial. As a result, remote sensing is
increasingly used to systematically collect field data on a large
scale at reasonable costs. The significance of this high-throughput
field phenotyping for plant genetics and breeding has been reviewed
by Cabrera-Bosquet et al. (2012), Araus et al. (2018), Atkinson et al.
(2018) and Rebetzke et al. (2019).

Genomic selection, which allows prediction of performance
based on large genome-wide marker datasets, has been applied in
wheat breeding for over two decades (Meuwissen et al., 2001). In
genomic selection, part of the germplasm under selection is not
extensively phenotyped but its performance is predicted by a
statistical model, which is based on the phenotypic performance
measurements of a training population of related materials and
dense genotype data of all materials (Jannink et al., 2010). By making
selections on the basis of genotype without the need to phenotype
the individuals accelerates the breeding cycle and saves time and
resources. However, the phenotypic performance of the training
population can change depending on the location or year of the trial
(Mackay et al., 2015). This is because the expression of most
quantitative traits such as yield are not only determined by the
genotype but are also influenced by the environmental conditions at
a particular location. Thus, these genotype-by-environment
interactions (GxE) are an intrinsic hurdle for the efficacy of
genomic prediction in crops. Consequently, a genomic prediction
model that has been trained on a single location may have a very
high prediction accuracy when cross-validating over
environmentally similar locations but may have poor prediction
on related or even the same genetic materials grown at different

locations. A solution to this problem is to grow the training
population in multiple locations which will, in turn, negate the
benefits of genomic selection. An alternative solution is to measure
environmental variation directly, and incorporate these covariates in
a prediction model (Mackay et al., 2015). For example, variation in
soil characteristics across a trial can be quantified by measurements
of apparent soil conductivity and soil nutrient levels. In addition,
environmental effects can be captured indirectly via phenotypic
measurements of plants that reflect variations in plant development
or the physiological status of tissues. For example, remote sensing
methods can be used to derive vegetation indices based on spectral
reflectance signatures of the canopy. Therefore, the combination of
phenomic and genomic markers provides a dataset capable of
accounting for genotype by environment interactions.

In the past decade a number of approaches have been used to
directly or indirectly take into account the impact of environmental
variation on yield prediction in wheat. Heslot et al. (2014) used
weather data and plant growth models to improve predictions over
44 environments. Rutkoski et al. (2016) and Crain et al. (2018)
demonstrated the use of a limited number of remote sensing traits as
covariates for yield prediction. Ovenden et al. (2018) used factor
analysis to predict expression of the level of stem water soluble
carbohydrates over locations, but without using explicitly measured
environmental variation. The addition of remote sensing data
appeared to make the greatest contribution to improving
environment-specific prediction. In certain cases it has also been
shown that predictions based on phenotypic data by remote sensing
can perform better than marker and pedigree based predictions
(Krause et al., 2019).

In the current study, we aimed to test the idea that capturing the
environmental variation within and across locations with phenomic
and explicit environmental data in large-scale field trials can
improve yield predictions when compared with genomic data
alone. Forty-four winter wheat populations comprising 2992 F2:
F4 lines were created from crossing elite commercial parental lines
from four breeding companies. These were tested in yield plots at
two locations in two consecutive years. For each plot trait data were
collected at several developmental stages, and grain yield was
measured at maturity. With the collected datasets, we tested the
power to predict yield using combinations of phenotypic traits
(“phenomic prediction”) alone, and in conjunction with marker
data as in conventional genomic prediction. In practice, commercial
breeding programmes involve large-scale yield trials, which are used
to train and validate genomic selection models. This study shows
how phenomic selection, based largely on hyperspectral remote
sensing, can be combined with genomic selection at such a scale,
applied to large number of elite crosses, and which models show the
best prediction accuracy.

Materials and methods

Germplasm

Thirty-nine bi-parental and five three-parental cross
populations were used to develop 2992 F2:4 lines (68 per cross).
The majority of this population has been described previously by
Edwards et al. (2019), although an extra 11 crosses were added at a
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later date to our study after they became available for use. The
parents of these populations were elite breeder’s germplasm
consisting of both hard and soft winter wheat cultivars adapted
to the United Kingdom. A total of 27 parents were used, of which
eight parents were used in five or more crosses, six parents were used
in three or four crosses, and the remaining 13 parents were only used
in a single cross. Previous modelling studies showed that this
number of crosses provided the best balance between optimising
the accuracy of prediction models, costs of genotyping and
phenotyping and managing the logistics of conducting large field
trials (Gaynor et al., 2017).

Genomic data

The F2:4 lines were genotyped using the Wheat Breeders’ 35K
Axiom array (Allen et al., 2017). The DNA for genotyping was
obtained by bulking leaves from approximately six F4 plants per F2:4
line. Genotype calling was performed using the Axiom Analysis
Suite 2.0 with a modified version of the “best practices” workflow.
QC threshold was reduced to 95 (97 normally), plate pass percent
was changed to 90 (95 normally), and average call rate was changed
to 97 (98.5 normally). Thresholds were reduced to accommodate the
bulk sampling and early generation nature of the material used.
After quality control, a total of 35,143 markers were brought forward
with 13,791 markers for which codominant scores could be assigned
to pools of offspring lines. Sporadic missing data were imputed using
Beagle 3.3.2 (Browning and Browning, 2007). Marker sets were
filtered for PIC values >0.1 (9,743 markers). Non-redundant marker
datasets were created by removing markers with a correlation
of >0.9 with other markers (4,404 markers).

Trials setup

The F2:4 lines and agronomic checks were evaluated in 1.7 × 4 m
plots at two locations (Cambridge, UK and Duxford, UK) in the
2015–16 growing season, and two locations (Duxford, UK, and
Hinxton, UK) in the 2016–17 growing season (Table 1). Trials were
sown between 23rd October to 4th November 2015 and 12th and
26th October 2016, and harvested between 31st August to 9th

September 2016 and 15th to 29th August 2017. The preceding
crop for all four trials was winter beans (Vicia faba L.). The soil
at the Duxford (Dux) sites in 2016 and 2017 (on neighbouring fields)
was a sandy clay loam in the Soham series with a clay loam subsoil
overlaying chalk rubble. The Cambridge (Cam) site was clay loam
(St Lawrence series) overlaying clay, and Hinxton (Hinx) was freely
draining lime-rich loamy soil overlaying chalk rubble. All locations
were managed for optimal yield by supplying fertilizer and applying
pesticides to control disease. All 44 F2:4 populations were evaluated
in four plots across 2 years. However, eleven of the populations were
only planted in the 2016–17 growing season due to lack of
availability of seed. To accommodate the missing populations,
the allocation of F2:4 lines was highly unbalanced across years
and locations as described below.

The experimental design for both locations within a year was a
modified α-lattice design (Patterson and Williams, 1976). The
modified design consisted of a traditional, replicated α-lattice
design with un-replicated entries added to the sub-blocks. The
replicated portion of the α-lattice design was composed of the
agronomic check varieties and half of the entries (34 of 68 lines)
from 22 of the F2:4 populations. These entries were planted in two
blocks split into 151 sub-blocks each containing five entries. The
remaining F2:4 lines were randomly allocated to sub-blocks, bring
the total number of entries per sub-block to either nine or ten. The
half of the F2:4 entries used for the replicated portion of the design
differed between locations. Thus, entries from 22 of the F2:4
populations were evaluated in three plots split across both
locations, and the entries from the remaining populations were
evaluated in two plots split across locations within a year (Table 1).
Yield and grain moisture data were automatically collected by the
harvester combine. Raw yield data were adjusted to 85% dry matter
using measured grain moisture contents.

Weather data

Weather data were collected on the NIAB meteorological
station, Cambridge UK. For comparison of weather variables
across years, daily average air temperature (°C) and rainfall (mm)
were used.

Soil measurements

To describe spatial variations in soil physical characteristics,
measurements of apparent soil conductivity were made at two
depths, 0–50 cm (‘Shallow”) an 50–150 cm (“Deep”).
Measurements were carried out using an electromagnetic
induction meter (Dualem-1S, Dualem Inc., Milton, ON, Canada)
by experienced field personnel (SOYL Precision Crop Production,
Newbury, UK). The vehicle pulling the sensor travelled at a speed of
6-7 kph on wheelings at the ends of yield plots, at a read rate of 1 Hz,
equivalent to taking recordings every 2 m. The entire trial area was
surveyed in sweeps along each row of plots. Raw data points were
used to make an interpolated map of the trial site which was
segmented into 0.5 m2 grids. Grid values falling within the
boundaries of the plots, as defined by a shape file, were averaged
to assign a value to each plot. In 2016, measurements were made at

TABLE 1 Trial design summary showing number of replicated plots per tested
line per location.

2015/2016 2016/2017

No. Lines Cambridge Duxford Duxford Hinxton

367 2 1 1 0

381 2 1 0 1

381 1 2 1 0

367 1 2 0 1

748 1 1 1 1

748 0 0 2 2

Total plots 2,992 2,992 2,992 2,992
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each trial location in late April after soil profile recharge with winter
rainfall, and prior to stem extension of the crop plants. In 2017,
measurements were made in the beginning of May, when some net
removal of soil moisture by the crop had already occurred.

Collection of multispectral and
hyperspectral data

Hyperspectral reflectance data of the trials fields were collected
via piloted aircraft at low altitude (2Excel Aviation Ltd.,
Northampton, UK) on a single flight per season post-flowering
(27 June 2016 and 7 July 2017). Hyperspectral reflectance data
(400–2,500 nm) in 3.26 nm (up to 1,000 nm) to 10.90 nm
(1000–2500 nm) bandwidths were collected using Hyspex VNIR-
1800 and SWIR384e cameras (Neo, Norway) mounted on a Navajo
aircraft. To produce plot-level georeferenced vegetation indices
(Supplementary Table S2), raw hyperspectral data were
radiometrically calibrated and then atmospherically corrected to
reflectance using in-scene targets placed on the ground at trial sites
prior to flyover, or, when these were unable to be deployed, using a
standard QUAC algorithm. Water absorption bands (>1,000 nm),
which were not used for indices, were removed to reduce file sizes.

High resolution RGB images were used to create digital surface
and terrain models, from which estimates of crop height were
derived. Multispectral data were collected by sequential
unmanned aerial vehicle (UAV) flights at 3–4 week intervals
between April-September 2016 (PrecisionHawk Inc., Raleigh, NC,
United States), and April-July 2017 (Environment Systems, Ltd.,
Aberystwyth, UK). The raw reflectance data were collected, pre-
processed and computed as various VI by experienced personnel
employed by the suppliers. A list of VI collected from both UAV and
plane flights are in Supplementary Table S1. Redundant VIs that
produced the same information were omitted. Approximately
50 unique wavebands were used, combined in different ways to
compute the VIs. Best linear unbiased estimates (BLUEs) for each
line and location were calculated using mixed linear models, taking
into account block and subblock as random effects using R package
lme4 (Bates et al., 2015). With one exception in June 2017, UAV
measurements were made at both trial locations on the same day.

General crop assessment

During the growing season simple checks were performed on the
all plots to identify any agronomic issues, to ascertain when
hyperspectral and multispectral data collection should begin and
to provide a ground based reading to compare against remote
sensing data. Emergence and early season crop cover were scored
visually for the 2016/17 season to identify any drilling issues. When
disease was present in the trial a general disease score (0 = no disease,
9 = >90% of plants with symptoms) was assigned to each plot. All
plots were visually scored for growth stages (Zadoks et al., 1974) at
three different time points to decide when best to schedule UAV
flights to coincide with the start of flowering (GS 61) in the majority
of lines. The EARLY time point coincided with the majority of lines
being at GS 39 (flag leaf emergence) whilst MID and LATE time
points coincided with GS 55 (half of the ear emerged) and GS69 (end

of flowering), respectively (Supplementary Table S1). During grain
filling, the level of senescence (0 = no senescence, 9 = fully senesced),
presence/absence of awns, waxiness (0 = no glaucousness, 9 =
densely glaucous) were scored visually. Plant height was
measured as average height of the canopy from three different
points per plot.

Yield predictions

Yield predictions were performed using as covariate predictors
either phenomics trait data, marker data or both, using elastic net
regression (R package elasticnet; Zou and Hastie, 2005). Lasso and
ridge regression (both R package glmnet) methods were also
compared. The models were trained on randomly selected
subsets of either raw plot values or line BLUEs on each location
and tested on the remaining plot values or BLUEs. Fraction ratios of
training vs. test sets were experimentally varied. Resampling
strategies were repeated 100 times. The effect of the quadratic
penalty parameter (lambda) setting was manually evaluated and
set to 0 for lasso regression, 0.1 for elastic net regression and 1 for
ridge regression. The lambda value of 0.1 was chosen after it was
established in preliminary analyses that in a range of 0.1–0.9 in steps
of 0.1, this setting resulted in the highest prediction accuracy after
cross-validation. Each variable combination in which resampling
was involved was repeated 100 times. Multivariate genomic
prediction was done by multivariate GBLUP implemented in R
package AlphaMME (https://bitbucket.org/hickeyjohnteam/
alphamme/) using as covariates either the first three principal
components (R package adegenet; Jombart, 2008) over all non-
yield trait data, or the three or four largest PLS regression coefficients
(R package pls; Liland et al., 2016) with yield as the response
variable. Predictions were based on marker and/or trait data
only; relationship information for the lines was not used,
although full pedigree data were obtained (Fradgley et al., 2019).
Prediction accuracies were calculated as the squared correlation
between predicted and observed values.

Results

Data set characteristics

The current study was conducted on data collected on a large
winter wheat panel that was created specifically for this research. For
this program, 44 wheat populations were created from a total of
27 parents (Edwards et al., 2019), from which 2,992 lines were tested
in yield trials at four locations in the years 2015/2016 and 2016/2017
(Table 1). In addition to grain yield, phenomic data comprised:
ground-based visual scores; measurements of soil physical
properties; vegetation indices VI) calculated from multispectral
reflectance data collected with unmanned aerial vehicles (UAVs);
and from hyperspectral reflectance data collected using piloted
aircraft. In total 104 trait variables (including yield) were
collected in the 2015/2016 trials and 130 traits in the 2016/
2017 trials (Supplementary Table S1). VI produced by
multispectral and hyperspectral data in general were highly inter-
correlated because of the similar wavebands used for calculations or
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because different wavebands of the spectral reflectance were related
to similar physico-chemical aspects of the crop. After eliminating
redundant VI that produced the same information, the number of
non-redundant, distinct traits was approximately 40 on both years
(Figure 1). Even though individual reflectance wavebands from the
hyperspectral measurements were not used here, the high
dimensionality of the data captured by principal component
analysis (Figure 1A) and the small decay in correlation threshold
as redundant trait covariates were eliminated (Figure 1B) indicated
that approximately 40 distinct traits effectively captured the
variation without overfitting. Similarly, Zhu et al. (2021) found in
soybean that reducing the number of wavebands did not weaken
predictive ability. A reduction in the number of variables that needs
to be considered in a prediction model is akin to the selection of
tagSNPs through elimination of correlated alleles from
neighbouring SNPs (Pettersson et al., 2009).

The yield data showed large variance among the four trials due
to environmental differences between sites and years. The greatest

average yield was observed at Duxford in 2016 and the smallest at
Hinxton in 2017 (Figure 2). Cumulative precipitation was greater
during the growing season 2015/2016 (620 mm) than in 2016/2017
(583 mm). Yields at the Hinxton site in 2017 were affected by lighter
soils (sandy loam) and dry conditions during a period without
rainfall from 17 April to 2 June 2017, with only 42 mm recorded
between 4 March and 15 May 2017, compared with the long-term
average (1986–2016) of 59 mm and 108 mm during the same period
in 2016. During that period, the only day with significant (>5 mm)
rainfall occurred on 22 March 2017 (7.5 mm). The accumulated soil
moisture deficit (ETo minus rainfall) of 152 mm, which reached a
maximum on 26 June 2017, was accompanied by delayed N uptake,
as fertiliser remained on the soil surface until it was solubilised by
rainfall that re-commenced 16–18 May 2017 (48 mm). The water
holding capacity (to an effective rooting depth of 1.2 m) at the
Duxford sites was 187 mm, 199 mm at Cambridge, and 198 mm at
Hinxton. These conditions are not unusual for wheat production in
the region. Low rank correlations for yield for lines shared across
sites were observed among the four locations, indicating strong GxE
effects between trials (Table 2). In 2017, air temperatures increased a
week earlier in spring compared with 2016; however at harvest time,
all trial fields had been exposed to the approximately same growing
degree days (range 2,527–2,610 °Cd).

Phenomic yield prediction

As a first characterization of the suitability of the phenomics traits
as predictive covariates for yield, lasso models were created with data
from both locations within a year and model fits were compared to the
original data (after rescaling to the original scales per location; Figure 3).
The models showed a high fitting accuracy with no bias over both
locations within a year, except for Duxford 2016 for which the overall fit
was lower than that of the other three locations. The variation in the
phenomics data explainedmost of the variation in yield, suggesting that
all or part of the phenomics data would be good proxies for yield.
Inspection of the fitted lasso coefficients showed that the highest
contribution were from the multi- and hyperspectral data, while the
lowest coefficients were observed for the soil measurements and the
ground-based visual scores.

To test the power of the phenomics data to predict the validation
data, various fractions of the total set of plots (1, 0.75, 0.5, 0.25, 0.15,
0.10, 0.05, 0) in both locations of both years were kept for the
training phase using lasso, elastic net or ridge regression models, and
the rest were used as a validation set (Table 3, Supplementary Table
S2). Again, we observed high prediction accuracies. In general, the
accuracy for a location only dropped when less than 10% of its
entries were included in the model. Elastic nets was clearly less
sensitive to this effect than lasso regression. The former method
shows slightly lower overall prediction accuracy because it balances
the predictive power between selected covariates with a detectable
individual effect and spreading the variation evenly over all
covariates. All predictions were more accurate for the 2017 trials
than for the 2016 trials. Repeating all analyses using line corrected
averages (BLUEs) yielded similar trends as the analysis using
uncorrected averages (on a per plot basis), except that all
accuracies were on average 0.046 lower for the 2016 data and
0.097 lower for the 2017 data. Trends from the ridge regression

FIGURE 1
(A): Number of unique traits in the phenomic data set in the four
location/year combinations with mutual correlations lower than the
threshold on the x-axis (B): Cumulative explained variance as a
function of the number of principal components included. Lines
are fitted to data using a spline curve fitting procedure.
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analysis were similar to those from elastic net, except that all
accuracies of ridge regression were on average 0.02–0.03 smaller
(not shown).

Table 3 (and Supplementary Table S2) shows that using the elastic
net method a reasonably accurate yield prediction over locations is
possible based only on phenomic measurements, provided that the
same phenomics traits have been collected on a reference site for which
yield data are known. For instance, if a prediction model for 2016 was
trained on 50%of the yield data fromDuxford and only 10%of the yield
data from Cambridge, prediction accuracy for yield across sites was 0.5
(Table 3, Supplementary Table S2). Table 3 (and Supplementary Table
S2) values are based on the average accuracy over both locations in each
year; however, there are appreciable differences in goodness-of-fit
among the locations, as illustrated in the scatterplots (Figure 3).
There were also differences among average prediction accuracies per
location over all resampling combinations. For instance, average
accuracies (expressed as R2 values for each site) of the ridge
regression predictions, which show the lowest dependency on
training set size, were: 0.55 (Cam 2016); 0.30 (Dux 2016); 0.72 (Dux
2017); 0.65 (Hinx 2017). Lasso prediction accuracies for each site
(Figure 3) were: Cam 2016 (R2 = 0.62; blue); Dux 2016 (R2 = 0.37;
red); Dux 2017 (R2 = 0.79; green); Hinx 2017 (R2 = 0.76; black).

In order to obtain a better understanding of the nature of the
predictive power of a heterogeneous phenomics dataset, traits were
subdivided in categories. These included the type of trait (or
environmental covariate in the case of soil data) and time point
of measurement (Supplementary Table S1). Figures 4A,C clearly
show that the spectral data sets, which also contain most of the
observations, account for the vast majority of the prediction power.
For 2016, the multispectral data were less predictive than the
hyperspectral data, whereas in 2017 they were similar. It is
interesting to note that the traits described by the multispectral
data were essentially plant height and green canopy cover (estimated
in different ways with different spectral indices), whereas the
hyperspectral data reflected a larger range of plant traits. This
indicates two things: that a relatively small number of phenomic
traits can have good predictive power, and that light interception
dominates the relationship to yield. The contribution of manually
assessed visual scores towards yield prediction was small, including
assessments of general phenological development. The prediction
accuracy of the multispectral data increased to a maximum
corresponding to GS 55, and then decreased as the crop senesced
(Figures 4B,D).

The overall dataset was disjointed, as a set of lines part was tested
only in 2017 (due to a delay in the availability of seed; Table 1), and
some of the traits were not measured in both the years
(Supplementary Table S1). The prediction accuracies were highly
variable depending on location. As atmospheric and radiometric
corrections were applied to the remote sensing data, site effects are
most likely due to the biological status of the crop. Predictions for
Duxford 2017 were always greater than those of other locations
(Figure 5). Prediction of whole locations (e.g., from which no data
have been used in the training phase) always had a lower accuracy
than training sets composed of data from all locations (using test

FIGURE 2
Average grain yield for each environment. Error bars indicate standard deviation.

TABLE 2 Spearman’s rank correlations for yield among shared lines between
locations.

Cam 2016 Dux 2016 Dux 2017

Dux 2016 0.389 1

Dux 2017 0.233 0.275 1

Hinx 2017 0.150 0.192 0.352
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conditions with comparable size sets) (compare Figures 5A,B).
Training on three full locations gave better results than training
on two. Training on two full locations from two different years were
better than two of the same year, indicating that best results are
obtained when year-by-year variation is represented in the training
set (Figure 5B). The effect of all these tendencies was dwarfed by the
variation in accuracy according to location. For instance, the best
phenomic prediction accuracies for whole-location prediction were
consistently found for the trials in Cambridge 2016 and Duxford
2017. The results illustrate the importance of the environments used
for the training sets, which must be representative of the target
environments to obtain the best predictions, even when using
environmental covariates along with genomic and or phenomic
markers (Rogers and Holland, 2022).

In general, visual trait scores showed poor correlation with yield (r <
0.1), although plant height showed greater correlationswith yield in 2017
(r = 0.3–0.4). It is unlikely this was a data quality issue; for example, leaf
wax related traits were consistent over two locations, and correlated (r =
0.33–0.45) with particular hyperspectral VI. Visual scores of growth
stage did not correlate well with other measurements. Manual
measurements of canopy height correlated well (r = 0.60–0.67) with
height estimates calculated from the digital surface models derived from
the UAV RGB images.

Combining phenomic and genomic data for
prediction

A major aim of the study was to capture environmental
variation to make genomic prediction over locations more
reliable. Differences in genotype-specific responses to
environments may erode the prediction accuracy of a model

trained in one environment when it is applied to materials grown
in another environment (Mackay et al., 2015; Crossa et al., 2017).
As the current phenomic data have been demonstrated to have
predictive power towards yield, these could be used to
complement marker data to predict genotype performance in
different environments.

Using only the genetic marker set, the predictive power over
locations (without inclusion of data of the test site in the model) was
low (Figure 6A). This was expected, given the observed occurrence
of strong GxE effects for yield among the four trial locations.
Prediction using the phenomics data for the same combination
had dramatically greater accuracy. The combined prediction power
of both data types together was slightly greater than that of only the
phenomics data, except for Hinxton 2017. The average
improvement of the combined data models over the best single
data type model (the phenomics model) was 6.7% (or 12.6%
improvement when not taking in account the data for Hinxton
2017). When a small fraction (10%) of data from the test location
was added to the training set, the accuracy when using the
phenomics data increased, but the complementary effect increase
of both data types was lower (Figure 6B). When larger fractions of
data from the test location were added to the training set, the
accuracies of phenomics and combined models eventually
converged to the same level (not shown).

As the dimensionality of the current phenomics datasets is too
large to be included in full in a multivariate genomic prediction
model and there was large cross trait correlation, we reduced
phenomic trait data to either the first three principal components
(PCO) or to the major components in a partial least square (PLS)
analysis with yield as response variable. With PCO, taking in
consideration the loadings in the various sources of the
phenomics traits, we selected the four components with the

FIGURE 3
Lasso regression fits for yield using the phenomics data as covariates for trials within a year. Scatter plots show predicted yields (horizontal axis) for
each site using a model trained on phenomics data across both locations, vs. observed yield data (vertical) for individual plot yields. R2 values indicate the
goodness of fit. Colour coding: Blue: Cam 2016 (R2 = 0.62); Red: Dux 2016 (R2 = 0.37); Green: Dux 2017 (R2 = 0.79); Black: Hinx 2017 (R2 = 0.76).
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highest loadings for the 2016 trial data and the three components
with highest loadings for the 2017 trial data (Table 4). In this setup,
multivariate predictions were done using data from both locations
within each trial year, with randomly masked line average yields
used as training and the remainder for validation. The addition of
the PCO components as response variables had no effect on
prediction accuracy in the 2016 data, while there was a modest
improvement in prediction accuracy in the 2017 data. In the latter
case, the inclusion of the yield related PLS components had a larger
effect than the addition of the neutrally selected PCO components
(Figure 7). When the model was trained on single locations (e.g.,
predicting yield performance on all lines at the second location), no
change in prediction accuracy was found for multivariate over
univariate analysis in any combination of locations and
components.

Discussion

In this study we tested the idea that phenomics data collected on
wheat yield trials could capture the component of yield variance due
to environment variation, predict yield across location and years,
and potentially complement genomic prediction. For this purpose
we collected more than 100 different traits using different remote
sensing methods and traditional ground-based visual assessments.
As ‘pure’ environmental covariates, physical soil attributes were
collected at the plot level as well. A similar approach has been
reported by Rutkoski et al. (2016) with more trial locations but a

limited amount of phenomics traits. To our best knowledge, the
combination of the wide range of phenomic data collected
on >12,000 plots across four locations over 2 years, marker data
on >3,000 elite crosses from within commercial breeding
programmes, makes the current study one of the largest public
wheat study of its kind so far.

Hyperspectral imaging has been used extensively for plant
phenotyping, as the signatures of reflected light across a broad
spectrum from plant surfaces can be related to a wide range of
physiological features, and has been used to predict grain yield in
some studies (Sarić et al., 2022). A large amount of data can be
collected using hyperspectral analysis when considering the
spatial distribution of the waveband stacks for each image
pixel, but our correlation analysis showed that large
proportions of variation were redundant over the traits. In the
total dataset across all data sources, the effective number of non-
redundant traits was consistently found to be around 40. From
the total variation present in all traits, 50%–60% could be
explained by the first three principal components. In contrast,
a study by Aguate et al. (2017) found that using individual
hyperspectral wavebands in the phenomic prediction model of
maize yield performed better than vegetation indices.

Spectral data collected during mid-grain fill (approximately
15 days after flowering) had strong predictive power for yield in
the current datasets, both within location and over locations. Similar
results have been reported in other studies (Das et al., 1993; Yue
et al., 2021). Detailed analysis of the multispectral data collected by
UAV at various time points during the season suggests that the

TABLE 3 Selection of phenomic yield prediction accuracy for random masked data for two locations within a year. Prediction results are from raw plot yield data
and for BLUEs using the Lasso and Elastic net regression methods. For full summary of phenomic yield prediction accuracy see Supplementary Table S2.

2016 2017

Training fractions LASSO Elastic Net LASSO Elastic Net LASSO Elastic Net LASSO Elastic Net

Location 1 Location 2 RAW RAW BLUE BLUEs RAW RAW BLUE BLUEs

1 1 0.53 0.46 0.49 0.45 0.78 0.74 0.68 0.65

1 0.5 0.38 0.31 0.36 0.33 0.72 0.70 0.66 0.64

1 0.1 0.32 0.29 0.33 0.31 0.67 0.65 0.60 0.60

1 0 0.22 0.27 0.22 0.30 0.50 0.59 0.47 0.57

0.5 1 0.62 0.58 0.56 0.54 0.77 0.75 0.62 0.61

0.5 0.5 0.52 0.45 0.47 0.44 0.76 0.73 0.66 0.64

0.5 0.1 0.45 0.40 0.42 0.40 0.73 0.70 0.63 0.62

0.5 0 0.30 0.38 0.28 0.36 0.16 0.65 0.50 0.59

0.1 1 0.54 0.54 0.51 0.51 0.73 0.71 0.57 0.57

0.1 0.5 0.51 0.47 0.47 0.45 0.75 0.72 0.62 0.61

0.1 0.1 0.48 0.44 0.42 0.40 0.74 0.72 0.61 0.62

0.1 0 0.18 0.41 0.11 0.24 0.02 0.58 0.23 0.51

0 1 0.23 0.52 0.30 0.49 0.05 0.68 0.49 0.54

0 0.5 0.25 0.45 0.29 0.43 0.03 0.69 0.48 0.58

0 0.1 0.15 0.40 0.14 0.34 0.02 0.66 0.18 0.54
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predictive power of these data types initially increased over time to
flowering/grain fill stage but then decreased at the ripening stage.
This is unsurprising as the majority of VIs focus on chlorophyll-
related traits (e.g., canopy cover, photosynthetic activity), whilst loss
of chlorophyll in a senesced crop will have diminished the
discriminatory utility of the VIs. In future work, the time-course
data can be analysed further to derive longitudinal variables that
describe dynamic changes in the crop, such as rates of canopy
expansion and senescence, which are affected by genotype and
environmental conditions. Quantification and modelling of these
dynamic changes have recently been shown to be good predictors of
wheat yield (Fu et al., 2020) (Sun et al., 2022). Similar time-course
data have been incorporated into gene models (Bustos-Korts et al.,
2019). As the costs of a single flight via piloted aircraft for
hyperspectral imaging is comparable to multispectral (UAV)
flights on multiple dates, both approaches in our study offer
similar prediction power for the money spent. However, more
recently modelling dynamic changes in crop development over
numerous UAV-multispectral flights offer increasingly better

predictions of yield (Fu et al., 2020), then the UAV-multispectral
option would prove most appealing in breeding settings. A number
of morphological features, such as height, lodging susceptibility, ear
emergence, etc., can be derived using a relatively low cost RGB
camera, precluding the need for a more expensive multispectral
sensor (Sun et al., 2022). From the current observations, it is difficult
to draw conclusions about the biological basis of the various
components of spectral reflectance that contributed to the
prediction of yield, but this lack of fundamental understanding
does not preclude use of the phenomic data as predictors. Other
studies have shown that spectral-based phenomic selection can be as
good as or better than genomic selection for yield prediction,
including near-infrared spectroscopy of grain or flour samples as
predictors (Robert et al., 2022).

Ground-based, visual crop assessment scores made little
contribution to the accuracy of the yield predictions, including
assessments of genotypic differences phenological development.
These findings imply that remote sensing techniques cannot, at
present, simply be used to directly replace traditional visual scoring

FIGURE 4
Yield prediction accuracy for different sources, types and times of measurement for 2016 (top panels) and 2017 (bottom panels), leaving out a
random 50% of plots from both locations for validation of the model training set. (A) (2016) and (C) (2017) show prediction accuracy for data subsets in
each year, in which traits were classified according to data type. (B) (2016) and (D) (2017) show the predictive power of the multispectral trait datasets in
each year, separated by time of measurement, F1-F5 (spanning the period mid-spring until the end of summer). Supplementary Table S1 shows the
dates of each flight (F). Error bars indicate standard deviation over the data re-samplings.
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methods used currently in wheat breeding and research programs. A
more reasonable assumption would be to use remote sensing data to
complement current techniques by collecting data on valuable traits
that are difficult to score visually, such as nitrogen or water content
(recently reviewed in Blatchford et al., 2019; Fu et al., 2021).

Environmental covariates (either weather-derived or generated
using crop models) have been incorporated into G x E prediction
models to improve the accuracy of genomic selection across
environments (Jarquin et al., 2013; Heslot et al., 2014; Saint Pierre
et al., 2016), but not in all cases (Widener et al., 2021). With only four
environments in our study, such an approach would not have been
effective. Instead, we attempted to capture within trial environmental
variation by measurements of apparent soil conductivity (measured at
two depths) at meter spatial resolution so that covariates could be
assigned to each plot. Measurements of soil nutrients were also
interpolated to the individual plot level. The soil conductivity
measurements were expected to be a proxy for local variation in

water holding capacity, which could have affected yield in a dry
season. It was anticipated that these covariates would account for a
portion of the environmentally-induced variation in observed yields, as
found by Vieira et al. (2022). However, despite variation in soil
conductivity across the fields in each trial, no detectable relationship
to the yield variation was found. It could be that the levels of spatial
differences measured with this technique were not sufficiently large
enough to have a detectable effect on yield. Recently, a study that
combined explicit, known environmental variables with latent variables
achieved improvements in predictive power of a multi-location
genomic selection model (Tolhurst et al., 2022). Although in our
study the four environments were too few to adopt this strategy,
this provides encouragement that collection of explicit
environmental data at test locations can be beneficial.

While the predictions based on the phenomics data were in
general accurate and robust, this was not the case for predictions
based on the marker data. We noted that all marker-based

FIGURE 5
Phenomic prediction accuracies of yield using the elastic nets
method, predicting over trial years and locations. (A) The effect on
prediction accuracy at each location when different fractions of the
dataset weremasked (equal for each location) and the remaining
plots were used for model training. Error bars indicate standard
deviation over the data resamplings. (B) Prediction of full locations
from the other locations. First series: three locations were used for
training and prediction was done on the fourth location; second
series: two locations in two different years were used for training and
prediction was done on a third location; third series: two locations in a
single year used for training, prediction of a third year.

FIGURE 6
Prediction of yield for full trial locations within each trial year
using two types of predictive data: markers, phenomic trait data and
these two combined. (A) Four within-year combinations of a
prediction model trained on yield line averages of one location,
applied to predict yield on the other location, using marker data,
phenomic data and both. (B) as in A, however here the training sets
have been supplemented with 10% random fractions of the same data
types from the test location. Error bars indicate standard deviation
over the data re-samplings.
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prediction accuracies are lower than previously observed in
wheat (e.g., Heslot et al., 2014; Lopez-Cruz et al., 2015;
Battenfield et al., 2016; He et al., 2016; Rutkoski et al., 2016;

Norman et al., 2018). A possible explanation is that the markers
for this study have been assayed on pools of F2:4 offspring,
which might induce an extra level of uncertainty on the genotype
scores.

The complementary predictive power of the phenomics data
with the genomic data was found to be low, suggesting that the
genotypic variance is almost fully covered by the phenomics traits.
The level of complementary effect is in the same range found by
Heslot et al. (2014) when applying explicit environment-crop
interaction models, but smaller than that found by Lopez-Cruz
et al. (2015) with the application of marker-by-environment
interaction models (without use of explicitly measured data to
represent the environmental variation). Rutkoski et al. (2016)
showed that modelling three remote-sensing covariate traits
increased prediction accuracy substantially; however, the
predictive effect of the remote sensing data without markers was
not included in this paper, so the complementarity of both data types
cannot be inferred from the results. The improvements in the
accuracies by inclusion of the remote sensing data reported by
Rutkoski et al. (2016) were in general lower than we found with the
data in this study. Crain et al. (2018) found that including two
remote sensing traits with genomic predictions gave small
improvements for most of the investigated trial combinations.

The use of marker data alone for genomic selection is appealing
to breeders, as genotyping is relatively easy and cost-effective, and
can even be conducted on seed materials without the need to grow
the actual plants for which the traits are to be predicted (Lorenz et
al., 2011). In our study, phenomic data were collected on large plots
that were also used to measure yield. Additionally, we demonstrated
that multivariate prediction of yield together with representations of
the measured phenomics variation resulted in very small

TABLE 4 Selected components analysis to reduce the dimensionality of the phenomics data. For each trial year (combining both sites), the first three principal
components (PCO) are shown as well as the components with the highest loadings in a Partial least squares regression (PLS analysis) with yield as the response
variable. For the PLS components, the trait categories with the highest loadings are indicated X). See text for dates and approximate growth stages when
measurements were taken.

Trial year Component Correlation to Yield Main composition (PLS loadings)

Early multispectral Late multispectral Hyperspectral Field scores

2016 PCO 1 0.16

PCO 2 0.14

PCO 3 −0.04

PLS 1 0.47 X X

PLS 2 0.35 X X X

PLS 3 0.21 X X

PLS 4 0.17 X X X

2017 PCO 1 0.17

PCO 2 0.11

PCO 3 0.040

PLS 1 0.63 X X

PLS 2 0.35 X X X

PLS 3 0.25 X X

FIGURE 7
Genomic prediction accuracies using yield and phenomics data
as co-response variables and markers as covariates on data of both
locations within each trial year; 80% line averages randomly sampled
for training, 20% for validation. Series show prediction accuracies
for univariate (yield only), multivariate yield plus first three principal
components of phenomics data and multivariate yield plus PLS
components with highest loadings, respectively. Error bars indicate
standard deviations over the data resamplings. Asterisks indicate the
one-tailed t-test significance between univariate and multivariate
accuracies.
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improvements over univariate prediction of yield, as has previously
been reported by Rutkoski et al. (2016). This would be a logistically
and financially demanding strategy, and as yield is already being
measured as part of a yield trial there is little value in a prediction
model. However, the phenomics data prediction accuracy when
compared to the genomic predictions in this study show great
potential in terms of prediction accuracy towards yield in winter
wheat; Krause et al. (2019) showed similar findings when comparing
hyperspectral based phenomics verses marker and pedigree
predictions. However, in our study the predictive accuracy of the
phenomic data was greater, relative to the marker data, than that
shown by Krause et al. (2019). Whilst unlikely to be used on yield
trials, a practical application of this approach might be to train and
use the model to test yield potential of family breeding materials
grown in small plots or ear rows that are too small for accurate yield
measurement but can be measured for phenotypic traits using high
resolution remote sensing methods. Current advancements in low-
cost remote sensing technology now allow this (Sun et al., 2022). For
example, our observations in the 2017 trial suggest that even
predictions based on relatively cost-effective multispectral
measurements made more than 4 months before the harvest date
can be twice as accurate as genomic prediction.

The concept of genomic prediction is that all materials are
genotyped because genomic data are relatively cheap to obtain from
seed or seedlings and only a fraction of the materials are measured for
yield, which is relatively expensive. Our original idea was that low-cost,
highly dimensional phenomic markers could be used in the same sense
as genomic markers and creating a richer dataset in combination.
Surprisingly, the results show that prediction algorithms based on a
relatively small number of phenomic markers alone are as good or
better than a large set of genomic markers or the set of combined
markers. This suggests that individual phenomic markers have greater
intrinsic value than individual genomic markers although individual
markers of any sort explain only a small fraction of the variation in yield.
For example, a single phenomic marker that corresponds to green
canopy cover is genetically determined by a large number of genes
acting in concert to produce that phenotype. Alternatively, a single SNP
may have a tiny effect on any observable phenotype. Furthermore, the
phenomic marker, as a measure of the expression of multiple genes
under certain environmental conditions, also encapsulates epigenetic
effects that cannot be readily described by markers based on DNA
sequence alone. Where efforts to use phenomic markers have failed in
the past to gain acceptance in selection programmes might have been
due to the limited number of markers that were employed, and the time
and cost required to collect those phenomic data. Techniques are now
available to vastly increased the number of phenomic markers and
decrease acquisition costs (Sun et al., 2022). The results of this study
show how such datasets could be used and their value for yield
prediction across sites and years.
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