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Chapter 1

Introduction

1.1 Background

Astrophysical research now includes a sizeable portion devoted to the analysis of the for-
mation and early evolution of stars. One of the first models developed in the early 1930s
postulated that galaxies emerged from primordial gas, a process that could be followed
by viscous hydrodynamic simulations following condensation (Dayal, 2019; Pacifici et al.,
2016) and semi-analytic models (Pacifici et al., 2016). Giant molecular clouds (GMCs),
where massive stars are born, and dark clouds, where low-mass stars are born, are the
two types of star formation clouds (Carraro, 2021). It has been challenging to understand
and build a hypothesis that describes the beginning conditions of massive stars’ forma-
tion for observational studies (Henning et al., 2006) because they form in remote and
extremely veiled locations (Lery et al., 2005). GMCs, where star clusters originate, are
usually only visible at infrared wavelengths because they are severely shrouded by dust
(Lada & Lada, 2003; Lery et al., 2005). The clouds, on the other hand, are visible due to
the absorption of light (in the optical) by background stars, the emission of cold dust at
millimeter and sub-millimeter wavelengths, and the emission of simple molecules such
as carbon monoxide (CO).

1.1.1 The Interstellar Medium (ISM)

Everything in the Universe that has mass, such as protons and electrons, is dispersed
between stars as opposed to within them, making up the vast majority of the universe’s
baryonic matter. Because stars are created in the ISM, it is crucial to understand how they
develop because it affects how galaxies arise and evolve (Colombo et al., 2014). When su-
pernovae explode, their remains impact and shock the surrounding medium, compress-
ing ambient ISM into rapidly expanding shells that cool quickly because of their high
densities and may turn into molecular gas after 106 years (Wooden et al., 2004). Most of
the ISM’s volume is made up of the ionised and atomic gas phases. This material has
the ability to create new star generations under specific circumstances. Additionally, a
variety of proposed hypotheses about the origin or evolution of GMCs have been made
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(Chevance et al., 2022) such as (a) theories governing the GMC’s process, (b) gravity-
induced compression of Jeans mass, the junction of local turbulence-induced filamentary
gas flows, (c) the compression of shock waves from supernova shocks,(d), the buildup
of mass through cloud-cloud collisions, and (e), the compression of matter in massive
galaxy mergers. These formation hypotheses all have a strong connection to one another.

1.1.2 Giant Molecular Clouds (GMCs)

The gravitational collapse of interstellar gas clouds, which contract under gravity, is how
stars are created (Lery et al., 2005). The clouds with the greatest chance of collapsing
are the coldest and densest. These are the densest regions in GMCs. Large gas clumps
known as molecular clouds, which are primarily made of molecular hydrogen gas, often
have masses between 102 − 105 M⊙ (to a first approximation, determined by the Jeans
length) (Maoz, 2016; Dayal, 2019). Molecular line emission, together with the emission
from dust, are the most popular techniques for determining GMC masses since lines are
strong and easy to spot even in distant galaxies. On the galactic scale, the three most
frequently employed species are 12CO, 13CO, and for the densest gas HCN (Krumholz,
2015).

The intensity of the emission, Iν, from a cloud of temperature T with an optical depth
of τν at a frequency ν is given by (Eq. 1.1)

Iν = (1− e−τν)Bν(T). (1.1)

where Bν(T) is the Planck blackbody function. The cloud is opaque and radiates like
a blackbody at its physical temperature in an optically thick cloud at a local thermody-
namic equilibrium (LTE), where the optical depth of the cloud is τν ≫ 1. In the case of
an optically thin cloud, τν ≪ 1, photons can pass through and reach the observer since
the cloud is transparent. In light of this, the intensity is simply proportional to the optical
depth, which is proportional to the quantity of atoms or molecules in the line of sight.

By observing these species in a molecular cloud, we may determine the column density-
the number of molecules per unit area in our line of sight (using Eq. 1.1). Surveys of 12CO
and 13CO species are particularly challenging to analyse because they are vulnerable to
blending of emission from unrelated clouds in the galactic plane (Dobbs et al., 2014). We
are able to determine the masses of GMCs, but we can also make educated guesses about
their temperatures, velocity widths, diameters, and surface densities.

GMCs, which have temperatures ranging from 10-20 K throughout most of their vol-
ume and above in the regions near protostars(Maoz, 2016). As a result, silicate and carbon
grain cores are encircled by a cold blanket of ices. The protostar’s inner core begins to
warm up to temperatures of about 100 to 300 K as the protostar grows, which eventu-
ally causes the hot core to heat up (Herbst & van Dishoeck, 2009). Once enough material
from the envelope has accumulated, the star will have an accretion disc that will grad-
ually build up before dispersing and the star contracts onto the main sequence. These
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FIGURE 1.1: An illustration of the material’s progression through a collapsing envelope from
the prestellar core stage to a protoplanetary disc. The numbers (0) and (1), respectively, repre-
sent the creation of first- and zeroth-generation organic molecules in ices. When the envelope
temperature hits 100 K and even strongly bound ices begin to evaporate, second-generation,

(2) molecules begin to form in the hot-core area (Herbst & van Dishoeck, 2009).

steps lead to the zeroth, first, and second generations based on the chemistries of the
organic molecules (see Fig. 1.1).

According to Herbst & van Dishoeck (2009)’s time-dependent gas-phase chemistry
model, structures start off as a cold hydrostatic protostar sphere, which then undergoes
an inside-out collapse in which materials start to flow inward to warmer and denser
regions.

During the major accretion phase, when massive stars accumulate a lot of material
during their birth process, their luminosities increase. The radiation pressure on the dust
grains, however, cancels out the accretion and causes the gas to expand even faster as
a result of enhanced ionisation. Large stars are unlikely to form when a spherically
symmetric mass in-fall occurs. However, materials do gather through a circumstellar
disc (Henning et al., 1990). Protostellar objects, which are cold objects, are created when
molecular clouds break and collapse.

The ISM contains complex molecules, the majority of which are organic in origin since
the heavy element Carbon, such as CO, predominates therein (Herbst & van Dishoeck,
2009). These molecules, which can be found in protoplanentary discs, were initially ex-
amined after the development of sub-millimeter astronomy, which made it possible to
identify them. Because protoplanetary discs are cold and thick, and because most species
are frozen out as ices on the grain surfaces and surface layer where both dissociation and
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ionisation are dominant, the abundances of these species in the gas phase are significantly
lower than those in the dark clouds (Ilee et al., 2021). The employment of interferome-
ters has enabled the discovery of a few gas-phase complex compounds, such as methyl
cyanide (CH3CN), in protoplanetary discs (Öberg et al., 2015; Ilee et al., 2021).

The virial theorem asserts that for an equilibrium self-gravitating system,

2U + Ω = 0 or U = −1
2

Ω (1.2)

where U is the total thermal (kinetic) energy of the cloud and Ω is the total gravi-
tational energy of the cloud. In other words, a classically bound star made of an ideal,
non-relativistic gas has a negative total energy. All stars are destined to collapse at some
point (Ω becomes more negative) since they all produce energy (and as a result, U grows
increasingly negative).

Consequently, we need the gravitational term to outweigh the pressure in order for
the cloud to contract, that is,

−Ω > 2U (1.3)

For the sake of brevity, let’s assume a spherical gas cloud with constant density and
temperature T, as well as particles with mean masses of m̄. The gas is non-relativistic,
ideal, and classical. The cloud’s mass is M, its radius is r, and its gravitational energy is
represented by

|Ω| ≈ GM2

r2 (1.4)

If the cloud experiences radial compression , dr, its gravitational energy will change
(become more negative).

|dΩ| = GM2

r2 dr (1.5)

This results in a volume reduction of the cloud by

dV = 4πr2dr, (1.6)

The thermal energy will consequently rise by,

dU = PdV = nkBT4πr2dr =
M

4
3 m̄πr3

kBT4πr2dr =
3MkBT

m̄
dr
r

, (1.7)

The cloud will be prone to gravitational collapse if the change in gravitational energy
is greater than the increase in thermal energy (and the pressure support it provides),

|dΩ| > |dU| (1.8)

As a result, it may be concluded that clouds will collapse if their mass exceeds the
Jeans mass (MJ) for a given radius r and temperature T,



1.2. Aims and Objectives 19

MJ =
3kBT
Gm̄

r (1.9)

The initial cold temperature that results from a cloud’s collapse causes the Jeans mass
to decrease while the density increases. Smaller mass components may thus become
unstable, leading to the development of star clusters. A hydro-static core will eventually
form when the particles heat up.

Star formation typically produces clusters of stars rather than single stars, where as-
sociations are born simultaneously before feedback inhibits star formation (Rieder et al.,
2021). Additionally, groups of stars that are physically linked together are referred to
as stellar clusters. Star clusters form as clumps, which are areas of excessively dense
material, grow larger and are frequently gravitationally bound (gravity keeping them to-
gether). Open clusters and globular clusters are the two categories into which clusters
fall. Open clusters have been found to be young due to the existence of massive stars.
Most of them are not restrained by the gravitational pull of their own bodies. Globu-
lar clusters are bound systems with low metal content, which suggests that they were
formerly relatively pure gas before forming some time ago.

Massive stars play an important role in the evolution of the Universe since they are
the primary source of heavy elements and ultraviolet (UV) radiation Zinnecker & Yorke
(2007). Given first order, this suggests that they form later than low-mass stars because
of their extreme UV radiation and winds, which have an adverse effect on the gas reser-
voir around them after they are formed (Beuther, 2011). According to (Dopita & Stromlo,
1988), they are the outcome of molecular cloud collisions or crushing events. A dense
sheet of shock-compressed materials is created by these events, which are primarily
caused by supernova explosions and star winds (Woodward, 1978). Despite all of the
theories on how major stars are born, we still don’t fully grasp how they form and de-
velop. To start, it is believed that clouds of dust created by cloud collisions are an effective
mechanism that triggers cloud collapse (Wang et al., 2004) and produces stars, making
them difficult to observe and giving insufficient details on their early formation. In ad-
dition, it is particularly challenging to explain the theory underlying the development
process due to how swiftly it happens (Zinnecker & Yorke, 2007).

1.2 Aims and Objectives

This project aims to analyse observational data, create theoretical methods, and construct
computational models to advance knowledge and collaborations in one of the follow-
ing fields: pulsar astrophysics, radio astronomy technology, stellar astrophysics, solar
plasma physics, cosmology and gravitational physics, galaxies and cluster formation, or
astrochemistry. The subsequent goals will help achieve this goal:

• Gain knowledge about spectral data cubes from Atacama Large Millimeter Array
(ALMA) telescope, their meaning, and information extraction techniques.
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• Examine machine learning (ML) approaches to object identification, data compres-
sion, and categorization.

• Investigate novel ML approaches that may prove useful in the processing of spatial-
spectral data.
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Chapter 2

Star Formation and the Function of
Spectral Lines

Introduction

When stars are born, they leave behind intricate precursor molecules to biological molecules
that live in the protostars’ gaseous envelopes (Calcutt et al., 2018). These complex organic
molecules are the tracer materials left behind during the production of prestellar cores,
massive hot corinos, and low hot corinos (Jiménez-Serra et al., 2016), which are crucial
events in determining some of the early phases of star formation. Numerous star-forming
regions have been extensively examined, including Sgr A and Sgr B (Solomon et al., 1971;
Menten et al., 2010; Bonfand, M. et al., 2019; Matthews & Sears, 1983; Meng et al., 2022,
2019) and IRAS 20126+4104 (Cesaroni et al., 2014). Methyl cyanide traces reveal a wide
range of ISM gas cloud physical characteristics, including temperature, velocity, column
density, and ionisation. However, variations of the global and local pressure dictates the
amount of cold, dense material free for star formation process (Heyer et al., 2019). This
chapter will cover some of the key details on the methyl cyanide (CH3CN)) species, its
detection in high mass objects (Cesaroni et al., 2017), and its significance for understand-
ing the chemistry and dynamics (Barrientos & Solar, 2019) of the cosmos.

2.1 Rotational Energy Levels for Symmetric-Top Molecules

Methyl cyanide belongs to the group of symmetric-top compounds with rotational en-
ergy levels. The labels for the levels are typically divided into four categories: J, which
specifies the total angular momentum; K, which specifies the angular momentum about
the top axis z; +l or -l, labels resulting from a consideration of the Coriolis splittings in
degenerate vibronic states; and Γ, which is a symmetry species of the rotational subgroup
of the full molecular point group and is useful when considering the statistical weights
of the rotational energy levels (Hougen, 1962).

The expectations values of the internal (i.e., vibronic) angular momentum operator
about the symmetric top axis z have a significant impact on the rotational energy levels
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of a molecule in a 2E state (Brown, 1971). The doubly degenerate bending state v8 = 1 has
the lowest vibrationally excited state in CH3CN (Müller, Holger S. P. et al., 2016). Radia-
tive transitions can only take place within a K-ladder since, according to selection prin-
ciples, they don’t alter the value of K while collisional transitions are permitted across
K-ladders (Remijan et al., 2004). As a result, collisions have a significant role in deter-
mining the population of one K-ladder in relation to another, which makes the kinetic
temperature and density of the area a key factor (Remijan et al., 2004; Solomon et al.,
1971).

CH3CN K components are closely spaced in frequency but have a wide range of exci-
tation energies above ground (Watson et al., 2002), allowing CH3CN lines to be observed
concurrently at similar sensitivities. This also helps to reduce the impact of calibration
errors (Remijan et al., 2004). Overall, CH3CN is an effective probe of the physical condi-
tions in hot molecular cores.

2.2 Emission and Absorption of Spectral Lines

The observed astrophysical sources through spectral lines gives insight about some of
the initial conditions of star formation. The physics behind is essential in understanding
the intrinsic strength of the observed emission or absorption of a particular molecule. Cir-
cumstellar discs surrounding B-type protostars dominate gravity, and tracers like CH3CN,
which typically live in hot corinos, have been successfully identified in dense and hot
gas (Cesaroni et al., 2017, 2014). Additionally, because of its abundance and the ability
to simultaneously observe multiple line emissions (Remijan et al., 2004) that occur under
various conditions, such as those first discovered and observed by (Solomon et al., 1971)
(see Figure 2.1) in the Sagittarius A (Sgr A) and Sagittarius B (Sgr B) molecular clouds,
CH3CN is an ideal molecule for observation. It can be used as well to derive kinetic
temperatures in star-forming regions (Müller, Holger S. P. et al., 2016). In order to better
understand the chemistry that results in the production of more complex molecules in the
hot regions, CH3CN makes it feasible to get measurements on temperature and column
density.

In order to understand the formation of the grains in molecular clouds throughout
the phase chemistries it experiences (i.e., warm-gas phase and cold-gas phase), it is help-
ful to know the column density of complex molecules, such as CH3CN (Remijan et al.,
2004). Different techniques are employed in conjunction with assumptions to determine
the column density and temperatures of CH3CN regions. Remijan et al. (2004) used a
logarithmic plot of the normalized column density against the upper energy state. If
one knows the excitation temperature, the column density can be deduced for the lower
state energy level at the observed optical depth τ, considering absorption spectroscopy
(Menten et al., 2010).

Nl =
h

8π2
gl

Sµ2

[
1− e

−hν
kT

]−1
τ∆ν (2.1)



2.2. Emission and Absorption of Spectral Lines 23

FIGURE 2.1: The first CH3CN) emission lines detection in Sgr B for the J = 5→ 6, (Solomon
et al., 1971).

FIGURE 2.2: CH3CN emission lines detected in the TCM-1 dark cloud for the J = 0 → 1,
v = 0 rotational transition at 18.4 GHz, (Matthews & Sears, 1983)
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Where Nl is column density at the lower state energy level, τ is the optical depth, ν is
the line width, the subscript l represents the lower state energy level, Tex is the excitation
temperature while h and k are the Planck and Boltzmann constants.

This is comparable to the formula (Equation 2.2) used by Remijan et al. (2004) to de-
duce the column densities in the upper state energy levels.

Nu

gu
=

3c2

Ωs16π3ν3

∫
∆Idν

Sijν2 (2.2)

From Equation 2.2, Nu is the column density at the upper energy level, gu is the statis-
tical weight of the upper level (2J + 1), c is the speed of light in vacuum, Ωs is the solid
angle subtended by the source,

∫
∆Idν is the integrated line flux and Sijν

2 is given by the
product of total torsion-rotational line strength and square of the electric dipole moment.

The total column density is given by Equation 2.3 depending on the energy level state
i.e., lower state energy level or upper state energy level. Q is the partition function for
the rotational temperature Trot.

Ntot =
N
g

e
−E
kT Q(Trot) (2.3)

There are a couple of assumptions that have to be made in order to calculate the total
column density depending on the energy state level. (1), we assume there is a uniform
physical distribution and the energy levels of the population are described by the Boltz-
mann distribution. (2) another assumption is optically thin conditions where τν ≪ 1
where we can see the radiation from the observed source. (3) also, assume we are able
to measure the source size of the emitting region. (4) we can neglect the background
radiation.

2.3 The Spectral Line Formation and Intensity

The line form of the spectral emission and absorption plays a significant role in compre-
hending some of the processes taking place at the detected source when the emission and
absorption of molecules are observed. The spectral lines contain a tremendous amount
of data that can be retrieved, including details about temperature, chemical composition,
turbulence, and radial velocity. The spectral lines are primarily fitted to a Gaussian dis-
tribution, while there are some different ways that largely depend on whether the line is
an isolated single line or an asymmetric blend (Trypsteen & Walker, 2017). For emission
lines, we can tell whether the emission is from an optically thick or optically thin cloud
(Fig. 2.3)

Using radiative energy transfer, the Planck function Bv(T) as a function of tempera-
ture, T, can be used to express the intensity of a source (Iv) (Equation 1.1). Although this
is not true at low temperatures and high frequencies, the radiation temperature will be
equal to the brightness temperature in the Rayleigh-Jeans regime. Our LTE code script
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FIGURE 2.3: Spectra from randomly generated parameters (excitation temperature, column
density, source size, velocity and line width (velocity dispersion)) showing CH3CN spectra
assuming a locally thermodynamic equilibrium (LTE) environment. The figure on the left
shows an optically thin cloud since they have sharp tops while the figure on the right shows

an optically thick cloud because of flattened tops.

assumes LTE conditions, meaning the energy levels are filled using the Boltzmann dis-
tribution and the gas temperature is the same as the dust temperature in high-density
areas.

Some of the physical processes that take place within the detected source and its sur-
roundings have an impact on the spectral lines. The full width at half maximum (FWHM)
line profile shape is influenced by the temperature, pressure, density and turbulence ef-
fects in cosmic environments (Trypsteen & Walker, 2017). Despite all the figures in 2.3
being generated from a simplified model that mimics real cosmic environment condi-
tions, it can be applied to real observational data of CH3CN line profiles to build better
robust ML models (Frasca, A. et al., 2016).

2.4 Summary

The purpose of this chapter is to provide background information and context on the
function of spectral lines in stellar evolution and stellar dynamics. It is important to em-
phasise the atomic transition from the basic atom to the CH3CN molecule. Furthermore,
diverse synthetic line profiles of CH3CN spectra were exhibited in Figure 2.3, accompa-
nied by the implications that could be inferred from the emission lines’ morphologies.
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Chapter 3

Wavelet Transform and Modelling

Introduction

I employ the wavelet decomposition method to decompose CH3CN spectra. The wavelet
decomposition method’s approximation and detail coefficients will be thresholded and
decomposed while taking into account a number of wavelet families, and the parameter
estimate model will then be developed using machine learning (ML).

3.1 The Wavelet Decomposition Method’s Characteristics

Wavelet decomposition is a signal compression technique where data is compressed from
the original domain by expanding the raw data while retaining much of the original
information (Li et al., 2002). Wavelets are robust and provide both the scale (frequency)
and time domain of the signal information (Rowe & Abbott, 1995), thus they still maintain
the form of data. Furthermore, they are an extension of the Fourier theory (Eq. 3.1) where
the Fourier transform F(ω) of a function f (t) is given by

F(ω) =
ϕ√
2π

∫
f (t)e−iωtdt (3.1)

Equation 3.2 is the wavelet transform (WT) equation.

W(b, a) =
1√
a

∫ ∞

−∞
h∗

(
t− b

a

)
s(t)dt (3.2)

h∗ is the complex conjugate of the wavelet h(t), a represents the scaling term and b de-
scribe the a time-shift value. New coherent applications of wavelet transforms based on
Fast Fourier Transforms (FFT) have been developed (Sava et al., 1997).

The LTE code script that we used to model the spectra created data that needed to
be compressed, which is why we utilised the wavelet decomposition technique. The
organic methyl cyanide’s line parameters were adjusted to a random selection, which
produced the LTE spectra. In addition, wavelets offer data compression while preserving
a large portion of the original data. Before applying machine learning to forecast the line
parameters, which should be an automatic process, it is helpful to understand the shape
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of the spectrum and its parameters. All in all, this work was done to try and anticipate the
line parameter values and infer the existence of methyl cyanide in a cluttered spectrum.

3.1.1 Properties of Wavelets

• Computation Complexity - The Wavelet Transform (WT) requires an O(N) mul-
tiplication which is based on Mallat’s pyramidal algorithm where the space com-
plexity is linear (Li et al., 2002; Sava et al., 1997).

• Vanishing Moments - Wavelets satisfy Eq. 3.1 in a bounded region ω. In other
words, the integral of the product of the function f (x) and the low degree polyno-
mial xj are all zero.

∫
ω

f (x)xjdx = 0, j = 0, 1, ......, n (3.3)

The noisy data can normally be approximated by a low-degree polynomial only if
the data is smooth in most of the regions (Li et al., 2002).

• Orthonormal Basis - The standard basis vectors have a unit length and are orthog-
onal. Particularly, the wavelet transform does not alter the time-based distances
between two objects.

3.1.2 Discrete Wavelet Transform (DWT)

The Haar and Daubechies wavelet families have received the most attention in wavelet
research (Daubechies, 1992; Cárcamo et al., 2022). Since filter banks are efficient in divid-
ing signals into equal-width frequency sub-bands, DWT is always configured as a filter
bank, which means it is provided as a combination of the high-pass and low-pass filters.
The detail coefficients and approximation coefficients are the sets of two coefficients that
the DWT returns. The approximation coefficients represent the output of the low pass
filter (high scale with a low frequency), whereas the detail coefficients represent the out-
put of the high pass filter (low scale with a high frequency). Because of its simplicity and
better relevancy of the returned data, the DWT is preferred and utilised more commonly
than the continuous wavelet transform (CWT).

Each level of decomposition reduces the signal by half, compressing it while retaining
the majority of its original characteristics (Figure 3.1). In addition, to get the majority
of a signal’s characteristics, this depends on the kind of wavelet family that was used
to split the signal up. To separate signal data into its lower resolution components, in
the case of spectral data, we used a Daubechies wavelet (db1), which is best suited for
signal data. The mother wavelet equation used, Equation 3.2 of order 1, is comparable
to the Haar wavelet (Figure 3.2). The plot for the ϕ and ψ functions and in Figure 3.2 is
not particularly compelling because it is similar to the Haar wavelet. The Daubechies 2
scaling and wavelet functions are shown in Figure 3.3.
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FIGURE 3.1: An illustration of the high-pass and low-pass filters in a multi-level decomposi-
tion tree of a signal into six levels. A signal X of length n is decomposed by passing through
the high pass filter (Hi[n]) and low-pass filter (Lo[n]). cA1, ...cA6 are the approximation coef-

ficients, while cD1, ...cD6 are the detail coefficients at level 1-6, respectively.
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have different sets of properties that complement each other.
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The pseudo-code for the DWT procedure is displayed in Algorithm 1. Here, we select
the wavelet family, level of decomposition which specifies the depth of the decomposi-
tion, and signal extension mode that we will employ.

Algorithm 1 DWT pseudo-code for decomposing signals at level 6 using a specified
wavelet and obtaining the approximation and detail coefficients.

Require: Data pre-processing
Require: Get feature matrix (cA and cD) shape at decomposition level 6
Ensure: cA and cD feature matrices of size [Xn, 422]

for ix ← Xn do
coefficients← decompose(ix, wavelet, mode) ▷ Apply DWT to data Xn
coe f farr, coe f fslices ← convert coefficients to array (coefficients)
cA ← coefficients[ix :] ▷ Approximation coefficients
cD ← coefficients[ix + 1 :] ▷ Detail coefficients
reconstructedSignal← reconstructSignal(coefficients, wavelet, mode)

end for
return coe f farr, coe f fslices

The many discrete wavelet families shown in Fig. 3.3 have various characteristics.
Asymmetric, orthogonal, and biorthogonal describe the Haar, Daubechies, and discrete
Meyer wavelets. Nearly symmetric, orthogonal, and biorthogonal are Coiflets and Sym-
lets. The Biorthogonal wavelets, however, are symmetric rather than orthogonal.

3.2 Signal Estimation via Thresholding

Since the generated synthetic signals are noiseless, the threshold estimation of the signals
in our case is only applicable to observational data that contains noise. The formula
2
√

log(n), where n is the sample size (Donoho & Johnstone, 1994), is used to estimate the
universal threshold value λ, which was adopted from (Tomáš, 2018). The thresholding
formula was only used on observational data, not synthetic data. Since only a small
number of wavelet coefficients constitute a signal, Tomáš (2018) uses an evolutionary-
based method to estimate the threshold and only keeps observations that are more than
a multiple of the noise level (Donoho & Johnstone, 1994). The threshold value is applied
in one of two ways: soft thresholding or hard thresholding described by the thresholding
function T(x) below

Thard(x) =

x, if |x| > 0

0, otherwise
(3.4)

Tso f t(x) =


x− λ, if x < λ

0, if |x| ≤ λ

x + λ, if x < −λ.

(3.5)

When using a hard threshold, a substitute zero is used in place of any data values
whose absolute value is less than the thresholding value λ . Data values whose abso-
lute value exceeds the thresholding are unaffected. If the data values are less than the



30 Chapter 3. Wavelet Transform and Modelling

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

haar

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 haar

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25
db2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
db2

0 2 4 6
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 sym2

0 2 4 6

1.5

1.0

0.5

0.0

0.5

1.0 sym2

0 2 4 6 8 10

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 coif2

0 2 4 6 8 10

1.5

1.0

0.5

0.0

0.5

1.0
coif2

0 20 40 60

0.2

0.0

0.2

0.4

0.6

0.8

1.0 dmeyer

0 20 40 60

1.0

0.5

0.0

0.5

dmeyer

0 1 2 3 4 5

2

0

2

4

6
bior2

0 1 2 3 4 5

6

4

2

0

2

4

6

8

10
bior2

FIGURE 3.3: A schematic of some of the common discrete wavelets types Haar (haar),
Daubechies (db2), Symlets (sym2), Coiflets (coif2), Discrete Meyer (dmey) and Biorthogo-
nal (bior2). The blue plots show the scaling function ϕ and the green plots show the wavelet

function ψ. The type of wavelet is labelled in the upper right of each panel.
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thresholding value, soft thresholding subtracts the thresholding value from the values.
A substitute zero is used in place of any data values whose absolute value is less than or
equal to the thresholding value. Finally, the threshold value is added to the data values in
cases where they are less than the negative threshold value. The following thresholding
procedures were used to denoise the observational data from Tomáš (2018).

1. After preprocessing the data, use DWT to extract the wavelet coefficient—that is,
the approximation coefficients (cA) and detail coefficients (cD)—from the signal.

2. Use Mean Absolute Deviation (MAD) to approximate the thresholds Thard(x) and
Tso f t(x) at the selected level of decomposition.

σ =
1

0.6745
MAD(|cA|) (3.6)

σ: This is the standard deviation of the coefficients at the selected level of decom-
position.

TA = σ
√

2log(n) (3.7)

TA: This is the threshold value for the approximation coefficients cA at the selected
level of decomposition.

3. Apply thresholding to the DWT-derived approximation coefficients.

4. From the thresholded coefficients, recreate the original signal’s denoised form..

The noisy observational data are then subjected to this after the thresholding method
previously described, as illustrated in algorithm 2. The key objective of this is to have
data that closely resembles the synthetic data that our ML models were trained on, as
this will allow for improved parameter estimates.

3.3 Modelling of CH3CN Spectra

The ALMA telescope Band 6 configuration was used to model the CH3CN spectrum us-
ing an LTE code script that uses Centre d’Analyse Scientifique de Spectres Instrumentaux
et Synthétiques (CASSIS) Vastel et al. (2015) database to generate synthetic data spectra at
a frequency range of 238.6 MHz to 239.18 MHz. Synthetic data were used because there
were insufficient amounts of observational spectral data from ALMA to use. The input
physical parameters for these models include excitation temperature, column density,
source size, velocity, and line width (velocity dispersion), were all uniformly generated
at random and placed within the appropriate ranges consistent with the results from
other observations shown in Table 3.1 (Pols et al., 2018; Andron et al., 2018).
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Algorithm 2 This algorithm performs denoising and thresholding on feature matrices
cA and cD obtained from wavelet decomposition at level 6. The algorithm calculates the
sigma of cA using the median absolute deviation (MAD) and applies thresholding to both
cA and cD using TA, a threshold value based on the calculated sigma and the size of the
signal. The thresholding function used for cA and cD is different, with Thard(x) used for
cA and Tso f t(x) used for cD. The resulting denoised approximation and detail coefficients
are returned.
Require: Get feature matrix (cA and cD) shape at decomposition level 6
Ensure: cA = [Xn, 422] and cD = [Xn, 422]

for ix ← Xn do
coefficients = decompose[ix, wavelet, mode]← Xn
coe f farr, coe f fslices = coe f f icients[ix]← Xn ▷ convert the coefficients to an array
σ = (1/0.6745)MAD(|cA|) ▷ calculate sigma of the coefficients
TA = σ

√
(2× log(n))

apply thresholding to detail and approximation coefficients
cA ← coe f f icients[ix :] = threshold(coe f f icients[0], TA, Thard(x))
cD ← coe f f icients[ix :] = threshold(coe f f icients[1 :], TA, Tso f t(x))

end for

Parameter Range Units
Excitation temperature 10 - 400 K

Column density 1014 - 1018 cm−2

Source Size 0.2 - 1.1 arcsec
Velocity (VLSR) -50 - +50 km s−1

FWHM 1- 10 km s−1

TABLE 3.1: Input physical parameters space

Figure 3.5 shows some of the shows the intensity-frequency profiles (spectra) of CH3CN
and the corresponding randomly generated parameters used to generate them (same as
Figure 2.3). A high column density, temperature, and line width optically thin observed
source is shown in the figure on the left. The molecular gas temperature, which can be
discovered through spectral fitting, governs the line intensity ratios between various en-
ergy transition components (Hung et al., 2019). This indicates that CH3CN lives in the
cold to hot environment based on the temperature range. In contrast to the figure to the
right, where the column density is higher, which is causing the spectral lines’ tops to flat-
ten, which are indicators that this is from an opaque cloud. Additionally, it should be
noted that the intensity is higher for the optically thick plot, it is lower for the optically
thin figure.

3.4 LTE Model Fits and Model Limitations

The synthetic CH3CN (J=13–12) transition molecular spectra are produced by our LTE
code script. When used with observational data, the LTE model is unfortunately con-
strained, thus we make assumptions regarding the emitting gas. The derived column
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FIGURE 3.4: A representation of the distribution of all the parameters used to create the ar-
tificial frequency-intensity plots. All of the parameters have a uniform distribution, with the
exception of the column density, which is most influenced by the gas’s excitation tempera-
ture, which is frequently in charge of the line intensity ratios between various K components.
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densities are beam-averaged values and the beam dilution of the source in the telescope
beam is taken into account. The LTE approach also has a further drawback because it
relies on the assumption that the emitting gas will always have the same temperature
and abundance and that each transition line’s emission would come from a source of the
same size (Bell et al., 2014).

Equation 3.8, in which θb is the beam size in arcseconds, c is the speed of light, ν is the
frequency, and B is the telescope’s interferometer baseline in meters, provides the beam
size from our LTE code script (for ALMA, this is the diameter of the interferometer)

θb =
1.22× c/ν

B× 3600× 180
π

(3.8)

Equation 3.9 provides the dilution factor ( fb), assuming that the source size’s (θs) ge-
ometry and the telescope’s beam size’s (θb) geometry are both represented by a 2D Gaus-
sian function.

fb =
θ2

s

θ2
s + θ2

b
(3.9)

Additionally, in the presence of a continuum source, the gas chunk will not only emit
photons but also have the potential to absorb them, creating profiles for both absorption
and emission lines (Martín et al., 2019). The LTE code script provided by the CASSIS
team, (Vastel et al., 2015) requires knowledge of the molecular energy levels and transi-
tion parameters in order to calculate the line transitions using the LTE approximation,
hence we used the CASSIS database together with an ALMA 400 m telescope configura-
tion file.
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Chapter 4

Application of Machine Learning in
Astronomy

Introduction

Machine learning (ML), also known as statistical learning, is the process of deriving con-
clusions from data using statistical models. There are many different ML algorithms
that can be used in astronomy, ranging from classification and regression issues applied
to natural language processing, computer vision, and ensemble learning, which are the
main topic of this chapter. With the increasing large volume of data in astronomy, the
use of ML techniques has proliferated with the application of various algorithms to these
domain-specific fields, like astronomy, physics, biology, etc. This has made it possible
for astronomers to quickly analyse the ever-growing amount of data that is now at their
disposal from instruments all over the world and beyond.

In this chapter, we will describe the machine learning methods that will be used to
predict physical parameters. The ensemble learning algorithms with multi-regression
analysis would be the focus. The metrics for evaluating the methods used will also be
described.

4.1 Ensemble Learning Algorithms

Ensembling is the synthesis of various machine learning models and predictions. These
are ML algorithms that use labelled datasets as features (columns) to train them in pattern
recognition before applying the learned model to forecast the behaviour of new dataset
features. The majority of ML algorithms simply multiply mathematical vector equations
together to perform complex computations. Depending on the kind of issue that needs
to be resolved, ensemble learning can be divided into classification and regression issues.
In this study, we use ensemble learning algorithms for multi output regression, where
we simultaneously predict several numerical targets, i.e., physical parameters (excitation
temperature, source size, column density, and velocity gradients). One regression model
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is fitted for each target that we want to make predictions on in this method. Addition-
ally, there are numerous ways to use the ensemble learning technique; however, in this
work, we’ll focus on bagging and boosting. Bagging, a term coined by Breiman (2001),
is a "bootstrap" ensemble strategy that cultivates individuals for its ensemble by train-
ing each classifier on a training set that has been randomly rearranged (Opitz & Maclin,
1999). While boosting is an algorithm that repeatedly executes a "weak" or "basic" learn-
ing method while feeding it a different subset of the training data or a different distribu-
tion or weighting over the training examples (Schapire, 2003). The Random Forest (RF)
method is used for bagging (Figure 4.2), and the Extreme Gradient Boosting (xgboost)
technique is used for boosting. Figure 4.1 depicts the layout of our solution, from data
preprocessing through parameter estimations using the ensemble tree algorithms.
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FIGURE 4.1: A visual representation of all DWT operations and ML model forecasts.

4.1.1 Random Forest (RF)

RF is based on ensemble trees by which the most popular class is selected as proposed
by Breiman (2001). In other words, it’s built on the application of an ensemble of classi-
fication and regression tree (CART) like classifiers in which their learning is performed
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on the boosted-averaged observations (Tomáš, 2018). The mathematical representation
of RF is expressed as;

Consider a set of tree-classifiers, i.e., {h1(x), h2(x), h3(x), ..., hn(x)} each of which casts
a unit vote for the most popular class at input x. The training set is randomly selected
from a distribution of random vectors Un. The way Un is used in the construction of trees
determines its nature and dimensions.

Dataset

Boostraped Data-1

Boostraped Data-2

Boostraped Data-N

Classifier 1

Classifier 2

Classifier N

Ensemble Predictions

Bagging

FIGURE 4.2: An illustration of the mechanism used by the bagging ensemble. The data is
bootstrapped into smaller random samples of the population in N-dimension using replace-
ment, and then average N-dimension independent classifiers are used to make predictions

from the bootstrapped data (bagging).

The bootstrapping mechanism, also known as random sampling with replacement,
has its roots in statistics (Tomáš, 2018; Efron & Tibshirani, 1994). When using random
features, bagging appears to improve accuracy. Additionally, bagging can be used to
continuously provide estimates for the strength and correlation of the ensemble of com-
bined trees’ generalisation error (PE) (Breiman, 2001). At each node split, the number of
features to be considered can be tuned.

4.1.2 Extreme Gradient Boosting (xgboost)

The extreme gradient boosting (xgboost) algorithm is described as an optimised ML sys-
tem for tree boosting (Chen & Guestrin, 2016). For xgboost, the models (classifiers) that
follow the first model are trained on error residuals of misclassified data to reduce er-
rors of the preceding models; as a result, they learn the data well and are frequently
prone to overfitting. Given a dataset with n samples and m features, D = {(xi, yi)}
(|D| = n, xi ∈ Rm, yi ∈ R). K additive functions are used by this ensemble tree model to
forecast the results.
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L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk)

where Ω( f ) = γT +
1
2

λ||w||2
(4.1)

Here, the difference between the prediction (ŷi)) and the true value (yi) is measured
by the differentiable convex loss function (l), T is the number of leaves in the tree, w is
the leaf weight. Since the loss function is convex, we can use gradient descent, an optimi-
sation algorithm, to identify the weights that reduce it. The second term Ω penalises the
model’s complexity (i.e., the regression tree functions) (Chen & Guestrin, 2016). Each fk

represents a separate tree structure q where (q : Rm → T, w ∈ RT). γ and λ are constant
terms. In order to prevent overfitting, the additional regularisation term helps to smooth
the final learned weights.

Dataset

Misclassified Data

Misclassified Data N 

Classifier 1

Ensemble Predictions

Boosting Ensemble Mechanism

Misclassified Data
Classifier 2

Classifier 3

Classifier N

FIGURE 4.3: A representation of the bagging ensemble’s mechanism. To make predictions
on the dataset with increased sample weight, a number of weak learners are employed. The
next decision tree receives the weighted data (misclassified data) as a result of this action by

the model.

4.1.3 Cross Validation

Cross-validation is a technique of evaluating the performance of an ML model and test-
ing its performance. It is a member of the family of Monte Carlo techniques (Berrar,
2018). Cross-validation is frequently used to calculate a model’s prediction error (Bates
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All data

Testing setTraining set (model development)

Validation

FIGURE 4.4: A diagram showing the division of the data into training and testing sets. The
training dataset is used for model building, and both the training and testing sets are used

for evaluation.

et al., 2021). It is frequently relatively simple to construct a model that precisely fits the
available training data set but fails to generalise adequately to unseen data. Most often,
this results in model over-fitting and under-fitting. Over-fitted models merely duplicate
the training data instead of modelling the general pattern, which is what happens when
a model mimics the training data set rather than illuminating the underlying pattern.
Therefore, it is suggested to attempt to strike a balance between the two so that the model
works well by generalising on unexplored data by assessing our model on new data from
the same population as our ML model is trained. This provides a fair assessment of what
the model will look like when it is used to make predictions in the real world. To test ML
models, there are numerous validation, (e.g., including train/test split (Figure 4.4)) and
cross-validation techniques, k-fold cross validation such as , Repeated k-fold cross-validation,
Leave P Out (LPO), etc. Whether a classification or regression method is used in a cross-
validation process depends on the issue being addressed. In order to offer an estimated
performance of the final model on a fresh, untested dataset, cross-validation is a crucial
step in the development of ML models (Berrar, 2018).

The model is most likely over-fitted if the validation error is bigger and the training
error is smaller. A model is probably under-fitted if it has a significant training and
validation error. The model probably accurately depicts the relationship between the
predictors and response if the validation error is modest. For tree-based models, the
validation error set approach is used to locate smaller trees nested within the entire tree
that outperform the bigger tree on the validation set in order to find a suitable tree model
for the data set.

We used a test/train split validation and k-fold cross-validation to assess our models. In k-
fold cross-validation, the training dataset is portioned out into smaller subsets of roughly
equal sizes (Vabalas et al., 2019). The training data were used to repeatedly perform
our k-fold cross-validation procedure ten times. Each time, a new one-tenth of the data
was chosen to verify our model. The mean scores of all performances in each of the ten
validation folds were used to calculate the model performance.
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FIGURE 4.5: An illustration of a 10-fold cross-validation used to evaluate our ML models.

To represent the k-fold mathematically, let f̂k denote the model trained on all of the
kth subset of the training set. The predicted value ŷi = f̂k(xi) of the true value yi of xi ∈
kth subset. The cross-validation error, ϵ̂CV which is the mean scores of all the splits used
is given by;

ϵ̂CV =
1
n

n

∑
i=1
L( f̂k(xi), yi) (4.2)

The loss function used to measure the estimating error in this instance is L. The
training and testing errors are then computed using this.

4.1.4 Hyper-parameter Optimisation

The process of locating the optimum ideal model architecture in ML models is known
as hyper-parameter optimisation, or hyper-parameter tuning, occasionally. During the
ML training process, these parameters cannot be changed (Yu & Zhu, 2020). Grid search
hyper-parameter optimisation (GSO), which seeks the ideal ML model parameter values,
is the most often used automatic technique for hyper-parameter optimisation (Bergstra &
Bengio, 2012; Tomáš, 2018). The majority of the time, a user specifies a set of parameters
they wish to optimise, which largely depend on the kind of ML model they are using as
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well as the kind of training data they have at their disposal in order to perform the op-
timisation. In our case, we concentrated on fine-tuning some of the xgboost algorithm’s
parameters, including n estimators (the number of trees), max depth (the maximum depth
of trees), colsample bytree (the ratio of sub-sample columns when building each tree), learn-
ing rate (step size shrinkage to update weights to prevent overfitting), min child weight (in
linear regression tasks, a child must have the bare minimum of instance weight (hessian),
the term "hessian" refers to the second-order derivative of the loss function with respect
to the model’s parameters. This is the bare minimum number of instances that must
reside in each node) and objective (specifies the function we want to minimise).

Various optimization strategies exist, including both manual and automated searches.
Additionally, GSO is so easy to construct that parallelization is negligible, this means
that utilising GSO, it is very easy to parallelize the optimization process with little to
no additional processing resources needed. In other words, the optimization process
doesn’t incur much more overhead as a result of parallelization. Moreover, it frequently
discovers better optimisation values faster than manual sequential optimisation when
using a compute cluster, and it is trustworthy in low-dimensional spaces, such as 1-D
and 2-D spaces (Bergstra & Bengio, 2012).

4.1.5 Performance Criterion

The effectiveness of ensemble learning algorithms like the supervised learning algo-
rithms (RF and xgboost) used is no different from that of other ML models, which must
all be evaluated in order to determine how well they solve the problem at hand. In this
section, we introduce a few of the evaluation metrics that ML algorithms frequently use
to evaluate regression problems. Both multiple linear regression and simple linear re-
gression use the same evaluation metrics. Error is a typical regression metric (Eq. 4.3)
that is straightforward and simple to comprehend. In light of this, this study suggests
the following special performance standard:

Error = True Value− Predicted Value (4.3)

Mean Absolute Error (MAE)

Mean Absolute Error calculates the average discrepancy between the predicted values
and true values. For most regression problems in statistics, the MAE formula is given by;

MAE =
1
n

n

∑
i
|yi − ŷi| (4.4)

where yi and ŷi are the true and predicted values of the i− th data. n is the number
of predictions. This tells us how closely our predictions match the true values and how
much of a deviation there is. MAE is not very sensitive to outliers since it does not punish
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huge errors. In order words, it gives a linear value, which averages the weighed individ-
ual differences equally. The lower the MAE value, the better the model, depending on
the scale of the values used in the training.

Mean Squared Error (MSE)

MSE is the average squared differences between the true values and the predicted values.
It always gives a positive value and the more the value is is closer to zero or a lower value,
the better the model.

MSE =
1
n

n

∑
i
(ŷi − yi)

2 (4.5)

Similar to MAE, the i − th data’s true and predicted values are denoted by yi and
ŷi , respectively, and n is the number of predictions. It is one of the most widely used
metrics for regression issues, but it is least helpful when a single poor prediction would
undermine the predictive power of the entire model, particularly when the dataset is
noisy, i.e., it is more sensitive to outliers than MAE.

Root Mean Square Error (RMSE)

RMSE is the square root of the average squared differences between the true and pre-
dicted values. In other words, the squared errors are squared before averaging them.
This basically means that the RMSE gives large errors a higher weight because they have
a much bigger impact on the model’s performance.

RMSE =

√
1
n

n

∑
i
(yi − ŷi)2 (4.6)

where yi and ŷi are the true and predicted values of the i− th data. n is the number of
predictions. It quantifies the error between true and predicted values. The performance
of the model is also inversely correlated with this metric’s value.

Coefficient of Determination (R2)

The coefficient of determination (R2) introduced by Wright (1921) is the amount of the
dependent variable’s variance (predicted values) that can be predicted from the indepen-
dent variables (true values) (Chicco et al., 2021).

R2 = 1−

n
∑
i
(ŷi − yi)

2

n
∑
i
(ȳi − yi)2

(4.7)

Here, yi and ŷi represent the i − th value’s true and predicted values, n denotes the
number of predictions, and ȳi represents the mean of the true values. When the value
is negative, R2’s model performance suffers, and when it’s in the positives, it performs
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best. Therefore, there’s a limitation when the R2 is in the negative space, since it does not
indicate the degree at which the model performs poorly.

Mean Absolute Percentage Error (MAPE)

MAPE, which has a very straightforward interpretation in terms of relative error, is an-
other performance indicator for regression models. Its use is therefore suggested for tasks
where sensitivity to relative variations rather than absolute variations is more important
(Chicco et al., 2021). It utilizes most of the information pertaining to the error (Tayman &
Swanson, 1999).

MAPE =
1
n

n

∑
i

∣∣∣yi − ŷi

yi

∣∣∣ (4.8)

Similar to other metrics, yi and ŷi stand for the true and predicted values for the
i − th value, respectively, while n stands for the number of predictions. In multivariate
regression analyses, such as the one used in this study, MAPE provides the percentage
error on each predicted parameter.

4.1.6 Residual Analysis

Residuals in multiple regressions analysis is a useful class of method for the assessing of
the accuracy of a fitted model (Topp & Gómez, 2004). In conventional regression anal-
ysis, we frequently presume that a relationship exists for a certain data set (Zuo, 2022).
Predicted values are plotted on the x-axis in residual plots, and residuals, ri = yi − ȳi are
plotted on the y-axis. The true and expected values for the i− th value are represented by
yi and ŷi, respectively. The deviation from zero indicates how inaccurate the forecast was
for that number; for example, positive residuals (on the y-axis) indicate low residuals,
while negative residuals indicate high residuals, while zero indicates a perfect guess.

Based on the residuals plots of the highest value from the centre and the lowest value
from the centre, we can determine the variance of our predictions. In other words, if
the greatest point value and the lowest point value (along the y-axis) are significantly
different, then the variance is higher; if the converse is true, and if all of the residuals are
along the zero line along the y-axis, then the model is perfect and has no variance.

4.1.7 Summary

The purpose of this chapter was to discuss and describe machine learning (ML) meth-
ods which can be used in astronomy, with a particular emphasis on spectral analysis of
organic molecules (methyl cyanide) from the ALMA telescope. The physical parameter
predictions were done using a variety of ensemble ML algorithms. Random forest and ex-
treme gradient boosting were the two ensemble learning algorithms used to generate the
multivariate predictions of the five physical parameters. The topic of cross-validation,
which is frequently used to evaluate the model’s performance, was covered. It can be
difficult to determine the ideal model architecture. The most popular hyper-parameter
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approach, GSO, was explored. Different performance metrics were employed to rate the
performance of our models. The most effective assessment metrics for regression algo-
rithms appear to be RMSE and R2.
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Chapter 5

Results and Discussion

Introduction

The results of the study are discussed and presented in this chapter. A description of the
ML algorithms used can be found in chapter 4. All algorithms were evaluated after cross-
validation and hyper-parameter tuning using the evaluation metrics covered in section
4.1.5 of chapter 4. This chapter applies the study’s training data, algorithms, and ML
models to actual observational data and discusses the results. Afterwards, the constraints
of our models are then discussed, along with the observational data.

5.1 Training Data

The results of the simulation runs are used to create the training and test data for our
models due to the lack of sufficient observational data. To generate synthetic data for
CH3CN through the software package CASSIS database, we used a script written in
Python with the ALMA 400 metres telescope configuration, assuming an LTE environ-
ment with a cosmic microwave background temperature (TCMB) of 2.75 K. Furthermore,
data was generated for 40,000 simulation models to replicate the CH3CN emission phys-
ical conditions under various circumstances. The input physical parameters used to cre-
ate the spectra plots for CH3CN were listed in chapter 3’s table 3.1. Figure 3.4 displays
the parameter distribution for the range of input physical parameters that were used to
create our spectra plot. Some of the CH3CN spectra that were generated under the as-
sumption of an LTE environment are depicted in Figure 5.2. Our data was divided into
a 70% training set and a 30% testing set after preprocessing and compressing it using a
DWT technique. We had set the features as the approximation coefficients from using
DWT with a shape of 422 values of each spectra feed into the our ML regression models
to make prediction on the five physical parameters.
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FIGURE 5.1: Several CH3CN spectra produced by the LTE code script.
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FIGURE 5.2: Several CH3CN spectra of the approximation representations from the DWT
method.
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5.2 Observational Data

Figure 5.3 displays the observational data for making predictions, which includes 30
sources. The ALMA telescope provided the CH3CN observational data in the vibrational
ground state (J=13–12) in band 6, and the spectra’s frequency range was between 238.91
GHz and 239.18 GHz, with ALMA synthesized beam (θsyn) ≈ 0”.8. The data were
obtained from the ALMA project 2015.1.01312.5. Details of the observations and their
calibration are given in Avision et al (2023, submitted) and also in Asambre Frimpong
et al (2023, submitted). This was carried out in order to match the frequency range that
our models’ training data set employed. Because the observational data is noisier than
the synthetic data generated by our LTE code, thresholding will be necessary in order to
obtain spectra that are significantly closer to those utilised during training (see algorithm
2).
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FIGURE 5.3: Observational data of some of the CH3CN spectra. The name of each source is
shown for each panel.

Although there were 236 data points from each source in Figure 5.3, this is fewer than
the number of data points required by our machine learning models to make predictions.
Using a one-dimensional cubic linear interpolation to match 422 data points, we inter-
polate our data to have equal amounts of data points. Figure 5.4 illustrates this; when
plotted together, the sources in Figure 5.3 match precisely since there are no significant
differences between them.
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FIGURE 5.4: A representation of some of the observational data of CH3CN sources using
one-dimensional cubic interpolation. The name of the each source is shown for each panel.

We use thresholding to reduce the noise and compress the one-dimensional cubic
interpolated data before doing the parameter estimation. Figure 5.5 displays the obser-
vational source plots with the approximation coefficients thresholded (see Fig. 4.1 for the
denoising step). It is clear that the smoothed signal has improved slightly, albeit it is still
not nearly comparable to the synthetic spectra that served as our models’ training data.
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FIGURE 5.5: Plots showing the one-dimensional cubic interpolation of some of the obser-
vational data (in blue) from the 30 CH3CN sources with the approximation coefficients sub-

jected to thresholding (in red). The name of the each source is shown for each panel.

5.3 Model Performance

In order to evaluate the effectiveness of our model, evaluation measures were first pre-
sented in the preceding chapter. All of the models’ R2 scores are displayed in Table 5.1.
R2 provides us with a solid performance overview of our model, hence it was the only
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metric utilised to validate the performance of our ML model, as opposed to all the other
metrics mentioned. Overall, the tuned XGBoost model performed better than all RF and
XGBoost models, achieving an R2 score of 0.850 on the test set. While the model does not
appear to be consistently overfitting or underfitting, the validation set score is slightly
lower than the test set score, indicating some degree of variability in performance.

Model Training set Validation set Testing set

Random Forest (RF) 0.964 0.781 0.783
XGBoost 0.956 0.834 0.839

Tuned XGBoost 0.9898 0.846 0.850

TABLE 5.1: The R2 performance metric of all the 30K synthetic data of CH3CN across all ML
algorithms.

The total metrics for all ML techniques are, however, displayed in table 5.2. Overall,
the performance of the tuned XGBoost was superior on all criteria. We had high values
for the MSE, which may have been due to the scale of our values, which were in the
hundreds. Additionally, the RF model performed poorly for all of the criteria used to
evaluate our models, while the XGBoost model had higher prediction metrics than the
RF model although lower than the tuned XGBoost model. Due to the compute time while
utilising the grid search optimization outlined in Chapter 4, we did not perform hyper-
parameter tweaking in the instance of the RF model.

Model Performance metric
MAE MSE RMSE R2

Random Forest (RF) 10.85 875.89 29.60 0.78
XGBoost 6.98 430.78 20.76 0.84

Tuned XGBoost 6.28 372.51 19.30 0.85

TABLE 5.2: Different performance metric of all the 30K synthetic data of CH3CN across all
ML algorithms.

Table 5.3 shows the MAPE for each parameter for all ML models. Looking at the
MAPE, the models’ predictions of column density and FWHM were the most accurate.
In addition, the VLSR MAPE of the RF model was the best predicted physical parameter,
and its regression plot together with the FWHM shows a linear relation, supporting that
they are well predicted (see Appendix A for the regression plot relationship between the
true values and predicted values). Physical parameters like the source size and excitation
temperature had errors of between 40% and 46% for the former and between 20% and
41% for all models. However, there is significant cause for concern because the regression
graphs for column density, source size, and temperature do not demonstrate a linear link,
particularly for the column density when the MAPE across all models is below 2% error.
Despite the fact that all of these variables are interdependent, the excitation temperature
depends significantly more on the flux and beam size, so for an unresolved image, the
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flux is the same for both a large and a small beam. However, understanding that the
Stefan-Boltzmann’s law which states that the flux is dependent on the source’s distance
and brightness, can also help to explain why the source’s size and excitation temperature
had a huge error compared to other physical parameters.

Model MAPE

FWHM column density source size excitation temperature VLSR

Random Forest (RF) 2.3 2.1 47.0 41.2 1.4
XGBoost 1.6 1.9 42.3 25.3 5.7

Tuned XGBoost 1.2 1.8 40.6 20.7 2.7

TABLE 5.3: MAPE of all the physical parameters for all the 30K synthetic data of CH3CN
across all ML algorithms.

With the exception of the VLSR, where the RF was superior, the tuned XGBoost model
exhibited lower MAPE across all of the physical parameters. It is unclear why this is the
case, however it could be that some models do better than others at forecasting particular
physical parameters.

Residuals

Our ability to evaluate the accuracy of our models is improved because the residuals are
based on the predictions provided by our models. A residual plot of all the parameters
for the RF model is shown in Figure 5.6. Based on the distributions depicted by the violin
plots on each image, as well as how crowded the points are near to the zeroth line, the
FWHM and VLSR are the parameters that are most accurately predicted overall. Addition-
ally, the variance is reduced for the FWHM, column density, source size, and VLSR . The
excitation temperature, on the other hand, has the biggest variance and is in agreement
with the MAPE due to the considerable distance from the centre, making it the worst
predicted parameter. According to the data patterns, the only physical parameters with
constant residual variance (vertical spread) are the source size, excitation temperature,
and VLSR; all other physical parameters have almost constant variance.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE 5.6: Each predictor is shown against the residuals individually for the RF model
from the training and test datasets. When comparing the distribution of the predictors across
the residuals using the violin plots on either side of each plot, it appears that the number of
outliers is rising as the residuals grow and shrink away from the central point. The red line

represents the data’s OLS fit.

Figure 5.7 displays the residuals for the XGBoost model. The variance in the FWHM,
column density, source size, and VLSR are all modest, just like in the RF model. How-
ever, when the model becomes more accurate at anticipating them, they are substantially
lower. The excitation temperature, on the other hand, continues to evade our model be-
cause of its higher variance. The violin plots display the residual distributions, where
outliers appear as you travel out from the centre, demonstrating that certain data points
are among the worst predicted across all physical parameters.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE 5.7: Each predictor is shown against the residuals individually for the XGBoost
model from the training and test datasets. When comparing the distribution of the predictors
across the residuals using the violin plots on either side of each plot, it appears that the
number of outliers is rising as the residuals grow and shrink away from the central point.

The red line represents the data’s OLS fit.

In Figure 5.8, the tuned XGBoost residuals are displayed. The residuals of the physical
parameters follow the same pattern as the previous two models, and the tuned XGBoost
is the best model overall. Because there are so many points along the zeroth line, the
FWHM and VLSR are once more accurately predicted. Although the MAPE is now lower
for the tweaked XGBoost model, the variance is still significant with the excitation tem-
perature, and we now see more scatter points along the central point. Additionally, as
the excitation temperature rises, the model tends to perform poorly; this is demonstrated
by the previous two models as well.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE 5.8: Each predictor is shown against the residuals individually for the tuned XG-
Boost model from the training and test datasets. When comparing the distribution of the
predictors across the residuals using the violin plots on either side of each plot, it appears
that the number of outliers is rising as the residuals grow and shrink away from the central

point.The red line represents the data’s OLS fit.

5.4 Model Errors and Reconstruction of Synthetic Spectra

Although all of the machine learning models produced highly accurate parameter pre-
dictions, we observed a few instances where our forecasts diverged noticeably from the
actual results generated by the simulations. The predictions of our physical parameters
have been used to evaluate our machine learning models. Using the LTE code script and
software package CASSIS database, we will attempt to rebuild the spectra by modelling
them using the forecasted physical parameters and assessing how closely they match the
original spectra. This could clear up any confusion regarding the possibility that various
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spectra with the same spectra profiles could have different CH3CN characteristics. Addi-
tionally, it may demonstrate that some of the physical parameters are difficult to forecast
by our model since they are interdependent and so affect the spectra profiles. There is
coupling between the input parameters which affects the line intensity.

A portion of the true values utilised to create some of our synthetic spectra and those
used in the training set for our ML model are displayed in Table 5.4.

spectra index
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
2308 8.8 57.39 0.19 59.6 30.91

22404 6.5 0.27 0.69 65.3 -6.93
23397 7.5 0.03 0.11 128.2 4.99
25058 8.3 0.01 0.31 184.9 30.99
2664 4.5 0.32 0.95 250.3 8.94
8511 5.6 0.04 0.62 265.4 49.59

TABLE 5.4: Examples of a few true value physical parameters from synthetic CH3CN spectra
produced by the LTE script that were utilised to train our ML models.

Random Forest

Table 5.5 displays the physical parameters that were predicted for random forest. The
close VLSR and FWHM prediction values were closer to the actual values when compared
to the true parameter values in Table 5.4. Considering the MAPE of all the physical
parameters, this was covered in the section before. We compare the same spectra with
the original spectra profile while plotting the same spectra created from the predicted
values to put this in context.

spectra index
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
2308 9.1 30.38 0.22 151.9 30.91

22404 6.4 0.64 0.62 83.2 -6.96
23397 7.5 0.02 0.28 263.4 4.97
25058 8.2 0.04 0.28 268.6 30.94
2664 4.3 0.92 0.51 228.7 8.95
8511 5.6 0.06 0.55 272.8 49.50

TABLE 5.5: Examples of the CH3CN predicted physical parameters - from the RF model.

To compare the spectra, Figure 5.9 shows the synthetic and reconstructed spectra from
the predicted physical parameters using our model. Looking at the plots for the predicted
physical parameters given in Table 5.5 they are not close to the original ones although the
velocity positions are the same.
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FIGURE 5.9: Spectra from the simulated model (in blue) and reconstructed spectra (in red)
from the predicted physical parameters used in the RF model.

According to Figure 5.9, for each of the shown spectra, the intensity of the simulated
data and that of the reconstructed data from the forecasted RF model agree. In con-
trast to the simulated data, the intensity of the reconstructed lines from the RF model is
higher for some line emissions at lower frequencies as compared to higher frequencies.
Furthermore, both the simulated data and the reconstructed data agree on the velocity
positions. Overall, these reconstructions fit quite well. The fact that the intensities are
close even though the parameters might seem to be relatively poorly determined com-
pared to the input values results from the coupling between the parameters in setting the
line intensity. This coupling may ultimately limit the accuracy which can be achieved in
determining the physical parameters, and this contributes to the overall uncertainty in
the derived parameters.
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XGBoost

In comparison to the RF model, the XGBoost model had a superior assessment of the
physical parameters. Table 5.6 shows some of the predicted physical parameters as com-
pared to the initial input physical parameters used in the test set of our model.

spectra index
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
2308 8.8 74.44 0.12 124.5 30.38

22404 6.5 0.51 0.62 59.3 -6.69
23397 7.6 0.02 0.20 250.8 3.94
25058 8.2 0.03 0.27 217.8 30.75
2664 4.3 0.94 0.54 268.1 9.12
8511 5.6 0.05 0.52 269.9 49.48

TABLE 5.6: Examples of the CH3CN predicted physical parameters - from the XGBoost
model.
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FIGURE 5.10: Spectra from the simulated model (in blue) and reconstructed spectra (in red)
from the predicted physical parameters used in the XGBoost model.
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Additionally, there is consistency between the original and reconstructed data’s in-
tensities. Although our XGBoost model overestimates the intensity at lower frequencies,
similar to the RF model, the results are not very significant for the spectra displayed. Ad-
ditionally, just like in the RF model, the line positions of the reconstructed data from our
model completely match the simulated data. Overall, there are different types of spectra
for the spectra displayed in Figure 5.10, including those from optically thin (peaked tops)
and optically thick (flattened tops) sources. Our reconstructed data appears to fit the opti-
cally thin sources the best. Like with the RF model, overall the XGBoost reconstructions
fits are reasonable.

Tuned XGBoost

Overall the tuned XGBoost had a better model than all then other model in terms of the
physical parameters predictions. This is well explained in the previous section. Table
5.7 shows some of the predicted spectra physical parameters and comparing them to the
physical parameters used in the test set as shown in Table 5.4.

spectra index
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
2308 8.8 51.57 0.15 116.1 30.55
22404 6.5 0.68 0.68 58.5 -6.88
23397 7.7 0.02 0.21 208.6 4.46
25058 8.3 0.03 0.28 238.8 30.87
2664 4.3 0.96 0.53 242.0 8.98
8511 5.6 0.06 0.53 269.1 49.53

TABLE 5.7: Examples of the predicted CH3CN physical parameters from the tuned XGBoost
model.

Similar to the previous two models, Table 5.7 displays the intensity of the data we
were able to recreate using the tuned XGBoost model physical parameters. All of the in-
tensities are consistent with the simulated data, so, are the positions of the line emissions.
All signals exhibit an overestimation of lower frequency strengths. For some signals, the
reconstructions are, however, fairly close to the simulated data, demonstrating how su-
perior the adjusted model is to the competing models. One noteworthy aspect is that our
model undervalues the intensities for optically thick sources, which may be a result of the
model’s miscalculation of the excitation temperature for optically thick sources. Overall,
the reconstruction fits are all good like the previous two models.

In order to compare all of our models fairly, Figure 5.12 displays a plot of the simu-
lated data together with all of the data that was previously shown in Figures 5.9, 5.10 and
5.11. The spectra patterns of all the reconstructed data match those of the simulated data
exactly, indicating that our LTE model code is deterministic. The figures show that our
best model (tuned XGBoost) reconstruction data performs poorly in fitting the synthetic
data, overestimating the intensities for the majority of the spectra while underestimating
several. Even though all of the models exhibit the same pattern of line emissions, there
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FIGURE 5.11: Spectra from the simulated model (in blue) and reconstructed spectra (in
green) from the predicted physical parameters used in the tuned XGBoost model.

are a few occasions (right-middle and bottom left panel) where the reconstruction for all
of the models was substandard at lower frequencies (high energy), with overestimations
of the line emission intensities.

5.5 Reconstruction of Observational Data Using ML models

The ML models were used to forecast the physical parameters, such as column density,
source size, excitation temperature, FWHM, and VLSR, from the CH3CN observational
data sources. In order to rebuild the spectra and compare them to the observational
data, all ML models were applied to the data and made predictions about the physical
parameters. Due to the noise in the observation data, we used thresholding and used the
physical parameters that were predicted from the thresholded values to reconstruct the
spectra (explained in Chapter 3).
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FIGURE 5.12: Spectra from the simulated model (in blue) and reconstructed spectra from the
predicted physical parameters used in the RF model (in red), XGBoost model (in purple) and

tuned XGBoost model (in green).

As seen in figure 5.13, the physical parameters predicted by our RF model and the
reconstructed spectra line emission patterns do not even come close to matching the ob-
servational data. One explanation could be that our RF model was trained on data that
does not perfectly match our observational data. Additionally, it is clear that there is an
error in the line emission positions between the observational spectra of all the sources
and the reconstructed spectra. All of the reconstructed spectra have an intensity which
is above much of the observational spectra. The next step would have been to analyse
the system using model spectra with added noise, but time was limited, so I decided to
experiment with the observed data instead.

Although the XGBoost model had a higher R2 score, the line emission profiles pro-
duced by the XGBoost approach (Figure 5.14) do not reflect the line emissions produced
by the RF model (Figure 5.13). The line positions for line profiles, however, appear to
be out of position, and the majority of them do not match the observational data very
well. Overall, the reconstruction for the observational data is not very good, and the
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FIGURE 5.13: Spectra of some of the observational data (in blue) and the reconstructed spec-
tra (in red) from the predicted physical parameters using the RF model.
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wavelet family utilised to decompose the signals may be another factor. The Daubechies
1 wavelet, however, performed better at dissecting the signals from our training data be-
cause they closely matched the synthetic signals and had a considerably higher accuracy
when trained using the ML methods used.
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FIGURE 5.14: Spectra of some of the observational data (in blue) and the reconstructed spec-
tra (in purple) from the predicted physical parameters using the XGBoost model.

Additionally, while having a higher R2 score, the best model’s emission line profiles
only replicate the XGBoost model’s line emissions, not those from the RF model. As
far as the positions of the line emissions are concerned, not much has changed from the
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XGBoost model. Our models can determine whether the source was optically thick or
thin since all of the line emission profiles across all frequency ranges somewhat reflect
the line emission profiles from the observational data.
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FIGURE 5.15: Spectra of some of the observational data (in blue) and the reconstructed spec-
tra (in green) from the predicted physical parameters using the tuned XGBoost model.

Figure 5.16 displays every reconstructed ML model at once. For the XGBoost models,
there are notable differences in intensity between the observational and reconstructed
spectra. Overall, the RF model’s reconstructed spectra were significantly better and
closely matched the observational data in terms of the locations and intensities of the
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emission lines. Furthermore, the temperature used in the LTE approximation determines
the level populations that affect transitions’ strength (Pols et al., 2018) which is also af-
fected by the column density, which could explain why there is a discrepancy in our line
intensity from our ML models and that of the observational data. This is because the tem-
perature of the gas influences the spectral characteristics of a molecule’s line emission.
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FIGURE 5.16: Spectra of some of the observational data (in blue) and the reconstructed spec-
tra from the predicted physical parameters of all the ML models.

The physical parameters predicted by our ML models are listed in Appendix C using
our LTE Python code script from the CASSIS team. Even though the reconstruction does
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not perfectly match the observed data over the frequency range, the models’ estimates of
the physical parameters differ greatly. According to Rosero et al. (2013), if the assumption
of the optically thin circumstances is erroneous, the resulting temperatures of our spectra
are overstated and the column densities are underestimated, which has an impact on the
line emission profiles generated. This could be one of the reasons why the line emission
profile reconstruction of our observational data using projected physical parameters, no-
tably for the XGBoost and tuned XGBoost models, only reproduces optically thick line
profiles.

Furthermore, a further factor contributing to the poor performance of our ML models
when applied to the observational data could be the mismatch in the intensity range of
the training set and that from the observational data. This suggests that the training data
may not have fully captured the range of variability present in the observational data
or unusual cases not present in the training set. As a proportion of the intensity values,
Figure 5.17 displays the distribution of the synthetic data intensity utilised in the training
set for our ML models. The figure shows a close distribution in the intensity for both the
training and observational data with the maximum intensity for the observational being
65.6 K and 62.2 K for the training set.

0 10 20 30 40 50 60 70
Intensity (K)

0

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 (

%
)

Distributions of Intensity
Observational
Synthetic - Training

0 10 20 30 40 50 60 70
Intensity (K)

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge
 (%

)

Observational

0 10 20 30 40 50 60
Intensity (K)

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 (%

)

Training

FIGURE 5.17: Distribution of the intensity range from the training set derived from our syn-
thetic data (in blue) and the intensity range from the observational data (in red).

Nevertheless, figure 5.17 demonstrates that the intensity for the observational data in
the 0.01–1 K range is roughly 58%, compared to 72% in the training set. Although the
observational data shape only comprises 7080 points across all sources, compared to the
151 730 743 points used in the training set, the conclusions should still hold true if we
interpolate the observational data. Thus, it is evident that even if the data was smoothed
to match the data used in the training set, which was produced by our LTE code script,
our ML models do poorly when applied to noisy observational data.
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5.6 Summary

In order to attempt to deduce the physical parameters from CH3CN line emissions of the
observational data, we developed ML models in this work about using machine learn-
ing to star formation. The results and discoveries were reported in this chapter. The ML
models that were developed do not work effectively when tested on synthetic data. When
these models were applied to observational data, they faced difficulties in reconstructing
line profiles, despite generating physical parameter predictions that were relatively sim-
ilar to the original ones.
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Chapter 6

Conclusion

To summarise the results of this research, we used the LTE code script to generate spectral
line data for CH3CN, a complex organic chemical that is present in star-forming areas,
and using the CASSIS database as a reference. In order to supply our machine learn-
ing models with smaller data dimensions, the synthetic data had to be processed. The
discrete wavelet transform (DWT) was used to break down the synthetic signals. The
Daubechies 1 wavelet family typically performs well in decomposing the signal at the
decomposition level 6 while still holding a large component of the original signal infor-
mation compared to other wavelet family types.

Furthermore, wavelet coefficients (approximation coefficients) were used as features
to predict the physical parameters of each signal. Among the other ML models in the
ML implementation, the tuned xgboost model had the highest R2 score of 0.850. The R2

values for the RF and xgboost models were 0.783 and 0.839, respectively. Furthermore,
because running the Grid-Search Optimization (GSO) algorithm on a larger dataset is
computationally expensive, the R2 score could have been higher if all of the data had
been used rather than a small sample. A summary of the evaluation metrics is shown in
Table 6.1.

Evaluation Metric Tuned Xgboost Model Xgboost Model Random Forest Model

R2 0.85 0.84 0.78
MAE 6.28 6.98 10.85
MSE 327.51 430.78 875.89

RMSE 19.30 20.76 29.60

TABLE 6.1: A summary of all the model evaluation metrics. Overall, the tuned xgboost
model outperforms the xgboost and random forest models.

Although the tuned xgboost model outperformed the other models, the MAPE of the
RF model had a better VLSR across all models, while the MAPE of the remaining physical
parameters, FWHM, column density, excitation temperature, and source size, were all
lower with the tuned xgboost.

To confirm our results of the predicted parameters from our ML models, we used
the LTE code script to generate new spectra using the physical parameters from our ML
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models. Because our LTE code script is deterministic rather than stochastic, the generated
spectra from the predicted physical parameters were all in agreement with the synthetic
spectra we trained our models on. In terms of velocity positions, all of the predicted ma-
chine learning models’ line emission profiles matched the synthetic data, though there
were more spectra where the intensities of the emission lines increased. This could be
because the MAPE of the physical parameters was not low sufficient because the param-
eters are mutually dependent, or it could be that variety of physical parameters yield
similar line profiles.

The reconstruction of the predicted parameters from our ML models works quite well
( see figure 5.12 in chapter 5), however, we need to apply the models to the observational
data to assess their performance. On the other, the synthetic data used in the training of
our ML models do not reflect real-world data which often has noise. To combat this, we
used a thresholding technique to get the data line emissions which are close to those used
in the training set. Consequently, the RF model which had a lower R2 score among all
the ML models performed quite well in the prediction of the physical parameter which
was better when reconstructed and matched the observational data in terms of the line
positions although not satisfactory. While the performance of the other two models was
high when using the synthetic data, the reconstruction of the predicted physical param-
eters was not close to the observational data’s line intensity. Furthermore, the lack of
similarity between the data used to train the ML models and the observational data may
be the justification that all of the models performed poorly on the observational data.

The main motivation was to use ML techniques to analyse star formation and early
evolution using spectral data from the ALMA telescope as well as data compression
methods. Figure 4.1 depicts the layout of the ML project, while Figure 3.1 depicts the
data compression technique. Overall, the ML methods used were properly assessed in
terms of prediction accuracy and physical parameter errors using the regression evalu-
ation metrics outlined in section 4.1.5. The machine learning models perform well on
synthetic data but poorly on observational data. All of the code is available on GitHub,
which can be accessed here: https://github.com/jpandeinge/wavelet_decomposition.

The weakness of this work could be attributed to the type of wavelet family used, as
well as the LTE code script used to generate data that closely mirrors observational data
of CH3CN spectra obtained with the ALMA telescope. Furthermore, the computational
constraints in the case where we needed to optimise the algorithms employed in this
research using the GSO algorithm. When compared to the xgboost, the random forest
regressor performed better on observational data, and tuning the model may improve its
accuracy.

This work satisfied the research’s motivation. For future work, increasing the dataset
size may not significantly improve the performance of the ML models. Instead, it may
be more effective to increase the sampling of the FWHM and velocity to achieve better
accuracy. However, the implementation of ML models is still a much faster method for
generating physical parameters and spectra than conventional fitting and error estima-
tion, which can take up to an hour per spectrum. It takes about an hour and a half to

https://github.com/jpandeinge/wavelet_decomposition
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generate 40,000 synthetic data points on a 16-GB machine, and the entire cycle, includ-
ing model validation, can take up to a day for preprocessing and implementing the ML
models. When applied to observational data, the ML models can generate the physical
parameters and spectra in less than a minute. Overall, future work should consider in-
creasing the sampling of the FWHM and velocity to improve model accuracy while still
leveraging the speed advantages of the ML approach.

Utilising different wavelet family types, as well as various data compression tech-
niques, could be beneficial. Finally, building a neural network (NN) may be worthwhile.
Although it should be noted that NN has weaknesses when it comes to using tabular
data when particularly in comparison to the tree-based method used in this research.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE A.1: Regression graphs that contrast the parameters predicted by the random forest
model with their actual values. The grey line (dashed line), when contrasted to the red line
(the ordinary linear square (OLS) fit), shows how well our model fits the data. Most of the
scatter dots in a strong model will be located close to the diagonal dashed line. The histogram

contrasts the true value distribution with the projected value distribution.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE A.2: Regression graphs that contrast the parameters predicted by the xgboost model
with their actual values. The grey line (dashed line), when contrasted to the red line (the
ordinary linear square (OLS) fit), shows how well our model fits the data. Most of the scatter
dots in a strong model will be located close to the diagonal dashed line. The histogram

contrasts the true value distribution with the projected value distribution.
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(A) FWHM (B) Column Density

(C) Source Size (D) Excitation Temperature

(E) VLSR

FIGURE A.3: Regression graphs that contrast the parameters predicted by the tuned xgboost
model with their actual values. The grey line (dashed line), when contrasted to the red line
(the ordinary linear square (OLS) fit), shows how well our model fits the data. Most of the
scatter dots in a strong model will be located close to the diagonal dashed line. The histogram

contrasts the true value distribution with the projected value distribution.
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Spectra of all of the observational data (in blue) and the reconstructed spectra from the
predicted physical parameters of all the ML models.
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FIGURE B.1: Spectra of some of the observational data (in blue) and the reconstructed spectra
from the predicted physical parameters of all the ML models.
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FIGURE B.2: Spectra of some of the observational data (in blue) and the reconstructed spectra
from the predicted physical parameters of all the ML models
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FIGURE B.3: Spectra of some of the observational data (in blue) and the reconstructed spectra
from the predicted physical parameters of all the ML models.
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Appendix C

source
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
G013.6562-00.5997 6.1 12.00 0.69 175.2 6.81
G017.6380+00.1566 3.2 0.27 0.53 119.4 3.34
G023.3891+00.1851 3.4 2.07 0.54 187.1 4.85
G029.8620-00.0444 4.4 0.75 0.50 195.0 4.04
G030.1981-00.1691 3.3 0.90 0.50 146.9 4.24
G034.7569+00.0247 3.9 1.71 0.53 211.4 2.44
G034.8211+00.3519 3.5 0.43 0.54 156.2 6.75
G327.1192+00.5103 4.2 10.90 0.80 169.2 7.89
G332.0939-00.4206 3.4 8.36 0.60 189.9 9.57
G332.9636-00.6800 4.5 7.27 0.60 159.7 1.92
G332.9868-00.4871 4.4 0.82 0.49 156.7 3.02
G333.0682-00.4461 3.6 11.40 0.79 172.4 4.36
G338.9196+00.5495 3.5 9.26 0.61 178.0 5.00
G339.6221-00.1209 3.4 4.59 0.56 164.6 1.26
G345.5043+00.3480 4.9 19.50 0.97 178.2 7.58
SDC20.775-0.076_1 3.3 0.05 0.52 120.5 -10.10
SDC20.775-0.076_3 3.8 0.34 0.55 182.8 2.91
SDC22.985-0.412_1 5.9 1.28 0.74 156.8 6.71
SDC23.21-0.371_1 16.7 2.00 0.71 175.3 8.70

SDC24.462+0.219_2 3.8 0.43 0.54 137.5 -7.17
SDC25.426-0.175_6 2.9 0.14 0.58 160.2 4.42
SDC28.147-0.006_1 3.3 0.11 0.57 167.4 2.57
SDC28.277-0.352_1 4.4 3.28 0.46 173.2 5.28
SDC29.844-0.009_4 4.1 0.64 0.54 190.7 1.92
SDC33.107-0.065_2 4.4 1.19 0.49 168.9 5.96
SDC42.401-0.309_2 4.6 1.61 0.51 166.2 5.13
SDC43.186-0.549_2 3.6 0.86 0.49 169.0 -1.17
SDC43.311-0.21_1 14.6 1.39 0.53 186.7 3.63

SDC43.877-0.755_1 5.4 3.27 0.46 148.3 -0.33
SDC45.787-0.335_1 3.9 2.40 0.47 142.4 3.13

TABLE C.1: Physical parameters of CH3CN observational spectra predicted using using the
RF model.
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source
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
G013.6562-00.5997 4.5 2.72 0.74 143.0 20.04
G017.6380+00.1566 2.1 0.63 0.47 59.4 7.48
G023.3891+00.1851 2.1 4.78 0.43 147.8 4.17
G029.8620-00.0444 2.8 0.78 0.38 115.6 16.86
G030.1981-00.1691 2.5 3.64 0.44 137.5 23.57
G034.7569+00.0247 2.7 2.98 0.64 241.9 1.98
G034.8211+00.3519 2.8 0.79 0.57 117.1 24.44
G327.1192+00.5103 3.0 17.70 0.83 182.3 22.85
G332.0939-00.4206 2.1 18.90 0.62 197.2 21.17
G332.9636-00.6800 3.2 9.53 0.70 115.8 0.82
G332.9868-00.4871 2.8 2.46 0.60 143.5 15.57
G333.0682-00.4461 2.7 32.40 0.76 135.5 22.42
G338.9196+00.5495 2.6 24.40 0.51 120.4 22.86
G339.6221-00.1209 2.5 6.04 0.51 79.5 16.87
G345.5043+00.3480 3.2 90.00 0.90 201.5 22.49
SDC20.775-0.076_1 2.6 0.03 0.57 104.2 -14.29
SDC20.775-0.076_3 2.5 0.61 0.42 119.9 18.53
SDC22.985-0.412_1 4.3 42.70 0.78 138.7 9.50
SDC23.21-0.371_1 4.2 84.20 0.86 104.0 20.49

SDC24.462+0.219_2 2.5 0.42 0.52 35.6 2.32
SDC25.426-0.175_6 3.3 0.12 0.54 123.0 23.75
SDC28.147-0.006_1 2.6 0.15 0.57 205.6 8.56
SDC28.277-0.352_1 3.1 6.30 0.41 160.0 14.44
SDC29.844-0.009_4 2.8 0.70 0.57 160.4 24.15
SDC33.107-0.065_2 3.0 4.27 0.62 97.3 21.33
SDC42.401-0.309_2 3.0 6.68 0.46 165.2 23.18
SDC43.186-0.549_2 2.4 4.00 0.42 72.5 0.59
SDC43.311-0.21_1 3.0 4.22 0.53 190.4 5.89
SDC43.877-0.755_1 3.7 15.30 0.32 97.3 12.42
SDC45.787-0.335_1 3.0 29.20 0.49 59.7 7.56

TABLE C.2: Physical parameters of CH3CN observational spectra predicted using using the
xgboost model.
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source
FWHM
(km s−1)

column density
(×1016 cm−2)

source size
(”)

excitation temperature
(K)

VLSR

(km s−1)
G013.6562-00.5997 4.1 34.40 0.72 152.1 19.15
G017.6380+00.1566 2.0 0.67 0.51 42.4 8.67
G023.3891+00.1851 2.0 9.63 0.66 207.2 6.96
G029.8620-00.0444 2.7 0.84 0.54 185.4 17.29
G030.1981-00.1691 2.2 3.56 0.50 114.4 23.29
G034.7569+00.0247 2.4 9.11 0.50 243.7 0.22
G034.8211+00.3519 2.9 1.24 0.63 96.5 25.79
G327.1192+00.5103 2.7 43.10 0.88 167.1 23.84
G332.0939-00.4206 2.1 36.40 0.82 221.9 25.39
G332.9636-00.6800 3.0 20.50 0.67 110.6 -2.03
G332.9868-00.4871 2.9 5.86 0.47 159.1 12.50
G333.0682-00.4461 2.4 49.50 0.84 129.5 24.70
G338.9196+00.5495 2.4 42.10 0.66 140.8 25.03
G339.6221-00.1209 2.3 24.90 0.62 97.8 16.86
G345.5043+00.3480 3.1 65.50 0.92 185.8 20.75
SDC20.775-0.076_1 2.7 0.08 0.65 59.9 -8.07
SDC20.775-0.076_3 2.6 0.54 0.64 145.7 15.19
SDC22.985-0.412_1 4.1 44.10 0.75 115.1 11.14
SDC23.21-0.371_1 4.0 54.30 0.77 156.6 17.78

SDC24.462+0.219_2 2.3 1.19 0.55 81.0 2.62
SDC25.426-0.175_6 3.2 0.31 0.64 118.0 22.88
SDC28.147-0.006_1 2.2 0.19 0.52 142.8 10.68
SDC28.277-0.352_1 2.8 22.70 0.49 129.7 14.54
SDC29.844-0.009_4 2.6 1.61 0.50 180.7 22.57
SDC33.107-0.065_2 2.8 8.10 0.46 120.6 23.45
SDC42.401-0.309_2 2.8 6.73 0.54 156.2 22.67
SDC43.186-0.549_2 2.5 2.30 0.51 129.8 -0.47
SDC43.311-0.21_1 2.8 6.33 0.57 187.1 5.31

SDC43.877-0.755_1 3.6 17.20 0.39 91.8 8.02
SDC45.787-0.335_1 2.6 12.60 0.43 117.4 8.22

TABLE C.3: Physical parameters of CH3CN observational spectra predicted using using the
tuned xgboost model.



83

Bibliography

Andron I., Gratier P., Majumdar L., Vidal T. H. G., Coutens A., Loison J.-C., Wakelam V.,
2018, Monthly Notices of the Royal Astronomical Society, 481, 5651

Barrientos A., Solar M., 2019, in Molinaro M., Shortridge K., Pasian F., eds, Astronomical
Society of the Pacific Conference Series Vol. 521, Astronomical Data Analysis Software
and Systems XXVI. p. 189

Bates S., Hastie T., Tibshirani R., 2021, Cross-validation: what does it estimate and how
well does it do it?, doi:10.48550/ARXIV.2104.00673, https://arxiv.org/abs/2104.

00673

Bell T., Cernicharo J., Viti S., Marcelino N., Palau A., Esplugues G., Tercero B., 2014, As-
tronomy & Astrophysics, 564

Bergstra J., Bengio Y., 2012, J. Mach. Learn. Res., 13, 281

Berrar D., 2018, Cross-Validation, doi:10.1016/B978-0-12-809633-8.20349-X.

Beuther H., 2011.

Bonfand, M. Belloche, A. Garrod, R. T. Menten, K. M. Willis, E. Stéphan, G. Müller, H. S.
P. 2019, A&A, 628, A27

Breiman L., 2001, Machine Learning, 45, 5

Brown J. M., 1971, Molecular Physics, 20, 817

Calcutt H., et al., 2018, Astronomy &amp; Astrophysics, 616, A90

Cárcamo M., Scaife A. M. M., Alexander E. L., Leahy J. P., 2022, arXiv e-prints, p.
arXiv:2205.01413

Carraro G., 2021, Astrophysics of the Interstellar Medium, doi:10.1007/978-3-030-75293-
4.

Cesaroni R., Galli D., Neri R., Walmsley C. M., 2014, Astronomy and Astrophysics, 566,
A73

Cesaroni R., et al., 2017, Astronomy and Astrophysics, 602, A59

http://dx.doi.org/10.1093/mnras/sty2680
http://dx.doi.org/10.48550/ARXIV.2104.00673
https://arxiv.org/abs/2104.00673
https://arxiv.org/abs/2104.00673
http://dx.doi.org/10.1051/0004-6361/201321872
http://dx.doi.org/10.1051/0004-6361/201321872
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X. 
http://dx.doi.org/10.1051/0004-6361/201935523
http://dx.doi.org/10.1023/A:1010950718922
http://dx.doi.org/10.1080/00268977100100801
https://ui.adsabs.harvard.edu/abs/1971MolPh..20..817B, adsnote = {Provided by the SAO/NASA Astrophysics Data System}
http://dx.doi.org/10.1051/0004-6361/201732289
https://ui.adsabs.harvard.edu/abs/2022arXiv220501413C
https://ui.adsabs.harvard.edu/abs/2022arXiv220501413C
http://dx.doi.org/10.1007/978-3-030-75293-4. 
http://dx.doi.org/10.1007/978-3-030-75293-4. 
http://dx.doi.org/10.1051/0004-6361/201323065
https://ui.adsabs.harvard.edu/abs/2014A&A...566A..73C
https://ui.adsabs.harvard.edu/abs/2014A&A...566A..73C
http://dx.doi.org/10.1051/0004-6361/201630184
https://ui.adsabs.harvard.edu/abs/2017A&A...602A..59C


84 BIBLIOGRAPHY

Chen T., Guestrin C., 2016, in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. ACM,
doi:10.1145/2939672.2939785, https://doi.org/10.1145%2F2939672.2939785

Chevance M., Krumholz M. R., McLeod A. F., Ostriker E. C., Rosolowsky E. W., Sternberg
A., 2022, The Life and Times of Giant Molecular Clouds (arXiv:2203.09570)

Chicco D., Warrens M., Jurman G., 2021, PeerJ Computer Science, 7, e623

Colombo D., et al., 2014, Astrophysical Journal, 784, 3

Daubechies I., 1992, Ten Lectures on Wavelets. Society for Industrial and Ap-
plied Mathematics (https://epubs.siam.org/doi/pdf/10.1137/1.9781611970104),
doi:10.1137/1.9781611970104, https://epubs.siam.org/doi/abs/10.1137/1.

9781611970104

Dayal P., 2019, Proceedings of the International Astronomical Union, 15, 43

Dobbs C. L., et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P.,
Henning T., eds, Protostars and Planets VI. p. 3 (arXiv:1312.3223),
doi:10.2458/azu_uapress_9780816531240-ch001

Donoho D. L., Johnstone I. M., 1994, Biometrika, 81, 425

Dopita M. A., Stromlo M., 1988.

Efron B., Tibshirani R. J., 1994, An Introduction to the Bootstrap. CRC press

Frasca, A. Miroshnichenko, A. S. Rossi, C. Friedjung, M. Marilli, E. Muratorio, G. Busà, I.
2016, A&A, 585, A60

Henning T., Feldt M., Linz H., Antolin E. P., Stecklum B., 1990.

Henning T., Feldt M., Linz H., Antolin E., Stecklum B., 2006

Herbst E., van Dishoeck E. F., 2009, Annual Review of Astron and Astrophys, 47, 427

Heyer M., Pillai T., Ossenkopf-Okada V., Bolatto A., Goldsmith P. F., Johnstone D., Lei-
sawitz D., Roman-Duval J., 2019, Bulletin of the AAS, 51, 26

Hougen J. T., 1962, The Journal of Chemical Physics, 37, 1433

Hung T., Liu S.-Y., Su Y.-N., He J. H., Lee H.-T., Takahashi S., Chen H.-R., 2019, The
Astrophysical Journal, 872, 61

Ilee J. D., et al., 2021, Astrophysical Journal, Supplement, 257, 9

Jiménez-Serra I., et al., 2016, Astrophysical Journal, Letters, 830, L6

Krumholz M. R., 2015, arXiv e-prints, p. arXiv:1511.03457

Lada C., Lada E., 2003, Annual Review of Astronomy and Astrophysics, 41

http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
http://arxiv.org/abs/2203.09570
http://dx.doi.org/10.7717/peerj-cs.623
http://dx.doi.org/10.1088/0004-637X/784/1/3
https://ui.adsabs.harvard.edu/abs/2014ApJ...784....3C
http://dx.doi.org/10.1137/1.9781611970104
https://epubs.siam.org/doi/abs/10.1137/1.9781611970104
https://epubs.siam.org/doi/abs/10.1137/1.9781611970104
http://dx.doi.org/10.1017/S1743921320001106
http://arxiv.org/abs/1312.3223
http://dx.doi.org/10.2458/azu_uapress_9780816531240-ch001
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1051/0004-6361/201527022
http://dx.doi.org/10.1146/annurev-astro-082708-101654
https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..427H
https://ui.adsabs.harvard.edu/abs/2019BAAS...51c..26H
http://dx.doi.org/10.1063/1.1733301
http://dx.doi.org/10.3847/1538-4357/aafc23
http://dx.doi.org/10.3847/1538-4357/aafc23
http://dx.doi.org/10.3847/1538-4365/ac1441
https://ui.adsabs.harvard.edu/abs/2021ApJS..257....9I
http://dx.doi.org/10.3847/2041-8205/830/1/L6
https://ui.adsabs.harvard.edu/abs/2016ApJ...830L...6J
https://ui.adsabs.harvard.edu/abs/2015arXiv151103457K
http://dx.doi.org/10.1146/annurev.astro.41.011802.094844


BIBLIOGRAPHY 85

Lery T., Combet C., Murphy G., 2005. pp 140–144, doi:10.1063/1.2077178

Li T., Li Q., Zhu S., Ogihara M., 2002, SIGKDD Explorations, 4, 49

Maoz D., 2016, Astrophysics in a nutshell; 2nd ed.. Princeton Univ. Press, Princeton, NJ

Martín S., Martín-Pintado J., Blanco-Sánchez C., Rivilla V. M., Rodríguez-Franco A., Rico-
Villas F., 2019, Astronomy and Astrophysics, 631, A159

Matthews H. E., Sears T. J., 1983, Astrophysical Journal, Letters, 267, L53

Meng F., et al., 2019, Astronomy and Astrophysics, 630, A73

Meng F., et al., 2022, arXiv e-prints, p. arXiv:2208.07796

Menten K. M., Wyrowski F., Belloche A., Güsten R., Dedes L., Müller H. S. P., 2010, As-
tronomy &amp; Astrophysics, 525, A77

Müller, Holger S. P. Drouin, Brian J. Pearson, John C. Ordu, Matthias H. Wehres, Nadine
Lewen, Frank 2016, A&A, 586, A17

Öberg K. I., Guzmán V. V., Furuya K., Qi C., Aikawa Y., Andrews S. M., Loomis R., Wilner
D. J., 2015, Nature, 520, 198

Opitz D., Maclin R., 1999, Journal of Artificial Intelligence Research, 11, 169

Pacifici C., et al., 2016, The Astrophysical Journal, 832

Pols S., Schwörer A., Schilke P., Schmiedeke A., Sánchez-Monge Á ., Möller T., 2018,
Astronomy &amp$$ Astrophysics, 614, A123

Remijan A., Sutton E. C., Snyder L. E., Friedel D. N., Liu S.-Y., Pei C.-C., 2004, The Astro-
physical Journal, 606, 917

Rieder S., Dobbs C., Bending T., Liow K. Y., Wurster J., 2021

Rosero V., Hofner P., Kurtz S., Bieging J., Araya E. D., 2013, The Astrophysical Journal
Supplement Series, 207, 12

Rowe A. C. H., Abbott P. C., 1995, Computers in Physics, 9, 635

Sava H., Fleury M., Downton A., Clark A., 1997. pp 171 – 173 vol.1,
doi:10.1049/cp:19970877

Schapire R. E., 2003, The Boosting Approach to Machine Learning: An Overview.
Springer New York, New York, NY, pp 149–171, doi:10.1007/978-0-387-21579-2_9,
https://doi.org/10.1007/978-0-387-21579-2_9

Solomon P. M., Jefferts K. B., Penzias A. A., Wilson R. W., 1971, Astrophysical Journal,
Letters, 168, L107

Tayman J., Swanson D., 1999, Population Research and Policy Review, 18, 299

http://dx.doi.org/10.1063/1.2077178
http://dx.doi.org/10.1145/772862.772870
http://dx.doi.org/10.1051/0004-6361/201936144
https://ui.adsabs.harvard.edu/abs/2019A&A...631A.159M
http://dx.doi.org/10.1086/184001
https://ui.adsabs.harvard.edu/abs/1983ApJ...267L..53M
http://dx.doi.org/10.1051/0004-6361/201935920
https://ui.adsabs.harvard.edu/abs/2019A&A...630A..73M
https://ui.adsabs.harvard.edu/abs/2022arXiv220807796M
http://dx.doi.org/10.1051/0004-6361/201014363
http://dx.doi.org/10.1051/0004-6361/201014363
http://dx.doi.org/10.1051/0004-6361/201527602
http://dx.doi.org/10.1038/nature14276
https://ui.adsabs.harvard.edu/abs/2015Natur.520..198O
http://dx.doi.org/10.1613/jair.614
http://dx.doi.org/10.3847/0004-637X/832/1/79
http://dx.doi.org/10.1051/0004-6361/201732498
http://dx.doi.org/10.1086/383120
http://dx.doi.org/10.1086/383120
http://dx.doi.org/10.1088/0067-0049/207/1/12
http://dx.doi.org/10.1088/0067-0049/207/1/12
http://dx.doi.org/10.1063/1.168556
http://dx.doi.org/10.1049/cp:19970877
http://dx.doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1007/978-0-387-21579-2_9
http://dx.doi.org/10.1086/180794
http://dx.doi.org/10.1086/180794
https://ui.adsabs.harvard.edu/abs/1971ApJ...168L.107S
http://dx.doi.org/10.1023/A:1006166418051


86 BIBLIOGRAPHY

Tomáš V., 2018, PhD thesis, Vysoká škola báňská - Technická univerzita Ostrava, http:
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