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Abstract
Modelling of the relativistic Sunyaev-Zeldovich effect and related Compton

scattering processes
by Elizabeth G. LEE

Doctor of Philosophy
November 2022

The Sunyaev-Zeldovich (SZ) effect is caused by Compton scattering where the
electron population has far higher energies than the incident photons – i.e.,
in the Doppler-dominated regime. As such, the SZ effect is a unique probe
of galaxy clusters and groups, some of the largest structures in our Universe,
where the electron populations lead to a distinctive signal in the scattering of
the cosmic microwave background (CMB). This thesis contains an exploration
of corrections to the SZ effect, alongside a discussion of analytic approaches to
Compton scattering.

In particular, in Chapter 2, using the BAHAMAS and MACSIS simulations, I ex-
amine the appropriate temperature measures to derive the cluster-averaged
relativistic SZ effect. This allows a comparison with other commonly used tem-
perature measures, and the generation of temperature-mass scaling relations
to allow for forward modelling of future cluster SZ observations. Chapter 3 ex-
tends this work to also compare to the ILLUSTRISTNG, MAGNETICUM and THE THREE

HUNDRED PROJECT simulations. We find consistency in the SZ temperature de-
spite the wide range of simulation parameters and investigate the impact of
these simulation parameters, such as feedback prescriptions and resolution. The
agreement between simulations indicates an exciting avenue for observational
and theoretical exploration, determining the extent of relativistic SZ corrections.

In Chapter 4, a detailed examination of the radio SZ effect is carried out. This
signal would be caused by a cosmological radio background scattering along-
side the CMB in clusters. This chapter focuses on detailed modelling of kine-
matic and relativistic corrections to this signal, and the impact of anisotropies
and variation in the radio background on the observed radio SZ signal.

Chapter 5 examines the effects high-energy non-thermal electron distribu-
tions alongside anisotropic electron or photon distributions. Here an analytic
form of the anisotropic scattering kernels for photons or electrons has been de-
rived and investigated. An exploration of various toy-models of non-thermal
distributions is carried out.

Finally, in Chapter 6, a numerically stable form of the isotropic general Comp-
ton scattering kernel is presented and explored. Further extensions to analytic
kernels for the low-multipole anisotropic Compton scattering problem are also
derived and discussed. These allow for the rapid and accurate computation of
scattering processes throughout the history of of the Universe.
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Chapter 1

Introduction

Just over 50 years ago, it was shown that free electrons in hot ionized plasmas
scatter photons from the cosmic microwave background (CMB) (Zeldovich &
Sunyaev, 1969; Sunyaev & Zeldovich, 1970). Generally speaking, the Sunyaev-
Zeldovich (SZ) effect is the observed unique spectral signature corresponding to
this scattering – and is particularly evident for plasmas with temperatures 𝑇e ≥
107 K (i.e., 𝑘B𝑇e ≳ 1 keV). The most dominant of these scatterings is the thermal
SZ effect (Sunyaev & Zeldovich, 1972), which comes from the upscattering of
CMB photons by the hot intracluster medium (ICM). The effect was proposed as
a test to see if the then newly-discovered CMB (Penzias & Wilson, 1965) was truly
cosmic in origin.

The pockets of hot ionized plasma that can be probed in this way form in
the largest overdensities of large-scale structure. In particular, these occur in
galaxy clusters, groups and intergalactic filaments, which comprise of giant
dark matter structures, where the baryonic plasma is located. While some of
this gas cools to form galaxies, the majority remains as ionised plasma (Briel
et al., 1992), also known as the intracluster medium. These objects are excel-
lent probes for cosmology, sensitive to fundamental cosmological parameters
such as the matter density and power spectrum (e.g., Voit, 2005; Allen et al.,
2011; Kravtsov & Borgani, 2012; Weinberg et al., 2013). The ICM also induces X-
ray emission through both bremsstrahlung and line-emission processes (see, e.g.,
Sarazin, 1986, for a review). A recent, in-depth review of the SZ effect can be
found in Mroczkowski et al. (2019) (see also Carlstrom et al., 2002) which covers
much of the information presented in this chapter.

In this chapter, I will review the theoretical background for the SZ effect and
details of the underlying cosmology and astrophysical behaviour of Galaxy clus-
ters, crucial for understanding later points in this thesis. This starts with a review of
the observational history of the CMB and SZ effect in section 1.1. In section 1.2,
I will review the Compton scattering process and the derivation of the Kompa-
neets equation. In section 1.3, I discuss the SZ effect and its various forms. Sec-
tion 1.4 explores causes behind non-traditional SZ effects. Finally, in section 1.5,
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the use of simulations to model SZ physics is explored and a discussion of tem-
perature determination in clusters is provided, relevant for chapters 2 and 3.

1.1 A brief history of the CMB and SZ observations

The CMB is an ambient, broadly uniform microwave signal that reaches us from
the earliest stages of cosmic history. According to the Big Bang model, photons
decoupled from the ambient plasma at a redshift 𝑧 ≃ 1100 (around 380,000 years
after the Big Bang) at what is known as the surface of last scattering – that
is, when the elastic scattering rate between photons and charged particles
fell below the universal expansion rate. As such the CMB is an almost perfect
blackbody which, at the time of last scattering, had an effective temperature
of around 3000 K. However, due the expansion of space, this temperature has
been redshifted such that the CMB now has an ambient temperature of 𝑇CMB ≃
2.7 K. The largest deviation from a blackbody, comes from a dipole correction
around 0.1% of the amplitude of the blackbody itself. This dipole is almost entirely
caused by the peculiar motion of the Earth/Sun against the CMB background
itself – that is, it is a Doppler term from e.g., the Sun’s Galactic rotation and the
Galactic motion within the Local Group, alongside the Earth’s rotation around
the Sun.

In the 1990s, the first large CMB space-mission, COBE (Cosmic Background
Explorer) launched. This measured the primary anisotropies of the CMB at the
largest scales (Smoot et al., 1994), alongside the energy spectrum, giving the
well-known temperature measurement of 𝑇CMB = 2.7377 ± 0.0038 K (Mather et al.,
1994; Fixsen et al., 1996; Bennett et al., 1996). However the revealed variations
(hot and cold spots) in the CMB prompted two further CMB missions by NASA
and ESA respectively, WMAP (2001) and Planck (2009). We have seen tremen-
dous advances in CMB observations both through these space-based missions,
and ground-based observatories (i.e., SPT and ACT) leading to a more and
more detailed understanding of both the foregrounds in the CMB (in particular
the Galactic foregrounds, see, e.g., Ichiki, 2014) and the variations in the CMB
temperature itself (Komatsu et al., 2011; Planck Collaboration et al., 2020a).

Attempts to measure the SZ effect began in the 1970s, with reliable detec-
tions of the effect obtained by the Owens Valley Radio observatory by the mid-
1980s (Birkinshaw et al., 1984). Interferometric observations followed within a few
years by the Very Large Array (Moffet & Birkinshaw, 1989) and the Ryle telescope
(Jones et al., 1993; Grainge et al., 1993). The field of SZ observations has greatly
increased over the following decades. The modern field of SZ observation is split
following improvements in angular resolution and frequency coverage, allowing
for the SZ effect within nearby clusters to be examined in close detail alongside
an increased understanding of higher-order effects on the ‘classical’ SZ effect
originally theorised.
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FIGURE 1.1: Reconstructed Planck all-sky Compton-𝑦 parameter maps in ortho-
graphic projections. The grey region indicates the masked region due to Galactic

foregrounds. Figure reproduced from Planck Collaboration et al. (2016b).

FIGURE 1.2: A composite image of MACS J1423.8+2404. In blue, the derived tSZ
map obtained from NIKA at 150 GHz. In red, the X-ray signal from the Chandra
photon counts (Obs-ID 04195). In green, the Hubble Space Telescope image using
the F814W filter obtained by the CLASH program (Postman et al., 2012) showing
predominantly the galaxies. The white contours are the mass-distribution model
obtained from lensing (Zitrin et al., 2011, 2015). Figure reproduced from Adam et al.

(2016).

In particular, the recent observational capacity of telescopes such as SPT
and ACT have allowed for the detection of previously unknown clusters through
the thermal SZ (tSZ) effect (Staniszewski et al., 2009; Menanteau et al., 2010) and
the Planck satellite observed in nine separate photometric bands allowing for
the detection of over a thousand clusters through the SZ effect (Planck Collab-
oration et al., 2016d). Planck also provided a whole-sky tSZ map (see Fig. 1.1
Planck Collaboration et al., 2016b).

The first high-significance deviation from the classical tSZ effect was a kine-
matic effect found in a high-velocity sub-cluster of MACS J0717.5+3745 (Sayers
et al., 2013; Adam et al., 2017) using Herschel-Spire and NIKA data, respectively,
in combination with X-ray observations. Relativistic effects, on which a large
portion of this thesis focuses, remain hard to constrain. Many attempts in single-
cluster measurements have been made (e.g., Hansen et al., 2002; Hansen, 2004;
Zemcov et al., 2012; Prokhorov & Colafrancesco, 2012; Chluba et al., 2013; But-
ler et al., 2022) alongside stacking analyses (e.g., Hurier, 2016; Erler et al., 2018),
but the detection significance remains low.

However, the future of SZ measurements remains bright with the continuing
observational advances in angular resolution and sensitivities and, in particular,
upcoming experiments such as CCAT-prime (Stacey et al., 2018), NIKA2 (Adam
et al., 2018), TolTEC (Austermann et al., 2018) and The Simons Observatory (Ade
et al., 2019), which promise to measure, for instance, the ICM temperature us-
ing the relativistic SZ effect for even high-redshift objects (Morandi et al., 2013;
Remazeilles & Chluba, 2020) independent of X-ray measurements.

The history of the SZ measurements is intertwined with X-ray observations of
those same clusters. Much SZ science still depends on observations by, in partic-
ular, Chandra and XXM-Newton, which have transformed our understanding of
galaxy clusters and ICM physics. From a galaxy cluster perspective, SZ observa-
tions and X-ray measurements will continue to go hand in hand, each provid-
ing complementary information to the other. For instance, X-ray measurements
tend to be more sensitive to central emission, while the SZ effect can probe fur-
ther out. Figure 1.2 shows complementary information about the cluster MACS
J1423.8+2404 obtained through the SZ effect, X-ray observations, strong lensing



22 Chapter 1. Introduction

e−(P0) e−(P′￼)

γ(K0) γ(K′￼)
μsc

μ0 μ′￼

y

x

z









K0 ≡ (ω0, k0)
K′￼ ≡ (ω′￼, k′￼)
P′￼ ≡ (γ′￼, p′￼)
P0 ≡ (γ0, p0)

FIGURE 1.3: A schematic of the Compton scattering problem. Here 𝐾0 and 𝐾 ′ are
the four-vectors for the incoming and outgoing photons, with dimensionless fre-
quencies 𝜔0 and 𝜔′ and dimensionless momenta 𝑘𝑘𝑘0 and 𝑘𝑘𝑘 ′. 𝑃0 and 𝑃′ are the
4-vectors for the incoming and outgoing electrons, with dimensionless energies 𝛾0
and 𝛾′ and momenta 𝑝𝑝𝑝0 and 𝑝𝑝𝑝′. 𝜇0, 𝜇′ and 𝜇sc are the cosines of the marked angles.
Note that since the scattering is three-dimensional the relationship between these
angles is complex. The axes are to emphasise the dimensionality of the scattering,

with 𝑧 aligned with the direction of the incoming photon.

and the galaxies themselves.

1.2 Compton Scattering

At its core, the SZ effect can be understood as a special case of Compton
scattering – wherein the incoming photons (the CMB) have considerably less
energy than the scattering electrons (the hot ICM). Generally speaking, Comp-
ton scattering is one of the most important processes in astrophysical plasmas
(e.g., Blumenthal & Gould, 1970; Rybicki & Lightman, 1979).

Compton scattering is the process of an incoming photon and electron, ex-
changing energy and momentum. The reaction takes the form 𝛾(𝐾0) + 𝑒−(𝑃0) ↔
𝛾(𝐾 ′)+𝑒−(𝑃′) where here, 𝐾0, 𝑃0, 𝐾 ′ and 𝑃′ are the associated 4-vectors of the in-
volved particles. A schematic of this process can be seen in Figure 1.3. Assuming
the electrons are non-degenerate (that is, Fermi blocking can be neglected),
the kinetic equation is then given by (e.g., Pomraning, 1972; Buchler & Yueh,
1976; Nagirner & Poutanen, 1994)

1
𝑐

d𝑛(𝜔0)
d𝑡

=
(2𝜋)4

2𝜔0

∫
d3𝑝𝑝𝑝0

(2𝜋)3𝛾0

d3𝑝𝑝𝑝′

(2𝜋)3𝛾′
d3𝑘𝑘𝑘 ′

(2𝜋)3𝜔′ 𝛿
(4) (𝑃′ + 𝐾 ′ − 𝑃0 − 𝐾0) |M|2

×
[
𝑓 ′𝑛′(1 + 𝑛0) − 𝑓0𝑛0(1 + 𝑛′)

]
.

(1.1)

Here 𝑛(𝜔0) is the photon occupation number at dimensionless frequency 𝜔0 =

ℎ𝜈0/𝑚e𝑐
2; 𝑝𝑝𝑝0, 𝑝𝑝𝑝′, 𝑘𝑘𝑘0 and 𝑘𝑘𝑘 ′ are the three-vectors associated with 𝑃0, 𝑃′, 𝐾0 and
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𝐾 ′ respectively. We are using energies and momenta in units of 𝑚e𝑐
2 and 𝑚e𝑐,

respectively, such that 𝜔0 and 𝜔′, the dimensionless frequencies, denote also
the photon energies; 𝛾0 and 𝛾′ are the electron energies and also the Lorentz
factors, i.e., 𝛾0 = 𝐸/𝑚e𝑐

2 =

√︃
1 + 𝑝2

0 = 1/
√︃

1 − 𝛽2
0, where 𝑝0 is the dimensionless

momentum, and 𝛽0 = 𝑣/𝑐 = 𝑝0/𝛾0 the dimensionless speed.
The electron distribution functions are denoted by 𝑓0 = 𝑓 (𝛾0) and 𝑓 ′ = 𝑓 (𝛾′),

and the photon distribution functions by 𝑛0 = 𝑛(𝜔0) and 𝑛′ = 𝑛(𝜔′). |M|2 is the
squared matrix element for the Compton process and given by

|M|2 = e4𝑋 = 2e4 𝑋̄; 𝑋̄ =
𝜅′

𝜅
+ 𝜅

𝜅′
+ 2

(
1
𝜅
− 1
𝜅′

)
+

(
1
𝜅
− 1
𝜅′

)2
. (1.2)

𝑋̄ is averaged over polarization states and 𝜅 and 𝜅′ are invariants given by

𝜅 = −𝑃0 · 𝐾0 = −𝑃′ · 𝐾 ′ = −𝛾0𝜔0(1 − 𝛽0𝜇0) (1.3a)

𝜅′ = −𝑃0 · 𝐾 ′ = −𝑃′ · 𝐾0 = −𝛾0𝜔
′(1 − 𝛽0𝜇

′) (1.3b)

𝜅′ − 𝜅 = 𝐾0 · 𝐾 ′ = 𝜔0𝜔
′(1 − 𝜇sc). (1.3c)

The 𝜇s refer to the cosines of the angles between each vector (as can be seen
in Figure 1.3) and we can write that 𝜇0 = 𝜇′𝜇sc + cos(𝜙′ − 𝜙sc)

√︁
(1 − 𝜇2

sc) (1 − 𝜇′2),
where the 𝜙 are the associated azimuthal angles.

Carrying out the d3𝑝𝑝𝑝′ integral in Eq. (1.1), we can use the 4-dimensional
Dirac-𝛿 function to simply set 𝑝𝑝𝑝′ = 𝑝𝑝𝑝0 + 𝑘𝑘𝑘0 − 𝑘𝑘𝑘 ′ and ensure that 𝛾′ = 𝛾0 + 𝜔0 − 𝜔′

everywhere. The kinetic equation then becomes

1
𝑐

d𝑛(𝜔0)
d𝑡

=
e4

23(2𝜋)2

∫
d3𝑝𝑝𝑝0

(2𝜋)3 d3𝑘𝑘𝑘 ′ 𝛿(𝛾′ + 𝜔′ − 𝛾0 − 𝜔0)
𝑋̄

𝛾0𝛾′𝜔0𝜔′

×
[
𝑓 ′𝑛′(1 + 𝑛0) − 𝑓0𝑛0(1 + 𝑛′)

]
.

(1.4)

Then we can express e, the electron charge, in terms of the Thomson cross-
section, 𝜎T, and redefine the electron distribution to remove the factor of the
electron number density, 𝑁e =

∫ d3𝑝𝑝𝑝0
(2𝜋)3 𝑓 (𝑝𝑝𝑝0). That is we define 𝑓 (𝛾0) = 𝑓 (𝛾0)/(2𝜋2𝑁e),

so that the integral over 𝑓 is normalised to unity, and then relabel 𝑓 → 𝑓 . The
𝑧-axis is aligned with the incoming photon1.

To evaluate the remaining Dirac-𝛿 function, the customary approach is to
note that d(𝛾′ + 𝜔′) =

𝛾0𝜔0
𝛾′𝜔′ (1 + 𝛽0𝜇0)d𝜔′ . Defining the Thomson optical depth

𝜏 =
∫
𝑐𝑁e𝜎Td𝑡 we can write the kinetic equation as

d𝑛(𝜔0)
d𝜏

=

∫
𝑝2

0d𝑝0
d𝜇0 d𝜙0 d𝜇sc d𝜙sc

4𝜋
d𝜎
dΩ

[
𝑓 ′𝑛′(1 + 𝑛0) − 𝑓0𝑛0(1 + 𝑛′)

]
. (1.5)

1Due to the symmetry in 𝑋̄, absent of any angular dependence in 𝑛, the alignment of d𝑛(𝜔0)
d𝑡

with the incoming photon versus d𝑛(𝜔′)
d𝑡 with the outgoing photon, is simply equivalent to the

replacement of the integral 𝜔2
0d𝜔0 to 𝜔′2d𝜔′ . An alignment with the outgoing photon and ex-

pression in terms of d𝑛(𝜔′)
d𝑡 will be used in Chapters 5 and 6.
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Here we have also introduced the differential Compton scattering cross section,
(including and cancelling the factor of (1 − 𝛽0𝜇0) from the Møller speed)

d𝜎
dΩ

=
3

16𝜋

[
𝜔′

𝜔0

]2
𝑋̄

𝛾2
0 (1 − 𝛽0𝜇0)

,

𝑋̄ =
𝜅′

𝜅
+ 𝜅

𝜅′
− 2(1 − 𝜇sc)
𝛾2

0 (1 − 𝛽0𝜇0) (1 − 𝛽0𝜇′)
+ (1 − 𝜇sc)2

𝛾4
0 (1 − 𝛽0𝜇0)2(1 − 𝛽0𝜇′)2

.

(1.6)

Finally we can note that the ratio of ingoing and outgoing photon frequencies
can be found to be

𝜔′

𝜔0
=

1 − 𝛽0𝜇0

1 − 𝛽0𝜇′ + 𝜔0
𝛾0
(1 − 𝜇sc)

. (1.7)

1.2.1 The Kompaneets equation

The SZ effect was originally derived under a number of assumptions that allow for
the simplification of the Compton Scattering problem. In particular, to quickly
obtain the classical thermal SZ effect it is first useful to understand the derivation
of the Kompaneets equation (Kompaneets, 1956) – a detailed review can be
found in Katz (1987).

Firstly, in the non-relativistic limit, the 4-vector conservation can be written as
energy and momentum conservation equations as

𝜔0 +
𝑝2

0
2

= 𝜔′ + 𝑝′2

2
𝑘𝑘𝑘0 + 𝑝𝑝𝑝0 = 𝑘𝑘𝑘 ′ + 𝑝𝑝𝑝′.

(1.8)

Now, the Kompaneets equation relies on an expansion in terms of Δ = 𝜔′ − 𝜔0.
Eliminating 𝑝′ from the conservation equations and rearranging, it is possible to
find, assuming Δ ≪ 1 (i.e., to first order in Δ),

Δ = −
𝜔2

0(1 − 𝑘̂̂𝑘𝑘0 · 𝑘̂̂𝑘𝑘 ′) + 𝜔0𝑝𝑝𝑝0 · (𝑘̂̂𝑘𝑘0 − 𝑘̂̂𝑘𝑘 ′)
1 + 𝜔0(1 − 𝑘̂̂𝑘𝑘0 · 𝑘̂̂𝑘𝑘 ′) − 𝑝𝑝𝑝0 · 𝑘̂̂𝑘𝑘 ′

. (1.9)

Here, we have introduced 𝑘̂̂𝑘𝑘0 and 𝑘̂̂𝑘𝑘 ′ as the unit vectors in the directions of 𝑘𝑘𝑘0 and
𝑘𝑘𝑘 ′. In the case of the SZ effect, the CMB provides a ‘cold’ source of photons
compared to the hot electrons in clusters, so it is reasonable to assume that
𝜔0 ≪ 𝑝0 and that, since cluster electrons are non-relativistic, 𝑝0 ≪ 1. As such,
in the denominator, the second and third terms are considered small, and the
denominator can be approximated ≃ 1. In the numerator, the first term is small
compared to the second, and as such,

Δ ≃ −𝜔0𝑝𝑝𝑝0 · (𝑘̂̂𝑘𝑘0 − 𝑘̂̂𝑘𝑘 ′) = −𝜔0𝑝0(𝜇0 − 𝜇′). (1.10)
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Now one assumes the electrons are an isotropic, isothermal medium follow-
ing a Maxwell-Boltzmann distribution. That is, 𝑓 (𝑝𝑝𝑝0) ∝ e−𝑝2

0/2𝜃e where we have
introduced the dimensionless electron temperature 𝜃e = 𝑘B𝑇e/𝑚e𝑐

2. Then, due to
the conservation of energy, it is evident that 𝑓 ′ = eΔ/𝜃e 𝑓 . Introducing 𝑥e = 𝜔0/𝜃e,
an expansion of Eq. (1.5) can be written as

d𝑛(𝜔0)
d𝜏

=

∫
d3𝑝𝑝𝑝0 d2Ωsc

d𝜎
dΩ

[
𝑓 ′𝑛′(1 + 𝑛0) − 𝑓0𝑛0(1 + 𝑛′)

]
= −

[
d𝑛
d𝑥e

+ 𝑛(1 + 𝑛)
] ∫

d3𝑝𝑝𝑝0 d2Ωsc
d𝜎
dΩ

𝑓
Δ

𝜃e

− 1
2

[
d2𝑛

d2𝑥e
+ 2(1 + 𝑛) d𝑛

d𝑥e
+ 𝑛(1 + 𝑛)

] ∫
d3𝑝𝑝𝑝0 d2Ωsc

d𝜎
dΩ

𝑓
Δ2

𝜃2
e
+ O

(
Δ3

𝜃3
e

)
.

(1.11)

Since the scattering conserves photons, and the photon distribution is as-
sumed to be isotropic, the change in photon occupation number must have a
functional form,

d𝑛(𝜔0)
d𝜏

= − 1
𝑥2

e

d(𝑥2
e 𝑗 (𝑛, 𝑥e))

d𝑥e
, (1.12)

where we have dropped the explicit dependence on 𝜃e. Here, directly by ob-
servation, one can write that the photon current density, 𝑗 , is of the form

𝑗 (𝑛, 𝑥e) = 𝑔(𝑥e)
(

d𝑛
d𝑥e

+ ℎ(𝑛, 𝑥e)
)
. (1.13)

As this must equal zero at equilibrium when 𝑛 = 1/(e𝑥e − 1), one can assert that
ℎ(𝑛, 𝑥e) = 𝑛(1 + 𝑛). Then, 𝑔(𝑥e) depends on solving one of the integrals within
Eq. (1.11). In the non-relativistic limit, the differential scattering cross-section can
be reduced to the Thomson cross-section i.e., d𝜎

dΩ = 3
16𝜋 (1+𝜇

2
sc), and we can write

𝑔(𝑥e) =
1
2

∫
d3𝑝𝑝𝑝0 d2Ωsc

d𝜎
dΩ

𝑓
Δ2

𝜃2
e

= − 3
4𝜋
𝜔2

0

𝜃2
e

∫
d𝑝0 4𝜋𝑝4

0 𝑓

∫
d2Ω0

4𝜋
d2Ωsc

4𝜋
(1 + 𝜇2

sc) (𝜇0 − 𝜇′)2

= − 3
4𝜋
𝑥2

e

(
3𝜃e
2

) (
8𝜋
9

)
= −𝑥2

e𝜃e.

(1.14)

Accordingly the Kompaneets equation, which will be discussed more shortly, is

d𝑛(𝜔0)
d𝜏

=
𝜃e

𝑥2
e

d
d𝑥e

[
𝑥4

e

(
d𝑛
d𝑥e

+ 𝑛 + 𝑛2
)]
. (1.15)

1.3 The SZ Effect

In a general sense, to consider the SZ effect, it is worth making a few observa-
tions. Firstly, no effect is produced by electrons at rest with respect to the CMB,
since the number of photons scattered in and out of the line of sight cancel out
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(in the Thomson limit). Hence, an effect is only seen when electrons are moving,
and can transfer their kinetic energy to the photon field.

Secondly, when the energy of the photons is a lot less than that for the elec-
trons (i.e., in a Doppler-dominated regime) and 𝜔0 < 1/2,2 the ratio of incoming
and outgoing photons can be approximated [cf. Eq (1.7)]

𝜔′

𝜔0
≃ 1 − 𝛽0𝜇0

1 − 𝛽0𝜇′
. (1.16)

In this regime, the outgoing photon frequency is bounded, since −1 ≤ 𝜇0, 𝜇
′ ≤ 1,

1 − 𝛽0
1 + 𝛽0

≤ 𝜔′

𝜔0
≤ 1 + 𝛽0

1 − 𝛽0
. (1.17)

This is equivalent to assuming the recoil of the electrons due to their collisions
with the CMB photons can be omitted. These two bounds correspond to the
scattering coming from an electron heading either directly towards or away
from the incoming photon. However, we also see that upscattering happens
only when 𝜇′ > 𝜇0 – that is, when the photon is deflected along the direction
of the incoming electron. It should be reiterated however, that these consider-
ations only hold in the Doppler-dominated regime and will not be true for the
general Compton scattering effect (see, e.g., Sarkar et al., 2019, or Chapter 6).

Klein-Nishina corrections to the cross section, 𝑂 (𝜔2
0), are also omitted. In

these limits we can also simplify the differential cross section to find

d𝜎
dΩ

=
3

8𝜋

[
𝜔′

𝜔0

]2 1
𝛾2

0 (1 − 𝛽0𝜇0)

1 − 𝜔′

𝜔0

(1 − 𝜇sc)
𝛾2

0 (1 − 𝛽0𝜇0)2
+ 1

2

(
𝜔′

𝜔0

(1 − 𝜇sc)
𝛾2

0 (1 − 𝛽0𝜇0)2

)2 . (1.18)

The main forms of the SZ effect occur due to different motions of the elec-
trons — as the different velocity distributions lead to different angular and fre-
quency dependencies, and thus a different distortion signal. The thermal SZ
effect (tSZ), mentioned before, is caused by ‘thermal’ electrons, i.e., those that
obey an isotropic, Maxwell-Boltzmann distribution. The kinematic SZ effect (kSZ)
is caused by the bulk motion of the electrons, while any relativistic corrections if
the characteristic velocity of the electrons is high are included in the relativistic
SZ corrections (rSZ) to both the tSZ and kSZ signals. Any non-thermal electron dis-
tributions give rise to non-thermal SZ effects (ntSZ, discussed in the next section).
There are then further effects from polarization and multiple scattering events,
which I will discuss briefly here for completeness.

1.3.1 Thermal SZ Effect

As described in Section 1.2.1, the thermal SZ (tSZ) effect can be simply derived
under a number of assumptions. In particular, we assume the hot thermal gas

2This will be discussed more in Chapter 6.
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FIGURE 1.4: The spectral distortion from the thermal SZ effect - that is the Compton-𝑦
distortion. We have included the relativistic corrections for various temperatures.
For this figure we have taken 𝑦 = 10−4. We can see that the relativistic corrections
lead to a broadening of the upscattering and a shift in the distortion node to in-

creasing frequencies with temperature.

obeys an isotropic electron velocity distribution in the CMB rest frame and that
only single scattering effects occur. As such to first order there is no net effect,
but an effect arises to second order in 𝛽0.

The original approach by Zeldovich & Sunyaev (1969) was to compute this
effect using the Kompaneets equation. Eq. (1.15) is rewritten in terms of 𝑥 =

ℎ𝜈0/𝑘B𝑇CMB (instead of 𝑥e), and uses the photon distribution 𝑛 = 1/(e𝑥−1). Now the
𝑛(1 + 𝑛) part is multiplied by a factor of 𝑇CMB/𝑇e ≪ 1, compared to the derivative
term, and thus can be neglected. That is we assume

d𝑛(𝜔0)
d𝜏

=
𝜃e

𝑥2
d
d𝑥

[
𝑥4

(
d𝑛
d𝑥

)]
. (1.19)

Now, 𝑛 can be substituted in directly to find that, in terms of the CMB intensity,

Δ𝐼𝜈 ≈ 𝐼0𝑦
𝑥4e𝑥

(e𝑥 − 1)2

(
𝑥

e𝑥 + 1
e𝑥 − 1

− 4
)
≡ 𝐼0𝑦𝑔(𝑥). (1.20)

Here, 𝑦 = 𝜃e𝜏 is the Compton-𝑦 parameter, the spectral function 𝑔(𝑥) for the tSZ
effect is defined here implicitly, and the intensity normalisation constant is

𝐼0 =
2(𝑘B𝑇CMB)3

(ℎ𝑐)2 = 270.33
[
𝑇CMB

2.7255K

]3
MJy/sr. (1.21)

In Figure 1.4, we have plotted the tSZ effect alongside a number of relativistic
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corrections, using SZpack3. If we assume that this distortion is small, that is |Δ𝐼𝜈 | ≪
𝐼𝜈, the derivative with respect to the temperature can be used to express the
signal as:

Δ𝑇CMB
𝑇CMB

≈ 𝑦
(
𝑥

e𝑥 + 1
e𝑥 − 1

− 4
)
= 𝑦 𝑓 (𝑥). (1.22)

Here, 𝑓 (𝑥) Is the tSZ spectrum in terms of Δ𝑇CMB. Again the change is explicitly
proportional to the Compton-𝑦 parameter, which depends on the temperature
of the hot electron gas, 𝑇e, and the Thomson scattering optical depth, 𝜏e:

𝑦 ≡
∫

𝜃ed𝜏 =

∫
𝑘B𝑇e

𝑚e𝑐2𝑁e𝜎Td𝑙 =
𝜎T

𝑚e𝑐2

∫
𝑃ed𝑙 . (1.23)

Here, we have used 𝑁e, the number density of electrons; 𝜎T, the Thomson cross
section; d𝑙 the line element for the proper distance over the line of sight; and
𝑃e = 𝑁e𝑘B𝑇e, the pressure due to the electrons. Hence, the magnitude of the tSZ
signal is a measure of the integrated pressure along the line of sight.

Now, the central optical depth of clusters can be 𝜏 ≃ 10−2 and typical clusters
have electron temperatures of 𝑘B𝑇e ≃ 5 keV, so for massive clusters, 𝑦 ≃ 10−4. The
signal itself has a distinctive ‘shadow-source’ signature. That is, it appears as a
dip in number of photons (and thus intensity) below 𝜈 ≈ 217 GHz, and a peak
above – since total photon number is conserved, for photons to be scattered to
higher frequencies, they are also scattered out of lower frequencies (Figure 1.4).

A further important property of the tSZ effect is its redshift independence.
This has two aspects, firstly, the intensity change is defined fractionally to the
incident intensity of the CMB, and as such it is not dimmed by time, relative
to the dimming of the CMB itself. Secondly, the frequency dependence of the
distortion comes in only through 𝑥 which is itself redshift independent. This makes
it a unique probe of the large-scale structure of the Universe at high redshifts.

1.3.2 Kinematic SZ Effect

When free electrons move with a bulk motion relative to the CMB rest frame,
they will scatter the CMB photons in an anisotropic manner (Sunyaev & Zel-
dovich, 1980). The electron velocity distribution has an underlying directionality,
so that upon averaging over all angles of the incoming photons, a linear order
Doppler term ∝ 𝛽c, the peculiar velocity, remains.

This shift can be written, for a cluster moving with velocity 𝛽c𝛽c𝛽c, relative to the
line-of-sight direction 𝑛̂̂𝑛̂𝑛, in terms of effective shift in CMB temperature as

Δ𝑇CMB
𝑇CMB

≈ −
∫

𝜎T𝑁e 𝑛̂̂𝑛̂𝑛 · 𝛽c𝛽c𝛽cd𝑙 = −
∫
𝑛̂̂𝑛̂𝑛 · 𝛽c𝛽c𝛽cd𝜏 ≡ −𝑦kSZ (1.24)

3SZpack is a computational package used for the fast and accurate computation of the SZ
effect from hot, moving clusters.
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FIGURE 1.5: The spectral distortion from the kinematic SZ effect, including the rel-
ativistic corrections for various temperatures. We have taken 𝜏 = 0.01 and also
included a scaled tSZ distortion (𝑦 = 0.2 × 10−4) for reference. We can see that the
kSZ effect appears as temperature perturbations (like the hot and cold spots in the
CMB), and is around an order of magnitude smaller than the tSZ signal. Again, we

see the relativistic corrections lead to a broadening of the signal.

or, in terms of CMB intensity shift, [with 𝐼0 as in Eq. (1.21)]

Δ𝐼𝜈 ≈ −𝐼0
𝑥4e𝑥

(e𝑥 − 1)2 𝑦kSZ (1.25)

Here, the parameter 𝑦kSZ (see Figure. 1.5) has been defined as an analogue to
the Compton-𝑦 parameter found in tSZ (see, e.g., Ruan et al., 2013). This shift
is indistinguishable from hot and cold spots in the CMB unless other information
is used, such as scale dependence or correlations with other observations. At
leading order, only the line of sight component of the peculiar motion of the
cluster is relevant (i.e., 𝛽c, | | = 𝑛̂̂𝑛̂𝑛 ·𝛽c𝛽c𝛽c = 𝜇c𝛽c). It is also worth noting that, as a Doppler
shift, the temperature shift is negative if the cluster is receding and positive if it is
approaching.

From standard cosmological models, typical peculiar motions of clusters are
speeds O(100) km s−1, or 𝛽c = O(10−3), so that 𝑦kSZ = O(10−5) at its peak. This is
around an order of magnitude smaller than the average tSZ 𝑦 parameter.

The kinematic corrections can also be considered as a Lorentz transforma-
tion of the tSZ effect in the cluster frame (with an anisotropic CMB photon field)
to the CMB frame. Then the optical depth can be interpreted directly as the
cluster frame optical depth (see Chluba et al., 2014). Higher-order corrections
in 𝛽c can be added through a multipole-dependent Kompaneets equation, or
anisotropic scattering kernels. These corrections are expected to be small.
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A further kinematic correction can be found due to the motion of the ob-
server. As with the dipole in the CMB, this can be accounted for through a
Lorentz transformation of the SZ signal from the CMB rest frame to the observer’s
frame (Chluba et al., 2005; Nozawa et al., 2005).

1.3.3 Relativistic SZ Corrections

In discussions of the SZ effect so far, we have assumed that the speeds of the
electrons were always non-relativistic. For kSZ electrons, where the bulk motions
are relatively slow, this seems like a good approximation. However, for thermal
electron distributions, there will always be some proportion of the electrons mov-
ing relativistically. In our cases, even for a thermal gas at 𝑘B𝑇e ≃ 5 keV, we have
typical speeds of 𝛽0 ≃

√
3𝜃e ≃ 0.1− 0.2. Here, the non-relativistic approximation of

only taking terms to second order in 𝛽0 is no longer appropriate, and relativistic
corrections are relevant. These change both the tSZ and kSZ spectral shapes
with respect to the non-relativistic form. The exact mathematical formalism for
this effect is discussed in detail in Chapter 4.

There are multiple approaches to calculating these corrections – using var-
ied methods of determining the Compton collision term. Insights into the physics
can be obtained by expanding in various orders of 𝑥, 𝜃e and 𝛽c, using Taylor se-
ries approximations. These approaches have been explored in great detail by
e.g., Sazonov & Sunyaev (1998); Challinor & Lasenby (1998); Itoh et al. (1998);
Nozawa et al. (2006). However, these approaches tend to become inaccurate
as 𝑥 increases (in particular for 𝑥 ≳ 10) and inefficient for the higher tempera-
tures common in clusters, where they converge slowly due to the scattering ker-
nel widening quickly with increasing temperature. Direct numerical integrations
with levels of analytic reductions (i.e., Enßlin & Kaiser, 2000; Nozawa & Kohyama,
2009) generally lead to the most precise results, but can be time consuming. If a
fixed temperature range is specified, these can be computed more quickly, by
relying on precomputed values, leading to methods using precomputed basis
functions (Chluba et al., 2012b, as is applied in SZpack) or fits to numerical re-
sults (Nozawa et al., 2000; Itoh & Nozawa, 2004). Variations in temperature and
peculiar velocity within clusters can be accounted for using moments of the
scattering parameters (as is also implemented in SZpack).

In the relativistic case, the average energy shift and broadening per scat-
tering increase more with temperature – that is, say, in Figure 1.4 the peak of
the distribution shifts to higher energies, and the entire signal broadens. This ex-
tra dependence theoretically allows for the signal to be used to directly mea-
sure the temperature of clusters individually (e.g., Wright, 1979; Rephaeli, 1995;
Pointecouteau et al., 1998). In the kSZ effect, the relativistic corrections (seen
in Figure 1.5) become particularly relevant when evaluating the moments of
the distortions. The bulk motion leads to anisotropy in the CMB blackbody field
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at second order, inducing a correction to the monopole ∝ 𝛽2
c and quadrupole

∝ 𝛽2
c (3𝜇2

c − 1)/2 in the clusters rest frame (e.g., Chluba et al., 2012b).

1.3.4 Multiple Scatterings

Inside dense clusters, it is necessary to consider the effects of photons scatter-
ing multiple times i.e., colliding with more than one electron in their transit of the
electron gas (e.g., Sunyaev & Zeldovich, 1980). Normally, this correction is de-
rived by assuming that the radiation field remains locally isotropic, the so called,
isotropic scattering approximation. In this limit, the contribution is suppressed
relative to the single-scattering tSZ signal, and becomes a ≃ 0.1% correction
(Itoh et al., 2001). Furthermore, in this limit, no correction ∝ 𝜏 arises, and thus no
up-scattering.

However, when including the anisotropy induced by the previous scattering,
the corrections become slightly larger (Chluba et al., 2014; Chluba & Dai, 2014).
This effect is noticeable even in a constant density sphere, due to the variations
of the photon’s path in different directions. The arising contribution is ∝ 𝜏/20
compared to the tSZ effect. The final signal depends explicitly on the line of
sight considered and details of the medium, although measurements are yet to
differentiate between these possibilities.

1.3.5 Polarised SZ Effect

These signals are all difficult to observe, due to their intrinsic faintness, instrumen-
tal challenges in measuring polarization, contamination from other astrophysi-
cal polarization sources and beam depolarization effects. However, generally
speaking the polarised SZ (pSZ) effects will be generated by any quadrupolar
dependence which arises in the SZ effect.

Thomson scattering of CMB photons by free electrons inside clusters leads to
a small polarization effect through physics similar to the way primordial CMB E-
mode polarization pattern are created (e.g., Sunyaev & Zeldovich, 1980). These
generally rely on the presence of a quadrupole anisotropy in the incoming pho-
ton field.

The largest effect comes from the local primordial CMB quadrupole, which
leads to a polarization amplitude ≃ 0.1𝜏𝑄 in units of 𝑇CMB (Kamionkowski & Loeb,
1997; Sazonov & Sunyaev, 1999). Here 𝑄 is the CMB quadrupole moment at the
location of the cluster. Accordingly, this signal can reach ≃ 10−3 of the primary
CMB temperature for rich clusters, and could allow for another way to measure
the CMB quadrupole at different locations in the Universe. However, to first order,
the frequency-dependence of this signal is the same as that of the primordial
CMB polarization anisotropies, and thus knowledge of the cluster location and
redshift are also required.
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The next largest effect arises from multiple scatterings occuring within the
cluster. In particular, the second scattering corrections of the tSZ and kSZ signals
(Sazonov & Sunyaev, 1999). For both, to first order, the spectral dependence
follows that of the rescattered distributions. For tSZ, the signal can be of similar
order of magnitude as the one caused by the primordial CMB quadrupole, but
could vanish along the centre of the cluster, as it requires a scattering-induced
quadrupole anisotropy. For second-scattering kSZ-induced pSZ, only tangential
components of the cluster motion are relevant.

At second order in 𝛽c, the higher-multipole kinematic effects can cause a
form of pSZ. This was the pSZ effect originally highlighted in Sunyaev & Zeldovich
(1980). This again only relies on tangential components of the cluster’s velocity,
𝛽c,⊥, and leads to a signal ≃ 0.1𝜏𝛽2

c,⊥. Similarly, complex polarization patterns can
be formed from internal gas motions (e.g., Chluba & Mannheim, 2002; Diego
et al., 2003).

Another source of polarization in the CMB could come from the anisotropic
distribution of electrons (Khabibullin et al., 2018). In the ICM, magnetic moments
of particles are conserved between collisions, and so the evolving magnetic
fields, or heat fluxes could create pressure anisotropies. This could lead to differ-
ent characteristic thermal velocities of electrons in different directions relative to
the field, inducing further polarization patterns. This would have the same spec-
tral dependence as kSZ induced polarization, but would be distinguishable by
its pattern. A general discussion of these features occurs in Chapter 5.

1.4 Variations to the SZ effect

There are, however, a number of modifications to the standard formulation of
the SZ effect that will lead to variations in the observed SZ signal. In particular,
in this section I first discuss alternate photon backgrounds besides the CMB. I will
also discuss how the variation in clusters themselves lead to modified SZ effects.

1.4.1 Alternate backgrounds

In general, any cosmic source of photons – that is, a photon distribution that
has passed through a cluster to reach the observer – will have a distortion from
passing through the cluster.

In the last two years, this has been discussed for the low-frequency radio
background (Fixsen et al., 2011; Seiffert et al., 2011; Singal et al., 2018; Dowell
& Taylor, 2018), a signal which may or may not be cosmic. The radio SZ signal
(Holder & Chluba, 2021; Lee et al., 2022a), if detected, would be a signal at
𝜈 ≲ 3 GHz, and could be used to help determine the origins of this signal. This is
discussed in significantly more detail in Chapter 4.
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One can also discuss the SZ signal formed by the cosmic infrared back-
ground (CIB) (Sabyr et al., 2022; Acharya & Chluba, 2022). This creates a com-
plex signal as the CIB itself is generated by galaxies in clusters and, as such, has
a complicated redshift dependence. The signal is further complicated as there
would be contributions to the CIB scattering from the signal generated within
clusters themselves. In this case, the signal peaks around 1000 GHz with con-
tributions in the region of the classical SZ effect but two orders of magnitude
smaller than the rSZ corrections at these frequencies.

In both situations, it is not sufficient to consider the background radiation
(radio background or CIB) alone, but the combined background of both the
CMB and the radio background/CIB must be considered. This methodology
may be extended to other cosmic backgrounds, e.g., the 21cm line or X-rays
emitted by clusters themselves (e.g., Cooray, 2006; Grebenev & Sunyaev, 2020).
However, these signals will all be significantly smaller than the background itself
and as such future measurements may not be simple.

1.4.2 Non-thermal contributions

In general, clusters are largely thermalised, both locally and more broadly – they
sit in massive gravitationally-bound haloes that are the primary cause of the
high cluster temperatures. However, firstly, there is a temperature distribution
over clusters, with them (generally speaking) being hotter closer to the core
and cooler towards the edges. Secondly, local non-thermal disruption can be
caused by a number of processes – e.g., jets, feedback, shocks, turbulence and
cosmic rays. These must be considered in a variety of ways.

In general, when there is temperature variance within clusters, it must be de-
termined whether the electron distribution is always locally thermalised, in which
case the SZ effect can be calculated by superposing the contribution from
each component within clusters. However, this is rarely possible. As such, ap-
proaches to manage this temperature variance must be accounted for – and
in general expansions about the mean temperature can account for much of
this variance (cf., Section 1.5 and Chapters 2 and 3). On the other hand, when
the departures lead to local non-thermal electron distributions, the inherent lo-
cal SZ distortion will necessarily change shape.

A further distinction must also be made about the source of non-thermality.
While, for instance, turbulence and ‘non-thermal’ pressure exist in clusters lead-
ing to low-energy modifications to the SZ distortion – the effects on the observed
cluster tSZ effect and relativistic corrections will be small (although the effects
may be relevant in consideration of the resolved kSZ effect). However, in this
thesis, I will focus on high-energy non-thermal contributions sourced by, for in-
stance, jets and shocks. These could have significant effects on the observed
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signal, especially into the high-energy tail of the SZ signal. These same high-
energy phenomena may also cause over-heated regions outside of the extent
of the clusters themselves, that could be observed with high-precision, well re-
solved measurements (Malu et al., 2017; Acharya et al., 2021).

In SZ calculations, clusters are also generally imagined to be isotropic spheres.
However, as they are located at the intersections of the cosmic web, it is un-
surprising that this is a poor approximation. Once again, on the cluster scale,
anisotropy generally is caused by local flows of electrons due to the internal
structure of the halo itself. These are best represented by localised kSZ correc-
tions to the overall cluster SZ signal.

However, it is also possible, particularly in the cases of jets and outflows, that
the SZ effect is caused by locally anisotropic electron distributions. In these cases
the Kompaneets equation (or its generalisations) no longer encapsulates the
scattering event, and complex scattering occurs between different anisotropies
– as the scattering generally tends towards creating isotropy within the medium.
These effects are all discussed in more detail in Chapter 5.

1.5 Simulations and predicting temperatures in clusters

In Chapters 2 and 3, I will expand on the notion mentioned in the previous sec-
tion of using an averaged temperature (with corrections) to account for the
intrinsic variation of temperatures within clusters. In both these chapters, a simi-
lar formalism is used which is worth expanding upon here.

It has been long established (Pointecouteau et al., 1998; Hansen, 2004; Kay
et al., 2008) that X-ray and SZ measurements do give rise to different temper-
atures once realistic cluster atmospheres are being considered. In this thesis,
I consider three different average temperatures relevant in clusters – the X-ray
temperature, specifically here we will use the spectroscopic-like temperature;
the mass-weighted temperature, associated with the Compton-𝑦 parameter;
and the 𝑦-weighted temperature that is relevant for calculating the rSZ correc-
tions. In this section, I will explain each temperature measure, the higher-order
𝑦-weighted temperature corrections, and then mention a number of specifics
relevant to calculating temperatures consistently within simulations.

Generally, a consideration of groups and clusters must first define the extent
of clusters. Observationally, when these objects are not resolved, this is obtained
through taking some boundary according to a certain intensity decrease com-
pared to the ‘brightest’ point in the observed cluster. This leads to a ‘cylindrical’
slice through the cluster (along each line of sight). However, in simulations it
is conventional to calculate the signal from a sphere colocated with the dark
matter halo, with a certain radius, 𝑅Δ. These radii are defined as the radii con-
taining a certain averaged density, and thus mass 𝑀Δ, as will be explored further
in Section 1.5.3. For an isothermal, fully gravitationally heated sphere of gas, the
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virial temperature can then be defined as

𝑘B𝑇Δ =
𝐺𝑀Δ𝜇𝑚p

2𝑅Δ
, (1.26)

which can be used as a reference temperature. Here, 𝜇 is the mean molecular
weight of the plasma4.

However, any observed cluster temperature will be an averaged quantity,
due to the inherent variation of temperature and density within haloes. These
averages are always defined by the weighting procedure, which depends on
the observable at hand, and can be generically written as

⟨𝑇⟩ ≡
∫
𝑤𝑇 d𝑉∫
𝑤 d𝑉

, (1.27)

where 𝑤 represents the weighting. As discussed later in this section, for the
mass-weighted, 𝑦-weighted and spectroscopic-like temperatures one respec-
tively has 𝑤 = 𝑛, 𝑤 = 𝑛𝑇 and 𝑤 = 𝑛2𝑇−𝛼 with 𝛼 ≃ 0.75 and 𝑛 and 𝑇 are the electron
density and temperature, respectively.

1.5.1 SZ Temperatures

Compton-𝑦 parameter: As previously described, the classical thermal SZ (tSZ)
signal has an amplitude proportional to the Compton-𝑦 parameter. This Compton-
𝑦 parameter is proportional to the integrated electron pressure, 𝑃e,

𝑦 ≡
∫

𝑘B𝑇

𝑚e𝑐2 d𝜏 =
𝜎T

𝑚e𝑐2

∫
𝑃e d𝑙 =

𝜎T𝑘B

𝑚e𝑐2

∫
𝑛𝑇 d𝑙. (1.28)

Mass-weighted temperature: Eqs. (1.28) and (1.20) directly motivate the use of
a mass-weighted or 𝜏-weighted temperature:

𝑇m ≡
∫
𝑇e d𝑚∫

d𝑚
=

∫
𝑛𝑇e d𝑉∫
𝑛 d𝑉

, (1.29)

with 𝑚 the mass of the electron gas. Hence, the volume-integrated Compton-𝑦
parameter, 𝑌 , is

𝑌 =
𝜎T𝑘B

𝑚e𝑐2

∫
𝑛𝑇 d𝑉 ∝ 𝑀gas𝑇m (1.30)

where 𝑀gas is the total gas mass within the halo. From observations, this temper-
ature measure can be estimated by combining tSZ and X-ray measurements,
where the latter is used to obtain a mass/𝜏 estimate. However, since the X-ray
temperature does not have the same weighting (see below) and because non-
thermal pressure contributions can affect the inference, this may lead to a mass

4In Chapter 2, where this temperature is used, the mean molecular mass is set to 𝜇 = 0.59.
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bias (e.g., Arnaud et al., 2005; Nagai et al., 2007a; Battaglia et al., 2012b; Nel-
son et al., 2012; Shi et al., 2016a,b). It is also worth noting that a similar method
can be used by combining measurements from the kinematic SZ and tSZ effect
which would minimise this bias (e.g., Lim et al., 2020).

𝑦-weighted temperature: The relativistic corrections to the SZ effect lead to a
temperature-dependent modification to the spectral function, Δ𝐼𝜈 = 𝐼0𝑦 𝑓 (𝑥, 𝑇e).
However, since the temperature varies within each cluster, one can write an ex-
pansion about an arbitrary temperature pivot 𝑇 (Chluba et al., 2013; Remazeilles
et al., 2019). To second order in Δ𝑇 = 𝑇e − 𝑇 , this yields

Δ𝐼

𝐼0
≃ 𝑦 𝑓 (𝑥, 𝑇) + 𝑦 (1) (𝑇) 𝑓 (1) (𝑥, 𝑇) + 1

2
𝑦 (2) (𝑇) 𝑓 (2) (𝑥, 𝑇), (1.31)

where 𝑓 (𝑘) = 𝜕𝑘
𝑇
𝑓 (𝑥, 𝑇) and 𝑦 (𝑘) = ⟨(𝑇 − 𝑇)𝑘𝑦⟩, and the 𝑦 within the brackets,

and below, is a ‘local’ 𝑦 ∝ 𝑛𝑇 . Here, ⟨𝑋⟩ is indicating the cluster-averaged value.
This motivates a relativistic temperature, which removes the first-order correction
[i.e., 𝑦 (1) (𝑇) = 0] and we call the 𝑦-weighted temperature

𝑇y ≡
∫
𝑦𝑇 d𝑉∫
𝑦 d𝑉

=

∫
𝑛𝑇2 d𝑉∫
𝑛𝑇 d𝑉

. (1.32)

This 𝑦-weighted temperature is found to be systematically higher than the mass-
weighted and X-ray temperatures (Lee et al., 2020; Lee et al., 2022b, also Chap-
ters 2 and 3), indicating that, especially for the largest clusters in the Universe,
the relativistic corrections will be relevant and may bias cosmological inferences
if not modelled.

In Planck Collaboration et al. (2016b), the assumption that 𝑓 (𝜈, 𝑇e) ≃ 𝑓 (𝜈, 0),
or equivalently that the observed signals are well-modeled by the classical tSZ
distortion, was used. However, in Remazeilles et al. (2019), it was shown that
due to rSZ effect this can be insufficient. Relativistic corrections will lead to a
lower amplitude of the SZ signal at fixed 𝑦-parameter as well as broadening of
the SZ signal, which causes a miscalibration and underestimation of the true
Compton-𝑦 values for each cluster.

Higher order temperature moments: While using the 𝑦-weighted temperature
removes the first-order correction to the SZ signal, higher order terms propor-
tional to 𝑦 (𝑘) remain. We thus define the volumetric 𝑦-weighted temperature
moments5 as

𝑇
(𝑘)

y =

∫
Δ𝑇e

𝑘𝑦 d𝑉∫
𝑦 d𝑉

=

∫
𝑦(𝑇 − 𝑇y)𝑘 d𝑉∫

𝑦 d𝑉
. (1.33)

5In the work Chluba et al. (2013), a different definition for the SZ temperature moments
is used. Firstly, they take the mass-weighted temperature moments 𝑇 (𝑘)

m , so that their mo-
ments are weighted by 𝑛d𝑉 rather than 𝑦d𝑉 . Furthermore, they use dimensionless moments
𝜔 (𝑘) = 𝑇

(𝑘+1)
m /(𝑇m)𝑘+1. In the limit of many moments, the definitions in terms of 𝑇m and 𝑇y are

equivalent and yield the same result.
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It follows that 𝑇 (0)
y = 1 and 𝑇

(1)
y = 0. While we could theoretically expand to

arbitrarily many orders of Δ𝑇 , we will consider only the lowest-order correction,
i.e., 𝑇 (2)

y . We can see that this is closely related to the intrinsic variance of the
electron temperature within the cluster gas. To match the dimensionality of the
𝑦-weighted temperature, we will later discuss 𝜎(𝑇y) = (𝑇 (2)

y )1/2 instead, which pro-
vides a proxy for the standard deviation of temperature variation within clusters.

The higher order temperature moments further change the detailed shape
of the SZ signal, and thus may cause additional biases to SZ measurements if
omitted (Chluba et al., 2013). In Chapter 2, this standard deviation is shown to
be around ≃ 40% of the cluster temperature; however, overall this is likely to only
lead to a ≲ 0.5% correction in 𝑌 .

Applications to the Compton-𝑦 power spectra: In Remazeilles & Chluba (2020),
it is shown that to correctly calculate the tSZ power spectrum, the 𝑦-weighted
temperature profiles are necessary. They show that for the tSZ power spectrum
one requires a 𝑦2-weighted or 𝐶𝑦𝑦

ℓ
-weighted temperature as a pivot. This de-

mands that for each multipole ℓ, ⟨𝑦∗
ℓ
𝑦
(1)
ℓ

⟩ = 0, for an isotropic homogeneous,
spherical cluster. For an isothermal temperature profile for each cluster, this
yields the definition

𝑘𝑇
𝑦𝑦

e,ℓ =
⟨𝑘𝑇e(𝑀, 𝑧) |𝑦ℓ |2⟩

⟨|𝑦ℓ |2⟩
=
𝐶
𝑇e,𝑦𝑦
ℓ

𝐶
𝑦𝑦

ℓ

. (1.34)

This choice assures only second-order terms in Δ𝑇e remain in the theoretical tSZ
power spectrum, 𝐶𝑡𝑆𝑍

ℓ
(𝜈) ∝ |𝑦ℓ𝑚 |2. The outputs from Chapter 2 could be used to

improve the calculation by using explicit temperature profiles and their Fourier
transforms for the computation of the relativistic temperature power spectra.

1.5.2 X-ray Temperatures

X-ray emission, from hot clusters (𝑘B𝑇e ≳ 3 keV),6 is dominated by bremsstrahlung
radiation within the ICM, and as such has classically been modeled by the
emission-weighted temperature. This can be motivated from a simple consider-
ation of the X-ray surface brightness,

𝑆𝑥 =
1

4𝜋(1 + 𝑧)3

∫
𝑛2Λee(𝑇, 𝑍) d𝑙. (1.35)

Here, Λee(𝑇, 𝑍) is the X-ray emissivity measured by the instrument within the en-
ergy band used for the observation; 𝑧 is the cluster’s redshift and 𝑍 is the metal-
licity of the ICM.

It has been shown that, due to the non-isothermality of the gas, it is more ap-
propriate to use a modified weighting determined by fitting the X-ray spectrum
with a thermal emission model (Mazzotta et al., 2004; Vikhlinin, 2006). This has

6This cut off is in large part due to the the dominance of emission lines rather than
bremsstrahlung in the observed X-ray spectra below these temperatures.
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led to the spectroscopic-like temperature,

𝑇sl ≡
∫
𝑛2𝑇1−𝛼 d𝑉∫
𝑛2𝑇−𝛼 d𝑉

, (1.36)

with 𝛼 = 0.75 for high temperatures (𝑘B𝑇e > 3.5 keV). This matches well with ob-
servations from both Chandra and XMM-Newton. X-ray temperatures have also
been calibrated within simulations, determining the differences between differ-
ent X-ray temperatures and confirming the 𝑇sl weighting (e.g., Rasia et al., 2014).

1.5.3 Halo definition and redshift dependence

Radius definitions: As previously mentioned, to define the extent of groups and
clusters within our simulations, we consider spheres of a given radius, co-located
with the halo, i.e., centred on the minimum of potential. Then a halo of radius
𝑅Δ, is defined so that it contains the mass 𝑀Δ.

In this thesis, I use five different radii, in particular, 𝑅500c, 𝑅200c, 𝑅500m, 𝑅200m and
𝑅vir. For 𝑅Δc, these are defined in terms of an overdensity of Δ times the critical
density of the Universe, 𝜌crit, i.e.,

𝑀Δc =
4𝜋
3
𝑅3
Δc𝜌crit(𝑧)Δ, (1.37)

while the 𝑅Δm are defined in terms of overdensities of 𝜌mean, the mean density of
the Universe. The critical density and mean density are defined as,

𝜌crit ≡
3𝐻2

0
8𝜋𝐺

[
Ω𝑚(1 + 𝑧)3 +ΩΛ

]
=

3𝐻2
0

8𝜋𝐺
𝐸2(𝑧)

𝜌mean ≡
3𝐻2

0
8𝜋𝐺

[
Ω𝑚(1 + 𝑧)3] (1.38)

for a flat ΛCDM universe. This also implicitly defines 𝐸 (𝑧), which describes the
redshift evolution of the Hubble parameter. The virial radius 𝑅vir is defined by 𝜌crit

and Δvir calculated using the approximation in Bryan & Norman (1998), that is,
Δvir ≈ 102 at 𝑧 = 0.

In Chapter 2, clusters are mainly defined as being within the radius 𝑅500c the
radius used in most X-ray observations. In Chapter 3, instead they are defined
as being within 𝑅200c, a common proxy for the observational radii used in many
SZ calculations. It is also worth noting that in this thesis, the true (simulation) mass
is always used, rather than any proxy for the observed mass (i.e., the hydrostatic
mass), which could introduce observational biases (e.g., Nagai et al., 2007a;
Lau et al., 2009, 2013; Nelson et al., 2014; Shi et al., 2016b; Biffi et al., 2016; Barnes
et al., 2017a). As such, for direct comparison with any observational quantities,
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the associated mass bias must be considered; however, a detailed mass cal-
ibration based on mocks for specific observations is beyond the scope of this
thesis.

Redshift dependence: As the critical density has a redshift dependence, one
can accordingly expect an evolution of the cluster properties. A simple geo-
metric consideration and assumption of isothermality within the virialized sphere
would lead to a temperature dependence akin to

𝑇Δ ∝ 𝑀Δ/𝑅Δ. (1.39)

Then, by using the 𝜌crit redshift dependence, self-similar evolution is expressed as

𝑀Δ ∝ 𝐸2(𝑧)𝑅3
Δ
,

𝑇Δ ∝ 𝐸2/3(𝑧)𝑀2/3
Δ
,

𝑇Δ ∝ 𝐸2/5(𝑧)𝑌2/5
Δ
.

(1.40)

As such, any deviation from this evolution can be considered as being inherent
evolution of the temperatures, due to non-gravitational processes in the clusters
themselves. I highlight some of these trends in Chapters 2 and 3.

1.6 Thesis Overview

Chapter 2 examines the differences in 𝑇y, 𝑇m and 𝑇sl in the BAHAMAS and MACSIS

simulations. I computed the volume-averaged quantities to obtain Temperature-
mass, temperature–temperature and temperature–𝑌 scaling relations and to
examine the 𝑦-weighted temperature dispersion term. I consider the effects
of redshift and also examine the profiles of these temperature measures. Finally,
I briefly discuss the impact of these determinations on observational measure-
ments of 𝑌 , and cluster determinations for 𝐻0.

In Chapter 3, I extend the work of Chapter 2 to compare between simu-
lations, using the MAGNETICUM PATHFINDER, ILLUSTRISTNG and THE THREE HUNDRED

PROJECT simulations, alongside the BAHAMAS and MACSIS simulations. I restrict my
focus to volume-averaged temperatures, but using five different radial extents
for each halo. The redshift effects are again considered, and the variations
in resolution and feedback mechanisms between simulations are discussed in
relation to differences in the observed temperatures. Cross-simulation temper-
ature scaling relations are derived, and are compared to X-ray measurements
of cluster temperatures, as well as a discussion on the impact of these scaling
relations on future SZ measurements.

Chapter 4 focuses on the radio SZ signal, examining in detail the kinematic
terms and relativistic temperature corrections. Using the framework of an asymp-
totic expansion, I discuss how the radio SZ effect may be quickly and accurately
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calculated, and how variations within the radio background itself may lead to
differences in the observed radio SZ effect. The next steps required to carry out
observations of the radio SZ effect are also discussed.

Chapter 5 examines the potential effects of anisotropic photon and elec-
tron distributions and high-energy non-thermal electron populations on the ob-
served SZ signal. New analytic forms for anisotropic SZ scattering are presented
and explored for arbitrary multipoles in a spherical harmonic decomposition.
I then carry out a brief exploration of toy models for high-energy non-thermal
electron populations and their impacts on the SZ signal.

In Chapter 6, I move the discussion to general Compton scattering (instead
of the Doppler-dominated regime used for SZ calculations). A summary of the
isotropic Compton-scattering kernel is provided, and its behaviour in extreme
regimes is explored. New Compton-scattering kernels for anisotropic photon
populations are presented for low multipoles and their behaviour is discussed.

Finally, Chapter 7 concludes this thesis, and discusses future work to be car-
ried out on these subjects.
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Chapter 2

Relativistic SZ temperature scaling
relations of groups and clusters
derived from the BAHAMAS and
MACSIS simulations

This chapter is based on the published work, Lee et al. (2020). The code used
was modified from code written by David Barnes, but otherwise the work was
carried out by EL. The BAHAMAS simulations were used with the kind permission
of Ian McCarthy.

2.1 Introduction

The ICM is often modeled as an isothermal sphere of electrons, allowing for
simple mass-temperature relations to be derived. However, both direct mea-
surements and hydrodynamical simulations indicate that clusters are neither
isothermal nor spherical (e.g., Nagai et al., 2003; Vikhlinin et al., 2009b). As
such, instead of directly obtaining the thermodynamic temperature, we obtain
volume-averaged temperatures, weighted according to the physical process
they derive from (as described in Section 1.5).

The SZ distortion in groups and clusters is dominated by the thermal SZ (tSZ)
signal (Zeldovich & Sunyaev, 1969), which gives a redshift- and temperature-
independent spectrum. However, relativistic corrections at typical cluster tem-
peratures lead to both a broadening and drop in magnitude of this signal at
fixed 𝑦-parameter. The rSZ effect can be efficiently modeled with SZpack (Chluba
et al., 2012b, 2013); for this, accurate estimates for the 𝑦-weighted temperature
are required. The 𝑦-weighted temperature is also relevant to precise computa-
tions of the SZ power spectra and the interpretation of SZ data from Planck, as
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rSZ can cause biases in cosmological parameters such as 𝜎8 (Remazeilles et al.,
2019).

In this chapter, the BAHAMAS and MACSIS simulations are used to examine the
differences between three temperature measures; a proxy for the observed X-
ray temperature 𝑇sl (the spectroscopic-like temperature; Mazzotta et al., 2004);
a proxy for the Compton-𝑦 parameter, 𝑇m (i.e., the mass-weighted tempera-
ture); and finally a measure that accounts for the relativistic temperature cor-
rection to the tSZ distortion (rSZ), 𝑇y (the 𝑦-weighted temperature; Hansen, 2004;
Remazeilles et al., 2019). The latter in particular, so far, has not been studied sys-
tematically; as previously discussed, current observational measurements have
only attained low-significance measurements of the rSZ effect. However, due
to the growing sensitivity of planned and ongoing CMB experiments, rSZ is now
coming into reach, and future observations with the Simons Observatory and
CCAT-prime ought to be able to extract this signal more accurately.

Furthermore, precise SZ power spectrum calculations depend directly on the
clusters’ average pressure and 𝑦-weighted temperature profiles. Cluster pres-
sure profiles have been extensively studied using simulations (e.g., Nagai et al.,
2003; Battaglia et al., 2010, 2012a) and also have been calibrated against X-
ray observations (Arnaud et al., 2010; Planck Collaboration et al., 2013). The
𝑦-weighted temperature profiles again have not been studied directly but will
affect the precise shape of the relativistic temperature power spectrum (Re-
mazeilles et al., 2019), which could become a novel cluster observable (Re-
mazeilles & Chluba, 2020; Basu et al., 2019) for future CMB missions similar to
CORE (Melin et al., 2018) and PICO (Hanany et al., 2019). This chapter carries
out a comparative study of various temperature profiles with a particular focus
on obtaining a new prescription of the 𝑦-weighted temperature profiles.

The study is based on BAHAMAS (McCarthy et al., 2017, 2018) and MACSIS

(Barnes et al., 2017a), two giant hydrodynamical simulations generating over
14,000 haloes of masses between ≃ 1013 M⊙/ℎ to 4 × 1015 M⊙/ℎ with outputs at
redshifts of 𝑧 = 0, 0.5 and 1. With these, temperature-mass relations for each
temperature measure can be generated, alongside a detailed analysis of the
temperature profiles. To match with the work of Barnes et al. (2017a), the effects
of restricting our analysis to only the hot and relaxed subsets of clusters within
our samples are also considered.

Moreover, since clusters are not isothermal, further corrections to the ob-
served SZ signal must arise from averaging processes. This comes from the un-
derstanding that the distortions are caused by electrons of varying temperature
along the line of sight, and thus will not be completely modeled by a single tem-
perature. The first corrections to the signal can be found through a temperature
moment expansion (Chluba et al., 2012b, 2013) and is related to the disper-
sion of 𝑦-weighted temperatures within clusters, which is systematically studied
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TABLE 2.1: Cosmological parameters used in the BAHAMAS and MACSIS simulations.

Simulation ΩΛ Ωm Ωb 𝜎8 𝑛s ℎ†

BAHAMAS 0.6825 0.3175 0.0490 0.8340 0.9624 0.6711
MACSIS 0.6930 0.3070 0.0482 0.8288 0.9611 0.6777
† where ℎ ≡ 𝐻0/(100 km s−1 Mpc−1)

here. The results suggest that this dispersion scales at around ≃ 40% of the clus-
ter temperature, but overall leads to negligible corrections to the rSZ signal (see
Section 2.5.1).

The mathematical background behind this chapter has already been de-
scribed in Section 1.5. Later in this chapter (Section 2.5.2), I will also briefly discuss
the relevance of rSZ to determinations of 𝐻0 through SZ measurements (Cava-
liere et al., 1979; Birkinshaw et al., 1991; Hughes & Birkinshaw, 1998; Reese et al.,
2002), showing that it could lead to a systematic shift in the derived 𝐻0 values if
rSZ effects are neglected.

2.2 Simulations

This chapter uses a combined sample of clusters from the BAHAMAS and MACSIS

simulations. Over 14, 000 haloes with masses 𝑀500c ≥ 1013 M⊙ℎ−1 were obtained
from the BAHAMAS project (McCarthy et al., 2017). However, this provides a lim-
ited number of high-mass clusters, and so are supplemented by the compatible
MACSIS project (Barnes et al., 2017a), which generated 390 clusters with 𝑀 ≳ 1015

M⊙. These two projects were designed to match hydrodynamical properties
and use compatible cosmologies, as shown in Table 2.1.

While there is a small redshift discrepancy between the BAHAMAS sample at
𝑧 = 0.5 and the MACSIS sample at 𝑧 = 0.46, these are combined without cor-
rection as the redshift dependence of our quantities are slight. There is also a
mismatch in cosmological parameters, however, these are left unadjusted as
we believed the correction would be small.

It is also worth noting that to calculate the temperature measure in simu-
lations, the process must be discretised. That is, all of the weighted volume
integrals become weighted sums, recalling that 𝜇𝑚p 𝑛 d𝑉 = d𝑚 . Furthermore, all
particles with a temperature lower than 105.2 K are ignored as they make a neg-
ligible contribution to the total X-ray or SZ emission (cf., Barnes et al., 2017a), but
their inclusion can bias the measured temperature through weighting approxi-
mations. This will be discussed briefly in Chapter 3.

This section highlights the key properties of these two simulations and dis-
cusses the method involved in combining the samples. Two subsamples are also
used within this chapter – designed to examine the hot and relaxed clusters as
defined in Barnes et al. (2017a).
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2.2.1 BAHAMAS Simulation

The BAHAMAS simulation (McCarthy et al., 2017, 2018) is a calibrated version of
the model used in the cosmo-OWLS simulations (Le Brun et al., 2014). It con-
sists of a 400 Mpc/ℎ periodic box and, for the simulations used in this thesis, uses
cosmological parameters consistent with those from Planck 2015 (Planck Col-
laboration et al., 2016c).

The full BAHAMAS run has 2 × 10243 particles, yielding a dark matter mass of
𝑚DM = 4.5 × 109 M⊙/ℎ and initial baryon particle mass of 𝑚gas = 8.1 × 108 M⊙/ℎ.
The Plummer equivalent gravitational softening length was fixed to 4 kpc/h in
comoving units for 𝑧 > 3 and in physical coordinates thereafter. The simula-
tions were run with a version of the smoothed particle hydrodynamics code
p-gadget3, which was last publicly discussed in Springel (2005) but has since
been greatly modified to include new subgrid physics as part of the OWLS project
(Schaye et al., 2010). The feedback calibration was set to match the observed
gas mass fraction of groups and clusters and galaxy stellar mass function at 𝑧 = 0
(see McCarthy et al., 2017, for details).

2.2.2 MACSIS Simulation

The MACSIS project (described in detail in Barnes et al., 2017a) was developed
to extend the BAHAMAS simulations to higher-mass haloes. The sample was gen-
erated using a zoomed simulation technique from a large-volume Dark-Matter-
only simulation (a periodic cube with side length 3.2 Gpc). The cosmological
parameters match those from the Planck 2013 results combined with baryonic
acoustic oscillations, WMAP polarization and high multipole moments experi-
ments (Planck Collaboration et al., 2014a).

The MACSIS sample was then selected by finding all haloes with a Friends-
of-Friends (FoF) mass, 𝑀FoF > 1015 M⊙, and grouping them into logarithmically
spaced bins of width Δ log10(𝑀FoF) = 0.2. The bins with masses above 1015.6 M⊙

had less than 100 haloes each and all were selected. The other bins were further
subdivided, each into 10 logarithmic bins, from each of which 10 haloes were
randomly selected, obtaining a total of 390 haloes – this ensured the sample is
not biased to low masses by the steep slope of the mass function.

These selected clusters were then re-simulated using the zoomed simulation
technique (Katz & White, 1993; Tormen et al., 1997) to recreate the chosen sam-
ple at an increased resolution compared to the parent simulation. Both a Dark-
Matter-only and full-gas-physics resimulation was then carried out. The latter,
used in this work, had a dark matter mass of 𝑚DM = 4.4 × 109 M⊙/ℎ and gas par-
ticle inital mass of 𝑚gas = 8.0 × 108 M⊙/ℎ. The softening length was fixed as in the
BAHAMAS simulation. The simulations were again run with the same version of the
smoothed particle hydrodynamics code p-gadget3. The resolution and soften-
ing of the zoom re-simulations were deliberately chosen to match the values of
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TABLE 2.2: Selected halo counts with 𝑀500c > 1013 M⊙/ℎ, and with a mass cut be-
tween the BAHAMAS and MACSIS samples at the given values.

Redshift BAHAMAS MACSIS 𝑀500c,cut/M⊙

0 14333 295 6.03 × 1014

0.5/0.46𝑎 10791 263 3.55 × 1014

1 6344 186 2.00 × 1014

𝑎 that is, 0.5 for BAHAMAS and 0.46 for MACSIS.

the periodic box simulations of the BAHAMAS project. Barnes et al. (2017a) fur-
ther shows that the MACSIS clusters reproduce the observed mass dependence
of the hot gas mass, X-ray luminosity and SZ signal at redshift 𝑧 = 0 and 𝑧 = 1.

2.2.3 Combined Sample

We combine these simulations to allow for clear comparison with the work in
Barnes et al. (2017a), taking only haloes with 𝑀500c > 1013 M⊙/ℎ. Further we take
a mass cut at each redshift, as detailed in Table 2.2, above which we take only
MACSIS haloes and below which we take only BAHAMAS haloes. The final halo
counts at each redshift are detailed there. Haloes are identified in both simula-
tions through the friends-of-friends method described in McCarthy et al. (2017).
The centre of these haloes is taken to be the minimum of the local gravitational
potential, and any sub-haloes lying outside a given characteristic radius, 𝑅Δ, are
ignored.

2.2.4 Core-Excised Averages

It is a common technique in X-ray observations to exclude the central regions of
clusters to reduce the scatter in X-ray properties. These core-excised quantities
are generally considered to be better mass proxies (Pratt et al., 2009). Within
simulations, this can have an added effect of reducing the potential impact of
the central (more uncertain) physics inside the cores. In the work of Barnes et al.
(2017a), the excluded region is that of 𝑟 < 0.15𝑅500c.

In simulations, it would be possible to core-excise all of the volume averaged
quantities, not just the X-ray temperatures. However, in the BAHAMAS and MACSIS

samples, 𝑇sl has a large correction under core-excision – raising the tempera-
tures increasingly at higher masses, but undergoing a more complex increase
across the entire mass range – but both 𝑇y and 𝑇m undergo very minimal modifi-
cations (the mean corrections are (𝑇CE−𝑇full)/𝑇CE = −0.011±0.065 and −0.003±0.015
for each measure, respectively1).

1These are the values for the volume average over 𝑅500c; when averaged over 𝑅200c instead,
arguably a more applicable volume for SZ measurements, these corrections reduce to −0.010 ±
0.048 and −0.004 ± 0.009 respectively.
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TABLE 2.3: Selected Halo counts with 𝑀500c > 1013 M⊙/ℎ, and with a Mass cut be-
tween the BAHAMAS and MACSIS samples at the given values for the Hot and Re-

laxed samples.

Redshift BAHAMAS MACSIS 𝑀500c,cut/M⊙ 𝑀500c,min/M⊙

Hot Sample
0 271 295 6.03 × 1014 2.29 × 1014

0.5/0.46𝑎 87 263 3.55 × 1014 2.09 × 1014

1 4 186 2.00 × 1014 1.91 × 1014

Relaxed Sample
0 165 188 6.03 × 1014 2.29 × 1014

0.5/0.46𝑎 50 178 3.55 × 1014 2.09 × 1014

1 3 126 2.00 × 1014 1.91 × 1014

𝑎 that is, 0.5 for BAHAMAS and 0.46 for MACSIS.

As many SZ measurements are flux and resolution limited, taking core excised
values would be difficult in practice. Accordingly, in this chapter, the full volume
averages are used for 𝑇m and 𝑇y, but the core-excised values for 𝑇sl.

2.2.5 Hot and Relaxed Sub-samples

As previously noted, the models for the X-ray temperatures, all rely on continuum
emission, while at low cluster temperatures the effects of spectral lines begin to
seriously affect the observed X-ray spectra. Accordingly, following the analysis
of Mazzotta et al. (2004), we note that the spectroscopic-like temperature is
validated only for higher temperatures. This motivates the use of a Hot Sample,
where 𝑇sl is a more reliable proxy for the X-ray emission. To avoid biases, we
introduce a mass cut by finding the minimal mass that fulfills 𝑇sl(𝑀) ≥ 3.5 keV – this
ensures that the maximal temperature at a given mass is 𝑇sl(𝑀) ≳ 3.5 keV.2 The
resulting mass cuts and halo counts are summarized in Table 2.3.

The final sample is a relaxed subsample of these Hot clusters. Although there
are many ways to define a relaxed halo (see, e.g., Neto et al., 2007; Duffy et al.,
2008; Klypin et al., 2011; Dutton & Macciò, 2014; Klypin et al., 2016; Barnes et al.,
2017b), in this thesis we follow the criteria used in Henson et al. (2017), that is

𝑋off < 0.07; 𝑓sub < 0.1 and 𝜆 < 0.07,

with 𝑋off the distance offset between the point of minimum gravitational po-
tential in a cluster and its centre of mass, divided by 𝑅vir; 𝑓sub the mass fraction
within 𝑅vir that is bound to substructures and 𝜆 the spin parameter3 for all parti-
cles within 𝑅200c. It should be noted that, as in Barnes et al. (2017a), this is not a
small sample of the most relaxed objects, but instead a simple metric to remove
those that are significantly disturbed.

2In the work of Barnes et al. (2017a), they take the smaller sample of all clusters with 𝑇sl > 5 keV.
3Using the alternative expression for the spin parameter from Bullock et al. (2001).
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FIGURE 2.1: A comparison of the cylindrically-projected temperatures through a
range of clusters at 𝑧 = 0, relative to 𝑇500c for that cluster. These projections are taken
within spheres of radius 𝑅200c about the cluster centre of potential. From left to right
we see 𝑇sl, 𝑇m and 𝑇y, and from top to bottom clusters of various masses. Since
these are just the projections for single clusters, they are subject to variations from
the median expected behaviours. To guide the eye, on each plot a dashed line at
𝑅500c has been drawn, alongside a hatched region at 0.15 × 𝑅500c, which would be
the core-excised region. These clusters have been chosen with 𝑇sl,500 > 3.5 keV so

that it is an appropriate proxy for the X-ray temperature.
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2.3 Cluster Temperature Scalings

To understand the cluster-wide, i.e., volume-averaged temperatures, it is instruc-
tive to first consider the contributions to each temperature measure, given by
each part of the cluster. These lead to variations between the temperature
measures calculated over spheres of radius 𝑅500c (as typical for X-ray measure-
ments) and 𝑅200c (a proxy for the viral radius and arguably more applicable for
SZ measurements). In this chapter, all the figures are presented with respect to
the 𝑅500c sphere, but Appendix A contains the fits tabulated within both regions.

2.3.1 Causes for differences in temperature measures

From an illustrative point of view, the differences between the volume-averaged
temperature measures can be examined from the projected temperatures through
a selection of clusters. These, as can be seen in Figure 2.1, give an indicative
understanding of various features (e.g., shocks, outflows, sub-haloes and fila-
mentary behaviours that might exist within haloes).

Generally, it appears that 𝑇y > 𝑇m > 𝑇sl – an aspect clearest in the features,
but also evident in the slightly brighter overall colours of the halo from left to right
across the figure. It is also the case that at larger radii, 𝑇y is very susceptible to
the structures within the haloes. This can be understood fairly simply: 𝑇sl depends
on the square of the local density, so in regions of high density – i.e., the core of
the cluster or in dramatic substructures – high temperature regions will be clearly
visible; however, where the density falls – i.e., warm diffuse gas – the temperature
is greatly suppressed. 𝑇y on the other hand, is weighted by the local pressure (it
depends on both the local temperature and density) so highlights shocks and
outflows. This exacerbates the difference in observed temperatures in the outer
regions of haloes, e.g., 𝑅500c → 𝑅200c which are minimally probed by the X-ray
temperatures (as reflected in 𝑇sl). 𝑇m in general, lies somewhere between the
other two measures.

2.3.2 The effect of averaging over volumes of radii 𝑅500c or 𝑅200c

It is important to determine the difference between averaging over spheres of
radii 𝑅200c and 𝑅500c. X-ray measurements, in particular, are almost always taken
over 𝑅500c, and as such 𝑅500c values are those commonly used in the literature.
However, it can be argued that 𝑅200c should also be widely considered. Since
𝑅500c generates a smaller region, it encapsulates only the hotter core with less
of the cooler outskirts of the cluster. As such, regardless of the temperature
measure, it returns a higher temperature than that obtained within 𝑅200c.

This can be seen graphically in Figure 2.2. Here, the fractional variation be-
tween 𝑅500c and 𝑅200c values has been plotted. These appear to be predomi-
nantly redshift independent; while there are variations between each redshift,
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demonstrate the best fits (discussed in Section 2.3.3) for the same.
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they are all within the intrinsic scatter. Secondly, for all measures the differences
between the two measures become smaller at higher masses. This may in fact
be an averaging effect due to the distribution of temperatures in clusters (see,
Section 2.4), and the mass-dependent changes to the profiles and thus the fall-
off of temperatures nearer the outskirts of clusters. These will lead to the aver-
aged effects that can be seen here.

In general, the changes to 𝑇m are the most acute, followed by 𝑇sl, with 𝑇y un-
dergoing the smallest corrections. However, this is still a sizeable effect: ≃ 10% at
𝑀200c = 1014 M⊙ (≃ 20% for 𝑇m). Indicating that when clusters are unresolved, this
effect should be considered for SZ measurements as the extent of the observed
cluster may be closer to 𝑅200c than 𝑅500c and as such, using the temperatures
within 𝑅500c will lead to misestimations of the ‘observed’ cluster temperature.

For the rest of this chapter, 𝑅500c is used to reproduce the results commonly
cited in cluster papers – the analysis has also been carried out across a radii of
𝑅200c with few qualitative variations. The full tabulated numerical results can be
found in Appendix A.

2.3.3 Temperature-mass scaling relations

In Figures 2.3 and 2.4, the temperature mass scaling relationships for the three
temperature measures at each redshift are displayed. Figure 2.3 shows the red-
shift dependence of each temperature measure individually, relative to self-
similar scaling – i.e., scaling out 𝐸 (𝑧)2/3; while Figure 2.4 shows the the results
divided through by 𝑇m, the mass weighted temperature, so that the variations
between the three measures are more visible. It can be seen immediately that
the spread in the data is far larger for 𝑇sl than for 𝑇y or 𝑇m. This furthers the com-
mon observation that the SZ signal, 𝑌SZ, provides a tighter mass proxy than the
X-ray signal.4

In Figure 2.3, the redshift variation of each temperature measure is similar to
the self-similar relation – i.e., 𝑇 ∝ 𝐸 (𝑧)2/3. In particular, while with increasing red-
shift 𝑇y falls a little at low masses and has a slightly steeper mass dependence,
overall the 𝑦-weighted temperature is consistent within the intercluster variation
with self-similar evolution. The mass-weighted temperature shows more depar-
tures from self-similarity, and 𝑇sl shows the greatest departure from this 𝐸 (𝑧)2/3

scaling. The spectroscopic-like temperature both falls in magnitude and has in-
creasing curvature, indicating that at the highest masses, the differences under
redshift evolution are magnified.

From a physical point of view, this can be understood since at higher red-
shifts, the haloes have had a shorter cooling time, leading to denser cooler gas,
and thus a lower 𝑇sl. However, the pressure of the gas is largely fixed to match

4It should be noted however, that this has many factors, and generally relies on the accurate
calibration of the SZ mass relation.
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the potential wells of the haloes themselves (as they are roughly in hydrostatic
equilibrium) and reduces the redshift dependence of 𝑇y, which is less affected
by the evolution of the clusters themselves.

In Figure 2.4, 𝑇y has a larger magnitude than 𝑇m and 𝑇sl, while the latter
two are at points consistent, with 𝑇m higher at both higher and lower masses.
This may be a consequence of the calibration scheme used in defining the
spectroscopic-like temperature, which is focused on clusters at low redshifts with
masses 𝑀500c ≃ 1014 M⊙, but more work would have to be done to fully analyse
this effect. Furthermore, there are hints of a strong cluster by cluster correla-
tion in the values of 𝑇y and 𝑇m, from the ≳ 10 − 20% shift between these two
values. With respect to 𝑇sl there is a correction for 𝑇y of ≳ 10% (or ≳ 40%) at
𝑧 = 0 (𝑧 = 1), increasing greatly to both higher and lower masses with equality
around 2.3 × 1014 M⊙ (1.8 × 1014 M⊙). It can also be seen that the differences
between these three temperature measures increases strongly with redshift. At
𝑧 = 0, for instance, 𝑇m and 𝑇sl lie within each other’s intrinsic scatters, while by
𝑧 = 1 they are clearly separated. This means that accounting for these correc-
tions will become even more important when considering distant clusters, which
are typically those probed more easily through the SZ signal.

We found in general that our data is well modelled by a three-parameter fit,
which corresponds to a quadratic equation in log-log space. In this chapter,
this fit is expressed as

𝐸 (𝑧)−2/3 𝑇 = 𝐴

(
𝑀

𝑀fid

)𝐵+𝐶 log(𝑀/𝑀fid) .
keV, (2.1)

where 𝑀fid = 3 × 1014 ℎ−1M⊙. Hence, a self similar fit around 𝑀 ≃ 𝑀fid, would be
given by 𝐵 = 2/3 and 𝐶 = 0. By simply examining these fit values,5 as tabulated in
Table 2.4, the differences between the three temperature measures are imme-
diately visible. Here, is also tabulated the scatter about the best fit relation by
calculating the root-mean-squared dispersion across the haloes according to

𝜎log10 𝑇 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

[
log10

(
𝑇𝑖

𝑇fit

)]2
, (2.2)

where 𝑖 indexes all the haloes at a given redshift and 𝑇fit is the value given by
the best fit at the mass, 𝑀𝑖, associated with the halo.

In particular, as previously observed in Figures 2.3 and 2.4, 𝑇y appears to be
systematically higher than 𝑇m, which itself lies above 𝑇sl. The gradients of these
three temperature measures seem to match this same pattern. Finally we note
that 𝑇y always has a positive curvature, while 𝑇sl has a strong negative curvature
and 𝑇m seems to develop mild curvature at higher redshifts. Further, none of

5These fits are for the median of the distributions, in Appendix A the fits to the 84 and 16 per-
centiles of the data set can be found to clarify the cluster-to-cluster spread in temperatures.
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TABLE 2.4: Best fit values for the medians of each temperature measure at each
redshift. The errors are determined through bootstrap methods. The fit parameters

correspond to those described in Eq. (2.1).

𝑀500c 𝐴 𝐵 𝐶 ⟨𝜎log10 𝑇⟩
𝑧 = 0.0
𝑇y 4.763+0.015

−0.015 0.581+0.003
−0.002 0.013+0.001

−0.001 0.2707 ± 0.0014
𝑇m 4.248+0.013

−0.012 0.565+0.003
−0.002 0.002+0.001

−0.001 0.2861 ± 0.0012
𝑇sl 4.295+0.023

−0.025 0.514+0.012
−0.013 −0.039+0.005

−0.005 0.323 ± 0.005

𝑧 = 0.5
𝑇y 4.353+0.019

−0.020 0.571+0.006
−0.006 0.008+0.002

−0.002 0.2521 ± 0.0016
𝑇m 3.702+0.013

−0.013 0.546+0.005
−0.004 −0.006+0.002

−0.001 0.2523 ± 0.0019
𝑇sl 3.474+0.027

−0.025 0.483+0.023
−0.028 −0.051+0.008

−0.010 0.350 ± 0.007

𝑧 = 1.0
𝑇y 3.997+0.021

−0.020 0.593+0.004
−0.004 0.009+0.001

−0.001 0.2438 ± 0.0016
𝑇m 3.237+0.015

−0.017 0.558+0.004
−0.005 −0.005+0.001

−0.001 0.2142 ± 0.0018
𝑇sl 2.754+0.036

−0.035 0.478+0.015
−0.014 −0.053+0.004

−0.004 0.401 ± 0.004

these are consistent with hydrostatic equilibrium scalings, which would have 𝐵 =

2/3 and 𝐶 = 0. While 𝑇y has the closest gradients to this value for hydrostatic
equlibrium, even at the highest cluster masses the curvature is not sufficient for
𝑇y to match this scaling.

2.3.4 Covariance of Fits

It is now instructive to understand the spread of cluster temperatures about the
best fits of the temperature measures as displayed in the previous section. Fig-
ure 2.5 shows the covariances at 𝑧 = 0 of the quantity log10(𝑇data(𝑀)/𝑇fit(𝑀)) for
each of the three temperature measures. Here 𝑇fit(𝑀) is the tabulated best-
fit value, while 𝑇data(𝑀) refers to the calculated temperature measure for each
cluster. We find that this behaviour is replicated well for 𝑧 = 0.5 and 1.0.

From the diagonal part, one can immediately see that, while 𝑇m is almost
normally distributed in the log-log space (that is, log-normally), the other two
temperature measures have visible skews. This is most apparent for 𝑇sl, which
skews to higher temperatures with a long tail to lower temperatures, while the
𝑦-weighted temperature measure seems only gently skewed to lower tempera-
tures – thus being almost log-normally distributed in the log-log space.

Furthermore, from the lower triangle we can see the correlations between
the temperature measures within each cluster – in particular the strong interde-
pendency between 𝑇y and 𝑇m. This indicates that on a cluster by cluster ba-
sis the difference between the 𝑦-weighted and mass-weighted temperatures
are maintained. However, the spectroscopic-like temperature seems to be dis-
tributed independently of the other two measures.
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This strong correlation in the values of 𝑇m and 𝑇y motivates the exploration
of temperature-temperature scaling relations – and moreover, since these two
temperatures define the complete SZ signal, they motivate a volume averaged
𝑌−𝑇y scaling relation. This allows for a self calibration of the relativistic corrections
to the SZ signal, from measurements of the SZ signal itself.

2.3.5 Mass dependence of the quality of the fits

Although Figure 2.5 displays the skewness of the quality of fits as a whole, across
all the data, it is instructive to consider how the quality of the fit varies over the
mass range of the samples. This can be seen graphically in Figure 2.6, where
the contours are plotted for the percentiles associated with what would be the
0.5, 1, 2 and 3𝜎 confidence regions were the data normally distributed against
its line-of-best-fit.

The first thing to note is that there is a change over in dataset at 𝑀500c ≃
1015 M⊙, on the left is the BAHAMAS data and on the right the MACSIS. This is of
note simply because the data in the MACSIS set is less dense than that in the
BAHAMAS set, and this will contribute to the increased errors we see to the right
of the graph – the errors are driven by lack of data as much as by the intrinsic
scatter.

Secondly, especially in 𝑇y, there are some anomalous results at low masses,
skewing the 2 and 3𝜎 contours dramatically. In 𝑇m, the data is in fact roughly
normally distributed across the entire mass range, with roughly constant errors
– this skew at low masses appears to be the only changing factor. In fact, the
3𝜎 region outside of this skew is, if anything, underrepresented compared to a
normal distribution – that is, indicating smaller tails in the distribution than would
be expected. This may, however, be simply a limitation in the number of clusters
in each mass bin to be considered.

In 𝑇y, however, this low mass skew is continued strongly in the 2𝜎 region but
is still present to an extent across the entire range. This corroborates the long
tail seen in the distribution of 𝑇y in Figure 2.5 – however, it is worth noting that
the skew appears to decrease to higher masses. A similar, but opposite, phe-
nomena is seen in the 𝑇sl contours, were we see a persistent and strong skew in
the data to lower temperatures. This indicates that although the fits model the
median well and, even the 1𝜎 variations, it would be inappropriate to consider
this data as normally distributed.

2.3.6 Temperature-temperature scaling relations

An alternative to temperature-mass relations are temperature-temperature scal-
ing relations. These lead to a predominantly mass independent conversion be-
tween temperature measures. We see that a similar fitting formula [to that in
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TABLE 2.5: Best-fit values for the medians of each temperature measure against
𝑇500c at each redshift. The errors are determined through bootstrap methods. The fit

parameters correspond to those described in Eq. (2.3).

𝑇rel = 𝑇500c 𝐴 𝐵 𝐶

𝑧 = 0.0
𝑇y 4.812+0.014

−0.013 0.889+0.003
−0.003 0.041+0.002

−0.002
𝑇m 4.289+0.011

−0.011 0.873+0.004
−0.004 0.021+0.002

−0.002
𝑇sl 4.293+0.023

−0.022 0.825+0.018
−0.018 −0.049+0.010

−0.011

𝑧 = 0.5
𝑇y 4.964+0.021

−0.019 0.868+0.006
−0.005 0.026+0.004

−0.003
𝑇m 4.247+0.013

−0.013 0.835+0.005
−0.004 −0.006+0.003

−0.002
𝑇sl 4.039+0.021

−0.022 0.804+0.010
−0.011 −0.093+0.005

−0.006

𝑧 = 1.0
𝑇y 5.108+0.024

−0.024 0.875+0.005
−0.005 0.020+0.003

−0.003
𝑇m 4.196+0.017

−0.016 0.846+0.004
−0.006 −0.010+0.003

−0.003
𝑇sl 3.681+0.029

−0.029 0.807+0.015
−0.015 −0.118+0.009

−0.009

Eq. (2.1)] can be used, replacing 𝑀fid with 𝑇fid = 5 keV,

𝑇 = 𝐴

(
𝑇rel
𝑇fid

)𝐵+𝐶 log(𝑇rel/𝑇fid) .
keV. (2.3)

Since the cluster temperature is often a good mass proxy I will not discuss
these fits in much detail here as they take a very similar form to those against
the mass, although the full tables fitting the temperature relations with respect
to 𝑇rel = 𝑇m and 𝑇Δ can be found in Appendix A. While it is true that, due to the
covariance of 𝑇y and 𝑇m, the spread in the fits of 𝑇y against 𝑇m are smaller than
those against 𝑀500c, this effect is minimal.

A shortened selection of the fits against 𝑇500c can be found in Table 2.5. First, it
is clear that 𝑇y is always the closest temperature measure to 𝑇500c, the tempera-
ture assuming the cluster is an isothermal sphere (agreeing with Kay et al., 2008).
However, there is significant curvature in all of these fits alongside the gradient
of the temperature measures being significantly lower than that for 𝑇500c, indicat-
ing further that the assumption of isothermality often used in SZ cluster calcula-
tions is inaccurate. In fact, while 𝑇500c appears to be an overestimate of 𝑇y for
the most massive clusters, it becomes an underestimate for lower-mass, cooler
clusters, particularly at higher redshifts. This is likely due to the increased AGN
feedback effects driving gas from these lower-mass systems. This would lead
to a decreased 𝑇500c (which is mass dependent) compared to the 𝑦-weighted
temperature.
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TABLE 2.6: Best-fit values for the medians, 84 and 16 percentiles of 𝑇y to 𝑌500c at each
redshift. The errors are determined through bootstrap methods. The fit parameters

correspond to those described in Eq. (2.4).

𝑇𝑌 − 𝑌500c 𝐴 𝐵 𝐶

𝑧 = 0.0
median 4.784+0.022

−0.019 0.3363+0.0026
−0.0031 0.0118+0.0005

−0.0006
84 5.203+0.026

−0.024 0.3276+0.0017
−0.0020 0.0120+0.0005

−0.0005
16 4.415+0.047

−0.024 0.3438+0.0026
−0.0030 0.0120+0.0007

−0.0015

𝑧 = 0.5
median 5.370+0.020

−0.020 0.3358+0.0017
−0.0010 0.0106+0.0003

−0.0002
84 5.860+0.027

−0.028 0.3218+0.0015
−0.0016 0.0090+0.0003

−0.0003
16 4.954+0.016

−0.016 0.3508+0.0009
−0.0008 0.0128+0.0002

−0.0002

𝑧 = 1.0
median 6.250+0.042

−0.038 0.3429+0.0044
−0.0037 0.0090+0.0009

−0.0007
84 6.656+0.053

−0.062 0.3329+0.0071
−0.0058 0.0096+0.0015

−0.0011
16 5.784+0.042

−0.040 0.3579+0.0051
−0.0048 0.0107+0.0009

−0.0008

2.3.7 Volume-averaged Y relations

As already noted, 𝑇m forms a strong proxy for the volume-averaged 𝑦-parameter,
𝑌 . Since this relates to the amplitude of the SZ signal, while the shape is depen-
dent on 𝑇y, it is instructive to consider the scaling of 𝑇y with respect to 𝑌 . This
gives us a self-calibrated scaling relationship to determine the rSZ signal. We use
a fit similar to equations (2.1) and (2.3),

𝑇y = 𝐴

(
𝑌

𝑌fid

)𝐵+𝐶 log(𝑌/𝑌fid) .
keV, (2.4)

choosing 𝑌fid = 0.00003 Mpc2. These results are shown in Table 2.6 – we also tab-
ulate the 𝑌 -𝑀 relationship in Appendix A. It is interesting to observe that while
these are 3-parameter fits, there is significantly less curvature in all of these fits
than is seen in the mass-temperature and temperature-temperature relations.
Further, from Eq. (1.40), we recall self similarity, 𝑇 ∝ (𝑌 )2/5, and in Table 2.6, we
note that 𝐵 lies close to the expected value 𝐵 = 2/5.

While there is no explicit redshift dependence in these fits, there is distinct
redshift evolution in the fit parameters; in particular in the normalisation factor,
𝐴, which seems to almost scale ∝ 𝐸 (𝑧)1/2 (similar to, but above, the self-similar
prediction), increases dramatically towards higher redshifts. There is a similar
but smaller decrease in the gradient to higher redshifts. However, overall this
dependence shows that at higher redshifts it becomes increasingly important
to consider the relativistic corrections to the SZ signal.
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TABLE 2.7: Best-fit values for the medians of each temperature measure for the Hot
and Relaxed Samples against 𝑀500c at each redshift. The errors are determined
through bootstrap methods. The fit parameters correspond to those described in

Eq. (2.1), taking 𝐶 = 0.

Hot Sample Relaxed Sample
𝑀500c 𝐴 𝐵 𝐴 𝐵

𝑧 = 0.0
𝑇y 4.693+0.028

−0.028 0.633+0.009
−0.010 4.635+0.035

−0.036 0.626+0.010
−0.010

𝑇m 4.174+0.023
−0.025 0.598+0.019

−0.010 4.147+0.033
−0.034 0.593+0.019

−0.013
𝑇sl 4.117+0.064

−0.053 0.531+0.043
−0.055 4.206+0.049

−0.051 0.531+0.051
−0.014

𝑧 = 0.5
𝑇y 4.335+0.030

−0.027 0.597+0.017
−0.016 4.329+0.040

−0.034 0.598+0.018
−0.016

𝑇m 3.677+0.018
−0.021 0.561+0.011

−0.011 3.681+0.021
−0.024 0.561+0.011

−0.011
𝑇sl 3.433+0.034

−0.033 0.457+0.023
−0.099 3.445+0.036

−0.037 0.455+0.025
−0.098

𝑧 = 1.0
𝑇y 3.984+0.029

−0.030 0.611+0.016
−0.016 3.974+0.035

−0.035 0.610+0.020
−0.018

𝑇m 3.235+0.019
−0.023 0.586+0.008

−0.011 3.228+0.023
−0.024 0.581+0.012

−0.013
𝑇sl 2.745+0.036

−0.049 0.469+0.017
−0.037 2.767+0.036

−0.043 0.473+0.017
−0.027

2.3.8 Hot and Relaxed Samples

Finally, it is useful to consider the behaviors of the Hot and Relaxed samples, as
defined in Section 2.2.5, for which the median fits of the 𝑇 −𝑀 relation are found
in Table 2.7. There are fits for both the hot and relaxed samples with a simple
two-parameter model,6 or equivalently, we have taken Eq. (2.1), setting 𝐶 = 0.

While there are variations in the medians between the Hot and Relaxed sam-
ples, we also find that the 16 and 84 percentiles are wider for the Relaxed sam-
ple, so that these two samples give fits that lie within each others cluster-to-
cluster variance. Further, they agree well with the three-parameter combined-
sample fits for both 𝑇m and 𝑇y, though the fit can be found to be less appropri-
ate for the spectroscopic-like temperature due to the strong curvature in the 𝑇sl

combined-sample fits.
It is also interesting to note that while the larger 68% error region in the Re-

laxed sample for 𝑇y and 𝑇m seems to be well centred over the errors predicted
by the complete sample fits, for 𝑇sl these extend to higher temperatures, indi-
cating that Relaxed clusters are more likely to have higher spectroscopic-like
temperatures. This can be understood as 𝑇sl is largely driven by the denser cen-
tral region, and since more spherical (i.e., more relaxed) clusters are more likely
to have a larger region for the same given mass, they are likely to lead to higher
observed values for 𝑇sl.

6Since we ultimately find little difference between these values and those for the whole com-
bined sample, these two-parameter fits allow for comparison with other fits found in previous
studies.
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2.3.9 𝑦-weighted Temperature Dispersion

As noted in Section 1.5, the second moment of the 𝑦-weighted temperature,
𝑇
(2)

y , is a measure of the variance of the temperature distribution within the clus-
ter.7 Here, we discuss 𝜎(𝑇y), the standard deviation and its comparison to 𝑇y.
Under a temperature moment expansion about 𝑇y, the leading-order correc-
tion is proportional to [𝜎(𝑇y)]2 = 𝑇

(2)
y .

Figure 2.7 shows 𝜎(𝑇y)/𝑇y and it is evident that, while there is a small vari-
ation of the values across the mass range, they are well approximated by a
power law (i.e., straight lines in the log-log space) – which are tabulated in Ap-
pendix A. Generally, at higher redshifts, 𝜎(𝑇y)/𝑇y increases and, at all redshifts,
it increases slightly with increased mass, approximately scaling as 𝜎(𝑇y)/𝑇y ≃
0.39 (1 + 𝑧)0.34 [𝑀500c/𝑀fid]0.022. Since this redshift evolution closely matches the
evolution of 𝑇y with respect to 𝑇500c, it may be that 𝜎(𝑇y) is mainly dependent
on 𝑇500c or equivalently the potential well of the cluster rather than the specifics
of the substructure. That is, the variation in 𝜎(𝑇y)/𝑇y with redshift with respect
to mass, is dominated by the near self-similar redshift evolution of 𝑇y. It is also
possible that there is an effect of clusters thermalising over time, since this would
explain the increase in variance for larger clusters and clusters at higher red-
shifts. However, since there are no clear differences between the dispersion of
the relaxed sample and the combined sample there is little evidence either way.
In Section 2.4.3, the radial profiles of these values will show that these clusters see
almost constant values across the whole width of the clusters, so that the overall
dispersion is indicative of the dispersion at each point in the cluster.

Generally the data spread is small, with around ≃ 68% of the values for
𝜎(𝑇y) lying at around 40% of the overall temperature. However, we do see a
characteristic small dip in the values of 𝜎(𝑇y) in the middle of our mass range
(≃ 2 − 3 × 1014 M⊙ at 𝑧 = 0). One possibility is that as the masses increase from
≃ 1013 − 1014 M⊙, the systems become more resilient to AGN feedback due to
the increased potential well. As the masses increase further, the temperature
variance is likely to increase again, due to the clusters still thermalising (i.e., they
are still forming). The exact details however are not explored in this thesis.

2.4 Cluster temperature profiles

This section discusses various cluster temperature profiles. To find analytic av-
erages of the temperature profiles (to discern between each in a quantitative

7This is different from the distribution between clusters at each temperature, and as such is a
measure of the intrinsic temperature variation within clusters rather than the variation between
different clusters.
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manner), I use the fits suggested by Vikhlinin et al. (2006)

𝑇tot(𝑟) = 𝑇0 𝑡cool(𝑟) 𝑡 (𝑟)

𝑡cool(𝑟) =
𝑥cool + 𝑇min/𝑇0
𝑥cool + 1

𝑡 (𝑟) =
𝑥−𝑎𝑡

[1 + 𝑥𝑏𝑡 ]𝑐/𝑏
.

(2.5)

This model has eight fit parameters {𝑇0, 𝑟cool, 𝑎cool, 𝑇min, 𝑟𝑡 , 𝑎, 𝑏, 𝑐}, and requires
fitting data within the ‘core-excised region’ to allow the fit to access the central
cooler region. It is also necessary to define 𝑥𝑡 = 𝑟/𝑟𝑡 and 𝑥cool = (𝑟/𝑟cool)𝑎cool . 𝑡cool(𝑟)
accounts for the temperature decline of the central region of most clusters,
while 𝑡 (𝑟) acts as a broken power law with a transition region, to model the area
outside this central region.

There are two methods, I will explore, of generating profiles from the simu-
lations, each intuitive in different respects. From a simulation perspective, it is
natural to consider a full radial profile, where the particles are binned in spheri-
cal shells from the centre of the cluster, and volume average the particles within
each bin. However, from an observational standpoint, it is perhaps more rele-
vant to consider the line-of-sight profiles, which I will here refer to as cylindrical
profiles. In the next section, we will discuss these radial profiles, as they are those
normally discussed of the literature, first and then briefly examine the cylindrical
profiles.

In most observational work, the observed line of sight profiles are depro-
jected to generate radial profiles, and radial profiles are compared in the lit-
erature. However, an examination of the cylindrical profiles shows that care
must be taken in this deprojection process, as the different weighting in each
temperature measure, lead to complicated variations in the behaviour of the
radial and cylindrical profiles.

2.4.1 Radial Profiles

To account for any potential mass dependence of the profiles, the clusters are
first sorted into 5 mass bins. Three of these are graphically displayed in Figure 2.8.
The 5th bin (lowest panel of figure) corresponds to the selection of clusters from
the MACSIS sample, hence the uneven bin width. A corresponding figure to
show the redshift evolution of each temperature profile is found in Figure 2.9.
This displays the clusters with 13.5 ≤ log10(𝑀500c/M⊙) ≤ 14, but is indicative of the
variation of all mass bins. The median fits of all of these quantities can be found
in Appendix A.

Firstly, it is evident in Figure 2.8 that 𝑇y is once again systematically larger than
𝑇m which is in turn larger than 𝑇sl. Further, this increase appears systematically
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FIGURE 2.8: The radial profiles of the three different temperatures across 3 different
mass bins – note here 𝑚500 = 𝑀500c/M⊙. As is standard, the temperatures have all
been scaled by 𝑇500c for the same cluster, and the radii have been scaled by 𝑅500c.
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the Vikhlinin model.
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otherwise arranged as in Figure 2.8. Recall also that 𝑇500c is defined to be redshift
dependent, so is removing the 𝐸2/3 (𝑧) dependence. Note, that these are the same
clusters traced over the redshift evolution, so they would appear to have lower

masses at higher redshifts.
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larger at larger radii. This is in agreement with our previous observations that the
𝑦-weighted temperature is more attuned to the affects of larger radii.

These differences also appear enhanced at higher masses (see also, Hen-
son et al., 2017; Pearce et al., 2020). For instance, at higher masses 𝑇sl devel-
ops a defined downwards turn between 𝑅500c and 𝑅200c where the density falls
and thus the contribution to the temperature drops markedly. As the masses
increase, the initial peak in the temperature tends to shift to smaller radii; that
is that the cooled central region of clusters (which generates the cooling flow)
becomes proportionally smaller for higher-mass clusters. This indicates that the
highly variable inner regions of the clusters will have a smaller effect on the over-
all temperatures in higher-mass clusters than smaller.

Considering the redshift evolution as seen in Figure 2.9, all of the temperature
measures appear to evolve self-similarly in the outskirts of clusters (𝑟 ≳ 𝑅500c) while
the interior appears to heat up comparatively from high to low redshift. This
indicates that there is some true increase in temperature in the center of clusters
not explained by self-similar evolution, as redshift decreases. The differences
between the three temperature measures are very small, largely dominated by
the overall scaling of the three volume-averaged temperature measures.

2.4.2 Cylindrical Profiles

To create these cylindrical profiles, for each cluster the central sphere of radius
𝑅200c was first extracted from the simulation,8 and then cylindrical shells were
sliced from this sphere along six maximally spaced lines of sight through the core
of the cluster. These six lines-of-sight cylindrical profiles were then averaged, to
reduce the influence of inhomogeneity between the viewing angles in each
cluster. One would in general expect the cylindrical profiles to have similar qual-
ities to the radial profiles, albeit smoothed.

This behaviour can be seen in Figure 2.10. Here, once again 𝑇y lies at system-
atically higher temperatures than the other temperature measures. Curiously,
however, (especially at lower masses) 𝑇m and 𝑇sl become somewhat indistin-
guishable. However, at larger radii, 𝑇m does always rise above 𝑇sl which could
lead to the trends in the observed volume averages. This is a result of the associ-
ated weightings in each temperature measure. 𝑇sl has a 𝑛2

e dependence, which
in line-of-sight averages will substantially upweight the central hotter regions of
the cluster making the overall line of sight appear far greater relative to 𝑇m than
one would naively assume from the radial profiles. It is also interesting to note
that core-excision removes a dramatic turn down observed in the 𝑇sl profile for
higher-mass clusters, which is not seen as clearly in the other two temperature
measures.

8This causes some lack of precision very close to these edges as the number of particles in
each bin becomes small.
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different mass bins. This figure is arranged as in Figure 2.8.
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Under redshift variation, these cylindrical profiles follow almost identical vari-
ation to that seen in the radial profiles, so while tabulated in Appendix A, these
are not discussed further here. By definition, in these cylindrical profiles we do
not have the outer regions of the clusters so it is difficult to compare their be-
haviours as in the previous section for the radial profiles.

2.4.3 Profiles of 𝑦-weighted Temperature Moments

We find that the radial and cylindrical profiles for 𝜎(𝑇y) behave very similarly
across all masses and redshifts, in that they are approximately constant with re-
spect to 𝑇500c. This can be seen in Figure 2.11. Here, these are defined, identically
to the temperature weightings, as the averaged values over each spherical
shell. This approximate mass independence matches what is observed in Fig-
ure 2.7 where 𝜎(𝑇y) is a roughly constant fraction of 𝑇y. Furthermore, we see that
under redshift evolution 𝜎(𝑇y) (𝑟)/𝑇500c remains roughly constant, suggesting that
the variation in 𝜎(𝑇y) seen in Section 2.3.9 is due to the variation of 𝑇y against 𝑇500c

rather than reflective of an increase in temperature dispersions within clusters at
higher redshifts.

However, the values are not entirely constant; at higher masses 𝜎(𝑇y) rises at
higher radii, implying that as the temperatures fall the variation in the tempera-
ture increase. This makes sense if we suppose the outskirts of clusters to contain
clumpy substructure, leading to cool and hot regions at the same radii – this
could also be related to the cluster asphericities causing similar hot and cool
effects in the spherically averaged shells. Similarly the variation falls off in the
central regions of the clusters, implying that the central region (as modelled in
the simulations) are approximately isothermal and thus display little variation.

2.5 Implications for Cosmology

In this section, I will discuss the effects these different temperature measures
have on determining 𝑌SZ, and the further effects of the higher-order moments on
the determination of the 𝑦-weighted temperature from examining the spectral
shape. Finally, I will discuss the effect of these corrections and related ‘correc-
tions’ to the radial profiles and their impacts on the common method to deter-
mine 𝐻0 through the SZ effect – this will give an indicative view of the magnitude
of the necessary corrections.
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2.5.1 Effect on 𝑌SZ − 𝑀 relation

First recall that, as mentioned in Section 1.5, to second order in Δ𝑇 the SZ signal
can be expressed as

𝑆(𝜈) = 𝑦 𝑓 (𝜈, 𝑇e) + 𝑦 (1) 𝑓 (1) (𝜈, 𝑇e) +
1
2
𝑦 (2) 𝑓 (2) (𝜈, 𝑇e). (2.6)

By setting the pivot temperature 𝑇e = 𝑇y, when taking the volume averages one
finds that

Δ𝐼 ∝ 𝑌 𝑓 (𝜈, 𝑇y) +
1
2
𝑌
(2)
𝑇y

𝑓 (2) (𝜈, 𝑇y). (2.7)

Here, 𝑌 is the volume-integrated 𝑦-parameter and 𝑌
(2)
𝑇y

= 𝑌 𝑇
(2)

y = 𝑌 [𝜎(𝑇y)]2 re-
lates to the temperature dispersion. In Remazeilles et al. (2019), it is explained
that in the analysis of Planck Collaboration et al. (2016b) it is implicitly assumed
that 𝑓 (𝜈, 𝑇e) ≃ 𝑓 (𝜈, 0), i.e., a non-relativistic signal. This leads, as already men-
tioned, to an underestimation of the deduced 𝑦-parameter and also biases the
tSZ power spectrum amplitude. Remazeilles et al. (2019) characterise the cor-
rection to 𝐶𝑦𝑦 (which is ∝ 𝑆2) showing that for Planck it scales as 𝐶𝑦𝑦

ℓ
(𝑇e)/𝐶𝑦𝑦

ℓ
(0) ≃

1 + 0.15[𝑘B𝑇e/5 keV], where the electron temperature should be the 𝑦-weighted
temperature. Hence, the correction to the SZ signal around the maximum at
𝜈 ≃ 353 GHz can be approximated as

𝑓 (353 GHz, 𝑇e)
𝑓 (353 GHz, 0) ≃ 1 − 0.08

[
𝑘B𝑇y

5 keV

]
, (2.8)

which can also be seen in Figure 2.12,9 which shows the observed distortions,
expected from our scaling relations given 𝑇e = 𝑇y = 0, 5 and 10 keV. In the pres-
ence of foregrounds, this was found to give a reasonable estimate for the effect
of rSZ on the Planck 𝑦-analysis (Remazeilles et al., 2019).

When folded into the analysis of 𝑌SZ, for Planck this leads to a systematic mis-
match between the observed relativistic temperature distortions and the mag-
nitude of the integrated pressure from 𝑌SZ. This leads to the calculation that:

𝑌 (𝑇y)
𝑌 (𝑇y = 0) ≃ 1 + 0.08

[
𝑘B𝑇y

5 keV

]
. (2.9)

The temperatures here refer to those assumed in the analysis of the spectral
shape. This chapter has already established that, for a given mass, the spectroscopic-
like temperature underestimates the 𝑦-weighted temperature in a mass-dependent
way by ≳ 9 − 38%. As such, these relativistic corrections lead to even larger er-
rors in the calculations of 𝑌SZ than X-ray measurements alone would suggest,
especially for hotter clusters or clusters at higher redshifts.

In Remazeilles et al. (2019), a standard X-ray temperature-mass relation was
used, indicating 𝑇e ≃ 5 − 7 keV to be a typical cluster temperature relevant to tSZ

9A similar figure to Figure 1.4, but included for ease of reference.
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power spectrum measurements. Using the 𝑇y − 𝑀 relations, this typical temper-
ature would increase to ≃ 6 − 9 keV, which could further help reduce apparent
differences in the deduced hydrostatic mass bias seen in various SZ observables
(Remazeilles et al., 2019). For refined estimates our new 𝑇y − 𝑀500c (i.e., the true
mass) relations should thus be very useful.

As previously discussed, the 𝑇y − 𝑌 scaling relations can also be considered
to fully calibrate the SZ signal within SZ measurements. That is, one could con-
sider the SZ signal explicitly as a function of 𝑌 , by defining 𝑓 (𝜈,𝑌 ) = 𝑓 (𝜈, 𝑇y(𝑌 )),
such that Δ𝐼 ∝ 𝑌 𝑓 (𝜈,𝑌 ). This form of self-calibrated scaling allows for an X-ray
independent calculation of the relativistically-corrected SZ signal, which could
theoretically be confirmed by direct checks of the shape of the signal.

Comparison to other temperature-mass scaling relations

In Remazeilles et al. (2019), they use a temperature-mass scaling relationship
derived from Arnaud et al. (2005) of

𝑘B𝑇X ≃ 5 keV
(

𝐸 (𝑧)𝑀500c

3 × 1014ℎ−1 M⊙

)2/3
. (2.10)

Arnaud et al. (2005) used observations of 10 nearby relaxed galaxy clusters with
masses ranging between (0.8 − 8) × 1014 M⊙. This is a form consistent with the
results seen in Barnes et al. (2017a), although the latter extends this work to
higher masses, which fit the simulated hydrostatic mass to the simulated ob-
served spectroscopic X-ray temperature using the BAHAMAS and MACSIS simula-
tions. Eq. (2.10) can now be replaced with our 𝑇y−𝑀500c relation from simulations
to avoid conversion issues.

It is commonly known that there is a hydrostatic mass bias between X-ray
derived masses and the true total mass of clusters (e.g., Rasia et al., 2006, 2012;
Nagai et al., 2007b; Meneghetti et al., 2010; Nelson et al., 2014; Shi et al., 2015;
Biffi et al., 2016; Barnes et al., 2017b; Ansarifard et al., 2020) – which can in par-
ticular be seen in comparisons of the X-ray and weak lensing derived masses of
clusters. Weak Lensing, as a probe of the depth of the gravitational well, gives
a closer result to the true mass of clusters than X-ray observations. This under-
estimate of the hydrostatic model is due to the limitations of the assumption of
hydrostatic equilibrium within clusters. In particular, the mass biases calculated
to occur from the MACSIS and BAHAMAS simulations have been discussed in e.g.,
Henson et al. (2017). Generally, this mass bias is considered to be that the ob-
served spectroscopic mass, 𝑀spec ≃ (1 − 𝑏)𝑀total with 𝑏 ≃ 0.2, although in fact,
this bias is both mass and redshift dependent (e.g., Henson et al., 2017; Pearce
et al., 2020; but see also Ansarifard et al., 2020).

However, the temperature-temperature scalings discussed in Section 2.3.6
will hold entirely independently of the mass measured of a given cluster. As such,
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any of these scaling relationships measured to obtain the X-ray temperatures (at
high temperatures where 𝑇sl is an appropriate proxy for the spectroscopic X-ray
temperature) can be adjusted by the ≳ 10 − 40% conversion discussed before
between 𝑇sl and 𝑇y.

Furthermore, for 𝑇y(𝑀) we currently can only rely on numerical simulations, as
no accurate direct measurements of this variable exist. In computation of the
rSZ effect, the scaling relations given in Table 2.4 and 2.6 should thus be most
useful and directly applicable in computations of the SZ power spectra, e.g.,
using Class-SZ (Bolliet et al., 2018).

Corrections from temperature dispersion

While so far the discussion has focused on the leading order rSZ correction, the
2nd order correction due to the temperature dispersion is also worth discussing.
As previously noted, the volume averaged dispersion is significant, scaling with
the cluster temperatures, i.e., 𝜎(𝑇y) ≃ 0.4𝑇y. However, as I will argue now, at the
current level of precision this rSZ correction remains negligible.

Using the asymptotic expansions (e.g., Sazonov & Sunyaev, 1998; Chluba
et al., 2012b), the fully relativistic SZ signal at low temperatures can be expressed
as:

𝑓 (𝜈, 𝜃) ≃
(
𝑌0(𝜈) + 𝜃 𝑌1(𝜈) + 𝜃2𝑌2(𝜈) + 𝜃3𝑌3(𝜈) + · · ·

)
, (2.11)

where these 𝜃 are again the dimensionless temperature.10 This allows us to di-
rectly calculate an approximation for the signal associated with the second
order corrections, 𝑓 (2) (𝜈, 𝜃) ≃ (2𝑌2(𝜈) + 6 𝜃 𝑌3(𝜈) + . . .). As such the full signal can
be expressed, with second order corrections as,

𝑆(𝜈) ≃ 𝑦
(
𝑌0(𝜈) + 𝜃 𝑌1(𝜈) + 𝜃2

(
1 +

[
𝜎(𝑇y)
𝑇y

]2
)
𝑌2(𝜈) + · · ·

)
. (2.12)

Now, 𝑌2(𝜈) has an effect on broadening the SZ signal and pushing it to slightly
higher frequencies – a full explanation of the functions can be found in Chluba
et al. (2012b). In particular, at 343 GHz (the frequency most applicable for de-
termining the SZ signal magnitude in Planck), 𝑌2(343 GHZ)/𝑌0(343 GHZ) ≃ 70. As-
suming a cluster temperature of 5 keV, one has 𝜃 ≃ 0.01 and with 𝜎(𝑇y)/𝑇y ≡ 0.4
we find a ≃ 70× (0.01)2 × (0.4)2 ≃ 0.1% correction to the overall SZ signal stemming
from the average intracluster temperature-dispersion.

It is worth noting that since the radial 𝜎(𝑇y) is constant even as the tempera-
ture changes (see Figure 2.11), this correction accordingly will be larger propor-
tionally near the outskirts of clusters. However, these outskirts also correspond
to lower temperatures – which would both make the signal itself harder to de-
tect, but also damp further the corrections from the temperature dispersion.

10In the range of interest, i.e., temperatures 1 keV –10 keV, 𝜃 assumes values ≃ 2× 10−3 − 2× 10−2.
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More work must be done to see how different feedback models affect these
values of 𝜎(𝑇y) – and thus to see if there is any possibility of them giving de-
tectable results. The intercluster temperature variations, relating to the shape of
the mass-function, should also be carefully considered.

2.5.2 Applications to the determination of 𝐻0

It has long been established that 𝐻0 can be determined through a combination
of X-ray and SZ measurements (e.g., Birkinshaw, 1979; Jones et al., 2005; Reese,
2004; Bonamente et al., 2006; Kozmanyan et al., 2019). While these are generally
less precise than those calculations from the CMB (e.g., Planck Collaboration
et al., 2020b) or direct measurements (e.g., Riess et al., 2019), as the systematics
in the approach are being accounted for, they are becoming both increasingly
competitive and complementary.

The general approach for this is as follows (see also Bourdin et al., 2017; Koz-
manyan et al., 2019). From the X-ray data, the density and temperature profiles
can be constrained [i.e., 𝑛e(𝑟) and 𝑇sl(𝑟)], and from the SZ data the pressure
profile, 𝑃e(𝑟) can be constrained through the measurements of 𝑦 assuming the
distortion is wholly non-relativistic. This allows for a second temperature profile to
be calculated, 𝑇m(𝑟) = 𝜂T𝑃e(𝑟)/𝑛e(𝑟). By assuming these two temperature profiles
are equal, i.e., 𝑇m(𝑟) ≡ 𝑇sl(𝑟), this allows for a measurement of 𝜂T, which can be
found to depend on (among other variables) the angular diameter distance,
𝑑𝐴. As such, 𝜂T ∝ 𝑑−1/2

𝐴
∝ 𝐻1/2

0 , which provides a way to obtain 𝐻0 estimates.
Now, in this consideration, there are already two relevant issues, the first is

the estimation of the 𝑃e which, as discussed before, will be underestimated due
to the omission of relativistic effects [exactly as in Eq. (2.9)]. The second is the
concordance of 𝑇sl(𝑟) and 𝑇m(𝑟), which, as can be seen in Figure 2.8, is not an
accurate assumption. If 𝑇m(𝑟) > 𝑇sl(𝑟), this method leads to an underestimation
of the temperature. As such, these two corrections counteract one another,
and it must be determined which one is dominant. The two temperature pro-
files furthermore have slightly different shapes, which will additionally bias the
derived value for the 𝐻0 parameter. However, I do not go into more detail here.
Overall, the correction due to rSZ can be expressed as,

𝐻0, corr
𝐻0

≃
[
𝑃0
𝑃corr

] [
𝑇m
𝑇sl

]
, (2.13)

where 𝑃0 is the pressure calculated assuming there are no relativistic correc-
tions. For instance, to estimate the effect, at 𝑇y = 5 keV, we have already deter-
mined that 𝑃corr ≃ 1.08𝑃0. The previous temperature fits can be used to estimate
the mismatch in the 𝑇m(𝑟) and 𝑇sl(𝑟) profiles. Since 𝑇y = 5 keV corresponds to a
mass 𝑀500c ≃ 5.0 × 1014 M⊙, here this temperature correction is 𝑇sl(𝑟) ≃ 0.92𝑇m(𝑟).
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FIGURE 2.13: An indicative plot of the potential fractional corrections to 𝐻0. The
dashed line is merely to guide the eye. It should be noted that this is not a full or
complete accounting of the corrections, merely a indication of the necessity of
carrying out these two opposing corrections. These corrections are measured as
𝐻0,corr/𝐻0,0. Note: No errors are quoted as a true representation of the errors would

require an in-depth study of the various interlocking factors.

In this specific case, the two corrections match well and cancel each other, but
generally that will not hold.

Figure 2.13 shows an indicative correction over mass. While this is not a full
or complete accounting of the rSZ corrections, this exercise indicates that these
corrections have the potential to swing by ≃ 10% in either direction, tending to
higher values of 𝐻0 for lower masses and smaller values for higher masses. In, for
instance, Kozmanyan et al. (2019) the median of the observed sample of clus-
ters lies at 𝑀500c = 7.3× 1014 M⊙, which would indicate a potential overestimation
of ≃ 4% (i.e., naively shifting the derived value of 𝐻0 to ≃ 64 ± 3). This indicates
a potentially sizeable correction in the deduced values of 𝐻0; however, it is not
clear which way this correction will ultimately fall, and a more careful analysis
of the effect should be undertaken, in particular focusing on the assessment of
the error budget.

At lower masses, the profiles of the spectroscopic-like temperature will dom-
inate this effect – which, below masses of ≃ 2.8 × 1014 M⊙ is no longer a good
probe of the observed X-ray signal. Furthermore, these calculations are all at
𝑧 = 0, while at higher redshifts 𝐸 (𝑧)−2/3 𝑇y will remain almost constant with mass
and the higher-order corrections may increase; however, the behaviours of the
profiles are harder to predict. The exact details of this correction should be
studied more carefully, including an in-depth comparison of the different radial
profiles from 𝑇m and 𝑇sl.
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2.6 Conclusions

The importance of rSZ corrections is increasing with growing sensitivity of future
CMB experiments. To incorporate the expected effects on SZ observables reli-
able temperature-mass scaling relations and temperature profiles are required.
This chapter covers a large extension to the works of Pointecouteau et al. (1998);
Hansen (2004); Kay et al. (2008) to classify, in detail, the three temperature
measure 𝑇sl, 𝑇m and 𝑇y across the mass ranges allowed through the combined
BAHAMAS and MACSIS simulations. Differences of ≃ 10 − 40% are found between
the three temperature measures, with a general trend that 𝑇sl < 𝑇m < 𝑇y. The dif-
ferences increase to both higher redshifts, and when the temperature measures
are determined over 𝑅200c, as opposed to the more commonly (and less appli-
cable for SZ measurements) used radius, 𝑅500c (i.e., Figures 2.4 and 2.3). 𝑇y scales
almost self-similarly, i.e., ∝ 𝐸 (𝑧)2/3, out to 𝑧 = 1, while 𝑇sl and 𝑇m both undergo
significant evolution relative to this ‘expected’ scaling. Hence, for higher mass
clusters, and clusters at higher redshifts (e.g., those detected in Planck), 𝑇sl is an
increasingly poor proxy for 𝑇y, or equivalently, the rSZ signal will be larger than X-
ray measurements would imply. The analysis also suggests that the 𝑦-weighted
temperature is a better proxy for cluster mass, a possibility that could be used
for self-calibration of cluster masses using rSZ measurements.

A strong correlation was found between 𝑇y and 𝑇m, with 𝑇y ≳ 1.1𝑇m at 𝑧 = 0.
While this correction is more complex for 𝑇sl, we nonetheless find that 𝑇y ≳ 1.09𝑇sl

at 𝑧 = 0, with similarity around 𝑀500c ∼ 2.3 × 1014 M⊙ (𝑇sl ≃ 3.0 keV) and these
values diverging increasingly to both higher and lower masses, or equivalently
temperatures (see Figure 2.4). Moreover, these corrections are found to depend
very little of the nature of the cluster, i.e., whether they are relaxed or not. This
strong correlation leads to tight scaling relations between 𝑌 , the volume aver-
aged Compton-𝑦 parameter, and 𝑇y [see Eq. (2.4)]. This relationship can be
used to calibrate the relativistic corrections to the SZ signal, from the signal itself.
This allows for an estimate of the rSZ signal in, for instance, the Planck SZ whole
sky maps and in computations of the SZ power spectra, e.g., using Class-SZ
(Bolliet et al., 2018).

On average the findings suggest that X-ray-derived temperatures underesti-
mate the level of the rSZ by ≃ 10 − 40%. For instance, one can estimate a cor-
rection for the averaged temperature of clusters in the Planck maps calculated
in Hurier (2016); Remazeilles et al. (2019). These papers determined them to be
𝑇X = 6.8 keV or 𝑇X ≳ 5 keV respectively, which would naively lead to 𝑇y = 8.4 keV
or 𝑇y ≳ 5.7 keV, a correction ≳ 15% in both cases. These differences will also affect
the expected value for the sky-averaged SZ contribution, as calculated in, e.g.,
Hill et al. (2015). There a X-ray temperature-mass scaling relation was used to
determine the size of the relativistic corrections, finding a value of 𝑘𝑇e ≃ 1.3 keV.
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This value could increase if a 𝑇y −𝑀 relation is used. Given that in particular low-
mass haloes (𝑀 ≲ 1013 M⊙) contribute to the average SZ signal, the differences
in this prediction are further amplified by redshift-evolution, likely leading to an-
other increase of the expected value, although they may be mediated by the
true spectoscopic-temperature in such regimes being poorly modelled by the
spectroscopic-like temperature. Measurements of the sky-averaged rSZ effect
with future CMB spectrometers (Kogut et al., 2019; Chluba et al., 2021) could
lead to interesting constraints to feedback models and thus deserves more at-
tention.

The profiles of these three radial temperature measures show similar trends
(see Figure 2.8). These differences will be very important when interpreting
and combining future X-ray and high-resolution SZ profile measurements (e.g.,
Ameglio et al., 2009; Morandi et al., 2013). From these projected profiles, it will
also be possible (see Remazeilles et al., 2019) to calculate a corrected power
spectrum for the tSZ effect, which could play a role in reducing the tension be-
tween 𝜎8 found with Planck and the SZ measurements. An understanding of
the differences between the three profiles could also be useful for quantifying
conversions between the observed X-ray and SZ signals – in particular an un-
derstanding of the different behaviour of 𝑇sl(𝑟) and 𝑇m(𝑟), which are commonly
taken to be identical. These differences can lead to various miscalculations
where these are used interchangeably, for instance in the SZ-derived 𝐻0 as dis-
cussed in Section 2.5.2.

The intracluster temperature dispersion is found to be almost mass indepen-
dent (at around 𝜎(𝑇y) ≃ 0.4𝑇y, see Figure 2.7), but increases slightly toward higher
redshifts as a result of cluster evolution. However, this adds little modification
≲ 0.5% to the SZ signal. Larger effects due to temperature dispersion could arise
from intercluster temperature variation, which directly relate to the shape of
the halo mass function; however, an estimation of this correction is beyond the
scope of this thesis.

While a classification of all three temperature measures and the 𝑦-weighted
temperature dispersion has been presented, further work must be done to es-
tablish the independence of these results from the simulations (i.e., BAHAMAS

and MACSIS) used. Through comparisons to other simulations it will be possible
to assess the robustness of these results with respect to feedback models and
other aspects of the gas physics used to generate these clusters. In particular, it
would be interesting to understand how variations of the microphysics between
simulations may lead to differences in the calculated intracluster temperature
dispersion, 𝜎(𝑇y) and 𝑇y − 𝑌 or 𝑇y − 𝑀 relations. All these could potentially be
used to learn about the dynamical state of the cluster. This will be the focus of
Chapter 3.

Extracting the rSZ signals with future CMB experiments still presents a chal-
lenge (Basu et al., 2019; Chluba et al., 2021). However, there is work to be done
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to establish the utility of rSZ quantities across a variety of cluster models and sim-
ulations. Further, the significant temperature differences from using the more ap-
propriate temperature measures (𝑇y rather than the X-ray temperature), com-
pounded with corrections from the temperature dispersion effects (and higher-
order terms to be considered in future works), will lead to improvements in the
ability to interpret the rSZ signal.
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Chapter 3

A multi-simulation study of
relativistic SZ temperature scalings
in galaxy clusters and groups

This chapter is based on the published work, Lee et al. (2022b). The code used
for BAHAMAS and MACSIS was modified from code written by David J. Barnes.
The data from MAGNETICUM PATHFINDER was generated by Priyanka Singh, and
Dhayaa Anbajagane generated the data from ILLUSTRISTNG and THE THREE HUN-
DRED PROJECT. The analysis was largely done by EL, with input and interpretation
from the coauthors. The BAHAMAS and MACSIS simulations were again used un-
der the kind permission of Ian McCarthy.

3.1 Introduction

Modern hydrodynamical cosmological simulations have become an indispens-
able tool for understanding the ICM structures and evolution and their impact
on SZ observables (e.g., Nagai, 2006; Nagai et al., 2007b; Battaglia et al., 2012a;
Kay et al., 2012; Pike et al., 2014; Yu et al., 2015; Planelles et al., 2017; Le Brun
et al., 2017; Henden et al., 2018, 2019; Pop et al., 2022a,b). However, these
simulations are also known to exhibit significant variations among different hy-
drodynamic codes (Rasia et al., 2014; Sembolini et al., 2016), which gives rise
to differences in a variety of cluster observables, such as the hydrostatic mass
derived from X-ray mocks (Rasia et al., 2006; Nagai et al., 2007a). It is there-
fore important to develop complementary approaches for measuring the ICM
temperature based on SZ-effect observations. The rSZ effect with upcoming SZ
observations promises to provide insights into the thermodynamic structure and
evolution (Lee et al., 2020).

As discussed in Section 1.5 and Chapter 2, the temperature used in cluster
analysis depends on the context in which they are applied. While simulations
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encompass many variations, it is exciting to explore what can be learnt from
common behaviour between simulations. In particular, we find the SZ temper-
atures demonstrate a consistency between simulations, allowing for predictions
of the rSZ corrections that can be detected observationally, in addition to de-
termining what observations may tell us about the underlying physics.

In this chapter, I study four samples of clusters and groups extracted from
different hydrodynamical cosmological simulations – BAHAMAS (McCarthy et al.,
2017, 2018); MACSIS (Barnes et al., 2017a); THE THREE HUNDRED PROJECT (Cui et al.,
2018); MAGNETICUM PATHFINDER (Hirschmann et al., 2014; Bocquet et al., 2016);
and ILLUSTRISTNG (Springel et al., 2018; Pillepich et al., 2018b; Nelson et al., 2018;
Marinacci et al., 2018; Naiman et al., 2018). These simulations provide large
samples of groups and clusters over five redshifts between 𝑧 = 0 to 𝑧 = 1.5. In
each simulation, the three different temperature measures are studied, corre-
sponding to those in the previous chapter: the spectroscopic-like temperature
(Mazzotta et al., 2004); the mass-weighted temperature, which is closely related
to the Compton-𝑦 parameter; and finally the y-weighted temperature, which is
a close approximation for the averaged rSZ temperature, needed to account
for the rSZ corrections (Hansen, 2004; Remazeilles & Chluba, 2020).

This chapter is an extension to a growing body of literature that uses en-
sembles of the latest hydrodynamical simulations to estimate theoretical uncer-
tainties in cluster scaling relations. These uncertainties arise from our lack of
knowledge of the true astrophysical mechanisms at play in our Universe. Either
some, or all, of the simulations we use in this work have been used previously to
marginalize over astrophysics models and estimate scaling relation uncertainties
for different cluster properties, such as the thermal gas pressure (Lim et al., 2021),
the central and satellite galaxy stellar properties (Anbajagane et al., 2020), and
the dark matter and satellite galaxy velocity dispersions (Anbajagane et al.,
2022a). Here, we extend the discussion to the modeling of the rSZ effect.

3.2 Simulations

This chapter uses four samples of haloes from the following simulations: (i) a su-
perset of BAHAMAS and MACSIS, (ii) THE THREE HUNDRED PROJECT, (iii) MAGNETICUM

PATHFINDER, and (iv) ILLUSTRISTNG. A summary of the cosmological properties of
each simulation can be found in Table 3.3 and the simulation parameters in
Table 3.1.

We take haloes within each simulation with 𝑀500c > 1013 M⊙ 1 and consider the
redshifts 𝑧 ≃ {0.0, 0.25, 0.5, 1.0, 1.5}. The population counts at each redshift can
be found in Table 3.2. In each simulation, our properties are again calculated
using a temperature cut – that is, only considering particles with temperatures,

1Note that here this is in M⊙ , while in the previous chapter I used M⊙/ℎ, as such this chapter’s
analysis goes to lower halo masses.
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TABLE 3.3: Cosmological parameters used in each of the simulations.

Simulation ΩΛ Ωm Ωb 𝜎8 𝑛s ℎ†

BAHAMAS 0.6825 0.3175 0.0490 0.8340 0.9624 0.6711
MACSIS 0.6930 0.3070 0.0482 0.8288 0.9611 0.6777
THE300 0.6930 0.3070 0.0480 0.8230 0.9600 0.6780
MAGNETICUM 0.7280 0.2720 0.0457 0.8090 0.9630 0.7040
TNG 0.6911 0.3089 0.0486 0.8159 0.9667 0.6774
† where ℎ ≡ 𝐻0/(100 km s−1 Mpc−1)

𝑇 ≥ 105.2 K (≃ 0.014 keV). Moreover, when calculating the spectroscopic-like
temperature, a core-excision procedure is again used, as it has been shown to
make X-rays a better proxy for mass (e.g., Pratt et al., 2009), and as such exclude
all particles with 𝑟 < 0.15 𝑅500c. In Section 3.4.4, we will show that using a relaxed
subsample does not seem to meaningfully change our results at 𝑧 = 0, so is
only minimally examined here as it was examined in more detail for the case of
BAHAMAS and MACSIS in the previous chapter.

3.2.1 Bahamas and Macsis

As in Chapter 2, we use a supersample of BAHAMAS (McCarthy et al., 2017, 2018)
and its zoom-in counterpart MACSIS (Barnes et al., 2017a), which we will here
refer to as BAHAMAS+MACSIS, or in figures simply BAHAMAS+. BAHAMAS is a cali-
brated version of the model used in the cosmo-OWLS simulations (Le Brun et al.,
2014). Both BAHAMAS and MACSIS were run using a version of the smoothed
particle hydrodynamics (SPH) code GADGET-3 last publicly discussed in Springel
(2005), but modified as part of the OWLS Project (Schaye et al., 2010). The
MACSIS simulation was developed to extend the BAHAMAS sample to higher-mass
haloes. It is a sample of 390 clusters, generated through a zoomed simulation
from a large Dark Matter only (DMO) simulation – a periodic cube with a side
length of 3.2 Gpc. Individual separate volumes including high Friends-of-Friends
(FoF) mass (clusters with 𝑀FoF > 1015 M⊙) were then re-simulated with a full hy-
drodynamical prescription aligned with the BAHAMAS simulation. Haloes within
the two simulations are then identified by a FoF algorithm, and subhaloes with
the SUBFIND algorithm (Springel et al., 2001; Dolag et al., 2009).

To form this supersample, all the haloes with the relevant masses from both
simulations are used. The differences between cosmologies are deemed to
have minimal effects in general, however, when considering the redshift vari-
ation, 𝐸 (𝑧) is calculated with the relevant cosmology for MACSIS and BAHAMAS

separately. It is also worth noting, that unlike THE THREE HUNDRED PROJECT, MACSIS

only provides 390 massive clusters, and no additional lower-mass clusters.
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3.2.2 The Three Hundred Project

THE THREE HUNDRED PROJECT, here THE300, (Cui et al., 2018) comprises of massive
haloes formed within 324 spherical regions each of 22 Mpc radius and each
centred on the most massive clusters at redshift zero as identified in the MULTI-
DARK PLANCK 2 N-body, DMO simulation (Klypin et al., 2016), which has a cube of
side length 1.476 Gpc with 38403 dark matter particles and used the L-GADGET-2
solver. The haloes in MULTIDARK PLANCK 2 were identified using the ROCKSTAR halo
finder (Behroozi et al., 2013). These 324 spherical regions of radius 22 (comoving)
Mpc were then resimulated using a full hydrodynamics prescription (Rasia et al.,
2015) with the GADGET-X SPH solver (Beck et al., 2016). Haloes and subhaloes
were identified with Amiga’s Halo Finder (Knollmann & Knebe, 2009), which has
a binding energy criterion similar to SUBFIND, but uses an adaptive mesh refine-
ment grid to represent the density field/contours.

While THE300 is only mass-complete above 𝑀200c ≳ 1015 M⊙ at 𝑧 = 0, it re-
solves many haloes below this mass. Since the scaling relations derived from
these lower mass clusters are in agreement with our other simulations, we note
that the selection effects do not, in general, appear to have an impact on the
temperature scaling results, with one exception. That is, within large radii (i.e.,
𝑅vir and 𝑅200m) the scatter of temperatures is amplified, however, the population
mean behaviors remain unaffected.

In Section 3.4.3, two different simulations from THE300 are also used, which
we will refer to as MUSIC and GIZMO. MUSIC uses the solver GADGET-MUSIC (Sem-
bolini et al., 2013) in place of GADGET-X. A summary of the differences between
these simulations can be found in Cui et al. (2018), but in brief, the GADGET-MUSIC
and GADGET-X solvers use similar but subtly different gas treatments and stellar for-
mation and stellar feedback mechanisms. Most notably, however, GADGET-MUSIC
does not include any Black Hole or AGN feedback, while GADGET-X does.

GIZMO (Cui et al., 2022), on the other hand, uses GIZMO-SIMBA (Davé et al.,
2019) in its Meshless Finite Mass solver mode instead of GADGET-X which uses SPH.
A detailed discussion of the differences can be found in Cui et al. (2022, their
Table 2). In general, GIZMO uses a different feedback model, with, among other
things, significantly stronger kinetic feedback calibrated for high-mass haloes
which causes large differences in the observed gas fractions between the GIZMO-
SIMBA and GADGET-X runs.

3.2.3 Magneticum Pathfinder

The MAGNETICUM PATHFINDER (Hirschmann et al., 2014) simulations are a suite of
magneto-hydrodynamics simulations using a version of the SPH solver GADGET-3
developed independently to that used in the BAHAMAS+MACSIS versions. This
chapter uses the Box2 hr run, and will henceforth refer to it as the MAGNETICUM

sample. Haloes are once again identified using a FoF algorithm, and subhaloes
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using SUBFIND. Since the MAGNETICUM simulations are based on WMAP7 cosmol-
ogy (Komatsu et al., 2011) they have the most distinct cosmology to the other
simulations which all use Planck cosmologies (Planck Collaboration et al., 2014c,
2016a). Finally, it is important to note that while the other simulations show little
variation between the core-excised and non-core-excised values for 𝑇m and
𝑇y (as discussed for BAHAMAS+MACSIS in the previous chapter), this is not true
in MAGNETICUM. As such, we use the core-excised values for all three temper-
ature measures obtained from MAGNETICUM. This is explored in more detail in
Section 3.4.5.

3.2.4 IllustrisTNG

The ILLUSTRISTNG project, here TNG, (Springel et al., 2018; Pillepich et al., 2018b;
Nelson et al., 2018; Marinacci et al., 2018; Naiman et al., 2018) is a follow up to
the ILLUSTRIS project (Vogelsberger et al., 2014). It uses the moving-mesh code
AREPO (Springel, 2010) and uses a full magneto-hydrodynamics treatment with
galaxy formation models as detailed in Pillepich et al. (2018a); Weinberger et al.
(2017). This chapter uses TNG300-1, the highest-resolution run from the suite, but
will reference the two lower-resolution runs in Section 3.4.1. Haloes are identi-
fied using a FoF algorithm and subhaloes with SUBFIND, as for the MAGNETICUM

sample.
All TNG properties are estimated using the FoF particle set. The FoF linking

length of 𝑏 = 0.2 was chosen so that the FoF group on average contains all
particles within 𝑅200c of the halo center. Consequently, properties computed
within significantly larger apertures (primarily 𝑅200m) will miss the contribution from
particles in the far outskirts (as these are not included in the FoF, whose particle
set is incomplete at such distances) and will thus incur a minor bias. However,
the main analysis and results in this chapter focus on 𝑅200c and 𝑅500c and are thus
unaffected by this bias.

3.3 Temperature Scaling Relations

In general, there is a good agreement between the the four samples for each
temperature measure as can be seen in Figure 3.1. As a similar plotting conven-
tion is used throughout this chapter, I will briefly explain the process here. The
data was sorted into logarithmically spaced mass bins, and within each bin I
have then plotted the median, and 16 and 84 percentile regions for each sam-
ple. That is, the solid lines indicate the median of the data distribution, while the
shaded regions show the 1𝜎 intrinsic scatter within each data set. Where there
are fewer than 10 clusters within a mass bin, we have only plotted the median
and not calculated the percentiles. Within each sample, this region accounts
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FIGURE 3.1: The three temperature measures in each simulation at 𝑧 = 0. Here, the
data is binned into logarithmically spaced mass bins. The shaded regions show the
16 and 84 percentile regions within these bins, while the lines show the medians.
The dotted black line indicates the self-similar scaling 𝑇 ∝ 𝑀2/3, with an amplitude
arbitrarily set for visual clarity. The horizontal line in the lower panel indicates the
temperature above which 𝑇sl is considered a good proxy for the X-ray temperature.
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for an intrinsic variation of around ±5.5% for 𝑇m and 𝑇y (with this in general being
marginally larger in 𝑇y than 𝑇m), and ±9% for 𝑇sl.

For the mass-weighted temperature, 𝑇m, all four simulations show a close
agreement at 𝑧 = 0, while 𝑇y shows slightly more variation, but is, nonetheless,
consistent overall. The spectroscopic-like temperature shows the most variation
between the four samples, particularly at lower masses/temperatures. However,
it is worth noting, that for 𝑇sl ≳ 3.5 keV, where 𝑇sl is considered a good proxy for
the X-ray temperature, the samples agree well. In general, however, there is far
more intrinsic scatter among the 𝑇sl measures (within 𝑅200c) than for the other
temperature measures. We can see in particular that MAGNETICUM has a large
scatter in 𝑇sl, especially at lower masses. This is driven by the warm gas (𝑇 < 106 K)
in the low-mass haloes, and is discussed in more detail in Section 3.4.6. Due to
the limited 𝑇sl data where it is an appropriate proxy for the X-ray temperature,
particularly at higher redshifts, 𝑇sl will be considered in less detail in the rest of
this Chapter.

In Figure 3.1, an arbitrary indicative line is also plotted to show self-similar
scaling, i.e., 𝑇 ∝ 𝑀2/3. This allows us to see that in simulations all three temper-
ature measures appear to scale at slightly less than 2/3, with 𝑇sl lying closest to
this. However, at higher masses and temperatures, 𝑇y and 𝑇m appear to tend
to this self similarity, while at lower masses and temperatures, the scaling rela-
tion seems shallower. Conversely, this also indicates there is some mild curva-
ture within the 𝑇y and 𝑇m scaling relations. The two- and three-parameter fits for
each of these simulations can be found tabulated in Table B.3 for a more de-
tailed comparison, and will be discussed further in Section 3.5. The agreement
at high masses may come from the decreased relative effects of feedback in
this regime. That is, at lower masses the gas is hotter than expected from solely
gravitational heating due to feedback processes, pushing the equilibrium away
from self-similarity, while at higher masses the potential well ensures more gas
is retained in haloes; this is supported by the results of Farahi et al. (2018), who
use kernel-localized linear regression (Farahi et al., 2022) to show that the gas
mass in BAHAMAS+MACSIS clusters approach a self-similar scaling at higher halo
masses. That the lower masses lie higher than expected from self similarity for 𝑇y

and 𝑇m, would indicate that generally the feedback is leading to hotter gas in
the halo.

3.3.1 Redshift evolution

As discussed in Section 1.5, from self similarity we expect the cluster tempera-
tures to scale as 𝑇 (𝑧) ∝ 𝐸 (𝑧)2/3 at fixed mass. In Figure 3.2, it is evident that
this is not quite the case within these samples. We examine the temperature
measures at five different redshifts, 𝑧 = 0.0, 0.25, 0.5, 1.0 and 1.5. In general, the
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FIGURE 3.2: Redshift evolution of the temperature measures within each simulation.
As in Fig. 3.1, the data is sorted into mass bins, with the shaded regions showing the
16 to 84 percentile region and the lines the medians. Here, each redshift for each
sample is divided by the bin median at 𝑧 = 0. We see there is less evolution in 𝑇y (the

right panels) than in 𝑇m (those on the left).
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TABLE 3.4: The median value for 𝐸 (𝑧)−2/3𝑇 (𝑧)/𝑇𝑧=0 as shown in Fig. 3.2, for 𝑧 = 0.5 and
1.0. These can be understood as a broad mass-independent redshift correction.
We have also tabulated the median correction to the 2-parameter fit for each

simulation (described in Section 3.6.2 and tabulated in Table B.3 in Appendix B).

𝑧 = 0.5 𝐸 (𝑧)−2/3𝑇y 𝐸 (𝑧)−2/3𝑇m 𝐸 (𝑧)−2/3𝑇sl

BAHAMAS+MACSIS 0.981+0.002
−0.002 0.951+0.001

−0.001 0.929+0.005
−0.011

THE300 0.968+0.006
−0.004 0.953+0.003

−0.002 0.933+0.007
−0.005

MAGNETICUM 0.969+0.002
−0.005 0.932+0.003

−0.003 0.728+0.023
−0.014

TNG 0.984+0.007
−0.005 0.972+0.004

−0.005 0.746+0.018
−0.038

𝑧 = 1.0 𝐸 (𝑧)−2/3𝑇y 𝐸 (𝑧)−2/3𝑇m 𝐸 (𝑧)−2/3𝑇sl

BAHAMAS+MACSIS 0.955+0.003
−0.002 0.896+0.002

−0.002 0.815+0.006
−0.011

THE300 0.938+0.004
−0.004 0.903+0.002

−0.002 0.856+0.004
−0.005

MAGNETICUM 0.966+0.004
−0.003 0.889+0.003

−0.005 0.590+0.020
−0.013

TNG 0.997+0.007
−0.007 0.941+0.006

−0.005 0.501+0.018
−0.012

temperature measures increase (with increasing redshift) slower than self similar-
ity would suggest. That is, in Figure 3.2, were self similar evolution to occur, we
would expect all five redshifts to align – as is nearly true for 𝑇y. We note that here
we have used the cosmological parameters and true redshift for each individ-
ual simulation to calculate 𝐸 (𝑧) for each sample. Due to the larger differences in
cosmology for the MAGNETICUM simulation, this allows for more consistent results
between simulations.

We found that 𝑇sl, while not plotted here, evolves with the least accordance
to self similarity, while 𝑇y diverges the least from it. That is, graphically, the spread
in the five redshift means is smaller for 𝑇y than for 𝑇m. At 𝑧 = 1, 𝑇m has a median
lowered to around the 1𝜎 intrinsic scatter at 𝑧 = 0. 𝑇y however shows almost
no redshift dependence in MAGNETICUM and TNG and only mild evolution in
BAHAMAS+MACSIS and THE300. Physically, we can motivate this aspect, as at
higher redshifts, clusters on average had shorter cooling times, leading to more
cool dense gas, which down-weights 𝑇sl. On the other hand, 𝑇y is determined
by the gas pressure, which, assuming hydrostatic equilibrium, would be fixed to
match the size of the potential well itself, leading to a more self-similar temper-
ature measure.

It is also interesting to note that the samples do not show overt mass depen-
dence in the redshift evolution for the two SZ temperatures, i.e., graphically, the
mean lines are roughly horizontal for all of the samples. Here, it is worth not-
ing that we are considering the masses at the redshift the cluster temperature
is measured. In Table 3.4, we quantify these offsets for all three temperature
measures in each sample at 𝑧 = 0.5 and 1.0. Here, we can more quantitatively
see that there is increasing divergence from self-similarity (value of unity), com-
paring 𝑇y to 𝑇m to 𝑇sl in all cases and we can see more generally the variety in
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FIGURE 3.3: A depiction of the radial dependence of each simulation. Every clus-
ter’s temperature and radius is divided by the same cluster’s 𝑇m within 𝑅200c and
𝑅200c, for the five radii considered. These are, from left to right 𝑅500c, 𝑅200c, 𝑅500m, 𝑅vir
and 𝑅200m. Hence, the error bars show the intrinsic scatter within each simulation for

the clusters temperature profiles, fixed at 𝑅200c and 𝑇m,200c.

redshift behaviour for each sample. We also note that the larger errors in the
𝑇sl offsets arise from there being more mass dependence to the redshift evolu-
tion (particularly for MAGNETICUM and TNG) than in 𝑇y and 𝑇m. The full details of
the 𝑇sl are not considered in much detail as the haloes included at these higher
redshifts in MAGNETICUM and TNG are rarely at temperatures high enough for 𝑇sl

to be an accurate prediction of the observed X-ray temperature.

3.3.2 Radial dependence

Next, we study the dependence of the temperature measures on the radius of
the sphere that we average over. Figure 3.3 shows how the averaged temper-
atures vary over the five radii we consider at 𝑧 = 0. Here, on a cluster-by-cluster
basis, we divide each radius and temperature of the cluster, by the 𝑅200c and
𝑇m,200c values for that cluster, and then we show the bulk averages of these val-
ues. These values can be found for each sample for convenient reference in
Table B.5 in Appendix B.

The profiles are very similar within the four samples, and are consistent out
to 𝑅500m. The variations beyond this are likely driven by the particulars of the
simulations rather than reflecting any inconsistency. We discussed in Section 3.2
that when calculating our TNG values, only particles which are linked to the FoF
group are included, which may bias the large-radius temperatures high. THE300
shows a consistent profile with the other simulations, but a larger scatter due
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to the sample selection for the low-mass haloes. Anbajagane et al. (2022a)
found similar scatter amplification in the velocity dispersion of low-mass clusters
in THE300, and explicitly showed this was generated by the selection effect (see
their Figure B1). We can also see that the offset between 𝑇y and 𝑇m is larger in
BAHAMAS+MACSIS and MAGNETICUM than the other two simulations – this will be
explored more in Section 3.3.4. This offset also seems to increase marginally at
larger radii.

The difference in profile steepness can be appreciated in Figure 3.4. Here
the temperature-mass relations are shown, at 𝑅500c, 𝑅200c and 𝑅200m, so we can
see how the variation in profiles depend on the masses of the clusters. For
example, we find that the differences in the ‘profiles’ between THE300 and
BAHAMAS+MACSIS are largely driven by lower-mass haloes, and agree well at
all radii for higher masses.

It also becomes evident that, for both 𝑇m and 𝑇y, the four models agree best
within the 𝑅200c. At lower radii, the shallow profile of TNG corresponds to temper-
atures below those in the other simulations, and at larger radii to temperatures
above. Similarly, the steeper profile of MAGNETICUM leads to its temperatures
sinking with respect to the other samples, as the radius increases. 𝑇sl, while not
shown here, has a larger variation at each radius – and it is harder to determine
the agreement between simulations due to the difference in intrinsic scatter in
each sample. Within 𝑅500c, 𝑇sl in MAGNETICUM agrees far better with the other
simulations – however, 𝑇sl in all the other simulations agree slightly worse with
each other than at 𝑅200c.

3.3.3 Temperature–Y scalings

While temperature-mass scaling relations are important and relevant for com-
parison with X-ray observations, a consideration of the Compton-𝑦 parameter
in relation to temperature could lead to a way to self-calibrate SZ observables
(Lee et al., 2020). In Figure 3.5, we show how the SZ temperatures scale within our
samples with 𝑌200c. It is immediately clear that there is slightly poorer agreement
within these quantities than when using 𝑀200c, however, these do still predomi-
nantly agree between the different samples. In particular, as 𝑌200c increases, the
agreement between 𝑇m in each sample improves, and as we will see later in
Section 3.4.2, most of this variation correlates with the variation of 𝑓gas in each
simulation.

We note that the 𝑌200c − 𝑀200c relationship agrees very well between simula-
tions for all masses ≳ 1014 M⊙, which corresponds to 𝑌200c ≳ 10−6 Mpc2. It is also
worth considering that since our haloes are selected with a mass cut-off, for the
lowest values of 𝑌 (≲ 10−7 Mpc2) the data we have are not necessarily complete
for each value of 𝑌 , so may be biased slightly high. Self-similarity would suggest
a scaling relation of 𝑇 ∝ 𝑌2/5, but we see shallower scaling relations ≃ 0.33 in
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FIGURE 3.5: The variation of each temperature measure with respect to the volume
averaged Compton-𝑦 within 𝑅200c. These are the measures at 𝑧 = 0 and the figure
is arranged as in Fig. 3.1, grouped into logarithmically spaced Y bins, rather than
mass bins. The dotted black line is an indicative line with scaling 𝑇 ∝ 𝑌2/5, i.e., a

self-similar scaling.
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FIGURE 3.6: The relative variation in temperature measures, Δ𝑇 = 𝑇y −𝑇m with respect
to the mass-weighted temperature, 𝑇m. Here, each point represents a single halo
within the simulation, the solid line represents the medians within logarithmically
spaced 𝑇m bins, while the dashed lines show the 16 and 84 percentiles for the same
bins. The discrepancy in the scatter for THE300 around 𝑇 ≃ 3 keV is discussed below

in Section 3.3.4.

all our samples. In particular, BAHAMAS+MACSIS has a shallower scaling relation
(≃ 0.31), for both 𝑇y and 𝑇m than the other three samples.

3.3.4 Δ𝑇–Temperarature scalings

As already mentioned, we find an offset between the temperature measures,
which we now explore in more detail. For this, in Figure 3.6, we plot the fractional
temperature difference, Δ𝑇/𝑇m = (𝑇y − 𝑇m)/𝑇m against 𝑇m itself. We already iden-
tified that the mass-weighted temperature is a good proxy for the mass itself, so
it is worth noting that this temperature difference has a similar, if subtly different,
relationship than when plotted against mass.

The systematic offset is different in each of the four samples. However, it is
interesting to note that this offset is subject to a significant skew – which is to
say, at the simplest level the offset holds on a cluster by cluster basis, and 𝑇y is
always greater than 𝑇m within clusters. This can be seen visually, as here we have
plotted every halo within our samples in Figure 3.6, and it is evident that within
each cluster, there is a minimum difference, greater than zero, between all the
clusters. Taking the 1st percentile for each cluster sample we can estimate this
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minimum offset as being highest in MAGNETICUM with Δ𝑇 ≥ 0.178𝑇m, and smallest
in THE300 where Δ𝑇 ≥ 0.066𝑇m.

Here, it is worth briefly discussing why the THE300 sample has such a non-
uniform intrinsic scatter compared to the other samples. This divergence is worst
at 𝑇m ≃ 3 keV, reaching convergence again at high temperatures (𝑇m ≳ 4 keV).
This is an artifact of the selection process for low-mass clusters within the THE300
sample. That is, since all ‘low-mass’ (𝑀200c ≲ 0.9 × 1015 M⊙) clusters exist in the
region of larger haloes, this biases the temperatures of the clusters. As such, this
region is less relevant for a mass-complete understanding of the temperature
differences here.

3.4 Resilience of results

All the simulations use different physical models and numerical methods to gen-
erate the halo populations studied here. Moreover, they are all calibrated to
different measurements, as such it is remarkable that we see the agreement we
have found across the four different samples. However, this section will focus
more specifically on the effects these differences have caused on our observed
results and the variation caused by other simulation-specific parameters.

3.4.1 Resolution

Firstly, it is worth briefly considering the effect of resolution in simulations. Resolu-
tion studies are generally complicated as many simulations do not have differ-
ent runs at different resolutions. However, we can consider three different runs
of TNG, alongside briefly discussing the two different boxes from MAGNETICUM.

The effects of the three different resolutions in TNG can be seen in Figure 3.7.
Here, the highest resolution is the one used throughout the rest of this work, while
the other two have 8 and 64 times worse resolutions, respectively, while the sub-
grid physics were kept consistent. In TNG, the resolution has little effect on the SZ
temperatures (𝑇m and 𝑇y), with differences only occurring in the lowest-resolution
run at high masses, where the temperatures tend to fall a little higher.

There are more systematic differences in 𝑇sl, however, where with increasing
resolution, the temperatures all seem to fall, especially in the lower-mass haloes.
This is likely due to the cold dense clumps in the haloes being better resolved in
the higher-resolution runs and as such, leading to lower averaged values for 𝑇sl.

From the MAGNETICUM simulations, it is possible to compare the MAGNETICUM

Box2 hr run (used throughout the rest of this chapter), with the Box1a mr, a run
with around 20-times-worse resolution. This is not plotted in this thesis, but here
we found a decrease for both 𝑇m and 𝑇y in the lower-resolution study, of a similar
scale to the intrinsic scatter. However, it is also worth noting that these two runs
have different subgrid physics, as they are independently calibrated, which may
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FIGURE 3.7: The effects of resolution in the TNG simulation. High Res here refers to
the run used within the rest of this chapter. Mid Res and Low Res are runs with x8

and x64 worse resolution, respectively. This figure is arranged as in Fig. 3.1.
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contribute to this difference. Due to the scatter inherent in the MAGNETICUM

values for 𝑇sl it is hard to gain a conclusive indication of how these vary.
The differences between these simulations can be considered in the formal-

ism discussed in Schaye et al. (2015), as a ‘strong’ convergence test using TNG
and a ‘weak’ convergence test using MAGNETICUM. As such, the small variation
that is observed in MAGNETICUM is likely caused by the recalibration, more than
the inherent resolution variation itself, given the lack of any resolution depen-
dence in TNG. However, more detailed work may be necessary to determine
how in general resolution effects may change the temperatures gained from
simulations.

3.4.2 Gas fraction

Since the temperature measures are dependent on gas density, it is important
to consider how the differences in gas fraction (i.e., 𝑓gas,200c = 𝑀gas,200c/𝑀200c.) vary
between the simulations. In Figure 3.8, the gas fractions within 𝑅200c are shown
(scaled by the cosmic baryonic fraction in the simulations) at 𝑧 = 0 and 𝑧 = 1. In
general, 𝑓gas is often considered to be a probe of the level of feedback within in
clusters, with lower values for 𝑓gas indicating more effects from feedback. Hence
generally speaking, at lower masses, 𝑓gas is lower as the potential well for the
haloes are shallower, allowing for more gas to be ejected from haloes through
feedback.

It is evident that there are significant variations in 𝑓gas among the simulations
considered in this work. At the highest masses, TNG, THE300, and BAHAMAS+
MACSIS start to agree, with values > 0.9, but MAGNETICUM lies greatly below this.
Similarly, at the lowest masses, at 𝑧 = 0, MAGNETICUM, THE300 and TNG roughly
agree, while BAHAMAS+MACSIS is significantly smaller.

Furthermore, the samples exhibit a varying level of redshift evolution. The
gas fraction rises, indicating that as clusters evolve, generally feedback results
in gas being ejected from haloes, so younger clusters (i.e., in general, clusters
at higher redshifts), will have higher values for 𝑓gas. However, the slopes in each
of the samples decrease by differing values – TNG most notably, with its values
reducing dramatically everywhere except the lowest-mass haloes.

This diverging behaviour in 𝑓gas,200c is in contrast to the strong agreement
found between the samples for both the 𝑇m−mass relations, and the 𝑌−mass
relations, although it is indicated by the 𝑇 − 𝑌 variation. Since 𝑌 is a measure of
the gas pressure within clusters, we could expect it to be self-calibrating – that
is, a cluster in hydrostatic equilibrium would lead to a certain gas pressure to
counter the gravitational well of its own mass. As such we would expect haloes
to have a strong 𝑌 − 𝑀 relationship.

However, we can see a reflection of the 𝑓gas variation subtly in 𝑇y. That is, we
can see that the the curvature of the 𝑇y−mass relation as seen in, e.g., Figure 3.1,
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is similar (albeit inversely) to the curvature in the 𝑓gas−mass relation. In fact, we
can find that this is driven by the changes in 𝑀gas as 𝑀gas𝑇y forms a tight relation
with 𝑌 and a tighter relation (than 𝑇y alone) with mass. This is perhaps unsurpris-
ing, as we already know that on a cluster-by-cluster level, 𝑇y and 𝑇m form a strong
relationship, and since 𝑀gas𝑇m ∝ 𝑌 , we can consider 𝑀gas𝑇y to be proportional to
a relativistic ‘equivalent’ to 𝑌 . Nonetheless, this means a more detailed under-
standing of 𝑀gas (or equivalently 𝑓gas) in clusters would lead to more assurance in
the exact 𝑇y−mass and 𝑇y − 𝑌 relationships.

3.4.3 Feedback

As discussed in Section 3.2, all of the samples use very differently calibrated
feedback models.2 This makes it incredibly difficult to judge how the different
feedback choices have changed our observed results. As such, In this section
we compare the three different runs of THE300 previously described.

In Figure 3.9, the three different THE300 runs are displayed – here GADGET-X
is the run used in the rest of the chapter. GIZMO is a run using a more refined
feedback model that is nonetheless calibrated for high-mass clusters, leading
to a lower observed 𝑓gas particularly at low masses than the other runs. This is
reflected in the GIZMO temperatures lying high at low masses. MUSIC, on the
other hand, has no AGN feedback, and accordingly a shallower slope in 𝑓gas

than GADGET-X. It is worth noting that due to the calibration metrics, MUSIC thus
has slightly higher values for 𝑓gas at low masses and lower values, at high mass.

A quick examination of 𝑇y immediately shows a reflection of the feedback.
At high masses where THE300 is predominantly calibrated, GIZMO and GADGET-
X agree, while at low masses GIZMO lies high, as previously noted. MUSIC lies a
little low at the lowest masses compared to GADGET-X and high at the highest
– the divergence between the three runs appears to happen almost inversely
proportionally to the variation in 𝑓gas between the three runs. This matches the
observations for 𝑓gas just discussed.

Similar, but far reduced effects can be seen by examining 𝑇m. At high masses,
all three feedback runs agree extraordinarily well. This implies that large varia-
tions in feedback – e.g., the large feedback at low masses in GIZMO – are re-
quired to disrupt the stability of 𝑇m.

Examining 𝑇sl, however, we find very different behaviour. Here, the three runs
diverge significantly. GIZMO lies almost at a constant increase above GADGET-X,
MUSIC, on the other hand, has a significantly shallower slope than the other two
runs, with a large decrease in 𝑇sl at high masses. This indicates that 𝑇sl is some-
what more affected by variations in feedback models, making it somewhat less
reliable as a temperature proxy.

2That is, not only are they calibrated to different properties, but also, the feedback models
themselves are varied between each simulation.
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FIGURE 3.9: A comparison of different feedback mechanisms within THE300. Here,
GADGET-X is the run used in the rest of the paper, MUSIC is a run without any AGN
feedback, and GIZMO is a run using a mass-independent feedback calibrated for
the highest masses. The black vertical dotted line at 𝑀200c = 1014.6 M⊙ indicates an
approximation for the region above which The300 was predominantly calibrated.

This figure is otherwise arranged as in Fig. 3.1.
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3.4.4 Relaxation

It is worth very briefly considering the effects of relaxation in clusters. Here, the
same relaxation criteria are used as in Chapter 2. However, for MAGNETICUM we
calculated only the first constraints on 𝑋off and 𝑓sub. However as this restricts the
population to a similar proportion of the haloes as was obtained with all three
criteria in the other samples, this was considered to be a sufficient representa-
tion of the cluster relaxation for the purposes of this chapter.

In Figure 3.10, the effects of the relaxation criteria are shown for the higher
mass clusters at 𝑧 = 0. There is little evidence towards a bulk offset or signifi-
cant change in intrinsic temperature spread between relaxed and un-relaxed
clusters. However, there is a slight rise in the temperatures within THE300 at high
masses. This is not present at lower masses, nor meaningfully in the other simula-
tions. As such, we conclude, that as in Chapter 2, these relaxation constraints
have little impact on the simulation-determined SZ temperatures.

3.4.5 Core-Excision

The MAGNETICUM simulation, in contrast to the other simulations, shows a very
large intrinsic variation in the 𝑦-weighted temperature measure when averaged
over the whole halo volume, especially at higher redshifts. This appears to be
due to a difference in the gas behaviour of the core in the MAGNETICUM simu-
lations compared to the other simulations (BAHAMAS+MACSIS, THE300 and TNG),
and can be mitigated with core-excision.

Within the MAGNETICUM simulation there is a far larger proportion of hot (>
108 K) gas cells in the clusters than in the other simulations, particularly located
in the core of the clusters. In general, none of the simulations model the cluster
cores with high fidelity, however only within the MAGNETICUM simulations do these
core effects appear to significantly affect our averaged SZ temperatures. In
particular, in the MAGNETICUM sample, at 𝑧 = 1.5 within 𝑅500c, most clusters have
a small fraction (≲ 0.005%) of the gas cells having these very high temperatures,
with a maximal fraction of 2% in the most extreme cluster. The TNG sample, in
contrast, has a tiny fraction – for most clusters ≲ 0.0005% of the cells (i.e., a factor
of 10 fewer), with a maximal fraction of 0.5% in the most extreme cluster.

These very high-temperature gas cells, will upweight the averaged 𝑇y more
than 𝑇m leading to the observed changes. And, due to both the instabilities
within the 𝑇y data predominantly being generated at higher redshifts and the
lack of these similar effects within the other simulations, we assume that this ef-
fect is unphysical.

In Figure 3.11, the effects of different radii of core-excision can be seen within
the MAGNETICUM data. In particular, we can motivate the use of the same core-
excision used for our 𝑇sl values, i.e., 0.15𝑅500c, as this indicates the turning point,
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FIGURE 3.11: The effects of core excision on the observed temperature measures
within the MAGNETICUM sample at 𝑧 = 0. The line labelled ‘no core-excision’ are
the volume averages with no core-excision, while the other lines are marked with
the radius of the core-excision (i.e., any cells within this radius are ignored in the
averaging procedure). We see little change to the value of 𝑇m but a slight decrease
within 𝑇y. At higher redshifts, this effect is magnified within the MAGNETICUM sample.
The effects for 𝑇sl are discussed more below. However, we note that by core-excision

of around 0.15𝑅500c these effects have become stable.
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after which further core-excision shows little change. This also, at higher redshifts,
results in removing the unphysical variation present in the 𝑇y data.

As such, we have used the core-excised values for all three temperature
measures (𝑇y, 𝑇m and 𝑇sl) within the MAGNETICUM sample. For our other three
samples, this core-excision is used only for 𝑇sl and the whole-cluster averages
are used for 𝑇y and 𝑇m.

3.4.6 Particle temperature cut

In Section 3.2, we indicated that as is common practice we use a temperature
cut to exclude low-temperature particles that would not emit X-rays, and would
otherwise bias 𝑇sl. In particular, we use a temperature cut of 𝑇 ≥ 105.2 K. However,
in Section 3.3, we observed large scatter in the 𝑇sl values found in MAGNETICUM.
These seem to be driven in large part by warm particles, not excluded in this
regime.

That is, in Figure 3.12, the four samples have been plotted, alongside the
MAGNETICUM haloes when a stricter temperature cut 𝑇 ≥ 106 K is implemented.
The scatter in 𝑇sl is greatly reduced, and the medians lie far closer to those ob-
tained from the other simulations. These “warm” particles account for around
1% of the particles in most haloes, increasing at lower masses. In some of the
lowest-mass haloes these “warm” particles account for around 10% of the par-
ticles. This motivates the use of the consistent temperature cut of 𝑇 ≥ 105.2 K
across all simulations, despite the increase in scatter in the MAGNETICUM sample.

It is also clear that, at least in MAGNETICUM, changing the temperature cut
seems to have very minimal effects on 𝑇y and 𝑇m. This is to be expected, as
these are far more weighted by the higher temperature gas components in
haloes. In principle, the SZ effect will be caused to some extent by all the gas
in a halo, not merely the hottest regions of gas, however this consistency across
temperature cuts, shows that the contribution of the warm gas to the global SZ
signal is minimal. This indicates that 𝑇m and 𝑇y are robust against the choice of
temperature cut.

3.5 Cross-simulation averaged results

Due to the broad agreement of all of the samples in each temperature, we
can consider the effects of averaging across simulations to obtain ‘simulation-
independent’ predictions for these values from simulations. Here, these are ob-
tained by joining all the samples to form one large population of halos, which
is then sorted into mass bins as before, and sample fits are found to the mass-
binned averages.3 This means our averages will be weighted more by those

3This approach obtains results consistent with those obtained by, for instance, taking the mass-
binned values for each sample, and joining these together.
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FIGURE 3.12: The effects of the temperature cut off on the MAGNETICUM sample at
𝑧 = 0. The line labelled ‘Higher T cut’ are the MAGNETICUM volume averages using a

temperature cut of 𝑇 ≥ 106 K. Otherwise the figure is as described in Fig. 3.1.
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TABLE 3.5: The two- and three-parameter fits (Eq. 3.1) and a measure of the intrinsic
scatter (Eq. 3.2) in the fits against mass within 𝑅200c at 𝑧 = 0 for the cross-simulation
averaged sample. The errors here are the errors in the fits found through bootstrap-

ping.

𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.465+0.002
−0.002 0.586+0.003

−0.002 0 0.1025+0.0003
−0.0002

𝑇y 1.426+0.006
−0.007 0.566+0.001

−0.001 0.024+0.005
−0.004 0.1011+0.0001

−0.0001

𝑇m 1.210+0.001
−0.001 0.591+0.003

−0.003 0 0.0805+0.0002
−0.0001

𝑇m 1.207+0.005
−0.005 0.589+0.001

−0.001 0.003+0.004
−0.005 0.0804+0.0001

−0.0001

𝑇sl 1.135+0.003
−0.003 0.601+0.006

−0.011 0 0.2067+0.0016
−0.0008

𝑇sl 1.196+0.020
−0.009 0.641+0.003

−0.003 −0.048+0.007
−0.018 0.2028+0.0002

−0.0001

simulations with larger populations of halos. Fits are provided to individual sim-
ulations in Table B.3, and the variations in simulation predictions can be easily
used to estimate the theoretical, astrophysics-driven uncertainty in the mean
temperature-mass relations, for example via the method described in Anbaja-
gane et al. (2022a, see Section 4.3).

When fitting this data to obtain temperature-mass relations, we then consider
both a two- and three-parameter fit of the form

𝑇 = 𝐸 (𝑧)2/3𝐴

(
𝑀

1014 M⊙

)𝐵+𝐶 log10 (𝑀/1014 M⊙)
keV, (3.1)

where for the two-parameter fit we set 𝐶 = 0.4 The cross-simulation averaged
results at 𝑧 = 0 for all three temperatures can be found in Table 3.5 – the fits
for each individual sample at 𝑧 = 0 can be found in Table B.3. The errors are
obtained through bootstrap techniques and show the error within the mean.
Here, we have, as in the previous chapter, also calculated a measure of the
scatter through the root-mean-squared dispersion around these mean values,

𝜎log10 𝑇 =

√√
1
𝑁

∑︁
𝑖

[
log10

(
𝑇𝑖

𝑇fit(𝑀𝑖)

)]2
, (3.2)

with 𝑖 indexing over all the halos at a given redshift. This measure is weighted
more by the lower-mass clusters and groups, due to the larger number of them
in each sample than higher-mass haloes. This runs opposite to the fits where we
have minimised this bias by fitting to the averages gained from a selection of
mass bins.

The first aspect to note is the exceptional lack of curvature in the 𝑇m− Mass
relationship where, even when we allow for curvature, 𝐶, is fully consistent with
zero, albeit with a slight tendency towards positive curvature. This is true even if

4It is worth noting that this is a different pivot mass to that used in Chapter 2, where 𝑀fid =

3 × 1014 M⊙ in comparison to the 𝑀fid = 1014 M⊙ used in this chapter.
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TABLE 3.6: The median correction to the amplitude, 𝐴, of the two-parameter fit at
each redshift for the temperature measures in the cross-simulation averaged sam-
ple. That is, we are tabulating the averaged value 𝐴★, so that 𝐸 (𝑧)−2/3𝑇𝑧 = 𝐴★𝑇𝑧=0

The full two-parameter fits for each redshift can be found in Table B.4.

𝐸 (𝑧)−2/3𝑇y 𝐸 (𝑧)−2/3𝑇m 𝐸 (𝑧)−2/3𝑇sl

𝑧 = 0.00 1.000 1.000 1.000
𝑧 = 0.25 0.982+0.002

−0.002 0.979+0.002
−0.001 0.960+0.017

−0.011
𝑧 = 0.50 0.976+0.002

−0.002 0.952+0.001
−0.001 0.929+0.004

−0.007
𝑧 = 1.00 0.944+0.002

−0.002 0.897+0.002
−0.002 0.837+0.007

−0.011
𝑧 = 1.50 0.919+0.002

−0.003 0.851+0.002
−0.002 0.749+0.004

−0.004

the pivot mass of the fit is varied. 𝑇y has clear positive curvature, as follows from
our earlier discussion. On the other hand, 𝑇sl shows some significant negative
curvature, but this may be an artifact of the lower-mass haloes’ scatter, and
may not be representative of the behaviour of observed X-ray temperatures.

It is also important to note that the intrinsic variance is slightly larger in the
combined sample than it is in each simulation, due to small bulk offsets between
each sample. It should be reiterated, however, that the errors tabulated in Ta-
ble 3.5 show the errors in the fit parameters, obtained through bootstrapping –
as such these do not reflect the 16 and 84 percentile lines plotted in our figures.
They also are not only caused by the variation in the mean due to the bulk off-
sets between simulations. At 𝑧 = 0, the intrinsic variance is around ±6.0% in 𝑇m,
±7% for 𝑇y and around ±10% in 𝑇sl. However, a more detailed understanding of
the intrinsic variance can be found by looking at the cross-simulation fits to the
16 and 84 percentile lines which are presented in Tables B.1 and B.2.

In general, it is also important to note that there is still a fixed offset between
𝑇y and 𝑇m to be found in the combined sample – we find a median offset of
around 22% (see Table 3.7). However, as with the discussion in Section 3.3.4, we
can consider the minimal offset to be determined by the 1% percentile line –
in this case giving a minimum offset of 8.4%. This large variance in 𝑇y/𝑇m is, of
course, largely driven by the slight disagreement between clusters, which could
potentially be broken with future measurements of 𝑓gas.

This cross-simulation sample can also be used to calculate the redshift evo-
lution of these quantities, and the radial dependence of these results. The first
order redshift and radial evolution can be seen in Tables 3.6 and 3.7 akin to those
discussed in Section 3.3. The mean two-parameter fits can be found in Table B.4,
alongside the full set of two- and three-parameter fits in Tables B.6 and B.7 for
the three temperatures within 𝑅500c at 𝑧 = 0.

We can see in Table 3.6 that the sample-averaged redshifts show the same
variation as expected from considering each sample independently. That is,
all of the temperatures diverge from self similarity, with 𝑇sl showing the greatest
departure, and 𝑇y the smallest. However, when looking at high-redshift haloes,



3.5. Cross-simulation averaged results 107

TABLE 3.7: The shifts and errors in the radius, mass, 𝑇m and 𝑇y over the combined
sample against those values within 𝑅200c. These values are calculated on a cluster-
by-cluster basis, and then the averages are found within these (e.g., the top left
box indicates ⟨𝑅500c/𝑅200c⟩ = 0.66+0.01

−0.02). The central value here is the median with the
errors given by the 16 and 84 percentiles.

𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.66+0.01
−0.02 0.71+0.05

−0.07 1.20+0.04
−0.07 1.40+0.16

−0.12
𝑅200c 1.00 1.00 1.00 1.22+0.11

−0.07
𝑅500m 1.11+0.01

−0.01 1.08+0.03
−0.02 0.95+0.01

−0.01 1.18+0.10
−0.06

𝑅vir 1.33+0.03
−0.02 1.22+0.08

−0.05 0.87+0.04
−0.02 1.11+0.09

−0.06
𝑅200m 1.64+0.06

−0.04 1.39+0.15
−0.10 0.79+0.07

−0.04 1.05+0.09
−0.06

some departure is nonetheless to be expected. Again, we reiterate that the er-
rors here are the errors in the fit, and as such do not encapsulate any variation
in the intrinsic scatter from combining samples. It is also interesting to note that,
although not shown here, the 𝜎log10 𝑇 values for both these one-parameter cor-
rections and the two-parameter fits that are tabulated in Table B.4 are broadly
the same. Although, as previously noted, these will be largely weighted by the
lower-mass haloes, this does indicate that most of the evolution is in the ampli-
tude of the scaling relations, and not in their power law.

This redshift evolution is also not linear with respect to redshift, changing faster
at lower redshifts. However, we can find a parameterisation of this redshift evo-
lution in the form of

log10(𝐴★) = 𝑝 log10(1 + 𝑧) + 𝑞 log2
10(1 + 𝑧), (3.3)

where 𝐴★ is the redshift correction factor, so 𝑇𝑧 = 𝐴★𝐸 (𝑧)2/3𝑇𝑧=0. We find for 𝑇y, 𝑇m

and 𝑇sl that the values for [𝑝, 𝑞] are [−0.05,−0.11], [−0.08,−0.24] and [−0.09,−0.57],
respectively. However, it is worth noting that at higher redshifts, 𝑇sl becomes
an increasingly poor proxy for 𝑇X as the number of haloes in the samples at
temperatures above 3.5 keV diminishes.

The radial corrections tabulated in Table 3.7 do show the effects of combin-
ing the samples, where the errors represent the intrinsic variance. The combined
sample can be seen to only slightly increase this intrinsic radial variance. While
the effects of changing the radius are more complex than a single number can
fully encapsulate, this is still useful for an indicative understanding of the effects
on viewing clusters through different apertures. However, it is interesting to note
that the value of 𝑇y/𝑇m at each radius, increases at higher radii. That is, as the
radius of interest increases, 𝑇m decreases faster than 𝑇y or equivalently, 𝑇y has a
shallower profile. The equivalent values for each sample to those in Table 3.7,
can be found in Table B.5.
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FIGURE 3.13: A comparison of the cross-simulation averaged temperature scaling
relations, with observational results. Note these quantities are all measured within
𝑅500c. The observational lines are plotted only within the mass range of each study.
Here A05, V09, M16 and B19 refer to the fits from Arnaud et al. (2005); Vikhlinin et al.
(2009a); Mantz et al. (2016) and Bulbul et al. (2019), respectively. A05 and V09 both
depend on the hydrostatic mass bias, for which we here assumed 1 − 𝑏 = 0.8. Note

that these observations should generally be compared to 𝑇sl.
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3.5.1 Comparison to X-ray observations

There have been many observational studies aiming to constrain the X-ray tem-
perature, 𝑇X, mass relationship. Here, we consider four such studies to compare
to our cross-simulation averaged results. In particular, we have considered Ar-
naud et al. (2005, A05), Vikhlinin et al. (2009a, V09), Mantz et al. (2016, M16)
and Bulbul et al. (2019, B19), all of which provide two-parameter fits for 𝑇X-𝑀500c

relation.
A05, as in the previous chapter, uses 10 low-redshift (𝑧 < 0.15) clusters from

XMM-Newton, and obtains masses by fitting an NFW-type profile assuming hy-
drostatic equilibrium. Here, we use their fits for the subsample of six hot (>
3.5 keV) clusters. V09 uses Chandra measurements of 85 clusters (over redshifts
of 𝑧 ≲ 0.9), obtaining through fits of 𝛽-profiles, again assuming hydrostatic equi-
librium. As such, both A05 and V09’s masses are offset from the ‘true’ mass
according to the hydrostatic mass bias. This has been measured many times,
both in simulations and using observational techniques, and in this chapter we
will use (1 − 𝑏) = 0.8. M16 uses 40 hot (> 5 keV), relaxed clusters observed by
Chandra (with redshifts 𝑧 ≲ 1). This work calibrates its masses using weak lens-
ing measurements, so can be taken to be measures of the true mass. Finally,
B19 uses 59 clusters from XMM-Newton, over redshifts 0.2 < 𝑧 < 1.5. The masses
are obtained through SZ measurements by the South Pole Telescope. This work
also provides two different fits for 𝑇X and here we use their core-excised fits, to
compare best with our other measures.

In Figure 3.13, these four fits are shown against the whole-sample fits, here all
within 𝑅500c. The length of each line matches the mass range of the data sets
used within each observation. It is first worth noticing, that there is no strong
consensus between X-ray observations about the details of the 𝑇X-𝑀 relation-
ship. This may be exacerbated by the different techniques used in each study.
For B19 and M16 an intrinsic scatter of around 13% is given, while V09 obtains a
slightly higher 15 − 20%. These are calculated as 𝜎ln𝑇 and lie a little smaller than
those values predicted from our combined simulations.

Here A05 and B19 both use data sets from XMM-Newton and agree with
each other best, as well as being comparable to the whole-sample 𝑇sl mea-
surement. However, B19 has a far steeper gradient (at 𝐵 = 0.80+0.11

−0.08) than any of
the other studies, which is at a huge contrast to all of our simulation fits which
indicate gradients always less than self-similarity (that is 𝐵 < 2/3). The other three
studies also all have gradients steeper than that obtained through our simula-
tions, all of which are consistent with self-similarity. It is interesting to note that
the full sample for A05 (rather than the hot sample displayed here) does also
show a shallower gradient more compatible with our simulation results.

M16 shows the most extreme result, tending towards far higher temperatures
than seen in the other scalings, and higher even than the 𝑇y values we have
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found within simulations. This may be a side effect of the sample selection to-
wards hot clusters, pushing the average up, or may indicate the intrinsic spread
within the 𝑇X relationship. V09, the other measurement using Chandra observa-
tions, also lies higher than the XMM-Newton values, indicating an X-ray temper-
ature more consistent with our simulation 𝑇m values, than 𝑇sl.

It is still unclear whether the variation observed here between the obser-
vational methods and simulations, indicates that simulations are not capturing
some facet of real galaxy clusters, or are miscalibrated, or if this comes from the
difficulties in obtaining ‘true’ masses from observations. A factor which could
be exacerbated by the suggested intrinsic spread in the 𝑇X relationship and the
comparatively (when compared to the data sets from simulations) small data
sets and mass ranges used within observational studies. Either way, the 𝑇y tem-
perature is not directly accessible by any of these X-ray studies and we thus
instead recommend using the scalings derived here in future modeling of SZ
observables.

3.6 Discussion

3.6.1 𝑇y–𝑌 self-calibration

The 𝑇y−𝑌 relation can be used in the SZ signal modeling once the 𝑌 -parameter is
determined. This allows one to refine the SZ model (with the relativistic SZ correc-
tions) even if the data for individual systems cannot provide a direct constraint
on 𝑇y. The observed 𝑌 can also differ from the true 𝑌 due to angular resolution
(caused by the instrument beam) but when the resolution is ≲ 1 arcmin, these
smoothing effects in 𝑌 are negligible (Yang et al., 2022), and so the true 𝑌 − 𝑇y

relation presented here can be used directly on observed data without need-
ing any further processing. Similarly, the 𝑌 − 𝑇y relation can easily be used in
simulations of the SZ sky, where from the simulation the cluster temperature is not
directly available, e.g., in the WebSky (Stein et al., 2020).

Here, I will briefly discuss the scaling relationship we have determined, along-
side the effects we may be able to determine with these results. As noted, we
find some complexity in this relationship, with varying levels of curvature, espe-
cially at small values of 𝑌 . As such, we have tabulated the two- and three-
parameter fits for the 𝑇m − 𝑌 and 𝑇y − 𝑌 relationships in Table B.8. The equivalents
for the medians for each sample can also be found in Table B.9.

However, we can create more stable two-parameter fits if we exclude the
smallest halos with 𝑌 < 10−6 Mpc2, which are unlikely to meaningfully contribute
to SZ observations, and which, even when they can be observed, will have the
smallest rSZ corrections. With this restriction and

𝑇 = 𝐸 (𝑧)2/5𝐴

(
𝑌

10−5 Mpc2

)𝐵
keV, (3.4)
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TABLE 3.8: The two parameter 𝑇y-𝑌 fits (Eq. 3.4) for haloes with 𝑌200c > 10−6 Mpc2, and
a measure of the intrinsic scatter (Eq. 3.2) in the fits across redshifts for the median

of the cross-simulation averaged sample within 𝑅200c.

𝐴 𝐵 𝜎log10 𝑇

𝑧 = 0.00 2.614+0.006
−0.006 0.368+0.003

−0.010 0.1874+0.0039
−0.0152

𝑧 = 0.25 2.593+0.007
−0.007 0.372+0.002

−0.005 0.1685+0.0036
−0.0074

𝑧 = 0.50 2.593+0.008
−0.008 0.381+0.003

−0.002 0.1625+0.0034
−0.0033

𝑧 = 1.00 2.585+0.013
−0.012 0.382+0.004

−0.004 0.1388+0.0044
−0.0045

𝑧 = 1.50 2.597+0.052
−0.031 0.373+0.020

−0.011 0.1263+0.0185
−0.0091

fits for the combined sample at each redshift can be found and are given in
Table 3.8 (a full form including the 16 and 84 percentiles can be found in Ta-
ble B.10). It is immediately clear that there is little redshift dependence beyond
the expected self-similar evolution.

While there is more intrinsic variation in this relationship than within the 𝑇y − 𝑀
relationships, it can still be used as a reliable proxy to estimate the relativistic
effects to haloes. Moreover, as our understanding of 𝑓gas in clusters improves, this
uncertainty between clusters may be able to be reduced, as this would allow a
greater understanding of the true 𝑀gas values we should expect for haloes, and
thus a more precise idea of exactly how the 𝑇y−𝑌 relationship can be expected
to behave.

With those comments in mind, a sense of the expected corrections can be
gained for a given cluster. For instance, from the simulations we can estimate
that a cluster with a true 𝑌200c = 10−4 Mpc2 at 𝑧 = 0, would have a temperature of
6.1+0.8

−1.1 keV, where the errors here are driven almost entirely by the disagreement
between the simulations. This would lead to a fractional change in the ampli-
tude at 353 GHz of 0.907+0.016

−0.011 – that is, a 10% underestimation of 𝑌 by using the
non-relativistic approximation.

It is also important to remember that the relativistic corrections to the kinetic
SZ (kSZ) effect, will be driven by 𝑇m and not 𝑇y. The kSZ effect has not been dis-
cussed in much detail in this chapter, but nonetheless detailed studies of kSZ
signals should also consider the impact that this signal may have. These relativis-
tic kSZ effects, are, however, broadly speaking an order of magnitude smaller
than the relativistic tSZ correction (e.g., Sazonov & Sunyaev, 1998; Nozawa et al.,
2006; Chluba et al., 2012b). Still, the relations given here can be used to model
the effects.

3.6.2 Applications to current and future SZ analyses

Finally, it is worth briefly discussing where the obtained scaling relations may
have applications in current and future studies of the SZ effect. First and fore-
most, due to sensitivity or spectral coverage, current SZ measurements are still



112 Chapter 3. Multi-Simulation SZ temperature scalings

not directly sensitive to the rSZ effect. However, the rSZ effect already affects the
inference of cosmological parameters, when it is neglected in modelling. An im-
portant example comes in the SZ power spectrum analysis, where rSZ can lead
to an underestimation of the 𝑦𝑦-power spectrum, and cause a systematic shift in
the inferred value of 𝜎8 (Remazeilles & Chluba, 2020). It will also similarly impact
cross-correlations of the SZ field with large-scale structure fields such as cosmic
shear or galaxy positions. These measurements have recently been used to in-
fer physics like the redshift-dependent mean thermal pressure of the Universe
as well as the energetics of feedback in groups and clusters (e.g., Osato et al.,
2018, 2020; Pandey et al., 2019, 2022; Gatti et al., 2022).

The ease of determining the rSZ bias observationally will also depend on
the experimental configuration. For instance, many planned CMB experiments
have all their channels at 𝜈 ≲ 220 GHz. In these cases, the degeneracy between
𝑇y and 𝑦 cannot be easily broken through observations. However, updated scal-
ing relations, such as those provided here will allow for the rSZ corrections to be
included in the theoretical modelling of the data.

As with the SZ power-spectrum analyses, the SZ cluster number count anal-
yses will almost certainly be affected by the rSZ effect. Here there are two im-
portant aspects. Firstly, at a certain mass, the SZ flux will be diminished due to
rSZ, so that clusters will be assigned to lower signal-to-noise bins. Additionally,
the multi-match-filtering (MMF) method (Melin et al., 2006) used to extract the
clusters will not be optimally tuned for the correct spectral shapes, leading to a
misestimation of the noise. Scaling relations can be directly used to inform the
MMF and reduce the impact of the rSZ effect. The 𝑇y −𝑌 relation in particular will
be relevant as it would allow for the construction of an iterative MMF approach
(e.g., Zubeldia et al., 2022), to incorporate rSZ effects based solely on SZ observ-
ables. This would allow for a more robust comparison of theory and observation,
and to improve the constraining power of the obtained SZ catalogs.

The rSZ effect also impacts studies on the the thermodynamics of cluster out-
skirts (𝑅 ≳ 𝑅200m) – especially non-thermal features like cosmological accretion
shocks (Aung et al., 2021; Baxter et al., 2021) – which contain astrophysical and
cosmological information (see Walker et al., 2019, for a review) and have only
recently been observationally explored. Anbajagane et al. (2022b) performed
the first large population-level analysis of tSZ profile outskirts and found signs of
cosmological shocks, which manifest as decrements in the profile. Others have
seen similar signs using samples of up to ten clusters (e.g., Hurier et al., 2019; Pratt
et al., 2021). However, the rSZ effect also causes a tSZ signal reduction. As such,
a better understanding of the rSZ corrections – and the magnitude of the tSZ
decrement – will be necessary to robustly infer the non-thermal pressure contri-
butions (Shi et al., 2016a; Aung et al., 2021) and plasma physics in these outskirts
(Rudd & Nagai, 2009; Avestruz et al., 2015).

As already discussed for Figure 3.2, 𝑇y has a mass scaling relation which is
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very close to self-similarity with redshift. However, it is important to emphasise
that there is nonetheless significant redshift evolution due to self-similarity along-
side the minor corrections observed. This effect can have important conse-
quences for cosmological inferences relying on the redshift-independence of
the SZ effect. One such example is attempts to use SZ effects to measure the
CMB temperature-redshift relation (Rephaeli, 1980; Luzzi et al., 2009), or to cal-
culate SZ-derived values of the Hubble constant (e.g., Birkinshaw et al., 1991;
Mauskopf et al., 2000; Wan et al., 2021, described in more detail in the previous
chapter). Similarly, applications using SZ measurements to constrain possible
time-variations of the fine-structure constant (Bora & Desai, 2021) may be af-
fected by the redshift dependence of the rSZ effect. Using 𝑇y − 𝑌 relations like
those provided here allow the rSZ effects on these inferences to be marginalised
over.

A final application of these rSZ measurements relates to predictions of the
all-sky averaged SZ and rSZ effects (Hill et al., 2015). This signal is a target of fu-
ture CMB measurements (Chluba et al., 2021) and could inform us about feed-
back processes in cluster physics (e.g., Thiele et al., 2022). The temperature
relations like those provided here allow for these predictions to be refined, to
give a simulation-averaged view on the expected signal. Similarly, these rela-
tions could be used to refine the calculations of the radio (Holder & Chluba,
2021; Lee et al., 2022a, described in more detail in Chapter 4) and CIB SZ (Sabyr
et al., 2022; Acharya & Chluba, 2022) effects. These signals could become im-
portant targets for future radio and sub-mm observations, allowing us to probe
the evolution and origin of the cosmic radio and infra-red backgrounds.

3.7 Conclusions

This chapter presents detailed comparisons of three cluster temperature mea-
sures: (a) the average rSZ temperature; (b) the mass-weighted temperature
relevant for the thermal SZ (tSZ) effect; and (c) X-ray spectroscopic temperature
using the BAHAMAS & MACSIS, ILLUSTRIS-TNG, MAGNETICUM, and THE THREE HUN-
DRED PROJECT simulations. We analyzed gas temperature scaling relations of
galaxy groups and clusters with 𝑀500c > 1013 M⊙, over five redshifts between 𝑧 = 0
to 𝑧 = 1.5. We provided fits to multiple scaling relations for individual simulations
and for a combined cross-simulation sample, with the former ensemble of results
also providing an estimate of the theoretical, astrophysics-driven uncertainty in
the relations. The main results are summarized as follows:

• There is an exceptionally strong agreement for 𝑇m between all four simula-
tions with 𝑀200c. 𝑇y is consistently larger than 𝑇m (by an average of ≃ 22%),
which is generally a little above 𝑇sl at 𝑧 = 0. 𝑇y has a good agreement
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between the simulations, however, there is variation in the exact magni-
tude of the offset between 𝑇y and 𝑇m between simulations. 𝑇sl also shows
agreement, although it is also subject to a great deal more intrinsic scatter
than the other two temperatures. All three temperature measures exhibit
different mass scalings and vary differently with redshift and radius.

• All three temperature measures exhibit deviation from the self-similar evo-
lution. At higher redshifts, they all fall below the expected 𝐸 (𝑧)−2/3 scal-
ing indicating all haloes will have lower temperatures at higher redshifts
than the self-similar model prediction. However, 𝑇y evolves very closely to
self-similarity, while the other temperature measures departs further from
self-similarity, so that at higher redshifts, all three temperature measures in-
creasingly diverge. 𝑇y has an increasing correction relative to 𝑇m and an
even larger correction to 𝑇sl.

• The temperature measures all agree best within 𝑅200c between simulations.
Each simulation and temperature measure has a different radial profile
leading to varied results. While the temperature measures still agree well
within 𝑅500c, the improvement at 𝑅200c indicates this may indeed be an op-
timal radius to study SZ science.

• The gas fraction, feedback methods and resolution all vary significantly
between the simulations. In light of this, the level of agreement we see is
startling, and indicates that much of the SZ gas physics is sufficiently cali-
brated by the microphysical constraints (i.e., stellar properties). However,
when examined in more detail, the gas fraction is found to correlate with
the variation in 𝑇y between simulations. As such, if this can be determined
with more accuracy in future observations, the strength of these predic-
tions may increase. In general, when we study resolution and feedback
within equivalently calibrated simulations, we find little variation to our ob-
served SZ temperature measures, while 𝑇sl is affected slightly more.

• We created a cross-simulation sample and found the fitted values for the
temperatures. In general, 𝑇m shows a limited tendency towards curva-
ture (i.e., a mass-dependent slope), while 𝑇y has positive curvature, and
𝑇sl negative curvature. We provide a simple regime for calculating the
redshift corrections to temperatures within our redshift range, and clarified
the broad effects of varying the radial aperture which we use to define
haloes. When compared to observational results, we find that the tem-
peratures broadly agree. However, there is more variation within X-ray
results than our predictions, making it difficult to draw out strong conclu-
sions. Nonetheless, observations all suggest steeper scaling relations than
we have found in the simulations.
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• In general, while these temperatures will be difficult to directly measure,
they give rise to the possibility of self-calibrating SZ observations, to allow
for relativistic corrections to be used within the determination of SZ mea-
surements themselves. The simulations suggest that for a halo with a true
𝑌200c ≃ 10−4 Mpc2, we would measure a 10% underestimation of 𝑌 by ne-
glecting relativistic effects. We provide 𝑇y − 𝑌 relations to allow for further
detailed modelling.

Future and ongoing experiments such as CCAT-Prime (Stacey et al., 2018),
NIKA2 (Adam et al., 2018), TolTEC (Austermann et al., 2018), and The Simons Ob-
servatory (Ade et al., 2019) offer an exciting potential for measuring the ICM
temperature using the rSZ effect. This will enable comprehensive analyses of
the ICM structure and evolution, especially for high-redshift clusters where X-ray
temperatures are difficult to obtain. These will also provide an observational
test for the validity of the simulation results presented here. Where rSZ temper-
atures cannot be directly measured, we have provided temperature scaling
relations that can be used widely to estimate the impact and potential con-
straining power of the relativistic SZ effects in future measurements.
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Chapter 4

Refined modelling of the radio SZ
signal: kinematic terms, relativistic
temperature corrections and
anisotropies in the radio
background

This chapter is based on the published work, Lee et al. (2022a). The figures were
generated using modifications to the code SZpack. The novel analytics and
analysis was done by EL with input and interpretation from my coauthors.

4.1 Introduction

As briefly discussed in Section 1.4, galaxy clusters (or other giant bodies of hot,
free electrons) can be considered as operators on any background source of
photons (e.g., Syunyaev, 1971; Kamionkowski & Loeb, 1997; Cooray, 2006; Kholu-
penko et al., 2015; Grebenev & Sunyaev, 2020). Any such source, assuming the
photons have energies that are much lower than those of the scattering elec-
trons, will gain a similar kind of distortion from passing through the cluster (see
Chapter 6 or Sarkar et al., 2019, for a more detailed review of the Compton pro-
cess). The distortion from each photon source can be considered separately
and then combined to understand the total distortion to the background pho-
ton distribution.

The radio background has been considered several times over recent years
(Fixsen et al., 2011; Seiffert et al., 2011; Singal et al., 2018; Dowell & Taylor, 2018);
however, its origin is still not well understood (e.g., Feng & Holder, 2018; Mittal
& Kulkarni, 2022). With all this in mind, Holder & Chluba (2021) showed that a
basic analysis of the low-frequency radio background would reveal a distortion
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which, when combined with the standard CMB SZ signal, would exhibit a null
at around 𝜈 ≃ 735 MHz if the background truly is cosmological. As such, using
the radio SZ effect, the origin of the radio background could be studied using
methods similar to those employed for the standard SZ effect but at significantly
lower frequencies.

In this chapter, I consider the kinematic and relativistic corrections to this
combined radio and CMB SZ signal and how they will appear at low frequen-
cies. Effects from the scattering of radio-background anisotropies will also be
discussed. Much of the physical intuition is completely analogous to the stan-
dard SZ effect; however, due to the steepness of the radio background spec-
trum, several interesting differences arise as will be highlighted here.

4.2 The radio SZ signal

To derive the detailed expressions for the radio SZ signal, the analysis is based
on the asymptotic expansion of the Compton collision term. For the standard
SZ effect, these expansions have been written in many forms (Sazonov & Sun-
yaev, 1998; Challinor & Lasenby, 1998; Itoh et al., 1998), but here I will follow the
formulation of Chluba et al. (2012b), henceforth CNSN.

4.2.1 A summary of the SZ formalism

We can recall from Chapter 1, that the phase space density can be written as
(cf. Eq. 1.5)

𝜕𝑛

𝜕𝑡
≃ 𝑐

∫
d𝜎
dΩ′ [ 𝑓

′𝑛′ − 𝑓 𝑛]d2𝛾̂′d3𝑝. (4.1)

Assuming that the electrons are fully thermalised, their phase space density can
then be modelled as a relativistic Maxwell-Boltmann distribution, which has the
form

𝑓 (𝑝𝑝𝑝) = 𝑁ee−𝛾/𝜃e

4𝜋(𝑚e𝑐)3𝐾2(1/𝜃e)𝜃e
(4.2)

for total electron number density, 𝑁e =
∫

d3𝑝 𝑓 (𝑝𝑝𝑝). Here, 𝐾2 is the modified Bessel
function of the second kind. Then, by expressing 𝑛(𝑥 ′, 𝛾̂̂𝛾̂𝛾′) in terms of spherical
harmonic functions 𝑌ℓ𝑚(𝛾̂̂𝛾̂𝛾′) with coefficients 𝑛ℓ𝑚(𝑥 ′), the Boltzmann equation can
be rewritten, by expanding in terms of the frequency shift1 Δ𝜈 =

(𝜈′−𝜈)
𝜈

≪ 1, as

𝜕𝑛(𝑥, 𝛾̂̂𝛾̂𝛾)
𝜕𝜏

≃ −𝑛(𝑥, 𝛾̂̂𝛾̂𝛾) +
∞∑︁
𝑘=0

∑︁
ℓ,𝑚

𝐼𝑘ℓ𝑚𝑥
𝑘𝜕𝑘𝑥 𝑛ℓ𝑚,

𝐼𝑘ℓ𝑚 =
1

𝑁e𝜎T 𝑘!

∫
d𝜎
dΩ′ 𝑓 (𝑝𝑝𝑝) Δ

𝑘
𝜈 𝑌ℓ𝑚(𝛾̂̂𝛾̂𝛾′)d2𝛾̂′d3𝑝.

(4.3)

1Recall that 𝑥 is a dimensionless frequency, defined 𝑥 = ℎ𝜈/𝑘B𝑇CMB.
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The kernel moments 𝐼𝑘
ℓ𝑚

are only functions of the electron temperature (for ℎ𝜈 ≪
𝑘B𝑇e) and independent of the energy-dependence of the photon distribution,
which is encoded by the terms 𝑥𝑘𝜕𝑘𝑥 𝑛ℓ𝑚.

4.2.2 The asymptotic expansion

The moments 𝐼𝑘
ℓ𝑚

can be considered in terms of a temperature expansion about
𝜃e ≪ 1. Up to a fixed temperature, this truncates the expression in Eq. (4.3). At
high-frequencies (𝑥 ≳ 5), this approach does not converge for the standard
SZ effect (see CNSN for in-depth discussion); however, at low frequencies (as
required for the radio SZ effect), this expansion remains accurate to extremely
high cluster temperatures (i.e., 𝑇e ≃ 40 keV or 𝜃e ≃ 0.07), as will be illustrated later
in this chapter.

Assuming there is negligible CMB frame anisotropy in the unscattered pho-
ton distribution, i.e., 𝑛(𝑥, 𝛾̂̂𝛾̂𝛾) ≈ 𝑛(𝑥), and ignoring effects of polarisation (since they
will be small), all anisotropy in the system will accordingly come from the motion
of the cluster relative to the CMB rest frame. For a cluster moving at dimension-
less speed 𝛽c = 𝑣c/𝑐 and in a direction 𝜇̃c = cos 𝜃c relative to the line of sight as
measured in the cluster frame, the change in the photon occupation number
due to Compton scattering is given by [compare Eq. (12) of CNSN]

Δ𝑛̃ ≃ 𝜏𝜃e

∞∑︁
𝑘=0

𝜃𝑘e Ỹ𝑘 + 𝜏𝛽2
c𝜃e

∞∑︁
𝑘=0

𝜃𝑘e M̃𝑘

+ 𝜏𝜇̃c𝛽c

(
−𝑥𝜕𝑥̃ 𝑛̃ + 𝜃e

∞∑︁
𝑘=0

𝜃𝑘e D̃𝑘

)
+ 𝜏𝑃2( 𝜇̃c)𝛽2

c

(
− 3

10
𝑥2𝜕2

𝑥̃ 𝑛̃ + 𝜃e

∞∑︁
𝑘=0

𝜃𝑘e Q̃𝑘

)
.

(4.4)

Here, the Compton-𝑦 parameter is the line-of-sight integrated, 𝑦 =
∫
𝜃e𝑁e𝜎T𝑐d𝑡 =

𝜏𝜃e, and we use the Legendre polynomial 𝑃2(𝜇) = 3(𝜇2 − 1)/2. In Eq. (4.4), tildes
[e.g., 𝜇̃c, 𝑛̃ = 𝑛(𝑥)] indicate that these quantities are being calculated in the clus-
ter frame. This distinction has been dropped for the electron temperature and
number density that enter the scattering 𝑦-parameter, but it should be empha-
sized that these are cluster-frame quantities (see CNSN for a detailed discussion).

In practice, the sums in Eq. (4.4) converge quickly at 𝑥 ≪ 1, and summing up
to 𝑘 = 10 gives a very high-precision result. The functions Ỹ𝑘 , M̃𝑘 , D̃𝑘 and Q̃𝑘 can
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be written as (see CNSN):

Ỹ𝑘 =

2𝑘+2∑︁
𝑗=1

𝑎𝑘𝑗 Ô
𝑗

𝑥̃
𝑛̃,

M̃𝑘 =

2𝑘+2∑︁
𝑗=1

𝑎𝑘
𝑗

6

[
𝑗 ( 𝑗 + 2)Ô 𝑗

𝑥̃
+ (2 𝑗 + 3)Ô 𝑗+1

𝑥̃
+ Ô 𝑗+2

𝑥̃

]
𝑛̃,

D̃𝑘 =

2𝑘+2∑︁
𝑗=0

𝑑𝑘𝑗

[
𝑗 Ô 𝑗

𝑥̃
+ Ô 𝑗+1

𝑥̃

]
𝑛̃,

Q̃𝑘 =

2𝑘+2∑︁
𝑗=0

𝑞𝑘
𝑗

3

[
𝑗 ( 𝑗 − 1)Ô 𝑗

𝑥̃
+ 2 𝑗 Ô 𝑗+1

𝑥̃
+ Ô 𝑗+2

𝑥̃

]
𝑛̃. (4.5)

For convenience, the differential operator has been defined, Ô𝑘
𝑥̃
= 𝑥𝑘𝜕𝑘

𝑥̃
. The co-

efficients 𝑎𝑘
𝑗
, 𝑑𝑘

𝑗
and 𝑞𝑘

𝑗
can be found tabulated in CNSN and are directly related

to the moments, 𝐼𝑘
ℓ𝑚

. They are part of SZpack and available up to 10th order in 𝜃e.
Multiple-scattering effects have been neglected (Chluba et al., 2014; Chluba &
Dai, 2014)

In Eq. (4.4), Ỹ𝑘 describes the thermal SZ effect combined with its rSZ correc-
tions; D̃𝑘 and Q̃𝑘 are the first- and second-order (dipole and quadrupole) kine-
matic corrections, with their higher-order temperature terms; M̃𝑘 contains the
kinematic correction to the monopole signal, and its higher-order temperature
corrections. No temperature-independent terms arise as Thomson scattering
(∝ 𝜏𝛽2

c) of the radiation monopole does not modify the field. The combination
of dipole, quadrupole and monopole corrections, together give the kSZ effect
to second order in 𝛽c. Their temperature corrections are, in general, also referred
to as rSZ effects. These functions are all examined in more detail in CNSN.

Final signal in the CMB rest frame

The details of converting between frames are explored in detail in CNSN. How-
ever, here I will summarise and expand on these results. To transform the distor-
tion into the CMB rest frame, one must perform a Lorentz transformation on the
variables. In particular, as the relative speed 𝛽c has already been defined, we
find

𝑥 = 𝛾c𝑥(1 − 𝛽c𝜇c),

𝜇̃c =
𝜇c − 𝛽c

1 − 𝛽c𝜇c
.

(4.6)

Due to the invariance of the photon occupation number, one can then simply
use these expressions in Eq. (4.4) when evaluating the distortion. Here, 𝑥 and
𝜇̃c are defined in the cluster frame as before, and 𝑥 and 𝜇c are defined in the
CMB frame; 𝛽c (and accordingly 𝛾c = 1/

√
1 − 𝛽2

c) is identical in both frames. In
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principle, the modifications of 𝜃e, 𝜏 and 𝑦 could also be considered between
the two frames; however, in this chapter, these quantities are always defined
in the cluster frame, since this is the frame in which these values have a clear
physical meaning. Further justifications of this can be found in CNSN.

Alternatively, instead of transforming the variables before calculating the re-
sults, it is possible to substitute the relations, Eq. (4.6), into Eqs. (4.4) and (4.5),
and then expand up to second order in 𝛽c ≪ 1. After some simplification one
can then write [compare Eq. (25) of CNSN]

Δ𝑛 ≃ 𝜏𝜃e

∞∑︁
𝑘=0

𝜃𝑘eY𝑘 + 𝜏𝛽2
c

([
𝑥𝜕𝑥 +

1
3
𝑥2𝜕2

𝑥

]
𝑛 + 𝜃e

∞∑︁
𝑘=0

𝜃𝑘eM𝑘

)
+ 𝜏𝜇c𝛽c

(
−𝑥𝜕𝑥𝑛 + 𝜃e

∞∑︁
𝑘=0

𝜃𝑘e D𝑘

)
+ 𝜏𝑃2(𝜇c)𝛽2

c

(
11
30
𝑥2𝜕2

𝑥𝑛 + 𝜃e

∞∑︁
𝑘=0

𝜃𝑘e Q𝑘

)
.

(4.7)

Here, the functions M𝑘 , D𝑘 and Q𝑘 are modified, (while Y𝑘 = Ỹ𝑘) and furthermore
leading-order terms to the monopole correction and quadrupole terms are also
changed, due to boosting and aberration effects. The transformed distortion
functions become2

Y𝑘 = Ỹ𝑘 ,

M𝑘 =

2𝑘+2∑︁
𝑗=1

𝑎𝑘
𝑗
− 𝑑𝑘

𝑗

3

[
𝑗 ( 𝑗 + 2)Ô 𝑗

𝑥 + (2 𝑗 + 3)Ô 𝑗+1
𝑥 + Ô 𝑗+2

𝑥

]
𝑛,

D𝑘 =

2𝑘+2∑︁
𝑗=0

(𝑑𝑘𝑗 − 𝑎𝑘𝑗 )
[
𝑗 Ô 𝑗

𝑥 + Ô 𝑗+1
𝑥

]
𝑛, (4.8)

Q𝑘 =

2𝑘+2∑︁
𝑗=0

𝑞𝑘
𝑗
− 2𝑑𝑘

𝑗
+ 𝑎𝑘

𝑗

3

[
𝑗 ( 𝑗 − 1)Ô 𝑗

𝑥 + 2 𝑗 Ô 𝑗+1
𝑥 + Ô 𝑗+2

𝑥

]
𝑛.

Note that 𝑎𝑘0 = 0, since this is not explicitly mentioned in CNSN. It is also worth not-
ing that when doing these conversions directly, many of the corrections come
from expressing 𝑛(𝑥) in terms of an expansion in 𝛽c around 𝑛(𝑥). With these ex-
pressions, we can proceed to obtain the radio SZ signal in the cluster and CMB
rest frames. It should also be highlighted that at second order in 𝛽c, the expres-
sions in the CMB rest frame do not agree with previous works, as was clarified in
CNSN. Luckily, corrections at the level of 𝛽2

c usually remain subdominant. How-
ever, recent works on using terms ∝ 𝛽c𝜃e to learn about large-scale structure
(e.g., Coulton et al., 2020) may also be affected, as subtle differences in these
terms arise (see CNSN).

2These functions are also used explicitly in SZpack but the expressions were not given in this form
in CNSN.
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4.2.3 The radio SZ signal

For the normal SZ effect as caused by the CMB, the blackbody occupation of
𝑛CMB = 1/(e𝑥 − 1) is used. The radio background has been estimated in Fixsen
et al. (2011). These results were used in Holder & Chluba (2021), where the radio
photon density was expressed as

𝑛R =
𝐴R 𝑓 (𝑧)
𝑥0

(
𝑥

𝑥0

)−𝛼
. (4.9)

Here, 𝛼 = 3.59±0.04 is the radio spectral index, 𝐴R = 8.84±0.77 is the normalization
at 𝑧 = 0, 𝑥0 = 5.46×10−3 and 𝑓 (𝑧) is the fraction of the radio excess that is present at
a given redshift to account for any change in the radio background over time. If
the radio background is fully cosmological and formed at much higher redshifts
than the clusters, we would expect 𝑓 (𝑧) = 𝑓 (𝑧 = 0) = 1. This formulation also
assumes that there is no redshift variation in 𝛼. Since 𝑥 is redshift independent, as
with the typical SZ signal, there will be no redshift evolution of the signal beyond
that caused by the redshift evolution of the background i.e., 𝑓 (𝑧) itself.

The derivatives of the CMB density are complicated, but can be written in
closed form (see Appendix A2 of CNSN) as

𝑥𝑘𝜕𝑘𝑥 𝑛CMB =

( −𝑥
1 − e−𝑥

) 𝑘 𝑘−1∑︁
𝑚=0

〈
𝑘

𝑚

〉
e−𝑚𝑥 𝑛CMB, (4.10)

where the coefficients ⟨...⟩ denote the Eulerian Numbers. The latter determine
the number of permutations of the numbers 1 to 𝑚 in which exactly 𝑘 elements
are greater than the previous element. The derivatives of the Planck function
exhibit very strong frequency dependence in the Wien-tail (𝑥 ≫ 1). This implies
that relativistic corrections can in principle be used to measure the cluster tem-
perature and velocity.

In contrast, for a radio-like background with 𝑛R = 𝐴𝑥−𝛼, we find

𝑥𝑘𝜕𝑘𝑥 𝑛R = (−1)𝑘 Γ(𝛼 + 𝑘 − 1)
Γ(𝛼 − 1) 𝑛R, (4.11)

with Γ(. . .) the Gamma function. This expression implies that the relativistic cor-
rections to the radio SZ signal do not alter the spectral shape of the radio signal,
and they in total combine merely to change the amplitude of the signal. This
means the cluster temperature and velocity cannot be independently deter-
mined using only the radio contribution.

It is worth noticing that, since at low frequencies the CMB background can
be approximated as a power-law with 𝛼 = 1 (i.e., 𝑛CMB ≈ 1/𝑥), the rSZ effects are
equally well behaved at 𝑥 ≪ 1 and also do not show any new spectral shape.
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Indeed from Eq. (4.10) it follows that

𝑥𝑘𝜕𝑘𝑥 𝑛CMB ≈ (−1)𝑘
𝑘−1∑︁
𝑚=0

〈
𝑘

𝑚

〉
𝑛CMB = (−1)𝑘 𝑘! 𝑛CMB, (4.12)

where the identity
∑𝑘−1

𝑚=0 ⟨...⟩ = 𝑘! has been used, which directly follows from the
combinatorial definition of the Eulerian numbers. This result agrees with the one
obtained from Eq. (4.11) for 𝛼 = 1.

Expression inside cluster frame

Using the expressions from above, Eq. (4.5) can be simplified to

ỸR
𝑘 = 𝑛̃R

2𝑘+2∑︁
𝑗=1

(−1) 𝑗 (𝛼 + 𝑗 − 1)!
(𝛼 − 1)! 𝑎𝑘𝑗 ,

M̃R
𝑘 = 𝑛̃R

2𝑘+2∑︁
𝑗=1

(−1) 𝑗
6

(𝛼 + 𝑗 − 1)!
(𝛼 − 1)! 𝑎𝑘𝑗𝛼(𝛼 − 2),

D̃R
𝑘 = 𝑛̃R

2𝑘+2∑︁
𝑗=0

(−1) 𝑗 (𝛼 + 𝑗 − 1)!
(𝛼 − 1)! 𝑑𝑘𝑗 (−𝛼),

Q̃R
𝑘 = 𝑛̃R

2𝑘+2∑︁
𝑗=0

(−1) 𝑗
3

(𝛼 + 𝑗 − 1)!
(𝛼 − 1)! 𝑞𝑘𝑗𝛼(𝛼 + 1).

(4.13)

These are the expressions for the radio background with general 𝛼 that can be
used in Eq. (4.4). For 𝛼 = 1, they equally apply to the standard SZ effect at low
frequencies. The first few terms of these can then be written as

ỸR
0 = 𝑛̃R𝛼(𝛼 − 3),

ỸR
1 =

𝑛̃R
10
𝛼(𝛼 − 3) (7𝛼2 − 21𝛼 − 3),

ỸR
2 =

𝑛̃R
120

𝛼(𝛼 − 3) (44𝛼4 − 264𝛼3 + 284𝛼2 + 336𝛼 − 31),

M̃R
0 =

𝑛̃R
6
𝛼2(𝛼 − 3) (𝛼 − 2),

D̃R
0 =

𝑛̃R
5

2𝛼(𝛼2 − 3𝛼 + 1),

D̃R
1 =

𝑛̃R
5
𝛼(2𝛼4 − 12𝛼3 + 16𝛼2 + 6𝛼 + 1),

Q̃R
0 =

𝑛̃R
30
𝛼(𝛼 + 1) (𝛼2 − 3𝛼 − 6).

(4.14)

For the monopole and quadrupole terms, we only give the leading-order cor-
rections ∝ 𝜏𝛽2

c𝜃e. Note also that ỸR
0 is the main term of the radio SZ effect (Holder

& Chluba, 2021). Inserting 𝛼 = 3.59 and 𝛼 = 1, to second order in temperature
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and cluster velocity,

Δ𝑛̃R
𝑛̃R

≈ 2.12𝑦
[
1 + 1.18𝜃e − 0.59𝜃2

e
]
+ 2.01𝛽2

c 𝑦 (4.15a)

+ 3.59𝜇̃c𝛽c
[
𝜏 + 𝑦(1.25 + 1.15𝜃e)

]
− 4.94𝑃2( 𝜇̃c)𝛽2

c
[
𝜏 + 0.43𝑦

]
,

Δ𝑛̃CMB
𝑛̃CMB

≈ −2𝑦
[
1 − 1.7𝜃e + 3.08𝜃2

e
]
+ 0.34𝛽2

c 𝑦 (4.15b)

+ 𝜇̃c𝛽c
[
𝜏 + 𝑦(−0.4 + 2.6𝜃e)

]
− 0.6𝑃2( 𝜇̃c)𝛽2

c
[
𝜏 + 0.89𝑦

]
,

respectively. These expressions are quite accurate as will be shown later in this
chapter, but higher-order terms can be easily added in SZpack. It should be em-
phasized that for the individual contributions no new spectral shape is created
by relativistic corrections. However, since the radio and CMB SZ effects have a
different dependence on the temperature and cluster velocity, the spectrum of
the total signal is modified.

Expression inside CMB frame

Much like for the cluster frame, in the CMB frame using 𝑛R the terms of Eq. (4.8)
can be simplified for use with Eq (4.7) to

MR
𝑘 = 𝑛R

2𝑘+2∑︁
𝑗=1

(−1) 𝑗
3

(𝛼 + 𝑗 − 1)!
(𝛼 − 1)!

(
𝑎𝑘𝑗 − 𝑑𝑘𝑗

)
𝛼(𝛼 − 2),

DR
𝑘 = 𝑛R

2𝑘+2∑︁
𝑗=0

(−1) 𝑗 (𝛼 + 𝑗 − 1)!
(𝛼 − 1)!

(
𝑑𝑘𝑗 − 𝑎𝑘𝑗

)
(−𝛼),

QR
𝑘 = 𝑛R

2𝑘+2∑︁
𝑗=0

(−1) 𝑗
3

(𝛼 + 𝑗 − 1)!
(𝛼 − 1)!

(
𝑞𝑘𝑗 − 2𝑑𝑘𝑗 + 𝑎𝑘𝑗

)
𝛼(𝛼 + 1).

(4.16)

YR
𝑘

have not been repeated as they are identical to ỸR
𝑘

in Eq. (4.14). The first
few terms in the CMB frame can now be written as

MR
0 =

𝑛R
5

7𝛼2(𝛼 − 3) (𝛼 − 2),

DR
0 =

𝑛R
5
𝛼(7𝛼2 − 21𝛼 + 2),

DR
1 =

𝑛R
10
𝛼(11𝛼4 − 66𝛼3 + 92𝛼2 + 21𝛼 + 2),

QR
0 =

𝑛R
10
𝛼(𝛼 + 1) (19𝛼2 − 57𝛼 + 2).

(4.17)

These expressions can reproduce the kinematic and relativistic temperature cor-
rections to the radio SZ (and standard SZ) effect to high precision.
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Again inserting 𝛼 = 3.59 and 𝛼 = 1, one finds

Δ𝑛R
𝑛R

≈ 2.12𝑦
[
1 + 1.18𝜃e − 0.59𝜃2

e
]
+ 9.08𝛽2

c
[
𝜏 + 0.62𝑦

]
(4.18a)

+ 3.59𝜇c𝛽c
[
𝜏 + 𝑦(3.37 + 3.65𝜃e)

]
+ 6.04𝑃2(𝜇c)𝛽2

c
[
𝜏 + 3.84𝑦

]
,

Δ𝑛CMB
𝑛CMB

≈ −2𝑦
[
1 − 1.7𝜃e + 3.08𝜃2

e
]
+ 1.67𝛽2

c
[
𝜏 + 0.56𝑦

]
(4.18b)

+ 𝜇c𝛽c
[
𝜏 + 𝑦(−2.4 + 6𝜃e)

]
+ 0.73𝑃2(𝜇c)𝛽2

c
[
𝜏 − 3.27𝑦

]
.

The expression for the temperature corrections to the standard thermal SZ ef-
fect agrees exactly with Eq. (37) in Nozawa et al. (1998), even if here only two
orders in 𝜃e are given, which is already highly accurate. While the leading-order
kinematic term ≃ 𝜇c𝛽c𝜏 also agree; all other terms depart as explained in CNSN.

It is important to stress that the temperature terms appearing in the form
𝑦𝜃𝑘e should be interpreted as 𝑦-weighted temperature moments, which for non-
isothermal clusters can differ from mass-weighted or X-ray measured tempera-
tures (Chluba et al., 2013; Lee et al., 2020, and also discussed in Chapter 2).
Similarly, all other terms are caused by various temperature and velocity mo-
ments that should be treated carefully. However, for the current discussion, this
complication is neglected.

The temperature corrections to the radio SZ signal are smaller than those for
the CMB signal in this low-frequency regime. To first order, since the CMB sig-
nal is negative in the region, the two signals combine destructively when they
are added. This leads to a source-shadow appearance of the cluster in the
scattered light (Holder & Chluba, 2021). However, the temperature corrections
themselves to both the CMB and radio SZ signal are in the same direction, and
as a result magnify the relativistic corrections measured in either signal individu-
ally (as will be clarified in Section 4.3). Conversely, the kinematic corrections are
larger for the radio SZ signal than for the CMB signal.

4.2.4 Anisotropies in the radio background

In the absence of kinematic effects, the scattering effect for arbitrary photon
anisotropies can be computed as in Chluba et al. (2012a). Neglecting stimu-
lated scattering terms, the distortion to first order in temperature can be written

Δ𝑛 ≈ 𝜏
(
𝑛0 +

𝑛2
10

− 𝑛
)
+ 𝑦

[
4𝑥𝜕𝑥 + 𝑥2𝜕2

𝑥

]
𝑛̄

+ 𝑦
(
−2

5
𝑛1 −

3
5
𝑛2 +

6
35
𝑛3

)
,

𝑛̄ = 𝑛0 −
2
5
𝑛1 +

1
10
𝑛2 −

3
70
𝑛3.

(4.19)

Here, 𝑛ℓ ≡ ∑
𝑚 𝑛ℓ𝑚𝑌ℓ𝑚(𝛾̂̂𝛾̂𝛾 · 𝑧𝑧𝑧), where 𝑧𝑧𝑧 defines the coordinate system for the multi-

pole expansion. Thus, 𝑛0, 𝑛1, 𝑛2 and 𝑛3 refer to the monopole, dipole, quadrupole
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and octupole components, and 𝑛 refers to the combined signal. These can be
combined explicitly by expanding and taking 𝛼ℓ as the spectral index for each
𝑛ℓ to find

Δ𝑛 ≈ 𝑛0

[
𝑦 𝛼0(𝛼0 − 3)

]
− 1

5
𝑛1

[
5𝜏 + 2𝑦(𝛼2

1 − 3𝛼1 + 1)
]

− 1
10
𝑛2

[
9𝜏 − 𝑦(𝛼2

2 − 3𝛼2 − 6)
]

− 1
70
𝑛3

[
70𝜏 + 3𝑦(𝛼2

3 − 3𝛼3 − 4)
]
.

(4.20)

These are equivalent to the expression found in Eq. (4.4) to first order in temper-
ature, if one defines the multipoles as those derived from a kinetic boost from
an isotropic CMB frame photon into the cluster frame [cf. Eq. (11) in CNSN]. That
is, one can observe the similarities between the terms in Eq. (4.20) and those for
ỸR

0 , D̃R
0 and Q̃R

0 found in Eq. (4.14). In principle, it would therefore be possible
to extend the expressions for the monopole, dipole and quadrupole scattering
to higher order in temperature, as we have for the general SZ effect. In this
case, no extra terms to the monopole scattering would appear (e.g., M̃ = 0).
Also, terms describing octupole scattering (equivalent to O(𝛽3

c) in Eq. (4.4) which
have been dropped) would still need to be derived. However, in this chapter we
focus on a low-temperature expansion to more easily understand the effects of
various anisotropies. It should also be stressed that to first order in temperature
only the first three anisotropies could ever contribute to the SZ signal.

For a simplistic model, where the radio background has, for instance, a
dipole with the same spectral shape as the background itself, say 𝑛1 = 𝑓1𝑛R,
with 𝑓1 < 1, then the effect on the radio signal would be the same as the first
order (in 𝛽c) kinematic corrections with 𝛽c 𝜇̃c𝛼 ↔ 𝑓1. However, a kinematic ef-
fect would also create a correction to the incoming CMB photons, which an
intrinsic dipole anisotropy in the radio background would evidently not – ac-
cordingly these two signals would in principle be distinguishable. Furthermore, if
any radio background anisotropies have a different spectral shape to the radio
background itself, we would see more complex contributions to the final signal.
Later in this chapter, I consider instructive examples to illustrate the effects.

4.2.5 Effect of the observer motion

In Section 4.2.2, the effects of switching between the cluster frame and CMB
frame has been discussed and the effects on the measured SZ signal. In actu-
ality, of course, observations are made in neither. It is well known that there is
a significant observed dipole component within the CMB due to the earth’s
motion relative to the CMB frame. This can be well parameterised by 𝛽o =

1.241 × 10−3(1 ± 0.2%) (Fixsen et al., 1996; Fixsen & Mather, 2002). Then we define
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𝜇o as the cosine of the angle between this dipole direction, and the observed
cluster (measured in the observer frame).

In a similar way to moving to the CMB frame from the cluster frame, this
dipole motion will generate both a dipole correction and higher-order terms to
the observed SZ signal. This has already been well documented (Chluba et al.,
2005) for its effect on the conventional SZ signal, and the effects on radio SZ
signal are similar, but worth repeating here.

From a mathematical perspective, this is all most easily expressed by simply
transforming the variables such that (see CNSN)

𝑥 = 𝛾o𝑥o(1 + 𝛽o𝜇o),

𝑥 = 𝛾c𝑥(1 − 𝛽c𝜇c) = 𝛾c𝛾o𝑥o(1 − 𝛽c𝜇c) (1 + 𝛽o𝜇o),

𝜇 =
𝜇o + 𝛽o

1 + 𝛽o𝜇o
,

(4.21)

where 𝑥o is the dimensionless frequency as measured in the observer frame and
𝛾o =

√︁
1 − 𝛽2

o is the associated Lorentz factor; 𝜇 is the angle between the observer
dipole and the observed cluster as measured in the CMB frame, included here
only for completeness.

It is clear that for both the radio SZ and normal SZ signals, the effect of this
frame conversion is a modulation of the observed frequency. If this was to be
fully expanded, as in Section 4.2.2 for the CMB frame, it would introduce dipole
and quadrupole terms in 𝛽o alongside cross terms in 𝛽c𝛽o. However, it is easier to
simply replace variables in the CMB frame expression using the above relation
to obtain the transformed result. Since we know the amplitude and direction of
the dipole, this effect can easily be taken into account. We thus assume this has
been taken care of in any analysis.

4.2.6 Additional small effects

In this discussion, I have omitted multiple-scattering effects. These can lead to
additional small corrections to the SZ signals (Chluba et al., 2014; Chluba & Dai,
2014). In addition, the scattering of the intra-cluster radio light, e.g., from radio
sources within the cluster, requires a more detailed modelling. Internal motions
of the cluster, e.g., due to cluster rotation (Chluba & Mannheim, 2002; Cooray &
Chen, 2002; Diego et al., 2003), could affect the radio SZ signal in a similar man-
ner as for the normal SZ effect. Similarly, moving-lens effects (Birkinshaw & Gull,
1983; Molnar & Birkinshaw, 2003) will appear. Finally, as with the usual kinematic
SZ effect (Sunyaev & Zeldovich, 1980) and scattering of the CMB quadrupole
(Kamionkowski & Loeb, 1997; Sazonov & Sunyaev, 1999), the scattered radio
light will be linearly polarized. However, modelling all these smaller effects is
beyond the scope of this chapter.
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4.3 Results

In this section, I consider how the radio and CMB signal combine to give the
observable radio SZ signal; the kinematic and relativistic contributions modify
the signal and affect the location of the radio SZ null. In Section 4.3.4, how the
variations in the radio background change the results is explored and, in Sec-
tion 4.3.5, the contributions of anisotropies in the radio background are shown. I
will always give the results in the CMB frame.

4.3.1 Main dependence of total signal and degeneracies

From Eq. (4.18a) [or in general the combination of Eqs (4.11), (4.4) and (4.5)], it
is evident that the radio background causes a scattering signal that is always
proportional to the radio background itself. i.e.,

Δ𝑛R = 𝜏 𝑛R(𝜈, 𝑧, 𝛼) 𝐹R(𝜃e, 𝛽c, 𝜇c, 𝛼)

= 𝜏 𝐴R 𝑓 (𝑧) 𝐹R(𝜃e, 𝛽c, 𝜇c, 𝛼) 𝑔(𝜈, 𝛼),
(4.22)

where 𝐹R now contains all of the kinematic and relativistic terms and can in
general be thought of as a scattering amplitude. Here, I have also defined
𝑔(𝜈, 𝛼) = (𝑥/𝑥0)−𝛼 𝑥−1

0 .
In this formulation, the radio SZ is always positive and thus does not form an in-

herent null from scattering. In contrast, the normal CMB SZ signal has an inherent
null at around 217 GHz – the cross-over frequency from photons being scattered
out from lower frequencies into higher frequencies. However, the combination
of scattering of the radio background and CMB leads to a new null at around
735.5 MHz, as discussed in Holder & Chluba (2021). That is, we can write

Δ𝑛R + Δ𝑛CMB ≈ 𝜏
[
𝐴R 𝑓 (𝑧)𝐹R(𝜃e, 𝛽c, 𝜇c, 𝛼) 𝑔(𝜈, 𝛼)

+ 𝐹CMB(𝜃e, 𝛽c, 𝜇c) 𝑛CMB(𝜈)
]
,

(4.23)

where 𝐹CMB(𝜃e, 𝛽c, 𝜇c) ≈ 𝐹R(𝜃e, 𝛽c, 𝜇c, 1), and 𝐹CMB is negative in this regime. This
can all be seen in Figure 4.1, where the scattering from both the radio back-
ground and the CMB are shown individually, alongside the combined signal.

Changes to the observed signal can now be quantified in a heuristic man-
ner. The kinematic and relativistic effects cause changes to 𝐹R and 𝐹CMB, which,
to first order, enhance the observed change to the signal. For example, in Fig-
ure 4.1, the relativistic corrections to each signal are shown for a cluster tem-
perature of 10 keV. The relativistic effect on both the CMB and radio scattering
increase the signal. This can be understood physically as the relativistic correc-
tions imply there is more up-scattering for the radio SZ signal, while for the CMB
distortion this results in fewer photons being up-scattered out of this region. The
relativistic corrections will be quantified more precisely later in this chapter, but
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FIGURE 4.1: Contributions of the non-relativistic CMB SZ signal, radio SZ signal and
combination of the two at low frequencies, alongside their relativistic corrections
at 𝑇e = 10 keV. In the top panel we see the change in intensity relative to the back-
ground signals, the bottom panel shows the effective change in temperature mea-
sured at each frequency. We have set 𝑦 = 10−4 and used 𝑛R with 𝑓 (𝑧) = 1. Note this

is a logarithmic plot in frequency.
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at low frequencies, the effects are typically a few percent. These are compara-
ble, if a little smaller, to the standard relativistic SZ effect.

The kinematic corrections combine in a similar way – a cluster heading to-
wards the observer (i.e., 𝜇c > 0) leads to more up-scattering, shifting the null
to higher frequencies, while a cluster heading away shows the opposite effect.
Changes to the amplitude of the radio background – either due to the uncer-
tainty in measurements of 𝐴R, from 𝑓 (𝑧) or from some inherent angular depen-
dence to the signal, i.e., some 𝑓 (𝛾̂̂𝛾̂𝛾, 𝑧) – also leads to a re-weighting of the radio
component relative to the CMB component.

Here, a degeneracy can immediately be spotted within the signal. For a
given 𝛼, measurements of the total radio SZ signal can only ever give the rela-
tive amplitudes of the CMB and radio components – i.e., from the shape of the
combined signal. However, the more details of the clusters or the radio back-
ground are known, the more information can be obtained from the signal. For
instance, if 𝜏 (or 𝑦) is known, the amplitude of the signal itself becomes a sec-
ond independent measurement from the radio SZ signal. It should also be noted
that variations in 𝛼, either within the measurement of the radio background it-
self, or due to anisotropies, would in principle be distinguishable from the other
variations within the signal. Furthermore, since 𝐹R and 𝐹CMB are not indepen-
dent quantities and together give a complex dependence on 𝑇e, 𝛽c and 𝜇c,
more information may be gained from them than initially supposed. However,
this requires detailed forecasts and high-precision measurements.

4.3.2 Relativistic and kinematic corrections

In Figure 4.2, the non-relativistic combined signal (as described in Holder &
Chluba, 2021) is displayed alongside the signal including relativistic and kine-
matic corrections. Here, we have shown a cluster with large kinematic correc-
tions (with 𝛽c = 0.005 and 𝜇c = ±1.0). The relativistic corrections come from a
cluster temperature, 𝑇e = 10 keV, a temperature typical of the most massive clus-
ters in the Universe (Arnaud et al., 2005; Lee et al., 2020). We have calculated all
of these distortions with a recent update to SZpack. Here, the radio background
is assumed to be comoving with the CMB – or, alternatively, it is isotropic in the
CMB rest frame. That is, it is meaningful to use the same value of 𝛽c for both the
CMB induced signal and the radio SZ signal.

The first aspect to note is that, while these corrections roughly maintain the
shape of the distortion in these regions, they lead to shifts in frequency. A second
point is that the shapes are nonetheless distorted, as can be seen in the third
panel of Figure 4.2. The kinematic effects are generally larger than the relativistic
effects, as in the normal SZ effect. However, the kinematic radio SZ effect is
≃ 3.6 times larger than the standard kSZ effect due to the steepness of the radio
background.
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FIGURE 4.2: Illustration of the corrections to the combined CMB and radio SZ signals
due to relativistic (rSZ) and kinematic (kSZ) effects. The rSZ corrections come from
𝑇e = 10 keV and the kSZ effects are for 𝛽c = 0.005, with 𝜇c = ±1.0. In the top panel
we see the change in intensity relative to the background signals, the middle panel
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tom panel shows the difference between the stationary non-relativistic signal and
the signals incorporating rSZ and kSZ effects. We have set 𝑦 = 10−4 and used 𝑛R with

𝑓 (𝑧) = 1. Note this is a logarithmic plot in frequency.
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TABLE 4.1: The null of the radio+cmb SZ signal for various temperatures. Kinematic
terms are excluded. We note that since the relativistic null is nearly linear with tem-
perature (see Fig. 4.3), the null can be well modelled as an interpolation between

these points.

𝑇e [keV] 0 5 10 20 30 40
𝜈N [MHz] 735.5 743.5 751.4 767.0 782.4 797.5
Δ𝜈N/𝜈N −− 1.08% 2.16% 4.28% 6.37% 8.43%

The kinematic effects are also not reversible with respect to 𝜇c. That is, for ex-
ample, the 𝜇c = 1.0 signal contributes to more up-scattering of the photons, than
the 𝜇c = −1.0 signal contributes to down-scattering when compared to the non-
kinematic signal. This is a small effect in the figure shown, but proportional to 𝛽2

c .
This can be seen numerically from Eq. (4.4), where the signal has components
proportional to 𝛽2

c and 𝛽2
c𝑃2(𝜇c). For a similar reason, the changes to the signal

are non-linear under changes to 𝜇c. Also, the 𝛽2
c𝜏 terms in the radio SZ effect are

amplified by a factor of ≃ 7, which causes an larger asymmetry when flipping
the direction of 𝛽c in comparison to the standard kSZ effect. However, direct ob-
servations of these small terms will be difficult in the near future, but modelling
of these effects will lead to improved accuracy in any measurements.

4.3.3 Corrections to the null

The corrections can be illustrated by considering the adjustments to the null in
the signal. We define the null frequency, 𝜈N to be the frequency at which there
is no distortion to the original signal (i.e., Δ𝐼 (𝜈N) = 0 Jy/Sr and Δ𝑇 (𝜈N) = 0 𝜇K). For
the normal SZ effect, this is often referred to as the crossover frequency.

In Figure 4.3, the variation of the radio null is shown under changes in 𝑇e. Kine-
matic terms are omitted. Firstly, it is worth noting the changes are small, and sec-
ondly the variations are almost linear with cluster temperature. The figure also
illustrates the convergence of the asymptotic expansion, by showing the cal-
culation of the null from considering increasing numbers of terms. In Table 4.1,
I specifically calculate the null for a selection of temperatures. By interpolat-
ing these points, one can obtain accurate predictions for the null. However,
at 𝑇e ≲ 15 keV, the expressions in Eq. (4.18a) and (4.18b) should suffice. Higher-
precision results can be obtained with SZpack.

The null frequency, 𝜈N, increases with temperature, reflecting the general
shift upwards in both the CMB and radio contributions. However the effect of
increasing the temperature, decreases with temperature, e.g., the shift in null
from 0 to 10 keV is slightly greater than that between 30 and 40 keV. The response
of the null to changes in temperature is, however, well behaved and relatively
small compared to the frequencies considered.
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In the standard SZ scenario, the crossover frequency can be parameterised
under changes in temperature as (Itoh et al., 1998),

𝜈N,CMB = 217.5
[
1 + 1.1674𝜃e − 0.8533𝜃2

e
]

GHz. (4.24)

The equivalent general function for the radio SZ effect is more complicated –
but, allowing for changes in 𝛼, 𝐴R and 𝑓 (𝑧), one can find

𝜈N ≈ 𝜈0

(
2

𝐴R 𝑓 (𝑧)𝛼(𝛼 − 3)

) 1
1−𝛼

[
1 + 7

10
(𝛼 − 2)𝜃e

+ 1
600

(73𝛼3 − 218𝛼2 − 730𝛼 + 1748)𝜃2
e +𝑂 (𝜃3

e)
]
,

(4.25)

where 𝜈0 = 310 MHz is the real frequency associated with the dimensionless fre-
quency 𝑥0. For general 𝛼 this is complicated to assess, but, for 𝛼 = 3.59, this can
be simplified to

𝜈N ≈ 735.5
(
𝐴R 𝑓 (𝑧)

8.84

)0.386 [
1 + 1.113𝜃e − 0.5079𝜃2

e
]

MHz. (4.26)

Comparing to Eq. (4.24) shows that the relative effect of temperature correc-
tions on the radio null is similar to that for the normal tSZ effect, which enter at
the few percent level.

A similar full consideration for the kinematic effect is more complex – how-
ever, for 𝜇c𝛽c ≪ 𝜃e the lowest order kinematic correction can be expressed as

𝜈N ≈ 𝜈0

(
2

𝐴R 𝑓 (𝑧)𝛼(𝛼 − 3)

) 1
1−𝛼

[
1 + 1

2(𝛼 − 3)
𝜇c𝛽c
𝜃e

]
. (4.27)

Again inserting numbers we can find

𝜈N ≈ 735.5
(
𝐴R 𝑓 (𝑧)

8.84

)0.386 [
1 + 0.847

𝜇c𝛽c
𝜃e

]
MHz. (4.28)

This expression immediately shows that kinetic terms can have a relatively large
effect on the radio null.

An indicative plot for the kinematic corrections is shown in Figure 4.4, which
shows the response of the null to 𝛽c and 𝜇c at 𝑇e = 10 keV. As expected, even
relatively small peculiar motion can induce significant shifts in the radio null. One
can observe a slight asymmetry in 𝜇c that is more easily seen at higher values
of 𝛽c. The kinematic corrections also vary to first order about the relativistically
corrected null – i.e., when 𝜇c = 0, the null lies at ≃ 751.4 MHz as expected from
Table 4.1 – although at high 𝛽c the monopole corrections will have more of an
effect in shifting this to higher frequencies.

As with the CMB SZ null, there is an anticorrelation between the cluster tem-
perature and the shift in the null. That is, at lower temperatures the kinematic
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FIGURE 4.4: A plot showing the kinematic corrections to the radio null. We are
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effects become more important than at higher temperatures for a fixed 𝛽c. This
can be understood in a number of ways – numerically, we can directly see that
since 𝑦 ≃ 𝜏𝜃e, even the non-relativistic tSZ signal has a dependence proportional
to 𝜃e, while the non-relativisitic kSZ signal has none. Hence, decreasing the clus-
ter temperature, reduces the impact of the tSZ signal, thus effectively increasing
the impact of the kSZ signal. Alternatively, we can understand this energetically,
in that, for a fixed velocity cluster (i.e., fixed 𝛽c), reducing the temperature of the
cluster will lead to a higher proportion of the electron energy being contained
in the kinematic component. Accordingly, the kinematic effect will increase
proportionally with lower temperatures.

4.3.4 Radio background variations

The radio background is still comparatively poorly understood, despite the mea-
surements that have been taken (Fixsen et al., 2011; Seiffert et al., 2011; Singal
et al., 2018; Dowell & Taylor, 2018). As such, the uncertainty in the background
is far larger than that of the CMB. Not only is it currently unknown how the radio
background varies with redshift, there may also be large-scale spatial fluctua-
tions within it. The radio SZ signal could theoretically then be used as a measure
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to determine details of the radio background itself alongside potentially bound-
ing its inherent variations.

Figure 4.5 illustrates the effects of the 1𝜎 errors given for the radio background
as expressed in Eq. (4.9) in both the normalization and spectral index. These
changes are of a similar scale to the relativistic corrections, but small compared
to any major changes from 𝑓 (𝑧), which are illustrated in the two cases, 𝑓 (𝑧) = 0.5
and 𝑓 (𝑧) = 1.5. A value 𝑓 (𝑧) < 1 is consistent with the simple picture that the radio
background is isotropic but slowly builds up with redshift, while 𝑓 (𝑧) > 1 suggests
that a local overdensity around the cluster might be present.

The displayed examples all change the shape of the signal (as would be ex-
pected). This means that these variations are theoretically separable from the
relativistic corrections caused by the cluster temperature. However, the normal-
ization 𝐴R of 𝑛R, 𝑓 (𝑧) and the effective relativistic corrections are all degenerate,
and only their product can be constrained. Existing priors, either from standard
SZ observations or from theory using scaling relations, could thus provide addi-
tional important leverage when aiming to use radio SZ measurements to learn
about 𝑓 (𝑧) and 𝐴R. The spectral index 𝛼 on the other hand can in principle be
separated from the other effects by measuring the precise spectral shape of
the radio SZ signal.

The shift in the null from varying the spectral index, 𝛼, is around ≃ ±14 MHz,
while the measured uncertainty in 𝐴R leads to a slightly larger effect of around
≃ ±25 MHz variation to the null. The scattered radio SZ signal need not have the
same spectral index as the ‘off-cluster’ radio flux. This is because the scattered
signal probes the local radio background at the clusters location, while the ‘off-
cluster’ sky flux constrains the superposition of all radio emission along the line of
sight. The value of 𝛼 should therefore be directly measured using the scattered
signal.

Overall, assuming that the temperature and peculiar velocity of a cluster can
be precisely measured, a high-precision measurement of the radio SZ signal can
allow a determination of 𝛼 from the signal shape, and the product 𝐴R 𝑓 (𝑧) from
the location of the signal null. The exact details of the current observational fea-
sibility of this are beyond this thesis, but it is worth noting that any large changes
over redshift could be more easily detectable. Large changes in 𝑓 (𝑧) may in-
dicate the age of the radio background or give more insight into its creation.
It is also worth noting the possibility of the variation of 𝛼 with redshift, 𝛼 → 𝛼(𝑧),
which again could theoretically be measured with a large enough sample size
and high enough measurement precision.

Other variations could come if 𝛼 had any 𝑥 dependence – for example, if
the radio background exhibited significant curvature beyond the power law. A
superposition of different power laws (i.e., a mix of different values for 𝛼) would
lead to some curvature inherently (Chluba et al., 2017); however, there is no
evidence for this within the ARCADE measurements. This indicates that there is
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FIGURE 4.5: Variations in the radio SZ signal (with 𝛽c = 0 and 𝑇e = 10 keV) under
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according to a significant variation in 𝑓 (𝑧). We have set 𝑦 = 10−4.
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little variation of 𝛼 with redshift. A detailed analysis of curvature within the power
law background is, again, beyond the scope of this thesis.

4.3.5 Anisotropy in the radio background

We can also consider the effects of anisotropy in the radio background on the
observed signal. Overall, this can be thought of as 𝐴R 𝑓 (𝑧) → 𝐴R 𝑓 (𝛾̂̂𝛾̂𝛾, 𝑧). In Sec-
tion 4.2.4, the mathematical formalism was explored and it was noted that if the
anisotropic components have the same spectral index, the only effect will be
to change the amplitude of the radio component of the SZ signal. That is, as
discussed before, this would shift the null. Hence, if it were possible to bound
the average 𝑓 (𝑧) =

∫
𝑓 (𝛾̂̂𝛾̂𝛾, 𝑧) d𝛾̂, 𝑇e and the amplitude of the radio background,

a precise measurement of the null would give some bounds on the level of
anisotropy in the radio background itself. If however, the higher-multipole com-
ponents have a different spectral index, there would be changes to the spec-
tral shape, as there would be more components adding to the distortion (as
opposed to just the monopole radio 𝑛R and CMB components). This would in-
crease the number of parameters and pose high demands on the observations.

Figure 4.6 shows the effects of a dipole in the radio background and its dif-
ferences to the kinematic effect. Here, a substantially cooler cluster of 1 keV is
used, both to increase the accuracy of the first-order temperature expansion
used in Eq. (4.19) and to maximise the size of the distortions, so they can be
more clearly observed. The radio background dipole is set to be 0.1% of the
radio background as a whole (i.e., 𝑛1 = ±0.001𝑛R) and the kinematic effects are
also plotted with the ‘equivalent’ magnitude, i.e., 𝛽c𝜇c = 0.001/𝛼. We note that
the dipole in the CMB (induced by the relative motion of the observer frame
and the CMB frame) is around 1.24 × 10−3 (i.e., 𝛽o). So here this assumes a dipole
of comparative size.

These two effects have very different effects on the shape of the observed
signal. At low frequencies, the kinematic corrections to the CMB component
are small, so the radio dipole and kinematic effect cause similar distortions.
However, at higher frequencies, the CMB part of the kinematic effect is a larger
component and the radio dipole and kinematic corrections diverge. These two
effects are therefore observationally distinct. However, more work may be nec-
essary to determine the possible radio anisotropies and to fully determine the
radio background itself, before it would be possible to ascertain the full details
of the radio background anisotropies. A similar discussion can follow for the ra-
dio quadrupole and octupole. Since these are not expected to be connected
to the CMB equivalents, the spectral effects should be distinguishable and pos-
sibly larger than for the scattering of the CMB temperature anisotropies.
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FIGURE 4.6: The differences between a dipole in the radio background and the
kinematic corrections. With the exception of the non-relativistic line, all these signals
take relativistic corrections according to 𝑇e = 1 keV. Note, this is a significantly smaller
𝑇e than our previous figures. The radio dipole comes from a signal 𝑛1 = ±0.001𝑛R,
while the kSZ effects use 𝛽c = 2.79×10−4 = 0.001/𝛼, with 𝜇c = ±1.0. The top panel shows
the change in intensity relative to the background signals, the middle panel shows
the effective change in temperature measured at each frequency. The bottom
panel here shows the difference between the stationary, non-relativistic signal and

the other signals. We have set 𝑦 = 10−4 and used 𝑛R with 𝑓 (𝑧) = 1.
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4.4 Discussion

It is worth taking a moment to consider the potential of different observational
strategies in determining any of the discussed features in the radio SZ signal. A
detailed forecast is far outside the scope of this thesis, but here I will discuss the
differences between stacking approaches and individual cluster observations
when it comes to the specifics of the radio SZ signal itself. Many of the ideas can
be directly adapted from normal SZ observations.

If we have a catalogue of clusters, each will sit in a unique region of space
– they will have a distribution of temperatures, redshifts and peculiar velocities
(both 𝛽c and 𝜇c), leading to variations in 𝐹R(𝜃e, 𝛽c, 𝜇c, 𝛼). There is also the possibil-
ity that the background radio signal itself depends on the redshift and position
of the cluster [i.e., variations in 𝑓 (𝛾̂̂𝛾̂𝛾, 𝑧)]. If there is any spatial or redshift depen-
dence in 𝛼, these will also modify the observed signal between clusters.

It is clear that the more we know about each cluster in our sample, (1) the
better we can model the expected radio SZ signal and (2) the more certainty
we can have on the cause of any measured variations in the radio background.
For nearby clusters, for example, we may already know 𝑛, 𝑦, 𝛽c, 𝜇c and 𝑇e through
the standard SZ signal measurements, or through a combination of analogous
measurements, e.g., X-ray observations. In such a situation, variations in the ob-
served signal must all come from variations in 𝐴R 𝑓 (𝑧), in 𝛼 (which would both
change the shape of the radio contribution 𝑔(𝜈, 𝛼) and the scaling through 𝐹R)
or through some more complicated anisotropies within the radio background.
Conversely, of course, if our measurements of the radio background are signif-
icantly more constrained than those for the cluster’s measurements, then we
may be able to determine the parameters of clusters through the radio SZ mea-
surement itself – as is conventional within the typical SZ experiments.

If information on individual clusters is less precise, one can resort to stacking
analyses made over large samples of clusters. For the normal SZ effect, this has
been attempted using Planck data to constrain the rSZ effect (Hurier & Tchernin,
2017; Erler et al., 2018). In Erler et al. (2018), they used 772 clusters to find an
averaged ⟨𝑦⟩ = (1.24 ± 0.04) × 10−4 with an averaged SZ temperature of 𝑘B𝑇SZ =

4.4+2.1
−2.0 keV. Since the radio SZ signal also depends on 𝑦 and 𝑘B𝑇SZ, we could

expect to find a signal of a similar magnitude under the stacking procedure.
Applying this method to radio SZ measurements would allow the calcula-

tion of averages of many of the parameters. For the simplest stacking proce-
dure, this would be averaging over temperature, peculiar velocity and redshift
of the catalogue. Since the peculiar velocities can be assumed to be uncor-
related, almost all kinematic corrections would be averaged out, that is we
would perform ⟨𝐹R(𝜃e, 𝛽c, 𝜇c, 𝛼)⟩𝜇c . This would leave kinematic terms only in the
monopole corrections at 𝑂 (𝛽2

c), which are generally very small. As such, any
measured stacked relativistic corrections would indicate the sample-averaged
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cluster temperatures, as well as the spatially- and redshift-averaged radio back-
ground. Again, prior knowledge on the temperature distribution of the clusters
can be used to refine our understanding of the deduced radio background
parameters.

If stacking procedures were then performed on subsets of the catalogue,
it would be possible to bound variations in 𝑓 (𝛾̂̂𝛾̂𝛾, 𝑧) within the radio background
itself – i.e., (1) by spatially selecting clusters, it would theoretically be possible to
directly constrain anisotropies in the radio background, or (2) by using priors on
the redshift location of clusters, to determine the redshift evolution (e.g., redshift
binning). This is very similar in spirit to using clusters as distributed observers of
for the remote CMB quadrupole (and dipole) anisotropy (Deutsch et al., 2018).
As for the normal SZ signal, by using priors on the orientation of the clusters’
peculiar velocities (Hand et al., 2012; Cayuso et al., 2021), it may be possible to
learn about the averaged cluster ⟨𝛽c⟩. In contrast to the standard SZ effect, the
radio SZ effect anisotropies are not necessarily limited to being very small. This
could greatly increase the observability of the radio SZ effects. For example, if
there are small-scale fluctuations in the radio background then the ‘on-cluster’
and ‘off-cluster’ background may be distinct, e.g., if the cluster itself were a
significant source of the radio background.

However, it is also worth noting that a full-sky signal would likely prove very
difficult to detect for the radio SZ signal. In Hill et al. (2015), they predict that
for the typical SZ signal, a whole-sky average would result in ⟨𝑦⟩ ≃ 1.7 × 10−6,
and a 𝑦-weighted temperature of ⟨𝑘B𝑇SZ⟩ ≃ 1.3 keV.3 While for the typical SZ
signal this may be measured with future high-precision spectroscopy instruments
such as PIXIE (Kogut et al., 2011), or Voyage 2050 (Chluba et al., 2021), no such
instruments are planned which may reach this level of precision in the radio SZ
regime over the full sky.

4.5 Conclusion

In this chapter, I derived the corrections to the radio SZ signal arising from kine-
matic terms, relativistic corrections and possible anisotropies in the radio back-
ground. The main goal was to give all the expressions that are required to de-
scribe these effects and to illustrate the main similarities and differences to the
equivalent effects in the standard SZ effect. The discussion is meant to stimulate
ideas about next steps related to the observability of these effects and how one
could potentially pursue these ideas. A detailed forecast is beyond the scope
of this thesis.

In general, similarly to the standard SZ signal, the kinematic effects cause the
largest changes to the radio SZ signal, with these effects being ≳ 2.5 times larger

3The conversion to 𝑦-weighted temperature was used in Abitbol et al. (2017).
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in the radio SZ than for the standard CMB SZ signal. These effects must always be
accounted for in single-cluster measurements, and can be easily modelled. For
stacking calculations, however, the kinematic effects will be greatly reduced,
as the orientations of the clusters’ peculiar velocities will ‘cancel’ most of their
contributions in large stacking considerations.

The relativistic temperature corrections are marginally smaller in the radio SZ
signal than in the standard SZ signal (around a few percent over reasonable
cluster temperatures). These corrections are also around the same size as those
from the current errors in the measurement of the radio background from Fixsen
et al. (2011), indicating that obtaining competitive bounds on the radio back-
ground itself, would require a similar precision of detection. However, as such it
also possible to use the radio SZ signal in concert with the normal SZ signal to ob-
tain higher-confidence prior measures of cluster properties themselves. SZ clus-
ters are now routinely observed with e.g., Planck (Planck Collaboration et al.,
2016b), ACT (Choi et al., 2020) and SPT (Bleem et al., 2015), and with future
SZ samples obtained with SPT-3G (Benson et al., 2014), the Simons Observatory
(Ade et al., 2019), CMB-S4 (Abazajian et al., 2016) and CCAT-prime (Parshley
et al., 2018), many of the required observables could become available.

This analysis shows that, if there are anisotropies in the radio background,
or if the background has redshift evolution, these may well be far larger ef-
fects (see Figure 4.6). Any radio background anisotropies lead to contributions
which scale similarly to kinematic effects. Both of these could be observation-
ally explored with a stacking analysis on a large enough cluster sample (see
Section 4.4). The radio SZ signal thus provides a unique tool to probe the na-
ture of the radio background in determining whether it is truly ‘cosmological’ (in
which case we would expect little to no redshift evolution).

While a forecast of the details of measuring this signal are beyond this the-
sis, this work provides a detailed description of the contributing factors to the
radio SZ signal itself, in the hope that future forecasts might be made easier. Fur-
thermore, with the advent of more large-scale, high-precision experiments such
as the SKA (Dewdney et al., 2009; Square Kilometre Array Cosmology Science
Working Group et al., 2020) and MeerKAT (Jonas & MeerKAT Team, 2016), there
is the potential that these measurements may not be quite as futuristic as they
might seem. Another obvious way forward is through cross-correlation studies,
which are also frequently used in normal SZ observations (Hand et al., 2012).

While here the discussion focused on the scattering of the radio background,
this merely provides a mathematically simple example of examining the effects
of scattering on background photon sources beyond only the CMB. Thus, much
of the work presented here can be extended to other backgrounds, e.g., the
CIB, the 21cm line, X-rays emitted by clusters themselves (e.g., Cooray, 2006;
Grebenev & Sunyaev, 2020). All the expressions should be directly applicable
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to CIB scattering at frequencies below the CIB maximum, which essentially be-
haves like a power-law with 𝛼CIB ≃ 0.14, where we quoted the average CIB spec-
trum as used by the Planck collaboration (Planck Collaboration et al., 2014b,
2016e). This case has also been explored (as briefly mentioned in Chapter 1)
in Sabyr et al. (2022); Acharya & Chluba (2022), and it is worth noting that in
particular scattering of the CIB could have an important effect on current SZ
analysis targeting the relativistic SZ (e.g., Erler et al., 2018).



143

Chapter 5

The SZ effect from high-energy
non-thermal and anisotropic
distributions

This chapter is comprised of entirely novel, unpublished work. This work was done
in conjunction with a major code refurbishment of and extensions to SZpack. The
work here is planned to be completed and released as a paper in the future.

5.1 Introduction

This thesis has so far focused on improvements to SZ modelling through improv-
ing our understanding of the precise temperatures in clusters (Chapters 2 and 3)
allowing for improved determinations of the rSZ corrections. It has also consid-
ered the effects of modifying the photon background (Chapter 4) and how ad-
ditional cosmological photon distributions will lead to further SZ-like distortions.
This chapter focuses on additional effects from modifications to the CMB photon
background and the electron distributions themselves. In particular, this chapter
comes in two parts, the first discusses anisotropy in the photon and electron dis-
tributions, while the second explores how high-energy non-thermal components
of the electron population may cause distinct SZ signals.

Anisotropy in the photon or electron distributions will lead to modified SZ sig-
nals, where generally only the first two multipoles are considered: the dipole, in
terms of bulk motions of the electrons and photons (i.e., the kSZ signal); and the
quadrupole, for the purposes of calculating the induced pSZ signals. Here, I will
discuss a framework to consider arbitrary multipole components to SZ scattering.
It has been well established that the photon anisotropies generally lead to small
signals (e.g., Sazonov & Sunyaev, 1999), however, as the future of CMB observa-
tions leads to more high-resolution and high-precision measurements, these ef-
fects may come into observational reach. The electron anisotropy, conversely,
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has been studied far less as it relies on a firm understanding of the magnetic
fields within the ICM and other sources of microphysical anisotropies. However,
recent studies by Khabibullin et al. (2018) indicate that these will lead to pSZ ef-
fects of a comparable size to the other commonly discussed pSZ effects. It is also
worth noting that regions of electron anisotropy may also be those with high-
energy, which are not well-thermalised and may magnify any effects that are
generated. In this chapter we largely focus on the intensity distortions caused
by these anisotropies, rather than a detailed consideration of the pSZ effect.

The second topic of this chapter, that of high-energy electron distributions,
has been studied in less detail, and has been summarised in Section 1.4.2. In this
chapter, I examine a selection of toy-models that encapsulate potential high
energy non-thermal behaviour in clusters (Enßlin & Kaiser, 2000; Colafrancesco
et al., 2003; Kaastra et al., 2009). These, by no means, encapsulate the full
details of high-energy non-thermal electron populations – however, thus far, lit-
tle work has been invested into studying analytic models for these populations.
Future work could involve comparing these models with predictions from simula-
tions, to determine a more grounded approach to understanding these effects
in clusters. This chapter instead attempts to determine the scale of any correc-
tions incurred from accounting for high-energy non-thermal components, and
what effects they may have on future SZ observations.

5.2 The analytic anisotropic SZ scattering kernel

In Chapter 1, the formality of the scattering process was discussed in great de-
tail. However this work was all done assuming isotropic photon and electron
populations. To define anisotropic scattering kernels, it is first necessary to de-
fine exactly what this means. While in principle it would be possible to consider
both an anisotropic electron and photon field, in this chapter we will only con-
sider each separately. It should be noted that this chapter is focused on the
SZ scattering and thus assumes everything is in the Doppler-dominated regime
where 𝜔0 ≪ 𝑝0 (i.e., the dimensionless photon frequency is small compared to
the dimensionless electron momentum).

While in principle an anisotropic distribution can be expressed in any frame,
there is, in fact, a preferred frame for the spherical harmonic decomposition
of the anisotropy. Figure 5.1 repeats a schematic of the Compton scattering
problem for reference. In this preferred frame (an expansion about the axis of
the outgoing photon, i.e., the 𝑧-axis as depicted in Figure 5.1), an anisotropic
photon distribution can be expressed as1 𝑛(𝑥, 𝑘𝑘𝑘0) =

∑
ℓ𝑚 𝑛ℓ𝑚(𝑥)𝑌𝑚

ℓ
(𝜇sc, 𝜙sc). How-

ever, as will be justified in Eq. (5.5), in this frame as long as either the photon or
electron distribution is isotropic, only the 𝑚 = 0 component will contribute to the

1Recalling that 𝜙sc refers to the associated azimuthal angle to 𝜇sc.
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e−(P0) e−(P′￼)

γ(K0) γ(K′￼)
μsc

μ0 μ′￼

y

x
z









K0 ≡ (ω0, k0)
K′￼≡ (ω′￼, k′￼)
P′￼≡ (γ′￼, p′￼)
P0 ≡ (γ0, p0)

FIGURE 5.1: A repeated schematic of the Compton scattering problem, similar to
Figure 1.3. 𝐾0 and 𝐾 ′ are the four-vectors for the incoming and outgoing photons,
with dimensionless frequencies 𝜔0 and 𝜔′ and dimensionless momenta 𝑘𝑘𝑘0 and 𝑘𝑘𝑘 ′.
𝑃0 and 𝑃′ are the 4-vectors for the incoming and outgoing electrons, with dimen-
sionless energies 𝛾0 and 𝛾′ and momenta 𝑝𝑝𝑝0 and 𝑝𝑝𝑝′. 𝜇0, 𝜇′ and 𝜇sc are the cosines of
the marked angles. The axes are to emphasise the dimensionality of the scattering,

with 𝑧 here aligned with the line-of-sight, i.e., the outgoing photon.

distortion. This means the scattering of any anisotropic photon distribution by an
isotropic electron distribution can be obtained from 𝑛(𝑥, 𝑘𝑘𝑘0) =

∑∞
ℓ=0 𝑛ℓ (𝑥)𝑃ℓ (𝜇sc),

where 𝑃ℓ denote the Legendre polynomials. In a similar way, an isotropic elec-
tron distribution would become 𝑓 ′(𝑝𝑝𝑝′) = ∑∞

ℓ′=0 𝑓ℓ′ (𝑝′)𝑃ℓ′ (𝜇′).2
As such, Eq. (1.5) can be rewritten in terms of the outgoing photon and in a

fully general way as

d𝑛(𝜔′)
d𝜏

=

∫
𝑝2

0d𝑝0
d𝜇sc d𝜙sc d𝜇′ d𝜙′

4𝜋
d𝜎
dΩ

[
𝑓 ′𝑛′(1 + 𝑛0) − 𝑓0𝑛0(1 + 𝑛′)

]
≃

∫
𝑝2

0d𝑝0
d𝜇sc d𝜙sc d𝜇′ d𝜙′

4𝜋
d𝜎
dΩ

[
𝑓 ′𝑛′ − 𝑓0𝑛0

]
= −𝑛0 +

∞∑︁
ℓ=0

∞∑︁
ℓ′=0

ℓ∑︁
𝑚=−ℓ

ℓ′∑︁
𝑚′=−ℓ′

∫ +∞

−∞
d𝑡 P𝑚𝑚′

ℓℓ′ (𝑡)𝑛ℓ𝑚(𝑥 ′).

(5.1)

Here, the first approximation ignores stimulated scattering effects (as is standard
in SZ calculations) and the second equality uses 𝑡 ≡ 𝜔′/𝜔0. The scattering kernel
P𝑚𝑚′

ℓℓ′ (𝑡) is defined as

P𝑚𝑚′

ℓℓ′ (𝑡) =
∫ ∞

𝑝min (𝑡)
𝑝2

0d𝑝0 𝑓
′
ℓ′𝑚′𝐾

𝑚𝑚′

ℓℓ′ (𝑡, 𝑝0);

𝐾𝑚𝑚′

ℓℓ′ (𝑡, 𝑝0) ≡
d𝜙′

d𝑡

∫
d𝜇sc d𝜇′ d𝜙sc

4𝜋
d𝜎
dΩ

𝑌𝑚
ℓ (𝜇sc)𝑌𝑚′

ℓ′ (𝜇
′),

(5.2)

2𝑛ℓ and 𝑓ℓ′ now implicitly contain factors of
√︁
(2ℓ + 1)/4𝜋.
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and 𝐾ℓℓ′ (𝑡, 𝑝0) is the general multipole kernel. However, we can define the indi-
vidual photon, 𝐾𝛾

ℓ
, and electron, 𝐾e

ℓ
, multipole kernels3 as

𝐾
𝛾

ℓ
(𝑡, 𝑝0) ≡

d𝜙′

d𝑡

∫
d𝜇sc d𝜇′ d𝜙sc

4𝜋
d𝜎
dΩ

𝑃ℓ (𝜇sc)

𝐾e
ℓ (𝑡, 𝑝0) ≡

d𝜙′

d𝑡

∫
d𝜇sc d𝜇′ d𝜙sc

4𝜋
d𝜎
dΩ

𝑃ℓ (𝜇′).
(5.3)

In Enßlin & Kaiser (2000), the monopole of the general kernel 𝐾0,0(𝑡, 𝑝0) is com-
puted and can be expressed as

𝐾0,0(𝑡, 𝜂) =
3

32𝑝6
0𝑡

[
2𝑡 (1 + 𝑡) (3 + 2𝑝2

0)
(
| log(𝑡) | − 2sinh−1(𝑝0)

)
− |1 − 𝑡 |

(
1 + (10 + 8𝑝2

0 + 4𝑝4
0)𝑡 + 𝑡

2
)
+ 4𝑡 (1 + 𝑡)

𝑝0(3 + 3𝑝2
0 + 𝑝

4
0)√︃

1 + 𝑝2
0

]
.

(5.4)

This is however, generally speaking complicated to calculate – and in such cir-
cumstances where anisotropy in both populations exist (beyond those of, for
instance, a Doppler shift between frames that can be accounted for with a
correction to the measured angles and frequencies directly), it may be simplest
to calculate the entire integral numerically.

5.2.1 Anisotropy in the photon population

By considering anisotropy in each population individually, one can learn about
the effects of each on the observed spectra. Here, I will first focus on the effects
of an anisotropic photons, with the effects of anisotropic electrons discussed in
Section 5.2.2.

Even merely considering 𝐾
𝛾

ℓ
, some consideration is required to calculate the

kernel integral. Firstly, while in general the necessary integrations occur over the
four angles (𝜇sc, 𝜇′, 𝜙sc and 𝜙′) and the incoming electron momentum 𝑝0, the
kernel itself has dependence on the angles 𝜇′, 𝜇sc, and 𝜇0. As such, all of the im-
plicit 𝜙sc and 𝜙′ behaviour is contained in 𝜇0 = 𝜇′𝜇sc +cos[𝜙′−𝜙sc]

√︁
(1 − 𝜇2

sc) (1 − 𝜇′2)
and, generally speaking, 𝑌𝑚

ℓ
(𝜇sc, 𝜙sc) ∝ 𝑃𝑚

ℓ
(𝜇sc)e𝑖𝑚𝜙sc . These indicate immediately

a transformation to integrating instead over 𝜙0 = 𝜙′ − 𝜙sc and 𝜙sc. Now it is imme-
diately clear that the 𝜙sc integral is simply∫ 2𝜋

0
d𝜙sc e𝑖𝑚𝜙sc =

{
2𝜋 for 𝑚 = 0
0 otherwise.

(5.5)

3That is, 𝐾0,0
ℓ,0 and 𝐾

0,0
0,ℓ respectively – i.e., taking isotropic electrons and anisotropic photons and

vice versa. We will show in the next section that the non-zero 𝑚, 𝑚′ components do not contribute
in either regime, so are omitted.
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Hence, our previous claim that only the 𝑚 = 0 case contributes to the distortion
is confirmed. In the case of both electron and photon anisotropy, the transfor-
mation to 𝜙0, firstly, leads to the 𝜙sc dependence e𝑖 (𝑚+𝑚′)𝜙𝑠𝑐 , so the 𝑚 = −𝑚′ terms
still contribute, and further leads to significant complications to the rest of the
integration process.

The 𝜙0 component is more complex. However, by recalling that4 𝑡 ≃ (1 −
𝛽0𝜇0)/(1 − 𝛽0𝜇

′), one can rearrange to find

𝜙0 = cos−1

(
1 − 𝑡 + 𝛽0𝜇

′(𝑡 − 𝜇sc)
𝛽0

√︁
(1 − 𝜇2

sc) (1 − 𝜇′2)

)
;

d𝜙0
d𝑡

=
1 − 𝛽0𝜇

′

𝛽2
0 (1 − 𝜇2

sc) (1 − 𝜇′2) − (1 − 𝑡 + 𝛽0𝜇′(𝑡 − 𝜇sc))2
.

(5.6)

The latter allows for the conversion of a 𝜙 integral into a 𝑡 integral as required by
the formulation of the kernel. The former equation immediately indicates that
the ‘direct’ 𝜙0 dependence in 𝜇0 is all eliminated.

Substituting all this in, and simplifying, it can be seen that the 𝜇 integrals are
now restricted and cannot be carried out over the naive range of −1 to 1. In
fact, carrying out the 𝜇′ integral first gives the integration limits

𝜇′lim± =

𝑡2 + 𝑡 + 𝜇sc(1 − 𝑡) ±
√︂(

𝜇2
sc − 1

) (
(1 − 𝑡)2 − 𝛽2

0 (𝑡2 − 2𝑡𝜇sc + 1)
)

𝛽0
(
𝑡2 − 2𝑡𝜇sc + 1

) ,

𝜇sc,lim+ =

(
𝛽2

0 − 1
)
𝑡2 + 2𝑡 + 𝛽2

0 − 1
2𝛽2

0𝑡
,

𝜇sc,lim− = −1.

(5.7)

The kernel can then be calculated to arbitrary ℓ with, for example,

𝐾
𝛾

1 (𝑡, 𝑝0) =
3

32𝑝8
0𝑡

(
|1 − 𝑡 |

[
4𝑝6

0(1 + 𝑡 + 𝑡2) − 2𝑝4
0(1 − 14𝑡 + 𝑡2)

+ 𝑝2
0(31 + 166𝑡 + 31𝑡2) + 5(11 + 38𝑡 + 11𝑡2)

]
+ 2𝑝0(1 + 𝑡)√︃

1 + 𝑝2
0

[
2𝑝6

0(1 − 𝑡 + 𝑡2) + 30𝑝4
0𝑡 + 𝑝

2
0(11 + 142𝑡 + 11𝑡2) + 15(1 + 8𝑡 + 𝑡2)

]
+ 3(1 + 𝑡)

[
4𝑝4

0𝑡 + 2𝑝2
0(1 + 17𝑡 + 𝑡2) + 5(1 + 8𝑡 + 𝑡2)

] (
|log(𝑡) | − 2sinh−1(𝑝0)

) )
,

(5.8)

4Remembering that as before 𝛽0 = 𝑝0/𝛾0 and 𝛾0 =

√︃
𝑝2

0 + 1.
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𝐾
𝛾

2 (𝑡, 𝑝0) =
3

1280𝑝10
0 𝑡

2

(
− |1 − 𝑡 |

[
32𝑝8

0(1 + 𝑡 + 𝑡2 + 𝑡3 + 𝑡4) − 16𝑝6
0(1 + 𝑡 − 24𝑡2 + 𝑡3 + 𝑡4)

+ 4𝑝4
0(3 + 278𝑡 + 1478𝑡2 + 278𝑡3 + 3𝑡4)

+ 30𝑝2
0(1 + 206𝑡 + 666𝑡2 + 206𝑡3 + 𝑡4)

+ 35(3 + 178𝑡 + 478𝑡2 + 178𝑡3 + 3𝑡4)
]

+ 8𝑝0(1 + 𝑡)√︃
1 + 𝑝2

0

[
4𝑝8

0(1 − 𝑡 + 𝑡2 − 𝑡3 + 𝑡4) + 120𝑝6
0𝑡

2 + 20𝑝4
0𝑡 (7 + 80𝑡 + 7𝑡2)

+ 25𝑝2
0𝑡 (25 + 161𝑡 + 25𝑡2) + 525𝑡 (1 + 5𝑡 + 𝑡2)

]
+ 20𝑡 (1 + 𝑡)

[
8𝑝6

0𝑡 + 12𝑝4
0(1 + 15𝑡 + 𝑡2) + 90𝑝2

0(1 + 7𝑡 + 𝑡2) + 105(1 + 5𝑡 + 𝑡2)
]

(
|log(𝑡) | − 2sinh−1(𝑝0)

) )
.

(5.9)

It is evident that these increase in complexity quickly, while still maintaining a
fairly consistent structure. In particular, there always arise polynomial coeffi-
cients for three parts of the equation – a part proportional to | log(𝑡) |−2 sinh−1(𝑝0);
a part proportional to |1 − 𝑡 |; and a purely polynomial part with a leading factor
of 𝑝0 (1+𝑡)√︃

1+𝑝2
0

.

This continues to be true throughout all these kernels for photon anisotropy
(and indeed for electron anisotropy). By expanding the Legendre polynomials
as 𝑃ℓ (𝜇sc) =

∑ℓ
𝑘=0

( 𝑙
𝑘

) (𝑙+𝑘
𝑘

)
( 𝜇sc−1

2 )𝑘 a general form can be found, comprising of two
main components,

𝐾
𝛾

ℓ
(𝑡, 𝑝0) =

ℓ∑︁
𝑘=0

(
ℓ

𝑘

) (
ℓ + 𝑘
𝑘

) [
3

32𝑝6
0𝑡
(𝐺𝑘 + 𝐻𝑘)

]
;

𝐺𝑘 =
𝑝5

0
𝛾0(4𝑡)𝑘−1

𝑘∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

(
𝑘

𝑛

)
(𝑡 − 1)2(𝑘−𝑛)

(
(𝑡 + 1) (2𝑛+1) −

[
𝛾0 |𝑡 − 1|
𝑝0

]2𝑛+1
)
,

𝐻𝑘 =
(1 + 𝑡)
𝑝2𝑘

0

(
5(𝑡 + 1)2(𝑝2

0 + 1)ℎ (𝑘)0 −
[
(𝑡2 + 1) (2𝑝2

0 + 5) + 𝑡 (16𝑝2
0 + 22)

]
ℎ
(𝑘)
2

+ 4𝑡 (2𝑝2
0 + 3)ℎ (𝑘)4

)
.

(5.10)

It is immediately clear that 𝐺𝑘 is a purely polynomial function and 𝐻𝑘 depends
on the generator functions ℎ (𝑘)𝑚 which have been defined to be the integrals

ℎ
(𝑘)
𝑚 =

∫ √︁
𝑦2 − 1(𝑦2 − 1)𝑘𝑦𝑚

𝑦6 d𝑦 (5.11)

with 𝑦 =

√︃
1 + 1

2 𝑝
2
0(1 − 𝜇sc) and the integration limits obtained through the trans-

formation of 𝜇sc,lim±. These can be expressed analytically defining the first few
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FIGURE 5.2: The first five multipoles, ℓ ≤ 4, of the anisotropic photon multipole scat-
tering kernel, 𝐾𝛾

ℓ
. Here we have arbitrarily set 𝑝0 = 0.5. Note that all the higher

multipoles have negative components, indicating scattering between multipoles.

terms specifically, using

𝑗 (𝑛) =
𝑝2𝑛+1

0

𝛾5
0

− |𝑡 − 1|2𝑛+1

(4𝑡)𝑛−2(1 + 𝑡)5 ;

ℎ
(0)
0 = − 1

15
[
2 𝑗 (2) + 5 𝑗 (1)

]
, ℎ

(1)
0 =

1
5
[
𝑗 (2)

]
, ℎ

(0)
2 = −1

3
[
𝑗 (2) + 𝑗 (1)

]
,

ℎ
(2)
0 =

1
2

(
| log(𝑡) | − 2 sinh−1(𝑝0)

)
+ 1

15
[
23 𝑗 (2) + 35 𝑗 (1) + 15 𝑗 (0)

]
.

(5.12)

Then the higher 𝑘 terms can be expressed as

ℎ
(𝑘)
0 =

(2𝑘 + 1)!!
2𝑘−2(𝑘 − 2)!

(
ℎ
(2)
0

15
−

𝑘∑︁
𝑛=3

2𝑛−3(𝑛 − 3)!
(2𝑛 + 1)!! (−1)𝑛 𝑗 (𝑛)

)
for 𝑘 ≥ 3;

ℎ
(𝑘)
2 =

−1
2𝑘 + 3

(
5ℎ (𝑘+1)

0 + (−1)𝑘 𝑗 (𝑘+1)
)

for 𝑘 ≥ 1;

ℎ
(𝑘)
4 =

−1
2𝑘 + 3

(
3ℎ (𝑘+1)

2 + (−1)𝑘
[
𝑗 (𝑘+2) + 𝑗 (𝑘+1)

] )
.

(5.13)

In general, we can see the same components as before with the ‘log’ part
coming from the ℎ

(2)
0 term which carries into all the higher-order terms as well.

𝑗 (𝑛) clearly contains both a |𝑡 − 1| term and a polynomial part, which, with a
consideration of 𝐻𝑘 , will always have a leading term of (1 + 𝑡) as expected. 𝐺𝑘

directly contains both the |𝑡 − 1| and (1 + 𝑡) polynomial parts.
The first five multipoles can be seen in Figure 5.2. Here we see, as has been

long established (e.g., Sunyaev & Zeldovich, 1980; Sazonov & Sunyaev, 2000),



150 Chapter 5. High energy non-thermal and anisotropic SZ

that the monopole scattering kernel has a cusp at 𝑡 = 1, driven mathematically
by the absolute values of | log(𝑡) | and |𝑡 − 1|. From a physical standpoint, this is
indicating that a photon is most likely (modally) to maintain its same energy and
merely be deflected under a scattering. However, the tail to higher energies
indicate, as is long established, the propensity of SZ scatterings to move photons
from lower energies to high energies – that is, to upscatter.

These multipoles are consistent with those displayed in, for instance, Chluba
& Dai (2014), and have been verified numerically. The higher multipoles all main-
tain this cusp at 𝑡 = 1 (as can be predicted from the mathematical forms contin-
uing to contain these absolute values). However, they all also contain negative
sections, which are harder to interpret – it must be remembered that each mul-
tipole follows the scattering caused by the population of photons in a certain
multipole – and as such, the negative sections indicate the scattering of pho-
tons out of the given multipole. That is, the SZ scattering causes an isotropisation
of the photon distribution.

It is also interesting to note that each multipole has a kernel that crosses zero,
ℓ times on either side of 𝑡 = 1. That is, we can consider for each multipole the
kernel is composed of 2ℓ + 1 regions where the kernel is alternately positive or
negative. The large negative region in ℓ = 1 at higher values of 𝑡 leads to an
effect opposing that of the monopole, that is, the dipole is scattered preferen-
tially to lower frequencies. This in fact is also true for the ℓ = 3 and ℓ = 4 cases,
while the ℓ = 2 scattering leads to net upscattering like the monopole.

It should, however, be noted, that the amplitude of these scatterings falls
rapidly with increasing ℓ – even supposing the amplitude of the anisotropic
components of the photon distribution were the equal to the monopole, for
a thermal electron distribution (that is, relativistic Maxwell-Boltzmann) and CMB
photons, the amplitude is suppressed with increasing ℓ. This can be determined
analytically, by integrating over frequency (or 𝑡) and taking an expansion about
𝑝0 = 0. The monopole kernel obeys (at all 𝑝0)

∫
d𝑡 𝐾0(𝑡, 𝑝0) ≡ 1. In a similar way,

we can find, for ℓ ≤ 4,∫
d𝑡 𝐾𝛾

1 (𝑡, 𝑝0) ≃ − 2
15
𝑝2

0 + O(𝑝4
0);

∫
d𝑡 𝐾𝛾

2 (𝑡, 𝑝0) ≃
1
10

− 1
5
𝑝2

0 + O(𝑝4
0);∫

d𝑡 𝐾𝛾

3 (𝑡, 𝑝0) ≃
2
35
𝑝2

0 + O(𝑝4
0);

∫
d𝑡 𝐾𝛾

4 (𝑡, 𝑝0) ≃ O(𝑝4
0).

(5.14)

These return the expected result obtained in the Thomson limit that only the ℓ = 0
and 2 components contribute at zeroth order – with the ℓ = 2 component at 1/10
the amplitude of the monopole.



5.2. The analytic anisotropic SZ scattering kernel 151

5.2.2 Anisotropy in the electron population

In a similar way a general anisotropic electron multipole kernel can be derived
and written as

𝐾e
ℓ (𝑡, 𝑝0) =

ℓ∑︁
𝑘=0

(
ℓ

𝑘

) (
ℓ + 𝑘
𝑘

) [
3

32𝑝5
0𝑡

(
3
𝑋

(𝑘)
4
𝛾0

− 6(𝑡 + 1)𝑋 (𝑘)
3

+
[
3(𝑡2 + 4𝑡 + 1) + 2𝑝2

0(𝑡
2 + 6𝑡 + 1)

] 𝑋 (𝑘)
2
𝛾0

− 2(3 + 2𝑝2
0)𝑡 (1 + 𝑡)𝑋 (𝑘)

1 + (3 + 4𝑝0 + 4𝑝2
0)𝑡

2 𝑋
(𝑘)
0
𝛾0

)]
;

𝑋
(𝑘)
𝑐 =

(𝛾0 − 𝑝0)𝑘−𝑐+1

2𝑘 𝑝𝑘+1
0

[
(−1)𝑐−1

(
𝑘

𝑐 − 1

)
(2 sinh−1(𝑝0) − | log(𝑡) |)

+
𝑘∑︁

𝑛=0; 𝑛≠𝑐−1
(−1)𝑛

(
𝑘

𝑛

)
𝑔 (𝑛−𝑐+1)

𝑛 − 𝑐 + 1

]
;

𝑔 (𝑛) =
1

2(1 − 𝛽0)𝑛𝑡𝑛
(
(𝑡𝑛 + 1) [(1 + 𝛽0)𝑛 − (1 − 𝛽0)𝑛]

− sign(𝑡 − 1) (𝑡𝑛 − 1) [(1 + 𝛽0)𝑛 + (1 − 𝛽0)𝑛]
)
.

(5.15)

Here, the |𝑡−1| term has instead been split into a sign(𝑡−1) (𝑡𝑛−1) part, to keep the
expression simpler. It is worth reiterating that little work has been done to mo-
tivate high-order anisotropies in the electron field. A ‘dipole’ would reflect the
motion of a cell of electrons, as in the kinematic SZ correction and quadrupoles
may occur due to the behaviour of magnetic fields in clusters. However, higher
multipoles of electron anisotropy remain broadly unexamined in SZ physics and
are expected to be small due to rapid Coulomb scattering.

Nonetheless, the first five multipoles are displayed now in Figure 5.3. It is im-
mediately clear that these are significantly harder to interpret than the photon
anisotropies. Firstly, it is evident that although there is a discontinuity in gradient
at 𝑡 = 1, there is no longer the clear cusp displayed in the photon anisotropies.
Secondly, as has been long established, the dipole term leads to pure upscat-
tering (as in the kinematic SZ effect). The higher multipoles lead to significantly
more complicated behaviour. Once again, when 𝑡 > 1 each multipole crosses
zero ℓ times. However, the distinct asymmetry in the kernels means that for the
odd multipoles for 𝑡 < 1 there are only ℓ − 1 crossings, while the even scattering
kernels have a more ‘cuspy’ behaviour and cross ℓ times.

Here also, the higher multipoles are not suppressed in the same way as for the
photon anisotropy. Analytically this can be explored by expanding as 𝑝0 → 0, so
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that∫
d𝑡 𝐾e

1 (𝑡, 𝑝0) ≃ −2
3
𝑝0 −

19
75
𝑝3

0 + O(𝑝4
0);

∫
d𝑡 𝐾e

2 (𝑡, 𝑝0) ≃
12
25
𝑝2

0 + O(𝑝4
0);∫

d𝑡 𝐾e
3 (𝑡, 𝑝0) ≃

64
175

𝑝3
0 + O(𝑝4

0);
∫

d𝑡 𝐾e
4 (𝑡, 𝑝0) ≃ O(𝑝4

0).
(5.16)

These appear on the surface to be well behaved, with each successive multi-
pole having a higher leading order with 𝑝0. However, the overwhelming asym-
metry in the scattering kernel can lead to large distortions (particularly for the
dipole moment ℓ = 1). For instance, when considering kSZ effects when clusters
have low temperatures, the kinematic effect can dominate over thermal SZ sig-
nal as the energies held in the bulk motion become comparable to or greater
than the thermal energy.

5.2.3 Discussion

The SZ signals from anisotropic scattering are in general expected to be small.
The polarised effects generated by the CMB quadrupole and intrinsic CMB fluc-
tuations are predicted to be around 10−8 of the CMB temperature (i.e., Sazonov
& Sunyaev, 1999). This would generate a similar scale of signal to that expected
from the pSZ signals from multiple scatterings within clusters or the higher order
kSZ induced pSZ signals. Khabibullin et al. (2018) predicts that magnetic induced
electron anisotropy in shocks could generate a polarised signal of a similar mag-
nitude (around 10 nK).
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FIGURE 5.4: The SZ signals induced by anisotropic photon and electron distributions.
Here, the 𝐾ℓ indicate which kernel is used. The integrations use a fixed electron
momentum of 𝑝0 = 0.3 and a CMB blackbody photon distribution. All of these
signals use the same amplitudes of both signals, and 𝑦 = 10−4, 𝜏 = 𝑦/(𝛽2

0/3), except
𝐾e

1, the electron dipole, which is suppressed with a factor of 0.2. The solid lines reflect
the photon anisotropies while the dashed lines show the electron anisotropy. The

vertical dotted line is at 217 GHz, the null of the thermal SZ effect.

Inherently, these signals are all only considering the polarised components
rather than the general intensity, we have focussed on here, but the amplitude
of the signals will be highly related. These predictions have all been carried
out using simplistic models to generate the spectral dependence, for instance
starting from the Kompaneets equation, rather than the full cross-section, and
as such have simplistic models of the eventual scattering shape. However, using
a similar approach to that discussed here, it would be possible to write explicit
forms for the 𝑄 and𝑈 scattering shapes generated by anisotropies in the incom-
ing photons or electrons.

An understanding of the shapes of the distortions caused by anisotropic pho-
tons and electrons can be garnered from Figure 5.4. Here, the signals are gener-
ated for a fixed momentum electron distribution 𝑝0 = 0.3 (roughly comparable to
a temperature of 14 keV) and the CMB blackbody to allow for an appreciation
of the shapes they take. It should be noted that CMB anisotropies will generally
correspond to derivatives of the blackbody, not the blackbody itself. However,
this figure exists for illustrative purposes only, and a detailed examination of these
anisotropies will follow in future work. Nonetheless, the anisotropic photon distri-
butions give rise to SZ-like distortions – that is, they have peaks, troughs, and nulls
at a similar position to the isotropic signal. While there are differences between
the shapes of these signals (alongside the amplitudes) these are comparable
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variations to the shape changes induced by relativistic corrections, albeit size-
able relativistic corrections. Further work must be done analysing the scale of
these variations. The anisotropic electron distributions however cause extremely
distinct signals. It is also worth emphasising, that the electron dipole displayed
in Figure 5.4 has been suppressed with a factor of 0.2.

It is important to understand what it means to select a photon or electron
distribution for the anisotropic component. That is, the simplest anisotropy, for
our purposes, would be an anisotropic amplitude variation within the photon
or electron population, then the only differences between each 𝑛ℓ or 𝑓ℓ′ would
be a single factor. However, anisotropies could also arise in temperature, or
even with an entirely different distribution for the anisotropic populations to the
isotropic monopole.

For the kinematic effects, the multipoles reflect a directional boost of the
thermal electrons to higher momenta. That is, as discussed in, e.g., Nozawa
et al. (1998), 𝛾c

0 = 𝛾c(𝛾0 − 𝛽c𝜇𝛾) with 𝛽c the bulk motion velocity as in previous
chapters, and here 𝜇𝛾 is the cosine of the angle between the axis of bulk motion
and the incoming electron. 𝛾c

0 then represents the electron energy in the cluster
frame, while 𝛾0 is in the CMB frame. Then, the boosted distribution function
can be expressed as 𝑓boost = 𝑓th(𝛾c𝛾0) × e−𝜇𝛾𝛾c𝛽c/𝜃 . The exponential can then be
expanded in Legendre polynomials as

e−𝐴𝜇c =

√︂
𝜋

2𝐴

∞∑︁
ℓ=0

(−1)ℓ (2ℓ + 1)𝐼ℓ+ 1
2
(𝐴)𝑃ℓ (𝜇𝛾), (5.17)

with 𝐼ℓ (𝑥) the modified bessel function of the first kind – which is a modification
of the expression found in Hu & White (1997). This spherical harmonic expansion
would then have to be projected into the frame, which (by reference to Wigner-
D matrices) we can find that 𝑃ℓ (𝜇𝛾) → 𝑃ℓ (𝜇sc)𝑃ℓ (𝜇c), with 𝜇c the cosine of the
angle between the bulk cluster motion and the 𝑧-axis.

In general, each source of anisotropy in the electron or photon background
will have a different angular dependence, as they will have a different angular
distribution (i.e., different components under the spherical harmonic decompo-
sition). However, the expressions derived here allow for the rapid computation
of these anisotropic components. Electron anisotropies (beyond the kinematic
bulk motion corrections) remain largely unstudied and should be the focus of fur-
ther study which might indicate improved estimates of the scale of their contri-
bution. These will rely on continued modelling of the magnetic effects in clusters
and determining their influence on the anisotropy of the electrons in the ICM.
Furthermore, high-resolution studies may increase the detectability of these ef-
fects allowing for closer study of the regions of strong anisotropy, and contribute
to our understanding of the behaviour of magnetic fields in clusters.

While the higher multipole behaviour (that is ℓ > 2) may not have as large
an impact on observations, these equations nonetheless allow for the size of
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these effects to be fully computed and analysed. They furthermore allow for
the combination of all these anisotropic effects with rSZ and kSZ corrections, to
determine how each compare and/or combine. A full and closer analysis of
these anisotropic (and pSZ) effects is the subject of future work.

5.3 Thermal and Non-themal models of electron distribu-
tions

As has already been discussed, when talking about non-thermal electron dis-
tributions it is important to understand the source of the non-thermality. In par-
ticular, whether the deviation from a thermal distribution is an averaging phe-
nomena, due to the superposition of thermal distributions within clusters, or if it
is an intrinsic particle level contribution. While, to first order, both of these can
be calculated using the same formula, there are distinct astrophysical interpre-
tations. In the case of a non-thermal population arising from some averaging
procedure – that is, for example, modelling the electron momenta over a whole
cluster with the same distribution – any derived SZ signal will have some higher-
order moment corrections (similar to that discussed in Chapter 2, where a sin-
gle temperature was used over the entire cluster). While it may be numerically
favourable to treat a cluster as a uniform distribution of electrons, an accurate
model could be obtained in such circumstances by superposing the SZ signals
caused by each individual thermal component, with further corrections com-
ing from considerations of the multiple scattering effects. Any approach that
attempts to measure a halo with an averaged distribution should also, for a full
understanding of the problem, also consider to what extent the averaging pro-
cedure reproduces the signal that would be obtained from the full superposition
consideration.

On the other hand, intrinsic, local sources of non-thermal electrons will al-
ways lead to an SZ-like distortion with a different shape to that generated by a
thermal distribution. These non-thermal populations are assumed to arise from
shocks, e.g., from mergers; AGN jets and gas accretion. These inject significant
quantities of high-energy electrons, which will lead to distortions and are, gen-
erally speaking, what is intended in discussions of the non-thermal SZ effect.

Work has already been done to determine the extent of these non-thermal
components, e.g., in Enßlin & Kaiser (2000) and Colafrancesco et al. (2003),
where they considered the effects of simple power-law distributions for electron
momenta or modified power law tails to thermal distributions, which have the
advantage of being simple models which are easily constrained. Further work
has been done recently trying to determine more precise models for the non-
thermalities in the ICM. Some of these also are determined through an analytic
approach (e.g., Petrosian et al., 2008; Kaastra et al., 2009; Shi & Komatsu, 2014),
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FIGURE 5.5: A selection of toy models for the high-energy electron momentum
distributions found in clusters. In black, in both figures is the thermal, relativis-
tic Maxwell Boltzmann distribution at 5 keV. This temperature is used for all the
other temperature-dependent models (except where marked). Left: The power
law distributions, here in particular, 𝑓pl (𝑝0; 2.5, 0.1, 10) (Eq. 5.18), 𝑓th,pl (𝑝0; 5, 2.5, 0.2, 10)
(Eq. 5.19) and 𝑓dpl (𝑝0; 0.5, 2.5, 0.01, 0.2, 10) (Eq. 5.20). Right: The Maxwellian-like dis-
tributions; 𝑓mm (Eq. 5.22) using the values found in Kaastra et al. (2009); 𝑓th (𝑝0; 10)
(Eq. 4.2), to show the similarity between these two distributions; 𝑓𝜅 (𝑝0; 5, 2) ,

𝑓𝜅 (𝑝0; 5, 5) and finally 𝑓𝜅 (𝑝0; 5, 10) (Eq. 5.21).

which variously try to model the effects of bulk motions, cosmic rays, shocks and
more. These kind of studies are generally conducted to determine the effects
on either the observed X-ray emmision, or to determine how neglecting non-
thermal emission may cause a hydrostatic mass bias when trying to determine
the meta properties of clusters. These methods lead to variously complicated
models for the electron distributions which, although not designed for these pur-
poses, we use here to consider the non-thermal SZ effect.

5.3.1 Toy models

In particular, in this chapter we look at five non-thermal models for the electrons
in clusters. This is alongside the standard relativistic Maxwell-Jüttner distribution,
𝑓th(𝑝, 𝜃) defined in, e.g., Eq. (4.2). The first and simplest is a power law, as used in
Enßlin & Kaiser (2000),

𝑝2 𝑓pl(𝑝;𝛼, 𝑝1, 𝑝2) =
(𝛼 − 1)𝑝−𝛼

𝑝1−𝛼
1 − 𝑝1−𝛼

2
for 𝑝1 < 𝑝 < 𝑝2. (5.18)

In this work they also introduced a hybrid distribution that uses the thermal distri-
bution at low frequencies and a power law at higher frequencies,

𝑝2 𝑓th,pl(𝑝; 𝜃, 𝛼, 𝑝1, 𝑝2) = 𝐶 (𝜃, 𝛼, 𝑝1, 𝑝2) ×

𝑓th(𝑝, 𝜃), if 𝑝 ≤ 𝑝1

𝑓th(𝑝1, 𝜃) (𝑝/𝑝1)−𝛼 if 𝑝1 < 𝑝 < 𝑝2,
(5.19)
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where 𝐶 (𝜃, 𝛼, 𝑝1, 𝑝2) is defined to normalise 𝑓th,pl to 1 when integrated over 𝑝.
In Colafrancesco et al. (2003), this power law consideration was extended to

a double-power-law model, to reduce the contribution at the lower energies,
where a single power law became distinctly unphysical. That is,

𝑝2 𝑓dpl(𝑝;𝛼1, 𝛼2, 𝑝1, 𝑝2, 𝑝cr) = 𝐾 (𝛼1, 𝛼2, 𝑝1, 𝑝2, 𝑝cr) ×

𝑝−𝛼1 , if 𝑝1 < 𝑝 ≤ 𝑝cr

𝑝
−𝛼1+𝛼2
cr 𝑝−𝛼2 if 𝑝cr < 𝑝 < 𝑝2,

(5.20)
where again 𝐾 (𝛼1, 𝛼2, 𝑝1, 𝑝2, 𝑝cr) is defined to normalise the distribution.

Moving away from power laws, Kaastra et al. (2009) uses two generalisa-
tions of the Maxwellian model. The first is the 𝜅-distribution, which tends to a
Maxwellian as 𝜅 → ∞,

𝑝2 𝑓𝜅 (𝑝; 𝜃, 𝜅) =

√
2𝑝2

√
𝜋𝜃3/2

Γ (𝜅+1)
(𝜅−1.5)3/2Γ (𝜅−0.5)(

1 + 𝑝2

2𝜃 (𝜅−1.5)

) 𝜅+1 , (5.21)

with 𝜅 an integer and Γ the gamma function. Finally, they define the multi-
Maxwellian distribution as an approximation to the cluster electron distribution

𝑝2 𝑓mm(𝑝; 𝜃, 𝑐𝑖 , 𝑎𝑖) =
𝑝2

(2𝜃)3/2

(
𝑐0e−𝑎0𝑧

2 +
4∑︁

𝑘=1

𝑐𝑘

(𝑎𝑘 + 𝑧2)2+𝑘/2

)
, (5.22)

where 𝑧 = 𝑝/
√

2𝜃. In Kaastra et al. (2009), they determine a good fit for an elec-
tron population following an MHD shock to be, for instance, 𝑐𝑖 = {0.755, 0.0609, 2.54,
13.3, 17.58} and 𝑎𝑖 = {0.483, 152, 6843, 57.4, 12.4}.

These models can all be seen graphically in Figure 5.5. Here, we use the
suggested values for the multi-Maxwellian, and a variety of small values of 𝜅
for the 𝜅-distribution. We have only plotted illustrative values of the power-law-
related distributions.

5.3.2 Illustrations

To understand the effects of high-energy contributions to the SZ effect, it is first
instructive to consider the effects of fixed momenta regions. This is generally
unphysical, but allows for insights into the effects of non-thermal components.
In particular, in Figure 5.6, we have plotted the distortion effect of a variety of
electron momenta. At the lowest momenta, the effect of a single fixed mo-
mentum, is akin to that of a thermal distribution with the effective temperature
of 𝜃e = 𝛽2

0/3. However, at higher momenta the distributions become distinctly
non-thermal, with extended and increased tails to higher frequencies. These
momenta correspond to relativistic speeds that boosted electrons may reach
in clusters, with 𝑝0 = 1 equating to electrons travelling at 1/

√
2 the speed of light.
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FIGURE 5.6: The distortion shapes for a selection of fixed momentum values. Here
𝑦 = 10−4, the thermal distribution in black is at 5 keV, and for the fixed momenta, the

optical depth is calculated as 𝜏 = 𝑦/(𝛽2
0/3).

Now, we can consider how the toy-model distributions lead to variations in
the observed signal. These are all displayed in Figure 5.7. It is first worth notic-
ing that the effects of the Kaastra et al. (2009) models, i.e., those in the lower
panel, largely have the effect of modelling the relativistic corrections to the
SZ effect – that is, since these models start from the non-relativistic Maxwell-
Boltzmann distributions, the effects of these toy-models are broadly comparable
to those derived from the relativistic Maxwell-Jüttner distribution. This can espe-
cially be seen in the fitted multi-Maxwellian distribution, where the distortion is
almost identical to that derived from a relativistic thermal distribution at 10 keV
(as could be predicted from observing the initial distribution.

The power-law models, however, result in far more distinct signals. In partic-
ular, these again give rise to substantially increased tails to the ntSZ distortion. It
should be noted that at the lower frequencies, these very small effects, keeping
the negative parts (i.e., < 217 GHz) almost unchanged. They result in a shift to
the null, comparable to high rSZ corrections, and then large changes in the tail,
where the amplitude has been greatly increased.

5.3.3 Discussions

While these effects are all only modelled through toy-model predictions for non-
thermal behaviour in clusters, some conclusions can still be drawn. Firstly, when
calculating these non-thermal effects, higher resolution and precision in mea-
surement of clusters must be obtained than is typically available. However,
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these distortions are generally comparable to the rSZ corrections, either in sig-
nificance of the effect, or in that they are dominant at the higher frequencies
that are difficult to probe, likely requiring space-based observation.

That said, more study must be done into the proportion of of electrons re-
siding at these high energies, and the electron distributions they are residing
in. For instance, if the high-energy non-thermal electrons account for 1% of the
ICM, these signals would result in distortions around 1% of the scale of the rSZ
corrections. However if these electrons contribute significantly more, or have
extremely relativistic distributions, this may result in a larger distortion which may
be sufficient to be observed.

Furthermore, for higher-resolution studies, where regions of high-energy elec-
trons can be distinguished more clearly (i.e., jets, shocks, etc.) then the ICM
in these regions will likely have a larger non-thermal component, and thus an
increased distortion impact.

5.4 Conclusions

While the observational outlook for both sets of distortions, anisotropic and high-
energy non-thermal contributions, rely on futuristic missions (i.e, CMB-S4, Voyage
2050, etc. Chluba et al., 2021), they remain an interesting avenue for further
study. Determining the precise details of electrons in the ICM and their impact
on observed SZ signals is a critical step in particular for calculating the precise
importance of anisotropic electrons to the pSZ effect, and high-energy non-
thermal electron populations to the high-frequency SZ signal.

Anisotropic photon and electron distributions have, heretofore, largely been
considered using simplistic arguments, and here I have presented equations
to allow for the rapid and precise computation of these anisotropic effects.5
Furthermore, these equations can provide the basis for a deeper more analytic
consideration of the pSZ effects, as well as the calculation of these effects under
variations to the electron distribution or CMB distortions. The work presented in
this chapter is only the basis for future, more-detailed study of these effects.

In much the same way, non-thermal high-energy electron distributions have
been generally neglected when considering SZ effects. While they likely result
in a small distortion it may well be of comparable scale to the pSZ signals, albeit
largely located at higher frequencies, which can be probed with space-based
observations. Further work must be carried out to determine the likely distribu-
tions caused by the non-thermal mechanisms in clusters – i.e., jets and shocks –
and to calculate the prevalence of these non-thermal components in clusters.
This will allow for a more detailed understanding of these non-thermal effects in
the future.

5These have been added as a module to SZpack, which will be released shortly.
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Chapter 6

Dissecting the Compton scattering
kernel

The first half of this chapter is based on the published work, Sarkar et al. (2019).
EL was third author on this paper, and mainly aided in the later stages with in-
terpretation and additional analytics. The second half of this chapter – where
anisotropy is discussed – is novel unpublished work, which has been predomi-
nantly carried out by EL, with some assistance in figures and code development
from Abir Sarkar. All the figures in this chapter are either new, or have been
remade for this thesis.

6.1 Introduction

In a similar way to using the SZ kernel, the general Compton-scattering kernel
can be explored to understand the Compton scattering process more thor-
oughly. Astrophysical applications of Compton scattering have been studied
extensively historically (e.g., Zeldovich & Sunyaev, 1969; Sunyaev & Zeldovich,
1970; Hu & Silk, 1993; Chluba & Sunyaev, 2012; Mroczkowski et al., 2019) using a
variety of levels of simplifications and assumptions. While works exist that con-
sider general versions of the scattering kernel (e.g., Jones, 1968; Belmont, 2009),
they generally end up with expressions that are either cumbersome to imple-
ment or numerically unstable. Sarkar et al. (2019) hereafter referred to as SCL19,
and the first half of this chapter, focuses on providing a compact and numeri-
cally stable form of this general Compton-scattering kernel.

All of these works, however, are focused on Compton scattering taking place
in isotropic media. In real astrophysical situations, this is not always the case – as
has been discussed in the previous chapter. For instance, when CMB photons in-
teract with high-energy electron jets from AGN or the circumstellar disk of com-
pact X-ray binaries. In such cases, computations of the energy redistribution
functions and spectra have been performed in several works (e.g., Aharonian
& Atoyan, 1981; Haardt, 1993; Fargion et al., 1997; Moskalenko & Strong, 2000;
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Dubus et al., 2008; Khangulyan et al., 2014). Alternately, as has already been
discussed, CMB anisotropies can be scattered by largely isotropic electrons. In
general an understanding of the anisotropic behaviour in Compton scattering
should be obtained for accurate calculations of any kind of spectral distortions
in the CMB.

However, in all these cases where previous calculations have been carried
out, the energy of the electron is much larger than the photon, and, as such, the
results are not general. A previous calculation of a general anisotropic Comp-
ton scattering kernel has been performed in Poutanen & Vurm (2010). There,
they considered an anisotropic incident electron distribution, up to second or-
der. In the second half of this chapter we will focus instead on the general
Compton scattering kernels for anisotropic photon distributions up to 3rd order –
with some discussion of the anisotropic electron distributions, although compact
forms are not provided in this chapter.

6.2 Isotropic Compton Scattering Kernel

SCL19 reformulated the expressions of Belmont (2009). In particular, by determin-
ing that there are in general three different zones to the full Compton-scattering
kernel (instead of the implied 16 from the formulation of Belmont, 2009), a more
intuitive understanding of the kernel can be found.

In particular, the kernel is defined as follows, in a similar fashion to Eq. (5.1),
the kinetic equation can be written as,

d𝑛(𝜔′)
d𝜏

=

∫
d𝜔0

[
𝑃(𝜔′ → 𝜔0)𝑛′(1 + 𝑛0) −

𝜔2
0

𝜔′2 𝑃(𝜔0 → 𝜔′)𝑛0(1 + 𝑛′)
]
,

𝑃(𝜔0 → 𝜔′) =
∫ ∞

𝑝0,min

d𝑝0 𝑝
2
0 𝑓 (𝑝0)𝑃(𝜔0 → 𝜔′, 𝑝0),

𝑃(𝜔′ → 𝜔0) =
∫ ∞

𝑝′min

d𝑝′ 𝑝′2 𝑓 (𝑝′)𝑃(𝜔′ → 𝜔0, 𝑝
′)

=
𝜔2

0
𝜔′2

∫ ∞

𝑝0,min

d𝑝0 𝑝
2
0 𝑓 (𝑝

′)𝑃(𝜔0 → 𝜔′, 𝑝0).

(6.1)

Now, 𝑃(𝜔0 → 𝜔′, 𝑝0) is the scattering kernel and the factors of (𝜔0/𝜔′)2 arise from
considerations of conservation of photon number count.

It should be noted then that, much as for the SZ kernel, when the electron
background is a thermal (relativistic) Maxwell-Jüttner distribution, then the aver-
aged scattering kernels, obey the detailed balance relation:

𝑃th(𝜔′ → 𝜔0) =
𝜔2

0
𝜔′2 e

𝜔′−𝜔0
𝜃e 𝑃th(𝜔0 → 𝜔′). (6.2)
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It should be noticed that this is not in general true for an arbitrary electron back-
ground. In SCL19, the higher frequency moments of the scattering kernel are
discussed in detail, but that will largely be omitted here.

6.2.1 Anatomy of the Compton Kernel

First, it is important to recall that there are differences between the Compton-
scattering kernel and the SZ kernel, and the Compton Scattering problem is
defined fully in Section 1.2. In particular, we can recall the frequency ratio is
written as (e.g., Eq. 1.7)

𝜔′

𝜔0
=

1 − 𝛽0𝜇0

1 − 𝛽0𝜇′ + 𝜔0
𝛾0
(1 − 𝜇sc)

. (6.3)

Now, it is instructive to consider what limits are imposed upon 𝜔′. In particular, it is
minimized when 𝜇0 = 1 and 𝜇′ = 𝜇sc = −1, i.e., an incoming photon and electron
heading in the same direction with a back scattered outgoing photon, so that,

𝜔′
min =

(𝛾0 − 𝑝0)𝜔0
𝛾0 + 𝑝0 + 2𝜔0

. (6.4)

As such, it is impossible for an incoming photon to transfer all its energy into the
outgoing electron. It is more complex to find the upper limit. The maximal theo-
retical limit comes from conservation of energy where 𝜔′ ≤ 𝛾0 +𝜔0 − 1. However,
angular dependences mean this is not alway possible to obtain, and as such

𝜔′
max =

{
𝜔0 + 𝛾0 − 1 for 𝜔0 >

1
2 (1 + 𝑝0 − 𝛾0)

𝜔c for 𝜔0 ≤ 1
2 (1 + 𝑝0 − 𝛾0)

𝜔c =
(𝛾0 + 𝑝0)𝜔0
𝛾0 − 𝑝0 + 2𝜔0

.

(6.5)

Here, the critical frequency, 𝜔c, is introduced, which occurs when the incoming
photon and electron have a head-on collision with full back scattering (i.e.,
𝜇0 = 𝜇sc = −1 and 𝜇′ = 1).

This allows us to describe the scattering kernel in terms of four frequencies,
𝜔′

min, 𝜔0, 𝜔c and 𝜔′
max. It should be noted that for 𝜔0 <

1
2 (1 + 𝑝0 − 𝛾0), 𝜔c = 𝜔′

max

which can only occur for 𝜔0 < 0.5. Furthermore, if 𝑝0 = 𝜔0, 𝜔c = 𝜔0. In general
however this generates three zones in the scattering kernel,

Zone I : 𝜔′
min ≤ 𝜔′ < 𝜔′

I

Zone II : 𝜔′
I ≤ 𝜔

′ < 𝜔′
II

Zone III : 𝜔′
II ≤ 𝜔

′ ≤ 𝜔max.

Here, 𝜔′
I and 𝜔′

II are 𝜔0 and 𝜔c, but will switch depending on which is larger. In
the special case where two of these frequencies are equal, the kernel instead
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FIGURE 6.1: Zones of the Compton-scattering kernel for 𝜔0 = 0.1 and 1 over varying
𝑝0. At 𝑝0 = 𝜔0 its is clear that Zone II disappears. For 𝜔0 < 0.5, above a certain

momentum, 𝜔′
max = 𝜔c and Zone III disappears.

has two zones. Figure 6.1 displays these zones at 𝜔0 = 0.1 and 1.

6.2.2 Simplified exact Kernel

The kernel itself (following simplifications from Belmont, 2009) can be written in
terms of an auxiliary function,

G(𝜔∗
0, 𝜔

∗, 𝜅) = 𝜅
{

2 + (𝜔∗ − 𝜔∗
0)

2 (1 + 𝜔′𝜔0)
𝜔′2𝜔2

0
+ 2

[
1
𝜔∗S

(
𝜅2𝜆+

𝜔∗2

)
− 1
𝜔∗

0
S

(
𝜅2𝜆−

𝜔∗
0

2

)]
+ (1 + 𝜔′𝜔0)

[
1

𝜔∗𝜆+
F

(
𝜅2𝜆+

𝜔∗2

)
− 1
𝜔∗

0𝜆−
F

(
𝜅2𝜆−

𝜔∗
0

2

)] }
.

(6.6)

This itself relies on the simple definitions

𝜆+ = 𝑝2
0 + 2𝛾0𝜔0 + 𝜔2

0; 𝜆− = 𝑝2
0 − 2𝛾0𝜔

′ + 𝜔′2;

S(𝑥) = sinh−1(
√
𝑥)

√
𝑥

≡ sin−1(
√
−𝑥)

√
−𝑥

; F (𝑥) = S(𝑥) −
√

1 + 𝑥;

𝑝 =

√︃
𝑝2

0 + 2𝛾0(𝜔0 − 𝜔′) + (𝜔0 − 𝜔′)2

(6.7)

with 𝑝 the scattered electron momentum, in a form to minimise cancellations.
For small 𝑥, it makes numerical improvements to use a Taylor expansion for S(𝑥)
and F (𝑥) which, in SCL19 is taken to third order in 𝑥 about 𝑥 = 0. It should also
be noted that 𝜆+ > 0 at all energies, while 𝜆− = 0 when 𝜔′ = 𝛾0 ± 1 – however this
causes no pole (Belmont, 2009). It is finally important to define the function, Λ,
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and the ‘mean’ photon energies

Λ(𝜔0, 𝜔
′, 𝑝0, 𝑝

′) = 𝑝0 − 𝑝′ + 𝜔0 + 𝜔′

2
;

𝜔′ =

√︄
𝜔0𝜔′(𝛾′ + 𝑝′)

𝛾0 + 𝑝0
; 𝜔0 =

√︄
𝜔0𝜔′(𝛾0 + 𝑝0)

𝛾′ + 𝑝′ ,

(6.8)

which satisfies that 𝜔0𝜔′ = 𝜔0𝜔
′.

Now the kernel can be understood in two general cases. When 𝜔c ≤ 𝜔0 (or
𝑝0 ≤ 𝜔0), in each zone the kernel becomes

𝑃I(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔0, 𝜔′, 𝜅1)

𝑃II(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔′, 𝜔0, 𝑝0)

𝑃III(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔0, 𝜔

′, 𝑝′),

(6.9)

with 𝜅1 = Λ(𝜔0, 𝜔
′, 𝑝0, 𝑝

′). On the other hand, when 𝜔c ≥ 𝜔0 (or 𝑝0 ≥ 𝜔0), the
kernel is instead expressed as

𝑃I(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔0, 𝜔′, 𝜅1)

𝑃II(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔′, 𝜔0, 𝜅2)

𝑃III(𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔
2
0
G(𝜔0, 𝜔

′, 𝑝′).

(6.10)

Now, 𝜅2 = Λ(𝜔′, 𝜔0, 𝑝
′, 𝑝0) – or 𝜅1 and 𝜅2 can be both expressed as Λ̃ = 1

2 (𝜔0 + 𝜔′ −
|𝑝0− 𝑝′ |). It is also worth noting that only Zone II changes between the two cases.

6.2.3 A brief exploration of the isotropic kernel

In non-extreme cases, the kernel can be understood as displayed in Figure 6.2.
First, we can identify some shared key characteristics. In particular, the pre-
dicted zones identified in, e.g., Figure 6.1, occur as expected in the kernels, with
cusps on the boundaries between each zone. Accordingly, there is a universal
cusp at 𝜔0, and a second cusp in the down-scattering region when 𝜔0 > 𝑝0

(i.e., 𝜔c < 𝜔0) and into the up-scattering region when 𝜔0 < 𝑝0. When 𝜔0 = 𝜔c

these two cusps are co-located and only two zones arise. When 𝜔c is in the
upscattering region, this cusp is often referred to as the Doppler peak.

Furthermore, as either particle energy increases the kernel broadens as the
photon can be scattered to a larger range of energies. Increasing the incom-
ing photon energy (i.e., 𝜔0) results in stronger downscattering – that is, more
energy being transferred from the photon to the electron – while increasing 𝑝0
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FIGURE 6.2: The Compton-scattering kernel, 𝑃(𝜔0 → 𝜔′, 𝑝0), for some illustrative non-
extreme values of 𝜔0 and 𝑝0. Note that the cusp at 𝜔c moves to higher 𝜔′ with
increasing 𝑝0, coinciding with 𝜔0 when 𝑝0 = 𝜔0. Furthermore, when 𝜔0 = 0.1 the
cusp disappears for the 𝑝0/𝜔0 = 3 case, as 𝜔′

max = 𝜔c (the cusp for 𝑝0/𝜔0 = 1.4 is
indicated with an arrow).

(i.e., electron momentum) leads to more upscattering. This is a natural con-
sequence of Compton scattering (e.g., Blumenthal & Gould, 1970; Pomraning,
1972; Nagirner & Poutanen, 1994; Sazonov & Sunyaev, 2000).

In more detail, when 𝑝0/𝜔0 = 0.5, there is very little upscattering (Zone III) in
either case, but a higher 𝜔0 leads to greatly broader downscattering. However,
when 𝑝0 ≫ 𝜔0 – that is there are very energetic electrons – there is strong up-
scattering, and and the tail is broadened beyond the doppler peak especially
when 𝜔0 = 1. However, for 𝜔0 < 0.5, by 𝑝0/𝜔0 = 3, 𝜔c = 𝜔′

max and Zone III has
vanished. For 𝜔0 > 0.5 this is impossible, and instead the Doppler peak becomes
increasingly distinct for higher 𝑝0, as Zone III may become increasingly slim.

Extreme cases

It is worth briefly exploring extreme cases in Compton scattering which are of-
ten taken as approximations for calculating the kernel behaviour. In particu-
lar, recoil-dominated scattering, Doppler-dominated scattering and scattering
from ultra-relativistic electrons.

Recoil-dominated scattering arises when both 𝑝0 ≪ 𝜔0 and 𝑝0 ≪ 1. In this
scenario the kernel is predominately Zone II. That is, 𝜔c asymptotically tends to
𝜔′

min while 𝜔′
max approaches 𝜔0. As such, almost all of the photons are downscat-

tered as can be seen in the left panel of Figure 6.3. As 𝜔0 increases, the likeli-
hood of a photon retaining its energy decreases – that is, as photons get more
energetic they are increasingly likely to transfer energy to the incident electrons.
This amplitude can be shown to in fact scale with 1/𝜔2

0. As this scenario becomes
increasingly extreme, the kernel is increasingly well approximated by the simple
model described in Sarkar et al. (2019).
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FIGURE 6.3: The Compton scattering kernel, 𝑃(𝜔0 → 𝜔′, 𝑝0), for some extreme values
of 𝜔0 and 𝑝0. Left: Recoil-dominated scattering, the dashed lines are the standard
model summarised in Sarkar et al. (2019). Right: Doppler-dominated scattering, the
dashed lines are the SZ kernel, while the dot dashed line shows the ultra-relativistic

approximation (e.g., Jones, 1968; Blumenthal & Gould, 1970).

Doppler-dominated scattering however occurs when 𝜔0 ≪ 𝑝0 and 𝜔0 < 0.5
and Zone III vanishes. In this case the scattering can be approximated by the
SZ kernel, as described previously in this thesis. These are displayed in the right
panel of Figure 6.3, here however, it should be noted that the value of 𝜔0 = 0.1 is
not very extreme. Nonetheless, as 𝑝0 increases Doppler broadening increases,
and photons are increasingly upscattered. In the downscattering region, here
the SZ kernel converges to the exact shape of the Compton scattering kernel,
while at high frequencies it diverges. This is due to the extreme cases of very
high 𝑝0 where the electrons are becoming strongly relativistic. These lead to a
pile up of photons caused by recoil (i.e., the ‘cusp’ at 𝜔c reemerges) – however,
it is smooth in behaviour, instead of causing a sharp cusp. This leads to the
understanding that the SZ approximation relies not only on low photon energies,
but also, broadly speaking, non-relativistic electrons.

When 𝑝0 ≫ 1/(4𝜔0), it is in fact more accurate to use approximations for scat-
terings caused by ultra-relativistic electrons. This scattering kernel approximation
was presented in Jones (1968); Blumenthal & Gould (1970) and summarised in
Sarkar et al. (2019) and is only valid in the regime when 𝜔0 < 0.5. It also is al-
ways incorrect for 𝜔′ < 𝜔0 where this approximation tends to a constant. This is
also displayed in the right panel of Figure 6.3. The ultra-relativistic approxima-
tion models the photon pile up well when 𝜔0 is low, but becomes increasingly
inaccurate with increasing 𝜔0.

This highlights an important difference between these regimes: in the recoil-
dominated regime, for any 𝑝0 ≪ 1, it is always possible to find an 𝜔0 above
which the approximation will hold to a certain degree of accuracy. However, for
Doppler-dominated scattering this is no longer true, as increasing 𝑝0 will always
cause recoil effects, regardless of the value for 𝜔0. It should, however, be noted,
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that the SZ approximation remains appropriate in most cases where it is used.
Sarkar et al. (2019) also contains a detailed discussion of the effects of ther-

mal averaging in the general isotropic Compton scattering case which is not
summarised here, alongside detailed discussion of the moments of the comp-
ton scattering kernel and its approximations.

6.3 Anisotropic Compton Scattering Kernels

The anisotropic Compton scattering kernel can be defined in a analogous way
to that described in Chapter 5, that is, 𝑛(𝜔0, 𝜇sc) =

∑
ℓ 𝑛ℓ (𝜔0)𝑃ℓ (𝜇sc) or 𝑓 (𝑝0, 𝜇

′) =∑
ℓ′ 𝑓ℓ′ (𝑝0)𝑃ℓ′ (𝜇′). As such the anisotropic photon kernel can be expressed as

𝑃ℓ (𝜔0 → 𝜔′, 𝑝0) =
3

8𝛾0𝑝0𝜔0

∫
d𝜇sc d𝜇′ 𝑋̄𝑃ℓ (𝜇sc)

d𝜙0
d𝑡

. (6.11)

This allows for the kinetic equation to be written (cf. Eq 6.1) as

d𝑛(𝜔′)
d𝜏

=

∫
d𝜔0

[ ∞∑︁
ℓ=0

𝑃ℓ (𝜔′ → 𝜔0)𝑛′(1 + 𝑛ℓ) −
𝜔2

0
𝜔′2 𝑃

ℓ (𝜔0 → 𝜔′)𝑛ℓ (1 + 𝑛′)
]
, (6.12)

with 𝑃ℓ (𝜔′ → 𝜔0) defined analogously to 𝑃(𝜔′ → 𝜔0). The anisotropic electron
kernel can be defined in much the same way, with the appropriate switching of
angles.

It should be reiterated that these two kernels – for both anisotropic electrons
and photons – cannot easily be derived from one another through some simple
transformation of variables. This is understandable in a few ways: analytically this
is motivated by the distinct lack of symmetry between 𝜇sc and 𝜇′ within 𝑋̄ (i.e.,
Eq. 1.2). The complexity of behaviour between these two angles leads to vastly
different behaviour between the kernels. This can also be understood from a
physical perspective as expressing an anisotropy in the electron distribution as
instead being a function of the photon distribution (or vice versa) requires find-
ing a frame in which the electron distribution is isotropic and transforming the
photon field into this frame, which is a non-trivial transformation. In this chapter,
I only calculate an analytic form for the anisotropic photon Compton scatter-
ing kernels, although reference is made to the anisotropic electron scattering
kernels in Section 6.3.2.

6.3.1 Analytics

The anisotropic kernels follow the same zone configuration of the isotropic Comp-
ton scattering case – as they still rely on the same energetic and angular fre-
quency restrictions. Alternatively, this can be identified as the Zone constraints
have no direct angular dependence on 𝜇′ or 𝜇sc.
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As such the anistropic kernels can be expressed in much the same way, i.e.,
when 𝜔c ≤ 𝜔0, (or 𝑝0 ≤ 𝜔0) the kernel becomes in each zone

𝑃ℓ
I (𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔0, 𝜔′, 𝜅1)

𝑃ℓ
II(𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔′, 𝜔0, 𝑝0)

𝑃ℓ
III(𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔0, 𝜔

′, 𝑝′),

(6.13)

and when 𝜔c ≥ 𝜔0 (or 𝑝0 ≥ 𝜔0), the kernel is instead expressed as,

𝑃ℓ
I (𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔0, 𝜔′, 𝜅1)

𝑃ℓ
II(𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔′, 𝜔0, 𝜅2)

𝑃ℓ
III(𝜔0 → 𝜔′, 𝑝0) =

3
8𝛾0𝑝0𝜔

2
0
Gℓ (𝜔0, 𝜔

′, 𝑝′).

(6.14)

Here 𝜅1, 𝜅2, 𝜔0 and 𝜔′ are all defined as before.
A solution for these Gℓ for a general ℓ is complicated and far beyond the

scope of this work. However, here I provide forms for ℓ = [0, 1, 2, 3], noting that
ℓ = 0 is the form already provided earlier in this chapter. The function Gℓ (𝜔∗

0, 𝜔
∗, 𝜅)

can be written as a summation of three functions as follows,

Gℓ (𝜔∗
0, 𝜔

∗, 𝜅) = Iℓ
0 (𝜔∗

0, 𝜔
∗, 𝜅) + Iℓ

1+(𝜔
∗
0, 𝜔

∗, 𝜅) + Iℓ
1−(𝜔

∗
0, 𝜔

∗, 𝜅). (6.15)

The I functions are listed below for ℓ = {0, 1, 2, 3} and it is easy to note that the
G0 does in fact reflect a regrouping of the same expression found in Eq. (6.6).
Beyond this, these equations are somewhat complex to interact with directly,
which is amplified by modifications to maintain numerical stability.

ℓ = 0

I0
0 (𝜔∗

0, 𝜔
∗, 𝜅) = 𝜅

(𝜔∗ − 𝜔∗
0)

2

𝜔′2𝜔2
0

(1 + 𝜔′𝜔0) + 2𝜅H0, (6.16a)

I0
1±(𝜔

∗
0, 𝜔

∗, 𝜅) = 𝜅±
[
1 + 𝜔′𝜔0
𝜆±

F1(𝜅2
±𝜆±) + 2S(𝜅2

±𝜆±)
]
. (6.16b)
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ℓ = 1

I1
0 (𝜔∗

0, 𝜔
∗, 𝜅) = 𝜅

(𝜔∗ − 𝜔∗
0)

2

𝜔′2𝜔2
0

+ 2
3

[
𝜅H1 + (−2𝑋∗𝜅 + (𝑋 − 𝑋∗) |𝑝 − 𝑝0 |)

]
, (6.17a)

I1
1±(𝜔

∗
0, 𝜔

∗, 𝜅) = 𝜅±
[

3
2𝜆2

±
(2 + 𝜔′𝜔0)F2(𝜅2

±𝜆±) +
𝑔1±
𝜆±

+ 5 + 𝜔′𝜔0
𝜆±

F1(𝜅2
±𝜆±)

+ 2
−1 + 𝜔′𝜔0
𝜔′𝜔0

S(𝜅2
±𝜆±) + 𝛿∗

(
𝜔′𝜔0(𝛿∗R(𝜅2

±𝜆±) + 2𝜅2
± − 1) − 2

)]
. (6.17b)

ℓ = 2

I2
0 (𝜔∗

0, 𝜔
∗, 𝜅) = 𝜅

(𝜔∗ − 𝜔∗
0)

2

𝜔′2𝜔2
0

+ 2
5

[
𝜅H2 + (−2𝑋∗𝜅 + (𝑋 − 𝑋∗) |𝑝 − 𝑝0 |)J2

+ 3(−2𝑋2
∗ 𝜅 + (𝑋2 − 𝑋2

∗ ) |𝑝 − 𝑝0 |)
]
, (6.18a)
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−3 + 13𝜔′𝜔0 + 𝜔′2𝜔2
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. (6.18b)

ℓ = 3
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[
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[
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(6.19b)
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Here, the additional auxiliary functions are defined as

𝜅+ =
𝜅

𝜔∗ , 𝜅− =
𝜅

𝜔∗
0
, R(𝑥) =

√
1 + 𝑥,

F1(𝑥) = S(𝑥) − R(𝑥), F2(𝑥) = S(𝑥) −
(
1 − 2

3
𝑥

)
R(𝑥),

F3(𝑥) = S(𝑥) −
(
1 − 2

3
𝑥 + 8

15
𝑥2

)
R(𝑥), F4(𝑥) = S(𝑥) −

(
1 − 2

3
𝑥 + 8

15
𝑥2 − 16

35
𝑥3

)
R(𝑥).

𝑋∗ =

(
𝜔∗ − 𝜔∗

0
)2(

𝜔′ − 𝜔0

)2 , 𝑋 =

(
𝜔′ − 𝜔0

)2

4𝜔′2𝜔2
0
.

It should be noted that F1 = F , and that furthermore the Fi indicate the removal
of the Taylor series of S for small 𝑥 to maintain numerical stability. The 𝑔 functions
are given by

𝛿∗ =
𝜔∗ − 𝜔∗

0
𝜔𝜔0

, L± = 𝑠1±
√︁

1 + 𝜆±
𝜔 + 𝜔0
𝜔𝜔0

, 𝑠1+ = 1, 𝑠1− = −Sign(𝛾0 − 𝜔′),
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±) ± 2
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𝜅
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.

Finally the H , J and K functions are given by

Hℓ =

∑2ℓ
𝑛=0 𝜔

′𝑛𝜔2ℓ−𝑛
0

(𝜔′𝜔0)ℓ
,

J1 = 1, J2 =
𝜔′2 + 3𝜔′𝜔0 + 𝜔2

0
𝜔′𝜔0

, J3 =
𝜔′4 + 3𝜔′3𝜔0 + 6𝜔′2𝜔2

0 + 3𝜔′𝜔3
0 + 𝜔

4
0

𝜔′2𝜔2
0

,

K1 = 0, K2 = 1, K3 =
𝜔′2 + 5𝜔′𝜔0 + 𝜔2

0
𝜔′𝜔0

.

These H , J and K account for the increasing polynomial complexity in the
Iℓ

0 terms. The 𝑔 terms reflect repeating complex functions between each mul-
tipole. Nonetheless, while these expressions reflect a fast way of accurately
computing these higher-multipole terms, the equations themselves allow for lit-
tle interpretation of the behaviour of these kernels. It should also be noted that
these expressions have all been numerically verified to ensure accuracy.
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FIGURE 6.4: The multipole Compton scattering kernel, 𝑃ℓ (𝜔0 → 𝜔′, 𝑝0), for some
illustrative non-extreme values of 𝜔0 and 𝑝0. The solid lines show the kernels for
anisotropic photon distributions, while the dashed lines indicate the anisotropic

electon distributions for ℓ = 1 and 2.

6.3.2 Exploration

To better understand these kernels, it is helpful to once again visually examine
them under variations in 𝜔0, 𝜔′ and 𝑝0. Figure 6.4 shows the kernels generated for
𝜔0 = 1 with 𝑝0 = 0.5 and 2. Here, the monopole kernels are plotted which allows
for comparison with Figure 6.2 to consider further modifications in 𝜔0 and 𝑝0. This
figure shows not only the photon multipole kernels, analytically expressed here,
but also the scattering kernels for an electron dipole and quadrupole.

In general, the complexity in the analytic expressions are immediately re-
flected in the plotted kernels. However, once again there are some shared key
features immediately discernible. In particular, the kernels all share the same
cusps as expected. This indicates that again increasing either the photon or
electron momentum will result in broader kernels, indicating effects on an in-
creased range of frequencies 𝜔′. The cusp at 𝜔0 is also always positive for pho-
ton anisotopies while 𝜔0 ≤ 1, but the electron anisotropies do not seem to share
this behaviour. This can be understood as the photon anisotropies lead to en-
ergy redistribution between multipoles, but there will always be a chance the
photon retains its energy. An electron dipole however, indicates that in certain
directions there is a strong likelihood that all interacting photons will be upscat-
tered, and as such, there will be fewer photons at 𝜔0 than in the original distri-
bution. However, although plotted here, it can be found that when 𝜔0 > 1 this
is no longer always the case for photon anisotropies. In these cases, particu-
larly when 𝜔0 ≃ 𝑝0, there is a chance that the photon anisotropies will lead to
photons disappearing at 𝜔0 for the odd ℓ.

In general the negative components of the kernel, much as was described
in Chapter 5, reflect that photons will be scattered between multipoles. Further-
more, unlike in the SZ case, there is no simple pattern for the behaviour of the
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FIGURE 6.5: The anisotropic photon scattering kernel, 𝑃ℓ (𝜔0 → 𝜔′, 𝑝0), for some ex-
treme values of 𝜔0 and 𝑝0. The left panel shows recoil-dominated scattering and

on the right is Doppler-dominated scattering.

zero crossings in each kernel – however it is clear that the magnitude of kernels
and the number of zero-crossings are dependent on the degree of anisotropy
(ℓ) as well as the ‘expected’ parameters of 𝑝0 and 𝜔0.

Extreme cases

It is also instructive to consider these kernels in the extreme cases discussed for
the monopole Compton-scattering kernel. Figure 6.5 displays the anisotropic
kernels in these regimes (cf. Figure 6.3).

Once again recoil-dominated scattering (𝑝0 ≪ 𝜔0 and 𝑝0 ≪ 1) is almost en-
tirely determined by Zone II. This allows for greatly simplified anisotropic kernels.
In particular, now the zero-crossings align exactly with ℓ. And accordingly, since
all the kernels are positive at 𝜔0, the even multipoles (i.e., ℓ is even) are positive
at 𝜔c, while the odd multipoles are negative at 𝜔c. At each multipole, the prob-
ability of a photon maintaining its initial energy is constant. As such, determining
an analytic approximation for multipole kernels in this regime seems eminently
possible, and will be explored in future work on this subject.

Doppler-dominated scattering is once again more complex. Here again at
low 𝜔′, the kernel greatly resembles those found for the SZ multipole kernels (i.e.,
Figure 5.2) – as would be expected as the SZ kernel is an approximation for this
regime. However, at high 𝜔′ we again see a Doppler peak, not encapsulated
by SZ approximations. This is triggered again by the recoil effects caused by
the ultra-relativistic electrons used in this case. In particular, at 𝜔0, the peak de-
creases with increasing ℓ, and there are ℓ zero-crossings on each side of 𝜔0. A
large number of these crossings are located very close to 𝜔′

min and 𝜔′
max respec-

tively, leading to highly fluctuating behaviour in the frequency extremes. A more
detailed understanding of the recoil-induced photon pile-up in these multipole
cases may be obtained through analytic approximations of these anisotropic
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kernels in the ultra-relativisitic regime. However, this has not been attempted
within this thesis.

6.4 Conclusion

This chapter presents analytic forms of the isotropic and anisotropic photon
Compton-scattering kernels. For all the Compton-scattering kernels the be-
haviour is defined by three zones, determined by energy constraints on the form
of scattering that can occur. In particular, four frequencies must be empha-
sised, 𝜔′ = 𝜔′

min, 𝜔c, 𝜔0 and 𝜔′ = 𝜔0 + 𝛾0 − 1. A summary of part of the work of
Sarkar et al. (2019) has been included – although Sarkar et al. (2019) considers
the isotropic kernel in even more depth including explorations of the moment
behaviour and thermal averaging of the general Compton-scattering kernel.
Nonetheless, here we demonstrate the numerically stable and simple form of
the isotropic Compton-scattering kernel.

In the recoil-dominated regime (𝑝0 ≪ 1 and 𝑝0 ≪ 𝜔0), the isotropic kernel is
dominated by only one zone, and can be well modelled by a simple analytic
approximation. In the Doppler-dominated regime however (𝜔0 ≪ 𝑝0) the com-
monly used approximation (i.e., the SZ kernel) breaks when 𝑝0 ≫ (4𝜔0)−1. In this
case recoil effects lead to a photon ‘pile-up’ at high frequencies which can
be modelled by an analytic approximation for ultra-relativistic photons. How-
ever, even this will break when the third scattering zone begins to contribute
(e.g., for 𝜔0 > 0.5). In general, if there is any doubt over the appropriateness of
the approximate kernels, the full Compton-scattering kernel should be used. To
this end, CSpack has been created as a code base to allow for the rapid and
accurate computation of the full Compton-scattering kernel and its integrated
forms.

The anisotropic kernels work analogously to the isotropic kernel, albeit with
a significant increase in complexity which increases substantially with increase
ℓ. Each kernel (for ℓ ≠ 0) contains negative regions indicating the scattering
occurring between multipoles – that is the significant angular redistribution un-
der anisotropic Compton scattering. While analytic approximations have yet
to be calculated, the recoil-dominated regime, once again is dominated by a
single zone, and reveals a greatly simplified scattering behaviour. The Doppler-
dominated regime, however, once again cannot be modelled by the SZ ap-
proximation (i.e., Chapter 5) alone when 𝑝0 becomes large. Again, a recoil-
induced pile-up at high frequencies is observed, leading to high amplitudes in
the kernel which would not be predicted from anisotropic SZ considerations.
While the ultra-relativistic anisotropic approximation has again not been calcu-
lated, it is our expectation that it will fail in a similar way to the isotropic form, as
𝜔0 increases and Zone III becomes a substantial contributor to the kernel.
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These analytic kernels allow for a rapid and accurate computation of the
Compton-scattering process, relevant for radiative transfer problems in astro-
physical plasmas. For instance, high-energy photons and electrons can be
found in accretion flows (e.g., Shakura & Sunyaev, 1973; Abramowicz et al.,
1988; Narayan et al., 2003; McKinney et al., 2017) and electromagnetic particle
cascades which occur in multiple phases of evolution in the Universe (Zdziarski,
1988; Shull & van Steenberg, 1985; Slatyer et al., 2009; Valdés et al., 2010; Slatyer,
2016; Liu et al., 2019). Furthermore, jets from AGN, supernovae and gamma-ray
bursts will lead to highly relativistic non-thermal electron populations (e.g., Gian-
nios, 2006; Mimica et al., 2009; Giannios, 2010), also relevant to the non-thermal
SZ effect (Enßlin & Kaiser, 2000; Colafrancesco et al., 2003). Many common ap-
proximations can be avoided using the general expressions provided here, al-
lowing for accurate calculation at little extra numerical cost.
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Chapter 7

Summary and Future Work

This thesis has considered a number of modifications to the standard SZ formal-
ism to determine what effects they may generate in the observed signal. In
particular, Chapters 2 and 3 used simulations to determine temperature scaling
relations for clusters which can be used to predict the magnitude of rSZ correc-
tions that will be incurred in standard observations of the SZ effect. Chapter 2
used the BAHAMAS and MACSIS simulations to examine not only broad scaling
relations, but also temperature profiles, and determine that higher-order tem-
perature corrections to the SZ signal appear to be small. Chapter 3 extended
this work to compare the broad scaling relations across four different simulation
samples to determine how variations in simulations may lead to different tem-
perature predictions.

Chapter 4 instead considered a variation to the incoming photons to the SZ
effect. Here, in particular, the signal that may be formed from the ARCADE radio
excess is discussed – and how variations in any observed radio SZ signal may be
used to determine information on the nature of the radio excess itself, or used in
conjunction with the ‘normal’ CMB-induced SZ effect to learn more about the
properties of the clusters.

Chapter 5 presented analytic SZ-scattering kernels for anisotropies in the in-
coming electron or photon distributions, alongside a brief discussion of high-
energy non-thermal electron populations and how each would affect the ob-
served SZ signal. Chapter 6 discusses the general Compton-scattering kernel.
An analytic and numerically stable form of the isotropic Compton-scattering
kernel has been presented (as in the work of Sarkar et al., 2019), alongside the
newly calculated anisotropic photon scattering kernels.

Many of the figures presented here have been computed using SZpack and
CSpack. The latter was developed for the work of Sarkar et al. (2019), and will be
extended for anisotropic calculations shortly. SZpack however, was first released
in 2012 (Chluba et al., 2012b), but has undergone significant extensions since.
As part of my PhD, an overhaul of the base code has been carried out including
creating an integrated python wrapper for the code. An early access version of
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this is available at bitbucket.org/ElizabethLee/szpack.v2.0, and further updates
and extensions will be rolled out within the next year.

Other work is also planned to complete the project analysing the anisotropic
SZ-scattering kernels. This would include a more detailed examination of elec-
tron anisotropies and the relationship between anisotropic scattering kernels
and the pSZ effects. Further work into the general anisotropic Compton-scattering
kernels must also be carried out, both to fully determine the numerical stability of
the anisotropic kernels, as well as to determine and compare these kernels with
approximations in the extreme scenarios. This may also contain more discussion
of electron anisotropies, thermal averaging and the behaviour of frequency
moments of these kernels.

Other avenues to explore include using the temperature scaling results to
generate observational predictions and/or estimate the scale of the rSZ-induced
𝑦 miscalibration in past SZ studies; more detailed modelling of the radio SZ sig-
nal, including the effects of scattering of radio sources within clusters and their
impact on the viability of radio SZ detections; using the analytics for the SZ- and
Compton-scattering kernels to determine the effects of high-energy particles
in clusters (e.g., caused by jets and shocks) on the spectral shape caused by
their scattering with the CMB; and analysis of the evolution of anisotropies in
primordial distortions using the anisotropic Compton-scattering kernels.

https://bitbucket.org/ElizabethLee/szpack.v2.0
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Appendix A

Scaling fits for Bahamas+Macsis

This appendix corresponds with the data discussed in Chapter 2. The following
tables display the fits for all of the relations mentioned there. For each scaling re-
lationship, at each redshift, the fits are bootstrapped with 5000 iterations to gain
fits for the binned medians of our data and the 16 and 84 percentiles in each
of these bins. Hence, the errors on each value are the bootstrapped errors in
these median fits, alongside the 84 and 16 percentile bounding region edges.
This allows the intercluster variance to be calculated – that is, for example, at
some mass, 𝑀500c, the median 𝑦-weighted temperature at redshift 𝑧 = 0 is given
by Equation (2.1), using A, B and C given by the first row of Table A.1. However,
the 68% confidence region of that value, given by the intrinsic intercluster varia-
tion can be found through using Equation (2.1) using parameters given by rows
4 and 7 of Table A.1.

A.1 Volume Averages over 𝑅500c

Tables A.1 to A.5 show the temperature-mass and temperature-temperature vol-
ume averaged scalings for the sphere of radius 𝑅500c.

A.2 Volume Averages over 𝑅200c

Tables A.6 to A.10 show the same as the previous section, but for the sphere of
radius 𝑅200c.

A.3 Volume Averaged 𝑌 Fits

The 𝑌 −𝑀 and 𝑌 −𝑇 𝑦 relations over spheres of both radii are found in tables A.11
to A.14.
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TABLE A.1: The fit values for the medians, 84 and 16 percentiles of each temperature
measure at each redshift. The errors are determined through bootstrap methods.

The fit parameters correspond to those described in Eq. (2.1).

𝑀 = 𝑀500c 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 4.763+0.015

−0.015 0.581+0.003
−0.002 0.013+0.001

−0.001
𝑇m 4.248+0.013

−0.012 0.565+0.003
−0.002 0.002+0.001

−0.001
𝑇sl 4.295+0.023

−0.025 0.514+0.012
−0.013 −0.039+0.005

−0.005

84%
𝑇y 5.147+0.020

−0.020 0.568+0.002
−0.004 0.017+0.001

−0.002
𝑇m 4.544+0.015

−0.015 0.564+0.002
−0.008 0.005+0.001

−0.003
𝑇sl 4.660+0.022

−0.022 0.527+0.004
−0.008 −0.027+0.001

−0.003

16%
𝑇y 4.438+0.016

−0.017 0.593+0.003
−0.003 0.014+0.001

−0.001
𝑇m 4.000+0.012

−0.013 0.571+0.002
−0.003 0.001+0.001

−0.001
𝑇sl 3.915+0.026

−0.030 0.503+0.009
−0.010 −0.058+0.003

−0.003

𝑧 = 0.5, median
𝑇y 4.353+0.019

−0.020 0.571+0.006
−0.006 0.008+0.002

−0.002
𝑇m 3.702+0.013

−0.013 0.546+0.005
−0.004 −0.006+0.002

−0.001
𝑇sl 3.474+0.027

−0.025 0.483+0.023
−0.028 −0.051+0.008

−0.010

84%
𝑇y 4.704+0.027

−0.027 0.556+0.008
−0.007 0.008+0.003

−0.003
𝑇m 3.944+0.016

−0.016 0.541+0.006
−0.006 −0.004+0.002

−0.002
𝑇sl 3.789+0.028

−0.032 0.497+0.011
−0.046 −0.038+0.004

−0.016

16%
𝑇y 4.083+0.017

−0.018 0.588+0.006
−0.005 0.009+0.002

−0.002
𝑇m 3.498+0.015

−0.014 0.557+0.004
−0.004 −0.004+0.001

−0.001
𝑇sl 3.131+0.028

−0.028 0.478+0.040
−0.012 −0.068+0.014

−0.004

𝑧 = 1.0, median
𝑇y 3.997+0.021

−0.020 0.593+0.004
−0.004 0.009+0.001

−0.001
𝑇m 3.237+0.015

−0.017 0.558+0.004
−0.005 −0.005+0.001

−0.001
𝑇sl 2.754+0.036

−0.035 0.478+0.015
−0.014 −0.053+0.004

−0.004

84%
𝑇y 4.227+0.025

−0.022 0.564+0.006
−0.007 0.007+0.002

−0.003
𝑇m 3.407+0.017

−0.018 0.540+0.005
−0.006 −0.006+0.002

−0.002
𝑇sl 2.980+0.027

−0.033 0.450+0.010
−0.018 −0.050+0.004

−0.005

16%
𝑇y 3.785+0.027

−0.023 0.618+0.007
−0.007 0.012+0.002

−0.002
𝑇m 3.084+0.016

−0.017 0.576+0.006
−0.005 −0.003+0.002

−0.002
𝑇sl 2.543+0.030

−0.024 0.518+0.017
−0.011 −0.055+0.005

−0.004
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TABLE A.2: The fit values for the medians, 84 and 16 percentiles of each temperature
measure against 𝑇500c at each redshift. The errors are determined through bootstrap

methods. The fit parameters correspond to those described in Eq. (2.3).

𝑇rel = 𝑇500c 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 4.812+0.014

−0.013 0.889+0.003
−0.003 0.041+0.002

−0.002
𝑇m 4.289+0.011

−0.011 0.873+0.004
−0.004 0.021+0.002

−0.002
𝑇sl 4.293+0.023

−0.022 0.825+0.018
−0.018 −0.049+0.010

−0.011

84%
𝑇y 5.174+0.023

−0.021 0.865+0.005
−0.005 0.047+0.003

−0.003
𝑇m 4.575+0.013

−0.013 0.859+0.004
−0.004 0.023+0.002

−0.002
𝑇sl 4.661+0.024

−0.025 0.837+0.019
−0.009 −0.028+0.011

−0.006

16%
𝑇y 4.490+0.016

−0.016 0.906+0.005
−0.006 0.042+0.003

−0.003
𝑇m 4.020+0.013

−0.012 0.880+0.005
−0.005 0.019+0.003

−0.003
𝑇sl 3.923+0.025

−0.027 0.801+0.019
−0.015 −0.096+0.010

−0.008

𝑧 = 0.5, median
𝑇y 4.964+0.021

−0.019 0.868+0.006
−0.005 0.026+0.004

−0.003
𝑇m 4.247+0.013

−0.013 0.835+0.005
−0.004 −0.006+0.003

−0.002
𝑇sl 4.039+0.021

−0.022 0.804+0.010
−0.011 −0.093+0.005

−0.006

84%
𝑇y 5.395+0.030

−0.030 0.843+0.008
−0.007 0.026+0.005

−0.005
𝑇m 4.535+0.017

−0.018 0.828+0.006
−0.006 −0.003+0.004

−0.004
𝑇sl 4.390+0.029

−0.033 0.795+0.007
−0.007 −0.073+0.005

−0.005

16%
𝑇y 4.651+0.017

−0.018 0.891+0.004
−0.004 0.029+0.003

−0.003
𝑇m 4.006+0.015

−0.016 0.851+0.004
−0.005 −0.004+0.003

−0.003
𝑇sl 3.627+0.027

−0.027 0.827+0.009
−0.008 −0.117+0.006

−0.005

𝑧 = 1.0, median
𝑇y 5.108+0.024

−0.024 0.875+0.005
−0.005 0.020+0.003

−0.003
𝑇m 4.196+0.017

−0.016 0.846+0.004
−0.006 −0.010+0.003

−0.003
𝑇sl 3.681+0.029

−0.029 0.807+0.015
−0.015 −0.118+0.009

−0.009

84%
𝑇y 5.481+0.034

−0.031 0.835+0.006
−0.006 0.016+0.005

−0.006
𝑇m 4.457+0.020

−0.021 0.822+0.005
−0.006 −0.014+0.004

−0.004
𝑇sl 4.048+0.034

−0.034 0.760+0.009
−0.019 −0.113+0.008

−0.011

16%
𝑇y 4.770+0.027

−0.027 0.906+0.008
−0.007 0.028+0.005

−0.005
𝑇m 3.960+0.019

−0.020 0.869+0.006
−0.006 −0.006+0.004

−0.004
𝑇sl 3.316+0.026

−0.027 0.870+0.017
−0.012 −0.123+0.010

−0.008
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TABLE A.3: The fit values for the medians, 84 and 16 percentiles of each temperature
measure against 𝑇m at each redshift. The errors are determined through bootstrap

methods. The fit parameters correspond to those described in Eq. (2.3).

𝑇rel = 𝑇𝑚,500𝑐 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 5.650+0.015

−0.014 1.028+0.008
−0.008 0.029+0.004

−0.004
𝑇sl 4.946+0.033

−0.037 0.927+0.029
−0.037 −0.095+0.014

−0.017

84%
𝑇y 5.946+0.024

−0.022 1.013+0.008
−0.008 0.031+0.005

−0.006
𝑇sl 5.323+0.036

−0.038 0.944+0.012
−0.057 −0.065+0.009

−0.026

16%
𝑇y 5.356+0.016

−0.016 1.037+0.008
−0.008 0.030+0.004

−0.004
𝑇sl 4.416+0.040

−0.042 0.904+0.054
−0.020 −0.138+0.026

−0.012

𝑧 = 0.5, median
𝑇y 5.904+0.018

−0.017 1.035+0.007
−0.006 0.032+0.004

−0.004
𝑇sl 4.665+0.025

−0.025 0.961+0.009
−0.009 −0.092+0.005

−0.005

84%
𝑇y 6.230+0.022

−0.023 1.036+0.007
−0.007 0.044+0.005

−0.005
𝑇sl 4.998+0.027

−0.028 0.944+0.009
−0.015 −0.069+0.007

−0.009

16%
𝑇y 5.616+0.017

−0.019 1.040+0.007
−0.007 0.032+0.003

−0.003
𝑇sl 4.193+0.040

−0.045 0.999+0.022
−0.025 −0.107+0.013

−0.017

𝑧 = 1.0, median
𝑇y 6.144+0.039

−0.033 1.031+0.022
−0.013 0.029+0.011

−0.007
𝑇sl 4.351+0.041

−0.040 0.978+0.029
−0.025 −0.092+0.015

−0.013

84%
𝑇y 6.500+0.032

−0.033 1.014+0.012
−0.013 0.028+0.006

−0.007
𝑇sl 4.682+0.035

−0.036 0.914+0.016
−0.022 −0.097+0.010

−0.012

16%
𝑇y 5.800+0.031

−0.031 1.046+0.013
−0.014 0.034+0.007

−0.007
𝑇sl 3.928+0.051

−0.053 1.058+0.031
−0.031 −0.080+0.016

−0.016
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TABLE A.4: The fit values for the Hot and Hot, Relaxed Samples against 𝑀500c at each
redshift. The fit parameters correspond to those described in Eq. (2.1), with 𝐶 = 0.

Hot Sample Hot, Relaxed Sample
𝑀500c 𝐴 𝐵 𝐴 𝐵

𝑧 = 0.0, median
𝑇y 4.693+0.028

−0.028 0.633+0.009
−0.010 4.635+0.035

−0.036 0.626+0.010
−0.010

𝑇m 4.174+0.023
−0.025 0.598+0.019

−0.010 4.147+0.033
−0.034 0.593+0.019

−0.013
𝑇sl 4.117+0.064

−0.053 0.531+0.043
−0.055 4.206+0.049

−0.051 0.531+0.051
−0.014

84%
𝑇y 5.157+0.035

−0.036 0.622+0.010
−0.010 4.992+0.042

−0.040 0.647+0.010
−0.028

𝑇m 4.528+0.030
−0.027 0.607+0.012

−0.018 4.433+0.035
−0.030 0.633+0.009

−0.034
𝑇sl 4.620+0.044

−0.036 0.559+0.012
−0.022 4.632+0.048

−0.044 0.581+0.013
−0.025

16%
𝑇y 4.240+0.032

−0.031 0.646+0.011
−0.010 4.252+0.030

−0.029 0.633+0.010
−0.009

𝑇m 3.802+0.023
−0.022 0.602+0.011

−0.012 3.835+0.025
−0.027 0.600+0.010

−0.009
𝑇sl 3.704+0.051

−0.056 0.443+0.043
−0.027 3.839+0.069

−0.074 0.441+0.079
−0.048

𝑧 = 0.5, median
𝑇y 4.335+0.030

−0.027 0.597+0.017
−0.016 4.329+0.040

−0.034 0.598+0.018
−0.016

𝑇m 3.677+0.018
−0.021 0.561+0.011

−0.011 3.681+0.021
−0.024 0.561+0.011

−0.011
𝑇sl 3.433+0.034

−0.033 0.457+0.023
−0.099 3.445+0.036

−0.037 0.455+0.025
−0.098

84%
𝑇y 4.701+0.042

−0.029 0.579+0.015
−0.017 4.686+0.038

−0.032 0.581+0.017
−0.018

𝑇m 3.947+0.024
−0.023 0.541+0.011

−0.011 3.926+0.032
−0.027 0.540+0.013

−0.012
𝑇sl 3.827+0.033

−0.034 0.446+0.016
−0.039 3.809+0.043

−0.043 0.447+0.017
−0.038

16%
𝑇y 4.020+0.029

−0.028 0.621+0.015
−0.013 4.039+0.029

−0.031 0.615+0.015
−0.013

𝑇m 3.417+0.019
−0.019 0.576+0.010

−0.010 3.442+0.025
−0.027 0.570+0.012

−0.011
𝑇sl 3.062+0.030

−0.037 0.422+0.066
−0.041 3.073+0.035

−0.035 0.414+0.064
−0.041

𝑧 = 1.0, median
𝑇y 3.984+0.029

−0.030 0.611+0.016
−0.016 3.974+0.035

−0.035 0.610+0.020
−0.018

𝑇m 3.235+0.019
−0.023 0.586+0.008

−0.011 3.228+0.023
−0.024 0.581+0.012

−0.013
𝑇sl 2.745+0.036

−0.049 0.469+0.017
−0.037 2.767+0.036

−0.043 0.473+0.017
−0.027

84%
𝑇y 4.262+0.044

−0.039 0.581+0.019
−0.022 4.255+0.049

−0.048 0.580+0.019
−0.022

𝑇m 3.429+0.024
−0.025 0.544+0.010

−0.010 3.423+0.028
−0.029 0.540+0.011

−0.011
𝑇sl 3.026+0.040

−0.045 0.416+0.018
−0.019 3.024+0.039

−0.041 0.405+0.017
−0.018

16%
𝑇y 3.717+0.031

−0.029 0.644+0.022
−0.015 3.720+0.033

−0.033 0.653+0.022
−0.017

𝑇m 3.027+0.041
−0.023 0.618+0.027

−0.013 3.044+0.025
−0.035 0.628+0.014

−0.022
𝑇sl 2.464+0.042

−0.031 0.501+0.033
−0.021 2.510+0.038

−0.049 0.531+0.025
−0.038
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TABLE A.5: The fit values for the medians, 84 and 16 percentiles of 𝜎(𝑇y) at each
redshift. The errors are determined through bootstrap methods. The fit parameters

correspond to those described in Eq. (2.1), with 𝐶 = 0.

(𝜎(𝑇y)/𝑇y) (𝑀500c) 𝐴 𝐵

𝑧 = 0.0
median 0.386+0.002

−0.003 0.026+0.003
−0.004

84% 0.450+0.003
−0.003 −0.013+0.003

−0.003
16% 0.332+0.003

−0.003 0.031+0.004
−0.004

𝑧 = 0.5
median 0.446+0.003

−0.003 0.022+0.003
−0.003

84% 0.504+0.004
−0.003 −0.020+0.003

−0.003
16% 0.400+0.003

−0.003 0.042+0.004
−0.004

𝑧 = 1.0
median 0.489+0.003

−0.003 0.017+0.002
−0.003

84% 0.519+0.005
−0.005 −0.040+0.005

−0.005
16% 0.455+0.004

−0.004 0.049+0.004
−0.003

A.4 Profile Fits

Tables A.15 to A.18 display the fit quantities for the radial profiles of the median
temperature measures, (𝑇/𝑇500c) and variance, 𝜎(𝑇 𝑦)/𝑇500c. The same quantities
for the cylindrical profiles are in tables A.19 to A.22.

These mass bins are organised so that the highest mass bin always corre-
sponds to the MACSIS sample, hence the discrepency in mass bin sizes.
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TABLE A.6: The fit values for the medians, 84 and 16 percentiles of each temperature
measure at each redshift. The errors are determined through bootstrap methods.

The fit parameters correspond to those described in Eq. (2.1).

𝑀 = 𝑀200c 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 3.488+0.010

−0.009 0.595+0.002
−0.002 0.016+0.001

−0.001
𝑇m 2.974+0.010

−0.009 0.588+0.003
−0.004 0.008+0.001

−0.002
𝑇sl 3.128+0.051

−0.023 0.572+0.011
−0.023 −0.022+0.005

−0.014

84%
𝑇y 3.764+0.016

−0.014 0.585+0.003
−0.003 0.018+0.002

−0.001
𝑇m 3.200+0.012

−0.012 0.587+0.003
−0.003 0.008+0.001

−0.002
𝑇sl 3.535+0.022

−0.019 0.583+0.008
−0.008 −0.018+0.004

−0.005

16%
𝑇y 3.247+0.010

−0.010 0.599+0.003
−0.003 0.015+0.001

−0.002
𝑇m 2.760+0.011

−0.011 0.587+0.004
−0.004 0.008+0.002

−0.002
𝑇sl 2.743+0.028

−0.031 0.554+0.017
−0.012 −0.039+0.009

−0.006

𝑧 = 0.5, median
𝑇y 3.221+0.011

−0.010 0.600+0.009
−0.010 0.010+0.004

−0.004
𝑇m 2.616+0.009

−0.009 0.585+0.004
−0.014 0.000+0.002

−0.006
𝑇sl 2.555+0.015

−0.015 0.567+0.009
−0.017 −0.033+0.004

−0.007

84%
𝑇y 3.501+0.018

−0.017 0.593+0.006
−0.007 0.013+0.003

−0.003
𝑇m 2.805+0.011

−0.012 0.585+0.005
−0.006 0.001+0.002

−0.002
𝑇sl 2.895+0.022

−0.021 0.565+0.007
−0.009 −0.029+0.003

−0.004

16%
𝑇y 2.975+0.011

−0.012 0.599+0.008
−0.006 0.010+0.003

−0.003
𝑇m 2.413+0.011

−0.012 0.577+0.009
−0.007 −0.000+0.004

−0.003
𝑇sl 2.200+0.021

−0.019 0.565+0.014
−0.011 −0.039+0.005

−0.004

𝑧 = 1.0, median
𝑇y 2.962+0.019

−0.018 0.626+0.008
−0.009 0.013+0.003

−0.003
𝑇m 2.286+0.013

−0.012 0.600+0.006
−0.007 0.002+0.002

−0.003
𝑇sl 2.056+0.020

−0.020 0.557+0.010
−0.029 −0.038+0.004

−0.011

84%
𝑇y 3.243+0.030

−0.028 0.599+0.007
−0.009 0.006+0.003

−0.003
𝑇m 2.467+0.018

−0.017 0.580+0.005
−0.005 −0.006+0.002

−0.002
𝑇sl 2.302+0.022

−0.019 0.517+0.007
−0.008 −0.046+0.003

−0.003

16%
𝑇y 2.725+0.016

−0.016 0.647+0.008
−0.007 0.020+0.003

−0.002
𝑇m 2.131+0.012

−0.013 0.616+0.005
−0.006 0.007+0.002

−0.002
𝑇sl 1.790+0.026

−0.028 0.587+0.019
−0.018 −0.034+0.007

−0.005
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TABLE A.7: The fit values for the medians, 84 and 16 percentiles of each temperature
measure against 𝑇200c at each redshift. The errors are determined through bootstrap

methods. The fit parameters correspond to those described in Eq. (2.3).

𝑇rel = 𝑇200c 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 4.650+0.013

−0.014 0.918+0.004
−0.006 0.038+0.002

−0.003
𝑇m 3.946+0.010

−0.011 0.896+0.004
−0.003 0.020+0.002

−0.002
𝑇sl 4.101+0.029

−0.030 0.846+0.010
−0.025 −0.041+0.005

−0.012

84%
𝑇y 5.014+0.025

−0.024 0.900+0.006
−0.004 0.039+0.003

−0.003
𝑇m 4.243+0.016

−0.016 0.891+0.005
−0.006 0.018+0.002

−0.003
𝑇sl 4.647+0.026

−0.026 0.850+0.017
−0.008 −0.038+0.008

−0.004

16%
𝑇y 4.329+0.015

−0.015 0.922+0.005
−0.007 0.037+0.003

−0.003
𝑇m 3.666+0.016

−0.017 0.901+0.005
−0.010 0.023+0.003

−0.005
𝑇sl 3.538+0.031

−0.032 0.819+0.014
−0.011 −0.062+0.007

−0.005

𝑧 = 0.5, median
𝑇y 4.814+0.021

−0.021 0.915+0.016
−0.018 0.026+0.008

−0.010
𝑇m 3.893+0.014

−0.016 0.886+0.008
−0.025 0.004+0.004

−0.013
𝑇sl 3.784+0.025

−0.028 0.838+0.016
−0.030 −0.072+0.008

−0.016

84%
𝑇y 5.234+0.033

−0.029 0.907+0.011
−0.013 0.032+0.006

−0.007
𝑇m 4.182+0.020

−0.019 0.886+0.008
−0.011 0.005+0.004

−0.006
𝑇sl 4.290+0.035

−0.034 0.836+0.013
−0.015 −0.065+0.007

−0.008

16%
𝑇y 4.440+0.019

−0.020 0.912+0.015
−0.011 0.023+0.008

−0.005
𝑇m 3.584+0.019

−0.021 0.873+0.017
−0.013 0.001+0.009

−0.006
𝑇sl 3.250+0.033

−0.030 0.829+0.023
−0.019 −0.087+0.012

−0.009

𝑧 = 1.0, median
𝑇y 4.936+0.029

−0.029 0.936+0.011
−0.012 0.028+0.006

−0.007
𝑇m 3.818+0.021

−0.019 0.900+0.009
−0.010 0.003+0.005

−0.006
𝑇sl 3.449+0.030

−0.032 0.848+0.014
−0.041 −0.086+0.008

−0.024

84%
𝑇y 5.420+0.049

−0.047 0.896+0.010
−0.012 0.013+0.006

−0.007
𝑇m 4.129+0.030

−0.028 0.871+0.007
−0.007 −0.014+0.004

−0.004
𝑇sl 3.876+0.035

−0.031 0.790+0.010
−0.012 −0.105+0.006

−0.007

16%
𝑇y 4.527+0.027

−0.024 0.965+0.011
−0.009 0.044+0.006

−0.005
𝑇m 3.550+0.020

−0.021 0.923+0.007
−0.008 0.017+0.004

−0.004
𝑇sl 2.989+0.038

−0.042 0.892+0.025
−0.025 −0.077+0.016

−0.012
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TABLE A.8: The fit values for the medians, 84 and 16 percentiles of each temperature
measure against 𝑇m at each redshift. The errors are determined through bootstrap

methods. The fit parameters correspond to those described in Eq. (2.3).

𝑇rel = 𝑇𝑚,200𝑐 𝐴 𝐵 𝐶

𝑧 = 0.0, median
𝑇y 5.936+0.017

−0.016 1.030+0.007
−0.005 0.023+0.003

−0.003
𝑇sl 5.148+0.047

−0.066 0.935+0.017
−0.076 −0.072+0.008

−0.034

84%
𝑇y 6.275+0.025

−0.024 1.021+0.008
−0.008 0.024+0.004

−0.004
𝑇sl 5.647+0.031

−0.037 0.927+0.013
−0.017 −0.063+0.006

−0.008

16%
𝑇y 5.632+0.018

−0.021 1.038+0.007
−0.009 0.025+0.003

−0.004
𝑇sl 4.510+0.066

−0.064 0.868+0.047
−0.040 −0.120+0.022

−0.019

𝑧 = 0.5, median
𝑇y 6.257+0.020

−0.019 1.052+0.007
−0.007 0.033+0.003

−0.003
𝑇sl 4.801+0.038

−0.039 0.942+0.016
−0.018 −0.073+0.008

−0.009

84%
𝑇y 6.623+0.031

−0.028 1.048+0.009
−0.008 0.037+0.005

−0.004
𝑇sl 5.247+0.035

−0.032 0.925+0.013
−0.011 −0.067+0.007

−0.007

16%
𝑇y 5.953+0.027

−0.028 1.051+0.010
−0.011 0.029+0.005

−0.005
𝑇sl 4.280+0.052

−0.060 0.929+0.026
−0.035 −0.099+0.012

−0.015

𝑧 = 1.0, median
𝑇y 6.546+0.029

−0.039 1.048+0.007
−0.013 0.026+0.004

−0.005
𝑇sl 4.404+0.063

−0.062 0.901+0.029
−0.031 −0.100+0.013

−0.013

84%
𝑇y 6.921+0.043

−0.042 1.011+0.012
−0.013 0.013+0.006

−0.006
𝑇sl 4.815+0.034

−0.089 0.855+0.012
−0.056 −0.109+0.006

−0.025

16%
𝑇y 6.207+0.038

−0.040 1.074+0.012
−0.012 0.036+0.005

−0.005
𝑇sl 3.972+0.063

−0.052 0.960+0.048
−0.021 −0.087+0.021

−0.010
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TABLE A.9: The fit values for the Hot and Hot, Relaxed Samples against 𝑀200c at each
redshift. The fit parameters correspond to those described in Eq. (2.1), with 𝐶 = 0.

Hot Sample Hot, Relaxed Sample
𝑀200c 𝐴 𝐵 𝐴 𝐵

𝑧 = 0.0, median
𝑇y 3.406+0.028

−0.045 0.633+0.025
−0.010 3.422+0.051

−0.053 0.633+0.013
−0.012

𝑇m 2.915+0.042
−0.041 0.609+0.020

−0.025 2.976+0.037
−0.042 0.600+0.016

−0.013
𝑇sl 3.103+0.084

−0.116 0.515+0.067
−0.041 3.337+0.122

−0.104 0.516+0.043
−0.050

84%
𝑇y 3.741+0.040

−0.033 0.644+0.010
−0.012 3.713+0.092

−0.067 0.650+0.014
−0.024

𝑇m 3.174+0.036
−0.031 0.626+0.011

−0.015 3.161+0.066
−0.052 0.636+0.013

−0.032
𝑇sl 3.573+0.064

−0.054 0.559+0.013
−0.020 3.593+0.077

−0.057 0.576+0.014
−0.024

16%
𝑇y 3.139+0.027

−0.027 0.624+0.011
−0.011 3.129+0.042

−0.040 0.634+0.012
−0.016

𝑇m 2.692+0.024
−0.023 0.587+0.011

−0.008 2.733+0.043
−0.036 0.599+0.013

−0.024
𝑇sl 2.761+0.061

−0.068 0.442+0.038
−0.032 3.029+0.097

−0.112 0.434+0.053
−0.030

𝑧 = 0.5, median
𝑇y 3.182+0.028

−0.024 0.627+0.012
−0.020 3.195+0.066

−0.052 0.624+0.018
−0.024

𝑇m 2.592+0.025
−0.024 0.591+0.015

−0.021 2.629+0.038
−0.037 0.580+0.017

−0.021
𝑇sl 2.594+0.046

−0.048 0.491+0.031
−0.027 2.676+0.084

−0.065 0.469+0.032
−0.033

84%
𝑇y 3.543+0.059

−0.065 0.603+0.020
−0.019 3.518+0.070

−0.067 0.613+0.022
−0.024

𝑇m 2.831+0.025
−0.028 0.577+0.013

−0.012 2.830+0.037
−0.035 0.576+0.018

−0.017
𝑇sl 2.993+0.065

−0.048 0.495+0.022
−0.030 3.112+0.086

−0.102 0.452+0.032
−0.031

16%
𝑇y 2.936+0.036

−0.037 0.618+0.028
−0.015 2.939+0.051

−0.045 0.630+0.023
−0.024

𝑇m 2.396+0.024
−0.025 0.578+0.023

−0.011 2.419+0.040
−0.039 0.581+0.022

−0.020
𝑇sl 2.236+0.045

−0.064 0.488+0.031
−0.025 2.325+0.054

−0.051 0.455+0.029
−0.024

𝑧 = 1.0, median
𝑇y 2.964+0.029

−0.035 0.626+0.019
−0.023 2.944+0.031

−0.032 0.636+0.020
−0.024

𝑇m 2.275+0.019
−0.018 0.606+0.014

−0.016 2.259+0.023
−0.020 0.614+0.015

−0.017
𝑇sl 2.079+0.030

−0.038 0.515+0.033
−0.039 2.069+0.038

−0.048 0.508+0.038
−0.040

84%
𝑇y 3.308+0.051

−0.045 0.603+0.022
−0.021 3.235+0.047

−0.043 0.625+0.019
−0.020

𝑇m 2.512+0.022
−0.022 0.577+0.013

−0.014 2.475+0.025
−0.026 0.587+0.014

−0.015
𝑇sl 2.368+0.035

−0.032 0.468+0.020
−0.025 2.366+0.047

−0.038 0.465+0.023
−0.033

16%
𝑇y 2.681+0.029

−0.040 0.656+0.026
−0.024 2.704+0.031

−0.042 0.647+0.028
−0.026

𝑇m 2.079+0.024
−0.024 0.633+0.020

−0.021 2.101+0.021
−0.024 0.627+0.021

−0.022
𝑇sl 1.765+0.037

−0.033 0.581+0.036
−0.036 1.793+0.046

−0.045 0.556+0.040
−0.038
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TABLE A.10: The fit values for the medians, 84 and 16 percentiles of 𝜎(𝑇y) at each
redshift. The errors are determined through bootstrap methods. The fit parameters

correspond to those described in Eq. (2.1), with 𝐶 = 0.

(𝜎(𝑇y)/𝑇y) (𝑀200c) 𝐴 𝐵

𝑧 = 0.0
median 0.437+0.002

−0.002 0.008+0.004
−0.002

84% 0.508+0.003
−0.003 −0.023+0.003

−0.003
16% 0.388+0.002

−0.003 0.016+0.003
−0.004

𝑧 = 0.5
median 0.496+0.003

−0.003 0.011+0.004
−0.003

84% 0.560+0.004
−0.004 −0.026+0.004

−0.004
16% 0.451+0.002

−0.002 0.028+0.003
−0.003

𝑧 = 1.0
median 0.535+0.003

−0.003 0.007+0.003
−0.003

84% 0.579+0.003
−0.003 −0.044+0.003

−0.003
16% 0.498+0.003

−0.002 0.035+0.003
−0.002

TABLE A.11: The fit values for the medians, 84 and 16 percentiles of 𝑇 𝑦 to𝑌500c at each
redshift. The errors are determined through bootstrap methods. The fit parameters
correspond to those described in Eq. (2.4). This is a replica of Table 2.6 found in

Section 2.3.6.

𝑇𝑌 − 𝑌500c 𝐴 𝐵 𝐶

𝑧 = 0.0
median 4.784+0.022

−0.019 0.3363+0.0026
−0.0031 0.0118+0.0005

−0.0006
84 5.203+0.026

−0.024 0.3276+0.0017
−0.0020 0.0120+0.0005

−0.0005
16 4.415+0.047

−0.024 0.3438+0.0026
−0.0030 0.0120+0.0007

−0.0015

𝑧 = 0.5
median 5.370+0.020

−0.020 0.3358+0.0017
−0.0010 0.0106+0.0003

−0.0002
84 5.860+0.027

−0.028 0.3218+0.0015
−0.0016 0.0090+0.0003

−0.0003
16 4.954+0.016

−0.016 0.3508+0.0009
−0.0008 0.0128+0.0002

−0.0002

𝑧 = 1.0
median 6.250+0.042

−0.038 0.3429+0.0044
−0.0037 0.0090+0.0009

−0.0007
84 6.656+0.053

−0.062 0.3329+0.0071
−0.0058 0.0096+0.0015

−0.0011
16 5.784+0.042

−0.040 0.3579+0.0051
−0.0048 0.0107+0.0009

−0.0008
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TABLE A.12: The fit values for the medians, 84 and 16 percentiles of 𝑇 𝑦 to𝑌200c at each
redshift. The errors are determined through bootstrap methods. The fit parameters

correspond to those described in Eq. (2.4).

𝑇𝑌 − 𝑌200c 𝐴 𝐵 𝐶

𝑧 = 0.0
median 3.856+0.013

−0.013 0.3490+0.0022
−0.0029 0.0128+0.0005

−0.0006

84 4.175+0.027
−0.031 0.3429+0.0019

−0.0021 0.0131+0.0010
−0.0008

16 3.580+0.035
−0.019 0.3544+0.0022

−0.0021 0.0130+0.0007
−0.0013

𝑧 = 0.5
median 4.320+0.057

−0.045 0.3605+0.0020
−0.0023 0.0145+0.0016

−0.0020
84 4.694+0.092

−0.027 0.3481+0.0016
−0.0033 0.0136+0.0005

−0.0031
16 4.015+0.018

−0.078 0.3701+0.0035
−0.0010 0.0152+0.0030

−0.0006

𝑧 = 1.0
median 5.129+0.032

−0.028 0.3698+0.0035
−0.0029 0.0112+0.0008

−0.0007
84 5.608+0.056

−0.053 0.3597+0.0057
−0.0057 0.0106+0.0015

−0.0014
16 4.765+0.026

−0.026 0.3820+0.0037
−0.0038 0.0125+0.0009

−0.0009

TABLE A.13: The fit values for the medians, 84 and 16 percentiles of 𝑌500 to 𝑀500c at
each redshift. The errors are determined through bootstrap methods. The fit pa-
rameters correspond to those described in Eq. (2.1), with 𝑌 in the place of 𝐸 (𝑧)−2/3𝑇 .

𝑌 − 𝑀500c 𝐴 [×10−5] 𝐵 𝐶

𝑧 = 0.0
median 2.850+0.017

−0.017 1.783+0.005
−0.003 −0.0860+0.0021

−0.0017
84 3.281+0.021

−0.019 1.757+0.004
−0.013 −0.0762+0.0019

−0.0050
16 2.466+0.017

−0.017 1.823+0.005
−0.005 −0.0920+0.0020

−0.0019

𝑧 = 0.5
median 2.813+0.021

−0.019 1.731+0.003
−0.003 −0.0688+0.0014

−0.0015
84 3.227+0.025

−0.024 1.681+0.004
−0.004 −0.0724+0.0017

−0.0018
16 2.476+0.017

−0.019 1.776+0.003
−0.003 −0.0693+0.0017

−0.0015

𝑧 = 1.0
median 2.753+0.035

−0.037 1.652+0.019
−0.028 −0.0792+0.0063

−0.0087
84 3.135+0.034

−0.038 1.597+0.011
−0.018 −0.0828+0.0041

−0.0057
16 2.431+0.027

−0.025 1.697+0.019
−0.011 −0.0796+0.0062

−0.0045
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TABLE A.14: The fit values for the medians, 84 and 16 percentiles of 𝑌200 to 𝑀200c at
each redshift. The errors are determined through bootstrap methods. The fit pa-
rameters correspond to those described in Eq. (2.1), with 𝑌 in the place of 𝐸 (𝑧)−2/3𝑇 .

𝑌 − 𝑀200c 𝐴 [×10−5] 𝐵 𝐶

𝑧 = 0.0
median 2.024+0.010

−0.010 1.789+0.003
−0.003 −0.0608+0.0016

−0.0016
84 2.357+0.015

−0.015 1.754+0.004
−0.003 −0.0571+0.0021

−0.0020
16 1.748+0.011

−0.012 1.822+0.004
−0.006 −0.0665+0.0022

−0.0028

𝑧 = 0.5
median 2.035+0.014

−0.015 1.739+0.003
−0.004 −0.0506+0.0016

−0.0016
84 2.381+0.016

−0.015 1.703+0.003
−0.003 −0.0552+0.0014

−0.0014
16 1.742+0.015

−0.015 1.777+0.003
−0.002 −0.0471+0.0019

−0.0019

𝑧 = 1.0
median 2.025+0.021

−0.020 1.705+0.013
−0.020 −0.0511+0.0047

−0.0077
84 2.375+0.021

−0.023 1.645+0.007
−0.010 −0.0655+0.0037

−0.0041
16 1.770+0.017

−0.018 1.741+0.014
−0.009 −0.0508+0.0053

−0.0039
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Appendix B

Scaling fits for multi-Simulation SZ
temperature scalings

Here we tabulate a number of the data fits referenced in the text above. In gen-
eral, the haloes have been processed by taking the data into logarithmically
spaced mass (or 𝑌) bins, and calculating the median, 16 and 84 percentiles
within these bins. The fits are then the fits to these data points, with respect to
the median mass (or 𝑌) within the same bin.

In particular, the fits we have tabulated here are: Tables B.1 and B.2, the 2-
and 3-parameter cross-simulation sample 𝑇 − 𝑀 fits at 𝑧 = 0, including the 16
and 84 percentiles; Table B.3, the 2- and 3-parameter median 𝑇 −𝑀 fits for each
sample individually at 𝑧 = 0; Table B.4, the 2-parameter median 𝑇 − 𝑀 fits for
the cross-simulation sample at each redshift; Table B.5, the shifts and errors in
the radius, mass and temperatures over varying radial halo extent definitions for
each sample and the cross-simulation sample at 𝑧 = 0; Tables B.6 and B.7, the 2-
and 3-parameter cross-simulation sample, within 𝑅500c, 𝑇−𝑀 fits at 𝑧 = 0, including
the 16 and 84 percentiles; Tables B.8 and B.9, the 2- and 3-parameter 𝑇 − 𝑌 fits
for the cross-simulation sample and each individual sample respectively; and
Table B.10, the 2-parameter 𝑇y − 𝑌 fits over each redshift for the cross-simulation
sample, taking only haloes with 𝑌200c > 10−6, including the 16 and 84 percentiles.
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TABLE B.1: The two parameter fits [Eq. (3.1)] and a measure of the intrinsic scatter
[Eq. (3.2)] in the fits at 𝑧 = 0 for the median and 16 and 84 percentiles of the cross

simulation averaged sample within 𝑅200c.

median 𝐴 𝐵 𝜎log10 𝑇

𝑇y 1.465+0.002
−0.002 0.586+0.003

−0.002 0.1025+0.0003
−0.0002

𝑇m 1.210+0.001
−0.001 0.591+0.003

−0.003 0.0805+0.0002
−0.0001

𝑇sl 1.135+0.003
−0.003 0.601+0.006

−0.011 0.2067+0.0016
−0.0008

16%
𝑇y 1.259+0.002

−0.003 0.590+0.002
−0.002 –

𝑇m 1.063+0.002
−0.002 0.597+0.002

−0.002 –
𝑇sl 0.872+0.003

−0.003 0.636+0.003
−0.003 –

84%
𝑇y 1.694+0.003

−0.003 0.573+0.002
−0.002 –

𝑇m 1.381+0.002
−0.002 0.585+0.003

−0.002 –
𝑇sl 1.364+0.003

−0.003 0.611+0.002
−0.002 –

TABLE B.2: The three parameter fits [Eq. (3.1)] and a measure of the intrinsic scatter
[Eq. (3.2)] in the fits at 𝑧 = 0 for the median and 16 and 84 percentiles within the

cross simulation averaged sample within 𝑅200c.

median 𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.426+0.006
−0.007 0.566+0.001

−0.001 0.024+0.005
−0.004 0.1011+0.0001

−0.0001
𝑇m 1.207+0.005

−0.005 0.589+0.001
−0.001 0.003+0.004

−0.005 0.0804+0.0001
−0.0001

𝑇sl 1.196+0.020
−0.009 0.641+0.003

−0.003 −0.048+0.007
−0.018 0.2028+0.0002

−0.0001

16%
𝑇y 1.248+0.005

−0.005 0.585+0.001
−0.001 0.008+0.004

−0.004 –
𝑇m 1.068+0.004

−0.003 0.600+0.001
−0.001 −0.005+0.003

−0.003 –
𝑇sl 0.920+0.006

−0.005 0.667+0.003
−0.003 −0.051+0.004

−0.005 –

84%
𝑇y 1.641+0.005

−0.004 0.555+0.001
−0.001 0.030+0.002

−0.003 –
𝑇m 1.370+0.004

−0.005 0.580+0.001
−0.001 0.007+0.004

−0.002 –
𝑇sl 1.398+0.005

−0.005 0.625+0.002
−0.002 −0.023+0.003

−0.003 –
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TABLE B.3: The two and three parameter fits [Eq. (3.1)] and a measure of the intrinsic
scatter [Eq. (3.2)] in the fits at 𝑧 = 0 for the median of each sample within 𝑅200c.

BAHAMAS+MACSIS

𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.529+0.003
−0.003 0.582+0.003

−0.003 0 0.0829+0.0005
−0.0004

𝑇y 1.494+0.007
−0.008 0.564+0.002

−0.002 0.022+0.005
−0.004 0.0808+0.0001

−0.0001
𝑇m 1.264+0.002

−0.002 0.581+0.003
−0.003 0 0.0445+0.0002

−0.0002
𝑇m 1.261+0.006

−0.006 0.580+0.002
−0.002 0.002+0.004

−0.005 0.0444+0.0001
−0.0001

𝑇sl 1.186+0.004
−0.004 0.596+0.007

−0.011 0 0.0945+0.0024
−0.0013

𝑇sl 1.277+0.022
−0.010 0.654+0.004

−0.003 −0.069+0.008
−0.019 0.0849+0.0002

−0.0001

THE300
𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.295+0.004
−0.004 0.596+0.005

−0.005 0 0.1779+0.0008
−0.0008

𝑇y 1.263+0.010
−0.011 0.582+0.002

−0.002 0.023+0.009
−0.009 0.1754+0.0003

−0.0003
𝑇m 1.137+0.004

−0.004 0.599+0.005
−0.004 0 0.1567+0.0007

−0.0006
𝑇m 1.125+0.009

−0.009 0.593+0.002
−0.002 0.010+0.009

−0.008 0.1558+0.0003
−0.0002

𝑇sl 1.205+0.004
−0.006 0.585+0.005

−0.012 0 0.1520+0.0005
−0.0001

𝑇sl 1.224+0.020
−0.011 0.593+0.002

−0.002 −0.013+0.007
−0.022 0.1513+0.0003

−0.0005

MAGNETICUM

𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.511+0.007
−0.006 0.612+0.006

−0.003 0 0.0452+0.0005
−0.0003

𝑇y 1.473+0.006
−0.005 0.601+0.003

−0.003 0.026+0.006
−0.004 0.0438+0.0000

−0.0000
𝑇m 1.182+0.004

−0.004 0.622+0.004
−0.004 0 0.0327+0.0002

−0.0001
𝑇m 1.167+0.004

−0.004 0.616+0.003
−0.003 0.013+0.004

−0.004 0.0326+0.0001
−0.0001

𝑇sl 0.930+0.007
−0.006 0.629+0.008

−0.006 0 0.3020+0.0008
−0.0008

𝑇sl 0.904+0.008
−0.008 0.616+0.006

−0.006 0.030+0.007
−0.006 0.3035+0.0007

−0.0007

TNG
𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.302+0.008
−0.008 0.583+0.007

−0.008 0 0.0388+0.0010
−0.0010

𝑇y 1.242+0.011
−0.010 0.569+0.005

−0.005 0.057+0.012
−0.014 0.0356+0.0002

−0.0002
𝑇m 1.129+0.006

−0.007 0.604+0.005
−0.008 0 0.0322+0.0007

−0.0008
𝑇m 1.089+0.008

−0.007 0.594+0.004
−0.005 0.042+0.009

−0.012 0.0304+0.0002
−0.0002

𝑇sl 0.998+0.008
−0.009 0.704+0.009

−0.009 0 0.2030+0.0009
−0.0008

𝑇sl 1.070+0.012
−0.013 0.722+0.008

−0.008 −0.084+0.019
−0.013 0.2010+0.0006

−0.0005
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TABLE B.4: The two parameter fits [Eq. (3.1)] and a measure of the intrinsic scatter
[Eq. (3.2)] in the fits for the median across the higher redshifts of the cross simulation

averaged sample within 𝑅200c.

𝑧 = 0.25 𝐴 𝐵 𝜎log10 𝑇

𝑇y 1.448+0.002
−0.002 0.600+0.002

−0.004 0.0896+0.0003
−0.0005

𝑇m 1.173+0.002
−0.002 0.601+0.004

−0.005 0.0669+0.0003
−0.0003

𝑇sl 1.059+0.004
−0.004 0.608+0.013

−0.017 0.2151+0.0025
−0.0017

𝑧 = 0.50
𝑇y 1.423+0.003

−0.003 0.591+0.003
−0.002 0.0804+0.0002

−0.0002
𝑇m 1.136+0.002

−0.002 0.599+0.003
−0.002 0.0589+0.0001

−0.0001
𝑇sl 1.002+0.003

−0.003 0.633+0.004
−0.003 0.2246+0.0003

−0.0004

𝑧 = 1.00
𝑇y 1.376+0.004

−0.004 0.594+0.003
−0.003 0.0733+0.0001

−0.0001
𝑇m 1.073+0.003

−0.002 0.607+0.002
−0.002 0.0513+0.0001

−0.0001
𝑇sl 0.916+0.003

−0.003 0.661+0.003
−0.004 0.2394+0.0003

−0.0003

𝑧 = 1.50
𝑇y 1.343+0.006

−0.006 0.594+0.004
−0.004 0.0882+0.0001

−0.0001
𝑇m 1.038+0.004

−0.005 0.619+0.003
−0.004 0.0515+0.0001

−0.0001
𝑇sl 0.864+0.005

−0.005 0.682+0.005
−0.005 0.2999+0.0003

−0.0003
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TABLE B.5: The shifts and errors in the radius, mass, 𝑇m and 𝑇y for each sample against
those values within 𝑅200c. We have also repeated the cross-simulation averages
found in Table 3.7. These values are calculated on a cluster by cluster basis, and
then the averages are found within these. The central value here is the median with
the errors given by the 16 and 84 percentiles. NB. We do not here have values for

𝑀vir and 𝑀200m within the TNG sample.

Cross simulation averaged sample
𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.66+0.01
−0.02 0.71+0.05

−0.07 1.20+0.04
−0.07 1.40+0.16

−0.12
𝑅200c 1.00 1.00 1.00 1.22+0.11

−0.07
𝑅500m 1.11+0.01

−0.01 1.08+0.03
−0.02 0.95+0.01

−0.01 1.18+0.10
−0.06

𝑅vir 1.33+0.03
−0.02 1.22+0.08

−0.05 0.87+0.04
−0.02 1.11+0.09

−0.06
𝑅200m 1.64+0.06

−0.04 1.39+0.15
−0.10 0.79+0.07

−0.04 1.05+0.09
−0.06

BAHAMAS+MACSIS

𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.66+0.01
−0.02 0.73+0.05

−0.07 1.19+0.05
−0.06 1.40+0.14

−0.09
𝑅200c 1.00 1.00 1.00 1.21+0.11

−0.05
𝑅500m 1.11+0.01

−0.01 1.07+0.03
−0.02 0.95+0.01

−0.01 1.17+0.10
−0.05

𝑅vir 1.33+0.03
−0.02 1.21+0.08

−0.05 0.87+0.03
−0.02 1.10+0.09

−0.04
𝑅200m 1.63+0.06

−0.04 1.38+0.14
−0.09 0.78+0.05

−0.03 1.03+0.09
−0.05

THE300
𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.66+0.01
−0.03 0.71+0.05

−0.08 1.16+0.06
−0.09 1.29+0.11

−0.11
𝑅200c 1.00 1.00 1.00 1.15+0.08

−0.04
𝑅500m 1.12+0.01

−0.01 1.08+0.03
−0.03 0.96+0.02

−0.02 1.11+0.08
−0.04

𝑅vir 1.33+0.03
−0.02 1.21+0.09

−0.06 0.90+0.06
−0.04 1.07+0.11

−0.04
𝑅200m 1.65+0.06

−0.04 1.38+0.16
−0.11 0.84+0.11

−0.06 1.02+0.17
−0.05

MAGNETICUM

𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.65+0.01
−0.02 0.70+0.05

−0.07 1.22+0.03
−0.04 1.51+0.13

−0.10
𝑅200c 1.00 1.00 1.00 1.28+0.09

−0.06
𝑅500m 1.12+0.01

−0.01 1.09+0.03
−0.02 0.95+0.01

−0.01 1.23+0.08
−0.05

𝑅vir 1.34+0.03
−0.02 1.24+0.08

−0.05 0.87+0.02
−0.02 1.16+0.07

−0.04
𝑅200m 1.66+0.06

−0.04 1.43+0.15
−0.10 0.78+0.04

−0.03 1.09+0.07
−0.04

TNG
𝑅/𝑅200c 𝑀/𝑀200c 𝑇m/𝑇m,200c 𝑇y/𝑇m,200c

𝑅500c 0.65+0.01
−0.02 0.70+0.04

−0.07 1.22+0.04
−0.06 1.37+0.11

−0.09
𝑅200c 1.00 1.00 1.00 1.17+0.07

−0.04
𝑅500m 1.11+0.01

−0.01 1.06+0.03
−0.02 0.96+0.01

−0.01 1.14+0.06
−0.04

𝑅vir 1.34+0.03
−0.02 – 0.92+0.03

−0.03 1.11+0.06
−0.04

𝑅200m 1.66+0.06
−0.04 – 0.90+0.04

−0.04 1.10+0.06
−0.04
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TABLE B.6: The two parameter fits [Eq. (3.1)] within 𝑅500c and a measure of the intrinsic
scatter [Eq. (3.2)] in the fits at 𝑧 = 0 for the median and 16 and 84 percentiles of the

cross simulation averaged sample.

median 𝐴 𝐵 𝜎log10 𝑇

𝑇y 2.048+0.003
−0.003 0.575+0.001

−0.002 0.1020+0.0002
−0.0002

𝑇m 1.763+0.002
−0.002 0.576+0.001

−0.001 0.0790+0.0000
−0.0000

𝑇sl 1.570+0.003
−0.004 0.565+0.003

−0.003 0.2050+0.0007
−0.0007

16%
𝑇y 1.770+0.003

−0.003 0.584+0.002
−0.003 –

𝑇m 1.558+0.003
−0.002 0.588+0.002

−0.002 –
𝑇sl 1.255+0.006

−0.005 0.616+0.012
−0.006 –

84%
𝑇y 2.370+0.006

−0.006 0.563+0.005
−0.004 –

𝑇m 2.005+0.007
−0.004 0.570+0.010

−0.003 –
𝑇sl 1.869+0.006

−0.008 0.593+0.008
−0.011 –

TABLE B.7: The three parameter fits [Eq. (3.1)] within 𝑅500c and a measure of the
intrinsic scatter [Eq. (3.2)] in the fits at 𝑧 = 0 for the median and 16 and 84 percentiles

within the cross simulation averaged sample.

median 𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 1.996+0.005
−0.005 0.557+0.001

−0.001 0.023+0.001
−0.002 0.1007+0.0000

−0.0000
𝑇m 1.772+0.004

−0.004 0.579+0.001
−0.001 −0.004+0.001

−0.001 0.0790+0.0000
−0.0000

𝑇sl 1.736+0.006
−0.005 0.633+0.002

−0.002 −0.089+0.003
−0.003 0.1886+0.0001

−0.0001

16%
𝑇y 1.706+0.008

−0.008 0.564+0.001
−0.001 0.034+0.004

−0.005 –
𝑇m 1.552+0.005

−0.006 0.586+0.001
−0.001 0.003+0.004

−0.003 –
𝑇sl 1.414+0.014

−0.023 0.681+0.002
−0.002 −0.111+0.022

−0.010 –

84%
𝑇y 2.292+0.014

−0.016 0.545+0.001
−0.001 0.031+0.008

−0.006 –
𝑇m 1.988+0.010

−0.027 0.566+0.001
−0.001 0.007+0.017

−0.005 –
𝑇sl 1.911+0.030

−0.020 0.604+0.001
−0.001 −0.020+0.012

−0.020 –
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TABLE B.8: The two and three parameter 𝑇-𝑌 fits [Eq. (3.4)] and a measure of the
intrinsic scatter [Eq. (3.2)] in the fits at 𝑧 = 0 for the median and 16 and 84 percentiles

of the cross simulation averaged sample within 𝑅200c.

median 𝐴 𝐵 𝐶 𝜎log10 𝑇

𝑇y 2.887+0.009
−0.035 0.323+0.001

−0.005 0 0.1154+0.0003
−0.0013

𝑇y 2.525+0.011
−0.008 0.335+0.002

−0.005 0.025+0.001
−0.003 0.1069+0.0001

−0.0001
𝑇m 2.395+0.015

−0.020 0.326+0.002
−0.003 0 0.0913+0.0005

−0.0007
𝑇m 2.146+0.008

−0.008 0.336+0.002
−0.004 0.021+0.001

−0.002 0.0860+0.0001
−0.0001

16%
𝑇y 2.340+0.010

−0.009 0.318+0.001
−0.001 0 –

𝑇y 2.123+0.008
−0.008 0.341+0.002

−0.002 0.024+0.001
−0.001 –

𝑇m 1.993+0.006
−0.006 0.324+0.001

−0.001 0 –
𝑇m 1.846+0.005

−0.004 0.342+0.002
−0.001 0.019+0.001

−0.001 –

84%
𝑇y 3.321+0.011

−0.014 0.305+0.001
−0.001 0 –

𝑇y 3.013+0.010
−0.009 0.328+0.001

−0.002 0.024+0.001
−0.001 –

𝑇m 2.729+0.012
−0.009 0.312+0.001

−0.001 0 –
𝑇m 2.539+0.006

−0.006 0.329+0.002
−0.001 0.018+0.001

−0.001 –

TABLE B.9: The two parameter 𝑇y-𝑌 fits [Eq. (3.4)] for each sample and a measure of
the intrinsic scatter [Eq. (3.2)] in the fits at 𝑧 = 0 for the median within 𝑅200c.

median 𝐴 𝐵 𝐶 𝜎log10 𝑇

BAHAMAS+ 3.053+0.013
−0.036 0.313+0.001

−0.004 0 0.0979+0.0005
−0.0023

BAHAMAS+ 2.690+0.009
−0.008 0.323+0.001

−0.001 0.023+0.001
−0.001 0.0815+0.0001

−0.0001

THE300 2.411+0.012
−0.011 0.338+0.001

−0.001 0 0.1452+0.0003
−0.0003

THE300 2.294+0.008
−0.009 0.350+0.003

−0.002 0.013+0.001
−0.001 0.1450+0.0003

−0.0003

MAGNETICUM 2.903+0.057
−0.052 0.329+0.006

−0.005 0 0.0462+0.0010
−0.0006

MAGNETICUM 2.789+0.024
−0.027 0.379+0.006

−0.008 0.030+0.003
−0.003 0.0461+0.0015

−0.0009

TNG 2.326+0.028
−0.040 0.316+0.004

−0.005 0 0.0464+0.0011
−0.0013

TNG 2.154+0.020
−0.022 0.365+0.007

−0.008 0.032+0.003
−0.003 0.0353+0.0003

−0.0003
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TABLE B.10: The two parameter 𝑇y-𝑌 fits [Eq. (3.4)] for the ‘hot’ haloes (that is, 𝑌200c >
10−6) and a measure of the intrinsic scatter [Eq. (3.2)] in the fits across redshifts for
the median and 16 and 84 percentiles of the cross simulation averaged sample

within 𝑅200c.

𝑧 = 0.00 𝐴 𝐵 𝜎log10 𝑇

50% 2.614+0.006
−0.006 0.368+0.003

−0.010 0.1873+0.0041
−0.0152

16% 2.216+0.008
−0.008 0.357+0.003

−0.003 –
84% 3.102+0.009

−0.009 0.350+0.002
−0.003 –

𝑧 = 0.25
50% 2.593+0.007

−0.007 0.372+0.002
−0.005 0.1685+0.0036

−0.0074
16% 2.193+0.008

−0.007 0.367+0.003
−0.003 –

84% 3.093+0.010
−0.010 0.355+0.002

−0.002 –

𝑧 = 0.50
50% 2.593+0.008

−0.008 0.381+0.003
−0.002 0.1625+0.0034

−0.0033
16% 2.177+0.009

−0.008 0.380+0.003
−0.003 –

84% 3.074+0.010
−0.010 0.354+0.003

−0.003 –

𝑧 = 1.00
50% 2.585+0.013

−0.012 0.382+0.004
−0.004 0.1388+0.0044

−0.0045
16% 2.145+0.018

−0.020 0.376+0.008
−0.014 –

84% 3.091+0.020
−0.023 0.361+0.008

−0.010 –

𝑧 = 1.50
50% 2.597+0.052

−0.031 0.373+0.020
−0.011 0.1263+0.0185

−0.0091
16% 2.228+0.024

−0.023 0.400+0.009
−0.008 –

84% 3.115+0.032
−0.045 0.368+0.008

−0.014 –
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