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Abstract

Turbulent flows occur over a wide range of scales; this wide range becomes a challenge
to resolve all the scales in turbulence for high Reynolds number industrial flows as
required by direct numerical simulation (DNS) because the process is prohibitively
computationally expensive.

Large eddy simulation (LES) resolves the large energy-carrying scales in a turbulent
flow, while the smallest scales, which can make up to 90% of the computational effort
in DNS, are modelled. Consequently, LES is cheaper computationally than DNS, and
a wall-resolved LES is used to investigate the development of heat transfer properties
through a 90◦ pipe bend. The heat transfer along the outer wall of the bend is in good
agreement with the mass transfer experimental data. However, the traditional correlation
between heat and mass transfer breaks down along the inner wall due to the difference
in the evolution of the flow and thermal fields.

Despite the efficiency gains of LES against DNS, the computational cost remains
very high for a fully wall-resolved LES. This work develops a wall function approach
that allows for the deliberate reduction of the near-wall grid resolution for LES. A
separate but smaller grid, which solves Reynolds-averaged Navier-Stokes equations
(RANS) overlaps the near-wall LES domain to support the LES grid, where it is expected
to be weak. Two variants of this approach have been tested.

The more simple of the two variants, termed the numerical wall function for LES, is
similar to the wall-modelled LES devised by Balaras et al. (1996) as the RANS grid
computes a wall shear stress to correct the first cell at the wall of the under-resolved
LES grid. The numerical wall function makes improvements over the wall-modelled
LES by coupling consistent information at the interface between the LES grid and the
top boundary of the secondary RANS grid. This procedure enables the computation
of the full RANS equations, without simplification as done in traditional wall function
approaches, and the specification of any advanced turbulence model in the RANS
domain. The numerical wall function has been tested for a plane channel flow and a
pipe bend flow.

The second variant, which forms the major contribution of this project, has been
the development of the subdomain wall function for LES to correct the under-resolved
near-wall LES coarse grid beyond the first cell at the wall as is done in traditional wall
function approaches. This method has a similar setup to the numerical wall function but
uses ideas of the dual-mesh hybrid LES/RANS framework proposed by Xiao and Jenny
(2012) to specify a weak source term in the LES momentum equation. The source term
acts to readjust the partial mean LES fields in the near-wall near-wall region towards the
equivalent fields in the RANS secondary grid. Predictions of the flow through numerous
plane channels configurations, and flow through periodic hills and an asymmetric plane
diffuser are in excellent agreement with reference data.
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Nomenclature

Roman Symbols
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′
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′
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Re Reynolds number
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Rey Turbulent Reynolds number, Ret = k2/(εν)

Ri j Reynolds-stress tensor
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t Time
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Ti j Time Period
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Nomenclature

Wi j Rotation rate tensor

y+ Non-dimensional wall normal distance
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α Elliptic blending parameter in the elliptic blending model
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∆ LES grid filer

δ Channel half height

δi j Kronecker delta

δν Viscous length-scale in a boundary layer
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ν Kinematic viscosity
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Nomenclature

∂ Partial derivative

φ Ratio of normal Reynolds stress to the turbulent kinetic energy, v′2/k

Φi j Pressure-strain correlation in u′iu
′
j

ρ Density

σt Turbulent Prandtl number

τ Turbulent time scale

τi j Viscous stress

τr
i j Residual stress tensor

τw Wall shear stress

θ Fluctuating temperature

u′iθ Scalar heat flux vector

Subscripts

b,B Bulk quantity

in Value at the inlet

mean Mean quantity

r radial or cross-stream direction in pipe bend flow

SGS Subgrid scale

Θ Streamwise direction in pipe bend flow

w Value at the wall

z Spanwise direction in the pipe bend flow

Acronyms / Abbreviations

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

ERCOFTAC European Research Community on Flow, Turbulence and Combustion
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Nomenclature

ETMM Engineering Turbulence Modelling and Measurements

EVM Eddy Viscosity Model

EWA Exponentially Weighted Average

GGDH Generalised Gradient Diffusion Hypothesis

IDDES Improved Delayed Detached Eddy Simulation

LES Large Eddy Simulation

MPI Message Passing Interface

NWF Numerical Wall Function for Large Eddy Simulation

RANS Reynolds-Averaged Navier-Stokes

RSM Reynolds Stress Model

SGS Sub-Grid Scale

SWF Subdomain Wall Function for Large Eddy Simulation

TLM Two Layer Model for Large Eddy Simulation

WMLES Wall-Modelled Large Eddy Simulation
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Chapter 1

Introduction

Most flows in engineering that are of practical importance are turbulent. This is due to
the ability of turbulent flows to mix and transport fluid more effectively than laminar
flows. Turbulent flows contain unsteady vortices with a wide range of length and time
scales. The small-scale motions or eddies are influenced by the viscous forces of the
flow and obtain most of their energy from large-scale motions. This feature leads to the
small-scale dissipative motions having a universal character that is independent of the
geometry of the flow. However, the boundaries of the flow domain strongly determine
the behaviour of the large integral length-scales, which are chiefly responsible for
turbulent transport.

The increased availability of computational resources and improved speed of compu-
tational analysis over recent decades has led to an increased usage of computational fluid
dynamics (CFD) as an engineering tool to perform parametric analysis for turbulent flow
phenomena. CFD simulations enable the analysis of fluid problems of applications in
power generation, aerospace, refrigeration and other industries. Solutions provided for
the CFD analysis to describe the flow physics are resolved through the direct numerical
computation of the Navier Stokes equations. However, highly turbulent flows, especially
flows bounded by a solid wall, impose severe computational costs when the Navier
Stokes equations are numerically solved directly. The high computational costs are due
to the requirement of a fine grid resolution to resolve all the scales of motion in the flow.
Hence, the direct numerical simulation (DNS) of the Navier Stokes equations is limited
to relatively simple low-Reynolds number academic test cases. However, industrial
applications tend to be focused on more complex high-Reynolds number simulations
such as flows around a cascade of turbine blades or through complicated pipe networks
in a power plant.

The Reynolds-averaged Navier Stokes equations (RANS) are widely used in industry.
RANS equations do not resolve any scale of motion in the flow. Consequently, the grid
requirements for RANS are much lower than that of DNS, making the RANS method
suitable for high-Reynolds number computations. However, the formulation of RANS
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involves many modelling assumptions developed using simple academic test cases.
These assumptions often become inaccurate when tested with complex flow phenomena
typically found in industrial applications.

There is a disparity between the high accuracy of approaches used to implement and
validate scale-resolving methods for low-Reynolds number flows in academia and the
low accuracy of RANS models used to study high-Reynolds number engineering flows
in industry. Large Eddy Simulation (LES) was designed to bridge the gap between
the Reynolds number disparity where the large-scale motions of a turbulent flow are
resolved, but the mostly isotropic small length-scales are modelled with a RANS-type
approach. This method made LES for a homogeneous turbulent flow cheaper to run
computationally than the DNS while still providing excellent description and accuracy
of the flow. Recently, LES has replaced RANS in the global approach to turbulence
research in academia. Nevertheless, LES is rarely used in the industrial design process.
This rarity is because in the inner layer of a wall-bounded turbulent flow, the large
eddies scale with the viscous length scale. The implication is that the separation of
sizes between the integral and dissipative length-scales is no longer distinct in the inner
layer. Hence, for the LES approach, where only the small – scale motions are modelled,
a computational grid approaching the requirements of DNS must be employed for the
inner layer of the wall-bounded turbulent flow where viscous forces are dominant. A
‘wall-resolved’ LES limits the application of the scale-resolving method to moderate
Reynolds numbers.

This project aims to develop novel techniques for large eddy simulation to extend
the applicability of the scale-resolving method to a much higher Reynolds number
range while maintaining a high level of detail and accuracy. Wall functions are used
to overcome the expensive grid requirements of LES. The resolution of the near-wall
grid is deliberately reduced to achieve significant savings in computational cost. The
coarse near-wall grid can no longer resolve the unsteady vortices in the flow and must
be supported by corrections. Previous researchers have used standard wall function
approaches for RANS, where the wall shear stress is related to the velocity in the
log-layer, to derive empirical corrections for the LES grid. These empirical corrections
are applicable for relatively simple flows that are not far from local equilibrium but fail
for more complex flows.

Furthermore, peak production of turbulence occurs in the area of the flow next
to the wall where viscous forces are dominant. This area, also known as the viscous
sublayer, influences the large turbulent structures found in the outer region for moderate-
Reynolds number flows. The influence of the viscous sublayer reduces as the Reynolds
number increases. For very high Reynolds numbers, the thickness of the viscous near-
wall region becomes very thin compared to the rest of the flow domain and the bulk
contribution of the production of turbulence shifts to the log-layer (Marusic et al., 2010).
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Fig. 1.1 Schematic showing the setup of the wall-modelled large eddy simulation.

Also, the large-scale superstructures in the log-layer become increasingly influential on
the near-wall flow dynamics for high Reynolds numbers. These observations justify
the approach of modelling the thin near-wall region for LES in high Reynolds number
flows.

This PhD utilises the setup of the wall-modelled LES of Balaras et al. (1996) as the
springboard for the development of new wall function ideas for LES. The wall-modelled
LES embeds a separate RANS grid that covers the first cell at the wall of the LES grid,
as seen in Figure 1.1. The RANS grid solves simplified boundary layer equations and
computes a wall shear stress that corrects the first cell of the coarse LES grid. On the
other hand, the LES grid sends instantaneous filtered velocity to the interface between
LES and RANS domains to complete the boundary conditions of the RANS grid. There
are several drawbacks of the wall-modelled LES approach. First, the correction of the
LES grid is done for only the first cell at the wall, but the under-resolution of the LES
grid goes beyond the first cell. Second, the coupling of the instantaneous unsteady
information of the LES grid with the time-average information of the RANS grid at the
interface is inconsistent and has led to researchers developing empirical corrections in
the equations in the RANS grid to reduce this inconsistency. Finally, the simple mixing
length model is typically used to represent turbulence in the RANS grid. This algebraic
model limits the usage of the modelled LES for complex flow phenomena.

The new wall function method developed by this project will utilise the domain
setup of the wall-modelled LES but will improve how the wall function is applied in
the LES grid. This project investigates extending the height of the RANS subdomain
to overlap the low-resolution near-wall LES grid beyond the first cell. Also, the wall
function will not be applied at the wall of the coarse LES domain as a wall shear stress,
like it is done for the wall-modelled LES approach. Rather, it will be specified as a
source term in the LES momentum equation in the near-wall region. This approach
ensures that the correction of the under-resolved near-wall coarse LES grid extends
beyond the first cell at the wall. Consistent coupling at the interface between the LES
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1.1 Study of Turbulent Heat Transfer of Flow through 90° Pipe Bend

and RANS grids is investigated. This PhD aims to make the new technique for LES
suitable for complex turbulent flows, and hence, the utilisation of advanced turbulence
models in the secondary RANS grid is studied. This new method developed by the
project is termed the subdomain wall function for LES.

The development of the subdomain wall function is carried out in the open-source
code OpenFOAM (Weller et al., 1998). To enable a seamless implementation of the code
structure of the subdomain wall function in OpenFOAM, a simpler method termed the
numerical wall function for LES is created by this project. The numerical wall function
method includes the overlapping method by the RANS domain like the subdomain
wall function approach, the utilisation of advanced turbulence models in the secondary
RANS grid and the consistent coupling of the quantities at the interface between the
RANS and LES grids. However, the wall function approach for the numerical wall
function is akin to the wall-modelled LES method, where the wall shear stress is
specified at the first cell of the coarse LES grid. The implementation of the numerical
wall function serves as a stepping stone for the development of the subdomain wall
function of LES, which is the main task of this research.

1.1 Study of Turbulent Heat Transfer of Flow through
90° Pipe Bend

The application of turbulent flow through pipe bends is relevant in nuclear reactor and
refrigeration systems. The fluid encounters a combination of forces as it moves around
the pipe bend. A radial pressure gradient, which balances the centrifugal forces, moves
low momentum fluid from the side walls of the pipe towards the inner wall region
of the bend. On the other hand, centrifugal forces transport high momentum fluid
along the symmetry plane towards the bend outer wall. The secondary flow movement
of the fluid leads to the formation of a pair of counter-rotating vortices, also known
as the Dean vortices. A number of numerical and experimental studies have been
done for the hydrodynamics properties of the pipe bend. However, the study of the
heat transfer characteristics in pipe bends has not received the same attention. This
author investigated the suitability of RANS models in predicting the flow and thermal
properties for a pipe bend flow, which was reported in the author’s Master of Science
dissertation. The heat transfer coefficient results were validated with mass transfer
experimental data due to insufficient heat transfer data available. An early discovery
was made where there was a breakdown of the well-established correlation between heat
transfer and mass transfer along the inner wall of the bend. The trend of heat transfer
and skin friction also diverged along the inner wall. This project intends to use scale-
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1.2 Objectives

resolving techniques to confirm these findings and gain insight into the mechanisms
that affect heat transfer in 90° bends.

1.2 Objectives

The present work aims to extend the usage of large eddy simulation for high-Reynolds
number industrial applications. The tools developed by the PhD should maintain
the ability of LES to accurately predict complex flow phenomena that are typically
encountered in engineering. A deeper understanding of the effect of the curved geometry
and evolution of the flow field on heat transfer parameters in a pipe bend is sought. The
PhD project’s aims can be accomplished by meeting the following objectives:

• To remove the constraints in utilising advanced turbulence models in the RANS
secondary grid of implemented wall function methods.

• To develop a new wall function approach for LES, without highly empirical as-
sumptions, that is capable of simulating challenging flow regimes and overcoming
the problems encountered with the wall-modelled LES method.

• To gain an improved understanding of the physics of heated flows through a 90°
pipe bend.

1.3 Thesis Outline

The thesis encompasses all the work accomplished during the PhD and is presented
in the alternative format. This format means that the numerical implementations,
validation of methods, results, discussions and major findings are illustrated in the form
of academic papers that are appended to this thesis. The author of this thesis wrote three
papers with advice from the academic supervisors, Professor Dominique Laurence and
Professor Alistair Revell.

The 2nd chapter in the main body of the thesis provides information on the CFD
methods used to represent turbulence and describes the characteristics of turbulence
near the wall. Chapter 3 presents a review of relevant literature on the evolution of wall
function approaches for large eddy simulation. Chapter 4 expands on the methodology
on the numerical wall function for LES demonstrated in Paper III, whose code structure
becomes the stepping stone for the development of the main wall function of this project
- the subdomain wall function. The strengths and limitations of implementing the
simpler method in an open-source toolbox are discussed in this chapter. In Chapter 5,
the contributions to the field resulting from the PhD project are summarised. Finally,
Chapter 6 concludes the thesis and provides suggestions for future work.
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1.3 Thesis Outline

The first two papers, included at the end of the thesis, are to be issued in journal
publications and are currently under review. The third paper was presented at the 5th
MACE PGR Conference.

Paper I: The subdomain wall function for large eddy simulation. This paper reports
the development and testing of a new wall function framework for large eddy simulation.
The paper outlines the mathematical formulation of the approach and the improvements
made in coupling the LES and RANS domains. The wall function uses a volumetric
source term in the LES momentum equation to correct the under-resolved near-wall
fields of the LES domain. The new method has been successfully validated with three
test cases. This paper has been submitted to the International Journal of Heat and Fluid
Flow.

A paper was presented at the 12th International ERCOFTAC Symposium on En-
gineering Turbulence Modelling and Measurements (ETMM12), which reports on
the early implementation of the subdomain wall function. This conference paper is
not included in the present thesis as the work covered by it has been broadened and
incorporated into Paper I.

Paper II: Large eddy simulation of turbulent heat transfer through a circular 90-deg

pipe bend. This paper reported the findings of a 30-million cell wall-resolved LES
of a 90° pipe bend. The evolution of the flow and thermal fields and their effect on
the heat transfer coefficient are investigated. The heat transfer results of the paper are
compared against an experimental mass transfer dataset. An interesting discovery was
made where the well-known correlation between heat and mass transfer broke down for
a section of the pipe bend. This paper has been submitted to the International Journal of
Heat and Mass Transfer.

Paper III: Implementing numerical wall function for large eddy simulation in

OpenFOAM. The improvements on the classic wall-modelled LES is illustrated in this
paper published in the proceedings in the 5th MACE PGR Conference. The numerical
wall function for LES successfully implements advanced turbulence models in RANS
secondary grid, thereby accomplishing the prediction of a challenging test case.
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Chapter 2

Turbulence Modelling

This chapter introduces the physics and theoretical background of turbulent flows.
The popular CFD techniques used in academia and industry to model the flow of
turbulent flows are described. The turbulence modelling approaches described are Direct
Numerical Simulation, Reynolds-Averaged Navier-Stokes and Large Eddy Simulation.
Wall function approaches for the Reynolds-Averaged Navier-Stokes method and the
flow dynamics in the near-wall region of a turbulent flow are also explored.

2.1 Some Key Characteristics of Turbulence

The Reynolds number is a non-dimensional parameter that helps establish the nature of
the flow, whether it is turbulent or laminar. It is defined as the ratio between inertial
forces and viscous forces:

Re =
UL
ν

, (2.1)

where U and L are characteristic velocity and length scales, and ν is the kinematic
viscosity. The concept was introduced by Reynolds (1883) from his famous experiment
of the flow of a dye stream through a straight pipe. Laminar flows are dominated
by viscous forces at low Reynolds numbers, while the inertia forces are relatively
low. When the Reynolds number is increased to a sufficient level, instabilities as a
result of the interaction between the viscous and inertia forces in the fluid instigates
turbulence. Turbulence leads to the formation of chaotic, unsteady and rotational
motions with significant levels of fluctuating vorticity in the flow. Hence, turbulence is
three dimensional in nature. Vortex stretching sustains the turbulent vortical motions
which lead to the breaking down of large scale eddies into smaller motions and so on
in a continuous process. The perpetual breakdown of eddies leads to a wide range of
length and time scales of the motions in a turbulent flow.
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2.2 Scales of Turbulence

Turbulence is dissipative as viscous effects in the fluid change the turbulent kinetic
energy to internal thermal energy. This characteristic leads to a decay of turbulent kinetic
energy in due course unless there is a continuous energy source to sustain turbulence
(Pope, 2000). A cascading process usually transfers the required energy from the mean
flow to the large-scale integral eddies; this cascading process continues by transferring
energy from the large eddies to smaller ones and so forth. However, the turbulent length
scale of the smallest dissipative eddies is larger than any molecular length scale in
spite of the significant viscous forces at this level. Consequently, the governing fluid
mechanics equations of turbulence can still be represented as a continuum phenomenon
(Tennekes and Lumley, 1972).

The Navier-Stokes equations are a set of governing equations that represent the
motion of a fluid. The Navier-Stokes equation consists of the continuity equation,
which governs the conservation of mass, and the momentum transport equation. For an
incompressible flow with constant fluid properties, the continuity equation is defined in
Cartesian form as:

∂Ui

∂xi
= 0, (2.2)

where Ui is the ith component of the flow velocity vector.
The transport equation for momentum is derived from applying Newton’s second

law with the assumption that the stress in the fluid is the sum of the diffusing viscous
term and the pressure term, which is in balance with the non-linear convection of
velocity. The momentum transport equation for an incompressible flow is defined as:

∂Ui

∂ t
+U j

∂Ui

∂x j
=− 1

ρ

∂P
∂xi

+
∂τi j

∂x j
, (2.3)

where the term τi j represents the viscous stress, which is written as:

τi j = ν

(
∂Ui

∂x j
+

∂U j

∂xi

)
. (2.4)

2.2 Scales of Turbulence

Beyond a critical Reynolds number, laminar flow transitions into turbulence as a
consequence of the complex interactions between the viscous and the inertia effects on
the flow. As identified in the previous sections, the resulting flow turbulent flow exhibits
fluctuating and chaotic behaviour leading to the generation of unsteady motions known
as eddies. These eddies are moderately coherent structures in their localised region;
the size of the eddies ranges from the width of the flow to minuscule scales with a
local characteristic length l, velocity u(l) and timescale τ (l)≡ l/u(l). Turbulence also
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2.2 Scales of Turbulence

significantly augments mixing, and increases the rates of momentum, heat and mass
transfers due to it diffusive attribute.

Despite the chaotic and irregular behaviour of turbulence, it is possible to correlate
turbulent quantities, such as velocity in space and time. Also, such flow quantities
like the instantaneous velocity and pressure fluctuate around a local average value.
Richardson (1922) theorized that turbulence can be arranged into an order of eddies
of different sizes. There is an energy cascade process that transfers generated energy
through various scales of the eddies in the flow. The geometry of the flow determines the
size of the largest eddies. These large motions are unstable and break down, distributing
their turbulent kinetic energy to eddies that are continually decreasing in size. This
inertial process continues until the turbulent motions become small enough at a low
Reynolds number for viscous effects to become significant and effectively dissipates
the turbulent kinetic energy into heat. The dissipation rate is determined by the rate
of transfer of the turbulent kinetic energy in the cascade process as the rate of energy
transfer from the large eddies is balanced by the rate of dissipation ε . The dissipation
rate scales with u2

0/τ0 = u3
0/l0, where the subscript 0 represents the values of the largest

eddies.
Kolmogorov (1941) gave more details of the energy cascade in three hypotheses.

The large scale chaotic structures are affected by the boundaries of the flow domain and
are anisotropic. The first hypothesis states that the large eddies lose their directional
biases as they are broken up through the energy cascade process leading to the small
scales reaching a local isotropic state. As the large scale motions lose information of
direction during the energy cascade process, information about the geometry and mean
flow field are also lost.

This loss of information of the mean flow by the small scales leads to Kolmogorov’s
second hypothesis and the first of the similarity hypotheses. Since the small scale eddies
are independent of flow geometry, the statistics of the small-scale eddies are universal
and are depended on the kinematic viscosity ν and the dissipation rate. Hence, universal
forms of length, time and velocity for the small scale motions can be defined, and the
forms are known as Kolmogorov scales. The Kolmogorov length η , velocity uη and
time τη scales are defined respectively as:

η =

(
ν3

ε

)1/4

, (2.5)

uη = (εν)1/4 , (2.6)
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2.2 Scales of Turbulence

Fig. 2.1 Schematic showing the length scales and ranges of the energy cascade for high
Reynolds number flows.

τη =
(

ν

ε

)1/2
. (2.7)

The second similarity hypothesis and the final of the three hypotheses state that
for sufficiently high Reynolds number turbulent flow, there exists a range of scales l

that is much smaller than the size of the energy-carrying motions l0 but greater than
the Kolmogorov scales. The Reynolds number lu(l)/ν for this range is large enough
to ensure that the eddies are not affected by viscosity. These motions with length
scale l have a universal form that depends on the dissipation rate but are large enough
to be independent of the kinematic viscosity. The hypothesis defines the universal
equilibrium range as l < lEI , where the length scale lEI ≈ 1/6l0 represents the largest
isotropic eddy length scale. The universal equilibrium range is split into two subranges
by the lengthscale lDI: the dissipative range l < lDI and the inertial subrange lEI > l > lDI .
The length scale lDI represents the largest dissipative scales. Additional scale ranges
are defined with the universal range splitting into the inertial subrange, where inertial
forces dominate the motions, but the viscous forces are negligible, and the dissipation
range where the motions are chiefly dominated by viscous forces. The ranges motions
in the energy cascade process are shown in Figure 2.1.

The velocity and time scales in the inertial subrange can be defined given an eddy
size l and viscosity ε as:

u(l) = (εl)1/3 = uη (l/η)1/3 ∼ u0 (l/l0)
1/3, (2.8)

τ(l) =
(
l2/ε

)1/3
= τη (l/η)2/3 ∼ τ0 (l/l0)

2/3. (2.9)
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2.3 Direct Numerical Simulation

Equations 2.8 and 2.9 show that the velocity and time scales are in proportion with the
size of the eddy in the inertial subrange, and decrease as the length scale of the eddies
reduces.

2.3 Direct Numerical Simulation

Direct numerical simulation (DNS) solves the Navier-Stokes equations by resolving
all the temporal and spatial scales of motion of the flow. The Navier-Stokes equations
are solved numerically without utilising any modelling approaches. The level of
information and accuracy provided by DNS is comprehensive; hence, DNS is used to
supplement measurements of quantities that are not easily obtained through experiments.
Furthermore, DNS data is frequently used to validate new approaches to turbulence
modelling. DNS is conceptually the most straightforward approach to simulate a
turbulent flow. However, the computational costs of performing a DNS are significantly
high. The high cost of DNS arises from the need to resolve all the length and time scales
of all the eddies identified in Section 2.2. The grid spacing of the computational domain
must be small enough to capture the smallest scales of motion in the dissipative range
given by the Kolmogorov length η to perform a valid DNS. Furthermore, the size of the
computational domain must be big enough to capture the largest energy-carrying eddy
size l. Ferziger and Perić (2002) computed the number of nodes required to resolve each
direction of a DNS computational box to scale to the order of Re3/4

l . Hence, the total
number of cells for a three-dimensional box N3 needed for a DNS calculation scales
with Re9/4

l . This correlation shows that the number of grid points needed to resolve a
turbulent flow increases exponentially with a moderate increase in Reynolds number.
This constraint severely constricts the applicability of DNS to basic geometries with low
or moderate Reynolds numbers despite the rapid advances in computing technology.

2.4 Reynolds-Averaged Navier-Stokes Models

The high computational cost of DNS for industrial applications of interest requires a
different approach to simulating turbulent flows. The Reynolds – Averaged Navier-
Stokes equations (RANS) model all the scales of motion in a turbulent flow. This
approach drastically reduces the required computational time and resources compared
to scale-resolving methods. A time-averaging of the Navier-Stokes equation is done
which leads to the appearance of an additional term in the RANS equation known as
the turbulent Reynolds stress. The Reynolds stress tensor needs to be modelled to close
the RANS equations. The closure of the turbulent Reynold stress can be done using
two approaches. The first approach assumes that the Reynolds stresses are related to
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2.4 Reynolds-Averaged Navier-Stokes Models

the mean rate of strain tensor through a turbulent viscosity. The turbulent viscosity
is computed from the product of the length and velocity scales of the mean turbulent
motions. The scales can either be algebraically prescribed based on the geometry of
the flow (however mostly inaccurate for a variety of turbulent flows) or by solving
transport equations of turbulent quantities such as the turbulent kinetic energy to obtain
the required scales. This approach forms the basis of the turbulent viscosity hypothesis.
On the other hand, the second approach involves directly solving a transport equation
for each component of the Reynolds stress tensor. This approach overcomes many of
the deficiencies of the turbulent viscosity hypothesis. Although there are additional
transport equations needed to be solved, which add to the computational costs compared
to the first approach.

Reynolds (1883) proposed the decomposition of an instantaneous field Φi (xi, t) into
⟨Φi (xi, t)⟩ and fluctuating components φ ′i (xi, t):

Φi (xi, t) = φ ′i (xi, t)+ ⟨Φi (xi, t)⟩. (2.10)

The angled brackets represent the Reynolds operator for averaging the instantaneous
field. The type of Reynolds operator used depends on the characteristic of the turbulent
flow. For statistically steady flows, the terms in the Navier-Stokes equations are averaged
over time, and the operator is defined as:

⟨Φi (xi, t)⟩= lim
T→∞

∫ t+T

t
Φi (xi, t)dt, (2.11)

where T is a long-time period that is much larger than the time scale of the fluctuating
component. The time average of a time-averaged field is equivalent to itself ⟨Φi (xi, t)⟩=
⟨⟨Φi (xi, t)⟩⟩. This identity leads to the time average of the fluctuating component of the
instantaneous field in Equation 2.10 being zero i.e. ⟨φ ′i (xi, t)⟩= 0.

Substituting the decomposed terms into the variables of the Navier-Stokes equations
of Equations 2.3, 2.4 and 2.5 leads to the derivation of the Reynolds-averaged Navier-
Stokes equations. The RANS equations for an incompressible flow are defined below:

∂ ⟨Ui⟩
∂xi

= 0, (2.12)

∂ ⟨Ui⟩
∂ t

+ ⟨U j⟩
∂ ⟨Ui⟩
∂x j

=− 1
ρ

∂ ⟨P⟩
∂xi

+
∂

∂x j

[
ν

(
∂ ⟨Ui⟩
∂x j

+
∂ ⟨U j⟩

∂xi

)]
−

∂ ⟨u′iu′j⟩
∂x j

, (2.13)

where ⟨u′iu′j⟩ is the Reynolds stress tensor that is introduced into the momentum transport
equation. The Reynolds stress is a symmetric tensor field; hence six additional unknown
variables are introduced to the system of equations. The six terms of the Reynolds

32



2.4 Reynolds-Averaged Navier-Stokes Models

stress tensor and the four terms from the velocity vector field and pressure scalar field
lead to the system of four equations having ten unknowns. The system needs to be
closed, which is a problem associated with the RANS method. The turbulent stress is
modelled for the system to be solved. Modelling of the Reynolds stresses has been a
keen research interest for the past 60 years. The following sections present the various
approaches to modelling the turbulent Reynolds stress term in the RANS equations.

2.4.1 Turbulent Viscosity Models

Boussinesq (1868) proposed the turbulent – viscosity hypothesis that the deviatoric part
of the turbulent Reynolds stress tensor is linearly proportional to the mean rate of strain
tensor. This definition is similar to the relation between molecular stress and the rate of
strain in Newtonian fluids. The turbulent – viscosity hypothesis is defined as:

−⟨u′iu′j⟩+
2
3

kδi j = νt

(
∂ ⟨Ui⟩
∂x j

+
∂ ⟨U j⟩

∂xi

)
= 2νtSi j, (2.14)

where νt is the turbulent eddy viscosity, which is the coefficient of proportionality, k is
the turbulent kinetic energy defined as:

k =
1
2
⟨u′iu′i⟩, (2.15)

and Si j is the Reynolds averaged rate of strain which is defined as:

Si j =
1
2

(
∂ ⟨Ui⟩
∂x j

+
∂ ⟨U j⟩

∂xi

)
. (2.16)

The only remaining unknown term is the turbulent eddy viscosity, and the system of
equations is closed by the specification of the turbulent viscosity. The turbulent viscosity
can be formed from a combination of a length l, velocity u or time τ scales. From
dimensional analysis, the turbulent viscosity can be written as:

vt = c1ul = c2
l2

τ
, (2.17)

where c1 and c2 are constants.
The turbulent scales can be prescribed to obtain the turbulent viscosity. However,

this method suffers from the difficulty of prescribing scales, such as the length, in
complex geometries. Another approach to defining the eddy viscosity is computing the
transport equations of turbulent quantities. These turbulent quantities are combined to
derive the required scales to compute the turbulent viscosity. This approach overcomes
the problems associated with prescribing the required turbulent scales.
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2.4 Reynolds-Averaged Navier-Stokes Models

The accuracy of the turbulent viscosity hypothesis is inadequate for many flows
of engineering interest despite the convenience of the approach. There are many eddy
viscosity models in literature. This work focuses on the models used in this project,
which are described in the next sections.

Mixing – Length Model or Zero – Equation Model

The mixing length model does not require any transport equation for a turbulent property
to obtain the turbulent viscosity. Instead, the turbulent viscosity is determined from the
algebraic relationship of a prescribed length scale and the product of the given length
scale and the mean flow velocity gradient. The turbulent length scale or the mixing
length lm is specified as a function of position or distance from the wall. The mixing
length for a two-dimensional boundary layer flow is determined by:

lm = κy, (2.18)

where κ is the von Karman constant usually taken as 0.41, while the velocity scale is
defined as:

um = lm

∣∣∣∣
d⟨U⟩

dy

∣∣∣∣ , (2.19)

Hence, the turbulent viscosity is specified as:

νt = l2
m

∣∣∣∣
d⟨U⟩

dy

∣∣∣∣ . (2.20)

The mixing-length varies linearly with wall distance y in the overlap region. However,
as the wall is approached, the shear stress is overpredicted using the linear correlation
between the mixing length and wall distance of Equation 2.18. van Driest (1956)
proposed damping the mixing-length close to the wall with viscosity in the viscous
sublayer to reduce the rate at which the shear stress is increased in the near-wall vicinity.
The equation is stated as:

l+m = κy+
[
1− exp

(
−y+/A+

)]
, (2.21)

where the value of the constant A+ is specified as 26.
While the mixing-length model is the simplest turbulence model, the mixing length

lm(x) always has to be specified. This process is empirical and becomes harder to
determine when prescribing the length scales for flows in complex geometries. Another
shortcoming of the model is that the existence of turbulence is linked to the presence
of mean velocity gradients, as seen in Equation 2.19 for the velocity scale. Hence, the
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velocity scale tends to zero if the mean velocity gradient is zero. There are situations,
such as the centreline of the round jet, where the turbulent viscosity is non-zero despite
the zero mean velocity gradient.

One – Equation Models

Prandtl (1945) proposed basing the velocity scale on the turbulent kinetic energy
um = ck1/2. This approach accounts for the non-local and time changes to the turbulent
viscosity. Hence, the turbulent viscosity can be specified as:

νt = ck1/2lm, (2.22)

where c is a constant approximated as 0.55. Basing the velocity scale on the turbulent
kinetic energy resolves the non-physical problem in the mixing-length model in certain
turbulent flows where the turbulent viscosity becomes zero, when the mean velocity
gradient is also zero. A transport equation is solved for the variable to compute the
turbulent kinetic energy. The transport equation of k is defined as:

∂k
∂ t

+ ⟨U j⟩
∂k
∂x j

=−⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

+
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
− ε, (2.23)

where σk is the turbulent Prandtl number which is usually specified as 1.0 and the rate
of dissipation of the turbulent kinetic energy ε is unknown. The Prandtl one-equation
model estimates the rate of dissipation ε , which is a sink term in Equation 2.23 as:

ε =CDk3/2/lm, (2.24)

where CD is a model constant. The one-equation model shows improvements in predict-
ing a selection of flow regimes over the mixing length model (Wilcox, 2006). However,
as with the zero – equation model, the mixing-length must be specified prior to the
simulation. This specification is a considerable weakness when handling turbulent flows
in complex geometries.

Equation 2.24 can be substituted into Equation 2.22 to eliminate the mixing length
term and yield a new formulation of the turbulent viscosity, which is defined as:

νt =Cµ

k2

ε
, (2.25)

where the constant Cµ = cCD. From a DNS dataset of a plane channel flow, the value
of Cµ is estimated as 0.09. The value remains approximately constant for Cµ for most
regions of the turbulent channel flow except close to the wall, y+ < 50.
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Further, one-equation models based on the transport equation of the turbulent kinetic
energy have been developed, most notably the method of Wolfshtein (1969) and the
improved approach of Goldberg (1991). Recent developments have focused on solving
directly the transport equation of the turbulent viscosity rather than the turbulent kinetic
energy. Two examples of this approach are the model of Baldwin and Barth (1991)
and the method of Spalart and Allmaras (1992). The Spalart – Allmaras model is
the most widely used one-equation model in industry. However, turbulent viscosity
based one-equation models suffer the need for empirical damping functions and closure
constants to complete the system of equations.

The k− ε Models

The k− ε turbulence models are a class of methods that solve at least two transport
equations for turbulent quantities. The two main quantities that are solved are the
turbulent kinetic energy k and the dissipation rate ε . From these two quantities, the
turbulent length scale and the time scale can be defined as:

l =
k3/2

ε
, (2.26)

τ =
k
ε
. (2.27)

The computation of the turbulence scales overcome the weakness of prescribing the
length scales as featured from the mixing length and one-equation models. Hence, the
k−ε turbulence model can be used for flows in complex geometries. Also, the turbulent
length scales vary in space and time for most engineering flows, and this variation is
captured better by models that automatically compute the turbulent scales.

The development of the standard k− ε model is accredited to Jones and Launder
(1972). The standard model defines the turbulent viscosity as:

νt =Cµ

k2

ε
, (2.28)

where Cµ = 0.09 is a constant that is tuned to return the expected behaviour of the ratio
ūv/k in the logarithmic layer of a channel flow. The transport equation for the turbulent
kinetic energy remains the same as that of the one-equation model in Equation 2.23.
The transport equation for the dissipation rate is defined as:

∂ε

∂ t
+ ⟨U j⟩

∂ε

∂x j
=−Cε1

ε

k
⟨u′iu′j⟩

∂

∂x j
−Cε2

ε2

k
+

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
. (2.29)
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The transport equation for the dissipation rate is completely empirical as the exact
equation includes a number of terms with high order unknown correlations that are
difficult to accurately model. The constants Cε1 and Cε2 are tuned using the decaying
homogeneous isotropic turbulence flow. Launder and Sharma (1974) modelled the
constants in Equations 2.23, 2.28 and 2.29 as:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.30)

The standard k− ε model does not integrate down to the wall. Wall functions are used
with the model to account for the physics in the near-wall region. Hence, the correct
near-wall behaviour may not be captured with the use of the standard wall function
approach for flows where the log-law assumption is no longer valid.

Launder and Sharma (1974) k− ε Model

Launder and Sharma (1974) updated the standard k− ε model by including damping
functions to account for the diffusion of both the turbulent kinetic energy and its
dissipation rate due to molecular viscosity in the near-wall region. Prescribing the
correct wall damping behaviour allows the low-Reynolds region to be properly solved
by the model without the need for wall functions. The definitions of the turbulent
viscosity and the transport equations for the turbulent kinetic energy and its dissipation
rate are shown as follows:

νt =Cµ fµ

k2

ε̃
, (2.31)

∂k
∂ t

+ ⟨U j⟩
∂k
∂x j

=−⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

+
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]

−


ε̃ +2ν

(
∂k

1
2

∂x j

)2



︸ ︷︷ ︸
ε

,
(2.32)

∂ ε̃

∂ t
+ ⟨U j⟩

∂ ε̃

∂x j
=−Cε1 f1

ε̃

k
⟨u′iu′j⟩

∂ ⟨Ui⟩
∂x j

−Cε2 f2
ε̃2

k

+
∂

∂x j

[(
ν +

νt

σε

)
∂ ε̃

∂x j

]

+2ννt

(
∂ 2⟨Ui⟩
∂x j∂xk

)2

.

(2.33)
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The values of the constants Cε1 , Cε2 , Cµ , σε and σk are the same for the standard
k − ε model shown in (30). The coefficients fµ and f2 depend on the turbulent
Reynolds number, R̃t = k2/(νε̃), to yield the correct wall damping behaviour (Jones
and Launder 1972), while f1 = 1.0. The coefficients fµ and f2 are defined as fµ =

exp
[
−3.4/

(
1+ R̃t/50

)2
]

and f2 = 1.0−0.3exp
(
−R̃2

t

)
.

The term ε̃ is the quasi-homogeneous dissipation rate of the turbulent kinetic energy
which is defined as:

ε̃ = ε −2ν

(
∂k

1
2

∂x j

)2

. (2.34)

The term ε̃ tends to zero at the wall (ε̃|w = 0.0) which is the preferable boundary
condition to specify at wall compared to ε , which is a non-zero value at the wall.

The Elliptic Blending k− ε − v2/k Model

Billard and Laurence (2012) developed a three-equation transport equation for turbulent
kinetic energy, its dissipation rate and the ratio of the wall-normal fluctuating velocity
variance to the turbulent kinetic energy v2/k. There is an additional elliptic equation
for the blending parameter α to produce the parabolic decay of v2/k in the near-wall
region without having to use wall-distance or low-Reynolds number related damping
functions like the Launder and Sharma (1974) k− ε model. The additional variable
v2/k acts as an anisotropy sensor and blends the high Reynolds region and the near-wall
regions of the flow. Hence, the elliptic blending k− ε model integrates the transported
quantities down to the wall without the use of wall or damping functions. The model is
also an improvement of the k− ε − v2 − f method, first proposed by Durbin (1991), as
the problem of numerical stiffness is reduced.

The elliptic equation for the blending parameter is defined as:

α −L2 ∂ 2α

∂x2
j
= 1, (2.35)

where L is the turbulent length scale defined as:

L =CL max

[
k

3
2

εh
,Cη

(
ν3

εh

)1/4
]
. (2.36)
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The blending parameter is α = 0 near the wall and at the wall boundary, while α = 1
far from the wall. The transport equation for the turbulent kinetic energy is defined as:

∂k
∂ t

+ ⟨U j⟩
∂k
∂x j

=−⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

+
∂

∂x j

[(
ν

2
+

νt

σk

)
∂k
∂x j

]
− εh

+Cε3 (1−α)3 k
εh

2ννt

(
∂ 2⟨Ui⟩
∂x j∂xk

)2 (2.37)

This model adopts the homogeneous dissipation rate as it is less sensitive to Reynolds
number effects. The transport equation for the homogeneous dissipation rate is defined
as:

∂εh

∂ t
+ ⟨U j⟩

∂εh

∂x j
=

Cε1⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

−C∗
ε2

εh

T
+

∂

∂x j

[(
ν

2
+

νt

σεh

)
∂εh

∂x j

]
(2.38)

with the variable C∗
ε2

and the turbulent timescale T defined respectively as:

C∗
ε2
=Cε2 +α

3(Cε4 −Cε2) tan




∣∣∣∣∣∣

∂

∂x j

(
νt
σk

∂k
∂x j

)

εh

∣∣∣∣∣∣

3/2
, (2.39)

T = max

[
k
εh
,CT

(
ν

εh

)1/2
]
. (2.40)

The rate of dissipation is defined as:

ε = εh +
1
2

ν
∂ 2k

∂x j∂x j
. (2.41)

Finally, the transport equation for the anisotropic φ = v2/k is shown as follows:

∂φ

∂ t
+ ⟨U j⟩

∂φ

∂x j
=
(
1−α

3) fw +α
3 fh −⟨u′iu′j⟩

∂ ⟨Ui⟩
∂x j

φ

k

+
∂

∂x j

[(
ν

2
+

νt

σφ

)
∂φ

∂x j

]

+
2
k

νt

σk

∂φ

∂x j

∂k
∂x j

,

(2.42)

where fw and fh are defined respectively as:

fw =−εh

2
φ

k
, (2.43)
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fh =− 1
T


C1 −1+C2

⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

εh



(

φ − 2
3

)
. (2.44)

The values of all the constants for the model are shown in Table 2.1.

Table 2.1 Constants of the elliptic blending k− ε model

Cε1 Cε2 Cε3 Cε4 σk σεh Cµ

1.44 1.83 2.3 0.4 1.0 1.5 0.22

CT CL Cη C1 C2 σφ

4 0.164 75 1.7 0.9 1.0

The elliptic blending k− ε model reproduces the variation of turbulence terms in
the near-wall region excellently. This model has been used extensively in this project.

2.4.2 Reynolds Stress Transport Models

The turbulent – viscosity hypothesis is inadequate for many types of turbulent flows
such as secondary motions in ducts, flows with sudden changes in the mean strain
rate and flows over curved surfaces. This inadequacy stems from the Reynolds stress
anisotropy tensor being linearly related to the mean rate-of-strain tensor through the
isotropy of the turbulent viscosity. In the absence of mean velocity gradients, the linear
eddy viscosity model leads to isotropic turbulence. Moreover, linear eddy viscosity
models tend to overpredict the lengthscales in impinging flows. This overprediction
leads to much higher levels of turbulence and heat transfer. Also, linear eddy viscosity
models tend not to capture the effect of stream curvature.

Reynolds stress transport models (RSM) overcome the difficulties of the turbulent
viscosity hypothesis. Transport equations are solved for each component of the Reynolds
stress tensor and the dissipation rate. The transport equations for the Reynolds stresses
are defined as:

D⟨u′iu′j⟩
Dt

=−
(
⟨u′iu′k⟩

∂ ⟨U j⟩
∂xk

+ ⟨u′ju′k⟩
∂ ⟨Ui⟩
∂xk

)

︸ ︷︷ ︸
Pi j

−2ν
∂ ⟨u′i⟩
∂xk

∂ ⟨u′i⟩
∂xk︸ ︷︷ ︸

εi j

− 1
ρ
⟨u′i⟩

∂ ⟨p′⟩
∂x j

− 1
ρ
⟨u′j⟩

∂ ⟨p′⟩
∂xi︸ ︷︷ ︸

Φ∗
i j

−
∂ ⟨u′iu′ju′k⟩

∂xk︸ ︷︷ ︸
Dt

i j

+ν
∂ 2⟨u′iu′j⟩

∂x2
k︸ ︷︷ ︸

Dν
i j

,

(2.45)
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where Pi j is the production of Reynolds stress tensor, εi j represents the viscous dissi-
pation of the Reynolds stress tensor, Φ∗

i j accounts for the pressure rate of strain, and
Dt

i j and Dν
i j are stress diffusion due to turbulent and viscous effects, respectively. The

production term and the viscous diffusion can be treated exactly as they contain only
the Reynolds stress tensor or the mean strain rates. The terms that are modelled are εi j,
Φ∗

i j and Dt
i j as the derived equations of the terms are very complex. The next subsection

discusses how the elliptic blending Reynolds stress model (EBRSM) of Manceau and
Hanjalić (2002) represents the dissipation, pressure-strain and turbulent diffusion terms.

The Elliptic Blending Reynolds Stress Model

The EBRSM of Manceau and Hanjalić (2002) is devised to extend the standard RSM
to the wall without the need for wall functions. The elliptic blending parameter of
Equation 2.35 switches the asymptotic behaviour of the pressure-strain term between
the far-wall region to the near-wall region. The elliptic blending parameter also accounts
for the nonlocal blocking effect of the wall on the dissipation rate tensor. The elliptic
blending parameter α is defined as the same as the parameter of the elliptic blending
k− ε model of Section 2.4.1.

The dissipation rate tensor is modelled to be isotropic for high Reynolds number
flows in standard RSM approaches. However, close the wall, the dissipation rate tensor
becomes anisotropic. The algebraic correlation for the dissipation rate tensor εi j is
defined as:

εi j =
(
1−α

3) ⟨u
′
iu

′
j⟩

k
ε +α

3 2
3

εδi j. (2.46)

The blending parameter switched the dissipation rate tensor εi j between the isotropic
stress dissipation in the far-wall region εi j =

2
3ε and the non-isotropic stress dissipation

εi j =
⟨u′iu′j⟩

k ε . The transport equation for the dissipation rate ε is defined as:

∂ε

∂ t
+ ⟨U j⟩

∂ε

∂x j
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C′ε1⟨u′iu′j⟩
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−Cε2ε

T
+ν

∂

∂xk

(
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σε

⟨u′lu′m⟩T
∂ε

∂xm

)

+ν
∂ 2ε

∂xkxk
,

(2.47)

where

C′
ε1 =Cε1


1+A1

(
1−α

3) ⟨u
′
iu

′
j⟩

∂ ⟨Ui⟩
∂x j

ε


 . (2.48)

The pressure-strain tensor term or the velocity-pressure gradient correlation Φ∗
i j is

split between the homogeneous pressure-strain Φh
i j and the wall pressure-strain Φw

i j due
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to near-wall viscous effects and damping of the wall-normal velocity fluctuations. The
algebraic correlation of the pressure-strain tensor Φ∗

i j is defined as:

Φ
∗
i j =

(
1−α

3)
Φ

w
i j +α

3
Φ

h
i j. (2.49)

The homogeneous pressure-strain is obtained from the SSG model of Speziale et al.
(1991) and is defined as:

Φ
h
i j =−

(
g1 +g∗1

P
ε

)
εbi j +g2ε

(
bikbk j −

1
3

bklbklδi j

)

+
(

g3 −g∗3
√

bklbkl

)
kSi j +g4k

(
bikS jk +b jkSik −

2
3

blmSlmδi j

)

+g5k
(
bikΩ jk +b jkΩik

)
.

(2.50)

where the turbulence anisotropy tensor bi j, the mean strain rate tensor Si j and the mean
vorticity tensor Ωi j are defined as:

bi j =
⟨u′iu′j⟩

2k
− 1

3
δi j, (2.51)

Si j =
1
2

(
∂ ⟨Ui⟩
∂x j

+
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∂xi

)
, (2.52)

Ωi j =
1
2

(
∂ ⟨Ui⟩
∂x j

− ∂ ⟨U j⟩
∂xi

)
. (2.53)

The wall pressure-strain term Φw
i j is defined as:

Φ
w
i j =

−5ε

k

(〈
u′iu

′
k
〉

n jnk +
〈
u′ju

′
k
〉

nink −
1
2
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u′ku′l

〉
nknl

(
nin j −δi j

))
, (2.54)

where the unit vector field for the wall-normal direction ni is evaluated as:

ni =
∇α

|∇α| . (2.55)

Finally, the turbulent diffusion Dt
i j term in the transport equations of u′iu

′
j is modelled

using the generalised gradient diffusion hypothesis (GGDH) proposed by Daly and
Harlow (1970) as:

Dt
i j =

∂

∂xl

(
Cµ

σk
⟨u′lu′m⟩T

∂ ⟨u′iu′j⟩
∂xm

)
(2.56)
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The turbulent time T and length L scales are computed as the respective scales for the
elliptic blending k− ε model in Equations 2.36 and 2.40. The model constants are
shown in Table 2.2.

Table 2.2 Constants of the elliptic blending RSM model

Cε1 Cε2 CT CL Cη Cµ A1 σk

1.44 1.83 6 0.1333 80 0.22 0.065 1.0

σε g1 g∗1 g2 g3 g∗3 g4 g5

1.15 3.4 1.8 0.0 0.8 1.3 1.25 0.4

2.5 Large Eddy Simulation

LES directly solves the large-scale motions that carry the most energy in a turbulent
flow. These large scale motions are affected by the geometry of the flow. However, the
dissipative and isotropic small-scale motions are modelled, unlike in DNS. The smallest
dissipative scales are universal and independent of the boundary conditions of the flow
geometry. This universality makes modelling of the small scales favourable as the
potential modelling errors will be relatively low. Furthermore, most of the effort in DNS
is spent resolving the dissipation range, making up for 99% of the total computational
costs (Pope, 2000). Consequently, the cost of LES is significantly less than DNS as a
relatively coarser grid can be employed to resolve the flow. The computational effort of
LES is still more than that of RANS methods, but LES offers levels of information and
accuracy that is unmatched by RANS.

2.5.1 Numerical Method of Large Eddy Simulation

The DNS operation resolves the velocity field Ui(x, t) on all the lengthscales down to
the Kolmogorov scale. On the other hand, the instantaneous velocity field of the LES
goes through a low-pass filtering process. Hence, the resulting filtered velocity U i(x, t)

can be explicitly solved on a grid that is coarser than a typical DNS grid. The filter
width ∆ is generally linked with grid resolution and should be smaller than the length
scale of the smallest energy-carrying eddy lEI in the inertial subrange. The lengthscales
that are a larger size than ∆ are resolved while a subgrid-scale (SGS) model models the
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eddies smaller than the filter width. Leonard (1975) defined the filtering process as:

U i (xi, t) =
∫

G(ri,xi)Ui (xi − ri, t)dri, (2.57)

where G is the special filter function that satisfies the following normalisation condition:
∫

G(ri,xi)dri = 1. (2.58)

The subgrid field or the residual field u′i(xi, t) that represents the modelled component
is defined below as the difference between the non-filtered instantaneous velocity field
and the filtered velocity field as:

u′i(xi, t)≡Ui (xi, t)−U i (xi, t) . (2.59)

The popular filter functions used for LES are the box filter, Gaussian filter and sharp
spectral filter.

Consequently, the filtered continuity equation is defined as:

(
∂Ui

∂xi

)
=

∂U i

∂xi
= 0. (2.60)

After applying the filtering process to the Navier – Stokes equations, the filter conserva-
tion of momentum equation is defined as:

∂U i

∂ t
+

∂UiU j

∂x j
=− 1

ρ

∂ p
∂xi

+ν
∂

∂x j

(
∂U i

∂x j
+

∂U j

∂xi

)
, (2.61)

where p(xi, t) is the filtered pressure field. The difference between the filtered product
UiU j and the product of the filtered velocities U iU j is the residual-stress tensor τR

i j

which is defined as:

τ
R
i j =UiU j −U iU j. (2.62)

As a result, the subgrid kinetic energy is computed as:

kr ≡
1
2

τ

R

ii
. (2.63)

The anisotropic residual – stress tensor τr
i j is expressed as:

τ
r
i j ≡ τ

R
i j −

2
3

krδi j. (2.64)
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The modified filtered pressure p̂ is defined by including the isotropic subgrid residual
stress as:

p̂ ≡ p+
2
3

kr. (2.65)

By substituting Equations 2.55, 2.56 and 2.58 into Equation 2.54, the modified momen-
tum equation can be redefined as:

∂U i

∂ t
+

∂U iU j

∂x j
=− 1

ρ

∂ p̂
∂xi

+ν
∂

∂x j

(
∂U i

∂x j
+

∂U j

∂xi

)
−

∂τr
i j

∂x j
. (2.66)

The three fields Ui(xi, t), p(xi, t) and τr
i j(xi, t) in Equations 2.59 are three – dimensional,

random and unsteady even if the simulated flow is statistically stationary. The residual or
subgrid (SGS) stress is modelled to close the system of the filtered transport momentum
equations, similar to the approach of the Reynolds-averaged Navier-Stokes equations.
The modelled stress tensor also depends on the type and width of the filter used.
Leonard (1975) introduced the decomposition of the residual-stress tensor into three
components: the Leonard stresses Li j, cross stresses Ci j and the SGS Reynolds stresses
Ri j. A Galilean-invariant of the Leonard decomposition proposed by Germano (1986)
is defined as:

τ
R
i j = Li j +Ci j +Ri j. (2.67)

The Leonard stresses represent the resolved large scale stresses expressed as:

Li j =U iU j −U iU j. (2.68)

The interaction between the resolved and modelled scales is represented by the cross
stresses, which is defined as:

Ci j =U iu′ j +u′iU j −U iu′ j −u′iU j. (2.69)

The SGS Reynolds stresses represent the local interactions between the modelled scales
and is specified as:

Ri j = u′iu′ j −u′iu′ j. (2.70)

The next section describes the numerical SGS methods that model the unresolved
stresses.
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2.5.2 Subgrid-Scale Modelling

The Boussinesq approximation is used to model the subgrid-scale stress tensor first
introduced by Smagorinsky (1963). The approximation is based on the hypothesis that
the transfer of energy from the resolved to the subgrid scales is comparable to molecular
diffusion. The subgrid-scale eddy viscosity νSGS relates the mechanism of the residual
stresses to the filtered rate of strain Si j as:

τ
r
i j =−2νSGSSi j, (2.71)

where Si j is the filtered rate of strain defined as:

Si j =
1
2

(
∂U i

∂x j
+

∂U j

∂xi

)
. (2.72)

Smagorinsky (1963) computes the subgrid-scale eddy viscosity by using the analogy of
the mixing length hypothesis. The following sections introduce the Smagorinsky model
and two additional models used throughout this project.

Smagorinsky Model

The eddy viscosity model of Smagorinsky (1963) uses global quantities related to the
large scales to compute the subgrid-scale viscosity. The eddy viscosity is modelled
using the RANS mixing-length model analogy. The characteristic length scale lS is
computed as the product of the filter width ∆ and a model coefficient CS (Smagorinsky
constant) as lS = ∆CS. The SGS viscosity is computed as:

νSGS = l2
S

√
2Si jSi j = (CS∆)2

√
2Si jSi j. (2.73)

Near the wall, the Smagorinsky mixing length needs to be modified to take into account
the effect of viscous damping and ensure that the residual viscosity and shear stress
is zero at the wall. Moin and Kim (1982) proposed the specification of the modified
Smagorinsky mixing length using a van Driest damping function for wall-bounded
flows as:

lS =CS∆
[
1− exp

(
−y+/A+

)]
, (2.74)

where A+ is a model constant and y+ is the wall-normal distance normalised in viscous
units.
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The Smagorinsky model has several limitations. The rate of transfer of energy to
the residual motions is defined as:

Pr ≡−τ
r
i jSi j = 2νrSi jSi j = εr. (2.75)

The transfer of energy between the scales can be decomposed into two directions:
forward scatter which account for the local transfer of energy from the resolved motions
to the residual field, while backscatter refers to the opposite direction of forward
scatter of the transfer to the residual scales. Negative subgrid production Pr or subgrid
dissipation accounts for the physical process of backscatter. However, the Smagorinsky
model always prescribes the value of the eddy viscosity as greater than zero. Hence, the
model does not account for the backscatter energy transfer process from the dissipative
scales to the large – scale motions.

Another limitation of the Smagorinsky model is the difficulty in specifying the
correct value of the Smagorinsky coefficient CS. The Smagorinsky coefficient is also
very sensitive to the size of the filter width used. Clark et al. (1979) recommends the
value of CS = 0.2 for isotropic homogeneous turbulence while Lilly (1992) suggests
the value of CS = 0.17. For plane channel flows, Deardorff (1970) specifies an even
lower value of CS = 0.1. The value of the Smagorinsky coefficient is not constant but is
dependent on the flow.

Furthermore, for laminar flow, the Reynolds stress is zero in the Navier – Stokes
equations. The residual stresses are also zero in the modified momentum transport
equation for LES. Therefore, the correct value of the residual shear stress is returned if
the Smagorinsky coefficient CS is specified as zero for laminar flows. This characteristic
is not realised with the Smagorinsky model as the value of CS is finite, leading to the
incorrect resolution of the filtered fields.

Dynamic Smagorinsky Model

Germano et al. (1991) proposed a model that appropriately prescribes the value of the
Smagorinsky coefficient for different flow configurations, solving one of the limitations
of the Smagorinsky model. The dynamic model automatically adjusts the coefficient in
both space and time. Two filtering operations are established for the dynamic method:
the first corresponding to the grid filter width ∆ which is proportional to the grid spacing,
the second corresponding to the test filter width ∆ which is usually taken as twice of ∆

that is ∆ = 2∆.
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Lilly (1992) determines the dynamic coefficient CD by using the least-squares
method to minimise mean-square errors as:

CD =
Mi jLd

i j

MklMkl
. (2.76)

The subgrid-scale viscosity is computed as:

νSGS = (CD∆)2
√

2Si jSi j. (2.77)

The variable Li j represents the resolved stress and is derived from the Germano identity
(Germano, 1992). The deviatoric part Ld

i j of the resolved stress is used in the dynamic
Smagorinsky coefficient formula. The resolved stress is defined as:

Li j = cSMi j, (2.78)

in which the tensor Mi j is defined as:

Mi j = 2∆
2S̃Si j −2∆

2S̃S̃i j, (2.79)

with S =
(
2Si jSi j

)1/2. The overline refers to the grid filtered quantities, while the
tilde operator ˜ represents the test filtered quantities.

The computation of the dynamic Smagorinsky coefficient CD in a channel flow
using Equation 2.76 demonstrates considerable fluctuations of the coefficient because of
the weak correlation between the stresses and the rate of strain. These large fluctuations
lead the LES computations to be unstable. Germano et al. (1991) and Piomelli (1993)
solved the problem by averaging the denominator and numerator of Equation 2.76.
Consequently, this implementation eliminates the need for special treatments near the
wall and give good results for turbulent channel flows and channel flows in transition
(Pope, 2000). The dynamic model is also capable of giving accurate computations for
laminar flows and permits the possibility of backscatter. The success of the dynamic
model reduces if the LES is not well resolved to capture a significant proportion of the
turbulent kinetic energy. Also, the dynamic procedure in computing the model coeffi-
cient slightly increases the computational costs compared to the standard Smagorinsky
model.

One-Equation Model

The one-equation SGS model of Yoshizawa and Horiuti (1985) computes the transport
equation for the subgrid-scale turbulent kinetic energy kSGS = 1/2τii. The one-equation
model was developed to go beyond the assumption of the local balance of the subgrid-
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scale production to the dissipation used in the Smagorinsky model. This assumption is
not always correct. The subgrid viscosity is computed as:

νSGS =Ck∆
√

kSGS, (2.80)

where Ck = 0.094 is the model constant. The transport equation for kSGS is defined as:

∂kSGS

∂ t
+

∂U jkSGS

∂x j
− ∂

∂x j

[
(ν +νSGS)

∂kSGS

∂x j

]
=−τi jSi j −Cε

k3/2
SGS
∆

, (2.81)

where Cε = 1.048 is a constant.

2.5.3 Computational Costs of LES

The computational effort needed to resolve the inner and outer layers of a boundary layer
flow is considered in this subsection. The integral length-scales of the wall-bounded
flow must be resolved for a good LES. In the outer layer, the large – scale motions scale
to the boundary layer thickness δ (and δ ∼ Re−0.2). Assuming the number of cubes or
points needed to solve a computational domain is Nx ×Ny ×Nz, the number of points
needed increases as the Reynolds number rises. In the outer layer, the total number of
grid points required to resolve this region is defined as:

(NxNyNz)ol ∝ Re0.4. (2.82)

Hence, the number of grid pointed needed in the boundary-layer outer region is weakly
dependent on the Reynolds number (Piomelli and Balaras, 2002).

Close to the wall, the size of the energy-carrying eddies is proportional to the viscous
length-scale δν in the viscous sublayer. As the viscous length-scale δν is a function of
friction velocity, the dependence of the number of grid points in the viscous sublayer
vicinity must be relative to wall units. The integral eddies drastically reduce in size
in the inner layer compared to the outer layer when the Reynolds number increases.
Hence, the separation of length scales between the integral eddies and the dissipative
eddies reduces in this region. Chapman (1979) estimated that the number of grid points
needed to resolve the inner layer of a boundary layer flow as:

(NxNyNz)il ∝ C f Re2
∝ Re1.8, (2.83)

where the coefficient of friction C f = 2τw/ρU2. The implication of the two estimates
indicates that the number of grid points required to resolve the inner layer of a boundary
layer flow increases much faster than that of the outer region with increasing Reynolds
number. Also, the grid requirements for an LES in the near-wall region is close to that
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of a DNS. Figure 2.2 shows the CPU time need to compute the LES of a turbulent

Fig. 2.2 The computed cost in CPU seconds of LES of a flat – plate boundary layer flow
(Piomelli, 2008)

boundary layer flow by Piomelli (2008) done with different CFD packages. At moderate
Reynolds numbers, about 50% of the computational resources are needed to resolve
the inner layer, which only makes up 10% of the boundary layer. As the Reynolds
number grows, the computational effort required to resolve the inner layer becomes
prohibitively high and represents over 90% of the computation time. As expected, the
computational time necessary for the outer layer is almost independent of the Reynolds
number. The estimates of computational effort for boundary layer flows differ from
channel flows or other wall-bounded flows. However, the concept remains the same; the
inner layer of wall-bounded flows makes up most of the computational costs of a high
Reynolds turbulent flow despite constituting a minuscule part of the boundary layer.

2.6 Near – Wall Turbulence

Most turbulent flows of engineering importance are bounded by solid surfaces such
as internal flows through pipes or external flows over wind turbines. The presence of
solid surfaces alters the behaviour of turbulent quantities near the wall. Consequently,
turbulence models that are calibrated for homogeneous flows are adapted near walls.

As the wall is approached, the turbulent Reynolds number Ret =
k2

εν
tends to zero and

molecular viscous effects become dominant. At the wall, viscous friction is imparted on
the fluid, which leads to a no-slip condition where the velocity component parallel to
the wall is zero at the wall. This viscous friction impacts on mean velocity and turbulent
intensity within the vicinity of the wall resulting in high wall-normal gradients of the
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quantities in this region. Consequently, the strong wall-normal gradient of the parallel
component of velocity leads to the high production of turbulent kinetic energy in the
near-wall region.

The velocity component normal to the wall is zero at the solid boundary. This feature
is known as the impermeability condition; the impermeability condition has a wall –
blocking effect that damps the fluctuations of the velocity component normal to the
wall. This damping results in the increased anisotropy of turbulence as the wall-normal
fluctuations are reduced by two orders of magnitude above that of the wall-parallel
fluctuations, leading to the alteration of the shape and size of turbulence structures close
to the wall.

Furthermore, the size of the large – scale motions of flow reduces as the viscous
effects become dominant close to the wall. The reduction of the size of the large eddies
is so drastic that the clear separation of scales between the large and dissipative eddies
as introduced in Section 2.2 is no longer easily distinguishable in the near-wall region.
This feature leads to the dissipation-rate tensor becoming anisotropic.

The depiction of low-Reynolds effects, wall turbulence damping and anisotropy
enhancement makes the prediction and modelling of the near-wall region of a turbulent
flow a considerable challenge. The next two sections describe the flow features a simple
wall-bounded turbulent flow.

2.6.1 Channel Flow

A plane channel flow is a fluid flow through two long parallel plates of height h = 2δ .
The flow has a very large aspect ratio which enables the flow to be statistically in-
dependent in the spanwise direction (for clarity, this section refers the streamwise,
cross-stream and spanwise directions as representing x, y and z respectively in the
nomenclature). The flow is driven by a constant pressure gradient which balances the
wall friction. Hence, the mean flow is in the streamwise direction U and is independent
of the streamwise direction; the mean spanwise and cross-stream components of ve-
locity are zero. The cross-stream and streamwise Reynolds – Averaged Navier-Stokes
momentum equations reduce to:

0 =− 1
ρ

∂ ⟨P⟩
∂y

− ∂
〈
v′2
〉

∂y
, (2.84)

0 =− 1
ρ

∂ ⟨P⟩
∂x

− ∂ ⟨u′v′⟩
∂y

+ν
∂ 2⟨U⟩

∂y2 . (2.85)
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Differentiating the cross-stream momentum equation with respect to the x-axis leads to:

∂ 2⟨P⟩
∂x∂y

=
∂ 2⟨P⟩
∂y∂x

=
∂ 2ρ

〈
v′2
〉

∂x∂y
. (2.86)

Since
〈
v′2
〉

is independent of the streamwise direction, it can be deduced that the
streamwise pressure gradient ∂ ⟨P⟩/∂x is independent of the y and is uniform across the
flow. This deduction also means that the streamwise pressure gradient is equivalent to
the wall pressure gradient ∂ ⟨P⟩/∂x = ∂ ⟨P⟩w/∂x.

The total shear stress τ is defined as:

τ = µ
∂ ⟨U⟩

∂y
−ρ
〈
u′v′
〉
, (2.87)

where the two terms on the right-hand side of the equation represent the viscous stress
and the Reynolds shear stress, respectively. At the wall, the total stress becomes
τw = µ

∂ ⟨U⟩
∂y w

= ρν
∂ ⟨U⟩

∂y w
. At the symmetry plane y = δ , the total shear stress becomes

τ (δ ) = 0. Applying these boundary conditions into Equation 2.85 leads to the following
two expressions:

τw

δ
=−d pw

dx
, (2.88)

τ (y) = τw

(
1− y

δ

)
. (2.89)

This formulation illustrates the balance of the streamwise pressure gradient and the wall
shear stress. Besides, the shear stress goes to zero at the channel half-height δ . Since
the Reynolds shear stress is zero at the wall; the wall shear stress can be defined as:

τw = ρν

(
d⟨U⟩

dy

)

y=0
. (2.90)

The viscous stress dominates at the wall but becomes negligible in comparison to the
Reynolds stresses for most of the channel. The near-wall region where the viscous
stress is dominant becomes smaller as the Reynolds number is increased. Hence, the
relevant parameters near the wall are the wall shear stress τw and the viscosity ν . These
parameters lead to the definition of important wall units in the near-wall vicinity. The
viscous velocity scale or friction velocity is defined as:

uτ =

√
τw

ρ
=

√
ν

(
d⟨U⟩

dy

)

y=0
. (2.91)
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The viscous length-scale δv is defined as:

δv = v
√

ρ

τw
=

v
uτ

. (2.92)

The two length scales, which a wall-bounded turbulent flow motion depends on, are the
viscous length scale and the channel half-height δ . The friction Reynolds number Reτ

is defined as:

Reτ =
uτδ

v
=

δ

δv
. (2.93)

The distance from the wall can be normalised with the viscous length scale, and it is
defined as:

y+ =
y
δv

=
uτy
v

. (2.94)

It can be seen that the friction Reynolds number is the y+ at the channel half-height δ .
It is also an important parameter to distinguish the different regions in the channel flow
where the viscous stress or the Reynolds stresses dominate the flow.

The Different Regions of Channel Flow

Equation 2.89 can be rewritten as:

v
d⟨U⟩

dy
−
〈
u′v′
〉
= u2

τ

(
1− y

δ

)
. (2.95)

Equation 2.95 can be non-dimensionalised into two new equations. Using the velocity
scale uτ and the inner region lengthscale δv, Equation 2.95 is rewritten as:

d⟨U⟩+
dy+

−
〈
u′v′
〉+

=

(
1− y+

Reτ

)
, (2.96)

where the normalised velocity is ⟨U⟩+ = ⟨U⟩/uτ and the normalised shear stress is
⟨u′v′⟩+ = ⟨u′v′⟩/u2

τ . Non-dimensionalising Equation 2.95 with the velocity scale uτ

and the outer region lengthscale δ leads to:

1
Reτ

d⟨U⟩+
dη

−
〈
u′v′
〉+

= (1−η) , (2.97)
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where η = y/δ . Integrating Equation 2.96 and using the near-wall asymptotic state for
the shear stress ⟨u′v′⟩+ = O(y+3) leads to:

⟨U⟩+ = y+− 1
2

y+2

Reτ

+O(y+4), (2.98)

According to Pope (2000), the viscous sublayer is defined as the region next to the
wall (y+ < 8) where U+ ≈ y+. The Reynolds stresses are negligible compared to the
viscous stress in this region. The linear correlation between the normalised velocity and
wall distance breaks down beyond the viscous sublayer (y+ > 8).

Further away from the wall (y ≫ δν), the effect of molecular viscosity reduces.
Hence, the flow scales do not depend on the viscous length-scale. Also, this region is
far from the channel centreline (y ≪ δ ), and hence, the flow scales in this region do not
depend on the boundary layer scale δ . Equation 2.96 can be written as:

⟨U⟩+ =
1
κ

lny++B, (2.99)

where B is a constant usually given the value of 5.2 and κ is the von Karman constant
given the value of 0.41. Equation 2.99 is famously known as the logarithmic law
of the wall equation which was proposed by von Kármán (1930). The region where
the logarithmic law of the wall applies is called the log – law region. The log – law
describes the logarithm profile in the near-wall region between y+ > 30 and y/δ > 0.3.
Additionally, there is a region between the viscous sublayer and the log – law region
(8 < y+ < 30) where the logarithmic law of the wall or the linear correlation U+ ≈ y+

do not apply. This region is known as the buffer region (Pope, 2000).
Finally, in the region in the outer part of the flow y/δ > 0.3, where the logarithmic

law of the wall does not hold, the size of the turbulent motions scales with the channel
half-height δ , and the mixing length becomes constant. This region is known as the
defect layer (Pope, 2000). A correlation can be derived from Equation 2.97 for the
difference between the velocity and the maximum velocity at the channel centreline,
also known as the velocity-defect. This correlation is termed the velocity-defect law
and is defined as:

⟨U⟩−⟨U⟩max

uτ

=
2

0.6κ

(
1− y

δ

)3/2
. (2.100)

The different regions in a channel flow can be seen in the inflexion points of the velocity
profile in Figure 2.3b. The regions can also be distinguished by observing the extrema
of the plot of y+ d⟨U⟩+

dy+ in Figure 2.3a. There is a balance of the production of turbulent
kinetic energy and the rate of dissipation of the energy P = ε in the log – layer region.
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(a) Distribution of y+ d⟨U⟩+
dy+

(b) Distribution of U+

Fig. 2.3 Profiles of y+ d⟨U⟩+
dy+ and U+ for a Reτ = 2000 channel flow case using Jiménez

and Hoyas (2008) DNS data. Figure taken from Billard (2011).
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Thereafter, the production reduces and vanishes at the centreline as shear stress and the
mean streamwise velocity gradient become zero.

In addition, the peak production of turbulent kinetic energy and the fluctuating
components of velocity occurs close to the wall in the viscous region approximately
at y+ < 20. Peak turbulent kinetic energy produced close to the walls is moved to the
outer region via turbulent transport. For the streamwise, cross-stream and spanwise
components of the fluctuating velocity u′2, v′2 and w′2 respectively (also known as
Reynolds stresses), the no-slip condition and the impermeability condition result to
a two-component limit, where the turbulent motions in the flow become strongly
anisotropic in the wall parallel direction. Consequently, the cross-stream Reynolds
stress v′2 is heavily damped compared to the wall parallel components of fluctuating
velocity.

2.6.2 High Reynolds Number Flows

In the past, the numerical and experimental investigations of turbulent flows have mostly
focused on low friction Reynolds numbers below 1000. From these studies at relatively
low Reynolds numbers, it was established that most of the peak production of turbulence
occurs in the region where molecular viscous forces are dominant. Also, the turbulent
structures in the inner region have a great impact on the large-scale motions in the
outer region. Hence, the traditional opinion is that a turbulence method that focuses on
modelling the viscous sublayer and buffer region replaces the two areas where most
of the critical activities are happening in the turbulent flow. There has been too much
reliance on DNS data at very moderate Reynolds numbers, where the separation of
scales for the viscous sublayer and inertial range is yet to be established. This reliance
has led to the assumption that the modelling of the near-wall region could lead to
inaccuracies (Marusic et al., 2010).

The reasoning has been challenged recently with new experimental studies of high
Reynolds number channel, pipe and boundary-layer flows. Figure 2.4a shows the pro-
files of the production of the turbulent kinetic energy for a range of Reynolds numbers.
Figure 2.4b shows the bulk production (where the local production is multiplied by
the wall-normal distance) to indicate the integral contribution of the production for
each equal area under the semi-logarithmic profile. While the peak production of
turbulence still occurs at y+ = 12, at high Reynolds numbers, the major contribution
to bulk turbulence shifts to the log region as seen in Figure 2.4b. Figure 2.4 clearly
shows that the bulk contribution of turbulence comes in the near-wall region for a low
Reynolds number flow. However, if the near-wall region is taken as y+ ≤ 30, when the
friction Reynolds number is increased to 4200, the contribution of bulk production from
the logarithmic region equals that from the near-wall region (Smits et al., 2011). Hence,
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(a) Distribution of local production in semi-
logarithmic scale.

(b) Distribution of bulk production (Produc-
tion multiplied by y+).

Fig. 2.4 Production of turbulent kinetic energy for a range of Reynolds numbers. Figure
taken from Smits et al. (2011).

since the viscous sublayer progressively becomes thinner as the Reynolds number
increases, the significance of that region also reduces compared to the outer region. This
trend means that turbulence methods that model the inner region of a wall-bounded
flow could be more accurate for high Reynolds number flows.

Furthermore, a high Reynolds number flow is characterised by a distinct separation
of scales of turbulent motions and a long logarithmic velocity profile. Debates have
centred on where the log-layer begins. It has been traditionally accepted that the buffer
layer does not extend beyond y+ = 50. Studies by Zagarola and Smits (1998) and Nagib
et al. (2007) have shown that viscous effects permeate deeper into the flow at higher
Reynolds numbers. Therefore, Zagarola and Smits (1998) note that for a Re = 35×106

turbulent pipe flow, the logarithmic profile commences at y+ ≥ 600. The review done
by Smits et al. (2011) indicates that the range of the logarithmic distribution of velocity
widens as the Reynolds number is increased. Hence, the log-layer is well established
for high Reynolds number flows while it is barely noticeable for low Reynolds number
flows.

Also, the log-law is an important equation for standard wall function formulations
for RANS and LES methods. The von Karman constant κ has often been taken as 0.41.
Though, the review of Smits et al. (2011) notes that the constant rather depends on
the type of flow. McKeon et al. (2004) take κ as 0.421 for turbulent pipe flow while
Nagib and Chauhan (2008) observe that the constant is 0.384 for boundary layer flows
and also differed for channel flow. The differences of the von Karman constant for
different flow types at high Reynolds numbers indicate that the constant is not universal.
While the small variations do not have a profound impact on the velocity profiles, the
non-universality of the von Karman constant affects turbulence models or applications
that require the accurate prediction of skin friction at high Reynolds numbers.

Finally, large-scale motions or superstructures scale with the boundary-layer thick-
ness of a turbulent flow. These immense structures appear to exist in the log-layer or the
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outer layer of the flow. Balakumar and Adrian (2007) discovered that superstructures
contribute significantly to the production of turbulent kinetic energy and Reynolds
stresses. Hence, when there is a clear separation of scales of motions, the motions in
the log-layer and outer layer significantly impact the behaviour of near-wall turbulence.
This trend further reinforces the viability of methods that model the near-wall region
for high Reynolds number flows.

2.7 Standard Approaches of Wall Functions in RANS

The region near the wall contains complex viscous and turbulent interactions. The
steep gradients of relevant turbulence and flow quantities require the need of a very fine
computational grid to resolve the quantities, even for a RANS approach. Therefore,
wall functions were developed to eliminate the need to resolve the viscous sublayer
and part of the log – layer, thereby considerably reducing the computational cost. Wall
functions work by using an approach to calculate wall fluxes (momentum, heat transfer
or/and mass transfer), which then act as a boundary condition at the first node at the
wall, hence, allowing for a reduction in the near-wall mesh requirements (Hanjalic
and Launder, 2011). Wall functions provide an approximate expression for the mean
velocity distribution in the inner region of the flow.

Standard wall function approaches for the momentum equation use the law of the
wall of Equation 2.99 to modify the discretised transport equations for momentum,
kinetic energy and rate of dissipation in the near-wall cell. For near cell node P located
in the log – layer, as seen in Figure 2.5, the law of the wall equation can be modified to
describe the logarithm velocity distribution in the log-layer as:

c1/4
µ k1/2⟨U⟩

τw/ρ
=

1
κ

ln

(
Ec1/4

µ k1/2y
v

)
, (2.101)

where the normalising velocity scale is taken as c1/4
µ k1/2. This velocity scale is employed

rather than the standard viscous velocity scale
√

τw/ρ to account for non-equilibrium
situations where there was no connection between the wall shear stress and turbulent
quantities.

Equation 2.101 can be rearranged to define the wall shear stress as:

τw =
ρκc1/4

µ k1/2⟨U⟩
lnEc1/4

µ k1/2y/v
. (2.102)

The turbulent kinetic energy must be known to evaluate the wall shear stress. The
turbulent kinetic energy is obtained by solving a transport equation. However, the
production Pk and dissipation rate ε rapidly change near the wall, which leads to using
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Fig. 2.5 Cell notation used by standard wall functions. Figure obtained from Gant
(2002).
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their cell centred values at node P as a poor choice. Instead, the cell averaged values
of the rate of production Pk and dissipation rate ε are used to consider changes in
turbulence quantities in the near-wall cell. The methods to calculate Pk and ε differ
depending on the wall function approach.

Launder and Spalding (1974) assumed that the shear stress ⟨u′v′⟩ is constant across
the fully turbulent region, but zero in the viscous sublayer. Hence, the average produc-
tion of turbulent kinetic energy due to shear stress is defined as:

Pku′v′ =
1
yn

∫ yn

0
−ρ
〈
u′v′
〉 ∂ ⟨U⟩

∂y
dy = τw

⟨UP⟩
yP

, (2.103)

with the Reynolds shear stress assumed being equal to the wall shear stress:

−ρ
〈
u′v′
〉
= ρτw = µt

∂ ⟨U⟩
∂y

, (2.104)

and the velocity gradient at node P taken as the linear variation of the velocity at node P
to the wall-normal distance, which leads to:

τw

ρ
= cµ

k2

ε

⟨UP⟩
yP

. (2.105)

The cell averaged dissipation rate is obtained as:

ε =
c3/4

µ k3/2
p ⟨U+

p ⟩
yP

, (2.106)

where ⟨U+
p ⟩ is defined as ρc1/4

µ k1/2
p U/τw.

Chieng and Launder (1980) evaluated the cell average production of turbulent
kinetic energy by assuming that Reynolds shear stress is equal to the wall shear stress
in the fully turbulent region but zero in the viscous sublayer. Also, the velocity gradient
∂Ū/∂y is obtained by differentiating the law of the wall equation. Hence, Pkuv is defined
as:

Pku′v′ =
1
yn

∫ yn

yv

τw
τw

ρκc1/4
µ k1/2y

dy =
τ2

w

ρκc1/4
µ k1/2yn

ln
yn

yv
, (2.107)

where yv is the sublayer thickness which is determined by assuming a constant sublayer
Reynolds number of 20 (Rev = k1/2

P yv/ν = 20).
However, the dissipation rate is not zero in the viscous sublayer, unlike the produc-

tion. The cell – averaged dissipation rate is assumed to be uniform across the viscous
sublayer and is given the value of the dissipation rate at the wall. In the turbulent region,
the dissipation rate is computed from k3/2/ε = cly. The cell – averaged dissipation rate
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is thus calculated as:

ε =
1
yn

(∫ yv

0

2vkp

y2
v

dy+
∫ yn

yv

k3/2
p

cly
dy

)
=

1
yn

[
2k3/2

p

k3/2
p yv/v

+
k3/2

p

cl
ln

yn

yv

]
. (2.108)

For the temperature transport equation, the log law is used to define the temperature
equation as:

⟨T+⟩= 1
κh

lny++ ch, (2.109)

where κh is the thermal von Karman constant usually taken 0.38, the constant ch

depends on the molecular Prandtl number, T+ is the dimensionless temperature defined
as ⟨T+⟩=(⟨T ⟩−⟨Tw⟩)/Tτ , and the friction temperature Tτ is defined as Tτ = q′′w/ρcpUτ

(q′′w is the wall heat flux and cp is the specific heat).
The temperature log law can be rewritten as:

⟨T+⟩= σt
(
⟨U+⟩+P

)
, (2.110)

where P is the Jayatilleke function which depends on the ratio of the molecular to
turbulent Prandtl numbers and σt is the turbulent Prandtl number.

Either the wall temperature or the wall heat flux can be obtained to be used for
the discretised transport equation of temperature. If the semi-logarithmic velocity and
temperature profiles are assumed to apply in the fully turbulent region, then the wall
temperature Tw is defined as:

⟨Tw⟩= ⟨TP⟩+
q′′wσt (⟨U+⟩+P)

ρcpc1/4
µ k1/2

P

. (2.111)

The wall heat flux q′′w is defined as:

q′′w =
ρcpc1/4

µ k1/2
P (⟨TP⟩−⟨Tw⟩)

σt (⟨U+⟩+P)
. (2.112)

The usage of standard wall functions assumes that the turbulent flow follows a semi-
logarithmic velocity and temperature distribution near the wall. Another assumption is
that the Reynolds shear stress is equal to the wall shear stress. Finally, standard wall
functions work with the premise that the turbulent kinetic energy is in local equilibrium
which ensures that production balances the dissipation rate.

These assumptions are valid for simple flows that experience constant pressure
gradients or do not experience acceleration/deceleration. The performance of standard
wall functions has been well validated for channel flows and pipe flows with DNS
data. However, for complex flows typically encountered in engineering or even simple
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geometries with curved wall surfaces, the assumptions do not hold, and the performance
of standard wall functions degrades. The University of Manchester developed two new
wall function schemes that handle complex turbulent flows that depart far from local
equilibrium. The two novel schemes are the analytical wall function of Craft et al.
(2002) and the numerical wall function (NWF) of Craft et al. (2004). Only an overview
of the numerical wall function scheme will be provided as elements of this approach
are incorporated in this research project.

2.7.1 The Numerical Wall Function for RANS

The numerical wall function scheme was developed by Craft et al. (2004) to handle
flows where local turbulence deviates far from local equilibrium near the wall. In this
approach, there are two computational grids: the main grid and the subgrid (Figure 2.6).
The main grid resolves the flow except at the wall where the first cell covers the viscous
sublayer and part of the log layer. The subgrid is embedded into the first cell of the main
grid and is divided into numerous slices. The numerical wall function is developed for
information to be exchanged between the two grids.

Fig. 2.6 Subgrid embedded in the first cell of the main grid. Figure obtained from Gant
(2002).

The subgrid obtains the streamwise pressure gradient (Pe −Pw)/∆x from the main
grid, as seen in Figure 2.7. The pressure gradient is assumed to be uniform across the
subgrid cells. Wall parallel momentum equations are solved in addition to equations of
turbulence quantities and scalars. Since the pressure gradient is already known, there is
no need for complex pressure – velocity coupling, thereby reducing computational costs.

62



2.7 Standard Approaches of Wall Functions in RANS

The main grid supplies the streamwise velocity, turbulent kinetic energy, dissipation and
other needed turbulence quantities at position n (see Figure 2.7) as boundary conditions
to the subgrid domain. Furthermore, the wall-normal velocity V can be obtained from
the continuity equation. Ultimately, the subgrid domain computes the wall-fluxes of
momentum and heat transfer. The information of these wall-fluxes is fed into the main
grid as source terms of the transport equations of the main computation. Two-way
coupling of information occurs between the primary grid and the subgrid until the
important quantities in the main grid satisfy the convergence criteria.

Fig. 2.7 Schematic illustrating the exchange of quantities between the two grids. Figure
obtained from Craft et al. (2004).

The numerical wall function has the advantage of working with any turbulence
model and has been applied with success to flows where standard wall functions fail.
The normal impingement of an axisymmetric jet onto a heated plane was simulated by
Craft et al. (2004). Linear turbulent – viscosity models have failed in predicting the
parameters of the flow; hence, a cubic turbulent – viscosity model was incorporated
with the numerical wall function. The numerical results utilising the wall function was
in good agreement with the experimental data. Moreover, the simulated results matched
those produced by another simulation done with the low – Reynolds - number cubic
turbulent – viscosity model. The distribution of Nusselt number data was not sensitive
to the change of the size of the first cell in the primary grid, which is a significant
problem faced by standard wall function approaches. Craft et al. (2004) reported a large
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increase of the computational time for the numerical wall function compared to the
standard wall function. However, the numerical wall function still achieved 90% time
saving against the low – Reynolds number model.

2.8 Hybrid RANS/LES Methods

The mesh requirements in the inner region of a wall-bounded flow for LES is almost
the same as those for DNS. This grid requirement has meant that LES is also unfeasible
for high Reynolds number flows. This problem has led to various researches on how
to reduce the computational cost of LES. One of the results of the research is the
development of hybrid RANS/LES methods. Often these methods involve solving
unsteady RANS next to the wall where the Reynolds stresses are highly anisotropic
and then solving LES far away from the wall where the grid requirements are almost
independent of Reynolds number. This approach takes advantage of the structural
similarity of the momentum transport equations of LES and RANS. Both momentum
transport equations have stresses that need to be closed. A detailed review of hybrid
RANS/LES methods will not be discussed here as the method is not the focus of this
project (Extensive reviews can be found in Fröhlich and von Terzi (2008) and Piomelli
(2008)). However, some key useful aspects of the hybrid RANS/LES method and its
development will be highlighted.

Solving the RANS and LES simultaneously on the same grid often means that there
is an interface in the domain between RANS and LES. At the interface, there is a sudden
switch between the RANS computation to LES. Hence, the problem of coupling the
statistically averaged RANS velocity field and filtered LES velocity field at the interface
arises. Also, the LES stresses are quantities representative of the filtered grid while
the RANS stresses are physical properties of the flow. This leads to a difference of
stresses between the LES and the RANS at the interface, causing the major challenge
of insufficient resolved-eddies in that region. These issues result in a mismatch of
the logarithm velocity profiles between the LES and RANS regions. This problem
known as the log-layer mismatch (LLM) has been the subject of many studies for hybrid
RANS/LES methods Piomelli (2008). Efforts at reducing the LLM include adding
forcing terms that artificially increases the number of resolved eddies at the interface.

Uribe et al. (2010) attempted to solve the LLM problem by proposing an overlap
of the RANS and LES fields. The SGS stress tensor can be decomposed into a locally-
isotropic part and an inhomogeneous part, which is derived from ideas by Schumann
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(1975). The decomposition of the stress tensor is defined as:

τ
r
i j −

2
3

τkkδi j =−2vr fb
(
Si j −⟨Si j⟩

)
︸ ︷︷ ︸

locally isotropic

−2(1− fb)va⟨Si j⟩︸ ︷︷ ︸
inhomogenous

, (2.113)

where the viscosities vr and va are based on fluctuating and mean strains, respectively.
The viscosity vr is computed using an SGS model, while va is evaluated with a RANS
model. The isotropic part, which determines the dissipation rate, is proportional to the
fluctuating strain, while the inhomogeneous part controls the shear stress and mean
velocity profile. A long-time average of the two components leads to the isotropic part
being zero and the inhomogeneous part becoming the standard RANS formulation of
turbulent viscosity. The term fb is a blending function. The blending function is tuned
to zero in the region near the wall where the shear stress ⟨u′v′⟩ is under-resolved and
fb → 1 in the LES region where the shear stress is well resolved. In this formulation, the
velocity field is partially time-averaged over an averaging window of 10 times the eddy
turnover time. The blending function is designed to give a smooth transition between
the RANS region and the LES region. The blending function is defined as:

fb = tanh
(

Cl
Lt

∆

)n

, (2.114)

where the empirical constants Cl and n are 1 and 1.5 respectively, and Lt is the turbulent
length-scale. The proposed model gives good results when simulating channel flow and
trailing-edge flow. The log-layer mismatch problem is not detected in the simulations.

Xiao and Jenny (2012) developed a novel hybrid RANS/LES formulation where the
need to specify an interface between the RANS and LES computations is eliminated.
Instead, two meshes with the same outer dimensions for the turbulent flow case are
used. The LES computations are on one mesh, while RANS computations are done on
a separate grid. The LES mesh is not refined near the wall, but the near-wall refinement
is done for the RANS mesh. Drift terms are added to the RANS and LES momentum
equations to ensure that the mean quantities of the RANS and LES grids are consistent
with one another. Hence, near the wall, where the LES is under-resolved, the mean
filtered velocity field is relaxed towards the RANS velocity filter through the drift term.
In the near-wall region, the RANS is expected to be more accurate than the LES since
the LES grid is coarse in this region. In the regions where the LES is well resolved and
expected to perform better than the RANS, the RANS velocity field is relaxed towards
the exponentially weighted-averaged filtered velocity field. The momentum transport
equation for LES and RANS is defined as:

∂U∗
i

∂ t
+

∂U∗
i U∗

j

∂x j
=− 1

ρ

∂ p∗

∂xi
+ v

∂ 2U∗
i

∂xi∂x j
−

∂τ∗i j

∂x j
+Q∗

i . (2.115)
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The pressure equation is defined as:

1
ρ

∂ 2 p∗

∂xi∂x j
=− ∂ 2

∂xi∂x j

(
U∗

i U∗
j + τ

∗
i j
)
− ∂Q∗

i
∂xi

. (2.116)

The variable Q∗
i is the momentum drift term, which ensures that the RANS and LES

mean velocity and total Reynolds stress fields gradually become consistent with one
another. For the LES momentum equation, the filtered terms in Equations 2.115 and
2.116 are defined as: U∗

i =U i, p∗ = p̄, τ∗i j = τr
i j and Q∗

i = QL
i . The terms for the RANS

equations are replaced as: U∗
i = ⟨Ui⟩, p∗ = ⟨p⟩,τ∗i j = ⟨u′iu′j⟩ and Q∗

i = QR
i .

To compute the drift terms, the partial time average of the filtered velocity, stress
and dissipation fields is computed. The partial time average is computed employing
the exponentially weighted average (EWA). The exponentially weighted average of a
time-dependent quantity /0 is defined as:

⟨ /0⟩EWA =
∫ t

−∞

1
T

/0
(
t ′
)

exp−(t−t ′)/T dt ′, (2.117)

where T is the time-scale for the exponential weighted averaging operation. Hence, the
exponential weighted averaged velocity is assumed to be equivalent to the Reynolds
average velocity ⟨U i⟩EWA = ⟨Ui⟩. The individual stress components of the LES should
be consistent with the Reynolds stresses which are defined as ⟨τi j

EWA⟩= ⟨u′iu′ j⟩. The
stresses of the LES field is defined as the composition of the product of resolved
fluctuations and modelled fluctuations about the filtered EWA velocity which is defined
as τi j = u′iu

′
j + τr

i j.
To enforce the consistency requirements, the drift term for the LES momentum

equation is defined as:

QL
i =





Ui−⟨U i
EWA⟩

τl
+

Gi j

(
⟨U j

EWA⟩−U j

)

τg
in RANS region

0 in LES region
. (2.118)

Xiao and Jenny (2012) referred to the RANS region as the area of the LES grid that is
deemed to have low resolution, while the LES region is the area of the LES grid that is
expected to resolved flow quantities. Therefore, the drift term QL

i in Equation 2.118 is
only active in the area of the LES grid that is poorly resolved. The coefficients τl and
τg are the relaxation time-scales that determine how quickly consistency is achieved.
Gi j is the normalised difference between the partial time-averaged LES stresses and the
Reynolds stresses which is defined as:

Gi j =
⟨τi j

EWA⟩−⟨u′iu′ j⟩
⟨τkk

EWA⟩+ ⟨u′ku′k⟩
. (2.119)
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The left term of the LES drift force in Equation 2.118 forces the average filtered velocity
field towards the RANS velocity where the LES grid is under-resolved. Also, the right
term with the variable Gi j in Equation 2.118 ensures that the LES resolved fluctuations
are relaxed towards the Reynolds stresses.

For the RANS grid, the drift force QR
i in the RANS momentum equation is defined

as:

QR
i =

{(
⟨U i

EWA⟩−⟨Ui⟩
)
/τr in LES region

0 in RANS region
, (2.120)

where τr is the relaxation time-scale. The RANS drift term is only active in the far-wall
region of the RANS grid, where the LES is expected to perform better. This drift term
QR

i ensures that RANS velocity is relaxed towards the EWA velocity of the LES domain.
The dual-mesh hybrid RANS/LES approach is applied to plane channel flow simu-

lation, where the LES grid is very coarse, and channel flow computation with periodic
hills. Xiao and Jenny (2012) observe good agreement with DNS data for the two
simulations. There are noticeable problems with the implementation of Xiao and Jenny
(2012) dual mesh hybrid RANS/LES method. First, the region where the LES grid
is under-resolved is not automatically determined. This region is prescribed before
the computations commence. This prescription means that it is difficult to use the
dual-mesh approach for more complicated geometries. Second, the timescales T , τr, τl

and τg are also specified. The reasoning behind the specification of the time-scales are
not made clear by the proposers of the method, plus the time scales used for the channel
flow simulation differ from that of the periodic hills simulation. Tunstall et al. (2017)
remedied the first problem by assuming the LES grid is well resolved at a local distance
where the turbulent Reynolds number is greater than 200. The turbulent Reynolds
number is defined as Rey =

√
ky/v. Hence, a blending function is defined which auto-

matically switches on or off the computation of drift terms for the LES and RANS fields.
Furthermore, the relaxation time-scales are made a function of the turbulent time-scale
k/ε obtained from the RANS field. This ensures that the relaxation time-scales are
automatically computed in various regions of the computational domain. Ideas of the
dual-mesh hybrid RANS/LES form the basis of the subdomain wall function developed
by this project. Details of the subdomain wall function are found in Paper I.
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Chapter 3

Review of Wall Modelling Approaches
in Large Eddy Simulation

LES requires excessive computational effort to compute high Reynolds number wall-
bounded flows. Despite the exponentially improving performance of computing technol-
ogy, access to high-performance computing facilities is still restricted. These problems
motivated researchers to develop methodologies to reduce the computational require-
ments of LES. The focus has been placed on modelling the inner layer of the turbulent
flow. The review will put more emphasis on the evolution of the modelling of wall
treatments for LES. The current implementation of different frameworks of wall –
layered models or wall function for LES will be critically assessed in this chapter.

3.1 Problem Description

As noted in Chapter 2, RANS methods are commonly used in industry as they require the
least amount of computational effort compared to LES and DNS approaches. However,
the significant effect of boundary conditions of the flow geometry on the integral
scales of the flows makes creating a universal RANS model difficult. Hence, the
performance of RANS models widely varies for different flow configurations, unless the
RANS coefficients are properly tuned. LES and DNS approaches are used in academic
research because of the unparalleled level of detail and accuracy of the two methods.

In the inner layer of a turbulent flow, the integral eddies scale with the viscous
length scale δν = ν/uτ . The implication is that the separation of scales between the
integral and dissipative eddies is no longer distinct in the inner layer. Hence, for the
LES approach, where only the small – scale motions are modelled, a computational grid
approaching the requirements of DNS must be employed for the inner layer of the flow
where viscous forces are dominant. In LES, the recommended wall-normal distance
for the first grid point is y+ ≈ 1. While the recommended spacing of the first grid point
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for the streamwise and spanwise directions are ∆x+ ≈ 30− 100 and ∆z+ ≈ 15− 40
respectively (Larsson et al., 2016).

Flows typically encountered in engineering are at a very high Reynolds number
where the size of the inner layer is almost insignificant in comparison to the flow
domain. Consequently, this leads to the motivation of modelling the inner layer to
enable the use of LES in engineering design or academic research of high Reynolds
number flows. Typical wall function approaches for LES resolve the large energetic
motions in the outer layer without making any modifications in this area. Rather, the
dynamic processes in the inner layer are represented by a wall shear stress to reduce
the required grid size in this location, and hence, lowering the computational costs.
This modelling removes the process of peak production of turbulence in the inner layer.
The truncating of the inner-wall dynamic processes does not stop the generation of
turbulence in the outer region of a boundary layer. As identified in Section 2.6.2, the
Reynolds stresses are still produced and dissipated in the outer layer of the flow for
high-Reynolds number flows. The next section focuses on methods that algebraically
compute the wall shear stress that represent the turbulent processes in the near-wall
region.

3.2 Equilibrium Wall Functions (Approximate Bound-
ary Condition)

The implementation of the equilibrium wall functions (also known as the approximate
boundary condition) is similar to the standard wall functions that are used in RANS
modelling. The first cell at the wall of the domain bypasses the layer where molecular
friction is dominant. Similar assumptions to standard wall functions are made such as
flow acceleration and pressure gradient are negligible in the first cell, and that the shear
stress is assumed constant across the first cell. Hence, the shear stress can implicitly be
solved from the law of the wall equation defined as:

U+ =
1
κ

lny++B. (3.1)

Deardorff (1970) was the first to implement wall functions for LES. The author
argued that solving the law of the wall for the wall shear stress only worked when
the flow quantities were averaged. The following equations are defined to calculate
boundary conditions to feed the momentum transport equation as source term at each
time step:

∂ 2U
∂y2 =

1
κY 2 +

∂ 2U
∂ z2 , (3.2)
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∂ 2W
∂y2 =

∂ 2W
∂x2 , (3.3)

where Y is the location of the first grid point at the wall and V = 0. The numerical
results obtained by Deardorff (1970) poorly agree with the channel flow data of Laufer
(1948). The poor results are attributed to the outer layer of the channel flow being
under-resolved (Piomelli and Balaras, 2002).

Schumann (1975) first showed success in modelling the boundary layer for LES
computations. The author related the calculation of the instantaneous wall shear stress
with the velocity components at the first wall cell; the fluctuations of the wall shear
stress is ensured to be in phase with the streamwise velocity. The components of wall
shear stress are defined as:

τxy,w(x,z) =
⟨τw⟩

⟨U (x,Y,z)⟩U (x,Y,z) , (3.4)

τyz,w(x,z) = v
W (x,Y,z)

Y
, (3.5)

where ⟨ ⟩ represents a time-averaged quantity, and τxy,w and τyz,w are the streamwise and
spanwise components of wall shear stress respectively and where Y is the location of the
first grid point at the wall. The mean streamwise velocity ⟨U (x,Y,z)⟩ is obtained from
the law of the wall. The time-averaged wall shear stress is given a - priori by computing
the value based on the specified pressure gradient of the plane channel. This approach
of computing the mean wall shear stress is not feasible for more complex flows. The
instantaneous streamwise shear stress fluctuates around the mean value. The computed
mean velocity for turbulent channel flow is in good agreement with experimental data.
It should be noted that Schumann (1975) used a higher mesh resolution for the channel
flow computation than Deardorff (1970), and an improved subgrid turbulence model is
also used.

Piomelli et al. (1989) noted from work by Rajagopalan and Antonia (1979) that the
inclined elongated turbulent structures near the wall affect the correlation between the
wall shear stress and velocity in the first cell. The instantaneous velocity at the first cell
is not always connected or affected by the skin friction of the wall directly beneath the
cell. Instead, there is a time delay between the velocity at the first cell and the wall shear
stress some lateral distance away due to the inclination of the elongated integral eddies.
Hence, Piomelli et al. (1989) modified the computation of the instantaneous streamwise
and spanwise velocity by introducing a displacement distance ∆ in the wall parallel
directions in Equations 3.4 and 3.5 to account for the time delay of the correlation
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between the first cell velocity and skin friction. The modified equations are defined as:

τxy,w(x,z) =
⟨τw⟩

⟨U (x,Y,z)⟩U (x+∆S,Y,z) , (3.6)

τyz,w(x,z) =
⟨τw⟩

⟨U (x,Y,z)⟩W (x+∆S,Y,z) , (3.7)

where the average wall shear stress ⟨τw⟩ is closed by solving the law of the wall equation
iteratively. Channel flow numerical and experimental data were studied to determine the
downstream displacement between the skin friction and first cell velocity. The authors
estimate the displacement as ∆S = Y cot8◦ for 30 < Y+ < 50 and ∆S = Y cot13◦ for
larger distances away from the wall. Good prediction of the mean velocity profile is
reported for the channel flow results, and the mean turbulent quantities are in good
agreement with experimental data.

Marusic et al. (2001) argued that for higher Reynolds numbers, the models by
Piomelli et al. (1989) and Schumann (1975) give inaccurate results for the components
of wall shear stress. In their channel flow experiments and numerical computations,
it is observed that the energy of the fluctuating components of wall shear stress is
not adequately estimated for the two above models. Secondly, when the spectra of
the wall shear stress are calculated by varying the position of the first cell at the wall,
the spectra of the different positions do not match, as shown in Figure 3.1. Hence,
the authors proposed a new model to ensure that the spectra of the modelled wall
shear stress at different wall-normal positions in the log – layer will match each other.
The instantaneous wall shear stress is decomposed into its mean wall shear stress and
fluctuating components. The fluctuating part is multiplied by a constant to return the
correct level of energy. The new model is defined as:

τxy,w (x,z, t) = ⟨τw⟩−ατUτ

[
U (x+∆S,yo1,z, t)−⟨Uo1⟩

]
, (3.8)

where ατ is a characteristic constant which is dependent on the pressure gradient (For a
zero – pressure gradient flow, ατ is given a value of 0.10). The improved results for a
turbulent boundary layer flow (Reθ = 3500) are shown in Figure 3.2.

A limitation of the model is that the characteristic constant varies. The authors argue
that the matching of the wall shear stress spectra at different locations is dependent on
the pressure gradient. However, a functional form of the characteristic constant can be
determined with little dependence on the flow geometry. Another limitation is that the
mean wall shear stress has to be known apriori.

Radhakrishnan and Piomelli (2008) applied the models developed by Marusic et al.
(2001) (identified as MKP) and Piomelli et al. (1989) (identified as standard) to simulate
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Fig. 3.1 Comparison of the wall shear stress calculated by Piomelli et al. (1989) and
measured by experiment. (a) The correlation coefficient between calculated and mea-
sured wall shear stress at different first grid point positions, (b) Spectra of calculated
and measured wall shear stress. Figures obtained from Marusic et al. (2001).
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Fig. 3.2 Comparison of the wall shear stress modelled by Marusic et al. (2001) and
measured by experiment for a zero - pressure gradient boundary layer flow (Reθ = 3500).
(a) Sample of filtered wall shear stress at y+ = 98, (b) Spectra of calculated and measured
wall shear stress. Figures obtained from Marusic et al. (2001) (Reθ = 3500).
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(a) φ = 0◦,30◦,60◦.

(b) φ = 90◦,120◦,150◦.

Fig. 3.3 Profiles of mean velocity at different phase angles. Figures obtained from
Piomelli (2008).

a boundary layer flow subjected to sinusoidal oscillation U∞ =Uom sinωt, where Uom

is the freestream velocity oscillation amplitude. The results of a hybrid RANS/LES
method are also compared. The predicted wall shear stress distribution by the MKP
and standard methods are in good agreement with the experimental data, although the
standard method slightly over-predicts the peak values and under-predicts the lowest
values of wall shear stress. The velocity profiles by the two methods match the shape of
the experimental data at different phases of the flow, as seen in Figure 3.3. However, for
a flow that differed from a simple turbulent channel flow, there are obvious deviations
from the experimental data.

3.2.1 Appraisal of Equilibrium Wall Functions

The equilibrium wall function method started as a simple correlation between the
wall shear stress and the streamwise velocity of the first node at the wall using the
law of the wall equation. Added formulations ensured that the computation of the
instantaneous components of the wall shear stress was in phase with the streamwise
velocity. Equilibrium wall function methods were tested with success for simple flow
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geometries like the turbulent channel flow. However, the farther the flow departed from
local equilibrium, the worse the results became. For instance, the rotating turbulent
channel flow was computed by Balaras et al. (1996) using the method by Piomelli et al.
(1989). The wall shear stress was under-predicted on the unstable side of the channel
and over-predicted on the stable side of the channel flow. The order of magnitude of
error for a case with low rotation was about 10%; the error in predicting the wall shear
stress increased as the rotation speed was increased. Additionally, when the log-law
methods were used to simulate flow over an aerofoil, the flow was predicted accurately
in the regions of zero – pressure gradient and favourable pressure gradient. When the
flow was in the area of adverse pressure gradient, the equilibrium wall function model
did not accurately compute the flow field (Wang and Moin, 2000). Consequently, the
application of approximate boundary condition methods to complex engineering flows
is limited.

It should be noted that Wu and Squires (1998) accurately predicted the three -
dimensional turbulent boundary layer flow over a swept bump using methods developed
by Schumann (1975), despite the presence of adverse and favourable pressure gradients
in the flow. In this case, the mean wall shear stress was not computed from the log-law
equation but was obtained separately from RANS computations and experimental data.
This idea illustrates that there is an opportunity to test these methods if a scheme to
calculate the wall shear stress under non – equilibrium conditions are developed.

Furthermore, Piomelli et al. (1989) and Marusic et al. (2001) noted the occurrence
of time and space delay of the correlation between the instantaneous velocity and the
wall shear stress. A – priori studies of DNS turbulent channel flow data is needed to
accurately model the delay to ensure that the wall shear stress is correctly imposed in
the LES.

3.3 Two-Layer Modelling (Wall-Modelled LES)

The two-layer approach, also known as wall-modelled LES (hereinafter known as TLM
or WMLES) is similar to the implementation of the RANS numerical wall function.
Two grids solve different sets of equations. The first grid is the main domain of the
flow, which solves the LES transport equations. The grid resolution near the wall is
coarsened; therefore, the first grid point bypasses the region where molecular viscosity
is dominant. The second grid often has the height of the first cell of the main domain.
The second grid receives information of the instantaneous filtered velocity and the
instantaneous filtered temperature from the main LES grid at the interface between the
two domains. RANS transport equations are solved in the second grid, which leads
to the computation of wall fluxes of momentum, heat transfer or mass transfer. These
wall fluxes are then supplied to the first grid as source terms to the LES momentum
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Fig. 3.4 Schematic showing the two grids used for the wall-modelled LES method.
Figure obtained from Larsson et al. (2015).

and heat transfer transport equations. The illustration of the two-layer scheme and how
information is exchanged is shown in Figure 3.4.

Balaras et al. (1996) were the first to propose this approach. Computations are done
for the turbulent plane channel, square duct and rotating channel flows, and the results
are compared to those produced by the approximate boundary condition method of
Piomelli et al. (1989).

In the second grid of the wall-modelled LES, boundary layer assumptions are made
for the RANS momentum equations. Thus, the momentum transport equation for the
velocity component normal to the plane is not solved, and diffusion only in the normal
direction is considered. The cross – stream velocity is obtained from the continuity
equation. The boundary layer equations are defined as:

∂ ⟨Ui⟩
∂ t

+
∂ ⟨Un⟩⟨Ui⟩

∂xi
+

1
ρ

∂ ⟨P⟩
∂xi

=
∂

∂xn

[
(ν +νt)

∂ ⟨Ui⟩
∂xn

]
, (3.9)

where i = 1,3 represents the wall-parallel components of the momentum equation that
are solved and n indicates the normal direction. The pressure gradient is obtained from
the first point of the main grid. The wall-normal velocity is calculated as:

⟨Un⟩=−
∫ y

0

(
∂ ⟨U1⟩
∂x1

+
∂ ⟨U3⟩
∂x3

)
dy. (3.10)

The turbulent viscosity νt in the RANS grid is closed using the mixing – length
turbulence model since the flow configuration is relatively straightforward. The turbulent
viscosity is chosen to represent all the scales of motion that are under - resolved in the
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first cell of the main grid. The mixing length model used by the authors is defined as:

vt = (κy)2 D(y) |S| , (3.11)

where |S| is the magnitude of the rate of strain in the RANS grid and D is a damping
function defined as:

D(y) =
[
1− exp

(
−
(
y+/A+

)3
)]

, (3.12)

where A+ = 25.
For the square duct flow, secondary flow occurs at the corners or in the transverse

plane; hence, the departure from standard velocity logarithm profile in those regions.
The friction Reynolds number of the case is 1125. The approximate boundary condition
method fails to predict the skin friction at the corners, although the wall-modelled LES
does better (Figure 3.6). Away from the corners, the skin friction predicted by the
WMLES deviates a little from experimental data. In the mid-plane of the duct, the
mean velocity profiles are accurately predicted, as seen in Figure 3.5. However, the two
methods deviated from the reference data in predicting the Reynolds stresses, especially
close to the wall.

Fig. 3.5 Mean streamwise velocity profile along the mid-plane for square duct flow.
Legend: WMLES (+ + +), Approximate boundary condition (∆ ∆ ∆), Experimental
Data 1 ( ), Experimental Data 2 ( ). Figure obtained from Balaras et al. (1996).

Wall-modelled LES demonstrates its superiority in simulating the rotating channel
flow case. The friction Reynolds number of the flow is 200, and the rotation rate is
varied between 0.069 to 0.210. The approximate boundary condition failed in predicting
the skin friction as noted in Section 3.2.1, while the WMLES is in reasonable agreement
with the experimental and the fully resolved LES data. While the prediction of mean
velocity and Reynolds stresses is in fairly good agreement for the WMLES for all
rotation cases, the results worsened in the region of the stable side of the rotation as the
rate of rotation increased.
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Fig. 3.6 Normalised wall shear stress along the lower wall for square duct flow. Legend
is the same as Figure 3.5. Figure obtained from Balaras et al. (1996).

Wall-modelled LES demonstrates its superiority in simulating the rotating channel
flow case. The friction Reynolds number of the flow is 200, and the rotation rate is
varied between 0.069 to 0.210. The approximate boundary condition failed in predicting
the skin friction as noted in Section 3.2.1, while the WMLES is in reasonable agreement
with the experimental and the fully resolved LES data. While the prediction of mean
velocity and Reynolds stresses is in fairly good agreement for the WMLES for all
rotation cases, the results worsened in the region of the stable side of the rotation as the
rate of rotation increased.

Cabot (1996) and Diurno et al. (2001) extended the application of the new method
to simulate a turbulent flow behind a backwards-facing step of Reynolds number
Reh = 28,000 (based on step height and inlet velocity) and with a 4:5 expansion ratio
(geometry shown in Figure 3.7)) . Cabot (1996) modified the von Karman constant
κ in the mixing – length turbulent equation by creating a model to damp the value of
the constant κ dynamically. The paper argued that since Reynolds stresses are already
contained in the advection term of the RANS boundary layer equations, the value of
the turbulent viscosity will be overpredicted. The approximate boundary condition
method is tested as well. Cabot (1996) reported that the approximate boundary condition
underpredicts the wall shear stress while the wall-modelled LES without the damping
of κ overpredicts the wall shear stress due to excessive turbulent viscosity. Skin
friction is moderately overpredicted in the separated region when the WMLES with
the dynamically damped von Karman constant is used. All the models did not detect
the corner recirculation that is typical of turbulent flow behind a backwards step and
produced a bigger backflow than the experiment in the main recirculation zone.

Diurno et al. (2001) argued that for a backwards-facing step flow that is far from
local equilibrium, a more advanced turbulence model than the mixing length model
should be used in the secondary RANS grid. The one – equation model of Spalart –
Allmaras (SA) is chosen, which needs an additional boundary condition at the interface
of the secondary grid for the RANS eddy viscosity. The SGS viscosity of the LES

78



3.3 Two-Layer Modelling (Wall-Modelled LES)

Fig. 3.7 Schematic of the backwards-facing step with the locations of the main and
corner recirculations shown. Figure obtained from Diurno et al. (2001).

grid is matched with the RANS turbulent viscosity at the interface. The mixing-length
turbulence model is also tested (named algebraic for the case). The reattachment
point is reported to be reasonably predicted by the WMLES with the two turbulence
models. The other smaller separation bubble is also observed, but this was because
the LES mesh is refined in the streamwise and cross-stream directions in the region
of the corner recirculation. The WMLES - SA shows slight overprediction of the skin
friction after the recirculation zone, while the WMLES – algebraic underpredicted skin
friction in the recirculation zone, as seen in Figure 3.8. Furthermore, the two WMLES
simulations are in agreement with the streamwise velocity predictions. However, there
are discrepancies between the velocity results and the reference data near the wall in
the separation bubble. Overall, the WMLES with the Spalart – Allmaras model in the
RANS domain has a better agreement with reference data than the WMLES with the
mixing-length turbulence model, with just a 10% increase in computational time.

Fig. 3.8 Plot showing results for skin - friction coefficient for backwards-facing step
flow. Legend: experiment (□ □ □ □), WMLES – SA (- - - -), WMLES – Algebraic (——
). Figure obtained from Diurno et al. (2001).

Wang and Moin (2002) revisited the study of flow over an aerofoil with the WMLES.
A different mixing-length model from Balaras et al. (1996) is used, which is defined as:

νt

ν
= κy+

[
1− exp

(
−
(
y+/A

))]2
, (3.13)
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where A = 19 and κ = 0.4. The paper used three options for the boundary layer
equations in the RANS grid. The normal velocity is set to zero at the wall of the
LES grid, while the wall parallel components of velocity are imposed in terms of the
streamwise and spanwise wall shear stress τw,i (i= 1,3). The boundary layer momentum
equations to determine the wall shear stress from the RANS domain are defined as:

∂

∂xn

[
(ν +νt)

∂ ⟨Ui⟩
∂xn

]
= Fi, i = 1,3 (3.14)

where

Fi =
1
ρ

∂P
∂xi

+
∂ ⟨Ui⟩

∂ t
+

∂ ⟨Ui⟩⟨U j⟩
∂x j

. (3.15)

The first option solves the pressure gradient and convection terms, as seen in Equa-
tion 3.15. This form returns the original boundary layer formulation of Equation 3.9.
Two simpler forms are defined where the convection terms are dropped as Fi =

1
ρ

∂P
∂xi

,
and the other form where the convection and pressure gradient terms are assumed to be
in balance and eliminated as Fi = 0. The third form, where there is only the diffusion
term in the boundary layer transport equation, is named the equilibrium equation, which
is an ordinary differential equation that is straightforward to solve numerically. As
seen in Figure 3.9, the wall shear stress is well predicted along the lower side of the
aerofoil by the WMLES for Fi = 0 and Fi =

1
ρ

∂P
∂xi

. The reference data is a wall-resolved
LES of the aerofoil blade. Along the upper side, where the flow transitions due to the
presence of an adverse pressure gradient, the performance of the two models reduces.
This poor performance is not surprising as the equilibrium version of the WMLES did
not include the effect of the pressure gradient, while the second model which dropped
the convections terms ensured that the momentum equation is not balanced (although
the authors suggested that the convection terms are not important after observing the
performance).

Simulations are done with all the terms included in the boundary layer equations
for WMLES, and the results are shown in Figure 3.10. The von Karman constant κ

is set as 0.4, and the WMLES overpredicts and underpredicts the skin friction along
the upper and lower surfaces of the aerofoil respectively. The paper argued that since
the non-linear convection term in the RANS momentum equations contained Reynolds
stresses, the value of skin friction predicted by the WMLES is going to be wrong.
Hence, the value of the turbulent eddy viscosity has to be reduced to account for only
the unresolved part of the Reynolds stresses. The turbulent viscosity of the RANS grid
is matched with the LES SGS viscosity at the interface of the two grids ⟨νt⟩= ⟨νSGS⟩,
while the turbulent viscosity in the internal region of the RANS grid is reduced by
dynamically damping the von Karman constant κ . The constant κ is modelled as:
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Fig. 3.9 Plot showing the distribution of mean skin friction. Legend: Full LES ( ),
WMLES

(
Fi =

1
ρ

∂P
∂xi

)
(- - - -), WMLES (Fi = 0) (—— ). Figure obtained from Wang

and Moin (2002).

Fig. 3.10 Plot showing the distribution of mean skin friction. Legend: Full LES ( ),
WMLES - κ = 0.4 (- - - -), : WMLES - dynamic κ (—— ). Figure obtained from Wang
and Moin (2002).

81



3.3 Two-Layer Modelling (Wall-Modelled LES)

Fig. 3.11 Plot showing the modelled dynamic constant κ for the mixing-length turbulent
viscosity at three time instants. Legend: lower side (—–), upper side (- - - -). Figure
obtained Wang and Moin (2002).

κ = ⟨vSGS⟩/
〈

y+w
(
1− exp

(
−y+w/A

))2
〉
, (3.16)

where the averaging is done in the spanwise direction over the previous 150 time-steps.
This formulation forces the drastic reduction of the constant κ in most of the flow
region, as seen in Figure 3.11. Although, this formulation means that κ does not change
in the wall-normal direction. The dynamic model for the WMLES performs better
in predicting the skin friction, as presented in Figure 3.10, although there were still
discrepancies between the results and the reference data at the leading edge of the
aerofoil.

Kawai and Larsson (2013) used the dynamic approach a simulate a high Reynolds
number shock/boundary layer flow (Reδ = 6.1×105). The dynamic damping of the
von Karman constant approach developed by Wang and Moin (2002) is also tested. As
with Wang and Moin (2002), the authors argued that at the boundary interface between
the LES grid and the RANS grid, the value of the RANS turbulent viscosity should be
equated with the SGS viscosity at that position. This matching of the viscosities ensures
that the velocity gradients for the LES and WMLES at that position would be the same.
For the high Reynolds flow, the dynamic method of Wang and Moin (2002) grossly
underpredicts the skin friction and consequently, also overestimates the streamwise
velocity when scaled with friction velocity. The dynamic method of Wang and Moin
(2002) forces the eddy viscosity in the RANS grid to be too low throughout much of
the domain of the secondary RANS grid, as shown in Figure 3.12a.

Kawai and Larsson (2013) proposed another dynamic model for the constant κ for
the mixing-length turbulence model, which is dependent on the distance from the wall
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(a) Eddy viscosity of the RANS grid. (b) Mean streamwise velocity of LES.

Fig. 3.12 Plots showing the computed turbulent viscosity in the RANS grid and the mean
streamwise velocity profile in the LES. Legend: WMLES - κ = 0.4 ( ), WMLES -
dynamic κ by Kawai and Larsson (2013)) ( ), WMLES - dynamic κ by Wang and
Moin (2002) ( ). The inset in the turbulent viscosity plot is the result predicted by
Wang and Moin (2002) because the eddy viscosity predicted is too low. Figures obtained
from Kawai and Larsson (2013).

and grid spacing. It is argued that the non – linear spacing of the mesh used for the
RANS grid means that the proportion of the resolved and unresolved stresses changes
drastically with the wall-normal direction. At the wall, the length of the wall parallel
integral scale L↑ =C↑y (where C↑ is determined by the solver used) is under – resolved,
while further from the wall, as the size of the integral length-scale increases, some of
the stresses should be resolved. If the ratio of the integral length scale and parallel
grid spacing L↑/∆↑ (where ∆↑ = max(∆x,∆z)) is less than a new constant α (defined
as the number of grid points per wavelength), the resolved stress is determined to be
negligible. Hence, the dynamic model for the constant κ is defined as:

κ = 0.41K + κ̃ (1−K) , (3.17)

where K is defined as:

K = min
{

L↑,top/∆↑−L↑/∆↑
L↑,top/∆↑−α

,1
}
= min

{
h− y

h− ycrit
,1
}
, (3.18)

ycrit =
α

C↑
∆↑ = α

′
∆↑, (3.19)

where ycrit is the position from which the constant κ gets damped, h is the height of the
RANS grid or the interface, α ′ = 0.48, and L↑,top =C↑h is the integral length-scale at
the interface. As seen in Figure 3.12a close to the wall, where the resolved turbulent
stresses are expected to be negligible, the turbulent viscosity predicted by Kawai and
Larsson (2013) is not damped. As the interface is approached, damping of the constant
κ is introduced. Hence, the prediction of the streamwise velocity improves with the new
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Fig. 3.13 Plot of Streamwise velocity normalised by friction velocity. Legend is the
same as Figure 3.12. Figure obtained from Kawai and Larsson (2013).

dynamic modelling method, as seen in Figures 3.12b and 3.13. The log-layer intercept
for the WMLES method (κ = 0.41) of Balaras et al. (1996) is lower, and therefore the
velocity profile is slightly underpredicted, while the dynamic κ method of Wang and
Moin (2002) greatly overpredicts the reference data.

It is worth noting that for the two dynamic approaches of modelling the mixing-
length turbulent model, proper validation of the turbulent viscosity in the RANS grid is
not done. Hence, a dynamic approach to modelling the constant κ for a particular flow
may fail for another type of flow.

Catalano et al. (2003) computed the flow around a cylinder at three supercritical
Reynolds numbers (ReD = 5×105, 1×106 and 5×106). The WMLES is simplified
by eliminating the convective terms in the equation, while the turbulent – viscosity in
the RANS is obtained using the mixing-length turbulent equation. The distribution of
pressure is in good agreement with the experimental data. However, the drag coefficient
in the areas that undergo relaminarisation is poorly overpredicted. Skin friction in the
front of the cylinder, where there is strong acceleration is also wrongly predicted. The
performance of the simplified WMLES gets worse as the Reynolds number is increased.
The WMLES is unable to predict the transition of the flow from turbulence to a laminar
regime as the wall model always assumes fully developed turbulence.

The poor performance in predicting skin friction in regions where the turbulent
fluid undergoes a transition to laminar flow is due to the overprediction of turbulent
viscosity by the wall model. The mixing-length model popularly used by researchers in
the RANS grid always computes a turbulent viscosity and predicts a boundary layer
around the cylinder. Also, the simplification of the boundary layer equations in the
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RANS grid done by Catalano et al. (2003) to the WMLES is wrong because eliminating
the convection terms ensures that the momentum transport equation is not in balance.

Bodart and Larsson (2012) proposed a solution of correctly predicting the skin
friction when a flow underwent transition by incorporating a sensor in the formulation.
If the sensor detects relaminarisation, the mixing-length turbulent model is switched off.
Quantities at the interface between the RANS grid and the LES grid is examined as it is
assumed that the interface will always lie in the log – layer (or away from the viscous
sublayer). Consequently, the sensor sw is defined as:

sw (xw, t) =

(〈√
u′iu

′
i/2
〉

⟨Uτ⟩

)2

=
⟨ρw⟩(t) k(t)

⟨τw⟩(t)
, (3.20)

where the turbulent kinetic energy and friction velocity are exponentially time-averaged.
The time-scale T (t) for the exponential averaging operation is defined from the strain –
rate at the interface of the RANS grid as:

T (t) =
(
Si jSi j

)−1/2
, (3.21)

and the exponentially weighted averaging of the quantity is defined as:

d⟨ f ⟩(t)
dt

=
f (t)−⟨ f ⟩(t)

T
. (3.22)

Hence, the value of the sensor stl should be zero in laminar regions. The authors
deduced that there should be a threshold for the sensor slim where the boundary layer
is assumed to be locally laminar. A-priori studies of plane channel flow are done to
determine the threshold of the sensor. It is deduced that the turbulent kinetic energy,
when normalised by the viscous length scale, is mostly in the range of 2.5 ≤ sw ≤ 4.0
for 20 ≤ y+ ≤ 0.2δ+. Hence, the threshold is set as slim < 2.5. The approach is tested
by simulating a boundary layer flow over a flat plate where transition is induced by
localised blowing and suction. The new approach well predicts the point of transition
and skin friction. A disadvantage of the approach, observed by Park and Moin (2014),
is that the grid region where the transition occurs needs to be refined to predict the wall
shear stress accurately.

Duprat et al. (2011) and Chen et al. (2014) simplified the WMLES by eliminating
the convection terms in the momentum transport equations. Hence, this enables closed
analytical solutions of the wall shear stress to be derived. Since the convection and
pressure – gradient terms in the momentum equation are no longer in balance, further
modifications have to be made to account for the unphysical process in the boundary
layer. Duprat et al. (2011) made changes to the mixing – length turbulent model. While
good results are obtained for a plane channel flow and periodic hills simulation with
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properly tuned coefficients, it is unlikely that the success will be replicated in other flow
geometries due to the inconsistency of the convection – pressure balance.

Hickel et al. (2012) did an a-priori study of an adverse pressure gradient boundary
layer using several modifications of the momentum equation and the model developed
by Duprat et al. (2011). The changes made are the elimination of the convection terms
and pressure gradient, hence assuming equilibrium, and another of eliminating just the
convection term. All the models underpredict the skin friction, but the performance of
the models that eliminates only the convection terms is the worse.

Finally, Larsson et al. (2015) considered a multi-physics problem by validating
the wall-modelled LES for flow in a HyShot II scramjet combustor. The ramjet is
used for propulsion of aircrafts at Mach numbers over 5. Hence, the supersonic
combustion process with an adverse pressure gradient, separation and oblique shock-
train propagations poses a challenging case to simulate. Additional transport equations
are solved for nine chemical species. The source and scalar variance terms of the
transport equations for the chemical species are modelled as zero-flux in the WMLES
since there is no prior knowledge of how the terms are to be represented. Also, the
convection and pressure gradient terms are dropped from the transport equation of
the wall model. For such a complicated process, the trends of pressure and heat flux
distributions are adequately predicted, although there are noticeable differences between
the numerical results and experimental data for heat transfer. The positive results show
the ability to use wall functions in LES for multi-physics problems, though modelling
of the extra terms in the additional transport equations remains a challenge.

One common feature that is observed in the wall function for LES in all the papers
reviewed apart from Kawai and Larsson (2013) and Larsson et al. (2015) is that the
RANS grid is embedded in the first cell of the main LES grid. Consequently, the
velocity and the SGS viscosity that are prescribed for the interface boundary of the
RANS grid are obtained from the first cell of the LES. While this is acceptable for the
numerical wall function approach in RANS calculations, this practice leads to additional
errors in the LES method. Since, the first cell of the primary LES grid bypasses the
region where viscous forces are dominant, the velocity in the cell is expected to be
grossly under-resolved and hence inaccurate. As a result, these errors feed into the wall
model computation. This problem leads to the need to either shift the interface of the
RANS grid deeper into the outer layer of the LES grid or refine the mesh of the main
LES grid close to the wall. This change will provide more accurate information to the
interface boundary of the RANS domain, although with slightly increased computation
cost.
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3.3.1 Velocity Mismatch Problem

A common problem encountered in the development of wall function models for LES
or the creation of hybrid RANS/LES methods is the occurrence of the log – layer
mismatch (LLM) error. The log – layer mismatch happens when the velocity profile,
when scaled by the friction velocity, shifts upwards or downwards of the log – law line.
This mismatch of the velocity profile and the log layer leads to errors in predicting the
skin friction. It was observed that the nature of the mismatch seemed to have depended
on the CFD solver used. Simulation of incompressible flow using a staggered grid
seems to produce a downwards shift of the velocity profile, while simulations that are
done using a collocated grid produced an upwards shift of the velocity profile (Larsson
et al., 2016).

Kawai and Larsson (2011) proposed a solution to eliminating the log-layer mismatch
problem for wall function models in LES. If the LES grid below the interface is refined
by adding at least 2 points in the wall-normal direction, the normalised velocity profile
of the WMLES converges to the log-law profile. For a boundary layer flow with
thickness δ , the height h of the RANS grid for the wall function model is assumed at
h ≈ 0.2δ . In the log-layer, if the length of the integral scale can be defined in each
direction as Li =Ciy, the required grid spacing needed to resolve the integral eddies of
size Li is ∆xi ≤ Li/N, where N is the number of grid points per integral scale. Going by
the Nyquist criterion, the number of grid points should be N ≥ 2. Hence, the LES feeds
the RANS grid incorrect information if the number of grid points for the LES grid in
the region below the interface is just one. To eliminate the log-layer mismatch problem,
the grid spacing for the main LES domain is defined as:

∆x ≤ C1

N
h, ∆y ≤ C2

N
h, ∆z ≤ C3

N
h. (3.23)

While this condition is already achieved in the wall parallel directions, refining the
grid in the wall-normal direction leads to a convergence of the WMLES distribution of
velocity to the log-law profile. The authors found that refining the number of points of
the LES grid to 2 – 4 below the interface of the two grids is sufficient for wall-modelled
LES.

3.3.2 Appraisal of Two-Layer Modelling

The two-layer modelling approach was developed to overcome the limitations of the
approximate – boundary condition model in simulating flows with strong pressure
gradients or very far from local equilibrium in LES. The TLM or WMLES involves
solving boundary layer equations on a separate RANS grid that overlaps the near-wall
region of the LES domain. The LES grid supplies instantaneous filtered velocity to
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the interface between the RANS grid and main LES mesh; it also supplies the wall
parallel pressure gradient as a source term to RANS equations. In return, the RANS
grid calculates the wall flux of momentum and heat transfer. These wall fluxes are
mapped to the wall of the LES domain and act as a source term in the LES transport
equations of momentum and heat transport.

A common trend by previous researchers is the embedding of the RANS grid in
the first cell of the LES grid. Since the first cell at the wall of the LES is too coarse to
resolve any scales of turbulent motion, the underlying subgrid-scale model of the LES
cannot accurately compute the velocity at the first grid point. This leads to the LES grid
supplying poor information to the interface of the RANS grid. This problem can be
solved by either shifting the height of the RANS grid deeper into the LES computational
domain where the interface of the RANS grid receives better information or refining the
LES mesh below the interface.

Another major issue of the WMLES is the modelling of the turbulent eddy viscosity
in the RANS momentum equations. The mixing-length model is the most popular
approach in closing the turbulent eddy viscosity for WMLES. It has been argued that
the turbulent viscosity of the RANS grid needs to be set equal to the SGS viscosity of
the LES to ensure that the velocity gradients of the RANS grid and the main mesh at
the interface are consistent. Besides, the turbulent viscosity in the RANS grid must
be further damped to account for the resolved component of stresses contained in
the convection term of the RANS momentum equation. Unfortunately, the various
modifications to the mixing-length turbulent model have not been adequately validated
to determine what the actual distribution of the turbulent viscosity in the RANS grid is
supposed to be for a given flow configuration.

Some researchers tried to bypass the problem of modifying the mixing length model
in the RANS by assuming the convection and pressure gradient are in balance beyond
the viscous sublayer of the flow. Hence, the two identified terms are eliminated in
the RANS momentum equation with only the diffusion term being solved numerically.
While the assumption of the balance of the convection and pressure gradient in the
log-layer is valid for flows in local equilibrium, this assumption breaks down for flows
with strong pressure gradients, flows with considerable secondary motions or other
flows with complex phenomena. Such flows need for all the terms in the boundary layer
momentum equations to be solved.

Surprisingly, more advanced turbulent models than the mixing length model for
the RANS grid have not been adequately tested in the past. A review of literature
shows that only one paper has used a turbulence model other than the mixing length
model. Diurno et al. (2001) successfully used the Spalart – Allmaras turbulence model
to compute flow behind a backwards-facing step. The Spalart – Allmaras turbulence
model solves a transport equation of the eddy viscosity. Diurno et al. (2001) equated
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the turbulent viscosity of the subgrid to SGS viscosity at the interface of the RANS and
LES grids. There is a need to research the applicability of other turbulence models for
wall functions in LES. There is an immediate problem of how to prescribe boundary
conditions for the turbulent kinetic energy, dissipation rate, Reynolds stress tensor and
other turbulent quantities at the interface of the RANS grid. This issue needs to be
handled delicately.

Researchers matched the instantaneous filtered velocity of the LES grid to the
Reynolds averaged velocity at the interface of the RANS grids. Also, some methods
have equated the LES SGS viscosity to the RANS turbulent viscosity. This approach is
clearly unphysical as the LES equations solve instantaneous quantities while the RANS
grid solves time or ensembled-averaged variables. This unphysical matching has led to
the corrections of the computed wall shear stress by the RANS grid via the modification
of the mixing length model.

Furthermore, the ideas of Piomelli et al. (1989) are not further tested in two-layer
models. At a distance away from the wall, the velocity is not always correlated to the
wall shear stress directly below because of the inclination of the eddies close to the wall.
Consequently, since the point of the first cell of the LES is mostly beyond the viscous
sublayer, there is a need to correctly specify the wall shear stress that will be applied to
the LES through means of relaxation of terms or by applying damping functions. This
approach could correct the problem of the skin friction been overpredicted as observed
in literature.

Finally, all the wall function approaches reviewed applied the computed wall shear
stress at the wall of the LES grid. This method means that the wall function corrects
only the first cell at the wall of the LES grid. However, to enable the computation
of high Reynolds number flows, the resolution of the near-wall grid is reduced. This
reduction ensures that the first few cells normal to the wall, not just the first grid point,
are under-resolved and need correction. This project explores the idea of modifying the
application of the wall function beyond the first node at the wall, which is demonstrated
in Paper I.

3.4 New Approaches to Wall Modelling

The two-layer modelling approach for LES requires the need for a second grid to
calculate wall fluxes. Since the boundary layer equations of the RANS grid are partial
differential equations (PDE), the PDEs require a full grid with neighbour connectivity
in the RANS grid to be solved. This requirement adds an extra computational cost that
also includes resolving the LES grid. Also, while it is easy to use an additional mesh for
an academic test case, this implementation becomes more challenging for unstructured
– grid codes (Hickel et al., 2012). Hence, there has been some research to remove the
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non – linear terms in the boundary layer equations. The typical approach has been to
exclude the convection and pressure gradient terms, which reduces the boundary layer
equations to an ordinary differential equation. Another method has been to eliminate the
convection term and prescribed the pressure gradient from the main LES grid. However,
these approaches have obvious limitations, as seen in the previous sections.

Hickel et al. (2012) proposed parametrising the convection term to avoid the need
to solve transport equations for the streamwise and spanwise velocity terms in the
RANS grid. It is argued that since convection is balanced by the pressure gradient in a
boundary layer flow, except in the region of the viscous sublayer, the convection term
could be approximated as:

U j∂Ui

∂x j
≈ 1

ρ

∂ p
∂x

∣∣∣∣
h
×
{

y/ypg y < ypg

1 y ≥ ypg
, (3.24)

where ypg is the position where the streamwise convection starts getting damped by
the viscous forces. Below ypg, the convection term decreases linearly to the wall. This
approach means that the term ypg has to be prescribed. Another approach proposed by
the authors is to fit a shape function to the streamwise convection term. It is assumed
that the streamwise convection term is dominant in an unsteady type of boundary layer
flow, hence the vertical shape of the derivative ∂U/∂x could be modelled by the velocity
profile. Unfortunately, the two approaches do not give good results in the simulation of
an adverse pressure-gradient boundary layer flow.

Yang et al. (2015) also followed the above method of defining a shape function
for the velocity profile in the RANS grid. This enabled the inclusion of the non-linear
convection term in the boundary layer equations, and the RANS momentum equation
is analytically integrated in the wall-normal direction. Various parameters are used in
defining the velocity profile at each time step and include the effect of surface roughness.
The method is tested with a pseudo-spectral code and a finite-difference code for a
plane channel flow. Good results of the distribution of velocity are obtained at a much
reduced computational cost compared to standard wall-modelled LES approaches.

Bose and Moin (2014) took a different approach to model the inner layer for the
LES. The authors removed the need for a second RANS grid to calculate the wall shear
to supply the main LES grid. Instead, the authors use a differential filter to compute
slip velocities that act as the boundary condition at the wall for the LES domain. The
slip velocities correct the under-resolved near-wall grid of the LES domain and are
dynamically computed. The wall boundary condition smoothly reverts to no-slip when
the LES grid is refined enough (∆ → 0) to resolve the flow in the near-wall region
adequately or when there is flow separation. The approach is tested for a plane channel
flow with various Reynolds numbers and flow around an aerofoil with acceptable results.
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Chapter 4

Preliminary Tests in the Development
of Wall Function Approaches for
Large Eddy Simulation

4.1 Rationale behind the Development of the Numeri-
cal Wall Function

The subdomain wall function for large eddy simulation is the main objective of this
project. However, before the implementation of the subdomain wall function, the
numerical wall function was created in the CFD code OpenFOAM. The development of
this method aimed to establish the base code structure upon which the subdomain wall
function would be built on. Hence, the numerical wall function is a simpler version of the
subdomain wall function. The numerical wall function is similar to the wall-modelled
LES with how the computed wall shear stress is specified at the wall of the coarse
LES grid to correct the under-resolved first cell at the wall. However, the numerical
wall function for LES (NWF), tackles two problems encountered with the two-layer
modelling approach of LES. The first challenge is specifying boundary conditions
at the interface of the RANS grid. The RANS grid is hereinafter referred to as the
subdomain. Previous researchers have coupled the instantaneous quantities of the LES
grid to the mean quantities of the RANS subdomain, which is an inconsistent approach.
Another challenge that the numerical wall function for LES solves is the specification
of more advanced turbulence models than the mixing length model traditionally used in
WMLES. Linear eddy viscosity turbulence models solve transport quantities for at least
the turbulent kinetic energy and the dissipation rate. These quantities also need their
boundary conditions to be specified at the interface of the subdomain. The numerical
wall function uses the realizable k− ε model and the elliptic blending k− ε model
in the RANS subdomain. The solutions developed to tackle the two aforementioned
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4.2 Methodology of the Numerical Wall Function

challenges are also adopted by subdomain wall function. Although, the correction of
the near-wall LES region using a volumetric source term as done for the subdomain
wall function is not implemented for the numerical wall function as the code structure
for this function is an elaborate task.

Initial tests of the numerical wall function for LES are done using the mixing length
turbulence model in the RANS subdomain with success. The success of the numerical
wall function reduces when advanced turbulence models are used. The reduction in
performance is due to how the computed wall shear stress is applied to the LES domain
in a CFD code. OpenFOAM, which is an open-source unstructured finite volume
toolbox, generates too much numerical noise in the first cell of the coarse near-wall
LES grid, which leads to the resolved turbulent kinetic energy being overpredicted
in the LES grid. The overprediction of the resolved turbulent kinetic energy leads to
the LES domain supplying a higher, but incorrect, value of the total turbulent kinetic
energy to the interface of the RANS subdomain, thereby inducing errors in the RANS
computations. The numerical noise reduces as the near-wall LES grid is refined, but
this approach goes against the objective of this project. It is recommended for future
work that the numerical wall function is implemented in a different open-source code
to investigate whether the effects of the generation of artificial noise is eliminated.
Conversely, this problem of numerical noise at the first cell of the coarse LES grid is
not encountered with the subdomain wall function, where the application of the wall
function is spread over several cells.

Overview of the numerical wall function for LES method with results in a plane
channel flow and flow through a 90◦ pipe bend is provided in Paper III, which is
published in the proceedings of the 2018 MACE PGR Conference and appended to this
thesis. The following chapter illustrates the complete setup and the initial tests done for
the numerical wall function. Several of the strategies implemented by the numerical
wall function are adopted by the subdomain wall function.

4.2 Methodology of the Numerical Wall Function

The numerical wall function is similar in approach to the two-layer model for LES. Two
regions are solved simultaneously, as shown in Figure 4.1. The main region covers
the entire flow domain as the LES grid. The LES domain is purposely designed to be
coarse near the wall as not to resolve the turbulent motions. The rest of the LES grid
is well refined to resolve the dynamic motions. The RANS grid, also known as the
subdomain, overlaps the coarse inner region of the LES grid. The grid resolution of the
subdomain is refined in the wall-normal direction to represent the Reynolds-averaged
velocity in the RANS domain adequately. The grid refinement in the subdomain enables
the RANS grid to compute the wall fluxes of momentum and heat transfer to correct
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the first cell of the LES grid as is done for the wall-modelled LES. The computed
wall fluxes of the RANS subdomain are supplied to the LES grid and act as source
terms to the LES momentum transport equations. The RANS subdomain solves the
full Reynolds-averaged Navier-Stokes equations, unlike the WMLES that solves the
simplified boundary layer equations. Hence, the pressure gradient from the LES is not
prescribed in the RANS momentum equations; instead, the pressure gradient term is
solved. The top boundary of the RANS subdomain receives information from the LES
grid at the same matching location. The consistent exchange of information between the
LES and RANS grids at the interface is a focus of the numerical wall function method.
Furthermore, the numerical wall function uses suggestions of Kawai and Larsson (2012)
to shift the top boundary of the RANS domain to bypass at least the first three cells
of the LES grid as seen in Figure 4.1. This design ensures that the top boundary of
the subdomain receives better-resolved information from the LES grid unlike when
the subdomain is embedded in the first cell at the wall of the LES grid as done for
traditional WMLES approaches.

This project tackles the problem of consistently coupling variables at the interface
of the RANS and LES grids by performing a partial time average which is inspired
by the work of Xiao and Jenny (2012). The partial time average of LES fields of
interest is achieved utilising the exponentially weighted time average (EWA). Hence,
the exponentially weighted time average is assumed to be equivalent to the Reynolds
time average. The exponentially weighted time average of an LES variable ϕ is
computed as:

⟨ϕ⟩EWA =
∫ t

−∞

1
T

ϕ
(
t ′
)

exp−(t−t ′)/T dt ′, (4.1)

where T is the period of the exponentially weighted average. Using Leibniz’ rule for
differentiation under an integral, Equation 4.1 is a solution of the following differential

Fig. 4.1 Schematic showing the setup of the numerical wall function for LES and the
quantities exchanged between the LES and RANS regions.
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equation defined as:

d⟨ϕ⟩EWA

dt
=

1
T

(
ϕ −⟨ϕ⟩EWA

)
. (4.2)

The differential equation of Equation (4.2) permits the exponentially weighted time
average to be approximated to first order as:

⟨ϕ⟩EWA
∣∣∣
tn
= (1−α)ϕ|tn + α ⟨ϕ⟩EWA

∣∣∣
tn−1

, (4.3)

where n is the timestep and α = 1/(1+∆ t/T ). The exponentially weighted time
average reduces the required period to initialise the averaging operation compared to
the traditional-time average. In addition, the EWA prioritises recent events during a sim-
ulation (Tunstall et al., 2017). The computation of the fluctuating velocity with respect
to the partial mean filtered velocity results to u′′i =U i −

〈
U i
〉EWA. Correspondingly, the

total LES stress tensor is defined as the summation of the resolved fluctuations and the
modelled fluctuations as:

τi j = u′′i u′′j + τ
SGS
i j . (4.4)

The period T of the EWA is ensured to be sufficiently long enough to enable the
assumption that the exponentially weighted average of the filtered velocity field of the
LES is approximately equivalent to the Reynolds-averaged velocity field:

〈
U i
〉EWA ≈ ⟨Ui⟩ . (4.5)

The total stress tensor
〈
τi j
〉EWA of the LES domain is also assumed to be approximately

equivalent to the Reynolds stress tensor:

〈
τi j
〉EWA ≈

〈
u′iu′ j

〉
. (4.6)

4.2.1 LES Domain

The filtered momentum transport equations for the LES domain is defined as:

∂U i

∂ t
+

∂U iU j

∂x j
=−∂P

∂xi
+ν

∂

∂x j

(
∂U i

∂x j
+

∂U j

∂xi

)
−

∂τr
i j

∂xi
− ∂

∂x j
(⟨τw⟩) , (4.7)

where τw is the wall shear stress computed from the RANS subdomain to correct the
under-resolved first cell at the wall of the coarse LES grid. The wall shear stress from
the RANS is added as a source term to the LES momentum transport equations. The
wall shear stress field is finite only at the wall with the rest of the field being zero; hence,
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4.2 Methodology of the Numerical Wall Function

the wall shear stress only modifies the velocity field in the first cell at the wall. The
diffusive flux at the wall of the LES grid is set to zero to enable the addition of the
source term. The SGS stress tensor τr

i j in Equation 4.7 is computed as:

τ
r
i j −

1
3

τkkδi j =−2νSGSSi j, (4.8)

where νSGS is the subgrid-scale viscosity. Three turbulence models are used for this
project: the wall adapting local eddy viscosity model of Nicoud and Ducros (1999), the
one-equation eddy viscosity model of Yoshizawa (1986) and the dynamic one-equation
eddy viscosity model of Kim and Menon (1995). The SGS turbulence models are
represented with the symbols WALE, kEqn and dynamicKEqn, respectively in this
project.

4.2.2 RANS Subdomain

The Reynolds-averaged Navier Stokes equation is used in the RANS subdomain, which
is defined as:

∂ ⟨Ui⟩
∂ t

+
∂ ⟨Ui⟩

〈
U j
〉

∂x j
=− 1

ρ

∂ ⟨p⟩
∂xi

+ v
∂ 2 ⟨Ui⟩
∂xi∂x j

− ∂
〈
u′iu′ j

〉

∂x j
. (4.9)

The subdomain solves the full momentum transport equations, including performing
the pressure – velocity coupling of Issa (1986). The subdomain needs quantities of the
velocity and pressure fields at the interface to be specified to complete the boundary
conditions. This work feeds the exponentially weighted averaged filtered velocity and
pressure fields of the LES to the interface of the RANS subdomain.

⟨Ui⟩RANS =
〈
U i
〉EWA

. (4.10)

⟨p⟩RANS = ⟨p⟩EWA . (4.11)

Feeding the exponentially weighted averaged fields to the interface ensures a consistent
coupling between the LES and the RANS grids. This approach is the first new element
in respect to the traditional wall function methods for LES. Hence, corrections to the
turbulent viscosity predicted by the RANS turbulence model is eliminated. Furthermore,
the height of the top boundary or interface of the RANS subdomain is designed to
bypass at least the first three cells of the coarse near-wall LES grid. This feature ensures
that the interface of the RANS subdomain receives better resolved information from the
LES domain at this specified height compared to when the RANS subdomain bypasses
only the first cell of the LES grid.
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4.3 Testing of Numerical Wall Function for LES in a Plane Channel Flow (RANS
Turbulence Model: Mixing Length Model)

This numerical wall function for LES is first tested with the usage of the traditional
mixing length in the RANS subdomain. The mixing length turbulence model used is
defined as:

νt = κy
√

τw

ρ
D, (4.12)

with

D =
[
1− exp

(
−
(
y+/A

))]2
, (4.13)

where y+ = yuτ/ν is the wall distance in viscous units and uτ =
√

τw/ρ is the friction
velocity. The constant A is taken as 17. The following section shows the testing of the
numerical method for LES for turbulent flow through plane channels. As the RANS
grid is refined in the viscous sublayer of the flow, the wall shear stress is computed
linearly as:

τw = ν
⟨UP⟩
yP

, (4.14)

where ⟨UP⟩ and yP are the cell centred velocity and wall-normal distance at the first cell
of the subdomain. In OpenFOAM, Equation 4.14 is evaluated as:

τw = 2νSi j,wni,w, (4.15)

where Si j,w is the rate of strain tensor at the wall and ni,w is the wall-normal unit vector.
The wall shear stress that is computed by the RANS subdomain is mapped to the wall
of the LES grid to be the source term in the LES momentum transport equation.

4.3 Testing of Numerical Wall Function for LES in a
Plane Channel Flow (RANS Turbulence Model: Mix-
ing Length Model)

The numerical wall function for LES is tested for a plane channel flow. The plane
channel is a classic case used to validate numerical models. Two parallel plates bound
the plane channel in the cross-stream direction. The channel is assumed to have a
huge aspect ratio, and hence, periodic boundary conditions are applied in the spanwise
direction. Periodic boundary conditions are also applied in the streamwise direction of
the flow as it is assumed that the geometry is long.

Three friction Reynolds numbers are tested for the new methods: Reτ = 395, 1000
and 5200. The LES domain has the physical dimensions of 2πδ × 2δ ×πδ , where
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Fig. 4.2 Schematic showing the case setup for the LES for a plane channel flow.

δ is the half channel height. All the LES domains for the test cases employ uniform
grids, as seen in Figure 4.2, with the first cell at the wall bypassing the viscous sublayer.
The LES grid represents the subgrid-scale turbulence in the domain using the WALE,
one-equation and the dynamic one-equation models.

As the channel has two parallel walls in the LES domain, there are two near-wall
regions in the LES grid that are under-resolved. Consequently, there are two RANS
subdomains for the plane channel flow case with each RANS grid corresponding to
a wall of the LES grid. Also, the height of the interface of the RANS subdomains is
designed to overlap at least the first three grid points at the wall of the LES domain.
The turbulence model used in the RANS subdomain is the mixing length model.

An additional pressure gradient is added to the momentum transport equation of the
LES domain to drive the flow in the channel. The same pressure gradient source term is
also applied to the momentum transport equations of the two subdomains. The applied
pressure gradient matches the friction Reynolds number of the test case. The pressure
gradient is defined as:

−d p
dx

=
ρRe2

τν2

δ
. (4.16)

4.3.1 Results of the Reτ = 395 Plane Channel Flow

The results of the numerical wall function for LES for the Reτ = 395 plane channel
flow case are compared with the DNS dataset of Moser et al. (1999). The LES grid
has 50 × 60 × 30 points with constant spacing in all directions, and the near-wall
region being deliberately under-resolved. The RANS subdomain has the dimensions
of 2πδ ×0.141δ ×πδ ensuring that the height of the RANS subdomain is h = 0.141δ .
Each of the RANS grids has 50×30×30 points with the grid biased towards the wall in
the wall-normal direction. The RANS grid maintains constant spacing in the streamwise
and spanwise directions. Four test cases are done. Three of the test cases use the
numerical wall function for LES with either the WALE, one-equation or the dynamic
one-equation models in the LES domain, while the RANS grids use the mixing length
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Fig. 4.3 Plot of the mean streamwise velocity in semi-logarithm scale in the LES
domain for the Reτ = 395 plane channel. Legend for the NWF cases represents the
SGS turbulence models used in the coarse LES.

turbulence model. The fourth test case is a pure LES done on the same coarse LES grid
using the WALE SGS model without the aid of a wall function.

Figure 4.3 shows the profiles of the mean streamwise velocity in the LES domain
predicted by the test cases. The cases that use the numerical function with the WALE
and the dynamic one-equation models in the LES domain are in good agreement with
the reference DNS data. Although, there is a little discrepancy between the two cases
and the reference data in the buffer region, which is likely due to the LES grid still
being coarse in this area. However, the pure LES case done on the coarse LES grid
underpredicts the wall shear stress as the viscous sublayer is not resolved. Thus,
the mean velocity profile is overpredicted when scaled with friction velocity. The
overprediction of the streamwise velocity illustrates the need for the numerical wall
function to supply an accurate wall shear stress to the LES domain to correct the under-
resolved near-wall region of the LES grid. Curiously, the numerical wall function fails
when the one-equation model (kEqn) is used in the LES domain. This failure may be as
a result of the subgrid k in the SGS transport equation not been altered when the wall
function is applied, leading to a wrong prediction of the subgrid-scale viscosity. In the
subdomain wall function approach, the production of the subgrid k is modified in the
one-equation model when the wall function is applied.

The next section shows the performance of the numerical wall function for a higher
Reynolds number Reτ = 1000. The test cases use the same LES grids as the Reτ = 395
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channel flow cases to demonstrate the success of the numerical wall function when the
grid resolution of the outer region of the boundary layer is held constant.

4.3.2 Results of the Reτ = 1000 Plane Channel Flow

The results of the numerical wall function for LES for the Reτ = 1000 plane channel
flow case are compared with the DNS dataset of Lee and Moser (2015). The test cases of
the Reτ = 1000 simulations match those of the Reτ = 395 cases with the same LES grid
of 50×60×30 points used. Figure 4.4 shows the profiles of the streamwise velocity
in the LES domain predicted by the test cases, while Figure 4.5 shows the plot of the
streamwise velocity in the RANS subdomains. The streamwise velocity of the wall
function cases is normalised by friction velocity produced by the RANS subdomain,
while friction velocity of the LES grid is used to normalise the velocity of the pure LES
case (there is no RANS subdomain for the pure LES case). As with the lower Reynolds
number cases, the numerical wall function cases that used the WALE and dynamic one-
equation SGS models accurately predict the mean streamwise velocity. There is a small
discrepancy in the velocity-defect region of the channel flow due to the low resolution
of the grid in that area. The numerical wall function matches the mean velocity of
the LES grid to the RANS grid at the interface, as seen in Figure 4.5. This consistent
matching enables the RANS subdomain to accurately compute the RANS profiles and
supply the right wall shear stress to the LES grid. The numerical wall function case that
uses the one-equation SGS model feeds the wrong velocity information to the interface
of the RANS subdomain. Hence, the wall shear stress is inaccurately predicted in the
RANS subdomain leading to more errors in the LES domain for the kEqn case. The
pure LES case predicts a lower wall shear stress, and consequently a lower friction
velocity, for the Reτ = 1000 case than the Reτ = 395 case when the same grid is used
since the near-wall grid is more poorly under-resolved. Hence, the streamwise velocity
profile for the Reτ = 1000 pure LES case is worse than the Reτ = 395. Note that the
normalised streamwise velocity of the pure LES case appears greatly overpredicted
because of the division of the velocity by a much lower value of the friction velocity.
This failure for the pure LES cases shows the strength of the numerical wall function in
predicting profiles for coarse LES grids.

Figure 4.6 shows the plots of the mean turbulence kinetic energy, the streamwise
Reynolds stress, the Reynolds shear stress and the non-normalised Reynolds shear
stress. The square of the friction velocity normalises the profiles. The shear stress
predicted by the numerical wall function is in excellent agreement with the DNS data
excluding the kEqn case. The correct wall shear stress, obtained from the RANS grid,
leads to a proper adjustment of the LES shear stress. This trend can clearly be seen in
Figure 4.6d, where the shear stress is underpredicted for the pure LES case that has
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Fig. 4.4 Plot of the mean streamwise velocity in semi-logarithm scale in the LES domain
for the Reτ = 1000 plane channel.
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Fig. 4.5 Plot of the mean streamwise velocity in the RANS subdomain for the Reτ =
1000 plane channel. Legend is the same as Figure 4.4.
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no wall shear stress correction. There are wiggles of the shear stress profiles in the
near-wall region due to the low resolution of the LES grid. It should be noted that the
pure LES case underpredicts the computed wall shear stress. Hence, when the low
value mean shear stress of the pure LES case is normalised by the wall shear stress, the
resulting normalised mean shear stress is increased and appears to wrongly match the
reference data.

The mean turbulent kinetic energy predicted by the numerical wall function exhibit
different trends in the near-wall region and the outer-wall region. When the wall
distance is less than 100 wall units, the turbulent kinetic energy is over-predicted. The
same trend is observed for the pure LES case. This problem is first attributed to the
streamwise Reynolds stress being overpredicted near the wall. Small scales dominate
the pressure-velocity correlation or the pressure rate of strain in the Reynolds stress
transport equation. The pressure-velocity correlation acts to redistribute energy from
the streamwise fluctuations to the other components of the Reynolds stress. As these
small-scale motions are not captured in the coarse near-wall LES grid (and SGS models
are not advanced enough to represent the pressure-rate of strain process), the streamwise
Reynolds stress remains too high. This feature leads to the underprediction of the
cross-stream Reynolds stress. Furthermore, the OpenFOAM code induces numerical
noise for coarse LES grids. This trend can be seen in the overprediction of the turbulent
kinetic energy for the pure LES case. The numerical noise leads to the inaccurate
overprediction of the resolved turbulent kinetic energy since the near-wall LES grid is
too coarse to resolve the flow. The numerical noise is further amplified when the wall
function is applied to the wall of the LES grid as a source term in the LES momentum
equation, with the wall shear stress source term being active only on the first cell. The
failure of the numerical wall function in overpredicting the resolved turbulent kinetic
energy in the near-wall LES grid with the application of the wall function in the first
cell led to a shift in focus in developing the main objective of this project, which is
the subdomain wall function. The subdomain wall function applies a correction to the
near-wall LES fields beyond the first cell at the wall. This feature is the innovation
of this work, and it leads to the potential generation of numerical noise being spread
over several cells, rather than focused on the first cell, like the numerical wall function
approach, to reduce the inducement of errors in the wall function application. Details of
the subdomain wall function are demonstrated in Paper I. As the interface of the RANS
subdomains only receives information of the mean velocity, the overprediction of the
near-wall LES turbulent kinetic energy does not affect the RANS computations. Away
from the near-wall region, the turbulent kinetic energy predicted by the DNS is well
captured by all the LES cases that use the numerical wall function.

Results for the predicted friction Reynolds number are given in Table 4.1. The
friction Reynolds number for the numerical wall function cases is calculated from the
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Fig. 4.6 Plots of the mean turbulent kinetic energy and the Reynolds stress components
in the LES subdomain for the Reτ = 1000 plane channel.

Table 4.1 Comparison of Reτ predictions from the numerical wall function for LES.
DNS data from Lee and Moser (2015)

Solution Reτ

Nominal 1000.00
DNS 1000.51
Numerical wall function (LES-WALE) 1032.61
Numerical wall function (LES-dynamic one-equation) - dynamicKEqn 1027.01
Numerical wall function (LES-one-equation) - kEqn 956.56
Pure LES 832.68

wall shear stress value of the RANS subdomain, while the pure LES case uses the wall
shear stress computed from the LES grid. The friction Reynolds number is calculated
using the wall shear stress supplied by the RANS subdomain for the numerical wall
function cases, while the pure LES case computes the friction Reynolds number value
from the wall shear stress obtained from the LES domain. The friction Reynolds number
predicted by the numerical wall function for LES cases using the WALE or the dynamic
one-equation SGS models (except for the kEqn case) is in better agreement with the
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Fig. 4.7 Plot of the mean streamwise velocity in semi-logarithm scale in the LES domain
for the different LES grid refinements for the Reτ = 1000 plane channel.

reference DNS data than the pure LES case for the same grids. The prediction by the
numerical wall function is within 3% of the reference value.

4.3.3 Testing the Numerical Wall Function for Different LES Grid
Resolutions for the Reτ = 1000 Plane Channel Flow

The LES grid for the aforementioned test cases used 90,000 points. This section assesses
the performance of the numerical wall function when the LES grid is refined in all three
spatial directions. Details of the grid points used for the four test cases are shown in
Table 4.2. The WALE SGS model models the subgrid-scale turbulence for the four test

Table 4.2 Details of the grid refinement for the numerical wall function for LES cases.

Case Grid Number of points Reτ

1 DNS: 2304×512×2048 2.4×109 1000.51
2 50×60×30 90,000 1032.61
3 60×60×35 126,000 1028.96
4 80×80×40 256,000 1023.68
5 100×100×50 500,000 1018.97

cases, while the grid resolution for the RANS subdomains remains the same as those of
the previous sections.
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Figure 4.7 shows the prediction of the mean streamwise velocity by the different
LES grids. All grids are in excellent agreement with the DNS data. However, the finer
grids predict the velocity-defect region of the flow than the coarse grids. This agreement
demonstrates the ability to use the numerical wall function for much higher Reynolds
numbers without significantly increasing the grid resolution.
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Fig. 4.8 Plots of the mean turbulent kinetic energy and the Reynolds stress components
in the LES subdomain for the different LES grid refinements for the Reτ = 1000 plane
channel.

Figure 4.8 shows the graphs of the turbulent kinetic energy and components of the
Reynolds stress tensor for the different LES grid sizes. The shear stress predicted by
the LES cases compares favourably with the DNS data. The wiggles in the shear stress
profiles reduce as the grid is refined in the near-wall region. The overprediction of the
turbulent kinetic energy and the streamwise Reynolds stress in the near-wall region by
the LES grids is still prominent. However, the overprediction reduces as the near-wall
LES grid is refined, indicating the transport of energy from the streamwise Reynolds
stress to the other stress components, via the pressure strain term, is becoming more
active. However, numerical noise, when the wall function is applied at the wall for the
OpenFOAM code, is still dominant. The overprediction of the turbulent kinetic energy
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in the near-wall region of the LES grid by the numerical wall function wall will become
a problem when more advanced turbulence models are used in the RANS subdomain.

4.3.4 Testing the Numerical Wall Function for Different Heights of
the Subdomain for the Reτ = 5200 Plane Channel Flow

The sensitivity of the performance of the numerical wall function for LES to adjusting
the height of the subdomain interface is tested. The second aim is to determine the
minimum location of the subdomain interface. One of the major points of this project
has been to ensure that the subdomain is not embedded in the first cell of the coarse
LES grid. This decision is because the first cell at the wall of the LES grid is too coarse
to resolve filtered quantities. Hence, information fed to the interface of the subdomain
will most likely be incorrect.

The sensitivity study is done for a Reτ = 5200 plane channel flow case and the
results are compared with the DNS data of Lee and Moser (2015). The WALE SGS
model is used in the LES domain. The LES grid has 70×60×35 points with constant
spacing in all spatial directions. This uniform spacing means that the wall-normal height
of the first cell of the LES grid is 0.0167δ . The heights of the subdomains tested range
from 0.0167δ to 0.0833δ , which correspond to the RANS subdomain overlapping 1
LES grid cell to 5 grid cells. Details of the different RANS subdomains tested are
shown in Table 4.3.

Table 4.3 Details of setup on the RANS subdomain for the Reτ = 5200 plane channel
flow. This information is for each of the two subdomain grids used for the plane channel
flow.

S/N Subdomain
Case

No. of Points Height Wall-Normal
LES Cells

Overlapped

0 DNS - N/A N/A
1 ML1 70×15×35 0.0167 1
2 ML2 70×20×35 0.0333 2
3 ML3 70×20×35 0.05 3
4 ML4 70×25×35 0.0667 4
5 ML5 70×25×35 0.0833 5

Profiles of the mean streamwise velocity predicted in the LES domain for the
different RANS subdomains are shown in Figure 4.9. The velocity profiles for the cases
where the RANS subdomain overlap at least the first three cells of the LES grid (ML3,
ML4 and ML5) converge and are in good agreement with the DNS data. However, the
performance of the numerical wall function reduces when the subdomain overlaps either
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Fig. 4.9 Plot of the mean streamwise velocity in semi-logarithm scale in the LES domain
for the different RANS subdomains for the Reτ = 5200 plane channel.

the first cell or the first two cells. For the ML1 case, the gradient of the velocity profile in
the log-layer is different from that reported by the DNS data. This difference illustrates
the presence of the log-layer mismatch of the velocity profile when the subdomain is
embedded in the first cell of the LES. This problem arises as the filtered velocity of the
first cell of the coarse LES grid is incorrect. However, the performance of the LES with
the numerical wall function improves when the height of the subdomain is located at the
second cell of the LES. Although, the results of ML2 do not converge with ML3, ML4
and ML5. These results demonstrate two critical points. First, the LES grid in the outer
region should still be fine enough to resolve the turbulent motions despite using a wall
function. Second, the interface between the RANS subdomain and the LES domain
should be located in a region where the LES resolves most of the turbulence.

It should be noted that the comparison for the ML3, ML4 and ML5 cases with the
DNS data reduces for the first two points around the buffer area. The second point of
the coarse LES grid still suffers poor resolution, which suggests the need for a wall
function to correct the under-resolved area beyond the first cell at the wall.

In all the test cases done in this section, the algebraic mixing length model is used
to compute the turbulent eddy viscosity in the RANS subdomains. This approach
is in line with practice by researchers in literature. The next section addresses the
challenge of using more advanced turbulence models in the subdomain. The challenge
of specifying boundary conditions at the interface for the turbulent kinetic energy, the
rate of dissipation and other turbulent quantities are discussed.
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Fig. 4.10 Schematic showing the setup of the numerical wall function for LES and the
quantities exchanged the LES and RANS regions for k− ε models in the subdomain.

4.4 Testing of Numerical Wall Function for LES in a
Plane Channel Flow using the k − ε Model in the
RANS Subdomain

In literature, the mixing length turbulence model has been used predominantly for
the RANS subdomain for wall-modelled LES. While this is suitable for simple flows,
the model becomes limited when complex applications need to be simulated, such as
separated flows and flows with secondary motion. One of the challenges of using more
advanced turbulence models is the specification of boundary conditions for turbulence
quantities at the interface of the subdomain to enable the computation of the transport
equations in the RANS subdomain. This project uses the elliptic blending k− ε model
of Billard and Laurence (2012) and the realizable k− ε model of Shih et al. (1995).
The elliptic blending k− ε model integrates all transported quantities down to the wall
without the need for a wall function, while the realizable k− ε model is implemented
as a high-Reynolds number model in OpenFOAM. The proposed boundary conditions
at the interface of the RANS subdomain for the turbulent kinetic energy, dissipation
rate and other quantities are discussed in subsequent subsections. These boundary
conditions, hereinafter referred to as the interface boundary conditions, will be tested in
a Reτ = 1000 plane channel flow case.

4.4.1 Interface Boundary Conditions for Turbulent Kinetic Energy
Based Turbulence Models

The k− ε turbulence model solves transport equations for the turbulent kinetic energy k

and the dissipation rate of the turbulent kinetic energy ε . These turbulence models were
developed to improve on the features of the mixing length model. The length-scale and
velocity-scale are not algebraically calculated or prescribed, which is a useful attribute
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for more complex turbulent flows. The transport equation for the turbulent kinetic
energy can be defined as:

∂k
∂ t

+
∂
(〈

U j
〉

k
)

∂x j
= P− ε +

∂

∂x j

[(
v+

νt

σk

)
∂k
∂x j

]
. (4.17)

The problem of using more advanced turbulence models in the RANS subdomain arises
from how to specify the values of the turbulent kinetic energy and the dissipation rate at
the interface of the subdomain. As the interface is mostly located in the log-layer region
of the flow, the assumption is made that convection of the turbulent kinetic energy is
negligible in that region, and the production of turbulence and dissipation terms are in
balance. Hence, Equation 4.17 reduces to:

∂

∂x j

[(
v+

vt

σk

)
∂k
∂x j

]
= 0. (4.18)

An option for specifying the interface boundary condition for the turbulent kinetic
energy is by specifying a Neumann condition as:

dk
dn

= 0. (4.19)

However, specifying the Neumann boundary condition means that the subdomain
interface does not receive any information regarding k from the LES region. This
problem is remedied by feeding the exponentially weighted time average of the LES
stress tensor to the interface of the RANS subdomain to enable stronger coupling of the
LES domain and the RANS domain. Hence, the resolved turbulent kinetic energy of the
LES domain is obtained by computing the trace of the LES stress tensor. This process
establishes a consistent coupling between the turbulent kinetic energy of the RANS and
LES grids and becomes the main interface boundary condition for the turbulent kinetic
energy for the RANS subdomain. This work defines the interface boundary condition
for the turbulent kinetic energy obtained from the LES domain as:

⟨k⟩RANS =
1
2
⟨τii⟩EWA . (4.20)

The interface boundary condition for the dissipation rate is handled differently. If
the turbulent eddy viscosity is defined as:

νt =Cµ

k2

ε
=C1/4

µ k1/2lm, (4.21)
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with uτ =C1/4
µ k1/2 and lm = κy, then the interface boundary condition for the dissipation

rate obtained in the RANS subdomain is defined as:

ε =
u3

τ

κy
. (4.22)

As with the original turbulent kinetic energy interface boundary condition, the Dirichlet
boundary condition for the dissipation rate of Equation 4.22 is not coupled to the LES
region. Stronger coupling between the LES and RANS domains at the interface is
obtained by computing the partial mean dissipation rate in the LES grid. The total
dissipation rate from the LES region can be decomposed into the sum of the resolved
dissipation rate linked with the large eddies of the flow εr and the modelled dissipation
rate associated with the subgrid scales εSGS. This decomposition of ε in the LES domain
can be written as:

⟨ε⟩= ⟨εr⟩+ ⟨εSGS⟩= 2ν
〈
Si j
〉 〈

Si j
〉
−
〈
τ

SGS
i j
〉〈

Si j
〉
. (4.23)

The value of the total dissipation rate from the LES region is exponentially weighted
time-averaged and also mapped to the interface of the subdomain. This procedure
forms the second Dirichlet method of specifying the dissipation rate at the subdomain
interface.

The elliptic blending k− ε model solves two additional equations. The additional
quantities that are solved are the ratio of the normal Reynolds stress to the turbulent
kinetic energy (ϕ) and the elliptic blending parameter (α). The initial specification of
the interface boundary condition is to stipulate the boundary-normal gradient of the two
quantities as zero.

dϕ

dn
=

dα

dn
= 0. (4.24)

This condition is initially tested. Although postprocessing of a channel flow DNS
database indicates that the assumption that the normal gradient of ϕ and α in the
log-layer is zero is not accurate, this formulation forms the first test for using more
advanced turbulence models in the RANS subdomain.

Finally, the elliptic blending does not solve the transport equation for the dissipation
rate but the homogeneous dissipation rate εh. When the value of the dissipation rate
ε is established at the interface either with Equations 4.22 or 4.23, the homogeneous
dissipation rate is defined as:

εh = ⟨ε⟩EWA − 1
2

d2k
dx2

j
. (4.25)
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Initial simulations using Equation 4.25 as the interface boundary condition produced
negative values at the interface of the RANS boundary. Hence, the stability of the
numerical wall function computations was reduced. This project adopted another
approach. Away from the viscous sublayer that is dominated by molecular viscosity, the
dissipation rate profile converges to the homogeneous dissipation rate. As the interface
of the RANS subdomain is designed to bypass the viscous sublayer of the turbulent
flow, the interface boundary for the homogeneous dissipation rate is defined as:

εh = ε
EWA. (4.26)

Equation 4.26 is applicable when the subdomain interface location satisfies the condition
y+ ≥ 20.

Three test cases are done using the k − ε model in the RANS subdomain for a
Reτ = 1000 plane channel flow. All cases use the strong coupling of the turbulent
kinetic energy between the LES and RANS grids by feeding the trace of the LES stress
tensor to the interface of the RANS subdomain. Two of the test cases use the elliptic
blending k− ε model in the subdomain. The first elliptic blending k− ε model NWF
case strongly couples the dissipation rate between the two domains, while the second
case computes the dissipation rate at the interface from RANS quantities. The third
numerical wall function case uses the realizable k− ε model in the RANS subdomain;
the realizable k−ε model is a high Reynolds number model. The interface of the RANS
subdomain needs information of the total turbulent kinetic energy from the LES grid,
which is the summation of the resolved and subgrid turbulent kinetic energy. Hence,
all three cases use the dynamic one-equation SGS model to represent subgrid-scale
stress in the LES grid. The use of the dynamic one-equation model has already been
established to produce good results in Section 4.3.2. Details of the test cases are found
in Table 4.4.

Figure 4.11 shows the plot of the mean streamwise velocity in the LES and RANS
grids. The cases that use the elliptic blending k− ε model in the subdomain perform
the best in predicting the mean streamwise velocity of the DNS. The EB-kε (LES: ε)
case performs slightly better than the EB-kε (RANS: ε) because the LES grid feeds the
interface with information of the dissipation rate to the subdomain interface achieving a
strong coupling between the RANS and LES simulations.

The case that used the realizable k−ε model in the RANS subdomain underperforms.
This poor performance is a result of the realizable k − ε model also needing wall
functions to be specified for k and ε in the RANS subdomain as it is a high Reynolds
number model. Whereas, the elliptic blending k− ε model integrates all transported
quantities down the wall. Also, RANS models use the dissipation rate to generate a
length scale to compute the turbulent eddy viscosity. For the realizable k− ε model, the
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Table 4.4 Details of case setups using the two-equation turbulence models in the
subdomain.

S/N Subdomain
Turbulence

Model

SGS
Turbulence

Model

Case Name Epsilon
Interface
Boundary

Type

Friction
Reynolds
Number

1 Elliptic
Blending

k− ε

Dynamic
one-equation

EB-kε (LES:
ε)

LES
dissipation

1051

2 Elliptic
Blending

k− ε

Dynamic
one-equation

EB-kε

(RANS: ε)
RANS

dissipation
1072

3 Realizable
k− ε

Dynamic
one-equation

real-kε (LES:
ε)

LES
dissipation

1453
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Fig. 4.11 Plots of the mean streamwise velocity in viscous units and semi-logarithm
scale in the LES and RANS domains for the Reτ = 1000 plane channel (Incorrect
interface boundary specification for v′2/k and α).
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mismatch between the empirical model ε and the DNS ε could have led to additional
errors in the RANS subdomain. The difference in results between cases that use the
elliptic blending k− ε model or the realizable k− ε model in the subdomain illustrates
the need for the wall function method to use a low-Reynolds model in the RANS
subdomain.
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Fig. 4.12 Plots of the mean turbulent kinetic energy in viscous units in the LES and
RANS domains for the Reτ = 1000 plane channel (Incorrect interface boundary specifi-
cation for v′2/k and α).

Curiously, the overprediction of the turbulent kinetic energy in the near-wall region
of the LES grid does not affect the results when coupled to k in the RANS subdomain.
Figure 4.12 shows the plots of the mean turbulent kinetic energy in the RANS and LES
grids. The interface of the RANS grids receives the overprediction of the turbulent
kinetic energy from the LES domain. However, the value of k is rapidly damped away
from the interface. This damping leads to the correct prediction of the wall shear stress
by the RANS subdomain. The damping of the turbulent kinetic energy is due to the
underprediction of the profiles of the ratio of the normal Reynolds stress to k and the
elliptic blending parameter α in the RANS subdomain as seen in Figure 4.13. There is
a massive difference between ϕ predicted in the numerical wall function models and
the DNS data away from the wall. Also, in the outer layer where the effect of viscous
forces is minimal, the elliptic blending parameter converges to the value of one as the
dissipation rate tends towards its homogenous value. This trend is not noticed at the
interface for the elliptic blending parameter as α < 1. The discrepancies in predicting
ϕ and α in the RANS subdomain are due to the wrong prescription of the interface
boundary conditions for the two quantities. The wrong prescription of the interface
boundary condition for ϕ = v′2/k and α leads to the inaccurate damping of the turbulent
kinetic energy in the RANS subdomain, and consequently the appropriate computation
of the wall shear stress. The correct specification of the boundary conditions for v′2/k

and α is addressed in the next section.
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Fig. 4.13 Plots of the ratio of the normal stress to turbulent kinetic energy and the elliptic
blending parameter in the RANS subdomain for the Reτ = 1000 plane channel (Incorrect
interface boundary specification for v′2/k and α). Legend the same as Figure 4.12.

4.4.2 Interface Boundary Conditions for the Elliptic Blending Pa-
rameter and the Ratio of the Normal Reynolds Stress to Tur-
bulent Kinetic Energy

This project makes use of ideas from research by Billard et al. (2015). Adaptive wall
functions are developed for all the transported terms and the elliptic term for the elliptic
blending k− ε model. The algebraic correlations developed for v′2/k and α for the first
cell at the wall are adapted to be used at the interface. The ratio of normal Reynolds
stress to the turbulent kinetic energy is defined algebraically as:

ϕ
(
y+
)
= min

[
2/3, 0.3077ln

(
y+
)
/ ln(10)−0.2775

]
. (4.27)

Equation 4.27 is applicable when the height of the subdomain satisfies the condition
y+ ≥ 30. There is an upper bound of 2/3 in the algebraic formulation of v′2/k at the
interface to guarantee realizability for ϕ . The elliptic blending parameter ranges from 0
to 1, and the parameter is computed at the subdomain interface as:

α
(
y+
)
=
(

1+
(
17/y+

)4
/3
)−1

. (4.28)

This formulation applies when the interface location satisfies y+ ≥ 17.
The correct specification of the interface boundary condition of v′2/k and α is tested

for the EB-kε (LES: ε) case in the previous section. Figure 4.14 shows the mean stream-
wise velocity for the wrong (Wrong interface α and ϕ) and correct (Correct interface
α and ϕ) specification of v′2/k and α interface boundary conditions at the subdomain
interface, while Figure 4.15 shows mean the plots of the mean turbulent kinetic energy.
As expected, the correct specification of the interface boundary conditions ensures that
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Fig. 4.14 Plots of the mean streamwise velocity in viscous units and semi-logarithm
scale in the LES and RANS domains for the Reτ = 1000 plane channel (Correct interface
boundary specification for v′2/k and α).

the overpredicted turbulent kinetic energy in the near-wall region of the LES grid leads
to the computation of a much larger wall shear stress in the RANS subdomain. The
higher value of the wall shear stress leads to the inaccurate resolution of the velocity
profile in the LES grid as seen in Figure 4.14.
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Fig. 4.15 Plots of the mean turbulent kinetic energy in viscous units in the LES and
RANS domains for the Reτ = 1000 plane channel (Correct interface boundary specifi-
cation for v′2/k and α).

The better specification of the interface boundary conditions for v′2/k and α leads
to a much higher value of the ratio of the normal Reynolds stress to the turbulent
kinetic energy at the interface, as shown in Figure 4.16a. However, since the algebraic
correlation for v′2/k is dependent on the wall distance units (which is also dependent
on the higher value of the friction velocity), v′2/k is overpredicted at the interface.
The elliptic blending parameter is closer to the value of 1.0, as expected, compared
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Fig. 4.16 Plots of the ratio of the normal stress to turbulent kinetic energy and the elliptic
blending parameter in the RANS subdomain for the Reτ = 1000 plane channel (Correct
interface boundary specification for v′2/k and α). Legend the same as Figure 4.12.

to when the interface boundary condition for α is a boundary normal gradient of 0
(Figure 4.16b).

A third case is done (Correct interface (fixed RANS k)), where the value of the
turbulent kinetic energy is fixed at the interface of the two RANS subdomains. The
value of the turbulent kinetic energy at the interface is determined by a separate RANS
precursor simulation of the overall channel domain. Hence, the LES domain does not
supply information of the turbulent kinetic energy to the RANS subdomains; the LES
domain only supplies information of the partial time-averaged velocity and dissipation
fields to the interface. Therefore the performance of the interface boundary conditions
for v′2/k and α using suggestions by Billard et al. (2015) can be investigated when a
more accurate value of the turbulent kinetic energy feeds the interface of the RANS
subdomains. Figure 4.14 shows that the third case has the best agreement with the DNS
profile of the mean streamwise velocity compared to the other two cases. This good
agreement is a result of the RANS subdomains mapping an accurate value of the wall
shear stress to the LES grid. The LES total turbulent kinetic energy is still overpredicted
as seen in Figure 4.15a. However, this overprediction of the LES k does not affect the
results as the value of the turbulent kinetic energy at the interface of the RANS grid is
fixed. Consequently, the RANS turbulent kinetic energy follows the DNS profile for the
third case as seen in Figure 4.15b. Crucially, the third case predicts the correct profile
of v′2/k using Equation 4.27 to determine the value v′2/k at the interface (Figure 4.16a).
Also, the value of the elliptic blending parameter approaches its limit of 1.0 quicker than
the other two cases (Figure 4.16b). The correct specification of the turbulent kinetic
energy at the subdomain interface leads to the interface boundary conditions defined for
the ratio of the normal Reynolds stress to the turbulent kinetic energy and the elliptic
blending parameter behaving optimally. Therefore, the subdomain wall function adopts
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the algebraic correlations of v′2/k and α as suggested by Billard et al. (2015) as the
interface boundary conditions of the two quantities, since the subdomain wall function
does not suffer the problem of the generation of numerical noise in the LES grid.

Overprediction of the turbulent kinetic energy in the near-wall region of the LES
grid due to numerical noise in the OpenFOAM remains a challenge in the adoption
of the numerical wall function for LES in OpenFOAM for more advanced turbulence
models in the RANS subdomain. This problem of the numerical noise arising from the
application of the computed wall shear stress to the coarse LES grid could probably
be solved with the use of another CFD software with a different numerical setup from
OpenFOAM to implement the numerical wall function. As earlier noted, the subdomain
wall function for LES does not suffer from the problem of excess numerical noise
when the wall function is applied, and the approach is covered in Paper I. Crucially, the
development of the code structure for the numerical wall function in OpenFOAM was
vital in finalising the implementation of the subdomain wall function, which is the main
focus of this project, in the open-source code.

The next section tests the numerical wall function for LES for turbulent flow through
a 90◦ pipe bend. The pipe bend is a challenging case as it features the presence of
centrifugal force, counter-rotating flow vortices and separation.

4.5 Testing of Numerical Wall Function for LES for a
90° Pipe Bend Geometry

The numerical wall function for large eddy simulation is tested for the pipe bend
geometry to investigate how the model predicts the development of counter-rotating
vortices due to the imbalance of the radial pressure gradient and centrifugal forces. The
ratio of the radius of curvature of the pipe bend to the pipe diameter is Rc/D = 1.58.
The lower the ratio, the sharper the pipe bend and vice versa. A ratio corresponding
to 1.58 corresponds to a sharp bend. The pipe bend geometry is a challenging case
as several additional forces are acting on the flow compared to a straight pipe flow.
At the entrance of the bend, there is a strong favourable streamwise pressure gradient
acting along the inner wall. This streamwise pressure gradient acts to accelerate the
fluid near the inner wall at the bend entrance. As the flow moves deeper into the bend,
centrifugal forces act to move the core of the high-velocity fluid towards the outer wall.
There is a development of a radial pressure gradient to balance the presence of the
outward centrifugal forces. This radial pressure gradient moves low momentum fluid
near the sides of the pipe wall to the inner wall of the bend. Hence, there is a strong
development of secondary motion in the radial direction. The movement of the high
and low momentum fluid due to additional forces lead to the formation of counter-

116



4.5 Testing of Numerical Wall Function for LES for a 90° Pipe Bend Geometry

rotating vortices, famously known as Dean vortices. These Dean vortices become weak
downstream of the bend exit as the flow recovers its earlier axis-symmetric features.

Fig. 4.17 Schematic showing the cross-section of the pipe bend geometry. Features of
the pipe are shown.

The complex physics of the pipe bend flow makes the geometry a difficult case to
simulate. Typically RANS models fail to capture the flow details along the inner wall
of the flow when the Dean vortices become dominant (Iyamabo, 2015). Hence, the
pipe bend is a challenging case to test the numerical wall function for LES. Results are
validated with the wall-resolved LES of Holgate (2018) and the experimental data of
Kalpakli and Örlü (2013). The wall-resolved LES used 19 million grid points.

4.5.1 Case Details for the Pipe Bend Geometry

The bulk Reynolds number based on the pipe diameter of all the cases is 34,000. The
LES grid is coarse in the near-wall region, as shown in Figure 4.18. Hence, the LES
grid for the numerical wall function cases does not resolve the viscous sublayer. The
number of points used in the LES grid is 540,125, which represents 5% of the grid
points used in the wall-resolved LES case. A cross-sectional face has 3625 nodes with
the length of the pipe split into 149 identical cross-section planes.

The RANS subdomain, as shown in Figure 4.19, is refined in the near-wall region
to resolve the viscous sublayer of the flow. The height of the interface of the subdomain
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Fig. 4.18 Cross-section of the computation grid used in the LES domain.

is set to 0.05D to ensure that the subdomain bypasses at least the first three nodes of the
LES grid. The RANS grid uses 131,274 points with 1,326 points in the cross-sectional
plane. The RANS grid is split into 99 grid planes along the streamwise direction of the
pipe.

The LES domain for the numerical wall function cases uses the dynamic one-
equation SGS model to represent the subgrid-scale turbulence. A separate precursor
simulation is run to generate mean inlet boundary conditions for the straight pipe. The
precursor simulation is done on a straight pipe with the same diameter as the pipe
bend. Periodic boundary conditions are prescribed in the streamwise direction, and
the elliptic blending k − ε model computes the eddy-viscosity in the straight pipe.
The precursor simulation generates fully developed profiles of the velocity vector, the
isotropic Reynolds stress and the rate of dissipation. The synthetic eddy method of
Skillen et al. (2016) utilises the mean profiles to instigate a fluctuating instantaneous
velocity at the inlet of the LES grid.

The fully developed profiles from the precursor simulation are also mapped to the
inlet boundary of the subdomain. The subdomain uses the elliptic blending k− ε model
and the mixing length turbulence models to compute the RANS equations. The case
that used the elliptic blending k− ε model in the subdomain prescribes the improved
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Fig. 4.19 Cross-section of the computation grid used in the LES domain.

interface boundary conditions for v′2/k and the elliptic blending parameter α . The
usage of the improved boundary conditions for v′2/k and α ensures that the computed
wall shear stress by the RANS subdomain is not artificiality suppressed as is done
with the zero-gradient implementation of the two quantities. The interface boundary
conditions for k and ε are obtained from the equivalent partial mean LES quantities.

An additional case is studied using the detached eddy simulation (DES) for the same
geometry. The aim is to compare the performance of the numerical wall function with
the most popular hybrid RANS/LES method in industry. The variant of DES used for
the study is the improved delayed detached eddy simulation with k−ω SST turbulence
model (IDDES) of Gritskevich et al. (2011). The IDDES case uses 1.2 million grid
points with the near-wall region refined to resolve the viscous sublayer. Details of the
test cases are shown in Table 4.5.

Figure 4.20 shows the plot of the mean streamwise velocity along the symmetry
line between the inner and outer walls immediately downstream of the bend exit at
z = 0.67D. Position -1.0 is taken as the inner wall, while position 1.0 indicates the outer
wall on all plots. Figure 4.20 also compares the results with the experimental data. At
z = 0.67D, the numerical wall function and the IDDES results are in good agreement
with the reference experimental and numerical data. However, the plot of the numerical
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Table 4.5 Details of test cases for flow through a 90◦ pipe bend.

S/N Subdomain
Turbulence

Model

SGS
Turbulence

Model

Case Name Total Cells LES

1 N/A Dynamic
Smagorinsky

Wall-Resolved
LES

19,000,000

2 Mixing Length Dynamic
one-equation

NWF-Mixing
Length

540,125

3 Elliptic
Blending k− ε

Dynamic
one-equation

NWF-EB
k− ε

540,125

4 N/A IDDES: k−ω

- SST
IDDES: k−ω

- SST
1,200,000

wall function with the mixing length does not capture the shift of the high momentum
fluid towards the outer wall.

Figure 4.21 shows the evolution of the mean streamwise velocity through the pipe
bend, while Figure 4.22 shows the evolution of the cross-stream velocity. Upstream
of the bend entrance, the streamwise velocity profile is symmetric; the cross-stream
velocity is negligible, and the results from the numerical simulations perform well
in predicting the reference data. At the bend entrance of Θ = 0◦, there is a strong
favourable streamwise pressure gradient that accelerates the fluid near the inner wall.
The acceleration of the flow leads to the deceleration of the cross-stream velocity due to
continuity. All models capture these trends.

From the bend middle plane (Θ = 45◦), secondary flow begins to appear, which
act to move high momentum fluid towards the plane-centre of the flow. On the outer
wall, there is very good agreement of the velocity gradient between all the models. This
agreement continues throughout the bend along the outer wall.

Along the inner wall, the IDDES (blue) produces a much too thick and slower
boundary layer. On the contrary, the numerical wall function with the elliptic blending
k − ε (red) predicts higher velocities at Θ = 45◦ but is still in excellent agreement
with the reference data. The overprediction of the wall shear stress at the inner wall is
more pronounced for the NWF-Mixing Length case (green) than the NWF-EB k− ε

case. The numerical wall function case with the elliptic blending k− ε model in the
subdomain predicts the cross-stream velocity well at Θ = 45◦ favourably; the IDDES
case overpredicts the cross-stream velocity at the inner wall for this location. Hence,
the high momentum fluid moves deeper into the core of the flow than the wall-resolved
LES for the IDDES case.

At the plane position Θ = 67.5◦, the counter-rotating vortices become more domi-
nant, and the cross-stream velocity increases near the inner wall. The NWF-EB k− ε is
in good agreement with the reference cross-stream velocity profile, while the IDDES
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Fig. 4.20 Plot of the mean streamwise velocity at z = 0.67D along the symmetry line
between the inner and outer walls.

and the NWF-Mixing Length overpredict and underpredict the secondary velocity near
the inner wall respectively. Therefore, the NWF-EB k− ε case captures the trend of
the streamwise velocity around the inner wall while the other two test cases deviate
markedly from the reference data.

At the bend exit Θ = 90◦, the performance of the IDDES and NWF-Mixing Length
reduces further, while the NWF-EB k−ε still captures the streamwise and cross-stream
velocity profiles. The boundary layer around the inner wall for the IDDES case slows
down to the point that flow reversal is observed at the bend exit. Although the NWF-
Mixing Length case mostly yields similar near-wall gradients as the reference data, the
case largely underestimates the asymmetry of the streamwise velocities in the core,
due to underprediction of the secondary motion. Downstream of the bend exit, as the
effect of the counter-rotating vortices reduces, the underperforming test cases recover
the profiles of the streamwise velocity.

The numerical wall function with elliptic blending k− ε model in the RANS subdo-
main performs well for most of the flow in predicting the velocity profiles. This good
performance is due to the utilisation of a more advanced turbulence model in the RANS
subdomain than the mixing length model to predict the wall shear stress for the complex
pipe bend flow.

Figure 4.23 shows the plots of the mean turbulent kinetic energy at different sections
of the pipe between the inner and outer walls. As earlier identified from the channel
flow cases, numerical noise in the OpenFOAM code when the wall function is applied
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Fig. 4.21 Plots of the mean streamwise velocity through the pipe along the symmetry
line between the inner and outer walls. Profiles are from different sections through the
pipe. Legend is the same as Figure 4.20.
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Fig. 4.22 Plots of the mean cross-stream velocity through the pipe along the symmetry
line between the inner and outer walls. Profiles are from different sections through the
pipe. Legend is the same as Figure 4.20.

leads to the overprediction of the turbulent kinetic energy near the wall for the numerical
wall function cases. This overprediction has the effect of increasing the wall shear
stress computed by the RANS subdomain for the NWF-EB k− ε case. However, the
turbulent kinetic energy decayed at the matching location of the interface of the RANS
subdomain for most of the pipe bend. Thereby the negative effect of the overprediction
of the turbulent kinetic energy is reduced for the NWF-EB k− ε case.

4.5.2 Case Details for the Pipe Bend Geometry

Approaches of wall modelled LES have made the assumption that the pressure gradient
balances the convection term in the Navier-Stokes equations, and hence, the two terms
can be removed when solving the RANS boundary layer momentum equations. Only
the diffusion term is solved in the RANS subdomain to supply the wall shear stress to
correct the under-resolved near-wall LES grid. Figure 4.24 shows the balance of the
convection and the pressure gradient through the pipe bend. The balance between the
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Fig. 4.23 Plots of the mean turbulent kinetic energy through the pipe along the symmetry
line between the inner and outer walls. Legend is the same as Figure 4.20.

two terms is zero for much of the flow domain. However, when the counter-rotating
vortices become dominant in the second half of the bend, the convection term becomes
much higher than the pressure gradient term. Hence, the assumption of solving only the
diffusion term in the RANS subdomain fails for the pipe bend case.

4.6 Appraisal of the Numerical Wall Function for LES

The numerical wall function for LES made improvements over the classic wall-modelled
LES. Both approaches use the RANS subdomain to compute a wall shear stress to
correct the under-resolved coarse near-wall LES grid. Essentially, the numerical wall
function establishes a consistent coupling of quantities at the interface between the LES
and RANS grids through the exponentially weighted time average. This consistent
coupling enables the computation of the full Reynolds-averaged Navier-Stokes equation
in the subdomain without the need of introducing corrections. Also, the exponentially
weighted time average enables the calculation of the turbulent kinetic energy and the
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Fig. 4.24 Contour showing the magnitude of the summation of the convection and the
pressure gradient terms in the momentum transport equation.

dissipation rate in the LES domain; these two terms are fed to the interface to enable
the use of more advanced turbulence models in the RANS subdomain. These strategies
have also been adopted by the main wall function approach of this project. The use of
the elliptic blending k− ε model in the subdomain of the pipe bend case has proven to
be a success.

However, the application of the wall shear stress in the first cell of the coarse LES
grid leads to the generation of numerical noise in the OpenFOAM code, which appears
as additional resolved turbulence. This additional resolved turbulence leads to the
overprediction of the turbulent kinetic energy in the near-wall region of the LES grid.
When the higher than expected k is fed to the interface, it also leads to the overprediction
of the wall shear stress computed in the RANS subdomain. The overpredicted wall
shear stress wrongly decreases the velocity gradient at the wall of the LES domain.
The problem of the numerical noise reduces as the coarse near-wall grid is refined,
which defeats the purpose of using a wall function. The artificial noise generated
by the numerical wall function can be eliminated if the method is implemented in a
different code. It is recommended for future work that the numerical wall function is
implemented and tested in another open-source CFD code with a different numerical
setup from OpenFOAM.
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Chapter 7 gives an overview of the successful development and implementation of
the main wall function method by this project in the open-source code OpenFOAM.
Rather than applying the correction at the wall, the wall function is applied as a weak
source term over the first few cells at the wall of the LES grid to drive the under-
resolved near-wall LES fields towards the equivalent fields in the RANS domain. This
new approach utilises ideas from the hybrid RANS/LES dual mesh method of Xiao
and Jenny (2012) while incorporating the improvements made for the numerical wall
function. The excessive numerical noise encountered in the first cell of the coarse LES
grid for the numerical wall function method is not witnessed for the new implementation
as the noise is spread across several wall-normal cells. This new approach, known as
the subdomain wall function, is fully demonstrated in Paper I.
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Chapter 5

Contributions to the Field

The primary focus of the PhD has been the development of wall functions for large eddy
simulation. This project presents detailed results of the research conducted throughout
the PhD in the form of two journal papers and a conference paper. These papers are
appended to this thesis. This chapter summarises the significant contributions of each
paper with respect to the three principal objectives of this project.

(I) Utilisation of advanced turbulence models in the RANS subdomain of the
wall function approaches: Assessment of the current literature of wall function
approaches for LES and the implementation of two and four-equation RANS
models in the subdomain. (Papers I & III)

(II) Development of a novel wall function for LES: Implementation and evaluation
of new wall function approaches for LES to enable high Reynolds number scale-
resolving simulations. (Papers I & III)

(III) Investigation of thermo-hydraulic properties of flow through a pipe bend:
Application of a wall-resolved LES to study the evolution of flow and thermal
physics through a 90◦ pipe bend. (Paper II)

5.1 Utilisation of Advanced Turbulence Models in the
RANS Subdomain of the Wall Function

The usage of more advanced turbulence models than the mixing length model in the
RANS subdomain is reported in Papers I and III. The purpose of this implementation
is to enable the RANS subdomain to better support the under-resolved LES grid for
challenging industrial applications as generally at such high Re numbers, the viscous
and buffer near-wall layers must be modelled, rather than being resolved by a quasi-
DNS mesh refinement. The framework is developed to allow the use of any RANS
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models. This work uses two and four-equation transport eddy viscosity models in the
RANS subdomains to evaluate the wall function approaches.

As explained in Papers I and III, proper coupling between the LES and RANS
grids is established to enable the use of more advanced turbulence models in the RANS
subdomain. Current wall function approaches in literature feed the instantaneous filtered
LES velocity and pressure fields to the top boundary of the RANS subdomain. The
coupling of the instantaneous field of the LES domain to the Reynolds-averaged fields
of the RANS domain at the interface is inconsistent. This inconsistent coupling has led
to the simplification of the RANS momentum equation to just solving the diffusion term
or the introduction of corrections to the RANS mixing length turbulence model. This
work solves this problem by computing the partial time average of the filtered velocity
and pressure fields in the LES grid. The period of the partial time average of quantities
of interest is long enough to ensure that the partial mean LES quantities are equivalent
to the corresponding Reynolds averaged quantities. The partial time average is done by
means of the exponentially weighted time average. The exponentially weighted time
average reduces the required period to initialise the averaging operation compared to
the traditional-time average, and the recent events of the simulation are prioritised. The
partial time average of filtered variables ensures that the LES grid supplies consistent
quantities to the interface of the RANS subdomain. Hence, paper III demonstrates
the computation of the full RANS equations in the subdomain without the need for
corrections when a consistent coupling at the interface is established.

Papers I and III overcome the problem of prescribing boundary conditions at the
interface of the RANS subdomain for the turbulent kinetic energy and the dissipation
rate by computing the instantaneous total Reynolds stress tensor and the dissipation
rate in the LES domain. These two quantities are exponentially weighted averaged
and transferred to the interface to enable the use of advanced turbulence models in the
RANS subdomain. The four-equation elliptic blending k− ε model is used in the two
identified papers. The turbulence model solves the additional transport equation for
v2/k and the elliptic equation for the blending parameter α . Algebraic correlations are
done to specify the interface boundary conditions for the two additional quantities for
all the test cases in Paper I and the pipe bend case in paper III. However, a boundary
normal gradient of zero is incorrectly specified at the interface for the two additional
quantities for the channel flow case in paper III.

In summary, a consistent coupling of fields at the interface of the LES and RANS
grids has been accomplished by computing the exponentially weighted time average
of LES filtered fields of interest. The consistent coupling enables the utilisation of any
advanced turbulence model in the RANS subdomain. Hence, the RANS grid is able to
support the coarse LES domain for more demanding test cases in the region of the LES
grid that is expected to be weak.
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5.2 Development of a Novel Wall Function for LES

Paper I demonstrates the implementation of the subdomain wall function for large eddy
simulation. This new method is the main focus of the project in the development of a
novel wall function. Paper III shows the implementation of the numerical wall function
in the open-source toolbox OpenFOAM. The code of the numerical wall function was
developed to form the backbone of the later implementation of the subdomain wall
function for LES.

The grid resolution in the near-wall region of the LES domain is deliberately
reduced to enable the use of LES for high Reynolds number flows. The setup of the
wall functions used in this project is similar to the wall-modelled LES approach first
developed by Balaras et al. (1996) where a smaller RANS domain overlaps the first cell
at the wall of the LES grid. The RANS domain computes a wall shear stress which is
supplied to the LES momentum transport equation to correct the first cell at the wall of
the coarse near-wall LES grid. In return, the top boundary of the RANS domain, which
meets with the top face of the first grid point of the LES grid, receives instantaneous
filtered information to complete the boundary conditions. Simplified boundary layer
momentum transport equations are solved in the RANS domain. Some researchers such
as Kawai and Larsson (2013) made corrections to the boundary layer equations to reduce
the stress computed by the RANS domain. Other researchers simplified the boundary
layer equations by solving only the diffusion term without needing modifications to the
RANS momentum equations. The algebraic mixing-length turbulence model was the
typical approach used to represent turbulence in the RANS domain.

Paper III implements the numerical wall model for LES where the RANS domain
computes the wall shear stress to correct the under-resolved first cell of the LES grid
akin to the wall-modelled LES approach. However, the numerical wall function made
several improvements over the standard wall-modelled LES method. First, the height of
the RANS domain is increased to bypass at least the first three cells of the LES grid.
This modification is done to ensure that the top boundary of the RANS domain receives
better resolved filtered information from the LES grid compared to when the RANS
grid is embedded in the first node of the LES domain. Furthermore, the numerical wall
function utilises the progress achieved in the first objective of the PhD by establishing a
consistent coupling of fields between the LES and RANS regions by the exponentially
weighted averaging of LES fields of interest. This strategy ensures that the full Navier-
Stokes equations in the RANS domain are solved. Also, the major challenge of using
any turbulence model in the RANS domain is overcome. The numerical wall function in
Paper III used the elliptic blending k− ε model in the RANS to enable the computation
of the wall shear stress. This enabled the numerical wall function for LES to be used
for challenging test cases.
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Application of the numerical wall function for LES demonstrates good performance
for plane channel flow simulations in comparison to reference DNS data. The error of
the friction Reynolds number predicted is less than 4%. The performance of the coarse
LES grid degrades when the numerical wall function is not used. The new method is
applied for a flow through a 90◦ pipe bend and is in good agreement with the reference
data. The numerical wall function case used about 3% grid points of the reference
wall-resolved LES case for the pipe bend case. Results predicted by the improved
delayed detached eddy simulation (IDDES) method is also compared. The IDDES
case struggles to predict the flow features when the counter-rotating vortices become
dominant in the latter part of the pipe bend. The streamwise and secondary velocity
profiles are well predicted by the numerical wall function at the pipe bend exit despite
using a significant fraction of the computational cost.

Paper I presents the implementation of a novel wall function approach, known as
the subdomain wall function for LES. The setup of the subdomain wall function is the
same as the numerical wall function where a RANS domain, labelled the subdomain,
overlaps the near-wall region of the coarse LES grid. The RANS subdomain receives
mean information from the LES at the interface to complete the boundary conditions of
the grid and compute the RANS equations. However, rather than compute a wall shear
stress to correct the first grid point at the wall of the LES grid, the RANS subdomain
supplies velocity, turbulent kinetic energy and dissipation rate fields to the LES domain
to form the new wall function.

The reduction of the grid resolution in the inner region of the LES grid to support
high Reynolds number scale-resolving computations ensures that the near-wall grid
is under-resolved beyond the first cell at the wall of the LES domain. However, the
numerical wall function and other wall function approaches correct just the first cell
at the wall with a computed wall shear stress, while the subsequent unrefined grid
points are left uncorrected. The significant achievement of the subdomain wall function
is to correct the under-resolved near-wall LES grid beyond the first node at the wall.
The subdomain wall function makes use of ideas of the innovative dual mesh hybrid
RANS/LES method by Xiao and Jenny (2012) and Tunstall et al. (2017). A weak
volumetric source term, known as the drift term, is added to the momentum transport
equation of the LES domain. The drift term acts to force the partial mean LES velocity
field towards the RANS velocity and rescale the trace of the mean total LES Reynolds
stress tensor towards the RANS turbulent kinetic energy. Hence, the RANS subdomain
supports the near-wall region of the LES grid that is expected to underperform. The
method computes relaxation timescales, based on the RANS turbulent timescales, to
determine how quickly the wall function makes the LES velocity and Reynolds stress
fields consistent with the equivalent RANS fields. Furthermore, the areas of the LES grid
that are under-resolved are automatically determined by the subdomain wall function
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method. This automation eliminates the need to specify the areas of the LES grid that is
under-resolved before the start of the simulation.

The subdomain wall function demonstrates excellent performance for a plane chan-
nel flow. The overprediction of the turbulent kinetic energy in the near-wall region, as
seen for the numerical wall function case, is not observed. Paper I investigate the effect
of varying the height of the interface for the same LES grid. The velocity profiles show
a log-layer mismatch when the subdomain covers either the first one or two cells at the
wall of the LES grid. The mismatch disappears when the subdomain overlaps at least
the first three cells of the LES grid.

The performance of the subdomain wall function is tested for the challenging
periodic hills and asymmetric diffuser cases, which features flow separation and reat-
tachment. A pure LES case using the same LES grid as the subdomain wall function
cases, but without the support of a wall function, is also studied for the simulations.
The subdomain wall function predicts the separation bubble in the periodic hills and
asymmetric diffuser accurately, while the pure LES fails to predict the flow features
as the resolution of the near-wall LES grids is too low. The difference between the
wall function case and the pure LES case in predicting the reference data highlights the
importance of the subdomain wall function method improving the performance of LES
with coarse near-wall grids.

5.3 Investigation of Thermo – Hydraulic Properties of
Flow through a Pipe Bend

The thermal properties of flow through a 90◦ pipe bend was investigated with a wall-
resolved LES demonstrated in paper II. Hydrodynamic properties of flows through
pipe bends have been extensively investigated with numerical and experimental studies.
However, there have been very few investigations for heat transfer through pipe bends.
Baughn et al. (1987) conducted a heat transfer experiment, while Cvetkovski et al.
(2015) performed a thermal detached eddy simulation for flow through a U-Bend
pipe. Iyamabo (2015) did RANS investigations on heat transfer through a 90◦ pipe
bend. Paper II compares the heat transfer results of the LES with the mass transfer
experimental data of Mazhar et al. (2013) using the well-known correlation between
heat and mass transfer to validate the numerical results. Mazhar et al. (2013) measured
the mass transfer coefficient of a 90° pipe bend using a dissolvable wall technique
in their experiment. The bulk Reynolds number of the flow based on pipe diameter
is 40,000, and the ratio of the radius of curvature of the bend to the pipe diameter is
Rc = 1.5D. A section of the flow results are also validated with the wall-resolve LES
data of Holgate (2018) and the experiment data of Kalpakli and Örlü (2013), whose
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bulk Reynolds number and the ratio of the curvature radius to the pipe diameter are
34,000 and Rc = 1.58D respectively. The Cartesian coordinate system of the velocity
field is converted to an intrinsic coordinate system. Hence, the study generated the
streamwise, cross-stream and spanwise velocity components through the bend. This
led to the production of an extensive dataset of thermal and flow properties through the
bend.

The fluid accelerates around the inner wall at the entrance of the bend. This
flow acceleration had a negligible effect on the temperature profiles, which remained
symmetric and unchanged at the bend entrance. The flow acceleration led to an increase
of skin friction along the inner wall immediately downstream of the bend entrance. By
the middle of the bend, a strong streamwise adverse pressure gradient appears along
the inner wall leading to the flow to separate. Also, counter-rotating vortices, known as
the Dean vortices, become prominent from the middle of the bend and transport high
momentum fluid from the inner wall towards the outer wall, while low momentum fluid
from the sides of the bend is moved towards the inner wall. The Dean vortices have
an effect on the temperature field, which behave like the velocity field. Consequently,
in the second half of the bend where the Dean vortices are dominant, there are high
gradients of velocity and temperature fields along the outer walls. The Reynolds stress
tensor becomes highly anisotropic with the spanwise component becoming the largest
stress close to the inner wall.

When the heat transfer results are compared with the mass transfer experimental
data, the heat transfer along the outer wall follows the increasing trend of the mass
transfer as expected. However, along the inner wall, a remarkable discovery is made;
the correlation between heat and mass transfer breaks down. The mass transfer data is
strongly correlated with skin friction along the inner wall, while the heat transfer results
scale more closely with turbulent intensity and are greatly influenced by the secondary
flow. The disparity in the trend of the heat and mass transfer profiles along the inner
wall is due to the difference in the evolution of the thermal and flow fields through the
bend.
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Chapter 6

Summary and Future Work

This PhD project has focussed on the development of wall functions for large eddy
simulation to enable the computation of the scale-resolving method for high Reynolds
number flows found in industrial applications. The PhD has made contributions to
large eddy simulation applications at high Reynolds by developing the subdomain
wall function for LES; the subdomain wall function was the main objective at the
conception of the project. A second wall function was created, namely the numerical
wall function, by this project; the development of the numerical wall function was
used to aid the code implementation of the subdomain wall function in an open-source
toolbox. These wall function approaches were implemented in the OpenFOAM package
and have been validated with standard and demanding test cases. The wall function
methods have a separate RANS grid that overlaps the near-wall region of the LES. The
top boundary of the RANS grid, or the subdomain, that interfaces with the LES grid
receives mean information from the LES grid to complete the boundary conditions of
the subdomain. This coupling enabled the utilisation of advanced turbulence models
in the RANS subdomain. Consequently, the RANS subdomain of the numerical wall
function computes a wall shear stress to correct the under-resolved first cell at the
wall of the coarse LES grid. On the other hand, the RANS grid of the recommended
subdomain wall function sends information of the RANS velocity and turbulent kinetic
energy to the main domain to support the correction of the coarse near-wall region of
the LES grid beyond the first cell at the wall.

Furthermore, the PhD project conducted an extensive study of turbulent heat transfer
through a 90° pipe bend. The results of the heat transfer coefficient were compared with
an experimental mass transfer dataset. The heat transfer results along the outer wall of
the bend compared favourably with the mass transfer experimental data. However, the
correlation between numerical heat and experimental mass transfer broke down along
the inner wall.

This thesis presented an overview of methods used to model or represent turbulence
in CFD study. A comprehensive review of traditional wall function approaches to LES
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and the development of the numerical wall function was detailed with explanations of
the failure of the implementation of the approach in open-source code OpenFOAM.
Finally, the results of this PhD project were presented in the form of 2 journal papers,
which are currently under review, and a published conference paper.

Paper I reports on the development and implementation of the subdomain
wall function for large eddy simulation. This method is the novel approach
of this project in computing large eddy simulation for high Reynolds number
flow. A source term is added to the momentum transport equation of the main
LES domain, which acts to readjust the mean velocity and the resolved and
subgrid-scale turbulence fields of the LES grid towards the equivalent fields
of the RANS subdomain. Hence the RANS subdomain supports the near-wall
LES domain where the LES grid is expected to underperform. The correction of
the under-resolved near-wall LES grid is done beyond the first cell at the wall.
In return, the LES grid forces the quantities at the interface of the RANS and
LES grids, by supplying mean filtered information to the top boundary of the
RANS subdomain. This supply of mean information from the LES grid enables
all the boundary conditions of the RANS grid to be complete. The areas of
the under-resolved LES grid are also automatically determined by the new wall
function approach without the need to prescribe the zones prior to the start of a
simulation. The subdomain wall function achieves success in using any advanced
turbulence model in the RANS grid. The subdomain wall function accurately
predicts the DNS profiles of the Reτ = 395,1000 and 5200 plane channel flow
cases. Testing of the method is done for the more demanding periodic hills case
that experiences flow separation and reattachment. Results of the subdomain
wall function are compared with the data of a wall-resolved LES of Breuer
et al. (2009). The results of the novel wall function approach are in excellent
agreement with the reference data while using a significant fraction of grid points
in the main domain compared to the wall-resolved LES grid size. Validation of
the subdomain wall function method is also extended to the asymmetric plane
diffuser case. Results of the subdomain wall function are compared with the
data of the experiment of Buice and Eaton (2000). The subdomain wall function
shows massive improvement in predicting the experimental data with a coarse
LES grid compared to when a pure LES is run without the aid of a wall function
on the same grid.

Paper II investigates the heat transfer properties of turbulent flow through a 90◦

pipe bend using the wall-resolved LES method. A synthetic eddy method is
used to generate the fluctuating instantaneous velocity field at the inlet, which
instigated the development of the fluctuating instantaneous temperature field
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in the inlet straight pipe upstream of the bend entrance. The bulk Reynolds
number based on the pipe diameter is 40,000 while the ratio of the radius of
curvature of the bend to the pipe diameter is Rc = 1.5D. The heat transfer results
of the simulation are compared with the mass transfer experimental data of
Mazhar et al. (2013) due to the absence of a heat transfer experimental dataset
for 90◦ pipe bends. The heat transfer coefficient along the outer wall of the bend
compares favourably with the mass transfer data. However, the heat transfer
results along the inner wall completely fail in predicting the mass transfer data
in that section of the bend. Mass transfer along the inner wall of the bend scales
better with skin friction, while heat transfer correlates with the peak turbulence
intensity near the inner wall. The breakdown in the correlation between heat and
mass transfer is due to the difference in the evolution of the flow and thermal
fields around the bend.

Immediately downstream of the bend entrance, there is a strong favourable
pressure gradient along the inner wall, which acts to accelerate the flow near
that location, thereby increasing skin friction. However, the temperature profile
remains unaffected. Counter-rotating vortices due to the imbalance of centrifugal
forces and the radial pressure gradient, in the second half of the bend, transports
high momentum fluid towards the outer wall, while low momentum fluid at the
side walls is moved towards the inner wall. The temperature fields also become
affected by the counter-rotating vortices and now follow the same trend of the
flow field, leading to an increase of heat flux along the outer wall. Turbulent
transport via secondary flow in the pipe bend also accounts for the spanwise
component of the highly anisotropic Reynolds stress being the most dominant
component in the turbulent kinetic energy in the second half of the bend. An
extensive dataset of the velocity field decomposed into its streamwise, cross-
stream and spanwise components, the Reynolds stress tensor, wall shear stress
vector and heat flux vector is produced by this publication.

Paper III demonstrates the implementation of the numerical wall function for
large eddy simulation. This method is similar to the wall-modelled LES, where a
separate grid overlaps the near-wall region of the coarse LES grid. The separate
grid computes a wall shear stress to correct the first cell at the wall of the coarse
LES grid. On the other hand, the partial time average of the filtered velocity and
pressure fields plus the Reynolds stress and dissipation rate of the LES domain
are calculated using the exponentially weighted average operator. These partial
mean quantities are mapped to the top boundary of the separate grid to enable
the computation of the full Reynolds-averaged Navier Stokes equation in the
secondary grid. The numerical wall function has been tested for the Reτ = 1000
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plane channel flow. The method successfully predicted the flow parameters of a
90◦ pipe bend flow at a significant fraction of the computational costs.

6.1 Future work

6.1.1 Elliptic Blending Lag Model in RANS Subdomain

The subdomain wall function approach requires the RANS grid to support the LES
predictions in the near-wall coarse LES grid. This requirement implies that it is desirable
to use a RANS turbulence model that accurately predicts the near-wall features of a
turbulent flow. The recently developed elliptic blending lag model has been designed
by Lardeau and Billard (2016) to provide predictions similar to the Reynolds stress
transport models in a linear eddy-viscosity framework by accounting for the overall
degree of stress-strain misalignment in a flow. The elliptic blending lag model predicts
both the near-wall peak in the turbulent kinetic energy and its profile throughout the
logarithm-region in channel flows better than the elliptic blending k− ε model used
in the two new wall functions methods. This model can be further investigated to
determine whether it can improve predictions of the subdomain wall function for large
eddy simulation.

6.1.2 Reduction of MPI Costs

The subdomain and numerical wall functions have demonstrated success in predicting
turbulent flows with scale-resolving methods on grids that are too coarse for wall-
resolved LES. However, this success is achieved with a computational overhead of
about 35% higher than pure LES when the same grid is used. There is a need to
lessen this increased cost. Separate simulations for the pure RANS and the pure LES
are done in OpenFOAM for the wall function approaches. The pure LES and RANS
simulations exchange information as the computation progresses. This exchange of
information between domains becomes challenging when the simulations are decom-
posed on parallel processors. OpenFOAM has several decomposition libraries that
optimise the distribution of cells on the respective domains between the processors to
reduce the associated MPI costs. However, these libraries have not been optimised
for multi-domain decomposition, thereby leading to an increase in MPI overhead for
exchange of information between the separate LES and RANS grids. The increase in
MPI costs is particularly severe at the top boundary of the RANS domain that interfaces
with the LES grid. Further work is required to develop a new library to reduce MPI
costs associated with the exchange of information between two grids to maximise the
savings in computational costs for the new wall function approaches.
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6.1.3 Eliminating the Spurious Coarse LES Turbulent Kinetic En-
ergy

A significant problem of the implementation of the numerical wall function for large
eddy simulation in OpenFOAM was the generation of numerical noise when the near-
wall grid resolution was reduced. This noise artificially increased the resolved turbulence
in the LES grid; therefore, the turbulent kinetic energy supplied to the interface of the
RANS grid from the LES was overpredicted. There is a need for further investigations to
determine the root cause of the numerical noise in OpenFOAM. Also, it is recommended
that the numerical wall function is implemented in a different open-source CFD package,
which uses another type of numerics that differs from OpenFOAM.

6.1.4 Other Work

This present work has made significant progress in the development of wall function
approaches for large eddy simulation. The subdomain wall function can be extended to
solve the energy equation for thermal industrial applications. When this is complete,
the subdomain wall function can be assessed for more complex test cases such as pipe
bends that are found in the thermal-hydraulic systems in power plants.
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Appendix A

Turbulence Models Employed

The following appendix describes the turbulence models used in the current thesis that
have not been covered in Chapter 2. The following subgrid-scale models for LES and
RANS models are demonstrated.

LES subgrid-scale models:

• Wall-adapting local eddy-viscosity SGS model

• Dynamic one-equation SGS model

RANS models:

• Realisable k− ε model

A.1 Large Eddy Simulation

A.1.1 Wall-Adapting Local Eddy-Viscosity Model

The wall-adapting local eddy-viscosity model (WALE) of Nicoud and Ducros (1999)
is an algebraic eddy viscosity model, which is akin to the 0-equation approach of the
Smagorinsky SGS model. However, the WALE model differs from the Smagorinsky
model as it is designed to return the correct wall asymptotic behaviour; hence, no
damping functions are needed in the near-wall region. The computation of the subgrid-
scale viscosity accounts for the rate of strain as well as the rate of rotation tensor
to enable the representation of turbulence structures relevant for the subgrid-scale
dissipation rate. The WALE model can handle the laminar to turbulent transition
process. The SGS viscosity is computed as:

νSGS =Ck∆
√

kSGS, (A.1)

145



A.1 Large Eddy Simulation

where Ck is a model coefficient and kSGS is the subgrid-scale turbulent kinetic energy.
The subgrid-scale turbulent kinetic energy is defined as:

kSGS =

(
C2

w∆

Ck

)2
(

Sd
i jS

d
i j

)3

((
Si jSi j

)5/2
+
(

Sd
i jS

d
i j

)5/4
)2 , (A.2)

where Sd
i j is the traceless symmetric part of the square of the velocity gradient, which is

defined as:

Sd
i j =

1
2

(
∂Uk

∂xi

∂U j

∂xk
+

∂Uk

∂x j

∂U i

∂xk

)
− 1

3
δi j

∂Uk

∂xl

∂U l

∂xk
, (A.3)

and the filtered rate of strain tensor is defined as:

Si j =
1
2

(
∂U i

∂x j
+

∂U j

∂xi

)
. (A.4)

The SGS viscosity can be redefined by substituting Equation A.2 into Equation A.1
as:

νSGS = (Cw∆)2

(
Sd

i jS
d
i j

)3/2

(
Si jSi j

)5/2
+
(

Sd
i jS

d
i j

)5/4 , (A.5)

where Cw is the constant of the model. The WALE model suffers the same limitations as
the Smagorinsky SGS model because its model constant Cw is not universal. However,
the constant Cw is not as sensitive to the type of flow regime as the Smagorinsky SGS
model, and a single value for the constant can be used for a variety of flows.

A.1.2 Dynamic One-Equation Subgrid-Scale Model

This project makes use of the dynamic one-equation SGS model of Kim and Menon
(1995), where a transport equation for the subgrid-scale turbulent kinetic energy kSGS

is solved. The computation of kSGS enables the phenomenon of the reverse cascade of
energy from the subgrid scales to the resolved scales to be captured by the model. Coarse
grids employed for high Reynolds number flow leads to a significant proportion of the
total turbulence being unresolved which traditional Smagorinsky methods struggle to
model. The dynamic one-equation model is designed to represent the full range of
the subgrid scales when a coarse grid is used for the LES. The model coefficients are
automatically determined to eliminate the problem of the variation of the constants in
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A.2 Reynolds-Averaged Navier-Stokes Equations

different flow regimes. The SGS viscosity is computed as:

νSGS =Ck∆
√

kSGS. (A.6)

The transport equation for the subgrid turbulent kinetic energy is defined as:

∂kSGS

∂ t
+

∂U jkSGS

∂x j
− ∂

∂x j

[
(ν +νSGS)

∂kSGS

∂x j

]
=−τi jSi j −Cε

k3/2
SGS
∆

. (A.7)

The two model constants Ck and Cε are dynamically determined. The constant Ck is
calculated as:

Ck =
Mi jLd

i j

MklMkl
, (A.8)

where the Leonard stress Li j is defined as:

Li j = Ũ iU i −Ũ iŨ i. (A.9)

The tensor Mi j is defined as:

Mi j = 2∆
2S̃ Si j −2∆

2S̃ S̃i j, (A.10)

withS =
(
2Si j Si j

)1/2. The overline ¯ refers to the grid filtered quantities, while the
tilde operator ˜ represents the test filtered quantities.

The constant Cε is defined as:

Cε = (ν +νSGS)




˜
∂U i

∂x j

∂U i

∂x j
− ∂Ũ i

∂x j

∂ ˜̄U i

∂x j


÷∆

(
1
2

(
Ũ iU i −Ũ iŨ i

))3/2

. (A.11)

The constant Cε is devised to prevent the value from unphysically vanishing at high
Reynolds numbers as the effective viscosity is used in its formulation. The dynamic
one-equation model is used extensively as the SGS model of the numerical wall function
for LES.

A.2 Reynolds-Averaged Navier-Stokes Equations

A.2.1 Realisable k− ε Turbulence Model

The realisable k−ε model is a high Reynolds number model that was devised by Shih et
al. (1995). Hence, the model requires wall functions to model the near-wall turbulence.
The model is created to meet the physical realisability constraints on the Reynolds stress
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A.2 Reynolds-Averaged Navier-Stokes Equations

tensor. The normal Reynolds stresses must be positive, while the Schwarz’ inequality is
imposed on the Reynolds shear stresses (

〈
u′iu′ j

〉2 ≤ ⟨u′2i u′2j⟩ - with no summation of
indices). The eddy-viscosity is computed as:

νt =Cµ

k2

ε
. (A.12)

The coefficient Cµ is a constant in the standard k− ε model, which leads to the realiz-
ability criteria not being satisfied for flows experiencing high strain rates. Shih et al.
(1995) proposed a new formulation for Cµ as:

Cµ =
1

A0AsU (∗) k
ε

, (A.13)

where U (∗) is defined as:

U (∗) =
√
⟨Si j⟩⟨Si j⟩−⟨Wi j⟩⟨Wi j⟩, (A.14)

and the mean rate of rotation tensor ⟨Wi j⟩ is defined as:

⟨Wi j⟩=
1
2

(
∂ ⟨Ui⟩
∂x j

− ∂ ⟨U j⟩
∂xi

)
. (A.15)

The transport equation for the turbulent kinetic energy is solved as:

∂k
∂ t

+ ⟨U j⟩
∂k
∂x j

=−⟨u′iu′j⟩
∂ ⟨Ui⟩
∂x j

+
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
− ε. (A.16)

The transport equation for the dissipation rate is based on the dynamic equation of the
mean-square vorticity fluctuations for large Reynolds numbers. The transport equation
for ε is defined as:

∂ε

∂ t
+ ⟨U j⟩

∂ε

∂x j
=Cε1Sε −Cε2ε

ε

k+
√

νε
+

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
, (A.17)

where the modulus of the mean strain rate tensor S is defined as:

S =
∣∣⟨Si j⟩

∣∣=
√

2⟨Si j⟩⟨Si j⟩. (A.18)

The model coefficients are shown in Table A.1.
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Table A.1 Coefficients of the realisable k− ε model

Cε1 Cε2 σk σε Cµ

max
(

0.43, η

5+η

)
1.9 1.0 1.2 Eqn. A.14

η A0 As φ W
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Paper I: The Subdomain Wall Function
for Large Eddy Simulation
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1. Introduction

Large eddy simulation (LES) directly resolves the large energetic scales
of turbulent flows while the smaller subgrid-scales are modelled. However,
in wall-bounded flows, the integral length scale of the energy-carrying eddies
decreases as the flow approaches the wall with a limit scaled by molecular vis-
cosity or inverse Reynolds number, Re. Hence a much finer numerical grid
is required to resolve the flow at practical Re numbers. Chapman (1979)
estimated that the LES grid size needed to characterise all the large-scale
processes in the inner layer of a turbulent boundary flow increased signifi-
cantly in proportion to Re1.8. In contrast, the grid size required to resolve the
large-scale motions in the outer region grew moderately as Re0.4. These ap-
proximations were revisited by Choi and Moin (2012), who estimated that the
number of grid points required for a wall-resolving LES scales with Re1.86,
while the number required for a wall-modelled LES is proportional to Re.
Hence, the motivation for wall functions to model the inner region of the
wall-bounded turbulent flow statistically.

Several approaches have been developed in literature to model the in-
ner region of a turbulent flow, thereby enabling the utilisation of a coarse
grid in the near-wall area for LES. An equilibrium wall function approach
was implemented by Deardorff (1970) and Schumann (1975), where a simple
algebraic correlation between the wall shear stress and velocity in the first
cell at the wall was established. This approach is akin to the standard wall
function used in the Reynolds-averaged Navier-Stokes (RANS) method. The
equilibrium wall function utilises the assumption of the law of the wall. This
assumption limits the use of equilibrium wall functions to relatively simple
geometries and flows with fully developed, steady mean-flow state and non-
separating boundary layers.

Balaras et al. (1996) developed a wall-layered model, also known as the
wall-modelled LES (WMLES), where a separate RANS subdomain is embed-
ded in the first cell of the coarse LES grid. The RANS subdomain solves a
simplified boundary-layer momentum transport equation where the pressure
gradient is supplied from the first cell of the LES grid. The algebraic mix-
ing length equation is typically the eddy-viscosity model used in the RANS
subdomain. The top boundary or interface of the RANS subdomain receives
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instantaneous filtered velocity information from the LES grid. On the other
hand, the LES domain receives wall shear stress information from the RANS
subdomain, which acts to correct the under-resolved velocity of the first cell
of the coarse LES grid. The implementation of the numerical wall func-
tion for RANS computations by Craft et al. (2004) whereby a fine viscous
layer resolving 1D grid is embedded in the first near-wall cell is similar to
that of the wall-layer LES approach. Further developments or investigations
of the wall-modelled LES are conducted by Cabot and Moin (2000), Wang
and Moin (2002), Kawai and Larsson (2011), Kawai and Larsson (2013) and
Park and Moin (2014). Reviews of the implementation of the wall-layered
LES approach can be found in Piomelli and Balaras (2002), Piomelli (2008)
and Larsson et al. (2015).

Approaches with a similar LES/RANS grid setup to the wall modelled
LES are classified as zonal models. The LES and RANS domains have dif-
ferent numerical integration techniques, which many zonal models seek to
harmonise Yang et al. (2015). Consequently, a user has to decide on the
number of grid points and the level of grid distribution in the near-wall re-
gion of the LES and RANS zones. Also, the user determines the areas of
the LES grid that is under-resolved for zonal approaches, which becomes
challenging for complex geometries. Yang et al. (2015) implemented a zonal
method, termed the integral wall model for LES, where the velocity profile in
the RANS zone is approximated by a parametric shape function; the RANS
momentum equation is analytically integrated in the wall-normal direction.
There are many equations required to define the shape function of the RANS
velocity and other parameters, which would become an enormous task if the
integral model is extended to buoyancy, heat transfer and rotation cases.

This work develops a new wall function method using the same grid setup
as the wall-modelled LES. A consistent coupling between the instantaneous
filtered fields of the LES domain and the Reynolds time-averaged fields of
the RANS subdomain is established to incorporate more advanced turbulence
models in the RANS subdomain, which enables the usage of coarse LES grid
in complex geometries. The interface where the RANS grid receives infor-
mation from the LES domain is moved beyond the first cell of the LES grid
as suggested by Kawai and Larsson (2012) to ensure that the interface re-
ceives better resolved filtered information. Most importantly, the correction
of the coarse LES field is extended beyond the first cell at the wall of the
LES domain, with the RANS model smoothly supporting the under-resolved
near-wall LES grid through a volumetric-source term in the LES momentum
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equation. The RANS model automatically informs on the grid quality of the
LES, and the novel method determines the extent of the LES grid be cor-
rected without user input. This present proposal termed “subdomain wall
function for large eddy simulation (LES-SWF or SWF)” is a simplification
of the dual-mesh hybrid RANS/LES method, first proposed by Xiao and
Jenny (2012), to ensure the near-wall mean velocity and resolved stress fields
of the LES domain are rescaled towards the equivalent fields in the RANS
subdomain.

2. The Subdomain Wall Function Framework

The subdomain wall function for LES solves two domains independently
but at the same time, as shown in Figure 1. The model is implemented in
the open-source code OpenFOAM. The coarse LES grid extends to but does
not need to fully resolve the viscous sublayer of the flow to ensure continu-
ity of large eddies travelling across the interface. The RANS subdomain is
generated and solved separately. The RANS grid density is biased towards
the wall to ensure that the wall distance of the first cell normalised by vis-
cous units is less than one. The RANS subdomain computes quantities that
are needed by the near-wall region of the LES domain. On the other hand,
the interface of the RANS grid receives information from the LES domain
to complete the boundary conditions of the subdomain. The RANS grid is
designed to overlap the inner region of the LES domain; the height of the
RANS subdomain is constructed to bypass at least the first three wall-normal
cells of the LES grid. This height ensures that the interface receives better
resolved information at that matching location than from the first cell of the
coarse LES grid.

This work computes the exponentially time-weighted average (EWA) of
LES fields during a simulation. The EWA of the LES fields of interest is a
partial time-average and is assumed to be equivalent to Reynolds averaging.
The EWA of an LES field ϕ is defined as:

〈ϕ〉EWA =

∫ t

−∞

(
1

T
ϕ(t′)e−(t−t′)/Tdt′

)
, (1)

where T is the time-scale of the exponentially weighted average. Equation 1
is a solution of the following differential equation using the Leibniz’ rule for
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Figure 1: Schematic showing the setup of the subdomain wall function for LES.

differentiation under an integral:

d 〈ϕ〉EWA

dt
=

1

T

(
ϕ− 〈ϕ〉EWA

)
. (2)

Hence, Equation 2 can be approximated to first order as:

〈ϕ〉EWA
∣∣∣
tn

= (1− α)ϕ|tn + α 〈ϕ〉EWA
∣∣∣
tn−1

, (3)

where n relates to the time step and α = 1/(1 + ∆t/T ). The use of the
exponentially weighted average prioritizes recent events in the LES simula-
tions and reduces the time length for the average to initialise compared to
a standard time average (Tunstall et al., 2017). The averaging time T is
ensured to be long enough for the EWA fields to be sufficiently smooth for
the use of unsteady RANS models. The EWA of the filtered velocity of the
LES domain Ui is assumed to be equivalent to the Reynolds-average velocity
〈Ui〉 as:

〈
Ui
〉EWA ≈ 〈Ui〉 . (4)

The resolved fluctuation about the filtered velocity is defined as:

u′′i = Ui −
〈
Ui
〉EWA

. (5)

Hence the LES stress tensor is defined as:

τij = u′′i u
′′
j + τSGSij , (6)

where τSGSij is the modelled subgrid-scale (SGS) stress tensor and u′′i u
′′
j is the

resolved stress tensor about the EWA of the filtered velocity field.
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2.1. RANS Subdomain

The momentum transport equation for the RANS subdomain is defined
as:

∂ 〈Ui〉
∂t

+
∂ 〈Ui〉 〈Uj〉

∂xj
= −1

ρ

∂ 〈p〉
∂xi

+ v
∂2 〈Ui〉
∂xi∂xj

− ∂ 〈uiuj〉
∂xj

, (7)

where the angle brackets 〈 〉 is the Reynolds averaging operator. No modifi-
cations are made to the transport equations in the RANS subdomain. How-
ever, quantities of the solved variables of the transport equation need to be
specified at the interface of the subdomain to complete the boundary con-
ditions. This work maps the partially time-averaged quantities of filtered
velocity and pressure from the LES domain to the interface of the RANS
grid.

〈Ui〉RANS =
〈
Ui
〉EWA

. (8)

〈p〉RANS = 〈p〉EWA. (9)

The use of the partially time-averaged fields ensures a consistent coupling
between the two regions at the interface. Furthermore, quantities for turbu-
lence transport equations such as the Reynolds stress tensor, the turbulent
kinetic energy and the dissipation rate need to be specified at the interface
of the RANS grid. This work maps the computed LES stress tensor of Equa-
tion 6 to the interface of the RANS grid. The interface boundary condition
of the turbulent kinetic energy kRANS is found by taking the trace of the LES
stress tensor as:

kRANS =
1

2

〈
τLES
ii

〉EWA
. (10)

This work calculates the dissipation rate of the LES domain εLES by sum-
ming the molecular dissipation of the large eddy scales of the flow (not neg-
ligible for lower Re numbers) and the subgrid-scale dissipation rate defined
as:

εLES = 2νSijSij − τSGS
ij Sij, (11)

where Sij is the filtered rate of train tensor defined as:

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. (12)
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The interface boundary condition for the dissipation rate εRANS is obtained
by computing the partial time average of the LES dissipation rate at the
matching location.

The elliptic blending k−ε model (EB k−ε) of Billard and Laurence (2012)
is used to model turbulence in the RANS subdomain. The two models solve
additional quantities. The elliptic blending k − ε model solves the elliptic
blending parameter and the transport equation for the ratio of the normal
Reynolds stress to the turbulent kinetic energy. This work prescribes the
interface boundary condition for the two additional parameters by making
use of ideas by Billard et al. (2015) for coarse-grid high Re applications or
embedded local down to the wall resolution. The elliptic blending parameter
β is computed algebraically at the interface, which is defined as:

β
(
y+
)

=
(

1 +
(
17/y+

)4
/3
)−1

, (13)

where y+ is the wall-normal distance normalized by viscous units. The value
prescribed for the ratio of the normal Reynolds stress to the turbulent kinetic
energy Φ = v′2/k at the interface of the RANS subdomain is defined as:

Φ
(
y+
)

= min
[
2/3; 0.3077 ln

(
y+
)
/ ln (10)− 0.2775

]
, (14)

where 2/3 is the upper bound for Φ to guarantee realizability. At high Re
with coarse grid LES, β = 1 and Φ = 2/3 conditions are sufficient while the
above refined conditions are only needed for intermediate Re numbers (for
which direct numerical simulation DNS validation data is only available). Re-
introducing the wall distance y and friction velocity may seem unfortunate
as the elliptic blending k − ε model was devised to alleviate such doubtful
practice, but Billard et al. (2015) provides a correlation for extracting y+

from only RANS model results where alpha is an indirect measure of wall
proximity.

2.2. LES Domain

The momentum and pressure transport equations for the LES domain are
defined as:

∂Ui
∂t

+
∂Ui Uj
∂xj

= −1

ρ

∂p

∂xi
+ v

∂2Ui
∂xi∂xj

− ∂τSGS
ij

∂xj
+Qi, (15)

1

ρ

∂2p

∂xi∂xi
= − ∂2

∂xi∂xj

(
Ui Uj + τSGS

ij

)
+
∂Qi

∂xi
, (16)
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where is the LES filtering operator and Qi is a momentum called “drift
term” by analogy with two-phase flow modelling where similar source terms
force the lighter fluid phase motion to relax towards the denser high-inertia
fluid phase values over a characteristic timescale. The drift term is a weak
volumetric-source term that corrects the under-resolved near-wall fields of the
coarse LES. The term is derived from novel ideas of the hybrid RANS/LES
approach of Xiao and Jenny (2012). Quantities from the RANS subdomain
are required to compute the drift term. These RANS quantities are interpo-
lated onto the LES grid. The drift term relaxes the solution of the filtered
fields of the LES grid in the near-wall region towards the solution of the
equivalent Reynolds averaged. This forcing ensures consistency between the
mean fields of the two grids where the drift term is active. The drift term is
defined as:

Qi =
(
1− σL

)
[
〈Ui〉 −

〈
Ui
〉EWA

γl1
+
Gi

γl2

]
, (17)

where γl1 and γl2 are relaxation timescales which determine how quickly the
near-wall LES fields become consistent with the RANS subdomain fields.
The zoning parameter σL varies between 0 and 1 to distinguish the near-wall
regions of the LES grid that are under-resolved from the well resolved inner
regions. The value of σL = 0 indicates that the region of the LES grid is
under-resolved, and hence, the drift term is active in that area. Conversely,
the drift term is deactivated in areas of the LES grid where σL = 1.

The first term in Qi acts to drive the partially time-average LES filtered
velocity towards the Reynolds-averaged velocity of the RANS subdomain (the
high inertia and viscosity phase in the two-phase flow model analogy). In
the second term in Qi, the resolved and modelled subgrid fluctuations about
EWA of the filtered velocity are rescaled to ensure consistency between the
LES stress tensor of the main domain and the Reynolds stresses of the RANS
subdomain. Since eddy-viscosity models are more popular than Reynolds
stress models, the trace of the LES stress tensor is adjusted towards the
turbulent kinetic energy field of the RANS subdomain. Consequently, this
work uses the ideas of Tunstall et al. (2017) to define the term Gi as:

Gi =

(
1− kEWA

sgs

kEWA

)
kRANS − kEWA

kRANS + kEWA

(
Ui −

〈
Ui
〉EWA

)
, (18)

where kEWA
sgs is the EWA subgrid turbulent kinetic energy equivalent to the
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trace of the subgrid stress tensor kEWA
sgs =

〈
τSGS
ii

〉EWA
/2, and kEWA is the par-

tial time-averaged resolved turbulent energy that is equivalent to the trace
of the LES stress tensor kEWA = 〈τii〉EWA/2 . To ensure that consistency is
achieved between the LES turbulent kinetic energy and the RANS subdo-
main turbulent energy, the resolved and modelled fluctuations in the LES are
adjusted according to their relative contributions to the total EWA turbulent
kinetic energy of the LES. The adjustment of the modelled fluctuations is
accomplished by modifying the production of the subgrid turbulent kinetic
energy. This work uses the one-equation subgrid-scale model of Yoshizawa
(1986) to compute the modelled turbulent kinetic energy. The term for the
production modelled k of the subgrid-scale model is defined as:

Pksgs = Pmodel
ksgs +

(
1− σL

) kEWA
sgs

kEWA

kRANS − kEWA

γl2
, (19)

where Pmodel
ksgs

is the original formulation of the subgrid turbulent kinetic en-
ergy production term and the second term represents the additional pro-
duction of subgrid turbulent kinetic energy needed to ensure that the EWA
turbulent kinetic energy of the LES is consistent with the RANS turbulent
kinetic energy. The production term returns to the original formulation if
the proportion of the subgrid fluctuations to the EWA of the LES turbulent
kinetic energy is zero. Note that the RANS model must be selected among
those that yield realistic near-wall profiles of k, unlike e.g. the k-omega SST.

The relaxation timescales γl1 and γl2 used in the drift terms are not con-
stants but are computed automatically during the simulation. The relaxation
timescales are defined as:

γl1 = max

(
Cγ1

kRANS

εRANS
, dt

)
, (20)

γl2 = max

(
Cγ2

kRANS

εRANS
, dt

)
, (21)

where Cγ1 = 0.1 and Cγ2 = 0.01. The relaxation timescales in the LES grid
are computed using mapped RANS quantities.

The zoning parameter determines the areas of the LES grid where the
volumetric drift term in the LES momentum transport equation is active.
The RANS subdomain will guide the LES solution in viscous affected areas
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where the coarse LES grid saves computational costs but is expected to
underperform. The zoning parameter uses the turbulent Reynolds number
based on local wall distance to distinguish between the viscous affected and
fully turbulent regions. The turbulent Reynolds number Rey is defined as:

Rey =

√
kRANSy

ν
, (22)

where Rey < 200 specifies a viscous affected region and Rey > 200 specifies a
fully turbulent region. The zoning parameter σL is formulated as a blending
function which is defined as:

σL = max

{
1
2

(
1 + tanh

(
Rey−Re∗y

A

))
y < h

1 y ≥ h
(23)

where Re∗y is the critical turbulent Reynolds number that determines the
activation of the drift term and h is the wall-normal height of the RANS
subdomain. The areas of the LES grid that are above the interface of the
RANS subdomain are automatically deemed to be well resolved. This work
uses the recommended constants by Tunstall et al. (2017) of Re∗y = 200 and
A = 10, which determines the sharpness of the switching in the blending
function.

2.3. Implementation in OpenFOAM

The subdomain wall function has been implemented in the open-source
code OpenFOAM versions 5 and 6 of Weller et al. (1998). A multi-region
solver is implemented in OpenFOAM which solves the RANS and LES do-
mains separately and their respective transport equations. The multi-region
solver uses the pressure implicit with splitting of operations (PISO) scheme
of Issa (1986) to couple the momentum and pressure transport equations of
the LES domain and the RANS subdomain. This work utilises the mesh-to-
mesh interpolation library of OpenFOAM to map fields between the RANS
and LES grids.

The elliptic blending k−ε model is used to model turbulence in the RANS
subdomain. The elliptic blending k − ε model is an advanced eddy-viscosity
model that accounts for the wall-normal stress anisotropy, thereby better
predicting the near-wall turbulence and input values for Equations 18 and
19. For the same reasons, the LES domain uses the one-equation SGS model
with a transport equation for the subgrid-scale turbulent kinetic energy. Van
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Driest damping is applied to the computation near-wall LES grid length
scales.

At the wall of the LES domain, a no slip boundary condition is specified
for the velocity field. A Dirichlet boundary condition of zero is prescribed
for the subgrid-scale turbulent kinetic energy and zoning parameter fields,
with a Neumann boundary condition of zero assigned for pressure and the
two relaxation timescales. The drift term is a vector field with the vector
components designated the value of zero at the wall.

All transport equations for the two regions are discretised using second-
order schemes. A second-order backwards temporal scheme is also used. A
new simulation commences with only the LES domain active, and the solvers
of the RANS subdomain turned off for at least the first 2T of runtime. This
feature enables the EWA filtered fields of the LES to develop and allow for
a more stable coupling between the main domain and the subdomain when
the RANS solvers are turned on.

3. Results for a Plane Channel Flow

The performance of the subdomain wall function is assessed by performing
an LES for a fully developed flow through a plane channel of half-height δ.
The half-height used for the simulations is 1m. The friction Reynolds number
of the flow is 1000, and the results are compared to the DNS dataset of Lee
and Moser (2015). The size of the domain of the LES region is 2πδ×2δ×πδ
with periodic boundary conditions specified on the streamwise and spanwise
boundaries. The channel flow case uses two RANS subdomains corresponding
to the two walls of the channel. The LES grid uses 80× 60× 80 points with
constant spacing in the three spatial directions. The distance of the first
cell of the LES grid is y+ ≈ 17, with uniform spacing ensuring that the first
cell of the LES grid is clearly bypassing the viscous sublayer but straddling
the buffer layer which is more challenging than starting from the equilibrium
log-layer. The size of each of the RANS subdomain is 2πδ × 0.2δ × πδ with
periodic boundary conditions on the streamwise and spanwise boundaries.
The RANS subdomains use 20 × 50 × 10 points with the wall-normal grid
spacing biased towards the wall ensuring the wall distance of y+ ≤ 1 for
the first cell. A pressure gradient is prescribed to drive the flow in the LES
grid and the RANS subdomains. The period used for the exponentially
weighted time average is defined as 44δ/UB where UB is the bulk velocity of
the simulation. A simulation with the subdomain wall function is done with
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the elliptic blending k − ε model of Billard and Laurence (2012) used in the
RANS subdomains. A second case is done of a pure LES on the coarse grid
without the support of a wall function.

(a) Instantaneous streamwise ve-
locity of the LES grid

(b) Partial mean streamwise ve-
locity of the LES grid

(c) Streamwise velocity of the
RANS subdomain

Figure 2: Contours showing the velocity profiles in the LES and RANS domains.

Figure 2 shows the contour plots of velocity in the LES domain and
the RANS subdomain. The subdomain wall function drives the partial mean
velocity of the LES domain in the near-wall region towards the RANS solution
when Figure 2b and Figure 2c are compared. The source term in the LES
momentum equation ensures the mean filtered velocity of the LES domain is
consistent with the Reynold averaged velocity of the RANS subdomain. The
instantaneous filtered velocity of Figure 2a of the LES domain is incompatible
with the Reynolds-averaged nature of the RANS subdomain of Figure 2c.
Forcing the instantaneous filtered velocity to the interface will introduce too
many instabilities in the RANS subdomain. This observation justifies the
need for matching the partial mean filtered velocity of the LES grid to the
interface of the RANS subdomain.

Figure 3 shows the quantitative plot of the zoning parameter in the wall-
normal direction of the LES grid predicted by the subdomain wall function.
The height of the interface of the two subdomains is 0.2 m. Hence, the LES
grid is automatically set to be fully resolved beyond this height, and the wall
function is turned off. Furthermore, the blending function in Equation 23
switches off the drift source term when the turbulent Reynolds number is
greater than 200. For the subdomain wall function case, this switch-off hap-
pens around the wall-normal height of 0.1 m, where the zoning parameter
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Figure 3: Plot of the mean zoning parameter σL predicted in the LES grid by the sub-
domain wall function. A value of σL = 0 represents the wall function source term being
active, the value of σL = 1 represents a well resolved LES grid area and the drift term
being turned off.

becomes 1.0. The region of the LES grid where the subdomain wall func-
tion is activated is where the zoning parameter is set to 0.0. The switchover
between 0 and 1 occurs rapidly.
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Figure 4: Plots of mean streamwise velocity predicted by the subdomain wall function
( ), the case that solves a pure LES on a coarse grid ( ) and the reference DNS data
of Lee and Moser (2015) ( ).

The plots of the mean streamwise velocity produced by the LES domain
and the RANS subdomains are shown in Figure 4. The results of a pure
LES done with the same coarse grid used for the wall function case are also
analysed. The results of the plot are normalised by viscous units. The LES
case that used the subdomain wall function is in excellent agreement with
the reference DNS data, as shown in Figure 4a. The pure LES case predicts
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the reference data poorly with the coarse near-wall grid straddling the buffer
layer. Figure 4b shows results of the RANS regions in excellent agreement
with the reference data when fed accurate information at the interface. In
return, the subdomain wall function relaxes the mean filtered velocity of the
near-wall LES region towards the solution of the RANS subdomains. The
drift source term ensures that the mean velocity fields of the LES domain
and RANS subdomain are consistent.
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(b) RANS Subdomain

Figure 5: Plots of the mean turbulent kinetic energy in the LES and RANS grids. Legend
is the same as Figure 4.

Figure 5 shows the plots of mean turbulent kinetic energy in the LES
domain and the RANS subdomains. The results are also normalised by vis-
cous units. The mean turbulent kinetic energy plotted in the LES domain
is the summation of the trace of the resolved fluctuations and the modelled
turbulent kinetic energy. The turbulent kinetic energy predicted by the sub-
domain wall function case is in very close agreement with the reference data
as shown in Figure 5a. The subdomain wall function modifies the resolved
and modelled components of the turbulent kinetic energy in the near-wall
region of the LES grid. However, the normalised turbulent kinetic energy of
the pure LES case done on the coarse grid is over-predicted due to the low
resolution of the near-wall grid, which leads to a high streamwise compo-
nent of the Reynolds stress but low cross-stream Reynolds stress and shear
stress, resulting from poor mixing of momentum. Figure 5b also shows that
the results in the RANS subdomains are also in good agreement with the
reference DNS data. The peak of the turbulent kinetic energy is somewhat
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underpredicted by the subdomain wall function in the LES domain. This
underprediction is inherent to eddy viscosity models (Billard and Laurence,
2012). Since the peak turbulent kinetic energy occurs near the wall, the
subdomain wall function forces the LES case that uses the elliptic blending
k−ε model in the RANS grid also to underpredict the peak turbulent kinetic
energy.
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Figure 6: Plot of the resolved and modelled components of the LES total turbulent kinetic
energy predicted by the subdomain wall function ( ), the case that solves a pure LES on
a coarse grid ( ) and the reference DNS data of Lee and Moser (2015) ( ). Filled circle
markers ( ) indicate the resolved component while triangle markers ( )represent the
modelled component of the LES total turbulent kinetic energy.

Figure 6 shows the breakdown of the mean turbulent kinetic energy in the
LES domain into the resolved and modelled components. The resolved tur-
bulent kinetic energy for the pure LES case is too high in the low-resolution
near-wall region, which is unphysical. The source term for the subdomain
wall function acts to boost the production of the subgrid-scale turbulent
kinetic energy in the near-wall region, consequently reducing the resolved
turbulent kinetic energy for the subdomain wall function case. Hence, the
EWA of the total turbulent kinetic energy of the LES domain gets rescaled
towards the RANS solution in the near-wall region.
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3.1. Variation of the Height of the Interface of the RANS Subdomain

We investigate the effect of varying the height h of the interface of the
RANS domain as well as the position of the interface height, i.e. the match-
ing location where the LES grid feeds information to the RANS subdomain
changes. In the previous section, the height of the RANS subdomain was
0.2δ; the RANS subdomain covering the first 6 grid cells of the 80× 60× 80-
point LES domain. We investigate the performance where the subdomain
covers just the first cell of the LES grid or 2, 3, 4 and 8 cells of the LES grid
as in Table 1. The grid resolution in the wall-parallel directions stays the
same for all the test cases; the resolution in the wall-normal direction changes
as the height of the interface is varied. The nominal friction Reynolds number
of the investigation is 1000.

Table 1: Information about the different subdomains used

Case number Number of LES
nodes

overlapped

Height of
subdomain
interface

Grid
Specification

1 1 0.0333δ 20× 15× 10
2 2 0.0667δ 20× 20× 10
3 3 0.1δ 20× 25× 10
4 4 0.1333δ 20× 35× 10
5 8 0.2667δ 20× 60× 10

The results for the mean streamwise velocity and the mean turbulent
kinetic energy for the LES domain are shown in Figure 6 for the different
RANS subdomains used. There is a mismatch of the velocity profile of the
case that overlaps just the first cell of the LES grid. This discrepancy is also
noticeable for the mean turbulent kinetic energy profile. The mismatched
velocity and turbulent kinetic energy profiles are due to the underprediction
of the wall shear stress. This difference reduces substantially as the number of
LES grid cells overlapped by the RANS subdomain increases and the profiles
converges. The log-layer mismatch is eliminated for the profiles when the
RANS subdomain overlaps the LES grid by at least 3 points.

3.2. Variation of the Grid Resolution of the LES Domain

The performance of the novel wall function is investigated for three differ-
ent grid resolutions in the LES domain. The friction Reynolds number of the
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Figure 7: Plots of the mean streamwise velocity and mean turbulent kinetic energy for
LES cases with different subdomain interface heights. The profiles in the plot signify the
number of LES grid nodes that are overlapped by the RANS subdomain.

test cases is Reτ = 1000. The main LES grid resolution used in this paper
contains 80× 60× 80 nodes. A finer LES grid and coarser LES grid than the
main grid resolution are simulated, and details are provided in Table 2. The
three LES grid resolutions used the RANS subdomain configuration. The
size of each of the RANS subdomains for all test cases is 2πδ × 0.2δ × πδ,
and the RANS subdomains use 20×50×10 points with the wall-normal grid
spacing biased towards the wall. A pure LES on the 80 × 60 × 80 grid is
shown for comparison.

Table 2: Information about the different LES grid resolutions

Case number Case name Number of grid
points

Grid
Specification

1 Coarse 90,000 60× 50× 30
2 Main 384,000 80× 60× 80
3 Medium 720,000 120× 100× 60
4 Fine Medium 1,350,000 150× 120× 75

Figure 8 shows the profiles of the streamwise velocity and the turbulent
kinetic energy for different grid resolutions. The plots of the streamwise
velocity converge onto the reference DNS data even with the very coarse
90,000-grid. The same trend is witnessed in the turbulent kinetic energy
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profiles, although the coarse LES grid slightly underpredicts the DNS data.
The underprediction of the turbulent kinetic energy by the coarse grid is
expected, as there is a reduced number of points to resolve the flow in the
outer layer of the plain channel flow. However, the coarse LES grid with
the subdomain wall function substantially outperforms the main LES grid
simulation done without a wall function. The performance of subdomain wall
function for a range of LES grid densities demonstrates the capability of the
method to perform scale-resolving simulations accurately at a much-reduced
grid resolution. For the Medium and the Fine Medium cases, the LES grid is
more refined close to the wall, which can be seen with the additional points
near the wall in Figure 8b. Yet the peak total turbulent kinetic energy is
slightly underpredicted for the two cases due to the wall function still forcing
the LES mean turbulent kinetic energy profile towards the RANS solution
in the near-wall region.
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Figure 8: Plots of the mean streamwise velocity and mean turbulent kinetic energy for
LES cases with different grid resolutions in the LES domain.

3.3. Variation of the Friction Reynolds Number

Two different friction Reynolds numbers are examined with the subdo-
main wall function. The two friction Reynolds numbers are Reτ = 395 and
Reτ = 5200. The size of the LES domain for the two wall function cases is
2πδ × 2δ × πδ. For the Reτ = 395 case, the LES grid is designed to fully
resolve the turbulent flow to investigate the performance of the wall func-
tion method for a grid with wall - resolved resolution. The LES grid uses
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100× 120× 50 with constant spacing in the streamwise and spanwise direc-
tions; the LES grid is refined at the wall in the cross-stream direction. The
range of the cell spacing in the normal direction normalised by viscous units
from the wall to the channel half-height is 0.6 < ∆y+ < 24.5. The wall spac-
ing in the streamwise and spanwise directions is ∆x+ = ∆z+ = 24.7. The
two RANS subdomains use a 2D grid to test whether the coupling method of
the wall function in the OpenFOAM code is robust for different grid types.
The size of each of the RANS subdomain is 2πδ× 0.2δ× πδ with 20× 50× 1
grid points.

For the much higher Reynolds number case of Reτ = 5200, a very coarse
grid is used in the LES domain. The number of grid points in the LES domain
is 100× 120× 50 with constant spacing in the three spatial directions. The
normalised grid spacings in all directions are ∆x+ ≈ 232,∆y+ ≈ 130 and
∆z+ ≈ 232. The height of the RANS subdomain is reduced since the viscous
layer is much smaller for the higher friction Reynolds number. The size of
the two RANS subdomains is 2πδ× 0.1δ× πδ with 20× 50× 10 grid points.

Figure 9 shows the plot of the mean streamwise velocity in the LES
domain for the Reτ = 395 and Reτ = 5200 cases. The results of the Reτ =
395 case are compared with the DNS data of Moser et al. (1999), while
Lee and Moser (2015) provides the reference DNS data for the Reτ = 5200
case. The mean streamwise velocity of the wall-resolved Reτ = 395 case is in
excellent agreement with the reference DNS data as seen in Figure 9a. This
close agreement demonstrates the validity of the subdomain wall function
maintaining the accurate mean velocity profile in the highly resolved near-
wall region of the LES grid. The left fraction in the square bracket of the
drift term in Equation 17 becomes negligible as the partial mean LES velocity
of the highly resolved near-wall region is already approximately equivalent
to the RANS velocity. Consequently, the influence of the drift source term
reduces for the high-resolution region.

On the other hand, the mean velocity of the Reτ = 5200 case is in good
agreement with the DNS data as shown in Figure 9b. A good agreement
is established for the high friction Reynolds number despite the very low
resolution of the near-wall grid with the drift term being more active in
forcing the partial mean LES velocity towards the RANS solution. It should
be noted that the viscously affected area of the flow for the Reτ = 5200 case
is thinner than that of the Reτ = 1000 case. Therefore the size of the RANS
subdomain that supports the wall function method can be reduced for higher
Reynolds number simulations.
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Figure 9: Plots of the mean streamwise velocity in the LES domain for the two friction
Reynolds number cases.

4. Results for a Re = 10, 595 Flow through Periodic Hills

Flow through periodic hills is further investigated to test the ability of
the subdomain wall function method in predicting flow separation and reat-
tachment. This phenomenon has proven challenging for both RANS and
wall-modelled LES methods. This case has been studied extensively with a
wall-resolved LES by Fröhlich et al. (2005) and Breuer et al. (2009). Tes-
sicini et al. (2005) investigated the case with a hybrid RANS/LES scheme
and a wall-modelled LES approach. The wall-modelled LES simplified the
momentum equation used in the RANS domain by solving only the diffu-
sion and pressure gradient terms, while the mixing length model was used
to model turbulence. Nguyen et al. (2019) also studied this case with a
dual-grid hybrid RANS/LES method. The Reynolds number of the test case
is Re = HUin/ν = 10, 595 where H denotes the height of the hills and
Uin symbolises the bulk velocity at the hill crest. The size of the compu-
tational domain of the LES grid is 9H × 3.036H × 4.5H. In addition, the
size of the two RANS subdomains attached to each wall of the LES grid
is 9H × 0.25H × 4.5H. Periodic boundary conditions are imposed in the
streamwise and spanwise directions for the LES domain and the two RANS
subdomains. A pressure gradient, computed from a precursor RANS simu-
lation, is enforced in the streamwise direction in the LES and RANS grids
to drive the flow. The results of the test cases are validated by the wall-
resolved LES data of Breuer et al. (2009). This reference data used 13.1
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million points.

Table 3: Summary of simulations of the periodic hills flow

Case name Graph
name

Main Grid
Size

Subdomain
Grid Size

Subdomain
height

Benchmark data Reference
Pure LES Pure LES 140× 60× 70 N/A N/A

Subdomain wall
function

(Equidistance
Spacing)

SWF-EQ 140× 60× 70 100× 20× 30 0.25H

Subdomain wall
function
(Refined
Spacing)

SWF-
Refined

140× 60× 70 100× 20× 30 0.25H

Table 3 shows the list of the test cases done for the periodic hills’ geometry
with the number of grid points specified for each domain. The number of
grid points are listed in the streamwise, normal and spanwise directions. The
cases are allocated names to be identified on the quantitative plots.

The computational grid of the LES domain for the subdomain wall func-
tion case has 140 × 60 × 70 points giving a total of 588,000 nodes. Each of
the RANS subdomains has 60,000 grid points. The LES grid is designed not
to resolve the viscous sublayer of the flow, while the RANS grids have a wall
spacing y+ < 1 for all the first cells. The period used for the exponentially
weighted average is defined as 45H/Uin, which was determined to be long
enough to average the LES fields. The elliptic blending k − ε model calcu-
lates turbulence in the RANS subdomains. Two LES grids with the same
number of nodes are used to test the subdomain wall function case as shown
in Figure 10. The first grid is approximately equidistant in the streamwise,
spanwise and cross-stream directions. The second grid uses the same total
number of cells but is refined in the streamwise direction after the top of the
first hill, but equidistant in the spanwise and cross-stream directions. The
second grid is designed akin to the grids used in the detached eddy simulation
investigation by Mockett et al. (2012).

A pure LES case is run on the same equidistant LES grid used for the
subdomain wall function case. The case is done to assess the performance

21



(a) Equidistant grid (SWF-EQ) (b) Streamwise-refined grid (SWF-Refined)

Figure 10: Cross-sectional plane of computational grids (only every 2nd point shown).
Grids are coloured by the zoning parameter.

of the coarse near-wall grid without the aid of the subdomain wall function.
The one-equation subgrid-scale model of Yoshizawa (1986) is used to model
the subgrid-scale fluctuations.

(a) Instantaneous streamwise ve-
locity of the LES grid

(b) Partial mean streamwise ve-
locity of the LES grid

(c) Streamwise velocity of the
RANS subdomain

Figure 11: Contour plots in the LES and RANS domains predicted by the subdomain wall
function.

Figure 11 shows the contours plots at a cross-sectional plane of the veloc-
ity profiles for the LES and RANS domains. As with the channel flow case,
the profile of the instantaneous filtered velocity is not smooth enough to be
mapped to the interface of the RANS subdomain. The drift source term uses
quantities from the RANS subdomain to correct the near-wall partial mean
fields of the LES grids. The source term is applied between the first three to
six wall-normal cells of the LES domain as seen in Figure 10, ensuring that
the correction of the coarse near-wall LES grid goes beyond the first cell.

Figure 12 shows the profiles of the mean streamwise velocity at different
sections of the periodic hills’ geometry. The profiles are time- and spatially-
averaged in the spanwise direction of the geometry. The subdomain wall
function case captures the recirculation bubble. The subdomain wall function
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Figure 12: Profiles of the mean streamwise velocity in the LES domain predicted by the
subdomain wall function - SWF-Refined ( ), by the subdomain wall function - SWF-EQ
( ) and the coarse LES ( ). The black markers ( ) represent the reference LES
data of Breuer et al. (2009).

results are in good agreement with the reference data after the flow reattaches
to the wall. On the other hand, the pure LES case under-predicts the velocity
throughout the recirculation bubble without the aid of the wall function.
The results predicted by the pure LES case recovers when the second hill
is reached at x/H = 8. When the results of the subdomain wall function
predicted by the two grids are compared, the SWF-Refined grid matches the
reference data better than the SWF-EQ grid. This better performance of the
SWF-Refined domain is due to the refinement of the grid around the point
of separation of the flow. Nonetheless, the performance of the SWF-EQ grid
is still excellent if one does not have a-priori knowledge of the flow field.
Figure 13 shows the profiles of the mean shear stress predicted by the LES
domain of the four cases. The subdomain wall function perfectly matches
the reference shear stress profiles for most of the flow. There is a discrepancy
where the flow separates at x/H = 1, which is due to the RANS model not
being able to predict the effect of the stress-strain misalignment around the
point of separation. The performance of capturing the shear stress profiles
degrades for the pure LES case and breaks down for the wall modelled LES
case.

Figure 14 shows the prediction of the mean turbulent kinetic energy pro-
files by the three wall function cases and the pure LES case. There is a
significant improvement by the subdomain wall function over the wall mod-
elled LES in predicting the turbulent kinetic energy profiles particularly in
the area where local production boosts turbulence between y/H = 0.5 and
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Figure 13: Profiles of the mean shear stress in the LES domain. Legend same as Figure 12.

y/H = 2. The peaks of turbulent kinetic energy profiles by the pure LES case
are shifted upwards in this region. For the subdomain wall function cases, the
SWF-Refined grid performs better than the SWF-EQ grid between x/H = 1
to x/H = 2, where the grid is refined around the point of separation in the
streamwise direction.
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Figure 14: Profiles of the mean turbulent kinetic energy in the LES domain. Legend same
as Figure 12.

Figure 15 shows a close-up view around the lower wall for the stream-
wise velocity and turbulent kinetic energy profiles. The quantitative plots
compare the results predicted by the LES domain and the RANS subdomain
for the subdomain wall function case using the SWF-Refined grid. The two
plots show how the drift term in the momentum equation forces the mean
near-wall LES solution towards the RANS subdomain quantities. The RANS
region underpredicts the turbulent kinetic energy at x/H = 8, and conse-
quently, the drift term rescales the EWA of the total kinetic energy to be
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underpredicted at that location. This trend illustrates the need for a good
RANS model to guide the LES results in the near-wall region where the LES
grid is expected to underperform. Furthermore, the consistent matching of
the RANS quantities to the equivalent mean LES quantities at the interface
is observed in Figure 15.

0 1 2 3 4 5 6 7 8 9
x/H+Ux/Uin

0.0

0.5

1.0

y/
H

Reference

LES

RANS

(a) (Mean streamwise velocity profiles

0 1 2 3 4 5 6 7 8 9

x/H+ 10k/U 2
in

0.0

0.5

1.0

y/
H

(b) Mean turbulent kinetic energy profiles

Figure 15: Contour plots in the LES and RANS domains predicted by the subdomain wall
function.

Table 4: Summary of simulations of the periodic hills flow: separation point(xs/H), reat-
tachment point(xr/H)

Case name xs/H xr/H

DNS 0.2 4.51
SWF-Refined 0.216 4.197

SWF-EQ 0.159 4.61
Pure LES 0.218 5.559

Figure 16 shows the plot of the mean skin friction along the lower wall
of the periodic hills geometry. The results are validated by the DNS data
of Krank et al. (2018). The skin friction predicted by the subdomain wall
function cases is in good agreement with the reference data. The peak skin
friction is underpredicted as the LES grid is too coarse to capture the flow
acceleration in that area. The SWF-Refined grid captures the point of sepa-
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ration better than the SWF-EQ grid as seen in Table 4. The pure LES case
fails to capture the reference skin friction profile.
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Figure 16: Plot of the skin friction coefficient along the lower wall in the LES domain
predicted by the subdomain wall function - SWF-Refined ( ), by the subdomain wall
function - SWF-EQ ( ), the wall modelled LES ( ) and the coarse LES ( ). The
black markers ( ) represent the reference DNS data of Krank et al. (2018).

Figure 17 shows the distribution of the mean coefficient of pressure along
the bottom wall for different cases. The pressure coefficient is defined as CP =(
〈P 〉LES − Pref

)
/0.5ρU2

B, where Pref is the reference pressure. The cases

are compared with the DNS data of Krank et al. (2018). The distribution of
pressure predicted by the subdomain wall function case using the refined grid
is in excellent agreement with the DNS data with changes in the gradient of
the pressure profile being well captured. The subdomain wall function case
with constant spacing grid underpredicts the pressure coefficient profile but
captures the changes in the pressure gradient of the reference data. However,
the performance in predicting the pressure coefficient reduces for the pure
LES case.

5. Results for a Re = 18, 000 Flow through an Asymmetric Plane
Diffuser

Flow through an asymmetric diffuser is studied with the subdomain wall
function. The size of the diffuser investigated matches the specifications of
the geometry used in the experiments of Obi et al. (1993a), Obi et al. (1993b)
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Figure 17: Plot of the coefficient of pressure along the lower wall in the LES domain.
Legend same as Figure 16.

and Buice and Eaton (2000). The Reynolds number of the test case is Re =
HinUin/ν = 18, 000 where Hin denotes the height of the inlet channel and Uin
represents the inlet bulk velocity. The asymmetric diffuser domain consists of
a sudden expansion with an angle of 10◦ with the height of the outlet channel
being 4.7Hin. The length and width of the computational domain are 43Hin

and 4Hin respectively. The size of the two RANS subdomains attached to
each wall of the LES domain is 43Hin × 0.2Hin × 4Hin.

Periodic boundary conditions are imposed in the spanwise direction for
the LES domain and the two RANS subdomains. A fully developed velocity
profile is prescribed at the inlet, while a Neumann boundary condition of
zero is prescribed for the pressure and the subgrid-scale turbulent kinetic
energy fields. A precursor RANS simulation is done with the plane chan-
nel geometry, matching the channel height of the diffuser inlet to generate
fully developed profiles for the inlet of the LES domain. The synthetic eddy
method (SEM) of Skillen et al. (2016) and Jarrin et al. (2006) is used to insti-
gate the fluctuating velocity field from the specified fully developed velocity
profile at the diffuser inlet of the LES domain. Also, the fully developed
profiles computed from the RANS precursor simulation are mapped to the
inlet of the two RANS subdomains.

The LES domain uses 200 × 50 × 60 points in the computational grid.
The total number of grid points in the LES domain is 600,000, which rep-
resents a very coarse mesh with the given Reynolds number and length of
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the computational domain. The grid is biased in the streamwise direction
close to the domain inlet as seen in Figure 18. This grid bias leads to the
nodes on the right half side of the domain being significantly unrefined. Each
of the RANS subdomains has 200 × 30 × 10 grid points resulting in a total
of 60,000 nodes. The period used for the exponentially weighted average is
750Hin/Uin.

Figure 18: Contour plot of the mean streamwise velocity predicted by the subdomain wall
function of the LES domain. The computational grid lines are shown (only every 2nd point
shown.)

A pure LES case is run on the same coarse LES grid used for the sub-
domain wall function case to study the performance of the help of a wall
function. As with the previous cases, the one-equation subgrid-scale model
of Yoshizawa (1986) is used to model the subgrid-scale fluctuations. The
results of the two cases are validated by the experimental data of Buice and
Eaton (2000).
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Figure 19: Profiles of the mean streamwise velocity in the LES domain predicted by the
subdomain wall function - LES-SWF ( ) and the coarse LES ( ). The black markers
( ) represent the reference LES data of Buice and Eaton (2000).

Figure 19 shows the profiles of the mean streamwise velocity at different
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sections of the asymmetric diffuser domain. The profiles are temporally- and
spatially- averaged; the spatial averaging is done in the spanwise direction
of the domain. The subdomain wall function case compares favourably with
the reference data. The profile in the inlet plane channel is in excellent
agreement with the experimental data, which is the expected performance of
the subdomain wall function as demonstrated in Section 3. As the domain
expands, a recirculation bubble is formed at the upper wall, which is captured
by the SWF case. There is a slight discrepancy between the SWF profile
and the experimental data around where the flow separates at x/H = 6.
The recirculation bubble at the upper wall is captured by the SWF case. As
identified with the periodic hills case, the discrepancy is due to the supporting
RANS subdomain not being able to accurately account for the effect of the
stress-strain misalignment around the point of separation. Further down the
domain, beyond where the expansion of the geometry stops, the streamwise
velocity profiles are favourably predicted despite the extreme coarsening of
the LES computational grid.

The pure LES case, which uses the same grid as the subdomain wall
function case completely fails in matching the experimental data except at the
inlet channel. The pure LES case wrongly predicts the recirculation bubble to
be at the lower wall. This inaccurate prediction demonstrates the extremely
low resolution of the LES grid to resolve the flow. Despite the low resolution
of the LES grid, the RANS subdomains are able to adequately support the
near-wall regions of the LES domain to transform the LES calculations to be
close to the reference data for the SWF case.

Figure 20 illustrates the plot of the mean friction coefficient along the
upper wall of the asymmetric diffuser domain. The results are compared
with the experimental data of Buice and Eaton (2000). The profile of the
subdomain wall function decently matches the reference profile. The SWF
case separates at x/H = 4.5 while the experiment recorded the separation at
x/H = 6.0. The SWF case predicts that the flow reattaches at x/H = 25,
while the experiment recorded the reattachment point at x/H = 28.9. It
should be noted that the grid resolution in the streamwise direction for the
LES grid is relatively coarse, especially around the point of reattachment.
This explains the slight differences in predicting the separation and reattach-
ment points between the SWF case and the experiment. As earlier noted, the
pure LES case completely fails in predicting the flow separation/reattachment
phenomena along the upper wall.
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Figure 20: Plot of the skin friction coefficient along the upper wall in the LES domain.
Legend same as Figure 19.

6. Conclusions

The subdomain wall function approach for LES has been implemented
in OpenFOAM based on the coupling of two regions. The main region
covering the flow domain solves LES transport equations, and the grid is
deliberately made coarse near the wall. The second region, known as the
subdomain, solves RANS transport equations. The subdomain overlaps the
under-resolved near-wall region of the LES domain. The RANS subdomain
is used to support the under-resolved viscous affected near-wall region of the
LES grid.

The RANS subdomain feeds information to the near-wall region of the
coarse LES, which leads to the formulation of the volumetric source term.
The source term is known as the drift term which corrects the under-resolved
region of the LES grid. The source term, which is added to the momentum
equation of the LES domain, acts to force the partially time-averaged fil-
tered velocity of the LES grid towards the Reynolds average velocity. This
forcing is done in the areas where the LES grid is considered to be under-
resolved. Furthermore, the source term adjusts the resolved and modelled
fluctuations of the LES domain and rescales the total fluctuations towards
the Reynolds stress tensor of the RANS subdomain. This method ensures
that the correction of the low-resolution near-wall LES grid is done beyond
the first cell of the wall as was previously implemented in traditional wall
function approaches.
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The LES domain matches partially time-averaged quantities of velocity,
pressure and turbulence variables to the interface of the RANS subdomain.
This is an improvement on previous approaches that supplied instantaneous
filtered velocity to the RANS domain. Hence, a consistent coupling of quan-
tities at the interface between the RANS and LES grids is established. This
coupling enables the use of more advanced turbulence models than the mix-
ing length model in the RANS subdomain. The elliptic blending k−ε model
is used in the RANS subdomain.

The subdomain wall function predictions for the Reτ = 1000 plane chan-
nel flow is in excellent agreement with the reference DNS data. The low-
resolution near-wall LES grid underperforms without the aid of the wall
function. This work investigates the effect of adjusting the height of the
interface of the RANS subdomain has on the predictions by the LES grid.
There is a log-layer mismatch when the subdomain overlaps either the first
one or two cells of the LES grid. The velocity profile predicted by the LES
grid collapses to the reference data when the subdomain overlaps at least the
first three cells of the LES grid. The subdomain wall function is tested for
the Reτ = 395 plane channel flow and the much higher Reτ = 5200 plane
channel flow with success. The wall function is able to accurately predict
the reference DNS streamwise velocity for the Reτ = 5200 case despite the
extremely low grid resolution used in the near-wall region of the LES grid.

The framework is extended to a Re = 10, 595 flow through periodic hills
and a Re = 18, 000 flow through an asymmetric plane diffuser. A pure LES
case is also tested. The predictions by the subdomain wall function are in
better agreement with the reference data than the pure LES case.

The subdomain wall function approach has proven successful in utilising
low-resolution near-wall LES grids to save computational costs while accu-
rately predicting reference data. This work aims to test the new framework
for more demanding test cases. The subdomain wall function approach will
be extended to predicting temperature variables in the future.
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Paper II: Large Eddy Simulation of
Turbulent Heat Transfer through a
Circular 90◦ Pipe Bend
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Abstract

This paper presents a large eddy simulation analysis of turbulent heat trans-
fer flow through a 90◦ circular pipe bend. The ratio of the radius of curvature
of the bend to the pipe diameter is 1.5, while the bulk Reynolds number of
the simulation based on the pipe diameter is 40,000. Heat transfer augmenta-
tion is observed along the outer wall as the development of counter-rotating
vortices transports cold fluid towards the outer heated wall. The maximum
Nusselt number is 1.85 of the inlet straight pipe value and is located at the
outer wall of the bend exit. Heat transfer decreases then increases along
the inner wall. The wall heat flux fluctuations are greatly enhanced on the
side and outer walls, and also at a thin area along the inner wall. The
presence of a pair of counter-rotating vortices leads to the conveyance of
peak thermal fluctuations towards the core of the flow where the turbulence
fields are strongly anisotropic. With the absence of heat transfer experimen-
tal data for 90◦ pipe bends, this work compares the numerical results with
two mass transfer experimental datasets using a dissolvable wall technique.
The increasing heat transfer coefficient along the outer wall of the pipe bend
compares favourably with the mass transfer data of the Mazhar et al. (2013)
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experiment. In contrast along the inner wall, the heat transfer profile follows
the trend of Ikarashi et al. (2017) experimental data. Heat transfer along the
outer wall maintains a correlation with skin friction. However, heat transfer
along the inner wall, which is significantly influenced by the development of
secondary flow, scales more with turbulent intensity rather than with wall
shear stress.

Keywords: Pipe bend, Large eddy simulation, Heat transfer, Mass transfer,
Turbulent pipe flow, 90-degrees bend

1. Introduction

Turbulent flow in pipe bend configurations is found in many engineering
components in thermal power industries, particularly those connected with
convective heat transport. A review of industrial applications with curved
pipe geometries can be found in Vashisth et al. (2008). Industrial applications
such as heat exchangers take advantage of pipe bends enhancing thermal mix-
ing of the fluid. Hence, understanding the physical processes through curved
pipe geometries will improve the modelling of the heat and flow phenomena
through pipe bends and enable engineers to enhance the performance of the
dependent thermal and flow devices.

Thermal flow through pipe bends are considerably more complex than
straight pipe flows as the bend redirects various sections of the flow which
leads to the generation of a cross-stream pressure field that balances the
centrifugal forces acting on the fluid. The imbalance of the cross-stream
pressure gradient and centrifugal forces leads to the alteration of the flow
and thermal fields, and the establishment of counter-rotating fluid particle
motions. These motions, also known as the Dean vortices, act to move the
higher inertia core of the fluid towards the outer wall leading to thermal
and mechanical fatigue on the pipe walls. In addition to the development of
secondary motions, the bend geometry induces temperature and velocity pro-
file inhomogeneity on cross-sectional planes, adverse and favourable pressure
gradients in different areas of the pipe and changes due to turbulent heat flux
and stresses due to transverse streamline curvature effects. Hydrodynamic
turbulent flows in pipe bends have been investigated in several experimental
studies such as Enayet et al. (1982), Azzola et al. (1986), Sudo et al. (1998)
and Ebara et al. (2010). Sakakibara and Machida (2012), Kalpakli and Örlü
(2013), Hellström et al. (2013) and Vester et al. (2015) investigated the swirl
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switching phenomena experimentally utilising two-dimensional (2D) proper
orthogonal decomposition (POD).

The increase in computational power has led to bent pipe flows being
studied more in-depth with scale-resolving methods. Flow statistics of tur-
bulent flow through pipe bends have been generated with wall-resolved large
eddy simulation (LES) by Röhrig et al. (2015), Holgate (2018), Tunstall et al.
(2016), while Iyamabo and Afgan (2018) conducted an LES on a coarse grid
using a novel wall function. Investigation of the swirl-switching phenomena
was extended using LES by Rütten et al. (2001), Rütten et al. (2005) and
Carlsson et al. (2015), while Noorani and Schlatter (2016) were the first to
do the swirl-switching analysis with direct numerical simulation (DNS). Fur-
ther DNS studies have been done by Wang et al. (2018) and Hufnagel et al.
(2018). A review of the recent experimental and numerical studies in curved
pipe geometries can be found in Vester et al. (2016).

Despite the numerous studies on hydrodynamic flow, relatively few inves-
tigations have included heat transfer. Baughn et al. (1987) conducted an ex-
periment and Cvetkovski et al. (2015) performed a detached eddy simulation
of heat transfer through a U-Bend pipe, where heat transfer enhancement
along the outer wall is observed. Salimpour (2009) conducted experiments
to measure the heat transfer coefficient of shell and helically coiled tube heat
exchangers, while Acharya et al. (2001), Li et al. (1998) and Lin and Ebadian
(1999) performed numerical analysis of heated helically coiled pipes. Kang
and Yang (2015) and Di Liberto and Ciofalo (2013) used LES and DNS re-
spectfully to study turbulent heat transfer in toroidal pipes with periodic
boundary conditions specified for the inlet and outlet of the pipe; heat trans-
fer rates were discovered to be larger in toroidal pipes than straight pipes.
To the best of the authors’ knowledge, no work has been published on turbu-
lent heat transfer through a 90◦ pipe bend except for the Reynolds-averaged
Navier Stokes (RANS) study done by Iyamabo (2015).

This present numerical study is aimed at assessing the evolution of ther-
mal and flow properties through the bend. The main purpose is to gain an
understanding of turbulent heat transfer as the flow develops through a 90◦

circular pipe bend. The thermal field data is presented as forced convection
due to the secondary velocity and the fluctuating velocity fields greatly deter-
mining the level of heat transfer coefficient through the pipe. The heat trans-
fer results are compared with the mass transfer experimental data of Mazhar
et al. (2013) and Ikarashi et al. (2017), who measured the mass transfer co-
efficient of a 90◦ pipe using a dissolvable wall technique. The experiment of
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Mazhar et al. (2013) utilised test sections of cast from gypsum and was done
over the range of Reynolds numbers: 40,000 - 130,000. Mazhar et al. (2013)
reported that the normalised mass transfer enhancement through the bend
is nearly independent of Reynolds number. Ikarashi et al. (2017) did their
experiment at the Reynolds number of 50,000 using plaster walls. In the
preparation of the plaster walls, Ikarashi et al. (2017) used a vacuum pump
to remove air bubbles to reduce the effect of roughness on the plaster surface.
The validation of the numerical heat transfer results with the experimental
data is inspired by the Chilton-Colburn analogy, which correlates heat and
mass transfer(Chilton and Colburn (1934) and Colburn (1964)).

In this study, a large eddy simulation of forced convection turbulent heat
transfer through a 90◦ pipe bend has been performed. The ratio of the radius
of curvature of the bend to the pipe diameter is 1.5, and the bulk Reynolds
number based on pipe diameter is 40,000. These two specifications match
those of the mass transfer experiment of Mazhar et al. (2013), while the
curvature of the bend is equivalent to the Ikarashi et al. (2017) experimental
setup. An intrinsic coordinate system is defined to ensure that the streamwise
component of the velocity is aligned with the tangential path of the flow as the
path changes through the bend, while the cross-stream component is normal
to the path. The spanwise component of the intrinsic coordinate remains
the same as the spanwise component of the Cartesian coordinate. The usage
of the intrinsic coordinate system enables the generation of a comprehensive
dataset of first and second-order thermal and flow statistics that is not found
in previous numerical publications of 90◦ pipe bends.

2. Numerical Methodology

The Navier-Stokes equations govern the conservation of mass and mo-
mentum for an incompressible Newtonian fluid. The transport equations for
the filtered mass and momentum are defined as:

∂U i

∂xi
= 0, (1)

∂U i

∂t
+
∂U iU j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂U i

∂xj
+
∂U j

∂xi

)
− ∂τSGSij

∂xi
, (2)

where U i and p are the filtered velocity and pressure fields. The term τSGSij

represent the unresolved stresses which is modelled using the Boussinesq
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approximation defined as:

τSGSij =
1

3
δijτkk − 2νSGSSij, (3)

where νSGS is the subgrid viscosity, δij is the Kronecker delta and Sij is the
filtered rate of strain tensor define as:

Sij =
1

2

(
∂U i

∂xj
+
∂U j

∂xi

)
. (4)

The isotropic term τkk in Equation 3 is absorbed in the filtered pressure term
in the Navier Stokes equation. The subgrid viscosity νSGS is computed using
the dynamic Smagorinsky model developed by Germano et al. (1991) defined
as:

νSGS = CD∆2

√
2SijSij, (5)

where ∆ is the filter width calculated as the cube root of the grid cell volume
and CD is the coefficient which is dynamically evaluated by the method
proposed by Lilly (1992). Negative effective viscosity ν + νSGS values are
reset to zero to prevent numerical instabilities (Passalacqua, n.d.).

The temperature variable in the energy transport equation is treated as
a passive scalar. Constant wall temperature is specified as the thermal wall
boundary condition. The transport equation for temperature using the sim-
ple gradient-diffusion hypothesis for the turbulent heat flux term is defined
as:

∂T

∂t
+ U j

∂T

∂xj
=

∂

∂xj

(
ν

Pr

∂T

∂xj
+
νSGS
Prt

∂T

∂xj

)
, (6)

where Pr and Prt are the Prandtl and turbulent Prandtl numbers respec-
tively. The turbulent Prandtl number relates the subgrid-scale turbulent
heat flux to the subgrid-scale turbulent viscosity as −u′iθ′SGS = νSGS

Prt
∂T
∂xj

.

The three components of the velocity vector U i in Cartesian coordinates,
Ux, Uy and Uz are converted to their intrinsic components Us, Uc and Uz
during the simulation as seen in the schematic in Figure 1. The streamwise
component of the velocity vector in the intrinsic coordinate system is aligned
with the path tangent to the streamline of the pipe bend. Also, the cross-
stream component is normal to the path forming a pair of orthogonal vectors
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Figure 1: Schematic showing the setup of the computational domain. The contour of
wall-normal heat flux is shown. Contour is shown on the symmetry midplane.

with the streamwise velocity. The binormal velocity Uz in the intrinsic coor-
dinates that is normal to both the streamwise and cross-stream velocities is
the same as the spanwise velocity in Cartesian coordinates. The streamwise
velocity Us and the cross-stream (curvilinear normal) velocity Uc are defined
in three sections of the pipe: the inlet straight pipe, the bend and the outlet
straight pipe. Through the inlet straight pipe section, the streamwise and
cross-stream velocities are defined as:

U s = Ux, (7)

and

U c = Uy, (8)

Through the pipe bend, the tangential and normal components of the velocity
vector are defined as:

U s = Ux cos Θ− Uy sin Θ, (9)
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and

U c = Ux sin Θ + Uy cos Θ, (10)

Through the outlet straight pipe section, the streamwise and cross-stream
velocities are defined as:

U s = −Uy, (11)

and

U c = Ux, (12)

The heat transfer coefficient is non-dimensionalised as the Nusselt number.
The Nusselt number is defined as:

Nu =
D

(Tw − Tb)
∂T

∂n
, (13)

where D is the pipe diameter, Tw is the wall temperature, Tb is the bulk
temperature at the inlet and ∂T/∂n represents the wall-normal gradient of
the temperature. The bulk temperature at the outlet increased by less than
1% compared to the inlet. Hence, Equation 13 is used for the formulation
of the Nusselt number. A non-dimensional temperature field, known as the
temperature coefficient T ∗, is defined for post-processing analysis as:

T ∗ =
Tw − T
Tw − Tb

. (14)

Note that the temperature coefficient vanishes to zero at the wall. The non-
dimensional temperature is always positive in the bulk flow as the wall heat
flux is defined as positive if entering the fluid, and negative otherwise.

The wall shear stress vector is also defined at the wall. The wall shear
stress is also converted into intrinsic components to represent better the
evolution of skin friction through the bend. The wall shear stress is defined
as:

τw = ν
∂U i

∂n
, (15)

where ν is the kinematic viscosity and ∂U i/∂n is the wall-normal gradient of
the velocity vector in intrinsic coordinates.
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The velocity field in intrinsic coordinates Ui can be split into a mean part
and a fluctuating component. This decomposition is defined as:

Ui = 〈Ui〉+ u′i, (16)

where 〈Ui〉 is the mean velocity determined by time-averaging and u′i is the
fluctuating part of the velocity in intrinsic coordinates. Consequently, the
components of the Reynolds stress tensor τ ′′ij in intrinsic coordinates is defined
as:

τ ′′ij = u′iu
′
j. (17)

This work also calculates the tangential 〈u′sθ′〉, the flow normal 〈u′cθ′〉 and
the spanwise 〈u′zθ′〉 components of the turbulent (Reynolds) heat flux 〈u′iθ′〉.
The resolved turbulent heat flux is defined as:

〈u′iθ′〉 =
〈
UiT

〉
−
〈
Ui
〉 〈
T
〉
. (18)

The SGS turbulent heat flux is defined as:

〈u′iθ′〉SGS =
νSGS
Prt

〈
∂T

∂xi

〉
. (19)

The total turbulent kinetic energy is the summation of the trace of the re-
solved Reynolds stress tensor and the subgrid-scale turbulent kinetic energy.
The modelled turbulent kinetic energy is obtained from the subgrid-scale
turbulence model and is defined as:

kSGS = CD∆2 × 2SijSij, (20)

where CD is a coefficient that is dynamically computed. Hence, the mean
total turbulent kinetic energy is defined as:

k =
1

2
〈τ ′′ii〉+ 〈kSGS〉 . (21)

The computational grid contains 30 million hexahedral nodes and is multi-
block structured. The grid has 700 cells along the centreline in the streamwise
direction. The viscous sublayer of the pipe flow is well resolved. The non-
dimensional near-wall grid spacings are specified as ∆θ+ ≤ 15 and ∆x+ ≤
30 in the circumferential and streamwise directions respectfully. The wall-
normal grid spacing of the cell centres next to the wall is designed as y+ < 1.
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The ratio of the grid cell size to the Kolmogorov length scale (∆/η) is
computed to determine if the grid is well designed. The Kolmogorov length

scale is estimated as η = (ν3/ε)
1/4

. Fröhlich et al. (2005) recommends ∆/η ≤
12 to ensure that the computational grid is designed to resolve a significant
portion of the turbulence. Postprocessing the results shows that at the core
of the pipe the ratio has a value of ∆/η ≈ 3 and increases to a maximum
value of ∆/η ≈ 9 in some sections near the wall. The increased value of
∆/η is anticipated as the dissipation rate is expected to be higher near the
walls. This work fulfils the criteria of ∆/η ≤ 12 throughout the grid. Further
investigation of the resolution requirements of the LES reveals that the grid
resolves at least 90% of the total turbulent kinetic energy. This result is in
line with the criteria by Pope (2000) that the portion of the subgrid-scale
turbulent kinetic energy to the total should be kept below 20%.

(a) Instantaneous streamwise velocity (b) Instantaneous temperature

Figure 2: Contours of the instantaneous streamwise velocity and temperature coefficient
fields.

2.1. Boundary conditions and numerical methods

Fully developed profiles of the velocity and temperature fields are speci-
fied at the inlet of the pipe, while a Neumann boundary condition of zero is
specified for the pressure and SGS turbulent kinetic energy fields. A precur-
sor RANS simulation is done with a straight pipe geometry, matching the
diameter of the bent pipe, to generate fully developed inlet boundary con-
ditions of the pipe bend. The precursor RANS simulation uses the elliptic
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blending RSM model of Manceau and Hanjalić (2002). The synthetic eddy
method (SEM) of Jarrin et al. (2006) and Skillen et al. (2016) is used to insti-
gate the fluctuating velocity from the specified fully developed velocity field
at the inlet of the pipe bend. The mean profiles of velocity, Reynolds stress
tensor and the dissipation rate obtained from the precursor RANS simulation
provide the statistics for the synthetic eddy method. No method is used to
produce the instantaneous temperature from the fully developed temperature
field at the inlet. Instead, the fluctuating velocity instigates fluctuations in
the temperature field 1D downstream of the pipe inlet as seen in Figure 2.

At the wall, a no slip boundary condition is specified for the velocity
field. The wall thermal boundary condition is isothermal with a constant wall
temperature defined. The Neumann boundary condition of zero is indicated
for pressure.

At the pipe bend outlet, a Neumann boundary condition of zero is desig-
nated for the velocity and temperature fields. The pressure field at the outlet
is specified with the scalar value of zero.

LES simulations are performed with the open-source toolbox OpenFOAM
version 5. OpenFOAM uses a cell-centred finite volume method. The pres-
sure algorithm with splitting operators (PISO) by Issa (1986) couples the
momentum and pressure equations. Second-order central difference schemes
are used to spatially discretise the convection and diffusion terms in the
transport equations of momentum and temperature. In addition, an implicit
second-order difference scheme is used for the temporal integration. The time
step is automatically calculated to ensure that the maximum local Courant
number is less than 0.6.

2.2. Pipe bend configuration

The bulk Reynolds number based on the diameter D = 2R is defined as
Reb = UbD/ν, where Ub and ν are the bulk velocity at the inlet and the
kinematic viscosity respectively. The bulk Reynolds number of this work is
40,000, which corresponds to the bulk Reynolds number used in one of the
mass transfer experiments of Mazhar et al. (2013).

A large eddy simulation is done for a pipe of diameter D with a pipe
bend of an angle of 90◦, and the distance between the pipe centreline and
the bend pivot is Rc = 1.5D, as shown in Figure 1. The pipe diameter is
taken as D = 1m. The Dean number determines whether the flow through
the bend develops counter-rotating vortices, also known as Dean vortices.
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The Dean number is defined as:

De = Reb

√
D/2

Rc

. (22)

The Dean number for this case is 23,000, which indicates that Dean vortices
are expected to be found in the flow.

The length of the computational domain is 8.4D with a straight pipe
of 3D located upstream of the bend entrance, and a straight pipe of 3D at-
tached downstream of the bend exit as illustrated in Figure 1. Holgate (2018)
determined that the length of the inlet straight pipe of 3D is sufficiently long
enough for the SEM to develop fluctuations in the flow.

The working fluid is air and is treated as incompressible. The Prandtl
number of the fluid is taken as Pr= 0.71 with the turbulent Prandtl number
specified as Prt = 0.90. The kinematic viscosity is defined as ν = 2.5 ×
10−5 m2/s.

2.3. Numerical validation

The flow results on the plane at z = 0.67D downstream of the bend exit
are compared in Figure 3 against experimental data of Kalpakli and Örlü
(2013) and LES data of Holgate (2018). The two reference data performed
flow investigations for a slightly different ratio of curvature radius to diam-
eter of Rc/D = 1.58. The bulk Reynolds number of the two investigations
is also different at 34,000. Figure 3 shows the comparison of the velocity
magnitude, the cross-stream velocity, the turbulent kinetic energy and the
pressure coefficient. The profiles are taken along the symmetry centreline
between the inner and outer walls at the cross-sectional plane z = 0.67D
downstream of the bend exit. The velocity magnitude result of this work is
in good agreement with the reference experimental data. The disparities in
comparisons are due to differences in the Reynolds numbers and curvature
radius between the present LES and the experimental data. The absence
of near-wall measurements makes it difficult to assess the performance of
predicting the near-wall velocity gradient. However, when the results are
compared with the wall-resolved LES of Holgate (2018) the velocity profiles
are in excellent agreement, with the wall gradients of the present LES being
slightly higher due to the higher Reynolds number. The present LES yields
good results when the other profiles in Figure 3 are compared with the wall
– resolved LES of Holgate (2018). Figure 4 shows the comparison of contour
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(b) Mean cross-stream velocity
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(c) Mean turbulent kinetic energy
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(d) Mean pressure coefficient

Figure 3: Comparison of the non-dimensional profiles at the symmetry plane between
the inner and outer walls at position z = 0.67D downstream of the bend exit. The
position r′/R = −1 refers to the inner wall of the bend while r′/R = 1 is the outer wall.
Experimental data of Kalpakli and Örlü (2013) ( ), LES data of Holgate (2018) ( ),
present LES result ( ).
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(a) Kalpakli and Örlü (2013) ex-
periment (Rc/D = 1.58, ReB =
34, 000)

(b) Results of this present
heat transfer LES (Rc/D =
1.5, ReB = 40, 000)

(c) Röhrig et al. (2015) numeri-
cal results (Rc/D = 1.58, ReB =
34, 000)

Figure 4: Contours of mean streamwise velocity at z = 0.67D downstream of the bend
exit.

plots of the mean streamwise velocity at the cross-sectional plane z = 0.67D
downstream of the bend exit. The velocity contour of this present work
(Figure 4b) is compared with the plot obtained from the data of Kalpakli
and Örlü (2013) and the LES investigation of Röhrig et al. (2015). The bulk
Reynolds number and geometry of the numerical setup of Röhrig et al. (2015)
is the same as Holgate (2018). The contour plot of this study is in very good
qualitative agreement with the experimental results with the global in-plane
behaviour of the flow being well captured. A close qualitative agreement is
also observed with the LES contour of Röhrig et al. (2015). The vector array
of Figure 4b illustrates the presence of a pair of counter-rotating vortices,
which is typical for pipe bend flows. The close agreement with the quantita-
tive and qualitative reference data underlines that the LES results presented
in the later sections can be analysed with confidence.

3. Results & Discussion

3.1. Mean flow and thermal fields

Figure 5 shows the evolution of the pressure coefficient and the streamwise
wall shear stress profiles through the pipe. The profiles are plotted in the
symmetry plane intersecting the inner and outer walls with the streamwise
wall shear stress normalised by the wall shear stress value of the inlet straight
pipe. Along the inner wall, there is a strong favourable pressure gradient at
the bend entrance. This strong favourable pressure gradient coincides with
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(b) Streamwise wall shear stress

Figure 5: Plots of the pressure coefficient and streamwise wall shear stress along the outer
and inner walls of the pipe. The streamwise wall shear stress is normalised by the wall
shear stress of the inlet straight pipe. Profile along outer wall symmetry plane ( ),
profile along inner wall symmetry plane ( ).

the increase in skin friction at the bend entrance along the inner wall. After
20◦ of the bend, the gradient of the pressure switches sign and acts to retard
the flow close to the inner wall, while the wall shear stress drops below the
wall shear stress value of the inlet straight pipe. The streamwise wall shear
stress becomes negative in the second half of the bend along the inner wall.
The flow separates at 45.46◦ and reattaches at 51.38◦. Along the outer wall,
there is a mild adverse pressure gradient which turns to a favourable pressure
gradient after 75◦ of the bend. At the bend entrance, the skin friction along
the outer wall drops below the skin friction of the inlet straight pipe but
increases along the outer wall. Downstream of the bend exit, the pressure
coefficient and wall shear stress commence recovering to profiles of the inlet
straight pipe.

Figure 6 shows the profiles of the streamwise velocity, cross-stream ve-
locity and temperature at five cross-sectional planes through the pipe. The
planes start upstream of the bend entry, go through the bend and end down-
stream of the bend exit. Upstream of the bend entry, the streamwise velocity
and temperature profiles maintain axis-symmetry while the secondary veloc-
ity is negligible. Figure 7 illustrates the streamwise velocity, cross-stream
velocity and temperature at the midplane section of the pipe. At the bend
entrance, there is an acceleration of the flow next to the inner wall due to
the strong favourable pressure gradient along the inner wall, as seen in Fig-
ure 5a. The increase in streamwise velocity leads to the rapid increment of
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(a) Mean cross-stream velocity

(b) Mean streamwise velocity

(c) Mean normalised temperature

Figure 6: Contours of cross-stream velocity, streamwise velocity and temperature at planes
through the pipe.
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the skin friction along the inner wall at the bend entrance as also seen in
Figure 5b. However, the trend of the acceleration of the flow close to the in-
ner wall is not observed for the temperature field at the bend entrance. The
temperature profile retaining its symmetric nature for the first half of the
bend is in line with what Baughn et al. (1987) reported in their heat trans-
fer experiment of a U-pipe bend. The temperature maintains its symmetric
profile as the flow convects the high temperature fluid close to the inner wall
‘forward’ at a faster rate (Note that from the definition of the temperature
coefficient, higher values of T ∗ signify a higher temperature difference with
the wall temperature. Therefore, with the assumption of Tw > Tb, hot fluid
is located next to the wall, while the cold fluid is at the core of the flow for
0◦ < Θ < 45◦). Hence, the flow acceleration along the inner wall makes negli-
gible changes to the temperature profile, as the pressure gradient term is not
included in the temperature transport equation like the momentum equation.
Curiously, at the bend entry, the cross-stream velocity becomes negative for
most of the cross-sectional plane. This leads to a light impingement of the
flow on the inner wall at position Θ = 0◦ as illustrated in Figure 6b. The
cross-stream velocity is negative due to the acceleration of the streamwise
velocity at the bend entry. From continuity, the lateral acceleration of the
streamwise velocity leads to the resulting normal gradient of the cross-stream
velocity being below zero around the bend entrance.

(a) Cross-stream velocity (b) Streamwise velocity (c) Temperature

Figure 7: Contours showing the evolution of the mean cross-stream velocity, mean stream-
wise velocity and the mean normalised temperature through the pipe. Contours are shown
on the symmetry midplane.

Secondary velocity with positive values starts becoming more dominant
by 45◦ of the bend. The secondary flow becomes increasingly significant in
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the second half of the bend due to the presence of centrifugal forces acting
on the fluid. The imbalance of the centrifugal forces and the cross-stream
pressure gradient leads to the formation of a pair of counter-rotating vortices,
also known as Dean vortices. These Dean vortices act the move the high
momentum fluid from the inner wall towards the outer wall and the low
temperature part of the fluid from the centre of the plane towards the outer
heated wall. This transport increases the normal gradients of the flow and
thermal fields, thereby increasing the flux of momentum and heat transfer at
the outer wall. As the temperature profile remained relatively symmetric for
the first half of the bend, the low temperature core of the fluid is convected
closer to the outer wall by the Dean vortices than the high momentum fluid.
Also, the low momentum and high temperature fluid at the side walls are
transported to the inner wall by the Dean vortices. This mechanism can
be seen in the second part of the bend in Figures 7b and 7c. The low
momentum fluid next to the inner wall is further retarded by the presence
of the adverse pressure gradient. The transport of low momentum and high
temperature fluid towards the inner wall leads to the increase of gradient
of those two quantities in the radial and circumferential directions in that
region. Downstream of the bend exit, the effect of the bend is still felt on the
thermal and flow fields, with the low temperature and high momentum fields
coalescing next to the outer wall. In the absence of centrifugal forces due to
the bend, the secondary flow weakens downstream of the bend exit with the
slow recovery to the symmetric thermal and flow fields commencing.

3.2. Velocity and temperature fluctuations (Turbulence and statistics)

Figure 8 shows the contours of the turbulent kinetic energy at differ-
ent planes of the pipe. Figure 9 shows the plots of the composition of the
Reynolds stresses and the variance of the temperature field at different sec-
tions of the pipe on the symmetry line between the inner and outer walls.
At the bend entrance, the temperature variance and the turbulent kinetic
energy are slightly lower at the inner wall due to flow acceleration suppress-
ing turbulent mixing. At 45◦ of the bend, the peak turbulent kinetic energy
near the inner wall moves towards the core of the flow as secondary flow
shifts the production of the streamwise Reynolds stress due to shear towards
the outer wall. The same trend is witnessed for the temperature variance at
Θ = 45◦. The spanwise and cross-stream Reynolds stresses are reduced near
the inner wall at this position. In addition, the temperature variance de-
creases at the inner wall for Θ = 45◦ as the streamline curvature around the
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convex surface acts to dampen thermal mixing, due to the local orientation
of the Dean vortices coinciding with the direction of the mean angular mo-
mentum to stabilise turbulence. On the other hand, the concave outer wall
acts to augment thermal mixing of the fluid in that vicinity. As the Dean
vortices become dominant in the second half of the bend, the peak stream-
wise Reynolds stress and temperature variance due to production from the
inner wall moves towards the centre of the flow as secondary flow shifts the
high gradient sections of the velocity and temperature towards to the core of
the flow. The enhanced production of the temperature fluctuations and the
streamwise Reynolds stress is linked to the deficiency of the temperature and
velocity flow fields, respectively, between the inner wall and the centre core
of the flow. Furthermore, the counter-rotating vortices transport turbulence
from the side walls towards the inner wall of the bend. This transport greatly
increases turbulent kinetic energy at the inner wall as can be seen at Θ = 90◦

of Figure 8.
Interestingly, the turbulent transport leads to turbulence being strongly

anisotropic and leads to the spanwise component of the Reynolds stress being
the most dominant component of the turbulent kinetic as can be seen in
Figure 9 at the bend exit. The highly anisotropic nature of turbulence at the
bend exit was also noticed by Röhrig et al. (2015) when the distribution of
the flatness parameter in the near-wall vicinity was computed. The turbulent
kinetic energy is maximum close to the inner wall in the second half of the
bend where turbulent transport is pronounced, and there are substantial
gradients of velocity in the radial and circumferential directions. Although
the transport of temperature fluctuations to the inner wall can be seen in the
temperature variance plots at the bend exit, the temperature fluctuations are
most considerable at the outer wall where the Dean vortices impinge cold fluid
on the heated outer wall. Downstream of the bend exit, the counter-rotating
vortices push the peak streamwise and cross-stream Reynolds stresses and the
temperature fluctuations due to the high strain rate at the centre of the plane
closer to the outer wall. The temperature fluctuations reduce downstream of
the bend exit as the Dean vortices weaken.

Figure 10 shows the qualitative and quantitative plots of the shear stress
at different cross-sectional planes through the pipe. The shearing force acting
on the fluid upstream of the bend entrance is symmetrical. At the bend entry
of Θ = 0◦, the shear stress slightly reduces near the inner wall as the profile
of high streamwise velocity flattens in that region. The covariance of the
streamwise and cross-stream fluctuations continue to be suppressed to zero
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Figure 8: Contours of turbulent kinetic energy at cross-sectional planes through the pipe.

near the inner wall as the strain rate of the streamwise velocity in that area
becomes negligible.

At Θ = 45◦, the Dean vortices become more prominent, leading to the
strain rate of the cross-stream velocity making a significant contribution to
the shear stress near the inner arc. The sign of the shear stress changes at
this location.

In the second half of the bend, the Dean vortices move the core of the
high momentum but flat distribution of high streamwise velocity towards
the centre of the pipe ensuring that the shear stress in the centre of the
plane becomes negligible. Towards the inner wall, the contributions from the
strain rates of the streamwise velocity and the cross-stream velocity make the
distribution of the covariance of the streamwise and cross-stream fluctuations
complex. Also, it is observed that other components of the shear stress
become non-zero due to the aforementioned contributions.

Downstream of the bend exit, the vortices push the section of the high
momentum flow with the high strain rate closer to the outer wall. This
movement brings a second peak of the shear stress into the vicinity of the
outer wall. Closer to the inner wall, the intensity of the shear stress reduces
as the secondary flow weakens downstream of the bend exit.

3.3. Heat transfer

The heat transfer coefficient represented by the non – dimensional Nusselt
number is illustrated in Figures 11a and 11b. The distribution of the wall
heat transfer is shown for the inner and outer walls. The contour of the
streamwise wall shear stress is also demonstrated in Figures 11c and 11d.
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Figure 9: Plots of profiles of the Reynolds stresses and the temperature variance along
symmetry lines between the inner and outer walls. Figure 9a Legend: streamwise Reynolds
stress ( ), cross-stream Reynolds stress ( ), spanwise Reynolds stress ( ).
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(a) Shear Stress – covariance of streamwise and spanwise fluctuations – usuc
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Figure 10: Contours and plots of profiles of the shear stress components at different
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Upstream of the bend entry, the heat transfer circumferential distribution
is even. At the bend entrance, the Nusselt number increases along the side
and outer walls. The heat transfer progressively increases along the outer
wall as the flow goes through the bend. However, along the inner wall, the
heat transfer decreases markedly in the first section of the bend. The value
of the Nusselt number along the inner wall being lower than the value of the
inlet straight pipe is similar to the observation of Baughn et al. (1987) in
their heat transfer experiment of the 180◦ pipe bend. In the second half of
the bend, 45◦ ≤ 90◦, along the inner wall, the Nusselt number increases in
value, as the skin friction decreases, although the increment does not match
the intensity of the heat transfer along the outer wall.

Figure 12 shows the distribution of the Nusselt number on profile lines
along the inner and outer walls. The Nusselt number values are normalised
by the average Nusselt number of the inlet straight pipe attached upstream
of the bend entrance. The LES heat transfer results are compared with the
mass transfer experimental datasets of Mazhar et al. (2013) and Ikarashi
et al. (2017). Like the heat transfer results, the mass transfer data through
the bend are normalised with the averaged value of the Sherwood number of
the inlet straight pipe section. Along the outer wall, the heat transfer results
capture the trend of the mass transfer data of Mazhar et al. (2013). Differ-
ences between the two profiles are due to the wall roughening in the mass
transfer experiment; thereby affecting the results of the experiment. The two
profiles increase gradually through the bend reaching a maximum value at
Θ = 90◦. The maximum Nusselt number at the outer wall is about 1.85 of
the inlet straight pipe value, which matches the peak Sherwood number of
Mazhar et al. (2013). Downstream of the bend exit, there is a slight decrease
then a flattening of the heat transfer coefficient, as secondary flow weakens
and reduces the intensity of impingement on the heated outer wall. The trend
of heat transfer downstream of the bend exit along the outer wall is also ob-
served for the mass transfer profile of Mazhar et al. (2013). The skin friction
along the outer arc matches the inclination of heat transfer through the bend
with also the peak value being at the bend exit. On the other hand, the ex-
periment of Ikarashi et al. (2017) shows a modest increase in mass transfer
along the outer wall. There is a big difference between the mass transfer
results of Ikarashi et al. (2017) and the heat transfer profile along the wall.
The mass transfer profile reduces downstream of the bend exit then flattens,
just like the heat transfer results, as the intensity of secondary flow weakens.
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(a) Mean Nusselt number – Inner wall (b) Mean Nusselt number – Outer wall

(c) Mean Wall shear stress – Inner wall (d) Mean Wall shear stress – Outer wall

Figure 11: Distribution of mean Nusselt number and mean streamwise wall shear stress
on the walls. The contours show distribution either along the inner wall or the outer wall.
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Figure 12: Plot of the Nusselt number predicted by the numerical simulation and the
Sherwood number predicted by the experiments of Mazhar et al. (2013) and Ikarashi et al.
(2017) along the inner and outer walls. The Nusselt and Sherwood numbers are normalised
by the axis-symmetric values of the inlet straight pipe upstream of the bend entry. The
wall shear stress is shown for comparison. LES profiles represent the results of this heat
transfer study. Exp. 1 profiles correspond to the results of Mazhar et al. (2013) mass
transfer experiment, and Exp. 2 lines depict the results of Ikarashi et al. (2017) mass
transfer experiment.

However, there is a different picture along the inner wall. Downstream
of the bend entry, there is a big discrepancy between the mass transfer ex-
perimental data of Mazhar et al. (2013) and the heat transfer numerical
results. The mass transfer of Mazhar et al. (2013) increases downstream of
the bend entrance following the trend of the rapid increment in skin friction,
as seen in Figure 11c where the flow accelerates near the inner wall. The
mass transfer of Mazhar et al. (2013) reduces between positions Θ = 20◦ to
Θ = 90◦ which correlates with the decrease in wall shear stress. On the other
hand, the heat transfer along the inner arc follows the trend of Ikarashi et al.
(2017). There is a slight increase of heat transfer at the bend entrance as
a result of light impingement of the flow in that location due to near-inner
wall flow acceleration. This increment is also noticed in the Ikarashi et al.
(2017) profile. Through the bend between Θ = 0◦ and Θ = 45◦, the tem-
perature profile remains symmetrical even though the flow accelerates in the
near-wall region. The near-wall acceleration and streamline curvature due
to the convex arc suppress turbulence, and consequently thermal mixing, in
the near-wall region as seen in Figure 9, which leads to a decrease in wall
heat flux in the inner wall region. The lowest Nusselt number occurs around
Θ = 45◦ where the flow separates, with the heat transfer coefficient being
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almost negligible at that location. The mass transfer profile of Ikarashi et al.
(2017) matches the decrease along the inner wall of the heat transfer profile.
Although, the lowest mass transfer coefficient occurs earlier than Θ = 45◦,
probably due to increased surface roughness in the mass transfer experiment.
As the Dean vortices become more prominent in the second part of the bend
after Θ = 45◦ and the flow reattaches, transport of temperature fluctuations
and turbulence from the side walls increases thermal mixing in the inner wall
region, thereby significantly increasing heat transfer along the inner wall.
The augmented heat transfer in this region is matched by the enhanced mass
transfer of Ikarashi et al. (2017), though there is a detachment between the
two profiles due to differences in the Reynolds number of the two datasets.
Downstream of the bend exit, the is a slight decrease of the heat transfer
coefficient along the inner wall with the profile converging with the mass
transfer results of Ikarashi et al. (2017).

The two mass transfer datasets differ markedly along the inner and outer
walls. The heat transfer results of this study correspond with the mass
transfer profile of Mazhar et al. (2013) along the outer wall and with the
data of Ikarashi et al. (2017) along the inner wall. The heat transfer profile
maintains a correlation with the flux of momentum along the outer wall, but
the comparison between heat transfer and skin friction is more complex along
the inner wall. Heat transfer along the inner arc scales more with turbulence
intensity as the counter-rotating secondary flow strongly influences thermal
parameters in the inner wall region.

Figures 13a and 13b represent the distribution of the instantaneous heat
transfer coefficient and the variance of the Nusselt number over the pipe wall.
The outer and side walls display streak patterns of alternating low and high
heat transfer as discovered by Di Liberto and Ciofalo (2013) in their DNS
of toroidal pipes with periodic boundary conditions at the inlet and outlet.
This trend also correlates to alternating patterns of low and high near-wall
temperatures, which is akin to the distribution found in channel flows with
heated walls. The heat transfer fluctuations on the outer and side walls in-
crease significantly through the bend. The augmented wall heat flux fluctua-
tions are linked with the Dean vortices transporting cold fluid in alternating
circumferential directions and represented with the heightened temperature
fluctuations next to the outer wall. Consequently, the outer and side walls
are prone to higher thermal fatigue with the heightened levels of heat flux
fluctuations. Continuing with the trend of previously discussed thermal or
flow parameters, the variance of the heat transfer coefficient downstream of
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(a) Instantaneous Nusselt number – Inner wall (b) Instantaneous Nusselt number – Outer wall

(c) Variance of Nusselt number – Inner wall (d) Variance of Nusselt number – Outer wall

Figure 13: Distribution of instantaneous Nusselt number and variance of the Nusselt
number on the walls. The contours show distribution either along the inner wall or the
outer wall.
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the bend exit reduces as the Dean vortices lose strength.
On the other hand, the inner wall close to the bend entry has a large area

with a flat distribution of instantaneous heat transfer coefficient. The impact
of this even distribution is noticeable in the figure illustrating the negligible
heat transfer fluctuations in that location shown in Figure 13c. A thin strip
of significantly enhanced heat transfer fluctuations develops along the inner
wall in the second half of the bend. The increased fluctuations suggest that
both the inner and outer walls are subjected to elevated levels of thermal
fatigue at the bend exit.

Figure 14 illustrates the evolution of the turbulent heat flux through the
pipe. Upstream of the bend entry, the turbulent heat fluxes remain undis-
turbed by the influence of the bend. The peak of the streamwise turbulent
heat flux near the inner wall moves towards the core of the pipe as the Dean
vortices dominate. The cross-stream turbulent heat flux exhibits more com-
plex behaviour. Between the bend entry at Θ = 0◦ and Θ = 45◦, the normal
turbulent heat flux is suppressed near the inner wall as the flow acceleration
suppresses turbulent mixing in that region (This feature is illustrated clearer
in Figure 1). This suppressed normal heat flux is reflected in the reduced heat
transfer coefficient between Θ = 0◦ and Θ = 45◦ illustrated in Figure 12a.
The normal turbulent heat flux is mostly negligible in the lower half of the
pipe next to the inner wall at Θ = 45◦, which matches the lowest value of the
Nusselt number. In the second part of the bend after Θ = 45◦, the counter-
rotating vortices bring high temperature fluid from the side walls towards
the inner wall region, which forces the peak value of the normal turbulent
heat flux to switch signs. Turbulent transport also increases thermal mixing
in the inner wall region as earlier identified at Θ = 90◦ with the highest mag-
nitude value of the cross-stream heat flux occurring at this location as seen
in Figure 14a. The switched peak normal heat flux is transported towards
the outer wall through the Dean vortices. On closer inspection, the contours
of the cross-stream turbulent heat flux mimic the contours of the shear stress
co-variance of streamwise and cross-stream fluctuations when Figure 14a and
Figure 10a are compared.

4. Conclusions

A large eddy simulation is performed for turbulent flow through a 90◦

pipe bend. The ratio of the radius of curvature to pipe diameter is 1.5.
The bulk Reynolds number of the case is 40,000. The simulation solves
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the energy transport equation with the temperature variable computed as
a passive scalar. Existing literature on turbulent heat transfer through 90◦

pipe bends is limited. This work validates the heat transfer coefficient results
with the mass transfer experimental data of Mazhar et al. (2013) and Ikarashi
et al. (2017). The flow immediately downstream of the bend exit is validated
with experimental data of Kalpakli and Örlü (2013) and the LES results of
Holgate (2018). Also, qualitative contour plots of Kalpakli and Örlü (2013)
and Röhrig et al. (2015) of the streamwise velocity downstream of the bend
are compared with the results of this study. The simulation converts the
Cartesian coordinate of the velocity field into intrinsic coordinates to enable
the generation of an extensive database.

The thermal and flow fields are symmetric upstream of the bend entrance.
However, The evolution of the thermal and flow fields differ downstream of
the bend entrance. A strong favourable pressure gradient accelerates the
flow next to the inner wall vicinity after the bend entry, which leads to an
increase in skin friction. However, the temperature field remains relatively
symmetric. By Θ = 45◦, the pressure gradient along the inner wall becomes
unfavourable, and the skin friction reduces. The mean (time-averaged) flow
separates at 45◦ and reattaches at 51◦. Secondary flow becomes significant in
the second half of the bend, which leads to the formation of a pair of counter-
rotating vortices that act to move the high momentum - low temperature fluid
towards the outer heated wall. This transport leads to an increase in the flux
of temperature and momentum along the outer wall.

Downstream of the bend entry, the temperature and velocity fluctuations
are suppressed close to the inner wall as the flow accelerates. The stream-
wise Reynolds stress remains the most significant stress component of the
turbulent kinetic energy for the first half of the bend. As the Dean vortices
become dominant in the second half of the bend, secondary flow transports
turbulence from the side walls to the inner wall region leading to the en-
hancement of thermal mixing in that area, while peak thermal fluctuations
due to production are deflected towards the core of the flow. The transport
mechanism makes turbulence highly anisotropic around the inner wall. The
spanwise Reynolds stress becomes the largest component of the turbulent ki-
netic energy when the counter-rotating vortices are active, while the concave
outer arc augments the temperature fluctuations in the outer wall region.

Heat transfer increases along the outer wall of the bend and this increment
matches the trend of the mass transfer experimental data of Mazhar et al.
(2013). The maximum heat transfer occurs at Θ = 90◦ with the largest
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value being 1.85 of the inlet straight pipe Nusselt number. However, along
the inner wall, the correlation between the heat and mass transfer of Mazhar
et al. (2013) breaks down. Heat transfer reduces at the inner wall in the
first half of the bend as thermal mixing is suppressed due to the convex flow
streamlines. The heat transfer is the lowest at 45◦, where the cross-stream
heat flux is negligible. Heat transfer increases rapidly along the inner arc in
the second half of the bend as Dean vortices greatly enhance thermal mixing.
The trend of the decrease and subsequent increase in heat transfer along the
inner wall is closely followed by the mass transfer dataset of Ikarashi et al.
(2017). Heat transfer maintains scaling with the wall shear stress along the
outer wall but scales more with turbulent intensity along the inner wall, due
to the influence of secondary flow. Furthermore, fluctuations of the heat
transfer coefficient are greatly augmented along the side and outer walls
leading to an increase in wall thermal stresses in those areas. The enhanced
heat transfer fluctuations are also observed in a thin strip area along the
inner wall located at the bend exit.

The two mass transfer experimental datasets utilised by this study differ
considerably along the inner and outer walls. This discrepancy leads to the
heat transfer coefficient of this work comparing favourably with the data of
Mazhar et al. (2013) along the outer wall, and with Ikarashi et al. (2017)
along the inner wall. There is a crucial need to perform a direct numerical
simulation of heat and mass transfer through a 90◦ pipe bend to address the
discrepancies between the two experimental datasets.
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Abstract— This paper presents the methodology of a new wall function for large eddy 

simulation (LES) where two regions are solved simultaneously. The first region solves the 

LES for the entire domain, but the grid is coarse and under-resolved in the near-wall 

area. The second region is embedded in the near-wall area of the LES grid, solves 

transient Reynolds Averaged Navier Stokes (RANS) transport equations and supplies the 

LES with a corrected wall shear stress. In return, the RANS grid obtains partial time-

averaged quantities from the LES domain. This enables the use of more advanced 

turbulence models in the RANS region. This paper presents results of the new method for 

a plane channel flow and the more challenging 90o pipe bend case. 

I. INTRODUCTION 

Large eddy simulation (LES) has become a popular tool for analysing turbulent flow in 

academia. The grid requirements for LES increases modestly with Reynolds number (Re) as 

𝑁 ≈ 𝑂(𝑅𝑒0.4), which suggests that LES could be used more in industry. However, this 

requirement is only valid for regions that are far from the wall. The near-wall region of a 

turbulent flow requires a much finer numerical discretisation to resolve the flow. Reference [1] 

estimates that the grid size required to resolve the viscous sublayer increases as Re1.8, thereby 

limiting the usage of LES in engineering applications. Hence, high-Re turbulent flows for LES 

is only realistic in combination with near-wall corrections that allows the use of a coarser near-

wall grid. 

  Log-law-based wall functions were developed initially to compute the instantaneous skin 

friction or velocity of the first cell in a coarse near-wall LES grid. However, these approaches 

remained applicable to flows in near-equilibrium conditions like the channel flow. Later, a wall-

layer model for LES was developed by [2] where a separate domain was embedded in the first 

cell of the LES grid. The embedded domain solved unsteady Reynolds averaged Navier-Stokes 

transport equations (RANS) and supplied the LES with wall shear stress information to correct 

the first cell at the wall of the LES grid. The top boundary of the RANS subdomain received 

information from the LES. This approach demonstrated some clear advantages over the standard 

wall function methods, but there are still some limitations. First, the RANS turbulence models 

used in most cases were limited to an algebraic mixing length model to overcome the difficulties 
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of prescribing boundary conditions at the RANS domain interface when using RANS closure 

methods. This reduced the usage of wall-layered models in complex flows. Second, the 

instantaneous filtered velocity of the LES was matched with the Reynolds time-averaged 

velocity at the interface of the RANS domain. This is obviously an inconsistent approach which 

has led to the development of several empirical corrections such as equating the subgrid scale 

(SGS) viscosity of the LES to the eddy viscosity of the RANS at the interface, which is 

unphysical, or numerically solving only the diffusion term in RANS domain. This work looks 

to improve the consistency of coupling the RANS and LES fields at the interface of the RANS 

domain. Furthermore, the work develops approaches which permit the use of more advanced 

turbulence models in the RANS domain to enable the usage of LES for more complex 

geometries. 

II.  METHODOLOGY 

This numerical wall function for LES (LES-NWF) is implemented in an opensource code 

OpenFOAM and solves two regions concurrently as shown in Figure 1. The LES grid is intended 

to be well refined except in the near-wall area where the grid does not resolve the dynamic 

motions. The RANS grid overlaps the coarse inner region of the LES domain, and the RANS 

grid is biased towards the wall. The RANS grid computes the wall shear stress which corrects 

the near-wall region of the LES domain. On the other hand, the interface of the RANS grid 

receives information from the LES to complete the boundary conditions of the RANS grid. The 

top boundary of the RANS domain is designed to bypass at least the first three cells of the LES 

grid to ensure that the information received from the LES at the interface is well resolved. 

 

Figure 1: Schematic showing the setup of the new wall function for LES  

 The momentum equation for an incompressible flow for the LES domain can be written as 

follows:   

𝜕𝑈𝑖̅̅ ̅

𝜕𝑡
+

𝜕𝑈𝑖̅̅ ̅𝑈𝑗̅̅̅̅

𝜕𝑥𝑗
= −

𝜕�̅�

𝜕𝑥𝑖
+ 2𝑣

𝜕

𝜕𝑥𝑗
𝑆𝑖𝑗̅̅̅̅ −

𝜕〈𝜏𝑖𝑗
𝑟 〉

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝜏𝑤 ∗ 𝐴𝑤) () 

where τw is the wall shear stress calculated from the RANS domain and mapped to the LES grid 

as a source term, and Aw is the wall cell area. 

The partial time average of the filtered fields of the LES domain is computed. The partial 

time averaged LES fields is coupled with the Reynolds time-averaged fields to improve 

consistency between the two regions. The exponentially weighted time-average (EWA) is used 

to compute the partial time-average of a quantity 〈𝜑〉𝐸𝑊𝐴, which is defined as follows:  
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 〈𝜑〉𝐸𝑊𝐴 = ∫ (
1

𝑇
𝜑(𝑡′)𝑒−(𝑡−𝑡

′) 𝑇⁄ 𝑑𝑡′)
𝑡

−∞
 () 

where T is the time-scale of the exponentially weighted average. The use of the exponentially 

weighted average prioritises recent events in the LES [3]. The EWA timescale is made to be 

long enough to ensure that the EWA fields will be smooth. Hence, the exponentially weighted 

average of the filtered velocity of the LES is assumed to be equivalent to the Reynolds-averaged 

velocity of the RANS domain (〈𝑈�̅�〉
𝐸𝑊𝐴 ≈ 〈𝑈𝑖〉). The EWA of the filtered velocity field is then 

interpolated to the interface of the RANS domain. Also, the LES stress tensor can be determined 

by defining the resolved fluctuations about the EWA of the filtered velocity field as 𝑢𝑖
′′ = 𝑈�̅� −

〈𝑈�̅�〉
𝐸𝑊𝐴. The LES stress tensor is defined as:  

 𝜏𝑖𝑗 = 𝑢𝑖
′′𝑢𝑗

′′ + 𝜏𝑖𝑗
𝑟  () 

where 𝜏𝑖𝑗
𝑟  is the modelled subgrid scale (SGS) stress tensor and 𝑢𝑖

′′𝑢𝑗
′′ is the resolved stress 

about the EWA of the filtered velocity field.  

To make use of closure methods in the RANS domain, the boundary conditions at the 

interface for variables such as the turbulent kinetic energy and the rate of dissipation have to 

be defined. The interface boundary condition for the turbulence kinetic energy 𝑘𝑅 is obtained 

by taking the trace of the EWA of the LES stress tensor which is defined as 𝑘𝑅 = 0.5〈𝜏𝑖𝑖〉
𝐸𝑊𝐴. 

Then again, the interface boundary condition of the dissipation rate ε is found by calculating 

the EWA of the sum of the resolved dissipation rate linked with the large eddies of the LES 

and the modelled dissipation rate associated with the subgrid scales which is defined as:  

 〈휀〉 = 2𝑣𝑆𝑖𝑗̅̅̅̅ 𝑆𝑖𝑗̅̅̅̅ − 𝜏𝑖𝑗
𝑆𝐺𝑆𝑆𝑖𝑗̅̅̅̅ . () 

This work makes use of the elliptic blending k-ε model of [4] in the RANS region, which 

solves the transport equations of two additional quantities: the elliptic blending parameter and 

the ratio of the normal Reynolds stress to the turbulent kinetic energy. The algebraic correlations 

used to define these extra variables at the interface can be found in [5].  

III. RESULTS AND DISCUSSION 

A. Results for a Reτ = 1000 Channel Flow 

We assess the performance of the new method for a fully developed Reτ = 1000 flow through 

a plane channel of half height δ and validate the results with DNS data of [6]. The sizes of the 

domain for the LES and RANS regions are 2𝜋𝛿 × 2𝛿 × 𝜋𝛿 and 2𝜋𝛿 × 0.15𝛿 × 𝜋𝛿 

respectively, with periodic conditions on the inflow and sides. The LES grid has 50 × 60 × 30 

points with constant spacing in all directions, and the near-wall region being under-resolved, 

while the RANS grid has 50 × 30 × 30 points that is biased towards the wall. The subgrid scale 

turbulence used in the LES domain is the dynamic one-equation model of [7], while the RANS 

domain uses the elliptic blending k-ε model. Also, a separate simulation is run on the same 

coarse LES grid without using a wall function. Figure 2 shows the plot of the mean streamwise 

velocity computed in the LES domain in the channel. The mean streamwise velocity of the LES 

domain is well predicted when the first cell of the grid is corrected by the wall shear stress 
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supplied by the RANS subdomain. The friction Reynolds number predicted by the LES domain 

with wall function is 1039, which differs from the nominal value by under 4%. 

 

Figure 2: Plot of mean streamwise velocity in a plane channel of Reτ=1000 

 

Figure 3: Contour plot of the mean streamwise velocity of a plane section - Left: Well resolved LES, 

Right: Numerical wall function with LES 

B. Results for Flow through a 90o Pipe Bend 

Flow through a 90o pipe bend is investigated (Figure 3). The presence of centrifugal forces 

and pressure gradients in different directions, which lead to the development of counter-rotating 

vortices in the bend, makes the pipe bend geometry a challenging case to simulate. The bulk 

Reynolds number of the case is 34,000. The ratio of the radius of curvature of the bend to the 

pipe radius is 1.58, signifying a sharp bend. The LES grid using the numerical wall function has 

540,000 points with the viscous sublayer under-resolved. As with the channel flow case, the 

LES domain uses the dynamic one-equation SGS model, while the RANS domain uses the 

elliptic blending k-ε model. Results of the study are compared with data from a 19 million-cell 

well-resolved LES simulation, which have not been published. An added study is done on a 1.4 

million-node grid using improved delayed detached eddy simulation (IDDES) as detached eddy 

simulation has become the most popular hybrid RANS/LES method used in industry. Figure 4 

shows the profiles of streamwise and radial velocities plotted along a line between the inner and 

outer walls of the bend. At the bend entrance, the LES-NWF and IDDES accurately predict the 

acceleration of the flow around the inner wall due to the presence of strong axial favourable 

pressure gradient in that region. However, as secondary flow becomes more dominant, only the 

LES-NWF can predict the streamwise velocity at the bend exit in the inner wall vicinity. The 

IDDES predicts a high radial velocity in the inner-wall region which causes the high-momentum 

part of the fluid to be pushed further towards the outer wall, while the LES-NWF accurately 

computes the secondary velocity. Hence, the LES-NWF can maintain the trend of the 
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streamwise velocity. Figure 5 shows the contour plots of the mean streamwise velocity at the 

bend exit section-plane. The NWF-LES contour plot compares favourably with the reference 

plot despite using a minute fraction of points in the computational grid.  

 

 
Figure 4: Plots of the mean streamwise and radial velocities along a line between the inner and outer 

walls of the pipe – Top plot: Plot line at bend entrance, Bottom plot: Plot line at bend exit – Black lines 

and markers: Streamwise velocity, Red lines and markers: Radial velocity – Solid line (––): LES-NWF, 

Dashed line (- -): IDDES, Star marker (*): Well-resolved LES (Reference Data) – x-axis: Outer wall 

(1.0), Inner wall (-1.0). 

 
Figure 5: Contour plots of the mean streamwise velocity of a plane section at the bend exit - Top left: 

Numerical wall function with LES (LES-NWF), Top right: Improved delayed detached eddy simulation 

(IDDES), Bottom left: Well resolved LES (Reference data) 



MACE PGR Conference University of Manchester, UK, March 26, 2018 

 

 

6 

 

IV. CONCLUSIONS 

A numerical wall function for LES was implemented in OpenFOAM. The LES domain 

received wall shear stress information from a separate near-wall RANS domain to correct the 

first cell of the coarse near-wall LES grid. A more consistent coupling of the LES and RANS 

regions was done by computing the partial time average of LES quantities. This coupling 

enabled the use of more advanced turbulence models compared to the algebraic mixing length 

approach that is commonly used in literature. The method was tested with success for plane 

channel flow. It also performed admirably for the demanding 90o pipe bend. 
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