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Abstract 

The distinctive nature of cancer as a disease prompts an exploration of the special 

characteristics the genes and mutations implicated in cancer exhibit. Currently, we have no 

clear explanation for why patterns of replacements of amino acids are frequent in cancer, 

and what their effects may be on the protein. Such patterns would be expected to provide 

an understanding of how these amino acid replacements drive cancer progression and 

reveal the properties that distinguish them from replacements that are non-cancer 

associated. Moreover, the identification of cancer-associated genes and their characteristics 

is crucial to further our understanding of this disease. These characteristics can be used to 

recognise and prioritise therapeutic drug targets with an enhanced likelihood of success. 

However, the rate at which cancer genes are being identified experimentally is slow. 

Applying predictive analysis techniques, through the building of accurate machine learning 

models, is potentially a useful approach in enhancing the identification rate of these genes 

and their characteristics. In this work, we identified certain amino acid residues and 

replacements to be highly enriched in cancer. In particular, we highlight 17 substitutions 

showing high enrichment rates also we find that very frequently in cancer a residue is 

replaced with either a Cys or an aromatic residue. We explained the role of Cys in forming 

disulphide bonds and the aromatic amino acids in forming stacking interactions; both are 

known to be vital in binding activities highly enriched in cancer-associated gene functions. 

We also identified properties, such as protein stability and hydrophobicity that have 

distinguished patterns in these cancer-associated replacements compared to other non-

cancer-associated mutations. We used these properties to train a machine learning model 

predicting cancer-associated replacements related to specific protein using only the amino 

acids residue position and physico-chemical properties. In terms of cancer-associated genes, 

we investigated gene essentiality and found that essentiality scores tend to be higher for 

cancer-associated genes compared to other protein-coding human genes. We built a 

dataset of extended gene properties linked to essentiality and used it to train a machine-

learning model; this model reached 89% accuracy and > 0.85 for the Area Under Curve 

(AUC). The model showed that essentiality, evolutionary-related properties, and properties 

arising from protein-protein interaction networks are particularly effective in predicting 

cancer-associated genes. We were able to use the model to identify potential candidate 
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genes that have not been previously linked to cancer. Prioritising genes that score highly by 

our methods could aid scientists in the identification of novel genes and targets for further 

research.   
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1. Chapter 1: Introduction 

Cancer is the second leading cause of death in the UK with more than one in four of all 

deaths in 2019 reported here by Cancer Research (UK) attributed to cancer. Cancer 

comprises a collection of diseases with shared biological base that could be described as a 

breakdown of specific controls that are normally imposed on multicellular systems (1). In 

particular, if processes such as growth and apoptosis are directly affected (1).  

 

Research into tumor initiation and progression has established a number of hallmarks that 

most cancers exhibit (2).  These include (i) proliferative signalling: the most recognisable 

feature of cancer cells is their ability to proliferate with no restriction. The growth 

promoting or inhibiting factors that normal cells use as means of control are abolished in 

tumor cells. Tumor cells maintain proliferation by producing their own growth factors and 

they also stimulate normal tumor-associated cells (stroma), which in turn provide the 

growth factors to the cancer cells. Moreover, cancer cells can become extra responsive to 

any growth signalling. Eventually cancer cells would become self-regulating (3). (ii) Evading 

growth suppressors: if proliferation inhibitors are mutated, this can lead to the cell to 

proliferate without control; an example of this is the impact of mutated proliferation 

inhibitor TGF-β (2). (iii) Resisting cell death: tumor cells can become invulnerable to 

apoptosis by avoiding mechanisms that in normal cells initiate apoptosis. An example is 

mutated p53 causing the malfunction of the mechanism that normally detects irreparable 

DNA damage and initiate apoptosis (2) . They can also avoid apoptosis by the expression of 

anti-apoptotic proteins such as Bcl-2 or by the down-regulation or mutation of pro-

apoptotic proteins such as Bax (4). (iv) Enabling replicative immortality: normal cells 

replicate for limited number of times due to a shortening of telomere length while tumor 

cells overcome this mechanism by overexpressing telomerase (an enzyme that maintains 

telomere length) and thus can potentially replicate indefinitely (5). (v) Inducing 

angiogenesis: angiogenesis is the formation of new blood vessels from pre-existing ones in 

response to chemical signals. Tumors need a dedicated blood supply to provide the oxygen 

and nutrients to grow. Tumor cells use abnormal secretion of various growth factors to 

induce blood vessel growth (2). (vi) Invasion and metastasis: these processes start when 

cancer cells acquire the ability to penetrate the neighbouring tissues leading into spreading 
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cancer into distant organs. Metastasis usually occurs at an advanced stage of tumor 

development and is considered responsible for an increased chance of mortality (2). Two 

further potential hallmarks were proposed in recent research: reprogramming of energy 

metabolism and evading immune destruction (2). 

 

Most hallmarks of cancer are principally caused by the existence of genetic variations and 

genome aberrations. These changes are determined in the downstream proteins and 

altered pathways that were proven to be associated with cancer initiation and progression 

(6). This underlines the important of studying cancer not just by only looking at individual 

components (genes, proteins, etc.) but to link this with an understanding of their interaction 

networks and cellular pathways. 

 

 Cellular processes affected by cancer associated mutations: 
 
Biomedical research that described the varied cellular processes in humans has provided 

cancer researchers with the crucial knowledge to recognise the core cellular processes that 

are affected by cancer (7). Furthermore, cancer researchers are now able to identify the 

individual signalling pathways that are altered because of cancer mutations (8). These 

mutations (somatic or germline) are mainly responsible for causing the start of the cascade 

of steps that disrupt and break specific controls within core cellular processes leading to the 

transformation of normal cells into cancer cells (6). There are primarily 12 signalling 

pathways that are particularly affected by cancer associated mutations. These regulate 

three core cellular processes: cell fate, cell survival, and genome maintenance (6). It is 

important to remember that these pathways are not entirely separate from each other; as a 

gene that is implicated in one of these pathways might have a protein product that interacts 

with a protein that is involved in another pathway. 

 

1. Cell fate: In many eukaryotes, differentiated cells have their distinctive set of 

properties defined by gene expression (9). The mechanism that maintains the genes’ 

expression levels must be maintained during cell division. Multiple signalling 

pathways were shown to be involved in determining cell fate (9). In cancer, 

epigenetic variations can alter the process controlling how cell differentiate and 
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divide and ultimately changing the tissue architecture (10). Two pathways that are 

particularly regulated by the expression of genes are chromatin modification, and 

transcriptional regulation. DNA-binding proteins can be responsible for the increase 

or decrease of level of transcription of specific genes. Other pathways include: 

a) The Wnt/APC signalling pathway: The Wnt pathway has the largest number 

of mutations in human tumors involving several tissues and cancer types (11). 

This pathway has complex branches, intersections and connections with 

other pathways and is part of a variety of biological processes, such as cell 

cycle progression and proliferation, inhibition of apoptosis, cell growth and 

cell migration (12). There are many genes implicated in this pathway 

encompassing a large variety of functions, including cell kinase regulation, 

cell adhesion, hormone signalling and transcriptional regulation. At least 20 

genes have been identified that encode proteins that activate the cell cycle 

and/or proliferation. In particularly, the genes WNT and APC which encode 

the protein APC (adenomatous polyposis coli) are found often mutated here 

due to its interaction with several other proteins (11). 

b) The NOTCH pathway: The Notch protein and its ligands are transmembrane 

proteins that are important regulators involved in many developments, cell 

fate and survival processes (13). Genes that code for the Notch proteins, such 

as NOTCH2 and NOTCH4, were often found mutated in leukaemia, breast 

cancers and in several common cancers (11). 

c) The Hedgehog pathway (Hh): The hedgehog signalling pathway is closely 

associated with the primary cilium delivering it alongside Gli Zinc finger 

proteins into the nucleus to activate target genes (14). Two proteins, patched 

(Ptch) and smoothened (Smo), are essential in initiating Hh signalling (14). 

Mutations in genes encoding signalling proteins of the hedgehog pathway, 

such as PTCH1 and SMO, are most frequently observed among basal cell and 

brain carcinomas (10). 

 

2. Cell survival: When certain mutations acquired by cancer cells lead to uncontrolled 

proliferation, these cells will consume the resources in their environment and thrive 

in a way other cells cannot. Many genes can be involved in this process where for 
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example, growth factors or receptors (part of a signalling pathway) become 

constantly activated due to mutations in these genes, this in turn can lead to 

proliferation (10). Moreover, genes that directly regulate cell cycle and apoptosis 

could have mutations that enhance the survival of the cancer cell. Therefore, tumor 

suppressor genes such as CDKN2A, MYC, and BCL2s, are often mutated in cancers 

(10, 11). Another gene whose mutations enhance cell survival is VHL, the product of 

which stimulates angiogenesis through the secretion of vascular endothelial growth 

factor (15). The signalling pathways affected by cell survival processes include: 

a) The RAS/MAPK pathways: RAS is the generic term used for three oncogenes 

found to be responsible for driving tumor initiation and progression. RAS was 

among the earliest oncogenes to be detected in the history of cancer 

research. Three genes (HRAS, KRAS and NRAS) code for small G-proteins 

(GTPRas switch) that are anchored in the plasma membrane (16). These 

protein product of RAS genes are regarded as a molecular switches of signal 

transmission where the signal is transferred from the membrane into the 

cells by series of interactions. Oncogenic mutations in RAS genes cause the 

Ras protein to be constitutively active in its function as a signal transmitter 

disabling activation and inactivation mechanisms in the unmutated form (17). 

The MAPK (mitogen-activated protein kinase) pathway feature two important 

proteins coded by the genes KRAS and BRAF. The pathway can be divided 

into two main sections: upstream and downstream, based on the interaction 

between Ras and BRaf proteins (18). The upstream starts with the activation 

of a receptor tyrosine kinase leading to an activation of membrane bound 

protein Ras. Activation of BRaf by Ras protein initiates the downstream 

section (kinases and transcription factors). BRaf then phosphorylates several 

cytosolic proteins and thus transmits the signal into the cell. When the RAS 

gene carries certain point mutations, the mutated Ras protein cannot be 

inactivated by the GTPase protein and is constitutively active, even in the 

absence of an upstream signal. In some cases, the BRAF gene is mutated, and 

the dysregulation of the pathway occurs in the downstream section. This 

pathway is very important in human tumors. Indeed, it is dysregulated in 

more than 50 % of all human tumors (11). The MAPK pathway mediates 
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cellular processes, such as activation of the cell cycle and proliferation, and 

has been a major area of anticancer drug development research (18). 

b) The PI3K/ACT pathway: This plays an important role in regulating growth, 

survival and division of cells and is activated by extracellular signals primarily 

through receptor tyrosine kinases (19). This pathway has multiple circuits and 

not all of the circuits functional involvement is yet fully explored. Like in the 

MAPK pathway, the Ras protein can play a role in PI3K/ACT pathway where 

phoshatidylinositol-3 kinase (PI3K) can be activated by binding to the GTP-

bound form of the membrane protein Ras (10). Alternatively, PI3K can be 

activated by binding directly or via the protein IRS-1 to the activated receptor 

tyrosine kinase. Active PI3K leads to activation of the serine-threonine kinase 

AKT. Active AKT phosphorylates many proteins, which leads to the inhibition 

of apoptosis and to the activation of translation and proliferation (19). The 

genes PIK3CA and AKT1/AKT2 are frequently found to be mutated in human 

cancer (19). 

c) The TGF-β pathway: TGF (Transforming Growth Factor) beta signalling 

regulates diverse cellular processes, including cell proliferation, 

differentiation and apoptosis. Its dysfunction can result in various kinds of 

diseases, such as cancer and tissue fibrosis (20). TGF-β signalling is tightly 

regulated at different levels along the pathway. TGF-β signalling is initiated 

by the binding of TGF-β to its serine and threonine kinase receptors on the 

cell membrane. Modulation of receptor activity is a critical step for TGF-β 

signalling regulation (20). Although much effort has been made to 

understand the regulatory mechanisms of TGF-β receptor activity and 

stability, many questions still await to be addressed. Several genes such as 

TGFBR2, ACVR2 and SMAD4 that codes for receptors or other components of 

this pathway are frequently observed mutated in tumors (20).  

d) The JAK-STAT pathway: The Janus kinase/signal transducer and activator of 

transcription (JAK/STAT) signalling pathway constitutes a membrane-to-

nucleus signalling module and is regarded as one of the central 

communication hubs in the cell (21). It is involved in in cellular proliferation 

and differentiation, organ development, and immune homeostasis. More 
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than 50 cytokines and growth factors have been recognised to play a role in 

the JAK/STAT signalling pathway where JAKs mediate tyrosine 

phosphorylation of receptors, and recruit one or more STAT proteins (22). 

The dysregulation of the JAK/STAT pathway is associated with various cancers 

and autoimmune diseases. For example, JAK2 V617F mutation frequently 

occurs in myeloproliferative neoplasms (MPN) (22). 

e) The NF-kB pathway: Nuclear Factor kappa B (NF -kB) is a transcription factor 

in a pathway that affects cellular responses, such as proliferation, 

differentiation, and survival (23). Mutations affecting this pathway occur 

mainly in the B-cell cancerous lineage, but also in other subsets of cancers. 

For example, mutations in NFKBIA and NFKBIE genes are usually implicated in 

causing the pathway to malfunction leading to B-cell lymphomas (24). 

 

3. Genome maintenance: Genome maintenance is realised through cell cycle apoptosis 

pathway where DNA damage control checkpoints within the cell are applied. For 

example, the mitotic checkpoint safeguards against a mistake during cell division and 

check a full complement of chromosomes are received by daughter cells (25). These 

control checkpoints make sure that cells with mutations resulting from mistakes 

during duplication or from exposure to external factors are terminated and mitigate 

the risk of genome instability (10). Bypassing these checkpoints can lead to diseases 

like cancer. In a cancer cell, mutations found in specific genes (e.g., TP53) allow 

cancer cells to avoid these measures applied in normal circumstances where a 

damaged cell would be killed (apoptosis) (10).  

 

Further understating of the interrelation between these pathways and the functional 

role the downstream protein products play could be vital for successful development 

of targeted therapies. This knowledge could provide an explanation into why some 

drugs have limited success despite initial encouraging trials (8). For example, drugs 

that inhibit mutant BRAF kinase activity show less degree of success in colorectal 

cancers. This was found to be because expression of EGFR in this type of cancer 

counteracts the growth inhibitory effects of the BRAF inhibitors (26). 
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 The role of genetic variations in tumourogenesis  

Tumor analysis points to multi sequential phases involving several oncogenes and tumor-

suppressor genes in cancer cells (27). Multiple variants often in multiple affected genes are 

found necessary to accumulate overtime in order to allow for cancer initiation (27). 

 

1.2.1 The different categories of cancer-associated mutations 

Alterations to the DNA that encodes a gene can occur in several ways and these changes will 

lead to a change of the mRNA produced. In turn, the altered mRNA may lead to the 

production of a protein that no longer functions properly affecting cell processes and 

contributing to the ultimate transformation of the normal cell into cancerous one. These 

changes can be either loss or gain of a function. The most common type of mutations found 

in cancer cells is point mutation. Point mutation may rise during DNA replication where a 

change of one nucleotide may lead to change of the amino acid codon. The location where 

the alteration occurs on the gene is important in determining the effects on the protein. If 

the mutation occurs in the region of the gene that is responsible for coding for the protein, 

a change in the sequence of amino acids may occur and can cause a change in the function 

of the protein. The vast majority of the alterations in noncoding regions are presumed to 

have a passive effect, although changes in regulatory sequences have the potential to alter 

function. Point mutations are classified based on their impact into two categories; non-

synonymous or missense alterations are variants that alter the protein sequence. In some 

cases, these alterations affect the entire downstream protein product structure or function. 

The other type are silent or synonymous changes; here the change does not change the 

amino acid and so is unlikely to affect the function of the protein. 

 
There are other types of mutations found in tumors and shown to contribute to the 

progression of the disease; frameshift mutations are where an insertion or a deletion of a 

single base pair occurs. As the gene is translated using triplet-based codons, an insertion or 

deletion can change the reading frame, resulting in a completely different translation from 

the original. This effect makes this type of mutations among the most deleterious 

alterations that can change the protein.  
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Most solid tumors also display widespread changes in chromosomes (aneuploidy), as well as 

deletions, inversions, translocations, and other genetic abnormalities (28). In cancer, 

translocations may occur as a result of the fusion of two genes to create an oncogene (such 

as BCR-ABL in chronic myelogenous leukemia) (6). In a small number of cases, it can also 

inactivate a tumor suppressor gene by truncating it or separating it from its promoter. As 

with point mutations, the majority of translocations appear to have no phenotypic effect 

(6). Homozygous deletions often involve just one or a few genes, and the target is mainly a 

tumor suppressor gene. Amplifications contain an oncogene whose protein product is 

abnormally active simply because the tumor cell contains 10 to 100 copies of the gene per 

cell, compared with the two copies present in normal cells. Studies to date indicate that 

there are roughly 10 times fewer genes affected by chromosomal changes than by point 

mutations (6). 

 

1.2.2 Cancer driver mutations identification 

Identifying cancer related genes and the consequences of genetic variations detected in 

tumors induce at the protein level could be vital to successfully allow for tailored and 

effective therapies (29). An example of such importance is the case of Vemurafenib, an 

inhibitor of V600E-mutant BRAF protein. The identification of the effect of V600E mutation 

on the BRAF protein and the role mutant BRAF protein plays in the majority of melanomas 

allowed the successful targeting of this protein (29). In the trial, the majority of patients 

with melanoma (49 patients) showed complete or partial tumor regression emphasising the 

potential of oncogene-targeted therapy for this disease (29).  

 
Also, detecting cancer-associated genes and their mutations is key to pinpointing genetic 

aberrations implicated directly in causing cancer (drivers). Although a sole genetic change is 

almost never observed in malignant tumors, not all genetic changes found in cancer cells are 

directly responsible for tumor development (30). Many mutations are found to not be 

implicated directly in the initiation or the progression of the tumor and these mutations are 

often labelled as ‘passenger’ mutations (30). Therefore, continuous efforts in the last 3 

decades of cancer research was dedicated to identifying the genes and mutations that drive 

carcinogenesis and distinguish them from the remaining mutations seem to confer no 

selective growth advantage. 
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The individuality nature of each tumor and the vast number of different mutations 

implicated within same tumor type makes any attempt to pinpoint these aberrations very 

difficult (31). A simple approach using the mutation rate of occurrence (the number of times 

the mutation was observed in tumor samples) was tested (30). However, this approach 

proved to be ineffective due to the high number of mutations shown to have a deleterious 

impact driving the tumor progression despite their very low frequency (i.e. false negatives) 

while others with high occurrence rate were shown to be playing a passive role (false 

positives) in the tumor initiation and progression (30). 

 

Due to the heterogeneous nature of cancer, the mutation profile detected can vary from 

tumor to tumor even if they belong to the same cancer type. In some instances, the 

mutation profile of a tumor more closely matches to other tumors found in different organs 

compared to tumors from the same tissue based type (32). Mutation profiles can be 

clustered based on the locations and relevance of the mutation within a constructed gene 

network instead of the organ the tumor has originated from. These networks are based on 

coupling genes if they are reported to participate in the same biological process. This 

approach was shown to enhance the ability to predict driver genes and mutations 

implicated in cancer formation and progression (30).  Also, combining cross-tumor data 

increased the size of the data sample studied and revealed shared oncogenic pathways 

across cancer sub-types in different organs and in some cases different roles the same 

family of genes plays depending on the organ (33). 

 

The shared genomic aspects of cancer-associated mutations and the patterns of cross-

cancer type data support the initiative of exploring shared characteristics that cancer-

associated mutations exhibit. This, coupled with an understanding of their impact on the 

protein, could further our understanding of cancer and lead to better prediction of potential 

cancer-associated mutations yet to be identified.  

 

In this thesis, I aim to highlight some of these shared characteristics across point mutations 

associated with cancer. I hypothesise that any distinctive patterns, if found, could highlight 

the specific biological processes crucial in the initiation and progression of many cancer 
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types. I aim to show that some of these characteristics could prove useful to train 

computational models to recognise cancer-related point mutations and therefore be used 

to identify novel cancer-associated point mutations. 

 

1.2.2.1 Cancer genetic variations impact at the protein level  

Proteomics has the potential to directly inform and affect cancer treatment.  An example is 

the case of the inhibitors used in some new drugs and therapies of cancer (34). Inhibitors 

are molecules that stop or slow the proliferation of the cell by blocking specific proteins or 

disrupting its function. For instance, tyrosine kinase inhibitors (TKIs) block tyrosine kinase 

enzymes. These enzymes play a role in sending growth signals and obstructing them stops 

or slow cell growth (34). The MEROPS database (http://merops.sanger.ac.uk/) contains 

categorisation of inhibitors. Furthermore, mapping of protein-protein interactions can 

identify the relationship between proteins and should help us understand the full effects 

any new drug or intervention might have on linked processes in the cells (35). 

 

Understanding the functional effect of a mutation on the gene product (i.e., the protein) is 

vital to the understanding of the pathological nature of a disease such as cancer. This is 

because variations in protein isoforms, protein quantity and structure are directly 

associated with disease phenotype and cannot often be predicted from genomics alone 

(36). Figure 1.1 demonstrates the effect mutation location has on the function of the 

protein. In this case, one amino acid change caused the loss of channel selectivity of the G 

protein-activated inward rectifier potassium channel. A somatic mutation in the oncogene 

KCNJ5 results in the replacement of the amino acid Gly with amino acid Arg at position 151 

of the protein sequence. This change happens to be at the mouth of the channel altering the 

channel selectivity causing the protein to be dysfunctional. This variant is associated with 

most adrenal gland cancers cases 
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Figure 1.1. A 3D structure of G protein showing the location of mutation G151R 

 
Another example is the constitutive activation of the PI3K pathway leading to increased cell 

proliferation and survival (one of main cancer hallmarks). The catalytic subunit p110α of 

PI3K protein coded by PIK3CA gene loses the ability to interact with its controlling substrate. 

This is caused directly by the E545K mutation occurring in the helical domain of the protein. 

This mutation causes the p110α to interact with a substrate IRS1, stabilizing it, resulting in 

constitutive activation of the PI3K pathway (37). Clearly both the location of the mutation 

and also its enablement to stabilise the protein were vital in this case.  

 

Here, I expand the study of cancer point mutations impact on oncoprotein stability to other 

genes especially in cancer-associated genes that have been found frequently mutated in 

tumor samples. We also determine patterns where specific amino acid residues and 

replacements are enriched within cancer-associated replacements. 

 

Changes caused by variants alerting specific biological functions seem to occur cross cancer 

types. For example, the IDH1 gene with a single substitution, R132H, causes the protein 

encoded by this gene to alter its activity (38). The affinity of the mutated enzyme to bind is 

decreased substantially by this substitution. This alteration has been shown to promote 

gliomas and acute myeloid leukaemia (AML) cancers (38). 

 

We link some of the enriched amino acid residue found in cancer-associated replacements 

to specific functions and describe the effects that could result from replacing certain amino 

acid with another.  
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The prediction of these replacements could potentially be significantly improved by studying 

the effect on protein function and properties. Each amino acid has distinct physico-chemical 

properties such that a replacement of an amino acid with another may lead to change in 

protein conformation and its function to different degrees. This would reveal the link 

between the genetic variations detected and the change in proteins functions leading to 

tumor development. A change of protein function can be manifested in multiple ways, for 

example, a change in how it binds with a given enzyme or in the amount of free energy of 

folding. The challenge here is to establish a way of scoring the functional change impact 

caused by each mutation. 

 

For example, phosphorylation-related single nucleotide variants (pSNVs) that appear in 

most tumors show a greater functional effect than other protein-coding mutations (39). The 

authors developed a computational method (named ActiveDrive) and used it to identify 

functional sites in proteins (signalling sites, protein domains, regulatory motifs) that are 

specifically and significantly mutated in cancer genomes. It showed the ability to predict a 

subset of mutations (29%) from about 150 gene candidates with high pSNV recurrence due 

to their involvement in removing phosphorylation or changing kinase target sites to rewire 

signalling pathways. Thus, these mutations are predicted to be driver mutations with high 

confidence (39). The association with certain protein domains was also investigated, 

highlighting location persistent mutations. The findings showed that those replacements 

found to be enriched in specific regions or protein domains. 140 driver mutations have been 

identified and validated so far by studying the sustained locations that these replacements 

occur at (6). 

 

Although several methods were developed to predict cancer-related replacements, we still 

do not have a model that can evaluate any amino acid replacement. We hypothesise that 

this could be reached if shared characteristics linked to the impact highly enriched 

replacements have on oncoprotein are used. Prime candidates are the physico-chemical 

properties of amino acids. 

These properties characterise all amino acid residues and the change can be easily 

measured in related replacements. 
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In this thesis, I focus on understanding the change the cancer enriched single amino acid 

replacements introduce at the protein level. I investigated whether the measured change in 

physico-chemical properties alongside their position in the protein sequence could be used 

by machine learning technique to predict cancer-associated amino acid replacements.  

 

1.2.2.2 Notable protein features 
 

There are protein functions where a particular amino acid or amino acid group plays a vital 

role. These are of particular interest to study when identifying certain amino acids or amino 

acid groups to be highly enriched in cancer associated replacements. Below we list some of 

these features: 

 

Stacking Functions: The biological function of proteins is often linked to interactions with 

their ligands and substrates. Knowledge of the molecular mechanisms of protein-ligand 

interactions, particularly in the spatial structure of the protein-ligand complex, can help 

understand the functional properties of proteins and their role in biochemical pathways in 

the living cell (40). Among all the various types of interactions in biomolecular complexes 

(such as hydrogen bonds, salt bridges, etc.), the stacking of aromatic substances plays a 

notable role in achieving successful binding to protein targets and many nucleoproteins use 

aromatic stacking to recognize binding site on DNA or RNA (40). Aromatic stacking is 

involved in the process of mismatch repair, strand separation, degradation and RNA cap 

binding (41). Aromatic stacking can be defined as interactions rising from the attractive 

force between the π-electron clouds in the aromatic groups where the stacking is attained 

between aromatic residues and the bases in the nucleotides (41) .  

 

Disulphide Bonds: Disulphide bonds (also known as disulphide bridges) are type of covalent 

bonds (often between two cysteine amino acids) linking different components of a protein. 

They are known to stabilize the protein structure helping proteins fold and remain in their 

tertiary and quaternary shape (42). These bonds also play a key role in proteins and 

enzymes activities, in particular, stimulating cell proliferation through receptors regulating 

cellular growth (43). 
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Oxidative stress:  refers to elevated intracellular levels of reactive oxygen generation rate. 

Oxidative stress is known to cause damage to lipids, proteins, and DNA (44). Oxidative 

protein modifications can cause partial unfolding of the protein thus, oxidation is shown to 

be a cause of altered protein functions (44). Both the unfolding and the direct oxidation of 

functional amino-acid side chains may lead to an impaired protein function. Among all the 

amino acids, Cysteine (Cys) is more prone to oxidation because of its high nucleophilic 

property (45) .Oxidative stress has been implicated in a number of human diseases (46-49) 

and cancer cells are known to produce elevated reactive oxygen generation rate (50). 

 

 Cancer-associated genes 

According to Catalogue of Somatic Mutations database (COSMIC), approximately 3.5% of 

the 20 thousands human protein coding genes are identified to have mutations that drive 

the onset of the cancer, i.e. they are cancer driver genes (51). The COSMIC Cancer Gene 

Census (CGC) is an expert-curated list of the cancer-associated genes used by cancer 

researchers worldwide. The CGC (version 86, August 2018) listed 719 cancer-driving genes. 

More genes are being added to the CGC in every new release by verified contributions from 

researchers in this field.  A gene is classified as an oncogene in CGC based on evidence that 

the activity of the gene product is related to cancer hallmarks and that the variants resulting 

in gain of function (loss of function for tumor suppressor genes) are observed in tumor 

samples. In the CGC (version 86, August 2018) the list of genes was divided into tiers where 

a second tier of genes (145 genes) is extracted from studies that show supportive but less 

detailed indications of a role in cancer. The extensive review and level of evidence required 

for adding a gene to CGC makes the CGC database one of the most trusted and accurate lists 

depicting genes related to cancer and is used as the prime source for both the genes and 

mutations in our study. 

 

Cancer driver genes are often implicated in multiple cancer-related functions contributing to 

multiple key cancer hallmarks, making the functional annotation of each of these genes 

varied and complex (51). In turn, different mutations reported for each gene could affect 

different cellular processes related to cancer hallmarks. Moreover, not all cancer genes are 
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simply either oncogenes or tumor suppressor genes (TSGs). The genes ATR and RB1 were 

shown to be involved in certain circumstances in tumor development in addition to their 

tumor suppressing function (51). This means that a simple identification of gene based on a 

single function or type of mutation found would not yield always an accurate result.  

 

If we are able to identify genes related to cancer through a combination of features and 

computational methods, we could potentially provide an opportunity to enrich CGC with 

more candidates of genes that cancer researchers would consider in their work (possibly in 

a separate tier). Identifying cancer-associated genes using a machine learning based 

framework would expedite the rate at which cancer-related genes are being identified. Such 

a framework could also help prioritise targets for therapies and drug development without 

being limited by the lengthy and complex process of tumor samples acquiring and 

sequencing. Several studies have attempted to build models to identify human disease-

related genes. Computational models built using sets of evolutionary and protein network 

based properties showed great potential and success in predicting disease genes in general 

(52, 53). We apply a similar approach that combine evolutionary and protein network-based 

properties to predict cancer related genes. 

 

1.3.1 Important Oncogenes and Tumor Suppressor genes 

There are hundreds of genes that are implicated in tumor initiation and progression. Here 

we provide a brief description for some key cancer associated genes. 

 

PTEN: This gene codes for the phosphatase tumor suppressor protein PTEN (phosphatase 

and tensin homologue) that plays an important role in the PI3K and MAPK pathways (see 

section 1.1) and frequently altered in tumors (54). PTEN can bind to and activate or 

inactivate several nuclear proteins. Through these effects PTEN activates DNA repair and 

inhibits proliferation and thus acts as an important tumor suppressor protein (54). 

 

BRAF: This gene encodes a protein belonging to the RAF family of serine/threonine protein 

kinases. This protein enables several functions, including protein binding activity; protein 

kinase activity; and scaffold protein binding activity. This protein plays a role in regulating 
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the MAP kinase/ERK signalling pathway, which affects cell division, differentiation, and 

secretion (see section 1.1). Mutations in this gene, most commonly the V600E mutation, are 

the most frequent cancer-causing mutations in melanoma, and have been identified in 

various other cancers as well (29, 55). 

 

P53: This gene encodes a tumor suppressor protein comprising transcriptional activation 

and DNA binding domains. The encoded protein is involved in several processes, including 

intracellular signal transduction and regulation of apoptosis process, thus playing a vital role 

in inducing cell cycle arrest, apoptosis and DNA repair. Mutations in this gene are associated 

with a variety of human cancers (11). 

 

KRAS: a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a 

protein that is a member of the small GTPase superfamily (56). The protein product of this 

gene is found in cytoplasm and plasma membrane of the cell and enables protein binding 

activity (see section 1.1). This gene is involved in regulation of cell population proliferation 

and regulation of metabolic process (56). A single amino acid substitution is responsible for 

an activating mutation. The mutated protein is considered a biomarker for carcinoma and is 

implicated in several diseases, including gastrointestinal cancer, glioma, and lung cancer 

(57). 

 
JAK2: This gene encodes a non-receptor tyrosine kinase that plays a central role in growth 

factor signalling and enables several functions, including SH2 domain binding activity (58). 

Mutations in this gene are associated with numerous inflammatory diseases and 

malignancies. Disregulation of the JAK2/STAT3 signalling pathways produces increased 

cellular proliferation (see section 1.1). A nonsynonymous mutation in the pseudo kinase 

domain of this gene disrupts the domains inhibitory effect and results in constitutive 

tyrosine phosphorylation activity (58). This gene is implicated in several diseases, including 

lung non-small cell carcinoma and gastrointestinal cancer. 

 

EGFR: The protein encoded by this gene is a transmembrane glycoprotein that is a member 

of the protein kinase superfamily (59). This protein is a receptor for members of the 

epidermal growth factor family. EGFR is a cell surface protein that binds to epidermal 
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growth factor, thus inducing receptor dimerization and tyrosine autophosphorylation 

leading to cell proliferation (59). Mutations in this gene are associated with several diseases, 

including colorectal cancer, pancreatic cancer, and prostate cancer (26, 34, 59).   

 

1.3.2 Prediction of cancer driver genes 

Properties used in computational models to predict cancer driver genes can be grouped into 

three main categories: mutational frequency, network-based (specially protein–protein 

interaction) and function-based groups (60). The frequency-based approach identifies 

candidate driver genes based on the assumption that their mutation rates are higher than 

the background mutation rate (BMR) found across tumor samples. This assumption is not 

accurate for all cancer driver genes; some of the verified genes implicated in cancer 

formation have a low mutation rate (61). Additionally, precise background mutation 

frequency evaluation is not always possible. As for the function-based approach, not all 

functions of all genes are known to same level of detail. Also, the lack of a suitable numeric 

basis, which is often necessary for accurate computational models, hinders this approach 

further. This problem was evident when reviewing methods developed to predict cancer 

driver genes to date. Network-based algorithms preform the best overall on average (60) 

and the HotNet2 (62) method using protein–protein interaction network properties (PPI) 

exhibited the best overall performance in this category. Using the ROC curve, the accuracy 

of prediction can be evaluated through AUC (area under the curve) with the larger the area 

under the curve, the more accurate the model is. An AUC of 0.5 suggests that predictions 

based on this model are no better than a random guess and the closer AUC to 1.0 the 

stronger the model is. HotNet2 was reported to achieve AUC = 0.81 and the average AUC 

achieved by all other Network-based algorithms were 0.77. A notable exception to the low 

performance of frequency-based methods was the driverMaps algorithm (63). Despite being 

a frequency based algorithm, driverMaps AUC was reported to reach 0.94 (still sensitivity 

was much higher in HotNet2 compared to driverMaps) while the average AUC for the rest of 

frequency based methods was lower than 0.55. 

 
Method Approach AUC 
driverMaps Frequency based 0.94 
HotNet2 Network based 0.81 
MutPanning Function based 0.62 
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Table 1.1 The top cancer driver genes prediction methods in each approach 

 
Other factors could be influencing the model’s performance in addition to the data used to 

train the models. Sample size and machine learning techniques would have an impact and 

should be evaluated. However, reviewing the change in sample size on the performance for 

available methods showed little impact (60). 

 

Despite numerous attempts, we still do not have one central model that can be reliably 

used to predict cancer-related genes (60). More than 12 different models were developed 

using different approaches with on average only low to medium level of accuracy attained 

(60). The poor performance could be attributed to the smaller data sample available in the 

past. However, for more recent attempts this cannot be the case and it is likely due to the 

actual data used to train the models. Two notable exceptions where the prediction models 

showed excellent performance (Table 1.1) were driverMaps and HotNet2. Both model 

reported achieving AUC > 0.8 (60). Part of the challenge is then to identify the distinctive 

features of cancer-related genes required to achieve this goal. Properties associated with 

PPI networks are the most successful to date (60). 

 

In this thesis, I contribute to these on-going efforts by illustrating the influence of some 

genes properties in predicting cancer association. I show that identifying properties that 

have a distinctive characteristic in cancer-associated genes could result in superior model 

performance.   

 

 Cancer as an evolutionary process 

As Theodosius Dobzhansky put it: "Nothing in biology makes sense except in the light of 

evolution” and evolution can indeed answer many questions about cancer (64) such as: why 

do humans get cancer? why not at higher or lower rate? Somatic cell selection, the 

evolution of tumor suppressing genes and the limitations imposed on these genes are all 

evolutionary concepts that can shed more light and help answering the above questions 

(64). The interest in the evolutionary mechanism of cancer has increased since it became 

increasingly clearer that the approach of trying to find a global genetic variation pattern for 
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each cancer type is not the answer as it was thought it would be when only few common 

mutations were known to cause cancer (65). 

 

Cancer has the characteristics of typical evolutionary processes (65). Most cancers are 

thought to arise from a single mutant precursor cell. As that cell divides, the resulting 

'daughter' cells may acquire different mutations over time and exhibit different behaviours 

from the originals cell and from their sister cells. Those cells that gain an advantage in 

division or resistance to cell death will tend to take over the population and become 

eventually cancerous cells. For instance, genetic variation can influence differential fitness 

(survival and growth) of cancer cells which are known in turn for their clonal expansion and 

their competitiveness for space and nutrition resources. Thus, understanding cell evolution 

and how it underlines cancer’s initiation and progression provides great prospect for 

studying cancer (65).  Concepts that are currently the main focus of studying cancer in the 

context of evolution include the evolving of malignant cells via ‘somatic cell selection’, the 

influence different ecological factors within the cell microenvironment have on the growth 

and apoptosis of these cells and the tumor supressing mechanism, which is found to be the 

result of early evolution dating back to the emergence of the multicellular organisms. Tumor 

suppression in human has limits and differences compared to other species indicating the 

existence of different trade off model across species (64). 

 

Another link to evolution is the association of some cancer genes and evolutionary events. 

For example, in humans the whole genome is thought to have been duplicated in two 

events some 500 MY ago (66). The association with genes retained from Whole Genome 

Duplication (WGD) events suggest that evolution was strong factor in contributing towards 

the emergence of specific class of cancers (66). 

 

1.4.1 Somatic Cell Selection 

The heterogeneity of tumors forms the base on which somatic selection works. Despite not 

all the mutations found in tumors being critical for the progression of the tumor, the 

number of mutations is important and is linked to the progression of cancer and may even 

influence the consequences of treatments (64). The faster progression of cancer and higher 
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aggressiveness have been linked to heterogeneity (67). Also, a high mutation rate is a strong 

indication of possible early relapses following treatments. Chemotherapy not only allows 

resistant cells to be prevalent but also provides space for them to form colonies (68). This 

understanding might allow for customization of treatment based on the rate of 

heterogeneity observed and possibly lead to higher survival rate. 

 

1.4.2 Ecology theory 

The microenvironment of a cell may influence tumor suppression or progression (69). An 

association was reported between cancer risk and the behavioural changes observed in 

neighbouring cells. These cells were showed to play a role in providing cancer cells with 

growth signals and fitness enhancing factors (69). Understanding how to control the 

ecological factors surrounding tumor could help greatly in treating and preventing cancer. 

The influence of the microenvironment could be controlled to also slow or stop malignant 

cells progression by inhibiting the growth (70). 

 

1.4.3 Tumor Suppression    

Evolution not only helps explain how cancer forms but provides the means to understand 

how the organism evolved to protect itself. Tumor suppression could have evolved as a co-

opting a mechanism where termination of a replicated cell is necessary due to inefficient in 

environment resources (64). 

 

There are several processes identified by researchers that play a role in preventing cancer 

formation. Processes such as DNA repair, cell cycle checkpoint, apoptosis in addition to 

particular tissues architectures that can control proliferation (64). Also, there are further 

mechanisms known to halt cancer progression to the metastatic phase such as cell cycle 

arrest, cell adhesion, asymmetric cell division and apoptosis. All these mechanisms are the 

products of evolutionary processes and the selective advantage delivered to the organism 

(64). 

 

Cancer is not always supressed and there are several theories that explain this from the 

evolutionary perspective. One theory argues that the constraints on selection such as path-



 32 

dependence in conserved cell cycles might contribute to vulnerability to cancer (64). 

Another theory highlights that cancer cells are derived from normal cells, which limit the 

immune system effectiveness and increase cancer susceptibility. For example, maintaining 

cell division capabilities such as tissue repair, which involves the abilities to proliferate and 

rapid generation of blood vessels is crucial for most cells (71). Other examples such as the 

necessity for cells to be able to invade tissues during gastrulation, and the fast growth rate 

at the age of sexual maturation could be linked to elevated risk of early mutation linked to 

cancer formation later in life (72). 

 

 

1.4.4 The impact of cancer evolutionary characteristics on research and therapies 

The study of evolutionary aspects of cancer biology is influencing research into drug 

discovery and in particular, the acquired therapeutic resistance observed in many cancer 

treatments (67). Understanding cancer formation and progression in the context of 

evolution could impact treatment, management, and prevention of cancer and further our 

understanding of this disease (65). Moreover, these evolutionary aspects may help in the 

identification of genes implicated in cancer. However, using evolutionary related properties 

to train machine learning model predicting cancer genes is not yet fully explored (60).   

 

In this thesis, I combine various properties of cancer genes including evolutionary related 

measures to train a machine-learning model to identify cancer related genes. We aim to use 

measures indicating selection pressure in relation to genetic variants. Also, I highlight any 

correlation with evolutionary events such as whole genome duplication. We hypothesise 

that these measures would show important impacts on predicting genes involved in cancer 

initiation and progression. 

 

 Computational tools and Cancer research 

Bioinformatics in cancer research is playing a significant role in advancing our 

understanding.  This role is expected to grow as a multitude of bioinformatics tools are 

developed and used for this purpose by researchers (73). The databases and computational 

tools available to support the efforts in analysing the constantly increasing large genomic 
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data sets are providing advantageous contributions. For instance, it is possible to perform 

predictive analysis and build machine-learning models attaining some key discoveries such 

as pattern finding, clustering and interpretation of research results. The recent acceleration 

in acquiring genome data and the high-throughput technologies available to store and share 

this data will drive in turn an acceleration of collaboration between researchers worldwide 

and that in turn is expected to have a great impact on advancing cancer research (74). An 

example of this is the aforementioned COSMIC database that provides researchers access to 

manually curated and verified results implicating genes and mutations in cancer initiation 

and progression (51). Furthermore, bioinformatics tools could facilitate and contribute 

effectively to challenges faced by researchers allowing precise evaluation of the margin of 

errors in the results and better analysis of experiments outcomes (74). 

 

Machine learning techniques are showing great potential in supporting cancer research 

enabling scientists to not only predict the most likely targets to investigate but also to 

understand the influence of each feature that is used to train the model on that prediction. 

Various open-source algorithms can be used to build classification and regression type 

models, most of which are accessible and easy to implement.  Several bioinformatic tools 

allow the building of several models using different techniques and configurations that can 

then be compared. Performance metrics and validation methods are available to ensure 

that the models are reliable, and their performance would be sustained for new data as it is 

acquired (60).  Moreover, machine-learning methods show more flexibility than traditional 

statistical methods because they rely on fewer statistical assumptions. For instance, 

ordinary least squares regression requires that the Gauss Markov assumptions (list of 

conditions the modelled data should adhere to) be supported, to ensure that the model is 

unbiased and efficient. Traditional statistical regression techniques rely on formal 

hypothesis testing for variable significance and feature selection (e.g., t-test, p-value, 

standard error). These statistical tests tend to have assumptions about distribution shape 

and independence that may not be supported by the data. Machine learning methods, on 

the other hand, are more flexible in defining the model structure, which typically results in 

better model performance (75). Machine learning includes methods that do not need to 

have formal hypothesis testing nor distributional assumptions to demonstrate model 

validity. 
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In this thesis, I perform a parallel heuristic search for the best model or ensemble of models 

from a repository of open-source models of different types (e.g., Random Forests, Neural 

Networks, etc) ensuring that the selected model is not arbitrary. 

 

Machine-learning methods are not free of challenges. Several pitfalls should be avoided 

when using these techniques in particular within genomic-based research due to the 

complexity and interconnectivity of biological data (76). Several guards should be 

implemented to lessen the chance of making one of these mistakes. One of the main 

important issues is the possibility of ‘leakage’ where a feature used in the training data 

would not be fully formed until the outcome has occurred. For instance, predicting whether 

the gene is cancer-associated using the number of tumor samples as one of the training 

data inputs may cause an information leak if -by definition- the gene found mutated in 

tumor sample is a cancer-associated gene. This could create a false level of accuracy and 

such correlation should be detected and eliminated before the model is built. Another pitfall 

is the unaccounted dependency within the examples, creating false enhanced performance. 

For instance, predicting protein functions from a protein interaction database that links two 

proteins if they share a functional annotation. Another common problem is the existence of 

confounder variables used to train the model, creating a false link between some of the 

features and the outcome. Understanding the data used to build the model is vital to avoid 

such problems. Using the model prediction in different conditions to the ones the model 

was trained or tested under is also a common mistake (76). Here, we ensure that several 

guardrails are implemented when we create our models. I implement a leakage detection 

method and use cross fold validation minimising the chance of model over fitting. Also, 

separate testing dataset extracted under the same conditions with similar distribution to 

the training and validation sets is used ensuring appropriate evaluation of the model 

performance. Only models that have the same level of performance across training, 

validation and testing were selected.  

 

 Thesis Outline 

Many mutations have been collated and described in COSMIC to be cancer related. The data 

showed that different variants in different genes and in some occasions even within the 
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same gene (51) may have distinct effects on oncogenesis. Observations of this nature raise 

several questions:  are there any shared characteristics between the cancer-associated 

mutations? Can certain amino acid residues show higher than expected enrichment? Can 

the affinity of cancer-associated genes to certain biological processes such as ‘binding’ 

explain these enrichments? Are there certain properties that can be used to predict cancer-

associated genes accurately? Could a machine-learning model be implemented to discover 

not just for genes but also in mutations the degree certain characteristics play a role in 

carcinogenesis.  Despite the importance of manual curation to describe how these 

alterations affect the physiological processes that drive cancer, bioinformatic approaches 

are crucial to support the analysis of vast amount of information available to date. Utilising 

the CGC, COSMIC data in silico methods may prove to be the best way to discover the 

genetic fingerprints across cancer, discover new targets as well as to using these patterns in 

guiding future therapeutic research. 

 

The success of prior studies in predicting human genetic disease-associated genes using 

genes’ properties prompted us to replicate the approach when identifying cancer-associated 

genes candidates. We investigate the distinct characteristics that cancer-associated genes 

might exhibit. We then determine whether if these characteristics could be used to predict 

further potential gene candidates to be directly implicated in cancer. We also investigate 

whether certain amino acid residues and replacements are enriched in cancer and whether 

a change in the physico-chemical properties caused by the replacements are indicative of 

their cancer-associated involvement.    

 

As understanding the biological foundations of cancer is crucial for development of new 

diagnostic and therapeutic measures, knowledge of why certain mutations cause 

dysfunction of the proteins and how this can drive the functional hallmarks of cancer is 

essential. Identifying the distinctive characteristics of cancer-associated mutations and their 

genes using the vast amount of data already collated would allow us to further understand 

the diseases and use machine learning techniques to identify cancer-associated genes and 

mutations implicated in cancer accurately and in practical-timed manner. Cancer is a 

complex disease, and it cannot be fully described by the mutations and genes driving the 

tumor formation as other factors such as the microenvironment play a role in the 
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development of tumors. However, the cancer-associated genes and their related mutations 

remain the primary causative factors in cancer initiation and progression and their 

identification remains a key and not yet fully resolved challenge. 

 

The thesis is organised into five chapters. Outlines of these chapters are given below: 

 

Chapter 1: introduces the background of this research, discuss different prior studies and 

provide an overview of this research. 

 

Chapter 2: Here I study the impact variants in most mutated cancer associated genes have 

on the stability of the protein. This is done using the free folding energy and the comparison 

between the half-life of the protein in wild type and the constraint on number of variants in 

the gene. It shows the distinct impact (mainly neutral or stabilizing) these variants have on 

stability compared to non-cancer deleterious mutations.  

 

Chapter 3: I compare the enrichment of amino acids in cancer-associated replacements to 

the expected frequency based on the genetic code, to Blosum62 (77) and to other missense 

non-cancer mutations. It also links certain biological processes known to be cancer-related 

to these found enriched replacement residues (Cys and the aromatic amino acid group). 

Finally, it analyses the impact of these replacement on physic-chemical properties of the 

residues highlighting that hydrophobicity related properties and polarity are most affected. 

These changes were used to train a machine-learning model that can identify cancer-

associated replacements. 

 

Chapter 4: I identify the association between cancer genes and essentiality of the gene. It 

then shows how using essentiality related properties combined with protein-protein 

interaction network and evolutionary properties can be used to train a machine-learning 

model with high accuracy that is able to predict cancer-associated genes. 

 

Chapter 5: This chapter aims to bring together all the results from previous chapters and 

discuss their implications and how they can be utilised in the cancer research field, 

highlighting any limitation.  
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2. Chapter 2:  Cancer-associated missense point mutations exhibit 

dissimilar impact on protein stability to other deleterious mutations 

* Statement of Authorship 
 
All the work presented in this chapter including analysis and method development were carried out by Amro Safadi with supervision of his 
supervisors prof. Simon C. Lovell. and prof. Andrew J. Doig. Both supervisors approved the figures and final wording of the manuscript 
providing corrections when needed. 
 

 Introduction 

Nonsynonymous single nucleotide polymorphisms (SNPs) cause an alteration to amino acids 

within the protein sequence potentially leading to important changes in protein properties 

such as structure, solubility, and stability. These changes could result in functional changes 

(1). Stability is an important property for biological research. Understanding the stability of 

the protein and factors that might impact it is vital in evaluating protein functional changes. 

For instance, protein destabilization caused by deleterious mutations is known to be a 

primary factor in many Mendelian diseases (1). 

 

Stability indicates the survival of protein over time and thus can be analysed by studying 

properties such as the change in the protein energy of folding and protein half-life.  Any 

mutation that adds energy to the folded state is likely to destabilize the structure and make 

the protein more likely to be in its unfolded form, this was found to be a feature in some 

diseases (2). If no or very small change in stability is produced by the mutant, then the 

mutation is neutral. If the change produced by the mutation was negative, then the 

mutation is considered to have stabilising effect on the protein.  The half-life is a prediction 

of the time it takes for half of the amount of protein in a cell to disappear after its synthesis. 

It is used alongside the change in folding energy as an indication of the stability of the 

protein (3). 

 

In some cases, if a destabilising mutation occurs, the protein may compensate and stay in its 

optimal stability zone by “recruiting” other mutations (4). Both types of mutations, 

functional and compensatory, are more likely to be fixed in the genome than neutral 
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mutations. This is known as cryptic epistasis in molecular evolution (5). It means that several 

mutations may need to occur to achieve a particular effect (e.g., positive effect in the case 

of functional adaptation or negative in the case of disease). 

 

A study of 20 proteins affected by deleterious mutations in different diseases found that 18 

were shown to be destabilized by diseased associated amino acid replacements (6). These 

findings pointed to destabilization of protein structure to be key pathogenicity factor caused 

by missense mutations, even in cases where reduced protein stability was not a trait 

associated with the nature of the disease itself. However, the impact caused by cancer 

mutations on the corresponding proteins and in particular their stability is still not yet fully 

understood. Understanding the impact of cancer nonsynonymous SNPs on protein stability 

could further inform us about the mechanisms involved in tumor initiation and progression.  

 

Here we analysed the impact missense point mutations found in oncogenes have on protein 

stability and highlighted how the effects differ from other non-cancer missense mutations. 

The sample of oncogenes analysed were selected due to their relative importance as 

reported in literature and the number of mutations reported per oncogene across all cancer 

types. We also investigated whether epistasis in the same gene in relation to stability by 

missense point mutations is likely in oncogenes. 

 

 Materials and Methods 
 
We obtained the curated list of mutations reported to be involved in cancer formation and 

progression. These were downloaded from COSMIC (7) release v77 

(http://cancer.sanger.ac.uk/census). We used the UNIPROT (https://www.uniprot.org/) 

database as the source for all protein sequences FASTA files analysed and corresponding 

proteins ‘solved’ 3D structures. Files used for stability calculations and the 3D structures of 

studied proteins were extracted from the Protein Data Bank (PDB) 

(http://www.rcsb.org/pdb). 

The software Tableau (http://www.tableau.com) was used for the purpose of the 

integration and the analysis of the data. The Tableau software provides several features that 

allow data to be imported and integrated from multiple data sources and provides 
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advantages in terms of automatic data updates. Also, it facilitates the visualisation and 

configuration of data in a simple way. 

 

Large-scale reference data sets of human genetic variation are required to act as the control 

group and background for comparison against the cancer mutations in this project. For that 

we utilised the Exome Aggregation Consortium (ExAC), which is a collation of exome 

sequencing data from a wide variety of large-scale sequencing projects, and population 

genetic studies that spans 60,706 unrelated individuals (8).  

 

Proteins are generally found in two main states: folded (functional) and unfolded. Protein 

folding is a process by which proteins are folded into their biochemically functional three-

dimensional structure. Unfolded and folded state, both can be depicted by their Gibbs free 

energy (G). To transfer from one state to the other, there needs to be a transfer of energy.  

The free energy of folding (∆G) is defined as difference of the Gibbs free energies between 

the denatured and the native state with the unfolded being of higher energy than the folded 

state. Comparing the folding rate of wild type protein and the mutant form gives an 

indication of the stability. The difference between ∆G for the wild type and ∆G for the 

mutated protein is ΔΔG (kcal mol¯1). 

ΔΔG = ΔG (wt) – ΔG (mutant) 

To calculate the stability of the protein we used FoldX software (9). FoldX calculates both ΔG 

(Gibbs free energy) of the wild type structure and the ΔΔG for the mutated variant of the 

protein. However, this is done one mutation at a time. We recognised the need to speed 

and partially automate the process of calculating the stability (folding energy) for the 

proteins with multiple variants using the FoldX software. We coded a program (calling it 

SpeedUp) that automatically runs FoldX on a provided list of mutations (rather than 

manually run it on each individual mutation at a time). This minimized the manual effort 

needed. The program first converts the missense mutations file (exported from ExAC) for 

each gene into format recognised by FoldX and then extract the chain id and first and last 

position on the amino acid sequence in the selected PDB file. Finally, the FoldX stability 

calculation is performed for each mutation on the list. The program does not calculate the 

stability for any mutation at positions outside the range covered by the PDB file and/or 
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when the ‘mutated to’ amino acid does not match the amino acid at that specific position 

on the file. 

 

In general, stability effect can be interpreted using ΔΔG as: 

If ΔΔG >1, then the mutation in question is of a destabilising effect. 

If ΔΔG <-1, then the mutation in question is of a stabilising effect. 

If 1> ΔΔG >-1, then the mutation in question is neutral. 

The threshold for the stabilising effect might differ from protein to protein but a mutation is 

considered to have a significant destabilising effect if ΔΔG is >1 kcal/mol (9).  

 

Unlike our ability to calculate the difference in the energy of folding between the wild and 

mutated type of the protein, half-life of the mutated proteins cannot be always calculated 

using computational methods. Instead, we carried out the comparison between the half-life 

of the wild-type protein (in vivo) and the ExAC Z constraint score. The ExAC Z constraint is a 

score that shows the deviation of observed number of variants from the expected number 

of variants. High Z scores indicate increased constraint (intolerance to variation) that is 

when the gene had fewer variants than expected (8). This comparison would indicate 

whether intolerance to variations were associated with shorter half-life (destabilisation 

effect).  

 

To calculate the half-life of the protein wild type we used the tool ProtParam (10) 

(http://web.expasy.org/protparam/protparam-doc.html).  

ProtParam allows the estimation of half-life of protein and relies on the "N-end rule", which 

relates the half-life of a protein to the identity of its N-terminal residue (the first part of the 

protein that exits the ribosome during protein biosynthesis). Experiments showed that the 

identity of the N-terminal residue of a protein plays an important role in determining its 

stability in vivo (3). 

 

We integrated the data sources (UNIPROT, PDB, COSMIC, etc.) used in our work to obtain 

cancer mutations, protein sequences and protein structures data in Tableau to allow the 

analysis to be carried out (figure 2.1). The data was extracted from UNIPROT and PDB Using 
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the URL query function. Only proteins with resolutions <=3.0 Å was obtained ensuring 

acceptable accuracy.  

 

 
Figure 2.1. The outline of the data sources and methods used in this chapter 

 

 Results and Discussion 

Due to the large number of missense SNPs and genes associated with cancer, we focused 

the analysis on the highly mutated genes. Tableau allowed us the creation of different views 

of the data based on number of samples, mutation types, etc. Therefore, we used these 

views to identify these frequently mutated genes. We first produced a view showing the 

most frequently mutated genes found in tumor samples as per COSMIC Sep-2016.  In figure 

2.2, mutations found in over 500 samples are coloured blue. Each mutation is labelled using 

the gene name, type of mutation and number of samples that this mutation was found in. 

The data showed specific cancer-associated genes to have significantly large number of 

mutations in various tumor samples. However, this could be driven by research focus on 

certain genes and certain cancer types. The results do not necessary reflect the unique 

number of cancer mutations found per gene.  
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Figure 2.2 Most frequently mutated genes found in tumor samples as per COSMIC v77 

 
Yet, this result identified the top frequently mutated genes found in tumors to target in our 

work. Using the oncogenes with available corresponding protein solved 3D structures (PDB 

– Sep 2016), we identified the following oncogenes to be suitable candidates for our study: 

PIK3CA, IDH1, EGFR, KRAS, BRAF and JAK2. We use this group of oncogenes and their 

reported missense mutations in ExAC/COSMIC to analyse the impact on protein stability. 

 

2.3.1 The impact on proteins stability (energy of folding) 

In the first phase, we established ΔG (the free energy of folding for each protein). For each 

entry on our frequently mutated genes list we look up the corresponding protein 

identification code in UNIPROT then we generated the FASTA sequence file while noting 

protein function and variants reported in UNIPROT. Using the FASTA file or UNIPROT id, we 

find the best PDB match (where organism is human sapiens, Resolution is equal or better 

than 3 Å and E value is less than 0. Finally, we downloaded the corresponding PDB file and 

ran the Foldx in repairPDB mode to find ΔG. The second stage was to calculate ΔΔG (the 

difference between the free energy of folding for each protein in wild and mutated state), 

we obtained all missense mutations reported in ExAC in addition to the cancer mutations 

reported in COSMIC for that specific gene and ran our program ‘SpeedUP’ calculating ΔΔG 

for all variants of a gene for that specific protein.  
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The distribution of ΔΔG found across all missense mutations for the oncogene PIK3CA is 

illustrated in figure 2.3. The x-axis represents the all missense mutations for this gene while 

the y-axis shows the ΔΔG for these mutations. Destabilising mutations (with positive ΔΔG 

values) are found to left end of the plot while the mutations with stabilising effect (negative 

ΔΔG values) are found to toward the right. The missense mutations implicated in cancer 

were highlighted and indicated by arrows. We noticed that the distribution is skewed 

towards the positive ΔΔG values indicating that majority of missense mutations had 

destabilising effect. The three cancer-related mutations reported in COSMISC for PIK3CA 

gene found to have a positive ΔΔG.  

 

 
Figure 2.3 ΔΔG results for the PIK3CA gene’ missense mutations indicating the positions of cancer 
variants. 

 

This result concurs with expected destabilising effect of deleterious mutations on the 

protein (4). However, one of the cancer mutations (E542K) had ΔΔG = 0.1 value indicating 

neutral effect for that specific variant. 

 
For the gene IDH1, again the values distribution was skewed towards positive ΔΔG 

indicating that most missense variants reported are of a destabilising effect. However, the 

cancer-associated mutation R132H showed neutral impact (ΔΔG = -0.18) on the stability of 

the protein (figure 2.4). 
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Figure 2.4 ΔΔG results for the IDH1 gene’ missense mutations indicating the position of cancer 
variant. 

 

KRAS is one of most studied cancer genes and has several mutations reported that play an 

important role in the initiation and progression of cancer (11). Six of KRAS known cancer 

mutations were analysed here. To calculate ΔΔG for all six cancer mutations in KRAS genes, 

two different PDB files had to be used (4LPK and 4QL3) encompassing the full protein 

sequence. Only one mutation (G13D) showed positive ΔΔG > 1 indicating destabilising effect 

on the protein and one mutation (G12R) had ΔΔG < -1 signifying stabilising effect while the 

other 4 mutations found to have neutral effect (figure 2.5, figure 2.6).  

 

 
Figure 2.5 ΔΔG results (PDB: 4LPK) for the KRAS gene’ missense mutations indicating the positions of 
cancer variants.  
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Figure 2.6 ΔΔG results (PDB: 4QL3) for the KRAS gene’ missense mutations indicating the position of 
cancer variant. 

 
In the case of the BRAF gene, there was one cancer mutation analysed (V600E) and found to 

have ΔΔG = 0.74 indicating neutral effect (figure 2.7).  

 

 
Figure 2.7 ΔΔG results for the BRAF gene’ missense mutations indicating the position of cancer 
variant. 

 

JAK2 gene had one cancer associated variant V617F that showed a stabilising effect 

(ΔΔG = -2.12). JAK2 V617F mutation was the most stabilising cancer mutation found 

in our sample (figure 2.8).  

 

 
Figure 2.8 ΔΔG results for the JAK2 gene’ missense mutations indicating the position of cancer 
variant. 

 

Despite us not being able to analyse the stability effect of all missense mutations on all 

cancer genes due to the lack of availability of the corresponding PDB files (solved 3D 

structure), the results from the sample studied are pointing to different overall impact on 

stability between the cancer associated mutations and other missense mutations. The 

missense mutations are expected to have mainly a destabilising effect on the protein as 

found for other diseases. However, as our results showed most cancer mutations in our 

sample have a close to neutral effect. Although in every oncogene analysed most of the 

missense mutations had destabilising effect, only 3 of 13 cancer-associated mutations 

analysed had destabilising effect (figure 2.9).  
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Figure 2.9 ΔΔG results indicating the impact on proteins’ stability by all cancer variants studied. 

 

2.3.2 The impact on proteins stability (half-life vs. Z constraint score) 

We compared half-life of wild type proteins in our data sample as estimated by ProtParam 

and the ExAC Z constraint score reported for the related oncogene. The comparison 

between these two measures should provide an indication to the association between 

intolerance to variants and stability of the protein. On average, a gene is expected to have a 

shorter half-life the more it is intolerant to variants. In general, the half-life of the majority 

of proteins is less than 8 hrs (the median is estimated to be 7.1hrs) while the Z score ranges 

from 0 to 5 for the majority of the genes. 

 

We found that only 2 out of 6 oncogene proteins studied show the expected effect on the 

half-Life in relation to the measure of Z score (figure 2.10, figure 2.11). The results indicate 

that genetic variants reported in the other oncogenes are not necessarily associated with 

destabilisation of their proteins. For instance, in the case of JAK2, the Z constraint is low 

(0.19) while the half-life is relatively long (30hrs) and for the BRAF gene the Z constraint is 

high (3.09) while half-life is relatively short (4.4hrs).  

 
 

Cancer-associated genes and their replacements 
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Figure 2.10 Half life in hours calculated for the protein coded by each of the selected cancer genes 

 

 
 

Figure 2.11 ExAC Z constraints reported for each of the selected cancer genes 

 

That some oncogenes do not show a correlation between intolerance to the number of 

missense mutations and half-life (as a measure of stability for the protein), further indicates 

the distinct relationship cancer related oncogenes exhibit with stability.  

 

If the neutral or stabilising effect of cancer point mutations is common, an overall 

destabilising effect might still occur through epistasis at the same gene level. The 

oncoprotein may have two or more mutations working altogether to alter the overall 

stabilising effect. We therefore investigated the number of point mutations from the same 

protein coding oncogene to occur together in a tumor sample as per COSMIC v77. We 

analysed point mutations found in sequenced tumor samples and found that less than 1% of 

the cancer-associated genes were reported to have more than one point mutation in one 

tumor sample (e.g., CASCS, NOTCH1 and USP6 genes all had more than one point mutation 

each in one tumor sample). Moreover, it is possible that an additive stability effect to occur 

in these rare cases. This finding shows that epistasis in one protein coding gene rarely exist 

Cancer-associated genes 

Cancer-associated genes 
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in cancer and that a cancer-associated point mutation with a neutral or stabilising effect is 

rarely countered by another point mutation.  

 

Our result is pointing to a dissimilar effect of cancer-associated replacements on protein 

stability compared to other non-cancer deleterious replacements. This result could be 

explained in light of the altered function of the oncoproteins and its role in tumor initiation 

and progression. Factors such as the location of the mutation on the 3D structure of the 

protein and the type of amino acid being substituted play an important role to what 

constitute the effect of cancer mutations. For example, deleterious mutations with a 

destabilising effect are found mainly on the surface of the protein (4, 12). This could be 

different in the case of cancer mutations in general where the mutations that drive the 

tumor progressions may occur in varied locations on the protein 3D structure (13). Also, the 

distinct patters of amino acid replacements in cancer might explain this dissimilar effect. For 

example, the cancer associated E545K mutation occurs in the helical domain of the protein 

PI3K coded by PIK3CA gene. This mutation occurs in the p110α subunit stabilizing it, 

resulting in constitutive activation of the PI3K pathway leading to increased cell proliferation 

(14). Clearly both the location of the mutation and also the specific amino acid replacement 

(the amino acid E was replaced with the amino acid K) were crucial to allow the function 

alteration to take place. This could explain why the change in stability (particularly the 

destabilising effect) is not always observed on oncoproteins.  

 
 

 Novelty of results 
 

Here I found that some of the most frequently mutated oncoproteins exhibit distinctive 

stability characteristics. Stability measured using the free energy of folding and the 

comparison between the half-life of the wild type protein and the constraint on number of 

variants shows that majority of cancer associated mutations have a neutral or stabilising 

effect on oncoprotein stability. This contrasts to the pattern found in other genetic diseases 

where deleterious variants have mainly destabilizing effects. This supports the main thesis 

hypothesis that cancer associated genes and proteins have distinctive characteristics. 

 



 53 

 References  
 
1.	 S.	Teng,	A.	K.	Srivastava,	C.	E.	Schwartz,	E.	Alexov,	L.	Wang,	Structural	assessment	

of	the	effects	of	Amino	Acid	Substitutions	on	protein	stability	and	protein	protein	
interaction.	International	Journal	of	Computational	Biology	and	Drug	Design	3,	
334-349	(2010).	

2.	 P.	Yue,	Z.	Li,	J.	Moult,	Loss	of	Protein	Structure	Stability	as	a	Major	Causative	
Factor	in	Monogenic	Disease.	Journal	of	Molecular	Biology		353,	459-473	(2005).	

3.	 A.	Bachmair,	D.	Finley,	A.	Varshavsky,	In	vivo	half-life	of	a	protein	is	a	function	of	
its	amino-terminal	residue.	Science	234,	179-186	(1986).	

4.	 N.	Tokuriki,	D.	S.	Tawfik,	Stability	effects	of	mutations	and	protein	evolvability.	
Carbohydradtes	and	glycoconjugates	/	Biophysical	methods	19,	596-604	(2009).	

5.	 B.	Lehner,	Molecular	mechanisms	of	epistasis	within	and	between	genes.		Trends	
in	Genetics	27,	323-331	(2011).	

6.	 R.	L.	Redler,	J.	Das,	J.	R.	Diaz,	N.	V.	Dokholyan,	Protein	Destabilization	as	a	
Common	Factor	in	Diverse	Inherited	Disorders.		Journal	of	Molecular	Evolution	
82,	11-16	(2016).	

7.	 S.	A.	Forbes	et	al.,	The	Catalogue	of	Somatic	Mutations	in	Cancer	(COSMIC).	Curr	
Protoc	Hum	Genet	Chapter	10,	Unit	10.11	(2008).	

8.	 M.	Lek	et	al.,	Analysis	of	protein-coding	genetic	variation	in	60,706	humans.	
Nature	536,	285-291	(2016).	

9.	 J.	Schymkowitz	et	al.,	The	FoldX	web	server:	an	online	force	field.	Nucleic	Acids	
Research	33,	W382-W388	(2005).	

10.	 E.	Gasteiger	et	al.,	ExPASy:	The	proteomics	server	for	in-depth	protein	
knowledge	and	analysis.	Nucleic	Acids	Res	31,	3784-3788	(2003).	

11.	 L.	Huang,	Z.	Guo,	F.	Wang,	L.	Fu,	KRAS	mutation:	from	undruggable	to	druggable	
in	cancer.	Signal	Transduction	and	Targeted	Therapy	6,	386	(2021).	

12.	 N.	O.	Stitziel	et	al.,	Structural	Location	of	Disease-associated	Single-nucleotide	
Polymorphisms.	Journal	of	Molecular	Biology	327,	1021-1030	(2003).	

13.	 J.-J.	Liu	et	al.,	The	structure-based	cancer-related	single	amino	acid	variation	
prediction.	Scientific	Reports		11,	13599	(2021).	

14.	 Y.	Hao	et	al.,	Gain	of	Interaction	with	IRS1	by	p110α-Helical	Domain	Mutants	Is	
Crucial	for	Their	Oncogenic	Functions.	Cancer	Cell		23,	583-593	(2013).	

  



 54 

 

3. Chapter 3: Characteristics of favoured amino acids found in point 
missense cancer-associated mutations 

 
 
* Statement of Authorship 
 
All the work presented in this chapter including analysis and method development were carried out by Amro Safadi with supervision of his 
supervisors prof. Simon C. Lovell. and prof. Andrew J. Doig. Both supervisors approved the figures and final wording of the manuscript 
providing corrections when needed. 

 

 Introduction 

Analysing the overall spectrum of amino acid changes that impact tumorogenesis is of great 

importance. Our understanding of cancer would be enhanced if specific mutational patterns 

and certain characteristics could be identified in cancer-associated amino acid 

replacements. A single amino acid change could affect the protein structure and function 

and identifying amino acid replacements enriched in cancer could point towards certain 

properties that when altered could lead to tumor formations and progression (1).  

Expanding datasets of reported and verified cancer-associated mutations give an 

opportunity to discover new insights. A prime source is the constantly updated COSMIC 

database (https://cancer.sanger.ac.uk) (2) where these amino acid replacements can be 

accessed and used to potentially discover patterns in the mutational landscape of cancer. 

 

At the nucleotide level, C:G>G:C changes in lung, ovarian and other cancers are strongly 

enriched at TpC/GpA dinucleotides (3). However, the biological basis of this mutational 

signature remains unknown (3). That some amino acid replacements are favoured in 

disease-associated variants was demonstrated in (4) where they looked at the 1000 

Genomes Project for humans and found that the amino acid exchange matrix generated 

from the observed nucleotide variants is asymmetric and that disease-associated variants 

differ from other non-disease-associated variants. 

 

Across human genetic diseases, amino acid replacements were shown to have the 

prevalence of Arg and Gly at the original residue (5). This study used the Online Mendelian 

Inheritance in Man (OMIM) database representing Mendelian diseases 
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(https://www.omim.org) (6) and did not confirm if the results pertain to cancer. The study 

demonstrated that the spectrum of replacement in disease correlates well with the amino-

acid replacement frequencies based on the genetic code (normalized by the mutation 

frequencies) (5). The probability of a mutation to cause a genetic disease goes up with an 

increase in the degree of evolutionary conservation at the mutation site and a decrease in 

the solvent-accessibility of the site (5). 

 

In a study that did look specifically at cancer amino acid changes (1), replacements that are 

most frequent are identified as those likely to lead to the cause or progression of cancer 

(i.e., drivers) while the least frequent are identified as passengers (playing passive a role in 

tumor progression). The R → H substitution was shown to be favoured in drivers followed 

by R → Q and R → C, whereas E → K has the highest frequency in passenger mutations. It 

also demonstrated that substitution of Arg is frequently found in many cancer types. 

Although this study analysed the mutational landscape at the amino acid level, the 

frequency of replacements could be affected by several factors not related to cancer 

intrinsic processes. These replacements could be found frequent due to selection pressure 

or in genetic diseases in general. It is yet unclear how these favoured replacements impact 

cancer onset and progression (1). 

 

There is a need to utilise the expanded dataset of cancer-associated mutations collated in 

COSMIC and use computational methods to confirm the enrichment of certain amino acid 

residues and replacements free from the influence of the number of samples analysed. This 

should be achieved via comparison against control groups that can reveal the cancer specific 

enrichments of these residues and replacements. Identifying these highly enriched 

replacements specific to cancer would allow us to link their distinct activities to 

physiological processes driving cancer highlighting the importance of these activities. It 

would also allow us to use amino acid properties in an informed way to train machine-

learning model enabling the prediction of other replacements yet to be identified as cancer-

associated.  
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In this study, we analysed missense cancer point mutations reported in the COSMIC cancer 

database. Unlike previous technique explained in (1), we avoided relying on the occurrence 

frequency based on samples analysed and focused on mutations reported and verified in 

the literature. This approach reduces the likelihood of bias that might rise if the frequency 

of occurrence is used. The occurrence frequency of a mutation reported could lead to 

miscalculation in the results due to several unrelated factors, such as number of tumors 

sampled for one cancer patient or the tendencies to focus on certain types of tumor 

samples that are easier to obtain. We used the probability of each expected amino acid 

replacement based on the genetic code, and transition and tranversion rates to 

demonstrate that certain amino acid replacements are occurring at a higher frequency than 

expected in cancer. This contrasts with Mendelian diseases where they were shown to occur 

at the expected frequencies confirming that cancer mutations are under selection. We 

analysed both the amino acids that were replaced and the amino acids that they were 

replaced with (we term these ‘original’ and ‘replacement’ residues respectively). We 

confirm that Arg is the amino acid with the highest likelihood of mutating in cancer. We also 

compared to mutation frequencies in ExAC containing variants from other genetic diseases 

(7) and Blosum62 containing expected amino acid enrichment rates based on protein 

sequence alignment (8). We found that Cys and Trp are highly enriched in cancer mutations 

as the replacement residues and that the amino acid replacement patterns in cancer are 

more diverse than previously thought (1). We highlighted that there are 17 particularly 

favoured amino acid replacements; these replacements have a strong presence of the 

aromatic amino acid group (about 30%) in the replacement residues and a similar presence 

of the ‘Stop’ codon in the same position.  The strong enrichment of certain amino acids in 

cancer replacements could be explained in the light of the widespread involvement of 

cancer genes in the ‘binding’ biological process as found in Gene Ontology Consortium 

(http://www.geneontology.org/) (9). Aromatic amino acids group are specifically 

responsible for forming ‘stacking interactions’ (see section 1.2.2.2) critical in recognizing 

binding sites while potential disulphide bonds formed by Cys residue could lead to constant 

activation of certain pathways necessary to cell proliferation to take place. ‘Stop’ codon on 

the other hand would likely terminate or shorten the produced protein. 
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We also found highly enriched cancer-associated single amino acid variants preferentially 

occur early in the protein sequence indicating the potential importance of these sites in 

influencing functions and binding affinity related to cancer. We also found that these 

variants exhibit on average increase in hydrophobicity and decrease in polarity in 

comparison to other non-cancer missense mutations. The different characteristics of cancer-

associated single amino acid replacements prompted us to build a machine learning model 

trained using the amino acid physico-chemical properties to predict if a replacement is 

cancer-associated or not. This could be applied for each oncoprotein assuming there are 

enough number of replacements reported to use to train the machine learning model. An 

example used here was the protein PTEN, the model showed good performance (F1 score of 

0.76) in distinguishing cancer associated replacements using amino acids properties and can 

be used without limitation compared to a model reliant on protein structure data. However, 

the model predictability could significantly increase by combining the two approaches. 

These findings may assist further in discovering novel cancer-associated mutations and 

further understand the protein functional changes caused by these mutations in the 

initiation and progression of cancer. 

 

 Materials and Methods 

We used the Chi-square test to estimate the significance of linear correlations between the 

expected and observed probabilities and t-test for the rest of the dataset’s comparisons 

with p-value < 0.0008 throughout. Calculated ratios were rounded up to three decimal 

points. 

 

3.2.1 Cancer-associated amino acids enrichment ratios list 

We have compiled a list in excess of 60K distinct cancer-associated missense mutations. 

These mutations belong to 590 cancer genes as listed in the COSMIC Census dataset of 

October 2017 (2, 10). We then counted the number of times each amino acid was found in a 

mutation differentiating between the mutated amino acid in the ‘original residue’ position 

and the amino acid resulting from the mutation (the ‘replacement residue’ position). 
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The following conditions were observed when including the mutations: (i) silent mutations 

are excluded. (ii) A cancer-associated mutation is only counted once no matter how many 

samples it was found in. This will ensure equal weight given to each mutation regardless of 

number of samples being analysed. (iii) A cancer mutation is only counted if it occurs as a 

single codon change as this study focuses on missense point mutations only (point 

mutations are the most common type of genetic variation). 

 

3.2.2 Expected amino acids enrichment ratios in mutations 

Genetic code frequencies were used to determine the initial amino acid expected 

occurrence rates. We then used transition or transversion rates (11) to calculate the 

expected frequency for each amino acid to be replaced by another. We started with all 61 

non-stop codons and applied every possible one-step nucleotide base change. 

 

We then listed all possible cases, where a case is a pair consisting of an initial amino acid 

and all the possible amino acids that it could mutate to (e.g., F → Y), we multiply the 

frequency of each starting codon in the human genetic code by the probability of each 

transition or transversion to find the probability of that specific pair. The results are a list of 

all possible codon changes from point mutations with a probability attached to each of 

these pairs. 

 

The list contains duplicated amino acid pairs (this because the same amino acid might rise 

from more than one codon. For example, ACC→CCC and ACG →CCG both result in the 

replacement T → P); we therefore summed the probabilities of matching pairs to find the 

final list of amino acid pairs and their probabilities. 

 

3.2.3 Amino acids properties dataset 

We started with a list of general physical properties of amino acids such as polarity, charge, 

and volume in addition to using two widely known measures of hydrophobicity; the Kyte-

Doolittle scale and the Janin scale (12, 13).  
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We then extended the properties to use physico-chemical, energetic, and conformational 

properties of the 20 amino acids to quantify the mutation impact on protein properties 

obtained (14). These properties have previously been shown to be important in further 

understanding the folding and stability of proteins (15). The amino acid properties were 

normalized between 0 and 1 using the expression: 𝖯𝗇𝗈𝗋𝗆(𝗂)=[𝖯(𝗂)−𝖯𝗆𝗂𝗇]/[𝖯𝗆𝖺𝗑−𝖯𝗆𝗂𝗇] 

 where P(i), Pnorm(i) are, respectively, the original and normalized values of amino 

acid i for a particular property, and Pmin and Pmax are, respectively, the minimum and 

maximum values. 

 

For each oncoprotein and for each replacement found there we subtract the property value 

of the amino acid at the original residue position from the amino acid at the replacement 

residue position recording the difference for all properties. This allows for the resulting 

dataset to be used to train a machine-learning model to predict the probability of any 

replacement to be a cancer associated for that specific oncogene. The full list of amino acids 

properties and their definitions are available on the web at 

http://www.iitm.ac.in/bioinfo/fold_rate/. 

 

3.2.4 ExAC mutations dataset 

The Exome Aggregation Consortium (ExAC) database – Oct 2017 spans 60,706 unrelated 

individuals sequenced as part of various disease-specific and population genetic studies. It 

recently became part of the gemoAD database (7, 16). We extracted all mutations 

annotated as ‘Missense’ recorded for all the 590 genes that are identified as cancer genes in 

COSMIC of Oct 2017 from the ExAC database. We then excluded all the mutations that were 

already reported in COMIC as cancer-associated mutations. This left us with a set of 

missense variants (~80K) that were not yet identified as cancer associated mutations but 

were found in the ExAC population. 

 

The process of collecting the missense mutations from ExAC started with collecting all 

missense mutations from all identified cancer genes, isolating the amino acids that appear 

as the original and replacement residues, recording the frequency rate and then normalising 
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the results to produce two ordered lists of enriched amino acids (the original and 

replacement residues). 

 

3.2.5 Machine learning method 
 
To create a machine learning model that predict the likelihood of a certain mutation to be 

cancer associated we used the DataRobot platform (https://www.datarobot.com) where 

the dataset described in 3.2.3 was used to train the model. The dataset was submitted to 

the software following a short preparation to ensure that the dataset file had one of the 

following accepted delimiters: comma (,), tab (\t), semicolon (;), or pipe (|). All dataset 

feature names must be unique, and dataset must be a single file.  

 

Following the login to the software web application, a new project is created once our full 

dataset is uploaded using the button provided on the first page. The data fields are 

automatically assigned an appropriate data type (e.g., numeric or categorical, etc) by the 

software. The dataset fields are then listed with basic data analysis automatically 

performed. This analysis includes for numeric fields values such as mean, standard 

deviation, median, min and max. The software excludes any duplicate or empty fields and 

performs automatic data quality checks that detect any outliers. 

 

The software performs automatic data preparation including imputation of missing values 

and ordinal encoding of categorical variables. All transformations are listed in the model log 

provided by the software. In our tree-based model, we kept the default setting of the 

software where numeric missing values are imputed with an arbitrary value (-9999) and for 

categorical variables, missing values are treated as an additional level in the categories. 

 

The next step would be selecting the field within the dataset that contain the outcome of 

each row. To build a supervised machine-learning model, it is necessary to identify the 

predicted classes and individual outcome to every row in our dataset. The outcome in our 

dataset is binary (true or false), indicating whether a single amino acid replacement for the 

protein in question is cancer associated. For our model, this binary field represents a 

mutation being either cancer associated (value = 1) or not (value =0). The training dataset 
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included all instances of missense replacements that were reported for the PTEN protein 

and whether each replacement was deemed cancer associated (as reported on COSMIC 

database). The software detects the type of classification required (binary classification in 

this case) once the predicted class is selected. DataRobot displays a histogram providing 

information about the target feature's distribution and list available performance metrics 

that would be calculated to select the best performing model. The recommended 

performance metric for our project was logistic loss. 

 

Once the model building phase is completed, the software indicates the best performing 

models based on the recommended optimization metric. DataRobot searches through a 

repository of possible combinations of algorithms based mainly on ‘open source’ libraries 

for supervised learning algorithms such as Python-sklearn and tests several parameters 

values before producing final results. Also, DataRobot uses heuristic logic to recommend the 

best performing model. The top performing model (recommended by the software) in our 

project was Gradient Boosting. This model achieved the best logistic loss across both 

training and validation datasets. Only models that have the same level of performance 

across training, validation and testing are displayed on the leaderboard page. 

 

To avoid over-fitting, the best practice is to evaluate model performance on out-of-sample 

data. If the model performs very well on in-sample data, (the training data), but poorly on 

out-of-sample data, that is an indication that the model is over-fit. The k-fold cross-

validation is a standard technique used to validate model performance and ensure that 

over-fitting does not occur. DataRobot uses a 5-fold cross-validation framework as the 

default option to test the out-of-sample stability of a model's performance. DataRobot 

automatically divides the original dataset into the respective training and validation sets. 

We kept the default 5 folds rather than choosing a smaller number of partitions as the size 

of the dataset allow for that and thus, we ensure more through testing.  In addition to the 

cross-validation partitioning, a holdout sample (test sample) is used to further test out-of-

sample model performance ensuring appropriate evaluation of the model performance and 

reducing likelihood of over-fit. 20% of the training data is set aside as a holdout dataset. This 

dataset is used to verify that the final model performs well on data that has not been 

touched throughout the training process, while the remainder of the data is divided into 5 
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cross validation partitions. Because the distribution of the target’s values in a binary 

classification project may be imbalanced, the validations' partitions were randomly selected 

using a stratified sample approach (this is the default option in the software) where sub-

populations within the data are always represented in each partition to preserve the 

distribution of the target’s values for each partition. 

 

Our model algorithm is Gradient Boosting Machines (or Generalized Boosted Models, 

‘GBM’). GBM is a cutting-edge algorithm for fitting extremely accurate predictive models 

(17). GBMs are a generalisation of Freund and Schapire’s adaboost algorithm (1995) 

modified to handle arbitrary loss functions.  They are very similar in concept to random 

forests, in that they fit individual decision trees to random re-samples of the input data, 

where each tree sees a bootstrap sample of the rows of the dataset and N arbitrarily chosen 

columns, where N is a configurable parameter of the model.  GBMs differ from random 

forests in a single major aspect: rather than fitting the trees in parallel, the GBM fits each 

successive tree to the residual errors from all the previous trees combined. This is 

advantageous, as the model focuses each iteration on the examples that are most difficult 

to predict (and therefore most useful to get correct). Due to their iterative nature, GBMs are 

almost guaranteed to over-fit the training data, given enough iterations.  The two critical 

parameters of the algorithm, therefore, are the learning rate (or how fast the model fits the 

data) and the number of trees the model is allowed to fit.  It is critical to cross-validate these 

two parameters. When done correctly, GBMs are capable of finding the exact point in the 

training data where over-fitting begins, and halts one iteration prior to that.  In this manner, 

GBMs are usually capable of producing the model with the highest possible accuracy 

without over-fitting (17). 

 

Our model uses logistic loss and early stopping to determine the best number of trees. Early 

stopping is a method for determining the number of trees to use for a boosted trees model. 

The training data is split into a training set and a validation set; in each iteration the model is 

scored using the validation set. If validation set performance decreases for 200 iterations, 

the training procedure stops, and the model returns the fit at the best tree seen so far. Note 

that the early stopping validation set will be a 90/10-train/validation split within the training 

data for a given model. The model will therefore internally use 90% of the available training 
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dataset and 10% of the data for early stopping. Since the early stopping test set was used to 

find the optimal termination point, it cannot be used for training. 

 

To set the hyperparameters used by the model, the DataRobot platform performs an 

internal "grid search" with pre-set hyperparameters values ensuring optimum accuracy. The 

default setting of the platform avoids a ‘brute force’ strategy where every possible value of 

a parameter is tested. The platform strategy relies on setting these parameters for the 

model to be built in reasonable timeframe. We have used the hyperparameters values 

selected by the platform without alternation.  

 

In our model, several guardrails were implemented to mitigate possibilities of data labelling 

bias. We ensured the dataset used for training does not carry any overrepresentation for 

any feature or group and used several performance metrics to evaluate the model 

performance such as Logistic Loss to eliminate any chance of overfitting or underfitting. Bias 

is usually detected when the difference between a model's predictions for different 

populations (or groups) is evident. DataRobot implement bias mitigation techniques for 

reducing model bias for a predicted class. The model can be tested using Proportional/Equal 

Parity (also known as Demographics Parity) where the platform shows the probability of 

receiving favourable predictions for one of the predicted classes from the model or what is 

the total number of records with favourable predictions from the model for each class. 

Other bias mitigation metrics can be selected on the platform that evaluate the bias based 

on equal error of the predicted classes such as Favourable Predictive Value Parity.  

 

DataRobot automatically mitigates any bias found using the metrics above by applying Pre-

processing Reweighing where row-level weights are used as a special model input during 

training to attempt to make the predictions fairer. This was not needed in our model as no 

bias was detected by the platform. Finally, to eliminate a chance of implicit bias in our 

model, the model is built for one oncoprotein at a time and results should not be 

generalised to all other proteins ensuring no overgeneralisation bias can occur. 

 

Unaccounted dependency within the examples and confounder variables used to train the 

model may create a false enhanced performance by creating a false link between some of 
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the features and the outcome. The performance metric GiniNorm was used to discover any 

circularity that may exist in the data. A matrix was calculated showing the GiniNorm values 

between all feature pairs and all features and predicted outcome class. Any GiniNorm value 

of 0.85 or more indicated abnormal correlation and that feature was automatically 

eliminated. This threshold is preselected by the DataRobot platform but can be changed. 

We have kept the default GiniNorm threshold used by the platform to detect and eliminate 

any circularity in the data. We also paid special attention to understanding the data itself 

used to build the model and understand what the features represent to avoid problems 

such as circularity.  

 

Another common machine learning pitfall that we tested our model for is the possibility of 

‘leakage’ where a feature used in the training data would not be fully formed until the 

outcome has occurred. For instance, predicting whether the replacement is cancer-

associated using data that is only known following the replacement detection. This could 

create a false level of accuracy and such correlation should be detected and eliminated 

before the model is built. DataRobot implements a leakage detection method based also on 

GiniNorm metric and if such case is at hand, the software alerts the user before starting the 

modelling process, giving the user the ability to remove the field(s) that are causing the 

leakage.  

 

Once the models’ building process is completed, the software automatically makes available 

evaluation results for each competing models. Insights available include the model 

workflow, the features selected and their relative impact on prediction. Also produced is the 

accuracy related information such as the ROC curve, sensitivity, and specificity (our model 

accuracy results are discussed below in the results section 3.3). The software also provides 

the ability to upload new dataset (with no known outcome) to calculate the predictions for. 

 

 

 Results 

For any specific patterns in cancer-associated mutations to be revealed, it is necessary to 

compare against a control group. We chose three different control groups reflecting 



 65 

different selection scenarios. The first serves as our ‘Null’ model where the expected 

probability of mutations is calculated assuming they are under no selection. The second 

control group was using Blosum62 reflecting the effect of natural selection and the third is 

the ExAC dataset containing missense mutations for other genetic diseases. These 

calculations are explained in the next sections.  

 

3.3.1 Amino acid residues probabilities of occurrence under no selection 

The results here reflect the probability of an amino acid to feature in a mutation if assumed 

to be free from evolutionary selection pressure. This enables us to identify any elevated 

replacement rates arising by selection for cancer.  

Each mutation can be represented by two amino acids (e.g., A→C); we call the initial amino 

acid on the left side of the pair ‘original residue’ and the one on the right ‘replacement 

residue’. 

 

By summing up all the probabilities of pairs (calculated using codon frequencies and 

transition or transversion rates), then normalising the numbers (considering the total sum 

to equal 1 and assigning each amino acid a frequency accordingly), we obtain the table 3.1: 

 
Original 
Residue 

Normalised 
Frequency 

Replacement 
Residue 

Normalised 
Frequency 

L 0.084 R 0.085 
S 0.082 S 0.083 
E 0.072 L 0.073 
A 0.066 V 0.065 
P 0.065 P 0.064 
K 0.058 A 0.063 
G 0.056 T 0.062 
V 0.054 G 0.057 
Q 0.054 Stop 0.049 
R 0.051 I 0.047 
T 0.050 D 0.042 
D 0.049 N 0.040 
I 0.044 E 0.040 
F 0.043 H 0.039 
N 0.037 K 0.037 
H 0.030 F 0.033 
Y 0.030 Q 0.032 
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M 0.028 Y 0.027 
C 0.026 C 0.027 
W 0.017 M 0.023 
Stop 0.003 W 0.011 

Table 3.1: The normalised frequency of expected amino acid residues using codon frequencies, and 
transition or transversion rates. 

 

3.3.2 Amino acids frequencies based on the genetic code vs. their frequencies in cancer 

mutations 

Figure 3.1 shows the ratio of the frequency of the amino acids in cancer missense point 

mutations at the replacement residue position to the expected frequency; similarly, figure 

3.2 shows the ratio of the frequency of the amino acids in cancer missense point mutations 

in the original residue to the expected frequency. We found that in addition to the stop 

codon, Trp and Cys and Lys are often enriched at the replacement residue position in cancer 

mutations with the following enrichments ratios respectively (1.98, 1.77 and 1.54). Pro, Ala 

and Gly are disfavoured at the replacement residue position in cancer mutations. In the 

original residue, we found that Arg is highest, followed by Gly and Glu), while Phe, Ile and 

Leu are disfavoured. 

 

 
 
 
Figure 3.1 Enrichment ratios of ‘replacement residues’ in cancer-associated mutations when compared to 
frequencies based on the genetic code 
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Figure 3.2 Enrichment ratios of original residues in cancer-associated mutations when compared to 
frequencies based on the genetic code 

 

We also calculated the coefficient of determination (figure 3.3) for the normalised 

frequencies of amino acids at the ‘replacement residue’ position and their expected 

frequencies based on the genetic code. This showed an acceptable degree of association 

between the two sets at for this type of experiments. 

 

 
Figure 3.3 Coefficient of determination calculated for the replacement residues 

 
When we repeated the calculation counting all the instances a mutation was repeated in 

tumor samples, the results were different. Val replaced Arg as the amino acid that is most 
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mutated in the original residue position while F and E became favoured at the ‘replacement 

residue’ position. This indicates the importance of excluding these repetitions due to the 

bias in results that they would produce. 

 

Figure 3.2 confirms that Arg is the amino acid with highest probability to mutate in cancer-

associated mutations. This result concurs with previous study that reported Arg to be highly 

mutable in human disease-associated amino acid variants (4). They suggested that because 

four out of the six codons for Arg include CpG sequences and CpG dinucleotide in DNA are 

known to mutate at high rates then this might explain the higher probability of Arg to 

mutate (other amino acids like Pro, Thr, Ser and Ala do have CpG sequences but only in one 

codon compared to four codons in Arg). 

 

In an attempt to provide additional possible explanation linked to cancer, we mapped all 

cancer genes in our study to the molecular functions available using the Gene Ontology 

Consortium (http://www.geneontology.org/). We found that a higher than average 

involvement in the ‘Bindings’ functions at fold enrichment (for all binding types) >1.35 and 

in some binding functions > 9 such as damaged DNA binding (18). This could be explained by 

a high likelihood of mutations in DNA binding proteins to be drivers of disease onset and 

progression (19). This in turn may explain why Arg is the most likely amino acid to mutate in 

cancer missense mutations, as Arg is found to be quite frequent in binding sites and plays a 

key role in the stability of the protein; replacement of Arg is likely to have a detrimental 

effect on the function and structure of the DNA binding complex (20, 21).  

 

Furthermore, we have listed all the oncogenes In COSMIC database that reported to have a 

cancer point mutation that feature the amino acid Cys and Trp at the ‘replacement residue’ 

position and used UNIPROT to find the identified function of their proteins product. For 

example, the oncogene LRP1B is the oncogene with the highest number of mutations with 

the amino acid Cys as the replacement residue and the protein product is a cell surface 

protein that bind and internalize ligands in the process of receptor-mediated endocytosis. 

The second highly enriched oncogene with mutations that feature the amino acid Cys at the 

replacement residue position is FAT4 and the protein is calcium-dependent cell adhesion 

protein. The same affinity to binding activities pattern was emerging for oncogenes enriched 
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with mutations where Trp feature as the replacement residue. The special characteristics of 

these two amino acids might be directly linked and effect the biological job the oncogene 

protein is implicated in. 

 

Whole replacement analysis 

 

We found that the E→K and R →H substitutions have the largest enrichment ratio among all 

cancer genes agreeing with the results from (1) where machine learning approach was used 

to determine the enriched replacements. E→K replaces a negatively charged amino acid for 

a positively charged one; this is likely to substantially alter the electrostatics, conformation, 

stability and interactions of the protein (22-24). An R →H substitution replaces an always 

protonated amino acid for one that can be positive or neutral thus potentially affecting the 

pH sensitivity (25, 26) and function (27) of the protein. Why such changes are particularly 

frequent in cancer is unclear. 

 

However, when we compared the cancer dataset substitution frequencies to those based on 

codon frequencies and re-ranked the substitutions accordingly (Table 3.2), we found that 

R→H is most enriched in cancer mutations followed by R→Q, R→ Stop and R → C. E→K 

while is still enriched, its enrichment ratio was less than half of R→H and R→Q ratios. 

 
Amino Acid 
Replacement 

Enrichment ratio 

R→H 6.75 
R→Q 6.62 
R→Stop 5.76 
R→C 5.28 
T→M 4.70 
R→W 3.80 
E→Stop 3.60 
S→L 2.86 
R→I 2.82 
E→K 2.72 
G→Stop 2.54 
S→Stop 2.52 
D→N 2.36 
S→F 2.33 
D→Y 2.28 
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R→L 2.19 
Q→Stop 2.08 

Table 3.2 Cancer- associated replacements with ratios > 2 in when compared to expected frequencies based 
on codon frequencies  

 

In total, there were 17 replacements with an enrichment ratio > 2. Over 40% of these had 

Arg at the original residue position. We also found a strong presence of the aromatic amino 

acid group (about 30%) in the replacement residue position and a similar presence of the 

‘stop’ codon in the ‘replacement residue’ position. Our results here agree with a previous 

study that highlighted R→H, R→Q and R → C as driver mutations in cancer (28). However, 

our results differ in showing that there are many more replacements that should be 

considered as cancer drivers including E→K that belongs to enriched replacements in 

cancer-associated mutations and we recommend reviewing its label stated in (28) as a 

passenger mutation. 

 

3.3.3 Amino acids frequencies in Blosum62 vs. their frequencies in cancer mutations 

Blosum62 provides a substitution matrix with scores for all possible exchanges of one amino 

acid with another based on aligned protein sequence segments and it is shown to provide 

an improvement in sequences alignment compared to other methods (29). We correlated 

the frequencies of amino acids appearing in our cancer mutations dataset with the 

normalised (each row in the matrix made to equal 1) values of Blosum62 matrix. The 

comparison reveals different substitution frequencies in cancer mutations compared to the 

Blosum62 matrix, confirming that cancer mutations are under selection. The results here 

also show a similar pattern of replacement residues to the findings when comparing with 

the expected frequency based on the genetic code (Table 3.2 and Figure 3.1). We find that 

also Arg is favoured here as the original residue and Cys and Trp as the replacement 

residues (Table 3.3).  

 
Top 
Replacements 

Enrichment 
ratio 

R→C 55.44 
R→W 54.38 
Y→C 25.70 
W→C 24.04 
P→L 22.60 
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Table 3.3 The most enriched cancer-associated replacements when compared to frequency found in 
Blosum62 

 

3.3.4 Amino acids frequencies in ExAC (non-cancer missense mutations) vs. their 

frequencies in cancer mutations 

As our ExAC dataset contains human variants (missense mutations) that are associated with 

other diseases (cancer-associated mutations found in COSMIC are excluded), our 

comparison of the frequencies between the two datasets aimed to reveal the certain amino 

acids patterns in missense mutations that pertain specifically to the cancer mutations. 

 
Replacement 
Residue 
Amino Acid 

Cancer to 
non-
cancer 
disease 
ratio 

F 1.52 
Y 1.50 
K 1.36 
N 1.17 
D 1.04 
C 1.02 
W 1.01 
H 1.00 
L 0.97 
E 0.9 
Q 0.89 
I 0.89 
S 0.84 
P 0.84 
M 0.8 
V 0.72 
T 0.72 
G 0.67 
R 0.63 
A 0.59 

Table 3.4 Ratios of amino acid frequencies as replacement residue in Cancer mutations compared to non-
cancer missense mutations 

 

The results (table 3.4) show that aromatic amino acids (Phe and Tyr) have a higher 

enrichment in cancer mutations at the replacement residue position when compared to 
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other diseases. This further emphasises the role of aromatic groups in cancer onset and 

progression. We hypothesis that the aromatic group involvement in forming stacking 

interactions (see section 1.2.2.2) which is essential for achieving successful binding in both 

DNA and RNA sites (a biological process shown to be affected by most common cancer 

mutations(30)) can explain their high enrichment in cancer missense mutation. 

 

We have also compared the amino acids frequencies in the ExAC dataset of missense 

mutations to the expected amino acids frequencies in mutations calculated using codon 

frequencies (table 3.5). This would reveal the amino acids that are prominent in genetic 

diseases in general. We wanted to see if these differ from the results when comparing to 

cancer. We found that similar to the comparison with cancer mutations dataset, amino acids 

Trp and Cys feature again (figure 3.1) as likely amino acids at the replacement residue 

position when compared to the expected spectra calculated based on codon frequencies. 

These findings indicate the important role the specific properties of Trp or Cys amino acids 

in missense mutations driving the onset of genetic diseases. 

 
Replacement 
residue 
Amino Acid 

Enrichment 
ratio 

W 1.97 
C 1.73 
M 1.65 
Q 1.54 
V 1.34 
H 1.28 
T 1.17 
K 1.13 
I 1.11 
S 1.09 
L 1.08 
N 1.08 
R 0.95 
F 0.89 
E 0.89 
G 0.89 
Y 0.8 
A 0.8 
D 0.75 
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P 0.49 
Table 3.5 Ratios of amino acid frequencies as replacement residues in non- cancer missense mutations 
compared to those expected from codon frequencies  

 
In addition, the aromatic amino acids, we see Cys is highly enriched in cancer mutations. The 

amino acid Cys is known to be involved in forming disulphide bonds (see section 1.2.2.2) 

crucial of correct folding of the protein (31). If a replacement occurs with Cys at the 

‘replacement residue’ position, then there is chance that a disulphide bond will form and, in 

some cases, altering (generally increasing) the stability of the protein. These disulphide 

bonds were shown to have an impact on protein structure and function, a study of hST3Gal1 

showed that removing a Cys residue abolished the enzyme activity (32). Another example is 

Epidermal Growth Factor (EGF), EGF is a small protein that stimulates cell proliferation and 

is shown to have disulphide bonds formed by the Cys residues (33). Integrins which are 

transmembrane receptors with EGF – like domains play a key role in regulating cellular 

growth, proliferation and signalling and introducing Cys mutations were also shown to cause 

αIIbβ3 (a subfamily of Integrins) to be constitutively activated (33, 34). The constant ‘turned 

on’ state observed in some signalling pathways leading to proliferation of the cell (one of 

cancer main hallmarks) could be induced by the impact of these unintended bonds. 

 

3.3.5 The analysis of the physical properties of amino acid replacements highly enriched in 

cancer 

We analysed the hydrophobicity, polarity, charge, and volume properties of the amino acids 

in enriched cancer-associated replacements by calculating the difference in value of the 

amino acid at the replacement residue position from the value of the amino acid at the 

original residue position for each of these properties. Hydrophobicity measure was obtained 

based on two of the most used methods (Kyte-Doolittle and Janin) to measure 

hydrophobicity (each method is known to excel at measuring hydrophobicity for certain 

protein types). Table 3.6 shows these changes for replacements deemed enriched in cancer 

when compared to the expected frequencies based on genetic code. Table 3.7 shows these 

changes for replacements deemed enriched in cancer when compared to Blosum62. 

 
Amino 
Acid 

Hydrophobicit
y (Kyte-

Hydrophobicit
y (Janin scale) 

Polarity Charge Volume 
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Replacem
ent 

Doolittle 
scale) 

R→H 1.3 é 1.3é 0 0 -32.8ê 
R→Q 1    é 0.7é -1ê -1ê -43.4ê 
R→Stop 2.9 é 1.1é -2ê -1ê -69   ê 
R→C 7    é 2.3é -2ê -1ê -87.8ê 
T→M 2.6 é 0.6é -1ê 0 46.2 é 
R→W 3.6 é 1.7é -2ê -1ê 36.1 é 
E→Stop 1.9 é 0.4é -2ê 1é -17.5ê 
S→L 4.6 é 0.6é -1ê 0 69.6 é 
R→I 9    é 2.1é -2ê -1ê -27.3ê 
E→K -0.4ê -1.1ê 0 2é 26.3 é 
G→Stop -1.2ê -0.6ê 0 0 57.5 é 
S→Stop -0.8ê -0.2ê -1ê 0 27.8 é 
D→N 0 0.1é -1ê 1é 8       é 
S→F 3.6 é 0.6é -1ê 0 97.3 é 
D→Y 2.2 é 0.2é -1ê 1é 80.2 é 
R→L 8.3 é 1.9é -2ê -1ê -27.2ê 
Q→Stop 1.9 é 0.4é -1ê 0 -25.6ê 

Table 3.6 The changes recorded for hydrophobicity, polarity, charge and volume properties for each of the 
enriched cancer-associated replacement (from comparison with frequencies in the genetic code). 

 
Amino 
Acid 
Replacem
ent 

Hydrophobicit
y  (Kyte-
Doolittle 
scale) 

Hydrophobicit
y  (Janin scale) 

Polarity Charge Volume 

R→C 7   é 2.3é -2ê -1ê -87.8ê 
R→W 3.6é 1.7é -2ê -1ê 36.1é 
Y→C 3.8é 1.3é -1ê 0 -92.1ê 
W→C 3.4é 0.6é 0 0 -123.9ê 
P→L 5.4é 0.8é 0 0 41.8é 

Table 3.7 The changes recorded for hydrophobicity, polarity, charge and volume properties for each of the 
enriched cancer-associated replacement (from comparison with Blosum62). 

 

Both set of results in table 3.6 and table 3.7 showed highly enriched cancer-associated 

replacements to exhibit increase in hydrophobicity and decrease in polarity and charge. 

There are few exceptions to this pattern, but the majority were shown to conform.  No 

specific pattern emerged when analysing the volume differences. 

 

The hydrophobicity change rate between the most and least favoured cancer-associated 

replacements (based on the comparison with expected replacements frequencies in the 
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genetic code) is shown in (Figure 3.4). The change is on average much higher in favoured 

replacements (with replacement residues having bigger hydrophobicity value) when 

compared to the least favoured replacements. On the other hand, polarity is found to be 

higher for the least favoured the amino acid replacements (Figure 3.5).  

 

 
 
 
Figure 3.4 The Hydrophobicity (Kyte-Doolittle scale) change rate of cancer associated replacements  

 
 

 
 
 
Figure 3.5 The Polarity change rate of cancer associated replacements 

 

3.3.6 Predicting cancer-associated amino acid replacements using physico-chemical and 

conformational properties 

Despite our findings when analysing the physical properties of amino acid replacements, it 

was not yet clear to what extent these properties can be utilised to discover novel cancer 

mutations. To answer this, we implemented a machine-learning approach to predict cancer 

mutations simply using amino acid physico –chemical properties, without using any 

additional genomic information. The model should only be trained per 

oncogene/oncoprotein as impact of the replacement location and the effect the change of 
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the physico-chemical properties per replacement may be significantly different from protein 

to protein. Here, we chose PTEN protein as an example to apply this technique to. However, 

the model can be applied to any oncoprotein/oncogene assuming that there are a sufficient 

number of replacements to produce a reliable model. In our example, the PTEN protein 

dataset included over 3000 replacements, a third of these were cancer associated.  The 

model’s evaluation metrics show a significant difference when comparing the training and 

the validation datasets if the dataset (number of replacements) was not sufficient. 

 

Several different modelling configurations and algorithms were tested on the data to ensure 

the selection of the best performing approach. These algorithms include tree-based 

classifiers such as Gradient boost trees and Random-forests, Neural Networks classifiers 

such as Keras Slim Residual NN Classifier and Generalized Additive2 Model (the list of these 

can be found in Appendix A - Table A.1 along with their performance metrics). The 

performance metric used to rank the models was Area Under Curve (AUC). AUC is an 

appropriate performance measure when the model is of a binary-classification type. The 

larger the area under the curve, the more accurate the model is. An AUC of 0.5 suggests 

that predictions by that model are no better than a random guess. An AUC of 1.0 suggests 

that the model predictions are perfect. Of course, a model with AUC of 1.0 is an indicator of 

a flawed set up where some of the data used to train the model are only known after the 

outcome event and reveal the actual outcome (usually referred to as target leakage). Other 

performance metrics for our models were also calculated and can be found in the Appendix 

A - Table A.1. The training dataset was divided to 5 folds where in each iteration the model 

is trained using 4 folds and validated on the 5th fold. This was repeated so the model was 

validated on all the datasets. The average AUC of all validated segments is called ‘cross 

validation’. In addition to the validation datasets, 20% of the original dataset was left out of 

the model training to be used later as an external test (holdout) where the outcome was 

removed for scoring. The AUC is calculated for all validation and test datasets to ensure that 

the model is not over-fitting (Table 3.8). This calculation showed close performance across 

validation and test (holdout) sets where AUC value ranged from 0.67 to 0.72 ensuring no 

over-fitting. 
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Scoring Type Score 
(AUC) 

One Validation  0.72 

Cross validation (average 
of all sets) 

0.68 

Holdout 0.71 

Table 3.8 The AUC calculated for the model validation and holdout segments. 

 

The confusion matrix (Table 3.9) shows the actual versus predicted values for both 

true/false categories for our training dataset (80% of the total dataset). The model statistics 

show the model reached just over 76% specificity and 50% sensitivity in predicting cancer 

mutations. This means that we are able to detect over half of cancer mutations successfully 

while misclassifying around 24% of non-cancer mutations within the training/validation 

datasets. The positive predictive value (Precision) was 0.76. 

 

Predicted	

Actual	

-	 +	 	

-	 806	(TN)	 252	(FP)	 1058	

+	 784	(FN)	 808	(TP)	 1592	

1590	 1060	 	

Table 3.9 The model’s Confusion Matrix (where TP is true positives, TN is true negatives, FP is false positives 
and FN is false negatives) 

 
Both	the	confusion	matrix	and	the	model’s	AUC	(0.72)	indicate	a	moderate	performance	

by	our	model.	Our	work	here	signifies	that	it	is	possible	to	predict	cancer	mutations	

from	only	the	location	and	the	amino	acid	properties.	However,	a	significant	number	of	

misclassifications	are	present	and	combining	this	data	with	other	genomic	and	protein	

structure	related	data	could	yield	a	stronger	more	practical	model.	
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The	False	Positives	

Of particular interest are those replacements that were predicted to be cancer-associated 

but were not yet classed as such in the original training dataset. The dataset used to train 

the model was extracted from COSMIC Oct -2017. In order to confirm the model’s ability to 

predict cancer-associated mutations, we extracted the somatic missense replacements 

confirmed implicated in cancer from COSMIC 2022 and compared the list of our false 

positives to the updated list of cancer-associated mutations. We found that 47% of the 

replacements in our false positives list are now included in COSMIC. If we only check against 

replacements that scored > 0.8 then the percentage increases to over 60%. This further 

confirms the model’s ability to predict novel candidate cancer mutations. We recommend 

considering the false positive replacements provided in the Appendix A - Table A.3 when 

researching novel mutations as these could be experimentally confirmed later.  

	

3.3.7 Amino acid physico-chemical properties ranked by their impact 

The properties used to train the machine-learning model emerged from the original list of 

features as a result of applying a feature selection procedure. Only features (properties) 

that are useful for the prediction are selected. These selected features contribute to the 

calculation of the likelihood scores to different extents. Each property is ranked by its 

importance in relation to predicting whether the mutation is a cancer associated or not. This 

importance can be measured by the impact on how much worse a model’s error score 

would be if the model made predictions after randomly shuffling the values of each 

property (while leaving other values unchanged).  Each impact is then normalised, showing 

the features ranked by their usefulness for the prediction. The impact is normalised so that 

the value of the most important feature is 100% and the other subsequent features are 

normalised to it. This process identifies those properties that are particularly important in 

relation to predicting cancer mutations in our model and would aid in further our 

understanding of the biological aspects that underline the propensity of a mutation to be a 

cancer associated mutation. 

The location of the substitution is showing to have the highest impact followed by 

hydrophobicity and solvent accessibility (Figure 3.6). Although other properties are also 
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important, location of the replacement has several times the impact on the prediction 

compared to any other property. This could be explained if the early segments of the 

oncoprotein primary structures play a particular role in functions (e.g., binding) important in 

carcinogenesis or if the oncoproteins are in general smaller in size compared to other 

proteins coded by non-associated cancer genes.  The results confirm the importance of the 

hydrophobicity when predicting cancer mutations. Also, solvent accessibility has been 

shown to have a correlation with hydrophobicity (e.g., small hydrophobic residues will on 

average have a small accessible surface). 

	

Figure 3.6 The top 10 properties ranked by their relative importance when predicting cancer-associated 
mutation in our model. 

  

We have also retrained our model using the same dataset while excluding ‘location’ of the 

amino acid replacement. We found that a reduction in model’s performance was evident. 

The model trained on this dataset achieved an AUC of 0.62 for the cross validation while the 

AUC for the holdout was 0.65. The model reached just 76% specificity and 40% sensitivity in 

predicting cancer mutations (i.e., sensitivity was reduced by 10%). This showed that the 

model predictability using the physico-chemical properties of the amino acids is still 

important indicating that information implied by these properties play an important role in 

tumourogenesis in relation to this specific gene. 
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Figure 3.7 shows that that the predicted likelihood of a mutation to be cancer-associated on 

average here is higher by 15% when comparing the replacements with lowest (negative) 

hydrophobicity change and the replacements with highest increase in hydrophobicity 

change. For this figure and figure 3.8, the yellow line depicts the marginal effect of this data 

feature on the target variable after accounting for the average effects of all other predictive 

features. The orange line with circles depicts how a change in this feature's value, while 

keeping all other features as they were, impacts a model's predictions. The model result 

here agrees with our previous findings (figure 3.4 and table 3.6). The model shows a small 

increase in the likelihood of a mutation to be cancer-associated the higher the increase in 

hydrophobicity value between the replacement residue and the original residue. 

 
 
 
Figure 3.7 Distribution of Hydrophobicity change values in relation to the likelihood of mutation to be 
cancer-associated 

 

Figure 3.8 illustrates how the position of the replacement in the protein sequence 

influences the likelihood of a mutation to be cancer associated. The result shows that the 

likelihood of replacement to be cancer-associated is average decreased by more than 40% 

when comparing this likelihood for mutations with sequence position < 200 and mutations 

with sequence position > 2000. 
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Figure 3.8 Distribution of replacements locations on the protein sequence in relation to their likelihood of 
being cancer-associated  

 

3.3.8 Comparison with other prediction method 

CanSavPre is a machine learning model developed recently (June 2021) and relies on protein 

structure to predict cancer-related single amino acid variations (35). The main limitation of 

this method comes from the limited availability of protein structures for all isoforms. The 

study relied on several examples of oncoproteins where the resolved protein structures are 

available (only certain isoforms were available). However, the model showed great potential 

in predicting amino acid variations where one of its configurations reached over 89% for 

accuracy (compared to 64% reached by our model) and 0.81 for F1 score (compared to 0.76 

by our model). Unfortunately, and unlike our model, CanSavPre showed significant 

difference in accuracy between the validation dataset and the independent testing dataset 

where the high accuracy of 89% was only achieved in the training/validation dataset. The 

limited number of cases studied and the small number of protein isoforms with a structure 

available currently prevents CanSavPre from being tested on a wider sample set. Our model 

does not rely on any data that might not be available for all proteins and so can be used in 

all instances. However, our model needs to be applied to each oncoprotein individually and 

the performance may differ from protein to another. Despite the apparent close accuracy 

scores reported by our model and CanSavPre, this should be treated with some caution. As 

we only trained our model for one protein (PTEN). Applying our method to a wider range of 

oncoproteins and including the proteins studied by CanSavPre is required for meaningful 

comparison. Additionally, a statistical measure needs to be implemented once the accuracy 

scores are known for the same protein by CanSavPre and our method to determine whether 

the difference between the scores is significant.  

 
 
 

 Novelty of results 
 
As discussed in the literature review (chapter 1 – section 1.2), determining specific amino 

acid residues and replacements that are enriched in cancer associated mutations could 
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highlight the specific biological processes crucial in the initiation and progression of many 

cancer types. We were able to conclude here that that aromatic amino acid group plus Cys 

are the most enriched amino acids as ‘replacement residue’ linked to cancer-associated 

mutations in comparison to all other control groups. This expands the previous view 

reported in the literature (1, 28) to show that all aromatic amino acids should be considered 

as a highly enriched category in cancer. 

These patterns are likely pertained to oncoprotein functions. As aromatic amino acids are 

often critical for forming protein-nucleotide complexes realised through interactions 

between aromatic residues and the bases in the nucleotides(36, 37), we provided a possible 

explanation of the highly enriched aromatic amino acid group that highlight the importance 

of aromatic stacking (necessary to recognize binding sites on DNA or RNA). Furthermore, we 

linked the prevalence of Cys amino acid in cancer associated mutation to its role in forming 

disulphide bonds and to Cys oxidation as likely explanation for the enrichment of Cys in 

cancer associated replacement residues. Our findings narrow down the focus to several 

protein features such as the aromatic stacking, disulphide bonds and Cys oxidation when 

investigating cancer associated mutations and their impact on protein functions. Our 

proposed explanations for the high enrichment of certain amino acid residues provide a 

missing link in numerous studies that reported on these findings (1, 3, 5, 28), connecting 

these patterns to biological processes related to carcinogenesis.  

 

When investigating the whole replacement (e.g., R à W) rather than the individual amino 

acids that make the replacement, we showed that there are 17 amino acid replacements 

highly enriched in cancer-associated mutations. This extended list of highly enriched 

replacements found in cancer changes the perceived view that only a handful of cancer 

driver mutations are frequently found in tumors (1, 28), emphasising the complex nature of 

the disease. Our analysis showed that these enriched amino acid replacements in cancer 

exhibit on average an increase in hydrophobicity and decrease in polarity in comparison to 

less enriched replacements. This result underlines the different characteristics of these 

replacements compared to other non-cancer-associated reported replacements. 

 

We demonstrated that physico-chemical properties of amino acids can be used to train a 

machine-learning model predicting if a replacement is cancer-associated. We showed a 
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relatively acceptable accuracy can be achieved when building a model predicting these 

replacements for the PTEN protein. In particular, our model highlights the impact of the 

position of the replaced amino acid where a significant increase in likelihood of an amino 

acid replacement to be cancer-associated if it is positioned earlier in the sequence of the 

protein. It could also be that the early segment of the oncoprotein primarily influences key 

functions (e.g., binding) that are vital in tumor initiation and progression.  
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4. Chapter 4: Essentiality, Protein-Protein Interactions and 
Evolutionary Properties are Key Predictors For Identifying Cancer-
associated Genes Using Machine Learning 

 
* Statement of Authorship 
 
All the work presented in this chapter including analysis and method development were carried out by Amro Safadi with supervision of his 
supervisors prof. Simon C. Lovell. and prof. Andrew J. Doig. Both supervisors approved the figures and final wording of the manuscript 
providing corrections when needed. 

 

 Introduction 

The identification of cancer-related genes (referring to both oncogenes and tumor 

suppressor genes) remains a key challenge. Among all human genes, approximately 3.5% 

have been directly implicated in cancer initiation and progression (1), although it is likely 

that many remain to be found. Accurate identification of genes potentially related to cancer 

would provide an opportunity to advance both personalised treatment of cancer and aid 

drug discovery by providing new targets. The Cancer Gene Census of COSMIC (1) provides 

an expert-curated dataset of cancer-associated genes, relying on tumor sample analysis to 

identify cancer genes. This provides a high standard in accurately identifying these genes.  

However, the expert-curation is a lengthy and complex process due to several factors 

including the availability of tumor samples and the difficulty in sequencing them. Several 

studies have attempted to build models to identify human disease-related genes. 

Computational models built using sets of evolutionary and protein network-based 

properties showed great potential and success in predicting disease genes (2, 3). Using 

protein-protein interactions properties also showed great potential in cancer gene 

prediction when compared to the frequency of mutations based approach (4). However, the 

goal of accurately predicting cancer genes still eludes us, despite multiple approaches that 

have been attempted to date.  

 

One viable approach may be to define and enrich the set of properties that characterise 

these genes and combine these properties to reach a more reliable prediction method.  

Several characteristics may be correlated with the likelihood of a gene being associated with 

cancer.  A prime candidate is essentiality.  A gene is considered essential when loss of its 

function compromises the viability of an individual (5). Essentiality is a quantitative measure 

and not a simple divide between essential versus non-essential, as defining it as such would 
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be impossible due to the changeable nature of essentiality based on the genetic and 

microenvironment context. The identification of essential genes in multiple organisms has 

provided researchers with vital insights into the mechanisms of biological processes (6). For 

example, essential genes are likely to encode hub proteins in protein–protein interaction 

networks, signifying more interacting partners than non-essential genes. Furthermore, 

essential genes are more likely to be abundantly and ubiquitously expressed in cells and 

tissues and have smaller-sized introns (7). Also, several studies determined the relationship 

between evolutionary conservation and the degree of essentiality in genes with variations in 

findings across species (7). The general findings in human genes point to a relationship 

whereby the more essential the gene is, the less likely it is to show enrichment of missense 

mutations. In contrast, the number of synonymous mutations is not dependent on 

essentiality. This indicates that purifying selection acts more stringently on essential genes 

(5, 8). 

 

One could argue that genes implicated in driving and initiating tumors, which generally do 

not compromise viability in a direct manner, are thus unlikely to score high on the 

essentiality spectrum.  However, there are indications that human genes associated with 

genetic disease are likely to be essential (6). Cassa et al (8) investigated heterozygous 

protein-truncating variants in over 60,000 individuals from the Exome Aggregation 

Consortium (ExAC) dataset (9) using the ‘shet’ essentiality score (a metric that provides 

Bayesian estimates of the selection coefficient against heterozygous loss-of-function 

variation) and were able to predict phenotypic severity, age of onset and penetrance for 

Mendelian disease-associated genes. In addition, genes involved in neurological 

phenotypes, including autism, congenital heart disease and inherited cancer risk, seem to be 

under more intense purifying selection, which may indicate essentiality. Overall, 

quantitative estimates of essentiality appear to be particularly useful in Mendelian disease 

gene discovery efforts. 

 

Here, we identify combinations of gene properties that have not been previously used to 

assess the likelihood of a gene to be cancer-associated. We study whether cancer-

associated genes are more likely to be essential than non-cancer genes and check whether 

an uplift in predicting a gene to be a cancerous can be achieved by using essentiality-related 
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properties. These findings might also indicate if these genes are more likely to be under 

stronger selection than other non-cancer related genes. We were able to build a relatively 

accurate machine-learning model predicting cancer genes using essentiality-related 

properties. Using this machine learning approach, we were able to identify further 

candidate genes for cancer, in addition to those currently reported in COSMIC census 

(October 2018). 

 

 Materials and Methods 

4.2.1 Datasets 

A total list of 18,000 human protein-coding genes and various properties (focusing on 

essentiality) were obtained by combining data from different data sources and data 

obtained from previous studies (3, 5). Below are the different sources of data used: 

 

4.2.1.1 Essentiality scores 

We obtained several different essentiality scores calculated for human genes from (5) to use 

in our dataset. Petrovski's 'residual variation intolerance score' (RVIS) (10) and Rackham's 

EvoTol (11) relate the amount of common loss-of-function variation to that of the total gene 

variation. Other scores are based on the work of Samocha et al. (Missense Z-score)(12), 

which sets up a baseline expectation of mutation count per gene based on the sequence 

context, local mutation rate, sequencing depth and, most importantly, sample size. Fadista's 

LoFtool (13) combines the neutral mutation rate of Samocha et al. and the evolutionary 

information in EvoTol. The baseline neutral expectation is compared with the observed 

counts of loss-of-function variants in the Missense Z-score, in Bartha's probability of 

haploinsufficiency (Phi) (14) and in Lek's probability of loss-of-function intolerance (pLI) (15). 

Finally, recent work by Cassa et al. (8) describes a metric (shet) that provides Bayesian 

estimates of the selection coefficient against heterozygous loss-of-function variation. The 

various scores were developed or updated using the Exome Aggregation Consortium (ExAC) 

sample of 60,706 human exomes described in (15). These scores show high correlations 

with one another (5).  
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4.2.1.2 Evolutionary profile and genomic related properties  

We used gene properties provided and constructed in (3) including genomic location, 

protein network parameters and summary statistics of neutrality for human genes. 

The genomic location properties we used in our work were: Chr, Start, End and Strand and 

additionally dN/dS values that indicate neutrality and selection pressure (multiple species). 

All were extracted from Ensembl Biomart Genes (16). 

Group property divides genes into three different mutually excluding groups: (i) Complex-

Mendelian (CM) genes, (ii) Mendelian Non-Complex (MNC) genes, and (iii) Complex Non-

Mendelian (CNM) genes. 

Data also include measures of genetic variation at intra-species level and measures for 

proportion of rare variants, such as Tajima's D exons, Tajima's D regulatory, Fay and Wu's H 

exons and Fay and Wu's H regulatory (3). 

 

4.2.1.3 Protein network properties  

The human protein–protein interaction network (PIN)  was reconstructed from the 

interactions available in the BioGRID database version 3.1.81 (17). Properties such as degree 

were computed as the total number of interactions in which a protein is involved, while 

betweenness and closeness centralities were computed using the NetworkX Python library 

(18). 

 

4.2.1.4 General gene properties 

We enriched the dataset with general gene properties in addition to the properties 

compiled from the sources above. These properties were directly extracted from Ensembl 

Biomart Genes (16) such as Gene % GC content, Transcript count, Gene Length, while some 

were calculated, such as StdDev Transcript length, Average Transcript length, Min Transcript 

length, Max Transcript length and Exon Count. Also, a list of all human Ohnolog genes with 

strict and intermediate score was downloaded from this database: 

(http://ohnologs.curie.fr/). 
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4.2.1.5 Outcome  

To build a supervised machine-learning model, we need to identify what the model is trying 

to predict and add that outcome to every row in our dataset. The outcome in our dataset is 

binary (true or false), indicating if this gene has been identified as a cancer gene. We did this 

by identifying if this gene has been added to the COSMIC ‘s Cancer Gene Census. 

The properties we have used to construct our dataset are not inclusive of all possible 

features that can relate to genes essentiality. Other studies carried out on mice investigated 

an extended list of essentiality properties, where the subset of features we selected here 

was shown to be of particular interest (19). Expanding the number of properties used would 

be an option to explore in the future. 

 

4.2.2 Machine learning method 

This is identical to the method discussed in chapter 3 (section 3.2.5). The only exception is 

that the binary prediction classes here are reflecting whether the individual record 

(containing data related to a single gene) is cancer associated (value =1) or non-cancer 

associated (value = 0) and these were discussed in section 4.2.1.5. 

 Results  

4.3.1 Cancer-associated genes and essentiality scores  

We first determined whether cancer-related genes are likely to have high essentiality 

scores. We aggregated several essentiality scores calculated by multiple metrics (5) for the 

list of genes identified in the COSMIC Census database (Oct 2018) and for all other human 

protein coding genes. Two different approaches to scoring genes’ essentiality are available. 

The first group of methods calculates the essentiality scores by measuring the degree of loss 

of function caused by a change (represented by variation detection) in the gene. It uses the 

following methods: residual variation intolerance score (RVIS), LoFtool, Missense-Z, the 

probability of loss-of-function intolerance (pLI) and the probability of haplo-insufficiency 

(Phi). The second group (Wang, Blomen and Hart- EvoTol) studies the impact of variation on 

cell viability. For all methods above measuring essentiality, a higher score indicates a higher 

degree of essentiality and each method is described in detail in (5). 
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We find that on average the cancer genes exhibit a higher degree of essentiality compared 

to the average scores calculated for all protein coding human genes and all metrics. We find 

that genes associated with cancer have higher essentiality scores on average in both 

categories (intolerance to variants and cell line viability) compared to the average scores 

across all human genes. P-values consistently < 0.00001 (Table 4.1). 

 

We also investigated whether Tumor Suppressor Genes (TSGs) as a distinct group of genes 

would show different degrees of essentiality. We found that no significant difference in the 

degree of essentiality on average for that group compared to the set of all cancer genes 

(Table 4.1).  

 

Method	

Mean	
Essentiality	
Score	for	all	
genes	

Mean	
Essentiality	
Score	for	
cancer	
genes	

Ratio	
(cancer	
genes/all	
genes)	

P-Values	

Mean	
Essentiality	
Score	for	TS	
genes	

Ratio	(TS	
genes/all	
genes)	

P-Values	

Phi	 0.27 0.63 2.34 < .00001 0.58 2.17 < .00001 
Wang	 0.42 0.62 1.48 < .00001 0.65 1.55 < .00001 

S_het	 0.06 0.12 2.07 < .00001 0.12 2.07	 < .00001	

LofTool	 0.50 0.70 1.40 < .00001 0.71 1.42	 < .00001	

Missense-
Z	 0.69 1.86 2.70 < .00001 1.85 2.69 < .00001 

RVSI	 50.0 68.3 1.37 < .00001 68.9 1.38 < .00001 
Table 4.1 The comparison between the mean essentiality scores of cancer genes and all other human genes.  

 
The results are particularly of interest in the context of cancer, as essential genes have been 

shown to evolve more slowly than nonessential genes (20-22) although some conflicts have 

been reported (22). A slower evolutionary rate indicates less probability to evolve resistance 

to a cancer drug. This is particularly important in the case of anticancer drugs as it was 

reported that these drugs cause a change in the selection pressure when administrated, 

leading to increased drug resistance (23).  
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4.3.2 Cancer-associated genes prediction analysis results 

This association between cancer-related genes and essentiality scores prompted us to 

develop methods to identify cancer-related genes using this information. We used a 

machine-learning approach, a range of open-source algorithms were applied and tested to 

produce the most accurate classifier. We focus on properties related to protein-protein 

interaction networks, as essential genes are likely to encode hub proteins, i.e., those with 

highest degree in the network (21, 24).  

 

A total of 9 different modelling approaches (or configurations) were run on the data to 

ensure the selection of the best performing approach (the list of these can be found in 

Appendix A - Table A.2 along with their performance metrics). The performance metric used 

to rank the models was Logarithmic Loss (LogLoss), LogLoss is an appropriate and known 

performance measure when the model is of a binary-classification type. The LogLoss 

measures confidence of the prediction and estimate how to penalize incorrect classification. 

The selection mechanism for the performance metric takes the type of model (binary 

classification in this case) and distribution of values into consideration when recommending 

the performance metric. However, other performance metrics were also calculated and can 

be found in the Appendix A - Table A.2. The performance metrics are calculated for all 

validation and test (holdout) sets to ensure that the model is not over-fitting (4.2). The 

particular model with best performance result (LogLoss) in this case was: eXtreme Gradient 

Boosted Trees Classifier with Early Stopping. The model shows very close LogLoss values for 

training/validation and holdout (20% of the data was left out of the model training and 

validation datasets to be used as a blind test) data sets ensuring no over-fitting.  

 

Scoring Type Score (LogLoss) 

One Validation  0.097 

Cross validation 
(average of all sets) 

0.098 

Holdout 0.099 

Table 4.2 The LogLoss scores for our model validations and holdout segments.  
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The model development workflow (i.e., the model blueprint) is shown in figure 4.1: 

 
Figure 4.1 Model development stages.  

 

The model blueprint (figure 4.1) shows the pre-processing steps and the algorithm used in 

our final model and illustrates the steps involved in transforming input into a model. In this 

diagram, ‘Ordinal encoding of categorical variables’ converts categorical variables to an 

ordinal scale while the ‘Missing Values Imputed’ node imputes missing values. Numeric 

variables with missed values were imputed with an arbitrary value (default -9999). This is 

effective for tree-based models, as they can learn a split between the arbitrary value (-9999) 

and the rest of the data (which is far away from this value). 

 

To demonstrate the effectiveness of our model, a chart was constructed (figure 4.2) that 

shows across the entire validation dataset (divided into 10 segments or bins and ordered by 

the average outcome prediction value) the average actual outcome (whether gene has been 

identified as cancer gene or not) and the average predicted outcome for each segment of 

the data (order from lowest average to highest per segment). The left side of the curve 

indicates where the model predicted a low score on one section of the population while the 

right side of the curve indicates where the model predicted a high score. The "Predicted" 

blue line displays the average prediction score for the rows in that bin. The "Actual" red line 

displays the actual percentage for the rows in that bin. By showing the actual outcomes 

alongside the predictive values for the dataset, we can see how close these predictions are 

to the actual known outcome for each segment of the dataset. Also, we can determine if the 

accuracy diverges in cases where the outcome is confirmed cancer or when it is not, as the 

segments are ordered by their average of outcome scores. 
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Figure 4.2 The Lift Chart illustrating model’s accuracy.  

 
In general, the steeper the “actual” line is, and the more closely the “predicted” line 

matches the actual line, the better the model. A close relationship between these two lines 

is indicative of the predictive accuracy of the model; a consistently increasing line is another 

good indicator of satisfactory model performance. The graph we have for our model 

indicates strong accuracy of our prediction model. 

 

Moreover, the confusion matrix (Table 4.3) and the summary statistics (Table 4.4) show the 

actual versus predicted values for both true/false categories for our training dataset (80% of 

the total dataset). The model statistics show the model reached just over 89% specificity 

and 60% sensitivity in predicting cancer genes. This means that we are able to detect over 

half of cancer genes successfully while only misclassifying around 10% of non-cancer genes 

within the training/validation datasets. The summary statistics (Table 4.4) also shows the F1 

score (harmonic mean of the precision and recall) and Matthews Correlation Coefficient 

(MCC is the geometric mean of the regression coefficient) for the model. The low F1 score 

reflects our choice to maximise the true negative rate (preventing significant 

misclassification of non-cancer genes). 
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Predicted	

Actual	

-	 +	 	

-	 12493	(TN)	 1490	(FP)	 13983	

+	 159	(FN)	 243	(TP)	 402	

12652	 1733	 	

Table 4.3 The model’s Confusion Matrix (where TP is true positives. TN is true negatives. FP is false positives. 
FN is false negatives) 

	
	

F1	
Score	

True	
Positive	
Rate	

(Sensitivity)	

False	
Positive	
Rate	

(Fallout)	

True	
Negative	
Rate	

(Specificity)	

Positive	
Predictive	
Value	

(Precision)	

Negative	
Predictive	
Value	

Accuracy	

Matthews	
Correlation	
Coefficient	

0.23	 0.61	 0.11	 0.89	 0.14	 0.99	 0.89	
	

0.25	

Table 4.4 Summary of the model’s performance statistics 

	

The	False	Positives	

To further confirm the model’s ability to predict cancer genes, we used the model on 190 

new cancer genes that had been added to the COSMIC’ Cancer Census Genes between 

October 2018 and April 2020. Applying the model, we were able to predict 56 genes out of 

the newly added 190 genes as cancer genes, all of which were among the false positives 

detected by the model. This indicates that the model is indeed suitable to use to predict 

novel candidate cancer genes that could be experimentally confirmed later.  

	

Another way to visualise the model performance and determine the optimal score to use as 

a threshold between cancer and non-cancer genes is the ‘prediction distribution’ graph 

(Figure 4.3) that illustrates the distribution of outcomes. The distribution (in purple) shows 

the outcome where gene is not classified as cancer gene while the second distribution (in 

green) shows the outcomes where gene is classified as cancer gene. The dividing line 

represents the selected threshold at which the binary decision is optimal (creating a 

desirable balance between true negatives and true positives). Figure 4.3 shows how well our 

model discriminates between prediction classes (cancer gene or non-cancer gene) and 
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shows the selected score (threshold) that could be used to make a binary (true/false) 

prediction for a gene to be classified as a candidate cancer gene. Every prediction to the left 

of the dividing line is classified as non-cancer associated and every prediction to the right of 

the dividing line is classified as cancer associated. 

 

 
Figure 4.3 The prediction distribution graph showing how well the model discriminates between cancer and 
non-cancer genes.  

 
The prediction distribution graph can be interpreted as follows: purple to the left of the 

threshold line, is for instances where genes were correctly classified as non-cancer (true 

negatives). Green to the left of the threshold line is for instances were incorrectly classified 

as non-cancer (false negatives). Purple to the right of the threshold line, is for instances 

were incorrectly (according to the current training/validation dataset) classified as cancer 

gene (false positives). Green to the right of the threshold line, is for instances were correctly 

classified as cancer genes (true positives). The graph again confirms that the model was able 

to accurately between cancer and non-cancer genes. 

Using the receiver operating characteristic curve (ROC) curve produced for our model 

(Figure 4.4), we were able to evaluate the accuracy of prediction. The AUC (area under the 

curve) is a metric for binary classification that considers all possible thresholds and 
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summarizes performance in a single value, with the larger the area under the curve, the 

more accurate the model. An AUC of 0.5 suggests that predictions based on this model are 

no better than a random guess. An AUC of 1.0 suggests that predictions based on this model 

are perfect, (this is highly uncommon and likely flawed indicating some features that should 

not be known in advance are being used in model training and thus revealing the outcome). 

As the area under the curve is of 0.86, we conclude that the model is accurate.  The circle 

intersecting the ROC curve represents the threshold chosen for classification of genes. This 

is used to transform probabilities scores assigned to each gene into binary classification 

decision where each gene would be classified into potential cancer gene (true) or not cancer 

gene (false). 

 

	

Figure 4.4 The receiver operator characteristic (ROC) curve indicating model performance 

 
Feature	Impact	

Feature impact measures how much worse a model’s error score would be if the model 

made predictions after randomly shuffling the values of one field input (while leaving other 

values unchanged) and thus shows how useful each feature is for the prediction. The scores 

were normalised so that the value of the most important feature column is 100% and the 

other subsequent features are normalised to it. This helps identify those properties that are 
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particularly important in relation to predicting cancer gene in our model and would aid in 

further our understanding of the biological aspects that might underline the propensity of a 

gene to be a cancer gene. 

‘Closeness’ and ‘degree’ are ranked as the properties with the highest feature impact (4.5). 

Both are protein–protein interaction network properties, indicating a central role of the 

protein product within the network.  We find that both correlate with likelihood of cancer 

association., Other important properties such the ‘phi’ essentiality score (probability of 

haploinsufficiency compared to baseline neutral expectation) and Tajima’s D regulatory 

(measures for genetic variation at intra-species level and for proportion of rare variants) 

show that increased essentiality accompanied with occurrence of rare variants increase the 

likelihood of pathological impact and for the gene to be linked to cancer initiation or 

progression. We also note that greater length of a gene or transcript increases the likelihood 

of a somatic mutation, so increasing the chance of a mutation within that gene, thus 

increasing the likelihood of it being a cancer gene.  

 

	

Figure 4.5 The top properties ranked by their relative importance used to make the predictions by the model 
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To confirm that the selected model performance is optimal based on the input data used, 

we created a new blended model combining the best 2nd and 3rd modelling approaches 

from all modelling approaches tested within our project and compared the performance 

metric (AUC) of our selected model with the new blended model. We found that 

improvement (despite the added complexity) is small (0.008) where the blended model 

achieved an AUC of 0.866 and our selected model achieved an AUC of 0.858. 

We have also retrained our model using a dataset that excludes general gene properties as 

listed in the ‘Data Sets’ section and found that a reduction in model’s performance was 

evident but very small. The model trained on this dataset achieved an AUC of 0.835 and a 

sensitivity of 55% at a specificity of 89%. This small reduction in the predictability of the 

models indicates that essentiality and protein-protein interaction network properties are 

the most important features predicting cancer gene and that information carried by gene 

general properties can be in most part be represented by information carried by these 

properties. This can be rationalised, as longer genes (median transcript length =3737) tend 

to have the highest number of protein–protein interactions (25). 

 

4.3.3 Comparison with other cancer driver genes prediction methods 

According to a recent comprehensive review of cancer driver genes prediction models, 

currently the best performing machine learning model is driverMaps with AUC= 0.94 

followed by HotNet2 with AUC=0.81 (27). When comparing our model performance using 

AUC to the other 12 reviewed cancer driver genes prediction models, our model would 

come second with AUC= 0.86. Our predictive model achieved better AUC measured 

performance when compared to the top-performing model using similar network based 

approach (HotNet2 with AUC=0.81) and better than the best function-based prediction 

model (MutPanning with AUC=0.62). The strong performance of our model based on AUC of 

the ROC graph indicates the importance of combining different and distinctive gene 

properties when building prediction models while avoiding reliance on the frequency 

approach that could mask important driver genes that were detected in fewer samples. 

Despite the apparent success and high AUC score reported by our model, this should be 

treated with some caution. The AUC value is based on the ROC curve which is constructed 
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by varying the threshold and then plotting the resulting sensitivities against the 

corresponding false positive rates. Several statistical methods are available to use to 

compare two AUC results and determine if the difference is significant (26-28). These 

methods require the ranking of the variables in its calculations (e.g., to calculate the 

variance or covariance of the AUC). The ranking of predicated cancer associated genes was 

not available from all the other 12 cancer driver genes prediction methods. Thus, we were 

not able to measure whether the difference between the AUC score of our method and the 

AUC scores of these methods is significant. 

	

4.3.4 The Cancer genes association with WGD and Ohnologs 

Enriching the model’s training dataset with added properties that show correlation with 

oncogenes could enhance the model prediction ability and elevate further the accuracy of 

the model. One potential feature is knowing whether a gene is an ohnolog gene. 

 

Paralogs retained from whole genome duplications (WGD) events have occurred in all 

vertebrates (two rounds of WGDs) some 500 MY ago are called ‘ohnologs’ after Susumu 

Ohno (29). Ohnologs have been shown to be prone to dominant deleterious mutations and 

frequently implicated in cancer and genetic diseases (29). We investigated the enrichment 

of ohnologs within cancer-associated genes. Ohnolog genes can be divided into three sets: 

strict, intermediate, and relaxed. These three sets are constructed using statistical 

confidence criteria (29) . We found that 44% of the total number of cancer-associated genes 

(as reported in COSMIC census) belongs to an ohnologs family (using strict & intermediate 

thresholds). Considering that 20% of all known human genes are ohnologs (strict & 

intermediate) and the ratio of cancer-associated genes makes less than 4% of all human 

genes, the enrichment of ohnolog genes with cancer-related genes is 2 times higher than 

expected. If only ohnologs that pass the strict threshold were considered, the fraction of 

cancer-related genes that are ohnologs is still high at 34%. This association between 

oncogenes and genes retained from the whole genome duplication events (ohnologs) could 

potentially added as a supplementary feature in our model (e.g., a feature indicating if the 

gene is an ohnologs). Enriching our training dataset with this feature could potentially 

increase the model accuracy further. 



 101 

 

 Novelty of results 
 
Here I was able to I contribute to the on-going efforts highlighted in sections 1.3.2 and 1.4,4 

in the literature review in predicting cancer associated genes. I showed that combining 

various properties of cancer genes, including evolutionary related measures such as 

selection pressure and measures of genetic variants, to train a machine-learning model to 

identify cancer related genes could result in superior model performance. One property that 

was not investigated before in relation to predicting cancer associated genes is the 

essentiality of the gene. We found that the cancer-associated genes exhibit a higher degree 

of essentiality compared to the scores calculated for all protein coding human genes. Our 

results could be interpreted in the context of the genes’ involvement in particular biological 

activities. Genes classed as essential are often involved in cell, embryo, and organism 

growth. Similarly, proliferation is key for cancer cells. Therefore, the sets of genes that are 

essential and those that are involved in unregulated growth, as seen in cancer, tend to 

overlap. This finding provides further evidence for the importance of evolutionary aspects 

when studying cancer genes. Scientists might be able to further the understanding of cancer 

by incorporating properties linked to essentiality in their studies. 

 

We trained a machine-learning model (a classifier) using a distinctive blend of gene 

properties to measure the likelihood of a protein coding gene to be cancer associated. Our 

dataset included general gene properties like gene % GC content and transcript count. Also 

added were protein-protein interactions properties and various measures indicating 

selection pressure and essentiality scores. Protein-protein interactions properties were 

confirmed to be very influential when assessing the likelihood of a gene to be cancer-

associated. Our model also showed that the essentiality score Phi and Tajima’s D Regulatory 

to have the largest effect. These findings may offer targets for further research. 

 

Our model was able to produce a novel list of candidate genes predicted to be cancer-

associated providing a good basis for scientists to prioritise these genes in their research. 
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5. Chapter 5: Discussion 
 
Cancer is a complex disease; research that worked on providing the genomic profile of the 

disease is still producing new findings. The number of genes implicated in carcinogenesis is 

constantly increasing along with the number of mutations that are instigating the cascade of 

steps necessary for the transformation of normal cells into carcinogenic cells. For example, 

the number of genes implicated in cancer increased by over 30% in the last 4 years as per 

the COSMIC genes census (1). Cancer as a disease has a distinct nature when compared to 

other genetic diseases. Whole genome sequencing of tumor samples showed that single 

nucleotide variants in tumor cells can be two to three orders of magnitude more abundant 

than variants found in adjacent normal cells (2). The biological effect of these mutations is 

often non-catastrophic, as for a tumor to form and progress, several mutations may need to 

be present. Characteristics known about deleterious mutations found in the human 

population and those reported for other genetic diseases are not likely to be similar to 

cancer-associated mutations and their genes. 

 

Identifying how cancer-associated genes and mutations differ from non-cancer related 

mutations and genes would allow us a better understanding of the disease and could 

enhance the usage of advanced prediction analysis in finding mutations that trigger tumor 

initiation and progression (drivers). Studying mutation characteristics at the protein level is 

particularly useful in understanding their effect on the downstream protein products and 

reveals the link between the genetic variants and the effect on the biological processes 

involved in carcinogenesis. 

 

Using machine learning techniques has a great potential in producing accurate predictive 

models that have the ability to indicate the likelihood of a gene or a mutation to be cancer-

associated, highlighting at the same time the relationship between the properties used in 

the model and the prediction. Machine learning techniques are often superior to traditional 

statistical methods because they are more flexible and rely on fewer statistical assumptions. 

The only assumption being made is that the model training data is representative of the 

future scoring data. 
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This chapter summarises the overall findings of this thesis and discusses how the results are 

interpreted, their implications and how they can be utilised in the cancer research field, 

highlighting any limitation.  

 

We started investigating the impact missense point cancer-associated mutations have on 

protein stability. Stability is one of the most important measures that can indicate the effect 

a deleterious mutation has on the protein (3). Several previous studies reported the 

destabilising effect of this type of mutation on the protein structure and the association of 

this effect with other genetic diseases (4). We were able to utilise the availability of protein 

structures for proteins produced by some of the most frequent oncogenes. We studied the 

consequences of the cancer associated missense amino acid replacements, known for each 

of these genes, on the stability of the protein products. We showed that unlike most of 

other non-cancer deleterious replacements, cancer-associated replacements exhibit on 

average a neutral to stabilising effect on the protein with some exceptions. Despite doing 

this analysis for highly frequently mutated genes found in tumor samples, there is still the 

drawback of not being able to process all oncoproteins due to a lack of resolved 3-

dimensional protein structures. As more advanced artificial intelligence systems are being 

developed providing accurate predictions for the needed structural data, it will be possible 

to expand this work and confirm the distinct effect on stability many cancer-associated 

mutations exhibit. A recent example is the AlphaFold program (5) that became available 

publicly after our work was completed. AlphaFold is showing excellent prediction 

performance in solving protein structures. 

 

Nonetheless our result in chapter 2, indicated a distinct impact on the stability of the 

protein by some amino acid replacements in cancer-associated genes, prompted us to 

investigate the spectrum of amino acid replacements found implicated in cancer and their 

properties. To further confirm the presence of distinct patterns, we identified favoured 

amino acids that feature at a high frequency in cancer mutations when compared against 

other control groups, such as expected probabilities based on the genetic code table or 

Blosum62 (6). This approach provided several advantages compared to determining the 

enrichment purely using mutation rate (the number of times the same mutation is found in 

different tumor samples).  This method allowed us to avoid potential bias in the finding 
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resulting from unbalanced number of tumor samples belonging to different cancer types 

and identify the enriched ratios of amino acids in cancer-associated mutation through 

comparisons with their expected frequencies under no selection (genetic code), natural 

selection (Blosum62) and selection applied on deleterious mutations in other genetic 

diseases (ExAC). Tryptophan (Trp) and Cysteine (Cys) were the most frequently replaced 

amino acids in cancer-associated mutations compared to the expected frequency based on 

the genetic code. Trp and Cys featured also in the most frequent replacements when 

compared to Blosum62. Notably, Cys and Trp are the least likely amino acids to be replaced 

within Blosum62, which in addition to being less abundant could also corroborate their key 

position in conserved protein regions. We found that all aromatic amino acids have an 

enrichment > 1.2 when comparing replacement residues in cancer-associated mutations to 

their frequencies based on genetic code. Moreover, Phe and Tyr have an enrichment > 1.5 

when comparing replacement residues in cancer-associated mutations to missense 

mutations from other genetic diseases. Thus, we conclude that aromatic amino acid group 

plus Cys are the most enriched amino acids as ‘replacement residue’ linked to cancer-

associated mutations in comparison to all other control groups. This expands the previous 

view to include all aromatic amino acids in the highly enriched residues category in cancer 

(7, 8). We also confirmed that Arg is the most likely amino acid to mutate in cancer-

associated mutations, in terms of absolute frequencies, despite Ser, Leu, Ala and Gly being 

substantially more abundant in proteins (7-9).  

 

Supposing that these patterns pertain to the cancer genes molecular functions, we 

examined the cancer-associated genes ontology enrichment. By analysing the molecular 

functions of all 590 genes implicated in cancer in our study as per COSMIC Oct – 2017, we 

confirmed they are frequently associated with binding activity. We noticed a wide spread of 

involvement in ‘Bindings’ functions at Fold Enrichment >1.35 in all types of binding. In some 

binding functions such as ‘damaged DNA’ binding, the enrichment was > 9. Out of 590 

cancer-associated genes analysed 80 were involved in RNA binding with fold enrichment 

=9.81 and 228 genes in DNA binding types with fold enrichment =3.24. We hypothesised a 

link between the oncogenes affinity to binding activity in cancer and the amino acid residues 

and replacements found enriched in cancer-associated mutations.   
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Trp and the other aromatic amino acids are often essential in interactions with non-protein 

ligands (frequently via stacking interactions). In particular, they are often critical for forming 

protein-nucleotide complexes realised through interactions between aromatic residues and 

the bases in the nucleotides. Aromatic stacking (involving Trp for example) is necessary to 

recognize binding sites on DNA or RNA. Moreover, this aromatic stacking is involved in the 

process of mismatch repair; strand separation, degradation and RNA cap binding (10). These 

interactions can explain the high enrichment of Trp in cancer mutations and indeed the high 

enrichment in general of the aromatic amino acids Phe, Tyr and His (semi aromatic) as the 

replacement residues.  

 

Cys can be involved in forming disulphide bonds, particularly in extracellular proteins. These 

bonds are known to stabilize the protein structure (11). Also, disulphide bonds were shown 

play a key role in proteins and enzymes that stimulate cell proliferation (12), in particular, 

they were shown to affect receptors regulating cellular growth and proliferation altering 

their functions to be constitutively activated (13, 14). If a mutation occurs with Cys as the 

replacement residue, then there is a chance that an inter-molecular disulphide bond would 

form altering the receptors and enzymes regulating cellular growth and causing the 

constant ‘turned on’ state in some elements within the signalling pathways instituting the 

uncontrolled proliferation of the cell (one of cancer main hallmarks). Such consideration 

could explain some of the functional changes that led to tumor development that were 

possibly not understood before.  

 

The high enrichment of Cys in cancer-associated replacement (in the replacement residue) 

could also potentially be explained in terms of the role Cys oxidation plays in intracellular 

signalling and cell growth.  Gaining Cys may provide an opportunity for Cys oxidation 

(potentially by the elevated reactive oxygen generation rate detected in almost all cancers 

(15)). Cys oxidation can affect proteins, altering their functions and in some instances 

enabling signal transmission to downstream targets (16) . An example of Cys oxidation 

involvement in cell growth control is its ability to inactivate certain tyrosine phosphatases; 

thus phosphorylated-tyrosine signal persists until the oxidized enzyme is degreaded (17). 

We also recommend studying the impact of this modification during cancer cells 

development.  
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CpG dinucleotides in DNA are known to mutate at high rates, and so the high mutability of 

Arg in deleterious mutations in general was explained by the high number of CpG sequences 

(the highest among all amino acids) presented in the codons for Arg (8). However, Arg is 

specifically highly enriched in cancer-associated mutations at the ‘original residue’. Our 

investigation found that Arg is also found to be frequent in binding sites and plays a key role 

in the stability of the protein; replacement of Arg is likely to have a detrimental effect on the 

function and structure of a DNA binding complex (18, 19). Thus, cancer-associated genes 

affinity with binding activities can also explain the high mutability of Arg. 

 

Our proposed explanations for the high enrichment of certain amino acid residues provide a 

missing link in numerous studies that reported on these findings. It connects these patterns 

to biological processes that were proven to be vital for carcinogenesis.  We believe this 

approach could allow scientists researching these processes to highlight their impact further 

and encourage other possible biological processes to be put forward as explanations to the 

enrichment of Cys and aromatic amino acid group in cancer. 

 

When the whole replacement is considered as the entity for analysis, we showed that 17 

amino acid replacements are highly enriched in cancer-associated mutations (ratio > 2). This 

extended list of highly enriched replacements found in cancer changes the perceived view 

that only a handful of cancer driver mutations are frequently found in tumors (8) 

emphasising the complex nature of the disease. Our analysis showed that these enriched 

amino acid replacements in cancer exhibit on average an increase in hydrophobicity and 

decrease in polarity in comparison to less enriched replacements. This result underlines the 

different characteristics of these replacements compared to other non-cancer-associated 

reported replacements and that labelling cancer-associated mutations by their impact on 

the downstream proteins (by measuring the change in the property values between the 

original residue and the replacement residue) could yield important patterns and allow us to 

build a model that can score any mutation based on their likelihood of being cancer-

associated. We recommend adapting this characteristic based categorisation of cancer-

associated replacements when studying carcinogenesis. This approach could prove to be 

more insightful when assessing new targeted therapies than solely attributing them to the 
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organs or tissues in which the tumor sample was from. This characteristic based 

categorisation could reveal presence of same or similar effects certain biological processes 

presented by these replacements across different cancer types.  

 

We used the differences in physico-chemical properties value between the ‘original residue’ 

and the ‘replacement residue’ and the position of the replacement on the protein sequence 

to train a machine-learning model predicting if a replacement is cancer-associated for the 

PTEN gene. This approach can be used to score any amino acid replacement and can be 

deployed to every oncoprotein with enough number of reported replacements. Although 

the model showed an adequate performance (F1 score of 0.76), it would be more powerful 

to extend the data to include other attributes such as genomic data and other protein 

structure data (when available). One recent study did demonstrate the efficacy of protein 

structure features in predicting cancer-associated mutation (20). The authors built a 

machine-learning model that achieved accuracy of over 89%, demonstrating protein 

structure and some microenvironment features could be excellent (when available) 

descriptors when predicting cancer-associated replacements.  One noteworthy finding in 

our model was the impact of the position of the amino acid replacement on the prediction 

scores. There is a significant increase in likelihood of an amino acid replacement to be 

cancer-associated if it is positioned earlier in the sequence of the protein. This could be an 

artefact of the size of oncoproteins. However, There is evidence that diseases associated 

SNPs do occur in special locations (pockets and voids) on the protein structure (21) and 

these early segment of protein sequence could be responsible for forming these regions. It 

could also be that the early segment of the oncoprotein primarily influences key functions 

(e.g., binding) that are vital in tumor initiation and progression. We recommend this to be 

further validated.  

 

It could beneficial in future research to prioritise replacements found when sequencing 

tumor samples that have higher scores of being cancer associated as per our model results. 

Our model can be utilised as-is without limitation or necessity for the 3-dimensional protein 

structure to be resolved. Using the model’s prediction scores produced by our model, 

mutations found in tumors could be ranked by their likelihood of being cancer-associated 
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allowing for better understanding of mutations driving the initiation and progression of 

tumors.  

 

Of particular interest are those replacements that were predicted to be cancer-associated 

but were not yet classed as such in the original training dataset for the gene PTEN. The 

dataset used to train the model was extracted from COSMIC Oct -2017. To confirm the 

model’s ability to predict cancer-associated mutations, we extracted the somatic missense 

replacements implicated in cancer from COSMIC 2022 for the gene PTEN and compared the 

list of our false positives to the updated list of cancer-associated mutations. We found that 

47% of the replacements in our false positives list are now included in COSMIC. If we only 

check against replacements that scored > 0.8 then the percentage increases to over 60%. 

This further confirms the model ability to predict novel candidate cancer mutations. We 

recommend considering the false positive replacements provided in the Appendix A - Table 

A.3 when researching novel mutations as these could be experimentally confirmed later. 

 

We investigated aspects of cancer-associated genes to see if they show distinctive 

characteristics when compared to other human genes. One property of interest was the 

essentiality of the gene, where the essentiality score given to a gene indicates the effect of 

loss of function in this gene on the viability of the human. As mutated cancer-associated 

genes generally do not compromise viability in a direct manner, it could be expected that it 

is unlikely for these genes to score high on the essentiality spectrum. However, we 

demonstrated that on average there is positive correlation between gene essentiality scores 

and cancer associated genes. We applied a range of methods that score the degree of 

essentiality. In particular, we applied LofTool and Missense Z-score where the calculation of 

essentiality scores is based on intolerance to variants in human population sequenced data, 

and Blomen KBM7 and Wang K562 where cell viability data is used. We found that the 

cancer-associated genes exhibit a higher degree of essentiality compared to the scores 

calculated for all protein coding human genes. This finding was true for both types of 

measurement of essentiality (intolerance to variants and cell line viability). We also showed 

that this elevated essentiality score is also found in the case of Tumor Suppressor (TS) 

genes, as a distinct group of genes, as it is for all cancer-associated genes when compared to 

other human protein coding genes. Our results could be interpreted in the context of the 
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genes’ involvement in particular biological activities. Genes classed as essential are often 

involved in cell, embryo, and organism growth. Similarly, proliferation is key for cancer cells. 

Therefore, the sets of genes that are essential and those that are involved in unregulated 

growth, as seen in cancer, tend to overlap. This finding provides further evidence of the 

importance of evolutionary aspects when studying cancer genes. Scientists might be able to 

further the understanding of cancer by incorporating properties linked to essentiality in 

their studies. 

 

Several previous studies looked at the relationship between evolutionary conservation and 

the degree of essentiality in genes across species (22, 23). Essential genes have been shown 

to be more conserved and to evolve more slowly to nonessential genes in human (22, 23). 

We hypothesise those cancer-associated genes that are highly essential could be more 

suitable candidates for targeted therapies potentially providing less likelihood of developing 

drug resistance due their increased conserved status. It has been shown that cancer drugs 

cause a change in the selection pressure when administrated leading to increased drug 

resistance (24) so if the essential nature of a gene could slow its ability to evolve drug 

resistance, compared to less essential genes, then these genes should prioritised for drug 

discoveries when possible.  

 

This result prompted us to develop a machine-learning model that could predict cancer-

associated genes using essentiality related and general genomic properties; we extended 

the range of gene properties in our dataset to include, in addition to the essentiality scores, 

properties strongly linked to (although do not directly measure of) the gene’s essentiality. 

Essential genes are likely to encode hub proteins in protein–protein interaction networks, 

have smaller-sized introns, are abundant and are ubiquitously expressed in cells and tissues 

(25). It was shown too that the more essential the gene is, the smaller the number of 

reported missense mutations for this gene (26). Therefore, in addition to general gene 

properties like gene % GC content and transcript count, we added protein–protein 

interaction network properties, such as degree indicating the number of interactions, 

closeness and betweenness. We also added various measures indicating selection pressure, 

such as dN/dS and measures of genetic variants, such as Tajima's D based on exons and 

regulatory sequences and Fay and Wu's H based on exons and regulatory sequences. 
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We tested different model configurations, selecting the model with the best performance. 

The resulting classifier displays excellent performance in predicting whether a human 

protein-coding gene is cancer-related; it achieved 89% for the accuracy and the area under 

curve (AUC) was > 0.85. Our machine-learning model prediction scores provide a good base 

to prioritise the likelihood of a human protein coding genes to be a cancer gene.  Of key 

importance in our results are those predictions that are false positives, i.e., those genes with 

high scores that have no published cancer association.  Two possible explanations exist: 

either they represent a failure of the model to correctly classify the data or, alternatively, 

these gene are in fact cancer related but have not yet been characterised as such. These 

genes are therefore likely to encode future cancer targets. 

 

Our machine-learning model identified the most important properties for the classification, 

ranking the properties by their impact on the prediction and revealing their influences on 

the genes found to be cancer associated. Protein-protein interactions properties such as 

degree and closeness are confirmed to be very influential when assessing the likelihood of a 

gene to be cancer-associated. This reflects that cancer-associated genes often code for 

protein found in ‘hubs’ within the protein-protein interaction networks. The ranking also 

showed essential score Phi and Tajima’s D Regulatory to be among top impactful features 

(albeit to lesser extent). This confirms that on average these genes are more essential than 

other non-cancer genes and shows evidence for positive selection on these genes. These 

findings may offer targets for further research. Furthermore, our model is easy to 

implement by scientists investigating potential cancer-related genes using the open-source 

code provided in the Appendix C. Importantly, additional properties may be easily 

incorporated into our model revealing their influence on the prediction. 

 

According to a recent comprehensive review of cancer driver genes prediction models, 

currently the best performing machine learning model is driverMaps with AUC= 0.94 

followed by HotNet2 with AUC=0.81 (27). When comparing our model performance using 

AUC to the other 12 reviewed cancer driver genes prediction models, our model would 

come second with AUC= 0.86. Our predictive model achieved a better AUC measured 

performance when compared to the top-performing model using a similar network based 
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approach (HotNet2 with AUC=0.81) and better than the best function-based prediction 

model (MutPanning with AUC=0.62). This strong performance indicates the importance of 

combining different and distinctive gene properties when building prediction models. To 

train our model, we used a combination of protein-protein interaction network-based 

properties, essentiality scores and evolutionary based properties in addition to general 

genomic properties. We recommend combining properties from different approaches and 

using the most recent list of genes currently implicated in cancer to further enhance the 

performance of cancer-associated genes prediction models. We also recommend 

considering evolutionary related properties of studied genes when predicting the 

association with cancer. As demonstrated in our results in chapter 4, could provide a 

significant contribution to our ability to identify cancer-associated genes. Our model and the 

other top performing cancer-associated genes prediction models provide a good basis for 

scientists to start considering candidate genes predicted to be cancer-associated by these 

methods in their research. Cancer genes databases such as COSMIC could also incorporate 

these candidate cancer-associated genes (possibly in a separate tier) and make them 

available for researchers. 

 

In this thesis, we worked on a key challenge in cancer research: the identification of cancer-

related oncogenes and cancer-associated point mutations and their distinctive 

characteristics through the utilisation of the machine learning techniques. Accurate 

identification of genes and mutations potentially related to cancer would provide an 

opportunity to advance both personalised treatment of cancer and aid drug discovery by 

providing new targets. Identifying the distinctive characteristics of these genes and 

mutations furthers our understanding of this disease and using them to train and build 

computational models is showing great potential. This approach would be practical and 

provide results in timely fashion accelerating multiple aspects in cancer research.  
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Appendix A 
 
Cancer-associated replacements prediction models: 
 

 
Table A.1 List of all different machine learning models built to predict the liklihood of a 
replacement to be cancer associated for the PTEN protein with their performance results 
(extreme Gradient Boosted Trees Classifier was selected as the preferred method) 
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Cancer-associated genes prediction models: 
 

 
Table A.2 List of all different machine learning models built to predict the likelihood of a 
gene to be cancer associated with their performance results (extreme Gradient Boosted 
Trees Classifier was selected as the preferred method) 
 
 
Potential cancer-associated replacements identified by our model for PTEN gene (PTEN 
protein):  
 

Replacement Likelihood to be cancer associated 
score 

Y2199C 97.90% 
P167S 91.82% 
E18K 91.11% 

G125E 90.50% 
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P78S 90.16% 
F33S 89.92% 

N421I 89.87% 
E105K 89.69% 
S65F 89.14% 

G103E 88.82% 
M131K 88.66% 
P168L 88.43% 
D104N 87.51% 
D113N 87.51% 
Y102C 87.51% 
P117R 87.01% 
L175P 87.01% 
L180P 86.75% 
L220P 86.75% 
D57N 86.54% 
P269S 85.82% 
L90F 85.74% 

F183L 85.67% 
K38T 85.33% 
L60F 85.25% 

E206K 85.01% 
E251K 85.01% 
I14N 84.42% 
F21Y 84.26% 

E204K 84.05% 
H4Y 83.54% 

T94N 83.31% 
H89Y 83.16% 
L13F 83.06% 
L84S 82.64% 

G267D 82.54% 
S188F 82.50% 
P886H 82.26% 
W11R 81.93% 
Q169H 81.88% 
E236K 81.77% 
Y176C 81.74% 
V116G 81.27% 
K564I 81.22% 
V139G 81.02% 
S72C 81.01% 

H156L 80.96% 
L124F 80.94% 
L111F 80.94% 
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D248N 80.93% 
V184D 80.89% 
R80C 80.62% 
H62N 80.52% 
P214L 80.44% 
E357K 80.35% 
K59N 80.25% 
F311L 80.12% 
G180D 80.09% 
T91S 79.95% 
T55N 79.95% 
T46N 79.95% 

P130A 79.80% 
P286L 79.74% 
A163V 79.62% 
R80L 79.60% 
C12S 79.59% 

S191Y 79.54% 
W222R 79.49% 
R86C 79.40% 

H127N 79.38% 
A9S 79.26% 

Y557F 79.25% 
T46A 79.13% 

G140R 79.08% 
S79C 78.91% 

C162Y 78.90% 
G14R 78.85% 

W1505C 78.68% 
L32F 78.58% 

P1635S 78.55% 
P1826S 78.55% 
P1020S 78.55% 
P1452S 78.55% 
C307F 78.51% 
E438K 78.46% 
E436K 78.46% 
K140R 78.44% 
T165M 78.34% 
E1294K 78.19% 
E1432K 78.19% 
E981K 78.19% 
I21M 78.17% 

Y1367D 78.10% 
G125R 77.97% 
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P354Q 77.95% 
F1047L 77.94% 
F1407L 77.94% 
A81V 77.88% 
C31R 77.88% 
F538I 77.54% 

K164N 77.49% 
G145S 77.31% 
S160R 77.30% 
A29P 77.14% 

P1191S 77.13% 
P867S 77.13% 
G886C 77.12% 
A88T 76.86% 
G77S 76.82% 
A68T 76.75% 

A119T 76.75% 
G152S 76.72% 
P330S 76.65% 
G282E 76.62% 
G374E 76.62% 
A155T 76.54% 
P618S 76.51% 
T78N 76.46% 

L1578P 76.44% 
Q98E 76.39% 
L8V 76.32% 

P91T 76.30% 
I164M 76.19% 
D341Y 76.17% 
L237R 76.15% 
P938L 76.12% 

P1262L 76.12% 
P1348L 76.12% 
L109V 76.08% 

P1816S 76.04% 
Y779D 76.02% 

G1108E 76.00% 
V63I 75.82% 

G1187W 75.77% 
S145R 75.71% 
S190N 75.70% 
S1200F 75.69% 
S881F 75.69% 

G1137E 75.30% 
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F1177S 75.17% 
P44T 75.14% 

E191V 75.05% 
D360Y 75.04% 
L197R 74.98% 
E296Q 74.90% 
P508S 74.88% 
R86S 74.87% 

Y860N 74.87% 
S1554I 74.83% 
R92Q 74.65% 

P1081R 74.52% 
S225L 74.49% 
A68E 74.48% 

H245Y 74.41% 
E1105K 74.21% 
E1242K 74.21% 
E1002K 74.21% 
Q74E 74.14% 
E746K 73.96% 

E1753K 73.96% 
E1090K 73.96% 
E1192K 73.96% 
P520L 73.92% 
P735L 73.92% 
F313V 73.87% 
A6V 73.85% 

C645F 73.83% 
F724L 73.67% 
S824F 73.47% 
S803F 73.47% 
S839F 73.47% 
S821F 73.47% 
F631L 73.43% 

G1062E 73.39% 
G1775E 73.28% 
F1265L 73.21% 
S1320F 73.18% 
S969F 73.18% 

T1005K 73.14% 
E383K 73.10% 
I303S 73.10% 

P2197L 72.97% 
D261A 72.96% 
C12Y 72.95% 
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P282L 72.85% 
D863H 72.75% 
G1465E 72.64% 

S834I 72.55% 
P1075L 72.51% 
E894K 72.31% 
S1418F 72.26% 

A6T 72.22% 
M858K 72.20% 
D301N 72.19% 
D826Y 72.15% 
D599Y 72.15% 
D739Y 72.15% 
F430S 72.08% 
L883R 71.98% 

L1484R 71.98% 
I103L 71.96% 
E283G 71.83% 
P772S 71.72% 
P963L 71.64% 
E644K 71.63% 
Q48R 71.54% 
V38M 71.33% 

S1685F 71.17% 
D695Y 71.17% 

G7V 71.12% 
L1218P 71.10% 
S700I 71.03% 

L1513Q 70.91% 
A240E 70.90% 
V176L 70.89% 
S42P 70.85% 

Y404C 70.85% 
Y180H 70.83% 
N87D 70.76% 
D805Y 70.73% 
D910N 70.69% 

D1309N 70.69% 
D1138N 70.69% 
C1295S 70.56% 
F1122L 70.40% 
W334G 70.33% 
E1019G 70.31% 
A250V 70.30% 
R147Q 70.28% 
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D1222H 70.21% 
V336D 70.06% 
S209Y 70.05% 
P592S 70.03% 
V173I 70.01% 
G100A 70.00% 

A1415D 69.90% 
E251D 69.86% 
S145A 69.86% 
D360N 69.82% 
R76H 69.82% 
E520K 69.79% 
E441K 69.79% 
R143Q 69.74% 
P1943L 69.72% 
P1080L 69.65% 
F1079V 69.64% 
S778F 69.63% 
S718F 69.63% 
D113G 69.63% 

D1698N 69.56% 
L638R 69.55% 
T173I 69.52% 
V176I 69.36% 
Q30R 69.33% 
L2V 69.23% 

D77G 69.18% 
I135T 69.14% 
E646K 69.09% 
R80H 68.86% 
L368F 68.65% 
R86H 68.63% 

H173R 68.48% 
N50S 68.38% 

G639E 68.18% 
R312K 68.17% 

E1656V 68.11% 
Q207H 67.87% 
Y1161N 67.85% 
S359L 67.80% 

D1065N 67.78% 
D1308N 67.78% 
G1147D 67.72% 
V104M 67.65% 
D589H 67.62% 
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M76V 67.37% 
N1125Y 67.29% 
P461L 67.21% 
P423L 67.21% 

I1403N 67.21% 
G1150W 67.12% 

P748L 67.07% 
S1568Y 66.90% 
G581D 66.82% 
S158P 66.77% 
S302N 66.66% 
G180S 66.63% 
S372L 66.62% 
D599H 66.57% 
S1647L 66.31% 
R45T 66.31% 

E786G 66.30% 
E690G 66.30% 
E542G 66.30% 
G195R 66.26% 
G206R 66.26% 
P1882S 66.23% 

V39F 66.20% 
L473F 66.12% 
D450V 66.03% 
R913K 66.02% 

Y1730C 66.00% 
E1839Q 65.95% 
E1926Q 65.86% 
L1337F 65.76% 
L1053F 65.76% 
H213P 65.71% 

D1042V 65.68% 
D1168V 65.68% 
Q1724K 65.65% 
Y980C 65.62% 
E736V 65.50% 
R392K 65.35% 
V116M 65.34% 
A191V 65.25% 
D450N 65.20% 
D805N 65.20% 
N344K 65.18% 
H442Y 65.13% 
S1872F 65.09% 
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T218A 65.08% 
Q961P 65.06% 
V576D 65.04% 
Y714D 64.95% 
T1312K 64.89% 
R265L 64.79% 
K256R 64.73% 

A1027S 64.61% 
V69A 64.59% 

G236R 64.57% 
G209R 64.57% 
N73S 64.50% 

Y428H 64.29% 
H388Y 64.24% 
M303I 64.03% 

E1002Q 64.02% 
D1556V 63.90% 
S221T 63.89% 

D1778N 63.87% 
Y742C 63.69% 
Y777S 63.67% 

F1118Y 63.64% 
T271R 63.46% 

C2067G 63.46% 
T220A 63.45% 

R1370K 63.43% 
G1932D 63.42% 
A196T 63.28% 
V159M 63.03% 

H4R 63.02% 
I23L 62.98% 

E1927G 62.90% 
N1136K 62.90% 
R270L 62.89% 
G451D 62.85% 
S263R 62.83% 

A1576S 62.81% 
G394V 62.78% 

E1722Q 62.66% 
A335S 62.60% 
N161S 62.57% 
L1817F 62.50% 
L1727F 62.50% 
D1916H 62.48% 
F1835Y 62.31% 
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M1610I 62.22% 
Q771P 62.21% 
P1348R 62.17% 
N299K 61.94% 
T216I 61.81% 
T280I 61.81% 

G919V 61.77% 
S228C 61.72% 
R332W 61.66% 
E1017G 61.65% 
L463S 61.65% 

D1657N 61.63% 
D1266N 61.63% 
S1326L 61.57% 
S903L 61.57% 

N1148K 61.53% 
K386N 61.52% 
W882G 61.39% 
R536M 61.30% 
V179L 61.26% 
R12Q 61.20% 
S956N 61.14% 

S1475N 61.14% 
D248E 61.03% 
R186S 61.02% 
N392K 61.01% 
H611Y 60.97% 
M750I 60.87% 
L1141R 60.84% 
M241L 60.78% 
R772K 60.67% 
R608K 60.61% 
R539K 60.61% 
Y498C 60.39% 
L814F 60.33% 
L612F 60.33% 

T1089S 60.25% 
T1374S 60.25% 
D759N 60.21% 
D659N 60.21% 
L843P 60.12% 

R1402W 60.10% 
R1210W 60.10% 
E761Q 60.07% 
R203G 60.06% 
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R205G 60.06% 
E1346D 60.05% 
E898D 60.05% 
H442Q 60.04% 
F354Y 59.97% 
S256R 59.96% 

A1305S 59.91% 
S1694N 59.85% 
M489I 59.72% 
G496V 59.66% 
G428V 59.66% 
S1159L 59.62% 
S1058L 59.62% 
H222R 59.58% 

H1318D 59.56% 
L708I 59.54% 

Y1058H 59.42% 
N1904Y 59.41% 
N1952Y 59.41% 
E1753G 59.40% 
R1012W 59.39% 
R1608W 59.39% 

V24A 59.38% 
A1588S 59.31% 
H550Y 59.28% 
R203Q 59.22% 
L84W 59.19% 
S444N 59.18% 

V1134E 59.16% 
V1153G 59.04% 
S422C 59.02% 

T1659S 58.96% 
T387N 58.94% 
R821K 58.94% 
A774D 58.91% 
H1318Y 58.90% 
D595N 58.81% 
S261R 58.81% 

S1164N 58.80% 
S1195N 58.80% 
W230L 58.76% 
R409C 58.74% 
E385D 58.67% 

R1190W 58.64% 
K1684M 58.58% 
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R1344W 58.51% 
R323L 58.43% 
H418Y 58.40% 
Y701H 58.39% 
I103V 58.37% 
M7L 58.33% 

P337T 58.10% 
L351W 57.84% 
C1146Y 57.79% 
W1558R 57.67% 
E367D 57.52% 
I50V 57.48% 
I21V 57.48% 

R260Q 57.42% 
W1363S 57.34% 
H388N 57.30% 
I362M 57.27% 

D1556A 57.22% 
D1065A 57.22% 
V169M 57.20% 
C324R 57.15% 
P1074T 57.05% 
T1050S 56.99% 
R1188C 56.96% 
R1318C 56.96% 
R1535C 56.96% 
Q427H 56.89% 
W383R 56.89% 
T737P 56.85% 
N816K 56.84% 
T307S 56.84% 
S536L 56.77% 
T547K 56.74% 
Q489K 56.62% 

R1582W 56.61% 
K541T 56.58% 
G458V 56.58% 
R500W 56.53% 
R617W 56.53% 
K1269T 56.50% 
K1077N 56.42% 
P644R 56.41% 
A640S 56.31% 
T226I 56.26% 

N2193K 56.21% 
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D534N 56.19% 
Q1296H 56.11% 
Y557H 56.00% 
Y504H 56.00% 

S1141N 55.96% 
N211H 55.87% 

R1446W 55.87% 
K1236N 55.84% 

I71V 55.80% 
G1033R 55.75% 
G1009R 55.75% 
G1023R 55.75% 
R241H 55.73% 
G857V 55.69% 
R769K 55.65% 
R770K 55.65% 

R1946K 55.62% 
L554S 55.61% 
A309T 55.57% 
I83V 55.40% 

G267S 55.39% 
R323C 55.32% 
R322C 55.32% 
D218E 55.18% 
N228S 55.18% 
L1214V 55.16% 
S410C 55.14% 
T415S 55.09% 
T786N 55.04% 
T598N 55.04% 
Q795L 55.04% 
T565N 55.03% 
T547N 55.03% 
T522N 55.03% 
R247H 55.00% 
V3M 55.00% 

S231A 54.97% 
A283P 54.94% 
R265H 54.93% 
S268P 54.90% 
R205Q 54.84% 
R183Q 54.84% 

N1934K 54.82% 
A284T 54.72% 

A1473E 54.70% 
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L329S 54.67% 
P1037A 54.58% 
D467V 54.56% 
G355R 54.55% 
P2035R 54.54% 
T341M 54.43% 
I441M 54.43% 
L1825S 54.40% 
R201Q 54.39% 
D327V 54.39% 

D1112V 54.39% 
R1740W 54.37% 
Q202R 54.36% 
T248I 54.35% 

G1893V 54.34% 
E1382D 54.29% 
Q406L 54.16% 

E1051D 54.09% 
D202G 54.07% 
I164V 54.07% 
G477V 54.04% 

A1263V 53.98% 
A1245V 53.98% 
A1117V 53.98% 
H809D 53.95% 
G451R 53.93% 
R499W 53.92% 
C1003R 53.91% 
G1983V 53.90% 
G282R 53.90% 
G289S 53.83% 

R1067C 53.55% 
R1541C 53.55% 
R1665C 53.55% 
R1351C 53.55% 
R1027C 53.55% 
G888R 53.53% 

G1294R 53.53% 
K541N 53.52% 

G1226R 53.48% 
G1328R 53.48% 
G1011R 53.48% 
G1150R 53.48% 
T333M 53.47% 
N1402Y 53.45% 
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D268E 53.43% 
R558W 53.34% 
Q489P 53.31% 

H1580N 53.26% 
S1270T 53.16% 
S1095C 53.08% 
R851L 53.05% 
L754F 52.99% 
L638F 52.99% 
S849Y 52.99% 
A284V 52.95% 
R1123S 52.93% 
S294R 52.93% 
T931A 52.92% 

T1249A 52.92% 
R384G 52.91% 
A868T 52.88% 

A1235T 52.88% 
L566S 52.85% 
L705S 52.85% 

G1239S 52.82% 
G1299S 52.82% 
R653W 52.82% 
S1483C 52.77% 
E319A 52.76% 
R608W 52.76% 
T1108S 52.72% 
K882R 52.63% 

R1117C 52.60% 
R1157C 52.60% 
R1384C 52.60% 
R1322C 52.60% 
L1731V 52.53% 
R1046C 52.46% 
R998C 52.46% 

R1414C 52.46% 
R1257C 52.46% 
A987V 52.33% 

A1342V 52.33% 
R870L 52.33% 

A1186T 52.30% 
E2070Q 52.29% 
Q730H 52.19% 
L306V 52.12% 
L724H 52.11% 
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P1348T 52.10% 
I1605M 52.09% 
H1886L 52.08% 
C1146R 52.08% 
T1443M 52.06% 
M241V 52.04% 
S577N 52.03% 

P1671A 51.94% 
R1895W 51.88% 
A909V 51.87% 
S342P 51.87% 

G1187R 51.86% 
P576T 51.72% 
P550T 51.72% 

W1409L 51.70% 
Y663H 51.66% 

G1294V 51.63% 
R812C 51.62% 
K661N 51.61% 

G1199R 51.52% 
G1369R 51.52% 
Q538L 51.45% 
T351A 51.44% 

I1404M 51.42% 
E2190K 51.35% 
P1039T 51.25% 
P1755T 51.25% 
T993A 51.24% 

T1170A 51.24% 
S345T 51.20% 

K1202N 51.15% 
T1690N 51.03% 
V201M 50.94% 
A350G 50.92% 

K1277Q 50.89% 
P1135A 50.75% 
C1144Y 50.73% 
Q373E 50.68% 
R815L 50.65% 
A999V 50.65% 

A1473V 50.65% 
A1520V 50.65% 
A1088V 50.65% 
R817C 50.62% 
R692C 50.62% 
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K468N 50.57% 
K644N 50.57% 
E746D 50.56% 
S1227R 50.55% 
D1657A 50.50% 
D1664A 50.50% 
S1141R 50.48% 
S1198R 50.48% 
S334T 50.31% 
S348T 50.31% 

S1380P 50.26% 
R332Q 50.20% 
S1049T 50.12% 
P1191T 50.11% 
K493N 50.04% 
S1440P 50.02% 
S1134P 50.02% 
R366G 50.00% 
R311G 50.00% 
R328G 50.00% 
R338G 50.00% 

Table A.3: The likelihood score of each amino acid replacement for PTEN protein to be 
cancer–associated as predicted by our model 
 
 
 
Potential cancer-associated genes candidates as identified by our model: 
 

Gene Name Gene ID 
APC ENSG00000134982 
APP ENSG00000142192 
PSEN1 ENSG00000080815 
ACTB ENSG00000075624 
INTS6 ENSG00000102786 
LRP2 ENSG00000081479 
LRP1 ENSG00000123384 
CUL4A ENSG00000139842 
SRC ENSG00000197122 
SIN3A ENSG00000169375 
SMAD1 ENSG00000170365 
IRS1 ENSG00000169047 
HDAC4 ENSG00000068024 
GSK3B ENSG00000082701 
CSNK2A1 ENSG00000101266 
DAG1 ENSG00000173402 
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SPTBN1 ENSG00000115306 
FYN ENSG00000010810 
LRPPRC ENSG00000138095 
SOS1 ENSG00000115904 
SMURF2 ENSG00000108854 
RANBP9 ENSG00000010017 
KRT18 ENSG00000111057 
SMARCA2 ENSG00000080503 
USP7 ENSG00000187555 
HDAC2 ENSG00000196591 
DDB1 ENSG00000167986 
PPARGC1A ENSG00000109819 
EP400 ENSG00000183495 
TRAF3 ENSG00000131323 
RXRA ENSG00000186350 
ARNTL ENSG00000133794 
TP73 ENSG00000078900 
HTT ENSG00000197386 
BRE ENSG00000158019 
ITGB1 ENSG00000150093 
PIAS1 ENSG00000033800 
KMT2A ENSG00000118058 
PRKCB ENSG00000166501 
VAV1 ENSG00000141968 
PAK2 ENSG00000180370 
NCOA3 ENSG00000124151 
TGFBR1 ENSG00000106799 
MAPK8IP3 ENSG00000138834 
RELA ENSG00000173039 
TLE1 ENSG00000196781 
DNMT1 ENSG00000130816 
UBE2D1 ENSG00000072401 
POU2F1 ENSG00000143190 
CUL1 ENSG00000055130 
DYNC1H1 ENSG00000197102 
ACTN1 ENSG00000072110 
JARID1A,KDM5A ENSG00000073614 
RPS6KB1 ENSG00000108443 
UBE3A ENSG00000114062 
KAT2B ENSG00000114166 
CHD8 ENSG00000100888 
TRIM33 ENSG00000197323 
SMURF1 ENSG00000198742 
MAP3K7 ENSG00000135341 
LMNB1 ENSG00000113368 
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DHX9 ENSG00000135829 
NLK ENSG00000087095 
NFKB1 ENSG00000109320 
RASA1 ENSG00000145715 
PTK2 ENSG00000169398 
BAZ1B ENSG00000009954 
SETDB1 ENSG00000143379 
BMPR1A ENSG00000107779 
TERF2 ENSG00000132604 
HDAC1 ENSG00000116478 
NTRK2 ENSG00000148053 
MAFG ENSG00000197063 
IKZF3 ENSG00000161405 
MAP3K1 ENSG00000095015 
RBPJ ENSG00000168214 
ILF3 ENSG00000129351 
TRAF6 ENSG00000175104 
NEDD4 ENSG00000069869 
CARM1 ENSG00000142453 
HDAC9 ENSG00000048052 
RELB ENSG00000104856 
MEF2C ENSG00000081189 
PRKCI ENSG00000163558 
RNF2 ENSG00000121481 
ITSN1 ENSG00000205726 
PTPN6 ENSG00000111679 
RBL2 ENSG00000103479 
DLG1 ENSG00000075711 
NFKBIA ENSG00000100906 
ETS1 ENSG00000134954 
ZEB2 ENSG00000169554 
MED1 ENSG00000125686 
GSN ENSG00000148180 
KLF5 ENSG00000102554 
ATR ENSG00000175054 
RNF4 ENSG00000063978 
CDK8 ENSG00000132964 
HGS ENSG00000185359 
EIF3H ENSG00000147677 
YWHAQ ENSG00000134308 
TSG101 ENSG00000074319 
DOT1L ENSG00000104885 
CEBPB ENSG00000172216 
MAP1B ENSG00000131711 
NCOR2 ENSG00000196498 
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PTPRS ENSG00000105426 
BMPR2 ENSG00000204217 
GRB10 ENSG00000106070 
SKI ENSG00000157933 
CDK2 ENSG00000123374 
CUL3 ENSG00000036257 
SMARCC1 ENSG00000173473 
KPNB1 ENSG00000108424 
RAB27A ENSG00000069974 
TAF4 ENSG00000130699 
JUP ENSG00000173801 
RNF111 ENSG00000157450 
TRIM28 ENSG00000130726 
SAFB ENSG00000160633 
SATB1 ENSG00000182568 
YWHAG ENSG00000170027 
GRB2 ENSG00000177885 
SYT1 ENSG00000067715 
HDAC3 ENSG00000171720 
CHUK ENSG00000213341 
BAT3,BAG6 ENSG00000204463 
HIRA ENSG00000100084 
YAP1 ENSG00000137693 
XRCC5 ENSG00000079246 
NCKAP1 ENSG00000061676 
IGF2BP1 ENSG00000159217 
SP1 ENSG00000185591 
HNRNPC ENSG00000092199 
MARK2 ENSG00000072518 
H2AFY ENSG00000113648 
RB1CC1 ENSG00000023287 
PCNA ENSG00000132646 
TCEA1 ENSG00000187735 
CDC5L ENSG00000096401 
VCP ENSG00000165280 
HDAC7 ENSG00000061273 
DAPK1 ENSG00000196730 
RFX3 ENSG00000080298 
USP25 ENSG00000155313 
C11orf30 ENSG00000158636 
CUL2 ENSG00000108094 
VCAN ENSG00000038427 
TCOF1 ENSG00000070814 
DVL3 ENSG00000161202 
RYR1 ENSG00000196218 
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USP4 ENSG00000114316 
GTF3C1 ENSG00000077235 
CDC42 ENSG00000070831 
TAB2 ENSG00000055208 
KAT7 ENSG00000136504 
NRIP1 ENSG00000180530 
PRKCD ENSG00000163932 
FXR1 ENSG00000114416 
SPTAN1 ENSG00000197694 
EHMT1 ENSG00000181090 
RERE ENSG00000142599 
UBQLN4 ENSG00000160803 
RAE1 ENSG00000101146 
CCNA2 ENSG00000145386 
MAP3K3 ENSG00000198909 
ACTR3 ENSG00000115091 
POU2F2 ENSG00000028277 
BARD1 ENSG00000138376 
RBL1 ENSG00000080839 
DLG2 ENSG00000150672 
MAP3K4 ENSG00000085511 
ADRBK1 ENSG00000173020 
ZBTB7A ENSG00000178951 
GNA12 ENSG00000146535 
DNM1 ENSG00000106976 
PSMD4 ENSG00000159352 
TOP2B ENSG00000077097 
TFAP2A ENSG00000137203 
FOS ENSG00000170345 
CRK ENSG00000167193 
NRF1 ENSG00000106459 
BCL2L1 ENSG00000171552 
CBFA2T2 ENSG00000078699 
COPS6 ENSG00000168090 
STX1A ENSG00000106089 
GRIA1 ENSG00000155511 
SP3 ENSG00000172845 
CDH2 ENSG00000170558 
SMAD7 ENSG00000101665 
GRIP1 ENSG00000155974 
PLK1 ENSG00000166851 
AMBRA1 ENSG00000110497 
XRCC6 ENSG00000196419 
UPF1 ENSG00000005007 
TBK1 ENSG00000183735 
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PTK2B ENSG00000120899 
TCF4 ENSG00000196628 
MAPK14 ENSG00000112062 
SREBF2 ENSG00000198911 
BPTF ENSG00000171634 
E2F4 ENSG00000205250 
PLEC1,PLEC ENSG00000178209 
ITPR1 ENSG00000150995 
UPF2 ENSG00000151461 
SIN3B ENSG00000127511 
PRKCQ ENSG00000065675 
PRMT1 ENSG00000126457 
VCL ENSG00000035403 
TOPBP1 ENSG00000163781 
GNA13 ENSG00000120063 
TERF1 ENSG00000147601 
HSPA5 ENSG00000044574 
ATF7IP ENSG00000171681 
LRP6 ENSG00000070018 
INSM1 ENSG00000173404 
MECOM ENSG00000085276 
RBM39 ENSG00000131051 
MYH11 ENSG00000133392 
POLR2A ENSG00000181222 
EPN1 ENSG00000063245 
GAB1 ENSG00000109458 
USF1 ENSG00000158773 
BCAR1 ENSG00000050820 
PAFAH1B1 ENSG00000007168 
TCF8,ZEB1 ENSG00000148516 
BIRC2 ENSG00000110330 
RAP1A ENSG00000116473 
UBE2E2 ENSG00000182247 
SH3GL2 ENSG00000107295 
CDC25A ENSG00000164045 
PIAS4 ENSG00000105229 
VAV2 ENSG00000160293 
KRT8 ENSG00000170421 
THBS1 ENSG00000137801 
SSRP1 ENSG00000149136 
CCNK ENSG00000090061 
USP32 ENSG00000170832 
RPA1 ENSG00000132383 
PDPK1 ENSG00000140992 
37469 ENSG00000123908 
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STAT5A ENSG00000126561 
KHDRBS1 ENSG00000121774 
ABCD3 ENSG00000117528 
SREBF1 ENSG00000072310 
MPP6 ENSG00000105926 
CAND1 ENSG00000111530 
ACTG1 ENSG00000184009 
PPP4C ENSG00000149923 
SIRT1 ENSG00000096717 
CANX ENSG00000127022 
WWOX ENSG00000186153 
KDM1A ENSG00000004487 
CDKN1A ENSG00000124762 
ARID1B ENSG00000049618 
NR2F1 ENSG00000175745 
TFDP1 ENSG00000198176 
GRIA2 ENSG00000120251 
HCK ENSG00000101336 
YBX1 ENSG00000065978 
RIPK1 ENSG00000137275 
MARK3 ENSG00000075413 
MAPK7 ENSG00000166484 
EPC1 ENSG00000120616 
SNAP23 ENSG00000092531 
SMARCC2 ENSG00000139613 
RAPGEF1 ENSG00000107263 
PIK3CA ENSG00000121879 
NIPBL ENSG00000164190 
GIT1 ENSG00000108262 
MAPK8 ENSG00000107643 
TRIP13 ENSG00000071539 
MBD2 ENSG00000134046 
UBE2N ENSG00000177889 
TRAF2 ENSG00000127191 
MAP3K5 ENSG00000197442 
NR2C2 ENSG00000177463 
STXBP1 ENSG00000136854 
UBE2E3 ENSG00000170035 
SRF ENSG00000112658 
MGRN1 ENSG00000102858 
NCOA6 ENSG00000198646 
KIF11 ENSG00000138160 
PHF21A ENSG00000135365 
PPARD ENSG00000112033 
HMGB1 ENSG00000189403 
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ATF4 ENSG00000128272 
SRSF1 ENSG00000136450 
UBE4B ENSG00000130939 
ATG3 ENSG00000144848 
UCHL5 ENSG00000116750 
RORA ENSG00000069667 
CTBP1 ENSG00000159692 
HR ENSG00000168453 
G3BP2 ENSG00000138757 
RBBP8 ENSG00000101773 
CCT3 ENSG00000163468 
PSMA1 ENSG00000129084 
NFIX ENSG00000008441 
ASH2L ENSG00000129691 
MAP4K4 ENSG00000071054 
PRKG1 ENSG00000185532 
DISC1 ENSG00000162946 
CSK ENSG00000103653 
JADE1 ENSG00000077684 
HSPA4 ENSG00000170606 
USP15 ENSG00000135655 
CNOT2 ENSG00000111596 
FAF1 ENSG00000185104 
CDYL ENSG00000153046 
RAD50 ENSG00000113522 
SPRY2 ENSG00000136158 
DSP ENSG00000096696 
MYH10 ENSG00000133026 
DDX17 ENSG00000100201 
STAT2 ENSG00000170581 
COPS2 ENSG00000166200 
ATF2 ENSG00000115966 
DAB2IP ENSG00000136848 
PLCG2 ENSG00000197943 
MIB1 ENSG00000101752 
RTN4 ENSG00000115310 
WASL ENSG00000106299 
KAT2A ENSG00000108773 
WDR82 ENSG00000164091 
NFYA ENSG00000001167 
TFAP2B ENSG00000008196 
KAT5 ENSG00000172977 
ROCK1 ENSG00000067900 
PPP1CB ENSG00000213639 
FANCM ENSG00000187790 
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GIGYF2 ENSG00000204120 
ESRRG ENSG00000196482 
PHOX2A ENSG00000165462 
LDB1 ENSG00000198728 
RFXANK ENSG00000064490 
SRRM2 ENSG00000167978 
MTA1 ENSG00000182979 
ZNF423 ENSG00000102935 
STUB1 ENSG00000103266 
COPS5 ENSG00000121022 
DLG4 ENSG00000132535 
BECN1 ENSG00000126581 
SNRPN ENSG00000128739 
BMI1 ENSG00000168283 
SKIL ENSG00000136603 
MYC ENSG00000136997 
MAP3K8 ENSG00000107968 
THRA ENSG00000126351 
MSX2 ENSG00000120149 
RPS6KA2 ENSG00000071242 
YY1 ENSG00000100811 
NSF ENSG00000073969 
SUMO1 ENSG00000116030 
PTPN2 ENSG00000175354 
BIRC6 ENSG00000115760 
CTBP2 ENSG00000175029 
PKN2 ENSG00000065243 
EPOR ENSG00000187266 
TRIO ENSG00000038382 
AP2M1 ENSG00000161203 
NUP62 ENSG00000213024 
ABLIM1 ENSG00000099204 
MAP2K7 ENSG00000076984 
CHD1 ENSG00000153922 
RUNX3 ENSG00000020633 
EPHA3 ENSG00000044524 
CD247 ENSG00000198821 
DAB2 ENSG00000153071 
SMARCA5 ENSG00000153147 
E2F3 ENSG00000112242 
TLN1 ENSG00000137076 
CD44 ENSG00000026508 
RIPK2 ENSG00000104312 
APLP2 ENSG00000084234 
DCC ENSG00000187323 
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REV3L ENSG00000009413 
PAG1 ENSG00000076641 
SCNN1A ENSG00000111319 
RPTOR ENSG00000141564 
FANCL ENSG00000115392 
PRMT5 ENSG00000100462 
CSNK2B ENSG00000204435 
GNAI2 ENSG00000114353 
TWIST1 ENSG00000122691 
DHX15 ENSG00000109606 
AP1M1 ENSG00000072958 
PXN ENSG00000089159 
EPC2 ENSG00000135999 
KDM5B ENSG00000117139 
TSC22D1 ENSG00000102804 
SQSTM1 ENSG00000161011 
CRMP1 ENSG00000072832 
FKBP4 ENSG00000004478 
MED13 ENSG00000108510 
CRKL ENSG00000099942 
FBXW11 ENSG00000072803 
ZNF24 ENSG00000172466 
GRIK3 ENSG00000163873 
TRIP4 ENSG00000103671 
ACTN2 ENSG00000077522 
CFLAR ENSG00000003402 
PLEKHA5 ENSG00000052126 
DYRK1A ENSG00000157540 
CTNNA1 ENSG00000044115 
PPFIA2 ENSG00000139220 
SOCS3 ENSG00000184557 
SLX4 ENSG00000188827 
SYNCRIP ENSG00000135316 
FOXA2 ENSG00000125798 
GNB1 ENSG00000078369 
ISL1 ENSG00000016082 
TNF ENSG00000232810 
MAPK8IP1 ENSG00000121653 
CDC37 ENSG00000105401 
SNX6 ENSG00000129515 
ATG5 ENSG00000057663 
PAXIP1 ENSG00000157212 
DST ENSG00000151914 
STK25 ENSG00000115694 
HDAC5 ENSG00000108840 
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G3BP1 ENSG00000145907 
FZR1 ENSG00000105325 
EIF6 ENSG00000242372 
CDC20 ENSG00000117399 
HSP90B1 ENSG00000166598 
ACLY ENSG00000131473 
PRKD1 ENSG00000184304 
MARK4 ENSG00000007047 
POU4F1 ENSG00000152192 
CDK5RAP2 ENSG00000136861 
PARP1 ENSG00000143799 
ATF6 ENSG00000118217 
GATAD2A ENSG00000167491 
FN1 ENSG00000115414 
PIK3C2A ENSG00000011405 
SNAP25 ENSG00000132639 
EPHB2 ENSG00000133216 
AP3B1 ENSG00000132842 
SFN ENSG00000175793 
TNKS ENSG00000173273 
UBC ENSG00000150991 
HIC1 ENSG00000177374 
PRKRA ENSG00000180228 
PPM1B ENSG00000138032 
WDR48 ENSG00000114742 
HELLS ENSG00000119969 
RREB1 ENSG00000124782 
CSMD1 ENSG00000183117 
MRE11A ENSG00000020922 
ARPC3 ENSG00000111229 
PROX1 ENSG00000117707 
UBE2E1 ENSG00000170142 
XRCC4 ENSG00000152422 
HSPD1 ENSG00000144381 
TRIM32 ENSG00000119401 
BIN1 ENSG00000136717 
OTUB1 ENSG00000167770 
SIAH2 ENSG00000181788 
SCN5A ENSG00000183873 
MCC ENSG00000171444 
DAB1 ENSG00000173406 
SCNN1B ENSG00000168447 
NR2F2 ENSG00000185551 
ARIH2 ENSG00000177479 
CUL5 ENSG00000166266 
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GATA4 ENSG00000136574 
RHEB ENSG00000106615 
AP2B1 ENSG00000006125 
PCBD2 ENSG00000132570 
MYBL2 ENSG00000101057 
RIMS1 ENSG00000079841 
ID2 ENSG00000115738 
EXOC4 ENSG00000131558 
SYVN1 ENSG00000162298 
TRIM29 ENSG00000137699 
SF1 ENSG00000168066 
CHEK1 ENSG00000149554 
GLI2 ENSG00000074047 
PDCD10 ENSG00000114209 
BMP7 ENSG00000101144 
MEF2A ENSG00000068305 
CRYAB ENSG00000109846 
NGFR ENSG00000064300 
TRIM2 ENSG00000109654 
PKP2 ENSG00000057294 
FEZ1 ENSG00000149557 
ELAVL1 ENSG00000066044 
AHR ENSG00000106546 
ERBB2IP ENSG00000112851 
CDK5 ENSG00000164885 
NR5A1 ENSG00000136931 
EIF4B ENSG00000063046 
PRRC2A ENSG00000204469 
DOCK1 ENSG00000150760 
SF3B2 ENSG00000087365 
MAPK10 ENSG00000109339 
ARF6 ENSG00000165527 
PDCD6IP ENSG00000170248 
MAML1 ENSG00000161021 
MTA2 ENSG00000149480 
HIPK2 ENSG00000064393 
DVL2 ENSG00000004975 
RNF41 ENSG00000181852 
PRKCE ENSG00000171132 
BTRC ENSG00000166167 
IRAK4 ENSG00000198001 
PARD3 ENSG00000148498 
CLU ENSG00000120885 
HNRNPM ENSG00000099783 
ATN1 ENSG00000111676 
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HERC2 ENSG00000128731 
DLGAP1 ENSG00000170579 
CAV1 ENSG00000105974 
ADD1 ENSG00000087274 
USP49 ENSG00000164663 
TUBB ENSG00000196230 
RAI1 ENSG00000108557 
PPARGC1B ENSG00000155846 
SHC1 ENSG00000160691 
CHD3 ENSG00000170004 
POLD1 ENSG00000062822 
NUP205 ENSG00000155561 
PRKCA ENSG00000154229 
RFX1 ENSG00000132005 
ACVR1B ENSG00000135503 
ACTA,ACTA1 ENSG00000143632 
PFN1 ENSG00000108518 
ITGA5 ENSG00000161638 
NCK2 ENSG00000071051 
TUBA1A ENSG00000167552 
IKZF4 ENSG00000123411 
CTTN ENSG00000085733 
MST1R ENSG00000164078 
MNAT1 ENSG00000020426 
PPP3CA ENSG00000138814 
TARDBP ENSG00000120948 
E2F1 ENSG00000101412 
FRS2 ENSG00000166225 
MACF1 ENSG00000127603 
HES1 ENSG00000114315 
TYK2 ENSG00000105397 
VDAC1 ENSG00000213585 
WDTC1 ENSG00000142784 
RGS20 ENSG00000147509 
SGK1 ENSG00000118515 
PPP5C ENSG00000011485 
ARHGEF2 ENSG00000116584 
AIMP2 ENSG00000106305 
ACTN4 ENSG00000130402 
AKAP13 ENSG00000170776 
RBBP6 ENSG00000122257 
PSMC4 ENSG00000013275 
MBD3 ENSG00000071655 
CHAF1A ENSG00000167670 
TEC ENSG00000135605 
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TAF5 ENSG00000148835 
SLC25A12 ENSG00000115840 
MCPH1 ENSG00000147316 
PTPN12 ENSG00000127947 
FOXP1 ENSG00000114861 
UBE2I ENSG00000103275 
RFWD2 ENSG00000143207 
HNRNPA1 ENSG00000135486 
GTF2IRD1 ENSG00000006704 
EPS8 ENSG00000151491 
GABPA ENSG00000154727 
TBP ENSG00000112592 
TAF6 ENSG00000106290 
JARID2 ENSG00000008083 
ANK3 ENSG00000151150 
ITCH ENSG00000078747 
CRADD ENSG00000169372 
RAPGEF2 ENSG00000109756 
INPPL1 ENSG00000165458 
PRPF6 ENSG00000101161 
WWP1 ENSG00000123124 
PSMD7 ENSG00000103035 
INTS1 ENSG00000164880 
ZHX1 ENSG00000165156 
MED13L ENSG00000123066 
GTF2H1 ENSG00000110768 
ERC2 ENSG00000187672 
COL4A1 ENSG00000187498 
YWHAZ ENSG00000164924 
SETD8 ENSG00000183955 
TERF2IP ENSG00000166848 
SLC12A2 ENSG00000064651 
SOX6 ENSG00000110693 
MCM7 ENSG00000166508 
XPO6 ENSG00000169180 
ARID4B ENSG00000054267 
ARHGAP32 ENSG00000134909 
COL4A3BP ENSG00000113163 
HAND2 ENSG00000164107 
SYNE1 ENSG00000131018 
LCP2 ENSG00000043462 
MCL1 ENSG00000143384 
SRCAP ENSG00000080603 
LIMS1 ENSG00000169756 
SF3A1 ENSG00000099995 
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CENPE ENSG00000138778 
CBX4 ENSG00000141582 
PHB ENSG00000167085 
PPP1R8 ENSG00000117751 
TNKS2 ENSG00000107854 
PLAGL1 ENSG00000118495 
PTPRF ENSG00000142949 
MAP3K12 ENSG00000139625 
SAP130 ENSG00000136715 
NECAB2 ENSG00000103154 
AP1G1 ENSG00000166747 
PHLPP1 ENSG00000081913 
GATA6 ENSG00000141448 
FADD ENSG00000168040 
PHB2 ENSG00000215021 
AEBP2 ENSG00000139154 
CXXC1 ENSG00000154832 
LAMA4 ENSG00000112769 
HSPB1 ENSG00000106211 
RBPMS ENSG00000157110 
FBL ENSG00000105202 
DLG5 ENSG00000151208 
SMAD6 ENSG00000137834 
SETD7 ENSG00000145391 
NFE2 ENSG00000123405 
UBE2K ENSG00000078140 
FBLN2 ENSG00000163520 
TTN ENSG00000155657 
MCM2 ENSG00000073111 
SRPK2 ENSG00000135250 
UBQLN1 ENSG00000135018 
MDFI ENSG00000112559 
ZNRF1 ENSG00000186187 
C7orf55-LUC7L2 ENSG00000146963 
MAP3K7IP1,TAB1 ENSG00000100324 
PAK7 ENSG00000101349 
HNRNPU ENSG00000153187 
IQGAP1 ENSG00000140575 
LBR ENSG00000143815 
CFL1 ENSG00000172757 
PIAS2 ENSG00000078043 
ZFR ENSG00000056097 
POLH ENSG00000170734 
KIF3A ENSG00000131437 
CSNK2A2 ENSG00000070770 
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ERN1 ENSG00000178607 
NEDD9 ENSG00000111859 
XBP1 ENSG00000100219 
ANAPC2 ENSG00000176248 
PRPF40A ENSG00000196504 
SUMO3 ENSG00000184900 
ITGB2 ENSG00000160255 
RRAS2 ENSG00000133818 
ZC3H13 ENSG00000123200 
SERPING1 ENSG00000149131 
PTGS2 ENSG00000073756 
PRKCZ ENSG00000067606 
SMARCE1 ENSG00000073584 
RNF185 ENSG00000138942 
MAPKAP1 ENSG00000119487 
DTNBP1 ENSG00000047579 
CDK1 ENSG00000170312 
DAP3 ENSG00000132676 
HAP1 ENSG00000173805 
NCBP1 ENSG00000136937 
NOS1 ENSG00000089250 
ZMYM2 ENSG00000121741 
BANP ENSG00000172530 
TJP1 ENSG00000104067 
FKBP8 ENSG00000105701 
CDC42BPB ENSG00000198752 
ESRRA ENSG00000173153 
GRID2 ENSG00000152208 
BTBD2 ENSG00000133243 
ZMYND11 ENSG00000015171 
IPO5 ENSG00000065150 
ESR2 ENSG00000140009 
PDS5A ENSG00000121892 
NR4A3 ENSG00000119508 
MCM6 ENSG00000076003 
37104 ENSG00000092847 
MED15 ENSG00000099917 
FHL3 ENSG00000183386 
VIM ENSG00000026025 
EEF1A1 ENSG00000156508 
ITGA2B ENSG00000005961 
RBX1 ENSG00000100387 
IGF1 ENSG00000017427 
TRAF1 ENSG00000056558 
EFNA5 ENSG00000184349 
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TBX21 ENSG00000073861 
MAPKAPK2 ENSG00000162889 
COPS3 ENSG00000141030 
PACSIN1 ENSG00000124507 
ANKS1B ENSG00000185046 
UBE2D3 ENSG00000109332 
FOXK1 ENSG00000164916 
TCERG1 ENSG00000113649 
USP3 ENSG00000140455 
MGA ENSG00000174197 
SNRNP200 ENSG00000144028 
RBM4 ENSG00000173933 
NR4A2 ENSG00000153234 
COPG1 ENSG00000181789 
CTR9 ENSG00000198730 
EPHB1 ENSG00000154928 
CAPRIN1 ENSG00000135387 
MAP2K5 ENSG00000137764 
RAD9A ENSG00000172613 
CNOT1 ENSG00000125107 
RACGAP1 ENSG00000161800 
MAGI1 ENSG00000151276 
ASF1A ENSG00000111875 
GNAO1 ENSG00000087258 
DTNB ENSG00000138101 
MKLN1 ENSG00000128585 
UBR1 ENSG00000159459 
RARB ENSG00000077092 
CNTN1 ENSG00000018236 
GCN1L1 ENSG00000089154 
NUP153 ENSG00000124789 
TP53BP1 ENSG00000067369 
PTPRJ ENSG00000149177 
MYOCD ENSG00000141052 
RFC3 ENSG00000133119 
NELFB ENSG00000188986 
HEXIM1 ENSG00000186834 
ARRB1 ENSG00000137486 
KHSRP ENSG00000088247 
TGIF1,TGIF ENSG00000177426 
PPFIA1 ENSG00000131626 
BAG3 ENSG00000151929 
FASLG ENSG00000117560 
HNRNPD ENSG00000138668 
DDX23 ENSG00000174243 



 150 

MED23 ENSG00000112282 
DNAJA3 ENSG00000103423 
EPB41L2 ENSG00000079819 
PAK1 ENSG00000149269 
GUCY1A2 ENSG00000152402 
IL1R1 ENSG00000115594 
FHL2 ENSG00000115641 
IGSF21 ENSG00000117154 
VPRBP ENSG00000145041 
USP53 ENSG00000145390 
MBIP ENSG00000151332 
STRN4 ENSG00000090372 
KLC2 ENSG00000174996 
APPBP2 ENSG00000062725 
OTUD4 ENSG00000164164 
SRRT ENSG00000087087 
GRIK2 ENSG00000164418 
ZNF638 ENSG00000075292 
MORF4L1 ENSG00000185787 
MGMT ENSG00000170430 
ODC1 ENSG00000115758 
TUBB2A ENSG00000137267 
RNF11 ENSG00000123091 
SOCS6 ENSG00000170677 
CDKN1C ENSG00000129757 
UBE2D2 ENSG00000131508 
SAP30L ENSG00000164576 
EVL ENSG00000196405 
ATXN1 ENSG00000124788 
INO80 ENSG00000128908 
DRD2 ENSG00000149295 
SSBP2 ENSG00000145687 
COPS8 ENSG00000198612 
PPP2R5C ENSG00000078304 
RPS19 ENSG00000105372 
NUMB ENSG00000133961 
PKM ENSG00000067225 
RND3 ENSG00000115963 
GNAI1 ENSG00000127955 
GAB2 ENSG00000033327 
PRLR ENSG00000113494 
SF3B3 ENSG00000189091 
PIK3C2B ENSG00000133056 
AURKA ENSG00000087586 
FLT1 ENSG00000102755 
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IL2RB ENSG00000100385 
MAD1L1 ENSG00000002822 
ESRRB ENSG00000119715 
ETS2 ENSG00000157557 
EEF1A2 ENSG00000101210 
TPI1 ENSG00000111669 
ING4 ENSG00000111653 
F2 ENSG00000180210 
EHMT2 ENSG00000204371 
NFATC1 ENSG00000131196 
ATXN7 ENSG00000163635 
MAPK9 ENSG00000050748 
CBX7 ENSG00000100307 
KIFAP3 ENSG00000075945 
SLC9A3R1 ENSG00000109062 
CTNND2 ENSG00000169862 
ZBTB17 ENSG00000116809 
HDLBP ENSG00000115677 
ZMIZ1 ENSG00000108175 
STC2 ENSG00000113739 
ILK ENSG00000166333 
FXR2 ENSG00000129245 
PRKAR2A ENSG00000114302 
MCM4 ENSG00000104738 
NEDD4L ENSG00000049759 
SNCB ENSG00000074317 
COMMD1 ENSG00000173163 
ELF3 ENSG00000163435 
WIPF1 ENSG00000115935 
GEMIN4 ENSG00000179409 
SNAPIN ENSG00000143553 
TK1 ENSG00000167900 
SMAD5 ENSG00000113658 
RBBP4 ENSG00000162521 
ZBTB7B ENSG00000160685 
RAD54L2 ENSG00000164080 
STK39 ENSG00000198648 
SYNJ1 ENSG00000159082 
APLP1 ENSG00000105290 
RNF216 ENSG00000011275 
STARD13 ENSG00000133121 
PSMC3 ENSG00000165916 
CD19 ENSG00000177455 
AP2A2 ENSG00000183020 
ANAPC7 ENSG00000196510 
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NEK6 ENSG00000119408 
KDM2B ENSG00000089094 
PSEN2 ENSG00000143801 
ARRB2 ENSG00000141480 
PSMD11 ENSG00000108671 
VEGFA ENSG00000112715 
KCNA1 ENSG00000111262 
CAPNS1 ENSG00000126247 
PARD3B ENSG00000116117 
ONECUT1 ENSG00000169856 
SNAI1 ENSG00000124216 
GAK ENSG00000178950 
MEPCE ENSG00000146834 
RABEP1 ENSG00000029725 
MYOG ENSG00000122180 
PCBP2 ENSG00000197111 
TEK ENSG00000120156 
MED24 ENSG00000008838 
RAD23B ENSG00000119318 
ATG16L1 ENSG00000085978 
DTL ENSG00000143476 
STK24 ENSG00000102572 
VAMP2 ENSG00000220205 
BRD1 ENSG00000100425 
KAT8 ENSG00000103510 
SEL1L ENSG00000071537 
PPP1R12A ENSG00000058272 
PHLDA3 ENSG00000174307 
KPNA6 ENSG00000025800 
CDC25B ENSG00000101224 
PPP2CA ENSG00000113575 
C1QBP ENSG00000108561 
SUPT3H ENSG00000196284 
SORT1 ENSG00000134243 
UBE2U ENSG00000177414 
PRPF31 ENSG00000105618 
BLMH ENSG00000108578 
MARK1 ENSG00000116141 
PRKAR1B ENSG00000188191 
PPM1G ENSG00000115241 
FOSL1 ENSG00000175592 
MAD2L1 ENSG00000164109 
KPNA1 ENSG00000114030 
NDEL1 ENSG00000166579 
GRN ENSG00000030582 
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RICTOR ENSG00000164327 
TIAM1 ENSG00000156299 
IGF2BP2 ENSG00000073792 
MAP2 ENSG00000078018 
ARHGEF7 ENSG00000102606 
GNB2L1 ENSG00000204628 
IGF2BP3 ENSG00000136231 
PSMD1 ENSG00000173692 
SERPINA1 ENSG00000197249 
HGF ENSG00000019991 
FKBP1A ENSG00000088832 
HSPG2 ENSG00000142798 
ZBTB9 ENSG00000213588 
USF2 ENSG00000105698 
MYO7A ENSG00000137474 
IRF5 ENSG00000128604 
FBXW8 ENSG00000174989 
YWHAB ENSG00000166913 
RPLP1 ENSG00000137818 
SOS2 ENSG00000100485 
S100A8 ENSG00000143546 
NCDN ENSG00000020129 
WASF2 ENSG00000158195 
RAD51 ENSG00000051180 
TRA2B ENSG00000136527 
SLC3A2 ENSG00000168003 
SPECC1L ENSG00000100014 
BAK1 ENSG00000030110 
NPAS2 ENSG00000170485 
AP1B1 ENSG00000100280 
SIX1 ENSG00000126778 
HSD11B2 ENSG00000176387 
SIX3 ENSG00000138083 
NR3C2 ENSG00000151623 
CSF1 ENSG00000184371 
FBP1 ENSG00000165140 
CCT8 ENSG00000156261 
STAMBP ENSG00000124356 
EFEMP2 ENSG00000172638 
TNNC1 ENSG00000114854 
ACVR2A ENSG00000121989 
E4F1 ENSG00000167967 
GRB14 ENSG00000115290 
APBA1 ENSG00000107282 
RBFOX2 ENSG00000100320 
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LAT ENSG00000213658 
CCDC85B ENSG00000175602 
ARHGAP17 ENSG00000140750 
PPP2R2C ENSG00000074211 
UBE2Z ENSG00000159202 
FAS ENSG00000026103 
NOTCH3 ENSG00000074181 
TDG ENSG00000139372 
USP1 ENSG00000162607 
IRF8 ENSG00000140968 
HIVEP2 ENSG00000010818 
UBR4 ENSG00000127481 
LYST ENSG00000143669 
TUBG1 ENSG00000131462 
MYCBP2 ENSG00000005810 
GRAP2 ENSG00000100351 
CIT ENSG00000122966 
WDR5 ENSG00000196363 
PABPC1 ENSG00000070756 
PPP1R10 ENSG00000204569 
CD28 ENSG00000178562 
GRK5 ENSG00000198873 
TNRC6B ENSG00000100354 
TAF1B ENSG00000115750 
PPP2R5D ENSG00000112640 
CCDC101 ENSG00000176476 
REST ENSG00000084093 
CLNS1A ENSG00000074201 
KDM6B ENSG00000132510 
FGF2 ENSG00000138685 
LSM4 ENSG00000130520 
APBB1 ENSG00000166313 
NPEPPS ENSG00000141279 
MAP3K11 ENSG00000173327 
UBA5 ENSG00000081307 
CSF1R ENSG00000182578 
RALBP1 ENSG00000017797 
TTBK2 ENSG00000128881 
LINGO1 ENSG00000169783 
CADPS ENSG00000163618 
GFAP ENSG00000131095 
POLB ENSG00000070501 
PTPRA ENSG00000132670 
UCHL1 ENSG00000154277 
RRN3 ENSG00000085721 
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DMAP1 ENSG00000178028 
UIMC1 ENSG00000087206 
MNT ENSG00000070444 
EGLN1 ENSG00000135766 
FTH1 ENSG00000167996 
SIRT6 ENSG00000077463 
FANCI ENSG00000140525 
ATP2B2 ENSG00000157087 
NR1H4 ENSG00000012504 
SPATA2 ENSG00000158480 
PRSS23 ENSG00000150687 
PTPRZ1 ENSG00000106278 
TEAD1 ENSG00000187079 
SIAH1 ENSG00000196470 
DDX1 ENSG00000079785 
RCOR1 ENSG00000089902 
MEF2D ENSG00000116604 
PHYHIP ENSG00000168490 
USP42 ENSG00000106346 
NDN ENSG00000182636 
RUVBL2 ENSG00000183207 
ADRM1 ENSG00000130706 
CABIN1 ENSG00000099991 
CHFR ENSG00000072609 
ABI2 ENSG00000138443 
RNF165 ENSG00000141622 
POGZ ENSG00000143442 
IKZF2 ENSG00000030419 
HCN1 ENSG00000164588 
FES ENSG00000182511 
CDH10 ENSG00000040731 
BUB3 ENSG00000154473 
SPI1 ENSG00000066336 
SUPT5H ENSG00000196235 
ORC2 ENSG00000115942 
KCNA3 ENSG00000177272 
ZZZ3 ENSG00000036549 
PSMC6 ENSG00000100519 
LNX1 ENSG00000072201 
RPN2 ENSG00000118705 
JUNB ENSG00000171223 
NPHP1 ENSG00000144061 
IL1RAP ENSG00000196083 
EFTUD2 ENSG00000108883 
PHC2 ENSG00000134686 
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PIK3C3 ENSG00000078142 
ANKS1A ENSG00000064999 
CBX3 ENSG00000122565 
SUPT16H ENSG00000092201 
USP14 ENSG00000101557 
UBE2H ENSG00000186591 
CTCFL ENSG00000124092 
AMIGO1 ENSG00000181754 
ABI3 ENSG00000108798 
MMP2 ENSG00000087245 
HNRNPK ENSG00000165119 
ATG4B ENSG00000168397 
NCAN ENSG00000130287 
TCEA2 ENSG00000171703 
SH3BP2 ENSG00000087266 
USP22 ENSG00000124422 
CD2 ENSG00000116824 
DBNL ENSG00000136279 
INTS5 ENSG00000185085 
SETD1A ENSG00000099381 
TRPC4AP ENSG00000100991 
SMC3 ENSG00000108055 
ILF2 ENSG00000143621 
HADHA ENSG00000084754 
KBTBD7 ENSG00000120696 
ASCC3 ENSG00000112249 
HIPK1 ENSG00000163349 
HSF1 ENSG00000185122 
TLK1 ENSG00000198586 
KCNJ3 ENSG00000162989 
CNTFR ENSG00000122756 
YLPM1 ENSG00000119596 
USP12 ENSG00000152484 
SNRPD3 ENSG00000100028 
MMP14 ENSG00000157227 
CCNB1 ENSG00000134057 
APAF1 ENSG00000120868 
VCPIP1 ENSG00000175073 
DPPA2 ENSG00000163530 
PAPOLA ENSG00000090060 
DLGAP4 ENSG00000080845 
SSB ENSG00000138385 
RAD17 ENSG00000152942 
BAD ENSG00000002330 
INPP5D ENSG00000168918 
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CEP72 ENSG00000112877 
XRCC1 ENSG00000073050 
RPS3A ENSG00000145425 
MEIS1 ENSG00000143995 
SLC9A1 ENSG00000090020 
TANK ENSG00000136560 
BACH2 ENSG00000112182 
ACTC1,ACTC ENSG00000159251 
RNF10 ENSG00000022840 
HNRNPUL1 ENSG00000105323 
CTTNBP2 ENSG00000077063 
MTPN ENSG00000105887 
DPY30 ENSG00000162961 
SHANK1 ENSG00000161681 
PIAS3 ENSG00000131788 
PAK4 ENSG00000130669 
MAP3K10 ENSG00000130758 
AMFR ENSG00000159461 
LRP8 ENSG00000157193 
CLCN3 ENSG00000109572 
RAB1A ENSG00000138069 
GLUL ENSG00000135821 
SKP1 ENSG00000113558 
PTGES3 ENSG00000110958 
PSME3 ENSG00000131467 
MED16 ENSG00000175221 
ING3 ENSG00000071243 

Table A.4: The list of candidate genes ranked by their likelihood to be cancer–associated as 
predicted by the model 
 

Appendix B 
The code (in Python programming language) is stand-alone module that can be executed to 
make predictions based on our machine-learning model built to predict cancer-associated 
replacements for the protein PTEN using Physico-chemical properties of the amino acid 
residues: 
 
 
import calendar 
from datetime import datetime 
from collections import namedtuple 
import re 
import sys 
import time 
import os 
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import numpy as np 
import pandas as pd 
 
PY3 = sys.version_info[0] == 3 
if PY3: 
    string_types = str, 
    text_type = str 
    long_type = int 
else: 
    string_types = basestring, 
    text_type = unicode 
    long_type = long 
 
def predict(row): 
    round_ASAD = np.float32(row[u'ASAD']) 
    round_El = np.float32(row[u'El']) 
    round_Et = np.float32(row[u'Et']) 
    round_F = np.float32(row[u'F']) 
    round_GhD = np.float32(row[u'GhD']) 
    round_Hgm = np.float32(row[u'Hgm']) 
    round_Hnc = np.float32(row[u'Hnc']) 
    round_Ht = np.float32(row[u'Ht']) 
    round_Location = np.float32(row[u'Location']) 
    round_Mu = np.float32(row[u'Mu']) 
    round_Ns = np.float32(row[u'Ns']) 
    round_Pb = np.float32(row[u'Pb']) 
    round_Pc = np.float32(row[u'Pc']) 
    round_Pf_s = np.float32(row[u'Pf_s']) 
    round_Pt = np.float32(row[u'Pt']) 
    round_Ra = np.float32(row[u'Ra']) 
    round_Rf = np.float32(row[u'Rf']) 
    round_aC = np.float32(row[u'aC']) 
    round_dG = np.float32(row[u'dG']) 
    round_dGh = np.float32(row[u'dGh']) 
    round_dH = np.float32(row[u'dH']) 
    round_pK__ = np.float32(row[u'pK\'']) 
    return sum([ 
         0.4980069, 
          -0.030802308502971359472 * (round_Location > 154.5 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_Ra > -0.11499999463558197 and  
                                     round_aC <= -0.009999999776482582), 
           0.042897671247850641119 * (round_pK__ <= 0.9199999570846558 and  
                                     round_El <= -0.2850000262260437 and  
                                     round_ASAD > -0.2900000214576721 and  
                                     round_Pf_s > -0.9049999713897705), 
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           0.046376835827466024453 * (round_Location <= 258.5), 
         -0.0089180017527997167137 * (round_Et <= 0.12999999523162842 and  
                                     round_Pc <= 0.48500001430511475 and  
                                     round_Pf_s > -0.9049999713897705), 
           0.010488690939436063829 * (round_Location <= 416.5 and  
                                     round_pK__ > -0.5450000166893005 and  
                                     round_Pb <= 0.4950000047683716), 
           0.065823940039791375978 * (round_Pc > -0.7649999856948853 and  
                                     round_ASAD > 0.3450000286102295 and  
                                     -0.9049999713897705 < round_Pf_s <= 0.019999999552965164), 
           -0.12814740185713269227 * (round_Pc <= 0.6650000214576721 and  
                                     round_ASAD <= -0.19499999284744263 and  
                                     round_dGh <= 0.004999999888241291 and  
                                     round_dG > -0.2850000262260437), 
           0.017950279696725548323 * (-0.2750000059604645 < round_ASAD <= 
0.25999999046325684 and  
                                     round_Pf_s > 0.019999999552965164), 
         -0.0067611956676251099355 * (round_Location <= 2204.5 and  
                                     round_Pt <= 0.1550000011920929 and  
                                     round_F > -0.1599999964237213 and  
                                     round_dG > -0.6349999904632568), 
           0.040932779830598259307 * (round_El <= -0.07500000298023224 and  
                                     round_Ns > -0.19499999284744263), 
          0.0044318155064351667793 * (round_Location > 154.5 and  
                                     round_El > 0.08500000089406967 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_aC > -0.009999999776482582), 
           0.037460725728313236382 * (round_F <= -0.5699999928474426 and  
                                     round_dH <= 0.7200000286102295), 
           0.010111500425799288885 * (round_Location > 2195.5 and  
                                     round_dH > -0.6349999904632568), 
          -0.063290952377108716798 * (round_Location <= 2204.5 and  
                                     round_F > -0.6100000143051147 and  
                                     round_Ns <= -0.47499996423721313 and  
                                     round_Pf_s <= 0.16499999165534973), 
             0.1424292742484439267 * (round_Ht <= 0.1550000011920929 and  
                                     round_pK__ <= 0.9199999570846558 and  
                                     round_Rf <= -0.02499999850988388 and  
                                     round_Pb > -0.6449999809265137), 
           -0.14147827129531662105 * (round_Et <= 0.044999998062849045 and  
                                     -0.4350000023841858 < round_ASAD <= -0.2900000214576721), 
          -0.048133563780341961924 * (281.5 < round_Location <= 2204.5 and  
                                     round_pK__ <= 0.9199999570846558 and  
                                     round_Rf <= 0.4950000047683716), 
           0.028140576211365345843 * (round_Location <= 279.0 and  
                                     round_ASAD > -0.19499999284744263), 
           0.030988185279260817284 * (round_Rf > -0.48000001907348633 and  
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                                     round_Pb > 0.22499999403953552 and  
                                     round_Pt <= -0.5149999856948853), 
          -0.011191993168808238995 * (round_Location <= 1988.5 and  
                                     round_Rf > 0.16499999165534973 and  
                                     round_Pb <= 0.42500001192092896 and  
                                     round_dGh <= 0.6650000214576721), 
           0.025234167909347456765 * (round_pK__ <= 0.9199999570846558 and  
                                     round_Rf > -0.02499999850988388 and  
                                     round_Et <= -0.004999999888241291 and  
                                     round_Pb > 0.029999999329447746), 
          0.0072439562931229072029 * (round_Location <= 279.0 and  
                                     round_Pb > 0.22499999403953552), 
            0.09790673330750181147 * (round_El > -0.07500000298023224 and  
                                     round_Pb > -0.07500000298023224 and  
                                     round_Hgm <= 0.20499999821186066 and  
                                     round_dG > 0.4449999928474426), 
          0.0042433454460802776803 * (round_Pb > 0.4950000047683716 and  
                                     round_dG > 0.019999999552965164), 
           0.049099205879184981693 * (round_Rf <= -0.33500000834465027 and  
                                     round_Hgm > -0.5649999976158142), 
          0.0084510125912561351313 * (round_F > 0.10500000417232513 and  
                                     round_dGh > 0.14500001072883606 and  
                                     round_dG <= 0.3199999928474426 and  
                                     round_Pf_s <= 0.16499999165534973), 
           0.009996497362710493606 * (round_Location <= 416.5 and  
                                     round_Rf > -0.8350000381469727 and  
                                     round_Pb > -0.6449999809265137), 
          -0.039037863454884545733 * (282.5 < round_Location <= 2204.5 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dGh <= 0.42000001668930054), 
             0.0225966234597955902 * (round_Location <= 416.5), 
          -0.089558222847778604092 * (1992.5 < round_Location <= 2192.5 and  
                                     round_Pf_s > -0.9049999713897705), 
            0.12237007610425067183 * (round_pK__ <= 0.49000000953674316 and  
                                     round_Ra > -0.9149999618530273 and  
                                     round_Ns > -0.6100000143051147 and  
                                     round_Pf_s <= 0.9049999713897705), 
         -0.0051857929359487757795 * (154.5 < round_Location <= 2204.5 and  
                                     round_Pc <= 0.6499999761581421 and  
                                     round_Pf_s <= 0.9049999713897705), 
           0.010789485809534872865 * (round_Location <= 377.5), 
           0.013917897260441604301 * (round_Location <= 1896.5 and  
                                     round_Et <= 0.1599999964237213 and  
                                     round_Pb <= 0.42500001192092896 and  
                                     round_Pf_s > 0.16499999165534973), 
          -0.011369883981885960458 * (round_Location <= 2204.5 and  
                                     round_Pb <= 0.42500001192092896 and  



 161 

                                     round_Pt <= 0.23499999940395355 and  
                                     round_dG > -0.04999999701976776), 
           0.034270415470539571101 * (round_Rf > -0.48500001430511475 and  
                                     round_F > -0.800000011920929 and  
                                     round_aC > -0.5349999666213989 and  
                                     round_Pf_s <= -0.019999999552965164), 
          -0.010046176632626116834 * (416.5 < round_Location <= 2195.5), 
          0.0063273734122383656908 * (round_Location <= 2001.5 and  
                                     round_Pt <= 0.1550000011920929 and  
                                     round_Ns > -0.47499996423721313), 
            0.01798394555249511334 * (round_Rf > -0.9449999928474426 and  
                                     round_aC <= -0.6100000143051147 and  
                                     round_ASAD > -0.23499999940395355), 
           0.068794197016393637822 * (round_Rf <= -0.3700000047683716 and  
                                     round_Hgm > -0.5649999976158142 and  
                                     round_GhD > -0.9950000047683716 and  
                                     round_Pf_s > -0.9049999713897705), 
           -0.13528399324496856448 * (154.5 < round_Location <= 2204.5 and  
                                     round_Pc <= 0.6499999761581421 and  
                                     round_Pf_s > -0.9049999713897705), 
            0.10809391439486315534 * (round_Rf <= -0.3700000047683716 and  
                                     round_Pf_s > 0.1899999976158142), 
           0.011045291581269784525 * (round_Hgm <= 0.20499999821186066 and  
                                     round_GhD > 0.08500000089406967 and  
                                     round_dG <= 0.7749999761581421), 
         -0.0060701138138203047934 * (416.5 < round_Location <= 2195.5 and  
                                     round_Hnc <= 0.1599999964237213), 
          -0.028284000600343469495 * (round_Rf > -0.33500000834465027 and  
                                     round_El > -0.07500000298023224 and  
                                     round_Pb <= 0.22499999403953552 and  
                                     round_dG <= 0.7749999761581421), 
          0.0095220875252504180719 * (round_El <= 0.019999999552965164 and  
                                     round_aC <= -0.6100000143051147), 
          -0.009925595835525755084 * (round_Location <= 2204.5 and  
                                     0.07500000298023224 < round_Rf <= 0.7999999523162842 and  
                                     round_ASAD > -0.23499999940395355), 
           0.077223008851680999265 * (round_Pb > -0.4699999988079071 and  
                                     round_Pt <= 0.1550000011920929 and  
                                     round_ASAD > -0.1599999964237213 and  
                                     round_dH > 0.014999999664723873), 
           0.040973694470871284412 * (round_Ht > 0.11500000208616257 and  
                                     round_El <= -0.07500000298023224 and  
                                     round_Pb <= 0.4950000047683716), 
           0.014449552380014107911 * (round_aC <= -0.6100000143051147 and  
                                     round_ASAD > -0.30000001192092896), 
          0.0069268999823913690247 * (round_pK__ > -0.5450000166893005 and  
                                     round_Hnc > -0.3999999761581421 and  
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                                     round_ASAD > -0.23499999940395355 and  
                                     round_Pf_s > -0.9049999713897705), 
         -0.0069883469100784868441 * (round_Location <= 2204.5 and  
                                     round_Ra > -0.8799999952316284 and  
                                     round_Ns <= -0.5199999809265137 and  
                                     round_Pf_s <= 0.17000000178813934), 
          0.0077596754630913471196 * (round_Rf <= 0.16499999165534973 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_Pt > -0.8100000023841858 and  
                                     round_F > -0.6100000143051147), 
         0.00034181998498936273919 * (round_pK__ <= 0.9199999570846558 and  
                                     round_Rf <= -0.02499999850988388 and  
                                     round_Hnc > -0.3149999976158142 and  
                                     round_Pb > -0.6449999809265137), 
           -0.04352981891210430665 * (round_pK__ > -0.10500000417232513 and  
                                     round_El > -0.4599999785423279 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dG > -0.6349999904632568), 
          -0.035101250537342622293 * (round_F > -0.5699999928474426 and  
                                     round_dGh > -0.3700000047683716 and  
                                     round_dG <= 0.7749999761581421 and  
                                     round_dH > -0.014999999664723873), 
         -0.0041679089884502067836 * (394.0 < round_Location <= 2204.5 and  
                                     round_aC > -0.6050000190734863 and  
                                     round_dG > -0.6349999904632568), 
           0.033190250729287856801 * (round_Pb > 0.42500001192092896 and  
                                     round_dG > -0.03999999910593033), 
          0.0054050781979085651963 * (round_Rf > -0.23499998450279236 and  
                                     round_Pb > 0.24500000476837158 and  
                                     round_Hgm <= 0.5649999976158142), 
           0.099557301263992037388 * (round_Location <= 1992.5 and  
                                     round_pK__ <= 0.9199999570846558 and  
                                     round_Ra > -0.29500001668930054 and  
                                     round_Pf_s <= 0.9049999713897705), 
          0.0013358265659636676687 * (round_Location <= 1992.5 and  
                                     round_pK__ <= 0.9199999570846558 and  
                                     round_Rf <= -0.02499999850988388), 
           0.011107770396153940698 * (round_Pb > 0.22499999403953552 and  
                                     round_Hgm <= 0.5649999976158142 and  
                                     round_dGh > -0.6349999904632568 and  
                                     round_dG <= 0.7749999761581421), 
          -0.020351499235991343112 * (round_Mu > -0.29500001668930054 and  
                                     round_Et > -0.5299999713897705 and  
                                     round_Ns <= -0.375 and  
                                     round_dGh <= -0.05000000074505806), 
        -0.00079941894501399824325 * (round_Rf <= 0.33500000834465027 and  
                                     round_El > -0.07500000298023224 and  
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                                     round_Hgm <= 0.20499999821186066 and  
                                     round_dG <= 0.7749999761581421), 
           0.038949967269597665642 * (round_Rf <= -0.48000001907348633 and  
                                     round_Pb <= 0.22499999403953552), 
          -0.088995470545923466288 * (281.5 < round_Location <= 2204.5 and  
                                     round_ASAD > -0.4350000023841858 and  
                                     round_dGh <= 0.6650000214576721), 
          0.0088683904707671963596 * (round_Location <= 1885.0 and  
                                     round_Hgm <= 0.054999999701976776 and  
                                     round_Pf_s > 0.16499999165534973), 
           0.026765527618360561435 * (round_Location > 2198.5), 
           0.039436429950153853441 * (round_Et <= -0.5299999713897705 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dH > -0.2849999964237213), 
           0.035212846696491106879 * (round_El <= -0.07500000298023224 and  
                                     round_dGh > -0.10000000149011612 and  
                                     round_dG <= 0.7749999761581421), 
          -0.031068735593921953386 * (282.5 < round_Location <= 2204.5 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dG <= 0.7749999761581421), 
           0.024891376636083796525 * (round_pK__ <= 0.9199999570846558 and  
                                     round_Pb <= 0.45499998331069946 and  
                                     round_GhD > 0.0949999988079071 and  
                                     round_dH <= -0.04500000178813934), 
           0.013371250298207711452 * (round_Location <= 1992.5 and  
                                     round_pK__ > -0.5450000166893005 and  
                                     round_Pc > -0.7100000381469727 and  
                                     round_F > -0.6100000143051147), 
         -0.0065429820175057270409 * (377.5 < round_Location <= 2204.5 and  
                                     round_pK__ > -0.7250000238418579 and  
                                     round_Rf <= 0.4950000047683716), 
              1.069641997122267929 * (round_Location > 2204.5), 
           0.013953543892781777869 * (round_Location <= 280.5 and  
                                     round_Rf > -0.48000001907348633 and  
                                     round_Pb > 0.22499999403953552), 
           0.010287356142774180603 * (round_El <= -0.07500000298023224 and  
                                     round_Hgm <= 0.20499999821186066 and  
                                     round_ASAD > -0.2850000262260437 and  
                                     round_dG <= 0.7749999761581421), 
         -0.0025166535265463206399 * (round_Location <= 1992.5 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_Ra > 0.08500000089406967 and  
                                     round_Hgm > 0.39499998092651367), 
        -0.00052100799522068828428 * (154.5 < round_Location <= 2195.5 and  
                                     round_El > -0.07500000298023224 and  
                                     round_Pb > -0.6449999809265137), 
          -0.056923511123344788798 * (1992.5 < round_Location <= 2195.5 and  
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                                     round_Rf <= 0.8700000047683716), 
           0.085652205379011345232 * (round_Rf <= -0.48000001907348633), 
           0.014301444746502533362 * (round_Location <= 1989.0 and  
                                     round_Rf > -0.25 and  
                                     round_Pb > 0.22499999403953552), 
          -0.047338014981209056153 * (154.5 < round_Location <= 2204.5 and  
                                     round_Et > -0.15000000596046448 and  
                                     round_F > -0.5699999928474426), 
         -0.0085247987493052186647 * (round_Location <= 1986.5 and  
                                     round_Rf > -0.33500000834465027 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_dG > -0.6349999904632568), 
            -0.2045528911281725426 * (1992.5 < round_Location <= 2204.5), 
          -0.022589588473050835338 * (round_Location <= 1989.0 and  
                                     -0.33500000834465027 < round_Rf <= -0.25 and  
                                     round_dG > -0.5199999809265137), 
           0.018830236278526858024 * (round_pK__ <= 0.26500001549720764 and  
                                     round_Mu <= 0.1850000023841858 and  
                                     round_Hgm > 0.20499999821186066), 
          -0.058098542791413770869 * (round_Mu <= 0.38999998569488525 and  
                                     round_dGh <= 0.6650000214576721 and  
                                     round_dG > -0.6349999904632568 and  
                                     round_Pf_s <= 0.019999999552965164), 
           0.029005188341247021416 * (round_Ra > 0.41999998688697815 and  
                                     round_dGh > 0.42000001668930054 and  
                                     round_Pf_s > -0.9049999713897705), 
          0.0015183785889137779018 * (round_F <= -0.6100000143051147), 
             0.1926397054211670401 * (round_Location <= 154.5), 
        -0.00038587043894419421463 * (round_Et > 0.2150000035762787 and  
                                     round_Pc <= 0.48500001430511475 and  
                                     round_dGh <= 0.5950000286102295 and  
                                     round_Pf_s > -0.9049999713897705), 
          0.0096555278305333700622 * (round_Location <= 1885.0 and  
                                     round_El > -0.2900000214576721 and  
                                     round_Ns > -0.47499996423721313 and  
                                     round_Pf_s <= 0.16499999165534973), 
          0.0082137624290262029048 * (round_El > -0.07500000298023224 and  
                                     round_Hgm > -0.09000000357627869), 
          0.0048153782586317491962 * (round_Location > 2195.5), 
           0.017851259894991602928 * (round_Location <= 2204.5 and  
                                     round_Rf <= 0.07500000298023224 and  
                                     round_ASAD > -0.23499999940395355), 
           0.076251239162951206518 * (round_Et <= 0.2150000035762787 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_Pt > -0.8100000023841858 and  
                                     round_Ra > 0.125), 
           0.017198841857197066235 * (round_Rf > 0.4950000047683716 and  
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                                     round_Pb > 0.44999998807907104 and  
                                     round_dG > -0.7099999785423279), 
          -0.020340021109107105091 * (154.5 < round_Location <= 2204.5 and  
                                     round_pK__ <= 0.9199999570846558 and  
                                     round_Pf_s > -0.9049999713897705), 
          -0.027837306550162799895 * (157.5 < round_Location <= 2204.5 and  
                                     round_Rf > -0.48000001907348633 and  
                                     round_Pb <= 0.22499999403953552), 
          -0.034295791418998688993 * (round_pK__ > -0.05999999865889549 and  
                                     round_Rf > -0.48000001907348633 and  
                                     round_Pb <= 0.22499999403953552 and  
                                     round_dG > -0.6349999904632568), 
           0.027011535354938012721 * (round_Rf > 0.0 and  
                                     round_Hgm > -0.14000000059604645 and  
                                     round_dG <= 0.4449999928474426), 
           0.013282405637632511627 * (round_Mu <= 0.17499999701976776 and  
                                     round_Et > -0.5299999713897705 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dGh > 0.03500000014901161), 
           0.017807046800771823836 * (round_dG <= 0.054999999701976776 and  
                                     round_Pf_s > 0.16499999165534973), 
         -0.0045265526214365754687 * (round_Rf > -0.04500000178813934 and  
                                     round_Hgm <= 0.20499999821186066 and  
                                     round_GhD <= 0.08500000089406967 and  
                                     round_dG <= 0.7749999761581421), 
           0.031127545432432054962 * (-0.9199999570846558 < round_pK__ <= 
0.9199999570846558 and  
                                     round_Rf > -0.3700000047683716 and  
                                     round_ASAD > -0.2900000214576721), 
           0.054203531691976995777 * (round_El <= 0.2199999988079071 and  
                                     round_Hgm > 0.20499999821186066 and  
                                     round_dG <= 0.7749999761581421), 
           -0.01819028973713624972 * (round_Location > 154.5 and  
                                     round_El > -0.07000000029802322 and  
                                     round_F > -0.5699999928474426 and  
                                     round_dH <= -0.014999999664723873), 
          -0.053709419863356297475 * (274.5 < round_Location <= 2204.5 and  
                                     round_ASAD <= -0.19499999284744263 and  
                                     round_dG > -0.2850000262260437), 
          -0.027995627466905193687 * (round_Rf <= 0.8700000047683716 and  
                                     round_Pt <= 0.1550000011920929 and  
                                     round_F > -0.5699999928474426 and  
                                     round_dG <= 0.7749999761581421), 
          -0.066174678051963795045 * (round_Et > -0.14500001072883606 and  
                                     round_Pb <= 0.39499998092651367 and  
                                     round_F > -0.5699999928474426 and  
                                     round_dG > -0.04500000178813934), 
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           -0.13690034456909391802 * (1878.5 < round_Location <= 2195.5), 
          -0.033542540857916261499 * (round_Pb <= 0.22499999403953552 and  
                                     round_Ra <= 0.4449999928474426 and  
                                     round_dG <= 0.7749999761581421 and  
                                     round_Pf_s <= 0.1899999976158142), 
           0.049377582365736583103 * (round_Rf <= -0.3700000047683716 and  
                                     round_Mu > -0.15000000596046448 and  
                                     round_GhD > -0.9950000047683716 and  
                                     round_dG > -0.6349999904632568), 
            0.20817070252243766171 * (round_Location <= 282.5 and  
                                     round_pK__ <= 0.9199999570846558), 
         -0.0086144169931692635839 * (round_Pc <= 0.48500001430511475 and  
                                     round_dG <= 0.20499999821186066 and  
                                     -0.9049999713897705 < round_Pf_s <= 0.10500000417232513), 
            0.12896496243464933285 * (round_Rf > -0.9449999928474426 and  
                                     round_El > 0.08500000089406967 and  
                                     round_aC > 0.06499999761581421 and  
                                     round_ASAD > -0.23499999940395355), 
          -0.018573264286127166151 * (round_dG > -0.6349999904632568 and  
                                     round_dH <= 0.2549999952316284 and  
                                     -0.9049999713897705 < round_Pf_s <= 0.1550000011920929), 
           -0.12628998419694242861 * (round_Location <= 2204.5 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     round_Hgm > -0.33500000834465027 and  
                                     round_dH > -0.48500001430511475), 
          -0.072250280355614801553 * (157.5 < round_Location <= 2204.5 and  
                                     round_aC > -0.6100000143051147 and  
                                     round_dG > -0.6349999904632568), 
          -0.054527218345746371331 * (280.5 < round_Location <= 2204.5 and  
                                     round_ASAD <= -0.19499999284744263 and  
                                     round_dG > -0.2850000262260437), 
          0.0012151662524716440143 * (0.12999999523162842 < round_Et <= 
0.2150000035762787 and  
                                     round_Pc <= 0.48500001430511475 and  
                                     round_Pf_s > -0.9049999713897705), 
          0.0030058209141644370507 * (round_Location <= 1992.5 and  
                                     round_Pb <= 0.4950000047683716 and  
                                     0.20499999821186066 < round_Hgm <= 0.39499998092651367), 
          -0.042273652150263026084 * (round_Ht <= 0.7200000286102295 and  
                                     round_El > -0.07500000298023224 and  
                                     round_Pb <= 0.08500000089406967 and  
                                     round_dG <= 0.7749999761581421), 
           0.027673013766360339549 * (round_Pt <= -0.009999999776482582 and  
                                     round_F <= -0.5699999928474426), 
           0.027891051105625650625 * (round_El > 0.4599999785423279 and  
                                     round_Pt <= -0.14000000059604645), 
          0.0086383011037628777695 * (round_Location <= 2007.5 and  



 167 

                                     round_El <= -0.07500000298023224 and  
                                     round_dGh <= 0.5849999785423279), 
         -0.0097351347862616299106 * (2007.5 < round_Location <= 2198.5)    ]) 
 
def get_type_conversion(): 
    return {} 
INDICATOR_COLS = [] 
 
IMPUTE_VALUES = { 
    u'ASAD': 0.030000, 
    u'El': 0.040000, 
    u'Et': 0.040000, 
    u'F': -0.060000, 
    u'GhD': 0.010000, 
    u'Hgm': 0.060000, 
    u'Hnc': 0.000000, 
    u'Ht': 0.000000, 
    u'Location': 623.500000, 
    u'Mu': 0.050000, 
    u'Ns': 0.030000, 
    u'Pb': 0.110000, 
    u'Pc': -0.020000, 
    u'Pf_s': 0.000000, 
    u'Pt': 0.000000, 
    u'Ra': 0.020000, 
    u'Rf': 0.020000, 
    u'aC': -0.030000, 
    u'dG': 0.000000, 
    u'dGh': 0.020000, 
    u'dH': 0.010000, 
    u'pK\'': 0.000000,} 
 
 
def bag_of_words(text): 
    """ set of whole words  in a block of text """ 
    if type(text) == float: 
        return set() 
 
    return set(word.lower() for word in 
               re.findall(r'\w+', text, re.UNICODE | re.IGNORECASE)) 
 
 
def parse_date(x, date_format): 
    """ convert date strings to numeric values. """ 
    try: 
        # float values no longer pass isinstance(x, np.float64) 
        if isinstance(x, (np.float64, float)): 
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            x = long_type(x) 
        if '%f' in date_format and date_format.startswith('v2'): 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            date_format = date_format[2:] 
            dt = datetime.strptime(temp, date_format) 
            sec = calendar.timegm(dt.timetuple()) 
            return sec * 1000 + dt.microsecond // 1000 
        elif '%M' in date_format: 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            return calendar.timegm(datetime.strptime(temp, date_format).timetuple()) 
        else: 
            return datetime.strptime(str(x), date_format).toordinal() 
    except: 
        return float('nan') 
 
 
def parse_percentage(s): 
    """ remove percent sign so percentage variables can be converted to numeric """ 
    if isinstance(s, float): 
        return s 
    if isinstance(s, int): 
        return float(s) 
    try: 
        return float(s.replace('%', '')) 
    except: 
        return float('nan') 
 
def parse_nonstandard_na(s): 
    """ if a column contains numbers and a unique non-numeric, 
        then the non-numeric is considered to be N/A 
    """ 
    try: 
        ret = float(s) 
        if np.isinf(ret): 
            return float('nan') 
        return ret 
    except: 
        return float('nan') 
 
def parse_length(s): 
    """ convert feet and inches as string to inches as numeric """ 
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    try: 
        if '"' in s and "'" in s: 
            sp = s.split("'") 
            return float(sp[0]) * 12 + float(sp[1].replace('"', '')) 
        else: 
            if "'" in s: 
                return float(s.replace("'", '')) * 12 
            else: 
                return float(s.replace('"', '')) 
    except: 
        return float('nan') 
 
def parse_currency(s): 
    """ strip currency characters and commas from currency columns """ 
    if not isinstance(s, text_type): 
        return float('nan') 
    s = re.sub(u'[\$\u20AC\u00A3\uFFE1\u00A5\uFFE5]|(EUR)', '', s) 
    s = s.replace(',', '') 
    try: 
        return float(s) 
    except: 
        return float('nan') 
 
 
def parse_currency_replace_cents_period(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(",", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
 
def parse_currency_replace_cents_comma(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
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        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(".", "") 
        val = val.replace(",", ".") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
 
def parse_currency_replace_no_cents(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(",", "") 
        val = val.replace(".", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
def parse_numeric_types(ds): 
    """ convert strings with numeric types (date, currency, etc.) 
        to actual numeric values """ 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if col in TYPE_CONVERSION: 
            convert_func = TYPE_CONVERSION[col]['convert_func'] 
            convert_args = TYPE_CONVERSION[col]['convert_args'] 
            ds[col] = ds[col].apply(convert_func, args=convert_args) 
    return ds 
 
def sanitize_name(name): 
    safe = name.strip().replace("-", "_").replace("$", "_").replace(".", "_") 
    safe = safe.replace("{", "_").replace("}", "_") 
    safe = safe.replace('"', '_') 
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    safe = safe.replace("\n", "_") 
    safe = safe.replace("\r", "_") 
    return safe 
 
def rename_columns(ds): 
    new_names = {} 
    existing_names = set() 
    blank_index = 0 
    for old_col in ds.columns: 
        col = sanitize_name(old_col) 
        if col == '': 
            col = 'Unnamed: %d' % blank_index 
            blank_index += 1 
        if col in existing_names: 
            raise ValueError('Duplication detected. Column with name=[' 
                         + old_col + '] was preprocessed to[' 
                         + col + '] that already exists') 
        existing_names.add(col) 
        new_names[old_col] = col 
    ds.rename(columns=new_names, inplace=True) 
    return ds 
 
def add_missing_indicators(ds): 
    for col in INDICATOR_COLS: 
        ds[col + '-mi'] = ds[col].isnull().astype(int) 
    return ds 
 
def impute_values(ds): 
    for col in ds: 
        if col in IMPUTE_VALUES: 
            ds.loc[ds[col].isnull(), col] = IMPUTE_VALUES[col] 
    return ds 
 
BIG_LEVELS = { 
} 
 
 
SMALL_NULLS = { 
} 
 
 
VAR_TYPES = { 
    u'ASAD': 'N', 
    u'El': 'N', 
    u'Et': 'N', 
    u'F': 'N', 
    u'GhD': 'N', 
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    u'Hgm': 'N', 
    u'Hnc': 'N', 
    u'Ht': 'N', 
    u'Location': 'N', 
    u'Mu': 'N', 
    u'Ns': 'N', 
    u'Pb': 'N', 
    u'Pc': 'N', 
    u'Pf_s': 'N', 
    u'Pt': 'N', 
    u'Ra': 'N', 
    u'Rf': 'N', 
    u'aC': 'N', 
    u'dG': 'N', 
    u'dGh': 'N', 
    u'dH': 'N', 
    u'pK\'': 'N', 
} 
 
 
def combine_small_levels(ds): 
    for col in ds: 
        if BIG_LEVELS.get(col, None) is not None: 
            mask = np.logical_and(~ds[col].isin(BIG_LEVELS[col]), ds[col].notnull()) 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if SMALL_NULLS.get(col): 
            mask = ds[col].isnull() 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if VAR_TYPES.get(col) == 'C' or VAR_TYPES.get(col) == 'T': 
            mask = ds[col].isnull() 
            if np.any(mask): 
                if ds[col].dtype == float: 
                    ds[col] = ds[col].astype(object) 
                ds.loc[mask, col] = 'nan' 
    return ds 
 
# N/A strings in addition to the ones used by Pandas read_csv() 
NA_VALUES = ['null', 'na', 'n/a', '#N/A', 'N/A', '?', '.', '', 'Inf', 'INF', 'inf', '-inf', '-Inf', '-INF', ' ', 
'None', 'NaN', '-nan', 'NULL', 'NA', '-1.#IND', '1.#IND', '-1.#QNAN', '1.#QNAN', '#NA', '#N/A 
N/A', '-NaN', 'nan'] 
 
# True/False strings in addition to the ones used by Pandas read_csv() 
TRUE_VALUES = ['TRUE', 'True', 'true'] 
FALSE_VALUES = ['FALSE', 'False', 'false'] 
 



 173 

DEFAULT_ENCODING = 'utf8' 
 
REQUIRED_COLUMNS = 
[u"ASAD",u"El",u"Et",u"F",u"GhD",u"Hgm",u"Hnc",u"Ht",u"Location",u"Mu",u"Ns",u"Pb",u"
Pc",u"Pf_s",u"Pt",u"Ra",u"Rf",u"aC",u"dG",u"dGh",u"dH",u"pK'"] 
 
 
def validate_columns(column_list): 
    if set(REQUIRED_COLUMNS) <= set(column_list): 
        return True 
    else : 
        raise ValueError("Required columns missing: %s" % 
                         (set(REQUIRED_COLUMNS) - set(column_list))) 
 
def convert_bool(ds): 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if VAR_TYPES.get(col) == 'C' and ds[col].dtype in (int, float): 
            mask = ds[col].notnull() 
            ds[col] = ds[col].astype(object) 
            ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
        elif VAR_TYPES.get(col) == 'N' and ds[col].dtype == bool: 
            ds[col] = ds[col].astype(float) 
        elif ds[col].dtype == bool: 
            ds[col] = ds[col].astype(text_type) 
        elif ds[col].dtype == object: 
            if VAR_TYPES.get(col) == 'N' and col not in TYPE_CONVERSION: 
                mask = ds[col].apply(lambda x: x in TRUE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 1 
                mask = ds[col].apply(lambda x: x in FALSE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 0 
                ds[col] = ds[col].astype(float) 
            elif TYPE_CONVERSION.get(col) is None: 
                mask = ds[col].notnull() 
                ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
    return ds 
 
def get_dtypes(): 
    return {a: object for a, b in VAR_TYPES.items() if b == 'C'} 
 
def predict_dataframe(ds): 
    return ds.apply(predict, axis=1) 
 
def run_dataframe(ds): 
    ds = rename_columns(ds) 
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    ds = convert_bool(ds) 
    validate_columns(ds.columns) 
    ds = parse_numeric_types(ds) 
    ds = add_missing_indicators(ds) 
    ds = impute_values(ds) 
    ds = combine_small_levels(ds) 
    prediction = 1/(1 + np.exp(-predict_dataframe(ds))) 
    return prediction 
 
 
def run(dataset_path, output_path, encoding=None): 
    if encoding is None: 
        encoding = DEFAULT_ENCODING 
 
    ds = pd.read_csv(dataset_path, na_values=NA_VALUES, low_memory=False, 
                     dtype=get_dtypes(), encoding=encoding) 
 
    prediction = run_dataframe(ds) 
    prediction_file = output_path 
    prediction.name = 'Prediction' 
    prediction.to_csv(prediction_file, header=True, index_label='Index') 
 
 
def _construct_parser(): 
    import argparse 
 
    parser = argparse.ArgumentParser(description='Make offline predictions with DataRobot 
Prime') 
 
    parser.add_argument( 
        '--encoding', 
        type=str, 
        help=('the encoding of the dataset you are going to make predictions with. ' 
              'DataRobot Prime defaults to UTF-8 if not otherwise specified. See the ' 
              '"Codecs" column of the Python-supported standards chart ' 
              '(https://docs.python.org/2/library/codecs.html#standard-encodings) ' 
              'for possible alternative entries.'), 
        metavar='<encoding>' 
    ) 
    parser.add_argument( 
        'input_path', 
        type=str, 
        help=('a .csv file (your dataset); columns must correspond to the ' 
              'feature set used to generate the DataRobot Prime model.'), 
        metavar='<data_file>' 
    ) 
    parser.add_argument( 
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        'output_path', 
        type=str, 
        help='the filename where DataRobot writes the results.', 
        metavar='<output_file>' 
    ) 
 
    return parser 
 
 
def _parse_command(args): 
    parser = _construct_parser() 
    parsed_args = parser.parse_args(args[1:]) 
 
    if parsed_args.encoding is None: 
        sys.stderr.write('Warning: For input data encodings other than UTF-8, ' 
                         'search "Prime examples" in the DataRobot Users Guide at 
https://app.eu.datarobot.com/docs/users-guide/index.html') 
        parsed_args.encoding = DEFAULT_ENCODING 
 
    return parsed_args 
 
 
if __name__ == '__main__': 
    args = _parse_command(sys.argv) 
    run(args.input_path, args.output_path, encoding=args.encoding) 
 

Appendix C 
The code (in Python programming language) could be run as a stand alone code to execute 
predictions based on the machine-learning model we built to predict Cancer-associated 
genes using on protein-protein interaction networks, essentiality scores and evolutionary 
properties: 
 
 
import calendar 
from datetime import datetime 
from collections import namedtuple 
import re 
import sys 
import time 
import os 
 
import numpy as np 
import pandas as pd 
 
PY3 = sys.version_info[0] == 3 
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if PY3: 
    string_types = str, 
    text_type = str 
    long_type = int 
else: 
    string_types = basestring, 
    text_type = unicode 
    long_type = long 
 
def predict(row): 
    Group = row[u'Group'] 
    round_Average_Transcript_length = np.float32(row[u'Average Transcript length']) 
    round_Blomen_KBM7 = np.float32(row[u'Blomen KBM7']) 
    round_Blomen_KBM7_mi = np.float32(row[u'Blomen KBM7-mi']) 
    round_Closeness = np.float32(row[u'Closeness']) 
    round_Degree = np.float32(row[u'Degree']) 
    round_Degree_mi = np.float32(row[u'Degree-mi']) 
    round_End = np.float32(row[u'End']) 
    round_Exon_Count = np.float32(row[u'Exon Count']) 
    round_Gene_Length_bp = np.float32(row[u'Gene Length bp']) 
    round_LofTool = np.float32(row[u'LofTool']) 
    round_LofTool_mi = np.float32(row[u'LofTool-mi']) 
    round_Phi = np.float32(row[u'Phi']) 
    round_Phi_mi = np.float32(row[u'Phi-mi']) 
    round_StdDev_Transcript_length = np.float32(row[u'StdDev Transcript length']) 
    round_Tajima__s_D_regulatory = np.float32(row[u'Tajima\'s D regulatory']) 
    round_Tajima__s_D_regulatory_mi = np.float32(row[u'Tajima\'s D regulatory-mi']) 
    round_Transcript_count = np.float32(row[u'Transcript count']) 
    round_dN_dS_Chimp = np.float32(row[u'dN/dS Chimp']) 
    round_dN_dS_Chimp_mi = np.float32(row[u'dN/dS Chimp-mi']) 
    round_missense_Z = np.float32(row[u'missense_Z']) 
    round_missense_Z_mi = np.float32(row[u'missense_Z-mi']) 
    round_s_het = np.float32(row[u's_het']) 
    round_s_het_mi = np.float32(row[u's_het-mi']) 
    return sum([ 
        -2.6863578, 
           0.018202720175283508552 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory <= 0.4104999899864197 and  
                                     round_StdDev_Transcript_length > 1954.456787109375), 
         -0.0054378635982185617379 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.2516007423400879 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_LofTool_mi <= 0.5), 
        -1.5583491431925192728E-11 * (round_End), 
           0.048499210437713213828 * (round_Closeness <= 0.33500000834465027 and  
                                     3.2976694107055664 < round_missense_Z <= 4.050085067749023), 
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           0.096975931123053304983 * (round_Transcript_count > 20.5), 
          -0.017383948168761587799 * (round_Degree <= 3.5 and  
                                     round_s_het > 0.023678744211792946), 
         -0.0081188248086857105895 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory <= 0.17550000548362732 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp > 2814.5), 
          -0.023776888724096147121 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_LofTool <= 0.6634999513626099), 
           0.015303739394473513113 * (round_LofTool > 0.6634999513626099 and  
                                     round_Gene_Length_bp > 104704.0 and  
                                     round_StdDev_Transcript_length > 2574.27734375 and  
                                     round_Exon_Count <= 156.5), 
           0.032356712896822563408 * (round_Degree_mi <= 0.5 and  
                                     0.874500036239624 < round_LofTool <= 0.9921150207519531), 
          -0.061064130313854887711 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length <= 987.5745849609375), 
            0.03107445629333745532 * (round_Phi > 0.00015248148702085018 and  
                                     round_Blomen_KBM7 > -0.5508977174758911 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_Exon_Count > 87.5), 
           0.027000278790342342738 * (round_Degree <= 12.5 and  
                                     round_s_het > 0.017613736912608147 and  
                                     round_Gene_Length_bp > 38001.5 and  
                                     round_Exon_Count <= 221.5), 
         -0.0074861761526758031915 * (round_Tajima__s_D_regulatory <= 
0.4165000021457672 and  
                                     round_LofTool > 0.6634999513626099 and  
                                     round_Transcript_count <= 21.5 and  
                                     round_StdDev_Transcript_length <= 2558.05078125), 
           0.033691518811985399218 * (round_Blomen_KBM7 <= -0.14686328172683716 and  
                                     round_LofTool > 0.962399959564209 and  
                                     round_StdDev_Transcript_length <= 2391.52490234375), 
          -0.016812786172447410221 * (round_Degree_mi > 0.5 and  
                                     round_Phi_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.27386000752449036 and  
                                     round_Blomen_KBM7_mi <= 0.5), 
           -0.05868424164045044078 * (round_Degree > 29.5 and  
                                     round_StdDev_Transcript_length <= 897.559326171875), 
           0.014660818041939896808 * (round_Degree > 17.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_LofTool > 0.9311000108718872), 
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          0.0031378779289614714028 * (round_Degree > 5.5 and  
                                     round_Tajima__s_D_regulatory <= 0.44699999690055847 and  
                                     round_Blomen_KBM7 <= -0.2522552013397217 and  
                                     round_Average_Transcript_length > 2566.631103515625), 
           0.049576634648417938767 * (round_Closeness > 0.3149999976158142 and  
                                     round_Blomen_KBM7 > -0.5158457159996033 and  
                                     round_Gene_Length_bp <= 53140.5), 
           0.033125285580605914881 * (round_Degree > 56.5 and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Gene_Length_bp > 41216.0), 
           0.015426516511084873567 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.4235000014305115 and  
                                     round_s_het <= 0.014262920245528221), 
          -0.054664675004081307585 * (round_Closeness > 0.3149999976158142 and  
                                     round_s_het <= 0.025150161236524582), 
           0.064971575636202566484 * (round_Degree > 12.5 and  
                                     round_Blomen_KBM7 <= -0.17924460768699646 and  
                                     round_Gene_Length_bp > 38001.5), 
           0.008076281326937726282 * (round_End <= 100419720.0 and  
                                     round_Tajima__s_D_regulatory > -1.2885000705718994 and  
                                     round_Blomen_KBM7 <= -0.18547898530960083 and  
                                     round_missense_Z <= 3.2976694107055664), 
         -0.0025333307179157250021 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory <= -1.2894999980926514 and  
                                     round_Blomen_KBM7 <= -0.5147985219955444 and  
                                     round_Transcript_count <= 26.5), 
           0.020805097212741045093 * (not Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     0.659500002861023 < round_LofTool <= 0.9907699823379517), 
          0.0013239217591041027491 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi <= 0.0015477617271244526), 
            0.19073466683054091098 * (round_Closeness > 0.3149999976158142 and  
                                     round_Blomen_KBM7 > -0.5528146028518677 and  
                                     round_Exon_Count <= 224.5), 
           0.010314188977423621382 * (round_End > 127204736.0 and  
                                     round_Tajima__s_D_regulatory <= 0.4599999785423279 and  
                                     round_Transcript_count > 10.5 and  
                                     round_Gene_Length_bp > 2814.5), 
          -0.069447321340016812674 * (round_Degree_mi > 0.5), 
           0.016914894808412236221 * (Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718), 
           0.027726420391460625953 * (round_Degree <= 3.5 and  
                                     round_StdDev_Transcript_length <= 1049.45654296875), 
         -0.0021865984701677676667 * (not Group == u'MNC' and  
                                     round_Degree <= 62.5 and  
                                     round_Degree_mi <= 0.5 and  
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                                     round_Blomen_KBM7 <= -0.2516775131225586), 
          0.0053561320466416163441 * (Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_s_het > 0.028055116534233093 and  
                                     round_StdDev_Transcript_length > 168.6014404296875), 
            0.11425430800029053036 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Gene_Length_bp > 41501.0), 
         -0.0032500288883767361817 * (round_Tajima__s_D_regulatory <= 
1.4165000915527344 and  
                                     round_Blomen_KBM7 > -0.5153244733810425 and  
                                     round_StdDev_Transcript_length <= 166.56736755371094), 
           0.028508029551613675578 * (not Group == u'MNC' and  
                                     round_missense_Z <= 2.642360210418701 and  
                                     round_s_het <= 0.014316117390990257), 
         -0.0088550958230132672394 * (round_Closeness <= 0.33500000834465027 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory <= 0.4104999899864197 and  
                                     round_Exon_Count <= 97.5), 
           0.051816337733702685919 * (not Group == u'NDNE' and  
                                     round_Degree > 12.5 and  
                                     round_StdDev_Transcript_length > 636.7213134765625 and  
                                     round_Exon_Count <= 253.5), 
        -0.00060243449056097606292 * (round_Tajima__s_D_regulatory), 
           0.068946378006664615912 * (round_Transcript_count > 26.5), 
          -0.059757348541248728191 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness > 0.3050000071525574 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_Gene_Length_bp > 2814.5), 
          0.0055174931711365043235 * (round_Degree > 3.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 626.7237548828125), 
            0.14400903577366730435 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Gene_Length_bp > 41501.0), 
           0.004987097945538400412 * (round_Blomen_KBM7 > -0.5154723525047302 and  
                                     round_missense_Z <= 2.6123709678649902 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Exon_Count <= 190.5), 
          -0.010315157710437320229 * (round_Degree <= 18.5 and  
                                     0.659500002861023 < round_LofTool <= 0.9602000117301941), 
          0.0073511514944097225768 * (round_Degree <= 35.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_LofTool <= 0.874500036239624 and  
                                     round_StdDev_Transcript_length > 714.5440063476562), 
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          -0.010425093114536482589 * (round_End > 88799552.0 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Phi > 0.9999969005584717 and  
                                     round_StdDev_Transcript_length > 2430.197265625), 
           0.018201114582529324265 * (not Group == u'CM' and  
                                     Group == u'MNC' and  
                                     round_Blomen_KBM7 > -0.5147985219955444 and  
                                     round_Gene_Length_bp > 37999.5), 
          0.0099794866530598415333 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory <= 0.4104999899864197 and  
                                     round_StdDev_Transcript_length <= 1954.456787109375), 
          -0.020922796241062330269 * (round_Degree_mi > 0.5 and  
                                     round_Average_Transcript_length <= 2606.02392578125), 
            0.10794282229118463967 * (round_missense_Z <= 3.2976694107055664 and  
                                     round_Average_Transcript_length > 2056.5712890625 and  
                                     round_Exon_Count > 240.5), 
           0.023013888862715946998 * (not Group == u'CM' and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.5403047800064087 and  
                                     round_Transcript_count > 10.5), 
           -0.18056075313492864209 * (not Group == u'NDNE' and  
                                     round_Degree <= 3.5), 
         -0.0039957720980683267623 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_LofTool <= 0.874500036239624 and  
                                     round_Exon_Count <= 171.5), 
           -0.56961177766960269242 * (Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_StdDev_Transcript_length <= 714.263427734375), 
          -0.010926747552256092094 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_LofTool <= 0.9435499906539917 and  
                                     round_Gene_Length_bp > 54517.0), 
          0.0046976857155946452269 * (not Group == u'NDNE' and  
                                     round_Degree > 12.5 and  
                                     round_Gene_Length_bp <= 53079.0), 
           0.021939335798790569193 * (round_Phi), 
          -0.022286463855471616569 * (round_Tajima__s_D_regulatory > 
0.4235000014305115 and  
                                     round_Blomen_KBM7 > -0.21081802248954773 and  
                                     round_s_het > 0.015080630779266357 and  
                                     round_StdDev_Transcript_length > 580.992431640625), 
          0.0027537702678576865545 * (round_Tajima__s_D_regulatory <= 
0.4104999899864197 and  
                                     round_Phi > 0.0002437000221107155 and  
                                     round_missense_Z <= 3.308867931365967), 
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         -0.0027288874703135009708 * (round_End > 127204736.0 and  
                                     round_Tajima__s_D_regulatory <= 0.4599999785423279 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp > 2814.5), 
            0.08109139290614296447 * (round_missense_Z_mi), 
           0.014012303940575399075 * (round_missense_Z <= 3.2976694107055664 and  
                                     round_LofTool > 0.9603500366210938), 
           0.052541363893365403137 * (not Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Average_Transcript_length > 2570.535888671875), 
             0.1551699454009141943 * (round_Tajima__s_D_regulatory <= 
0.4235000014305115 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_s_het > 0.015603477135300636 and  
                                     round_Transcript_count <= 21.5), 
         -0.0080792105837217097208 * (round_Tajima__s_D_regulatory > 
0.4104999899864197 and  
                                     round_Average_Transcript_length <= 1876.067626953125), 
           0.021504577862045057279 * (round_End > 125209176.0 and  
                                     round_Degree > 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5), 
          -0.015295315530416180028 * (round_Degree <= 56.5 and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_s_het <= 0.031048648059368134 and  
                                     round_Gene_Length_bp > 41216.0), 
         -0.0078502999183946500783 * (round_Degree <= 3.5 and  
                                     round_s_het > 0.02518850564956665 and  
                                     round_Transcript_count <= 15.5), 
           0.024239284046736895434 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_Average_Transcript_length <= 2056.5712890625), 
            0.03864183015657941811 * (round_Degree > 4.5 and  
                                     round_Blomen_KBM7 <= -0.15796872973442078 and  
                                     round_StdDev_Transcript_length > 1227.5733642578125), 
           0.012003822160604299754 * (not Group == u'MNC' and  
                                     round_missense_Z > 3.2976694107055664), 
            0.01265667266342007137 * (3.5 < round_Degree <= 70.0 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 156.5), 
          -0.025979339010908503865 * (Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.0014898625668138266 and  
                                     round_StdDev_Transcript_length > 636.7213134765625), 
           0.088736011639851314348 * (not Group == u'CM' and  
                                     round_End > 110010712.0 and  
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                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 3.996763229370117), 
          -0.042684495370579833562 * (round_Tajima__s_D_regulatory <= 
1.4184999465942383 and  
                                     round_Transcript_count <= 2.5 and  
                                     round_Gene_Length_bp > 9942.0 and  
                                     round_Average_Transcript_length > 2037.56787109375), 
           0.010718660893401628365 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.5181520581245422 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
         -0.0044768437453202277257 * (round_Closeness > 0.2549999952316284 and  
                                     round_Blomen_KBM7_mi <= 0.5 and  
                                     round_s_het_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 2625.484375), 
           0.012631834697413829582 * (2814.5 < round_Gene_Length_bp <= 9338.5 and  
                                     round_StdDev_Transcript_length > 580.992431640625), 
           0.026831902960513024509 * (round_Closeness > 0.33500000834465027 and  
                                     3.2976694107055664 < round_missense_Z <= 4.050085067749023), 
          0.0033918172563335005285 * (round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Transcript_count > 10.5 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
          0.0070956564876167357164 * (round_End <= 124517040.0 and  
                                     round_Tajima__s_D_regulatory > 0.5564999580383301 and  
                                     round_Blomen_KBM7 <= -0.2610846161842346 and  
                                     round_Gene_Length_bp > 2814.5), 
            0.05358215945498377708 * (round_End <= 124883040.0 and  
                                     -1.2874999046325684 < round_Tajima__s_D_regulatory <= 
1.4165000915527344 and  
                                     round_Transcript_count <= 20.5), 
           0.010564605410865832158 * (round_Degree > 45.0 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_Gene_Length_bp > 2402.0), 
           0.064211045541165565065 * (round_Degree <= 4.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_StdDev_Transcript_length > 1301.4395751953125), 
          -0.099504943567778156299 * (Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_missense_Z <= 2.3079466819763184), 
            0.16847444975170958181 * (round_Closeness <= 0.3149999976158142 and  
                                     2.642360210418701 < round_missense_Z <= 4.0604472160339355), 
            0.04243059279242206161 * (round_Closeness <= 0.3050000071525574 and  
                                     round_Blomen_KBM7 > -0.5158457159996033 and  
                                     round_Gene_Length_bp <= 53140.5), 
           0.047538526872885802921 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
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                                     round_Phi > 0.8754478693008423), 
            0.01377767556161369443 * (round_Tajima__s_D_regulatory <= 
1.4184999465942383 and  
                                     round_Transcript_count > 2.5 and  
                                     round_Gene_Length_bp > 9942.0 and  
                                     round_Average_Transcript_length > 2037.56787109375), 
           -0.01544246978038381346 * (Group == u'NDNE' and  
                                     round_Degree > 3.5), 
          -0.031626465358424796226 * (round_Degree_mi > 0.5 and  
                                     round_Phi <= 0.1322648823261261), 
           0.023920451949571132355 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_LofTool > 0.9829000234603882), 
           0.026861723913622247845 * (round_Closeness > 0.3149999976158142 and  
                                     round_Tajima__s_D_regulatory > 0.4104999899864197), 
          0.0036581146817508628649 * (round_End > 100419720.0 and  
                                     round_Tajima__s_D_regulatory <= -0.234499990940094 and  
                                     round_missense_Z <= 2.6417436599731445), 
          -0.037779318023490326972 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi <= 3.313508932478726e-05 and  
                                     round_LofTool > 0.04450000077486038), 
           0.021565100631107423507 * (round_missense_Z <= 3.2976694107055664 and  
                                     2821.0 < round_Gene_Length_bp <= 9941.5 and  
                                     round_Average_Transcript_length <= 2071.857421875), 
          -0.018406415026041244437 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Phi <= 0.0015477617271244526), 
           0.044321413351531856184 * (round_End > 100419720.0 and  
                                     round_Tajima__s_D_regulatory <= 0.5145000219345093 and  
                                     round_missense_Z <= 3.996763229370117 and  
                                     round_StdDev_Transcript_length > 166.57864379882812), 
          -0.040937321521144612313 * (0.3050000071525574 < round_Closeness <= 
0.3149999976158142 and  
                                     round_Tajima__s_D_regulatory > 0.4104999899864197), 
           -0.01205681028131431326 * (round_Degree > 4.5 and  
                                     round_Gene_Length_bp <= 39298.0), 
            0.01376055986142680175 * (round_dN_dS_Chimp <= 0.02499999850988388 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
          0.0012393689458476812339 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z <= 2.571293354034424 and  
                                     168.6014404296875 < round_StdDev_Transcript_length <= 
1450.0491943359375), 
         -0.0077058749532958803127 * (round_Tajima__s_D_regulatory <= 
1.0544999837875366 and  
                                     round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_missense_Z_mi <= 0.5 and  
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                                     round_Transcript_count <= 20.5), 
           0.035821139812792640589 * (round_Tajima__s_D_regulatory <= -
1.2855000495910645 and  
                                     round_LofTool > 0.8144999742507935 and  
                                     round_StdDev_Transcript_length > 3607.19140625), 
           0.011287896175946629182 * (Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.8754478693008423), 
          -0.086681950407499250288 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Degree <= 60.5 and  
                                     round_missense_Z > 4.031624794006348), 
          -0.055560469246041271907 * (round_Phi <= 0.12447576969861984 and  
                                     round_StdDev_Transcript_length <= 1098.5848388671875), 
           0.056832869755874752815 * (round_End <= 100419720.0 and  
                                     round_Blomen_KBM7 <= -0.11097116768360138 and  
                                     round_missense_Z > 3.2974047660827637), 
          0.0042022538063266699077 * (round_Closeness <= 0.7749999761581421 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Tajima__s_D_regulatory <= 0.34049999713897705 and  
                                     round_Blomen_KBM7 > -0.5153244733810425), 
           0.010232660118857737214 * (not Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Phi <= 0.998741626739502 and  
                                     round_s_het > 0.017704255878925323), 
          -0.014904888524450881845 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7 > -0.514461874961853 and  
                                     round_StdDev_Transcript_length <= 1944.22802734375), 
           -0.12345581397405855362 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Phi <= 3.313508932478726e-05 and  
                                     round_LofTool > 0.04450000077486038), 
         -0.0082097542006331434422 * (Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.25102293491363525), 
          0.0066597396499948708845 * (round_End <= 100419720.0 and  
                                     round_Degree <= 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Exon_Count <= 221.5), 
          -0.026228336463867144013 * (not Group == u'CM' and  
                                     round_End > 127204736.0 and  
                                     round_Phi > 0.9981463551521301 and  
                                     round_s_het > 0.1433388888835907), 
          0.0072832761262565624827 * (round_End > 100419720.0 and  
                                     round_missense_Z > 2.6417436599731445), 
          -0.018198365192935522794 * (4.5 < round_Degree <= 31.5 and  
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                                     round_Phi <= 0.919446587562561 and  
                                     round_Gene_Length_bp > 39298.0), 
         -0.0014469117791570695365 * (0.659500002861023 < round_LofTool <= 
0.9921150207519531 and  
                                     round_StdDev_Transcript_length > 589.7366333007812 and  
                                     round_Exon_Count <= 174.5), 
            0.04649175361763767389 * (round_LofTool > 0.6634999513626099 and  
                                     round_Exon_Count > 156.5), 
          -0.040594818357408524179 * (Group == u'NDNE' and  
                                     round_s_het > 0.016313210129737854 and  
                                     round_Gene_Length_bp <= 38001.5), 
          -0.067706065723669231482 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 2388.5126953125), 
           0.019417071016638930842 * (round_End <= 120516032.0 and  
                                     round_Closeness <= 0.33500000834465027 and  
                                     round_Tajima__s_D_regulatory <= 0.4104999899864197 and  
                                     round_Exon_Count > 97.5), 
           0.022064341778839532265 * (round_Transcript_count > 20.5 and  
                                     round_StdDev_Transcript_length <= 2418.21435546875), 
          0.0044133194936464073543 * (not Group == u'NDNE' and  
                                     round_Tajima__s_D_regulatory <= 0.5570000410079956 and  
                                     round_LofTool > 0.8105000257492065), 
           -0.14398676711490873692 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory <= -0.4115000069141388 and  
                                     8050.5 < round_Gene_Length_bp <= 53048.5), 
           0.040024524551637907788 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Transcript_count > 15.5), 
          -0.015835246306718037124 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7 <= -0.514461874961853 and  
                                     round_StdDev_Transcript_length <= 1944.22802734375), 
           0.010716122739572278219 * (round_Degree > 60.5 and  
                                     round_Blomen_KBM7 > -0.5153281092643738), 
         -0.0037798883504378804482 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Exon_Count <= 108.5), 
         -0.0015681404390947323475 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
           0.038785018347274782813 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_LofTool <= 0.6514999866485596), 
         -0.0039977514872525012762 * (Group == u'NDNE' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
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                                     round_Transcript_count <= 26.5 and  
                                     round_StdDev_Transcript_length <= 2388.5126953125), 
           0.038112358760383956147 * (Group == u'NDNE' and  
                                     round_Degree_mi > 0.5), 
           0.026371943455055456978 * (not Group == u'MNC' and  
                                     round_Phi > 3.313508932478726e-05 and  
                                     3.2976694107055664 < round_missense_Z <= 4.052361965179443), 
           0.049444141026331135669 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.4235000014305115 and  
                                     round_s_het > 0.014262920245528221), 
           0.013937161271230649046 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_missense_Z <= 1.43977952003479), 
          -0.020864630641113317278 * (round_Degree <= 12.5 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_StdDev_Transcript_length <= 2616.1044921875), 
           0.010891575439352343263 * (not Group == u'CM' and  
                                     round_Phi > 3.318415838293731e-05 and  
                                     round_Blomen_KBM7 > -0.5403047800064087 and  
                                     round_Transcript_count > 10.5), 
          -0.020197315811600891067 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_Blomen_KBM7 > -0.12487166374921799 and  
                                     round_s_het > 0.02633928880095482 and  
                                     round_Exon_Count <= 53.0), 
          -0.025658439979292017169 * (round_Closeness <= 0.3149999976158142 and  
                                     round_s_het <= 0.025150161236524582 and  
                                     round_Average_Transcript_length <= 2057.064453125), 
          -0.042894291214758038799 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Gene_Length_bp > 9941.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
             0.0114569281039716038 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_Tajima__s_D_regulatory <= 0.5564999580383301 and  
                                     round_Gene_Length_bp <= 47758.5), 
           0.067766934758570276931 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_LofTool > 0.9787000417709351), 
           0.042775949189413867146 * (not Group == u'CM' and  
                                     round_End <= 127204736.0 and  
                                     round_Degree > 61.5), 
          -0.033595605379461213058 * (round_missense_Z > 4.052361965179443 and  
                                     round_LofTool <= 0.9807000160217285), 
           0.017127149696538990914 * (round_Gene_Length_bp > 37833.5 and  
                                     round_StdDev_Transcript_length <= 1956.23095703125), 
           0.011030940167582190675 * (round_Degree <= 12.5 and  
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                                     round_Blomen_KBM7 <= -0.1940726488828659 and  
                                     round_s_het > 0.025150161236524582 and  
                                     round_Transcript_count <= 20.5), 
           -0.25855416246864998397 * (round_Phi <= 0.00015248148702085018 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Exon_Count <= 157.5), 
           0.018976143304323109251 * (round_End > 100419720.0 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5072991847991943 and  
                                     round_LofTool <= 0.994350016117096), 
          0.0010472512424781869628 * (round_LofTool <= 0.6655000448226929 and  
                                     round_s_het > 0.01709270477294922 and  
                                     round_Exon_Count <= 87.5), 
          -0.018696452857061698211 * (not Group == u'CM' and  
                                     round_Degree <= 64.0 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_StdDev_Transcript_length <= 1942.072509765625), 
           0.011962027921206701275 * (not Group == u'NDNE' and  
                                     12.5 < round_Degree <= 63.5 and  
                                     round_Degree_mi <= 0.5), 
            0.15322978417035446053 * (round_Degree <= 4.5 and  
                                     round_LofTool <= 0.9868500232696533 and  
                                     round_StdDev_Transcript_length > 1049.45654296875), 
           0.046437531520907876503 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_LofTool <= 0.9787000417709351 and  
                                     round_StdDev_Transcript_length > 1005.2410888671875), 
          -0.039805408645227642606 * (round_Degree <= 35.5 and  
                                     round_Blomen_KBM7 > -0.2521226406097412 and  
                                     round_s_het <= 0.01751864142715931 and  
                                     round_Gene_Length_bp > 2814.5), 
          -0.070420047677563976651 * (Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_missense_Z > 2.3079466819763184), 
          0.0025535846861198395648 * (Group == u'NDNE' and  
                                     round_Degree <= 35.5 and  
                                     round_Tajima__s_D_regulatory <= 1.0544999837875366 and  
                                     round_missense_Z <= 4.052361965179443), 
           0.092506701425168813557 * (round_Tajima__s_D_regulatory <= 
0.4235000014305115 and  
                                     round_Blomen_KBM7 > -0.2521226406097412), 
           0.028016343518460877504 * (round_Degree > 4.5 and  
                                     round_missense_Z > 1.43977952003479 and  
                                     round_Transcript_count <= 21.5), 
           0.013589678385553336654 * (round_End <= 100419720.0 and  
                                     round_Degree > 12.5 and  
                                     round_LofTool <= 0.812000036239624 and  
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                                     round_Exon_Count <= 221.5), 
          -0.010867009106563865761 * (round_Degree <= 60.5 and  
                                     round_Tajima__s_D_regulatory > -0.7795000076293945 and  
                                     round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_Exon_Count > 154.5), 
         -0.0036726609659116712936 * (round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 2.552614450454712 and  
                                     round_LofTool > 0.6644999980926514 and  
                                     round_Average_Transcript_length <= 2570.535888671875), 
           0.013832036762706318919 * (round_Closeness <= 0.7749999761581421 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Tajima__s_D_regulatory <= 0.34049999713897705 and  
                                     round_Blomen_KBM7 <= -0.5153244733810425), 
           0.053044796037296365609 * (round_Degree > 12.5 and  
                                     round_LofTool <= 0.9921150207519531 and  
                                     round_s_het > 0.025150161236524582 and  
                                     round_Exon_Count > 224.5), 
             -0.013287956853066012 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Gene_Length_bp <= 37999.5), 
            0.10324470994342001273 * (round_LofTool > 0.9921150207519531), 
          0.0057921807143307855667 * (not Group == u'CM' and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.5403047800064087 and  
                                     round_Transcript_count > 10.5), 
           0.092157718501607158168 * (round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.15531033277511597 and  
                                     round_missense_Z > 2.721888303756714 and  
                                     round_Exon_Count > 262.0), 
            -0.1305724926220721005 * (round_Degree_mi > 0.5 and  
                                     round_StdDev_Transcript_length <= 1060.87158203125), 
           0.016193134371026433188 * (round_Degree <= 35.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_LofTool <= 0.874500036239624 and  
                                     round_StdDev_Transcript_length <= 714.5440063476562), 
           0.035774440858628839268 * (Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.4165000021457672), 
         -0.0069014727149561538172 * (round_missense_Z <= 4.054958820343018 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp > 10637.0 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
          -0.026771080458371804972 * (round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.8162848949432373 and  
                                     round_LofTool <= 0.9833999872207642), 
          -0.022253783562079281627 * (round_Closeness <= 0.26499998569488525 and  
                                     round_LofTool <= 0.8105000257492065 and  
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                                     round_Gene_Length_bp <= 37966.5), 
         -0.0024688924457943600688 * (not Group == u'MNC' and  
                                     -1.2874999046325684 < round_Tajima__s_D_regulatory <= 
1.2934999465942383 and  
                                     round_Blomen_KBM7 > -0.4999815821647644), 
           0.042899930949984906026 * (not Group == u'NDNE' and  
                                     round_missense_Z > 1.43977952003479 and  
                                     round_StdDev_Transcript_length > 586.8510131835938 and  
                                     round_Exon_Count <= 229.5), 
           0.017509022546737609133 * (round_End > 100419720.0), 
          -0.066444044833209647827 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     3.134337902069092 < round_missense_Z <= 3.2974047660827637), 
           -0.00219063763450522489 * (not Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_Phi > 0.8875079154968262), 
            0.11064953698387736125 * (Group == u'CM' and  
                                     round_End > 110010712.0 and  
                                     round_Degree_mi <= 0.5), 
          -0.059270604135849759564 * (Group == u'NDNE' and  
                                     round_missense_Z <= 2.7258143424987793 and  
                                     round_Exon_Count <= 171.5), 
          -0.018291629266993809227 * (round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 > -0.12487166374921799), 
           0.035226494727457799416 * (round_Phi > 0.12447576969861984 and  
                                     93.5 < round_Exon_Count <= 265.5), 
           0.050722711654871383002 * (round_Degree > 12.5 and  
                                     round_Closeness > 0.33500000834465027 and  
                                     round_Tajima__s_D_regulatory <= 0.4235000014305115 and  
                                     round_LofTool <= 0.9922800064086914), 
          -0.051814515969269794859 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count <= 83.5), 
          -0.004095557220962523122 * (round_Degree > 12.5 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z > 4.031624794006348 and  
                                     round_LofTool <= 0.9499499797821045), 
          -0.061167712425044540314 * (round_Degree_mi > 0.5 and  
                                     round_Gene_Length_bp <= 2510.5), 
            -0.0182849435306143282 * (Group == u'MNC' and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length <= 987.5745849609375), 
           -0.32389234107127440332 * (Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi <= 0.14362311363220215), 
           -0.14541641777476235764 * (Group == u'MNC' and  
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                                     round_Gene_Length_bp <= 53048.5), 
          0.0087320822755329839671 * (round_Degree <= 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z > 2.120723009109497 and  
                                     round_StdDev_Transcript_length > 1011.6593627929688), 
           0.017852506892799022836 * (round_Closeness > 0.2549999952316284 and  
                                     3.334120750427246 < round_missense_Z <= 4.052361965179443 and  
                                     round_s_het > 0.014458265155553818), 
          -0.038423746283818283054 * (round_Degree <= 3.5 and  
                                     round_Degree_mi > 0.5 and  
                                     round_s_het <= 0.023678744211792946), 
          -0.004412961621996456911 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory <= 0.9564999938011169 and  
                                     round_Blomen_KBM7 > -0.5147985219955444 and  
                                     round_Gene_Length_bp <= 37999.5), 
           0.050996412382406750008 * (not Group == u'MNC' and  
                                     round_missense_Z <= 2.642360210418701 and  
                                     round_s_het > 0.014316117390990257 and  
                                     round_Exon_Count <= 165.5), 
           0.017338694268998987996 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Closeness > 0.3149999976158142), 
          -0.023156005411269445921 * (not Group == u'CM' and  
                                     round_End <= 127204736.0 and  
                                     round_Degree <= 61.5 and  
                                     round_missense_Z <= 4.031624794006348), 
          0.0028308618694010165111 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Transcript_count <= 20.5), 
          -0.040546423472875826877 * (Group == u'NDNE' and  
                                     round_missense_Z <= 2.7258143424987793 and  
                                     round_Exon_Count > 171.5), 
          -0.015113303914765858355 * (not Group == u'CM' and  
                                     round_End > 127204736.0 and  
                                     round_Phi > 0.9974162578582764 and  
                                     round_StdDev_Transcript_length <= 1345.761474609375), 
           -0.10222460154756490835 * (round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.0002437000221107155 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_StdDev_Transcript_length > 615.416259765625), 
           0.012362969768704433135 * (not Group == u'MNC' and  
                                     round_Degree > 34.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 4.0604472160339355), 
         -0.0064503231243915092399 * (round_Tajima__s_D_regulatory <= 
0.43549999594688416 and  
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                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_LofTool <= 0.9603500366210938 and  
                                     round_Exon_Count <= 164.5), 
         -0.0022205334822635804277 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > -1.2894999980926514 and  
                                     round_Blomen_KBM7 <= -0.5147985219955444 and  
                                     round_Transcript_count <= 26.5), 
           -0.25240843520512323828 * (round_Phi > 0.00015248148702085018 and  
                                     round_Blomen_KBM7 > -0.15492522716522217 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Exon_Count <= 157.5), 
          0.0095476722071454571406 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_Tajima__s_D_regulatory <= 0.5564999580383301 and  
                                     round_Gene_Length_bp > 47758.5), 
           0.025785796597482577019 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_LofTool > 0.9787000417709351), 
             0.1378685779507847764 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.8768634796142578), 
          0.0024299681294777109031 * (round_End <= 128392288.0 and  
                                     round_Gene_Length_bp > 9338.5 and  
                                     round_StdDev_Transcript_length > 1956.23095703125), 
           0.043814273445441413724 * (round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.14571721851825714 and  
                                     round_LofTool > 0.9435499906539917), 
          0.0033544123090482034534 * (round_missense_Z <= 2.6123709678649902 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_Gene_Length_bp > 9941.5 and  
                                     round_StdDev_Transcript_length > 166.57949829101562), 
           0.027254350066886999515 * (round_Closeness > 0.33500000834465027 and  
                                     round_Tajima__s_D_regulatory <= 0.5564999580383301), 
         -0.0021195491504552806984 * (round_Degree <= 35.5 and  
                                     round_Gene_Length_bp > 9906.5 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Average_Transcript_length <= 1956.6083984375), 
           0.048251921050298546279 * (round_Degree > 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 1285.35791015625), 
           0.022409297933030165179 * (round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_LofTool <= 0.6775000095367432 and  
                                     round_Exon_Count <= 151.5), 
           0.045353884427582646932 * (round_Gene_Length_bp <= 9906.5 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
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                                     round_Average_Transcript_length > 1577.136474609375), 
          -0.012720933738028348745 * (round_Phi <= 0.12447576969861984 and  
                                     round_StdDev_Transcript_length <= 1452.739013671875), 
          0.0020671485816952722345 * (round_Tajima__s_D_regulatory <= 
1.0544999837875366 and  
                                     round_Phi <= 0.9990512132644653 and  
                                     round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_Transcript_count > 20.5), 
         -0.0072592442110520818271 * (round_Degree_mi > 0.5 and  
                                     round_Average_Transcript_length <= 2170.1923828125), 
          0.0016667596308927788533 * (3.308867931365967 < round_missense_Z <= 
4.052361965179443 and  
                                     round_Exon_Count > 97.5), 
            0.01867224397834999633 * (round_Blomen_KBM7 <= -0.2516775131225586 and  
                                     3.308867931365967 < round_missense_Z <= 4.0613203048706055 and  
                                     round_s_het > 0.015855055302381516), 
           0.061536203645746870294 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_LofTool > 0.9922449588775635), 
           -0.01865222650192009321 * (not Group == u'CM' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7_mi > 0.5 and  
                                     round_StdDev_Transcript_length <= 2769.32568359375), 
          -0.031063061425573603586 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 168.6014404296875), 
           0.016728971448681104889 * (round_Degree > 10.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_LofTool <= 0.9311000108718872 and  
                                     round_s_het > 0.025092266499996185), 
           -0.30582887886172710479 * (round_Degree <= 4.5 and  
                                     round_Phi <= 0.14253592491149902 and  
                                     round_StdDev_Transcript_length > 616.5709228515625), 
           0.017548642979559044702 * (round_End <= 100419720.0 and  
                                     round_missense_Z <= 4.031624794006348 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Exon_Count <= 221.5), 
           0.033533794559069317331 * (round_End <= 100419720.0 and  
                                     round_Degree > 12.5 and  
                                     round_LofTool > 0.812000036239624 and  
                                     round_Exon_Count <= 221.5), 
          0.0065947414569974410758 * (not Group == u'MNC' and  
                                     round_End > 100419720.0 and  
                                     round_Tajima__s_D_regulatory > -1.2855000495910645 and  
                                     round_StdDev_Transcript_length <= 635.1746826171875), 
         -0.0056566784579737171626 * (round_Degree > 4.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Transcript_count > 24.5 and  
                                     round_StdDev_Transcript_length > 897.559326171875), 
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           0.081239321752520798903 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     3.2976694107055664 < round_missense_Z <= 3.8540451526641846), 
           0.030930760440212312634 * (round_Degree > 35.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.1796257197856903 and  
                                     round_LofTool <= 0.874500036239624), 
         -0.0074955400533961748233 * (round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.0015477617271244526 and  
                                     round_StdDev_Transcript_length <= 2427.245361328125 and  
                                     round_Exon_Count <= 96.5), 
          0.0060206295646320932488 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_s_het > 0.01754925772547722 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
          -0.022479192865490577047 * (Group == u'NDNE' and  
                                     round_Degree <= 8.5 and  
                                     round_Phi <= 0.18718643486499786 and  
                                     round_StdDev_Transcript_length > 714.5440063476562), 
          -0.004902590801046578968 * (not Group == u'MNC' and  
                                     round_s_het <= 0.015855055302381516), 
          -0.017831132034095014544 * (Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 > -0.25102293491363525), 
           0.013623595360248288294 * (round_Closeness > 0.2549999952316284 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_StdDev_Transcript_length <= 2430.197265625 and  
                                     round_Exon_Count <= 246.0), 
           0.018865549838809763522 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Average_Transcript_length <= 2071.857421875), 
           0.014732213904117162293 * (round_Degree > 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_s_het > 0.015838049352169037 and  
                                     round_StdDev_Transcript_length > 168.6014404296875), 
          -0.016714848080446102069 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.9564999938011169 and  
                                     round_Blomen_KBM7 > -0.5147985219955444 and  
                                     round_Gene_Length_bp <= 37999.5), 
          -0.015963145907007737778 * (round_StdDev_Transcript_length <= 
590.2589111328125), 
         -0.0060448945213366633844 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_s_het > 0.02767527475953102), 
           0.027704609106936072677 * (not Group == u'NDNE' and  
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                                     round_missense_Z <= 1.43977952003479 and  
                                     round_StdDev_Transcript_length > 586.8510131835938 and  
                                     round_Exon_Count <= 229.5), 
          -0.051098898316382507234 * (round_Closeness > 0.2549999952316284 and  
                                     3.8498473167419434 < round_missense_Z <= 4.052361965179443), 
          -0.058386046266751971678 * (round_Blomen_KBM7 > -0.1469864696264267), 
          0.0060639684811802183756 * (round_Closeness <= 0.35500001907348633 and  
                                     round_dN_dS_Chimp <= 0.5849999785423279 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_Gene_Length_bp > 2814.5), 
            0.05233613286777938356 * (Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.1670895218849182), 
           -0.17848306160053159508 * (round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length <= 1049.45654296875), 
        -0.00011540571561985079577 * (round_Tajima__s_D_regulatory <= -
1.2855000495910645 and  
                                     round_Blomen_KBM7 > -0.5154076814651489 and  
                                     round_LofTool <= 0.8144999742507935), 
          -0.010416764352577573272 * (round_missense_Z <= 3.325303077697754 and  
                                     round_LofTool <= 0.9922800064086914 and  
                                     round_StdDev_Transcript_length > 2377.90625), 
           -0.05612691108153916586 * (Group == u'NDNE' and  
                                     round_missense_Z > 1.1351158618927002 and  
                                     round_Transcript_count <= 10.5), 
           0.090625893742273977427 * (round_Degree > 3.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Gene_Length_bp <= 41501.0), 
           0.019908066071534915448 * (round_LofTool > 0.9920099973678589 and  
                                     round_Exon_Count > 86.5), 
          -0.014119188513395540888 * (not Group == u'MNC' and  
                                     round_Phi <= 0.0015477617271244526), 
          0.0046295616520464280552 * (round_Degree > 3.5 and  
                                     round_Exon_Count > 156.5), 
           0.017556588763314336793 * (round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 <= -0.1114160418510437 and  
                                     round_StdDev_Transcript_length <= 2377.90625 and  
                                     round_Average_Transcript_length > 2169.3193359375), 
             0.0187314523846858344 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi > 0.00028779974672943354 and  
                                     round_StdDev_Transcript_length > 1207.362548828125), 
           0.021330433143297765353 * (round_Degree <= 64.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Exon_Count <= 156.5), 



 195 

           0.021452094564182736663 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     round_missense_Z <= 3.134337902069092), 
          -0.032839560232847293808 * (round_missense_Z > 3.04426908493042 and  
                                     round_StdDev_Transcript_length <= 167.33212280273438), 
           0.012377636161393038711 * (round_End <= 100419720.0 and  
                                     round_Blomen_KBM7 <= -0.5154723525047302 and  
                                     round_missense_Z <= 3.2974047660827637), 
         0.00011644535307463677531 * (round_Degree), 
           0.011337114232236933375 * (round_Degree_mi <= 0.5 and  
                                     round_missense_Z > 1.43977952003479 and  
                                     round_LofTool <= 0.9886499643325806 and  
                                     round_Gene_Length_bp > 39341.0), 
          -0.012961434512462111784 * (not Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 2.3431456089019775), 
          -0.020474012020399504769 * (round_End <= 120572272.0 and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_Tajima__s_D_regulatory <= 0.4235000014305115 and  
                                     round_Gene_Length_bp > 54517.0), 
          -0.010177296319135669886 * (round_Degree <= 10.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi <= 0.13315337896347046 and  
                                     round_LofTool <= 0.9311000108718872), 
         -0.0047629233659651970187 * (round_Tajima__s_D_regulatory > 
0.4104999899864197 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Average_Transcript_length > 1876.067626953125), 
          0.0068520762408969563759 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi <= 0.919446587562561 and  
                                     round_StdDev_Transcript_length <= 1039.699462890625), 
          -0.028130566254400735798 * (Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length <= 621.470947265625), 
          -0.024145074195087025404 * (round_Degree <= 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi <= 0.12362469732761383 and  
                                     round_StdDev_Transcript_length <= 1011.6593627929688), 
          0.0015991642978274947951 * (round_Degree <= 21.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Exon_Count > 156.5), 
           0.088647162920468577929 * (Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Gene_Length_bp > 41501.0), 
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           0.026665282263039657984 * (round_Degree > 4.5 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length > 1967.8238525390625), 
         -0.0048445704274170222139 * (round_Closeness <= 0.2549999952316284 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_Gene_Length_bp <= 53173.0), 
          -0.014231203632158318309 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory > -1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     round_Gene_Length_bp <= 343581.5), 
          -0.018978210144039470153 * (Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_StdDev_Transcript_length > 636.7213134765625), 
           0.041662196873145339315 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.3050000071525574 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_Gene_Length_bp > 2814.5), 
           0.016988971806798404407 * (not Group == u'MNC' and  
                                     round_Degree > 62.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.2516775131225586), 
          -0.023466563573408403404 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Gene_Length_bp <= 9941.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
          -0.021454619164280947646 * (round_Degree <= 12.5 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_Gene_Length_bp <= 110374.0 and  
                                     round_Average_Transcript_length <= 2180.86572265625), 
           0.022697035856952464672 * (round_End <= 100419720.0 and  
                                     round_Exon_Count > 221.5), 
          0.0081456657325367897576 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Blomen_KBM7 > -0.5148604512214661 and  
                                     round_Transcript_count > 10.5), 
           0.029906081927261407571 * (round_missense_Z <= 4.054958820343018 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp <= 10637.0 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
           0.047761530637367016761 * (round_End <= 88799552.0 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_StdDev_Transcript_length > 2430.197265625), 
           0.038357225265835417916 * (round_Degree > 12.5 and  
                                     round_Blomen_KBM7 <= -0.25064072012901306), 
           0.021452043305304778487 * (not Group == u'CM' and  
                                     round_End > 127204736.0 and  
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                                     round_Phi <= 0.9981463551521301 and  
                                     round_Exon_Count > 69.5), 
          -0.048336036395590260828 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 > -0.25219112634658813 and  
                                     round_Transcript_count <= 19.5), 
           0.052244759431406627426 * (round_Tajima__s_D_regulatory <= -
1.2874999046325684 and  
                                     round_Blomen_KBM7 > -0.41121259331703186), 
          -0.014142570663065691036 * (round_Blomen_KBM7 <= -0.2516775131225586 and  
                                     round_missense_Z > 4.0613203048706055 and  
                                     round_s_het > 0.015855055302381516 and  
                                     round_Exon_Count <= 224.5), 
           0.040131506231853936173 * (round_End <= 110010712.0 and  
                                     round_Degree > 61.5 and  
                                     round_Degree_mi <= 0.5), 
          -0.052525036398370784918 * (not Group == u'MNC' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 987.5745849609375), 
           -0.03444322178607048951 * (round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 > -0.1114160418510437), 
          0.0080778520322766257655 * (round_Phi > 0.9981780648231506 and  
                                     round_missense_Z > 2.6123709678649902 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_Average_Transcript_length > 2957.866943359375), 
         -0.0018453559825937011947 * (not Group == u'MNC' and  
                                     round_Phi > 3.313508932478726e-05 and  
                                     round_missense_Z <= 3.2976694107055664), 
           0.088310649006325236954 * (Group == u'CM'), 
            -0.3321493231824571013 * (round_Degree_mi > 0.5 and  
                                     round_StdDev_Transcript_length > 1060.87158203125), 
           0.089806398288230407378 * (round_Phi <= 3.313508932478726e-05 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_LofTool <= 0.04450000077486038), 
          -0.056141049902893203072 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi <= 0.9640257358551025), 
          -0.035048251621686281332 * (round_Degree <= 12.5 and  
                                     round_Closeness > 0.3050000071525574 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_StdDev_Transcript_length > 168.6014404296875), 
          0.0049429908706841016106 * (not Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Tajima__s_D_regulatory <= 1.0544999837875366 and  
                                     round_missense_Z <= 4.052361965179443), 
           0.025594410691442658068 * (round_End <= 125209176.0 and  
                                     round_Degree > 12.5 and  
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                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_StdDev_Transcript_length > 3690.060546875), 
           0.020970553574886488524 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.0015477617271244526 and  
                                     round_StdDev_Transcript_length > 626.7237548828125 and  
                                     round_Exon_Count <= 283.5), 
         -0.0072708255207664862149 * (round_Degree_mi <= 0.5 and  
                                     round_LofTool <= 0.659500002861023 and  
                                     round_StdDev_Transcript_length <= 809.498046875), 
          -0.001003390225380734746 * (round_dN_dS_Chimp > 0.5950000286102295 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_Average_Transcript_length > 1853.1895751953125), 
          0.0078267880577386761409 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Degree <= 70.0 and  
                                     round_LofTool > 0.8695000410079956), 
            0.30178102419431956926 * (round_Closeness > 0.3149999976158142 and  
                                     round_Exon_Count > 224.5), 
           -0.04163560042881176565 * (round_Closeness <= 0.2549999952316284 and  
                                     round_LofTool <= 0.8535000085830688 and  
                                     round_StdDev_Transcript_length <= 617.4835815429688), 
          0.0030910877541061327484 * (round_Phi <= 0.1378774642944336 and  
                                     round_LofTool <= 0.659500002861023 and  
                                     round_Average_Transcript_length > 2515.3544921875), 
           0.029649301367085705017 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 166.57864379882812), 
           0.031982851277675909685 * (round_Degree <= 12.5 and  
                                     round_Tajima__s_D_regulatory <= 0.4235000014305115 and  
                                     round_LofTool <= 0.9922800064086914 and  
                                     round_Gene_Length_bp > 37966.5), 
          -0.017070967066707309207 * (round_dN_dS_Chimp > 0.02499999850988388 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
           0.029724330771197321477 * (round_missense_Z <= 3.1514573097229004 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Average_Transcript_length > 2071.857421875), 
           0.036175061572276949462 * (round_Degree_mi <= 0.5 and  
                                     round_LofTool > 0.9886499643325806 and  
                                     round_Gene_Length_bp > 39341.0), 
           0.012711184921391694216 * (round_Phi <= 0.998741626739502 and  
                                     round_Gene_Length_bp > 9906.5 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Average_Transcript_length > 1956.6083984375), 
           0.036358077235948783879 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
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                                     round_Closeness <= 0.3149999976158142 and  
                                     round_s_het > 0.03478143364191055), 
          -0.062385456839495603831 * (round_s_het <= 0.016313210129737854 and  
                                     round_Gene_Length_bp <= 38001.5), 
           0.098082437827070073633 * (round_Closeness > 0.3149999976158142 and  
                                     round_Transcript_count <= 19.5), 
           0.011020545071693770359 * (round_Degree > 12.5 and  
                                     4.052361965179443 < round_missense_Z <= 7.099285125732422 and  
                                     round_Gene_Length_bp > 2814.5), 
            0.06749773290419343319 * (not Group == u'NDNE' and  
                                     round_Degree > 62.5), 
           -0.01639995939674137107 * (round_Degree > 4.5 and  
                                     round_Blomen_KBM7 > -0.15807728469371796 and  
                                     round_StdDev_Transcript_length <= 1275.7037353515625), 
          -0.010270465248197970312 * (round_Phi <= 3.313508932478726e-05 and  
                                     round_missense_Z <= 4.052361965179443), 
          -0.014236579328625676225 * (round_s_het <= 0.025150161236524582 and  
                                     round_Transcript_count > 13.5 and  
                                     round_Average_Transcript_length > 1873.0999755859375), 
           0.081211064552060438504 * (round_End > 85205200.0 and  
                                     round_Gene_Length_bp > 9930.5 and  
                                     round_StdDev_Transcript_length > 2430.197265625), 
          0.0089967961046419821919 * (round_Degree <= 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 2.120723009109497 and  
                                     round_StdDev_Transcript_length > 1011.6593627929688), 
           -0.12108937018609394753 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory <= -0.4115000069141388 and  
                                     round_Gene_Length_bp <= 8050.5), 
           0.081999324716289165305 * (round_Closeness > 0.32499998807907104 and  
                                     round_Tajima__s_D_regulatory <= -1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.41121259331703186), 
           -0.04692241815911364633 * (round_Closeness <= 0.3149999976158142 and  
                                     round_s_het <= 0.025150161236524582 and  
                                     round_Average_Transcript_length > 2057.064453125), 
           0.043127172504397952302 * (round_End > 100419720.0 and  
                                     round_Tajima__s_D_regulatory > 0.5145000219345093 and  
                                     round_missense_Z <= 3.996763229370117 and  
                                     round_StdDev_Transcript_length > 166.57864379882812), 
           -0.02368886292594349699 * (not Group == u'CM' and  
                                     round_End > 100419720.0 and  
                                     round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 > -0.514844536781311), 
           0.012990241102245232707 * (round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.4316735863685608), 
         -0.0046364819849940520566 * (round_Tajima__s_D_regulatory_mi), 
          0.0051529804551414338035 * (round_Degree > 3.5 and  
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                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Tajima__s_D_regulatory <= 0.18650001287460327 and  
                                     round_Gene_Length_bp <= 343581.5), 
             0.0438080419095184595 * (not Group == u'NDNE' and  
                                     round_Degree > 12.5 and  
                                     round_Closeness > 0.32499998807907104 and  
                                     round_Gene_Length_bp > 53079.0), 
          -0.024672830644793142252 * (not Group == u'NDNE' and  
                                     round_s_het > 0.016313210129737854 and  
                                     round_Gene_Length_bp <= 38001.5), 
            0.02030768844142512991 * (round_missense_Z <= 4.052361965179443 and  
                                     round_LofTool <= 0.04450000077486038 and  
                                     round_s_het <= 0.014458265155553818), 
           0.021488441370476205755 * (not Group == u'MNC' and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 899.939453125), 
            -0.0377281103161658804 * (Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi <= 0.919446587562561), 
          -0.047992281795421115609 * (round_Gene_Length_bp <= 2599.0 and  
                                     round_StdDev_Transcript_length <= 166.57864379882812), 
         -0.0030180344075642685266 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Tajima__s_D_regulatory > 0.12399999797344208 and  
                                     round_StdDev_Transcript_length > 1944.22802734375), 
          -0.053645815472417320013 * (round_StdDev_Transcript_length <= 
169.24288940429688 and  
                                     round_Average_Transcript_length <= 2318.75), 
           0.005484710865094958622 * (round_Degree > 3.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_s_het > 0.02518850564956665 and  
                                     round_Transcript_count <= 15.5), 
            0.01851729216318677082 * (not Group == u'NDNE' and  
                                     round_Degree <= 4.5), 
          -0.009235200960148456234 * (Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory > -1.2874999046325684), 
          0.0048887605175608542241 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.8785387277603149), 
           0.017492794284271317301 * (round_missense_Z <= 4.122845649719238 and  
                                     2814.5 < round_Gene_Length_bp <= 9338.5 and  
                                     round_StdDev_Transcript_length <= 580.992431640625), 
          0.0021128405691882255757 * (Group == u'NDNE' and  
                                     round_s_het > 0.017306189984083176 and  
                                     round_StdDev_Transcript_length > 621.5349731445312 and  
                                     round_Exon_Count > 171.0), 
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          -0.028339346103928231974 * (not Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Phi > 0.998741626739502 and  
                                     round_Transcript_count <= 8.5), 
         2.8544422492723128641E-05 * (round_missense_Z <= 3.2976694107055664 and  
                                     round_Transcript_count > 25.5 and  
                                     round_Gene_Length_bp > 9941.5 and  
                                     round_Average_Transcript_length <= 2071.857421875), 
         -0.0072243283196216957764 * (round_Degree <= 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool > 0.6634999513626099), 
          -0.022293006054387030229 * (round_LofTool <= 0.6634999513626099 and  
                                     round_s_het > 0.01709270477294922 and  
                                     round_Exon_Count <= 88.5), 
           0.022977805449827696377 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Transcript_count <= 15.5), 
          -0.017991002487537172821 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.17550000548362732 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp > 2814.5), 
            0.13358397646296524264 * (round_Degree_mi <= 0.5 and  
                                     round_LofTool > 0.9907699823379517), 
          -0.049028952313931860318 * (round_Phi <= 0.12447576969861984 and  
                                     83.5 < round_Exon_Count <= 242.5), 
          0.0021989595530416358206 * (round_missense_Z), 
           0.021122374812430694951 * (round_Blomen_KBM7 <= -0.157728910446167 and  
                                     round_missense_Z > 3.2971019744873047 and  
                                     round_Exon_Count > 96.5), 
           0.040975473907031947918 * (round_LofTool > 0.9921150207519531 and  
                                     round_s_het > 0.025150161236524582), 
          -0.029039626470798590024 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi <= 0.8768634796142578), 
         -0.0093112986032186061125 * (round_Gene_Length_bp > 9978.0 and  
                                     round_StdDev_Transcript_length <= 2377.90625 and  
                                     round_Exon_Count <= 87.5), 
          -0.010142192141983820061 * (round_End <= 100419720.0 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Exon_Count <= 221.5), 
          -0.073112609476678830367 * (round_Blomen_KBM7_mi), 
         -0.0097552048672122273348 * (round_Phi <= 0.1378774642944336 and  
                                     round_LofTool <= 0.659500002861023 and  
                                     round_Average_Transcript_length <= 2515.3544921875), 
            0.02224374309944953873 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     3.2976694107055664 < round_missense_Z <= 4.052361965179443 and  
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                                     round_LofTool <= 0.9922449588775635), 
          -0.023271586599581565308 * (round_s_het), 
           -0.01302008707847174436 * (round_Degree_mi <= 0.5 and  
                                     round_missense_Z > 2.552614450454712 and  
                                     round_Average_Transcript_length <= 2570.535888671875), 
         -0.0089483655310949161005 * (round_End <= 100419720.0 and  
                                     round_missense_Z > 4.031624794006348 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Exon_Count <= 221.5), 
         -0.0076119255564191818514 * (9338.5 < round_Gene_Length_bp <= 37833.5 and  
                                     round_StdDev_Transcript_length <= 1956.23095703125), 
            -0.1477711271932482251 * (round_Degree_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory <= 0.47749999165534973), 
           -0.15850568711767087926 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory > -0.4115000069141388 and  
                                     9988.0 < round_Gene_Length_bp <= 53048.5), 
          -0.027338158540968542087 * (not Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_LofTool <= 0.9905250072479248), 
            0.10791704802889216797 * (round_Degree > 35.5 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     round_missense_Z <= 4.052361965179443), 
           0.038052681275016403406 * (round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.15531033277511597 and  
                                     round_missense_Z > 2.721888303756714 and  
                                     round_Exon_Count <= 262.0), 
           0.032420599714973505345 * (round_Degree > 12.5 and  
                                     round_s_het > 0.02518850564956665 and  
                                     round_Exon_Count <= 284.0), 
           0.068969116586947529224 * (round_Degree > 35.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.1796257197856903 and  
                                     round_LofTool <= 0.874500036239624), 
           0.011001837801926907245 * (round_s_het > 0.02518850564956665 and  
                                     round_Transcript_count > 15.5), 
           0.032911944288080231813 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi > 0.4623493552207947 and  
                                     round_LofTool <= 0.9787000417709351), 
           0.056478680464096327196 * (not Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_s_het > 0.02518850564956665 and  
                                     round_Exon_Count > 160.5), 
          -0.033531490400225016923 * (not Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
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                                     round_Degree_mi <= 0.5 and  
                                     round_Phi <= 0.919446587562561), 
           0.032944099199805537692 * (-1.2874999046325684 < 
round_Tajima__s_D_regulatory <= 1.4165000915527344 and  
                                     round_missense_Z <= 4.028769493103027 and  
                                     round_Transcript_count > 20.5), 
           0.028319937430381268706 * (round_Degree > 12.5 and  
                                     round_Closeness <= 0.33500000834465027 and  
                                     round_Tajima__s_D_regulatory <= 0.4235000014305115 and  
                                     round_LofTool <= 0.9922800064086914), 
         -0.0026354135038181500383 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.24819540977478027 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
         -0.0070229179471281545991 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Tajima__s_D_regulatory <= 0.4235000014305115 and  
                                     round_Exon_Count <= 156.5), 
           -0.42263729054912357874 * (Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_StdDev_Transcript_length > 714.263427734375), 
           0.083714906610359116068 * (round_Closeness > 0.3149999976158142 and  
                                     round_Transcript_count > 19.5), 
          -0.024520343423184185611 * (round_missense_Z <= 0.4934942126274109 and  
                                     round_Exon_Count <= 96.5), 
           0.010109225596981909548 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 218.5), 
          0.0032675836626067386939 * (round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 3.335038185119629 and  
                                     round_StdDev_Transcript_length > 2377.02734375), 
         0.00060752664301474447461 * (Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length > 714.263427734375), 
          -0.010258215185811834017 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi <= 0.4316735863685608 and  
                                     round_Transcript_count <= 9.5), 
            0.03375802518351931486 * (not Group == u'MNC' and  
                                     round_Closeness > 0.33500000834465027 and  
                                     3.2976694107055664 < round_missense_Z <= 4.050085067749023), 
          -0.012795976026728770811 * (round_Degree <= 12.5 and  
                                     round_Closeness <= 0.7100000381469727 and  
                                     round_missense_Z <= 4.0613203048706055 and  
                                     round_Gene_Length_bp <= 352096.0), 
          0.0023318898906593155812 * (round_Closeness > 0.2549999952316284 and  
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                                     round_Phi <= 0.4316735863685608 and  
                                     round_Transcript_count <= 9.5), 
         -0.0066755401432419267729 * (round_Degree <= 12.5 and  
                                     round_Closeness <= 0.3050000071525574 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_StdDev_Transcript_length > 168.6014404296875), 
         -0.0034145756247275114645 * (round_LofTool <= 0.6634999513626099 and  
                                     round_s_het <= 0.01709270477294922 and  
                                     round_Exon_Count <= 88.5), 
           0.020834681193880762867 * (round_Tajima__s_D_regulatory <= 
1.4165000915527344 and  
                                     round_Blomen_KBM7 <= -0.5153244733810425 and  
                                     round_Transcript_count > 10.5 and  
                                     round_Gene_Length_bp > 10640.5), 
          -0.001953615307148606154 * (round_Phi <= 0.12447576969861984 and  
                                     round_LofTool > 0.9605500102043152 and  
                                     round_StdDev_Transcript_length > 1452.739013671875), 
           0.014062538630450481178 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Average_Transcript_length > 2570.535888671875), 
          0.0052869251864379315439 * (round_Phi > 0.00015248148702085018 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_Exon_Count <= 87.5), 
           -0.02333450869429674196 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory > 1.2934999465942383 and  
                                     round_Blomen_KBM7 > -0.4999815821647644), 
         -0.0013849296134431871106 * (Group == u'NDNE' and  
                                     round_s_het > 0.01700003445148468 and  
                                     round_StdDev_Transcript_length <= 704.5946044921875 and  
                                     round_Exon_Count <= 86.5), 
           0.011101717126482805661 * (round_Degree <= 12.5 and  
                                     round_s_het > 0.017613736912608147 and  
                                     round_Gene_Length_bp > 38001.5 and  
                                     round_Exon_Count > 221.5), 
           0.070135120685213117597 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi <= 0.8754478693008423), 
          -0.064495788823159316827 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_LofTool <= 0.8554999828338623), 
         0.00050612016669284083138 * (round_End <= 100419720.0 and  
                                     round_Tajima__s_D_regulatory > -1.2885000705718994 and  
                                     round_missense_Z_mi > 0.5), 
          -0.073034808226031561196 * (round_Gene_Length_bp > 2599.0 and  
                                     round_StdDev_Transcript_length <= 166.57864379882812), 
          -0.032090827359876047953 * (Group == u'NDNE' and  
                                     round_missense_Z > 2.7258143424987793), 
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           0.040659733289495375574 * (round_Tajima__s_D_regulatory <= -
1.2874999046325684 and  
                                     round_missense_Z <= 3.992063522338867 and  
                                     round_Exon_Count <= 224.5), 
           0.026721043939407669587 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_LofTool <= 0.9787000417709351 and  
                                     round_StdDev_Transcript_length <= 1005.2410888671875), 
          0.0091395249084863204592 * (not Group == u'MNC' and  
                                     round_Degree > 5.5 and  
                                     round_Phi > 0.0015477617271244526 and  
                                     round_Blomen_KBM7 <= -0.18366125226020813), 
          0.0060628959549816306696 * (round_End <= 127637464.0 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Gene_Length_bp > 9941.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
          -0.039510142557001665109 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_missense_Z > 3.8540451526641846), 
           0.019811125846081169277 * (round_Degree <= 4.5 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length > 1967.8238525390625), 
         -0.0018599456342518888574 * (Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Tajima__s_D_regulatory > -1.2885000705718994 and  
                                     round_Blomen_KBM7 <= -0.09869569540023804), 
          0.0021562156312482580467 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Gene_Length_bp > 37999.5), 
          -0.049805293559377718238 * (Group == u'NDNE' and  
                                     round_StdDev_Transcript_length <= 621.5349731445312), 
           0.014492269940647846405 * (round_End > 100419720.0 and  
                                     round_missense_Z > 4.076244354248047 and  
                                     round_LofTool <= 0.994350016117096), 
             0.1236092272944794429 * (round_LofTool > 0.9922449588775635), 
          -0.031030338902052499728 * (Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_Average_Transcript_length <= 2169.2587890625), 
           0.026392057958906565279 * (round_Blomen_KBM7 > -0.49977701902389526 and  
                                     round_LofTool > 0.9922449588775635), 
           0.065464842259792752066 * (round_LofTool <= 0.9920099973678589 and  
                                     round_Exon_Count > 221.5), 
          0.0055693260621947279776 * (round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Exon_Count > 151.5), 
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          -0.012235121495508578457 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_s_het > 0.021862218156456947), 
           0.019996450446880205398 * (round_Tajima__s_D_regulatory > 
0.4235000014305115 and  
                                     round_Blomen_KBM7 <= -0.21081802248954773 and  
                                     round_s_het > 0.015080630779266357 and  
                                     round_StdDev_Transcript_length > 580.992431640625), 
         -0.0010861882066284769995 * (Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi > 0.919446587562561), 
          -0.020932057542549405149 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory > -1.2909998893737793), 
          0.0043345273324120409467 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory > -1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.4999815821647644), 
         -0.0056254294468995819437 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     -1.2855000495910645 < round_Tajima__s_D_regulatory <= 
1.4165000915527344), 
          -0.051135930907465425299 * (round_missense_Z <= 3.04426908493042 and  
                                     round_StdDev_Transcript_length <= 167.33212280273438), 
          0.0012261433532188758741 * (round_Degree > 4.5 and  
                                     round_Phi > 0.12357446551322937 and  
                                     round_Blomen_KBM7 <= -0.15807728469371796 and  
                                     round_StdDev_Transcript_length <= 1275.7037353515625), 
           0.023396898187144792025 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Gene_Length_bp > 45328.0), 
        -0.00073349258122191681765 * (round_Degree > 4.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 1275.7037353515625), 
           0.001877324657792885142 * (round_Degree <= 9.5 and  
                                     round_Phi > 0.1378774642944336 and  
                                     round_LofTool <= 0.659500002861023), 
        -7.2347323261013874146E-06 * (round_Exon_Count), 
         -0.0046239247092063531092 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Average_Transcript_length > 2071.857421875), 
          -0.090305482829968683478 * (round_Phi <= 0.0002437000221107155 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_StdDev_Transcript_length > 615.416259765625), 
            0.01648482491782999812 * (round_Degree <= 45.0 and  
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                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_Gene_Length_bp > 2402.0), 
          -0.025610478117531781939 * (not Group == u'NDNE' and  
                                     round_Degree <= 57.5 and  
                                     round_missense_Z <= 2.642360210418701 and  
                                     round_Exon_Count <= 190.5), 
           0.013462495283131365245 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Degree > 70.0 and  
                                     round_LofTool > 0.8695000410079956), 
           0.010003967660577692267 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_s_het <= 0.43051624298095703 and  
                                     round_Gene_Length_bp > 2821.0), 
           -0.25087679754859976144 * (round_Phi > 0.00015248148702085018 and  
                                     round_Blomen_KBM7 <= -0.15492522716522217 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Exon_Count <= 157.5), 
           -0.20988131906886342559 * (round_Degree_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory > 0.47749999165534973), 
           0.014989444923831543588 * (Group == u'MNC' and  
                                     round_Phi > 0.0015477617271244526 and  
                                     round_Exon_Count > 96.5), 
         -0.0083027455186904398216 * (not Group == u'MNC' and  
                                     round_Degree <= 5.5 and  
                                     round_Gene_Length_bp <= 43309.0), 
           -0.16073662255780979402 * (round_LofTool <= 0.6634999513626099 and  
                                     round_Exon_Count > 157.5), 
           0.035010641447032482543 * (2630.5 < round_Gene_Length_bp <= 9978.0 and  
                                     round_StdDev_Transcript_length <= 2377.90625), 
          -0.021649303102464188125 * (round_missense_Z <= 3.3354156017303467 and  
                                     round_StdDev_Transcript_length <= 636.7213134765625), 
           -0.02887978211493740649 * (round_missense_Z > 3.3354156017303467 and  
                                     round_StdDev_Transcript_length <= 636.7213134765625), 
          -0.015589426309587621142 * (not Group == u'CM' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Tajima__s_D_regulatory > 1.062999963760376 and  
                                     round_Blomen_KBM7_mi <= 0.5), 
           0.007869031006701419223 * (not Group == u'NDNE' and  
                                     round_Tajima__s_D_regulatory > 0.5564999580383301), 
            0.01919846955873811753 * (round_Closeness <= 0.2549999952316284 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_s_het > 0.014458265155553818 and  
                                     round_s_het_mi > 0.5), 
          -0.013523761746092448702 * (round_Closeness > 0.2549999952316284 and  
                                     round_missense_Z <= 1.43977952003479 and  
                                     round_StdDev_Transcript_length <= 902.3864135742188 and  
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                                     round_Exon_Count <= 260.5), 
           0.056557835112290621993 * (not Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
                                     round_LofTool > 0.9827499985694885), 
          1.077170414030006006E-06 * (round_StdDev_Transcript_length), 
          0.0067367214229233718728 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.32499998807907104 and  
                                     round_missense_Z > 1.43977952003479), 
          -0.025280204319459625983 * (round_Blomen_KBM7 > -0.24819540977478027 and  
                                     round_missense_Z <= 3.2976694107055664), 
           -0.07144481186709027154 * (Group == u'NDNE' and  
                                     round_missense_Z <= 1.1351158618927002 and  
                                     round_Transcript_count <= 10.5), 
          -0.034050179534380775603 * (round_End <= 100419720.0 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z <= 2.852269172668457), 
           0.038061134138614192979 * (not Group == u'MNC' and  
                                     round_missense_Z <= 2.642360210418701 and  
                                     round_s_het > 0.014316117390990257 and  
                                     round_Exon_Count > 165.5), 
          -0.076712140314540558372 * (round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.0002437000221107155 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_StdDev_Transcript_length > 615.416259765625), 
          -0.039402444954045441616 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp > 0.5950000286102295), 
          -0.084793394898434820695 * (Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
                                     round_Phi <= 0.13842733204364777), 
          -0.012276591717802870854 * (round_Closeness <= 0.33500000834465027 and  
                                     round_Blomen_KBM7 > -0.49977701902389526 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_LofTool <= 0.9922449588775635), 
          0.0049006772599034468391 * (round_End <= 127093776.0 and  
                                     round_Tajima__s_D_regulatory > -1.2894999980926514 and  
                                     round_Blomen_KBM7 <= -0.49977701902389526 and  
                                     round_Exon_Count <= 218.5), 
          -0.017059843137643783406 * (0.659500002861023 < round_LofTool <= 
0.9921150207519531 and  
                                     round_StdDev_Transcript_length <= 589.7366333007812 and  
                                     round_Exon_Count <= 174.5), 
         -0.0075798691384530445317 * (round_End <= 100419720.0 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7_mi <= 0.5 and  
                                     round_Exon_Count <= 221.5), 
           0.010744566051742131946 * (12.5 < round_Degree <= 60.5 and  
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                                     round_Tajima__s_D_regulatory <= 1.0529999732971191), 
           -0.38591243129541930035 * (Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.14362311363220215), 
          -0.040250397690003617002 * (not Group == u'NDNE' and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count <= 83.5), 
          0.0054042513292536526609 * (not Group == u'NDNE' and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 93.5), 
           0.012640846218055473704 * (round_Degree > 4.5 and  
                                     round_Blomen_KBM7 <= -0.1469864696264267 and  
                                     round_missense_Z > 4.099565505981445 and  
                                     round_Exon_Count <= 224.5), 
          -0.011599627423029612583 * (not Group == u'CM' and  
                                     3.5 < round_Degree <= 56.5 and  
                                     round_Exon_Count <= 253.5), 
           0.024923686490065564969 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Phi <= 0.9998619556427002 and  
                                     round_StdDev_Transcript_length > 2625.484375), 
          -0.024788357238958731721 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory <= 0.4104999899864197 and  
                                     round_Transcript_count <= 20.5), 
          -0.032616344153410088691 * (4.5 < round_Degree <= 29.5 and  
                                     round_StdDev_Transcript_length <= 897.559326171875), 
          -0.035027548355530679913 * (Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_StdDev_Transcript_length > 1049.45654296875), 
         -0.0074999311629464779708 * (Group == u'NDNE' and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 1967.8238525390625), 
           0.033847444063908105338 * (round_Degree > 12.5 and  
                                     round_LofTool <= 0.9921150207519531 and  
                                     round_s_het > 0.025150161236524582 and  
                                     round_Exon_Count <= 224.5), 
           0.018672957826625806443 * (round_Phi <= 0.00015248148702085018 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_LofTool > 0.11749999970197678), 
         -0.0066963862081202731036 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Tajima__s_D_regulatory > 0.4235000014305115 and  
                                     round_Exon_Count <= 156.5), 
           -0.19403437417903002249 * (round_Degree <= 4.5 and  
                                     round_Phi > 0.14253592491149902), 
           0.025474159388727657394 * (round_Degree > 4.5 and  
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                                     round_Closeness > 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 1275.7037353515625), 
           -0.15200914772366930228 * (round_Gene_Length_bp <= 2814.5), 
          -0.012369173690002560964 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 2.7698380947113037 and  
                                     round_Gene_Length_bp <= 39341.0), 
           0.019096003975550827902 * (round_Degree <= 4.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 1301.4395751953125), 
          -0.060655818768655632434 * (round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length > 2388.5126953125), 
          -0.022501726195653822676 * (not Group == u'NDNE' and  
                                     round_Degree <= 62.5 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 580.6193237304688), 
            0.06316842250916585022 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi <= 0.8768634796142578 and  
                                     round_LofTool <= 0.9829000234603882), 
           0.039685738909723246304 * (Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_missense_Z > 1.472226858139038), 
          -0.002509813077558311397 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_LofTool <= 0.9435499906539917 and  
                                     round_Gene_Length_bp <= 54517.0), 
          -0.039332187759655926063 * (round_dN_dS_Chimp > 0.5950000286102295), 
           -0.06643661699653181929 * (Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284), 
          -0.021412501080032213946 * (round_Degree > 3.5 and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count <= 156.5), 
        -0.00029745582835470673125 * (round_Transcript_count), 
           0.057181720796839995147 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984), 
        -1.1772852955159365113E-05 * (round_Tajima__s_D_regulatory <= 
0.4165000021457672 and  
                                     round_Phi > 0.00015248148702085018 and  
                                     round_missense_Z <= 3.308867931365967), 
          -0.078557558657171636107 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_StdDev_Transcript_length <= 615.416259765625), 
           0.017463172080480923037 * (round_Closeness > 0.2549999952316284 and  
                                     round_LofTool > 0.9937300086021423 and  
                                     round_Gene_Length_bp > 39268.5), 
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        -0.00041244386195987383292 * (round_Degree <= 60.5 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_Exon_Count <= 154.5), 
          -0.012984409356028072183 * (round_Degree > 4.5 and  
                                     round_Phi > 0.0003650499857030809 and  
                                     round_Blomen_KBM7 <= -0.1469864696264267 and  
                                     round_missense_Z <= 4.099565505981445), 
             -0.013769490895467194 * (not Group == u'MNC' and  
                                     round_Degree <= 34.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 4.0604472160339355), 
           0.026191082501492171652 * (round_missense_Z <= 2.695338487625122 and  
                                     round_Transcript_count > 26.5 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
         -0.0087539696043418078336 * (not Group == u'CM' and  
                                     round_Closeness <= 0.7100000381469727 and  
                                     round_Blomen_KBM7 <= -0.49977701902389526 and  
                                     round_LofTool <= 0.6634999513626099), 
           0.015364239969804956848 * (round_Degree > 37.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.24797455966472626 and  
                                     round_missense_Z <= 2.721888303756714), 
          -0.013768597282704474888 * (round_Degree > 5.5 and  
                                     round_Blomen_KBM7 <= -0.15774735808372498 and  
                                     round_Average_Transcript_length <= 2566.631103515625), 
          0.0016667767258665866937 * (Group == u'NDNE' and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 93.5), 
            0.18128583819906532448 * (round_Closeness > 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.5528146028518677 and  
                                     round_Exon_Count <= 224.5), 
           0.012943950146806795093 * (round_Degree > 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_Gene_Length_bp > 2814.5), 
         -0.0049955332334434728037 * (round_LofTool), 
           0.014164001392438506019 * (round_Blomen_KBM7 <= -0.5153281092643738 and  
                                     round_missense_Z > 3.289116144180298), 
           0.050500102827979391484 * (round_End > 124883040.0 and  
                                     -1.2874999046325684 < round_Tajima__s_D_regulatory <= 
1.4165000915527344 and  
                                     round_Transcript_count <= 20.5), 
           0.060456640460729016429 * (not Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_StdDev_Transcript_length > 636.7213134765625 and  
                                     round_Exon_Count <= 253.5), 
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          -0.033822224075698618939 * (round_Blomen_KBM7), 
         -0.0039964088486853953028 * (round_Closeness <= 0.33500000834465027 and  
                                     round_Blomen_KBM7 > -0.49977701902389526 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_LofTool <= 0.9922449588775635), 
           0.023975111109943367249 * (round_End <= 85205200.0 and  
                                     round_Gene_Length_bp > 9930.5 and  
                                     round_StdDev_Transcript_length > 2430.197265625), 
          -0.011463148479432971882 * (round_Tajima__s_D_regulatory > 
1.0544999837875366 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_Average_Transcript_length <= 2288.774658203125), 
         -0.0051712503030842075363 * (round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 2.552614450454712 and  
                                     round_LofTool <= 0.6644999980926514 and  
                                     round_Average_Transcript_length <= 2570.535888671875), 
           0.037739634085657752793 * (round_missense_Z > 3.2976694107055664), 
          -0.021570209135655677574 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count <= 83.5), 
          -0.021510107011690166728 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.9640257358551025), 
          0.0014163650512331741119 * (round_Degree <= 12.5 and  
                                     round_missense_Z > 3.2976694107055664), 
          -0.010674563779895991297 * (4.050085067749023 < round_missense_Z <= 
5.5646071434021), 
           0.041860350492729625493 * (round_Degree > 35.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Phi <= 0.8162848949432373), 
          0.0056832531972258086908 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Transcript_count > 26.5 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
          -0.063871267111750978929 * (round_Degree_mi > 0.5 and  
                                     round_Phi <= 0.8162848949432373), 
           0.034891184078606619912 * (3.5 < round_Degree <= 63.0 and  
                                     round_Phi > 0.919446587562561), 
         -0.0018919554407697701439 * (round_Phi <= 0.0015477617271244526 and  
                                     round_Gene_Length_bp > 50399.0), 
           0.013992933384094302304 * (round_Phi > 0.0023738450836390257 and  
                                     round_Blomen_KBM7 <= -0.18453440070152283 and  
                                     round_Transcript_count > 26.5 and  
                                     round_Exon_Count > 87.5), 
          -0.051195693008280626635 * (round_Degree <= 3.5 and  
                                     round_s_het <= 0.02518850564956665), 
           0.055834058359271090954 * (not Group == u'NDNE' and  
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                                     round_Degree <= 12.5 and  
                                     round_s_het > 0.02518850564956665 and  
                                     round_Exon_Count <= 160.5), 
         -0.0082870956775982305281 * (round_Closeness <= 0.2549999952316284 and  
                                     round_Tajima__s_D_regulatory > 0.4104999899864197), 
           0.038547688444224244286 * (Group == u'MNC' and  
                                     round_Closeness > 0.3149999976158142), 
           0.013900893462213393531 * (round_Closeness > 0.2549999952316284 and  
                                     round_LofTool > 0.7979999780654907 and  
                                     round_Gene_Length_bp <= 41216.0), 
          0.0050657262704566644387 * (round_Closeness > 0.2549999952316284 and  
                                     round_Phi <= 0.00013825652422383428 and  
                                     round_missense_Z <= 3.334120750427246), 
          -0.018169172998649386203 * (round_End <= 100419720.0 and  
                                     round_Degree_mi > 0.5), 
          0.0044089773122458876878 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_Blomen_KBM7 > -0.12487166374921799 and  
                                     round_s_het > 0.02633928880095482 and  
                                     round_Exon_Count > 53.0), 
          -0.071852306419135800186 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_StdDev_Transcript_length <= 615.416259765625), 
           0.073788341751617983477 * (round_Degree > 60.5 and  
                                     round_Tajima__s_D_regulatory <= 1.0529999732971191), 
         -0.0019138125607677928565 * (round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_missense_Z <= 4.103667736053467 and  
                                     round_Transcript_count <= 24.5 and  
                                     round_Gene_Length_bp > 53047.5), 
          0.0038228233805468426684 * (round_Closeness <= 0.3149999976158142 and  
                                     round_missense_Z <= 2.571293354034424 and  
                                     round_StdDev_Transcript_length > 1450.0491943359375), 
          0.0097863017065103925785 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 218.5), 
          -0.064557916522001199122 * (round_Degree_mi > 0.5 and  
                                     round_Gene_Length_bp > 2510.5), 
           0.017207469487847969897 * (not Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_LofTool <= 0.9829000234603882 and  
                                     round_Average_Transcript_length > 1918.333251953125), 
           0.016078813237064535496 * (round_Tajima__s_D_regulatory <= 
0.195499986410141 and  
                                     round_missense_Z > 3.2976694107055664), 
          0.0054438014970486035132 * (round_Closeness <= 0.2549999952316284 and  
                                     round_missense_Z <= 4.052361965179443 and  
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                                     round_s_het > 0.014458265155553818 and  
                                     round_s_het_mi <= 0.5), 
          -0.056622008362259834691 * (round_Degree <= 3.5 and  
                                     0.6634999513626099 < round_LofTool <= 0.9905250072479248), 
          -0.009382110839505006239 * (round_Closeness <= 0.26499998569488525 and  
                                     round_LofTool <= 0.8105000257492065 and  
                                     round_Gene_Length_bp > 37966.5), 
          -0.022079473690573211964 * (round_missense_Z <= 3.2976694107055664 and  
                                     round_Transcript_count <= 25.5 and  
                                     round_Gene_Length_bp > 9941.5 and  
                                     round_Average_Transcript_length <= 2071.857421875), 
           0.026567551484747074092 * (round_Degree_mi > 0.5 and  
                                     round_LofTool > 0.6614999771118164), 
           0.012171923038907185924 * (not Group == u'MNC' and  
                                     round_Closeness <= 0.33500000834465027 and  
                                     3.2976694107055664 < round_missense_Z <= 4.050085067749023), 
         -0.0076355905706610317091 * (round_Degree <= 5.5 and  
                                     round_LofTool > 0.6554999947547913 and  
                                     round_StdDev_Transcript_length <= 1337.2225341796875), 
            0.16325429384657416665 * (round_Tajima__s_D_regulatory <= 
0.4235000014305115 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_s_het > 0.015603477135300636 and  
                                     round_Transcript_count > 21.5), 
          0.0072661225638375511598 * (round_End <= 100419720.0 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
                                     round_Exon_Count > 221.5), 
           0.036323776432227984634 * (round_Degree <= 37.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.24797455966472626 and  
                                     round_missense_Z <= 2.721888303756714), 
          -0.013138779464712927597 * (not Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
                                     round_LofTool <= 0.656499981880188), 
           0.019063593314076931334 * (not Group == u'NDNE' and  
                                     round_Blomen_KBM7 > -0.5146430730819702 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 2418.21435546875), 
          -0.022312166919272659327 * (not Group == u'NDNE' and  
                                     round_missense_Z > 2.642360210418701 and  
                                     round_Exon_Count <= 285.0), 
           0.046627845220519749392 * (round_Degree_mi > 0.5 and  
                                     round_Tajima__s_D_regulatory > 0.47749999165534973 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799), 
          -0.057144599564295774086 * (round_Phi_mi), 
          -0.042548091410918198463 * (Group == u'MNC' and  
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                                     167.33212280273438 < round_StdDev_Transcript_length <= 
615.8639526367188), 
          -0.078599340027315722779 * (Group == u'NDNE' and  
                                     round_StdDev_Transcript_length <= 714.5440063476562), 
          -0.035888903100163335735 * (Group == u'NDNE' and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count <= 83.5), 
           0.014099712983019761434 * (round_Tajima__s_D_regulatory > 
0.4104999899864197 and  
                                     round_Exon_Count > 88.5), 
          -0.025909213199834423696 * (round_Degree > 4.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Transcript_count <= 24.5 and  
                                     round_StdDev_Transcript_length > 897.559326171875), 
         -0.0074845359849700426533 * (round_Tajima__s_D_regulatory > 
0.43549999594688416 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_LofTool <= 0.9603500366210938 and  
                                     round_Exon_Count <= 164.5), 
           -0.01077622969677029946 * (round_Degree_mi > 0.5 and  
                                     round_dN_dS_Chimp > 0.23499999940395355 and  
                                     round_Tajima__s_D_regulatory <= 0.47749999165534973 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799), 
           -0.30401281812512331859 * (round_Degree <= 4.5 and  
                                     round_Phi <= 0.14253592491149902 and  
                                     round_StdDev_Transcript_length <= 616.5709228515625), 
          -0.028990481621997066936 * (round_Phi <= 0.12447576969861984 and  
                                     round_Transcript_count > 19.5 and  
                                     round_StdDev_Transcript_length > 1098.5848388671875), 
           -0.18916948110773898484 * (3.134337902069092 < round_missense_Z <= 
3.308867931365967 and  
                                     round_s_het > 0.015855055302381516), 
          0.0079327801354993239535 * (round_Blomen_KBM7 <= -0.5154723525047302 and  
                                     round_missense_Z <= 2.6123709678649902 and  
                                     round_StdDev_Transcript_length > 166.57864379882812), 
          0.0096322052481131285873 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Phi > 0.8162848949432373 and  
                                     round_LofTool <= 0.9833999872207642), 
          -0.010776147984111764111 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 3.308867931365967 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
           0.043118916775937328467 * (round_Phi <= 3.313508932478726e-05 and  
                                     round_missense_Z <= 4.052361965179443 and  
                                     round_LofTool > 0.11749999970197678), 
          -0.033825661237730453301 * (round_Closeness <= 0.2549999952316284 and  
                                     round_s_het <= 0.021862218156456947), 
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          -0.047543359055394369961 * (not Group == u'MNC' and  
                                     round_s_het <= 0.025150161236524582 and  
                                     round_Average_Transcript_length <= 1873.0999755859375), 
           0.043005070335481156152 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool > 0.9922449588775635), 
            -0.0193305402296465971 * (round_Phi > 0.9985461235046387 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Gene_Length_bp > 53048.5), 
         -0.0029334074033163580301 * (round_End <= 127204736.0 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Gene_Length_bp > 2814.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
          -0.014088246133160155227 * (not Group == u'MNC' and  
                                     round_End <= 100419720.0 and  
                                     round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 <= -0.11068554222583771), 
          -0.031492051646561769473 * (not Group == u'NDNE' and  
                                     round_End <= 100419720.0 and  
                                     round_Phi > 0.998741626739502 and  
                                     round_Transcript_count > 8.5), 
           0.064514690954963371805 * (round_End > 100419720.0 and  
                                     round_LofTool > 0.994350016117096), 
          0.0037794234205987689915 * (round_Gene_Length_bp <= 9930.5 and  
                                     round_StdDev_Transcript_length > 166.57864379882812), 
          -0.046813844593473395717 * (Group == u'NDNE' and  
                                     round_Transcript_count > 10.5), 
          0.0047308280825400263192 * (round_Closeness > 0.2549999952316284 and  
                                     0.6694999933242798 < round_LofTool <= 0.9937300086021423 and  
                                     round_Gene_Length_bp > 39268.5), 
           0.031799043486228008304 * (round_Phi > 0.00015248148702085018 and  
                                     round_Blomen_KBM7 <= -0.5508977174758911 and  
                                     round_missense_Z <= 4.0604472160339355 and  
                                     round_Exon_Count > 87.5), 
           0.024599510773753802129 * (Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length > 621.470947265625), 
          -0.024818309340896429344 * (round_Closeness <= 0.2549999952316284 and  
                                     round_LofTool <= 0.8535000085830688 and  
                                     round_StdDev_Transcript_length > 617.4835815429688), 
          -0.022986810189580389463 * (not Group == u'CM' and  
                                     round_Degree <= 35.5 and  
                                     round_Closeness > 0.3050000071525574 and  
                                     round_Blomen_KBM7 > -0.49977701902389526), 
           0.024818347921128428024 * (round_Closeness <= 0.33500000834465027 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_Gene_Length_bp > 2814.5), 
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           0.030785675449449489971 * (round_Degree > 9.5 and  
                                     round_Phi > 0.1378774642944336 and  
                                     round_LofTool <= 0.659500002861023), 
           0.071141168378547961493 * (round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count > 218.5), 
         -0.0033207787269117858969 * (round_Blomen_KBM7 <= -0.14714285731315613 and  
                                     round_missense_Z <= 3.2974047660827637 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_StdDev_Transcript_length > 615.8639526367188), 
          -0.021924118897895659985 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Degree <= 35.5 and  
                                     round_Blomen_KBM7 > -0.49977701902389526), 
          -0.015856059453570228723 * (round_dN_dS_Chimp > 0.5950000286102295 and  
                                     round_LofTool > 0.04450000077486038 and  
                                     round_Exon_Count <= 217.0), 
           0.055378231519672874161 * (round_LofTool_mi), 
         -0.0061308536874806300598 * (0.3050000071525574 < round_Closeness <= 
0.3149999976158142 and  
                                     round_Blomen_KBM7 > -0.5158457159996033 and  
                                     round_Gene_Length_bp <= 53140.5), 
          -0.021087248754085095859 * (not Group == u'CM' and  
                                     round_Tajima__s_D_regulatory > 0.4165000021457672 and  
                                     round_missense_Z <= 4.031401634216309 and  
                                     round_LofTool > 0.6634999513626099), 
          -0.028317726879795258876 * (round_Degree <= 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi > 0.12362469732761383 and  
                                     round_StdDev_Transcript_length <= 1011.6593627929688), 
        -0.00028572000111677241414 * (not Group == u'NDNE' and  
                                     round_Degree > 4.5 and  
                                     round_LofTool <= 0.9827499985694885 and  
                                     round_Gene_Length_bp > 39266.5), 
          -0.025054992712295911378 * (round_Degree <= 4.5 and  
                                     round_Degree_mi > 0.5 and  
                                     round_StdDev_Transcript_length > 1049.45654296875), 
            0.14453713378768545672 * (round_Closeness > 0.3149999976158142 and  
                                     2.642360210418701 < round_missense_Z <= 4.0604472160339355), 
          -0.019256270589407667448 * (round_StdDev_Transcript_length <= 
169.24288940429688 and  
                                     round_Average_Transcript_length > 2318.75), 
          -0.072220477391367943198 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_s_het <= 0.02767527475953102), 
           0.036591368423358389128 * (round_dN_dS_Chimp_mi > 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_Average_Transcript_length > 2056.5712890625 and  



 218 

                                     round_Exon_Count <= 240.5), 
          0.0098218305890553827403 * (round_missense_Z <= 4.050085067749023 and  
                                     round_Transcript_count > 10.5 and  
                                     round_Average_Transcript_length > 2037.5650634765625), 
          0.0025043504719714578151 * (Group == u'CM' and  
                                     3.5 < round_Degree <= 56.5 and  
                                     round_Exon_Count <= 253.5), 
        -0.00027213615358005234643 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     round_s_het > 0.014458265155553818), 
          -0.012962701962375372186 * (round_Phi > 0.002197184134274721 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Exon_Count > 88.5), 
            0.01726754044835551033 * (not Group == u'NDNE' and  
                                     round_missense_Z > 2.5613200664520264 and  
                                     round_s_het > 0.01700003445148468 and  
                                     round_Exon_Count <= 86.5), 
           0.047407821001623717816 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Blomen_KBM7 <= -0.5148604512214661 and  
                                     round_Transcript_count > 26.5), 
          -0.012239859477472964447 * (not Group == u'MNC' and  
                                     round_End <= 100419720.0 and  
                                     round_Degree <= 34.5 and  
                                     round_Tajima__s_D_regulatory > -1.2855000495910645), 
          -0.010213778329625312902 * (round_Degree <= 45.0 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_Transcript_count > 1.5 and  
                                     round_StdDev_Transcript_length <= 1942.072509765625), 
          0.0026979756228996763096 * (round_Degree_mi <= 0.5 and  
                                     round_Tajima__s_D_regulatory > -1.2885000705718994 and  
                                     round_Blomen_KBM7 <= -0.2516775131225586 and  
                                     round_s_het > 0.015896810218691826), 
          -0.034743371535693644281 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_missense_Z <= 1.43977952003479), 
        -0.00032670412491793654431 * (round_Degree <= 60.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5153281092643738 and  
                                     round_Exon_Count <= 154.5), 
         -0.0069335310400958204829 * (round_Degree <= 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.25219112634658813 and  
                                     round_LofTool <= 0.8695000410079956), 
          -0.084412030034841656345 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
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                                     round_LofTool > 0.8554999828338623), 
         -0.0068004078113453672594 * (round_Degree > 18.5 and  
                                     round_Blomen_KBM7 <= -0.14956465363502502 and  
                                     round_LofTool > 0.659500002861023), 
           0.019252153925983447186 * (round_Degree > 62.5), 
         -0.0049752751404963432152 * (not Group == u'CM' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Tajima__s_D_regulatory <= 1.062999963760376 and  
                                     round_Blomen_KBM7_mi <= 0.5), 
           0.003356968599162736891 * (round_Phi > 0.12447576969861984 and  
                                     round_missense_Z > 4.050085067749023), 
          -0.011793238037396919921 * (round_Closeness <= 0.2549999952316284 and  
                                     round_Blomen_KBM7_mi <= 0.5 and  
                                     round_s_het_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 2625.484375), 
          -0.051565317012112775463 * (round_missense_Z > 4.052361965179443 and  
                                     round_LofTool <= 0.9499499797821045), 
          -0.019198707422328438466 * (round_End <= 100419720.0 and  
                                     round_Blomen_KBM7_mi > 0.5 and  
                                     round_Exon_Count <= 221.5), 
           0.028560411574742990137 * (round_Degree <= 12.5 and  
                                     round_Blomen_KBM7 <= -0.1114160418510437 and  
                                     round_StdDev_Transcript_length > 2377.90625 and  
                                     round_Average_Transcript_length > 2169.3193359375), 
         -0.0081602144775651253017 * (round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_LofTool > 0.6514999866485596), 
           0.023083051924208931871 * (round_Degree <= 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_Gene_Length_bp > 2814.5), 
           0.046139548753990018704 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool > 0.6634999513626099 and  
                                     round_Exon_Count > 162.5), 
          0.0082417292345994958014 * (Group == u'NDNE' and  
                                     round_Blomen_KBM7 > -0.5146430730819702 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 2418.21435546875), 
           0.041904863071896121529 * (round_End > 100419720.0 and  
                                     round_dN_dS_Chimp_mi > 0.5 and  
                                     round_LofTool <= 0.994350016117096), 
          -0.058523347259765781669 * (not Group == u'MNC' and  
                                     167.33212280273438 < round_StdDev_Transcript_length <= 
615.8639526367188), 
           -0.13397370099236294294 * (not Group == u'MNC' and  
                                     round_Tajima__s_D_regulatory > -0.4115000069141388 and  
                                     round_Gene_Length_bp <= 9988.0), 
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         -0.0025281542638851562527 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Blomen_KBM7 <= -0.5148604512214661 and  
                                     round_Transcript_count <= 26.5), 
          -0.014816630169283761392 * (Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_Exon_Count <= 223.5), 
         -0.0016748509383901300038 * (round_Closeness <= 0.3149999976158142 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 1968.24755859375), 
           0.021419335487036086224 * (round_Closeness > 0.2549999952316284 and  
                                     round_missense_Z <= 3.334120750427246 and  
                                     round_s_het > 0.014458265155553818), 
           0.053846292322283426102 * (round_Phi > 3.313508932478726e-05 and  
                                     3.2976694107055664 < round_missense_Z <= 4.052361965179443), 
          -0.094256185734778688556 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_Degree <= 60.5 and  
                                     round_missense_Z <= 4.031624794006348), 
           0.044101606757228337119 * (round_Degree <= 35.5 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7 <= -0.12487166374921799 and  
                                     round_missense_Z <= 4.052361965179443), 
           0.034744638865665013194 * (not Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_StdDev_Transcript_length > 1049.45654296875), 
         -0.0015117432304791230541 * (round_End > 127552112.0 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Tajima__s_D_regulatory <= 0.4165000021457672 and  
                                     round_missense_Z <= 4.052361965179443), 
         -0.0043696277889927453292 * (not Group == u'NDNE' and  
                                     0.2549999952316284 < round_Closeness <= 0.3149999976158142 and  
                                     round_Phi <= 0.8754478693008423), 
           0.035691787319774168075 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.8768634796142578), 
         -0.0038248717892900479035 * (not Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi > 0.8768634796142578 and  
                                     round_LofTool <= 0.9829000234603882), 
        -3.0717810457948354157E-07 * (round_Average_Transcript_length), 
            0.11374755291070159924 * (round_Tajima__s_D_regulatory <= 
0.4235000014305115 and  
                                     round_Blomen_KBM7 <= -0.2521226406097412 and  
                                     round_s_het <= 0.015603477135300636), 
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         -0.0047514279836939361107 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5181520581245422 and  
                                     round_Transcript_count <= 26.5 and  
                                     round_StdDev_Transcript_length > 169.24288940429688), 
          -0.012826511723195505726 * (not Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_StdDev_Transcript_length <= 1418.164794921875), 
           0.016581885867794556033 * (round_Tajima__s_D_regulatory <= 
1.4184999465942383 and  
                                     round_Phi > 7.604442998854211e-06 and  
                                     round_Gene_Length_bp <= 9942.0), 
          -0.021957726079143407433 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.4316735863685608), 
          -0.023063757621387480368 * (Group == u'CNM'), 
          0.0066162516266622334662 * (round_Degree <= 10.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Phi > 0.13315337896347046 and  
                                     round_LofTool <= 0.9311000108718872), 
          -0.011550473054156200695 * (round_dN_dS_Chimp > 0.5950000286102295 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_LofTool > 0.04450000077486038), 
           0.020911928595311275736 * (round_Closeness <= 0.7100000381469727 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z <= 4.031624794006348 and  
                                     round_Gene_Length_bp <= 52859.0), 
          0.0081602582422299618781 * (round_Degree_mi > 0.5 and  
                                     round_Average_Transcript_length > 2550.24072265625), 
         0.00011519157793123054349 * (round_Blomen_KBM7 <= -0.2516775131225586 and  
                                     round_missense_Z <= 3.308867931365967 and  
                                     round_s_het > 0.015855055302381516), 
          -0.017088815875378346454 * (round_s_het <= 0.01700003445148468 and  
                                     round_Exon_Count <= 86.5), 
         -0.0052479725965815775951 * (round_dN_dS_Chimp > 0.5849999785423279 and  
                                     round_Tajima__s_D_regulatory > 0.4165000021457672), 
         -0.0062430452918762879139 * (round_Closeness <= 0.32499998807907104 and  
                                     round_missense_Z > 2.571293354034424 and  
                                     round_Transcript_count <= 10.5), 
          -0.011579335820359673917 * (round_End <= 100419720.0 and  
                                     round_Tajima__s_D_regulatory > -1.2885000705718994 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 2093.128662109375), 
          -0.021952172218480371646 * (round_missense_Z > 4.052361965179443 and  
                                     round_Exon_Count <= 77.5), 
         2.1100283553908253599E-08 * (round_Gene_Length_bp), 
           0.030085702774348684757 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.0015477617271244526 and  
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                                     round_StdDev_Transcript_length <= 626.7237548828125), 
         -0.0047648667314961314426 * (round_Phi <= 0.00015248148702085018), 
          0.0082603409156458418305 * (not Group == u'CM' and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7_mi <= 0.5 and  
                                     round_missense_Z <= 4.031624794006348), 
          -0.073398950654784411718 * (round_End <= 100419720.0 and  
                                     0.3050000071525574 < round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295), 
           0.021089497152677241093 * (round_Closeness > 0.3149999976158142 and  
                                     round_Tajima__s_D_regulatory <= 0.5485000014305115 and  
                                     round_Blomen_KBM7 <= -0.25219112634658813 and  
                                     round_LofTool <= 0.6634999513626099), 
           0.076308296509059625468 * (round_Closeness <= 0.32499998807907104 and  
                                     round_Tajima__s_D_regulatory <= -1.2874999046325684 and  
                                     round_Blomen_KBM7 <= -0.41121259331703186), 
           0.030893043174464097922 * (not Group == u'CM' and  
                                     Group == u'MNC' and  
                                     round_s_het > 0.028055116534233093), 
          -0.035827548812507541143 * (round_Degree > 3.5 and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Transcript_count <= 19.5 and  
                                     round_StdDev_Transcript_length > 1098.5848388671875), 
          -0.005052833399117633538 * (Group == u'NDNE' and  
                                     round_Degree > 3.5 and  
                                     round_Phi > 0.7055177092552185), 
           0.017529633814622507665 * (round_Degree > 5.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 649.8057861328125), 
          0.0043005984594983578603 * (round_Tajima__s_D_regulatory > 
0.4104999899864197 and  
                                     round_Blomen_KBM7 <= -0.5105985403060913 and  
                                     round_s_het > 0.014667890034615993 and  
                                     round_Exon_Count <= 88.5), 
         -0.0067945595152844873166 * (Group == u'NDNE' and  
                                     round_Degree <= 35.5 and  
                                     round_Gene_Length_bp <= 65653.0 and  
                                     round_StdDev_Transcript_length > 590.2589111328125), 
         -0.0039223340038751991835 * (round_Closeness <= 0.3149999976158142 and  
                                     round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Blomen_KBM7 <= -0.25219112634658813 and  
                                     round_missense_Z <= 3.2974047660827637), 
            0.04364110373848632124 * (-1.2874999046325684 < 
round_Tajima__s_D_regulatory <= 1.4165000915527344 and  
                                     round_missense_Z > 4.028769493103027 and  
                                     round_Transcript_count > 20.5), 
         -0.0043482169941988554202 * (Group == u'NDNE' and  
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                                     round_Tajima__s_D_regulatory <= 0.5570000410079956 and  
                                     round_LofTool > 0.8105000257492065), 
          -0.067478416068065039113 * (not Group == u'MNC' and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length <= 987.5745849609375), 
            0.05856455668737312048 * (Group == u'MNC'), 
          0.0087343085663817605913 * (round_Tajima__s_D_regulatory > 
0.4165000021457672 and  
                                     round_LofTool > 0.6634999513626099), 
           0.028953842017158313432 * (not Group == u'NDNE' and  
                                     round_Closeness > 0.2549999952316284 and  
                                     round_Phi <= 0.8768634796142578 and  
                                     round_LofTool > 0.9872499704360962), 
          -0.011814802013852038556 * (round_Closeness > 0.3149999976158142 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
           0.024333688158167710719 * (round_Closeness > 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_missense_Z <= 3.302974224090576), 
          -0.034348155117580804474 * (round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.2549999952316284 and  
                                     round_Phi <= 0.8162848949432373), 
           0.012477065486332037866 * (round_Degree <= 4.5 and  
                                     round_missense_Z > 1.43977952003479), 
         -0.0055992038299544763177 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     0.6634999513626099 < round_LofTool <= 0.9922449588775635 and  
                                     round_Exon_Count <= 162.5), 
           0.012688866869836799844 * (Group == u'END'), 
           0.051122519055613512007 * (round_Degree > 70.0 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Exon_Count <= 156.5), 
           0.033172549145610998045 * (not Group == u'MNC' and  
                                     round_End <= 100331008.0 and  
                                     round_missense_Z <= 3.308867931365967), 
           0.042438817871726271236 * (round_Blomen_KBM7 <= -0.5158457159996033 and  
                                     round_Gene_Length_bp <= 53140.5), 
           0.018517202101923656982 * (round_End > 100419720.0 and  
                                     round_missense_Z > 3.996763229370117), 
          0.0097170358540753076076 * (not Group == u'NDNE' and  
                                     round_StdDev_Transcript_length > 590.2589111328125 and  
                                     round_Exon_Count > 253.5), 
           0.041889875414339285131 * (Group == u'NDNE' and  
                                     round_Degree <= 3.5 and  
                                     round_Phi > 0.14934945106506348), 
             0.1159141151153197935 * (round_dN_dS_Chimp_mi), 
          -0.036397079913846719368 * (round_Degree <= 3.5 and  
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                                     round_Phi <= 0.12447576969861984 and  
                                     round_Transcript_count <= 19.5 and  
                                     round_StdDev_Transcript_length > 1098.5848388671875), 
          -0.040646373044763282889 * (round_Closeness <= 0.2549999952316284 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_StdDev_Transcript_length > 987.5745849609375), 
          0.0034491772056603540834 * (not Group == u'NDNE' and  
                                     round_Degree <= 62.5 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length > 580.6193237304688), 
           0.010753897831233117169 * (round_Closeness > 0.3149999976158142 and  
                                     round_Blomen_KBM7 <= -0.5146373510360718), 
         -0.0029093503719793034797 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_LofTool <= 0.9922449588775635), 
          0.0085107244663394625989 * (round_s_het_mi), 
          -0.016375026470318413546 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_End <= 121391536.0 and  
                                     round_Blomen_KBM7 <= -0.49977701902389526), 
          0.0064940396356499840991 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.32499998807907104 and  
                                     round_missense_Z > 1.43977952003479 and  
                                     round_Gene_Length_bp > 47610.5), 
             0.1894264397753082918 * (round_Degree <= 4.5 and  
                                     round_LofTool > 0.9868500232696533 and  
                                     round_StdDev_Transcript_length > 1049.45654296875), 
          -0.023331859677601131386 * (not Group == u'MNC' and  
                                     round_Degree <= 35.5 and  
                                     round_Tajima__s_D_regulatory > -1.2855000495910645 and  
                                     round_Gene_Length_bp <= 315852.5), 
           0.029766225515022122494 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_Gene_Length_bp > 343581.5), 
            0.16369767760948211732 * (Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length <= 714.263427734375), 
          -0.024442885761271002099 * (Group == u'NDNE' and  
                                     round_Degree_mi <= 0.5 and  
                                     round_StdDev_Transcript_length <= 661.5775146484375), 
         -0.0042331491676081359904 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_LofTool > 0.8825000524520874 and  
                                     round_Gene_Length_bp <= 54522.0), 
             0.0376150466960103666 * (round_Tajima__s_D_regulatory <= 
0.4235000014305115 and  
                                     round_LofTool > 0.9922800064086914), 
           0.030185637919566413873 * (not Group == u'NDNE' and  
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                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Average_Transcript_length > 2570.535888671875), 
          0.0075692806955283938389 * (round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_LofTool <= 0.9910449981689453 and  
                                     round_Gene_Length_bp > 54522.0), 
           0.093970991187771663045 * (round_Closeness), 
          0.0051682327079576413295 * (round_Blomen_KBM7 > -0.5153281092643738 and  
                                     0.49326902627944946 < round_missense_Z <= 4.031624794006348 
and  
                                     round_Gene_Length_bp <= 53047.5), 
        -0.00063682044972014964761 * (not Group == u'CM' and  
                                     not Group == u'MNC' and  
                                     round_End > 121391536.0 and  
                                     round_Blomen_KBM7 <= -0.49977701902389526), 
             0.1305902319414564694 * (not Group == u'NDNE' and  
                                     round_StdDev_Transcript_length > 636.7213134765625 and  
                                     round_Exon_Count > 253.5), 
          -0.028105123991677912615 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_LofTool <= 0.9922449588775635 and  
                                     round_Transcript_count > 20.5), 
          -0.071733384292753485378 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_Blomen_KBM7 > -0.5146373510360718 and  
                                     round_Transcript_count <= 20.5 and  
                                     round_StdDev_Transcript_length <= 2388.5126953125), 
         -0.0014944870184999594492 * (round_Closeness > 0.3149999976158142 and  
                                     round_missense_Z <= 2.571293354034424 and  
                                     round_StdDev_Transcript_length > 1450.0491943359375), 
          -0.037305572747207686735 * (round_Degree <= 12.5 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_Gene_Length_bp > 2814.5 and  
                                     round_Exon_Count <= 413.0), 
          -0.013677846268730356125 * (round_Closeness <= 0.3449999988079071 and  
                                     3.2976694107055664 < round_missense_Z <= 4.052361965179443 and  
                                     round_Average_Transcript_length <= 2037.5650634765625), 
          -0.011008296654006112167 * (round_Degree <= 3.5 and  
                                     round_Phi > 0.0009046811610460281 and  
                                     round_LofTool <= 0.6634999513626099), 
          -0.066509812215818378545 * (round_Degree <= 12.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     0.5915000438690186 < round_LofTool <= 0.6634999513626099), 
           0.043755311507365633739 * (round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_Average_Transcript_length > 2056.5712890625 and  
                                     round_Exon_Count <= 240.5), 
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            0.01113235474873714749 * (round_Degree <= 60.5 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool <= 0.6634999513626099 and  
                                     round_Transcript_count > 20.5), 
           0.029791550463155375139 * (round_End > 100419720.0 and  
                                     round_dN_dS_Chimp_mi <= 0.5 and  
                                     round_LofTool <= 0.994350016117096), 
         -0.0065287331094041282237 * (round_Degree <= 60.0 and  
                                     round_Phi <= 0.12447576969861984 and  
                                     round_Exon_Count > 83.5), 
         -0.0045345154906442954046 * (round_Tajima__s_D_regulatory > -
1.2874999046325684 and  
                                     round_missense_Z <= 3.2976694107055664 and  
                                     round_missense_Z_mi <= 0.5 and  
                                     round_LofTool > 0.6634999513626099), 
         -0.0042090971907015710396 * (round_Closeness <= 0.2549999952316284 and  
                                     round_Phi > 0.0015477617271244526 and  
                                     round_StdDev_Transcript_length <= 2427.245361328125 and  
                                     round_Exon_Count <= 96.5), 
          0.0064827603925068496768 * (round_Degree <= 10.5 and  
                                     round_LofTool <= 0.659500002861023 and  
                                     round_Gene_Length_bp > 37942.5), 
           0.090064277946272239261 * (round_Degree > 3.5 and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Gene_Length_bp <= 41501.0), 
          -0.016228231105145558139 * (round_Degree_mi > 0.5 and  
                                     round_StdDev_Transcript_length <= 613.3181762695312), 
          -0.024541945681890484088 * (round_s_het <= 0.025150161236524582 and  
                                     round_Transcript_count <= 13.5 and  
                                     round_Average_Transcript_length > 1873.0999755859375), 
           0.088655920423249531814 * (round_End <= 110010712.0 and  
                                     round_Degree <= 61.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_missense_Z <= 4.052361965179443), 
           0.033084801199255609028 * (Group == u'NDNE' and  
                                     round_Degree <= 12.5 and  
                                     round_s_het > 0.02518850564956665), 
            0.01835275341503877361 * (round_Degree > 12.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_Closeness > 0.3149999976158142 and  
                                     round_StdDev_Transcript_length > 1285.35791015625), 
          -0.041044206485432332965 * (Group == u'NDNE' and  
                                     round_Degree <= 4.5 and  
                                     round_StdDev_Transcript_length <= 1049.45654296875), 
          -0.039696369932485681131 * (round_Phi > 0.998741626739502 and  
                                     round_Gene_Length_bp > 9906.5 and  
                                     round_StdDev_Transcript_length > 166.57864379882812 and  
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                                     round_Average_Transcript_length > 1956.6083984375), 
          -0.012496735141249921616 * (round_dN_dS_Chimp <= 0.5950000286102295 and  
                                     round_missense_Z > 4.052361965179443 and  
                                     round_Transcript_count <= 10.5 and  
                                     round_Average_Transcript_length <= 6597.4873046875), 
           0.039674947245171322818 * (not Group == u'NDNE' and  
                                     round_Closeness <= 0.3149999976158142 and  
                                     round_Phi > 0.12447576969861984 and  
                                     round_Gene_Length_bp <= 45328.0), 
           -0.30567366547201163529 * (round_Degree <= 4.5 and  
                                     round_Degree_mi <= 0.5 and  
                                     round_StdDev_Transcript_length > 1049.45654296875)    ]) 
 
def get_type_conversion(): 
    return { 
        u'Tajima\'s D regulatory': {'convert_func': parse_nonstandard_na, 'convert_args': 
None}, 
        u'Degree': {'convert_func': parse_nonstandard_na, 'convert_args': None}, 
        u'dN/dS Chimp': {'convert_func': parse_nonstandard_na, 'convert_args': None}, 
        u'Closeness': {'convert_func': parse_nonstandard_na, 'convert_args': None},} 
INDICATOR_COLS = [u'Blomen KBM7', u'Degree', u'LofTool', u'Phi', u'Tajima\'s D regulatory', 
u'dN/dS Chimp', u'missense_Z', u's_het'] 
 
IMPUTE_VALUES = { 
    u'Average Transcript length': 1932.128571, 
    u'Blomen KBM7': -0.499215, 
    u'Closeness': 0.250000, 
    u'Degree': 3.000000, 
    u'End': 58139967.000000, 
    u'Exon Count': 36.000000, 
    u'Gene Length bp': 28439.000000, 
    u'LofTool': 0.502000, 
    u'Phi': 0.002401, 
    u'StdDev Transcript length': 899.036969, 
    u'Tajima\'s D regulatory': 0.143000, 
    u'Transcript count': 6.000000, 
    u'dN/dS Chimp': 0.230000, 
    u'missense_Z': 0.493769, 
    u's_het': 0.017813,} 
 
 
def bag_of_words(text): 
    """ set of whole words  in a block of text """ 
    if type(text) == float: 
        return set() 
 
    return set(word.lower() for word in 
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               re.findall(r'\w+', text, re.UNICODE | re.IGNORECASE)) 
 
 
def parse_date(x, date_format): 
    """ convert date strings to numeric values. """ 
    try: 
        # float values no longer pass isinstance(x, np.float64) 
        if isinstance(x, (np.float64, float)): 
            x = long_type(x) 
        if '%f' in date_format and date_format.startswith('v2'): 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            date_format = date_format[2:] 
            dt = datetime.strptime(temp, date_format) 
            sec = calendar.timegm(dt.timetuple()) 
            return sec * 1000 + dt.microsecond // 1000 
        elif '%M' in date_format: 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            return calendar.timegm(datetime.strptime(temp, date_format).timetuple()) 
        else: 
            return datetime.strptime(str(x), date_format).toordinal() 
    except: 
        return float('nan') 
 
 
def parse_percentage(s): 
    """ remove percent sign so percentage variables can be converted to numeric """ 
    if isinstance(s, float): 
        return s 
    if isinstance(s, int): 
        return float(s) 
    try: 
        return float(s.replace('%', '')) 
    except: 
        return float('nan') 
 
def parse_nonstandard_na(s): 
    """ if a column contains numbers and a unique non-numeric, 
        then the non-numeric is considered to be N/A 
    """ 
    try: 
        ret = float(s) 
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        if np.isinf(ret): 
            return float('nan') 
        return ret 
    except: 
        return float('nan') 
 
def parse_length(s): 
    """ convert feet and inches as string to inches as numeric """ 
    try: 
        if '"' in s and "'" in s: 
            sp = s.split("'") 
            return float(sp[0]) * 12 + float(sp[1].replace('"', '')) 
        else: 
            if "'" in s: 
                return float(s.replace("'", '')) * 12 
            else: 
                return float(s.replace('"', '')) 
    except: 
        return float('nan') 
 
def parse_currency(s): 
    """ strip currency characters and commas from currency columns """ 
    if not isinstance(s, text_type): 
        return float('nan') 
    s = re.sub(u'[\$\u20AC\u00A3\uFFE1\u00A5\uFFE5]|(EUR)', '', s) 
    s = s.replace(',', '') 
    try: 
        return float(s) 
    except: 
        return float('nan') 
 
 
def parse_currency_replace_cents_period(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(",", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
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    return val 
 
 
def parse_currency_replace_cents_comma(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(".", "") 
        val = val.replace(",", ".") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
 
def parse_currency_replace_no_cents(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(",", "") 
        val = val.replace(".", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
def parse_numeric_types(ds): 
    """ convert strings with numeric types (date, currency, etc.) 
        to actual numeric values """ 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if col in TYPE_CONVERSION: 
            convert_func = TYPE_CONVERSION[col]['convert_func'] 
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            convert_args = TYPE_CONVERSION[col]['convert_args'] 
            ds[col] = ds[col].apply(convert_func, args=convert_args) 
    return ds 
 
def sanitize_name(name): 
    safe = name.strip().replace("-", "_").replace("$", "_").replace(".", "_") 
    safe = safe.replace("{", "_").replace("}", "_") 
    safe = safe.replace('"', '_') 
    safe = safe.replace("\n", "_") 
    safe = safe.replace("\r", "_") 
    return safe 
 
def rename_columns(ds): 
    new_names = {} 
    existing_names = set() 
    blank_index = 0 
    for old_col in ds.columns: 
        col = sanitize_name(old_col) 
        if col == '': 
            col = 'Unnamed: %d' % blank_index 
            blank_index += 1 
        if col in existing_names: 
            raise ValueError('Duplication detected. Column with name=[' 
                         + old_col + '] was preprocessed to[' 
                         + col + '] that already exists') 
        existing_names.add(col) 
        new_names[old_col] = col 
    ds.rename(columns=new_names, inplace=True) 
    return ds 
 
def add_missing_indicators(ds): 
    for col in INDICATOR_COLS: 
        ds[col + '-mi'] = ds[col].isnull().astype(int) 
    return ds 
 
def impute_values(ds): 
    for col in ds: 
        if col in IMPUTE_VALUES: 
            ds.loc[ds[col].isnull(), col] = IMPUTE_VALUES[col] 
    return ds 
 
BIG_LEVELS = { 
    u'Group': [ 
        u'CM', 
        u'CNM', 
        u'END', 
        u'MNC', 



 232 

        u'NDNE', 
    ], 
} 
 
 
SMALL_NULLS = { 
    u'Group': 1,  
} 
 
 
VAR_TYPES = { 
    u'Average Transcript length': 'N', 
    u'Blomen KBM7': 'N', 
    u'Closeness': 'N', 
    u'Degree': 'N', 
    u'End': 'N', 
    u'Exon Count': 'N', 
    u'Gene Length bp': 'N', 
    u'Group': 'C', 
    u'LofTool': 'N', 
    u'Phi': 'N', 
    u'StdDev Transcript length': 'N', 
    u'Tajima\'s D regulatory': 'N', 
    u'Transcript count': 'N', 
    u'dN/dS Chimp': 'N', 
    u'missense_Z': 'N', 
    u's_het': 'N', 
} 
 
 
def combine_small_levels(ds): 
    for col in ds: 
        if BIG_LEVELS.get(col, None) is not None: 
            mask = np.logical_and(~ds[col].isin(BIG_LEVELS[col]), ds[col].notnull()) 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if SMALL_NULLS.get(col): 
            mask = ds[col].isnull() 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if VAR_TYPES.get(col) == 'C' or VAR_TYPES.get(col) == 'T': 
            mask = ds[col].isnull() 
            if np.any(mask): 
                if ds[col].dtype == float: 
                    ds[col] = ds[col].astype(object) 
                ds.loc[mask, col] = 'nan' 
    return ds 
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# N/A strings in addition to the ones used by Pandas read_csv() 
NA_VALUES = ['null', 'na', 'n/a', '#N/A', 'N/A', '?', '.', '', 'Inf', 'INF', 'inf', '-inf', '-Inf', '-INF', ' ', 
'None', 'NaN', '-nan', 'NULL', 'NA', '-1.#IND', '1.#IND', '-1.#QNAN', '1.#QNAN', '#NA', '#N/A 
N/A', '-NaN', 'nan'] 
 
# True/False strings in addition to the ones used by Pandas read_csv() 
TRUE_VALUES = ['TRUE', 'True', 'true'] 
FALSE_VALUES = ['FALSE', 'False', 'false'] 
 
DEFAULT_ENCODING = 'utf8' 
 
REQUIRED_COLUMNS = [u"Average Transcript length",u"Blomen 
KBM7",u"Closeness",u"Degree",u"End",u"Exon Count",u"Gene Length 
bp",u"Group",u"LofTool",u"Phi",u"StdDev Transcript length",u"Tajima's D 
regulatory",u"Transcript count",u"dN/dS Chimp",u"missense_Z",u"s_het"] 
 
 
def validate_columns(column_list): 
    if set(REQUIRED_COLUMNS) <= set(column_list): 
        return True 
    else : 
        raise ValueError("Required columns missing: %s" % 
                         (set(REQUIRED_COLUMNS) - set(column_list))) 
 
def convert_bool(ds): 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if VAR_TYPES.get(col) == 'C' and ds[col].dtype in (int, float): 
            mask = ds[col].notnull() 
            ds[col] = ds[col].astype(object) 
            ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
        elif VAR_TYPES.get(col) == 'N' and ds[col].dtype == bool: 
            ds[col] = ds[col].astype(float) 
        elif ds[col].dtype == bool: 
            ds[col] = ds[col].astype(text_type) 
        elif ds[col].dtype == object: 
            if VAR_TYPES.get(col) == 'N' and col not in TYPE_CONVERSION: 
                mask = ds[col].apply(lambda x: x in TRUE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 1 
                mask = ds[col].apply(lambda x: x in FALSE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 0 
                ds[col] = ds[col].astype(float) 
            elif TYPE_CONVERSION.get(col) is None: 
                mask = ds[col].notnull() 
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                ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
    return ds 
 
def get_dtypes(): 
    return {a: object for a, b in VAR_TYPES.items() if b == 'C'} 
 
def predict_dataframe(ds): 
    return ds.apply(predict, axis=1) 
 
def run_dataframe(ds): 
    ds = rename_columns(ds) 
    ds = convert_bool(ds) 
    validate_columns(ds.columns) 
    ds = parse_numeric_types(ds) 
    ds = add_missing_indicators(ds) 
    ds = impute_values(ds) 
    ds = combine_small_levels(ds) 
    prediction = 1/(1 + np.exp(-predict_dataframe(ds))) 
    return prediction 
 
 
def run(dataset_path, output_path, encoding=None): 
    if encoding is None: 
        encoding = DEFAULT_ENCODING 
 
    ds = pd.read_csv(dataset_path, na_values=NA_VALUES, low_memory=False, 
                     dtype=get_dtypes(), encoding=encoding) 
 
    prediction = run_dataframe(ds) 
    prediction_file = output_path 
    prediction.name = 'Prediction' 
    prediction.to_csv(prediction_file, header=True, index_label='Index') 
 
 
def _construct_parser(): 
    import argparse 
 
    parser = argparse.ArgumentParser(description='Make offline predictions with DataRobot 
Prime') 
 
    parser.add_argument( 
        '--encoding', 
        type=str, 
        help=('the encoding of the dataset you are going to make predictions with. ' 
              'DataRobot Prime defaults to UTF-8 if not otherwise specified. See the ' 
              '"Codecs" column of the Python-supported standards chart ' 
              '(https://docs.python.org/2/library/codecs.html#standard-encodings) ' 
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              'for possible alternative entries.'), 
        metavar='<encoding>' 
    ) 
    parser.add_argument( 
        'input_path', 
        type=str, 
        help=('a .csv file (your dataset); columns must correspond to the ' 
              'feature set used to generate the DataRobot Prime model.'), 
        metavar='<data_file>' 
    ) 
    parser.add_argument( 
        'output_path', 
        type=str, 
        help='the filename where DataRobot writes the results.', 
        metavar='<output_file>' 
    ) 
 
    return parser 
 
 
def _parse_command(args): 
    parser = _construct_parser() 
    parsed_args = parser.parse_args(args[1:]) 
 
    if parsed_args.encoding is None: 
        sys.stderr.write('Warning: For input data encodings other than UTF-8, ' 
                         'search "Prime examples" in the DataRobot Users Guide at 
https://app.datarobot.com/docs/users-guide/index.html') 
        parsed_args.encoding = DEFAULT_ENCODING 
 
    return parsed_args 
 
 
if __name__ == '__main__': 
    args = _parse_command(sys.argv) 
    run(args.input_path, args.output_path, encoding=args.encoding) 
 

 
 
 
 
 


