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This paper attempts to resolve the problem concerning the interval observers
design for linear systemswith ostensible Metzler systemmatrices. Because system
dynamics matrices are partially different from strictly Metzler structures, a solution
is achieved by constructing a composed system matrix representation, which
combines pre-compensated interval matrix structures fixed with a prescribed
region of D-stability and the reconstructed strictly Metzler matrix structure,
related to the original interval system matrix parameter definition. A novel
design procedure is presented, which results in a strictly positive observer gain
matrix and guarantees that the lower estimates of the positive state variables are
non-negative when considering the given system structure and the non-negative
system state initial values. The design is computationally simple since it is reduced
to the feasibility of the set of linear matrix inequalities.
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1 Introduction

Interval observers have appeared as an alternative technique for robust state estimation
(Moisan et al., 2009). Whilst, when using the technique based on classical observers, only the
initial condition is assumed to be unknown (Luenberger, 1971), interval observers structures are
constructed assuming that the upper and lower bounds of the initial conditions are known (Raïssi
and Efimov, 2018; Khan et al., 2020). The main limitation to the interval observers theory is that
the trajectories of the system that start from an internally bounded initial condition will enclose
the stable system trajectory only if the system is positive that its system matrix is Metzler and
Hurwitz and that other matrix parameters are non-negative (Farina and Rinaldi, 2000). Thus, the
positivity of interval estimation error dynamics is one of the most restrictive assumptions for
interval observers design. When restricted to the Metzler structure of system matrices, as well as
to non-negative input and output matrices, such systems are referred to as Metzler systems
(Nikaido, 1968; Smith, 1995; Liu et al., 2011), with a stringent approach that reflects the diagonal
stabilization principle. Although a certain class of systems can be transformed through a change
of coordinates into positive cooperative systems (Mazenc and Bernard, 2011; Mazenc and
Bernard, 2014), no general technique exists for such construction.

When maintaining platforms for positive systems with nonnegative states (Nikaido,
1968; Smith, 1995; Moisan et al., 2009), the theory of Metzler matrices (Berman et al., 1989)
implies some additional parametric constraints to reflect the system positiveness (Shorten
et al., 2009) and to construct the system representation (Son and Hinrichsen, 1996; Gao et al.,
2005; Liu et al., 2017; Ito and Dinh, 2020). Since the linear time-invariant system theory
cannot be directly used for linear positive systems, various combinations of linear
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programming and linear matrix inequalities (LMI) are generally
used to represent Metzler systems (Ait Rami and Tadeo, 2006; Shu
et al., 2008; Anderson and Murray, 2018; Guo et al., 2020). The
benefits of a potential unification are presented (Krokavec and
Filasová, 2018) when reflecting diagonal stabilization and
associated Metzler system matrix parametric representations by a
specific set of LMIs.

The system matrix parametric constraints give rise to substantially
complex design methods when applied to positive systems with
interval-defined model parameters (Ganesan, 2007). To demarcate
the object of study in this field, Metzler matrix transforms are
reflected for interval observers analysis (Mason, 2012; Chambon
et al., 2015). Interval observers design for linear time-varying (LTV)
systems, as well as for a class of non-linear time-varying systems with
output specifications, exploits static coordinate transformation (Efimov
et al., 2013; Raïssi and Efimov, 2018) when translating a stable LPV
system to another stable and cooperative LPV system. The LMI-based
conditions applicable in interval observers design for positive Metzler
systems have also been studied (Krokavec and Filasová, 2020b). The
utilization of interval observers for interconnected schemes is often
applied in relation to distributed interval estimation and distributed
feedback control (Wang et al., 2020; Wang X L et al., 2022; Zhang et al.,
2022); this also reflects that their application for continuous linear large-
scale systems is limited due to the system’s complexity (Wang T et al.,
2022). These problems are still open in distributed applications since it
is difficult to ensure that the system state will be enclosed by the
cooperative estimated upper and lower bounds of the observed system
state (Huong, 2022; Li et al., 2022), as well as in interval estimation
strategy for anti-disturbance control of drones (Yong et al., 2020).

This paper contributes to the properties of the interval state
estimation for linear systems with ostensible Metzler system matrices.
It outlines a new LMI-based approach to determine interval observers
with positive observer gains using a combined representation of the
ostensible Metzler system matrix (Krokavec and Filasová, 2022). Design
conditions are formulated using LMIs, respecting the diagonal
stabilization principle, Metzler system matrix parametric constraints,
and given interval matrix bounds. Because linear systems with ostensible
Metzler matrices are not positive, even if their matrix parameters are
non-negative, the main limitation to the solution is that the interval
estimation only works for system state variables whose trajectories for a
non-negative initial state are non-negative.

The outline of this paper is as follows. Following an introduction in
Section 1, the basic preliminaries are discussed in Section 2. Section 3
presents the LMI structures necessary for observer stability and the
positive gain, and the design method of interval observers for a given
class of positive systems is presented in Section 4. To illustrate the design
task, its efficiency is demonstrated by numerical solutions in Section 5;
in Section 6, conclusions are briefly presented.

Throughout the paper,X≺ 0 conveys briefly that a real squarematrix
X is a symmetric and negative definite, notations xT and XT identify the
transpose of a vector or a matrix, In indicates the nth order unit matrix,
function ρ(·) reflects the eigenvalue spectrumof a real squarematrix, diag
[ · ] enters a block diagonal matrix, the symbol * is used as ellipsis in a
symmetric matrix, L∞ is the set of real function z(t) with the property
‖z(t)‖ <∞, the relations x1 ≤ x2 and X1 ≤ X2 operate on corresponding
elements element-wise, R (R+) qualifies the set of (non-negative) real
numbers, Rn×r (Rn×r

+ ) refers to the set of n × r (non-negative) real
matrices, and Mn×n

−+ denotes the set of strictly Metzler square matrices.

2 Basic preliminaries

To explain the technique used, the main question can be
illustrated using the linear Metzler systems given as follows:

_q t( ) � Aq t( ) + Bu t( ) + Dd t( ), (1)
y t( ) � Cq t( ), (2)

where q(t) ∈ Rn
+, u(t) ∈ Rr, and y(t) ∈ Rm

+ are non-negative vectors
of the system, input and output, disturbance d(t) ∈ L∞, d(t) ∈ Rrd+
is norm-bounded and non-negative, and B ∈ Rn×r

+ , D ∈ Rn×rd+ , and
C ∈ Rm×n

+ are non-negative matrices.
DEFINITION 1. Berman et al. (1989).A square matrixA ∈ Mn×n

−+ is a
strictly Metzler matrix if all its diagonal elements are negative and all
its off-diagonal elements are positive.

This study also uses the term “a purely Metzler matrix
A ∈ Mn×n

−⊕ ” if all diagonal elements of A are negative and all its
off-diagonal elements are non-negative, and “an ostensible Metzler
matrix A ∈ Mn×n

−⊖ ” if all diagonal elements of A are negative and at
least one off-diagonal element is negative while the number of non-
negative off-diagonal elements is prevalent.

2.1 Positive continuous-time linear systems

The following assumptions make it possible to cover constraints
on the parameters of system (1) and (2) when studying the system
positivity and the conditions of its diagonal stabilizability.

LEMMA 1. Tanaka and Langbort (2011). Disturbance-free system
(1), (2) is internally positive if and only ifA is (strictly, purely) Metzler
and B, C are entry-wise non-negative.

In consequence, any solution of an autonomous and
disturbance-free linear system with a Metzler matrix A ∈ Mn×n

−⊕ is
element-wise non-negative for all t ≥ 0, provided that q (0) ≥0. The
output solution y(t) for such a defined solution is non-negative if
C ∈ Rm×n

+ . Such dynamical systems are called non-negative only if
initial conditions in Rn

+ are considered.
REMARK 1. A strictly Metzler matrix A � {aij}nI,j�1 makes of n2

constraints

aii < 0 ∀ i � 1, . . . , n, aij,i≠j > 0 ∀ i, j � 1, . . . , n. (3)
These parametric constraints imply the strict application of the diagonal
stabilization principle (Shorten et al., 2009;Mason, 2012) in analysis. If a
strictly Metzler A ∈ Mn×n

−+ is represented (in relation to the observer
design) in the following rhombic form, where the diagonal items reflected
by the column index define multiple circular shifts of elements of the
columns of A as (Krokavec and Filasová, 2020b)

AΘ �

−a11
a21 −a22
a31 a32 −a33
..
. ..

. ..
.

1
an1 an2 an3 / −ann

a12 a13 / a1n
a23 / a2n

1 ..
.

an−1,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

the diagonal stabilization principle can be appropriately respected
using the derived diagonal matrix structures related to AΘ as
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A l, l( ) � diag −a11 −a22 / −ann[ ] ≺ 0, (5)
A l + h, l( ) � diag a1+h,1 / an,n−h a1,n−h+1 / ah,n[ ] ≻ 0, (6)

for h = 0, 1, . . . , n−1.
REMARK 2. Defining the matrix L ∈ Rn×n in the circulant

permutation form (Horn and Johnson, 1995)

L � 0T 1
In−1 0
[ ], L−1 � LT (7)

and considering a diagonal matrix Z � diag[ z11 z22 / znn ]
,

where Z ∈ Rn×n
,
then

LTZL � diag z22 / znn z11[ ]. (8)
The aforementioned results can be combined and reflected by

the following lemma.
LEMMA 2. Krokavec and Filasová (2020a) If a positive matrix

J ∈ Rn×m
+ forces the strictly Metzler matrix Ae � A − JC ∈ Rn×n

−+ ,
where A ∈ Rn×n

−+ is strictly Metzler and C ∈ Rm×n
+ is non-negative,

then Ae is parameterized as

Ae �∑n−1
h�0

A l + h, l( ) −∑r
k�0

JjhCk
⎛⎝ ⎞⎠LhT, (9)

A l, l( ) −∑r
k�0

JkCk ≺ 0, (10)

A l + h, l( ) −∑r
k�0

JkhCk
⎛⎝ ⎞⎠LhT ≻ 0, (11)

where h = 1, . . . , n − 1 and the diagonal matrices
Jk, Jkh,Ck ∈ Rn×n

+ are composed in the following ways:

C �
cT1
..
.

cTm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ck � diag cTk[ ], (12)

J � j1 / jm[ ], Jk � diag jk[ ], Jkh � LhTJkL
h. (13)

The proof of the aforementioned lemma is based on the fact that
only diagonal matric representations are applicable for the diagonal
stabilization of positive systems.

2.2 Ostensible Metzler matrices

Given a system with the dynamical model (1) and (2) and
considering that A ∈ Rn×n

−⊕ is an ostensible Metzler matrix, then
inclusion of the negative off-diagonal elements of A into the design
task is built on the following basic facts from the theory of matrices.

DEFINITION 2. Shores (2007) Matrix X ∈ Rn×n is similar to the
matrix Λ ∈ Rn×n if there exists an invertible similarity transform
matrix S ∈ Rn×n such that

S−1XS � Λ. (14)
If X andΛ are similar, then they have the same eigenvalues, their

algebraic multiplicities are the same, their characteristic polynomials
are the same, and their determinants and traces are the same.

REMARK 3. Let {vk ∈ Cn}nk�1 be the set of eigenvectors for a matrix
X ∈ Rn×n and {λk ∈ C}nk�1 is the associated set of eigenvalues of X such
that eigenvalues are all distinct, then (14) implies

V � v1 v2 / vn[ ], Λ � diag λ1 λ2 / λn[ ] (15)
and {vk ∈ C

n}nk�1 are linearly independent.

Theorem 1. Shores (2007) If for X,Y ∈ Rn×n it can be set Y = cX +
dIn with scalars c, d ∈ R, c ≠ 0, and In ∈ Rn×n, then the eigenvalues of
Y are

ξ k � cλk + d, (16)
where λk runs over ρ(X) with k = 1, . . . , n, and the eigenvectors of X
and Y are identical.

Supposing that A is ostensible Metzler, then the proposed idea
means decoupling the system matrix A so that A = Ap + Am, where
Ap is strictly Metzler and Am is entry-wise negative and Hurwitz.

LEMMA 3. Krokavec and Filasová (2022) A strictly Metzler
Ap ∈ Mn×n

−+ and an entry-wise negative and Hurwitz Am ∈ Rn×n to
the composed form of the ostensible Metzler matrix A � Ap +
Am ∈ Mn×n

−⊖ exist if there exist positive scalars η, δ ∈ R+ such that with

λo � maxk λ+k | λ+k � real λk( )> 0( ), λk ∈ ρ A°m( )), (17)
p � λo + δ, Ad + pIn ≺ 0, Ad � diag −a11 / − ann[ ],
A � aij{ }n

i,j�1, (18)
it yields

Ap � Ad + A+ + ηΣ + pIn � A°p + pIn,

Am � A− − ηΣ − pIn � A°m − pIn, (19)
where

Σ �
0 1 / 1 1
1 0 / 1 1
..
. ..

.
1 ..

. ..
.

1 1 / 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

and

A− �

0 a−12 / a−1,n−1 a−1n
a−21 0 / a−2,n−1 a−2n
..
. ..

.
1 ..

. ..
.

a−n−1,1 a−n−1,2 / 0 a−n−1,n
a−n1 a−n2 / a−n−1,n−1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A+ �

0 a+12 / a+1,n−1 a+1n
a+21 0 / a+2,n−1 a+2n
..
. ..

.
1 ..

. ..
.

a+n−1,1 a+n−1,2 / 0 a+n−1,n
a+n1 a+n2 / a+n−1,n−1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

a+ij � aij if aij > 0,
0 if aij < 0,{ a−ij � aij if aij < 0,

0 if aij > 0,{ (22)

are defined for i, j ∈ 〈1, n〉, i ≠ j, whilst ρ(A°
m) is the set of eigenvalues

of the matrix A°
m.

REMARK 4. Structure (21) implies, since the sum of the eigenvalues
of a matrix equals its trace,

tr A°m( ) �∑n
k�1

λ◦mk � 0 (23)

and so the set {λ◦mk ∈ C}nk�1 consists of stable and unstable eigenvalues.
For repeated eigenvalues, one must add them according to their
multiplicity, but this does not change the existence of a real eigenvalue
with amaximal positive value to be compensated by the construction used.
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REMARK 5. An upper-bound parameter η ∈ R+ must be chosen
such that, in the final result, it must be set λo > η. Since (19) is
constructed as a strictly Metzler matrix, all the elements on its
main diagonal must be negative. This implies the boundary
condition in defining a stable D-stability region with δ ∈ R+ such
that

max
i

aii + p( ): aii + p ∈ Ad + pIn( )< 0, p � λo + δ. (24)

2.3 Intervally defined ostensible Metzler
matrices

In this case, is assumed that q(0) and the ostensible Metzler
system parameter A are unknown but bounded by constant
bounding vectors and constant bounding matrices of
appropriate dimensions in such a way that (these inequalities
being understood element-wise (Jaulin et al., 2001))

0≤ q 0( )≤ q 0( )≤ �q 0( ), A ≤A≤ �A. (25)

Since the main goal is the design of an interval observer of
the state, it is considered that B ∈ Rn×r

+ , D ∈ Rn×rd+ , and C ∈ Rm×n
+

are known non-negative matrices, the system input u(t) is
norm-bounded, and the following assumption is adopted.

ASSUMPTION 1. The function bounds d , �d ∈ Rrd+ and d , �d ∈ L∞
are given such that

0≤ d ≤ d t( )≤ �d. (26)
This assumption states that the disturbance is known up to some

interval error ed � �d − d .
COROLLARY 1. Strictly Metzler A p, �Ap ∈ Mn×n

−+ and an entry-wise
negative and Hurwitz A m, �Am ∈ Rn×n to the composed forms of
the ostensible Metzler matrices A � A p + Am, �A � �Ap +
�Am ∈ Mn×n

−⊖ exist if there exist positive scalars η , �η, δ , �δ ∈ R+
such that, with

λ o � maxk λ +
k | λ +

k � real λ k( )> 0( ), λ k ∈ ρ A °m( )), (27)
�λo � maxk �λ

+
k | �λ+k � real �λk( )> 0( ), �λk ∈ ρ �A°m( )), (28)

p � λ o + δ , A d + p In ≺ 0, A d � diag −a 11 / − a nn[ ],
A � a ij{ }n

i,j�1, (29)
�p � �λo + �δ, �Ad + �pIn ≺ 0, �Ad � diag −�a11 / − �ann[ ],
�A � �aij{ }n

i,j�1, (30)
it yields

A p � A d + A + + ηΣ + p In � A °p + p In,

A m � A − − ηΣ − p In � A °m − p In, (31)
�Ap � �Ad + �A+ + �ηΣ + �pIn � �A°p + �pIn,
�Am � �A− − �ηΣ − �pIn � �A°m − �pIn, (32)

where Σ is from (20) and A +, �A+, A −, and �A− are constructed by the
rules defined in (21) and (22).

3 General interval observers structure

Under these introduced assumptions, the interval observers
equations for systems with intervally given ostensible Metzler
matrices can be defined as follows:

_q
e
t( ) � Aq

e
t( ) + Bu t( ) + J y t( ) − y

e
t( )( )

� A e�qe t( ) + Bu t( ) + Jy t( ), (33)
_qe t( ) � �A�qe t( ) + Bu t( ) + J y t( ) − �ye t( )( )

� �Ae�qe t( ) + Bu t( ) + Jy t( ), (34)
where q

e
(t) ∈ Rn and �qe(t) ∈ Rn are, respectively, the lower and

upper interval estimates for the state q(t) and

�Ae � �A − JC, A � A − JC, (35)
y t( ) � C q t( ), �y t( ) � C�q t( ),
y

e
t( ) � Cq

e
t( ), �ye t( ) � C�qe t( ). (36)

Using the observation errors

e t( ) � q t( ) − q
e
t( ), �e t( ) � q t( ) − �qe t( ), (37)

it follows from (1), (33), and (34) that

_e t( ) � A e e t( ) + Dd t( ), _e t( ) � �Ae e t( ) + Dd t( ). (38)
To construct a Hurwitz stable A e, �Ae ∈ Rn×n, guaranteeing also

strictly Metzler and Hurwitz matrices A pe, �Ape ∈ Mn×n
−+ when

implementing for ostensible Metzler A , �A ∈ Mn×n
−⊖ ,

A � A p + Am ∈ Mn×n
−⊖ , and �A � �Ap + �Am ∈ Mn×n

−⊖ , then (38) can
be rewritten as

_e t( ) � A pe e t( ) + A m e t( ) + Dd t( ),
_e t( ) � �Ape e t( ) + �Am e t( ) + Dd t( ), (39)

where

A pe � A p − JC, �Ape � �Ap − JC,

A e � A pe + A m, �Ae � �Ape + �Am. (40)

To apply the parametrization principle in designing this class of
observer, the following corollary is objective.

COROLLARY 2. State observation error dynamics (40) entail the
parameterizations of the strictly Metzler matrices A p and �Ap as follows:

A p l, l( ) � diag a p11 / a pnn[ ],
�Ap l, l( ) � diag �ap11 / �apnn[ ], (41)

A p l + h, l( ) � diag a p,1+h,1 / a p,n,n−h a p,1,n−h+1 / a ihn[ ],
(42)

�Ap l + h, l( ) � diag �ap,1+h,1 / �ap,n,n−h �ap,1,n−h+1 / �aphn[ ], (43)

A pe �∑n−1
h�0

A p l + h, l( ) −∑r
j�0

JjhCj
⎛⎝ ⎞⎠LhT, (44)

�Ape �∑n−1
h�0

�Ap l + h, l( ) −∑r
j�0

JjhCj
⎛⎝ ⎞⎠LhT, (45)

while the parameterizations (12) and (13) stay unchanged.
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Provided that (25) is satisfied, then for all t ∈ R+, the estimates
q
e
(t) and �qe(t) are bounded with the limit properties, illustrated by

the following remark.
REMARK 6. Performing an inner adjustment for (38) as

_q t( ) − _q
e
t( ) � A e q t( ) − q

e
t( )( ) + Dd t( ), (46)

_q
e
t( ) � _q t( ) − A e q t( ) + A eq e

t( ) − Dd t( ), (47)

respectively, and substituting (1) in (47) yields
_q
e
t( ) � A − A − JC( )( )q t( ) + A eq e

t( ) + Bu t( )
� A − A( ) q t( ) + JC q t( ) + A eq e

t( ) + Bu t( )
� A − A( ) q t( ) + JC q t( ) + A ep + A m( )q

e
t( ) + Bu t( ),

(48)
and, if A e � A ep + Am is Hurwitz, C ∈ Rm×n

+ is nonnegative,
J ∈ Rn×m

+ is positive, and A ≤A, then the lower system state
estimate produced by the interval observer constructed on the
system model with the ostensible Metzler matrix converges to a
non-negative trajectory if JC q (t)> 0. Consequently, provided that
q (0)≤ q(0)≤ �q(0), then for all t ∈ R+, the estimates q (t) and �q(t)
given by (33) and (34) produce the interval bounds only to those
system state variables qi(t), i = 1, . . . , n which are non-negative.

4 Interval observers design

The design goals are Hurwitz stable matrices A e ∈ Rn×n and
�Ae ∈ Rn×n and strictly Metzler and Hurwitz matrices A pe ∈ Mn×n

−+
and �Ape ∈ Mn×n

−+ when implementing for ostensible Metzler
A ∈ Mn×n

−⊖ and �A ∈ Mn×n
−⊖ . A solution method, resulting in positive

matrix gain J ∈ Rn×m
+ , is given in Theorem 2.

Theorem 2. The matrices A ep, �Aep, ∈ Rn×n
−+ are strictly Metzler and

Hurwitz and the matrices �Ae and A e ∈ Rn×n
−⊕ are Hurwitz if, for the

given ostensible Metzler matrices A , �A ∈ Rn×n
−⊕ and non-negative

C ∈ Rm×n
+ , there exist positive definite diagonal matrices

P,Rk ∈ Rn×n
+ and positive scalars μ , �μ ∈ R+ that for h = 1, . . . ,

n − 1, lT � [ 1 / 1 ] and the parameters from Corollary 2 satisfy the
LMIs

P ≻ 0, Rk ≻ 0, (49)
Ω * *
DTP − μ Ird *
C 0 − μ Im

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0,

�Ω * *
DTP −�μIrd *
C 0 −�μIm

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ≺ 0, (50)

P �Ap l, l( ) −∑m
k�1

RkCk ≺ 0, PA p l, l( ) −∑m
k�1

RkCk ≺ 0, (51)

PLhA p l + h, l( )LhT −∑m
k�1

RkL
hCkL

hT ≻ 0,

PLh �Ap l + h, l( )LhT −∑m
k�1

RkL
hCkL

hT ≻ 0, (52)

Ω � PA p + A T
pP + PA m + A T

mP −∑r
k�1

Rkll
TCk + Ckll

TRk( ), (53)

�Ω � P �Ap + �AT
pP + P �Am + �AT

mP −∑r
k�1

Rkll
TCk + Ckll

TRk( ). (54)

Confirming the feasible task, the interval observer gain is
given as

Jk � P−1Rk, jk � Jkl, J � j1 / jm[ ]. (55)
PROOF. To respect the diagonal stabilization principle, v(e (t)) is

served as a Lyapunov function for (37) using a symmetric positive
definite matrix P ∈ Rn×m

+ and a positive scalar µ ∈ R+ such that

v e t( )( ) � e T t( )P e t( )+ μ −1∫t

0
e T
y τ( )e y τ( ) − μ 2dT τ( )d τ( )( )dτ > 0,

(56)
whose time-derivative for the observer error trajectory must satisfy

_v e t( )( ) � _e T t( )P e t( ) + e T t( )P _e t( ) + μ −1e T
y t( )e y t( )

− μ dT t( )d t( )< 0. (57)

Applying in inequality (57) the observer error dynamics (37)
gives the following:

_v e t( )( ) � e T t( ) A T
e P + PA e( ) e t( ) + e T t( )PDd t( ) + dT t( )DTP e t( ))

+ μ −1e T t( )CTC e t( ) − μ dT t( )d t( ) < 0. (58)

Thus, constructing a common notation e d(t) that is readily
representable for the used variables as

e T
d t( ) � e T t( ) dT t( )[ ], (59)

then there is reasonable grounds to conclude that

_v e d t( )( ) � e T
d t( ) Ω °e d t( )< 0, (60)

where, for the covered systematization,

Ω ° � A T
e P + PA e + μ −1CTC PD

DTP − μ Ird
⎡⎣ ⎤⎦ ≺ 0. (61)

Therefore, the new form of LMI after applying the property of
the Schur complement is

PA e + A T
eiP * *

DTP − μ Ird *
C 0 − μ Im,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0 (62)

and, using (13) and 40, it can be set as

PA pe � P A p − JC( ) � PA p −∑m
k�1

Pjkc
T
k � PA p −∑m

k�1
PJkll

TCk,

(63)
where the column vector l is used to uncover the diagonal matrix
structures. Thus, (62) implies (50) and (53) when substituting

PJk � Rk, A e � A pe + A m. (64)

Separating h = 0 from (44) diagonal part and multiplying its left
side by P yields

PA p l, l( ) −∑m
j�1

PJjCj ≺ 0 (65)

and using notation (64) then (65) implies (51). Analogously, it can
be obtained when taking from (44) a component for h ≠ 0 and
multiplying its left side by PLh (since LhLhT = In) that

PLhA p l, l + h( )LhT −∑m
k�1

PLhLhTJkL
hCkL

hT ≻ 0 (66)
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and, using notation (64), then (66) implies (52).
Analogously, all this can be carried out for the upper bound

parameters. This concludes the proof.

5 Illustrative examples

In this section, two examples are presented to demonstrate the
effectiveness of the interval observers design.

Example 1. To illustrate the proposed design principles, the
stable interval ostensible strictly Metzler systems (1) and (2) are
constructed on the matrices

A �
−0.172 1.94 1.45
−0.142 −1.96 −0.38
0.100 0.17 −2.91

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, �A �
−0.158 2.06 1.55
−0.142 −1.64 −0.32
0.200 0.17 −2.55

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
D �

0.12
1.09
0.21

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, CT �
1 0
0 1
0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
To apply Theorem 2 conditions, the derived design parameters

are selected as

A d � diag −0.172 −1.96 −2.91[ ],
�Ad � diag −0.158 −1.64 −2.55[ ],

and the related matrix structures are constructed from the system
matrix bounds as follows:

A − �
0 0 0

−0.142 0 −0.38
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, A + �
0 1.94 1.45
0 0 0

0.10 0.17 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
Σ �

0 1 1
1 0 1
1 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
�A− �

0 0 0
−0.142 0 −0.32

0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, �A+ �
0 2.06 1.55
0 0 0

0.20 0.17 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Thus, using Σ and η = 0.005 yields for A°

m that

A °m � A − − ηΣ �
0 −0.005 −0.005

−0.147 0 −0.325
−0.005 −0.005 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
ρ A °m( ) � −0.0541

0.0050
0.0491

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, λ 0 � 0.0491,

�A°m � �A− − ηΣ �
0 −0.005 −0.005

−0.147 0 −0.325
−0.005 −0.005 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
ρ �A°m( ) � −0.0511

0.0050
0.0461

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, �λ0 � 0.0461.

Setting δ � �δ � 0.003 means p � λ 0 + δ � 0.0521 and
�p � �λ0 + �δ � 0.0491, and so A m � A °m − p In, �Am � �A°m − �pIn
take the values

A m �
−0.0521 −0.0050 −0.0050
−0.1470 −0.0521 −0.3850
−0.0050 −0.0050 −0.0521
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ A m( ) � −0.1062

−0.0471
−0.0030

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

�Am �
−0.0761 −0.0050 −0.0050
−0.1470 −0.0761 −0.3250
−0.0050 −0.0050 −0.0761
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ �Am( ) � −0.1272

−0.0711
−0.0300

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭.

Furthermore, A p � A d + A + + ηΣ + p In and �Ap � �Ad + �A+ +
ηΣ + �pIn are computed as

A p �
−0.1199 1.9450 1.4550
0.0050 −1.9079 0.0050
0.1050 0.1750 −2.8579

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ A p( ) � −0.0596
−1.9133
−2.9128

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

�Ap �
−0.0683 2.0650 1.5550
0.0050 −1.5503 0.0050
0.2050 0.1750 −2.4603

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ �Ap( ) � 0.0652
−1.5572
−2.5869

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

which are strictly Metzler, and their rhombic representations imply
the diagonal matrices for the observer synthesis

A p l, l( ) � diag −0.1199 −1.9079 −2.8579[ ],
�Ap l, l( ) � diag −0.0683 −1.5503 −2.4603[ ],

A p l + 1, l( ) � diag 0.0050 0.1750 1.4550[ ],
�Ap l + 1, l( ) � diag 0.0050 0.1750 1.5550[ ],
A p l + 2, l( ) � diag 0.1050 1.9450 0.0050[ ],
�Ap l + 2, l( ) � diag 0.2050 2.0650 0.0050[ ],

whilst straightforward calculations give

C1 � diag 1 0 0[ ], C2 � diag 0 1 0[ ], lT � 1 1 1 1[ ],
L � 0T 1

I3 0
[ ].

Using LMIs defined by Theorem 2, the feasible matrix variables
result in the non-negative gain matrix when applying the SeDuMi
package (Peaucelle et al., 2002)

P � diag 2.4234 3.1289 2.7125[ ] ≻ 0,
R1 � diag 3.0845 0.0048 0.0988[ ] ≻ 0,
R2 � diag 2.3627 1.1504 0.1488[ ] ≻ 0,

J �
1.2728 0.9750
0.0015 0.3677
0.0364 0.0548

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
μ � 4.0252, �μ � 4.1147.

This infuses the strictly Metzler and Hurwitz matrices A pe �
A p − JC and �Ape � �Ap − JC as

A pe �
−1.3927 0.9700 1.4550
0.0035 −2.2756 0.0050
0.0686 0.1202 −2.8579

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ A pe( ) � −1.3235
−2.2794
−2.9233

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

�Ape �
−1.3411 1.0900 1.5550
0.0035 −1.9180 0.0050
0.1686 0.1202 −2.4603

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ �Ape( ) � −1.1366
−1.9236
−2.6591

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

where A pe ≤ �Ape. In addition, it can be seen that, due to the structure
of matrix C, the elements on the third columns of matrices A pe and
�Ape have not changed compared to A p and �Ap.

Applying the same gain matrix to the ostensible Metzler
matrices yields

A e � A − JC �
−1.4448 0.9650 1.4500
−0.1435 −2.3277 −0.3800
0.0636 0.1152 −2.9100

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
�Ae � �A − JC �

−1.4308 1.0850 1.5500
−0.1435 −2.0077 −0.3200
0.1636 0.1152 −2.5500

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
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It should be noted that the positions of the negative off-diagonal
elements inA andA e, as well as in �A and �Ae, have been preserved. In
addition, in the considered case, A e ≤ �Ae.

By simulating the response of the autonomous system with
considered interval ostensible Metzler parameters to better illustrate
the ostensible Metzler phenomena, the dynamics of the system were

A �
−0.165 2.00 1.50
−0.142 −1.80 −0.35
0.150 0.17 −2.73

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, A ≤A≤ �A,

the initial system state was set as q(0) = [ 0.5 7.5 0 ]T,
q
e
(0) � �qe(0) � 0, and σ2d � 0.04. The simulation is executed in

the MATLAB framework using Simulink.
Figure 1 depicts the time responses of the first system state variable

and its upper and lower estimations; Figure 2 shows the time responses
for the third system state variable. Although the given system is not
positive, it can be seen from Figures 1 and 2 that the behaviors of these
state variables are correctly intervally estimated by the proposed interval
observer if the components Amq(t) and �Amq(t), indicated in (48), are
compensated by suitably choosing the observer initial states, satisfying
conditions q

e
(0)≤ q(0)≤ �qe(0). Since the state variable q2(t) is

undefined in sign, its interval estimation is also undefined in sign.
This case is trivial and is not presented.

Moreover, considering the effect of the fixed uncompensated
part with prescribed D-stability region related to A m, �Am, the
proposed approach leads to a structure that has the properties of
a stable system. By using the tuning parameter δ, the D-stability
region can be analytically continued.

Example 2.To demonstrate the application validity of the suggested
interval observer, the second example is presented on the linearized
dynamic model of a U.S. Navy F-404 engine which powers the F/A-
18 aircraft (Kwon et al., 1999). The corresponding dynamic model is a
stable interval ostensible purely Metzler system (1), (2), written as

A �
−1.4600 0 2.4280
−0.8357 −2.4 −0.3788
0.3107 0 −2.1300

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
�A �

−1.4600 0 2.4280
−0.3357 −1.4 −0.3788
0.3107 0 −2.1300

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, B �
0.4182 5.2030
0.3901 −0.1245
0.5186 0.0236

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Since the interval matrices of the system are purely Metzler, due to
the structure of their second column, it is advantageous if the
measurement system corresponds the following matrix C

C � 1 0 0
0 0 1
[ ], D �

1
1
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Applying analogously as the aforementioned conditions of

Theorem 2, the resulting matrix representations are

A m �
−0.0788 −0.0050 −0.0050
−0.8407 −0.0788 −0.3838
−0.0050 −0.0050 −0.0788
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ A m( ) � −0.1596

−0.0738
−0.0030

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

�Am �
−0.0877 −0.0050 −0.0050
−0.3407 −0.0877 −0.3838
−0.0050 −0.0050 −0.0877
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ �Am( ) � −0.1504

−0.0827
−0.0300

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

A p �
−1.3812 0.0050 2.4330
0.0050 −2.3212 0.0050
0.3157 0.0050 −2.1512

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ A p( ) � −0.8089
−2.3213
−2.7234

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

�Ap �
−1.3723 0.0050 2.4330
0.0050 −1.3123 0.0050
0.3157 0.0050 −2.1423

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ρ �Ap( ) � −0.7999
−1.3124
−2.7145

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

where δ � �δ � 0.003, λ 0 � 0.0758, �λ0 � 0.0577,
p � λ 0 + δ � 0.0788, and �p � �λ0 + �δ � 0.0607.

Analogously constructing the diagonal matrices for the interval
observer synthesis from the rhombic representations of the interval
system matrices and for the used matrix C, the feasible matrix
variables resulting from the conditions defined by Theorem 2 are

FIGURE 1
Estimation of the first state variable in the autonomous mode.

FIGURE 2
Estimation of the third state variable in the autonomous mode.
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P � diag 2.2680 3.3453 2.4098[ ] ≻ 0,
R1 � diag 1.4454 0.0062 0.2474[ ] ≻ 0,
R2 � diag 2.8826 0.0060 1.1582[ ] ≻ 0,

J �
0.6373 1.2710
0.0018 0.0018
0.1027 0.4806

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
μ � 4.2335, �μ � 4.4557.

This infuses the strictly Metzler and Hurwitz matrices A pe �
A p − JC and �Ape � �Ap − JC as

A pe �
−2.0185 0.0050 1.1620
0.0032 −2.3212 0.0032
0.2130 0.0050 −2.6318

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
�Ape �

−2.0096 0.0050 1.1620
0.0032 −1.3123 0.0032
0.2130 0.0050 −2.6229

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
ρ A pe( ) � −1.7406 −2.3213 −2.9096{ },
ρ �Ape( ) � −1.3122 −1.7319 −2.9007{ },

where A pe ≤ �Ape. In addition, it can be seen that, due to the structure
of matrix C, the elements on the second columns of matrices A pe

and �Ape have not changed compared to A p and �Ap.
Using these ostensible purely Metzler matrices results in stable,

purely Metzler structures

A e � A − JC �
−2.0973 0 1.1570
−0.8375 −2.4 −0.3806
0.2080 0 −2.6106

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
�Ae � �A − JC �

−2.0973 0 1.1570
−0.3375 −1.4 −0.3806
0.2080 0 −2.6106

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
By simulating the response of the observer in the forced mode, it

is set as A ≤A≤ �A

A �
−1.4600 0 2.4280
−0.5857 −1.9 −0.3788
0.3107 0 −2.1300

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, u t( ) � Ww t( ),

W � 2 0
0 1
[ ], w t( ) � 0.352

0.076
[ ], σ2

d � 0.012,

q 0( ) � 0.250 3.750 0.025[ ]T, q
e
0( ) � 0.15 0 0[ ]T,

�qe 0( ) � 0.4 0 0.1[ ]T, q
e
0( )≤ �qe 0( ).

Figure 3 depicts the time responses of the first system state
variable and its upper and lower estimations; Figure 4 shows the
time responses for the third system state variable. Although the
given system is not positive, it can be seen from Figure 3 and Figure 4
that the behaviors of these state variables are correctly intervally
estimated by the proposed interval observer.

Note for both examples, since μ , �μ are scalar variables defined
directly by a feasible solution of LMIs, they can be indicated as
the values at the disturbance attenuation levels. The scalar
variable p provides an additional degree of freedom in solving
the problem of the dynamics of an interval observer, which
should generally be faster than the dynamics of the system.
Because the synthesis method is a two-step procedure, it is
possible to sequentially define the locations of the stable
regions first for the uncontrolled stable dynamics of A m and
�Am by defining the D-region of stability using the parameter p > 0
(] > 0 is just some small positive value by means of which Σ is
regularized) and then, indirectly via LMIs, finding a solution that
guarantees the required rate of estimation error convergence.

Both tasks are parametrically dependent, while mutual
interaction in the resulting dynamics of the observer is defined
by the parameter p > 0, and its interactive setting is, as a rule,
sufficient.

6 Concluding remarks

This paper presents new results concerning the interval state
estimation of intervally defined ostensible Metzler systems. It
proposes how this problem can be formulated using a positive
parametric representation and how a constructive procedure
based on LMIs can be used respecting the diagonally

FIGURE 3
Estimation of the first state variable in the forced mode.

FIGURE 4
Estimation of the third state variable in the forced mode.
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stabilization principle. It is therefore proven that the gain matrix
of the interval observer can be constructed for strict positivity
when the stability of the interval observer is defined for a strictly
Metzler approximation of the ostensible Metzler system matrix in
combination with its stable complement, having a prescribed
region of D-stability. The intention was to define the synthesis
conditions based only on the quadratic Lyapunov function and to
suppress the influence of disturbance in the state estimation by
setting the upper bounds of the H∞ norm of its transfer function
matrix. The proposed synthesis conditions are not singular,
ensuring fast enough convergence of estimation errors, and do
not require prior knowledge of the disturbance boundary. With a
constant output matrix and the fact that only the upper and lower
bounds of the system dynamics matrix are required, such interval
observers have relatively high robustness to changes in system
parameters. No comparable results in the field of interval
estimators for systems with Metzler dynamics seem to have
been published so far.

The use of the class of application models was strictly limited
by the occurrence of the description of dynamics in the form of
Metzler matrices, a class which also includes models of turbo
engines applied in the field of networked aircraft fault tolerant
control and diagnosis (Jin and Chen, 2014; Li et al., 2020). The
goal of the idea was to derive a method for application in the
context of interval observer-based methodology for aircraft
engine diagnosis and fault-tolerant control (Lamouchi et al.,
2022). It is still left as an open question.

This approach requires further theoretical investigation,
especially if the considered continuous-time systems have
ostensible Metzler system matrices that have a dominant
number of negative and zero elements outside the main
diagonal. Further research is thus envisaged on both
theoretical and applied aspects in anti-disturbance tracking
control for unmanned aerial vehicles and drones considering
ostensible Metzler and Hurwitz model parameter setting (Yong,
2022; Song et al., 2023).
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