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Abstract

Taomas KiTE
Doctor oF PHILOSOPHY
ApriL 2023

The anisotropies in the light arriving from the Cosmic Microwave Background (CMB)
have provided cosmologists with a wealth of information over the previous two decades.
Arguably this dataset has allowed cosmology to evolve into the role of precision science
that it occupies today. This is due to the theoretical, mathematical and computational
tools that link these anisotropies to the primordial perturbations that seeded structure in
our Universe.

Spectral distortions of the CMB present a separate and complementary source of
information from the night sky. Consisting of small deviations from the otherwise
blackbody shape of the CMB spectrum, these signals probe the thermal history of the
Universe at earlier times than recombination, offering a insight into the physics of the
primordial plasma.

This thesis will explore connections between primordial perturbations and spectral
distortions from two main viewpoints: Firstly the sourcing of average distortions from
the dissipation of energy arising from these perturbations, with a particular focus on
tensorial perturbations (papers 1-2, chapters 4-5). Secondly the prospect of studying
a spatially varying distortion signal across the CMB, analogously to the usual CMB
anisotropies (papers 3-5, chapters 6-8).

In the aim of completeness chapter 1 will review the introductory cosmology nec-
essary to interpret the other chapters. Chapter 2 will introduce the photon spectrum
in detail, covering both temperature shifts and distortions to the blackbody spectrum
irreconcilable with changes of temperature. Chapter 3 will introduce cosmological
perturbation theory, the framework which explains how small perturbations evolve in
the otherwise homogeneous expanding Universe.

Supervisor: Prof. Jens Chluba
Co-supervisor: Prof. Richard Battye
Advisor: Prof. Robert Beswick
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From Zero to Cosmology

Cosmology is a rich and exciting branch of physics, offering a unique opportunity to
study the Universe on the grandest scales. Through deceptively simple models we can
make very tangible progress towards meaningful explanations of the structure of the
Universe around us.

The undertaking of this subject, however, comes with many difficulties. On the
one hand, it is a very diverse subject, demanding its followers to be multidisciplinary.
Particle physics, statistical physics and GR are just a few of the many fields essential to
modern cosmological theories. On the other hand there is an experimental difficulty,
since unlike most branches of the physical sciences there is only one lab in which
cosmology can be studied: our one Universe. Despite the empirical challenge, cos-
mologists have made enormous progress in gathering substantial and robust data sets.
Thanks to this, recent decades have seen the field of cosmology develop into a precision
science. A large part of this success is due to the wealth of data now gathered from
the Cosmic Microwave Background (CMB) and the sophisticated mathematical and
computational tools used to study it, both of which we will discuss in detail throughout
this thesis. This effort in understanding the dynamics of the early Universe has led to
the consolidation of a concordance model in cosmology, ACDM, which will be a large

part of the focus in this introductory chapter.
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1: FROM ZERO TO COSMOLOGY

1.1 Geometry and Expansion

Let no one ignorant of geometry come under my roof

—Plato

Studying the entirety of space and time is a grandiose task, and one which requires
similarly grandiose tools. Our current best understanding of space-time is derived from
General Relativity (GR), a complex yet elegant description of out Universe in almost
entirely geometric terms. In this section we aspire to introducing the relevant equations
and concepts of GR so we can understand perhaps the simplest yet most consequential
fact in cosmology: the Universe is expanding.

We will introduce GR by alluding to its origin in differential geometry, however
we will not use as much of the mathematical machinery demanded by such an abstract
approach, instead concerning ourselves only with the bottom line tensorial equations.
The former approach however is satisfying in that it emerges naturally from physical
principles, and justifies why tensorial equations are so ubiquitous in Physics. For good
introductions to the conceptual side of GR see the introductory chapters of |Carroll
(2004}, for a quick introduction to the mathematics see Appendix A of Weinberg|(2008)),
and for a full balanced introduction see Misner et al.[|(2017)).

Special relativity fundamentally changed the way we saw our Universe, with moving
clocks ticking at different rates and travellers disagreeing with the lengths of each others
trains. Digging deeper, the true change is that we could no longer permit ourselves to
have a simple space and time separation in our view of the world, but instead thinking
of a united spacetime. This constitutes the first of the physical principles alluded to
above.

The second key physical principle is that of coordinate invariance, in which we
demand that results of any calculation we perform be independent of the choice of coor-
dinate system, understanding that the latter choice is purely an artefact we project onto
the world to describe it. For example, calculations performed in Cartesian coordinates

(x,y,z) must give the same physical bottom line as in polar coordinates (r,0,¢). A more
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1.1: GEOMETRY AND EXPANSION

nuanced example, itself related to special relativity, is the interchangability of electric
and magnetic fields upon choosing a new coordinate frame in relative motion to the
first.

The punch line of GR is that gravity itself can be understood as a purely coordinate
effect. This was motivated by the equivalence principle, which highlights how an
observer in free fall is indistinguishable from an observer at rest. We must therefore
understand how two inertial observers can have relative accelerations towards one
another, an apparent paradox that simply requires a curved manifold. Consider for
example that two ants walking in a straight line on a flat 2D sheet will at most meet in
one point, and their distance will only grow/shrink at a constant rate. Ants on a basket
ball however can both walk in straight lines have have an accelerated distance function
between them.

Mathematically speaking, if we take the two principles seriously then a natural
model arises in which the Universe is, in an abstract sense, a four dimensional manifold
(M), which can locally be mapped with a coordinate system (x : M — R*), the
components of which we recognise as space (X, y, z) and time (t), at least locally.
Asking which physical phenomena can be described in this highly abstracted system
(without using arbitrary coordinates) reveals something very beautiful: we can describe
paths across the manifold, and those paths induce a concept of gradient. These become
the tangent spaces — the vector spaces in which our tensorial equations live. The reason
therefore that tensorial equations are so pervasive in physics is that they 're the coordinate
invariant way of describing the way things move across manifolds (which with the
fourth dimension also means time evolution). A key connection in this statement is that
the coordinates chosen on the manifold {x*} also induce a choice of tangent space basis
{0, = 0/0x" = e,} (we further explain this notation in Sec. [I.T.1).

This coordinate invariance is then crucially important in GR where gravity is
expressed through a non-trivial curved manifold. If we imagine a flat 2D surface (x —y
plane) then it is clear we can simply express our differential equations in a trivial

cartesian frame {d,, d,}. The choice of non-trivial coordinates (e.g. polar {d,, 0y}) is
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1: FROM ZERO TO COSMOLOGY

optional, and is understood to incur some non-trivial jacobian contributions to the
relevant equations. In GR we are not guaranteed to have such a simple cartesian
choice. We can, at most, choose a trivial Minkowski metric at a single point of
the manifold. Complicated coordinates with corresponding jacobians are inevitable.
Tensorial equations, in essence, ensure that our equations are correct no matter the
coordinates chosen.
This idea is used heavily in |Weinberg| (2008), stated as follows:

(...) it is only necessary to write the equations in a form which is generally covariant —
that is, whose form is independent of the spacetime coordinates used — and which reduce
to the correct equations in the absence of gravitation. Such equations will be true in the
presence of a gravitational field, because general covariance guarantees that they are
true in any set of coordinates if they are true in any other set of coordinates, and the
Equivalence Principle tells us that there is a set of coordinates in which the equations
are true — the set of coordinates that is locally inertial at the spacetime location of the
system in question.

— Steven Weinberg. Cosmology, Oxford University Press, 2008.

1.1.1 Tensors and curvature

In this thesis we follow conventional notation for tensors where greek letters indicate
time and space indices (0, 1, 2, 3) while latin indices are purely spatial (1, 2, 3), except in
the simple 2D examples where we will not be so careful. We follow Einstein summation
convention, where repeated indices are summed: A, B = Zi:o A, Bt

Loosly speaking an inexperienced reader can/should think of A, A, and A,, as a
scalar, a vector and a matrix respectively. Whenever we cast into these more concrete
mathematical structures we will do so with an arrow (—) rather than an equivalence
symbol to emphasise that it incurs a choice of basis, and thus a loss of generality.

In this coordinate independent tensorial language (otherwise simply called covariant

notation) it is important to distinguish between covariant “down” indices (A,) and
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1.1: GEOMETRY AND EXPANSION

contravariant “up” indices (A*). In particular a well-formed tensor equation only
contracts indices when one is covariant and the other contravariant. Readers should
relate this to the idea that inner product of vectors require one row and one column

vector, e.g.

[a b c]' Bl (1.1)

or perhaps a reader more familiar with quantum mechanics should think of “bra-ket”
notation where inner products require a sandwich (A|B). The more general notion
in mathematics is known as the dual space to a vector space, where dual vectors are
explicitly defined to map vectors to real numbers (v* € V* such that v* : V — R). The
key here is that in the transpose example above we didn’t modify the entries of the
vector at all in the process. In general however there is a non-trivial modification in the

mapping, which is contained in the metric g,,:
gwA” =A,. (1.2)

This layer of complication is necessary in describing manifolds with curvature, and even
using non-Cartesian coordinates on flat manifolds (e.g. see upcoming polar coordinates
example).

The metric g, is, in more general terms, the tensor containing information about

the manifold’s structure. For example it defines the lengths across spacetime paths
ds* = g, dx"dx". (1.3)

Let’s consider as an example the 2D plane, which if we express in the usual Cartesian

(x,y) coordinates we have

1 0
Buv — ; (1.4)

0 1
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1: FROM ZERO TO COSMOLOGY

which gives path lengths measured with

S:f\/a:f\/dx2+dy2, (1.5)

as expected. To emphasise the coordinate invariance here we will illustrate this example

in polar coordinates (7, #) where instead we have
gyv — s (16)

and thus a path length
S :f Vds :f Vdr? + r2dé-?. (1.7)

Ultimately both of these expressions must give the same number regardless of coordi-
nates — a simple example of “well-formed” tensor equations giving coordinate invariant
properties. Note that in this example we only had a single coordinate 6 stretching as a
function of the other r. In principle we can have mixed components g, # 0 for u # v,
but the metric must be symmetric g, = g,,. Similar to this polar coordinates example,
we will see in Sect. that our Universe also has some components (space) stretching
in terms of others (time). A second important point is that for the flat 2D plane we could
start from a Cartesian system, and move to an optional non-trivial one. Consider for a
moment the surface of the Earth (assuming this as perfectly spherical), which is also a
2D space, but does not allow for a simple Cartesian coordinate set.

Continuing the above example of a flat 2D sheet in the two different coordinate
frames, we can introduce an extremely important concept of the covariant derivative
Heuristically one can think of this as the well-formed tensor equivalent of simple
differentiation in a direction. This derivative is simply 8, in the Cartesian coordinates,
but takes a new form V, in the coordinate independent language. Consider the polar

coordinates example, where if you walk in the direction of basis vector ey, your local
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1.1: GEOMETRY AND EXPANSION

direction of e, and e, changes. Walking in the e, direction you do not get any angle
changes, but the e, direction has a relative stretching. These changes are encoded in the

Christoffel symbols I'!

.v» Which can be read as “the change of the A component of basis

vector e, upon walking in direction of basis vector e,”. These coeflicients are formally
given by

1
rﬁv = Eg/lp (a,ung + avgpﬂ - apgyv) . (18)

This backs up our previous statement that the metric encodes the manifold’s structure,
since these coeflicients only depend on the metric and its derivatives. Two things are
noteworthy here: firstly the symbols are symmetric in lower indices Fﬁv = ny, and
secondly we are being careful in not referring to these objects as tensors, since they are
not well formed tensor equations (they depend on partial derivatives and not covariant

derivative — we are in the process of defining the latter!).

As an example, in the polar coordinates case we find
r 0 0 1
o0 = —T» I,=1, = mt (1.9)

Reading these carefully, the first states that walking in direction e4 changes ey in the e,
direction by —r. Additionally the second term says that walking in that same direction
changes e, in the e, direction by 1/r. These two statements together amount to the
angular change we expect to see, e.g. walking a quarter circle from 6 = 0 to 6 = n/2 in
this plane makes the ey vector transition from pointing up (e,) to pointing left (e,).
With changes of vector direction in place, the covariant derivative can be written as

VAT = 0,7 + T T - 1%, T%, (1.10)

where in general we extend this definition to as many positive terms as we have
contravariant indices, and as many negative terms as covariant indices.
With all the formalism in place, we can introduce the tensorial equation at the heart

of cosmology is Einstein’s field equation, which is built up from the metric. In natural
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1: FROM ZERO TO COSMOLOGY

unitf] it is given by
(1.11)

1
Guw =Ry — Eng =8nG1T,,

where T, is the stress-energy content of the Universe, and the Ricci scalar R is the
contracted Ricci tensor R,
z y
ar,, or

w = + 6;; + r;lrjk - r;vrjk. (1.12)

The Ricci tensor is itself a contraction of the Riemann tensor, which encodes
information about the curvature of the manifold. Importantly, it is only built from g,,, and
its derivatives, hence the statement that the metric contains the necessary information
about the structure of the manifold. To remedy this awfully brief introduction we
will further explore the geometry (G,,) in sect. and the cosmic inventory (7,,) in
sect. [L.3

1.2 FLRW Geometry

In order to effectively use the machinery introduced in the previous section we must first
drastically reduce the complexity of the general field equations Eq.(T.T1). Other fields
in physics teach us to use symmetries whenever confronted with a daunting problem
like this, and in cosmology we have the Copernican principle to help us choose these
symmetries. The principle essentially states that the Universe should not contain special
places on large scales. Another way of stating this is to say that the Universe should be
completely homogeneous and isotropic on average. Further to these symmetries, we
add one more simplification which is experimentally verified: the Universe appears to
be flat. We note that by this we mean spatial flatness. If one imposed the generalisation
of flatness to 4 dimensional spacetime then there would be no gravitational effects, and
cosmology would be rather boring. Later, in Sect. [[.2.1| we provide the metric without

the assumption of flatness, and explain how this impacts the bottom line results in a

'Unless otherwise stated we will use natural units throughout this thesis
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1.2: FLRW GEOMETRY

simple way. These simplifications leave us with one option for the universal geometry,
governed by the Friedmann—Lemaitre—Robertson—Walker (FLRW) metric. Letting the
spatial 3-metric have the shorthand dx* = dx? + dy? + dz*> we can write the metric in the
following way:

ds® = —=d* + a(t)*dx* = a(t)’( - dn” + dx?), (1.13)

where a(?) 1s the scale factor, a parameter accounting for the expansion of the Universe
by allowing spatial distances to grow or shrink in time (a is defined to be = 1 at
current time). In the second line we introduced conformal time 7, defined by adn = dt,
corresponding to a coordinate frame where the time dimension dilates together with
spatial expansion. The other common measure of time used in this report is redshift
z defined by 1 + z = 1/a, which is defined in relation to redshifted light from distant
galaxies.

Taking the metric corresponding to this line element and propagating it through

Einstein’s equations is a simple process, the key points of which are summarised in

table [[L11

F?] = aaé,-j
Christoffel Symbols | I, =" = 45;;
All others = 0

Ry = —3¢
Ricci Tensor Royi=Rip=0

R;j = 2d* + ad)s;,
Ricci Scalar R=6(%+ Z—i)

Goo = 3%
Einstein Tensor Gy=Gyp=0

G,‘j = —(a2 + 2ad)6,~j

Table 1.1: A table displaying the main steps in deriving the equations governing an FLRW
Universe.
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1: FROM ZERO TO COSMOLOGY

The Christoftel symbols in this metric show that there is only spacetime curvature
associated with the time dimension, since I“;.k = Oﬂ Furthermore, if we had chosen to
derive these in conformal time then we would find Fgo = “; # 0, showing that conformal
time dilates/contracts as it advances forward [

What about the stress energy tensor? The form compatible with this geometry and
coordinate choice has Toy = p and T;; = pé;;, where we have anticipated some of the
discussion in Sect.[I.3]by identifying these with energy density and pressure respectively.
A fluid allowing a description in terms of just these two variables are known as perfect
fluid, and are demanded by the symmetries of the Copernican principle.

By equating the results of table[I.T]and the stress-energy tensor, as per Einstein’s

equation G, = 8nGT),, we get the Friedmann equations:

N2

ﬂ) - %p, (1.14)
a 3

i 4rG
4 i 3p), (1.15)
a 3

which govern how the Universe will expand subject to its stress-energy content.
The second equation is particularly important for modern cosmology, since it gives
information on the acceleration of the Universe’s expansion. In particular we have the

scenarios

> (0 (accelerated growth) if p < —p/3,

i

= | =0 (stable expansion) if p=-p/3, (1.16)
< 0 (accelerated collapse) if p > —p/3.

While a fluid with negative pressure may seem odd from a classical point of view, we

2Note that F;k =0 = no curvature, but the contrary is not true, no curvature =~ F;k =0. ie.
consider using polar coordinates in a flat space.

3 A keen eyed reader will realise that statements around Christoffel symbols are evidently coordinate
dependent, and thus they are not in fact proper tensors. All relevant physical quantities are built of
combinations of Christoffel symbols such that the coordinate dependence cancel. These symbols are
the only such imposters in this chapter — all other ‘indexed’ quantities can be trusted as coordinate
independent tensors.
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1.3: THE COSMIC INVENTORY

currently observe the Universe to be undergoing accelerated expansion, demanding
such a fluid to exist (if our best models and theories are correct).
Either through a combination of Eqs. (I.14), (1.15)), or by using the conservation

law V, T} = 0, one can also find

p==32(o+p). (1.17)

which dictates how energy densities dilute or otherwise in the expanding Universe.
We will use this equation in combination with the other Friedmann equations to model

some limiting cases of universal expansions in Sect.

1.2.1 Relaxing the flatness assumption.

As previously mentioned FLRW metrics are compatible with spatial curvature. The

inclusion of this term in the metric gives

2

d
45’ = =dF + atP( = + A6 + 7 sin’(0)dg?), (1.18)
— KT
where we have used spherical polar spatial coordinates. Here the term x = —1,0, +1

indicates hyperbolic/open, flat and spherical/closed geometry respectively. Propagating
this through Einstein’s equations would only yield a single additional factor, which can
be absorbed into the previous ones with p — p — =5. This essentially takes the form of a

new fluid with equation of state w = —1/3.

1.3 The Cosmic Inventory

The RHS of Eq. (I.T1)) is an expression of the energy content of the Universe, which will
be explored in this section. Firstly we will distinguish between perfect and imperfect
fluids. The former are defined as a medium where at every point there is a locally

inertial frame moving with the fluid in which the fluid is isotropic (Weinberg, [2008)).
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1: FROM ZERO TO COSMOLOGY

These fluids admit pressure and density as their only free parameters. These fluids are
compatible with the Copernican principle, and thus makes up the cosmic inventory on
large (averaged) scales. The alternative is having imperfect fluids, which can contain
bulk motions, shear stresses, etc. Fluids of this kind will occupy much of our attention
in later chapters where we apply perturbation theory to the primordial plasma.

Perfect fluids are usually categorised with an equation of state relating pressure to
density, p = p(p) = wp. Assuming that w is constant, Eq. (I.14)) and Eq. (I.17) can be

easily integrated to find

p(a) oc g3, (1.19)

a(t) oc 13, (1.20)

where the proportionality constant would be set through some initial or boundary
conditions. This simple derivation is surprisingly powerful, as we can now plug in w
for the most common species in cosmological history. We will do so in a chronological
order of importance, but to do so requires somewhat spoiling the punchline: different
particle species dilute and diffuse at different rates, leading to a picture of the Universe

where we have distinct transitions between eras where a single fluid dominated.

1.3.1 The radiation era

In the earliest moments of the Universe massless particles dominated the total cosmic
energy budget. This means photons, but also includes neutrinos, which at these tempera-
tures could be considered massless. Due to this we will sometimes refer more correctly
to a phase of relativistic energy domination (see e.g. chapter[5] where such distinction
is of key importance).

These massless particles typically have an equation of state w = 1/3, which when
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1.3: THE COSMIC INVENTORY

plugged into Eq. and Eq. yield

pa) = poa™, (1.21)

a(t) o< V1. (1.22)

The first result can be understood as a combination of the volume changing (V « a?)
and the relative energy loss from the gravitational redshifting of light (E = hv oc a™).
The second result serves as a reminder to the discussion around Eq. [[.16] providing an

example of a universe that expands, but at a slower rate as time goes on.

1.3.2 The matter era

The relative energy densities of massless particles not only dilute in ever-larger volumes
and also redshift to lower frequencies. This means at some point in the Universe’s history
they lose importance relative to massive particles. Matter is divided into baryonic (here
meaning electrons, neutrons and protons, unlike other branches of physics) and cold
dark matter (elusive matter which is apparent only from gravitational effects). Matter is

modelled as not exerting any pressure on cosmological relevant scales. Plugging w = 0

into Eq. [I.19]and Eq. [I.20| gives

pla) = poa”>, (1.23)

a(t) o« 1. (1.24)

A similar discussion holds here as before: energy densities change because of volume
changes, and matter decelerates expansion as expected.

It is still an open question whether this particle (if indeed CDM is a particle) sector
interacts weakly or not - thus far cosmological probes have only been sensitive to its
gravitational influence. It is worth noting that its extra gravitational influence is required
at many different scales: from rotation curves of galaxies, to cosmic web structure, all

the way to the composition of the primordial plasma. This ubiquitous presence of CDM
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1: FROM ZERO TO COSMOLOGY

provides an argument for a new source of mass, and not simply some misunderstood

gravitational physics (Clifton et al., [2012).

1.3.3 The dark energy era

It was mentioned above that the Universe currently appears to be accelerating in its
expansion. None of the fluids so far have that effect. In the concordance model of
cosmology the late time acceleration occurs due to a strange new fluid called dark energy.
This can be thought of as a cosmological constant, or as vacuum energy. The former
isn’t so much an explanation of physical phenomena as much as a simple realisation that
a term Ag,, can be added to Eq. [I.11| while keeping all other relations and derivations
the same (you can think of this as an integration constant). The latter interpretation has
a bit more physical meaning to it, however estimating the size of this constant from
fundamental physics has provided infamously bad results (Adler et al., 1995).
Ignoring matters of interpretation, this is usually modelled as a fluid with w = -1,

yielding the odd results

p(a) = po, (1.25)

a(t) o< exp(Ht), (1.26)

where the second equation broke with the tradition of the previous two subsections,
since Eq. is derived implicitly assuming w # —1. We see the reason it is called
a cosmological constant, and how it certainly accelerates expansion — it does so
exponentially.

More generally we can think of some fluid with p ~ —p, allowing for a dynamic
model. This fluid would dilute by some small amount, and the acceleration would not
be exponential, but would be positive. This model is generally referred to as dark energy
(DE), but models of this type are not often distinguishable from a simple cosmological
constant with current cosmological data. We will assume p = —p in this thesis.

It will perhaps not be surprising to the reader that many attempts have been made at
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1.4: EARLY UNIVERSE IN ACDM

replacing either CDM or A with some theory of modified gravity (MG), since they both

seem to be anomalies purely constrained to the gravitational force (Clifton et al., 2012).

1.3.4 Compact form for Friedmann’s equation

Combining what we have learned in the previous sections provides a very simple and
elegant form of Friedmann’s equations. Firstly we choose to measure the densities
relative to a critical density p, = % defining Qy = p«/p.. This is useful, because in a
flat universe we have Qo1 = D, Q4 = 1. This means each individual Q, simply gives a
relative contribution to a total energy budget. We note that even in a cosmology that
isn’t flat we can package the rest of the energy contribution into some fictitious fluid
Q, o« 1/a* as in Sect. however we disregard that here. The bottom line version of

Eq. (I.14) with these simplifications is

H=-=Hy\|— + = +Q,, (1.27)

with H, giving the measured value of the expansion rate as seen today (this convention

applies for most variables with subscript 0).

1.4 Early Universe in ACDM

In the beginning the Universe was created. This had made many people

very angry and has been widely regarded as a bad move.

—Douglas Adams, The Restaurant at the End of the Universe

From the discussion in the previous section we can start to infer what the very early
Universe looks like in ACDM. Other than the cosmological constant all the energy
densities scale with inverse powers of the scale factor, which itself grows with time.
The simple extrapolation backwards is then that the Universe becomes a more energetic

environment at earlier times, as may be sensible intuitively (imagine compressing every
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planet, star and galaxy into ever smaller volumes!). At some crucial energy density you
find that even a typical photon has the requisite energy to ionise atoms, and the entire
Universe is thus a plasma. This primordial plasma is the complex environment where
this thesis’ work takes place. Crucially photons have a very small mean free path in this
plasma, and thus the Universe was essentially opaque.

There is a thin time slice separating a Universe so hot that atoms are ionised, and
a Universe cold enough to allow photons to travel freely. The moment this happens
is known as recombination, referring to how the electrons recombine with protons to
make neutral matter. Shortly after that there is the moment of last scattering, where
each photon undergoes its last interaction, after which it will wander the cosmos almost
certainly unhindered. When we observe the night sky we see a sphere of these photons
in all directions, and call it the Cosmic Microwave Background (CMB) (Penzias &
Wilson, (1965)).

In this leading order homogeneous picture CMB must be spherica]ﬂ as it is simply
dictated by the distance travelled at the speed of light since the last scattering time.
Furthermore it is a sphere for every observer because of relativity, no matter the location
or relative velocity. The surface of photons itself is known as the last scattering surface
(not to be confused with LSS, the large scale structure), however in this thesis it will
often be called the CMB curtain, since it serves to obscure anything which might
otherwise be seen earlier in time.

Due to redshifting the CMB is seen at an extremely low temperature of 7 = 2.725K
(Fixsen et al., [1996)). Furthermore, it takes that temperature equally in all directions (up
to small variations we discuss below). The apparent paradox of opposite celestial poles
taking the same temperature, a potential violation of causality, is a known problem
proposed to be solved via inflation (Guth, 1981).

The statements above on average temperatures and sphericity all hold on average,
and to a very large degree. This can be seen as a consequence of the Copernican

principle, which dictates there should be no preferred location in the Universe (isotropy

4Small under- and over-densities delaying the free-streaming of light can break this symmetry
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1.4: EARLY UNIVERSE IN ACDM

follows from this principle). Potentially the most impactful dataset in modern cosmology
however is comprised of temperature anisotropies: tiny variations of this temperature
around the sky. We will discuss in the following chapters how we can apply a pertur-
bation theory approach to the equations discussed here. This perturbative approach is
well justified experimentally, since the observed fluctuations in the CMB are typically

of order 6T /T ~ 107.
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Shedding Light on the Photons

One humbling fact about modern cosmology is that almost the entirety of our extra-
galactic information and data have come from a single source: observing light. Whether
we are counting galaxies, observing gravitational lenses or witnessing CMB photons,
they all come down to intercepting the otherwise free streaming photons. Only two
notable exceptions exist to this. Firstly, there are infrequent neutrino detectionﬂ To
provide a sense of magnitude, the nearby supernova SN1987A yielded a mere 25 neu-
trino observations across three different Observatories (Arnett et al., 1989). Secondly,
there are detections of gravitational waves (LIGO Scientific Collaboration & Virgo
Collaboration, |2016; |/Abbott et al., 2019) which have recently opened the door to a long
studied possibility of gravitational wave cosmology (Caprini & Figueroa, [2018)), a field
that promises to revolutionise our understanding of the Cosmos (see chapter [3).

The importance of information locked in photons then cannot be overstated. This
chapter will explore the information content of CMB photons, and describe the various
interactions photons undergo which gets locked into different variables. The main focus
here will concretely be the information locked in frequency distributions, which is a
key part of the study of Spectral Distortions (SDs). See|Lucca et al. (2019) for a helpful
review on the topic, Chluba (2014b) for the science case and (Chluba (2016) for ACDM

'Not to be mistaken with indirect inference about neutrino properties with cosmology (Abazajian
et al.l[2015).
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2: SHEDDING LIGHT ON THE PHOTONS

estimates.

The punchline of this chapter is that while the photons from the primordial Universe
constitute an almost exact blackbody spectrum, there must be some deviations known
as spectral distortions. Simply stated, for a system to arrive at thermal equilibrium
there must be interactions between particle species. These interactions become more
rare as the universe expands and cools. On its own this would not lead to spectral
distortions, but we additionally know that some minimal amount of energy injection
into the primordial plasma occurs from the dissipation of acoustic modes (see Chapter 3)).
This race between energy injection processes and thermalisation processes leads to a
three era picture of the early Universe, in which observing a given spectral distortion
shape informs us in which era it was created.

Before discussing what spectral distortions are and how they form in the early
universe, it will be helpful to enumerate the main interactions that photons undergo in

the primordial plasma.

2.1 Photon interactions

In chapter|l{ we closed with the idea that the earliest moments in known cosmic history
are characterised by an entire Universe in a state of hot plasma. To recap, photons
have enough energy to completely ionise any neutral atoms, and consequently they
do not travel very far before scattering off an energetic electron. This is a complex
environment, where many governing forces are at play against the backdrop of cosmic
expansion. As energy densities slowly decrease, interactions become more rare.

In this environment we are going to study the various interactions photons undergo,
with special attention to energy-changing and photon-producing interactions. These two
types of interaction attempt to establish equilibrium between the participating particles.
For example, a scattering event between photons and hot electrons will tend to scatter
photons to higher frequencies. Those same hot electrons can produce soft photons

via Bremsstrahlung and double Compton events with protons. These two processes
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establish equilibrium between photons and electrons in a time and frequency dependent
way.

We will study these interactions in the form of collision terms C[...] given by

df,(p) _
=25 = Cl £, @.1)

which we will come to know in the following chapter as the Boltzmann equation.
The function f,(p) on the LHS is the occupation function for phase space distribution
function of photons. This is a momentum (or frequency) dependent distribution, since
we want to understand any exchange of energy between electrons and photons. The
function f; is a similar distribution for electrons. Stated in words, the collision terms
express how the photon gas changes (in a momentum dependent way), and is in general

a functional of both the photon and electron phase space distributions at a given time.

2.1.1 Compton Scattering (CS)

This process describes the interaction of photons with electrons’}

e(p) +y(k) «— e(p’) +y(k'), (2.2)

where p and k represent the four-momenta of particles, using primes for outgoing
particles. Being an interaction of fundamental particles this process would be studied

from first principles in the framework provided by Quantum Electrodynamics (QED):

CLAK)]

_ 1 f d’p f &p’ f dk
es 2B, ) Gm2ELp) J o2k ) 2B
X MPQr)*sP(p+k—-p - k) (2.3)

<[ £GOAE + £00) = LD HE + £E)|

ZPhotons will interact in a similar way with protons, but the terms involved are typically inversely
proportional to the mass of the charged particle, making ye~ interactions ~ 2000x stronger than yH*
interactions.
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where E, and E are energies of electrons and photons respectively, |[M|? is the squared
matrix element which will in general depend on the momenta involved, and f; is
the occupation function for electrons, similar to what we defined for photons above.
The terms like (zﬂ)f;—pEe(p) are Lorentz invariant integration measures over the space of
momenta, and the Dirac delta 6 ensures energy-momentum conservation. The final
term is sometimes called the statistical factor, and essentially captures the physics of
photons entering (leaving) the k state from (to) &". In particular the terms 1 + f, account
for induced scattering, which are nonlinear effects. An explicit form for |M|* can be
found in Jauch & Rohrlich| (1976).

Various approximations of |[M|? can be used to distil the above equation in limiting
regimes. One such limiting case is Thomson scattering which allows for changes
of momentum direction, but not magnitude. Since here we are interested in energy

exchange between photons and electrons we proceed one step further and introduce the

Kompaneets equation (Kompaneets, [1957):

6. 0 ,[0 T,
C[f),] o ~ (CO'THC)EEX [8_)ch + Efy(l + fy) N (24)
where T; is the temperatur of particle species i, 8, = ’;‘jf; = ké’; , o 1S the

Thomson cross-section and . is the electron number density. Moving forward we will
use cotne = 7. The Kompaneets equation is derived assuming a non-relativistic electron
gas at temperature 7., and expands the matrix elements to second order in energy
exchange (see discussion on moments below), thus including Doppler broadening
terms.

Some physics can be seen in this collision term: Firstly, notice that for T, = T,

the term in brackets vanishes for a blackbody distribution (defined later in Eq. (2.10)),

3This is slightly subtle. The Kompaneets equation can be applied to photon spectra that are not exactly
blackbodies, and hence don’t have a well defined temperature. However the photon temperature within
x cancels with the explicit factor of T, leaving only T as the temperature scale, since electrons can
be more safely approximated as following a Maxwell-Boltzmann distribution in cosmological contexts.
Despite this it is desirable to have a fiducial temperature for photons, and in practice we usually choose a
temperature 7, = T, = To(1 + z) which due to the redshifting will cancel a contribution on the left hand
side of Boltzmann’s equation (see Eq.
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showing that the equilibrium solution is a blackbody only when photons and electrons
are in equilibrium. Consequently, the different cooling rates between photons and
electrons will cause deviations from a blackbody (see Sect. [2.2.3). Secondly the
form x]—zc')x (...) immediately shows that this reaction conserves photon number, since
f x*C[f,] o corresponds to a vanishing surface term.

Detailed work on CS can be found in reference Sarkar et al.| (2019), where they

define the CS kernel, P(x — x’), a probability distribution dictating the likelihood of

transitioning from some frequency x to another x’. With this they find

CLAH ()]

72
- = f{))iz P(x' = x) fy(X’)[l + fy(x)] - P(x — x) fy(x)[l + fy(x,)]}dx,'
(2.5)

By further defining a moment of a function &(x) as (£(x)) = f P(x — x')&(x)dx’,
it can be shown that & is fully defined by its powers (¢V). The Kompaneets equa-
tion corresponds to an expansion of Eq. (2.5)) to second moments, ((x;')z>, with some
approximate form of the kernel. This method provides a clear path forward where
improving estimations of the kernel, and going to higher moments of (x;'), will improve
the accuracy of calculations. The code CSpack (Sarkar et al., 2019)) contains efficient
and accurate predictions of these moments, for easy implementation into other branches

of cosmology.

2.1.2 Bremsstrahlung emission/absorption (BR)

Classically this process involves the emission/absorption of a photon from a charged
particle undergoing acceleratiorﬂ although we will focus on the case of emission for
this section. In the early Universe this is electrons accelerating in the presence of some

charged ion, predominantly protons (ionised hydrogen):

e(p) + H (h) «— e(p") + H* (1) + y(k). (2.6)

“Brems strahlung translates from German to braking radiation
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This again could be expressed using an integral equivalent to Eq. (2.3)), with a different
matrix element. Typically a different approach has been employed in cosmology, where
the classical and non-relativistic formula given by Kramer is modified by some function

called the Gaunt factor, gg:

67,2 2 —Xe
cirl ~ 8t eh Z°N.Ny e gff(Te,V)(l  fle - 1]) 2.7)

BR 3 me(kgTe)® \6mmkgT, x;

where x. = xT,/T.. For recent work on the calculation of gg in different tempera-
ture regimes see (Chluba et al. (2020b), where Chluba et al. bridge the gap between
non-relativistic and ultra-relativistic calculations with the Elwert-Haug cross section
(Elwert & Haug, [1969). These calculations are difficult to perform, but with a series
of precomputed tables and analytic approximations they manage to cover many orders
of magnitude of phase space at ~1% precision for atomic number Z<10, and better
than 0.1% precision for Z<2. Similarly to CSpack, these strong numerical capabilities
are packaged in BRpack, allowing other cosmologists to easily implement accurate BR

predictions in their work.

2.1.3 Double Compton Scattering (DC)

The DC process can be seen as a similar correction to Compton scattering as Bremsstrahlung
is to Coulomb scattering, i.e. the equivalent reaction with one more photon in the outgo-

ing channel:

e(p) +y(k) «— e(p’) + y(k') + y(k>). (2.8)

This process dominates in photon production over BR at early times (z = 5 x 10°),
mostly due to the enormous dominance of photon number over baryon number in the
early Universe.

The full cross sections for various limiting cases were originally studied by Mandl
& Skyrme (1952), and a convenient summary can be found in chapter 11 of Jauch

& Rohrlich| (1976). For recent work, and a discussion of the relevance to SD, see
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Chluba et al.|(2007). As seen in the previous sections it is extremely helpful to have
computational packages which allow for fast yet accurate calculations. In the context of

DC they are based on

16a736>

~ Y 2x _ Xe _
CURI| ~ —sare ™ ane| 1 - fle™ - 1) 2.9)

where 6, is defined analogously to 6, and gpc is the DC equivalent of the Gaunt factors
gr. Notice again that a blackbody spectrum is an explicit equilibrium state for 7, = T.
Strong temperature dependence is contained in the gpc term, as discussed in (Chluba
et al.| (2007)), where they find a suppression of ~10 — 20% at higher temperatures -
proving these higher order corrections are non-negligible effects for physics in the
early Universe. More recent work can be found in Ravenni & Chluba (2020), where
the capabilities of DCpack are outlined. This code allows accurate estimates of DC

contributions in wide volumes of parameter space, similar to that discussed for BR.

2.2 Spectral shapes

Following the historical study of the CMB we will begin by discussing the blackbody
spectrum, and build up to more general cases. This approach is additionally a well

justified considering that the CMB resembles a blackbody to very high precision.

2.2.1 Blackbody spectrum
The blackbody spectrum can be understood as a gas of photons (bosons) following

Bose-Einstein statistics. The occupation number is given by

Jon(x) = (2.10)

exp(x) — 1’

where x is a normalised frequency x = hv/kgT. The characteristic —1 allows many

photons to occupy the same energy level.
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It is occasionally useful to relate these abstract distributions to observable quantities.
To find the distribution of energies of such a gas we must multiply the energy in each
state by the number of photons that can exist in a given state, and finally by the density
of states. With an explicit factor of 2 for the two polarisations of a photon, the density

of states can be found as

2
af k.
dk 2n2 @2.11)
af € '

=2V—0,
de 2n2(he)?
where k and € are the wavenumber and energy of an individual state. A factor of volume,
V, ensures that all quantities remain intensive. The energy density of the gas, u(x), is

then given by

8n(kgT)? X B 8n(ksgT)?
2c3 exp(x)—1  h3e3

4
u(x) = fmmzfmx (2.12)

where we also defined the intensity /(x). It is common to see this given per steradian on
the sky, for which we would simply divide by 4.

In this thesis we will not often link to directly observable quantities, but instead pre-
fer dimensionless counterparts. In general we find the number density of a distribution
f(x) with

N = f dx X f(x), (2.13)

and the energy density as

E = f dx x* f(x). (2.14)
It is useful to have these quantities in mind to compare with other spectral shapes:

7T4

Ny, = 2{(3) ~ 240411, Ej, = 15 ~ 649394 (2.15)

The CMB sky is approximated extremely well by just specifying its closest cor-
responding blackbody spectrum as seen in Fig. 2.1} thus providing a background

temperature 7. This will frequently be referred to as the CMB monopole temperature, a
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Figure 2.1: A figure showing the COBE/FIRAS data for the average photon spectrum seen
across the sky. The error bars are multiplied by a factor of 400, emphasising just how precise
the spectral shape is. Data courtesy of NASA.

term which will be clearer after discussing temperature shifts.

2.2.2 Temperature shifts

In the previous chapter we introduced the CMB anisotropies as small variations in
temperature across the sky. Mathematically the temperature measured from the Earth
now depends on observation angle of the sky 77 — T'(¥). We also highlighted however
that these fluctuations are very small, of order +300uK compared to the background
To = 2.725K (Planck Collaboration, 2018a; [Fixsen et al., [1996). This then motivates an
expression where a perutrbatively small angle dependent quantity is superposed with the
constant background temperature: 7(%) = T + 6T(¥) = T(1 + 6T($)/T) = T(1 + O(9)).
From now on we will drop the overbar notation, and always use 7T for the background
temperature and © for the small angle dependent variations.

A key point here is that we can find a distribution which describes this small shift in

temperature by Taylor expansion around some reference temperature and propagating
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that into the appropriate change of x o« T~!. We refer to this distribution as the

temperature shift G(x):
3 fob

J) =~ f(x')+ T TavéT
= f(x) —x/% ® (2.16)
ox Tav
= f(xX) + G(x)©.

Some useful relations for temperature shifts to remember are

1
G(x) = =x0, fob = Xfoo(foo + 1) = ZXCSChZ(X/Z)- (2.17)

The way this shape alters the background blackbody spectrum is shown in Fig. [2.2]
Also shown in dotted lines is the result of simply evaluating a blackbody distribution,
showing that small differences appear for ~ 10% variations. Temperature shifts of
this size are orders of magnitude larger than the real variations seen across the sky. In
Fig.[2.3]in contrast we have subtracted the reference temperature which firstly highlights
the shape of a pure T-shift, and secondly allows us to show realistic size of fluctuations
at ~ 0.01%, showing the first order shift to be valid. This process of studying only a
relative change is more akin to how calculations are performed. As such, figures with
peaks and valleys showing relative excess and absence of photons will become familiar
as we explore the spectrum more deeply.

One important aspect of temperature shift spectra is that they carry photon number

as well as energy:

4 4
Ng = 6£(3) = 3N;, ~7.21234,  Eg= % =4E; ~259758.  (2.18)

This becomes important in defining other spectral shapes.
Note that here we neglected terms O(®?) and higher since our interest is just the first
order temperature shift. Below we will perform a similar calculation to higher order to

study the mixing of blackbody spectra.
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Figure 2.2: A plot showing how temperature shifts added to a blackbody simply shift the
blackbody in predictable ways. e.g. the peak of the distribution shifts to higher frequencies
and amplitudes with higher temperature. Dashed lines show the result of evaluating the
blackbody distribution at the new temperature, revealing small innacuracies for 10% variations
of temperature, which would be remedied by adding y-distortions (defined below).

Here we are simply leaving the variables as a function of direction vector ¥. In
studying the CMB sky however we analyse them in a spherical basis ®;,,. Note however
that ®y, would only shift the temperature 7, and hence @y, = 0 by definition — hence
the statement above that the average temperature is known as the monopole temperature.
Similarly ®,,, is dependent on the relative velocity of the measurement, and is subtracted

in analysing the CMB.

2.2.3 y-Distortions

The previous section derived a spectral shape that to first order leaves a blackbody
unchanged. This resulted in a statement that the monopole of temperature shifts are
either O or simply ill defined, depending on your outlook. In this section we will take the

first step towards a completely new spectral shape, that would be truly distinguishable
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Figure 2.3: A plot showing the relative changes in photon spectrum captured in the temperature
shift spectrum G. Here a negative value indicates a relative lack of photons, and a positive
branch shows an excess. The amplitude of variations here are comparable to that seen in real
CMB data. The dashed lines again show an exact evaluation, showing here that temperature
shifts are sufficient to model these small variations.

from a blackbody. We refer to this as a y distortion, since it shares its shape with another
astrophysical signal, the Sunyaev Zeldovich effect (Zeldovich & Sunyaev, |1969).
Stated in a heuristic way, the y distortion emerges in many different aspects of
cosmology and astrophysics simply because it is quite a fundamental spectral shape.
Consider for example the spectral shape produced upon scattering a blackbody with an

electron gas of a different temperature. This scenario is captured via the Kompaneets
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equation (Kompaneets, 1957), and gives

6. 0 0 T
Af ~ Arﬁax‘*(afy + ify[l + fy])
6. 0 0 T
~ AT;6—X4(aﬁb + F:ﬁ)b[l + ﬁ)b])
6. 0 T
= AT;a—X4(7: = 1)fbb(fbb +1)

p
= ATX_Z(H)/ - ee)a_x“fbb(fbb +1)

X
= AT(6y — O)xwChos + D[4 = Qfin + D1
= At(9, - Oe)g(x)[x coth(x/2) - 4].

From here we define

Yy(x) = Q(x)[x coth(x/2) — 4],

with an amplitude of

y= AT(Q), = 0e).

(2.19)

(2.20)

(2.21)

A second scenario where these distortions arise together with a temperature shift is

in the mixing of two blackbody spectra at different temperatures - a simple process that

turns out to capture a lot of the physics behind the SD caused by dissipation of acoustic

waves (Chluba et al., 2012). First let us expand one blackbody spectrum at 7" around a

different temperature T,, as we did earlier, but now to second order:

1 1
f(X) = er — 1 = exav/[1+®] _ 1
0 fob 1 6 fiw, ) 3
= + == 6T + = oT” + O(5T?),
T ro 0T Iz, 2 917 Ig,, 1)

where T = T+ 6T = T [1+0] and x,y = hy By then using the chain rule g—J; =

kpTay *

it can be found that

1
) = fin(Xay) + G(xa)(O + ©%) + Esfszocav)@z.

(2.22)

ox Of
oT Ox

(2.23)
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oT
vij

When combining two blackbody spectra at temperatures T, the first order contri-
bution will cancel, leaving an overall change G + %y sz at second order.

In the previous derivation we separated the second order term into a temperature
shift and a y distortion, a step which would not have been obvious unless we knew what
we were looking for in advance. The y distortion shape could have been derived more
agnostically by simply performing the second order expansion, and then subtracting the
necessary amount of G(x) till the distortion carried no photon number. This demand that
distortions do not add or subtract photon number is a useful choice, since it allows us to
focus on energy contributions with less ambiguity (e.g. see chapter|[6). The number and

energy properties of the y distortion are found to be

4 4
Ny, =0, Ey, = % = 4E;, ~25.9758. (2.24)

A visual description of this process is shown in Fig.[2.4] where it can be seen that mixing
two blackbody leaves some distortion in the high frequency part of the distribution,
known as the Wien tail. The low frequency part of the distribution, known as the
Rayleigh-Jeans (RJ) tail, remains unchanged. In the following section we will see
another distortion shape which affects the low frequencies instead. The relative shape
of the y distortion (once the reference blackbody is subtracted) can be seen in Fig.
(now in dimensionless units, as for the rest of this thesis).

An interesting consequence of the emergence of Yz from blackbody mixing is that
this can occur either by real mixing of fluids at different temperatures, or by measuring
a patch of the sky containing various temperatures. The utility of the latter case, the

beam spectral distortion, was discussed in Chluba & Sunyaev (2004).
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Figure 2.4: A figure showing how the superposition of two blackbody spectra does not give
another blackbody, rather there will inevitably be some SD. In the top panel the blue and red
lines show the blackbody spectra at two different temperatures, and the dotted line shows the
blackbody at the average temperature between them. In the bottom panels the resulting mixed
spectrum is shown, demonstrating that it follows the dotted line till the Wien tail, where a
distortion is present. Figure adapted from|Chluba et al.|(2015b)).

2.2.4 u-Distortions

When introducing Eq. (2.10), we did not include a chemical potential /i, despite a

general Bose-FEinstein distribution being

1

JBe(v) = W-

(2.25)

Why did we initially neglect the potential extra term? ji is associated with an energy

cost of having a particle in your system, e.g. rest energy of massive particles. In the
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Figure 2.5: A plot visualising the three main spectral distortions as relative spectra. This
means the negative branches show relative absence of photons while the positive branches are
excess photons. Roughly speaking y distortions push photons from the blackbody peak into the
high frequency tail, while u distortions push photons from the low frequency tail towards the
blackbody peak.

case of photons they are massless, and can in principle be created/destroyed for free.
There are times, however, in the Universe’s history where no mechanisms for photon
creation/annihilation were active, which creates an effective chemical potential. Let
us see this mathematically by analysing the equilibrium solution of the Kompaneets

equation.
afy _
dt ’

(2.26)
0 T
== afy + T:fy[l + fy] =0,

A useful trick here is to recast the dimensionless frequency x in terms of electron

temperature
h T. h T,

= e T Tey (2.27)
kgT, T,ksT. T,

X
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Using this definition we can express Eq. as

Orfy = —f (1 + f), (2.28)

which is solved by a blackbody with an extra term u given by

1

fr= exp (xe + ) —1°

(2.29)

This is analogous to the chemical potential, but is not defined exactly the same (notice
the difference in sign and units, and hence the intentional change of symbol). To
describe the spectral shape of the u distortion, M(x), we assume the spectrum is close

to a blackbody, and an expansion in small u reveals

£ ~ fun() — 255, (2.30)

Xe

As mentioned earlier we will study distortions which leave the photon number un-
changed, so we again subtract G(x) with the appropriate prefactor to achieve the final
form of M(x):

M) = 600(a, ~ ), 231)

with @, = 0.4561. This leaves the properties

3 270
~135¢(3)

E .
—6L(3) v —_ ~ 4.63635. (2.32)

Ny =0, E
M M 1.40066

For a more detailed study of the u distortion shape, origin and evolution see (Chlubal
(2014a). This shape is shown in Fig. where it is seen to subtract photons from the
low frequency RIJ tail and push them towards the peak of the underlying blackbody

distribution.
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2.3 Primordial origins of SDs

So far we have introduced a variety of spectral shapes with motivating arguments
for each. In this section we will piece these arguments together to form a coherent
view of which SD probes which era in cosmological history. In stating this we are
already anticipating part of the punchline: observing SD allow us to trace events in the
primordial plasma behind the CMB curtain. Different spectral shapes reveal a different
era, and thus we will build up the three era picture. A useful concept to have in mind
throughout the rest of this chapter is that the true blackbody is akin to the thermal
equilibrium for a photon gas. The gas will strive to reach this equilibrium state, however
it must undergo interactions to do so. The availability of these interactions govern the
three eras (Lucca et al., 2019}, |(Chlubal, [2016).

To quantify these eras it is helpful to introduce the energy branching ratio J«(z),
which specifies the amount of energy that will be locked into a spectral shape of type x
following energy injection at redshift z. Denoting the relative energy injection to the

photon gas as Q/p,, we can perform simple calculations of SD amplitudes by evaluating

1 d(Q/p)
Y—4fdzjy(z) R (2.33)

= 1.401fdzjﬂ(z)d(§z/p),

(2.34)

where the prefactors balance the amplitudes in terms of energy content of their corre-
sponding spectral shape. These branching ratios are shown in Fig. [2.6] together with
shading indicating the rough separation of the three eras. These lines are drawn using

“Method C” from (Chluba (2016).

2.3.1 The Temperature Era

This era is the earliest in history, and is characterised by a universe much smaller than
today, and thus very energetic. Energy exchanging scattering events between electrons

and photons occur with great frequency. Bremsstrahlung and Double Compton emission
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Figure 2.6: A plot showing the three era picture with energy branching ratios (Chluba, |2016|).
Deep into each era the corresponding branching ratio tends to unity, indicating the production
of a single spectral shape from energy injection at that time.

are still efficient at these times, and any perturbations in the photon gas’ spectral shape
will inevitably return to a pure temperature shift, thus the naming of the era. This era
lasts till z ~ 3 x 10°. This boundary however is sensitive to exactly how distorted the
spectrum is initially, with large energy injections being potentially observable at earlier

times (Chluba et al., 2020a)).

23.2 TheyuEra

As the Universe expands and lowers its average energy density the events associated
with photon creation become more and more unlikely. The scattering events are still
happening however, meaning there is still an up scattering of photons upon interaction
with hot electrons. This leads to a situation where low frequency photons have been
scattered up towards the peak of the distribution, but not enough soft photons are created
to compensate that. The result is the u distortion, with its absence of low frequency
photons and its effective non-zero chemical potential. This era lasts until z ~ 5 x 10%,
We note that given the power law evolution we saw for matter and radiation in

Sect.[I.3]we would naturally expect electrons to be colder than photons. In reality how-
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ever any energy injection into the medium will tend to heat electrons before transferring
energy to photons. Even in the standard ACDM cosmology this effect is larger than
the Hubble cooling effect on matter, at least in the primordial plasma (we discuss this

ACDM energy source in the following chapter).

2.3.3 TheyEra

The era that follows is the logical extension of the fact that an expanding and cooling
universe will eventually host almost no interactions. In this era the energy exchanging
scattering events that allow a y distortion to convert into a u distortion are no longer
efficient. A question then arises as to the name of this era: it may not be possible to
thermalise a y spectral shape, but why do we hypothesise a y shape in the first place.
Generally speaking a y distortion emerges as characteristic shape following most forms
of energy injection. To see this we will allude to our two mechanisms which served to
introduce and derive the shape in Sect. Firstly there will be a y distortion any
time the electrons are out of equilibrium with photons, which is expected even just
from expansion history. Importantly, however, electrons interact with other components
of the primordial plasma before communicating to photons through electromagnetic
forces. This means any general mechanism for energy injection which heats matter
will be translated to a y spectral shape. Secondly, we again note the superposition of
blackbodies which constitutes an energy injection in a real sense, and also leave a y
shape. This second mechanism is especially important in the early Universe, since the
growing mean free path of photons as the medium becomes less dense naturally yields

this mixing (Silk, |1968)).

2.3.4 The residual era

It may be clear that the eras discussed so far are all simple limiting cases involving
assumptions about available thermalization mechanisms and their respective efficiencies.

In reality the picture is more complicated, especially between the p and y eras where

56
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the transition happens with some finite time. This leads to the existence of a residual
era, where intermediate spectral shapes must be described. These shapes would carry
more sensitivity to the precise moment of energy release in the Universe’s history. One
method of decomposing the residual distortion into orthogonal components has been
developed (Chluba & Jeong, [2014)), and a Green’s function method which makes use of
that formalism (Chlubal 2013} 2015). While no simple formula exists describing the
broad class of shapes composing residual distortions, some approach is made in this

direction in chapter [0

2.4 Spatial spectral distortions

This endeavour of understanding the photon spectrum in depth was motivated by the fact
that photons constitute almost the entirety of cosmological information at our disposal.
Here we will double down on this sentiment by saying that observing the CMB sky has
almost independently informed our models when it comes to early Universe cosmology
in particular. By this we mean there are no other early light sources considering that
stars and galaxies were absent for many billions of years still, and the other probes
we mentioned usually arise in the late Universe [most gravitational wave events for
example arise from neutron star black hole merges (Abbott et al.,|2019)].

An argument can be made then that it is imperative to extract and dissect all the
information possible from the CMB sky. This on the one hand means searching for
spatial information like the CMB temperature anisotropies [@(¥)], but on the other
hand it means searching for information locked in the frequency distribution beyond a
blackbody shape [yYsz(x) + uM(x)]. The former give us rich information about the
universe very close to recombination, while the latter push our frontier of knowledge
further back in time.

One thing we didn’t discuss here is the possibility of spatially varying SD [y(¥),
u(¥)], although it will be the main topic of discussion in chapters We can assert at

this stage however that a future decomposition of the CMB sky in exquisite detail could
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follow

F (x5 9) = Tems foo(x) + OPG(X) + yF)Y s2(x) + p(PIM(x), (2.35)

where all symbols take the meaning we have introduced in this chapter, but now with the
inclusion of spatially varying y and p amplitudes. It is expected that these signals would
be some orders of magnitude smaller than the monopole SD, but would nevertheless
provide an even richer information content than already expressed throughout this
chapter. A further benefit of searching for anisotropic signals is that we can benefit from
the wealth of mathematical and computational machinery already developed for the
extraction of temperature anisotropies — highly optimised codes (Lesgourgues, 201 1
Lewis et al., [2000) and models of foregrounds (Rott1 & Chluba, |2021; Remazeilles &

Chluba, [2018)), just to mention two.
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Cosmological Perturbation Theory

3.1 Introduction

In the previous chapters we have introduced the standard model of cosmology and
discussed the information content locked in the photon spectrum we see across the
sky. This chapter will both develop and unite the two previous concepts. To see
this consider the photon decomposition represented in (2.33)), where a large portion
of the information content manifests in angular dependence across the sky. This is
at odds with the discussion in the first chapter, where the Universe is hypothesised
to be maximally symmetric - homogeneous and isotropic - and as such any angular
dependence of photons would be impossible. Similarly, it has been extremely helpful
while writing this thesis to reside upon a dense ball of rock floating in space, a fact which
is also prohibited by a maximally symmetric universe, as no location is preferable for
gravitational collapse. Observations have thankfully shown our Cosmological models
to not be completely unjustified, as differences in temperature across the sky @(y) are
typically only 1 part in 100 thousand of the monopole temperature. This motivates us to
take a perturbative approach, keeping a maximally symmetric Universe at leading order.

To formally treat this problem we will introduce the study of Cosmological Pertur-

bation Theory (CPT) where perturbatively small inhomogeneities and anisotropies are
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3: COSMOLOGICAL PERTURBATION THEORY

added to the otherwise smooth background. This formalism allows us to fully explain
the sizes of temperature patches on the CMB sky by calculating the power spectrum
of CMB anisotropies. Additionally we will make connection to SD production by
explaining the dominant source of primordial SDs within ACDM - Silk damping of
acoustic modes.

We will see throughout this chapter though that CPT can be fiercely complicated.
Let us see why in a heuristic way: the early-universe cosmic inventory contains charged
baryons and electrons, dark matter, photons, neutrinos and gravitational potentials. All
of these oscillate as a function of both space and time. Since the matter can be considered
non-relativistic they are each expressed with densities dx and velocities vy, where X
can denote charged baryonicE] matter (e.g. 0p) or uncharged dark matter (e.g. dr,). The
neutrinos and photons however must be treated as more general fluids, but cannot be
assumed perfect fluids (see Sect.[[.3)), and as such have hierarchies of multipoles Xy,
The gravitational potentials contain 6 degrees of freedom divided into scalars, vectors
and tensors (see Sect. [3.3). The charged particles and photons interact through familiar
scattering terms (see Sect. [2.1)), but even the weakly interacting particles like neutrinos
will couple to the entire system through the gravitational potentials. We will see that
this enormously coupled and energetic system of interactions can be distilled down to
coupled ODE:s, albeit potentially hundreds of them.

This section is split in two parts, both of which rely on each other to some degree.
Firstly, we must take a closer look at the Einstein field equations Eq. (I.TT)), which
stated in words dictates “how space time should curve in response to stress-energy
content”. In this perturbative approach then this equations tells us how small local
potentials are created on top of the global FLRW geometry according to the perturbed
energy content. Secondly, we must look at is the other half of the Einsteinian world
view where “spacetime curvature tells particles how to move”, where we rely on
the gravitational potentials to solve this. One complication however arises in the

aforementioned particle interactions, which can be seen generally as terms that modify

'Recall from chapter that this means both electrons and protons in the context of cosmology.
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the phase space distribution of particle species (e.g. the occupation number we discussed
for photons in Sect.[2.2)). This second problem can be formulated through the Boltzmann
equation — a deceptively simple statement of phase space evolution with appropriate
collision terms — where we can insert the known evolution across a spacetime geodesic

given the geometry and gravitational potentials.

3.2 The Boltzmann Equation

The Boltzmann equation can be given in a deceptively simple form (Peebles & Yu,

1970; Weinberg, 2008; Dodelson, 2003):

dfi(x,p,1)

o - Cl.p.0l. (3.1

where f; is the occupation function, essentially a function describing the distribution of
a particle species i in phase space. The phase space is parametrised in terms of position
x and momentum p. Most important macroscopic physical quantities of the particle

baths are found by taking various integrals over the occupation function. We already

Bremsstrahlung

Figure 3.1: A diagram adapted from|Dodelson|(2003) showing different components in the early
Universe with relevant interactions. Dotted lines indicate photons being produced or absorbed
in the reaction. All lines connecting to the metric are understood as gravitational interactions.
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discussed the photon occupation number in depth (see Sect. [2.2)).

The left and right hand side of Eq. (3.1)) are known as the Liouville and collision
operator respectively. In essence the Boltzmann equation is a statement of how the
occupation number will change under various interactions: injection/absorption at some
frequency, scattering up/down in frequency, diffusions in space, etc. As such, they tend
to be functions of the momenta and they often couple different particle types. This is
diagrammatically summarised in Fig. where circles indicate elements of the cosmic
inventory (and the metric, to clarify the coupling of gravity), with vertices indicating
various interactions. We will not discuss collision terms in any depth in this chapter,

since we already covered the important ones for photons in Sect. [2.1]

3.2.1 The Liouville Operator

Given the structure of the Boltzmann equation we can identify the Liouville oper-
ator as containing the evolution of the occupation function in the absence of any
sources/scatterings. This means it is what particles do following their “straight lines”
through spacetime. In the context of General Relativity this is less boring than it sounds,
involving the loss of momentum to cosmic expansion and curved paths from local

gravitational masses. To see this let us expand the operator and reveal its physical

content: ‘ .
% = %+%%+z—lf;% (3.2)
Studying the terms from left to right we can see explicit dependence on time, a de-
pendence on the way physical coordinates vary through time, and any change in the
momentum of particle (e.g. redshifting photons). It is clear then that the geometry of
spacetime will enter the calculation through non-trivial changes to the coordinates and
momentum.
Eq. (3.2) has been written using momentum p, however for the rest of this thesis it

will be more helpful to express equations using the dimensionless frequency x = hv/kgT

as defined in Chapter 2] This variable which has the Cosmic expansion built in through
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T =Ty/a =Ty(l + z), and thus absorbs a term which would otherwise appear giving
that precise temperature scaling (Dodelson, |2003). Throughout the rest of this section
we use the notation from Chluba et al| (2012) (Chapter [7| follows the same convention).

Upon the introduction of perturbations, the geometry of spacetime has to include any
gravitational effects of under- and over densities in the Universe. This will be discussed
in detail in section [3.3] but for now all we need to know is that two gravitational
potentials, @, P, cause this effect (see Eq. (3.23)). The Liouville operator then takes the
form (Hu & White, |1996; Chluba et al., [2012))

df® B afh zj@f(l) ofY [aq)(l) i 5\{1(1)] (33)

i or T aov “ox | ot T d o

where the effects of magnitude and direction of momentum have been explicitly sepa-
rated by introducing %' = p'/ \/pJ_pJ and we have dropped the subscript y, understanding
we are interested only in photons. Note that here we are now specifically studying first
order perturbations in preparations for studying anisotropies (additionally we used that
background quantities don’t depend on spatial coordinates). Inspecting Eq. (3.3) reveals
the interesting property that a/l fluids will interact with the geometric perturbations via
the Liouville operator. This explains the vertices in Fig. which connect every fluid
to the metric (e.g. even neutrinos will have small effects on the photons via gravity,
despite having no direct electromagnetic interaction).

The first two terms in Eq. [3.3]are the generalised forms of the continuity and Euler
equations. The next term provides the loss of energy to cosmic expansion — cosmic
redshifting (the equivalent at zeroth order reveals T o« a™!). The final terms are related
to gravitational lensing — they describe the change of frequency and angle in being

deflected by local potentials.

3.2.2 The collision operator

The collision operators will not be discussed in great detail here simply due to the

fact that they were discussed at length in Sect[2.1] albeit in a different context. Due to
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that context we previously focused on energy exchanging events between photons and
electrons, as well as photon creating events. In this chapter we in fact care much more
about the low energy equivalent of Compton scattering, the Thomson limit. This can be
given by

1
COLf)] = 7[£D + o D - gOyxa, O, (3.4)

where 5 represents local baryon velocities, and y is the angle between the photons
(%’) and baryons. The operator xd, appears frequently, and is explicitly named the
boost operator in Chapters|[6] [7]and [§] The subscripts of f are referring to the multipole

moment of the distribution, where we have defined f; = 3. _ , funYem (see appendix |A).

3.2.3 The Photon hierarchy

The bottom line of the calculations alluded to above is what we call the Boltzmann
hierarchy, and in particular we will focus on the photon hierarchy provided that in this
thesis we are primarily concerned with the photon fluid. Much of the above discussion
holds for the rest of the Cosmic inventory however (excluding the collision term Eq.[3.4]
which was specific for photons). Thankfully the other fluids are simple in the early
universe: following the discussion in Sect. we treat matter (CDM and baryons)
as perfect fluids with only local densities and velocities as parameters. Photons and
neutrinos on the other hand receive a full non-perfect fluid description This restriction
of focus is not as limiting as it may initially seem, considering that the most important
interactions in the plasma are electromagnetic, since gravity is included implicitly
through the geometric view of GR.

The bottom line equation for photons in the Thomson limit is given by combing

Eqgs. (3.3) and (3.4),

OFfD %\ 18
f(])/ + /)\/1 f — _(D(l)/ _ ,?l o (1)

1 (1) (1) (1) (0)
dxi I fO=Bxx0,. V1, (3.5)

1072

where we have also converted to conformal time (» = d,)). This will more often be seen
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in the literature with a “temperature only” view of the photon spectrum: f© — £, (x),
Y — @WG(x). Importantly using that substitution has an internal consistency in that
X0, fon(x) = G(x). This mapping to only temperature shifts is at odds with the nuances
of chapter[2] a discrepancy we attempt to remedy in chapter[7}

To understand why Eq. [3.5] makes part of a “hierarchy” we must first perform
two mathematical transformations (appendix [A). They both come down to a similar
concept of taking our currently complicated function which depends on space and
projects that dependence onto some set of basis functions. In particular the angular
dependence of variables is captured through a hierarchy of Legendre polynomials #,(x)
(A.T) and length scales captured through the plane waves exp(ikx) (A.3) implicit in
Fourier transforms. Transformations on the hierarchy are covered with great clarity in

Pettinari (2016)).

Bottom line

After performing all the relevant transformations we arrive at what can finally be

recognised as a hierarchy:

0, = —kO, - ¥, (3.6)
. 1o 2.\ ko [~ P
0] =k 3 0—§®2)+§‘I’—T [@1—5], (3.7)
A 2 A 3. 9 A
O, = k|=0; — =03 - —7'0,, 3.8
2 = 5P TS 3) 02 (3.8)
. . c+1 4 A
0., =k 1 €1_m®€+1)_7®€, (3.9)

where hats denote the Legendre transforms of the variables introduced above (ap-
pendix |A) and we drop the superscript (1) for convenience (® is always a perturbed

quantity).
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3.3 Einstein’s field equations

Einstein’s field equations are typically very difficult to solve analytically and costly to
treat numerically. Full solutions tend to possess high degrees of symmetry, as seen in
the FLRW case. In fact, FLRW corresponds to the most symmetric possible solution for
the spatial part of the manifold. It can be shown (See appendix C of Wald (1984)) that a
Riemannian manifold of dimension » has a maximum of n(n + 1)/2 linearly independent
Killing vector fields, which dictate the symmetries of the manifold. In 3 dimensional
space the maximal number of Killing fields is 3(3 + 1)/2 = 6, which in FLRW consists
of 3 spatial translations (homogeneity) and 3 rotations (isotropy). This only leaves
freedom of choice in the curvature (flat, open or closed), which we fix experimentally.

The use of perturbation theory is essential to move beyond the most symmetric
cases and include, for example, the inhomogeneities that seed galaxies, stars and planets.
Small linear perturbations on top of a simple background allow us to capture some of
the less idealised gravitational effects, without an overwhelming analytic or numerical
treatment. This is, fundamentally, the treatment that allows us to feasibly calculate the
expected distribution of temperature patches across the sky. For a thorough review of
these calculations see Weinberg| (2008)) (specifically chapter 5).

To perturb the geometry we consider a metric

8uv = 8w + 5g,uv, (3.10)

where any background quantities are now represented by overbars. Any small quantities,
indicated with 6X, have small component values compared to the background. The
raising and lowering of indices is no longer as simple as before. If we demand that

818" = 0), then it can be seen that

g =g"—-og" (3.11)
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is the correct form for the new inverse metric:

g,uag(w = (gya + 6g,u(t)(g(w - 5g(w)

— g,ua/gm, _ guaégm} + 6g,uagm/ + 0(6g2)
(3.12)
_ v v v 2

= 8, + 08,

where in the second to last line we used the fact that perturbed quantities still raise/lower
indices with the zeroth order metric - other contributions are higher than first order.
This new perturbed metric can then be propagated through all the other relevant
quantities in GR (see Sect. : Christoffel symbols, Ricci tensor, Einstein tensor, etc.
These expressions quickly grow in length and complexity, for example the Christoffel

symbols become I}, + 6T, with

1 _ _ _ 1_
oI, = E(sgzp (6,8 + 0vBops — OpBir) + 3 " (0,080 + 0,080 — 0,08) . (3.13)

We leave the remaining steps in the derivation to well established literature, and focus
instead on important conceptual simplifications that are important not only for ease of
calculation, but also must be used to give meaningful conclusions from the bottom line

answers.

3.3.1 SVT Decomposition

The second, to divide each of the difficulties under examination into as
many parts as possible, and as might be necessary for its adequate

solution.

—René Descartes, Discourse on the method of rightly conducting the

reason, and seeking truth in the sciences
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The results obtained so far are repulsively complicated

—Stephen Weinberg, Cosmology

Perhaps the most important aspect of CPT for this discussion is that we can consider
the decomposition of dg,, into a set of Scalars, Vectors and Tensors (SVT) (Stewart,
1990). More precisely we should say scalars, transverse vectors and transverse traceless
tensors, but this will be dropped for ease of writing.

This split can be understood as a generalisation of the Helmholtz decomposition
familiar to students of electromagnetism (Griffiths, |[2017). There we commonly divide

a vector field into a diverging part, and a curling part:
E=V¢+VXxA. (3.14)
If we perform a Fourier transform on this decomposition, then we find
E=kd+kxA, (3.15)

Together with appropriate boundary conditions these two components fully determine
its original vector .

In real space the scalar field contribution can be referred to as the diverging part,
since V- V¢ # 0, while V- V x A = 0. In k-space the diverging field ¢ aligns with k,
while A exists in the orthogonal subspace to k, hence receiving the name of transverse
vector. In heuristic terms, the component of a vector that aligns with k is truly a scalar
because no specification of direction was necessary. Note that assuming we are studying
electromagnetism in 3 spatial dimensions, we then have one scalar and two vector
degrees of freedom.

Extending this concept to GR there is more freedom, since the perturbations take
place in a rank 2 tensor. This means that now a tensor fizs within the perturbations.
Again heuristically this is transverse to the k vector and also traceless, since the trace of

a matrix can be specified with just a scalar quantity. A full decomposition thus takes the

68



3.3: EINSTEIN'’S FIELD EQUATIONS

fornﬂ
0800 = A, (3.16a)
680i = 6gi0 = ;B + E], (3.16b)
1
681']’ = Céij + (6,~8j - §5ijak8k)D + H,FJT + 6]FlT + HZ}T, (316C)

where A, B,C and D are scalars, ElT and Fl.T are transverse vectors, and Hl.TjT is a

transverse-traceless tensor. These objects satisfy
JE; =0, OF =0, oI =o/'I]" =0, 11}/ =11} . (3.17)

This decomposition still contains all the information of the metric, and is therefore

explicitly symmetric. A further sanity check is to count the unconstrained components:
e One component from each scalar, four in total.

e Two components from each vector, since one orthogonality constraint is applied.

Again four in total

e Two components from the symmetric tensor, since this has orthogonality con-

straints in each row (-3) and in being traceless (-1).

This totals ten, as expected from a symmetric four dimensional rank two tensor 6g,,,.
This means we are free to use this decomposition in place of the full tensor whenever
this is convenient.

This innocuous looking decomposition turns out to be extremely powerful, given
the way that first order perturbations couple to one another. Roughly speaking, and
specific to first order, perturbations of a given type only source their own type. For

example, IT type perturbations are only sourced by anisotropic energy distributions.

ZNote that this decomposition has many different conventions in the literature. For example, sometimes
the spatial Laplacian is not subtracted from D, making it a contribution to the trace of §g;;. Other times
Cc—- %, making it exactly equal to the trace of the spatial tensor.
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This is exemplified by the origin of gravitational waves in orbiting binary systems
(LIGO Scientific Collaboration & Virgo Collaboration, |2016)). Consider also that
spherically symmetric bodies are prevented from creating gravitational waves as a result
of Birkhoff’s Theorem (Birkhofl & Langer, 1923). Similarly, perturbations to pressure
and energy are associated with the scalar sector, and will be our prime focus moving

forward.

3.3.2 Gauge Choice

Everything we hear is an opinion, not a fact. Everything we see is a

perspective, not the truth.

—Marcus Aurelius, Meditations

One of the subtleties that remains to be discussed is that of choosing a gauge
(Mukhanov et al., [1992; Ma & Bertschinger, [1995). This is related with the discussion
in Sect. [I.T] where the concept of coordinate invariance is fundamental to the formalism
of General Relativity. The concept of a gauge is essentially the process of choosing a
coordinate frame in which the perturbations are being studied, while ensuring that any
bottom line results are independent of this choice. As an example, imagine labouring
over a perturbed ACDM Universe with a small velocity field in a single spatial direction.
It is intuitive that this solution could have been achieved simply with a change of
coordinates on the background — a small Lorentz boost.

Now let us express this idea mathematically. We need to see how the components of
a general tensor, 7', will change under a small (perturbative) change of coordinates. The
bottom line is that these transformations are given by Lie derivatives with respect to a

vector field, &, which is assumed to be small in its components:

T — T+ (AT),, (3.18)

(AT) = LT,
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where the Lie derivative L; of an (m, n) tensor is given by

(Lé:T)al...am by — é_«c(acTal...am bl,.,bn)
— (acéga1)Tc...a,71 by, — e — (acé_—am)Tal...c by..b, (319)

+ (0p, EVT " by 4 oo+ (O, E)T M e

This arises due to a correspondence between diffeomorphisms and vector fields, a full
discussion of which can be found in appendix B of (Carroll (2004). In essence, since the
change of coordinates is necessarily smooth, and small in magnitude, this is equivalent
to moving objects along flow lines given by some smooth vector field &£, which also
has perturbatively small components. Following the convention used for the metric,
let’s decompose £ into 1 + 3 componentsE] & — (T, L), and evaluate the change of the

metric, noting that L:6g,, = 0:

(Ag,uv),f = L.fgpv = ngyv = fa (801?/11/) + (0/1§(l) vt (avé:a) gﬂa
= Tg,uv + (a,uT) gOv + (avT) gﬂO (8/1Lk) gkv + (6va) g,uka
(3.20)

where we set L(@kgm,) = 0, since the FLRW metric has no spatial dependence due
to the flatness. Evaluating this in time/space components of the metric, and further

decomposing L; = 9;L + LT (see Sect.[3.3.1) we get

(Agoo)e = 2T, (3.21a)
(Agin)e = (Agoie = (6, - zg) (c%L + Ll-T) - 0T, (3.21b)

Applying these gauge transformations to the components of the SVT split 6g,,, via

3See Gourgoulhon! (2012) and references therein for a clear view of the 3 + 1 formalism in more detail
and rigour
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Eq. (3.18)), we find:

(Acgw): A — A+2T, (3.22a)
(Acgo): B— B+ L- ZZL - T, (3.22b)
ET - B+ 07— sz,.T, (3.220)
(Acgij): € - C+2aal + %Hk(?kL, (3.22d)
D—D+L, (3.22¢)
Fl - F + L], (3.22f)
I — 1. (3.22g)

It is notable that HiTjT can’t be changed through a gauge transformation, meaning
that tensor perturbations (i.e. gravitational waves) are not frame-dependent objects
(Weinberg, |2008).

The bottom line is that our perturbed tensors will change depending on the reference
frame chosen. On the one hand, this is a problem, giving us extra work in checking
any derived results are not just coordinate artefacts. On the other hand, it gives some
freedom, as we can choose the 4 degrees of freedom (1 in 7', 3 in L;). Moving forward,
two general philosophies can be adopted: combine the perturbations in a way that gauge
dependence cancels, or specify which gauge you are in by fixing some components.

For the vector perturbations, it should be easy to see that defining

VI = BN - FT + 22T,
a (3.23)
A{V,- = O,

gives a gauge invariant vector perturbation.
Similar gauge invariant quantities exist for scalar perturbations but are more compli-
cated (Bardeen, 1980). Thus we will apply the second of the aforementioned approaches,

where we simply choose a gauge and understand the corresponding artefacts in the
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bottom line answers. Two common gauges exist: the synchronous gauge, and the
conformal Newtonian gauge (Ma & Bertschinger, |1995)). The latter will be introduced
here and used throughout the thesis. In this choice of gauge we choose L such that
D = 0, and T such that B = 0. This leaves A and C, which we will rename to more

easily match other common notations:

A=-2¥, C=-240. (3.24)

It is common in studying the CMB to focus only on scalar potentials, ignoring
vector and tensor perturbations. This is often sufficient since photons couple strongly
to scalar perturbations through their overdensities, while properties like polarisation
are influenced by tensors. We will thus often make use of the metric (in conformal

Newtonian gauge)

ds? = —(1 + 2¥)d7* + *(1) (1 + 2®) dx?. (3.25)

3.3.3 Stress Energy Tensor

So far we have perturbed the metric, performed the SVT split and selected a gauge
for these perturbations. This process relates specifically to the LHS of Einstein’s field
equation (Eq. [I.T1)), and we have yet to discuss the corresponding perturbations to
the stress energy tensor. Luckily, much of the previous discussion will be useful here.
Firstly, we will only discuss the 4 scalar degrees of freedom, which here correspond to
relatively intuitive quantities. Secondly, the choice of gauge has been used to cancel
geometric quantities. This means the similar gauge terms on the RHS have already been
chosen, and will only serve to rescale the quantities with no full cancellations. To be
specific, local energy over/underdensities 6p will be slightly different in the synchronous
and conformal Newtonian gauge, but correspond to the same physical entity, and in
neither case will be set to 0.

Discussing the RHS equivalents of A, B, C and D in order we have dp, 66, 6p and

73



3: COSMOLOGICAL PERTURBATION THEORY

oo The first quantity is clear, a perturbation to the energy content in some patch of the
Universe. The second quantity is related to a velocity perturbation. This is explicitly
perturbative since in background ACDM no velocities can exist, as this would violate
local isotropy. The third quantity is on the trace of 7’;, making it the perturbation to the
isotropic pressure. The last quantity is the scalar quantity present in 7;;, but this time
off axis, corresponding to some anisotropic stress. This last component is generally not
sourced by matter, but can be sourced by radiation and neutrino fluids (when they cease
to behave as a perfect fluid, see Sect|[I.3). Note that all quantities here are written with
0X, despite X not always corresponding to perturbed versions of a background quantity,

which differs in notation from Ma & Bertschinger| (1995) where 6 is implicitly small.

3.3.4 Bottom line

Carrying out all the above techniques yields four equations governing the evolution of
scalar gravitational potentials, although only two are independent. Following Ma &

Bertschinger| (1995) but with the variable conventiorﬂ of chapter [7/|we have

w43 (_(D, + “_qf) = Y 162G, (3.26a)
a a n
k (-q>’ + “—l{f) = Z a’12nG(p + P)o6,, (3.26b)
a A
’ 17 7”2 2 4
—or L —20)+ 2L D) m K @) = > 2Csn. (3.260)
a a a* 3 - 3

(D +P) = Z a*24nG (p + P) 60, (3.26d)

A

where we have explicitly defined the stress-energy perturbations as the sum over relevant
quantities from different sectors A (i.e. photons, neutrinos, dark matter, baryons). For
example, writing the quadrupole of neutrinos as NS) we write the shear stress as

2200, = ®(21) + Nél), considering that only relativistic particles carry shear stress.

4C0mpared to|Ma & Bertschinger| (1995) we have ® — —®. Furthermore we note that for relativistic
particles we have 6, — 46p;, 6, — 3ké6;, o — 2607;.
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Figure 3.2: A figure showing how scalar and tensor perturbations differ in their dynamics. ®
shows a constant amplitude envelope within which is oscillates due to a standing wave behaviour
with electrons. The ending of that wave is characterised by a growing quadrupole moment,
which is a useful quantity for understanding Silk damping and blackbody mixing (Chluba et al.|
2012 |Silk| |1968). The tensor perturbation on the the other hand decays immediately after
horizon crossing but at a slower rate. This causes a stretching of the relevant tensor window for
SD constraints compared to scalar perturbations (Chluba et al, |2019; |Chluba et al.| |2015a)).

3.4 Evolution of primordial perturbations

The results of Sect. [3.2] and Sect. [3.3] together give the full picture of primordial
photon perturbations - at least as far as temperature anisotropies is concerned. A full
solution of these equations however is not easily accessible to analytic treatments (Hu &
Sugiyama, |1995}1996), and often numerical solutions are employed (Lewis et al., [2000;
Lesgourgues, 2011). For the purposes of this thesis it is most useful to focus on limiting
cases and derive heuristic and conceptual understanding of these primordial waves. We

will do so without laborious derivations, and with more of a focus on qualitative results.

3.4.1 Horizon crossing

The concept of horizon crossing can classically be thought of in terms of causality.

Essentially perturbations with a wavelength larger than the current Hubble horizon have
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not had enough time for light signals to travel from one peak to another. This leads
to a situation where these waves are frozen and static till the horizon has expanded.
In fact there is the alternative solution of a power law decay, but the important aspect
here is the independence of wavelength (a field can “everywhere locally” decay without
violating any causality condition).

Mathematically this is best seen in the evolution of tensorial perturbations’| which
in the absence of any anisotropic stress evolve according to (see Weinberg, 2004; Dicus
& Repko, [2005)

' (n) + 2%%1’(77) +k*h(n) ~ 0. (3.27)

Furthermore we will pursue solutions in the radiation (really, relativistic) dominated era
with a = 77H0 VQrel
2
W' () + =h' () + k*h(n) = 0. (3.28)
n

The second term’s coefficient is the Hubble rate, which falls with time, while the third
term is simply multiplied by a constant which we know to be associated with wave like
behaviour. It is clear that the second term dominates the early time, while the final term

provides late time evolution. We can thus pursue solutions initially to
14 2 ’
h" () + Eh (m =~ 0, (3.29)

which gives h(n) = A — B/n, with A and B being arbitrary constants. This behaviour is
quite characteristic, with one constant mode and one decaying mode at early time. Note
that the second solution has a singularity for  — 0, however it could in principle be
sourced in an unproblematic way at some finite 7.

Returning to the solution to Eq.[3.28 we can find i(1) = A jo(kn)—Byo(kn) (Watanabe
& Komatsu, 2006} Kite et al., 2022)), where jj and y, are the spherical Bessel functions
of the first and second kind respectively and A, B are again arbitrary constants. These

solutions have similar properties to the solutions above, with the y, function have an

STensorial solutions are greatly expanded upon in chapter Kite et al.[(2022).
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early time divergence and decaying behaviour. Now however the j, mode enters an
oscillatory phase after horizon crossing kn ~ 1 which is characterised by the third term
in the ODE.

Scalar perturbations follow a similar mathematics, with a constant superhorizon
mode and a subsequent wave behaviour following the time of crossing. Photon tem-
perature perturbations (scalars) and gravitational waves (tensors) are shown in Fig.[3.2]
where the moment of horizon crossing is indicated, showing common behaviour be-
tween these two conceptually very distinct waves.

This moment of horizon crossing is important for the CMB anisotropies, where large
patches of the sky are typically dominated by modes which crossed the horizon more
recently. Even for tensors there is a distinct bend in today’s tensor energy spectrum
associated with modes crossing horizon before or after the transition between a radiation
and matter dominated Universe (Watanabe & Komatsul, 2006; Saikawa & Shirai, 2018},
Kite et al., [2022).

3.4.2 Tight coupling

Once the perturbations have crossed horizon they enter an oscillatory phase. Here we
now see big differences between the tensors and scalars, as can be appreciated in Fig.
This difference is because the photons and baryons form a stable oscillation, with gravity
and electromagnetic repulsion forming the restoring forces. We can understand this
in terms of a single tightly coupled fluid, where the two components behave as one.
Eventually this marriage of photons and charged baryons fails, and there is a decay of
the mode. Tensor waves have no such supporting sources, and simply decay with a
power law, which is slower than the exponential decay in the temperature perturbations
once they do decay.

In the tight coupling limit we have 7" > k, implying that Thomson scattering is
very effective at isotropising the medium, and keep the oscillations in the monopole and

dipole of the relevant fluids. An example of how there is effectively one fluid is seen in
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Eq. where the term proportional to 7’ drives ®, = /3, implying the photons and
baryons share a common velocity.

The photon hierarchy in this limit gives (Dodelson, [2003)

' R
O + L@ + K20, = F(k, 1),
al+R ; 330
k? a R (3.30)
Flom=-—wp_2L O
ko ==3¥="17R

We will not analyse this equation in too much detail, but will limit ourselves to pointing
out its structure as a forced and damped harmonic oscillator. The forcing in this case
being a time dependent combination of gravitational potentials. Here R = 3py,/4p,
gives the ratio of baryon and photon energies, thus giving the damping term a physical
interpretation known as baryon loading. Essentially the greater this ratio is the more
mass the photon-baryon plasma has, damping the oscillations.

Provided this forced oscillator solution requires a highly isotropised photon fluid

(e.g. no quadrupole moment), it will break down when 7" > k ceases to be true.

3.4.3 Diffusion scale

The derivation of Eq. [3.30| required establishing the hierarchy of photon moments,
truncating at the dipole, and then eliminating that dipole from the equation set. To
understand the breakdown of the tight coupling limit we much return to the hierarchy
and include the quadrupole term also. This prevents us writing down a single equation
for the monopole and forces us into the full coupled system. Again leaving the details

to literature (see e.g. chapter 9 of Dodelson, 2003) we have

0, + k6, =0, (3.31)
., 2. 1, N
@1 +k g@z - 5@0 =70, - g , (3.32)
N 2k 9 .
) - 501 = 5760 (3.33)
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Here we have not neglected ®, as before. Now @5 is the first neglected term, being
a factor of ~ k/7’ smaller than ®,. Assuming we’re still close to the tight coupling
era, we can still use 7/ > k which gives a quasi-stationary evolution @, ~ 0 =
O, =~ —4k/97" ©,. This expressions makes it so the quadrupole is a sort of leaking of
energy form the hierarchy, leading to an eventual exponential decay of the temperature

perturbations. Concretely we can find

k2
©), O ~ exp [ikfdﬁ Cs(ﬁ)] exp (— ),

K2
1 dn R> 8
kp = -1,
D fo 6(1 + Ry (%) 1+R+9] (3.34)

o / 1
cs() = 3(1+—I€(77))’

where the details of the 8/9 factor is associated with the inclusion of polarization, not
discussed here. The integral governing the oscillation speed includes the sound speed
in the fluid c;. kp provides the diffusion scale drawn in Fig. The diffusion scale
shrinks with time, and when it evolves enough so that the scale of a given mode k
surpasses it, we see an exponential decay of the perturbations. This decay correlates
with a rapid excitation of the quadrupole moment.

This whole process has a visual classic analogue. While the photon fluid is locked
in oscillation with baryons in a macroscopic sense, there is a random walk being
undertaken by the photons at a microscopic level. The mean free path of this walk can
be found to follow Ayvigp ~ 1/7’, which provides a nice physical interpretation to the
limit k/7" = kAyrp << 1. Basically these Fourier modes are concerned with lengths
over which photons have not been able to diffuse The diffusion process heuristically
implies a mixing of two patches with different temperatures, and therefore erases the
differences (see Fig. [2.4). From our discussion in chapter 2] we know this implies the

creation of a y distortion. This was studied in detail in Chluba et al.|(2012) yielding an
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energy injection of (see also|Chluba et al., 20154, for succinct summary)

o = (Kdk 9 )
x4 f S P70k 1), (3.35)

where the power spectrum P(k) will be formally introduced in Sect

3.4.4 Free-streaming

Primordial perturbations in the photon fluid are not necessarily condemned to self
erasure though photon diffusion. There is an alternative fate for patches which survive
long enough for the primordial plasma to dissipate, cool, and undergo recombination.
With electrons and protons combining to make neutral hydrogen the photons can then
free-stream, and the structure of the standing acoustic waves is locked in. In this sense
there is a “snapshot” of the primordial plasma which we today call the CMB. It is
typically the larger scale modes (small k) that see this fate, with smaller scale (larger k)
dissipating too early. Note however that the smallest of k have not yet crossed horizon,
providing a strong cutoff for modes approaching k ~ 1/n.

This process of free-streaming can be seen in the photon hierarchy Eq. [3.6|by simply
neglecting any terms with 7’. This leaves the hierarchy of multiples coupled with &.
This leads to a heuristic picture where energy tends to flow up to higher multipoles (a
plane wave can be represented as a summation of Legendre polynomials), but Thomson
scattering provided an isotropising effect which ceases at recombination. This is why
when we measure angular patches on the sky at modern times we see £ ~ 1000, despite
the fact that in the primordial plasma anything higher than the quadrupole is seldom
important.

It turns out that once free-streaming starts it is no longer computationally (or analyt-
ically) efficient to understand the equation set as many thousands of coupled differential
equations, and there are alternative approaches that regain the view of plane waves
propagating. In particular there is a line of sight integral which drastically simplifies

and optimises codes modelling the Boltzmann hierarchy (Seljak & Zaldarriaga, 1996).
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3.5 Integral Equation Approach

We briefly mention that although the multipole hierarchy is the most common approach
to solving early universe perturbations (e.g. |[Lesgourgues, 2011} |Lewis et al., [2000),
occasionally a formulation in terms of integral equations shows some benefits. An
early use of this approach was shown in Weinberg| (2004), which matches the approach
used in chapter [5]for studying the damping of tensor perturbations by neutrinos. The
integral equation approach for scalar perturbations was introduced in Weinberg| (2006),
but generalised and numerically benchmarked in recent work by Kamionkowski (2021)).
This work showed that there is generally an equivalence between the infinite multipole
hierarchies, that have to be truncated for numerical implementation, and the integral
equation approach, which can be solved without truncation via an iterative numerical
scheme. While the iterative approach developed in Kamionkowski| (2021)) is not equal
in all details to that shown in chapter [5| we make use of the same principles.

In the case of photons it is known that to get the correct spectrum of CMB
anisotropies within the Boltzmann hierarchy approach it is sufficient to use £,,x ~ 30,
a surprising fact considering that we observe patches in the sky with £ > 1000. This
comes down to the fact that most information comes from a visibility function which
peaks around recombination (see |Seljak & Zaldarriaga, [1996; Callin, 2006, and discus-
sion of numerical implementation within chapter[§)). Getting the multipole hierarchy
correct within that visibility window is the most important part of the calculation, al-
lowing one to truncate the hierarchy at low ¢, even if at later times the hierarchy would
naturally grow to ¢ > 1000. The trade-off between the multipole hierarchy and the
integral equation approaches is the solution of ~ 30 extra equations for each hierarchy
or a few iterations involving integrals. The claim within Kamionkowski| (2021)) is that
the latter choice could accelerate Boltzmann solvers.

Similar arguments would apply for studying the multiples of neutrino perturbations
in the sky (a futile endeavour in itself from an observational viewpoint). Performing

such a calculation would involve defining similar visibility functions as for photons,
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and connecting to a line-of-sight integration approach for the free-streaming neutrinos.
This however isn’t the goal in chapter [5| Instead we focus on the energy lost from the
gravitational waves. To do this within the Boltzmann hierarchy we would have to start
our calculations in a phase where neutrinos are not free-streaming (in order to define
the initial conditions) and then solve coupled equations potentially to very late times
(e.g. till recombination). In this case we would most likely require €;,,,x > 30 to achieve
accurate results, and thus the integral equation approach is simpler both conceptually

and numerically.

3.6 The Primordial Power Spectrum

Knowing how the perturbations evolve is only half the story, since the initial conditions
are still to be defined. This problem will be undertaken in a statistical manner by
discussing the moments of a probability distribution function. We define the ensemble
average, (...), as the average over an ensemble of hypothetical Universes, and by the
ergodic hypothesis equate this to an average over space in our Universe. This however is
more easily evaluated using Fourier transforms, which is equivalent through Parseval’s
theorem (Martinez et al., [2009).

It may come as no surprise that all metric perturbation components have (6g,,) =
(6Ty,) = 0. To quickly justify this however, consider that any overall shift to a scalar
component like @ would just be subtracted, and added to the background energy instead.
Vector perturbations, on the other hand, select directions in space and therefore can’t
be subtracted as simply. However, it can be argued that on average no direction should
be picked over any other, and therefore (V) = 0. Similar arguments hold for tensor
perturbations.

We can rewrite a generic Fourier transformed perturbation field, X(k, ), as the
product of a deterministic transfer function, 7x(k, n7), and some initial condition, {(k),
which is probabilistic in nature. Thus at linear order we have X(k,t) = (k)T x(k, 1)

(See [Pettinari, 2016, for discussion of second order transfer functions). To avoid a

82



3.6: THE PRIMORDIAL POWER SPECTRUM

cumbersome set of transfer functions it is common to simply use the same variable
name (i.e. X(k,t) — {(k)X(k,1)). In this language the above discussion then amounts
to stating the first moment of {(k), ({(k)) vanishes. The second moment of the pertur-
bations can be non-zero however, and are given as a primordial power spectrum via
(LK) = 2n)* 6V (k — k') P(k).

The primordial power spectrum essentially encodes the statistics of the initial condi-
tion of fluctuations (total amplitude and wavelength dependence) for some component
of the cosmic inventory. Once a power spectrum has dictated the initial seeds for one
component of the perturbation picture we define other variables in the relative propor-
tions (See e.g. Chluba & Grin, [2013|, for discussions of adiabatic and isocurvature initial
conditions and relevant spectral distortion constraints).

Higher moments of (k) are all consistent with O in currently available experimental
data, making what is known as a Gaussian power spectrum. There is, however, a lot of
discussion in the literature of non-gaussianities in the CMB spectrum. If discovered
these would probe very early physics, and would shed light on the inflation, the currently
favoured theory of the earliest moments of the Universe (Celoria & Matarrese, 2018).

The primordial scalar power spectrum as currently understood—ﬂ is usually defined
around a pivot scale k(, and is written such that it is flat except for a small tilt, dictated
by a spectral index ng = 1, and some small curvature, given by a running of the spectral

index n.,, ~ 0 (Planck Collaboration, 2019, 2018b):

2 ) ns—1+%nmnln(ki)
P(k) = iA(f) "
ko

o (3.36)

®Hypothetical models will often have spikes at certain scales, but the currently observed standard
physics is limited to a simple straight line for scalar perturbations. Currently the shape of the tensor
power spectrum is unconstrained, with only upper bounds on tensor to scalar ratios (Tristram et al.,[2022).
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Preface to Published Work

The following five chapters each contain one paper - the first two published, and the
final three in various stages of the peer review process. These papers all relate back to
the theory introduced in the previous introductory chapters. While before each paper
we briefly summarise the content, it is useful to anticipate how the papers connect to
one another as well as the previous chapters. Both in terms of chronology and content
there are in essence two groups: the first two papers and the final three.

The first two papers consist of an exploration of the primordial tensorial perturba-
tions which permeate the Universe, and their potential signal in the form of spectral
distortions. The perturbations themselves have not appeared very much throughout
chapter 3] since for reasons of cosmological interest and pedagogy we stuck mostly
to scalar perturbations. We can point out however that these waves are simply the
tensorial component of the spatial metric discussed in Sect. We briefly used these
perturbations as en example to study horizon crossing in Sect. and one numeri-
cally calculated tensor transfer function was shown in Fig.[3.2] Readers interested in
the primordial tensor waves will hopefully find the second paper (chapter. [3)) to be a
clear and somewhat complete introduction. The motivation for that paper however, in
connection to this thesis, is best found in the first paper (chapter. @), where we study
the small albeit non-zero energy injection to the photon bath originating from tensor
modes. This occurs through a sourcing of an anisotropic stress in the photon fluid, and
can lead to the formation of an observable p-distortion signal for some exotic physical
scenarios. The first paper thus unites concepts from both chapter [2]and chapter 3] In

summary, these two papers study standard cosmological perturbations and how they
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3: COSMOLOGICAL PERTURBATION THEORY

can mix and source SD signals.

The final three papers unite SD and CPT in a completely different and more pro-
found way. The Boltzmann hierarchy at the start of chapter [3] initially contained a
momentum or frequency dependence (see Eq.(3.5)). We promptly simplified this to
local inhomogeneities in the temperature of photons, thus eliminating the frequency
space (see Eq.(3.6)). This move was subtle, and essentially neglected what we had
discussed throughout chapter[2] The goal of the final three papers is to do away with
that collapsing of frequency space in studying cosmological perturbations, and allow for
a general frequency evolution of the spatially varying photon gas. The first paper in that
series (chapter|[6) has nothing to do with the spatial part of the overall goal, and instead
focusses on simply building a basis of spectral shapes. These shapes are, however, cho-
sen in such a way that the spatial picture comes much easier, while still replicating the
expected homogeneous results (the three era picture from Sect[2.3). The second paper
(chapter|/)) can then take that spectral basis and pass it through the machinery of CPT
discussed throughout chapter 3] The final equations are a generalisation of Eq. (3.6),
allowing a full spectro-spatial evolution of the CMB sky. The final paper (chapter [3))
contains the numerical results derived from the generalised Boltzmann hierarchy. We
distil the physics and pick apart aspects of the transfer function evolution (akin to
what we saw in Fig. [3.2) and study cross correlations of temperature anisotropies with
distortion anisotropies. The bottom line of that paper is that observing anisotropies
reveals something about the average photon spectrum across the sky, thus proving a
way to improve upon the COBE/FIRAS results with future instruments resembling (but

more advanced than) Planck.
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Paper I: Bridging the gap: spectral

distortions meet gravitational waves

This paper revisits the calculations of Ota et al.|(2014)) and |(Chluba et al. (2015a) to
not only update the results, but to also cast the language used into that which is more
familiar in the newly emerging gravitational wave literature.

In essence the paper discusses the possibility of primordial tensor perturbations (see
chapter [3) dissipating energy into the primordial plasma and thus creating primordial
spectral distortions (see chapter[2)). The physics involved in this process can be packaged
up into a pretabulated window function, which is simply integrated with a primordial
tensor power spectrum to derive a u-distortion amplitude. This method however is
insufficient for tensor creation mechanisms which are not primordial, even if they occur
very early. We argue that this can be modelled with a power spectrum still, just with
an appropriate step function and redshifting included. We pretabulate the window
function for various finite redshift tensor injections and provide a Python tool which
can interpolate on the results.

With these window functions in place we show that the SD constraints bridge a gap
between large-scale Cosmological constraints from CMB anisotropies and small-scale

astrophysical constraints from pulsar timing arrays.
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4: PAPER I: BRIDGING THE GAP: SPECTRAL DISTORTIONS MEET
GRAVITATIONAL WAVES

To further demonstrate the power of SD constraints on tensor backgrounds we
undertake some case studies, including cosmic string networks, axion models tuned to

produce tensorial decays, and phase transitions.
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ABSTRACT

Gravitational waves (GWs) have the potential to probe the entirety of cosmological history
due to their nearly perfect decoupling from the thermal bath and any intervening matter after
emission. In recent years, GW cosmology has evolved from merely being an exciting prospect
to an actively pursued avenue for discovery, and the early results are very promising. As we
highlight in this paper, spectral distortions (SDs) of the cosmic microwave background (CMB)
uniquely probe GWs over six decades in frequency, bridging the gap between astrophysical
high- and cosmological low-frequency measurements. This means SDs will not only comple-
ment other GW observations, but will be the sole probe of physical processes at certain scales.
To illustrate this point, we explore the constraining power of various proposed SD missions on
anumber of phenomenological scenarios: early-universe phase transitions (PTs), GW produc-
tion via the dynamics of SU(2) and ultra-light U(1) axions, and cosmic string (CS) network
collapse. We highlight how some regions of parameter space were already excluded with
data from COBE/FIRAS, taken over two decades ago. To facilitate the implementation of SD
constraints in arbitrary models we provide GW2SD. This tool calculates the window function,
which easily maps a GW spectrum to a SD amplitude, thus opening another portal for GW
cosmology with SDs, with wide reaching implications for particle physics phenomenology.

Key words: cosmology: theory — gravitational waves — early Universe — inflation —
cosmic background radiation.

1 INTRODUCTION

Gravitational wave (GW) astronomy has become a reality. The now
routine detection of compact object mergers by the LIGO/Virgo
collaboration (Abbott et al. 2019) has made, for good reasons, the
study of GWs one of the most active and current topics in cos-
mology and astrophysics. Ongoing and planned observations of the
tensor perturbation power spectrum currently span some 21 orders
of magnitudes of frequency: From cosmic microwave background
(CMB) upper limits on primordial B-modes (Ade et al. 2018;
Aghanim et al. 2020) measurements at the lowest frequencies, to
interferometry detections of GWs (e.g., Abbott et al. 2020b,a) and
Pulsar Timing Array (PTA) measurements (e.g., Perera et al. 2019;
Alam et al. 2020) at higher frequencies. In the next few years, a
plethora of experiments will test different scales between these ex-
tremes (e.g., Campeti et al. 2021, for overview).

Many physical processes can indeed lead to detectable tensor
perturbations (see Caprini & Figueroa 2018, for review). These in-
clude GWs from phase transitions (Caprini & Figueroa 2018; Nakai
et al. 2020), early universe gauge field production (Dimastrogio-
vanni et al. 2017; Machado et al. 2019; Machado et al. 2020), and
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1 E-mail: andrea.ravenni @ manchester.ac.uk
+ E-mail: patil@lorentz.leidenuniv.nl
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cosmic string networks (Buchmuller et al. 2019). Given these ex-
citing theoretical developments, it is interesting to ask which cos-
mological and astrophysical probes can help constrain these dif-
ferent scenarios. In this paper, we show that CMB spectral distor-
tions (SDs) can provide complementary information at frequencies
f =10"-10"" Hz unavailable to other probes. In this way, SDs
offer a bridge between scales probed by next-generation CMB sur-
veys (e.g., Ade et al. 2019; Hazumi et al. 2019; Delabrouille et al.
2019), and astrophysical GW observatories such as current (e.g.
Perera et al. 2019) and future (e.g. Weltman et al. 2020) PTA mea-
surements.

How do CMB SDs constrain tensor perturbations at the scales
that they do? Spectral distortions are created by mechanisms that
lead to energy release into the photon-baryon fluid at redshifts
7 < 2 x 10° when thermalization processes cease to be effi-
cient (Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich 1970;
Illarionov & Sunyaev 1975; Danese & de Zotti 1982; Burigana
et al. 1991; Hu & Silk 1993; Chluba & Sunyaev 2012). Many
sources of distortions exist within standard ACDM cosmology as
well as scenarios invoking new physics (see Chluba et al. 2019b,
for broad overview), and innovative experimental concepts (Kogut
et al. 2016, 2019; Chluba et al. 2019a) have now reached criti-
cal thresholds to significantly advance the long-standing distortion
constraints from COBE/FIRAS (Mather et al. 1994; Fixsen et al.
1996). A particular source of SDs is due to the dissipation of ten-
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sor modes while they travel almost unimpeded through the cosmic
plasma (Ota et al. 2014; Chluba et al. 2015a).

How do tensor perturbations distort the CMB spectrum? In
general, perturbations in the photon fluid dissipate through electron
scattering and free-streaming effects. Dissipation of scalar pertur-
bations provides one of the guaranteed sources of SDs in the early
Universe within the standard thermal history (e.g., Sunyaev & Zel-
dovich 1970; Daly 1991; Hu et al. 1994; Chluba et al. 2012b,a).
Similarly, tensor modes lose a small fraction of their energy by con-
tinuously sourcing perturbations in the photon fluid which then also
distort the CMB spectrum. In contrast to scalar modes, however, the
dissipation is mainly mediated by free-streaming effects. As shown
in detail by Chluba et al. (2015a), this leads to dissipation of per-
turbations over a vast range of scales, extending far beyond those
relevant to scalar perturbations. Thus, although the tensor dissipa-
tion rate is suppressed relative to scalar dissipation (tensor modes
are not significantly damped by interactions with the photons), this
opens new avenues for model constraints from SDs.

Building on Chluba et al. (2015a), we translate the relations
between p-distortions and primordial tensor perturbation into quan-
tities commonly used for GW searches. This makes it easier to com-
pare SD limits to those from other probes. As examples we con-
sider several inflationary models which source GWs beyond vac-
uum fluctuations, early-universe phase transitions (PTs) and cos-
mic string (CS) networks, all of which demonstrate how SD mea-
surements are and will be important for excluding portions of their
respective parameter spaces. Indeed we highlight that several of
the widely discussed models could have already constrained some
regions of their respective parameter spaces with SD limits from
COBEJFIRAS, taken over a quarter-century ago. Future spectrom-
eter concepts like PIXIE (Kogut et al. 2016) and its enhanced ver-
sions (e.g., PRISM Collaboration et al. 2014; Kogut et al. 2019)
could, through their increased sensitivity, significantly increase the
range of scales and parameter space covered. This could give CMB
spectral distortions an important role in this highly-synergistic
multi-messenger campaign, providing unique scientific opportuni-
ties for the next generation of cosmologists and particle phenome-
nologists alike.

2 GWS IN THE EXPANDING UNIVERSE

A GW can be represented as a transverse traceless tensor pertur-
bation of the metric’s spatial component, 4;;, and the energy den-
sity it carries is pgw = (h;j.h'ij)/(327rG), where the prime denotes
conformal time derivatives'. If these GWs were produced primor-
dially?, we can define the GW fractional energy density per decade
of wavelengths as (e.g., Watanabe & Komatsu 2006)

1 apgw(k, T]) _ pT(k)
o) dlnk  12a2(m)H ()

where p, is the critical density, and in the second equality we fac-
tored the primordial tensor power spectrum $7 and the determinis-
tic GW transfer function 7 gw.

In Watanabe & Komatsu (2006), several analytical approxima-
tions of the GW transfer function were developed. During radiation
domination (RD) we have

[Tewk, ) ~ & [j1Ge)], )

Qawlk, ) = [Téwk,m]*, (1)

' ‘We adopt the normalization conventions of Watanabe & Komatsu (2006).
2 We consider the case of sub-horizon generation further on.

whereas during matter domination (MD), one finds

2y . )
[Tl ~ k25 [AGK) jaCk) + By, (km)]™ - if k > keq

2 3’1—2'”)]2 ik <k
Al = 3 B cos(2kneq) sin(2kn;q) 7 3)
aneq 2krleq (kneq)
Bk = —1 + 1 - cos(an;q) B sin(2kneq) .
(k17eq) (k17eq) 2kigeq

Here, k.4 is the comoving wavenumber entering the horizon at the
time of matter-radiation equality 7.4, and j, and y, are the spherical
Bessel functions of first and second kind. For wavelengths much
smaller than those entering the horizon today (kn > 1) we can ex-
pand the GW transfer function derivatives at leading order in k. Ad-
ditionally, since we always observe quantities that involve (‘7'(’3\,‘,)2
integrated over some range of k, we can average over one period to
obtain (e.g., Caprini & Figueroa 2018)

(Towem]y % Meg/211" s )

which is a smooth function of & valid during MD. Similarly, during
RD we can apply the same procedure to Eq. (2), and obtain

(Twe Py ~ 1/207%. )

For later use we point out that during RD, where Eq. (5) is valid,
a o 7, while during MD relevant to Eq. (4) we have a o« 7%. To-
gether with Eq. (1), this means that the GW energy density at a
given scale evolves as Qgw « a *H™? o const during RD and
Qow < a*H™? « (1 + z) in the MD era.

As pointed out in Watanabe & Komatsu (2006), the approxi-
mations given above neglect some important details. One of these
is the process of neutrino damping, which has its greatest effects
on scales important to SD physics. The damping is effective dur-
ing RD but only after neutrino decoupling (7" < 2MeV), which
taken together almost exactly coincides with the SD regime. This
damping occurs since free streaming neutrinos correspond to a non-
negligible fraction of the energy density of the Universe during RD
and generate significant anisotropic stresses that result in the damp-
ing of tensor perturbations. The magnitude of the effect is a 35.6%
decrease of the power available in GW (Weinberg 2004). To include
this effect the transfer function given in Dicus & Repko (2005) is
used:

Téw = l Z an [njn(kn) - knjz1+l(k77)] s (6)
with the coefficients ay = 1, @, = 0.243807, as = 5.28424 x 1072
and ag = 6.13545x 1073, This is valid for the range of scales needed
in the following section.

It is clear from Eqgs. (1), (4) and (5) that the exact transfer
functions are important quantities for comparing the effects of the
GW background in the early and late Universe. In this paper, we
compare the SD sensitivity (< early Universe) to PTA and inter-
ferometry (< late Universe). Even CMB temperature anisotropies,
although sourced early on, mostly probe the Universe after the RD-
MD transition. Because of this it is essential to get the exact dynam-
ics of this transition right for any comparison to be meaningful. To
study the evolution of the GW background in detail we numeri-
cally solved for the wave evolution through the RD-MD transition,
which gave results agreeing with Watanabe & Komatsu (2006) and
Dicus & Repko (2005) in the appropriate limits, while allowing us
to more carefully model the GW background for a realistic cosmol-
ogy involving neutrino and dark energy densities.
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For the Planck 2018 best-fit cosmology (Aghanim et al. 2020),
the exact solution is well approximated by?

% (1 + ik + a3+ a3k’2) , K= k_*’ 7
where @) = 5.74, ay = —2.47, a3 = 14.48,k, = 1/551 Mpc™', D =
0.642 is the neutrino damping factor and Q; = 9.19 x 107 is the
combined density of radiation and neutrinos, treating the latter as
massless. This solution differs by ~ 20% from Caprini & Figueroa
(2018), with better matching arising when neglecting the neutrino
energy density. For details see Kite et. al. (in preparation).

Since gravitational wave upper limits are usually quoted as
function of frequencies rather than wavelengths, we will use the
relation k/Mpc™" = 6.5 x 10" f/Hz to change units.

k
Qgw/Pr =

3 p-DISTORTIONS FROM TENSOR PERTURBATIONS

Much like scalar perturbations, tensor perturbations dissipate over
time, both transferring energy to neutrinos and (in smaller propor-
tion) to photons. Primordial tensor perturbations entering the hori-
zon during or slightly before the u-era (5 x 10* < z < 2 x 109),
when dissipating, generate u-distortions of the CMB that will be
observable today (Ota et al. 2014; Chluba et al. 2015a).

The average value of p-distortions today is related to the pri-
mordial tensor power spectrum via a window function W, (k)

(ow)(10) = f dInk W, (k) Pr(k), ®

which already averages oscillations by integrating over a transfer
function’s evolution throughout the u-era, achieving the usual fac-
tor of 1/2 implicitly. We calculate W,,(k) numerically according to
Chluba et al. (2015a). The window function is shown in Fig. 1.
In comparison to the corresponding k-space window function of
scalar perturbations (e.g., Chluba et al. 2012a, 2015b), the dissipa-
tion efficiency of tensors is about five orders of magnitude smaller,
highlighting how weakly tensor modes couple to the photon fluid.
Offsetting this loss, we can see that tensor modes contribute
to the generation of u-distortions over a vast range of scales, with a
power-law decay of contributions at k 2 10° Mpc™' (Fig. 1). This is
in stark contrast to the dissipation of scalar perturbations, which are
limited to scales k ~ 50 — 10,000 Mpc™', with a strong exponential
decay of contributions from k > 10,000 Mpc™' (e.g., Chluba et al.
2012a). Scalar modes damp by photon diffusion, which virtually
erases all perturbations once the dissipation scale is crossed. For
tensors, the photon damping is minute and photon perturbations
are continuously sourced by the driving tensor force, explaining
this significant difference (Chluba et al. 2015a). This makes SDs a
potentially unique probe of GWs from early-universe physics.

3.1 Time-dependent injection

Equation (8) determines the SD signal from primordial perturba-
tions that were created during inflation and only later enter the hori-
zon to dissipate their energy. Another possibility is to have pertur-
bations created on sub-horizon scales at later times. This requires a
generalisation of the window function formalism to account for the
new time dependence.

An immediate difference for sub-horizon injection is that neu-
trino damping will not occur, as this only matters for GWs that
cross the horizon between neutrino decoupling and the start of MD.

3 This does not include a factor of 1/2 for oscillations
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Figure 1. A series of curves demonstrating the form of the k-space window
function Wﬁ‘““ for various upper limits in redshift. For practical purposes,
Zmax = 10% is equivalent to W[f’ = W,,. The solid curve is the result for
power injection before the u era, while the other curves suffer from some
reduced visibility at higher k. The faded line shows the results without neu-
trino damping, leading to a =~ 30% increase across the window function.

This means one can use the simpler versions of the transfer func-
tion, valid in RD, given in Egs. (2) and (5). The time dependence
— which before was included in the physics underlying the win-
dow function — has to be made more explicit. Using redshift z to
better match Chluba et al. (2015a), Eq. (8) can be generalized to

<#Gw)(z=0)=f dlnkf dz W, (k2 Prk,2),  (9)
0 0

where we introduced the GW-u-distortion window primitive
W, (k, z), which captures the physics behind the damping of GWs.
Note that with Pr(k,z) = Pr(k) we recover Eq. (8) by defining
fow W, dz = W,. The explicit form of the window primitive is*.

8 HZUZ
45t
and for convenience we summarize here the quantities which are
relevant to calculate the window function (for their derivation and
further explanation we refer to Chluba et al. 2015a): 7 is the time
derivative of the Thomson optical depth. The terms 7ge ™" contain
the physics of how the GW transfer function 7w couples to the

photon fluid. These terms can be reliably approximated as

W, = 14x [Tewk, 2] Tok,2) e T(),  (10)

1 +4.48£2 +91&*
1+ 4.64¢ +90.2£2 + 100£3 + 556+ °
e a1, (11b)

Tolk,2) ~ To(&) = (11a)

with & = k/7’. The final term ,(57) is the energy branching ratio,
which gives the fraction of total energy injected into the photon
fluid that contributes to the u distortion. We use the simple analytic
approximation of the branching ratio (‘method B’ in Chluba 2016):

—(2/z )5/2 4
j,,(z)z{e h for z > 5% 10 , 12)

0 otherwise

with zg, = 1.98 x 10° denoting the redshift where thermalisation
becomes inefficient (see also Hu & Silk 1993).

4 We match the notation of Chluba et al. (2015a) with Tgw = V2775,
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We employ one further approximation in assuming the injec-
tion happens instantaneously across all scales at a time 7... There-
fore, the tensor perturbations are uncorrelated (Pr(k,n < n.) = 0)
up to 7. when their power spectrum abruptly jumps to some value
that we will now determine. The spectrum is found at all times after
n. by redshifting Qgw from the present-day value

0)

QGWkn>={;“m

Qow(k,m0) n>n. H*(n)
GW 0 7 Ez(’]) = :
n<. Hy

, (13)

where we used a™*/E? o« pgw/pe.

We will only consider power injection in the RD era, hence
the tensor power spectrum is then obtained using Eq. (1) together
with Eq. (2), and reads

12H2
Py, ) = e ae Qowk,mo) 1> .
0 n<n.

14

Notice that if not for the fact that the tensor perturbations ap-
pear at .., the power spectrum would always be time-independent:
it is in fact the equivalent of the primordial one in the “standard”
scenario described in Chluba et al. (2015a).

Using that Eq. (14) is independent of time during RD and in-
serting this into Eq. (9), we can remove the time dependence in
the integrand, leaving only changes in the upper limit of integra-
tion. It is therefore sufficient to study a series of window functions
Wime = foz"m W, dz for different upper limits in time. Examples of
W, are shown in Fig. 1. We can observe that even modes origi-
nating from z > 2 x 10° contribute to the generation of distortions.
The flat plateau of the window function at k ~ 0.1—10% Mpc™! is not
affected until zy.x < 5 X 10°, and will rapidly approach W™ ~ 0
as Zmax approaches 5 x 10%,

For numerical applications, it is convenient to pre-tabulate
the tensor window function W™ across k and injection redshift
Zmax- Since the background cosmology is fixed to high precision
(Planck Collaboration et al. 2018), this procedure avoids additional
approximations.” However, a few comments are in place: we can
further improve the treatment of the transition between the u and
y-distortion eras, which here we modelled as a step-function [see
Eq. (12)]. Including the more gradual transition (e.g., see discus-
sion in Chluba 2016), enhances the contributions from the largest
scales (k < 1072 Mpc’l), however, a more accurate treatment of
transfer effects is also required and left to future work.

With the procedure outlined in this section we can calculate
the tensor dissipation contribution to the present day value of u-
distortions. However, other processes, such as dissipation of acous-
tic modes and Compton cooling also source u-distortions, hence-
forth referred to as pome;- Any non-detection of an enhanced level of
SD would straightforwardly constrain models that generate a large
HUcw, comparable to or greater than yoye.. However, things are more
delicate when pgw becomes much smaller than the value of poper
expected in the standard cosmological model, foper = 2 X 1078
(e.g., Chluba 2016). In this regime, any actual analysis would re-
quire a marginalization of other sources, that we do not take into
account here. However, assuming standard slow-roll inflation, we
can in principle accurately predict the expected standard contribu-
tion given the power spectrum parameters measured at large angu-
lar scales (Chluba et al. 2012b; Khatri & Sunyaev 2013; Chluba &
Jeong 2014; Cabass et al. 2016; Chluba 2016). For simplicity, we
shall thus assume perfect removal of other u-contributions.

5 A simple interpolation routine to calculate W;"m is available here:
https://github.com/CMBSPEC/GW2SD.git

Below we will consider the upper limit on yu-distortions set by
COBEJFIRAS (1 < 9 x 107 95%CL) (Mather et al. 1994; Fixsen
et al. 1996), and the forecasted constraints for PIXIE (u < 3x 107%)
(Kogut et al. 2011), SuperPIXIE (u < 7.7 x 107°) (Kogut et al.
2019), Voyage 2050 (u < 1.9 x 107°) and 10xVoyage 2050 (u <
1.9 x 107'%) (Chluba et al. 2019b), all of which already account for
the presence of foregrounds following Abitbol et al. (2017).

3.2 Scalar contributions

Above we discussed separating pgw from piomer, taking the latter
to be the standard model expected value. A second discussion is
necessary, however, regarding the contribution that scalar pertur-
bations have to a u signal. This is important, considering that en-
ergetic early-universe phenomena have the potential to generate
scalar perturbations as well as tensors, which will enhance the SD
production. In the following section we will discuss the scalar con-
tributions for models where it is possible to do so, but some state-
ments apply in general: Chluba et al. (2015a) show that the corre-
sponding window functions for scalar perturbations peak around
10° higher than for tensors, but for a narrower range of scales
(k ~ 50 — 10,000Mpc™ or f ~ 8 x 107" — 1.5 x 107" Hz, as
previously discussed). Thus, for tensor perturbations to dominate
the spectral distortion signal the scalar spectrum created must be
less than 1 part in 10° of the tensor spectrum, or must be injected
on smaller scales than k ~ 10*Mpc™". Provided both the wider ten-
sor window, and that some early processes will be almost invisible
to scalar probes, the machinery explained above for constraining
early tensor energy injection are still of interest and importance,
despite the relatively low sensitivity.

4 MINIMALLY PARAMETRIC CONSTRAINTS

In this section, we calculate the constraining power of spectro-
scopic CMB measurements in a minimally parametric fashion. As
in Campeti et al. (2021), we parametrize the primordial tensor
power spectrum using logarithmically spaced tophat functions cen-
tered around some In k; with Ink;,; — Ink; = 1.2Vi. This allow us
an easy comparison with Fig. 8 of their paper:

Pri) = Y AWk, (15a)

1 if Ink € [Ink; —0.6,Ink; + 0.6]

) (15b)
0 otherwise

Wik) = {
Therefore, for each i, we insert Eq. (15a) into Eq. (8), and calcu-
late the maximum value of A; that is compatible with the chosen
(ugw (o) upper limit. With that information we then use Eq. (1) to
calculate the corresponding Qgw constraint.

In Fig. 2 we show the sensitivity curves for COBE/FIRAS,
PIXIE, SuperPIXIE, Voyage 2050 and 10xVoyage 2050, which
all include estimated penalties from foregrounds. For comparison,
we also report the sensitivity curves from Campeti et al. (2021),
which recently compiled the results of many planned experiments
(Hazumi et al. 2019; Smith & Caldwell 2019; Arca Sedda et al.
2021; Sesana et al. 2019; Kuroyanagi et al. 2015; Crowder & Cor-
nish 2005; El-Neaj et al. 2020; Reitze et al. 2019; Hild et al. 2011;
Weltman et al. 2020). Moreover, we show the NANOGrav 12.5 year
observation (Arzoumanian et al. 2020), interpreted as GW stochas-
tic background according to their 5 frequency power-law model
(see Kuroyanagi et al. 2020, for more discussion on whether the
signal can be inflationary). Since the extrapolation of a red spectra
would be favourable for a SD detection, we conservatively assume
a flat spectrum.

© 0000 RAS, MNRAS 000, 000-000
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Figure 2. Upper limits on the energy density of gravitational waves from measurements of y-distortions for various experimental configurations (COBE/FIRAS,
PIXIE, SuperPIXIE, Voyage 2050, 10xVoyage 2050). For ease of comparison, we also report the upper limits for various other CMB, PTA and direct detection
experiments (taken from Campeti et al. 2021), and the NANOGrav 12.5 years 95% confidence interval assuming a flat spectrum.

While the existing constraint derived from the COBE/FIRAS
data is a few order of magnitude higher than other probes, next
generation satellites will start to bridge nicely the frequency gap
existing between CMB observation and direct GW detection. It is
interesting to notice that the upper bound from SDs will cover a
very broad range of frequencies (more than 5 decades in f). As
such, any signal that is not sharply peaked in frequency will gener-
ate a comparatively higher y-distortion, tightening the constraints
on specific parametric models, as we will see in the next section.

5 CONSTRAINTS ON SPECIFIC MODELS

In this section, we consider concrete models that generate GWs
over a wide range of scales. For each of the following models it
is enough to insert their corresponding tensor power spectrum into
Eq. (8) or (9) to obtain the predicted pu-distortion, depending on
whether the injection is primordial or happens after reheating.
Generally speaking, once accounting for the limits on r from
Planck (Ade et al. 2018; Aghanim et al. 2020), we understand
that appreciable SDs can only be created by models with substan-
tially enhanced tensor power at small scales. To also avoid fu-
ture constraints at small scales, models with localized features at
f = 107" - 107 Hz are most promising. In the context of PTs, for
example, this identifies low-scale dark or hidden sector transitions
at energies =~ 10 MeV - 10 eV in the post-inflation era as a target.

5.1 Single-field slow-roll inflation

As a benchmark we consider the tensor perturbations generated by
single-field slow-roll inflation. This model predicts a very low, al-
most scale invariant tensor spectrum, and as such we cannot expect
SD constraints to be competitive with either CMB measurements
or future direct detections at small scales. We however include the
model for completeness, and as a point of comparison. The tensor

spectrum from this model is given by
P = Ar (k/ko)'™ . (16)

© 0000 RAS, MNRAS 000, 000-000

where the amplitude of tensor and scalar perturbations Ay and
Ag are related by the tensor to scalar ratio by r = Ar/As, and
ny = —r/8 (Lyth & Riotto 1999). Current constraints, mostly
driven by Planck low-{ temperature and BICEP2/Keck B-modes
data, (Ade et al. 2018; Aghanim et al. 2020) set the upper limit
rooo2 < 0.06 (95%) at k = 0.002Mpc~'. Upon noticing |ny| <
0.0075 ~ 0, one can approximate the result by integrating a flat
spectrum yielding (u)(r) ~ 1.68 x 10~!* r which gives the correct
result to within < 5% for all values not ruled out by Planck. This
shows that for any allowed value of r the SD signal will be out of
reach for even the most sensitive SD mission concepts.

In principle this contribution is present as a component of
tensor spectrum in the other models considered in the following
sections. However, since the amount of SD it generates is any-
way negligible, we will omit it in the following. Note that the
Planck constraint on r will also be considered for other models.
Strictly speaking, the aforementioned constraint only apply to a
power-law tensor spectrum, a condition not necessarily met by
the models we will consider in the following. To provide some
context to the SD constraints we will draw, we opt to employ an
order-of-magnitude estimate of the Planck constraint, simply re-
quiring that any spectrum of tensor perturbations, £r(k), must sat-
isfy Pr(k) /?;f(k)| k=0.002 Mpe-! < 0.06. In principle, a proper analy-
sis of the Planck and BICEP2/Keck data could be carried out to set
constraints on the models that will be discussed here. This, how-
ever, goes beyond the scope of the paper. LiteBIRD (Hazumi et al.
2019), providing low multipole BB information at much higher pre-
cision, will allow us to further improve the limits set by Planck on
the same range of scales in the near future.

5.2 Spectator SU(2) axions

Many inflationary models require the dynamics of additional spec-
tator fields active during the inflationary period, itself driven by a
separate scalar field. Generally speaking, the dynamics of the spec-
tator field generate tensor perturbations in addition to those pro-
duced by the vacuum fluctuations of the quasi de Sitter background.
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In this section, following Campeti et al. (2021), we consider
an axion-SU(2) spectator field based on the “chromo-natural” in-
flation model (Adshead & Wyman 2012; Dimastrogiovanni et al.
2017). Here, the SU(2) gauge fields acquire an expectation value,
the fluctuations around which include a tensor perturbation with
a bilinear coupling to the graviton. The dynamics of the spectator
SU(2) axion are such that gravitons of a particular helicity are am-
plified via a transient tachyonic instability, resulting in a (circularly
polarized) contribution to the tensor power spectrum.

The spectrum for this model is given by (see Thorne et al.
2018)

g. 1 k
PLUOW) = PR (k) exp [—ﬁ n’ (E)] : amn

which relates to the spectrum of scalar perturbations
Pi = As (k/kos ™" (18)

In order to constrain this model, we use the best-fit Planck param-
eters (Planck Collaboration et al. 2018) for Eq. (18). However, r.,
k, and o are related to the parameters of the gauge theory and are
essentially free to vary here. We take as a reasonable set of values,
those given in Campeti et al. (2021) (their model AX3) (7., kp,0) =
(50, 10° Mpc™', 4.8), which would yield u = 2.1 x 10~'2. Entertain-
ing the question as to which set of parameters would maximize the
u distortion signal while satisfying both observational and model
constraints we find (r.,k,,0) = (265,2.85 X 10* Mpc’1,4.02).
However, even this best case scenario leaves no appreciable SD
signal, yielding g = 2.1 x 107!, This result can be understood by
considering the parabolic shape of the spectrum in log#-logk space,
which due to model constraints cannot peak to sharply (e.g. see
Egs. (A8) and (A11) in Thorne et al. 2018). This means that a spec-
trum which avoids the Planck constraints cannot simultaneously
peak too high in the SD regime. In contrast, the models consid-
ered in the following subsections have spectra resembling broken
power laws, and can be much more effective in satisfying current
constraints while simultaneously generating significant SDs.

5.3 Ultra-light U(1) audible axions

The sensitivity of SD measurements to axion standard model exten-
sions have already been discussed in the literature (Mukherjee et al.
2018). In this subsection however we consider a model proposed in
Machado et al. (2019); Machado et al. (2020), in which the axions
specifically produce a strong GW signal. In this scenario (generic
in the context of string compactifications), one has the presence of
one or more U(1) axions with mass m and decay constant f; that
couple to dark sector photons. At early times during radiation dom-
ination, when the Hubble parameter H is greater than m, the axion
field is over-damped and is frozen. Once H < m, corresponding to
the temperature 7 ~ +/mMy,, the axion starts to oscillate around
the minimum of its potential, sourcing gauge field production of a
particular helicity that goes on to generate GWs. Since these GW's
are only produced on sub-horizon scales after the axion starts os-
cillating, the results of Sect. 3.1 are essential in finding the u signal
accurately.

The audible axion scenario features a qualitative difference
with models that secondarily generate gravitation waves via gauge
field production during inflation, as the generation occurs during
radiation domination, when H < m. The oscillating axion at the
minimum of the potential must remain a sub-dominant contribution
to the energy budget, otherwise we’d have a phase of intermediate
matter domination.

It follows that the contribution of the oscillating axion and
the subsequently produced dark photons must be sufficiently sub-
leading to the energy density in the radiation fluid. Their relative
contributions to the curvature perturbation in total comoving gauge
will consequently be suppressed relative to the contribution from
fluctuations in the radiation fluid already present before dark pho-
ton production (originating from the vacuum fluctuations sourced
during inflation). Hence the contribution of scalar perturbations
sourced by axion dynamics to the u—distortion signal will be sub-
leading to those generated by primordial perturbations from infla-
tion, and can safely be neglected.

This model is of particular interest to us as it produces a nar-
rower spectrum of GWs. Thus, to constrain its parameter space it
is important to have probes that can cover all phenomenologically
relevant frequencies. The GWs produced can be parametrized as a
spectrum of the form

63050 (fan) (k/R)
1+ (/R) exp[12.9 (k/k = 1)]

um _

Qg (k) = (19a)
with

k= 1.3x 10" [fan/Hz] Mpc™'. (19b)

Here Qgw(faa) and faa are a function of the free parameters of the

model. These parameters, as introduced in Machado et al. (2019);

Machado et al. (2020), are f,, m, @ and 6, relating to the fit param-
eters in Eq. (19a) via

9123 m 1/2
A R 1074 H [a— [ J , 2
fan = 6x 107 Hz 66 10meV (202)
. « f¢ 4 92 4/3
N -4 1
QGW (fAA) ~ 1.67 x 10 8p [M—p]] |:;:| s (20b)

which have both been redshifted to their present-day values. The
first two free parameters (i.e., f, and m) essentially dictate the
height and frequency of the peak in the power spectrum respec-
tively. The second two parameters are limited to @ ~ 10 — 100 and
0 ~ O(1), and do not significantly change the shape of the spectrum
for the range of allowed values. These parameters are therefore de-
generate with the first two. We choose fiducial values of @ = 60
and 6 = 1, but the main results given here hold more generally.

The direct dependence of fi..x on m means that different types
of experiment will probe different mass scales. This is shown Fig. 3,
where vertical dotted lines distinguish where different detection
methods are dominant. From here it can be seen that SD are sensi-
tive to the ultralight limit of the U(1) audible axion model, a result
which again holds for any valid combination of & and 6.

Note that Planck extends the limits from COBE/FIRAS at low
masses to smaller values of f,. Future SDs measurements could
significantly improve the limits from Planck to higher masses, cov-
ering a wider range of the parameter space of phenomenological
interest.

We note in particular how SDs can constrain masses in a range
not accessible to other measurements (107>2—10"'3 eV). Such ultra-
light axions may be ubiquitous in particular string compactifica-
tions (Arvanitaki et al. 2010), and moreover, could be a viable dark
matter candidate were they to form a condensate at late times (Hui
et al. 2017; Marsh 2016), further illustrating the utility of SDs for
particle phenomenology.

© 0000 RAS, MNRAS 000, 000-000
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Figure 3. A contour plot showing the expected SD signal arising from dif-
ferent combinations of fy and m in the U(1) model. Without loss of general-
ity, fiducial values of @ = 60 and 6 = 1 were chosen. Contours showing the
visibility of several proposed spectrometers are shown. Vertical dotted lines
indicate regions of the phase space where different probes are most sensitive
(from left to right: SD, PTA and Interferometry). Dotted lines continuing the
SD mission contours show the estimates ignoring late time injection.

5.4 Phase transitions beyond the Standard Model

The post-inflationary epoch may have seen a variety of first or-
der phase transitions (PTs) in theories that go beyond the stan-
dard model of particle physics. First order PTs are characterized
by the fact that latent energy is released, and phases of true vacuum
nucleate within false vacuum domains, resulting in bubble colli-
sions (BC) that generate a stochastic GW background. Moreover,
magneto-hydrodynamic (MHD) turbulence and sound waves (SW)
in the bulk plasma during and after the phase transition also source
sub-horizon GWs at commensurate frequencies. If these processes
take place during the u-era or shortly before, they can potentially
result in measurable SDs. Here we once again use the results of
Sect. 3.1 to calculate the associated SDs.

Referring to the review of Caprini & Figueroa (2018), we see
that the spectra resulting from the three different mechanisms for
GW production from PTs are given by

2 H
O, (f) = 1.67x 1077 (%) (’f‘fj)z (gl(oTO ))' (21a)
y 0.1103 \  3.8(f/fuc)*
0.42 + 12 | 1+ 2.8(f/ fac)>8’
20SW _ -6 i g 100 '
RO (f) = 2.65x 10 (ﬁ)(lm)(g*(m) 21b)
<o) ()
" fsw 4+3(f/fsw)?)
2 ~MHD _ 4 & KMHDQ % 100 %
JROMID(f) = 335 % 10 (ﬁ)(lw) (_g*m)) 210)

(f/ fump)?
[1+(f/Amp)] T (1 +8xf/h)

X vy,
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with peak frequencies

AT (T ]F
o= [H*][IOOGeVH 100 ] ’ @1d)

0.62
=1. 10°Hz | ——————— 21
foc = 1.65x 10 Z(I.S—O.lvw+va)X0’ (2le)
fow = 1.9x 10 Hz v, xo, (21f)
funp = 2.7 % 10° Hzv,! xq . (21g)

Here, the three principal model parameters are @, 8 and v,,, which
fix the amount of latent heat released by the transition as a fraction
of the total energy density, inverse time duration of the PT, and
velocity of bubble walls respectively. Denoted with * are quantities
at the time of the PT, making another key parameter zpr. The first
two parameters follow 0 < @ < 1 and 8/H, > 1.

The velocity of sound waves has been set to unity, since bub-
ble walls usually propagate close to the speed of light. Parameters
labelled «; € [0, 1] give the weighted contribution from each mech-
anism. For this work we have used xgc = 1, kmup = «, and

a

Y 07340083 va+a’

the last of which is valid for v,, ~ 1. The expected SD limits on PTs
given these considerations are shown in Fig. 4. Even for low-energy
PTs (@ = 0.1) a PIXIE-like mission would explore some of the
parameter space not already excluded by Planck; however, it would
only see rather long PT. In the more energetic cases (@ > 0.5), SD
missions could realistically detect PT lasting small fractions of the
age of the Universe, and occurring relatively late in cosmic history.

Evidently, SDs provide a unique and complimentary window
into low scale phase transitions (corresponding to energy scales in
the range 10 Mev - 10 eV) that are not possible to probe with any
other observation. An important caveat to our discussion of this sce-
nario is the potential for the generation of sub-horizon scalar per-
turbations during and after phase transitions. Sub-dominant contri-
butions arising from the scalar field dynamics have been calculated
in Cutting et al. (2018), however retaining the scalar contributions
from sound waves and MHD turbulence generated after the transi-
tion will require further study, and remains an important open ques-
tion for the present analysis. Our limits can therefore be considered
conservative.

(22)

Ky

5.5 GUT cosmic string networks

Another tell tale sign of physics beyond the Standard Model is the
existence of topological defects. Excluding textures, the standard
model does not allow for any defects. However, larger gauge sym-
metries (ubiquitous in models that go beyond the Standard Model)
could admit symmetry breaking patterns that generate topological
defects in the early Universe (see Kibble 1980, 1982) which could
have persisted into cosmologically observable epochs. Although
the simplest models of monopoles and domain walls are tightly
constrained (see Sects. 13.5.3 and 14.3.3 in Vilenkin & Shellard
1994), cosmic strings networks remain a theoretical possibility and
can impart potentially observable GW signals (see Sect. 10.4 of
Vilenkin & Shellard 1994).

As an example, we consider a model proposed by Buchmuller
et al. (2019) which attempts leptogenesis within an SO(10) grand
unified theory via a U(1)p_, phase transition, where a local U(1)
baryon minus lepton number symmetry is spontaneously broken.
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Figure 4. A series of contour plots showing the expected SD signal arising from low scale first order phase transitions. Dotted lines (visible on the left) give the
sensitivity with standard window function, W,,(k), showing that late power injection leads to a decrease of less than an order of magnitude for 10° < zpr < 10°.
The limits from Planck are also shown for comparison. The temperature at the time of the PT can be found with Tpr/MeV ~ 2 x 10~ 10zpy.

The result of the B — L transition will be a meta-stable CS net-
work generated at the time of the transition, which over the course
of the collapse generates a mostly flat spectrum of GWs due to the
decay of string loops. An approximate form of their spectrum is
given in terms of the model parameters « and Gu as®

RS, = ROy min|(f/£)7* 1] | (23a)
G/J -1/2
= 1014H —nK/4[ 23b
fi=3x% ze 07 , (23b)
12
o = g.oaan || (230

Buchmuller et al. (2019) give a value of I' ~ 50 for this particular
model, and we use a value of Q.4 = 2.5 x 1072,

In reality string network collapse would be a function of time,
but to match the formalism outlined in Sect. 3.1 we conservatively
assume the entire spectrum emerges at the final moment of collapse
given by Buchmuller et al. (2019)

70\ (LG .\
Zeollapse = F() r 7G e .

The spectrum grows o f>/? up to f,, and is flat for higher fre-
quencies. Furthermore, f, only depends weakly on Gu but varies
significantly with «. This means that once « is large enough that the
spectrum is flat across the entire window of visibility for a given
experiment, the probe will only be sensitive to Gu. With SD mis-
sions probing lower frequencies than astrophysical probes they will
be complementary in limiting the lower bounds of the x parameter.
The potential of SD missions for constraining this model is shown
in Fig. 5.

Given that the GW spectra produced by CS network collapse
has a plateau at smaller scales, for any given sensitivity depicted in
Fig. 2, we see that any one of the probes depicted will be equally
good at detecting the GW background produced. It is also worth
noting that the type of spectrum considered here will hold more
generally for a wide range of CS models (see Figueroa et al. 2020).

24

6 Not to be confused with the SD amplitude y. The combination G will
always be in reference to the energy scale of the CS physics.
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G

Figure 5. A contour plot showing the expected u signal from a CS network
arising from a U(1)p-;, phase transition at the GUT scale. The limit placed
by COBE/FIRAS is shown in red, and similarly for Planck in orange. Dashed
contours show the sensitivity of various proposed SD missions. Faint dotted
lines show the contours without using the zyax limited window function.

Although the generation of scalar perturbations of CS net-
works in the scaling regime is well understood, the situation is
much less clear for the scalar perturbations generated from the de-
cay of meta-stable networks. Moreover, it is unclear whether the
dominant decay channel will be via gravitational wave production
or scalar perturbations, and the answer will certainly be very model
dependent. This remains another open question as far as this study
is concerned, and the absence of any such detailed calculations is it-
self perhaps due to the fact that it may have been unclear in the past
what observational consequences, if any, sub-horizon generation of
scalar perturbations generated by CS network collapse would have.
We hope the results of this paper will provide the necessary moti-
vation for such calculations.

© 0000 RAS, MNRAS 000, 000-000



6 DISCUSSION AND CONCLUSIONS

Highly energetic events in the early Universe, either during in-
flation or subsequently during radiation domination, can inject
power into the GW spectrum. This can include GWs from sources
within the standard ACDM cosmology, or from models that invoke
physics beyond it. Detecting the GW spectrum is therefore key to
further scrutinizing our current paradigm, as well as pushing our
knowledge of the early Universe to new and exciting areas. Future
experiments will probe these stochastic backgrounds, each sensi-
tive to a range of frequencies/wavelengths dictated by the nature
of the experiment. As we have highlighted here, a wide range of
GW frequencies (f = 107'°-107° Hz) can only be probed by SD
observations. This large span of wavelengths compensates for the
relatively low efficiency of generating SDs from GWs, thus making
them a potentially powerful probe of physics beyond the Standard
Models of both particle physics and cosmology.

This work aims to introduce SDs as a complimentary probe
through which one can detect and constrain stochastic GW back-
grounds. The fundamental element to link these two messengers is
the k-space window function, which maps a given GW spectrum
into a SD signal imprinted before last scattering [see Eqs. 8 and 9].
In order to study the injection of power on sub-horizon scales, the
window function for primordial tensor perturbations has been gen-
eralised [see Eq. 9], leading to minor changes in some models (Fig.
3) but large changes in others (Fig. 5). This is essentially related
to the fact that GWs have less cosmic history to dissipate their en-
ergy to the photon-baryon plasma. A simple python tool is provided
at GW2SD’ and allows one to easily estimate SD limits on various
models, given the tensor power spectrum, Pr(k, z), that comes into
existence at a single redshift z. This is certainly a good approxima-
tion for 1’st order phase transitions, and holds to a good approxi-
mation for scenarios that dynamically generate GWs over a short
duration. Refinements to account for the exact time-dependence of
the process are left to future work.

To illustrate the utility of SDs for GW cosmology, a series of
phenomenological models were discussed, and their resulting SD
signals studied: As expected, the tensor perturbations generated by
single-field slow-roll inflation are too weak to be measured with
SDs (Ota et al. 2014; Chluba et al. 2015a). Spectator axion-SU(2)
fields too, even in more favourable cases that we considered, will
realistically be out of reach in the foreseeable future. The Audible
axion model (Sect. 5.3) on the other hand, can have a large region
of its parameter space constrained by SDs, particularly for a wide
range of masses in the ultra-light regime (Fig. 3). Similarly, the
GWs from low scale (10 eV - 10 MeV) dark sector phase transitions
in the early Universe will be visible with future SD missions if the
relative energy content of the participating field is sufficiently large,
and the duration sufficiently long (see Sect. 5.4 and Fig. 4). The
typically flat GW spectra produced by CS networks can be seen by
many instruments, but SDs will be complementary to other probes
in being sensitive to string collapse especially in the p-era. It is
noteworthy that some of the aforementioned models were already
constrained with COBE/FIRAS long before first limits from Planck
existed. Future CMB spectrometers like SuperPIXIE (Kogut et al.
2019) could establish a new frontier in this respect.

7 https://github.com/CMBSPEC/GW2SD.git
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As we have discussed, both in general and for specific mod-
els, any SD constraints should include both the scalar and tensor
perturbations arising from energetic events (e.g. see Tashiro et al.
2013; Amin & Grin 2014, for SDs from scalar perturbations of CS
and PTs, respectively). This potential for combining sources is an-
other advantage SD experiments have over GW-based experiments,
since the latter are only sensitive to the direct tensor perturbations.
This advantage is not easily utilised for the models discussed in this
paper, however, since the necessary scalar spectra are generally ab-
sent from the literature. Where the inclusion is possible, it is again
important to highlight that SDs from tensor perturbations cover a
wider range of physical scales than SDs from scalar sources, thus
extending the reach of SDs to earlier epochs. In addition, some sce-
narios do not produce any significant scalar perturbations [e.g., the
axion-SU(2) model], making it crucial to account for SDs caused
by tensor perturbations. Overall, SDs uniquely probe the presence
of small-scale perturbations in regimes that are not directly acces-
sible, thus highlighting the important role that future CMB spec-
trometers could play in GW cosmology, and, by extension, beyond
the Standard Model phenomenology.

DATA AVAILABILITY

Window functions (e.g. Fig. 1) are available at https://github.
com/CMBSPEC/GW2SD.git.
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Paper II: Clarifying transfer function
approximations for the large-scale

gravitational wave background in

ACDM

This paper offers a follow up to the first paper (chapter 4 of this thesis). We revisit and
model the transfer functions for tensor perturbations in the primordial Universe (see
chapter [3)), making use of the Physics described in[Watanabe & Komatsu| (2006) and
Saikawa & Shirai (2018)).

In performing the modelling from the ground up we are able to independently verify
the results of [Weinberg| (2004); Dicus & Repko| (2005), and demonstrate some potential
mistakes which would easily go unnoticed in the literature. Firstly we find that analytic
approximations based on a Universe only containing matter and radiation will only
work using a corresponding modified current age of the Universe. Secondly we show
that correctly accounting for the density of relativistic particles (as compared to only
radiation) also provides a noticable correction. These previous two effects can mask

eachother, and thus make it difficult to fully reproduce some results in the literature.
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5: PAPER II: CLARIFYING TRANSFER FUNCTION APPROXIMATIONS FOR THE
LARGE-SCALE GRAVITATIONAL WAVE BACKGROUND IN ACDM

We also use the numerical treatment to verify the effects that late time acceleration
(see chapter [I)) would have on the background of gravitational waves, which amount

mostly to phase changes in the low frequency part of the spectrum.
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ABSTRACT

The primordial gravitational wave background (GWB) offers an exciting future avenue of discovery for new physics. Its infor-
mation content encodes multiple eras in the early Universe’s history, corresponding to many orders of magnitude in frequency
and physical scale to be measured today. By numerically solving for the GW transfer functions we provide simple yet accurate
formulas describing the average power of the large-scale energy spectrum of the GWB for arbitrary primordial tensor power
spectra. In doing so we can pedagogically explain and clarify previous GWB literature, highlight the important cosmological
parameters of various GWB features, and reveal multiple ways in which cancelling conceptual errors can give deceptively ac-
curate results. The scales considered here are particularly important for CMB probes of the GWB, via B-modes and spectral
distortions. In particular, we carefully study the effects of both neutrino damping, and the precise nature of the transition be-
tween the radiation-dominated (RD) and matter-dominated (MD) eras. A byproduct of numerically solving the problem is the
ability to study the robustness of common approximations in the literature. Specifically, we show that a numerical treatment is
especially important around the RD-MD transition, and for a brief moment of history where neutrino damping occurs during
MD. In passing we also discuss the effects of late acceleration caused by dark energy — showing that this can be neglected in
most practical GWB applications — and the effects of changing relativistic degrees of freedom on the GWB at very small-scales.

Key words: cosmology: theory — gravitational waves —

1 INTRODUCTION

The detection of the first gravitational wave (GW) (LIGO Scientific
Collaboration & Virgo Collaboration 2016) opened a door to a novel
way of studying the Universe. Decades of studying the light arriving
from the cosmos has provided us with modern precision cosmology
as we know it, and with some poetic license, we are now able to hear
the Universe as well as see it.

The excitement of this prospect has led to a suite of new upcom-
ing probes (either proposed or under construction) which will listen
for GWs in different frequency bands (see Campeti et al. 2021, for
review). From lowest to highest frequency GWs we have CMB B-
mode measurements (Ade et al. 2018; Aghanim et al. 2020), spectral
distortion measurements (Kite et al. 2020), pulsar timing array mea-
surements (Perera et al. 2019; Alam et al. 2020), and finally direct
detection using interferometry (Abbott et al. 2020b,a). Through a
combination of all these probes we can construct a comprehensive
picture of the symphony of GWs in the Universe, and refine our un-
derstanding of fundamental physics in the process.

In this work, we focus on primordial origins of GWSs rather than
astrophysical sources. Our study therefore relates to searches for a
stochastic gravitational wave background (GWB) rather than sin-
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gle isolated events. The exact physics that will be revealed through
studying this background is broad and diverse (see Caprini &
Figueroa 2018, for review).

The goal of this paper is then twofold: firstly to pedagogically in-
troduce the physics of the GWB to clarify other literature, revealing
potential pitfalls in the analytic modelling, and secondly to provide
a simple yet accurate analytic description for the mapping between
the present-day large-scale GWB energy spectrum and the corre-
sponding primordial tensor power. The latter allows our results to
be applied to general inflationary models, making this work particu-
larly relevant to the interpretation of B-mode and spectral distortion
searches for new physics.

The mapping from underlying physical model to present-day ob-
servations requires a detailed understanding of the GW transfer
function, for which various solutions have been considered (e.g.,
Watanabe & Komatsu 2006; Dicus & Repko 2005; Caprini &
Figueroa 2018). We expand upon this literature with a numerical
treatment of the GWB which accounts for the nuanced cosmological
expansion through radiation-dominated (RD) and matter-dominated
(MD) eras, the late time accelerated expansion from dark energy
(DE) and the non-negligible damping from free-streaming neutri-
nos. This allows us to give the promised simple fits for the average
large-scale GWB energy spectrum in a number of fiducial cosmo-
logical scenarios.

Accurately accounting for the transition between RD and MD
eras is especially important in calculations of the transfer function
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for non-standard thermal histories, such as those with epochs of
early matter domination frequently encountered in a variety of phe-
nomenological extensions of the standard cosmology (Acharya et al.
2008, 2019), or for scenarios where the primordial GW spectrum is
significantly enhanced or modulated, relevant, for instance, in sce-
narios of primordial black hole formation (Ballesteros et al. 2020;
Bhattacharya et al. 2021; Green & Kavanagh 2021; Arbey et al.
2021). We will discuss how the results of this paper can also be
straightforwardly extended to such applications.

This paper is organised as follows: in Sect. 2 we qualitatively re-
view the broad range of fundamental physics imprinted on the GWB.
This will aid the reader in understanding the more quantitative ap-
proach in Sect. 3, where we analytically solve the equation govern-
ing the evolution of GWs in limiting cases. These solutions, although
previously considered, will serve to clarify some confusion in the lit-
erature about their application. The numerical method is explained
and results shown in Sect. 4, focusing on the reliability of the an-
alytic results previously found. One region of parameter space not
captured well by existing approximations is the MD-RD transition,
which is important for CMB scale probes. Hence in this section we
provide simple fits for the large-scale GWB, providing an alternative
to the usual analytic approximations. More general features of the
GWB are discussed in Sect. 5, where we demonstrate the principal
cosmological dependence of neutrino damping and the main effects
of late time acceleration on the GWB. For completeness we include
some discussion of changes in the relativistic degrees of freedom
and their relevance to SD constraints on GW backgrounds. We point
out in this section how a combination of the simple fits and pretab-
ulated data on relativistic degrees of freedom can accurately model
the spectrum to within ~ 5% on all scales. Finally we summarise
and conclude in Sect. 6.

2 PHYSICS CONTENT OF THE GWB

The study of cosmological perturbation theory explains the evo-
lution of perturbations on the otherwise smooth expanding FLRW
background, and is the foundation for much of modern cosmology
(Ma & Bertschinger 1995). For detailed explanation and derivations
with details about GWs see Weinberg (2008), but we summarise the
essential steps here. Perturbatively small terms are added to both
the metric g,, and the stress energy tensor 7,,, which can then
be equated through Einstein’s field equations. Three fundamental
types of perturbations emerge from this calculation: scalars, trans-
verse vectors and spatial transverse traceless tensors. The latter are
what we also understand as GWs. These waves couple to the corre-
sponding spatial transverse traceless tensor component within T},
the anisotropic stress of the medium, I1, which provides a source
term that can damp the GWB.

This last point is quite important, as typically speaking the par-
ticle species in the primordial plasma do not carry considerable
anisotropic stresses: tightly-coupled fluids rapidly isotropize and are
dominated by their densities and velocities, after which comes a pe-
riod of free streaming dominated solely by velocity'. Only a brief
intermediate phase therefore leads to a non-negligible anisotropic
stress that can interact with and damp the GWB. The dominant
damping effects therefore arise from the GWs themselves sourcing

! For a more general analysis that interpolates between the kinetic and hy-
drodynamic regimes, incorporating ambient matter interactions, see for in-
stance (Baym et al. 2017; Flauger & Weinberg 2018; Mirén-Granese 2020;
Zarei et al. 2021).

MNRAS 000, 000—-000 (0000)

the anisotropic stress in the medium, which will lead to an integro-
differential equation that we solve numerically.

A subdominant contribution to the damping is added by the cos-
mic photon field. At early times the photon fluid inherits enough
energy from the GWB to produce a noteworthy distortion to the
blackbody spectrum (Chluba et al. 2015), but with no discernible
effect on the GWB. The GWB scales most affected by photons are
k ~ 1072Mpc™', amounting to a 14% reduction in the amplitude
squared according to the work of Saikawa & Shirai (2018). However,
we note that at these scales it is both possible and necessary to model
the photon decoupling with the full Boltzmann equation, rather than
using a modified version of the damping term [e.g., Eq. (17a) below],
which contains several simplifying assumptions. The damping effect
of photons will not significantly change the results of this paper, and
a full detailed treatment is left to future work.

The neutrino, on the other hand, has a considerable damping ef-
fect over a large set of scales. Previous studies show that the neutrino
field will damp the GWB amplitude squared by ~ 35.6% (Wein-
berg 2004; Dicus & Repko 2005) at scales k 2 1/500Mpc™'. The
damping effect arising from neutrinos will be investigated below,
verifying and generalising on these previous studies. We note that it
is conceivable to treat the neutrino field with the same level of so-
phistication as the photon field: understanding how inherited energy
from the GWB will distort the otherwise thermal distribution of neu-
trino momenta, and modelling a gradual decoupling of the particles
through full Boltzmann hierarchies. However, also this program is
beyond the scope of this paper.

The bottom line then is that within the standard thermal history of
the Universe, the GWB is mostly free from the surrounding plasma,
only receiving small predictable damping effects from free stream-
ing neutrinos. The rest of the information encoded in the GWB
therefore comes from the state of the Universe at the time of horizon
crossing for each frequency, after which simple propagation occurs.
This is, in fact, the double-edged sword of GW cosmology: a feeble
interaction that simultaneously makes a clean and powerful probe of
almost the entirety of cosmological history, but which also makes
for an incredibly difficult detection at present time. A detection is a
sufficiently monumental task that glimpsing the GWB has become
the aspiration of many scientific teams, with a diverse set of probes.

One important state of the Universe’s history cleanly imprinted as
a GWB feature is the precise moment that relativistic particle species
no longer dominate the universal expansion, giving way to a matter
dominated era. Since GWs have a different evolution in each of the
eras, there is a predictable change in shape of the energy spectrum
(see Sect. 4.2). One goal of this paper is to elucidate this transition
in order to facilitate comparison between early and late Universe
probes of the GWB.

To model the moment of this transition it is important to cleanly
separate the cosmic inventory into relativistic and non-relativistic
particles. This usually equates to distinguishing massive and mass-
less species, but some subtleties arise when considering neutrinos.
We now know from data on neutrino oscillations (Fukuda et al. 1998;
Ahmad et al. 2001, 2002) to expect massive neutrinos, albeit with
masses limited to sub-eV scales (Planck Collaboration et al. 2018b;
Aker et al. 2021). The concordance model in Cosmology therefore
still treats these as massless entities in most applications. This is of-
ten sufficient since the sum of neutrino masses is predicted to be suf-
ficiently small that the early-universe dynamics will resemble that of
massless particles, even if at least two of the neutrino species must
be non-relativistic today (Lesgourgues & Pastor 2000).

In this paper, we therefore carefully distinguish the photon energy
density, Q, = 5.42x 107° [T,/2.7255 K]* [1/0.675] 7, from the total
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which includes the neutrino energy density Q,. The number of rel-
ativistic degrees of freedom, N.g, parameterizes the extra massless
degrees of freedom relative to the photons. The factor of 7/8 arises
due to the differences in particle statistics (Bose-Einstein or Fermi-
Dirac), while the factor (4/11)*3 relates to the energy release dur-
ing electron-positron annihilation. In this paper we assume the stan-
dard model expectation value of N.g = 3.046 (Mangano et al. 2005;
de Salas & Pastor 2016), which in turn gives Q. = 9.18 x 107
today. This distinction between the photon field and the full rela-
tivistic cosmic inventory has been ambiguous or neglected in some
literature, leading to additional confusion around the exact moment
of RD-MD transition (e.g. see discussion in sect. 5.2 in Caprini &
Figueroa 2018). As previously mentioned, resolving this disparity is
important for accurate comparison between the largest scale CMB
B-Modes and spectral distortion measurements, and constitute one
driving motivation for this work.

One more energy component needs to be included to complete
the cosmic inventory: the cosmological constant or dark energy® Q,.
Despite being the dominant form of energy today, it makes up a tiny
fraction of the Universe’s content at primordial times. The expected
effect of this component is only small changes on the largest phys-
ical scales, which can be verified numerically (Sect. 5.2). A more
notable difference from the late-time acceleration is the change in
the age of the Universe, which complicates the application of ana-
lytic solutions, as we clarify here.

The physics discussed thus far is all needed to accurately model
the GWB down to scales of k =~ 10° Mpc™'. Beyond these scales
the spectral features arise from changes in the number of relativis-
tic degrees of freedom, g., as originally discussed in Watanabe &
Komatsu (2006), generalised by Boyle & Steinhardt (2008), and re-
cently solved to high precision by Saikawa & Shirai (2018). These
changes in the energy budget, arising from the cooling effect of the
universal expansion, cause small temporary changes in the expan-
sion rate, which is imprinted on the GWB from the moment of hori-
zon crossing. We will briefly discuss the importance of these effect
on spectral distortion constraints, leaving the details of the physics
to the aforementioned papers.

3 ANALYTIC GW SOLUTIONS

The equation of motion governing the evolution of a GW, derived
from cosmological perturbation theory, is given by (Weinberg 2004;
Watanabe & Komatsu 2006; Boyle & Steinhardt 2008)

Ohy + 2%(9”;& + 12 = 167GaTT, @)

where hz(n) is the amplitude of the gravitational wave at wavenum-
ber k for each polarization A = +, X, and IT*(k, ) is the anisotropic
stress of the surrounding primordial plasma, both as a function of
wavenumber k and conformal time 7. Primes denote derivatives re-
spect to conformal time, but we keep some explicit derivatives for
clarity later where we will change coordinates. The amplitude of a
physical GW can be written as the product of a transfer function with

2 For the purposes of this paper, Q will be referred to as dark energy and
cosmological constant interchangeably — only dark energy with w = —1 is
considered.

Clarifying transfer function approximations 3
some initial amplitude 4} (57) = hﬁ"pﬂm‘l' sw(k,n), and as such we have
Tow(k,0) = 1. This decomposition of transfer function and initial
condition helpfully separates the statistical from the deterministic,
as well as distinguishing the inflationary from the post-reheating dy-
namics.

A primary goal of this paper is to give simple yet precise estimates
for the energy density of the GWB, which measured relative to the
critical density is given by

PGW Prk)

—_ oW _ I U 2
Qaw (k) = o &) = 52 Taw @I 3)

Here, the primordial tensor power spectrum
2k3 rim
Prlk) = 55 D (™) @)
P

encodes the statistical properties of the initial conditions via an en-
semble average®. For many applications the energy density is the
essential quantity one needs to know, since any experiment measur-
ing the GWB is sensitive to its energy density at a given time and
scale/frequency. It is clear from Eq. (3) that fundamental link be-
tween the primordial 7 and Qgw at any other time is the transfer
function 7w, which we study in detail next.

3.1 Transfer function

As previously discussed, a key feature in the GWB is a distinctive
bend on physical scales corresponding to the transition between the
radiation-dominated* (RD) and matter-dominated (MD) eras of the
Universe’s history. To understand this effect it is instructive to first
ignore both the contribution of DE and the effects of damping - the
former being negligible and the latter being an unnecessary compli-
cation to describe the physics of the transition. Solving the Friedman
Equations in this limit we have

n= 2 Van + Qrel - VQrel

5
Ho . (52)
1
a = 717 HoQum + 1Ho Qe (5b)
9~ 4H = aHy Qa3 + Quua . (5¢)
a
Using these expressions one can find
| 1 1 (1 1
ol Lol (60
a . n+n. . \§ 1+¢&
N = l/k* =4 Vﬂrel/HOQm- (6b)

The characteristic time-scale defined here is n. = 540.44 Mpc for
up-to-date cosmological parameters from Planck Collaboration et al.
(2018a). With this time-scale, the dimensionless quantities & = /7.
and k = k/k. = kn. naturally emerge. Using these variables is ad-
vantageous for various reasons, but most notably it adds a degree
of invariance in considering different cosmologies. Note the com-
monly appearing term «¢ = kn, which helps in matching to com-
mon approximations in the literature. Another common time-scale

3 We have followed the convention of Watanabe & Komatsu (2006) and
Saikawa & Shirai (2018), which can be expressed in terms of other con-
ventions by noting the normalisation of polarisation tensors in the latter ref-
erence, between Eq. (2.4) and Eq. (2.5).

4 We remind the reader that despite the misnomer we include relativistic
neutrinos here.
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for RD-MD equality is @eq = Qre1/mm, defined simply as the time in
which energy densities of the respective components matched’.

By incorporating this change of variables to the differential equa-
tion we find an elegant form

G Taw +2 (% + ﬁc) 0:Taw + K Taw =~ 0. @)
The characteristic time-scale used here can be further motivated by
noticing that it is the time that balances the two contributions to
Eq. (5b), showing it is closely related to the balance of matter and
radiation.

Using Eq. (7) it is possible to study the evolution of GWs far into
both RD (¢ < 1) and MD (¢ > 1). In each limiting case we obtain

2(1+L)_>{2/5 for RD , ®
& 1+€ 4/¢ for MD

which offer simple solutions to Eq. (7) in terms of spherical Bessel
functions which we summarise here:

Téw = Ajo(ké) = Byo(ké), (9a)
Tow = f—f [Cjji (k&) = Dy (x&)], (9b)
with derivatives
T = —k[Aji(k€) = By ()], (10a)
Tow = —i—’; [Cja(k€) = Dy, (kE)]. (10b)

Here A, B, C and D are constants determined from initial condi-
tions and matching conditions which we discuss below. Note that
the derivatives here are still with respect to conformal time, which
yields factors of k. The terms involving spherical Bessel functions
of the first kind, j,, are constant at early times, and have been scaled
here such that A = C = 1 gives an early time normalisation to unity.
Spherical Bessel functions of the second kind, y,, are the decaying
modes.

The solutions given above are each valid deep into each regime,
but we have yet to discuss the transition between them. Note first
of all that MD scales (x < 1) simply stay constant in the RD era,
since for those modes we have k¢ < 1. On the contrary we must
be careful with the RD scales (v > 1) during the MD era, since
these modes have already had time to evolve and decay by that time.
An approximation for this matching process is performed by Watan-
abe & Komatsu (2006) (henceforth WK06), where by assuming an
instantaneous transition one can solve

Tow| = Tow| - (11a)
=1 =1
Tl = Tewo| (11b)
e=1 =1
which gives a functional form to the constants previously defined:
A=1, (12a)
B=0, (12b)
1 cos(2«k)  sin(2«)
CKy=z——+—— 12
) =7 3 P (12¢)
1 2 in(2
D) = — = 4+ X 4 $0520)  sin@0) (12d)
3k 3k 6

5 1t is often unclear which time-scale an author uses, and as such we will
keep a strict convention here. The 7gw approximations by Watanabe & Ko-
matsu (2006), which we discuss shortly, give the correct limiting cases using
7. as defined in this work.
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This matches the equations given by WKO06 once accounting for dif-
ferent variable conventions. A noteworthy difference in convention
is the lack a step function that enforces C — 1 and D — 0 for
k < 1, which is already the natural tendency of the functions as they
are written here. Notice that the constant mode solution for the RD
scales will excite a decaying mode in the MD era, and thus D cannot
be ignored even if B has been.

3.2 Energy spectrum

By using the analytic forms derived in Sect. 3.1 the expected limits
of the energy spectrum Eq. (3) can be derived. Recalling that we are
only interested in the power spectrum normalised energy density as
seen today (170 > 1.), we can take the limit in the MD era:

QGW 1 /MD2
= —— |7
Pr e 12Hg[ o] i
| (13)

= 12H§ %é‘% [Cja(kéo) - D}’2(K§0)]2 s
from which the high and low « limits can be derived. In both limits
however we note that any realistic probe of the GWB will have sen-
sitivity on scales much smaller than those crossing horizon in recent
times (k > 1/n). This statement leads to «&, > 1 expansions, for
which we have (Watanabe & Komatsu 2006)

sin(x — nx/2)

Ja(x) = for x > 1, (14a)

Un(x)?) = (%) % for x> 1, (14b)

where angle brackets indicate averages over an oscillation, leading
to an explicit® factor of 1/2.

For fixed & and large k, the dominant term in the expansion
of Eq. (14) will have a linear term «/3 C D(k) combined with
—cos(k&p)/kéy C ya(kép). This gives a flat (albeit oscillating) spec-
trum to high frequencies:

Qow K? 9 k cos(k&o) |*
<7)T §0> - 12H§7]§§§<[_§ K§0 ] >
xf(j;l (l) T]f (15)
2) 1202}
1 Qrel
(E) 12"

Note however in the final equality we have used a value of 7, de-
rived from Eq. (5b), by setting ay = 1. This may appear problem-
atic, since dark energy dominates the expansion from a > 3/4, and
thus changes the age of the Universe. The analytic approximations
derived here however were derived explicitly in a Universe without
DE, and should not be used in conjunction with DE-modified val-
ues of ny. This cancellation of errors is vindicated by the numerical
solutions (see Sect. 5.2).

To investigate the behaviour at low «, we start with C(x) — 1,
D(x) — 0, and again apply the subhorizon condition &, > 1. This
suggests the dominant term being —sin(«€)/«€ C jo(«x€). A similar

6 For clarity we will keep this convention of explicit 1/2 throughout the
paper.
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Figure 1. A figure showing an example of the neutrino damping term and
its effect on the transfer function at k = 10Mpc™'. The top panel reveals
small phase shifts accompany a drop in amplitude of 7w around the time of
horizon crossing. Dashed lines indicate negative branches of the oscillating
function. The lower panel shows the damping term 167Ga?Il,. Dotted lines
show other terms in the differential equation associated with the wavenumber
and Hubble expansion.

calculation to above gives
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These results will be used in Sect. 4.2 to choose a functional form
for an envelope fit to the data, and in turn verify the accuracy of the
numerical calculations.

3.3 Anisotropic stress

We previously discussed that some particles will contribute to the
anisotropic stress of the medium, and constitute damping terms to
the GW solution. These stresses are excited by the propagation of the
GW itself, and hence makes Eq. (2) an integro-differential equation,
requiring a more careful treatment than the previous section. We do
not derive any analytic solutions here, but instead quote the results
of Dicus & Repko (2005) (henceforth DR04). We give the form of
the damping integral here both for completeness, and to motivate a
numerical approach to solving the problem, as described in Sect. 4.

Explicitly evaluating the RHS of Eq. (2) for the case of neutrinos
gives (Weinberg 2004)

N2 )
167TGa2H§ = -24f, (%) f K(k[n —7)) Téw(ﬁ) h:’pnm dn, (17a)

v

£ = L L __fw (17b)
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1 .
K()C) = 1_16 Il(l _ SZ)Zei.\'xds — .IZx(;C)

_ 3sin(x) 3cos(x) sin(x)

X x4 X3 7
where 7, is the time at which neutrinos decouple, corresponding to
a temperature of ~ 2 MeV (e.g., Jeong et al. 2014).

(17¢)

Clarifying transfer function approximations 5

An example of this damping term is shown in Fig. 1, where it is
seen that at the time of horizon crossing there is a significant damp-
ing of the wave followed by a period of regular propagation, albeit at
a lower overall amplitude. The dotted lines show approximate am-
plitudes for other terms in Eq. (2), revealing that the damping is
subdominant, and comparable only at horizon crossing.

We note in passing that more general particle interactions in
the collision time approximation contribute an additional expo-
nential suppression inside the integrand of Eq. (17a) of the form
exp[— ﬁ" Tf[('f;,) ], where 7, is the average time between particle colli-
sions (Baym et al. 2017), making manifest that tightly coupled par-
ticles rapidly isotropize and suppress anisotropic stresses, whereas
free streaming particles, for which 7. — oo reduces to Eq. (17a). We
also note that Saikawa & Shirai (2018) use a modified expression for
the neutrino energy fraction f, which includes energy inherited from
e*e” annihilation. This lea<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>