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Abstract

This study was set out to perform a fluid-structure interaction benchmark simulation of the 
cylindrical cantilever beam subjected to the axial turbulent flow. The application has prac-
tical importance in the fuel rods in Pressurized Water Reactors (PWR). The modelling ap-
proach was chosen to be optimal for industrial applications.

A recent experimental study from the authors’ group on flow-induced vibrations generated 
by axial turbulent flow over a cantilever rod provides data on the rod displacement and local 
flow data, making this case highly attractive for CFD validation. The motivation for this 
research is thus provided by the availability of these data from reference [26].

This thesis investigates the computational modelling of flow-induced vibrations of can-
tilever rods subjected to turbulent axial flow at operating conditions relevant to those of fuel 
rods of PWR nuclear reactors. The aim is to assemble all the modelling elements needed 
for a cost-effective and thus URANS-based (Unsteady Reynolds Averaged Navier Stokes) 
modelling strategy, employing high-Reynolds-number turbulence models. This objective is 
pursued through three stages. It was first necessary to investigate the numerical FSI (Fluid-
Structure Interaction) strategy adopted through the computation of flow-induced vibration 
of an elastic plate subjected to axial laminar flow. Then the suitability of URANS models 
was assessed through computations of turbulent flow over a forward-facing step, for which 
measurements of the fluctuating wall pressure are available. On the numerical side, these 
explorations led to adopting a two-way FSI strategy, using a single finite-volume solver, 
with the Arbitrary Lagrangian-Eulerian (ALE) approach, high-order convective discretiza-
tion schemes and Laplacian smoothing for the displacement of the mesh in the fluid do-
main. On the physical modelling side, they resulted in the use of high-Reynolds-number 
Reynolds stress transport models.

The resulting modelling strategy is subsequently validated against the experimentally inves-
tigated case of a steel cantilever rod caused to vibrate through exposure to turbulent axial 
flow. This is the first study that has successfully reproduced both the frequency and the am-
plitude of the flow-induced vibrations relevant to PWR applications, based on the use of 
URANS.
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Nomenclature

Symbols

\mitepsilon _{ij} strain tensor

\mitgamma diffusion coefficient

\mitlambda Lamé’s constant, 𝑃𝑎

\mitmu shear modulus, 𝑃𝑎

\mitmu _F fluid dynamic viscosity, 𝑘𝑔/𝑚𝑠

\mitmu _t turbulent eddy viscosity 𝑘𝑔/𝑚𝑠

\mitomega specific turbulence dissipation rate, 1/𝑠

\protect \overline  {u_iu_j} turbulent shear stress tensor

\mitrho _F fluid density, 𝑘𝑔/𝑚3

\mitrho _S solid density, 𝑘𝑔/𝑚3

\mitsigma _{ij} stress tensor

\mitvarepsilon dissipation rate of the turbulent kinetic energy, 𝑚2/𝑠3

A^* root-mean square amplitude

A_{RMS} root-mean square vibration amplitude

c_N natural frequency parameter

C_{prms} root mean square pressure coefficient

E Young’s modulus, 𝑃𝑎

F,T   Fluid force, 𝑁

F_A Fluid added acceleration force, 𝑁

F_D Drag force, 𝑁

F_L Lift force, 𝑁

f_N natural frequency 𝐻𝑧

F_S, T_S  Solid force, 𝑁

F_y^d
 Fluid damping force, 𝑁
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F_y^e
 Fluid exciting force, 𝑁

I second moment of area of the beam’s cross-section, 𝑚𝑚4

k turbulent kinetic energy, 𝑚2/𝑠2

m_{add} added mass per unit length 𝑔/𝑚

m_{rod} mass of the beam per unit length 𝑔/𝑚

P,p  fluid pressure, 𝑃𝑎

Re Reynolds number

St Strouhal number

U, u_F  fluid velocity, 𝑚/𝑠

u,x_S  solid displacement

u^+ non-dimensional velocity

w interface grid velocity 𝑚/𝑠

y^+ dimensionless distance normal to the surface

Acronyms

AEF Advanced European Fuel

ALE Arbitrary Lagrangian-Eulerian

BWR Boiling water Reactor

CANDU Canada Deuterium Uranium reactor

CFD Computational Fluid Dynamics

CSM Computational Structural Mechanics

DES Detached eddy simulation

ECT Equivalent Computational Time

EDF Électricité de France

EFG European Fuel Group

EIE Extraneously-Induced Excitation

EVM  Eddy-Viscosity Models

FA Fuel Assembly

FE Finite Element Method

FIV Flow-Induced Vibration

FSI Fluid-Structure Interaction
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FV Finite Volume Method

GTRF  Grid-to-rod fretting

IIE Instability-Induced Excitation

LES Large eddy simulation

LRR Launder, Reece and Rodi model

LWR Light-water Reactor

MACE Department of Mechanical, Aerospace and Civil Engineering

MIE Movement-Induced Excitation

PDF Probability Density Functions

PHWR Pressurized heavy-water reactor

PISO Pressure-Implicit with Splitting of Operators algorithm

PIV Particle image velocimetry

PSD Power Spectral Density

PWR Pressurized Water Reactor

RANS Reynolds Averaged Navier-Stokes

RMS Root-mean-square

SG Steam Generator

SIMPLE Semi-Implicit Method for Pressure Linked Equations algorithm

SOUE Second Order Euler Scheme

SSG Speziale, Sarkar and Gatski model

URANS Unsteady Reynolds-averaged Navier-Stokes

WWER Water-water energetic reactor
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Chapter 1

Introduction

This section presents the background information about the Pressurized Water Reactor, the 
nuclear power generation process and the major nuclear components. The Chapter intro-
duces the flow conditions in the reactor and explains the flow-induced vibration phenomena 
(FIV). Then, examples of the fluid-elastic instability and fretting wear damages caused by 
FIV in the nuclear industry are presented. Finally, the conclusions from this initial investi-
gation helped to understand the importance of the topic and led to deriving the objectives of 
this PhD project.

1.1 Background

The Pressurized-Water Reactor (PWR) is a type of thermal reactor which is moderated, 
partially-reflected and cooled by light water. The power generation process is presented in 
Figure 1.1. The Nuclear Power Plant of the PWR type consists of the primary circuit and 
the secondary circuit. In the primary nuclear loop, water is heated via nuclear reaction in 
the reactor vessel, and then high-pressure steam is generated in the Steam Generator (SG). 
A Steam Generator serves a function of a heat exchanger between the primary and a sec-
ondary circuit. Because of that, the secondary side of the plant is not contaminated by radi-
ation from the primary side. 

Nuclear reactors are designed using the concept of multiple barriers, and it is loosely de-
picted in Figure 1.2. Each barrier is a physical obstacle to block the passage of radioactive 
release from the fuel. Nuclear fuel and its cladding tubes are classified as the first physical 
barrier against radioactive release. Then the Reactor vessel is the second physical barrier. 
Finally, the reactor building (containment) is the last physical barrier against the release.

Figure 1.1. Pictorial explanation of the Power Generation in the Pressurized Water Reactor [112]
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Figure 1.2. Scheme of principal components of a nuclear reactor inside the radiation shield and containment. 
[79]

1.2 PWR main components

Figure 1.3a shows a cross-sectional view of the PWR reactor vessel. The core is located 
in the central region inside the reactor vessel. In the PWR reactor, the core contains nu-
clear fuel and water, which is coolant and also acts as a moderator. Water coolant enters 
the Reactor Vessel via an inlet nozzle at a temperature of about 290∘C, flows down around 
the outside of the core, then passes upwards through the core where is heated, and finally 
exits from the vessel with a temperature of about 325∘C. Water in the primary circuit of a 
PWR is maintained at high pressure (around 15MPa) in order to prevent from boiling flows 
mainly under single-phase. Two-phase flow conditions can occur only during the acciden-
tal conditions [29]. Steam for plant turbines is produced in the steam generators with the 
pressurized, heated water from the outlet nozzle. The process is depicted in Figure 1.3b. 
Coolant water from the reactor enters at the bottom of the SG and passes upward and then 
downward through several thousands of U shape tubes. At the same time, colder and lower 
pressure feed water from the turbine condenser enters the SG through the Feed water inlet. 
Hot outer surfaces of the SG tubes are in contact with the feed water, causing it to boil and 
produce steam. The steam is dried in the set of moisture separators and exited on the tur-
bines.

In a western type PWR nuclear fuel rods are called Fuel assembly (FA), as depicted in Fig-
ure 1.4 (left). Fuel rods consist of fuel pellets assembled in metal tubes made of zirconium 
alloy. Rod bundles are placed between the top and bottom nozzles with several spacing 
grids in between to assure exact guiding of the fuel rods. Spacer grids are to support the 
fuel rod - Figure 1.4 (right). Springs and dimples are attached to the unit spacer grid in 
order to prevent structural instability [123]. The second function of the spacer grid is to 
enhance the coolant mixing, which improves heat transfer between the fuel rods’ surface 
cladding and the coolant. Mixing vanes are designed to induce a strong swirl in the cooling 
flow around the fuel pellet, enhancing the coolant flow turbulence [41]. The fuel assembly 
is loaded once per approximately 3-4 years, depending on the operating cycle. The fuel rod 
component is the first and most important physical barrier against the release of radioactive 
material from the plant.
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(a) PWR Reactor cross-section (front-view) (b) PWR Steam Generator

Figure 1.3. Principal coolant system components of the PWR [79]

Figure 1.4. PWR Fuel Assembly and the Spacer Grid set [53]

1.3 Flow-induced vibrations in the Nuclear Reactors

The dynamic forces produced by highly turbulent coolant flow can cause excessive mechan-
ical vibration of the PWR components. This flow-related vibration phenomenon is gener-
ally known as flow-induced vibration (FIV). In nuclear reactors, flow-induced vibration 
usually occurs in the primary loop, where components are subjected to relatively high flow 
velocities. Typical of such components are pipes, nuclear fuel rods in the Fuel Assembly 
(FA), tube bundles in the Steam Generators and the in-core instrumentation [12, 110].

According to Païdoussis, axial- and cross-flow induced vibration of cylindrical structures 
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Figure 1.5. A group pf circular cylinders subjected to cross-flow [22]

Figure 1.6. Example of the axial flow conditions in the Fuel Assembly [25]

are two major vibration problems occurring in nuclear reactors [98]. Axial flow-induced 
vibrations usually result in the dynamic interaction between a component and its supports, 
generating long-term damage such as fretting wear and high-cycle fatigue. In contrast, cross-
flow induced vibrations led to more serious problems such as fluid-elastic instability, buffet-
ing and vortex-induced vibrations of cylinder arrays [99, 110]. Cross-flow condition refers 
to flow normal to the long axis of the slender structure. It can be illustrated briefly by the 
sketch in Figure 1.5. In this example, even moderate flow velocities can cause a large am-
plitude vibration. A classic example of the external axial flow conditions is depicted in Fig-
ure 1.6, where coolant flows through the fuel assembly mainly in the axial direction. In this 
type of flow conditions the reduced vibration amplitude 𝐴𝑅𝑀𝑆

𝐷 varies in the range of 10−2 to 
10−3, where 𝐴𝑅𝑀𝑆 is the RMS vibration amplitude and 𝐷 is the cylinder diameter [100].

The limitation of this classification approach is that in practice, the nuclear flow is complex, 
and FIV results from a combination of vibration phenomena: flow acting on one compo-
nent can have both cross- and axial components and is unsteady too. For example, Figure 
1.7 shows the vibrations mechanism in the feed water heater and an analysis of the vibra-
tion response. A sharp increase in the vibration amplitude in Figure 1.7b is a result of the 
sum of vibration mechanisms induced by the cross-flow in the component: turbulence exci-
tation and the vortex-induced vibration which is proportional to the flow velocity, the fluid-
elastic instability, which can occur when the critical velocity is reached. 

Naudascher and Rockwell [90] classified flow-induced vibrations phenomena by sources of 
excitation. These can be subdivided into extraneously-induced excitation (EIE), instability-
induced excitation (IIE) and movement-induced excitation (MIE). Examples of models for 
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(a) Feed water heater design

(b) Vibration response of the feed water heater

Figure 1.7. Example of Vibration mechanisms in the design of feed water heater [73]

(a) Extraneously-induced 
excitation (EIE) [73]

(b) Instability-induced excitation 
(IIE)

(c) Movement-induced 
excitation (MIE)

Figure 1.8. Examples of FIV mechanisms [73]

each vibration mechanism and the corresponding vibration response in relation to the flow 
velocity are schematically depicted in Figure 1.8. The following classification helps in iden-
tifying the root causes of vibration failures. In the case of extraneously-induced excitation 
(EIE) the flow unsteadiness is caused by fluctuations- random changes in the flow velocities 
in the flow. Fluctuations generate fluctuating external force acting on a body. This type of 
excitation is independent of body movement. Only the external forcing from the fluid keeps 
the structure vibrating. An example is a cylindrical structure being ”buffeted” by the turbu-
lence of the incoming flow as depicted in Figure 1.8a. Other important identified sources 
of EIE are cavitation, machines in a system i.e. pumps, waves and earthquakes. In the case 
of turbulence buffeting being the source of EIE, the structural load is caused by pressure 
fluctuations generated by turbulent eddies passing near or impinging on the structure. In 
this case, the structural vibration depends on two major parameters: turbulence intensity 
and the size of eddies containing most of the turbulent energy. According to Naudascher 
(following experimental research of Chen & Wambsganss [23]) large-scale eddies, which 
generate low-frequency velocity and pressure fluctuations, have the highest potential to ex-
cite the structure in the first mode of vibration (N=1). The second mode of vibration (N=2) 
is excited more effectively with intermediate scale eddies. Figure 1.9 shows the collective 
experimental data of the wall pressure spectra in an axial turbulent flow. Diagram illustrates 
the ’effectiveness’ of pressure (𝐽𝑁) in exiting the simply supported beam. On the left-hand 
side, the large-scale eddies excite the first mode shape of the beam but do not affect the sec-
ond mode. The peak for the second mode of vibration results from intermediate scale ed-
dies. The smallest scale eddies have practically no effect on the structure. It is worth adding 
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Figure 1.9. Turbulence excitation for the first two mode shapes of a simply supported flexible cylinder in axial 
turbulent flow [90]

that, according to Blevins [11], long-term wear of heat exchanger tubes and fuel rods is 
mainly caused by turbulent buffeting. Another important source of EIE is so-called far-field 
flow noise: flow pulsations and turbulence generated by pumps and bends cavitation trans-
mitted through the flow. The far-field noise effect depends mainly on the system design. 

Instability-induced excitation (IIE) is associated with flow instability above a certain veloc-
ity threshold value. Also, as a rule this instability type is intrinsic to the flow created by the 
structure. An alternating vortex shedding formation past a cylindrical structure depicted in 
Figure 1.8b is a classic example of IIE. The periodic shedding of the von Kármán vortices 
causes periodic pressure variations on the structure. Vibrations in the transverse direction 
to the flow have a dominant frequency called von Kármán vortex shedding frequency 𝑓𝑤. 
In literature, the shedding frequency is often scaled in dimensionless form by the Strouhal 
number St, 𝑆𝑡 = 𝑓𝑤𝐷

𝑈 . Where 𝑈 is the flow velocity and 𝐷 is the characteristic length 
(diameter). The phenomenon called lock-in, can occur if a vortex shedding frequency is 
near the natural frequency of the structure. The most dramatic illustration of this was the 
failure of the Tacoma Narrows suspension bridge in 1940 when wind-excited vortex shed-
ding oscillations resonated with natural torsional oscillations of the bridge [139]. Another 
prominent example of the IIE can be the fluid-elastic instability of the PWR steam genera-
tor tubes induced by the cross-flow, examples of which will be presented in Section 1.4.

Movement-induced excitation (MIE) mechanism is inherently related to the movement of 
the structure. When the model undergoes transverse movements, the accompanying flow 
changes will induce forces that tend to enhance these initial movements. The induced vi-
brations are thus self-excited. Wing flutter and galloping encountered with aircraft wings 
depicted in Figure 1.8c is an important example of MIE. The abrupt vibration amplitude 
increases at high flow velocities when the critical flow velocity is reached. In the nuclear 
industry, the MIE mechanism is further sub-classified into MIE involving coupling. The 
mechanism is related to coupling effects occurring in multiple bodies immersed in the fluid. 
A cylinder array consisting of 4 circular cylinders with the same mechanical properties is 
presented in Figure 1.10a. In the study, the motion of cylinder a excites the surrounding 
cylinders at the same dominant frequency. Furthermore, the response magnitude is strongly 
related to the distance between the tubes. For a widely spaced cluster, Figure 1.10b charac-
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(a) Four-tube cluster
(b) Vibration response in a 

widely spaced cluster
(c) Vibration response in a 

closely spaced cluster

Figure 1.10. Fluid dynamic coupling effects for a widely spaced cluster of four parallel tubes in quiescent 
fluid[90]

teristic excitation frequency of the cylinder a is present in all surrounding cylinders. For a 
closely-spaced cluster in the Graph 1.10c, all tubes vibrate over a broader frequency range. 
The coupling effect is important in closely spaced tube arrays in the design of nuclear fuel 
assembly and steam generators.

Other classifications tend to be more general. In 2001, Blevins [11] performed an extensive 
analysis of structures exposed to fluid flow. He distinguished excitation from steady flow 
and unsteady flow. Steady flow-induced vibrations are subdivided into instabilities (e.g. 
galloping and flutter) and vortex-induced vibrations. Unsteady flow is divided into random 
(e.g. turbulence-induced), sinusoidal (e.g. pump pulsation) and transient (e.g. pipe whip).

1.4 Examples nuclear components failures due to FIV

As explained earlier, FIV problems are inevitable in nuclear plants. In the case of SG tubes 
and fuel rods in the fuel assembly it is desirable to minimize the structural support to re-
duce the pressure drop and improve heat transfer [86]. Although extensive research on nat-
ural frequencies and mode shapes of a typical fuel assembly has been carried out [22, 24, 
97, 136], there were many instances wherein a component was susceptible to flow-induced 
vibration despite the adequate margins in the calculations.

IAEA TECTOC [64] provides technical exchanges on PWR operational experience in the 
field mechanical behaviour of the fuel assembly. In the case of SG-tube leakage in PWRs 
the radioactive contamination escapes the second physical barrier and contaminates the sec-
ondary side of the plant. Other possible consequences of the fuel rods perforation or SG 
tube failure are:

• Changes in the fuel loading pattern
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• Anticipated plant shutdown when the fission gas in the primary coolant exceeds im-
permissible level

• Extended reactor outage for the failed SG tube replacement

• Appropriate operating personnel training in higher radiation levels (during extended 
outage and normal operation)

International Atomic Energy Agency (IAEA) [63] provided a report with an overview of 
fuel failures in the water cooled reactors and presents in detail their mechanisms and miti-
gation measures. Interest in fuel failures result from the caused inconvenience during plant 
operation, it is generally expected to reach a zero-failure rate. Fuel failure statistics and op-
eration experience comes from different water-cooled reactor types, including LWR, PWR, 
BWR, WWER and heavy water CANDU/PHWR types. Proceedings from symposium held 
in Karlsruhe (1979) [89], reported fifty-two case studies related to cross-flow, internal and 
external axial-flow induced vibration in nuclear power plants. Collection of observations 
and root-causes of events for preparation of a symposium took 3 years. Each problem is de-
scribed by a separate chart, flow conditions, vibration mechanism and treatment after the 
failure. Pettigrew [110] analysed problems of flow-induced vibrations in Canadian type 
reactors- CANDU. He identified possible flow conditions in nuclear components and anal-
ysed vibration excitation mechanism in axial and cross flow. Real examples of fretting wear, 
fatigue, acoustic noise and operational difficulties in Canadian nuclear industry were pre-
sented in 2017. Pettigrew et al.[111] discussed the fretting wear damage from flow induced 
vibration for sensitive nuclear components. Relation of vibration energy to work rate and 
fretting wear damage was formulated.

The analyzed case studies from the references above have shown that any replacement of 
leaky tube or component generates not only the cost of replacement of the part itself, but 
also a high outage cost. Hence, there is pressure for an immediate repair, without complete 
understanding of the mechanism of failure involved. Also, assessments of failures in nu-
clear plants are described insufficiently and usually are not widely accessible [10]. In accor-
dance with these reports, French nuclear industry expresses need to deeply understand the 
physical mechanism that controls fluid-structure interaction for basic configurations, such 
as slender structure in axial confined flow [12]. Primarily, numerical simulation will have 
to be benchmarked by experiments especially for specific configurations and turbulence. In 
addition, a systematic understanding of the relation of excitation forces to vibration excreted 
on the fuel rods is still lacking.

The section below presents a number of incidents caused by flow-induced vibrations in the 
in nuclear power plants components.

1.4.1 FIV failures in the Steam Generator

Figures 1.11a 1.11b show the example of fatal SG tube failure due to fluid-elastic instability 
in the sodium-water heat exchanger (around 1970). In this case, the 𝑁𝑎 − 𝐻2𝑂 reactions 
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(a) Example of SG tubes failure 
caused by fluid-elastic instability 

(Tube row 16) [89]

(b) Example of SG tubes failure 
caused by fluid-elastic instability 

(Tube row 18) [99]
(c) Fretting wear in a CANDU 

SG tube [99]

Figure 1.11. Characteristic heat exchanger damage cases due to fluid-elastic instability

Figure 1.12. Typical Steam generator tube and Flow Conditions [110]

had an additional impact on the structure resulting in such harmful devastation [99]. Fig-
ure 1.11c presents the fretting wear damage at the top of the U-bend in the CANDU steam 
generator. This is a classic example of an extensive vibration response resulted from cross-
flow. The vibration amplitude was high enough that tubes were touching each-other and the 
anti-vibration bars, with consequent fretting wear.

Typical flow conditions prevailing over SG tubes are shown in the Figure 1.12. Normally 
both axial and cross flow occur in the heat exchangers, however SG tube failures result from 
cross-flow induced vibration [99]. Moreover, the U-bend region in steam generators is sub-
jected to the two-phase bubbly flow [47]. It is almost impossible to predict the frequency 
response analytically due to the time-varying air-water mixture [20]. Three mechanism of 
excitation in the context of heat exchangers are mentioned in the literature: vortex shedding, 
buffeting [98] and fluid-elastic instability [110].

Vibration-induced fretting wear is a relatively common mode of failure of steam genera-
tor U-tubes. According to statistics provided by Païdoussis [98] almost 10% of all shut-
downs and power reductions, during 5 year period from 1974 in United States, were related 
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(a) SG tube bundle 
and the anti-vibration 

bar

(b) Vibration 
response of the SG 

tube

Figure 1.13. Anti-vibration bar supports in the SG U-bend region and one of the low frequency modes of 
vibration [89]

(a) New design of the anti-vibration bars

(b) Vibration 
response of the SG 
tube is now below 

threshold for 
fluid-elastic 
instability

Figure 1.14. Fluid-elastic instability mechanism of a SG tube [89]

to flow-induced vibration problems. With regards to steam generator tube failures world-
wide, before 1980, 10% were caused by flow-induced vibration fretting and fatigue [89]. 
Many incidents reported in the 1970s [89, 99] and in Douglas Point power station [110] 
showed that the the SG tube failures resulted from an inadequate support in the U-region as 
illustrated in Figures 1.13a, 1.13b. Because of the insufficient support SG tube get unstable 
at the low frequency mode (f=17Hz) from a relatively low flow velocity. At that time, tubes 
were made from carbon steel. In order to prevent the flow induced instability and fretting, 
additional support bars from the wear-resistant material (Inconel-600) were introduced. 
Additionally, the cross-section of the support bars was changed from round to rectangular. 
These enhancements allowed continuous operation below the threshold for fluid-elastic in-
stability as reported in the Figure 1.14a, 1.14b.
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Figure 1.15. Simplified contact mechanism causing GTRF [8]

1.4.2 Fretting-wear damage in the nuclear fuel rod

According to Pettigrew et al. [111] nuclear fuel rod is the most vulnerable structure for fret-
ting wear damage, among all components of concern, because it is exposed to contact with 
adjacent fuel rods and the support grids at several locations. The wear of fuel rod against 
supporting structures is known as a grid-to-rod fretting (GTRF). Mechanism of grid-to-rod 
fretting wear-induced fuel failure is schematically shown in the Figure 1.15.The simpli-
fied geometry shows a hollow tube representing the fuel cladding and dimple/spring cou-
ple which hold the rod in place. Flow-induced oscillations cause transverse motions of the 
rod, which causes the continuous or intermittent contact with the dimple. Fretting wear can 
eventually lead to reducing the fuel cladding thickness and consequent perforation of the 
tube.

Several factors are known to increase the risk of GTRF. Fretting wear increases strongly 
with a larger FIV because of higher amplitude of tube vibration and exciting forces [10]. 
It is clear however, that GTRF phenomenon is very complex and depends on many vari-
ables, not only the flow-induced excitation, but also high temperatures of a coolant, corro-
sion process in aqueous conditions and material embrittlement from neutron irradiation [8]. 
Furthermore, nuclear fuel pellets are swelling during operation, due to the fission gas for-
mation in the fuel which has an influence on the flexural rigidity of the fuel element [134]. 
Based on operating experiences [10, 75] GTFR fuel failures rates depends also on the de-
sign of the Fuel Assembly. It was estimated that relatively large grid-to-rod contact area, 
small grid-to-rod gap, and harder surfaces contribute to lower probability of GTRF fuel 
failures for the same excitation forces.

Finally, the important aspect for modeling purposes is to estimate where in the core, the 
conditions are dominant for the severe fretting wear. Examination of several fuel rods car-
ried out by Kyu-Tae Kim [75], shows that grid-to-rod fretting wear related failures can oc-
cur at any axial location of the grid, and the first leak signals from failed rods were observed 
over the whole operating cycle. Additionally, the majority of the failed fuel rods were found 
at the periphery of the reactor core, Figure 1.16a, and the outer edges of the fuel assembly, 
Figure 1.16b. This result can be explained by the fact the FA’s in the outer regions of the 
core is subjected to stronger external vibrations, caused by highly turbulent reactor coolant 
flow in this part. Interestingly the same FA will be resistant for the GTRF induced failures 
in one reactor core design, but it would be susceptible for fretting wear in different reac-
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(a) Failed FA in the core
(b) Failed fuel rods in the 16x16 

Korean FA

Figure 1.16. GTRF induced failed fuel rod locations in the core and in the FA [75]

Figure 1.17. Example of fretting wear in fuel rod EDF PWR 1300 [63]

tor core designs. This example shows that external flow-induced vibrations are dominant 
contributors for GTRF fuel failures. The findings are supported by Korean experience pre-
sented for the public in 2005 [74].

An important example of FIV failures is presented in the Figure 1.17, where various fuel 
rod failures were discovered in the year 2000 at some of EDF’s four loop 1300 MW(e) re-
actors. Most of the fuel assemblies experienced a fretting wear damage at the bottom grid, 
while the wear marks at the upper part of the FA’s were not significant [63]. All the leaking 
FA’s were located at an intermediate ring inside the core. It was expected however, to find 
damaged rods at the peripheral part of the core. After extensive investigation, it was con-
cluded that GRTF was developed from significant cross-flows in the lower part of the fuel 
assemblies. Additionally to that, spring support at the bottom of the fuel assembly relaxed 
over extended operation time, which resulted in decreased holding force. It is worth noting 
that a risk of fretting wear failures was found only for 1300 MW(e) reactors. In the case of 
900 MW(e) plants, lower cross-flows have never induced fretting wear failures.

Another important example of an extensive fuel rod vibration in peripheral fuel assemblies 
in PWRs is shown in the Figure 1.18. In 1971-1975 in some PWR reactors, fuel assemblies 
suffered a severe damage at different operation times at the corner location of the reactor 
[89]. Despite the fact that flow was nominally axial in the fuel assembly, the induced dam-
age was significant and caused loss of the fuel integrity and fuel fragment detachment. The 
root-cause mechanism was a cross-flow hitting on the corner rods. High cross-flow from a 
gap between the corners joins of the baffle plates was streaming on corner rods and induc-
ing buffeting which then led to fretting. Blocking the cross-flow path as illustrated in the 
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(a) Cross-flow impingement on 
the FA

(b) Blockage of cross flow to 
stop the flow impingement

Figure 1.18. Example of the GTRF due to the cross-flow impingement [89]

(a) Fuel Bundle 
inside the Fuel 

Channel at 
CANDU-BLW 

(Gentilly-1) [110]
(b) Fretting wear from chattering 

against the fuel channel

Figure 1.19. Fretting damage on Gentilly-1 Fuel Bundle [89]

Figure 1.18b and returning to axial-flow conditions resolved the occurring problem.

The final example presents the FIV induced fretting in CANDU type of reactor, Figure 1.19b. 
This is a classic example related to the manufacturing error in the design of the FAs. In this 
type of reactor fuel bundles were assembled in the confining tube and hold in place by the 
two support springs at top and the bottom as depicted in Figure 1.19a. The design was ded-
icated to ensure safety against axial flow-induced instabilities. During use, the upper part of 
the fuel bundle was touching the confining tube and chattering against it, which inevitably 
led to fretting wear. It was found that a spring at the top was assembled eccentrically due to 
manufacturing error, thus a string bent at one side forced by flow and chattered against the 
confining tube [89].

Overall, the grid-to-rod fretting (GTRF) is identified as the most common cause of fuel 
rod leaking mechanism, with 55% of all PWR fuel leaks in years 1994-2006 worldwide 
caused by GTRF [63]. Another reported problem was no tendency for PWR fuel reliability 
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improvement in the period from 2011-2006 [63]. Additionally, the European Fuel Group 
(EFG) experience shows that 83% of Advanced European Fuel (AEF) were leaking be-
cause of grid to rod fretting, while two-thirds of these occurred at the bottom grid [64]. 
This study found that perforation at the bottom grid occurred only for certain reactors with 
high cross-flow at the bottom part of the fuel assembly.

These results confirm the association between flow-induced vibrations and grid-to-rod fret-
ting failure occurrences.

1.5 Conclusions

It has been shown that the turbulence-induced vibrations in the axial flow direction are of 
practical importance in fuel assemblies. These vibrations can induce fretting wear at the 
rod supports, known as grid-to-rod fretting and eventually lead to fuel perforation and con-
sequently extended shut-downs of the reactor. Nowadays, the importance of assessing the 
FIV in the design stage of any nuclear component is indisputable.

Firstly, all of the presented cases has safety and radiation protection impact, and more im-
portantly it is a nuclear safety hazard during the nuclear power plant operation. These find-
ings clearly indicate that the major contributor to fretting is the flow-induced vibration phe-
nomena. The improved design of the support in Steam Generators resolved the problem of 
the extensive vibration from the cross-flow. In contrast, the improvements in the design of 
the fuel assembly, subjected mainly to flow in axial direction, seem to be unsuccessful.

Secondly, the study has examined sources of FIV and their classification. The general ap-
proach in the research is to use distinction to axial- and cross- flow- induced vibrations. 
As shown, axial, single-phase flow is acting on the fuel rod in the PWR. Then the Nau-
dausher’s [90] classification of sources of excitation was used in explaining the underly-
ing physical phenomenon causing the fretting in FA’s. Turbulent buffeting (EIE) and fluid 
coupling effects in a closely spaced cluster of fuel rods (MIE) were identified as the major 
contributors to fretting.

Lastly, the axial-flow-induced vibrations are normally characterized by relatively small am-
plitude vibrations [100] and have so far received comparatively little research attention as 
opposed to other types of flow-induced vibrations. This mode of flow-induced vibration 
has, however, been identified as a common cause failure of 55% PWR fuel leaks worldwide 
[63]. Fretting wear occurred along any axial location of the fuel rod with deeper fretting 
marks found at the bottom of the fuel rods [64].

In conclusion, improving the methods of prediction of FIV is crucial in extending the lifes-
pan of nuclear fuel rods. Chapter 2 will present the result on the literature survey on the ax-
ial flow induced vibrations. 
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1.6 Aims of the current study

As shown, understanding the physical mechanism that controls fluid-structure interaction 
for the basic configuration, such as slender structures in axial confined flow, is crucial for 
increasing the lifespan of nuclear components and, consequently, will positively impact 
financial and safety performance. The nuclear industry has identified the need for a more 
comprehensive and quantitative understanding of the physical mechanism that controls fluid-
structure interaction for this configuration [12]. The fundamental understanding of the rela-
tion of excitation forces to vibration exerted on the fuel rods is still limited [105]. Primarily, 
the numerical simulation will have to be benchmarked by experiments, especially for spe-
cific configurations and flow conditions. Therefore the project will concentrate solely on 
the fuel rod in the fuel assembly configuration.

A recent experimental study from the authors’ group on flow-induced vibrations generated 
by axial turbulent flow over a cantilever rod provides data on the rod displacement and local 
flow data, making this case highly attractive for CFD validation. The motivation for this 
research is thus provided by the availability of these data from reference [26].

The primary aim of this PhD project is to present a fully validated benchmark simulation 
of the flow-induced vibration of a free-clamped cylinder exposed to axial turbulent flow, 
which can inform future studies on PWR fuel bundles.

The study involves:

• Validation of the chosen FSI (Fluid-Structure Interaction) methodology against a well-
known FSI benchmark case [132]. As shown, the fuel rod in the Fuel Assembly will 
be subjected to fluid coupling effects; therefore, the strongly coupled approach has 
been adopted.

• Assessment and evaluation of the URANS (Unsteady Reynolds-averaged Navier-Stokes) 
effective viscosity (𝑘 − 𝜔, 𝑘 − 𝜀, 𝑘 − 𝜔 SST) and Reynolds Stress models on a suitable 
representative 2D test case with rigid walls [15].

• Two-way FSI simulations validated against the experimental data obtained in the De-
partment of Mechanical, Aerospace and Civil Engineering (MACE) [26]. The test rig 
dedicated to investigating the FIV in nuclear fuel rods was first installed in MACE in 
2018 under the financial support of the EDF. The obtained data are particularly suited 
for FSI simulation benchmarking. The experiment will be referenced as the ’MACE’ 
experiment.

1.7 Outline of thesis

This Thesis is divided into nine chapters. Chapter 1 presented the topic’s importance and 
stated the current research’s purpose. Chapter 2 begins with a literature review on axial 
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Flow-induced Vibration. Chapter 3 details the equations which govern the solid linear-elastic 
displacements. Chapter 4 focuses on the implementation details of the turbulence models 
used in the engineering practice. Chapter 5 is concerned with the fluid-structure interaction 
coupling methodology employed for this study. Chapter 6 and Chapter 7 summarize the nu-
merical methods applied to this project, along with details on implementation in the numer-
ical code which was used. Chapter 8 is concerned with the simulations methodology em-
ployed for this study. Every test case is validated against numerical and experimental data 
found in the literature. The final Chapter 9 summarizes the main findings of this project and 
provides suggestions for future work on the subject.
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Chapter 2

Literature review

The section below reviews fundamental literature publications on axial flow-induced vibra-
tions. The section has been divided into three parts. The first part presents the analytical 
solution of the response of the cylinder due to axial fluid loading. The second part is ded-
icated to experiments analysing the motion of a slender beam subjected to the axial flow. 
Finally, the third part presents the results of numerical investigations in the same area.

2.1 Analytical models

A study of the linear equation of motion for slender flexible cylinders with different bound-
ary conditions (e.g. clamped-clamped, clamped-free) in confined axial flow was first devel-
oped by Païdoussis [101, 103] using the Newtonian approach. The proposed expression for 
fluid forces acting of the slender body was further developed by many researchers eg. Ri-
naldi [115], Ricciardi et al. [114], Chen [23], Basile [3], Pettigrew [110]). His theory splits 
the fluid forces acting on the cylinder into inviscid forces and viscous forces. The inviscid 
force is normal to the surface and is based on the motion-induced inviscid forces theory 
by Lighthill in 1960 [82]. The viscous forces in the normal and longitudinal direction are 
based on the formulation of Taylor in 1952 [126].

The equations of motion obtained via non-linear dynamics will not be particularly inter-
esting in further studies. The reason is that the non-linear theory is used to determine the 
amplitudes of vibration above the critical velocity, e.g. flutter. In practice, fuel rods never 
experience high amplitude and fluid-elastic instability from external axial flow; therefore, 
there is no need to apply non-linear dynamics equations for this particular application.

The relationship between the beam’s deflection 𝑦(𝑥) and the applied load 𝑞 is given by Euler-
Bernoulli static beam theory, Equation 2.1c:

  M=EI\frac {d^2 y}{dx^2}  
 (2.1a)

  q=\frac {d^2M}{dx^2} 
 (2.1b)

34



leads to: 
 \label {eq:1} q=\frac {d^2}{dx^2} (EI \frac {d^2 y}{dx^2} ) 

 
  (2.1c)

Where 𝑀 is the bending moment, 𝑞 load per unit length, 𝑦 deflection in a transverse deflec-
tion at a position x along the beam. 𝐸 is the elastic modulus, and 𝐼 is the second moment of 
area of the beam’s cross-section. The cross-section of the beam is constant along its length. 
When the load 𝑞, is removed from a displaced beam, the beam will return to its original 
shape. The inertia of the beam will cause the beam to vibrate around that initial location. 
Downward inertia force on the beam is: 

  q=-m_{rod} \frac {d^2 y}{dt^2} 

 (2.2)

Where 𝑚𝑟𝑜𝑑 = 𝜌𝐴 is the mass of the beam per unit length.

Finally, the differential equation for a freely vibrating slender beam with a uniform cross-
section is [44]: 

  \label {eq:2} EI\frac {d^4y}{dx^4}+m_{rod}\frac {d^2y}{dt^2}=0 
 


   (2.3)

Where, 𝑦 = 𝑦(𝑥, 𝑡) is deflection at given time 𝑡 and location 𝑥.

The beam vibrates harmonically at some natural frequency 𝑓𝑁 = 𝜔𝑁/2𝜋 and the associated 
mode shape 𝑦𝑁 (𝑥). The general solution will have the form: 

  y(x)=C_1e^{ax}+C_2e^{-ax}+C_3sinax+C_4cosax          (2.4)

With coefficient 𝑎 chosen that: 𝑎 = 4√𝑚𝑟𝑜𝑑𝜔2
𝑁

𝐸𝐼

For a clamped-free beam, bending moment 𝑀 and the shear force 𝑆 are zero at the free 
boundary. 

  M=0   (2.5a)

  S=EI\frac {d^3y}{dx^3}=0  
   (2.5b)

Thus, the boundary conditions at the free-end are: 

  \frac {d^2 y}{dx^2}=0 
   (2.6a)

  \frac {d^3y}{dx^3}=0 
   (2.6b)

Finally, the approximate solution satisfying the conditions is: 

  \widetilde {y_N}\left (\frac {x}{L}\right )\ =\ y_0(1-cos(\frac {\pi x}{2L}))  


   


 (2.7a)
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  f_N=\frac {c_N^2}{2\pi L^2}\sqrt {\frac {EI}{m_{rod}}}  


 


(2.7b)

Where 𝑐𝑁 is the natural frequency parameter. Cantilever beam mode shapes and corre-
sponding 𝑐𝑁 parameters are presented in Figure 2.1.

Figure 2.1. Mode shapes and natural frequencies for the first three modes for a cantilever beam [90]

Figure 2.2. Rod with external axial Flow [90]

The schematic of the system body vibrating in a flowing fluid is presented in Figure 2.2. In 
this case, fluid forces acting upon the structure can be subdivided into the mean and fluctu-
ating part, 𝐹(𝑡) = ̄𝐹 + 𝐹′. The former is treated as the mean hydrodynamic loading and 
the latter results from the fluid fluctuations. In the analyzed case of fuel rod subjected to 
the axial flow, fluid fluctuations arise from turbulent eddies impinging on the structure [90]. 
In the case of multiple bodies submerged in the otherwise stagnant fluid (e.g. flow acting 
on the fuel assembly), the 𝐹(𝑡) acting on the single beam should be altered when the body 
starts moving. The general equation of motion describing the forced vibration of a slender, 
uniform beam is [90]:

  \label {Eq.Motion} EI\frac {d^4y}{dx^4}+m_{rod}\frac {d^2y}{dt^2}=F=F_y^d+F_y^e 
 


    

  
 (2.8)

Where, 𝐹 is the sum of damping: 𝐹 𝑑
𝑦 and exciting forces: 𝐹 𝑒

𝑦 , which are due to the moving 
fluid. Researchers’ main challenge is in determining the expression for the excitation force 
𝐹(𝑡) from the fluid acting on the beam.

The dynamical behaviour of a slender body immersed in a fluid and subjected to axial flow 
was comprehensively studied using linear dynamics by Païdoussis [106]. The derived equa-
tion of motion was capable of predicting the critical velocity at which the slender beam 
loses stability. In order to briefly present the theoretical concept, the cantilever beam sub-
jected to the axial flow is presented in Figure 2.3a. Point 𝑃 is the point on the cylinder where 
the small element 𝛿𝑥 is located (depicted in Figure 2.3b). Motion is assumed to be two-
dimensional in the x-y plane, and the pressure 𝑝 is assumed to be a linear function of lo-
cation 𝑥. If the cylinder from the Figure 2.3 would be submerged in the stagnant fluid, only 
the hydrostatic forces 𝐹𝑝𝑥 and 𝐹𝑝𝑦 from the mean pressure 𝑝 will be acting on the outer sur-
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(a) A free-clamped cylinder in 
axial flow

(b) A small element 𝛿𝑥 of 
cylinder surrounded by fluid

Figure 2.3. Example of a beam in flowing fluid showing applied forces and moments [115]

faces. When the fluid starts to flow, the elastic cylinder deforms and accelerates the neigh-
bouring fluid. 𝐹𝐴 is the added acceleration resulting from the fluid velocity in the y direc-
tion. 𝐹𝐿 is lift (force in the in the normal direction) and 𝐹𝐷 is drag force (force in longitude 
direction). The strength of these forces depends on the trailing end of the body. Force 𝑇 is 
denoted as the axial tension from the fluid acting in the axial direction. The force 𝑇 can be 
decomposed into the mean and fluctuating component 𝑇 (𝑡) = ̄𝑇 + 𝑇 ′. The final equa-
tion should account for the linear added mass of the confined water, 𝑚𝑎𝑑𝑑. In the general 
Equation of motion 2.8, the external force 𝐹 is applied in the y direction to the beam axis. 
Combining all identified fluid forces gives the linear equation of motion of a flexible free-
clamped cylinder in axial flow:

 \label {eq:4} EI\frac {\delta ^4y}{\delta x^4}+\left (m+m_{add}\right )\frac {\delta ^2y}{\delta t^2}=\left (F_A+F_N\right )-F_{py}-\frac {\delta }{\delta x}\left (T\frac {\delta y}{\delta x}\right ) 
    

       





 (2.9)

The main weakness of this model is that it fails to explain the impact of the viscosity of a 
fluid. The book [106] fails to provide information on the main characteristic of turbulent 
flows. Only brief information about the necessity of scaling the lift and drag forces by the 
skin friction coefficients is given. Overall, Paidoussis work on slender structures in axial 
flow [97, 103, 106] is limited in that it assumes fluid viscous forces do not dominate the dy-
namics of a structure in highly turbulent flows. The pressure field is assumed to be homo-
geneous. The forces result from the mean pressure 𝑝 acting on the cylinder surface. Conse-
quently, the model will neglect small amplitude rod vibrations, caused by pressure fluctua-
tions in the flow field.

In order to improve the model, Chen [22] extended the equation 2.9 to the viscoelastic ma-
terials. The study takes to account the viscosity of a material and its viscous damping ef-
fect. The general equation is extended for the coefficients for the cylinder vibration near the 
wall in a concentric fluid annulus and multiple cylinders. The derived equation of motion is 
deficient in that it does not take to account the viscosity of a surrounding fluid.

Basile [3] first proposed the approach to find the function of the dimensionless amplitude 
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of vibration (𝐴𝑦
𝐷 ) in terms of non-dimensional parameters governing the fluid flow, based 

on experimental results. His analysis provides an extensive number of experimental results 
and comparisons with those of other researchers. The importance of random pressure fluc-
tuations generated by the turbulent eddies was also emphasized in the work of Wambsganns 
[136]. The paper provides an equation for root-mean-square (RMS) displacement for a flex-
ible rod in axial flow, based on the results of in-house experiments. However, the study 
would have been more useful if it had included the experiments’ details and their results. 
Comparative experimental data of the pressure fluctuations generated by turbulent bound-
ary layers can be found in the further work of Chen [22, 23]. However, the results are found 
to be not reliable for the low-frequency pressure fluctuations.

Finally, the work of Rinaldi [115] distinguish the dynamics of a structure depending on the 
direction of the axial flow. The study offers an extensive analysis of the rod motion depend-
ing if it was submitted to the aspirating flow or in the opposite direction of flow. The ap-
proach is the same as tthat of the Paidoussis’ [106], but the general equation of motion 2.9
is scaled by a factor for the fully turbulent flow. One of the most noticeable differences be-
tween the work of Rinaldi [115–117] and her precursors it that numerous experiments were 
performed to validate the theoretical models.

2.1.1 Summary

Overall, these studies show weak evidence of turbulent-induced excitation from the external 
axial flow. The main weakness of the approach is a large number of parameters in the am-
plitude relation. Analytical models are quite convenient in predicting high-frequency vibra-
tion of structures subjected to the axial flow. However, these could be applied only for sim-
ple configurations and linear-elastic material. The turbulent coefficients obtained through 
empirical functions are not valid for low-frequency oscillations. Also, viscous coefficients 
dedicated for lift and drag estimations are not valid for small yaw angles [45]. Finally, ana-
lytical models which estimated vibrations for a cantilever fixed at the upstream end cannot 
be applied to the same case with a cantilever fixed at the downstream end.

The next section reviews the literature related to experimental results.

2.2 Experiments

An experimental approach is one of the most common procedures for predicting flow-induced 
vibration frequency. Several studies have investigated the influence of a tapered shape on 
the trailing end of a cantilever beam subjected to the axial flow [26, 45, 102, 104, 116, 117]. 
Some authors have considered the effect of far-field disturbances [3, 72, 80, 93]. Much of 
the current literature on predicting FIV frequencies focuses on the non-invasive velocity 
measurement method - PIV. Velocity contours are accompanied by simultaneous displace-
ment, or pressure measurement at the wall [14, 15, 26, 57, 58].
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(a) Horizontal cylinder clamped at the upstream end 
[104]

(b) Vertical cylinder clamped at 
the upstream end [102]

Figure 2.4. Schematic view of the experimental apparatus in 1966 (a) and in 2002 (b)

2.2.1 Effect of the free-end shape of a cantilever

Païdoussis [102, 104] was one of the first to examine of influence of the cantilever end-
shape on the dynamics of a cylinder. The first detailed study was conducted with a flexible 
rubber cantilever mounted horizontally with clamped at the upstream end, as presented the 
Figure 2.4a. In the second test campaign, the flexible cylinder was placed vertically, with 
the same flow direction, Figure 2.4b. The tested end shapes are depicted in Figure 2.5. Both 
experiments for almost ideally streamlined-end instability occurred at a significantly lower 
velocity than for a blunt-end shape. In the case of shape, 𝐻 presented in Figure 2.5a, the 
cantilever remained stable to the maximum available flow velocity. The same was observed 
in the later experiments with a cantilever mounted vertically, Figure 2.5b. As explained for 
an ideally streamlined end, viscous force in the normal direction, lift, acting on the trailing 
end of the body dominate its flexural restoring force. For a blunt-end, the lift force is com-
pensated with the viscous force in the longitudinal direction - drag force.

The influence of an end-shape was further examined by Rinaldi and Païdoussis in 2012 
[117], where the flow was directed from the free end towards the clamped end, Figure 2.6. 
Interestingly, in this case, the variant end shape did not change the dynamic response of the 
cantilever. 

Divaret et al. [45] studied the fluid forces excreted on a yawed cylinder with a streamlined 
end, with an angle of inclination 𝛼 below 5°. The comprehensive experimental study found 
that the normal force exerted on a cylinder oscillates perpendicularly to the flow. Normal 
force varies linearly with the angle of inclination, and its dominated by the lift component. 
The drag component has only 10% contribution. Further, the lift force originates from the 
pressure surrounding the cylinder, and the skin-friction coefficient related to the surface 
roughness is negligible. Divaret demonstrated that Taylor’s formula for the viscous forces 
in normal and longitudinal direction [126], used widely in the analytical models (presented 
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(a) Experimental results in 
horizontal system in 1966 [104]

(b) Experimental results in 
vertical system in 2002 [102]

Figure 2.5. The effect of the shape of tapered end on the stability of cantilevered cylinders in 1966 (a) and in 
2002 (b)

(a) vertical cylinder clamped at 
the downstream end

(b) Four end pieces used in the 
experiment

Figure 2.6. Schematic view of the experimental apparatus in 2012 [117]

in Section 2.1), does not hold for small yaw angles.

Lastly, two opposite beam end shapes, blunt-end and the curved end were tested in MACE 
in 2018 [26]. In the experiment, the flow was directed from the rod-free end to the clamped 
end. Representative flow visualisation for the two beam ends in depicted in Figure 2.7. The 
results of the experiment indicate that the beam end shape does not have an influence on 
the cantilever dynamics below a certain critical velocity, and vibrations are only due to the 
turbulent buffeting from the external flow. These results are similar to those reported by Ri-
naldi [117]. However, above the critical velocity, the movement of the rod is large enough 
to perturb the flow field, which is an additional source of excitation. The graph 2.8a shows 
that there has been a gradual increase in the amplitude of vibration with the increase of ve-
locity. What stands out in this Figure is the high amplitude of vibration of the blunt-end, as 
opposed to the amplitude of the streamline-end. This is due to the significant perturbation 
of the flow field from the blunt end piece. In both cases, the vibration frequency decreases 
slightly as shown in Figure 2.8b.

40



(a) PIV flow visualisation, curved-end 
rod

(b) PIV flow visualisation, 
blunt-end rod

Figure 2.7. Flow visualisation of two end pieces at the low flow velocity (𝑢 = 35.4) [26]

(a) Vibrating rod reduced RMS 
displacement vs. reduced velocity

(b) Vibrating rod frequency vs reduced 
velocity

Figure 2.8. Rods flow-induced vibration, arrows indicate that data points that were further analysed with the 
PIV. [26]

2.2.2 Effect of far-field disturbances

It was found that disturbances from the pumps transmitted through flow contributed to the 
increase in vibration amplitude. To examine the influence of that far-field flow noise in the 
system, Basile et al. [3] used two different pumps in the closed loop, as shown in Figure 
2.9a. Pump 𝑃2 was placed directly under the test channel during the test. It was shown that 
high amplitude vibrations with a frequency of 50Hz are due to the pump 𝑃2, as shown in 
the graph depicted in Figure 2.9b. To further examine the role of other system parameters 
such as flow asymmetry and clearance in the attachments, Basile set up the rod in an eccen-
tric position. It was observed that the increase in eccentricities of 50% led to an increase 
of up to 7 times in the relative amplitude of vibration. In addition, it was found that when 
the rod is assembled with a small clearance in the support, the amplitude of vibration can 
increase even up to 4 times.

These experiments are similar to those reported by Ohlmer et al. [72, 93]. In the series ex-
periments, additional perturbations of the flow from a pump were introduced, and the in-
fluence of the test loop agreement was tested. It was confirmed that a sharp peak at 50Hz 
depicted in Figure 2.9c resulted from the flow pulsations generated by the pump.

In contrast to these findings, the experiments by Lane et al. [80] on the prototype of fuel as-
sembly for CANDU reactors showed that far-field noise effects are much less important as 
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(a) Schema of the installation of the 
pumps [3]

(b) influence of the pumps on 
the amplitudes [3]

(c) influence of the pumps on the 
amplitudes [93]

Figure 2.9. Influence of pumps on the amplitude of vibration

compared to the near-field turbulence. The case study explained that pump pressure fluc-
tuations have a higher impact in a small loop system than in large volume reactor systems; 
hence, results from the prototype test represent the worst-case scenario as opposed to the 
fuel element in a large power reactor.

2.2.3 PIV measurements

A number of studies have begun to examine the influence of turbulent buffeting with parti-
cle image velocimetry (PIV) with simultaneous measurement of pressure coefficient or dis-
placement of the body. The approach makes the obtained data particularly suited for bench-
marking the Computational Fluid Dynamics (CFD) models and Fluid-Structure Interaction 
(FSI) models. In experiments presented below, the frequency of pressure fluctuations 𝑓 has 
been scaled with the Strouhal number, 𝑆𝑡 = 𝑓𝐿

𝑈 where 𝑈 is the flow velocity and 𝐿 is the 
characteristic length.

Higuchi et al. [57, 58] investigated the shear flow separated at the leading edge of blunt 
cylinder at 𝑅𝑒 = 105. An example of the flow visualisation of the cylinder subjected to tur-
bulent, axial flow is depicted in Figure 2.10. The experiment was conducted with the use of 
magnetic suspension of the cylinder. A balance system was used to measure the drag force 
exerted on the body. The study revealed large-scale vortices impinging on the structure at 
the leading edge and further downstream helical vortex structures. The wake behind the 
cylinder was asymmetrical and unsteady. The peak pressure fluctuations, were observed at 
frequency of around 𝑆𝑡 = 0.012 (1.5Hz) and 𝑆𝑡 = 0.081 (10Hz). It was concluded that the 
low-frequency oscillation originated from the axisymmetric pulsation of the recirculation 
bubble. This can also be described as the flapping motion of a recirculating bubble. 

Taking the same approach, Camussi [15] demonstrated that the largest pressure fluctua-
tions are due to the reattachment phenomenon on the forward-facing step. The averaged 
vorticity field with the approximate position of the reattachment point is depicted in Figure 
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Figure 2.10. Instantaneous vorticity and velocity field over the blunt cylinder, 𝑅𝑒 = 105 [58]

(a) Contour of the averaged vorticity field and 
streamlines downstream the forward-facing step, 

𝑅𝑒 = 3 × 105
(b) evolution of the pressure fluctuations in 

terms of distance from the step

Figure 2.11. Results of the PIV measurements and simultaneous pressure measurements [15]

2.11a. The unsteady recirculation bubble is formed at the reattachment region downstream 
of the step, in this case, for the location 𝑥/ℎ < 2.1. Again, the flapping motion of the re-
circulation bubble is causing the low-frequency pressure oscillations, characterised by the 
Strouhal number of around 0.01. The simultaneous pressure measurement shows that the 
evolution of pressure fluctuations reaches a maximum in the average location of the reat-
tachment point. It is depicted in Figure 2.11b, where statistics of pressure fluctuations were 
expressed as root mean square pressure coefficient 𝐶𝑝𝑟𝑚𝑠. It is important to highlight that 
the forward-facing step geometry induces larger pressure fluctuations near the wall than the 
backwards-facing step [14].

The test rig dedicated to investigating the FIV in nuclear fuel rods was first installed in MACE 
in 2018 under the financial support of the EDF [26]. The geometry of the experimental sys-
tem was designed to correspond to the water-cooled reactor flow conditions. The flowing 
mass flux range represents the nuclear reactor mass flux range. Additionally, the test sec-
tion has an embedded flow straightener, and the pump location is relatively far from the in-
let. The rod subjected to the axial flow is long, circular, stainless steel tube filled with lead 
shot to approximate the uranium density. The motion of a free-end is recorded with a fast-
imaging camera, and in the same time frame, the second camera tracks the flow field.

Interestingly, the instantaneous velocity visualisation Figure 2.7 did not reveal a flow de-
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Table 2.1. influence of the beam end-shape and direction of the flow on the cantilever beam

Cantilever beam - flow direction Trailing end 
geometry Effect on amplitude References

flow from fixed-end to free-end blunt end relatively low amplitude of 
vibration [101, 102, 104]

streamline 
end

relatively high amplitude of 
vibration

flow from free-end to fixed-end blunt end high amplitude of vibration 
above Ucr [26, 115–117]

streamline 
end

slightly lower amplitude of 
vibration above Ucr

tachment event for the blunt-end. It has been assumed that the time scale of induced move-
ment is much bigger than the time scale of the flow. Therefore fluid has enough time to 
adapt to the movement of vibrating rods. Their reason could be, however, due to the rela-
tively small resolution of the PIV study. Nevertheless, the detailed study of the rod’s free-
end displacement makes a valuable contribution to the FSI model benchmarking.

2.2.4 Summary

The studies on the experimental approach indicate that in the case of a cantilever subjected 
to the axial flow, the amplitude of vibration depends strongly on the beam-end shape and 
direction of flow approaching the beam. In the case where flow is directed from the clamped 
end towards the free end, the amplitude of vibration is stronger for the streamlined end due 
to the lift force exerted on the beam. The importance of turbulent-induced excitation was 
firstly emphasised in the case of the blunt-end rod with the flow directed from the free-end 
towards the clamped-end. Above a certain velocity threshold, the blunt end vibrates with 
higher amplitude than the streamlined end. Overall, all these studies show that the ampli-
tude of vibration increase with the increased flow velocity. The beam’s natural frequency 
decreases with the increased flow velocity. For the flow-induced vibrations experienced in 
the nuclear fuel rods, the configuration of interests is flow directed from the free end toward 
the fixed end. The results of the literature review are summarised in Table 2.1. 

The modern approach to assessing FIV is the PIV flow visualisation with simultaneous 
pressure/displacement measurement. The studies presented thus far provide evidence that 
large-scale, low amplitude vortices impinging on a structure are the dominant source of ex-
citation on the beam. The peak of the pressure fluctuations occurred at the reattachment 
length. Hence pressure fluctuations are stronger in the forward-facing step than in the backwards-
facing step [14]. It is important to verify whether the pressure spectra provided in the liter-
ature were cleaned from the background flow noise. A summary of experimental studies 
suitable for the FIV assessment in the nuclear industry is listed in Table 2.2. The presented 
cases can be successfully adopted as validation cases for the FSI simulations. 
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Table 2.2. Experimental studies of FIV from axial turbulent flow

Beam support 
conditions

Reynolds 
Number Tube material Fluid Measured 

properties References

fixed-fixed 0.5 − 1 × 105 bras water frequency, 
damping [22, 23]

fixed-free 0.5 − 1 × 105 bras water frequency, 
damping [22, 23]

hinged-
hinged < 105 aluminium air,water amplitude [3]

fixed-spring 106 steel water PIV, pressure, 
displacement [60, 127]

Rigid structures applicable for FIV
Forward-
facing step

1 × 105 & 
3 × 105 - water PIV, pressure [15]

Blunt cylin-
der 1 × 105 - water PIV, pressure [57, 58]

2.3 Fluid Structure interaction simulations

The literature on the Fluid-Structure Interaction simulations will highlight several promi-
nent numerical models developed for the flow-induced vibrations in nuclear fuel rods.

De Ridder et al.[35] simulated the instabilities of a flexible, empty tube subjected to the eu-
tectic lead-bismuth fluid. This has practical importance in the design of the MYRRHA re-
actor. Reynolds number with the lead-bismuth flow is 5.6 × 104. The flow was computed 
using unsteady Reynolds-averaged Navier-Stokes (URANS) with the 𝑘 − 𝜔 SST model of 
Menter. The approach to solving fluid equations involves the discretisation of the spatial 
terms with a second-order upwind scheme and second-order time discretisation. The struc-
tural computations are performed with the finite element method, with the second-order 
time discretisation. The coupling involves the IQN-ILS method. No re-meshing method 
was adopted because the predicted displacements were on the order of 10𝜇𝑚. The method-
ology was validated with the experiments of Chen & Wambsganns [23] for vibrations of a 
solid clamped-clamped cylinder in water flow where Reynolds number ranged from 1.27 ×
105 − 3.81 × 105. Calculated frequencies of vibrations showed good agreement with the 
experiments. However, the time history of the displacement showed that vibrations were 
damped. That clearly shows that excitation due to fluctuating pressures is absent. The study 
on grid refinement showed no difference in displacement when using wall functions or solv-
ing the near-wall region. In further work, De Ridder [32, 33] studied solitary rods and tightly 
packed rods subjected to axial water flow with the same methodology. However, the study 
involved the influence of increasing the velocity above the critical threshold and further 
fluttering amplitude of the rod. According to the fuel rod failures review presented in Sec-
tion 1.4, the flutter of the rod has never occurred, and damage was only due to the small-
amplitude vibration imposed by the pressure fluctuations.

In their numerical simulations, De Santis & Kottapalli [36] performed strongly coupled 
FSI simulations on two tightly packed rods. The approach on the fluid side was again the 
URANS 𝑘 − 𝜔 SST model with the second-order upwind scheme for discretising the spa-
tial terms and second-order implicit temporal terms. On the solid side, the finite element 
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method with the second order temporal scheme was applied. The Aitken under-relaxation 
coupling scheme was chosen. Interestingly, due to the relatively small pitch to diameter ra-
tio ( 𝑃

𝐷 = 1.27) and high Reynolds number 𝑅𝑒 = 2.4 × 105, the appearance of the flow pul-
sations in the gap between two rods was detected. The movement was triggered by the flow 
itself, and due to the pulsations of pressure in the gap, vibrations remained self-sustained 
without being damped out. The study is limited in that it fails to provide validation of the 
numerical model against experiments or analytical models. The frequency of vibration was 
estimated at 100-120Hz. The study would have been more relevant if the researchers had 
provided information on the frequency in the non-dimensional form.

In the later study of De Santis et al. [37] performed simulations of fuel rods subjected to 
the axial water flow and lead-bismuth flow at 𝑅𝑒 = 9.2 × 104. The turbulent flow was nu-
merically solved with the URANS 𝑘 − 𝜔 SST turbulence model by Menter. The paper fails 
to specify the discretisation approach used in the study. The solid displacement was solved 
with the finite element method as linear-elastic material. The Aitken under-relaxation was 
chosen for the coupling. It was found that the major problem with this approach of mod-
elling, is its ability to sustain vibrations. The rod was perturbed with an initial force, but 
vibrations appeared to be gradually damped. A similar study by the authors [38] on a wire-
wrapped rod showed the same result. Moreover, vibrations in the lead-bismuth flow appear 
completely vanish by the time of less than 0.3s. The research is limited by the fact that rod 
frequency estimation relies on that short time of vibration.

Kottapalli et al. [77] adopted the 𝑘 − 𝜔 U-RANS model. In contrast to the previous re-
search, velocity and pressure fluctuations were generated with a stochastic model and ap-
plied as additional external excitation on the structure. The validation of the pressure fluc-
tuation model with the DNS simulation revealed an underestimation of the pressure fluc-
tuations near the wall. In general, the study found that pressure fluctuations are still much 
better represented than solely applying the standard k-omega U-RANS. The validation of 
the model against the experiments of Chen & Wambsganns [23] shows that the vibrations 
remained self-sustained, with an error of 7% for the modal frequency. However, the ampli-
tude of vibration was five times less compared to the experimental values. The observed 
increase in the amplitude of vibration, as opposed to the U-RANS model, can be attributed 
solely due the artificial random number generator for the turbulent pressure field.

One study by Hofstede [127] examined two U-RANS models to simulate the turbulence-
induced vibrations: 𝑘 − 𝜔 SST and the Reynolds Shear Stress Models (LRR). Simula-
tions were validated against experimental data dedicated to vibrations induced on a steel 
tube from a turbulent flow, where one end of the tube was fixed and one end fastened with 
a spring. The fundamental frequency of the experimental system ranges from 8-9Hz. The 
initial force was applied to the solid to trigger the vibrations. For the fluid, the second or-
der upwind scheme was used for the spatial discretisation, and the second order backward 
scheme was used for temporal discretisation. The results of the research demonstrated that 
both turbulence models are incapable of simulating external excitation on the structure solver. 
The vibrations resulting from initial perturbation get quickly damped out. Another impor-
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tant part is the convergence study of the solid solver. On the solid side the finite volume 
method (FVM) and finite element (FE) method were compared. It was concluded that FVM 
needs a much finer mesh and smaller time-step to converge than the FE discretisation method. 
The author fails to specify the influence of choosing the FE method on the final results of 
the FSI simulation. The non-conformal meshes could induce much larger errors than antic-
ipated. Also, the report provides little evidence that the pinned boundary condition at one 
end of a beam is an adequate choice to reproduce the experiment.

The most comprehensive numerical study of FIV in nuclear fuel rods has been undertaken 
by Christon [25]. The study involves the assessment of three turbulence models: LES, DES 
and URANS, with a mesh refinement using five mesh grades. It has been shown that the 
LES model presents adequate force fluctuations to assess the GTRF further. The large-eddy 
simulation model was further applied on the fluid side with the structure considered rigid. 
The computed flow-induced forces extracted from the CFD simulation were then trans-
ferred to the vibration analysis software dedicated to vibrations in nuclear fuel rods. The 
article provides valuable insights to LES flow simulation for the full fuel assembly design 
and offers a detailed analysis of the pressure fluctuations along the fuel rods. The results 
were validated against PIV experimental results provided by Westinghouse. It was shown 
that the RMS pressure is highest at the downstream end of the spacer grid, where the level 
of turbulent kinetic energy is the largest.

2.3.1 Summary

Many researchers have utilised strongly coupled FSI simulations which is the most widely 
used technique in analysing FIV. While the simulations are quite fast and convenient in pre-
dicting the dominant frequency of the fuel rod subjected to the axial flow, the literature re-
view exposed many shortcomings in the previous simulation approaches. Previous studies 
had based their assessment of dominant frequency on one or two cycles of vibration before 
the amplitude got damped out, and excitation due to fluctuating pressure was absent, i.e. 
[35, 37, 38, 128]. These studies have also predominantly focused on determining the natu-
ral frequency of vibrating beams in the presence of highly turbulent flow and have failed to 
consider the flow-induced amplitude of vibrations. In contrast, studies of [39, 77] increased 
an external excitation on the fuel rod by applying an artificial random number generator for 
the turbulent pressure field. The validation against experimental data still revealed an un-
derestimation of the amplitude of induced vibrations. So far, only the LES approach [25] 
was found to give reliable results, but it is computationally expensive, hence an inaccurate 
choice for the nuclear components.

2.4 Conclusions

To date, various methods have been developed and introduced to measure the flow-induced 
vibration frequency and amplitude. The literature review identified three main sub-groups 
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developed for analysing flow-induced vibrations:

• Analytical approach to derive a linear equation of motion for slender flexible cylin-
ders in confined axial flow. Also investigation of the function of the dimensionless 
amplitude of vibration (𝐴𝑦

𝐷 ) in terms of fluid flow non-dimensional parameters was 
presented.

• An experimental approach, the most common procedure for predicting flow-induced 
vibration frequency. It is used to establish empirical correlations to fit measurements 
or visualise the flow field around the shape of interest with simultaneous pressure mea-
surement.

• Fluid-Structure Interaction simulations, numerical approaches that have been devel-
oped for the flow-induced vibrations in nuclear fuel rods.

This review has demonstrated the shortcomings of the experimental approach to assessing 
FIV. In order to predict the vibration response of fuel rod in axial flow experimentally, one 
needs to input a pressure field on the rod surface in a prototypic assembly in the frequency 
range below 300 Hz, estimate the contribution of far-field flow noise from pumps, and pre-
dict the influence of other factors. Most experiments in the literature use flexible rods to 
validate models for the predicted onset of divergence or flutter. Consequently, experiments 
on dynamic response in the range of small vibration amplitudes are lacking and there is lit-
tle published data on experiments on vibrational characteristics: natural frequency, mode 
shapes and damping of cantilevered cylinders with different end-piece under the axial flow. 
From the practical perspective, such results will be especially useful for control rods or fuel 
rods, which were found to be subjected to the FIV wear [12].

There are obvious difficulties in assessing the amplitude of FIV with the use of analyti-
cal models. Firstly, the cylinders are generally modelled as simple Euler-Bernoulli beams. 
Even if the derived new analytical model is successful, it would not be possible to extend it 
to more complex geometries (i.e. fuel assembly component). Secondly, the pressure field is 
assumed to be homogenous. That is, the mean-square spectral density of the pressure is the 
same at any rod point. While the evolution of the pressure fluctuations in relation to step 
distance was discovered in the PIV experimental cases (Section 2.2.3).

Recent studies using coupled Computational Fluid Dynamic (CFD) and Computational 
Structural Mechanics (CSM) present an alternative to overcome these deficiencies. Previ-
ous studies have demonstrated well-developed methods to determine modal characteristics 
such as natural frequencies and damping ratios of vibrating beams in the presence of highly 
turbulent flow. It has been shown that fretting wear increases strongly with a larger ampli-
tude of fuel rod vibration [9]. Since an excessive vibration amplitude is a leading cause of 
grid-to-rod fretting, it becomes crucial to assess the flow-induced amplitude of vibration 
with good accuracy. Previous studies have predominantly focused on determining the nat-
ural frequency of vibrating beams in the presence of highly turbulent flow and have failed 
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to consider the flow-induced amplitude of vibrations. Also, the only identified suitable tur-
bulence model, LES, for this purpose is computationally expensive. None of the numerical 
studies reviewed appears to achieve reliable results with the use of approaches which are 
practical in industrial applications.

Overall, these studies highlight the complexity of determining the small amplitude, flow-
induced vibrations induced by external, axial, turbulent flow. This consequently indicates a 
need to assess the numerical modelling approaches for the flow-induced vibrations. In the 
Chapter that follows, the mathematical description of the solid linear-elastic displacements 
is presented.
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Chapter 3

Governing equations of solid elastic 

displacement

3.1 The Navier-Displacement Equations

In this Chapter, a full derivation of the governing equations of elasticity is presented with 
constitutive relations of solid material stress to the material strains. The governing equa-
tions of linear elastic deformation in terms of displacement are derived. As shown in Chap-
ter 2 the fuel rod is subjected to small strains; hence the linear elastic model is sufficient to 
apply during the modelling process. The simplification of the current study is to assume the 
isothermal elasticity and no influence of thermal expansion is considered.

3.2 Mathematical Model of Solid Deformation

Surface forces and body forces are two types of external forces that act on a body. Body 
forces are associated with mass and are distributed throughout the volume of a body. Body 
forces include gravitational, magnetic, and inertial forces. They are specified in terms of 
force per unit volume. Normal and shear forces are surface forces as they are exerted on 
the surface of an object. The general case of a three-dimensional state of stress is shown 
in Figure 3.1a. Stresses are uniformly distributed on each face, where stress is defined as 
force per unit area. The total of nine scalar stresses components define the state of stress at 
a point. The stress components are assembled in the matrix form, wherein each row repre-
sents the group of stresses acting on a plane passing through point 𝑄(𝑥, 𝑦, 𝑧): 

  \left [\sigma _{ij}\right ]=\ \left [\begin {matrix}\tau _{xx}&\tau _{xy}&\tau _{xz}\\\tau _{yx}&\tau _{yy}&\tau _{yz}\\\tau _{zx}&\tau _{zy}&\tau _{zz}\\\end {matrix}\right ]=\left [\begin {matrix}\sigma _x&\tau _{xy}&\tau _{xz}\\\tau _{yx}&\sigma _y&\tau _{yz}\\\tau _{zx}&\tau _{zy}&\sigma _z\\\end {matrix}\right ] 




 

 

 










 

 

 





(3.1)

Normal stresses acting in direction normal to the face are 𝜏𝑥𝑥, 𝜏𝑦𝑦, and 𝜏𝑧𝑧 designated as 
𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 respectively. From Newton’s Second Law of motion, assuming the equilib-
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(a) Three-dimensional element

(b) Two-dimensional element

Figure 3.1. Element subject to stress and body forces [133]

rium of forces, we have

  \Sigma F_{Sx}=0, \Sigma F_{Sy}=0, \Sigma F_{Sz}=0          (3.2)

Taking moments of the x-, y-, and z-directed forces about point Q, for rotational equilib-
rium, we have: 

  \Sigma M_z = 0    (3.3)

which results in: 
  (– \tau _{xy} dy dz)dx + ( \tau _{yx} dx dz)dy = 0      (3.4)

The above reduces to: 
  \tau _{xy}=\tau _{yx}    (3.5)

Similarly considering Σ𝑀𝑦 = 0 and Σ𝑀𝑥 = 0, it can be shown that 

  \tau _{xz} = \tau _{zx}    (3.6a)

  \tau _{yz}={\ \tau }_{zy}    (3.6b)

For simplicity, the equilibrium equation will be derived in a two-dimensional plane, and 
the result will be generalized into 3D. A two-dimensional presentation of plane stress is de-
picted in Figure 3.1b with a thin element of sides 𝑑𝑥 and 𝑑𝑦, with stresses 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, and 
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𝜏𝑦𝑥 acting in the x- and y-axis. The rate of change of stress acting on the right-hand side 
of the element can be expressed by truncated Taylor’s expansion; thus for the stress acting 
upon x plane we have: 

  \sigma _x+\frac {{\partial \sigma }_x}{\partial x}dx  


 (3.7a)

  \tau _{xy}+\frac {\partial \tau _{xy}}{\partial x}dx 



 (3.7b)

From the equilibrium of x forces, Σ𝐹𝑥 = 0, we have 

  \left (\sigma _x+\frac {{\partial \sigma }_x}{\partial x}dx\ \right )dy\ -\sigma _xdy\ +\ \left (\tau _{xy}+\frac {\partial \tau _{xy}}{\partial y}dy\right )dx\ \ -\tau _{xy}dx\ +\ F_xdxdy\ =\ 0\
 


      



        (3.8)

The equation above can be simplified to: 

  \left (\frac {{\partial \sigma }_x}{\partial x}\ \ +\frac {\partial \tau _{xy}}{\partial y}\ {+\ F}_x\right )dxdy=\ 0 






     (3.9)

As the 𝑑𝑥𝑑𝑦 is nonzero, the quantity in the parentheses has to equate to zero. The x and y 
equations result in the differential equations of equilibrium for two-dimensional stress as 
follows: 

  \frac {{\partial \sigma }_x}{\partial x}\ \ +\frac {\partial \tau _{xy}}{\partial y}\ {+\ F}_x=\ 0 






    (3.10a)

  \frac {{\partial \sigma }_y}{\partial y}\ \ +\frac {\partial \tau _{xy}}{\partial x}\ {+\ F}_y=\ 0 







    (3.10b)

The differential equations of equilibrium for the case of three-dimensional stress can be 
summarized from the preceding expressions as:

  \frac {{\partial \sigma }_x}{\partial x}\ \ +\frac {\partial \tau _{xy}}{\partial y}+\ \frac {\partial \tau _{xz}}{\partial z}{+\ F}_x=\ 0 









    (3.11a)

  \frac {\partial \tau _{xy}}{\partial x}\ \ +\frac {{\partial \sigma }_y}{\partial y}+\ \frac {\partial \tau _{yz}}{\partial z}{+\ F}_y=\ 0 












    (3.11b)

  \frac {\partial \tau _{xz}}{\partial x}\ \ +\frac {\tau _{yz}}{\partial y}+\ \frac {{\partial \sigma }_z}{\partial z}{+\ F}_z=\ 0 









    (3.11c)

The expression can be written more compactly using the Cartesian tensor notation: 

  \frac {{\partial \sigma }_{ij}}{\partial x_j}\ +f_i=\ 0 


    (3.12)

Differential equations of motion for the three-dimensional stress may be derived from the 
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preceding equations as follows: 

  \rho _S\frac {\partial ^2u}{{\partial t}^2}+\frac {{\partial \sigma }_x}{\partial x}\ \ +\frac {\partial \tau _{xy}}{\partial y}+\ \frac {\partial \tau _{xz}}{\partial z}{+\ F}_x=\ 0 

 










    (3.13a)

  \rho _S\frac {\partial ^2v}{{\partial t}^2}+\frac {\partial \tau _{xy}}{\partial x}\ \ +\frac {{\partial \sigma }_y}{\partial y}+\ \frac {\partial \tau _{yz}}{\partial z}{+\ F}_y=\ 0 
















    (3.13b)

  \rho _S\frac {\partial ^2w}{{\partial t}^2}+\frac {\partial \tau _{xz}}{\partial x}\ \ +\frac {\tau _{yz}}{\partial y}+\ \frac {{\partial \sigma }_z}{\partial z}{+\ F}_z=\ 0 

 










    (3.13c)

Where the second derivative of the displacement in the x-direction 𝑢, with respect to time, 
multiplied by the material density 𝜌𝑆 represents the inertia, force depending on the acceler-
ation of a body. Finally, a succinct representation of these expressions is derived in Equa-
tion 3.14: 

  \rho _S\frac {\partial ^2u_i}{{\partial t}^2}+\frac {{\partial \sigma }_{ij}}{\partial x_j}\ +f_i=\ 0 \label {eqn:stresses} 






    (3.14)

3.3 The Linear-Elastic Constitutive Relations

3.3.1 Strain-displacement relations 

Considering deformations caused by external forces, one needs to introduce a measure of 
deformations intensity called strain. The total deformation can be regarded as a change in 
length and relative rotation without accompanying changes in length. Possible deformations 
of an element are illustrated in Figure 3.2.

(a) normal strain (b) shearing strain

Figure 3.2. Total deformation of an element. [133]

Two normal or longitudinal strains are defined as: 

  \epsilon _x=\frac {\partial u}{\partial x}\ ,\ \ \epsilon _y=\frac {\partial v}{\partial y}\
 


  


(3.15)

The positive sign is applied to elongation. If the element is subjected to contraction, a nega-
tive sign must appear.

Assuming small-angle 𝛼𝑥 between 𝐴𝐵 and 𝐴′𝐵′, the shearing strain can be defined as: 

  \gamma _x=\alpha _x-\ \alpha _y=\frac {\partial u}{\partial y}\ +\frac {\partial v}{\partial x}\
     





(3.16)
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In the case of the 3D element, normal and shearing strains will be: 

  \epsilon _x=\frac {\partial u}{\partial x}\ ,\ \ \epsilon _y=\frac {\partial v}{\partial y},\ \ \epsilon _z=\frac {\partial w}{\partial z}\
 


  


  


(3.17a)

  \gamma _{xy\ }=\ \frac {\partial u}{\partial y}+\frac {\partial v}{\partial x}\ \ ,\ {\ \gamma }_{yz\ }=\ \frac {\partial v}{\partial z}+\frac {\partial w}{\partial y}\ ,\ \ \ \gamma _{zx\ }=\ \frac {\partial w}{\partial x}+\frac {\partial u}{\partial z}\
 





  





  





(3.17b)

Then the state of strain at a point is described by a nine-term matrix: 

  \left [\epsilon _{ij}\right ]=\left [\begin {matrix}\epsilon _x&{\frac {1}{2}\gamma }_{xy}&{\frac {1}{2}\gamma }_{xz}\\{\frac {1}{2}\gamma }_{yx}&\epsilon _y&{\frac {1}{2}\gamma }_{yz}\\{\frac {1}{2}\gamma }_{zx}&{\frac {1}{2}\gamma }_{zy}&\epsilon _z\\\end {matrix}\right ] 







































(3.18)

In indicial notation: 
  \epsilon _{ij} = \frac {1}{2}(u_{i,j}+u_{j,i}) \label {eqn:strain-displ}  


   (3.19)

This summarizes the strain-displacement relations of continuum mechanics.

3.3.2 Stress-strain relation

It has been proven experimentally that stress is directly proportional to strain in the linearly 
elastic range. This relationship is known as Hooke’s Law. For an isotropic material, the 
stress-strain relationship can be written: 

  \left [\begin {matrix}\sigma _x\\\sigma _y\\\sigma _z\\\tau _{xy}\\\tau _{xz}\\\tau _{yz}\\\end {matrix}\right ]=\left [\begin {matrix}\lambda +2\mu &\lambda &\lambda &0&0&0\\\lambda &\lambda +2\mu &\lambda &0&0&0\\\lambda &\lambda &\lambda +2\mu &0&0&0\\0&0&0&2\mu &0&0\\0&0&0&0&2\mu &0\\0&0&0&0&0&2\mu \\\end {matrix}\right ]\left [\begin {matrix}\epsilon _x\\\epsilon _y\\\epsilon _z\\\gamma _{xy}\\\gamma _{xz}\\\gamma _{yz}\\\end {matrix}\right ] 








































      
      
      
    
    
    








































(3.20)

Where shear modulus 𝜇 and the quantity 𝜆 are called Lamé’s constants, which are related 
to the elastic modulus, 𝐸, and the Poisson ratio, 𝜈, according to: 

  \lambda \ =\ \frac {\upsilon E}{(1+\upsilon )(1-2\upsilon )} 
   

(3.21)

  \mu =\frac {E}{2(1+\upsilon )} 
 

(3.22)

This relation can also be written more conveniently in indicial form as: 

  \sigma _{ij}=2\mu \epsilon _{ij} +\lambda \delta _{ij} \epsilon _{kk} \label {eqn:stress-strain}      (3.23)
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3.4 The Navier-Displacement Equations

It is now possible to combine the differential equations of the equilibrium3.14, kinematic 
relations 3.19 and stress-strain relation 3.23.

First, consider the x-motion equation: 

  \rho _S\frac {\partial ^2u}{{\partial t}^2} + \frac {{\partial \sigma }_{xx}}{\partial x}+\frac {{\partial \tau }_{xy}}{\partial y}+\frac {{\partial \tau }_{xz}}{\partial z} + f_x=0 \label {eq:x-motion} 

 










    (3.24)

Then from the stress-strain equation (3.23), we can replace the stresses in the equation 3.24
above: 

  \sigma _{xx}=\ 2\mu \epsilon _{xx}+\lambda \epsilon _{kk}      (3.25a)

  \epsilon _{kk}=\epsilon _{xx}+\epsilon _{yy}+\epsilon _{zz}        (3.25b)

  \tau _{xy}\ =\ 2\mu \epsilon _{xy}    (3.25c)

  \tau _{xz}\ =\ 2\mu \epsilon _{xz}    (3.25d)

Introducing strain-displacement equation 3.19 will give: 

  \sigma _{xx}=\ 2\mu \frac {\partial u}{\partial x}+\lambda \left (\frac {\partial u}{\partial x}+\frac {\partial v}{\partial y}+\frac {\partial w}{\partial z}\right )  


 








 (3.26a)

  \tau _{xy}=\ \mu \left (\frac {\partial u}{\partial y}+\frac {\partial v}{\partial x}\right ) \label {constitutive2}   





 (3.26b)

  \tau _{xz}=\ \mu \left (\frac {\partial u}{\partial z}+\frac {\partial w}{\partial x}\right )   





 (3.26c)

These can be then substituted back into the equilibrium equation 3.14, and summarized by 
writing them in Cartesian tensor notation:

  \rho _S\frac {\partial ^2u_i}{{\partial t}^2}\ +\ \left (\lambda +\mu \right )\frac {\partial }{\partial x_i}\left (\frac {\partial u_j}{\partial x_j}\right )+\mu \frac {\partial ^2u_i}{{\partial x_j}^2}+\ f_i=0 \label {eq:linearelasticdeformation} 


    






 


     (3.27)

This summarizes the governing equation for the solid linear-elastic displacements.

3.5 Large strains

As discussed in Section 3.1 further numerical approach towards assessing FIV will con-
sider only the small deformations and deflections. However, for the validation of the FSI 
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Figure 3.3. One-dimensional rod loaded at the right end in initial configuration (bottom) and deformed 
(current) configuration (top) [6]

methodology presented in Section 8.2, the assumptions of small strains and small rota-
tions were no longer valid. For non-linear deformation, models adopt a total Lagrangian ap-
proach. In the total Lagrangian approach, the discrete equations are formulated with regard 
to the reference configuration. Figure 3.3 shows the starting (undeformed) configuration 
and reference configuration of the body during motion. The spatial (Eulerian) coordinate is 
denoted by 𝑥, and the material (Lagrangian) coordinates are denoted by 𝑋 .

Assume that the stress in the cross-section is constant and that the total force across a given 
section is indicated by 𝑇𝑆. Cauchy stress is given by: 

  \sigma =\frac {T_S}{A} \label {eg:nonlinear1} 


(3.28)

here 𝐴 refers to the current area 𝐴 of the rod.

The nominal stress will be used in the total Lagrangian formulation. The nominal stress, 
indicated by 𝑃𝑆, is given by 

  P_S=\frac {T_S}{A_0} \label {eg:nonlinear2}  


(3.29)

Here the force is divided by the initial or undeformed area 𝐴0. From Equations 3.28 ,3.29, 
it is apparent that physical and nominal stresses are related by: 

  \sigma =\frac {A_0}{A}P_S 


 (3.30)

  P_S=\frac {A}{A_0}\sigma  


 (3.31)

The governing equation for total Lagrangian description of the linear momentum conserva-
tion law reads as: 

  \frac {\partial P_{Sij}}{\partial X_j}+\rho _0b_i = \rho _0\ddot u_j 


     (3.32)
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Figure 3.4. The stress-strain relationship for elastic (1) and hyperelastic material (2,3) [91]

Here 𝑏 is the body force and 𝑢̈𝑗 denotes solid displacement time derivative 𝜕2𝑢(𝑋, 𝑡)/𝜕𝑡2, 
𝜌0 is the initial density. Constitutive relations defining the Cauchy (true) stress 𝜎 for non-
linear geometry implemented within the OpenFOAM FSI solver are available in [16]. The 
next section will provide the constitutive relations for the Neo-Hookean material model 
used in simulations in Section 8.2).

3.6 Constitutive Relations: Hyperelastic materials

A neo-Hookean model is an extension of Hooke’s law, applicable for large deformations. 
The stress-strain curve is depicted in Figure 3.4 where a comparison between linear elastic 
materials and a hyper-elastic material is presented. For materials such as rubber, the strain-
stress relationship is non-linear. The stress-strain curve of a neo-Hookean material is ini-
tially linear, but the curve plateaus beyond a certain point, indicating the ability to resist se-
vere elastic deformations that can be recovered.

Hyperelastic material models describe the behaviour of materials subjected to large elas-
tic deformations under loading, returning to their original shape when the load is removed. 
A material which can undergo changes in volume is said to be compressible. In this sec-
tion, constitutive equations to characterize the compressible hyperelastic materials are in-
troduced. 

As explained in Section 3.5, the applied load displaces the solid structure from the initial 
configuration to the deformed configuration. Assuming that the position of a material point 
in the undeformed configuration is X and the displacement of this point to the deformed 
configuration is u(X, 𝑡), the position of the material point in the deformed configuration can 
be described as: 

  x(\textbf {X},t)=\textbf {X}+u(\textbf {X},t)        (3.33)
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The displacement u can be expressed as: 

  u=\begin {pmatrix}u_x & u_y & u_z\end {pmatrix}^T   


(3.34)

The displacement field of a deformed body is defined by the deformation gradient tensor F. 
It is a measure of how the deformation changes from point to point: 

  \textbf {F}=\frac {\partial x}{\partial X}=\textbf {I}+\frac {\partial u}{\partial X}=\textbf {I}+ \begin {pmatrix} \frac {\partial u_x}{\partial X} & \frac {\partial u_x}{\partial Y}& \frac {\partial u_x}{\partial Z}\\ \frac {\partial u_y}{\partial X} & \frac {\partial u_y}{\partial Y}& \frac {\partial u_y}{\partial Z} \\ \frac {\partial u_z}{\partial X} & \frac {\partial u_z}{\partial Y}& \frac {\partial u_z}{\partial Z} \end {pmatrix} 


  


 

































(3.35)

where I is the identity matrix, the material position vector 𝑋 is defined by X, Y, and Z coor-
dinates.

It is possible to compute a measure of the deformation, independent of the rotation, without 
knowing the rotation matrix. The right Cauchy Green strain tensor defines the correspond-
ing strain measure as: 

  \textbf {C}=\textbf {F}^T\textbf {F}   (3.36)

The strain in undeformed configuration is defined with a Green-Lagrange strain tensor: 

  \textbf {E}=\frac {1}{2}(\textbf {F}^T\textbf {F} -\textbf {I}) 


   (3.37)

Instead of dealing directly with the deformation gradient F and the corresponding strain 
measure C, the approach is to decompose the F into volume changing part and volume pre-
serving part [61]: 

  \textbf {F}=(J^{1/3}\textbf {I})\overline {\textbf {F}}=J^{1/3}\overline {\textbf {F}}     (3.38)

  \textbf {C}=(J^{2/3}\textbf {I})\overline {\textbf {F}}=J^{2/3}\overline {\textbf {C}}     (3.39)

Here 𝐽 = 𝑑𝑒𝑡[𝐹 ] is the Jacobian of the deformation gradient, and 𝑑𝑒𝑡[] is the determinant 
operator. Terms 𝐽1/3I and 𝐽2/3I are related to volume changing deformations, while F and 
C = F𝑇F are related to volume-preserving deformations. F and C are called the modified 
deformation gradient and the modified right Cauchy stress tensor, respectively.

For hyperelastic materials, the strain-stress relationship is expressed in terms of a strain 
energy density function, Ψ = Ψ(F). The strain energy function relates the deformation 
gradient to the amount of stored energy. For example, the stretched rubber band has a cer-
tain amount of energy stored. After a translation or rotation of the rubber band in space, the 
amount of the energy stored remains unchanged. Strain energy function Ψ can be expressed 
as a function of symmetric material tensors C and E as: 

  \Psi (\textbf {F})=\Psi (\textbf {C})=\Psi (\textbf {E})      (3.40)
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The constitutive relation relates the Cauchy stress tensor 𝜎 = 𝜎(𝑥, 𝑡) at each place 𝑥 =
(X, 𝑡) to the deformation gradient F. The constitutive relation has a general form of: 

  \sigma (\textbf {x},t) = g(\textbf {F(\textbf {X},t),\textbf {X}})=J^{-1}\frac {\partial \Psi (\textbf {F})}{\partial \textbf {F}}\textbf {F}^T = J^{-1}\textbf {F}\left ( \frac {\partial \Psi (\textbf {F})}{\partial \textbf {F}} \right )^T      


  





(3.41)

where g represents the material properties and it is a tensor-valued function of one tensor 
variable F. The gradient of the scalar-valued function Ψ is determined by its derivative with 
respect to the tensor variable F. An alternative form of constitutive relation introduces the 
Piola transformation relating stress field S and Cauchy stress 𝜎. The general strain-stress 
relationship can be expressed as: 

  S=2\frac {\partial \Psi }{\partial \textbf {C}} 


(3.42)

where S is the second Piola-Kirchhoff stress defined as:

  S=J\textbf {F}^{-1}\sigma \textbf {F}^{-T} \label {eq:Piola}   (3.43)

where 𝜎 is the Cauchy stress.

The stored energy function, Ψ for a compressible neo-Hookean material is defined as [61]: 

  \Psi (I_1,J) = \frac {c_1}{\beta }\left (J^{-2\beta }-1\right ) +c_1(I_1 -3)   


       (3.44)

  \beta =\frac {\upsilon }{1-2\upsilon } 
 

(3.45)

Where the constants 𝑐1 = 𝜇/2 and 𝛽 are related to the material parameters, shear modulus 
𝜇 and Poisson’s ratio 𝜐. 𝐼1 is the first strain invariant of modified right Cauchy stress tensor 
C, defined as: 

  I_1=tr[{\overline {\textbf {C}}}]    (3.46)

Here the trace operator is indicated by 𝑡𝑟[] and C = 𝐽−2/3C.

The following summarizes the neo-Hookean material model suitable for compressible or 
nearly incompressible materials. Several strain-energy formulations are suitable for de-
scribing different hyperelastic material systems. Their detailed description is provided in 
[6, 55, 61]. Further discussion on the solid constitutive laws for non-linear geometry lies 
outside of the scope of this thesis.

3.7 Summary

This chapter summarizes the governing equations of linear elastic deformation in terms of 
displacement. The mathematical models are discretized using the cell-centred finite volume 
method. The discretization of the presented mathematical model will be described in Chap-
ter 7. What follows is a description of mathematical models governing the fluid flow.

59



Chapter 4

Turbulence modelling

When the inertial forces dominate the viscous forces, the flow becomes turbulent. In statis-
tically steady turbulent flows, every transported quantity, such as velocity, pressure, temper-
ature, and species concentration, fluctuates around a mean value. Most engineering flows 
are turbulent. Hence there is a necessity for modelling turbulence. This Chapter focuses 
on this most widely turbulence modelling approach used for industrial flows. The first part 
of this Chapter is devoted to a brief introduction of fundamental concepts and definitions 
related to turbulent flows. The second part of the Chapter provides an overview of two-
equation models and more complex Reynolds stress models. Finally, the comparison of ef-
fectiveness between the two approaches is presented.

4.1 Fundamental Concepts

4.1.1 Eddy scales

Turbulence is an unsteady phenomenon, and it is inherently three-dimensional. The flow 
consists of a spectrum of different scales: eddy sizes. Figure 4.1 illustrates the cross-sectional 
image of a turbulent boundary layer on a flat plate. Turbulent flow visualizations exhibit 
the rotational flow structures with lengths equivalent to the flow boundaries, together with 
intermediate and small length scales. The structures are known as turbulent eddies. The 
largest eddies are of the size of the flow. The growth of the large-scale eddies is primarily 
governed by inertia and pressure; therefore, the structure of the largest eddies is anisotropic. 
Small scale eddies are of 0.1 to 0.01mm and frequencies around 10kHz. They appear to be 
more organized, have a similar structure in all turbulent flows, and are dominated by vis-
cous effects. The small-scale eddies are isotropic [135]. 

The kinetic energy contained in the large eddies is extracted from the mean flow kinetic en-
ergy through the interaction between the large-scale eddies and the mean shear. It is sub-
sequently transmitted to smaller scale eddies through eddy break-up. The cascade pro-
cess is the transfer of energy from larger eddies to the smaller and smaller eddies. The pro-
cess continues until the level of the smallest eddies, at which the viscous stresses become 
large, and the kinetic energy is dissipated into heat. These eddies are of the smallest scales 
present in the turbulent flow and are called Kolmogorov scales.
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Figure 4.1. Side view of a turbulent boundary layer visualized by smoke traces [135]

Figure 4.2. The energy spectrum of a turbulence behind a grid [135]

Turbulent eddy distribution as a function of eddy size is represented in the Kolmogorov en-
ergy spectrum. The spectral energy 𝐸(𝜅) as a function of the wavenumber 𝜅 is presented 
in Figure 4.2. Wave-number 𝜅 is defined as 𝜅 = 2𝜋/𝜆, where 𝜆 is the wavelength of the 
eddies. The diagram shows that the energy peaks at the low wave numbers, hence large ed-
dies concentrate most of the energy fluctuations. The smallest eddies have the lowest en-
ergy content.

Small-scale eddy motion is determined by viscosity and dissipation. The amount of dissi-
pated energy per unit time is denoted as 𝜀, which is the energy per unit time and unit mass 
𝜀 = [𝑚2/𝑠3]. The larger the velocity gradient, the more energy is transferred from large-
scale to small-scale eddies. Kinetic energy is converted to thermal energy by the viscous 
forces, hence larger viscosity, 𝜐, implies larger dissipative scales. Using dimensional analy-
sis one can establish the Kolmogorov velocity scale, 𝑣𝑛, length scale 𝑙𝑛 and time scale 𝜏𝑛 : 

  v_n=(\upsilon \varepsilon )^{1/4}    (4.1a)

  l_n=\left (\frac {\upsilon ^3}{\varepsilon }\right )^{1/4}  






(4.1b)
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  \tau _n=\left (\frac {\upsilon }{\varepsilon }\right )^{1/2}  





(4.1c)

The rate of production of the turbulent energy has to be in balance with the energy dissi-
pation. The large eddy scales are denoted as length 𝑙, velocity 𝜗, and time 𝑇 = 𝑙/𝜗. The 
energy transfer rate from large-energy-containing eddies is expected to scale as follows: 

  \varepsilon \sim \frac {\vartheta ^2}{T} \sim \frac {\vartheta ^2}{l/\vartheta } \sim \frac {\vartheta ^3}{l} 








(4.2)

The expression can be combined with the Equations 4.1 giving the ratios of the small length 
scales to the large length scales:

  \frac {v_n}{\vartheta } = Re^{-1/4} 


  (4.3a)

  \frac {l_n}{l}= Re^{-3/4} 


  (4.3b)

  \frac {\tau _n}{T}= Re^{-1/2} 


  (4.3c)

When the flow Reynolds number increases, the ratio of velocity, length and time scales of 
large eddies to the Kolmogorov eddies increases. This implies that the wavenumber range 
between large eddies and small-scale eddies is getting wider. Increasing the Reynolds num-
ber results in a finer turbulence structure, the size of smaller scales goes down, and their 
frequency goes up. On the other hand, the scale of the mean flow determines the size of the 
larger scales.

4.2 Navier-Stokes Equations

The purpose of this section is to present set of equations collectively known as the Navier-
Stokes equations. In fluid dynamics, fluid motion is described by the conservation of mass 
and the conservation of momentum.

4.2.1 Continuity Equation

The continuity equation can be written in Cartesian tensor notation as: 

  \frac {\partial \rho _F}{\partial t}+\frac {\partial \left (\rho _F \tilde {U_i}\right )}{\partial x_i}=0 








  (4.4)
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where 𝜌𝐹 is the fluid density and ̃𝑈𝑖 is the instantaneous fluid velocity in the 𝑥𝑖 direction. 
In the case of incompressible fluid, the density is constant. In steady-state flows 𝛿𝜌𝐹

𝛿𝑡 = 0 , 
thus:

  \frac {\partial \left (\tilde {U_i}\right )}{\partial x_i}=0 \label {NS_Mass} 


  (4.5)

4.2.2 Momentum

The momentum equation is obtained from applying the force-momentum principle: 

  \frac {\partial (\rho _F\tilde {U_i})}{\partial t} + \frac {\partial (\rho _F \tilde {U_i}\tilde {U_j})}{\partial x_j}=-\frac {\partial \tilde {P}}{\partial x_j}+ \frac {\partial \tau _{ij}} {\partial x_j} +\tilde {F_i} \label {NSmoementum} 











  






  (4.6)

Where 𝜏𝑖𝑗 is the viscous shear stress tensor, ̃𝑃 is the instantaneous pressure and ̃𝐹𝑖 represent 
the additional instantaneous body forces. In Newtonian fluids stress-strain relation can be 
expressed as the viscous stresses being linearly related to the mean strain rates. The con-
stant of proportionality is the fluid property, viscosity 𝜇𝐹:

  \tau _{ij}=\mu _F \left (\frac {\partial \tilde {U_i}}{\partial x_j}\ +\frac {\partial \tilde {U_j}}{\partial x_i} \right ) \label {eq:viscosity}    






 (4.7)

Substitution of stress-strain relation to the governing equation gives the momentum equa-
tion for the incompressible flow:

  \frac {\partial \rho _F \tilde {U_i}}{\partial t} + \frac {\partial \rho _F \tilde { U_i} \tilde {U_j}}{\partial x_j}=-\frac {\partial P}{\partial x_i}+ \frac {\partial }{\partial x_j} \left [\mu _F \left (\frac {\partial \tilde {U_i}}{\partial x_j}\ +\frac {\partial \tilde {U_j}}{\partial x_i} \right ) \right ] + \tilde {F_i} \label {eq:NavierStokes} 











 





 







   (4.8)

This summarizes the equations governing the unsteady flow of an incompressible fluid. In 
the case of isothermal flow, it is not necessary to solve the energy equation in addition to 
equations described above.

4.3 RANS Modelling

The Reynolds Averaged Navier-Stokes (RANS) method develops transport equations for the 
mean flow field with models to account for the mixing effects of turbulence. The objective 
is to develop equations that predict time-averaged velocity, pressure and temperature fields 
without calculating the complete turbulent flow pattern as a function of time.

As originally proposed by Reynolds (1895), the instantaneous variables (velocity, pressure, 
temperature etc.) can be decomposed into a mean (or average) and a fluctuating part. The 
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RANS equations are primarily used to model turbulent flows: 

  \widetilde {\Phi }\left (x_i,t\right )=\bar {\Phi }\left (x_i\right )\ +\ \phi \left (x_i,t\right )           (4.9)

Here Φ̃ is the instantaneous value of a scalar variable, Φ̄ is the mean component, and 𝜙 is 
the fluctuating component of the variable. For a steady flow field, the mean component can 
be defined with the time average of a fluctuating quantity over a time interval 𝛿𝑡: 

  \bar {\Phi } \left (x_i \right ) =\frac {1}{\Delta t} \int _{t_0}^{t_0+\Delta t}\phi \left (x_i,t\right )dt   







    (4.10)

For steady flow, the time-averaged mean value is constant. For unsteady flow, the mean 
value is a function of time, and it is defined with the ensemble averaging. Ensemble aver-
age is an average of the instantaneous values of the property at a given point in time and 
space over a large number of repeated identical experiments: 

  \Phi (x_i,t)= \lim _{N\to \infty }{\frac {1}{N}}\sum _{n=1}^{N}{\widetilde {\Phi }\left (x_i,t \right )}   










   (4.11)

Where 𝑁 is the number of samples. The instantaneous values in the Navier-Stokes equa-
tions are replaced by time-averaged mean and fluctuating values, and then the entire equa-
tion is time-averaged. The resulting equations are the Reynolds Averaged Navier-Stokes 
equations (RANS). The RANS form of the continuity equation will be: 

  \frac {\partial U_i}{\partial x_i}=0 


  (4.12)

Where 𝑈𝑖 represents the mean fluid velocity in the 𝑥𝑖 direction. The RANS form of the mo-
mentum equation then becomes: 

  \frac {\partial \left (\rho _F U_i\right )}{\partial t} + \frac {\partial \left (\rho _F U_iU_j\right )}{\partial x_j}=-\frac {\partial P}{\partial x_i}+\frac {\partial }{\partial x_j}\left [\mu _F\left (\frac {\partial U_i}{\partial x_j}+\frac {\partial U_j}{\partial x_i}\right ) -\rho _F \overline {u_i u_j}\right ]+F_i \label {eq:RANSmomentum} 






 













     (4.13)

As a result of the modification of the original Navier-Stokes system, additional unknowns 
appear to include the effect of turbulence, namely the Reynolds stresses 𝑢𝑖𝑢𝑗. These are 
six additional, non-zero stresses, three normal stresses and three shear stresses. In order to 
solve the system, supplementary turbulence models must be introduced. The most common 
CFD turbulence models may be divided into four main categories depending on the number 
of additional transport equations involved along with the RANS flow equations. The classi-
fication most common RANS turbulence models are conveniently summarized in Table 4.1. 
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Table 4.1. Standard RANS turbulence models [135]

N. of extra transport equations Name
Zero Mixing length model
One Spalart-Allmaras model
Two 𝑘 − 𝜀 model
Two 𝑘 − 𝜔 model
Seven Reynolds stress model

4.4 Eddy Viscosity Models

Within this class of model, the assumption is that the turbulent shear stresses 𝑢𝑖𝑢𝑗 sim-
ply act as additional stresses on top of the viscous stresses, 𝜐 (𝜕𝑈𝑖

𝜕𝑥𝑗
+ 𝜕𝑈𝑗

𝜕𝑥𝑖
). The viscous 

stresses are proportional to the rate of deformation of fluid elements, Equation 4.7. In order 
to express the turbulent shear stress in a similar form, the concept of ’eddy viscosity’. 𝜐𝑡

(proposed by Boussinesq -1877) will be introduced. According to the Boussinesq assump-
tion, the turbulent stress tensor is linearly related to the mean strain rate tensor through: 

  \rho _F \overline {u_iu_j}=-\mu _{t}\left (\frac {\partial U_i}{\partial x_j}\ +\frac {\partial U_j}{\partial x_i}\right )+2/3k\delta _{ij} \label {Boussinesq}   






   (4.14)

Where 𝜇𝑡 is referred to as the turbulent viscosity, and it is a property of the flow and 𝛿𝑖𝑗 is 
the Kronecker delta which is defined as:

𝛿𝑖𝑗 =
⎧{
⎨{⎩

1, if i=j

0, if i≠j

The quantity 𝑘 is the turbulent kinetic energy, defined as: 

  k=1/2(\bar {u_1^2}+\bar {u_2^2}+\bar {u_3^2})  
 

 
 (4.15)

If the eddy-viscosity model is adopted, the remaining modelling problem is to choose the 
method of obtaining the turbulent viscosity.

The zero equation models are models in which the turbulent kinematic viscosity 𝜐𝑡 is di-
rectly related to the turbulent velocity and length scale, without additional transport equa-
tions. The assumption in zero equation models is that the rate of production of turbulence 
properties equals their dissipation rate, and that is only applicable in simple two- dimen-
sional flows with moderate flow direction changes. These models require small computa-
tional resources, but they have very limited applicability. They fall on predicting the flows 
with separation and recirculation because of the lack of diffusion and convection in turbu-
lence transport equations [135].

The velocity scale in one-equation models is specified in terms of turbulent kinetic energy. 
One turbulent transport equation is solved in conjunction with auxiliary closure expressions 
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for the length scale. The model performs well only on simplified geometries because in 
complex geometries, it is difficult to specify the length scale [118].

Two-equations models use two transport equations: one for turbulent kinetic energy and 
one for its dissipation rate. Reynolds Stress Models directly calculate the Reynolds stress 
tensor components instead of adopting the eddy viscosity approach. The Reynolds Stress 
model solving additional seven transport equations and the most commonly used two-equations 
models will be described in the next sections.

4.5 The 𝑘-𝜀 Two-Equation Model

In this commonly used two-equation model, two transport equations are solved for the tur-
bulent kinetic energy 𝑘 and for the rate of dissipation of turbulent energy 𝜀, where 𝜀 is the 
product of kinematic viscosity and velocity gradient of the turbulent fluctuations, as shown 
in Equation 4.17. As the 𝑢′

𝑖 remains unknown, we solve transport equations for 𝑘 and for 𝜀. 
We expect the 𝜀 dissipation to be high near the walls.

  k=1/2(\overline {{u\prime }^2}+\overline {{v\prime }^2}+\overline {{w\prime }^2})       (4.16)

  \varepsilon =v\overline {\left (\frac {\partial u_i^\prime }{\partial x_j}\right )\left (\frac {\partial u_i^\prime }{\partial x_j}\right )} \label {eq:epsilon} 








 (4.17)

The velocity scale 𝜗 and the length scale 𝑙 are related to the kinetic energy and dissipation 
rate by:

  \vartheta =k^{1/2}   (4.18)

  l=\frac {k^{3/2}}{\varepsilon } 


(4.19)

The turbulent viscosity is modelled as: 

  \mu _{t}=\rho _F c_{\mu } \frac {k^2}{\varepsilon } \label {eq:turbulnetviscosoty}  



(4.20)

The standard 𝑘 − 𝜀 model solves the following transport equations for turbulent kinetic en-
ergy and dissipation rate: 

  \frac {\partial \left (\rho _F k\right )}{\partial t}\ +\ \frac {\partial \left (\rho _F U_ik\right )}{\partial x_i}=\frac {\partial }{\partial x_j}\left [\left (\mu _F +\frac {\mu _{t}}{\sigma _k}\right )\frac {\partial k}{\partial x_i}\right ]+\frac {1}{2}\mu _{t}E_{ij}E_{ij}-\rho _F\varepsilon \label {eq:transportk} 


 





 





 


   (4.21a)

66



  \frac {\partial \left (\rho _F \varepsilon \right )}{\partial t}\ +\ \frac {\partial \left (\rho _F U_i\varepsilon \right )}{\partial x_i}=\frac {\partial }{\partial x_j}\left [\left (\mu _F+\frac {\mu _{t}}{\sigma _k}\right )\frac {\partial \varepsilon }{\partial x_i}\right ]+C_{1\varepsilon }\frac {\varepsilon }{k}\frac {1}{2}\mu _{t}E_{ij}E_{ij}-C_{2\varepsilon }\rho _F\frac {\varepsilon ^2}{k} \label {eq:transportepsilon} 


 





 





 






 



(4.21b)

Where 𝐸𝑖𝑗 is a strain tensor: 

  E_{ij}=\left (\frac {\partial U_i}{\partial x_j}\ +\frac {\partial U_j}{\partial x_i}\right )  






 (4.22)

Suitable model constants are provided by Launder & Sharma (1974):

  c_{\mu } =0.09, \sigma _k=1.00, \sigma _\varepsilon =1.00, C_{1 \varepsilon }=1.44, C_{2 \varepsilon }=1.92              

In Equations 4.21a and 4.21b the first term on the left is the rate of change of 𝑘 or 𝜀 and 
the second term on the left is the transport of 𝑘 and 𝜀 by convection. The terms on the right 
side of these equations denote the transport of 𝑘 and 𝜀 by diffusion, their rate of production 
and the rate of destruction by viscous action. The diffusion term is modelled with a gradi-
ent hypothesis to even out the inhomogeneities. The assumption implies that the diffusion 
term transports 𝑘 from regions where 𝑘 is large to the regions where 𝑘 is small. The pa-
rameters 𝜎𝑘, 𝜎𝜀 are the turbulent Prandtl numbers for k and epsilon. The Reynolds stresses 
in the production term are computed using the Boussinesq assumption (Equation 4.14). 
The production and destruction are linked with the factor 𝜀

𝑘 . As the ratio 𝜀
𝑘 increases or de-

creases, the generation and destruction of 𝜀 adapt accordingly.

With the flow with high Re numbers, wall functions can be employed, which relate the wall 
shear stress to the mean velocity, turbulence kinetic energy 𝑘 and rate of dissipation 𝜀. This 
allows to avoid integration of the model equations right to the wall. At low Reynolds num-
bers, the log-law is not valid. The remedy is to apply a two-layer approach known as the 
low-Re formulation number k-epsilon model, with additional damping functions, so that the 
model coefficients 𝐶1𝜀, 𝐶2𝜀, 𝑐𝜇𝐹

become damped. This allows accounting for viscous ef-
fects in the near-wall sublayer.

4.6 The 𝑘-𝜔 Two-Equation Model

The next example of a two-equation model is a 𝑘 − 𝜔 model developed by Wilcox (1988). 
The two-equation model includes a transport equation for 𝑘, and a second equation for the 
turbulent frequency or specific turbulence dissipation rate 𝜔 (units 𝑠−1): 

  \omega =\frac {\varepsilon }{C_{\mu } k}\ ;\ C_{\mu }=0.09 


    (4.23)

The eddy viscosity is determined from: 

  \mu _{t}=\rho _F\frac {k}{\omega }  



(4.24)
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The transport equation for the turbulent kinetic energy is given by: 

  \frac {\partial \left (\rho _F k\right )}{\partial t} + \frac {\partial \left (\rho _F U_ik \right )}{\partial x_i}=\frac {\partial }{\partial x_j}\left [\left (\mu _F+\frac {\mu _{t}}{\sigma _k}\right )\frac {\partial k}{\partial x_i}\right ]+P_k-\beta ^\ast \rho _F k\omega ^2 \label {eq:kineticenergy} 


 





 





     (4.25)

The specific dissipation rate equation is governed by: 

  \frac {\partial \left (\rho _F\omega \right )}{\partial t} + \frac {\partial \left (\rho _F U_i\omega \right )}{\partial x_i}=\frac {\partial }{\partial x_j}\left [\left (\mu _F+\frac {\mu _{t}}{\sigma _\omega }\right )\frac {\partial \omega }{\partial x_i}\right ]+\frac {\alpha }{\omega }P_k-\beta \rho _F k\omega ^2 \label {eq:dissipationomega} 


 





 





 


   (4.26)

The 𝑘 − 𝜔 model has different empirical coefficients (𝛼, 𝛽 𝛽∗, 𝜎𝑘, 𝜎𝜔). The advantage of 
the model is that it does not require a wall damping function near the wall for low Reynolds 
number applications. The main weakness of the model is that it is sensitive to the freestream 
turbulence conditions. The eddy-viscosity 𝜇𝑡 is indeterminate as the boundary condition of 
𝜔 equals 0, so a small non-zero value needs to be defined. The specification of the freestream 
value of 𝜔 strongly influences the final results, which is especially undesirable in external 
aerodynamics applications.

4.6.1 Menter 𝑘-𝜔 SST model

The shear stress transport (SST) formulation combines the best features of the 𝑘−𝜀 and 𝑘−
𝜔 models. The baseline model (BST) is identical to the 𝑘 − 𝜔 model (Equations 4.25,4.26) 
in the near wall region but uses a blending function to gradually transit to the 𝑘 − 𝜀 in the 
fully turbulent region far from the wall. The coefficients in the k-ω equations are as follows 
[2]: 

  C=F_1C_{k-\omega }+(1-F_1{)C}_{k-\varepsilon }       (4.27)

Where 𝐶𝑘−𝜔 are coefficients from the 𝑘 − 𝜔 model and 𝐶𝑘−𝜀 from the high Reynolds 𝑘 − 𝜀
model. 𝐹1 is the blending function such that near the wall 𝐹1 = 1, what activates the 𝑘 − 𝜔
model and away from the wall 𝐹1 = 0, what activates the 𝑘 − 𝜀 model. 𝐹1 is defined as 
the function of the turbulence length scale 𝑘1/2/𝜔, then the turbulence Reynolds number, 
and the third term is included to prevent the solution dependency on the freestream. It is 
expressed as follows:

  F_1=F_1\left (\frac {k ^{1/2}/\omega }{y},\frac {(v/\omega )^{1/2}}{y},\frac {(k\omega /\nabla k\cdot \nabla \omega )^{1/2}}{y}\right )   





  


 (4.28)

It was experimentally found that in boundary layers with adverse pressure gradients, the 
production is significantly larger than the dissipation, and the Boussinesq assumption was 
over-predicting the wall shear stress. To improve the performance with flows with adverse 
pressure gradients and wake regions, the SST modelling approach involves using limiters 
on turbulent viscosity. When the turbulent kinetic energy production is large, the limiters 
on turbulent viscosity are activated. Otherwise, the limitation is not active when the pro-
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duction ≃ dissipation. The turbulent viscosity is defined as: 

  \mu _{t}=\frac {a_1\rho _F k}{ max (a_1\omega ,SF_2)}  


(4.29)

Where 𝑎1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑆 = √2𝐸𝑖𝑗𝐸𝑖𝑗 which comes from the production term using the 
Boussinesq assumption, and 𝐹2 is another blending function similar to 𝐹1.

4.7 Reynolds Stress Models

In the Reynolds stress equation models (RSM), six transport equations for each Reynolds 
stress are solved in conjunction with the transport equation for the rate of dissipation of tur-
bulent kinetic energy 𝜀.

The exact Reynolds stress transport equations can be derived from the Navier-Stokes equa-
tions. This is done by subtracting the RANS momentum equation 4.13 from the instanta-
neous Navier-Stokes equations 4.8. After manipulations, one reaches the material deriva-
tive, the rate of change of Reynolds stress 𝑢𝑖𝑢𝑗 and its transport by convection, 𝐶𝑖𝑗:

  \frac {D\overline {u_iu_j}}{Dt} = \frac {\partial \overline {u_iu_j}}{dt} + C_{ij} =\frac {\partial \overline {u_iu_j}}{dt} + U_k\frac {\partial \overline {u_iu_j}}{\delta x_k} =P_ij - \varepsilon _{ij} + \phi _{ij} + D_{ij} 







 









        (4.30)

The final exact equation for the Reynolds stresses transport equation can be symbolically 
represented as:

  \frac {D{u_iu_j}}{Dt} = P_{ij} - \varepsilon _{ij} + \phi _{ij} - D_{ij} \label {eq:RMSModel} 


        (4.31)

On the right hand side terms are denoted as follows: the rate production of 𝑢𝑖𝑢𝑗 , 𝑃𝑖𝑗, rate 
of dissipation of 𝑢𝑖𝑢𝑗- 𝜀𝑖𝑗, transport of the 𝑢𝑖𝑢𝑗 among the different components of the 
stress tensor due to turbulent pressure strain interactions 𝜙𝑖𝑗 and rate of diffusion, 𝐷𝑖𝑗. If 
additional body forces are present due, for example, to buoyancy or rotation, there are fur-
ther contributions to the redistribution and production terms.

The convection and the production terms can be retained in their exact form because of the 
contributions only from the Reynolds stresses and mean velocity gradient.

The 𝑃𝑖𝑗 term represents the production of turbulent kinetic energy by the mean flow field. 
In the 𝑘 − 𝜀 model the Reynolds stresses in the production term are computed using the 
Boussinesq assumption, 2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 in the equations 4.21a, 4.21b. In the RSM, the produc-
tion term is solved exactly: 

  P_{ij}=-\left (\overline {u_j u_k} \frac {\partial {U_i}}{\partial {x_k}} + \overline {u_j u_k}\frac {\partial {U_j}}{\partial {x_k}} \right ) \label {eq:productionRSM}   







 (4.32)
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To solve Equation 4.31, the models for the diffusion, dissipation rate and the pressure-strain 
correlation are necessary. Since this project is strictly related to industrial applications, 
further review will concentrate on the approaches widely used in commercial CFD codes. 
These are the high Reynolds LRR by Launder et al. [81] and high Reynolds SSG by Speziale 
et al. [125].

The dissipation rate 𝜀𝑖𝑗 represents the destruction of 𝑢𝑖𝑢𝑗, via the cascade process and vor-
tex stretching. It is modelled by assuming isotropic dissipation of the small eddies. The dis-
sipation rate of Reynolds stress is modelled as: 

  \varepsilon _{ij}=\frac {2}{3}\varepsilon \delta _{ij}  


 (4.33)

The 𝜀 in the equation below is the dissipation rate of turbulent kinetic energy defined in the 
equation 4.17.

The rate of diffusion 𝐷𝑖𝑗 is defined as: 

  D_{ij}=D_{ij,t} +D_{ij,\mu _F} = \frac {\partial }{\partial x_k} \left [\overline {u_i u_j u_k}+\frac {\overline {pu_i}}{\rho _F} \delta _{jk}+ \frac {\overline {p u_j}}{\rho _F} \delta _{jk} - \mu _F \frac {\partial \overline {u_i u_j}}{\partial x_k} \right ]    



 







 




 (4.34)

where 𝐷𝑖𝑗,𝑡 and 𝐷𝑖𝑗,𝜇𝐹
represent the turbulent and viscous diffusion respectively. In the 

𝑘 − 𝜀 models it is defined with the gradient hypothesis in Equations 4.21a, 4.21b. The as-
sumption is that the diffusion term transports 𝑘 from regions with large 𝑘 to regions where 
𝑘 is small. Inhomogeneities are evened out through diffusion:

  D^\varepsilon =\frac {\partial }{\partial x_j}\left [\left (\mu _F+\frac {\mu _{t}}{\sigma _k}\right )\frac {\partial \varepsilon }{\partial x_i}\right ]  


 







  D^k= \frac {\partial }{\partial x_j}\left [\left (\mu _F+\frac {\mu _{t}}{\sigma _k}\right )\frac {\partial k}{\partial x_i}\right ]  


 







In the RSM models, the diffusion flux of 𝑘 can be modelled in a more advanced fashion. 
More general gradient diffusion hypothesis (GGDH) of [30] involves the contribution from 
the transport equation of triple correlation 𝑢𝑖𝑢𝑗𝑢𝑘. The diffusive contribution of the pres-
sure component of the diffusion term is usually negligible, and viscous terms do not require 
modelling. The diffusion terms for 𝑘 and 𝜀 modelled with the use of GGDH can be written 
as:

  D_{ij,t}=c_S\frac {\partial }{\partial x_k}\left (\frac {k}{\varepsilon }\overline {u_ku_l}\frac {\partial \overline {u_iu_j}}{\partial x_l}\right )  











 (4.35)

where 𝑐𝑆 = 0.25
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The pressure-strain correlation 𝜙𝑖𝑗 acts as a sink term in the shear stress equation: 

  \phi _{ij}= \overline {\frac {p}{\rho _F} \left ( \frac {\partial u_j}{\partial x_j} + \frac {\partial u_i}{\partial x_j}\right )}  









 (4.36)

𝜙𝑖𝑗 is modelled by taking the effect of the ’slow’ pressure strain term and ’rapid’ process. 
The slow term makes the turbulence more isotropic by decreasing the large normal stresses 
and increasing the small normal stresses. The slow term 𝜙(1)

𝑖𝑗 is modelled to be proportional 
to the degree of anisotropy of Reynolds stresses 𝑎𝑖𝑗: 

  \phi _{ij}^{(1)}=-c_1\frac {\varepsilon }{k}a_{ij}=-c_1\frac {\varepsilon }{k}\left (\overline {u_iu_j} -\frac {2}{3}k\delta _{ij}\right ) \label {eq:p_slowterm} 
 




 



 


 (4.37)

where 𝑐1 = 1.8 .

The rapid term takes into account the very strong velocity gradient that produces the eddies 
so that the slow term can be initially neglected. It is called rapid because the presence of 
the velocity gradient gives the rapid response to change in strain. The rate of the rapid pro-
cesses is modelled as proportional to the production process that generates anisotropy, 𝑃𝑖𝑗

  \phi _{ij}^{(2)}=-c_2 \left (P_{ij}-\frac {2}{3}P\delta _{ij}\right ) \label {eq:p_rapidterm} 
    


 (4.38)

where 𝑐2 = 0.6 .

The simplest form of the pressure-strain term is

  \phi _{ij}= \phi _{ij}^{(1)}+ \phi _{ij}^{(2)} \label {eq:p_strain}  
 

 (4.39)

Finally, additional corrections are applied to account for the wall proximity on the pressure-
strain terms. Applyin the equation 4.39 will have an effect on reducing the anisotropy of 
the Reynolds stresses while ignoring the increase of anisotropy of normal Reynolds stresses 
near the wall.

In LLR, a wall reflection term of [52] is applied to account for damping of turbulence from 
the wall proximity. To account for the damping of turbulence, the term which depends on 
the distance from the wall, 𝑥2 and turbulent length scale, 𝑘3/2/𝜀 is applied- the damping 
effect of the wall decrease with an increasing distance. Additionally, the term accounting 
on the wall shear stress is introduced, using two additional corrections to 𝜙𝑖𝑗 with the unit 
normal vector 𝑛𝑖. A rigid wall impedes the transfer of energy from the streamwise direction 
to that normal to the wall. The final form of the near wall correction in the pressure-strain 
correlation for the slow term applied in the LRR model is: 

  \phi _{ij}^{(1)}= C_{1ref}\frac {\varepsilon }{k}\left (\overline {u_ku_m}n_kn_m\delta _{ij}-\frac {3}{2}\overline {u_ku_i}n_kn_j - \frac {3}{2}\overline {u_ku_j}n_kn_i\right )\kappa \frac {k^{3/2}}{\varepsilon x_2} 
 




 


 





(4.40)
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and the correction of the rapid part reads as: 

  \phi _{ij}^{(2)}= C_{2ref}\left (\phi _{km}^{(2)}n_kn_m\delta _{ij}-\frac {3}{2}\phi _{ik}^{(2)}n_kn_j-\frac {3}{2}\phi _{jk}^{(2)}n_kn_i\right )\kappa \frac {k^{3/2}}{\varepsilon x_2} 
  

 



  




 


(4.41)

where 𝐶1𝑟𝑒𝑓 = 0.5, 𝐶2𝑟𝑒𝑓 = 0.3 and 𝜅 = 0.41.

The pressure strain in the SSG model does not explicitly include wall-reflection terms. In-
stead, the most general form of 𝜙𝑖𝑗 from equation 4.39, is linear in mean strain and rotation 
tensors that vary quadratically with the stress anisotropy tensor 𝑎𝑖𝑗. The 𝑎𝑖𝑗 is defined as: 

  a_{ij}= \frac {\overline {u_iu_j}}{k} -\frac {2}{3}\delta {ij} 






 (4.42)

The final version of this model has a rapid part with a linear function of 𝑎𝑖𝑗 (equation 4.37) 
and a quadratically non-linear function in the slow part.

In the SSG model, the pressure-strain takes the following form: 

  \begin {split} \phi _{ij}=-(C_1\varepsilon + C_1^*P_k)a_{ij} + C_2\varepsilon (a_{ik}a_{kj} - \frac {1}{3} a_{lm}a_{lm}\delta {ij}) + (C_3 -C_3^*A_2)kS_{ij} + \\ C_4k(a_{ik}S_{jk}+a_{ik}S_{ik}-\frac {2}{3}a_{lm}S_{lm}\delta _{ij}+C_5k(a_{ik}\Omega _{jk}+a_{jk}\Omega _{ik}) \end {split}    
   


   



  \begin {split} \phi _{ij}=-(C_1\varepsilon + C_1^*P_k)a_{ij} + C_2\varepsilon (a_{ik}a_{kj} - \frac {1}{3} a_{lm}a_{lm}\delta {ij}) + (C_3 -C_3^*A_2)kS_{ij} + \\ C_4k(a_{ik}S_{jk}+a_{ik}S_{ik}-\frac {2}{3}a_{lm}S_{lm}\delta _{ij}+C_5k(a_{ik}\Omega _{jk}+a_{jk}\Omega _{ik}) \end {split}    


   
  \begin {split} \phi _{ij}=-(C_1\varepsilon + C_1^*P_k)a_{ij} + C_2\varepsilon (a_{ik}a_{kj} - \frac {1}{3} a_{lm}a_{lm}\delta {ij}) + (C_3 -C_3^*A_2)kS_{ij} + \\ C_4k(a_{ik}S_{jk}+a_{ik}S_{ik}-\frac {2}{3}a_{lm}S_{lm}\delta _{ij}+C_5k(a_{ik}\Omega _{jk}+a_{jk}\Omega _{ik}) \end {split} 

where Ω𝑖𝑗 is the mean vorticity tensor equal 1
2 (𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜕𝑈𝑗

𝜕𝑥𝑖
), and 𝐶1−5 are the constants 

calibrated for the model.

4.8 Reynolds stress models vs. eddy viscosity models

As shown in previous sections, the Reynolds Stress models (RSM) treat the production 
term exactly, while it has to be modelled in the Eddy Viscosity models (EVM). Figure 4.3a
illustrates a streamlined curvature and rotation situation when the flow approaches a sepa-
ration region or an obstacle. Until the streamlines are parallel to the wall, production will 
result from primary shear 𝜕𝑈1

𝜕𝑥2
. Whenever the streamline gets deflected, there is a shear due 

to the 𝜕𝑈2
𝜕𝑥1

and production term 𝑃12 will read as: 

  RSM: P_{12}=-\overline {u_2^2} \frac {\partial U_1}{\partial x_2} -\overline {u_1^2}\frac {\partial U_2}{\partial x_1}    









(4.44)

The magnitude of 𝑃12 will increase as the 𝜕𝑈2
𝜕𝑥1

> 0 . Two rotational strains, 𝜕𝑈1
𝜕𝑥2

and 𝜕𝑈2
𝜕𝑥1

on concave wall have the same sign, resulting in destabilizing effect on a turbulence. If the 
streamline is deflected on a convex wall 𝜕𝑈1

𝜕𝑥2
and 𝜕𝑈2

𝜕𝑥1
has opposite sign, resulting in stabiliz-

ing effect on turbulent fluctuations. In the case of 𝑘 − 𝜀 model, the production term in the 𝑘
equations is: 

  k-\varepsilon : P^k=\mu _{t} \left (\frac {\partial U_1}{\partial x_2} +\frac {\partial U_2}{\partial x_1}\right )^2       








(4.45)
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(a) Separation region (b) Stagnation flow

Figure 4.3. Example of a flow pattern when the flow approaches an obstacle [31]

The rotational strains in the production term are multiplied by the same coefficient, turbu-
lent viscosity. Therefore the EVM models are insensitive to streamline curvature. The same 
applies to the flows with strong adverse pressure gradients and recirculation regions, par-
ticularly the 𝑘 − 𝜀 model overestimates the shear stress and reduces the separation in flows 
over curved walls.

In the case of the flow pattern for stagnation flow, illustrated in Figure 4.3b again, the 𝑘 − 𝜀
model does not model the normal stresses properly. The production term for RSM models 
is: 

  RSM: \frac {1}{2}(P_{11}+P_{22})=-\overline {u_1^2} \frac {\partial U_1}{\partial x_1} -\overline {u_2^2}\frac {\partial U_2}{\partial x_2}  


   









(4.46a)

after applying continuity:
  \frac {\partial U_1}{\partial x_1}=-\frac {\partial U_2}{\partial x_2} 





  P_k= -\frac {\partial U_1}{\partial x_1}(\overline {u_1^2} -\overline {u_2^2})  



 

 (4.46b)

Term (𝑢2
1 − 𝑢2

2) is small at the stagnation point, resulting in small production rate of turbu-
lence.

In the 𝑘 − 𝜀, production in the 𝑘 equations for this case will be:

  P_k=2\mu _{t} \left (\left (\frac {\partial U_1}{\partial x_1}\right )^2 +\left (\frac {\partial U_2}{\partial x_2}\right )^2\right )   











 (4.47)

The production rate of turbulence will be highly overestimated because of the square of ve-
locity gradients, and the sign is not taken to account.

4.9 Law of the wall

In wall-bounded, fully developed, turbulent flow, along the solid boundaries, there is a thin 
layer where the viscous effects are dominant, and the outer region of inertia-dominated 
flow. Figure 4.4 illustrates a simple turbulent boundary layer over a plane surface and how 
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it can be subdivided into two main regions, the outer and inner region. In the outer region, 
the velocity is determined by the fluid properties, the boundary layer thickness and the wall 
distance. The size of the turbulent eddies are proportional to the thickness of the bound-
ary layer. In the inner region, the velocity is independent of the boundary layer thickness, 
and it is dominated by the wall parameters. The inner region is very thin in relation to the 
boundary layer thickness. Thus, it may be assumed that the total shear stress remains con-
stant across and equal to the wall shear stress, 𝜏𝑤. The size of the turbulent eddies is pro-
portional to the wall distance, 𝑦. The inner region is further subdivided into:

• the fully turbulent inner region,

• the buffer region, where the turbulent eddies are rapidly dampened, and the turbulent 
shear stress is reduced to practically zero

• the viscous sub-layer, where there are no turbulent fluctuations and only the viscous 
stress is significant.

Near the wall, the mean velocity depends on the distance from the wall 𝑦, fluid density 𝜌𝐹, 
viscosity 𝜈, and the wall shear stress 𝜏𝑤 [135]. In this region, we have: 

  U=f(y,\rho _F,\nu ,\tau _w)      (4.48)

The dimensional analysis leads to a relation known as the law of the wall: 

  u^+=f\left (\frac {\rho _F u_\tau y}{\nu }\right )=f(y^+)   


   (4.49)

The formula contains two dimensionless groups, non-dimensional velocity 𝑢+ and spatial 
coordinate normal to the surface 𝑦+, defined as: 

  u^+=\frac {u}{u_\tau }  


(4.50a)

  y^+=y\frac {u_\tau }{\nu }  


(4.50b)

Where 𝑢𝜏 is the friction velocity is defined as: 

  {u_\tau }=\sqrt {\frac {\tau _w}{\rho _F}}  



(4.50c)

The outer region is independent of viscosity, and the relation for this region is defined by 
the defect law. In this region, the size of the turbulent eddies is constant and proportional to 
the boundary layer thickness 𝛿. Velocity depends on the wall shear stress, fluid density, the 
boundary layer thickness and wall distance. In this region, we have: 

  U=f(y,\rho _F,\delta ,\tau _w)      (4.51)
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Figure 4.4. Non-dimensional velocity profile for an incompressible turbulent flow over a flat plate [59]. In 
Figure: Eq. 6.8(2): 𝑢+ = 𝑦+, Eq. 6.8(1): 𝑢+ = 1

𝜅 𝑙𝑛(𝐸𝑦+)

Dimensional analysis yields: 

  u^+=f\left (\frac {U}{u_\tau }\right )=f\left (\frac {y}{\delta }\right )    


  


 (4.52)

In simple boundary layers in local equilibrium within the viscous sub-layer, at a dimension-
less distance 𝑦+[≡ 𝑦(𝜏𝑤/𝜌𝐹)0.5/𝜈] of up to 5, the velocity is linearly proportional to the 
wall distance, whereas in the fully turbulent inner region, 𝑦+ > 30, the velocity is loga-
rithmically proportional to the wall distance. This is typically referred to as the log-law, or 
the universal law of the wall, depicted in Figure 4.4 where 𝑢+ ≡ 𝑢(𝜏𝑤/𝜌𝐹)0.5. The law of 
the wall is valid for the viscous sublayer, the buffer zone and the fully turbulent part of the 
boundary layer. To summarize, the velocity profile varies as follows:

𝑢+ =
⎧{
⎨{⎩

𝑢+ = 1
𝜅 𝑙𝑛(𝑦+) + 𝐵 = 1

𝜅 𝑙𝑛(𝐸𝑦+), 𝑦+ ≳ 30

𝑦+, 𝑦+ ≲ 5

(4.53)

where the DNS data confirm 𝜅 = 0.41, and 𝐵 = 5.25. Constant 𝐸 is a function of the wall 
roughness where 𝐸 = 9.8 is applied for a smooth wall.

In the near wall region, the viscosity effects are dominant, and the relation between velocity 
and distance from the wall can be approximated to be linear, 𝑢+ = 𝑦+. The flow is assumed 
to be independent of viscosity in the log-law region. The relationship between 𝑦+ and 𝑢+

was derived with the assumption that the Reynolds shear stress is constant and equal to the 
wall shear stress, together with the Boussinesq assumption (Equation 4.14). In the buffer 
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layer, viscous and turbulent stresses are of similar magnitude and the velocity profile is not 
well defined in this region.

The velocity gradients are larger close to the wall, hence finer mesh is required to correctly 
resolve the near-wall region. Providing Equations 4.53 removes the requirement of fully re-
solving the near wall region and reduces the computational time. The first cell centre needs 
to be placed in the log-law region in order to ensure the accuracy of the simulation [138]. 
The strategy of applying the wall functions in modelling of near-wall turbulence is further 
explained in Section 6.7.3.

4.10 Summary

Several RANS turbulence models were introduced in this Chapter. It was mentioned that 
the convection of turbulence is not-modelled in the zero-equation model. Complex flow 
fields which include separated flows, require two-equation models to better represent the 
physics of turbulence.

Despite EVM limitations mentioned in Section 4.8 it is still a widely used approach in in-
dustrial applications because of its simplicity and fast performance. Also, EVM class of 
models is widely validated. As shown, the model will have poor performance in cases with 
large extra strains such as curved boundary layers or swirling flows. Over-predicting shear 
stress and reducing the recirculation region in the 𝑘 − 𝜀, has a practical impact in aerospace 
applications e.g. flow over an airfoil. In these applications, the 𝑘 − 𝜔 and 𝑘 − 𝜔 SST gives 
much better performance.

The RSM models address the limitations of the EVMs because it involves an exact repre-
sentation of the Reynolds stress production and transport processes. Since they solve ad-
ditional seven PDEs, the computing cost is largely increased. Also, the RSM is relatively 
difficult to implement, and it is not widely validated as the 𝑘 − 𝜀 model. However, with to-
day’s achievable high computing performance, the disadvantage of the additional CPU time 
could not be so meaningful. The model is an accurate choice for many complex flows such 
as wall jets, fully-developed flows in non-circular ducts or swirling flows.

In the Chapter that follows the mathematical description of the fluid-structure interaction 
coupling is described. 
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Chapter 5

Fluid Structure Interaction

Fluid-Structure interactions (FSI) can be solved in two ways, monolithic and partitioned 
approaches. In the monolithic approach, flow and structural equations are combined and 
solved simultaneously. On the contrary, the partitioned approach requires separate solvers 
for the flow and structural equations. The partitioned approach thus requires implementing 
a coupling scheme to conserve the momentum and energy across the interface. The parti-
tioned method is implemented in the OpenFOAM for fluid-solid interaction solver [130] 
therefore, this chapter will focus on the coupling of partitioned methods.

5.1 Coupling schemes

In the partitioned methods, fields required for a solution are defined at the boundary be-
tween fluid and solid interface. Variables are transferred between the fluid and solid surface 
from the fluid patch to the solid patch, as illustrated in Figure 5.1. 

There are two solution procedures defining the fields which are exchanged at the fluid-structure 
interface: one-way coupling, also identified as weak coupling, and two-way coupling, known 
as strong coupling scheme. In the case of one-way coupling calculations, only the pressure 
and viscous force increment (𝛿𝑝𝐼 𝛿𝑡𝐼) from the fluid interface is transferred to the structure 
solver interface [7]. With two-way coupling, the displacement increment at the solid side of 
the interface (𝛿𝑢𝐼) and velocity (𝑣𝐼) is also transferred to the fluid side of the interface.

Figure 5.1. Transfer of coupling data in OpenFOAM [129]
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Figure 5.2. Solution algorithm for one way coupling [7]
. 

5.1.1 One-way coupling

The entire weak coupling loop is conveniently illustrated in Figure 5.2. In the process algo-
rithm goes as follows, (1) fluid field is solved until the convergence criteria is reached, (2) 
the calculated fluid forces are transferred to the structural solver boundaries, (3) the solid 
side is solved until the convergence criteria are reached, (4) the fluid flow is advanced to 
the next time step and calculated to convergence. In the weak approach, solvers for fluid 
and solid are applied sequentially only once per time step. Even though both solvers are 
implicit, the entire system is solved explicitly, which implies possible stability issues, and 
limitations on the time-step [70].

The one-way coupling algorithm is not a suitable choice for the simulation of flow-induced 
vibrations because of a time lag between fluid and solid solution and potential errors on 
loads transfer from the fluid boundary face to solid boundary faces with slender structures. 
Also, the literature research on experimental assessment of the FIV presented in Section 2.2
shows that sufficiently high flow velocities induce high deformation of the solid structure. 
The vibration amplitude can be sufficient to change the flow passage; therefore, the defor-
mation of the fluid mesh is necessary.

5.1.2 Two-way coupling

In the two-way fluid-solid interactions formulation, the motion of the beam is induced by 
the fluid forces, but simultaneously the motion of the beam induces the fluid motion [50].

The fluid governing equations and solid models are coupled by two following conditions, 
which must be satisfied at the fluid-solid interface:

1. The kinematic coupling condition: The viscid fluid follows the motion of the neigh-
bouring solid, thus the velocity and displacement must be continuous across the inter-

78



face:

  u_{F,i}= u_{S,i}=\frac {dx_{S,i}}{dt} \label {kinematiccond}   



(5.1)

Where 𝑢𝐹 is the velocity of the fluid and 𝑥𝑆 is the solid displacement, subscript 𝑖 rep-
resents the quantities at the fluid-solid interface. 𝑥𝑆 is equivalent to the 𝑢 displace-
ment in the solid governing equation, Equation 3.27.

2. The dynamic coupling condition follows the Newton Third Law of motion ′𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛′. Fluid forces and solid forces are equal at the interface: 

  n_i\sigma _{F,i}=n_i\sigma _{S,i}    (5.2)

Where 𝑛𝑖 is the normal unit vector at the interface. Subscripts 𝐹 and 𝑆 correspond to 
the fluid and solid domain, respectively.

The first interface condition is applied as the Dirichlet boundary condition. Velocity from 
the solid side is the boundary condition for the fluid. The second interface condition is re-
alised as the Neumann boundary condition: the force, traction, from the fluid is applied 
as the boundary condition on the solid. The traction is calculated by using the fluid stress 
tensor 𝜎𝐹,𝑖 which consists of the isotropic and viscous components, defined in the Navier-
Stokes momentum equation (Equation 4.6): 

  \sigma _{F,i}=-p\delta _{ij}{+\tau }_{ij}    (5.3)

Where 𝜏𝑖𝑗, viscous stress of a Newtonian fluid defined in Equation 4.7. The traction at the 
interface is finally: 

  t_{F,i}=n_i\sigma _{F,i}    (5.4)

This algorithm is known as the Dirichlet-Neumann (DN) approach, the flow model is solved 
for a given velocity (or solid displacement), and the solid model is solved for a given force 
imposed on the interface.

5.2 Gauss-Seidel scheme

The implicit method, with strong coupling, can be of second-order accuracy and are more 
stable [21]. To ensure that the equilibrium of the velocity and force on the fluid-solid in-
terface is met for each time step, the strongly coupled Gauss-Seidel iteration procedure is 
applied. The non-linear system of fluid and solid coupled equations may be solved by sub-
iterating between fluid and structure, with a relaxation step on the structure displacement. 
The flow chart of the coupled solution procedure is illustrated in Figure 5.3.

At every step, 𝑡𝑛 , the Dirichlet-Neumann algorithm iterates over the fluid and solid sub-
iteration until convergence is satisfied. The sub-iteration index is denoted by 𝑘. The as-

79



Figure 5.3. Strong, two-way coupling algorithm [7]

sumption is that the flow variables 𝑢𝑘, 𝑝𝑘 and structure position 𝑥𝑘 are known at 𝑘 = 0. 
In the strongly coupled DN algorithm, the following steps are performed [50] :

• Step 1: Solve the fluid subiteration for 𝑢𝑘+1, 𝑝𝑘+1 defined on fluid domain with Dirich-
let boundary condition: 

  u_{k+1}= \frac {{dx}_k}{dt}  


(5.5)

• Step 2: Solve for the new displacement of the structure 𝑥𝑘+1, using the just calculated 
fluid force 𝜎𝐹,𝑘+1

• Step 3: Check the fluid-structure convergence criterion 𝜖𝐹𝑆. It is defined as the change 
of the mean displacements: 

  \frac {\|x_{k+1}-x_k\|}{x_k}<\epsilon _{FS}  


  (5.6)

If satisfied set the next time step, 𝑥𝑛+1 = 𝑥𝑘+1 and 𝑝𝑛+1 = 𝑝𝑘+1 , if not repeat Steps 
1-3.

• Step 4: Update the fluid mesh with the standard ALE update.

5.3 Under-relaxation

The simple block, Gauss-Seidel iterative algorithm requires a small relaxation value and a 
large number of sub-iterations [21, 92]. In order to accelerate the sub-iteration convergence, 
relaxation procedures can be applied.

The most straightforward technique is to use fixed relaxation factor 𝜔𝑘 for all time steps. 
The currently calculated displacements ̃𝑥𝑘 are linearly weighted with the displacements 
from the previous iteration 𝑥𝑘−1. At the Step 2, the fixed under-relaxation factor 0 < 𝜔𝑘 ≤
1 is introduced, and the displacement 𝑥𝑘+1 is calculated as follows:

  x_{k}=\omega _k{\widetilde {x}}_{k} +\left (1-\omega _k\right )x_{k-1}          (5.7)
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As shown in references [78, 121] it is relatively hard to estimate the optimal value of the 
𝜔𝑘. It must be small enough to prevent the simulation from diverging but high enough to 
avoid extra, unnecessary FSI iterations. Therefore dynamic relaxation techniques will be 
further considered.

The Aitken acceleration procedure, [65] is based on using dynamically changing relaxation 
factor 𝜔𝑘+1, extrapolated with the displacements from the two preceding iterations. The un-
relaxed displacement predicted by the Step 2 will be denoted by ̃𝑥𝑘+1. The relaxation pa-
rameter 𝜔𝑘+1 is then [4]:

  \omega _{k+1}=\frac {(x_k - x_{k-1}) \cdot (x_k-\widetilde {x}_{k+1}-x_{k-1} + \widetilde {x}_k)}{| x_k-\widetilde {x}_{k+1}-x_{k-1} + \widetilde {x}_k|^2} 
         

     
(5.8)

The update of the interface position is given by: 

  x_{k+1}= \omega _{k+1}\widetilde {x}_{k+1} + (1-\omega _{k+1})x_k         (5.9)

This relaxation procedure is found to be simple to implement and efficient [78].

Lastly, the IQN–ILS, interface- quasi-Newton with inverse Jacobian from a least-squares 
model developed by [40] is available in the FSI container. As it was shown, the IQN–ILS 
approach is more complex and difficult to implement than the Aitken method [40]. For the 
project’s current needs, the Aitken procedure will be adopted.

5.4 ALE formulation

Generally, the continuum mechanics algorithms use two classical motion descriptions: the 
Lagrangian and the Eulerian. Lagrangian techniques are employed in structural mechan-
ics because each node of the computational mesh tracks the related material particle during 
motion. This technique facilitates following free surfaces and interfaces between various 
materials. Its limitation is that it cannot track large deformations in the computational do-
main without frequent re-mesh operations. In fluid dynamics, Eulerian techniques usually 
are applied. The computational mesh is fixed, while the continuum moves with respect to 
the grid. Large deformations in the continuum motion may be handled relatively quickly 
in the Eulerian description, albeit at the price of exact interface definition and resolution of 
flow details.

When modelling the FSI problem, the moving structure is described in a Lagrangian frame 
of reference, and fluid equations need to be computed in the time-varying boundary. It is 
achieved by using an Arbitrary Lagrangian-Eulerian (ALE) frame of reference in the fluid 
domain. The principle behind the ALE formulation is that the observer is neither at the 
fixed position in space nor moves with the material point. It is mathematically solved by 
using a relative velocity in convective terms of the conservation equations. Thus, the inter-
face grid velocity, 𝑤, is employed in the convective term of the momentum equation. The 
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(a) Moving grid (b) Fixed grid

Figure 5.4. Examples of moving grid approaches [124]

conservation of mass and conservation of momentum (Equations 4.5, 4.6) are therefore re-
formulated to include the moving boundary: 

  \frac {\partial \left ({{U}}_i\right )}{\partial x_i}=0 


  (5.10a)

  \frac {\partial \left (\rho _F{U_i}\right )}{\partial t}\ +\ \frac {\partial }{\partial x_j}\left [\rho _F\left ({{U}}_i\ -w\ \right ){{U}}_j\right ]=-\frac {\partial P}{\partial x_i}+\frac {\partial }{\partial x_j}\left (\mu _F\frac {\partial {{U}}_i}{\partial x_j}\right ) 





       









 (5.10b)

When 𝑤 = 0 and when 𝑤 = 𝑈𝑖, the pure Euler and Lagrange formulations are restored, re-
spectively. One of the major difficulties in the time integration of ALE Navier-Stokes equa-
tions is the non-linear term arising with the relative velocity 𝑈𝑖 − 𝑤. The ALE descrip-
tion’s practical implementation needs the development of an automated mesh-displacement 
method.

5.5 Mesh Deformation

When the fluid solution domain changes dynamically due to the movement or deformation 
of solid elements, the accompanying mesh dynamics become essential. There are two ways 
towards this problem: fixed grid and moving grid approach, as illustrated in Figure 5.4. In 
the fixed-grid methods, Figure 5.4b, the structure may freely move across the fixed Carte-
sian fluid grid without affecting the fluid’s discretisation. The challenge is establishing the 
contact conditions between the structure and the fluid. Meshes which are required to re-
solve boundary layers in viscous flows are not enabled in this method [76].

Moving mesh approaches, Figure 5.4a, enable conducting flow simulations when the shape 
of the flow domain changes. Motion can be determined with simple interpolation tech-
niques or more complex laplacian and pseudo-structure smoothing techniques. The mesh 
motion interpolation can also be defined with the Radial Basis Function (RBF) developed 
by Bos [13]. The RBF enables high-quality mesh, especially when dealing with large rota-
tions. Motion equation based on laplacian smoothing is relatively cheap but does not main-
tain high mesh quality during high rotation angles or large deformation [67, 69].
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Figure 5.5. Mesh velocity field 𝑤 [85]

Distance-based methods

For the small amplitude of vibrations, the mesh motion will be computed with a Laplace 
equation with a diffusion coefficient that changes throughout the domain. This moving mesh 
approach is applied in OpenFOAM container for FSI [69].

To explain the approach, Figure 5.5 illustrating the mesh movement boundary conditions is 
first introduced. If the velocity of the solid surface is known, 𝑢𝑠,𝑖 from the Equation 5.1, the 
mesh velocity of a moving grid, 𝑤|Γ𝑏

is specified. Far away from these moving boundaries, 
the mesh velocity 𝑤|Γ0

decreases to zero, and the grid is fixed [85]: 

  w_{|\Gamma _b}=u_{s,i} \label {BC_LAPLACE1} 
  (5.11a)

  w_{|\Gamma _0}=0 \label {BC_LAPLACE2} 
  (5.11b)

The objective is to generate a mesh velocity field with 𝑤 the minimal element distortion. 
One way to obtain this is to smooth the velocity field. Figure 5.6 depicts the mesh move-
ment for a 1D case. Mesh velocity is 𝑤0 at the domain’s left end and vanishes at the right 
end. Assuming a linear decrease in mesh velocity and Δℎ as the change in size over a time-
step for any two elements, we have: 

  \frac {\partial w}{\partial x}=g_w 


  (5.12a)

  \Delta h =(w_2 - w_1)\Delta t =\Delta w \Delta t        (5.12b)

The size ratio between two elements (𝑖, 𝑗) will be:

  \frac {h_i}{h_j} \Big |^{n+1} =\frac {h_i + \Delta w_i \Delta t}{ h_j + \Delta w_j \Delta t} =\frac {h_i + g_w h_i \Delta t}{h_j + g_w h_j \Delta t} = \frac {h_i}{h_j} \Big |^{n} 





  
 

  
 







(5.13)

To conclude, the elements will retain their original size ratios, hence they will be deformed 
in approximately the same way. 

83



Figure 5.6. Velocity field vs. 1D mesh distortion 𝑥 [85]

For the general case with constant gradients, the mesh velocity can be obtained by solution 
of the Laplace equation, with boundary conditions defined in the Equations 5.11a, 5.11b.

  \frac {\partial }{\partial x_i}\left ( \gamma \frac {\partial w}{\partial x_j}\right ) =0 \label {laplace} 





   (5.14)

The largest point movement occurs next to the moving boundary when the Laplace equation 
determines the mesh motion. It implies that flow phenomena near the wall will be largely 
distorted, naturally leading to a loss of accuracy. The most extensive distortion should oc-
cur ideally inside the mesh. The solution is to apply diffusion coefficient 𝛾 as a function 
of distance from the body, 𝑙. The method was implied by Löhner and Yang in 1996 [84]. 
In OpenFOAM the distance-based applied method is similar to the originally proposed by 
Löhner and Yang [68]. The diffusion coefficient 𝛾(𝑙) is defined as: 

  \gamma (l) =\frac {1}{l^m}  


(5.15)

At small 𝑙 the 𝛾 coefficient is high, leading to a small gradient of mesh velocity 𝑤. For large 
𝑙, 𝛾 is small, leading the large velocity gradient away from the moving body.

The mesh distortion method was tested numerically in [68]. In the tested case, the cylin-
der of a diameter 𝐷 was moved in a channel of a height equal to 2𝐷. The channel’s left and 
right boundaries are fixed, and a slip boundary condition is applied at the top and bottom. 
Constant motion velocity is applied for the cylinder boundary. Initial mesh is depicted in 
Figure 5.7a. Examples of mesh motion performance produced by the method are depicted 
in Figures 5.7b-5.7d. If the mesh velocity is obtained with the Laplace equation without a 
diffusion coefficient, the final mesh remains valid up to maximum cylinder displacement 
Δ𝑚𝑎𝑥 of 1.2𝐷. However, it is visible that the mesh quality is not satisfactory, and it needs 
to be improved close to the cylinder walls. The linear distance-based method where diffu-
sivity field is inversely proportional to the distance from the boundary, 𝛾(𝑙) = 𝑙−1, im-
proves the mesh quality near the circle, with a maximum displacement of Δ𝑚𝑎𝑥 = 1.1𝐷. 
With the quadratic function, the mesh quality near the wall is even more improved, but the 
cylinder could be displaced to the maximum distance of 0.95𝐷. Overall, it can be observed 
that the diffusion coefficient serves as a ’stiffness’ to a mesh and improves the mesh quality 
near the moving object. 
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(a) Initial polygonal mesh

(b) Constant mesh distortion 𝛾(𝑙) = 1, Δ𝑚𝑎𝑥 = 1.2𝐷

(c) Linear distance-based: 𝛾(𝑙) = 𝑙−1, Δ𝑚𝑎𝑥 = 1.1𝐷

(d) Quadratic distance-based: 𝛾(𝑙) = 𝑙−2, , Δ𝑚𝑎𝑥 = 0.95𝐷

Figure 5.7. Examples of deformed mesh fields with Laplace mesh motion equation [68]

5.6 Interpolation at the fluid-structure interface

As illustrated in Figure 5.1 pressure and viscous forces determined at the fluid side of the 
interface must be transferred to the solid side interface and reversed. The most straightfor-
ward technique of mapping data across the interface is to use conforming meshes, then no 
interpolation of data is required. However, meshes on the solid and fluid side are often non-
conformal, requiring an interpolation method between the meshes. In the FSI container in 
OpenFOAM, a reliable interpolation technique was proposed [130].

The process has two stages: face interpolation procedure with the interpolation of the fluid 
side boundary cell faces to the solid side boundary cell faces with the Generalised Grid In-
terface (GGI) coupling [5]. A face centre traction value at the solid side interface is cal-
culated using the tractions at the face centres at the fluid side of the interface. Force at the 
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Figure 5.8. Interpolation for the vertex field in two-dimensional FV mesh [130]

centre of the solid face 𝑗 is defined as: 

  t_{S,j}= \sum _{k} w_{j,k} t_{F,k} \label {eq:GGI}  


 (5.16)

where 𝑡𝐹,𝑘 is the traction at the centre of the fluid face 𝑘. Summation is applied to all fluid 
side faces 𝑘 that intersect with solid side faces 𝑗. The 𝑤𝑗,𝑘 is the weighting factor between 
two patches, fluid face 𝑘 and solid face 𝑗.

Unlike the fluid solver, the solid solver store the displacement and material properties at the 
vertices. Vertex-displacements 𝑖 are interpolated from all cell-centre displacements 𝑖0 − 𝑖5
sharing the vertex, Figure 5.8. The same figure illustrates that an additional inner-processor 
data exchange is applied when the vertex has to be interpolated from nodes on different pro-
cessors.

The vertex interpolation procedure is applied for transferring displacements from the struc-
tural solver to the fluid solver. The displacements at the solid side are first translated to the 
face centre displacements. Faces on the solid side are decomposed into triangles using an 
extra central point. Then the displacement value at the central point is calculated with weighted 
interpolation. The GGI interface, Equation 5.16, interpolates the solid face centre displace-
ments to the fluid centre displacements, causing the mesh to move [56].

5.7 Summary

The section was set out to determine the major elements that must be considered while de-
signing the FSI model for analysing the axial flow-induced vibrations. The primary focus 
was to describe the two-way coupling scheme with small displacements. Because of the 
stability, the classical Dirichlet-Neumann coupling algorithm with Aitken’s acceleration 
can be adopted for further FIV analysis. The choice is also constrained by the implementa-
tion readily available in the OpenFOAM. The quantitative analysis of the FSI cases tested 
in [130] showed good agreement with the available results. The standard ALE methods fail 
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only when the displacement is large [4] and that is not the case for the axial flow-induced 
vibration. Similarly, the mesh deformation method described will be suitable only for small 
deformations. Despite the constraints, the parallelisation approach of the OpenFOAM’s FSI 
solver makes it an appropriate choice for industrial applications.

What follows is a description of several different discretisation schemes of the fluid equa-
tions and numerical methods on the fluid side implemented in OpenFOAM. 
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Chapter 6

Discretization of the fluid equations

This chapter discusses how the constitutive equations of the fluid motion are numerically 
solved. The Navier-Stokes equations are a set of coupled, non-linear partial differential 
equations (PDEs). In order to solve them numerically, the PDEs are transformed into a sys-
tem of linear algebraic equations using the finite volume method. The discretization pro-
cedure in the finite volume method involves two steps. The process starts by dividing the 
flow domain into several small control volumes. Then it is necessary to integrate the partial 
differential equations over a control volume and translate them into equations of equilib-
rium. Interpolation methods are chosen to estimate the variable variation between the val-
ues on the surfaces and values on the cell centres. The following sections will present the 
Finite Volume method with details on the discretization of diffusion, convection and tran-
sient terms. The pressure-velocity coupling algorithm followed by Rhie-Chow interpola-
tion is presented to compute the flow field for incompressible fluid flows. The performance 
and limitations of iterative algorithms with preconditioning are reviewed. Finally, a set of 
boundary conditions used in the numerical modelling of the turbulent fluid is provided.

6.1 Finite Volume method

The steady convection-diffusion equation for a general variable, 𝜙 is: 

  \frac {\partial (\rho _F U_j \phi )}{\partial x_j}=\frac {\partial }{\partial x_j}\left ( \Gamma \frac {\partial \phi }{\partial x_j}\right ) +S_{\phi } 








   (6.1)

Where Γ is the diffusion coefficient of 𝜙, and 𝑆 is the source term. Integrating over a con-
trol volume 𝑉, results in: 

  \int _{V} \frac {\partial (\rho _F U_j \phi )}{\partial x_j}dV = \int _{V} \frac {\partial }{\partial x_j}\left ( \Gamma \frac {\partial \phi }{\partial x_j}\right ) dV + \int _{V} S_{\phi } dV 





 








  


 (6.2)

Applying the Gauss’s divergence theorem enables to convert the volume integral to the sur-
face integral around the boundary of a control volume. This can be written as: 

  \int _A \rho _F U_j \phi n_jdA = \int _{A} \Gamma \frac {\partial \phi }{\partial x_j} n_jdA + \int _{V} S_{\phi } dV \label {eq:transport} 


 





 


 (6.3)
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Figure 6.1. One dimensional grid used for discretization [135]

Where 𝑛𝑖 is the normal vector to the control volume surface, and 𝐴 is the surface area of 
the control volume.

In order to demonstrate the discretization, a simple one dimensional domain with a regular 
Cartesian grid, as shown in Figure 6.1, is considered. The control volume with the central 
node 𝑃 is bounded by the cell faces: east, 𝑒, and west, 𝑤. The values of the property 𝜙 are 
evaluated at nodal points 𝑃, 𝑊, 𝐸.

The volume integral is approximated by taking the average value of a source ̄𝑆 over the 
control volume Δ𝑉. The average source value is simply the value at central node (𝑆𝜙)𝑃 .

  \int _{V} S_{\phi } dV \simeq \bar {S_{\phi }}\Delta V \simeq (S_{\phi })_P \Delta V 


     (6.4)

In the absence of sources, the integration of the transport equation at its nodal point 𝑃 gives: 

  (\rho _F UA \phi )_e -(\rho _F UA \phi )_w =\left (\Gamma A \frac {\partial \phi }{\partial x}\right )_e - \left (\Gamma A \frac {\partial \phi }{\partial x}\right )_w \label {eq:convection-diffusion}    











(6.5)

Where (𝜌𝐹𝑈𝐴)𝑒 = 𝐹𝑒 and (𝜌𝐹𝑈𝐴)𝑤 = 𝐹𝑤 are mass fluxes through east and west faces. 
The flow must also satisfy the continuity equation thus: 

  F_e -F_w = 0 \label {eq:continuity}      (6.6)

6.2 Diffusion terms

The linear approximation is applied to calculate the gradients 𝜕𝜙/𝜕𝑥 at the control volume 
faces. Central difference formula uses values at nodal points 𝐸 and 𝑊 to estimate the gradi-
ent at the nodal point 𝑃: 

  \left ( \frac {\partial \phi }{\partial x}\right )_P = \frac {\phi _E-\phi _W}{2\Delta x} +O(\Delta x^2) \label {eq:CD} 





  


  (6.7)

Here for the uniform grid spacing Δ𝑥 = 𝛿𝑥𝑊𝑃 = 𝛿𝑥𝐸𝑃, the central difference approxima-
tion method is second order accurate, hence the error is proportional to the Δ𝑥2 [135].
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The gradient at the cell face, e.g ′𝑒′, is evaluated at the midpoint between 𝑃 and 𝐸:

  \left ( \frac {\partial \phi }{\partial x}\right )_e =\frac {\phi _E - \phi _P}{\Delta x} \label {eq:CD2} 





  


(6.8)

The diffusive flux terms are then evaluated as: 

  \left (\Gamma A \frac {\partial \phi }{\partial x}\right )_e = \Gamma _e A_e \left (\frac {\phi _E -\phi _P}{\delta x_{PE}} \right ) 





   


 (6.9a)

  \left (\Gamma A \frac {\partial \phi }{\partial x}\right )_w = \Gamma _w A_w \left (\frac {\phi _E -\phi _W}{\delta x_{WP}} \right ) 





   


 (6.9b)

In the non-uniform grids, faces of a control volume are not at the midpoint between the 
nodes. To account for this interpolation factors 𝑓𝑊 and 𝑓𝑃 are introduced. The diffusion 
coefficients are interpolated to the cell faces 𝑤 and 𝑒 with the following formulas:

  \Gamma _w=(1-f_w)\Gamma _W +f_w\Gamma _P        (6.10a)

  f_w = \frac {\delta x_{Ww}}{\delta x_{Ww} +\delta x_{wP}}  
 

(6.10b)

  \Gamma _w=(1-f_P)\Gamma _w +f_P\Gamma _P        (6.11a)

  f_P = \frac {\delta x_{Pe}}{\delta x_{Pe} +\delta x_{eE}}  
 

(6.11b)

For convenience the diffusion conductance 𝐷 at cell faces is introduced: 

  D_e =\left (\frac {\Gamma _eA_e}{\delta x_{PE}} \right )  


 (6.12a)

  D_w =\left (\frac {\Gamma _wA_w}{\delta x_{WP}} \right )  


 (6.12b)

The integrated convection-diffusion 6.5 may be now expressed is a following way: 

  0= -(F_e\phi _e - F_w\phi _w) + (D_e(\phi _E-\phi _P) -D_w(\phi _P -\phi _W)) \label {eq:con-diff2}             (6.13)

The left-hand side of the equation represents the rate of change of 𝜙𝑃, and the right-hand 
side represents the net influx across the element surface. In order to solve Equation 6.13, 
the transported property 𝜙𝑤 and 𝜙𝑒 at the west and east faces need to be calculated. The 
discretization schemes of the convection term are discussed in the next section.
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6.3 Convection schemes

The default convection schemes employed in the further study are now presented. Initially, 
this term is discretized with linear approximation as the diffusion terms. The issues with 
this discretization scheme are presented. Then the more stable upwind scheme is described, 
followed by a description of higher-order profiles reducing the discretization error that are 
upwind biased.

6.3.1 Central differencing

Central differencing approximation was described in a diffusion terms section, Equation 6.7
and 6.8. For a uniform grid the face values reads as: 

  \phi _e=(\phi _P+\phi _E)/2      (6.14a)

  \phi _w=(\phi _W+\phi _P)/2      (6.14b)

The approximation of convective terms, equations 6.14, and diffusive terms, equations 6.12, 
can be substituted to the integrated transport Equation 6.13. After rearrangements the dis-
cretization equation becomes: 

  a_P=a_W\phi _W +a_E\phi _E \label {eq:Dictretization}      (6.15)

with coefficients 𝑎𝑊, 𝑎𝐸 and 𝑎𝑃 defined as:

  a_E= D_e -F_e/2      (6.16a)

  a_W= D_w + F_w/2      (6.16b)

  a_P=a_E+a_W+(F_e-F_w) \label {eq:final_centraldiff}          (6.16c)

This scheme provides an accurate solution as long as diffusion is the dominant transfer mech-
anism. However, it produces nonphysical oscillations once the convection overwhelms dif-
fusion. Due to this constraint, central differencing is not suitable for general-purpose flow 
calculations [135].
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Figure 6.2. A schematic showing the 𝐸𝐸 and 𝑊𝑊 nodes locations used for describing the SOU scheme 
profile [48]

6.3.2 Upwind scheme

In the upwind differencing scheme the flow direction determines the value at the cell faces. 
The value 𝜙 at the face can be approximated by the first node upstream to the face. For the 
east face of a cell the upwind scheme sets: 

  \phi _e = \phi _P \;\;\mbox {for} \;\; F_e > 0        (6.17a)

  \phi _e = \phi _E \;\;\mbox {for} \;\; F_e < 0        (6.17b)

Where 𝐹𝑒 is the mass flux through the east face of the cell defined in Equation 6.5, the dis-
cretisation equations can be found in Appendix A. The scheme is stable and always bounded 
[87]. That is, when the condition is satisfied, an increase/decrease of a variable 𝜙 at one 
node should result in an increase/decrease of the net influx - the value of 𝜙𝑛𝑏 at neighbour-
ing nodes. The scheme is first-order accurate; therefore, the error decreases linearly with 
the grid spacing. To achieve the adequate accuracy of the solution, a very fine grid may be 
required.

6.3.3 Second order upwind scheme

To improve the accuracy of the upwind schemes the value of a scalar at face is approxi-
mated by the second order upwind extrapolation (SOU). The linear profile is constructed 
by employing the values 𝜙𝐸𝐸 and 𝜙𝑊𝑊 depicted schematically in the Figure 6.2

For a uniform grid, at the east face the of a cell the the second order upwind sets [87]:

  \phi _e= \frac {3}{2}\phi _P -\frac {1}{2}\phi _W \;\;\mbox {for} \;\; F_e > 0  


 


     (6.18a)

  \phi _e= \frac {3}{2}\phi _E -\frac {1}{2}\phi _{EE} \;\;\mbox {for} \;\; F_e < 0  


 


     (6.18b)

Similarly to the upwind scheme, this scheme is a lot more stable than central differenc-
ing but not bounded [109]. It can be oscillatory when the gradient ∇𝜙 is strong, therefore 
the commercial codes limit the gradient to prevent oscillations [1, 49]. The scheme is also 
second-order accurate [88]. Details on discretisation can be found in the Appendix B.
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6.3.4 QUICK scheme

The QUICK (Quadratic Upstream Interpolation for Convective Kinetics) uses a quadratic 
interpolation profile passing through two upstream nodes and one downstream node. For 
the uniform grid, 𝜙 at the east face of a cell is given by the following formula: 

  \phi _e=\frac {3}{8}\phi _E + \frac {3}{4}\phi _P - \frac {1}{8}\phi _W \;\;\mbox {for} \;\; F_e > 0  


 


 


     (6.19a)

  \phi _e=\frac {3}{8}\phi _P + \frac {3}{4}\phi _E - \frac {1}{8}\phi _{EE} \;\;\mbox {for} \;\; F_e < 0  


 


 


     (6.19b)

The discretisation can be found in Appendix C. The scheme is third-order accurate [88], 
however the solution boundedness is not always guaranteed [135].

6.3.5 TVD schemes

In order to avoid issues caused by the QUICK scheme and other higher-order schemes, 
second-order TVD (Total Variation Diminishing) schemes were developed. TVD scheme is 
employed to realise the oscillation-free solutions by adding an artificial diffusion or weight-
ing towards upstream contribution. Initially, these schemes have been developed to capture 
sharper shocks without any misleading oscillations but have also become popular in general 
CFD applications [135].

The face value 𝜙𝑓 in a flux limited scheme is evaluated as:

  \phi _f=(\phi _f)_{UD} +\Psi (r) [(\phi _f)_{HO}-(\phi _f)_{UD}]        (6.20)

Where Ψ(𝑟) is the limiter function to combine the higher-order scheme (HO) with the bounded 
upwind scheme (UD) and 𝑟 is the ratio of successive gradients of 𝜙: 

  r=\frac {\phi _P -\phi _W}{\phi _E-\phi _P}   
 

(6.21)

When the limiter is equal to zero, the upwind scheme is restored. Higher-order schemes 
are switched on when the limiter 𝜙𝑓 is equal to 1. By monitoring the ratio 𝑟, the limiter 
switches locally to an upwind scheme when it detects significant gradients or changes in 
slope. The choice of limiter function Ψ(𝑟) is determined by a particular problem consid-
ered.
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6.4 Temporal discretization

The preceding section discussed the steady state conditions, hence the transient term was 
not included in the transport equation.

The transport equation for transient behaviour can be formulated as: 

  \frac {\partial (\rho _F \phi )}{\partial t} + L(\phi )=0 


    (6.22)

Where the 𝜕(𝜌𝐹𝜙)/𝜕𝑡 is the transient operator and 𝐿(𝜙) is the operator containing all non-
transient terms (convection, diffusion and sources). Integrating over the control volume 
gives: 

  \int _V\frac {\partial (\rho _F \phi )}{\partial t}dV + \int _VL\phi dV =0 





 


   (6.23)

Following the spatial discretization about the volume centre 𝑃, gives: 

  \frac {\partial (\rho _F \phi _P)}{\partial t} \Delta V + L(\phi _P^t) 


 
 (6.24)

where Δ𝑉 is the volume of a discretized element and 𝐿(𝜙𝑡
𝑃) is the operator at some defined 

time 𝑡 expressed as: 
  L(\phi _P^t) = a_P\phi _P^t +\sum _{Neigh}a_{F}\phi _{F}^t - b_P \label {eq:L} 

 
 




   (6.25)

where 𝑎𝑃, 𝑎𝐹 and 𝑏𝑃 are coefficients obtained from the spatial discretization (in the Sec-
tions above).

6.4.1 First Order Implicit Euler Scheme

In the first order implicit Euler scheme the integration over time interval [𝑡, 𝑡 + Δ𝑡] yields 
to: 

  \frac {\rho _F \Delta V \left (\phi _P - \phi _P^{o} \right )}{ \Delta t} + L(\phi _P) = 0   



    (6.26)

Where no superscript indicates is the current time increment and 𝑜 = 𝑡 − Δ𝑡 indicates 
the previous time increment. The coefficients of algebraic equation of the spacial operator, 
Equation 6.25, are assembled to complete the algebraic form of transient scalar equation:

  \left (a_P +\frac {\rho _F \Delta V}{\Delta t} \right )\phi _P + \sum _{Neigh}a_{F}\phi _{F} = b_P - \frac {\rho _F \Delta V}{\Delta t}\phi _P ^o  


  


   



 (6.27)

The scheme is always stable independent of the time step, but it is first-order accurate, indi-
cating that small time steps are necessary to achieve high accuracy solutions [88].
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6.4.2 Second Order Implicit Euler Scheme

The development of the second order scheme requires expanding the integration to a previ-
ous time step, 𝑡 − Δ𝑡, and two steps earlier, 𝑡 − Δ2𝑡, resulting in: 

  \frac {\rho _F \Delta V(3\phi _P - 4\phi _P^o + \phi _P^{oo} )}{2\Delta t} + L(\phi _P) = 0   
 




    (6.28)

Algebraic coefficients are assembled to the Equation 6.25 result in:

  a_P= a_P+ \frac {3\rho _F \Delta V}{2\Delta t}    


(6.29)

  b_P= b_P + \frac {2\rho _F \Delta V}{\Delta t} - \frac {\rho _F \Delta V \phi _P ^{oo}}{2\Delta t}    


 



(6.30)

The scheme is second-order accurate and stable. However, it is not bounded. An increase in 
𝜙𝑜𝑜

𝑃 will reduce the 𝜙𝑃, which can lead to unphysical oscillations. The undesirable effects 
are compensated by the large 𝜙𝑜

𝑃 coefficient of the opposite sign.

6.5 Pressure velocity coupling

In the last sections, the algorithms were constructed based on the assumption that the ve-
locity was known. In general, the solution for the momentum equation requires the known 
pressure field. In the case of incompressible flow, the continuity equation can not be used to 
obtain it. The iterative procedure to address this issue and compute the incompressible flow 
field, SIMPLE (Semi-Implicit method for Pressure Linked equations) scheme, based on the 
work of Patankar [107] is implemented.

For the two-dimensional flow the discretized momentum equation for 𝑢 and 𝑣, without any 
sources, has the form:

  a_Pu_P=\sum _{Neigh}a_{nb}u_{nb} + (P_P-P_E) \Delta y \label {eq:p_guessed}  


     (6.31)

  a_Pv_P=\sum _{Neigh}a_{nb}v_{nb} + (P_P-P_N) \Delta x  


     (6.32)

Where the term (𝑃𝑃 − 𝑃𝐸)Δ𝑦 is the pressure difference acting on a face area. The first step 
is to calculate the velocity field based on guessed pressure field 𝑝∗

  a_Pu_P^*=\sum _{Neigh}a_{nb}u_{nb}^* + (P_P^*-P_E^*) \Delta y \label {eq:p_corr} 
 




  
  

 (6.33)
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  a_Pv_P^*=\sum _{Neigh}a_{nb}v_{nb}^* + (P_P^*-P_N^*) \Delta x 
 




  
  

 (6.34)

Where 𝑈 ∗ denotes the velocity field obtained from the guessed pressure field. Now defining 
the required corrections for the guessed values, such they will gradually satisfy the continu-
ity equation, results in: 

  P=P^* +P' \label {eq:updateP}       (6.35a)

  U=U^* +U'       (6.35b)

  V=V^* +V'       (6.35c)

The prime values being the necessary corrections. Subtracting the Equation 6.33 from the 
Equation 6.31 results in: 

  a_Pu_P'=\sum _{Neigh}a_{nb}u_{nb}' + (P_P'-P_E') \Delta y 
 




  
  

 (6.36)

The SIMPLE algorithm neglects the ∑𝑁𝑒𝑖𝑔ℎ 𝑎𝑛𝑏𝑢′
𝑛𝑏 term because the correction will be 

zero when the iterating procedure is completed. Otherwise, during the iterating, this term 
would involve pressure corrections at all grid points of the domain. Velocity-correction for-
mula is then written as:

  u_P'=u_P^* + \frac {\Delta y}{a_P}(P_P'-P_E') \label {eq:Velocity-correction} 
 

 



  

 (6.37)

The mass flow rate at the cell faces will be corrected as well, giving the following expres-
sions: 

  (u_e^* - u_w^*)\rho _F \Delta y + (v_n^* - v_s^*)\rho _F \Delta x = 0 
 

 
 

   (6.38)

and, 
  (u_e' - u_w')\rho _F \Delta y + (v_n' - v_s')\rho _F \Delta x = -S_m 

 
 

 
   (6.39)

Substituting the expressions for the velocity corrections in the continuity equation results 
in:

  a_Pp_P' = \sum _{Neigh}a_{nb}P_{nb}' - S_m \label {eq:pressure_corr} 
 




   (6.40)

where 𝑆𝑚 = (𝑢𝑒 −𝑢𝑤)𝜌𝐹Δ𝑦+(𝑣𝑛 −𝑣𝑠)𝜌𝐹Δ𝑥 is the mass imbalance across the cell. When 
𝑆𝑚 is zero then no further corrections are needed.

The sequence in the SIMPLE algorithm can be summarized as:
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1. Start with the guessed pressure 𝑃 ∗ and velocity 𝑈 ∗
𝑖

2. Solve the momentum equations for new velocity fields, Equation 6.33.

3. Solve the pressure correction, Equation 6.40

4. Update pressure from the Equation 6.35a, and the velocity fields 𝑢′,𝑣′ from Equation 
6.37

5. Repeat from Step 2 until solution has converged

The PISO algorithm is an enhancement of the SIMPLE algorithm. The acceleration of the 
iteration is achieved by adding the second correction step after Step 4 of a SIMPLE algo-
rithm.

Second corrector step in the PISO algorithm is: 

  P^{***}=P^{**} +P'' \;\;\mbox {where} \;\; P''=P^* +P' \label {eq:updateP**}                 (6.41a)

  U^{***}=U^{**} +U'' \;\;\mbox {where} \;\; U''=U^* +U'               (6.41b)

  V^{***}=V^{**} +V'' \;\;\mbox {where} \;\; V''=V^* +V'                 (6.41c)

where 𝑃 ∗∗∗, 𝑈 ∗∗∗ 𝑉 ∗∗∗ is a twice-corrected pressure and velocity. 𝑃 ″, 𝑈″, 𝑉 ″ is the second 
correction of the pressure and velocity fields.

In transient simulations, the second corrector step leads to higher-order temporal accuracy 
[135]. When applying a second-order temporal differencing scheme (i.e. Section 6.4.2) and 
suitably small time step, the pressure and velocity fields obtained at the end of the PISO 
process are accurate enough to proceed to the next time-step immediately, without further 
iterations. Therefore the PISO algorithm is less expensive than the SIMPLE algorithm and 
recommended for transient, three-dimensional simulations.

6.6 Rhie-Chow Interpolation

The discretization of the pressure term may be achieved by a central difference scheme. 
The discretized pressure gradient integral will be: 

  \int _V\frac {\partial P}{\partial x}dV= \left (\frac {\partial P}{\partial x} \right )_P \Delta V= \frac {P_E-P_W}{2\Delta x } \Delta V 





 





   


 (6.42)

The expression involves two alternating points 𝐸 and 𝑊 for estimating the pressure differ-
ence. In the same way, the continuity equation relates the velocity at two alternating grid 
points: 

  u_E-u_W =0      (6.43)
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The pressure gradient term depends on two alternating grid points rather than two consec-
utive grid points. Similarly, the continuity equation ensures the mass conservation at two 
alternating grid points. It leads to ’checkerboard’ oscillations, an unphysical pressure field 
that can still appear uniform in the discretized momentum equation.

Rhie and Chow [113] proposed adding a correction to the interpolated face-velocity. The 
solution involves the addition of the third derivative of pressure gradient term to the inter-
polated velocity. Cell face velocity 𝑢𝑒 will be: 

  u_e=\frac {u_P+u_E}{2} + \frac {d}{4}\frac {\partial ^3p}{\partial x^3}\bigg |_e \Delta x^3    










 (6.44)

Where the pressure term is: 

  \frac {\partial ^3p}{\partial x^3}\bigg |_e \Delta x^3 = (p_{EE}-3P_E +3P_P - P_W) 




         (6.45)

The checkerboarding is avoided because the face velocities incorporate the pressure from 
adjacent cells. 

6.7 Boundary conditions

Boundary conditions are required to set the constraints to the solution variable 𝜙. The fol-
lowing section will discuss the implementation of the inlet, outlet and wall boundary con-
ditions used in the subsequent simulations. The Law of the wall used to develop wall func-
tions was explained in Section 4.9.

6.7.1 Inlet

At the inlet boundaries, the distribution of all flow variables needs to be provided, so the 
values for 𝜙𝑛+1

𝑖𝑛𝑙𝑒𝑡 are specified as fixed values by the user (Dirichlet condition). Pressure is 
specified as a homogeneous Neumann boundary condition with zero flux at the boundary 
(normal gradient to the face equals zero).

When a uniform velocity is applied at the inlet, an approximate inlet and initial estimates 
of turbulent kinetic energy 𝑘, the turbulence dissipation rate 𝜀, may be derived using the 
following formulae [135]: 

  k=\frac {3}{2}(u_{ref} T_i)^2 \label {k} 


 (6.46a)

  \varepsilon =\frac {c_\mu ^{0.75} k^{1.5}}{l} \label {epsilon} 





(6.46b)

Where 𝑢𝑟𝑒𝑓 is a reference flow velocity (m/s) and 𝑇𝑖 is the turbulence intensity. In all fol-
lowing numerical simulations 𝑇𝑖 = 5%. In Equation 6.46b, 𝑐𝜇 = 0.09 is a model constant, 
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𝑙 = 0.07𝐿 is a length scale proportional to the a characteristic length 𝐿 of the mean flow.

For the solution of Reynolds Stress Models, approximate distributions of Reynolds stresses 
are given as [46, 135]: 

  \overline {u_1^2}=\overline {u_2^2}=\overline {u_3^2}=\frac {2}{3}k 
 

 
 


 (6.47a)

  \overline {u_iu_j}=0 \quad (i\neq j)       (6.47b)

The initialization of turbulence specific dissipation rate 𝜔 follows as [71]: 

  \omega =\frac {k^{0.5}}{c_\mu ^{1/4} l} 




(6.48)

Fully developed flow at the inlet

One way to generate fully developed inflow conditions for the wall-bounded flows is to ex-
tend the computational domain of the channel entrance. However, this method requires a 
considerable upstream distance (typically in the order of 50 hydraulic diameters [135]). A 
simpler method is to perform an auxiliary simulation with periodic boundary conditions in 
the streamwise direction and extract a fully developed velocity field. OpenFOAM provides 
the steady-state solver for incompressible, 1D turbulent flow [95]. The solver is designed to 
create fully developed velocity and turbulence inflow conditions (𝑘, 𝜀, 𝜔, 𝑢𝑖𝑢𝑗). An average 
target velocity is specified, and the pressure gradient drives the flow until fully developed 
conditions with the required bulk velocity are reached. The resulting turbulence inflow con-
ditions based on a fully developed flow profile can be then mapped to the inlet of the chan-
nel.

6.7.2 Outlet

At an outlet, the profile of 𝜙 is assumed to be fully developed, which is achieved by setting 
the normal gradient to the face as zero (𝜕𝜙

𝜕𝑛 = 0). For the pressure, a Dirichlet boundary 
condition (fixed value) is imposed to set a reference pressure.

6.7.3 Wall

The no-slip boundary condition for the velocity components is applied at solid walls. It 
implies that the velocity of the fluid at the wall (𝑢𝐹,𝑤) is equal to that of the wall velocity. 
For the stationary wall, it will be zero; for the moving wall, the appropriate boundary con-
ditions were presented in Section 5.1.2. The pressure gradient normal to the wall is set to 
zero ( 𝜕𝑝

𝜕𝑛 = 0).

As far as the modelling of near-wall turbulence is concerned, there are two implications:
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• The need to use turbulence models that can produce the effects of wall damping on the 
near-wall turbulence.

• The need to use a fine enough near-wall mesh, typically about 20 grid notes from the 
wall to y+ of around 30, to accurately resolve the buffer layer and viscous sub-layer 
regions.

The latter can cause prohibitively large increases in computational costs, especially in three-
dimensional and time-dependent flows. This is what led to the developments of the wall 
function strategies.

The primary objective of wall function approach is to avoid the use of fine near-wall grids. 
As depicted in Figure 6.3, control volume is sufficiently large for the near-wall node to be in 
the fully turbulent region. The advantage of the wall function is that the viscous and buffer 
layers, which require approximately 20 control volumes to be adequately resolved in a low-
Re-model approach, are covered with a single control volume. 

(a) Near-wall mesh for low-Re 
models

(b) Near-wall control volume for 
wall functions.

Figure 6.3. Grid resolution with different approaches to near-wall turbulence modelling [62]

The approximation of boundary values relies on the wall function employed. Conventional 
wall functions are based on the idea that the near-wall velocity varies logarithmically. 

  \frac {U}{U_\tau }=\frac {1}{\kappa }ln\left (\frac {EyU_\tau }{\nu }\right ) \label {eq:loglaw} 








 (6.49)

where 𝑈𝜏 = (𝜏𝑤/𝜌)1/2 , 𝜅 = 0.41, 𝐸 = 8.4. Applying Equation 6.49 to the near-wall 
control volume of Figure 6.3b, results in: 

  \frac {U_P}{\sqrt {\tau _w/\rho }}=\frac {1}{\kappa }ln\left (\frac {E y_P\sqrt {\tau _w/\rho }}{\nu }\right ) \label {eq:loglaw2} 










 (6.50)

Several variants of conventional wall functions have been developed from Equation 6.50

In the standard version, 𝑈𝜏[≡ 𝜏𝑤/𝜌)1/2] on the right-hand side of Equation 6.50 is replaced 
by 𝑐1/4

𝜇 𝑘1/2
𝑃 . This results in: 

  \tau _w=\frac {\kappa c_{\mu }^{1/4}k_P^{1/2} U_P}{ln\left (E \right )c_{\mu }^{1/4}y_P^* } \label {tau_wf}  




 




(6.51)

where 𝑦∗
𝑃 = 𝑘1/2

𝑝 𝑦𝑃/𝜈 .
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Value of the turbulent kinetic energy is derived through the solution of a modified discretized 
transport equation for the turbulent kinetic energy 𝑘 over the near-wall control volume. The 
modifications include setting the diffusion of 𝑘 to the wall to zero then calculating the cell-
averaged values of the generation and dissipation rates of turbulence from: 

  \overline {P_k}=\frac {\tau _w^2}{\kappa \rho k_P^{1/2}y_n}ln \left (\frac {y_n}{y_v}\right ) \label {eq:PK_avg}  








 (6.52)

  \overline { \varepsilon } =\frac {k_p^{3/2}}{y_n}\left [\frac {2}{y_v^*} + \frac {1}{c_l}ln\left ( \frac {y_n}{y_v}\right )\right ] \label {eq:epsAvg} 














 (6.53)

where 𝑦𝑛 is as in Figure 6.3b, 𝑦∗
𝑣 = 20 and 𝑦𝑣 the value of 𝑦 when 𝑦𝑘1/2

𝑃 /𝜈 = 20.

The average 𝑃𝑘 is derived by analytically integrating the formula from 𝑦𝑣 to 𝑦𝑛, with the 
turbulent shear stress, 𝑢𝑣, equal to the wall shear stress, 𝜏𝑊, and the velocity gradient de-
rived from the log-law equation 6.49. The average 𝜀 is determined using analytical integra-
tion by assuming that from the wall to 𝑦𝑣, 𝜀 = 2𝜈𝑘𝑃/𝑦2

𝑣 and from 𝑦𝑣 to 𝑦𝑛, 𝜀 = 𝑘3/2
𝑃 /𝑐𝑙𝑦. 

  \varepsilon =k_P^{3/2}/c_ly \label {epsilon_wf} 
  (6.54)

Equations 6.51, 6.52, 6.53 make up the standard wall function, though in the case of Open-
FOAM instead of equations 6.52 and 6.53 the cell-averaged values of 𝑃𝑘 and 𝜀 are approxi-
mated by their nodal values, with the latter evaluated from equation 6.54.

The general application of the wall function concept to second-moment closures can be 
found in [94]. In the case of OpenFOAM zero gradient boundary condition is applied for 
the Reynolds stress tensor field: 

  \frac {\partial \overline {u_iu_j}}{\partial n} = 0 


  (6.55)

The same method is applied for the 𝑘−𝜔 model with wall functions by requiring dissipation 
of turbulent kinetic energy to balance its production rate, 𝜔𝐶 is: 

  \omega _C =\frac {k_C^{1/2}}{\kappa c_\mu ^{1/4} y_C} 







(6.56)

6.8 Solution algorithm

The discretisation of the transport equations results in a set of linearised coupled equations 
assembled for all control volumes. A final form is expressed as: 

  [A][\phi ]=[b] \label {eq:orignal}    (6.57)

Where 𝐴 is the sparse matrix of coefficients of elements 𝑎𝑖𝑗, 𝜙 is the vector of unknown 
variables, and 𝑏 is the vector containing all sources, constants and boundary conditions. As 
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shown in [87] direct methods of solving linear systems of equations such as Direct Matrix 
Inversion, Gauss Elimination or TriDiagonal Matrix Algorithm (TDMA) are generally not 
recommended for solving large systems of equations because they are computationally ex-
pensive. Most CFD codes use iterative methods. The sparse coefficient matrix 𝐴 can be 
decomposed into upper triangular 𝑈, lower triangular 𝐿 and the diagonal matrix 𝐷 as in the 
Equation 6.58. 

  A=D+L+U \label {eq:DLU}       (6.58)

In the Jacobi method iteration sequence is performed as in the Equation 6.59: 

  D\phi ^{(m+1)}=-(L+U)\phi ^{(m)} +b \label {eq:Jacobi}        (6.59)

where 𝜙(𝑚) is the solution estimate at the iteration 𝑚 and 𝜙(𝑚+1) is a new solution estimate. 
As the number of iterations 𝑚 increases, the solution 𝜙(𝑚) will converge to the exact solu-
tion 𝜙. However, usually, the exact solution is not required and stopping criteria are intro-
duced. The solution algorithm monitors the residual 𝑟(𝑚), which is a measure of the solu-
tion convergence. It is defined in the Equation 6.60: 

  r^{(m)}=A\phi ^{(m)} -b \label {eq:residual}      (6.60)

6.8.1 Conjugate Gradient method

The Conjugate Gradient (GC) method is another solution procedure used in the CFD calcu-
lations. As shown in [87] this scheme converges faster than the iterative methods presented 
above, and it is recommended for large problems with unstructured meshes. The basic prin-
ciple behind the method is to define the search path 𝑑(𝑚) to obtain a new solution estimate: 

  \phi ^{(m+1)}=\phi ^{(m)} +\alpha ^{(m)}d^{(m)} \label {eq:GC}      (6.61)

Where 𝛼(𝑚) is some relaxation factor computed at each iteration, so the next residual is 
small as possible. It is calculated by the Equation 6.62: 

  \alpha ^{(m)}= \frac {\left (d^{(m)}\right )^T r^{(m)}}{(d^{(m)})^T A d^{(m)}} \label {eq:relaxation} 


 (6.62)

The Conjugate Gradient algorithm steps are as follows:

1. Choose residual 𝑟0 and start iterating 

  d^{(0)}=r^{(0)}=b-A\phi ^{(0)}        (6.63)

2. Choose factor 𝛼 in 𝑑 direction, Equation 6.62

3. Calculate a new solution estimate 𝜙(𝑚+1), Equation 6.61
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4. Calculate the new residual 

  r^{(m+1)} = r^{(m)}-\alpha ^{(m)}Ad^{(m)}      (6.64)

5. Calculate conjugate residual coefficient 𝛽

  \beta ^{(m)}=\frac {r^{(m+1)T}r^{(m+1)}}{r^{(m)T} r^{(m)} }  

 (6.65)

6. Calculate a new search direction 

  d^{(n+1)}=r^{(n+1)}+\beta ^{(m)}d^{(m)}      (6.66)

The set of search path vectors 𝑑(0), 𝑑(1),..., 𝑑(𝑛−1) are orthogonal, it can be shown that the 
solution will be found after 𝑁 steps where 𝑁 is the size of a matrix [88]. In practice, less 
than 𝑁 iterations are needed for an approximate solution.

6.8.2 Preconditioning and asymmetry

Preconditioning improves the convergence rate of the GC method. This is done by multi-
plying the original Equation 6.57 by the inverse of a preconditioned matrix 𝑃 −1 as in the 
Equation 6.67

  P^{-1}A\phi = P^{-1}b \label {eq:preconditioning}     (6.67)

The matrix 𝑃 is defined such that the matrix 𝑃 −1𝐴 is better conditioned than matrix 𝐴. To 
guarantee symmetry, the Cholesky decomposition is used to represent 𝑃 in the form: 

  P=LL^T   (6.68)

The system of equations is then expressed as:

  L^{-1}AL^{-T}L^{T}\phi =L^{-1}b    (6.69)

Where 𝐿−1𝐴𝐿−𝑇 is a symmetric positive-definite matrix.

Bi-conjugate Gradient Method (BiCG) is a CG variant dedicated to non-symmetric ma-
trix systems. The symmetric matrix has the same coefficients on both sides of the diago-
nal 𝑎𝑖𝑗 = 𝑎𝑖𝑗. The matrix 𝐴 can often be asymmetrical, which arises from discretising the 
convection term. For example, if the upwind scheme is applied, a contribution will be to 
the coefficient upstream to the face (i.e. 𝑎2,1) but not to the downstream of a face (i.e. 𝑎1,2) 
[54]. BiCG method converts the asymmetrical system to symmetrical, which allows then to 
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Figure 6.4. Different error modes in one-dimensional grid [87]

solve it with GC, Equation 6.70: 

  \begin {bmatrix} 0 & A\\ A^T & 0 \end {bmatrix} \begin {bmatrix} \widehat {\phi }\\ \phi \end {bmatrix} = \begin {bmatrix} b \\ 0 \end {bmatrix} \label {eq:BiCG} 








 


 (6.70)

Where ̂𝜙 is a dummy variable introduced to be able to convert the asymmetrical system to 
the symmetrical one. As a result, the second set of calculations for the coefficient matrix 
𝐴𝑇 is performed, and the computational cost will be approximately two times that of the 
CG method. Preconditioning can also be used with the BiCG method.

6.8.3 The Multigrid approach

The rate of convergence of iterative methods worsens as the size of the algebraic system 
expands, i.e. as the mesh is refined [135]. It has been demonstrated that the solution error 
has components with a range of wavelengths, which is schematically illustrated in Figure 
6.4. Iterative approaches reduce the error components with short wavelengths. The long-
wavelength components of the error are hardest to damp out and tend to decay very slowly. 
For the coarse mesh, all error components decrease very quickly because the longest possi-
ble error wavelength lies in the range of short wavelengths.

The multigrid method uses meshes with varying degrees of coarseness to develop a so-
lution strategy. The first step solves the residual vector 𝑟 and the matrix 𝐴 on the origi-
nal, finest mesh to the partial convergence ( i.e. when the residuals drop by a factor of 2). 
The solution is then transferred to the coarse mesh, and the error on this mesh will reduce 
rapidly. The error vector from the coarse mesh is transferred to the finest mesh, and linear 
interpolation is performed on the intermediate points in the fine mesh. The error vector is 
then used to correct the original error vector and solve for the corrected intermediate solu-
tion.
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6.9 Under-relaxation

In order to improve convergence and stabilize the iteration process, a method called under-
relaxation is introduced. The method reduces the amount that a variable changes during a 
solution step. During an iteration step value of the variable 𝜙𝑃 changes from 𝜙∗

𝑃 from the 
previous iteration to the just calculated new value of 𝜙𝑛𝑒𝑤

𝑃 . Under-relaxation will reduce the 
change 𝛿𝜙 = 𝜙𝑛𝑒𝑤

𝑃 − 𝜙∗
𝑃 by a fraction 𝛼. As a result, the value obtained at that solution step 

will be: 
  \phi _P=\alpha \phi _P^{new} + (1-\alpha ) \phi _P^*  

   
 (6.71)

Where 0 < 𝛼 < 1, typical suitable under-relaxation factor lies in the range of 0.1-0.5 [140].

The central coefficient 𝑎𝑃 and a new source term 𝑏𝑃 in the under-relaxed form become:

  a_P=\frac {a_P}{\alpha }  


(6.72)

  b_P=b_P+\frac {(1-\alpha )}{\alpha } a_P\phi _P^*      



 (6.73)

6.10 Summary

This chapter summarizes the Finite Volume discretization model to solve the Navier-Stokes 
equations. It explains the methods implemented in the OpenFOAM toolbox for the FSI 
simulations. The convective and diffusive terms were discretized on the one-dimensional 
uniform grid for simplicity of explanation. The temporal discretization is available using 
the first order and second-order schemes. The resulting pressure-velocity coupled system 
was derived on the two dimensional, uniform, orthogonal grid. Two algorithms were de-
scribed: SIMPLE, which will be applied to the initial steady-state simulations, and PISO, 
which is typically used for the transient simulations. The Rhie-Chow interpolation method 
for pressure-velocity coupling in co-located grid arrangement was presented. A brief dis-
cussion on the boundary constraints imposed in further simulations and the treatment of the 
near-wall region were discussed. The iterative procedures (Jacobi, Gauss-Seidel and conju-
gate gradient method) of solving the system of algebraic equations were reviewed, followed 
by a multigrid approach addressing their limitations.

Numerical methods for the elasticity equations will be derived in the following chapter.
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Chapter 7

Discretization of the solid equations

This chapter describes the cell-centred finite volume discretisation of the linear elastic gov-
erning equation defined in Chapter 3. In the OpenFOAM container for FSI [131] discretiza-
tion of governing equations follows the numerical approach, which was first proposed by 
Demirdžić and Muzaferija [43]. For the solid model, the discretisation procedure is the 
same as for the fluid model. The solution domain is divided into a set of control volumes. 
The integral form of the linear momentum equation, Equation 3.27, is then transformed 
from the surface integrals to the sum of face integrals. This chapter will present the appli-
cation of finite volume linear stress analysis on a two-dimensional Cartesian mesh.

7.1 Finite Volume discretization

Consider the steady state, two-dimensional stress equilibrium equation 3.14 Assuming the 
body forces 𝑓𝑖 to be negligible, the governing equation reduces to: 

  \rho _S\frac {\partial ^2u_i}{{\partial t}^2} + \frac {\partial \sigma _{ij}}{\partial x_{j}} = 0 






  (7.1)

Integrating over a cell of a volume 𝑉 and applying the Gauss divergence theorem gives: 

  \int _S \sigma _{ij} n_j dS = 0 \label {general-sigma} 


   (7.2)

Where 𝑆 is the enclosing surface of a control volume. The discretisation is performed on a 
control volume depicted in Figure 7.1. 

The constitutive relations, Equations 3.26 for equilibrium of forces acting in the 𝑥 direction 
are applied. 

  \sigma _{xx}=2\mu \frac {\partial u}{\partial x}+\lambda \left (\frac {\partial u}{\partial x}+\frac {\partial v}{\partial y}\right )  


 





 (7.3)

Where 𝑢 and 𝑣 are the displacements in the 𝑥 and 𝑦 direction, respectively. The relation 7.2
for the east and west faces becomes: 

  \left [ \int _S \sigma _{xx}\right ]_w^e = \underbrace {\int _{S_e} \left [(2\mu +\lambda ) \frac {\partial u}{\partial x} +\lambda \frac {\partial v}{\partial y}\right ] dS}_{\text {$T_{xe}$}} - \underbrace {\int _{S_w} \left [(2\mu +\lambda ) \frac {\partial u}{\partial x} +\lambda \frac {\partial v}{\partial y}\right ] dS}_{\text {$T_{xw}$}} 










 













 










(7.4)
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Figure 7.1. Two dimensional, Cartesian control volume [42]

After applying the strain-displacement equation, Equation 3.26b, the integration for the 
north and south cell faces becomes: 

  \left [ \int _S \tau _{xy}\right ]_n^s =\underbrace { \int _{S_n} \left ( \mu \frac {\partial u}{\partial y}+\mu \frac {\partial v}{\partial x} \right )dS}_{\text {$T_{xn}$}} - \underbrace {\int _{S_s} \left ( \mu \frac {\partial u}{\partial y}+\mu \frac {\partial v}{\partial x} \right )dS}_{\text {$T_{xs}$}} 













 













 







(7.5)

Applying the central differencing to the gradient of displacement, similarly to the diffusion 
terms in the fluid discretization equation, the terms 𝑇𝑥𝑒, 𝑇𝑥𝑤, 𝑇𝑥𝑛, 𝑇𝑥𝑠 are evaluated as: 

  T_{xe}=(2\mu +\lambda )\frac {u_E-u_P}{\delta x_e}S_e + \lambda \frac {v_{ne}-v_{se}}{\delta y_e}S_e \label {eq:Txe}      


   


 (7.6a)

  T_{xw}=(2\mu +\lambda )\frac {u_P-u_W}{\delta x_w}S_w + \lambda \frac {v_{nw}-v_{sw}}{\delta y_w}S_w      


   


 (7.6b)

  T_{xn}=\mu \frac {u_N-u_P}{\delta y_n}S_n + \mu \frac {v_{ne}-v_{nw}}{\delta y_n}S_n    


   


 (7.6c)

  T_{xs}=\mu \frac {u_P-u_S}{\delta y_s}S_s + \mu \frac {v_{se}-v_{sw}}{\delta y_s}S_s    


   


 (7.6d)

The displacements at the vertices 𝑣𝑛𝑒, 𝑣𝑛𝑤, 𝑣𝑠𝑒, 𝑣𝑠𝑤 are obtained by interpolation from the 
surrounding cell centres as described in the Section 7.2. The discretised equilibrium equa-
tion becomes: 

  (a_E+a_W+a_N+a_S)u_P -a_Eu_E-a_Wu_W-a_Nu_N-a_Su_S=b_P \label {discretizedeq_Solid}                  (7.7)

Where, 
  a_E = (2\mu +\lambda )\frac {S_e }{\delta x_e}     


(7.8a)

  a_W = (2\mu +\lambda )\frac {S_w }{\delta x_w}     


(7.8b)
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Figure 7.2. Vertex 𝑉 surrounded by cell centres 𝑃𝑖 [19]

  a_N =\mu \frac {S_n}{\delta y_n}   


(7.8c)

  a_S=\mu \frac {S_s}{\delta y_s}   


(7.8d)

  b_P=\lambda \frac {v_{ne}-v_{se}}{\delta y_e}S_e - \lambda \frac {v_{nw}-v_{sw}}{\delta y_w}S_w +\mu \frac {v_{ne}-v_{nw}}{\delta x_n}S_n - \mu \frac {v_{se}-v_{sw}}{\delta x_s}S_s    


   


   


   


 (7.8e)

and 𝑏𝑃 are the source terms treated explicitly, determined by using the values from the pre-
vious iteration - it is further explained in Section 7.5.

7.2 Vertex interpolation

When using a Lagrangian approach, the mesh is moved, and stress fields are updated to 
the new configuration at the end of each time step. To move the mesh, the displacements 
at the cell centres must be interpolated to the cell vertices. In OpenFOAM, this is done by 
using the inverse distance interpolation method. To illustrate the concept, Figure 7.2 is in-
troduced. The value is known at cell-centres 𝑃𝑖. A weighted average of a variable at vertex 
𝜙𝑉 is found as: 

  \phi _V=\frac {\sum _{i=1}^P \omega _{P_i}\phi _{P_i}}{\sum _{i=1}^P\omega _{P_i}} 








(7.9)

Where 𝜙𝑃𝑖
is the value at the neighbour cell centre 𝑃, and there are 𝑃 neighbouring cell 

centres. The weighting factor, 𝜔𝑃𝑖
, is given by: 

  \omega _{P_i} = \frac {1}{|r_V-r_{P_i}|} 


 


(7.10)

Where 𝑟𝑉 is the vertex position vector and the 𝑟𝑃𝑖
is the cell centre position vector. For the 
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grid presented in Figure 7.1, i.e for a vertex 𝑛𝑒, the interpolation will be simplified as: 

  u_{ne}=\frac {1}{4}(u_P+u_E+u_N+u_{NE})  


       (7.11)

7.3 Temporal discretisation

The time discretisation is performed using the first order implicit order scheme, described 
in Section 6.4.1. As in the discretisation of the fluid solver, the time derivative of a variable 
𝜙 at the cell centre 𝑃 is defined as:

  \left ( \frac {\partial \phi _P}{\partial t}\right )^{[m]} =\frac {\phi _P^{[m]}-\phi _P^{[m-1]}}{\delta t} \label {temp1} 






 




(7.12)

Where superscript [𝑚] indicates the current time increment and [𝑚 − 1] indicates the pre-
vious time increment. For the solid solver, the rate of change of 𝜙𝑃 for a control volume is: 

  \frac {\partial }{\partial t}\int _V \frac {\partial \phi _P }{\partial t} dV=\frac {1}{\delta t} \left [ \rho _S \Delta V \left (\frac {\partial \phi _P^{[m]}- \partial \phi _P^{[m-1]}}{\delta t}\right )\right ] \label {temp2} 








 



 




 (7.13)

The final discretized temporal term is derived by substituting the Equation 7.12 to the Equa-
tion 7.13

  \frac {\partial }{\partial t}\int _V \frac {\partial \phi _P}{\partial t} dV=\frac {1}{\delta t}\left [ \rho _S \Delta V \left (\frac { \phi _P^{[m]}- 2\phi _P^{[m-1]} +\phi _P^{[m-2]}}{\delta t}\right ) \right ] 








 



 

 



 (7.14)

All terms in Equation 7.7 are evaluated at the new time instance 𝑡[𝑚] = 𝑡[𝑚−1] + 𝛿𝑡. The 
discretisation is bounded but first-order accurate in time. Thus it can cause some numerical 
dissipation when the time step is not small enough.

The remedy would be to construct the second-order accurate scheme using three ’old’ time 
levels [66]: 

  \frac {\partial ^2 \phi _P}{\partial t^2}=\frac {2\phi _P^m- 5\phi _P^{[m-1]} +4\phi _P^{[m-2]}-\phi _P^{[m-3]}}{\delta t^2} 
 

 
 

 


 (7.15)

Where 𝜙[𝑚−3]
𝑃 = 𝜙𝑃(𝑡 − 2𝛿𝑡). As a result, the scheme is nominally more accurate, but it 

can be unbounded, leading to unphysical stress peaks in the solution [66]. Even though the 
second-order scheme will converge faster than the first order, small artificial stress peaks 
can lead to a misleading interpretation of the flow-induced vibration. The first-order accu-
rate scheme with relatively small time steps was also the preferred method in linear elastic-
ity simulations in [66].

7.4 Boundary conditions

The solution of the solid model is completed by setting the boundary conditions. The bound-
ary conditions of the following types (time-varying or constant) were used in the numerical 
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modelling of a solid structure for the FIV study:

• fixed displacement

• fixed traction

• free surfaces - zero traction

The solution displacement can then be applied to set the distribution of stresses or any other 
variables of interest.

Dirichlet boundary condition sets the value of displacement 𝑢𝑏 at the centre of the bound-
ary face 𝜙𝑏. The boundary face value is then substituted into the displacement gradient 
computation in Equation 7.6. Figure 7.3 with a control volume next to a boundary is pro-
vided to explain the implementation of the fixed displacement boundary condition. In this 
case the displacement 𝑢𝐸 in the term 𝑇𝑥𝑒 (Equation 7.6a) is substituted with the known 
value of 𝑢𝐵. When the traction is given, normal gradient 𝑡𝐵𝑥 can be directly substituted 
into Equation 7.6a, term 𝑇𝑥𝑒 becomes: 

  T_{xe}=t_{Bx}S_e    (7.16)

Figure 7.3. Cartesian CV next to a boundary [43]

7.5 Solution procedure

The discretised solid model in Equation 7.7 is assembled for all control volumes with a fi-
nal form expressed as: 

  [A][u]=[b] \label {eq:sol_procedure}    (7.17)

Where [𝐴] is a sparse matrix of coefficients 𝑎𝑃 on the diagonal, [𝑢] is the vector of cell-
centre displacements and [𝑏] is the source vector. The system of linear algebraic equations 
is solved using the segregated algorithm described in [17, 18, 131]. It requires that the dis-
placement vector 𝑢 is temporally decomposed into three components and solved iteratively. 
Then outer iterations are performed explicitly to re-couple the momentum equation, where 
the right-hand side vector 𝑏 is updated using the displacement vector increment from the 
previous iteration. The sparse matrix 𝐴 is symmetric and weakly diagonally dominant [131]. 
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The system of Equations 7.17 can be solved with preconditioned gradient method intro-
duced in Section 6.8.1 or with the geometric agglomerated algebraic multigrid solver (GAMG), 
which concept is introduced in Section 6.8.3.

7.6 Summary

This chapter summarises the Finite Volume discretisation procedure developed to solve the 
Navier-Displacement equation. All methods used in the OpenFOAM toolbox for the FSI 
simulations were presented. The solver applies a second-order central differencing scheme 
for spatial discretisation of conservation of linear momentum. First-order and second-order 
temporal discretisation methods are available and have been reviewed. Finally, a brief dis-
cussion on boundary conditions used in further simulations and the solution methods of the 
linearised system of equations were presented.

In the following chapter, the information on the numerical methods from the two preceding 
chapters is applied to the simulations. 
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Chapter 8

Simulation results

The following Chapter describes the development of FIV benchmark simulation of the cylin-
drical cantilever beam subjected to the axial turbulent flow that has been performed. The 
process of selecting valuable test cases is described in Methodology. Then successive test 
cases with conclusions that lead to the final modelling approach are presented. Finally, the 
full 3D model corresponding to the geometry and flow velocity in the experiment from [26] 
is presented. This final model will be serving as a benchmark for turbulence-induced vibra-
tions.

8.1 Methodology

A detailed analysis of FIV mechanisms presented in Section 1.3 shows that the fuel rod in 
the Fuel Assembly component will be subjected to turbulent buffeting and coupling effects 
induced by neighbouring fuel rods. Based on this and the conclusions from Section 5.1.1
strongly coupled modelling approach was selected in further study.

The primary aim of this PhD project has been to present a fully validated benchmark simu-
lation of the flow-induced vibration of a free-clamped cylinder exposed to axial turbulent 
flow, which can inform future studies on PWR fuel bundles. The investigation takes the 
form of a case study of the following simulation test cases:

• Validation of the FSI methodology against a well-known FSI benchmark case [132]

• Assessment and evaluation of the URANS effective viscosity (𝑘−𝜔, 𝑘−𝜀, 𝑘−𝜔 SST) 
and Reynolds Stress models on a suitable representative 2D test case with rigid walls 
[15]

• Free vibration of the blunt-end rod in vacuum

• Two-way FSI simulations validated against the experimental data [26].

A case-study approach was chosen to develop a cost-effective URANS modelling method-
ology for flow-induced vibration of cylindrical structures in axial flow, validated against 
the experimental data obtained with a free-clamped cylinder by [26]. In order to achieve 
this objective, it is first necessary to assess and evaluate the suitability of URANS models 
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(namely, the effective viscosity models, 𝑘−𝜔, 𝑘−𝜀, 𝑘−𝜔 SST and Reynolds Stress Models 
LRR and SSG) to effectively reproduce fluctuating forces which can induce vibrations, be-
cause turbulent buffeting is a key source of excitation for cylindrical structures in axial flow. 
A suitable representative 2D test case with rigid walls [15] was chosen for this purpose.

In all models, the high-Reynolds-number approach with the wall functions has been adopted. 
The Low-Reynolds models with finer mesh resolution at the near-wall region have not been 
considered in this study for two reasons:

• To reduce the computational effort in future FSI simulations in the PWR rod bundle, 
example of which can be found in [29, 141]. The requirement of 𝑦+ < 2 could be 
challenging for such a complex geometric structure.

• Reynolds number (based on cooling channel hydraulic diameter in the fuel lattice) 
during PWR normal operating conditions is of the range of ∼ 5 × 105 [26, 27]. High-
Reynolds approach for reproducing the flow conditions in the core and around the fuel 
assembly is thus justified in [137, 141].

The FSI solids4foam toolbox developed for OpenFOAM [16] is based on the cell-centered 
finite volume discretization method for both, fluid and solid governing equations and strongly 
coupled iteration scheme. Having the single, self-contained toolbox minimize the errors on 
loads transfer from the fluid boundary face to the solid boundary faces and reverse. This 
makes it suitable for simulating small-amplitude, turbulence-induced vibrations. Prior to 
commencing the study, the validation of the FSI numerical modelling methodology against 
a laminar test case with in benchmark case [132] has been done.

In the partitioned approach, the fluid domain and solid domain are solved separately, there-
fore a separate simulation of a freely vibrating rod in vacuum was necessary to establish the 
solid side settings.

Finally, the knowledge gained from the preceding numerical explorations is brought to-
gether and directed to the simulation of turbulent flow-induced vibrations exerted on a sin-
gle rod subjected to axial flow. This final two-way FSI simulation serves as benchmark sim-
ulation for the Flow-Induced Vibration phenomena in nuclear industry.

8.2 Laminar FSI Analysis: Validation of the FSI methodology

The elastic plate located behind the rigid cylinder schematically represented in Figure 8.1
is a well-known benchmark FSI case [132] against which the present FSI methodology has 
already been tested [131]. Besides validating the implementation of the FSI methodology, 
this test case was also informative in selecting a linear variation of the diffusion coefficient 
with the distance from the boundary in the mesh deformation equation (Equation 5.14).

Figure 8.1 presents the computational domain with structural details for the elastic plate. 
The flow over the cylinder leads to vortex shedding, and this causes oscillatory lift and drag 
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Property Value
Fluid density 𝜌𝐹 [𝑘𝑔𝑚−3] 103

Fluid kinematic viscosity𝜈𝐹 [𝑚2𝑠−1] 10−3

Mean inlet velocity 𝑢̄ [𝑚𝑠−1] 2
solid density 𝜌𝑆 [𝑘𝑔𝑚−3] 103

Young’s modulus 𝐸𝑆 [𝑃𝑎] 5.6 × 106

Poisson’s ratio 𝜐𝑆 [−] 4 × 10−2

Table 8.1. Fluid and solid properties in the FSI laminar simulation

forces acting on the elastic plate (flag). Displacements are tracked at the plate tip’s control 
point (A). 

No-slip Wall

No-slip Wall

Pressure 
outlet

Velocity 
inlet

2.5

A

Figure 8.1. Computational domain of the FSI laminar flow test. All dimensions are in meters [131]. 

The fluid enters the channel from the left-hand side with a parabolic velocity profile, which 
is expressed in Equation 8.1. 

  u(y) =1.5\bar {u}\frac {4}{0.1681}y(0.41-y) \label {eq:inlVel}    


   (8.1)

The flow is assumed to be laminar (Re=200 based on cylinder diameter). The structure is 
assumed to be elastic and compressible. Deformation of the elastic flag is described by a 
hyper-elastic material model allowing large deformations introduced in Section 3.5. Fluid 
and solid properties and mean inlet velocity 𝑢̄ for the elastic plate behind a rigid cylinder 
are summarized in Table 8.1. Constant pressure is imposed at the channel outlet, and a no-
slip boundary condition is applied to the walls. The numerical solution is obtained with the 
time step Δ𝑡 = 10−3𝑠. The coupling is activated after 2s. The periodic motion of the plate 
was achieved at 3.5 seconds. 

The grid convergence study used three different meshes on the fluid side, namely: fine 1 (∼
21×103 cells), fine 2 (∼ 85×103 cells) and fine 3 (∼ 340×103 cells). The solid side mesh 
was fixed at 2500 cells. For the ’fine 1’ case, the diffusion coefficient varies quadratically 
with distance from the boundary 𝛾(𝑙) = 𝑙−2 while in the case ’fine 2’ and fine 3’ the linear 
function for diffusivity is applied 𝛾(𝑙) = 𝑙−1.

Figure 8.2 depicts the simulation snapshot with details of the mesh. An example of a ’fine 
2’ deformed mesh at a maximum deflection of a beam is presented in Figure 8.2c. Meshes 
on the solid and fluid sides are non-conformal, as depicted in Figure 8.2b. It can be ob-
served that the computational mesh is ideally adjusted to the shape of a deflected beam, and 
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(a) Full mesh

(b) Detail of the mesh at the tip 
of a beam

(c) Detail of the mesh at highest 
deflection of a beam

Figure 8.2. Example of the ’fine2’ fluid mesh (grey) and solid mesh (green) used for the validation study

the mesh quality is preserved during the motion.

The results of the validation study are summarized in Table 8.2. The frequency has been 
determined from a 2.5-seconds long displacement time series via the Fast Fourier Trans-
form. Data were analyzed after an initial 3.5 seconds required to reach a periodic motion 
of a plate. The frequency bandwidth is 0.4Hz. It is evident in Table 8.2 that the calculated 
frequencies are in good agreement with the benchmark frequencies, therefore validating 
the present FSI implementation. The validation is additionally supported by plots of dis-
placements over the full period of oscillation as presented in Figures 8.3a-8.3b. The mean 
and amplitude value are computed from the last period of oscillations as suggested by the 
benchmark authors. The amplitude error for the x-displacement is 7%, but the mean value 
is only 0.3% higher than that of the benchmark. The mean of the y-displacement is under-
estimated by about 7%, but the amplitude is only marginally higher than that of the bench-
mark.

Forces exerted by the fluid are calculated on the whole submerged body (cylinder and flag). 
Results of the temporal variation in the lift and drag force exerted on the body are visual-
ized in Figure 8.4. The quantitative difference between the calculated and the reference 
benchmark results are summarized in Table 8.3. As the mesh is refined, the amplitude of 
the drag force is estimated with an error of 7%, and the amplitude of the lift with an error 
of 13% in comparison to the reference value. The calculated frequencies are in good agree-
ment with reference values, approximately with the error of 2% for the frequency of drag 
and 0.5% for the frequency of lift. The mean value of drag is only 0.3% higher than that 
of the reference. The mean lift force resulting from the simulation is two times higher than 
that of the benchmark. However, the mean value in the referenced benchmark is determined 
as 𝑚𝑒𝑎𝑛 = 0.5(𝑚𝑎𝑥 + 𝑚𝑖𝑛). Therefore it is difficult to determine the mean when its value 
is close to zero. Careful investigation of Figure 8.4b shows that the plot of lift variation is 
in good agreement with the benchmark reference.
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̄𝑑𝑥 𝐴𝑥 𝑓𝑁𝑥
̄𝑑𝑦 𝐴𝑦 𝑓𝑁𝑦

Case [10−3𝑚] [10−3𝑚] [Hz] [10−3𝑚] [10−3𝑚] [Hz]
Fine 1 -2.71 2.60 10.8 1.47 33.90 5.6
Fine 2 -2.86 2.73 10.8 1.41 34.90 5.6
Fine 3 -2.86 2.74 10.8 1.39 34.94 5.6
Turek and Hron [132] -2.85 2.56 10.9 1.53 34.35 5.3

Table 8.2. x- and y-displacement of the control point A versus the FSI benchmark. Data are denoted as: mean 
̄𝑑, amplitude A and frequency 𝑓𝑁

Mean Drag ̄𝐹𝐷 𝐴𝐷 𝑓𝐷 Mean Lift ̄𝐹𝐿 𝐴𝐿 𝑓𝐿
Case [𝑁] [𝑁] [Hz] [𝑁] [𝑁] [Hz]
Fine 1 461.2 27.7 10.0 4.2 169.7 5.5
Fine 2 460.4 28.8 10.0 4.01 171.8 5.5
Fine 3 461.4 29.7 10.0 4.92 175.3 5.5
Turek and Hron [51] 460.2 27.7 10.9 2.47 154.8 5.47

Table 8.3. Lift and drag force on the cylinder and flag versus the FSI benchmark. Data are denoted as: mean 
lift force ̄𝐹𝐿, mean drag force ̄𝐹𝐷 amplitude A and frequency 𝑓𝑁

8.2.1 Conclusions

This section presented the laminar test case, which allows to quickly confirm that the se-
lected partitioned, two-way FSI solver is appropriate for further investigations. The choice 
of mesh deformation method is a key factor influencing the amplitudes of deflections. A 
mesh displacement based on Laplacian smoothing is relatively cheap but does not main-
tain high mesh quality during high rotation angles, or large deformation [67, 69]. The axial 
flow-induced vibrations of interest here are characterized by relatively small deformations, 
similarly to the present benchmark with the ’fine 2’ and ’fine 3’ cases, so that a diffusion 
coefficient varying linearly with the distance from the moving walls was deemed appropri-
ate. 
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Figure 8.3. Displacement history of a control point A
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Figure 8.4. Lift and drag force on the cylinder+flag

8.3 Rigid body: Analysis of the turbulence models

The purpose of the following numerical explorations has been to demonstrate the effective-
ness of various turbulence models in reproducing large-scale flow oscillations. The chosen 
URANS model are: EVM (𝑘 − 𝜔, 𝑘 − 𝜀, 𝑘 − 𝜔 SST) and Reynolds Stress (SSG, LRR) mod-
els. The study also involves the assessment of second-order and third-order discretisation 
convection schemes.

The experimental benchmark selected for use here is provided by Camussi [15], who in-
vestigated the wall pressure fluctuations generated by shear flow separated at the edge of a 
forward-facing step with the simultaneous PIV visualisation. Experiments were performed 
at a Reynolds number 𝑅𝑒ℎ = 2.6 × 104 based on the step height ℎ, and free stream velocity 
𝑈0 = 1.5𝑚/𝑠. They demonstrated that the pulsating motion of the recirculation bubble that 
forms at the step causes high energy and low-frequency pressure oscillations, characterised 
by a Strouhal number of around 𝑆𝑡 = 0.1 − 0.2 (7.5Hz-15Hz).

The schematic of the computational domain with all dimensions is depicted in Figure 8.5. 
The inlet height, the step location and the entire length of the channel are scaled in relation 
to the step height ℎ, which equals 20 mm. As investigated in the experiment, the unsteady 
recirculation bubble is formed at the step’s reattachment region. In this case for the location 
𝑥/ℎ < 2.1 and at the vertical side of the step at 𝑦/ℎ ∼ 0.5. In the present simulations, a 
no-slip boundary condition is applied for the top and bottom walls and the forward-facing 
obstacle, and fully developed flow conditions are applied at the inlet. 

In order to generate a fully developed flow at the channel entrance, an initial simulation 
with the use of the steady-state solver for incompressible, 1D turbulent flow was carried out 
[95]. The solver is specifically designed to create fully developed velocity and turbulence 
inflow conditions. An average target velocity of 1.5𝑚/𝑠 was specified, and the pressure 
gradient drives the flow until fully developed conditions with the required bulk velocity are 
reached. The resulting profile is then mapped to the inlet of the channel.

The grid close to the forward-facing step is depicted in Figure 8.6. The mesh consists of ∼
200,000 uniform hexahedral cells, and it is orthogonal. The cell size was chosen to ensure 
that the dimensionless wall distance of the near-wall node at the inlet, 𝑦+, has a value of 30, 
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Figure 8.5. Schematic diagram of a 2D forward-facing step Orange arrows indicate the separation point 
downstream the step (at 𝑥/ℎ ∼ 2.1) and upstream the step (at 𝑦/ℎ ∼ 0.5)

. 

which is consistent with the use of wall functions. As indicated by the red cones, pressure 
probes close to the wall were placed at the x-locations before the step and after the step. 
The distance between pressure probes was fixed to 0.75h, corresponding to the location of 
pressure transducers in the experiment. The time step Δ𝑡 = 5 × 10−5𝑠 has been adopted to 
maintain the Courant number below 0.1 and capture all flow instabilities. The pressure has 
been sampled at each time step for a total duration of 10 seconds. The Second Order Euler 
Scheme (SOUE) [87] for temporal discretisation has been adopted.

0.75h 0.35h

0.45h

Figure 8.6. Mesh grid used for the validation of turbulence models. Red arrows indicate the location of the 
pressure probes for the wall pressure measurements.

The first set of investigations aimed to determine the suitable discretisation of the convec-
tion scheme. First-order and second-order accurate Upwind schemes and the third-order 
QUICK scheme have been tested. Figure 8.7 shows the pressure fluctuation history right 
next to the reattachment length over the last 4 seconds of the simulation, using the 𝑘 − 𝜔
model. The pressure fluctuation coefficient is computed by subtracting the mean pressure ̄𝑝
from the instantaneous pressure 𝑝′ and then by normalising with the specific kinetic energy 
of the inflow, as indicated in the Equation 8.2: 

  C_p = \frac {p'-\bar {p}}{0.5\rho _F U_0^2} \label {cp}    



(8.2)

Not surprisingly, as shown in Figure 8.7, the first and second-order upwind schemes do not 
capture any pressure variation and are therefore not suitable for the prediction of the pres-
sure fluctuations. On the other hand, the third order QUICK scheme resulted in the predic-
tion of pressure fluctuations sufficiently strong for further processing. Careful investigation 
of the residuals showed that the result was physical and unrelated to numerical oscillations. 
The third-order QUICK scheme was therefore adopted for the discretisation of the convec-
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tive terms of the transport equations of all EVM models. In the case of the stress transport 
models, like the LRR and SSG, the use of the QUICK scheme, which is not bounded, re-
sults in numerical instabilities. To achieve stability of the schemes, the 𝑘, 𝜀 and Reynolds 
stress fields were discretised with the TVD limited linear differencing scheme (limitedLin-
ear described in [83, 96]). 
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Figure 8.7. Pressure fluctuations sampled at x=1.95h, 𝑘 − 𝜔 model. Top: first order Upwind and the second 
order upwind. Bottom: QUICK scheme

The further analysis focuses on the comparison between the statistics of wall pressure fluc-
tuations along the channel observed in the experiment and those resulting from the URANS 
computations. The root mean square pressure coefficient 𝐶𝑝𝑟𝑚𝑠 defined in Equation 8.3 has 
been examined. 

  C_{prms} = \frac {\sigma _p}{0.5\rho _F U_0^2} \label {cprms} 





(8.3)

Here 𝜎𝑝 is the standard deviation of pressure, 𝜌𝐹 is the fluid density, and 𝑈0 is the inlet ve-
locity (1.5m/s). Figure 8.8 depicts the instantaneous pressure signal at the reattachment 
length (x/h = 1.95) for selected URANS models. The SSG model and LRR provided nearly 
the same pressure signal. Therefore only the LLR model is depicted for clarity. From the 
graph, we can observe that the amplitude of the pressure signal calculated by the Reynolds 
Stress models is four orders of magnitude higher than that of the EVM models. This is fur-
ther confirmed in Figure 8.9 where the evolution of the wall pressure fluctuations (𝐶𝑝𝑟𝑚𝑠) 
are compared with the experimental data. From Figure 8.9, it is evident that the largest pres-
sure fluctuations occur right downstream of the step, with a maximum value at the reattach-
ment length at around x/h = 2, which is consistent with the experimental data.

From the comparisons of Figure 8.9, it is apparent that the Reynolds Stress models are able 
to predict pressure fluctuations of the same magnitude range as those of the experiment. 
Moreover, the sharp increase in the amplitude of 𝐶𝑝𝑟𝑚𝑠 at the reattachment point is also 
reproduced by the two Reynolds stress transport models. For the eddy viscosity models, the 
amplitude of pressure fluctuations is from two to four orders of magnitude lower than those 
in the experiment, but the steep rise in the amplitude of pressure fluctuations at the leading 
edge of a step is captured.
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Figure 8.8. Pressure fluctuations sampled at x=1.95h, Top: RSM- LRR and 𝑘 − 𝜔 model. Bottom: 𝑘 − 𝜔 SST 
and 𝑘 − 𝜀
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Figure 8.9. Evolution of the 𝐶𝑝𝑟𝑚𝑠 in terms of non-dimensional distance from the step

Figure 8.10 shows the instantaneous flow fields for the selected model, which clearly in-
dicate that the Reynolds Stress models capture the flow’s large eddy oscillations. The video 
presenting the motion of recirculation bubble that forms at the step and moves further down-
stream the step is included in reference [120]. The two Reynolds Stress models also show 
stronger large-scale instabilities, large scale vortices are continuously shed from the corner. 
These stronger flow instabilities in the predictions of the stress models are consistent with 
the stronger pressure fluctuations predicted by these two models in Figure 8.9. The EVM 
models, on the other hand, show a separation bubble downstream of the corner, with the 
SST returning a far larger region of flow separation. The reattachment length was estab-
lished by analysing the time-averaged velocity fields. Both 𝑘 − 𝜔 and 𝑘 − 𝜀 models pre-
dict the separation with good accuracy. With the 𝑘 − 𝜔 SST model, the reattachment length 
is two times greater than that of the experiment. Similar findings were already reported in 
[108] where the validation of the 𝑘 − 𝜔 SST model was investigated. This model can under-
estimate the turbulent velocity scale near the wall, which in turn underestimates the turbu-
lent eddy viscosity, thereby explaining why the reattachment length is over-predicted. For 
the Reynolds Stress models, the separation is overestimated by around 60%. A full discus-
sion of the over-prediction of the separation lies beyond the scope of this study. 
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(a) 𝑘 − 𝜀, 𝑥𝐿 = 2.25ℎ (b) 𝑘 − 𝜔, 𝑥𝐿 = 2.25ℎ

(c) 𝑘 − 𝜔 SST, 𝑥𝐿 = 4.5ℎ

(d) Reynolds Stress Model LRR, 
𝑥𝐿 = 3.5ℎ

(e) Reynolds Stress Model SSG, 
𝑥𝐿 = 3.7ℎ

Figure 8.10. Flow patterns for different URANS models at time 𝑡 = 9.9𝑠. The black arrow indicates the 
reattachment length 𝑥𝐿 from the simulation. The grey arrow indicates the reattachment length from the 

experiment 𝑥𝐿𝑒𝑥𝑝 = 2.1ℎ

Another highly informative comparison is that of the spectral distribution of the pressure 
fluctuations right after the step (x=0.45h) and at the reattachment length where the pressure 
fluctuations amplitude is the highest (x=1.95h), which is presented in Figures 8.11 and 8.12
respectively. Following on from the preceding pressure statistics comparisons, here, the at-
tention is confined to the assessment of how the LRR model and EVMs perform in com-
parison to the experimental data. Frequency spectra are plotted against the Strouhal number 
(𝑆𝑡 = 𝑓ℎ/𝑈0) based on the free-stream velocity 𝑈0 and the step height ℎ. As shown in Fig-
ure 8.11, the behaviour of the pressure PSD for the LRR scheme matches well the experi-
mental results. Four dominating peaks at around 4Hz, 5.6Hz, 6.71Hz, and 8.29Hz are iden-
tified. For the 𝑘 − 𝜔 scheme, one clear dominating peak at around 4.72Hz is identified for 
all locations. The amplitude is of three orders of magnitude lower, which is consistent with 
the 𝐶𝑝𝑟𝑚𝑠 trend. Similarly, for the 𝑘−𝜔 SST two adjacent peaks at 5.42Hz and 6.29Hz after 
the step are identified. Their amplitude is of two orders of magnitude lower than that of the 
experiment. The PSD for the 𝑘 − 𝜀 has not revealed any dominating peaks at either location 
and has not been depicted in the figure for clarity.

The PSD for the locations further downstream the step at x/h=2.7 and x/h=6.45, beyond the 
reattachment length are depicted in Figures 8.13 and 8.14 respectively. The most interesting 
aspect of the graphs is that the pressure amplitude peaks found right after the step are repro-
duced further downstream. In the case of the LRR scheme, the pressure amplitude peaks at 
frequencies 4.14Hz and 6.71Hz are observed at all locations downstream of the step. The 
amplitude of the pressure peak at location x/h= 2.7 is of two orders of magnitude higher 
than that of the experiment. This is, however, consistent with the pulsating motion of the re-
circulation bubble that forms at the step and 𝐶𝑝𝑟𝑚𝑠 trend. The more surprising correlation 
is with the 𝑘 − 𝜔 SST and 𝑘 − 𝜔 models, where the dominating peaks at 4.14Hz, 5.42Hz 
and 6.29Hz formed at the leading edge of a step transverse further downstream. The cor-
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relations are related to 𝐶𝑝𝑟𝑚𝑠 trend (Figure 8.9), but they are not directly visible from the 
observation of flow patterns in Figures 8.10b, 8.10c.
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Figure 8.11. PSD for the LRR Reynolds Stress Model, 𝑘 − 𝜔 and 𝑘 − 𝜔 SST at x=1.95h compared to 
experimental results. The red line indicates the limit for high energy pressure oscillations (15Hz). Arrows 
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Figure 8.12. PSD for the LRR Reynolds Stress Model, 𝑘 − 𝜔 and 𝑘 − 𝜔 SST at x=0.45h compared to 
experimental results. An indication is the same as in the Figure 8.11

Further analysis of data is presented in the form of comparisons of the Probability Density 
Functions (PDF) obtained for pressure signals upstream and downstream of the step for the 
LRR scheme and those of the experiment (Figure 8.15). The random fluctuations were nor-
malised to have zero mean and unitary standard deviation. In the experiment, the departure 
from the Gaussian distribution was reported for upstream and downstream the step. From 
the LLR simulation, it can be seen that PDF shapes are also affected by the flow conditions. 
The predicted pressure fluctuation peaks will have the same statistical distribution as those 
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Figure 8.13. PSD for the LRR Reynolds Stress Model, 𝑘 − 𝜔 and 𝑘 − 𝜔 SST at x=2.7h compared to 
experimental results. An indication is the same as in the Figure 8.11
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Figure 8.14. PSD for the LRR Reynolds Stress Model, 𝑘 − 𝜔 and 𝑘 − 𝜔 SST at x=6.45h compared to 
experimental results. An indication is the same as in the Figure 8.11

of the experiment. Pressure signals in the region upstream of the step are skewed to the 
right, positive values, where significant positive pressure surges are present. The step neg-
ative pressure surges prevail from the adverse pressure gradient in the region downstream, 
and the simulation predicts the same negative surges.

The same analysis was carried out for all EVM models. PDFs for 𝑘−𝜔 scheme are depicted 
in Figure 8.16. PDFs obtained for 𝑘−𝜔 SST and 𝑘−𝜀 can be found in Appendix D - Figure 
D.1, Figure D.2. It is apparent from these Figures that in all cases, the universal shape of 
statistical pressure distribution was reproduced independent of the distance to the step. This 
clearly indicates no evidence of the stronger positive or negative pressure surges predicted 
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by these simulations. Despite the promising result of a statistical distribution of pressure 
fluctuations reproduced by the 𝑘 − 𝜔 SST and also the 𝑘 − 𝜔 model, no alternating pressure 
surges are predicted. In the case of 𝑘 − 𝜀, the poor statistical pressure distributions confirm 
the lack of the dominating pressure peaks in the PSD analyses.

Figure 8.15. PDF of the normalised wall pressure fluctuations, LRR scheme. Different colours correspond to 
different locations of the step. Circles are the results of simulation and crosses from the experiment. 

Locations upstream of the step are grouped on the left sub-figure, and locations downstream of the step are 
grouped on the right sub-figure. The solid line is the Gaussian reference curve.

Figure 8.16. PDF of the normalised wall pressure fluctuations, 𝑘 − 𝜔 scheme. Indications are the same as in 
the Figure 8.15.
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8.3.1 Conclusions

The results of this study indicate that the EVM class of models, even with the third order 
QUICK discretisation scheme, cannot trigger or sustain induced vibrations. When, how-
ever, the stress models (LRR, SSG) are used with bounded TVD discretisation schemes, 
which over most of the flow domain are second order, they are able to reproduce the large-
scale flow instabilities responsible for flow-induced vibrations. It is apparent that the ampli-
tude of pressure fluctuation is strongly underestimated with the EVMs. As shown in Sec-
tion 4.8, the RSM models address the limitations of the EVMs because they include an ex-
act representation of the Reynolds stress production, the transport processes and generally 
a more realistic representation of the physical processes that govern the distribution of the 
turbulent stresses. The LRR predictions show that this model is able to reproduce the large-
scale, low-frequency vortices at the leading edge of the forward-facing step. The pressure 
surges of the same frequencies and amplitude as in the experiment indicate that this model 
is able to predict the frequency and the amplitude of flow instabilities with good accuracy. 
The LRR scheme is consequently selected for the two-way FSI analysis that follows.

8.4 Two-way FSI Simulations of Cantilever Cylinder

In this section, the knowledge gained in the numerical explorations of the two previous sec-
tions is brought together and directed to the simulation of turbulent flow-induced vibrations 
exerted on a single rod subjected to axial flow. This is the case for which earlier experimen-
tal investigations [26] provide validation data. In a preliminary test of the solid deformation 
part of the solver, the 3-D simulation of a cylindrical rod in a vacuum was performed. The 
rod is initially subjected to a force which is subsequently removed, allowing the rod to os-
cillate. This is then followed by the 3-D simulations of the full 2-way flow-induced vibra-
tions induced by the turbulent axial flow.

The test assembly of the corresponding experiment [26] is shown in Figure 8.17. The rod 
subjected to the axial flow is a 1𝑚 long circular stainless steel tube filled with lead shots to 
approximate the linear density of actual PWR fuel rods. The lead shots are tightly packed 
inside the tube. The maximum vibration amplitude has reached as large as 100𝜇𝑚 for the 
analyzed mass flow rate. The motion of the free end was recorded with a fast-imaging cam-
era, whilst a second camera was used to measure the flow field via PIV. Additionally, the 
test section had an embedded flow straightener, and the pump location was relatively far 
from the inlet (2-3m). The geometry of the experimental system was designed to be infor-
mative of pressurized-water-cooled reactor flow conditions.

The experiment results indicate that the beam end shape does not influence the cantilever 
dynamics below a certain critical velocity, and vibrations are only due to the turbulent buf-
feting from the external flow. These results are similar to those reported by Rinaldi [117]. 
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Figure 8.17. Schematic representation of the test rig [26]

8.5 Solid Mechanics Part - cantilever beam in vacuum

The clamped-free beam with a circular cross-section was subjected to a uniform peak force 
𝑃(𝑡) = 1𝑁 for 𝑡 = 10−3 seconds. The force is then removed, causing the beam to vibrate. 
The beam is made out of one material, stainless steel, to simplify the simulation. The beam 
vibrates harmonically at natural frequency 𝑓𝑁 and the associated mode shape 𝑦𝑁 (𝑥). For a 
cantilever beam in a vacuum, 𝑓𝑁 can be predicted with Euler-Bernoulli beam theory as in 
Equation 8.4:

  f_N=\frac {c_N^2}{2\pi L^2}\sqrt {\frac {EI}{m_{rod}}} \label {frequency}  


 


(8.4)

Where 𝑐𝑁 = 1.875 is the natural frequency parameter for a first mode shape, 𝐸 is the elas-
tic modulus, 𝐼 is the second moment of area of the beam’s cross-section, 𝐿 is the length of 
a beam and 𝑚𝑟𝑜𝑑 = 𝜌𝐴 is the mass of the beam per unit length.

The case domain and the mesh used in the simulation are depicted in Figure 8.18. The solid 
properties are summarised in Table 8.4. The material properties have been adapted to match 
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the natural frequency of a freely vibrating beam in [26]. The mesh consists of ∼ 170,000 
hexahedral cells. The structural mesh size is adopted to facilitate the interpolation of the 
displacement increment to the fluid side at the fluid-structure interface. The structural mesh 
with a reduced number of cells has not been considered at this stage. 

(a) Cantilever rod subjected to a uniform load 𝑃(𝑡)
and a coordinate system (b) mesh used in the simulation

Figure 8.18. Geometry of the domain for a flexible beam in vacuum simuluation

Solid properties
Length, L [m] 1.06
Diameter, d [m] 0.01
Density, 𝜌𝑆 [ 𝑘𝑔

𝑚3 × 103] 7.49
Young modulus, E [GPa] 76.4
Natural frequency (I mode), 𝑓𝑁 [Hz] 3.98
Natural frequency in experiment [26] [Hz] 3.98

Table 8.4. Solid properties used in the flexible beam in vacuum simulation

The time discretisation is performed using the first-order implicit order scheme, which can 
cause some numerical dissipation when the time step is not small enough [66].

A set of four tests has been carried out to determine the optimum time step and number 
of iterations per time step to be adopted for the full two-way FSI simulation. In the first 
three simulations, the number of loop iterations is 1000 and the time step, Δ𝑡, has values 
of 10−5𝑠, 2.5 × 10−5𝑠 and 5 × 10−5𝑠, for ’Case 1’, ’Case 2’ and ’Case 3’ respectively. In 
’Case 4’, the number of iterative loop iterations is reduced to 200, and the value of Δ𝑡 is 
kept to 5 × 10−5𝑠.

As can be seen in Figure 8.19, all schemes predict practically identical behaviour over the 
first two oscillations. Looking at this Figure, it is apparent that a very small time step of 
1 × 10−5𝑠 needs to be adopted to avoid numerical damping. However, increasing the time-
step and limiting the number of outer loops by a factor of 5 results in achieving a 25 times 
faster simulation than in ’Case 1’. The displacement amplitude appeared to be unaffected 
by numerical diffusion for the first half-period of the oscillation. For the first full period of 
oscillation, the amplitude is marginally lower (0.01mm) than for the reference case. Con-
sidering that the beam subjected to the turbulent flow is under constant excitation, the nu-
merical damping will not affect the amplitude of the FIV. Having the benefit of fast compu-
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Figure 8.19. Free-end displacement time series for a simulation of a cantilever in vacuum

tation time, Case 4 will be adopted in the next simulation. This conclusion is further con-
firmed by the frequency comparisons of Table 8.5, in which ’Case 4’ predicts the free oscil-
lation frequency to be within 2.3% of the analytical value.

Simulation Case (Δ𝑡, no of outer loops) Frequency [Hz] Error [%]
Analytical solution 3.98
Case 1 (Δ𝑡 = 1 × 10−5𝑠, 1000) 3.99 0.30%
Case 2 (Δ𝑡 = 2.5 × 10−5𝑠, 1000) 4.03 1.30%
Case 3 (Δ𝑡 = 5 × 10−5𝑠, 1000) 4.02 1.05%
Case 4 (Δ𝑡 = 5 × 10−5𝑠, 200) 4.07 2.31%

Table 8.5. Effect of the time step on the calculated natural frequency

8.5.1 Conclusions

The validation case of a slender beam in a vacuum exposed that the convergence of a seg-
regated approach is slow and inefficient. The poor efficiency was noted for bending thin, 
slender beams in [18]. The deflection of the long slender beam exceeded even 105 outer it-
erations, significantly increasing the run-time. The explicitly treated terms in the discreti-
sation of solid equations have a large contribution. Consequently, many outer iterations are 
required to re-couple the momentum equation. The computational time of this benchmark 
could be improved by using the mesh on the solid side with a reduced number of cells. Then 
consequently, the number of cells in the fluid mesh would need to be reduced to avoid hav-
ing large non-conformality at the FSI interface. However, the fluid mesh has to be fine enough 
to reproduce the flow unsteadiness to induce the movement of a structure. Another way is 
to adopt the block-coupled implementation presented in [28, 122]. This method was not 
considered because it was not implemented in the OpenFOAM while developing this bench-
mark. Finally, the computational time has been improved by enforcing the limit on the num-
ber of outer iterations required to re-couple the momentum equation.
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8.6 Two-way FSI simulations

The cantilever beam described in Section 8.5.1 is now subjected to axial turbulent flow. 
The flow is directed from the rod free-end to the clamped-end. Properties of the fluid are 
summarised in Table 8.6. The inlet velocity 𝑢𝑖𝑛 in the simulation has been chosen to corre-
spond to the reduced velocity 𝑢∗ from the experiment. 𝑅𝑒𝑎𝑛𝑛 is based on the annulus hy-
draulic diameter, and 𝑉𝑎𝑣𝑔 is an average flow velocity in the annulus between the rod and 
confining tube. The non-dimensional velocity is defined as: 

  u^\ast =\frac {V_{avg}}{f_0d} 



(8.5)

Where 𝑓0 = 3.6𝐻𝑧 is the natural frequency of the cantilever beam in static water calculated 
with Equation 8.4 by adding the mass of the confined water 𝑚𝑎𝑑𝑑 to the mass of a beam. 
The mass of the confined water is calculated as [11]: 

  m_{add} =\rho _F\frac {\pi }{4}d^2\frac {1+(d/D)^2}{1-(d/D)^2}  



  

   (8.6)

Fluid properties Value
Chanel diameter, D [m] 0.021
Chanel length, L [m] 1.12
Hydraulic diameter 𝑑ℎ [m] 0.011
Density, 𝜌𝐹[𝑘𝑔𝑚−3] 997
Kinematic viscosity, 𝜈𝐹[𝑚2𝑠−1(×10−6)] 0.893
Inlet velocity, 𝑢𝑖𝑛[𝑚𝑠−1] 1
Annular gap velocity, 𝑉𝑎𝑣𝑔[𝑚𝑠−1] 1.3
Reduced velocity, 𝑢∗ 36
Reynolds, 𝑅𝑒𝑎𝑛𝑛 16.1 × 103

Table 8.6. Fluid properties and simulation parameters

The computational domain used in the simulation is depicted in Figure 8.20. The cantilever 
beam can move, due to elastic deformation, in the x and y directions. The mesh of the fluid 
domain consists of ∼ 600,000 hexahedral cells. A fully developed flow is imposed at the 
inlet using the same method described in Section 8.3. Constant pressure is imposed at the 
outlet of the channel. The LRR Reynolds stress model has been selected on the fluid side 
with the same temporal and convective discretisation practices described in the fluid flow 
validation Section 8.3.

8.6.1 Simulation with the rigid rod

Before proceeding to examine the full FSI simulation, flow over a rigid rod has been com-
puted first to validate the fluid side of the simulation. Figure 8.21 presents the predicted 
(using the LRR) contours of the instantaneous velocity field at three time steps and also a 
comparison between predicted and measured (through PIV) time-averaged velocity fields. 
Velocity has been normalised with 𝑉𝑖𝑛𝑓 corresponding to the centerline velocity of the ap-
proaching flow. The simulation was run for 1 second, after an initial 2 seconds required for 
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Figure 8.20. Computational domain for a cantilever in turbulent flow simulation

a particle of fluid to traverse the length of the channel. It is visible that the induced flow 
fluctuations travel along the length of a channel, and the confinement changes the dynam-
ics of the flow. For instance, at location 𝑦

𝐷 = 1.4 in Figure 8.21a and at location 𝑦
𝐷 = 1.2

in Figure 8.21c fluctuations appear to be enhanced by the channel walls. The mean velocity, 
depicted in Figure 8.21d over a period of 1 second, shows two separation regions near the 
rod tip.

Figure 8.22 includes the quantitative comparison between the calculated and measured av-
eraged axial and radial velocity profiles at three different vertical elevations: upstream of 
the rod free-end, at the free-end tip and downstream of the rod free-end. In the experiment, 
the flow field in the region on the left of the rods was not resolved because this part was not 
illuminated by the laser. Due to the modest lack of symmetry in the flow field upstream of 
the beam, evident in the measured axial velocity component, the radial velocity field that 
develops subsequently is not fully symmetric (or, to be more precise, anti-symmetric). The 
upstream profile comparisons show some asymmetry in the upstream measured velocity, 
while a symmetric inlet flow is imposed in the simulation. This inevitably leads to further 
deviations between the predicted and measured velocity profiles further downstream, but 
overall the simulations produce the same flow development as that presented in the mea-
surements. Interestingly, the instantaneous velocity visualisation Figure 8.21e, did not re-
veal a flow detachment for the blunt-end. It has been assumed that the fluid was adapting 
to the movement of vibrating rods. However, the reason could be due to the relatively small 
resolution of the PIV in the experiment.

8.6.2 Simulation with the moving rod

Moving now to consider the cantilever beam from Section 8.5.1 subjected to axial turbu-
lent flow, we arrive to the final benchmark simulation. The fluid mesh has been allowed 
to move with the linear distance-based method. The Aitken under-relaxation was chosen 
for the coupling with the relaxation factor set to 0.2 for the first FSI iteration (then it adap-
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(a) Instantaneous velocity field 
at time 2.36s

(b) Instantaneous velocity field 
at time 2.37s

(c) Instantaneous velocity field 
at time 2.38s

(d) Mean velocity field for 2-3s
(e) PIV flow visualisation, 

blunt-end rod [26]

Figure 8.21. Flow fields around the rod tip at low flow velocity, results from the u*=36 and the experimental 
results u*=35.7

tively changes as described in Section 5.3). The fluid-structure residual was set to 10−4. 
This convergence criterion was selected with trial and error, and it is a minimal value to 
prevent solid mesh overlapping on a fluid mesh. The coupling starts after the initial 2 sec-
onds. The simulation was decomposed to 36 processors and set to simulate a total period 
of 10.5 seconds. This requires using the High Performance Computing cluster at the Uni-
versity of Manchester (2x16-core Intel Xeon Gold 6130 CPU @ 2.10GHz Mellanox Infini-
Band). The video presenting the instantaneous velocity field and the pressure field with a 
simultaneous rod movement and the mesh adoption is included in the reference [119]. The 
equivalent computational time (ECT), defined as computing time for 0.1 s of the simulation 
on a single core, is 14 days for this case. The result can be compared to the findings of De 
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Figure 8.22. Velocity profiles for velocity u*=36, vertical elevation locations are provided in the legend

Ridder et al. [34] where Large Eddy Simulations were used to compute the pressure spec-
trum in an annular channel with nearly the same hydraulic diameter and with nine times 
shorter channel length. The minimal number of cells for the referred simulation is 8 mil-
lion, and the ECT is 63 days. If the LES was adopted for the current geometry, it would re-
quire about 567 ECT days to calculate solely the rigid simulation, which is 40.5 times more 
CPU expensive than the current two-way FSI settings.

Further analysis compares the measured and computed (using the LRR model) time-histories 
of the displacement of the rod free-end, over a period of 5 seconds depicted in Figure 8.23. 
The x-displacement track for the entire simulation is presented in the same Figure. It can 
be observed that the computed displacement matches the range of displacements observed 
in the experiment. The movement of the rod was induced by the flow unsteadiness, and no 
initial displacement needed to be applied. It can be observed that after the 6 seconds of 
the simulation, the amplitude becomes damped till 7 seconds. The same intermittent be-
haviour was observed during the experiment [26], where the maximum displacement of the 
rod was large enough to noticeably change the geometry of the flow passage. In the sim-
ulated case, when the rod reached an excessive amplitude, it was bounced back from the 
channel walls through fluid coupling. It can thus be suggested that two-way FSI coupling 
is necessary for modelling of the FIV in the Fuel Assembly. In addition, the fuel rod in the 
Fuel Assembly component will be subjected to coupling effects induced by neighbouring 
fuel rods as shown in [90]. Table 8.7 presents comparisons between the experimental and 
computed (using the LRR) dominant frequency, determined using FFT, and the RMS am-
plitude. The frequency bandwidth of 0.1Hz is defined with full width at half the maximum 
of a frequency peak. The reduced root-mean-square amplitude 𝐴∗ is defined as: 

  A^*=\frac {A_{rms}}{d}  


(8.7)
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These quantitative comparisons of Table 8.7 provide further confirmation to what is demon-
strated in Figure 8.23. Considering the numerical and experimental errors, the simulated 
frequency and the RMS amplitude match the experimental data, validating the present bench-
mark implementation.
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Figure 8.23. Displacement of a free-end vibrating beam in the x direction vs. experimental data

Value Simulation Experiment [26]
Frequency 3.55±0.05Hz 3.6-3.75Hz
Amplitude, 𝐴∗ 0.004 0.004-0.006

Table 8.7. Frequency and Amplitude of flow-induced vibration x-plane, LRR scheme

Simple statistical analysis was used to further compare the experimental results with the 
simulated ones. Figure 8.24 presents the histogram of displacement time series from the ex-
periment compared to the same histogram from the simulation. The histogram data were 
normalised using probability density function estimate in MATLAB. The normal density 
function is fitted to the data to further visualise their trend. Overall the distribution of sim-
ulated displacement matches well the distribution from the experiment. The distribution 
of displacements obtained during the experiment shows two distinct peaks, which lie be-
tween negative 40-70 𝜇𝑚 and positive 10-50 𝜇𝑚. The simulation presents more Gaussian-
like distribution with dominating peak in the middle of the distribution (at 0 𝜇𝑚) and 95% 
of observations lying within ±80𝜇𝑚. It is almost certain that the simulated amplitude of 
vibration will not exceed 122𝜇𝑚. The same statistic extracted from the experiment gives 
143 ± 10𝜇𝑚, which is from 8 to 21% higher than that of the simulation. 

For the sake of completeness, the time series of free-end displacement in the y-direction is 
depicted in Figure 8.25 and summarised in Table 8.8. The most interesting aspect of this 
graph is that the displacement is visibly higher than that of the experiment. The compar-
isons in Table 8.8 show that the frequency of induced vibration is the same as the one in the 
x-plane, but the reduced RMS amplitude (𝐴∗) is at least 17% overestimated with respect 
to the experiment. Since the experiment provides the result in only one direction, the x-
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Figure 8.24. Normalized histogram of a number of occurrences observed for a free-end displacement on 
x-plane. Simulation vs experiment

displacement track series is the actual numerical benchmark. Figure 8.26 provides the sum-
mary statistics for free-end displacement in the y-plane time series. The histogram has the 
same Gaussian-like distribution as the x-displacement but with a much wider spread of the 
observed displacements, with 95% values recorded in the range between ±143𝜇𝑚. Almost 
certainly, the simulated amplitude of vibration will not exceed 214 𝜇𝑚, and it is approxi-
mately 30% higher than that of the experiment. These findings may be useful in establish-
ing the design criteria for Flow-Induced Vibrations, where maximum achievable amplitude 
should be considered.
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Figure 8.25. Displacement of a free-end vibrating beam in the y direction vs. experimental data
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Value Simulation Experiment [26]
Frequency 3.55±0.05Hz 3.6-3.75Hz
Amplitude, 𝐴∗ 0.007 0.004-0.006

Table 8.8. Frequency and Amplitude of flow-induced vibration y-plane, LRR scheme
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Figure 8.26. Normalized histogram of the number of occurrences observed for a free-end displacement on 
y-plane simulation vs experiment

By contrast, the corresponding comparisons of Table 8.9 for FSI predictions obtained using 
the 𝑘 − 𝜔 model (with the same computational domain) show that while this EVM is able 
to predict the correct frequency of oscillations, the amplitude of oscillations predicted by 
this model is two orders of magnitude lower than that found in the experiment which prac-
tically makes it zero. A comparison of the findings with those of other studies reported in 
Section 8.1 confirms that the EVMs are incapable of reproducing the amplitude of the rod 
vibrations. 

Value Simulation Experiment [26]
Frequency 3.69±0.4Hz 3.6-3.75Hz
Amplitude, 𝐴∗ 1.89 × 10−5 0.004-0.006

Table 8.9. Frequency and Amplitude of flow-induced vibration, 𝑘 − 𝜔 scheme

8.6.3 Conclusions

This study has presented a valid modelling approach for creating the benchmark simula-
tion of the turbulent flow interaction with the flexible structure. The investigation of the 
2D test case with the rigid wall in Section 8.3.1, has shown that the Reynolds Stress Mod-
els are better able to reproduce the type of flow unsteadiness which leads to flow-induced 
vibrations. The final results of the simulations are consequently based mainly on the use 
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Figure 8.27. Displacement of a free-end vibrating beam vs. experimental data

of the Reynolds Stress Model and show good agreement with the experimental data. The 
adopted approach allowed to predict the frequency of vibrations and the amplitude of vibra-
tions with good accuracy. The movement of the rod is triggered by the flow itself, and vi-
brations remain self-sustained without being damped out. The resulting comparisons show 
that for the first time, to my knowledge, both the frequency and the amplitude of the flow-
induced vibrations of this case have been reproduced with such accuracy. Moreover, the 
achieved CPU time is reasonable for the strongly coupled FSI simulations, and it is about 
40 times lower as compared to the LES rigid simulations, making the proposed numerical 
methodology optimal for industrial applications.
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Chapter 9

Conclusions and further work

The initial aim of this research was to explore the modelling approaches toward assessing 
the flow-induced vibrations of cantilever rods subjected to turbulent axial flow at operating 
conditions relevant to those of fuel rods of pressurised-water-cooled (PWR) nuclear reac-
tors. These are long, slender rods subjected to turbulent axial flow.

The investigation of nuclear component failures has shown that excessive vibration of the 
nuclear reactor components like heat exchangers and fuel rods can lead to a component fail-
ure causing safety hazards and financial loss. As shown in Chapter 1 the grid-to-rod fretting 
phenomenon occurring in fuel assembly is an ongoing problem in the nuclear industry. The 
survey has also identified two main sources of FIV in the design of the fuel assembly: tur-
bulent buffeting and movement-induced vibration mechanism.

The findings from the literature review have raised an important question about the under-
standing of the relation of excitation forces to vibration exerted on the fuel rods. The exper-
imental test rig for investigating this flow-induced vibration phenomenon was first installed 
at the University of Manchester in 2018 under the financial support of the EDF [26]. The 
obtained data are particularly suited for FSI simulation benchmarking. The availability of 
these data was an inspiration for the current study.

In this project, fluid-structure interaction (FSI) benchmark simulation of the cylindrical 
cantilever beam subjected to the axial turbulent flow has been performed. The primary aim 
has been to assemble all the modelling elements needed for a cost-effective and thus URANS-
based modelling strategy, employing high-Reynolds-number turbulence models.

In order to meet this objective, the modelling strategy needs to combine three main ele-
ments:

• URANS high-Reynolds-number models that are able to reproduce the strength of the 
large-scale flow oscillations which cause the flow-induced vibrations.

• A two-way FSI numerical solver, in which the pressure and viscous forces generated 
by the flow over the rod surface are used as input to the solution of the elastic defor-
mation equations, which provide the rod deformation, and the rod deformation is then 
used to modify the geometry of the flow domain.
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• A mesh regeneration method that is able to adjust the mesh of the fluid domain after 
each rod deformation.

First, by considering the oscillations generated by laminar flow over an elastic plate attached 
downstream of a cylinder, it has been demonstrated that:

(a) An ALE approach in which the fluid dynamics equations and the solid elastic defor-
mation equations are discretised and solved within the same finite-volume solver, with 
an Eulerian and Lagrangian formulation for the fluid and solid equations, respectively, 
provides a suitable two-way FSI solver.

(b) A Laplacian smoothing of the displacement of the fluid mesh is adequate for the rela-
tively small deformations encountered in this application.

Then by considering turbulent flow over the forward-facing step, it has been established that 
high-Reynolds-number Reynolds Stress Models, such as the LRR [81] and SSG [125], with 
high order convection discretisation schemes are able to reproduce the large-scale flow in-
stabilities with satisfactory accuracy.

As a result, by combining all the above elements, which include the use of the LRR [81] 
Reynolds Stress URANS model, it becomes possible to reproduce the oscillatory behaviour 
of a cantilever beam exposed to axial flow with considerable accuracy. On the other hand, 
the effective-viscosity models severely underestimate the strength of flow unsteadiness and, 
consequently, the amplitude of the rod oscillations. This is the first successful simulation of 
flow-induced oscillations of cantilever rods relevant to PWR applications based on the use 
of URANS.

The most important limitation of the proposed benchmark is that the numerical damping on 
the structural model in a vacuum was accepted to reach a reasonable computation time. As 
explained in Section 8.5.1, the analysed beam will be subjected to constant excitation from 
the turbulent flow field and, as shown in later sections, did not lead to underestimation of 
root-mean-square amplitude of induced vibrations. The system of equations of the linear 
elastic model is solved in a segregated manner which has noticeably slow performance in 
finite volume structural solvers.

9.1 Recommendations for further research work

The literature review exposed that the amplitude of vibration depends strongly on the shape 
of the beam-end and the direction of flow approaching the beam. Further research could 
use this benchmark with the flow directed from the clamped-end towards the free-end and 
compare the amplitude of vibration. This investigation will have practical importance for 
the nuclear reactor in-core instrumentation [12, 110].

Another important practical implication is the assessment of the amplitude of vibration 
with the beam with the streamlined end. The solid, fluid and FSI settings developed in this 
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project will be valid for the approach, but extensive work is required to develop the solid 
mesh and the matching fluid mesh.

A future study investigating the fluid-coupling effects would be very interesting. The study 
of FIV of two bare rods subjected to axial flow with a small pith-to-diameter ratio could 
be a valuable case study for investigations of the causes of excessive vibrations in the fuel 
assembly. This is a strongly coupled FSI problem, thus the simulation could be established 
starting from the settings developed for this benchmark.

Another possible area of future research would be to perform FSI simulations of a large 
fuel assembly. While this simulation remains computationally expensive and challenging, 
it was shown in this study, that the CPU achieved for this benchmark is very reasonable. 
A strongly coupled FSI simulation of the entire fuel assembly will help analyse the com-
ponent’s underlying FIV mechanism and possibly lead to necessary design changes in the 
nuclear PWR reactors.
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Appendix A

Discretization of the Upwind Scheme

A.1 Discretization

The discretization equation reads as: 

  a_P=a_W\phi _W +a_E\phi _E \label {eq:Dictretization_upwind}      (A.1)

where, 
  a_E= D_e + [\![-F_e,0]\!]       (A.2a)

  a_W= D_w +[\![F_w,0]\!]       (A.2b)

  a_P=D_e + [\![F_e,0]\!] +D_w +[\![-F_w,0]\!] =a_E+a_W+(F_e-F_w) \label {eq:final_upwind}                    (A.2c)

This is presented compactly using the form of notation that covers both flow directions, 
the operator [[]] is introduced to return the argument with the largest value [107]. The mass 
fluxes at the east and west faces will be: 

  F_e\phi _e=\phi _P[\![F_e,0]\!] -\phi _E[\![-F_e,0]\!]        (A.3a)

  F_w\phi _w=\phi _P[\![F_w,0]\!] -\phi _W[\![-F_w,0]\!]        (A.3b)

In practice the last term in the equation A.2c should be zero to satisfy the continuity equa-
tion 6.6.
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Appendix B

Discretization of the SOU Scheme

B.1 Discretization

Using the SOU profile, Figure 6.2, the discretized equation is obtained as: 

  a_P\phi _P + a_E\phi _E + a_W\phi _W +a_{EE}\phi _{EE} +a_{WW}\phi _{WW} =0            (B.1)

where, 
  a_E = -D_e -\frac {3}{2}[\![-F_e,0]\!] -\frac {1}{2}[\![F_w,0]\!]    


  


  (B.2a)

  a_{EE} = \frac {1}{2}[\![-F_e,0]\!]  


  (B.2b)

  a_W = -D_w -\frac {3}{2}[\![-F_w,0]\!] -\frac {1}{2}[\![F_e,0]\!]    


  


  (B.2c)

  a_{WW} = \frac {1}{2}[\![-F_w,0]\!]  


  (B.2d)

  a_P= a_E+ a_W\phi _W +a_{EE} +a_{WW} +(F_e-F_w)              (B.2e)
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Appendix C

Discretization of the QUICK Scheme

C.1 Discretization

The discretized equation is found to be:

  a_P\phi _P + a_E\phi _E + a_W\phi _W +a_{EE}\phi _{EE} +a_{WW}\phi _{WW} =0            (C.1)

where, 
  a_E = -D_e -\frac {3}{4}[\![-F_e,0]\!] +\frac {3}{8}[\![F_e,0]\!] -\frac {1}{8}[\![F_w,0]\!]    


  


  


  (C.2a)

  a_{EE} = \frac {1}{8}[\![-F_e,0]\!]  


  (C.2b)

  a_W = -D_w -\frac {3}{4}[\![-F_w,0]\!] +\frac {3}{8}[\![F_w,0]\!] -\frac {1}{8}[\![F_e,0]\!]    


  


  


  (C.2c)

  a_{WW} = \frac {1}{8}[\![-F_w,0]\!]  


  (C.2d)

  a_P= a_E+ a_W\phi _W +a_{EE} +a_{WW} +(F_e- F_w)              (C.2e)
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Appendix D

Probability Density Function

D.1 Probability Density Function of 𝑘-𝜔 STT and 𝑘-𝜀 model

Figure D.1. PDF of the normalized wall pressure fluctuations, 𝑘 − 𝜔 SST scheme. Indications are the same as 
in the Figure 8.15.

Figure D.2. PDF of the normalized wall pressure fluctuations, 𝑘 − 𝜀 scheme. Indications are the same as in 
the Figure 8.15.
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International conferences & seminars:
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