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Abstract
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The anisotropies in the light arriving from the Cosmic Microwave Background (CMB)
have provided cosmologists with a wealth of information over the previous two decades.
Arguably this dataset has allowed cosmology to evolve into the role of precision science
that it occupies today. This is due to the theoretical, mathematical and computational
tools that link these anisotropies to the primordial perturbations that seeded structure in
our Universe.

Spectral distortions of the CMB present a separate and complementary source of
information from the night sky. Consisting of small deviations from the otherwise
blackbody shape of the CMB spectrum, these signals probe the thermal history of the
Universe at earlier times than recombination, offering a insight into the physics of the
primordial plasma.

This thesis will explore connections between primordial perturbations and spectral
distortions from two main viewpoints: Firstly the sourcing of average distortions from
the dissipation of energy arising from these perturbations, with a particular focus on
tensorial perturbations (papers 1-2, chapters 4-5). Secondly the prospect of studying
a spatially varying distortion signal across the CMB, analogously to the usual CMB
anisotropies (papers 3-5, chapters 6-8).

In the aim of completeness chapter 1 will review the introductory cosmology nec-
essary to interpret the other chapters. Chapter 2 will introduce the photon spectrum
in detail, covering both temperature shifts and distortions to the blackbody spectrum
irreconcilable with changes of temperature. Chapter 3 will introduce cosmological
perturbation theory, the framework which explains how small perturbations evolve in
the otherwise homogeneous expanding Universe.

Supervisor: Prof. Jens Chluba
Co-supervisor: Prof. Richard Battye
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1

From Zero to Cosmology

Cosmology is a rich and exciting branch of physics, offering a unique opportunity to

study the Universe on the grandest scales. Through deceptively simple models we can

make very tangible progress towards meaningful explanations of the structure of the

Universe around us.

The undertaking of this subject, however, comes with many difficulties. On the

one hand, it is a very diverse subject, demanding its followers to be multidisciplinary.

Particle physics, statistical physics and GR are just a few of the many fields essential to

modern cosmological theories. On the other hand there is an experimental difficulty,

since unlike most branches of the physical sciences there is only one lab in which

cosmology can be studied: our one Universe. Despite the empirical challenge, cos-

mologists have made enormous progress in gathering substantial and robust data sets.

Thanks to this, recent decades have seen the field of cosmology develop into a precision

science. A large part of this success is due to the wealth of data now gathered from

the Cosmic Microwave Background (CMB) and the sophisticated mathematical and

computational tools used to study it, both of which we will discuss in detail throughout

this thesis. This effort in understanding the dynamics of the early Universe has led to

the consolidation of a concordance model in cosmology, ΛCDM, which will be a large

part of the focus in this introductory chapter.
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1: FROM ZERO TO COSMOLOGY

1.1 Geometry and Expansion

Let no one ignorant of geometry come under my roof

–Plato

Studying the entirety of space and time is a grandiose task, and one which requires

similarly grandiose tools. Our current best understanding of space-time is derived from

General Relativity (GR), a complex yet elegant description of out Universe in almost

entirely geometric terms. In this section we aspire to introducing the relevant equations

and concepts of GR so we can understand perhaps the simplest yet most consequential

fact in cosmology: the Universe is expanding.

We will introduce GR by alluding to its origin in differential geometry, however

we will not use as much of the mathematical machinery demanded by such an abstract

approach, instead concerning ourselves only with the bottom line tensorial equations.

The former approach however is satisfying in that it emerges naturally from physical

principles, and justifies why tensorial equations are so ubiquitous in Physics. For good

introductions to the conceptual side of GR see the introductory chapters of Carroll

(2004), for a quick introduction to the mathematics see Appendix A of Weinberg (2008),

and for a full balanced introduction see Misner et al. (2017).

Special relativity fundamentally changed the way we saw our Universe, with moving

clocks ticking at different rates and travellers disagreeing with the lengths of each others

trains. Digging deeper, the true change is that we could no longer permit ourselves to

have a simple space and time separation in our view of the world, but instead thinking

of a united spacetime. This constitutes the first of the physical principles alluded to

above.

The second key physical principle is that of coordinate invariance, in which we

demand that results of any calculation we perform be independent of the choice of coor-

dinate system, understanding that the latter choice is purely an artefact we project onto

the world to describe it. For example, calculations performed in Cartesian coordinates

(x,y,z) must give the same physical bottom line as in polar coordinates (r,θ,φ). A more
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1.1: GEOMETRY AND EXPANSION

nuanced example, itself related to special relativity, is the interchangability of electric

and magnetic fields upon choosing a new coordinate frame in relative motion to the

first.

The punch line of GR is that gravity itself can be understood as a purely coordinate

effect. This was motivated by the equivalence principle, which highlights how an

observer in free fall is indistinguishable from an observer at rest. We must therefore

understand how two inertial observers can have relative accelerations towards one

another, an apparent paradox that simply requires a curved manifold. Consider for

example that two ants walking in a straight line on a flat 2D sheet will at most meet in

one point, and their distance will only grow/shrink at a constant rate. Ants on a basket

ball however can both walk in straight lines have have an accelerated distance function

between them.

Mathematically speaking, if we take the two principles seriously then a natural

model arises in which the Universe is, in an abstract sense, a four dimensional manifold

(M), which can locally be mapped with a coordinate system (x : M → R4), the

components of which we recognise as space (x, y, z) and time (t), at least locally.

Asking which physical phenomena can be described in this highly abstracted system

(without using arbitrary coordinates) reveals something very beautiful: we can describe

paths across the manifold, and those paths induce a concept of gradient. These become

the tangent spaces – the vector spaces in which our tensorial equations live. The reason

therefore that tensorial equations are so pervasive in physics is that they’re the coordinate

invariant way of describing the way things move across manifolds (which with the

fourth dimension also means time evolution). A key connection in this statement is that

the coordinates chosen on the manifold {xµ} also induce a choice of tangent space basis

{∂µ ≡ ∂/∂xµ ≡ eµ} (we further explain this notation in Sec. 1.1.1).

This coordinate invariance is then crucially important in GR where gravity is

expressed through a non-trivial curved manifold. If we imagine a flat 2D surface (x − y

plane) then it is clear we can simply express our differential equations in a trivial

cartesian frame {∂x, ∂y}. The choice of non-trivial coordinates (e.g. polar {∂r, ∂θ}) is

21



1: FROM ZERO TO COSMOLOGY

optional, and is understood to incur some non-trivial jacobian contributions to the

relevant equations. In GR we are not guaranteed to have such a simple cartesian

choice. We can, at most, choose a trivial Minkowski metric at a single point of

the manifold. Complicated coordinates with corresponding jacobians are inevitable.

Tensorial equations, in essence, ensure that our equations are correct no matter the

coordinates chosen.

This idea is used heavily in Weinberg (2008), stated as follows:

(...) it is only necessary to write the equations in a form which is generally covariant –

that is, whose form is independent of the spacetime coordinates used – and which reduce

to the correct equations in the absence of gravitation. Such equations will be true in the

presence of a gravitational field, because general covariance guarantees that they are

true in any set of coordinates if they are true in any other set of coordinates, and the

Equivalence Principle tells us that there is a set of coordinates in which the equations

are true – the set of coordinates that is locally inertial at the spacetime location of the

system in question.

– Steven Weinberg. Cosmology, Oxford University Press, 2008.

1.1.1 Tensors and curvature

In this thesis we follow conventional notation for tensors where greek letters indicate

time and space indices (0, 1, 2, 3) while latin indices are purely spatial (1, 2, 3), except in

the simple 2D examples where we will not be so careful. We follow Einstein summation

convention, where repeated indices are summed: AµBµ =
∑3
µ=0 AµBµ.

Loosly speaking an inexperienced reader can/should think of A, Aµ and Aµν as a

scalar, a vector and a matrix respectively. Whenever we cast into these more concrete

mathematical structures we will do so with an arrow (−→) rather than an equivalence

symbol to emphasise that it incurs a choice of basis, and thus a loss of generality.

In this coordinate independent tensorial language (otherwise simply called covariant

notation) it is important to distinguish between covariant “down” indices (Aµ) and
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1.1: GEOMETRY AND EXPANSION

contravariant “up” indices (Aµ). In particular a well-formed tensor equation only

contracts indices when one is covariant and the other contravariant. Readers should

relate this to the idea that inner product of vectors require one row and one column

vector, e.g.

[
a b c

]
·



α

β

γ


, (1.1)

or perhaps a reader more familiar with quantum mechanics should think of “bra-ket”

notation where inner products require a sandwich 〈A|B〉. The more general notion

in mathematics is known as the dual space to a vector space, where dual vectors are

explicitly defined to map vectors to real numbers (v∗ ∈ V∗ such that v∗ : V→ R). The

key here is that in the transpose example above we didn’t modify the entries of the

vector at all in the process. In general however there is a non-trivial modification in the

mapping, which is contained in the metric gµν:

gµνAν = Aµ. (1.2)

This layer of complication is necessary in describing manifolds with curvature, and even

using non-Cartesian coordinates on flat manifolds (e.g. see upcoming polar coordinates

example).

The metric gµν is, in more general terms, the tensor containing information about

the manifold’s structure. For example it defines the lengths across spacetime paths

ds2 ≡ gµνdxµdxν. (1.3)

Let’s consider as an example the 2D plane, which if we express in the usual Cartesian

(x, y) coordinates we have

gµν −→

1 0

0 1

 , (1.4)
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1: FROM ZERO TO COSMOLOGY

which gives path lengths measured with

S =

∫ √
ds2 =

∫ √
dx2 + dy2, (1.5)

as expected. To emphasise the coordinate invariance here we will illustrate this example

in polar coordinates (r, θ) where instead we have

gµν −→

1 0

0 r2

 , (1.6)

and thus a path length

S =

∫ √
ds2 =

∫ √
dr2 + r2dθ2. (1.7)

Ultimately both of these expressions must give the same number regardless of coordi-

nates – a simple example of “well-formed” tensor equations giving coordinate invariant

properties. Note that in this example we only had a single coordinate θ stretching as a

function of the other r. In principle we can have mixed components gµν , 0 for µ , ν,

but the metric must be symmetric gµν = gνµ. Similar to this polar coordinates example,

we will see in Sect. 1.2 that our Universe also has some components (space) stretching

in terms of others (time). A second important point is that for the flat 2D plane we could

start from a Cartesian system, and move to an optional non-trivial one. Consider for a

moment the surface of the Earth (assuming this as perfectly spherical), which is also a

2D space, but does not allow for a simple Cartesian coordinate set.

Continuing the above example of a flat 2D sheet in the two different coordinate

frames, we can introduce an extremely important concept of the covariant derivative

Heuristically one can think of this as the well-formed tensor equivalent of simple

differentiation in a direction. This derivative is simply ∂µ in the Cartesian coordinates,

but takes a new form ∇µ in the coordinate independent language. Consider the polar

coordinates example, where if you walk in the direction of basis vector eθ, your local
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1.1: GEOMETRY AND EXPANSION

direction of eθ and er changes. Walking in the er direction you do not get any angle

changes, but the eθ direction has a relative stretching. These changes are encoded in the

Christoffel symbols Γλµν, which can be read as “the change of the λ component of basis

vector eµ upon walking in direction of basis vector eν”. These coefficients are formally

given by

Γλµν =
1
2

gλρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
. (1.8)

This backs up our previous statement that the metric encodes the manifold’s structure,

since these coefficients only depend on the metric and its derivatives. Two things are

noteworthy here: firstly the symbols are symmetric in lower indices Γλµν = Γλνµ, and

secondly we are being careful in not referring to these objects as tensors, since they are

not well formed tensor equations (they depend on partial derivatives and not covariant

derivative – we are in the process of defining the latter!).

As an example, in the polar coordinates case we find

Γr
θθ = −r, Γθrθ = Γθθr =

1
r
. (1.9)

Reading these carefully, the first states that walking in direction eθ changes eθ in the er

direction by −r. Additionally the second term says that walking in that same direction

changes eθ in the eθ direction by 1/r. These two statements together amount to the

angular change we expect to see, e.g. walking a quarter circle from θ = 0 to θ = π/2 in

this plane makes the eθ vector transition from pointing up (ey) to pointing left (ex).

With changes of vector direction in place, the covariant derivative can be written as

∇λT µ
ν = ∂λT µ

ν + Γ
µ
λρT

ρ
ν − Γ

ρ
λνT

µ
ρ , (1.10)

where in general we extend this definition to as many positive terms as we have

contravariant indices, and as many negative terms as covariant indices.

With all the formalism in place, we can introduce the tensorial equation at the heart

of cosmology is Einstein’s field equation, which is built up from the metric. In natural
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1: FROM ZERO TO COSMOLOGY

units1 it is given by

Gµν ≡ Rµν − 1
2

Rgµν = 8πG Tµν, (1.11)

where Tµν is the stress-energy content of the Universe, and the Ricci scalar R is the

contracted Ricci tensor Rµν

Rµν =
∂Γλµλ

∂xν
+
∂Γλµν

∂xλ
+ ΓκµλΓ

λ
νκ − ΓκµνΓ

λ
λκ. (1.12)

The Ricci tensor is itself a contraction of the Riemann tensor, which encodes

information about the curvature of the manifold. Importantly, it is only built from gµν and

its derivatives, hence the statement that the metric contains the necessary information

about the structure of the manifold. To remedy this awfully brief introduction we

will further explore the geometry (Gµν) in sect. 1.2 and the cosmic inventory (Tµν) in

sect. 1.3.

1.2 FLRW Geometry

In order to effectively use the machinery introduced in the previous section we must first

drastically reduce the complexity of the general field equations Eq.(1.11). Other fields

in physics teach us to use symmetries whenever confronted with a daunting problem

like this, and in cosmology we have the Copernican principle to help us choose these

symmetries. The principle essentially states that the Universe should not contain special

places on large scales. Another way of stating this is to say that the Universe should be

completely homogeneous and isotropic on average. Further to these symmetries, we

add one more simplification which is experimentally verified: the Universe appears to

be flat. We note that by this we mean spatial flatness. If one imposed the generalisation

of flatness to 4 dimensional spacetime then there would be no gravitational effects, and

cosmology would be rather boring. Later, in Sect. 1.2.1 we provide the metric without

the assumption of flatness, and explain how this impacts the bottom line results in a

1Unless otherwise stated we will use natural units throughout this thesis
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1.2: FLRW GEOMETRY

simple way. These simplifications leave us with one option for the universal geometry,

governed by the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric. Letting the

spatial 3-metric have the shorthand dx2 = dx2 + dy2 + dz2 we can write the metric in the

following way:

ds2 = −dt2 + a(t)2dx2 = a(t)2( − dη2 + dx2), (1.13)

where a(t) is the scale factor, a parameter accounting for the expansion of the Universe

by allowing spatial distances to grow or shrink in time (a is defined to be = 1 at

current time). In the second line we introduced conformal time η, defined by adη = dt,

corresponding to a coordinate frame where the time dimension dilates together with

spatial expansion. The other common measure of time used in this report is redshift

z defined by 1 + z = 1/a, which is defined in relation to redshifted light from distant

galaxies.

Taking the metric corresponding to this line element and propagating it through

Einstein’s equations is a simple process, the key points of which are summarised in

table 1.1.

Christoffel Symbols

Γ0
i j = aȧδi j

Γi
0 j = Γi

j0 = ȧ
aδi j

All others = 0

Ricci Tensor

R00 = −3 ä
a

R0i = Ri0 = 0

Ri j = (2ȧ2 + aä)δi j

Ricci Scalar R = 6( ä
a + ȧ2

a2 )

Einstein Tensor

G00 = 3 ȧ2

a2

G0i = Gi0 = 0

Gi j = −(ȧ2 + 2aä)δi j

Table 1.1: A table displaying the main steps in deriving the equations governing an FLRW
Universe.
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1: FROM ZERO TO COSMOLOGY

The Christoffel symbols in this metric show that there is only spacetime curvature

associated with the time dimension, since Γi
jk = 0.2 Furthermore, if we had chosen to

derive these in conformal time then we would find Γ0
00 = a′

a , 0, showing that conformal

time dilates/contracts as it advances forward.3

What about the stress energy tensor? The form compatible with this geometry and

coordinate choice has T00 = ρ and Ti j = pδi j, where we have anticipated some of the

discussion in Sect. 1.3 by identifying these with energy density and pressure respectively.

A fluid allowing a description in terms of just these two variables are known as perfect

fluid, and are demanded by the symmetries of the Copernican principle.

By equating the results of table 1.1 and the stress-energy tensor, as per Einstein’s

equation Gµν = 8πGTµν, we get the Friedmann equations:

( ȧ
a

)2

=
8πG

3
ρ, (1.14)

ä
a

= −4πG
3

(ρ + 3p), (1.15)

which govern how the Universe will expand subject to its stress-energy content.

The second equation is particularly important for modern cosmology, since it gives

information on the acceleration of the Universe’s expansion. In particular we have the

scenarios

ä
a



> 0 (accelerated growth) if p < −ρ/3,

= 0 (stable expansion) if p = −ρ/3,

< 0 (accelerated collapse) if p > −ρ/3.

(1.16)

While a fluid with negative pressure may seem odd from a classical point of view, we

2Note that Γi
jk = 0 =⇒ no curvature, but the contrary is not true, no curvature 6=⇒ Γi

jk = 0. i.e.
consider using polar coordinates in a flat space.

3A keen eyed reader will realise that statements around Christoffel symbols are evidently coordinate
dependent, and thus they are not in fact proper tensors. All relevant physical quantities are built of
combinations of Christoffel symbols such that the coordinate dependence cancel. These symbols are
the only such imposters in this chapter – all other ‘indexed’ quantities can be trusted as coordinate
independent tensors.
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1.3: THE COSMIC INVENTORY

currently observe the Universe to be undergoing accelerated expansion, demanding

such a fluid to exist (if our best models and theories are correct).

Either through a combination of Eqs. (1.14), (1.15), or by using the conservation

law ∇µT µ
ν = 0, one can also find

ρ̇ = −3
ȧ
a

(ρ + p), (1.17)

which dictates how energy densities dilute or otherwise in the expanding Universe.

We will use this equation in combination with the other Friedmann equations to model

some limiting cases of universal expansions in Sect. 1.3.

1.2.1 Relaxing the flatness assumption.

As previously mentioned FLRW metrics are compatible with spatial curvature. The

inclusion of this term in the metric gives

ds2 = −dt2 + a(t)2
( dr2

1 − κr2 + r2dθ2 + r2 sin2(θ)dφ2
)
, (1.18)

where we have used spherical polar spatial coordinates. Here the term κ = −1, 0,+1

indicates hyperbolic/open, flat and spherical/closed geometry respectively. Propagating

this through Einstein’s equations would only yield a single additional factor, which can

be absorbed into the previous ones with ρ→ ρ− κ
a2 . This essentially takes the form of a

new fluid with equation of state w = −1/3.

1.3 The Cosmic Inventory

The RHS of Eq. (1.11) is an expression of the energy content of the Universe, which will

be explored in this section. Firstly we will distinguish between perfect and imperfect

fluids. The former are defined as a medium where at every point there is a locally

inertial frame moving with the fluid in which the fluid is isotropic (Weinberg, 2008).
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1: FROM ZERO TO COSMOLOGY

These fluids admit pressure and density as their only free parameters. These fluids are

compatible with the Copernican principle, and thus makes up the cosmic inventory on

large (averaged) scales. The alternative is having imperfect fluids, which can contain

bulk motions, shear stresses, etc. Fluids of this kind will occupy much of our attention

in later chapters where we apply perturbation theory to the primordial plasma.

Perfect fluids are usually categorised with an equation of state relating pressure to

density, p = p(ρ) = wρ. Assuming that w is constant, Eq. (1.14) and Eq. (1.17) can be

easily integrated to find

ρ(a) ∝ a−3(1+w), (1.19)

a(t) ∝ t
2

3(1+w) , (1.20)

where the proportionality constant would be set through some initial or boundary

conditions. This simple derivation is surprisingly powerful, as we can now plug in w

for the most common species in cosmological history. We will do so in a chronological

order of importance, but to do so requires somewhat spoiling the punchline: different

particle species dilute and diffuse at different rates, leading to a picture of the Universe

where we have distinct transitions between eras where a single fluid dominated.

1.3.1 The radiation era

In the earliest moments of the Universe massless particles dominated the total cosmic

energy budget. This means photons, but also includes neutrinos, which at these tempera-

tures could be considered massless. Due to this we will sometimes refer more correctly

to a phase of relativistic energy domination (see e.g. chapter 5, where such distinction

is of key importance).

These massless particles typically have an equation of state w = 1/3, which when
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1.3: THE COSMIC INVENTORY

plugged into Eq. 1.19 and Eq. 1.20 yield

ρ(a) = ρ0a−4, (1.21)

a(t) ∝ √t. (1.22)

The first result can be understood as a combination of the volume changing (V ∝ a3)

and the relative energy loss from the gravitational redshifting of light (E = hν ∝ a−1).

The second result serves as a reminder to the discussion around Eq. 1.16, providing an

example of a universe that expands, but at a slower rate as time goes on.

1.3.2 The matter era

The relative energy densities of massless particles not only dilute in ever-larger volumes

and also redshift to lower frequencies. This means at some point in the Universe’s history

they lose importance relative to massive particles. Matter is divided into baryonic (here

meaning electrons, neutrons and protons, unlike other branches of physics) and cold

dark matter (elusive matter which is apparent only from gravitational effects). Matter is

modelled as not exerting any pressure on cosmological relevant scales. Plugging w = 0

into Eq. 1.19 and Eq. 1.20 gives

ρ(a) = ρ0a−3, (1.23)

a(t) ∝ t2/3. (1.24)

A similar discussion holds here as before: energy densities change because of volume

changes, and matter decelerates expansion as expected.

It is still an open question whether this particle (if indeed CDM is a particle) sector

interacts weakly or not - thus far cosmological probes have only been sensitive to its

gravitational influence. It is worth noting that its extra gravitational influence is required

at many different scales: from rotation curves of galaxies, to cosmic web structure, all

the way to the composition of the primordial plasma. This ubiquitous presence of CDM
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1: FROM ZERO TO COSMOLOGY

provides an argument for a new source of mass, and not simply some misunderstood

gravitational physics (Clifton et al., 2012).

1.3.3 The dark energy era

It was mentioned above that the Universe currently appears to be accelerating in its

expansion. None of the fluids so far have that effect. In the concordance model of

cosmology the late time acceleration occurs due to a strange new fluid called dark energy.

This can be thought of as a cosmological constant, or as vacuum energy. The former

isn’t so much an explanation of physical phenomena as much as a simple realisation that

a term Λgµν can be added to Eq. 1.11 while keeping all other relations and derivations

the same (you can think of this as an integration constant). The latter interpretation has

a bit more physical meaning to it, however estimating the size of this constant from

fundamental physics has provided infamously bad results (Adler et al., 1995).

Ignoring matters of interpretation, this is usually modelled as a fluid with w = −1,

yielding the odd results

ρ(a) = ρ0, (1.25)

a(t) ∝ exp(Ht), (1.26)

where the second equation broke with the tradition of the previous two subsections,

since Eq. 1.20 is derived implicitly assuming w , −1. We see the reason it is called

a cosmological constant, and how it certainly accelerates expansion – it does so

exponentially.

More generally we can think of some fluid with p ≈ −ρ, allowing for a dynamic

model. This fluid would dilute by some small amount, and the acceleration would not

be exponential, but would be positive. This model is generally referred to as dark energy

(DE), but models of this type are not often distinguishable from a simple cosmological

constant with current cosmological data. We will assume p = −ρ in this thesis.

It will perhaps not be surprising to the reader that many attempts have been made at
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1.4: EARLY UNIVERSE IN ΛCDM

replacing either CDM or Λ with some theory of modified gravity (MG), since they both

seem to be anomalies purely constrained to the gravitational force (Clifton et al., 2012).

1.3.4 Compact form for Friedmann’s equation

Combining what we have learned in the previous sections provides a very simple and

elegant form of Friedmann’s equations. Firstly we choose to measure the densities

relative to a critical density ρc = 3H2

8πG , defining Ωx = ρx/ρc. This is useful, because in a

flat universe we have Ωtotal =
∑

Ωx = 1. This means each individual Ωx simply gives a

relative contribution to a total energy budget. We note that even in a cosmology that

isn’t flat we can package the rest of the energy contribution into some fictitious fluid

Ωκ ∝ 1/a2 as in Sect. 1.2.1, however we disregard that here. The bottom line version of

Eq. (1.14) with these simplifications is

H =
ȧ
a

= H0

√
Ωm

a3 +
Ωr

a4 + ΩΛ, (1.27)

with H0 giving the measured value of the expansion rate as seen today (this convention

applies for most variables with subscript 0).

1.4 Early Universe in ΛCDM

In the beginning the Universe was created. This had made many people

very angry and has been widely regarded as a bad move.

–Douglas Adams, The Restaurant at the End of the Universe

From the discussion in the previous section we can start to infer what the very early

Universe looks like in ΛCDM. Other than the cosmological constant all the energy

densities scale with inverse powers of the scale factor, which itself grows with time.

The simple extrapolation backwards is then that the Universe becomes a more energetic

environment at earlier times, as may be sensible intuitively (imagine compressing every
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planet, star and galaxy into ever smaller volumes!). At some crucial energy density you

find that even a typical photon has the requisite energy to ionise atoms, and the entire

Universe is thus a plasma. This primordial plasma is the complex environment where

this thesis’ work takes place. Crucially photons have a very small mean free path in this

plasma, and thus the Universe was essentially opaque.

There is a thin time slice separating a Universe so hot that atoms are ionised, and

a Universe cold enough to allow photons to travel freely. The moment this happens

is known as recombination, referring to how the electrons recombine with protons to

make neutral matter. Shortly after that there is the moment of last scattering, where

each photon undergoes its last interaction, after which it will wander the cosmos almost

certainly unhindered. When we observe the night sky we see a sphere of these photons

in all directions, and call it the Cosmic Microwave Background (CMB) (Penzias &

Wilson, 1965).

In this leading order homogeneous picture CMB must be spherical4, as it is simply

dictated by the distance travelled at the speed of light since the last scattering time.

Furthermore it is a sphere for every observer because of relativity, no matter the location

or relative velocity. The surface of photons itself is known as the last scattering surface

(not to be confused with LSS, the large scale structure), however in this thesis it will

often be called the CMB curtain, since it serves to obscure anything which might

otherwise be seen earlier in time.

Due to redshifting the CMB is seen at an extremely low temperature of T = 2.725K

(Fixsen et al., 1996). Furthermore, it takes that temperature equally in all directions (up

to small variations we discuss below). The apparent paradox of opposite celestial poles

taking the same temperature, a potential violation of causality, is a known problem

proposed to be solved via inflation (Guth, 1981).

The statements above on average temperatures and sphericity all hold on average,

and to a very large degree. This can be seen as a consequence of the Copernican

principle, which dictates there should be no preferred location in the Universe (isotropy

4Small under- and over-densities delaying the free-streaming of light can break this symmetry
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follows from this principle). Potentially the most impactful dataset in modern cosmology

however is comprised of temperature anisotropies: tiny variations of this temperature

around the sky. We will discuss in the following chapters how we can apply a pertur-

bation theory approach to the equations discussed here. This perturbative approach is

well justified experimentally, since the observed fluctuations in the CMB are typically

of order δT/T ∼ 10−5.
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Shedding Light on the Photons

One humbling fact about modern cosmology is that almost the entirety of our extra-

galactic information and data have come from a single source: observing light. Whether

we are counting galaxies, observing gravitational lenses or witnessing CMB photons,

they all come down to intercepting the otherwise free streaming photons. Only two

notable exceptions exist to this. Firstly, there are infrequent neutrino detections1. To

provide a sense of magnitude, the nearby supernova SN1987A yielded a mere 25 neu-

trino observations across three different Observatories (Arnett et al., 1989). Secondly,

there are detections of gravitational waves (LIGO Scientific Collaboration & Virgo

Collaboration, 2016; Abbott et al., 2019) which have recently opened the door to a long

studied possibility of gravitational wave cosmology (Caprini & Figueroa, 2018), a field

that promises to revolutionise our understanding of the Cosmos (see chapter 5).

The importance of information locked in photons then cannot be overstated. This

chapter will explore the information content of CMB photons, and describe the various

interactions photons undergo which gets locked into different variables. The main focus

here will concretely be the information locked in frequency distributions, which is a

key part of the study of Spectral Distortions (SDs). See Lucca et al. (2019) for a helpful

review on the topic, Chluba (2014b) for the science case and Chluba (2016) for ΛCDM

1Not to be mistaken with indirect inference about neutrino properties with cosmology (Abazajian
et al., 2015).
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estimates.

The punchline of this chapter is that while the photons from the primordial Universe

constitute an almost exact blackbody spectrum, there must be some deviations known

as spectral distortions. Simply stated, for a system to arrive at thermal equilibrium

there must be interactions between particle species. These interactions become more

rare as the universe expands and cools. On its own this would not lead to spectral

distortions, but we additionally know that some minimal amount of energy injection

into the primordial plasma occurs from the dissipation of acoustic modes (see Chapter 3).

This race between energy injection processes and thermalisation processes leads to a

three era picture of the early Universe, in which observing a given spectral distortion

shape informs us in which era it was created.

Before discussing what spectral distortions are and how they form in the early

universe, it will be helpful to enumerate the main interactions that photons undergo in

the primordial plasma.

2.1 Photon interactions

In chapter 1 we closed with the idea that the earliest moments in known cosmic history

are characterised by an entire Universe in a state of hot plasma. To recap, photons

have enough energy to completely ionise any neutral atoms, and consequently they

do not travel very far before scattering off an energetic electron. This is a complex

environment, where many governing forces are at play against the backdrop of cosmic

expansion. As energy densities slowly decrease, interactions become more rare.

In this environment we are going to study the various interactions photons undergo,

with special attention to energy-changing and photon-producing interactions. These two

types of interaction attempt to establish equilibrium between the participating particles.

For example, a scattering event between photons and hot electrons will tend to scatter

photons to higher frequencies. Those same hot electrons can produce soft photons

via Bremsstrahlung and double Compton events with protons. These two processes
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establish equilibrium between photons and electrons in a time and frequency dependent

way.

We will study these interactions in the form of collision terms C[...] given by

d fγ(p)
dt

= C[ fγ, fe], (2.1)

which we will come to know in the following chapter as the Boltzmann equation.

The function fγ(p) on the LHS is the occupation function for phase space distribution

function of photons. This is a momentum (or frequency) dependent distribution, since

we want to understand any exchange of energy between electrons and photons. The

function fe is a similar distribution for electrons. Stated in words, the collision terms

express how the photon gas changes (in a momentum dependent way), and is in general

a functional of both the photon and electron phase space distributions at a given time.

2.1.1 Compton Scattering (CS)

This process describes the interaction of photons with electrons2:

e(p) + γ(k)←→ e(p′) + γ(k′), (2.2)

where p and k represent the four-momenta of particles, using primes for outgoing

particles. Being an interaction of fundamental particles this process would be studied

from first principles in the framework provided by Quantum Electrodynamics (QED):

C[ fγ(k′)]
∣∣∣∣∣
CS

=
1

2Eγ(k′)

∫
d3 p

(2π)32Ee(p)

∫
d3 p′

(2π)32Ee(p′)

∫
d3k

(2π)32Eγ(k)

× |M|2(2π)4δ(4)(p + k − p′ − k′)

×
[

fe(p′) fγ(k′)
(
1 + fγ(k)

) − fe(p) fγ(k)
(
1 + fγ(k′)

)]
,

(2.3)

2Photons will interact in a similar way with protons, but the terms involved are typically inversely
proportional to the mass of the charged particle, making γe− interactions ∼ 2000× stronger than γH+

interactions.
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where Ee and E are energies of electrons and photons respectively, |M|2 is the squared

matrix element which will in general depend on the momenta involved, and fe is

the occupation function for electrons, similar to what we defined for photons above.

The terms like d3 p
(2π)32Ee(p) are Lorentz invariant integration measures over the space of

momenta, and the Dirac delta δ(4) ensures energy-momentum conservation. The final

term is sometimes called the statistical factor, and essentially captures the physics of

photons entering (leaving) the k state from (to) k′. In particular the terms 1 + fγ account

for induced scattering, which are nonlinear effects. An explicit form for |M|2 can be

found in Jauch & Rohrlich (1976).

Various approximations of |M|2 can be used to distil the above equation in limiting

regimes. One such limiting case is Thomson scattering which allows for changes

of momentum direction, but not magnitude. Since here we are interested in energy

exchange between photons and electrons we proceed one step further and introduce the

Kompaneets equation (Kompaneets, 1957):

C[ fγ]
∣∣∣∣∣
CS
≈ (cσTne)

θe

x2

∂

∂x
x4

[
∂

∂x
fγ +

Tγ

Te
fγ
(
1 + fγ

)]
, (2.4)

where Ti is the temperature3 of particle species i, θe = kBTe
mec2 , x = hν

kBTγ
, σT is the

Thomson cross-section and ne is the electron number density. Moving forward we will

use cσTne = τ̇. The Kompaneets equation is derived assuming a non-relativistic electron

gas at temperature Te, and expands the matrix elements to second order in energy

exchange (see discussion on moments below), thus including Doppler broadening

terms.

Some physics can be seen in this collision term: Firstly, notice that for Tγ = Te

the term in brackets vanishes for a blackbody distribution (defined later in Eq. (2.10)),

3This is slightly subtle. The Kompaneets equation can be applied to photon spectra that are not exactly
blackbodies, and hence don’t have a well defined temperature. However the photon temperature within
x cancels with the explicit factor of Tγ, leaving only Te as the temperature scale, since electrons can
be more safely approximated as following a Maxwell-Boltzmann distribution in cosmological contexts.
Despite this it is desirable to have a fiducial temperature for photons, and in practice we usually choose a
temperature Tγ ≡ Tz = T0(1 + z) which due to the redshifting will cancel a contribution on the left hand
side of Boltzmann’s equation (see Eq. 3.3)
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showing that the equilibrium solution is a blackbody only when photons and electrons

are in equilibrium. Consequently, the different cooling rates between photons and

electrons will cause deviations from a blackbody (see Sect. 2.2.3). Secondly the

form 1
x2∂x (...) immediately shows that this reaction conserves photon number, since

∫
x2C[ fγ]

∣∣∣∣∣
CS

corresponds to a vanishing surface term.

Detailed work on CS can be found in reference Sarkar et al. (2019), where they

define the CS kernel, P(x → x′), a probability distribution dictating the likelihood of

transitioning from some frequency x to another x′. With this they find

C[ fγ(x)]
∣∣∣∣∣
CS

=

∫ { x′2

x2 P(x′ → x) fγ(x′)
[
1 + fγ(x)

] − P(x→ x′) fγ(x)
[
1 + fγ(x′)

]}
dx′.

(2.5)

By further defining a moment of a function ξ(x) as 〈ξ(x)〉 =
∫

P(x → x′) ξ(x) dx′,

it can be shown that ξ is fully defined by its powers 〈ξN〉. The Kompaneets equa-

tion corresponds to an expansion of Eq. (2.5) to second moments, 〈( x′
x

)2〉, with some

approximate form of the kernel. This method provides a clear path forward where

improving estimations of the kernel, and going to higher moments of 〈 x′
x 〉, will improve

the accuracy of calculations. The code CSpack (Sarkar et al., 2019) contains efficient

and accurate predictions of these moments, for easy implementation into other branches

of cosmology.

2.1.2 Bremsstrahlung emission/absorption (BR)

Classically this process involves the emission/absorption of a photon from a charged

particle undergoing acceleration4, although we will focus on the case of emission for

this section. In the early Universe this is electrons accelerating in the presence of some

charged ion, predominantly protons (ionised hydrogen):

e(p) + H+(h)←→ e(p′) + H+(h′) + γ(k). (2.6)
4Brems strahlung translates from German to braking radiation

41



2: SHEDDING LIGHT ON THE PHOTONS

This again could be expressed using an integral equivalent to Eq. (2.3), with a different

matrix element. Typically a different approach has been employed in cosmology, where

the classical and non-relativistic formula given by Kramer is modified by some function

called the Gaunt factor, gff:

C[ fγ]
∣∣∣∣∣
BR
≈ 8π

3
e6h2

me(kBTe)3

Z2NeNH√
6πmekBTe

e−xegff(Te, ν)
x3

e

(
1 − fγ

[
exe − 1

])
, (2.7)

where xe = xTγ/Te. For recent work on the calculation of gff in different tempera-

ture regimes see Chluba et al. (2020b), where Chluba et al. bridge the gap between

non-relativistic and ultra-relativistic calculations with the Elwert-Haug cross section

(Elwert & Haug, 1969). These calculations are difficult to perform, but with a series

of precomputed tables and analytic approximations they manage to cover many orders

of magnitude of phase space at ≈1% precision for atomic number Z≤10, and better

than 0.1% precision for Z≤2. Similarly to CSpack, these strong numerical capabilities

are packaged in BRpack, allowing other cosmologists to easily implement accurate BR

predictions in their work.

2.1.3 Double Compton Scattering (DC)

The DC process can be seen as a similar correction to Compton scattering as Bremsstrahlung

is to Coulomb scattering, i.e. the equivalent reaction with one more photon in the outgo-

ing channel:

e(p) + γ(k)←→ e(p′) + γ(k′) + γ(k2). (2.8)

This process dominates in photon production over BR at early times (z & 5 × 105),

mostly due to the enormous dominance of photon number over baryon number in the

early Universe.

The full cross sections for various limiting cases were originally studied by Mandl

& Skyrme (1952), and a convenient summary can be found in chapter 11 of Jauch

& Rohrlich (1976). For recent work, and a discussion of the relevance to SD, see
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Chluba et al. (2007). As seen in the previous sections it is extremely helpful to have

computational packages which allow for fast yet accurate calculations. In the context of

DC they are based on

C[ fγ]
∣∣∣∣∣
DC
≈ 16απ3θ2

γ

45x3 e−2xgDC

[
1 − fγ

(
exe − 1

)]
, (2.9)

where θγ is defined analogously to θe, and gDC is the DC equivalent of the Gaunt factors

gff . Notice again that a blackbody spectrum is an explicit equilibrium state for Tγ = Te.

Strong temperature dependence is contained in the gDC term, as discussed in Chluba

et al. (2007), where they find a suppression of ∼10 − 20% at higher temperatures -

proving these higher order corrections are non-negligible effects for physics in the

early Universe. More recent work can be found in Ravenni & Chluba (2020), where

the capabilities of DCpack are outlined. This code allows accurate estimates of DC

contributions in wide volumes of parameter space, similar to that discussed for BR.

2.2 Spectral shapes

Following the historical study of the CMB we will begin by discussing the blackbody

spectrum, and build up to more general cases. This approach is additionally a well

justified considering that the CMB resembles a blackbody to very high precision.

2.2.1 Blackbody spectrum

The blackbody spectrum can be understood as a gas of photons (bosons) following

Bose-Einstein statistics. The occupation number is given by

fbb(x) =
1

exp(x) − 1
, (2.10)

where x is a normalised frequency x = hν/kBT . The characteristic −1 allows many

photons to occupy the same energy level.
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It is occasionally useful to relate these abstract distributions to observable quantities.

To find the distribution of energies of such a gas we must multiply the energy in each

state by the number of photons that can exist in a given state, and finally by the density

of states. With an explicit factor of 2 for the two polarisations of a photon, the density

of states can be found as
d f
dk

= 2V
k2

2π2 ,

d f
dε

= 2V
ε2

2π2(~c)3 ,

(2.11)

where k and ε are the wavenumber and energy of an individual state. A factor of volume,

V , ensures that all quantities remain intensive. The energy density of the gas, u(x), is

then given by

u(x) =
8π(kBT )3

h2c3

x3

exp(x) − 1
=

8π(kBT )3

h2c3 x3 fbb(x) =
4π
c

I(x), (2.12)

where we also defined the intensity I(x). It is common to see this given per steradian on

the sky, for which we would simply divide by 4π.

In this thesis we will not often link to directly observable quantities, but instead pre-

fer dimensionless counterparts. In general we find the number density of a distribution

f (x) with

N =

∫
dx x2 f (x), (2.13)

and the energy density as

E =

∫
dx x3 f (x). (2.14)

It is useful to have these quantities in mind to compare with other spectral shapes:

N fbb = 2ζ(3) ≈ 2.40411, E fbb =
π4

15
≈ 6.49394 (2.15)

The CMB sky is approximated extremely well by just specifying its closest cor-

responding blackbody spectrum as seen in Fig. 2.1, thus providing a background

temperature T . This will frequently be referred to as the CMB monopole temperature, a
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Figure 2.1: A figure showing the COBE/FIRAS data for the average photon spectrum seen
across the sky. The error bars are multiplied by a factor of 400, emphasising just how precise
the spectral shape is. Data courtesy of NASA.

term which will be clearer after discussing temperature shifts.

2.2.2 Temperature shifts

In the previous chapter we introduced the CMB anisotropies as small variations in

temperature across the sky. Mathematically the temperature measured from the Earth

now depends on observation angle of the sky T → T (γ̂). We also highlighted however

that these fluctuations are very small, of order ±300µK compared to the background

T0 = 2.725K (Planck Collaboration, 2018a; Fixsen et al., 1996). This then motivates an

expression where a perutrbatively small angle dependent quantity is superposed with the

constant background temperature: T (γ̂) = T̄ + δT (γ̂) = T̄ (1 + δT (γ̂)/T̄ ) = T̄ (1 + Θ(γ̂)).

From now on we will drop the overbar notation, and always use T for the background

temperature and Θ for the small angle dependent variations.

A key point here is that we can find a distribution which describes this small shift in

temperature by Taylor expansion around some reference temperature and propagating
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that into the appropriate change of x ∝ T−1. We refer to this distribution as the

temperature shift G(x):

f (x) ≈ f (x′) +
∂ fbb

∂T

∣∣∣∣∣
Tav

δT

= f (x′) − x′
∂ fbb

∂x

∣∣∣∣∣
Tav

Θ

= f (x′) + G(x′)Θ.

(2.16)

Some useful relations for temperature shifts to remember are

G(x) = −x∂x fbb = x fbb( fbb + 1) =
1
4

x csch2(x/2). (2.17)

The way this shape alters the background blackbody spectrum is shown in Fig. 2.2.

Also shown in dotted lines is the result of simply evaluating a blackbody distribution,

showing that small differences appear for ∼ 10% variations. Temperature shifts of

this size are orders of magnitude larger than the real variations seen across the sky. In

Fig. 2.3 in contrast we have subtracted the reference temperature which firstly highlights

the shape of a pure T -shift, and secondly allows us to show realistic size of fluctuations

at ∼ 0.01%, showing the first order shift to be valid. This process of studying only a

relative change is more akin to how calculations are performed. As such, figures with

peaks and valleys showing relative excess and absence of photons will become familiar

as we explore the spectrum more deeply.

One important aspect of temperature shift spectra is that they carry photon number

as well as energy:

NG = 6ζ(3) = 3N fbb ≈ 7.21234, EG =
4π4

15
= 4E fbb ≈ 25.9758. (2.18)

This becomes important in defining other spectral shapes.

Note that here we neglected terms O(Θ2) and higher since our interest is just the first

order temperature shift. Below we will perform a similar calculation to higher order to

study the mixing of blackbody spectra.
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Figure 2.2: A plot showing how temperature shifts added to a blackbody simply shift the
blackbody in predictable ways. e.g. the peak of the distribution shifts to higher frequencies
and amplitudes with higher temperature. Dashed lines show the result of evaluating the
blackbody distribution at the new temperature, revealing small innacuracies for 10% variations
of temperature, which would be remedied by adding y-distortions (defined below).

Here we are simply leaving the variables as a function of direction vector γ̂. In

studying the CMB sky however we analyse them in a spherical basis Θ`m. Note however

that Θ00 would only shift the temperature T0, and hence Θ00 = 0 by definition – hence

the statement above that the average temperature is known as the monopole temperature.

Similarly Θ1m is dependent on the relative velocity of the measurement, and is subtracted

in analysing the CMB.

2.2.3 y-Distortions

The previous section derived a spectral shape that to first order leaves a blackbody

unchanged. This resulted in a statement that the monopole of temperature shifts are

either 0 or simply ill defined, depending on your outlook. In this section we will take the

first step towards a completely new spectral shape, that would be truly distinguishable
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Figure 2.3: A plot showing the relative changes in photon spectrum captured in the temperature
shift spectrum G. Here a negative value indicates a relative lack of photons, and a positive
branch shows an excess. The amplitude of variations here are comparable to that seen in real
CMB data. The dashed lines again show an exact evaluation, showing here that temperature
shifts are sufficient to model these small variations.

from a blackbody. We refer to this as a y distortion, since it shares its shape with another

astrophysical signal, the Sunyaev Zeldovich effect (Zeldovich & Sunyaev, 1969).

Stated in a heuristic way, the y distortion emerges in many different aspects of

cosmology and astrophysics simply because it is quite a fundamental spectral shape.

Consider for example the spectral shape produced upon scattering a blackbody with an

electron gas of a different temperature. This scenario is captured via the Kompaneets
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equation (Kompaneets, 1957), and gives

∆ f ≈ ∆τ
θe

x2

∂

∂x
x4

(
∂

∂x
fγ +

Tγ

Te
fγ
[
1 + fγ

])

≈ ∆τ
θe

x2

∂

∂x
x4

(
∂

∂x
fbb +

Tγ

Te
fbb

[
1 + fbb

])

= ∆τ
θe

x2

∂

∂x
x4

(Tγ

Te
− 1

)
fbb( fbb + 1)

= ∆τx−2(θγ − θe
) ∂
∂x

x4 fbb( fbb + 1)

= ∆τ
(
θγ − θe

)
x fbb( fbb + 1)

[
4 − (2 fbb + 1)x

]

= ∆τ
(
θγ − θe

)G(x)
[
x coth(x/2) − 4

]
.

(2.19)

From here we define

YSZ(x) = G(x)
[
x coth(x/2) − 4

]
, (2.20)

with an amplitude of

y = ∆τ
(
θγ − θe

)
. (2.21)

A second scenario where these distortions arise together with a temperature shift is

in the mixing of two blackbody spectra at different temperatures - a simple process that

turns out to capture a lot of the physics behind the SD caused by dissipation of acoustic

waves (Chluba et al., 2012). First let us expand one blackbody spectrum at T around a

different temperature Tav as we did earlier, but now to second order:

f (x) =
1

ex − 1
=

1
exav/[1+Θ] − 1

= fbb

∣∣∣∣∣
Tav

+
∂ fbb

∂T

∣∣∣∣∣
Tav

δT +
1
2
∂2 fbb

∂T 2

∣∣∣∣∣
Tav

δT 2 + O(δT 3),

(2.22)

where T = Tav +δT = Tav[1+Θ] and xav = hν
kBTav

. By then using the chain rule ∂ f
∂T = ∂x

∂T
∂ f
∂x

it can be found that

f (xav) ≈ fbb(xav) + G(xav)
(
Θ + Θ2) +

1
2
YS Z(xav)Θ2. (2.23)
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When combining two blackbody spectra at temperatures Tav ± δT
2 the first order contri-

bution will cancel, leaving an overall change G + 1
2YS Z at second order.

In the previous derivation we separated the second order term into a temperature

shift and a y distortion, a step which would not have been obvious unless we knew what

we were looking for in advance. The y distortion shape could have been derived more

agnostically by simply performing the second order expansion, and then subtracting the

necessary amount of G(x) till the distortion carried no photon number. This demand that

distortions do not add or subtract photon number is a useful choice, since it allows us to

focus on energy contributions with less ambiguity (e.g. see chapter 6). The number and

energy properties of the y distortion are found to be

NYSZ = 0, EYSZ =
4π4

15
= 4E fbb ≈ 25.9758. (2.24)

A visual description of this process is shown in Fig. 2.4, where it can be seen that mixing

two blackbody leaves some distortion in the high frequency part of the distribution,

known as the Wien tail. The low frequency part of the distribution, known as the

Rayleigh-Jeans (RJ) tail, remains unchanged. In the following section we will see

another distortion shape which affects the low frequencies instead. The relative shape

of the y distortion (once the reference blackbody is subtracted) can be seen in Fig. 2.5

(now in dimensionless units, as for the rest of this thesis).

An interesting consequence of the emergence of YSZ from blackbody mixing is that

this can occur either by real mixing of fluids at different temperatures, or by measuring

a patch of the sky containing various temperatures. The utility of the latter case, the

beam spectral distortion, was discussed in Chluba & Sunyaev (2004).
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Figure 2.4: A figure showing how the superposition of two blackbody spectra does not give
another blackbody, rather there will inevitably be some SD. In the top panel the blue and red
lines show the blackbody spectra at two different temperatures, and the dotted line shows the
blackbody at the average temperature between them. In the bottom panels the resulting mixed
spectrum is shown, demonstrating that it follows the dotted line till the Wien tail, where a
distortion is present. Figure adapted from Chluba et al. (2015b).

2.2.4 µ-Distortions

When introducing Eq. (2.10), we did not include a chemical potential µ̃, despite a

general Bose-Einstein distribution being

fBE(ν) =
1

exp
(

hν−µ̃
kBT

)
− 1

. (2.25)

Why did we initially neglect the potential extra term? µ̃ is associated with an energy

cost of having a particle in your system, e.g. rest energy of massive particles. In the
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Figure 2.5: A plot visualising the three main spectral distortions as relative spectra. This
means the negative branches show relative absence of photons while the positive branches are
excess photons. Roughly speaking y distortions push photons from the blackbody peak into the
high frequency tail, while µ distortions push photons from the low frequency tail towards the
blackbody peak.

case of photons they are massless, and can in principle be created/destroyed for free.

There are times, however, in the Universe’s history where no mechanisms for photon

creation/annihilation were active, which creates an effective chemical potential. Let

us see this mathematically by analysing the equilibrium solution of the Kompaneets

equation.
d fγ
dt

= 0,

=⇒ ∂

∂x
fγ +

Tγ

Te
fγ
[
1 + fγ

]
= 0,

(2.26)

A useful trick here is to recast the dimensionless frequency x in terms of electron

temperature

x =
hν

kBTγ

=
Te

Tγ

hν
kBTe

=
Te

Tγ

xe. (2.27)
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Using this definition we can express Eq. 2.26 as

∂xe fγ = − fγ(1 + fγ), (2.28)

which is solved by a blackbody with an extra term µ given by

fγ =
1

exp
(
xe + µ

) − 1
. (2.29)

This is analogous to the chemical potential, but is not defined exactly the same (notice

the difference in sign and units, and hence the intentional change of symbol). To

describe the spectral shape of the µ distortion,M(x), we assume the spectrum is close

to a blackbody, and an expansion in small µ reveals

fγ(xe) ≈ fbb(xe) − µG(xe)
xe

. (2.30)

As mentioned earlier we will study distortions which leave the photon number un-

changed, so we again subtract G(x) with the appropriate prefactor to achieve the final

form ofM(x):

M(x) = G(x)
(
αµ − 1

x

)
, (2.31)

with αµ ≈ 0.4561. This leaves the properties

NM = 0, EM =
2π6

135ζ(3)
− 6ζ(3) ≈ E fbb

1.40066
≈ 4.63635. (2.32)

For a more detailed study of the µ distortion shape, origin and evolution see Chluba

(2014a). This shape is shown in Fig. 2.5, where it is seen to subtract photons from the

low frequency RJ tail and push them towards the peak of the underlying blackbody

distribution.
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2.3 Primordial origins of SDs

So far we have introduced a variety of spectral shapes with motivating arguments

for each. In this section we will piece these arguments together to form a coherent

view of which SD probes which era in cosmological history. In stating this we are

already anticipating part of the punchline: observing SD allow us to trace events in the

primordial plasma behind the CMB curtain. Different spectral shapes reveal a different

era, and thus we will build up the three era picture. A useful concept to have in mind

throughout the rest of this chapter is that the true blackbody is akin to the thermal

equilibrium for a photon gas. The gas will strive to reach this equilibrium state, however

it must undergo interactions to do so. The availability of these interactions govern the

three eras (Lucca et al., 2019; Chluba, 2016).

To quantify these eras it is helpful to introduce the energy branching ratio Jx(z),

which specifies the amount of energy that will be locked into a spectral shape of type x

following energy injection at redshift z. Denoting the relative energy injection to the

photon gas as Q/ργ, we can perform simple calculations of SD amplitudes by evaluating

y =
1
4

∫
dz Jy(z)

d(Q/ρ)
dz

, (2.33)

µ = 1.401
∫

dz Jµ(z)
d(Q/ρ)

dz
, (2.34)

where the prefactors balance the amplitudes in terms of energy content of their corre-

sponding spectral shape. These branching ratios are shown in Fig. 2.6, together with

shading indicating the rough separation of the three eras. These lines are drawn using

“Method C” from Chluba (2016).

2.3.1 The Temperature Era

This era is the earliest in history, and is characterised by a universe much smaller than

today, and thus very energetic. Energy exchanging scattering events between electrons

and photons occur with great frequency. Bremsstrahlung and Double Compton emission
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Figure 2.6: A plot showing the three era picture with energy branching ratios (Chluba, 2016).
Deep into each era the corresponding branching ratio tends to unity, indicating the production
of a single spectral shape from energy injection at that time.

are still efficient at these times, and any perturbations in the photon gas’ spectral shape

will inevitably return to a pure temperature shift, thus the naming of the era. This era

lasts till z ≈ 3 × 106. This boundary however is sensitive to exactly how distorted the

spectrum is initially, with large energy injections being potentially observable at earlier

times (Chluba et al., 2020a).

2.3.2 The µ Era

As the Universe expands and lowers its average energy density the events associated

with photon creation become more and more unlikely. The scattering events are still

happening however, meaning there is still an up scattering of photons upon interaction

with hot electrons. This leads to a situation where low frequency photons have been

scattered up towards the peak of the distribution, but not enough soft photons are created

to compensate that. The result is the µ distortion, with its absence of low frequency

photons and its effective non-zero chemical potential. This era lasts until z ≈ 5 × 104.

We note that given the power law evolution we saw for matter and radiation in

Sect. 1.3 we would naturally expect electrons to be colder than photons. In reality how-
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ever any energy injection into the medium will tend to heat electrons before transferring

energy to photons. Even in the standard ΛCDM cosmology this effect is larger than

the Hubble cooling effect on matter, at least in the primordial plasma (we discuss this

ΛCDM energy source in the following chapter).

2.3.3 The y Era

The era that follows is the logical extension of the fact that an expanding and cooling

universe will eventually host almost no interactions. In this era the energy exchanging

scattering events that allow a y distortion to convert into a µ distortion are no longer

efficient. A question then arises as to the name of this era: it may not be possible to

thermalise a y spectral shape, but why do we hypothesise a y shape in the first place.

Generally speaking a y distortion emerges as characteristic shape following most forms

of energy injection. To see this we will allude to our two mechanisms which served to

introduce and derive the shape in Sect. 2.2.3. Firstly there will be a y distortion any

time the electrons are out of equilibrium with photons, which is expected even just

from expansion history. Importantly, however, electrons interact with other components

of the primordial plasma before communicating to photons through electromagnetic

forces. This means any general mechanism for energy injection which heats matter

will be translated to a y spectral shape. Secondly, we again note the superposition of

blackbodies which constitutes an energy injection in a real sense, and also leave a y

shape. This second mechanism is especially important in the early Universe, since the

growing mean free path of photons as the medium becomes less dense naturally yields

this mixing (Silk, 1968).

2.3.4 The residual era

It may be clear that the eras discussed so far are all simple limiting cases involving

assumptions about available thermalization mechanisms and their respective efficiencies.

In reality the picture is more complicated, especially between the µ and y eras where
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the transition happens with some finite time. This leads to the existence of a residual

era, where intermediate spectral shapes must be described. These shapes would carry

more sensitivity to the precise moment of energy release in the Universe’s history. One

method of decomposing the residual distortion into orthogonal components has been

developed (Chluba & Jeong, 2014), and a Green’s function method which makes use of

that formalism (Chluba, 2013, 2015). While no simple formula exists describing the

broad class of shapes composing residual distortions, some approach is made in this

direction in chapter 6.

2.4 Spatial spectral distortions

This endeavour of understanding the photon spectrum in depth was motivated by the fact

that photons constitute almost the entirety of cosmological information at our disposal.

Here we will double down on this sentiment by saying that observing the CMB sky has

almost independently informed our models when it comes to early Universe cosmology

in particular. By this we mean there are no other early light sources considering that

stars and galaxies were absent for many billions of years still, and the other probes

we mentioned usually arise in the late Universe [most gravitational wave events for

example arise from neutron star black hole merges (Abbott et al., 2019)].

An argument can be made then that it is imperative to extract and dissect all the

information possible from the CMB sky. This on the one hand means searching for

spatial information like the CMB temperature anisotropies [Θ(γ̂)], but on the other

hand it means searching for information locked in the frequency distribution beyond a

blackbody shape [yYSZ(x) + µM(x)]. The former give us rich information about the

universe very close to recombination, while the latter push our frontier of knowledge

further back in time.

One thing we didn’t discuss here is the possibility of spatially varying SD [y(γ̂),

µ(γ̂)], although it will be the main topic of discussion in chapters 6-8. We can assert at

this stage however that a future decomposition of the CMB sky in exquisite detail could
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follow

fγ(x, γ̂) = TCMB fbb(x) + Θ(γ̂)G(x) + y(γ̂)YSZ(x) + µ(γ̂)M(x), (2.35)

where all symbols take the meaning we have introduced in this chapter, but now with the

inclusion of spatially varying y and µ amplitudes. It is expected that these signals would

be some orders of magnitude smaller than the monopole SD, but would nevertheless

provide an even richer information content than already expressed throughout this

chapter. A further benefit of searching for anisotropic signals is that we can benefit from

the wealth of mathematical and computational machinery already developed for the

extraction of temperature anisotropies – highly optimised codes (Lesgourgues, 2011;

Lewis et al., 2000) and models of foregrounds (Rotti & Chluba, 2021; Remazeilles &

Chluba, 2018), just to mention two.
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Cosmological Perturbation Theory

3.1 Introduction

In the previous chapters we have introduced the standard model of cosmology and

discussed the information content locked in the photon spectrum we see across the

sky. This chapter will both develop and unite the two previous concepts. To see

this consider the photon decomposition represented in (2.35), where a large portion

of the information content manifests in angular dependence across the sky. This is

at odds with the discussion in the first chapter, where the Universe is hypothesised

to be maximally symmetric - homogeneous and isotropic - and as such any angular

dependence of photons would be impossible. Similarly, it has been extremely helpful

while writing this thesis to reside upon a dense ball of rock floating in space, a fact which

is also prohibited by a maximally symmetric universe, as no location is preferable for

gravitational collapse. Observations have thankfully shown our Cosmological models

to not be completely unjustified, as differences in temperature across the sky Θ(γ̂) are

typically only 1 part in 100 thousand of the monopole temperature. This motivates us to

take a perturbative approach, keeping a maximally symmetric Universe at leading order.

To formally treat this problem we will introduce the study of Cosmological Pertur-

bation Theory (CPT) where perturbatively small inhomogeneities and anisotropies are
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added to the otherwise smooth background. This formalism allows us to fully explain

the sizes of temperature patches on the CMB sky by calculating the power spectrum

of CMB anisotropies. Additionally we will make connection to SD production by

explaining the dominant source of primordial SDs within ΛCDM - Silk damping of

acoustic modes.

We will see throughout this chapter though that CPT can be fiercely complicated.

Let us see why in a heuristic way: the early-universe cosmic inventory contains charged

baryons and electrons, dark matter, photons, neutrinos and gravitational potentials. All

of these oscillate as a function of both space and time. Since the matter can be considered

non-relativistic they are each expressed with densities δX and velocities vX, where X

can denote charged baryonic1 matter (e.g. δb) or uncharged dark matter (e.g. δm). The

neutrinos and photons however must be treated as more general fluids, but cannot be

assumed perfect fluids (see Sect. 1.3), and as such have hierarchies of multipoles X`m.

The gravitational potentials contain 6 degrees of freedom divided into scalars, vectors

and tensors (see Sect. 3.3). The charged particles and photons interact through familiar

scattering terms (see Sect. 2.1), but even the weakly interacting particles like neutrinos

will couple to the entire system through the gravitational potentials. We will see that

this enormously coupled and energetic system of interactions can be distilled down to

coupled ODEs, albeit potentially hundreds of them.

This section is split in two parts, both of which rely on each other to some degree.

Firstly, we must take a closer look at the Einstein field equations Eq. (1.11), which

stated in words dictates “how space time should curve in response to stress-energy

content”. In this perturbative approach then this equations tells us how small local

potentials are created on top of the global FLRW geometry according to the perturbed

energy content. Secondly, we must look at is the other half of the Einsteinian world

view where “spacetime curvature tells particles how to move”, where we rely on

the gravitational potentials to solve this. One complication however arises in the

aforementioned particle interactions, which can be seen generally as terms that modify

1Recall from chapter 1 that this means both electrons and protons in the context of cosmology.
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the phase space distribution of particle species (e.g. the occupation number we discussed

for photons in Sect. 2.2). This second problem can be formulated through the Boltzmann

equation – a deceptively simple statement of phase space evolution with appropriate

collision terms – where we can insert the known evolution across a spacetime geodesic

given the geometry and gravitational potentials.

3.2 The Boltzmann Equation

The Boltzmann equation can be given in a deceptively simple form (Peebles & Yu,

1970; Weinberg, 2008; Dodelson, 2003):

d fi(x, p, t)
dt

= C[ f (x, p, t)], (3.1)

where fi is the occupation function, essentially a function describing the distribution of

a particle species i in phase space. The phase space is parametrised in terms of position

x and momentum p. Most important macroscopic physical quantities of the particle

baths are found by taking various integrals over the occupation function. We already

Figure 3.1: A diagram adapted from Dodelson (2003) showing different components in the early
Universe with relevant interactions. Dotted lines indicate photons being produced or absorbed
in the reaction. All lines connecting to the metric are understood as gravitational interactions.
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discussed the photon occupation number in depth (see Sect. 2.2).

The left and right hand side of Eq. (3.1) are known as the Liouville and collision

operator respectively. In essence the Boltzmann equation is a statement of how the

occupation number will change under various interactions: injection/absorption at some

frequency, scattering up/down in frequency, diffusions in space, etc. As such, they tend

to be functions of the momenta and they often couple different particle types. This is

diagrammatically summarised in Fig. 3.1, where circles indicate elements of the cosmic

inventory (and the metric, to clarify the coupling of gravity), with vertices indicating

various interactions. We will not discuss collision terms in any depth in this chapter,

since we already covered the important ones for photons in Sect. 2.1.

3.2.1 The Liouville Operator

Given the structure of the Boltzmann equation we can identify the Liouville oper-

ator as containing the evolution of the occupation function in the absence of any

sources/scatterings. This means it is what particles do following their “straight lines”

through spacetime. In the context of General Relativity this is less boring than it sounds,

involving the loss of momentum to cosmic expansion and curved paths from local

gravitational masses. To see this let us expand the operator and reveal its physical

content:
d fγ
dt

=
∂ fγ
∂t

+
∂ fγ
∂xi

dxi

dt
+
∂ fγ
∂pi

dpi

dt
, (3.2)

Studying the terms from left to right we can see explicit dependence on time, a de-

pendence on the way physical coordinates vary through time, and any change in the

momentum of particle (e.g. redshifting photons). It is clear then that the geometry of

spacetime will enter the calculation through non-trivial changes to the coordinates and

momentum.

Eq. (3.2) has been written using momentum p, however for the rest of this thesis it

will be more helpful to express equations using the dimensionless frequency x = hν/kBT

as defined in Chapter 2. This variable which has the Cosmic expansion built in through
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T = T0/a = T0(1 + z), and thus absorbs a term which would otherwise appear giving

that precise temperature scaling (Dodelson, 2003). Throughout the rest of this section

we use the notation from Chluba et al. (2012) (Chapter 7 follows the same convention).

Upon the introduction of perturbations, the geometry of spacetime has to include any

gravitational effects of under- and over densities in the Universe. This will be discussed

in detail in section 3.3, but for now all we need to know is that two gravitational

potentials, Φ,Ψ, cause this effect (see Eq. (3.25)). The Liouville operator then takes the

form (Hu & White, 1996; Chluba et al., 2012)

d f (1)

dt
=
∂ f (1)

∂t
+
γ̂ j

a
∂ f (1)

∂x j − x
∂ f (0)

∂x

[
∂Φ(1)

∂t
+
γ̂ j

a
∂Ψ(1)

∂x j

]
, (3.3)

where the effects of magnitude and direction of momentum have been explicitly sepa-

rated by introducing γ̂i = pi/
√

p j p j and we have dropped the subscript γ, understanding

we are interested only in photons. Note that here we are now specifically studying first

order perturbations in preparations for studying anisotropies (additionally we used that

background quantities don’t depend on spatial coordinates). Inspecting Eq. (3.3) reveals

the interesting property that all fluids will interact with the geometric perturbations via

the Liouville operator. This explains the vertices in Fig. 3.1, which connect every fluid

to the metric (e.g. even neutrinos will have small effects on the photons via gravity,

despite having no direct electromagnetic interaction).

The first two terms in Eq. 3.3 are the generalised forms of the continuity and Euler

equations. The next term provides the loss of energy to cosmic expansion – cosmic

redshifting (the equivalent at zeroth order reveals T ∝ a−1). The final terms are related

to gravitational lensing – they describe the change of frequency and angle in being

deflected by local potentials.

3.2.2 The collision operator

The collision operators will not be discussed in great detail here simply due to the

fact that they were discussed at length in Sect 2.1, albeit in a different context. Due to
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3: COSMOLOGICAL PERTURBATION THEORY

that context we previously focused on energy exchanging events between photons and

electrons, as well as photon creating events. In this chapter we in fact care much more

about the low energy equivalent of Compton scattering, the Thomson limit. This can be

given by

C(1)[ f (x)] = τ̇

[
f (1)
0 +

1
10

f (1)
2 − f (1) − β(1)χx∂x f (0)

]
, (3.4)

where β(1) represents local baryon velocities, and χ is the angle between the photons

(γ̂ j) and baryons. The operator x∂x appears frequently, and is explicitly named the

boost operator in Chapters 6, 7 and 8. The subscripts of f are referring to the multipole

moment of the distribution, where we have defined f` =
∑`

m=−` f`mY`m (see appendix A).

3.2.3 The Photon hierarchy

The bottom line of the calculations alluded to above is what we call the Boltzmann

hierarchy, and in particular we will focus on the photon hierarchy provided that in this

thesis we are primarily concerned with the photon fluid. Much of the above discussion

holds for the rest of the Cosmic inventory however (excluding the collision term Eq. 3.4

which was specific for photons). Thankfully the other fluids are simple in the early

universe: following the discussion in Sect. 1.3 we treat matter (CDM and baryons)

as perfect fluids with only local densities and velocities as parameters. Photons and

neutrinos on the other hand receive a full non-perfect fluid description This restriction

of focus is not as limiting as it may initially seem, considering that the most important

interactions in the plasma are electromagnetic, since gravity is included implicitly

through the geometric view of GR.

The bottom line equation for photons in the Thomson limit is given by combing

Eqs. (3.3) and (3.4),

f (1)′ + γ̂i∂ f (1)

∂xi = −Φ(1)′ − γ̂i∂Ψ(1)

∂xi − τ′
[

f (1)
0 +

1
10

f (1)
2 − f (1) − β(1)χx∂x f (0)

]
, (3.5)

where we have also converted to conformal time (′ ≡ ∂η). This will more often be seen

64



3.2: THE BOLTZMANN EQUATION

in the literature with a “temperature only” view of the photon spectrum: f (0) → fbb(x),

f (1) → Θ(1)G(x). Importantly using that substitution has an internal consistency in that

x∂x fbb(x) = G(x). This mapping to only temperature shifts is at odds with the nuances

of chapter 2, a discrepancy we attempt to remedy in chapter 7.

To understand why Eq. 3.5 makes part of a “hierarchy” we must first perform

two mathematical transformations (appendix A). They both come down to a similar

concept of taking our currently complicated function which depends on space and

projects that dependence onto some set of basis functions. In particular the angular

dependence of variables is captured through a hierarchy of Legendre polynomials P`(x)

(A.1) and length scales captured through the plane waves exp(ikx) (A.3) implicit in

Fourier transforms. Transformations on the hierarchy are covered with great clarity in

Pettinari (2016).

Bottom line

After performing all the relevant transformations we arrive at what can finally be

recognised as a hierarchy:

Θ̂′0 = −kΘ̂1 − Φ̂′, (3.6)

Θ̂′1 = k
(
1
3

Θ̂0 − 2
3

Θ̂2

)
+

k
3

Ψ̂ − τ′
[
Θ̂1 − β̂3

]
, (3.7)

Θ̂′2 = k
(
2
5

Θ̂1 − 3
5

Θ̂3

)
− 9

10
τ′Θ̂2, (3.8)

Θ̂′` > 2 = k
(

`

2` + 1
Θ̂`−1 − ` + 1

2` + 1
Θ̂`+1

)
− τ′Θ̂`, (3.9)

where hats denote the Legendre transforms of the variables introduced above (ap-

pendix A) and we drop the superscript (1) for convenience (Θ is always a perturbed

quantity).
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3.3 Einstein’s field equations

Einstein’s field equations are typically very difficult to solve analytically and costly to

treat numerically. Full solutions tend to possess high degrees of symmetry, as seen in

the FLRW case. In fact, FLRW corresponds to the most symmetric possible solution for

the spatial part of the manifold. It can be shown (See appendix C of Wald (1984)) that a

Riemannian manifold of dimension n has a maximum of n(n+1)/2 linearly independent

Killing vector fields, which dictate the symmetries of the manifold. In 3 dimensional

space the maximal number of Killing fields is 3(3 + 1)/2 = 6, which in FLRW consists

of 3 spatial translations (homogeneity) and 3 rotations (isotropy). This only leaves

freedom of choice in the curvature (flat, open or closed), which we fix experimentally.

The use of perturbation theory is essential to move beyond the most symmetric

cases and include, for example, the inhomogeneities that seed galaxies, stars and planets.

Small linear perturbations on top of a simple background allow us to capture some of

the less idealised gravitational effects, without an overwhelming analytic or numerical

treatment. This is, fundamentally, the treatment that allows us to feasibly calculate the

expected distribution of temperature patches across the sky. For a thorough review of

these calculations see Weinberg (2008) (specifically chapter 5).

To perturb the geometry we consider a metric

gµν = ḡµν + δgµν, (3.10)

where any background quantities are now represented by overbars. Any small quantities,

indicated with δX, have small component values compared to the background. The

raising and lowering of indices is no longer as simple as before. If we demand that

gµαgαν = δνµ then it can be seen that

gµν = ḡµν − δgµν (3.11)
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is the correct form for the new inverse metric:

gµαgαν = (ḡµα + δgµα)(ḡαν − δgαν)
= ḡµαḡαν − ḡµαδgαν + δgµαḡαν + O(δg2)

= δνµ − (δgνµ − δgνµ) + O(δg2)

= δνµ + O(δg2),

(3.12)

where in the second to last line we used the fact that perturbed quantities still raise/lower

indices with the zeroth order metric - other contributions are higher than first order.

This new perturbed metric can then be propagated through all the other relevant

quantities in GR (see Sect. 1.1): Christoffel symbols, Ricci tensor, Einstein tensor, etc.

These expressions quickly grow in length and complexity, for example the Christoffel

symbols become Γ̄λµν + δΓλµν with

δΓλµν =
1
2
δgλρ

(
∂µḡνρ + ∂νḡρµ − ∂ρḡµν

)
+

1
2

ḡλρ
(
∂µδgνρ + ∂νδgρµ − ∂ρδgµν

)
. (3.13)

We leave the remaining steps in the derivation to well established literature, and focus

instead on important conceptual simplifications that are important not only for ease of

calculation, but also must be used to give meaningful conclusions from the bottom line

answers.

3.3.1 SVT Decomposition

The second, to divide each of the difficulties under examination into as

many parts as possible, and as might be necessary for its adequate

solution.

–René Descartes, Discourse on the method of rightly conducting the

reason, and seeking truth in the sciences
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The results obtained so far are repulsively complicated

–Stephen Weinberg, Cosmology

Perhaps the most important aspect of CPT for this discussion is that we can consider

the decomposition of δgµν into a set of Scalars, Vectors and Tensors (SVT) (Stewart,

1990). More precisely we should say scalars, transverse vectors and transverse traceless

tensors, but this will be dropped for ease of writing.

This split can be understood as a generalisation of the Helmholtz decomposition

familiar to students of electromagnetism (Griffiths, 2017). There we commonly divide

a vector field into a diverging part, and a curling part:

E = ∇φ + ∇ × A. (3.14)

If we perform a Fourier transform on this decomposition, then we find

Ẽ = kφ̃ + k × Ã, (3.15)

Together with appropriate boundary conditions these two components fully determine

its original vector .

In real space the scalar field contribution can be referred to as the diverging part,

since ∇ · ∇φ , 0, while ∇ · ∇ × A = 0. In k-space the diverging field φ̃ aligns with k,

while Ã exists in the orthogonal subspace to k, hence receiving the name of transverse

vector. In heuristic terms, the component of a vector that aligns with k is truly a scalar

because no specification of direction was necessary. Note that assuming we are studying

electromagnetism in 3 spatial dimensions, we then have one scalar and two vector

degrees of freedom.

Extending this concept to GR there is more freedom, since the perturbations take

place in a rank 2 tensor. This means that now a tensor fits within the perturbations.

Again heuristically this is transverse to the k vector and also traceless, since the trace of

a matrix can be specified with just a scalar quantity. A full decomposition thus takes the
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form2

δg00 = A, (3.16a)

δg0i = δgi0 = ∂iB + ET
i , (3.16b)

δgi j = C δi j +

(
∂i∂ j − 1

3
δi j∂

k∂k

)
D + ∂iFT

j + ∂ jFT
i + ΠTT

i j , (3.16c)

where A, B,C and D are scalars, ET
i and FT

i are transverse vectors, and ΠTT
i j is a

transverse-traceless tensor. These objects satisfy

∂iET
i = 0, ∂iFT

i = 0, ∂iΠTT
i j = ∂ jΠTT

i j = 0, ΠTT
i j = ΠTT

ji . (3.17)

This decomposition still contains all the information of the metric, and is therefore

explicitly symmetric. A further sanity check is to count the unconstrained components:

• One component from each scalar, four in total.

• Two components from each vector, since one orthogonality constraint is applied.

Again four in total

• Two components from the symmetric tensor, since this has orthogonality con-

straints in each row (-3) and in being traceless (-1).

This totals ten, as expected from a symmetric four dimensional rank two tensor δgµν.

This means we are free to use this decomposition in place of the full tensor whenever

this is convenient.

This innocuous looking decomposition turns out to be extremely powerful, given

the way that first order perturbations couple to one another. Roughly speaking, and

specific to first order, perturbations of a given type only source their own type. For

example, Π type perturbations are only sourced by anisotropic energy distributions.

2Note that this decomposition has many different conventions in the literature. For example, sometimes
the spatial Laplacian is not subtracted from D, making it a contribution to the trace of δgi j. Other times
C → C

3 , making it exactly equal to the trace of the spatial tensor.
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This is exemplified by the origin of gravitational waves in orbiting binary systems

(LIGO Scientific Collaboration & Virgo Collaboration, 2016). Consider also that

spherically symmetric bodies are prevented from creating gravitational waves as a result

of Birkhoff’s Theorem (Birkhoff & Langer, 1923). Similarly, perturbations to pressure

and energy are associated with the scalar sector, and will be our prime focus moving

forward.

3.3.2 Gauge Choice

Everything we hear is an opinion, not a fact. Everything we see is a

perspective, not the truth.

–Marcus Aurelius, Meditations

One of the subtleties that remains to be discussed is that of choosing a gauge

(Mukhanov et al., 1992; Ma & Bertschinger, 1995). This is related with the discussion

in Sect. 1.1, where the concept of coordinate invariance is fundamental to the formalism

of General Relativity. The concept of a gauge is essentially the process of choosing a

coordinate frame in which the perturbations are being studied, while ensuring that any

bottom line results are independent of this choice. As an example, imagine labouring

over a perturbed ΛCDM Universe with a small velocity field in a single spatial direction.

It is intuitive that this solution could have been achieved simply with a change of

coordinates on the background – a small Lorentz boost.

Now let us express this idea mathematically. We need to see how the components of

a general tensor, T , will change under a small (perturbative) change of coordinates. The

bottom line is that these transformations are given by Lie derivatives with respect to a

vector field, ξ, which is assumed to be small in its components:

T → T + (∆T )ξ,

(∆T )ξ = LξT,
(3.18)
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where the Lie derivative Lξ of an (m, n) tensor is given by

(LξT )a1...am
b1...bn = ξc(∂cT a1...am

b1...bn

)

− (
∂cξ

a1
)
T c...am

b1...bn − . . . − (
∂cξ

am
)
T a1...c

b1...bn

+
(
∂b1ξ

c)T a1...am
c...bn + . . . +

(
∂bnξ

c)T a1...am
b1...c.

(3.19)

This arises due to a correspondence between diffeomorphisms and vector fields, a full

discussion of which can be found in appendix B of Carroll (2004). In essence, since the

change of coordinates is necessarily smooth, and small in magnitude, this is equivalent

to moving objects along flow lines given by some smooth vector field ξ, which also

has perturbatively small components. Following the convention used for the metric,

let’s decompose ξ into 1 + 3 components3 ξµ → (T, Li), and evaluate the change of the

metric, noting that Lξδgµν = 0:

(∆gµν)ξ = Lξgµν = Lξḡµν = ξα
(
∂αḡµν

)
+

(
∂µξ

α
)

ḡαν + (∂νξα) ḡµα

= T ˙̄gµν +
(
∂µT

)
ḡ0ν + (∂νT ) ḡµ0

(
∂µLk

)
ḡkν +

(
∂νLk

)
ḡµk,

(3.20)

where we set L
(
∂kḡµν

)
= 0, since the FLRW metric has no spatial dependence due

to the flatness. Evaluating this in time/space components of the metric, and further

decomposing Li = ∂iL + LT
i (see Sect. 3.3.1) we get

(∆g00)ξ = 2Ṫ , (3.21a)

(∆gi0)ξ = (∆g0i)ξ =

(
∂t − 2

ȧ
a

) (
∂iL + LT

i

)
− ∂iT, (3.21b)

(∆gi j)ξ = 2aȧTδi j + ∂iLT
j + ∂ jLT

i + 2∂i∂ jL. (3.21c)

Applying these gauge transformations to the components of the SVT split δgµν via

3See Gourgoulhon (2012) and references therein for a clear view of the 3 + 1 formalism in more detail
and rigour
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Eq. (3.18), we find:

(
∆ξg00

)
: A→ A + 2Ṫ , (3.22a)

(
∆ξg0i

)
: B→ B + L̇ − 2

ȧ
a

L − T, (3.22b)

ET
i → ET

i + L̇T
i − 2

ȧ
a

LT
i , (3.22c)

(
∆ξgi j

)
: C → C + 2aȧT +

1
3
∂k∂kL, (3.22d)

D→ D + L, (3.22e)

FT
i → FT

i + LT
i , (3.22f)

ΠTT
i j → ΠTT

i j . (3.22g)

It is notable that ΠTT
i j can’t be changed through a gauge transformation, meaning

that tensor perturbations (i.e. gravitational waves) are not frame-dependent objects

(Weinberg, 2008).

The bottom line is that our perturbed tensors will change depending on the reference

frame chosen. On the one hand, this is a problem, giving us extra work in checking

any derived results are not just coordinate artefacts. On the other hand, it gives some

freedom, as we can choose the 4 degrees of freedom (1 in T , 3 in Li). Moving forward,

two general philosophies can be adopted: combine the perturbations in a way that gauge

dependence cancels, or specify which gauge you are in by fixing some components.

For the vector perturbations, it should be easy to see that defining

VT
i = ET

i − ḞT
i + 2

ȧ
a

FT
i ,

∆ξVi = 0,
(3.23)

gives a gauge invariant vector perturbation.

Similar gauge invariant quantities exist for scalar perturbations but are more compli-

cated (Bardeen, 1980). Thus we will apply the second of the aforementioned approaches,

where we simply choose a gauge and understand the corresponding artefacts in the

72



3.3: EINSTEIN’S FIELD EQUATIONS

bottom line answers. Two common gauges exist: the synchronous gauge, and the

conformal Newtonian gauge (Ma & Bertschinger, 1995). The latter will be introduced

here and used throughout the thesis. In this choice of gauge we choose L such that

D = 0, and T such that B = 0. This leaves A and C, which we will rename to more

easily match other common notations:

A = −2Ψ, C = −2a2Φ. (3.24)

It is common in studying the CMB to focus only on scalar potentials, ignoring

vector and tensor perturbations. This is often sufficient since photons couple strongly

to scalar perturbations through their overdensities, while properties like polarisation

are influenced by tensors. We will thus often make use of the metric (in conformal

Newtonian gauge)

ds2 = −(1 + 2Ψ)dt2 + a2(t) (1 + 2Φ) dx2. (3.25)

3.3.3 Stress Energy Tensor

So far we have perturbed the metric, performed the SVT split and selected a gauge

for these perturbations. This process relates specifically to the LHS of Einstein’s field

equation (Eq. 1.11), and we have yet to discuss the corresponding perturbations to

the stress energy tensor. Luckily, much of the previous discussion will be useful here.

Firstly, we will only discuss the 4 scalar degrees of freedom, which here correspond to

relatively intuitive quantities. Secondly, the choice of gauge has been used to cancel

geometric quantities. This means the similar gauge terms on the RHS have already been

chosen, and will only serve to rescale the quantities with no full cancellations. To be

specific, local energy over/underdensities δρ will be slightly different in the synchronous

and conformal Newtonian gauge, but correspond to the same physical entity, and in

neither case will be set to 0.

Discussing the RHS equivalents of A, B, C and D in order we have δρ, δθ, δp and
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δσ. The first quantity is clear, a perturbation to the energy content in some patch of the

Universe. The second quantity is related to a velocity perturbation. This is explicitly

perturbative since in background ΛCDM no velocities can exist, as this would violate

local isotropy. The third quantity is on the trace of Ti j, making it the perturbation to the

isotropic pressure. The last quantity is the scalar quantity present in Ti j, but this time

off axis, corresponding to some anisotropic stress. This last component is generally not

sourced by matter, but can be sourced by radiation and neutrino fluids (when they cease

to behave as a perfect fluid, see Sect 1.3). Note that all quantities here are written with

δX, despite X not always corresponding to perturbed versions of a background quantity,

which differs in notation from Ma & Bertschinger (1995) where θ is implicitly small.

3.3.4 Bottom line

Carrying out all the above techniques yields four equations governing the evolution of

scalar gravitational potentials, although only two are independent. Following Ma &

Bertschinger (1995) but with the variable convention4 of chapter 7 we have

−k2Φ + 3
a′

a

(
−Φ′ +

a′

a
Ψ

)
=

∑

λ

a216πGδρλ, (3.26a)

k
(
−Φ′ +

a′

a
Ψ

)
=

∑

λ

a212πG(ρ̄ + P̄)δθλ, (3.26b)

−Φ′′ +
a′

a
(
Ψ′ − 2Φ′

)
+

(
2

a′′

a
− a′2

a2

)
Ψ − k2

3
(Φ + Ψ) =

∑

λ

a2 4πG
3
δpλ, (3.26c)

−k2 (Φ + Ψ) =
∑

λ

a224πG
(
ρ̄ + P̄

)
δσλ, (3.26d)

where we have explicitly defined the stress-energy perturbations as the sum over relevant

quantities from different sectors λ (i.e. photons, neutrinos, dark matter, baryons). For

example, writing the quadrupole of neutrinos as N (1)
2 we write the shear stress as

∑
λ δσλ = Θ

(1)
2 +N (1)

2 , considering that only relativistic particles carry shear stress.

4Compared to Ma & Bertschinger (1995) we have Φ→ −Φ. Furthermore we note that for relativistic
particles we have δr → 4δρr, θr → 3kδθr, σr → 2δσr.
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Figure 3.2: A figure showing how scalar and tensor perturbations differ in their dynamics. Θ0
shows a constant amplitude envelope within which is oscillates due to a standing wave behaviour
with electrons. The ending of that wave is characterised by a growing quadrupole moment,
which is a useful quantity for understanding Silk damping and blackbody mixing (Chluba et al.,
2012; Silk, 1968). The tensor perturbation on the the other hand decays immediately after
horizon crossing but at a slower rate. This causes a stretching of the relevant tensor window for
SD constraints compared to scalar perturbations (Chluba et al, 2019; Chluba et al., 2015a).

3.4 Evolution of primordial perturbations

The results of Sect. 3.2 and Sect. 3.3 together give the full picture of primordial

photon perturbations - at least as far as temperature anisotropies is concerned. A full

solution of these equations however is not easily accessible to analytic treatments (Hu &

Sugiyama, 1995, 1996), and often numerical solutions are employed (Lewis et al., 2000;

Lesgourgues, 2011). For the purposes of this thesis it is most useful to focus on limiting

cases and derive heuristic and conceptual understanding of these primordial waves. We

will do so without laborious derivations, and with more of a focus on qualitative results.

3.4.1 Horizon crossing

The concept of horizon crossing can classically be thought of in terms of causality.

Essentially perturbations with a wavelength larger than the current Hubble horizon have
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3: COSMOLOGICAL PERTURBATION THEORY

not had enough time for light signals to travel from one peak to another. This leads

to a situation where these waves are frozen and static till the horizon has expanded.

In fact there is the alternative solution of a power law decay, but the important aspect

here is the independence of wavelength (a field can “everywhere locally” decay without

violating any causality condition).

Mathematically this is best seen in the evolution of tensorial perturbations5 which

in the absence of any anisotropic stress evolve according to (see Weinberg, 2004; Dicus

& Repko, 2005)

h′′(η) + 2
a′

a
h′(η) + k2h(η) ≈ 0. (3.27)

Furthermore we will pursue solutions in the radiation (really, relativistic) dominated era

with a = ηH0
√

Ωrel

h′′(η) +
2
η

h′(η) + k2h(η) ≈ 0. (3.28)

The second term’s coefficient is the Hubble rate, which falls with time, while the third

term is simply multiplied by a constant which we know to be associated with wave like

behaviour. It is clear that the second term dominates the early time, while the final term

provides late time evolution. We can thus pursue solutions initially to

h′′(η) +
2
η

h′(η) ≈ 0, (3.29)

which gives h(η) = A − B/η, with A and B being arbitrary constants. This behaviour is

quite characteristic, with one constant mode and one decaying mode at early time. Note

that the second solution has a singularity for η → 0, however it could in principle be

sourced in an unproblematic way at some finite η.

Returning to the solution to Eq. 3.28 we can find h(η) = A j0(kη)−By0(kη) (Watanabe

& Komatsu, 2006; Kite et al., 2022), where j0 and y0 are the spherical Bessel functions

of the first and second kind respectively and A, B are again arbitrary constants. These

solutions have similar properties to the solutions above, with the y0 function have an

5Tensorial solutions are greatly expanded upon in chapter 5, Kite et al. (2022).
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3.4: EVOLUTION OF PRIMORDIAL PERTURBATIONS

early time divergence and decaying behaviour. Now however the j0 mode enters an

oscillatory phase after horizon crossing kη ∼ 1 which is characterised by the third term

in the ODE.

Scalar perturbations follow a similar mathematics, with a constant superhorizon

mode and a subsequent wave behaviour following the time of crossing. Photon tem-

perature perturbations (scalars) and gravitational waves (tensors) are shown in Fig. 3.2,

where the moment of horizon crossing is indicated, showing common behaviour be-

tween these two conceptually very distinct waves.

This moment of horizon crossing is important for the CMB anisotropies, where large

patches of the sky are typically dominated by modes which crossed the horizon more

recently. Even for tensors there is a distinct bend in today’s tensor energy spectrum

associated with modes crossing horizon before or after the transition between a radiation

and matter dominated Universe (Watanabe & Komatsu, 2006; Saikawa & Shirai, 2018;

Kite et al., 2022).

3.4.2 Tight coupling

Once the perturbations have crossed horizon they enter an oscillatory phase. Here we

now see big differences between the tensors and scalars, as can be appreciated in Fig. 3.2.

This difference is because the photons and baryons form a stable oscillation, with gravity

and electromagnetic repulsion forming the restoring forces. We can understand this

in terms of a single tightly coupled fluid, where the two components behave as one.

Eventually this marriage of photons and charged baryons fails, and there is a decay of

the mode. Tensor waves have no such supporting sources, and simply decay with a

power law, which is slower than the exponential decay in the temperature perturbations

once they do decay.

In the tight coupling limit we have τ′ � k, implying that Thomson scattering is

very effective at isotropising the medium, and keep the oscillations in the monopole and

dipole of the relevant fluids. An example of how there is effectively one fluid is seen in
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3: COSMOLOGICAL PERTURBATION THEORY

Eq. 3.8, where the term proportional to τ′ drives Θ1 ≈ β/3, implying the photons and

baryons share a common velocity.

The photon hierarchy in this limit gives (Dodelson, 2003)

Θ′′0 +
a′

a
R

1 + R
Θ′0 + k2c2

sΘ0 = F(k, η),

F(k, η) = −k2

3
Ψ − a′

a
R

1 + R
Φ − Φ′′.

(3.30)

We will not analyse this equation in too much detail, but will limit ourselves to pointing

out its structure as a forced and damped harmonic oscillator. The forcing in this case

being a time dependent combination of gravitational potentials. Here R = 3ρb/4ργ

gives the ratio of baryon and photon energies, thus giving the damping term a physical

interpretation known as baryon loading. Essentially the greater this ratio is the more

mass the photon-baryon plasma has, damping the oscillations.

Provided this forced oscillator solution requires a highly isotropised photon fluid

(e.g. no quadrupole moment), it will break down when τ′ � k ceases to be true.

3.4.3 Diffusion scale

The derivation of Eq. 3.30 required establishing the hierarchy of photon moments,

truncating at the dipole, and then eliminating that dipole from the equation set. To

understand the breakdown of the tight coupling limit we much return to the hierarchy

and include the quadrupole term also. This prevents us writing down a single equation

for the monopole and forces us into the full coupled system. Again leaving the details

to literature (see e.g. chapter 9 of Dodelson, 2003) we have

Θ̂′0 + kΘ̂1 = 0, (3.31)

Θ̂′1 + k
(
2
3

Θ̂2 − 1
3

Θ̂0

)
= τ′

(
Θ̂1 − β̂3

)
, (3.32)

Θ̂′2 −
2k
5

Θ̂1 =
9

10
τ′Θ̂2. (3.33)
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3.4: EVOLUTION OF PRIMORDIAL PERTURBATIONS

Here we have not neglected Θ2 as before. Now Θ3 is the first neglected term, being

a factor of ∼ k/τ′ smaller than Θ2. Assuming we’re still close to the tight coupling

era, we can still use τ′ > k which gives a quasi-stationary evolution Θ′2 ≈ 0 =⇒
Θ2 ≈ −4k/9τ′ Θ1. This expressions makes it so the quadrupole is a sort of leaking of

energy form the hierarchy, leading to an eventual exponential decay of the temperature

perturbations. Concretely we can find

Θ0, Θ1 ∼ exp
[
ik

∫
dη̃ cs(η̃)

]
exp

(
− k2

k2
D

)
,

k−2
D =

∫ η

0

dη̃
6(1 + R)τ′(η̃)

[
R2

1 + R
+

8
9

]
,

cs(η̃) =

√
1

3(1 + R(η̃))
,

(3.34)

where the details of the 8/9 factor is associated with the inclusion of polarization, not

discussed here. The integral governing the oscillation speed includes the sound speed

in the fluid cs. kD provides the diffusion scale drawn in Fig. 3.2. The diffusion scale

shrinks with time, and when it evolves enough so that the scale of a given mode k

surpasses it, we see an exponential decay of the perturbations. This decay correlates

with a rapid excitation of the quadrupole moment.

This whole process has a visual classic analogue. While the photon fluid is locked

in oscillation with baryons in a macroscopic sense, there is a random walk being

undertaken by the photons at a microscopic level. The mean free path of this walk can

be found to follow λMFP ∼ 1/τ′, which provides a nice physical interpretation to the

limit k/τ′ = kλMFP << 1. Basically these Fourier modes are concerned with lengths

over which photons have not been able to diffuse The diffusion process heuristically

implies a mixing of two patches with different temperatures, and therefore erases the

differences (see Fig. 2.4). From our discussion in chapter 2 we know this implies the

creation of a y distortion. This was studied in detail in Chluba et al. (2012) yielding an
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3: COSMOLOGICAL PERTURBATION THEORY

energy injection of (see also Chluba et al., 2015a, for succinct summary)

dQ
dτ

(η) ≈ 4
∫

k2dk
2π2 P(k)

9
2

Θ2(k, η)2, (3.35)

where the power spectrum P(k) will be formally introduced in Sect 3.6.

3.4.4 Free-streaming

Primordial perturbations in the photon fluid are not necessarily condemned to self

erasure though photon diffusion. There is an alternative fate for patches which survive

long enough for the primordial plasma to dissipate, cool, and undergo recombination.

With electrons and protons combining to make neutral hydrogen the photons can then

free-stream, and the structure of the standing acoustic waves is locked in. In this sense

there is a “snapshot” of the primordial plasma which we today call the CMB. It is

typically the larger scale modes (small k) that see this fate, with smaller scale (larger k)

dissipating too early. Note however that the smallest of k have not yet crossed horizon,

providing a strong cutoff for modes approaching k ∼ 1/η0.

This process of free-streaming can be seen in the photon hierarchy Eq. 3.6 by simply

neglecting any terms with τ′. This leaves the hierarchy of multiples coupled with k.

This leads to a heuristic picture where energy tends to flow up to higher multipoles (a

plane wave can be represented as a summation of Legendre polynomials), but Thomson

scattering provided an isotropising effect which ceases at recombination. This is why

when we measure angular patches on the sky at modern times we see ` ∼ 1000, despite

the fact that in the primordial plasma anything higher than the quadrupole is seldom

important.

It turns out that once free-streaming starts it is no longer computationally (or analyt-

ically) efficient to understand the equation set as many thousands of coupled differential

equations, and there are alternative approaches that regain the view of plane waves

propagating. In particular there is a line of sight integral which drastically simplifies

and optimises codes modelling the Boltzmann hierarchy (Seljak & Zaldarriaga, 1996).
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3.5 Integral Equation Approach

We briefly mention that although the multipole hierarchy is the most common approach

to solving early universe perturbations (e.g. Lesgourgues, 2011; Lewis et al., 2000),

occasionally a formulation in terms of integral equations shows some benefits. An

early use of this approach was shown in Weinberg (2004), which matches the approach

used in chapter 5 for studying the damping of tensor perturbations by neutrinos. The

integral equation approach for scalar perturbations was introduced in Weinberg (2006),

but generalised and numerically benchmarked in recent work by Kamionkowski (2021).

This work showed that there is generally an equivalence between the infinite multipole

hierarchies, that have to be truncated for numerical implementation, and the integral

equation approach, which can be solved without truncation via an iterative numerical

scheme. While the iterative approach developed in Kamionkowski (2021) is not equal

in all details to that shown in chapter 5, we make use of the same principles.

In the case of photons it is known that to get the correct spectrum of CMB

anisotropies within the Boltzmann hierarchy approach it is sufficient to use `max ∼ 30,

a surprising fact considering that we observe patches in the sky with ` � 1000. This

comes down to the fact that most information comes from a visibility function which

peaks around recombination (see Seljak & Zaldarriaga, 1996; Callin, 2006, and discus-

sion of numerical implementation within chapter 8). Getting the multipole hierarchy

correct within that visibility window is the most important part of the calculation, al-

lowing one to truncate the hierarchy at low `, even if at later times the hierarchy would

naturally grow to ` > 1000. The trade-off between the multipole hierarchy and the

integral equation approaches is the solution of ∼ 30 extra equations for each hierarchy

or a few iterations involving integrals. The claim within Kamionkowski (2021) is that

the latter choice could accelerate Boltzmann solvers.

Similar arguments would apply for studying the multiples of neutrino perturbations

in the sky (a futile endeavour in itself from an observational viewpoint). Performing

such a calculation would involve defining similar visibility functions as for photons,
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3: COSMOLOGICAL PERTURBATION THEORY

and connecting to a line-of-sight integration approach for the free-streaming neutrinos.

This however isn’t the goal in chapter 5. Instead we focus on the energy lost from the

gravitational waves. To do this within the Boltzmann hierarchy we would have to start

our calculations in a phase where neutrinos are not free-streaming (in order to define

the initial conditions) and then solve coupled equations potentially to very late times

(e.g. till recombination). In this case we would most likely require `max � 30 to achieve

accurate results, and thus the integral equation approach is simpler both conceptually

and numerically.

3.6 The Primordial Power Spectrum

Knowing how the perturbations evolve is only half the story, since the initial conditions

are still to be defined. This problem will be undertaken in a statistical manner by

discussing the moments of a probability distribution function. We define the ensemble

average, 〈...〉, as the average over an ensemble of hypothetical Universes, and by the

ergodic hypothesis equate this to an average over space in our Universe. This however is

more easily evaluated using Fourier transforms, which is equivalent through Parseval’s

theorem (Martı́nez et al., 2009).

It may come as no surprise that all metric perturbation components have 〈δgµν〉 =

〈δTµν〉 = 0. To quickly justify this however, consider that any overall shift to a scalar

component like Φ would just be subtracted, and added to the background energy instead.

Vector perturbations, on the other hand, select directions in space and therefore can’t

be subtracted as simply. However, it can be argued that on average no direction should

be picked over any other, and therefore 〈VT
i 〉 = 0. Similar arguments hold for tensor

perturbations.

We can rewrite a generic Fourier transformed perturbation field, X(k, η), as the

product of a deterministic transfer function, TX(k, η), and some initial condition, ζ(k),

which is probabilistic in nature. Thus at linear order we have X(k, t) = ζ(k)TX(k, t)

(See Pettinari, 2016, for discussion of second order transfer functions). To avoid a
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3.6: THE PRIMORDIAL POWER SPECTRUM

cumbersome set of transfer functions it is common to simply use the same variable

name (i.e. X(k, t)→ ζ(k)X(k, t)). In this language the above discussion then amounts

to stating the first moment of ζ(k), 〈ζ(k)〉 vanishes. The second moment of the pertur-

bations can be non-zero however, and are given as a primordial power spectrum via

〈ζ∗(k)ζ(k′)〉 = (2π)3 δ(3)(k − k′)P(k).

The primordial power spectrum essentially encodes the statistics of the initial condi-

tion of fluctuations (total amplitude and wavelength dependence) for some component

of the cosmic inventory. Once a power spectrum has dictated the initial seeds for one

component of the perturbation picture we define other variables in the relative propor-

tions (See e.g. Chluba & Grin, 2013, for discussions of adiabatic and isocurvature initial

conditions and relevant spectral distortion constraints).

Higher moments of ζ(k) are all consistent with 0 in currently available experimental

data, making what is known as a Gaussian power spectrum. There is, however, a lot of

discussion in the literature of non-gaussianities in the CMB spectrum. If discovered

these would probe very early physics, and would shed light on the inflation, the currently

favoured theory of the earliest moments of the Universe (Celoria & Matarrese, 2018).

The primordial scalar power spectrum as currently understood6 is usually defined

around a pivot scale k0, and is written such that it is flat except for a small tilt, dictated

by a spectral index ns ≈ 1, and some small curvature, given by a running of the spectral

index nrun ≈ 0 (Planck Collaboration, 2019, 2018b):

P(k) =
2π2

k3 A
(

k
k0

)ns−1+ 1
2 nrun ln

(
k

k0

)

. (3.36)

6Hypothetical models will often have spikes at certain scales, but the currently observed standard
physics is limited to a simple straight line for scalar perturbations. Currently the shape of the tensor
power spectrum is unconstrained, with only upper bounds on tensor to scalar ratios (Tristram et al., 2022).
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Preface to Published Work

The following five chapters each contain one paper - the first two published, and the

final three in various stages of the peer review process. These papers all relate back to

the theory introduced in the previous introductory chapters. While before each paper

we briefly summarise the content, it is useful to anticipate how the papers connect to

one another as well as the previous chapters. Both in terms of chronology and content

there are in essence two groups: the first two papers and the final three.

The first two papers consist of an exploration of the primordial tensorial perturba-

tions which permeate the Universe, and their potential signal in the form of spectral

distortions. The perturbations themselves have not appeared very much throughout

chapter 3, since for reasons of cosmological interest and pedagogy we stuck mostly

to scalar perturbations. We can point out however that these waves are simply the

tensorial component of the spatial metric discussed in Sect. 3.3.1. We briefly used these

perturbations as en example to study horizon crossing in Sect. 3.4.1, and one numeri-

cally calculated tensor transfer function was shown in Fig. 3.2. Readers interested in

the primordial tensor waves will hopefully find the second paper (chapter. 5) to be a

clear and somewhat complete introduction. The motivation for that paper however, in

connection to this thesis, is best found in the first paper (chapter. 4), where we study

the small albeit non-zero energy injection to the photon bath originating from tensor

modes. This occurs through a sourcing of an anisotropic stress in the photon fluid, and

can lead to the formation of an observable µ-distortion signal for some exotic physical

scenarios. The first paper thus unites concepts from both chapter 2 and chapter 3. In

summary, these two papers study standard cosmological perturbations and how they
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can mix and source SD signals.

The final three papers unite SD and CPT in a completely different and more pro-

found way. The Boltzmann hierarchy at the start of chapter 3 initially contained a

momentum or frequency dependence (see Eq.(3.5)). We promptly simplified this to

local inhomogeneities in the temperature of photons, thus eliminating the frequency

space (see Eq.(3.6)). This move was subtle, and essentially neglected what we had

discussed throughout chapter 2. The goal of the final three papers is to do away with

that collapsing of frequency space in studying cosmological perturbations, and allow for

a general frequency evolution of the spatially varying photon gas. The first paper in that

series (chapter 6) has nothing to do with the spatial part of the overall goal, and instead

focusses on simply building a basis of spectral shapes. These shapes are, however, cho-

sen in such a way that the spatial picture comes much easier, while still replicating the

expected homogeneous results (the three era picture from Sect 2.3). The second paper

(chapter 7) can then take that spectral basis and pass it through the machinery of CPT

discussed throughout chapter 3. The final equations are a generalisation of Eq. (3.6),

allowing a full spectro-spatial evolution of the CMB sky. The final paper (chapter 8)

contains the numerical results derived from the generalised Boltzmann hierarchy. We

distil the physics and pick apart aspects of the transfer function evolution (akin to

what we saw in Fig. 3.2) and study cross correlations of temperature anisotropies with

distortion anisotropies. The bottom line of that paper is that observing anisotropies

reveals something about the average photon spectrum across the sky, thus proving a

way to improve upon the COBE/FIRAS results with future instruments resembling (but

more advanced than) Planck.
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Paper I: Bridging the gap: spectral

distortions meet gravitational waves

This paper revisits the calculations of Ota et al. (2014) and Chluba et al. (2015a) to

not only update the results, but to also cast the language used into that which is more

familiar in the newly emerging gravitational wave literature.

In essence the paper discusses the possibility of primordial tensor perturbations (see

chapter 3) dissipating energy into the primordial plasma and thus creating primordial

spectral distortions (see chapter 2). The physics involved in this process can be packaged

up into a pretabulated window function, which is simply integrated with a primordial

tensor power spectrum to derive a µ-distortion amplitude. This method however is

insufficient for tensor creation mechanisms which are not primordial, even if they occur

very early. We argue that this can be modelled with a power spectrum still, just with

an appropriate step function and redshifting included. We pretabulate the window

function for various finite redshift tensor injections and provide a Python tool which

can interpolate on the results.

With these window functions in place we show that the SD constraints bridge a gap

between large-scale Cosmological constraints from CMB anisotropies and small-scale

astrophysical constraints from pulsar timing arrays.
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4: PAPER I: BRIDGING THE GAP: SPECTRAL DISTORTIONS MEET
GRAVITATIONAL WAVES

To further demonstrate the power of SD constraints on tensor backgrounds we

undertake some case studies, including cosmic string networks, axion models tuned to

produce tensorial decays, and phase transitions.
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ABSTRACT
Gravitational waves (GWs) have the potential to probe the entirety of cosmological history
due to their nearly perfect decoupling from the thermal bath and any intervening matter after
emission. In recent years, GW cosmology has evolved from merely being an exciting prospect
to an actively pursued avenue for discovery, and the early results are very promising. As we
highlight in this paper, spectral distortions (SDs) of the cosmic microwave background (CMB)
uniquely probe GWs over six decades in frequency, bridging the gap between astrophysical
high- and cosmological low-frequency measurements. This means SDs will not only comple-
ment other GW observations, but will be the sole probe of physical processes at certain scales.
To illustrate this point, we explore the constraining power of various proposed SD missions on
a number of phenomenological scenarios: early-universe phase transitions (PTs), GW produc-
tion via the dynamics of SU(2) and ultra-light U(1) axions, and cosmic string (CS) network
collapse. We highlight how some regions of parameter space were already excluded with
data from COBE/FIRAS, taken over two decades ago. To facilitate the implementation of SD
constraints in arbitrary models we provide GW2SD. This tool calculates the window function,
which easily maps a GW spectrum to a SD amplitude, thus opening another portal for GW
cosmology with SDs, with wide reaching implications for particle physics phenomenology.

Key words: cosmology: theory — gravitational waves — early Universe — inflation —
cosmic background radiation.

1 INTRODUCTION

Gravitational wave (GW) astronomy has become a reality. The now
routine detection of compact object mergers by the LIGO/Virgo
collaboration (Abbott et al. 2019) has made, for good reasons, the
study of GWs one of the most active and current topics in cos-
mology and astrophysics. Ongoing and planned observations of the
tensor perturbation power spectrum currently span some 21 orders
of magnitudes of frequency: From cosmic microwave background
(CMB) upper limits on primordial B-modes (Ade et al. 2018;
Aghanim et al. 2020) measurements at the lowest frequencies, to
interferometry detections of GWs (e.g., Abbott et al. 2020b,a) and
Pulsar Timing Array (PTA) measurements (e.g., Perera et al. 2019;
Alam et al. 2020) at higher frequencies. In the next few years, a
plethora of experiments will test different scales between these ex-
tremes (e.g., Campeti et al. 2021, for overview).

Many physical processes can indeed lead to detectable tensor
perturbations (see Caprini & Figueroa 2018, for review). These in-
clude GWs from phase transitions (Caprini & Figueroa 2018; Nakai
et al. 2020), early universe gauge field production (Dimastrogio-
vanni et al. 2017; Machado et al. 2019; Machado et al. 2020), and

? E-mail: thomas.kite@manchester.ac.uk
† E-mail: andrea.ravenni@manchester.ac.uk
‡ E-mail: patil@lorentz.leidenuniv.nl
§ E-mail: jens.chluba@manchester.ac.uk

cosmic string networks (Buchmuller et al. 2019). Given these ex-
citing theoretical developments, it is interesting to ask which cos-
mological and astrophysical probes can help constrain these dif-
ferent scenarios. In this paper, we show that CMB spectral distor-
tions (SDs) can provide complementary information at frequencies
f = 10−15–10−9 Hz unavailable to other probes. In this way, SDs
offer a bridge between scales probed by next-generation CMB sur-
veys (e.g., Ade et al. 2019; Hazumi et al. 2019; Delabrouille et al.
2019), and astrophysical GW observatories such as current (e.g.
Perera et al. 2019) and future (e.g. Weltman et al. 2020) PTA mea-
surements.

How do CMB SDs constrain tensor perturbations at the scales
that they do? Spectral distortions are created by mechanisms that
lead to energy release into the photon-baryon fluid at redshifts
z . 2 × 106, when thermalization processes cease to be effi-
cient (Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich 1970;
Illarionov & Sunyaev 1975; Danese & de Zotti 1982; Burigana
et al. 1991; Hu & Silk 1993; Chluba & Sunyaev 2012). Many
sources of distortions exist within standard ΛCDM cosmology as
well as scenarios invoking new physics (see Chluba et al. 2019b,
for broad overview), and innovative experimental concepts (Kogut
et al. 2016, 2019; Chluba et al. 2019a) have now reached criti-
cal thresholds to significantly advance the long-standing distortion
constraints from COBE/FIRAS (Mather et al. 1994; Fixsen et al.
1996). A particular source of SDs is due to the dissipation of ten-
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2 Kite et al.

sor modes while they travel almost unimpeded through the cosmic
plasma (Ota et al. 2014; Chluba et al. 2015a).

How do tensor perturbations distort the CMB spectrum? In
general, perturbations in the photon fluid dissipate through electron
scattering and free-streaming effects. Dissipation of scalar pertur-
bations provides one of the guaranteed sources of SDs in the early
Universe within the standard thermal history (e.g., Sunyaev & Zel-
dovich 1970; Daly 1991; Hu et al. 1994; Chluba et al. 2012b,a).
Similarly, tensor modes lose a small fraction of their energy by con-
tinuously sourcing perturbations in the photon fluid which then also
distort the CMB spectrum. In contrast to scalar modes, however, the
dissipation is mainly mediated by free-streaming effects. As shown
in detail by Chluba et al. (2015a), this leads to dissipation of per-
turbations over a vast range of scales, extending far beyond those
relevant to scalar perturbations. Thus, although the tensor dissipa-
tion rate is suppressed relative to scalar dissipation (tensor modes
are not significantly damped by interactions with the photons), this
opens new avenues for model constraints from SDs.

Building on Chluba et al. (2015a), we translate the relations
between µ-distortions and primordial tensor perturbation into quan-
tities commonly used for GW searches. This makes it easier to com-
pare SD limits to those from other probes. As examples we con-
sider several inflationary models which source GWs beyond vac-
uum fluctuations, early-universe phase transitions (PTs) and cos-
mic string (CS) networks, all of which demonstrate how SD mea-
surements are and will be important for excluding portions of their
respective parameter spaces. Indeed we highlight that several of
the widely discussed models could have already constrained some
regions of their respective parameter spaces with SD limits from
COBE/FIRAS, taken over a quarter-century ago. Future spectrom-
eter concepts like PIXIE (Kogut et al. 2016) and its enhanced ver-
sions (e.g., PRISM Collaboration et al. 2014; Kogut et al. 2019)
could, through their increased sensitivity, significantly increase the
range of scales and parameter space covered. This could give CMB
spectral distortions an important role in this highly-synergistic
multi-messenger campaign, providing unique scientific opportuni-
ties for the next generation of cosmologists and particle phenome-
nologists alike.

2 GWS IN THE EXPANDING UNIVERSE

A GW can be represented as a transverse traceless tensor pertur-
bation of the metric’s spatial component, hi j, and the energy den-
sity it carries is ρGW = 〈h′i jh

′i j〉/(32πG), where the prime denotes
conformal time derivatives1. If these GWs were produced primor-
dially2, we can define the GW fractional energy density per decade
of wavelengths as (e.g., Watanabe & Komatsu 2006)

ΩGW(k, η) =
1

ρc(η)
∂ρGW(k, η)
∂ln k

=
PT (k)

12a2(η)H2(η)
[T ′GW(k, η)

]2 , (1)

where ρc is the critical density, and in the second equality we fac-
tored the primordial tensor power spectrum PT and the determinis-
tic GW transfer function TGW.

In Watanabe & Komatsu (2006), several analytical approxima-
tions of the GW transfer function were developed. During radiation
domination (RD) we have

[T ′GW(k, η)
]2 ≈ k2 [

j1(kη)
]2 , (2)

1 We adopt the normalization conventions of Watanabe & Komatsu (2006).
2 We consider the case of sub-horizon generation further on.

whereas during matter domination (MD), one finds

[T ′GW(k, η)
]2 ≈


k2 η

2
eq

η2

[
A(k) j2(kη) + B(k)y2(kη)

]2 if k > keq

k2
[

3 j2(kη)
kη

]2
if k < keq

,

A(k) =
3

2kηeq
− cos(2kηeq)

2kηeq
+

sin(2kηeq)
(kηeq)2 , (3)

B(k) = −1 +
1

(kηeq)2 −
cos(2kηeq)

(kηeq)2 − sin(2kηeq)
2kηeq

.

Here, keq is the comoving wavenumber entering the horizon at the
time of matter-radiation equality ηeq, and j` and y` are the spherical
Bessel functions of first and second kind. For wavelengths much
smaller than those entering the horizon today (kη0 � 1) we can ex-
pand the GW transfer function derivatives at leading order in k. Ad-
ditionally, since we always observe quantities that involve (T ′GW)2

integrated over some range of k, we can average over one period to
obtain (e.g., Caprini & Figueroa 2018)

〈[T ′GW(k, η)
]2〉

kη0�1
↓≈ η2

eq/2η
4 , (4)

which is a smooth function of k valid during MD. Similarly, during
RD we can apply the same procedure to Eq. (2), and obtain

〈[T ′GW(k, η)
]2〉 ≈ 1/2η2 . (5)

For later use we point out that during RD, where Eq. (5) is valid,
a ∝ η, while during MD relevant to Eq. (4) we have a ∝ η2. To-
gether with Eq. (1), this means that the GW energy density at a
given scale evolves as ΩGW ∝ a−4H−2 ∝ const during RD and
ΩGW ∝ a−4H−2 ∝ (1 + z) in the MD era.

As pointed out in Watanabe & Komatsu (2006), the approxi-
mations given above neglect some important details. One of these
is the process of neutrino damping, which has its greatest effects
on scales important to SD physics. The damping is effective dur-
ing RD but only after neutrino decoupling (T . 2MeV), which
taken together almost exactly coincides with the SD regime. This
damping occurs since free streaming neutrinos correspond to a non-
negligible fraction of the energy density of the Universe during RD
and generate significant anisotropic stresses that result in the damp-
ing of tensor perturbations. The magnitude of the effect is a 35.6%
decrease of the power available in GW (Weinberg 2004). To include
this effect the transfer function given in Dicus & Repko (2005) is
used:

T ′GW =
1
η

∑

n even

an
[
n jn(kη) − kη jn+1(kη)

]
, (6)

with the coefficients a0 = 1, a2 = 0.243807, a4 = 5.28424 × 10−2

and a6 = 6.13545×10−3. This is valid for the range of scales needed
in the following section.

It is clear from Eqs. (1), (4) and (5) that the exact transfer
functions are important quantities for comparing the effects of the
GW background in the early and late Universe. In this paper, we
compare the SD sensitivity (↔ early Universe) to PTA and inter-
ferometry (↔ late Universe). Even CMB temperature anisotropies,
although sourced early on, mostly probe the Universe after the RD-
MD transition. Because of this it is essential to get the exact dynam-
ics of this transition right for any comparison to be meaningful. To
study the evolution of the GW background in detail we numeri-
cally solved for the wave evolution through the RD-MD transition,
which gave results agreeing with Watanabe & Komatsu (2006) and
Dicus & Repko (2005) in the appropriate limits, while allowing us
to more carefully model the GW background for a realistic cosmol-
ogy involving neutrino and dark energy densities.
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For the Planck 2018 best-fit cosmology (Aghanim et al. 2020),
the exact solution is well approximated by3

ΩGW/PT =
DΩrel

12

(
1 + α1κ

−1 + α2κ
−3/2 + α3κ

−2
)
, κ =

k
k∗
, (7)

where α1 = 5.74, α2 = −2.47, α3 = 14.48, k∗ = 1/551 Mpc−1,D =

0.642 is the neutrino damping factor and Ωrel = 9.19 × 10−5 is the
combined density of radiation and neutrinos, treating the latter as
massless. This solution differs by ∼ 20% from Caprini & Figueroa
(2018), with better matching arising when neglecting the neutrino
energy density. For details see Kite et. al. (in preparation).

Since gravitational wave upper limits are usually quoted as
function of frequencies rather than wavelengths, we will use the
relation k/Mpc−1 = 6.5 × 1014 f /Hz to change units.

3 µ-DISTORTIONS FROM TENSOR PERTURBATIONS

Much like scalar perturbations, tensor perturbations dissipate over
time, both transferring energy to neutrinos and (in smaller propor-
tion) to photons. Primordial tensor perturbations entering the hori-
zon during or slightly before the µ-era (5 × 104 . z . 2 × 106),
when dissipating, generate µ-distortions of the CMB that will be
observable today (Ota et al. 2014; Chluba et al. 2015a).

The average value of µ-distortions today is related to the pri-
mordial tensor power spectrum via a window function Wµ(k)

〈µGW〉(η0) =

∫
d ln k Wµ(k)PT (k) , (8)

which already averages oscillations by integrating over a transfer
function’s evolution throughout the µ-era, achieving the usual fac-
tor of 1/2 implicitly. We calculate Wµ(k) numerically according to
Chluba et al. (2015a). The window function is shown in Fig. 1.
In comparison to the corresponding k-space window function of
scalar perturbations (e.g., Chluba et al. 2012a, 2015b), the dissipa-
tion efficiency of tensors is about five orders of magnitude smaller,
highlighting how weakly tensor modes couple to the photon fluid.

Offsetting this loss, we can see that tensor modes contribute
to the generation of µ-distortions over a vast range of scales, with a
power-law decay of contributions at k & 106 Mpc−1 (Fig. 1). This is
in stark contrast to the dissipation of scalar perturbations, which are
limited to scales k ' 50− 10, 000 Mpc−1, with a strong exponential
decay of contributions from k & 10, 000 Mpc−1 (e.g., Chluba et al.
2012a). Scalar modes damp by photon diffusion, which virtually
erases all perturbations once the dissipation scale is crossed. For
tensors, the photon damping is minute and photon perturbations
are continuously sourced by the driving tensor force, explaining
this significant difference (Chluba et al. 2015a). This makes SDs a
potentially unique probe of GWs from early-universe physics.

3.1 Time-dependent injection

Equation (8) determines the SD signal from primordial perturba-
tions that were created during inflation and only later enter the hori-
zon to dissipate their energy. Another possibility is to have pertur-
bations created on sub-horizon scales at later times. This requires a
generalisation of the window function formalism to account for the
new time dependence.

An immediate difference for sub-horizon injection is that neu-
trino damping will not occur, as this only matters for GWs that
cross the horizon between neutrino decoupling and the start of MD.

3 This does not include a factor of 1/2 for oscillations

Figure 1. A series of curves demonstrating the form of the k-space window
function Wzmax

µ for various upper limits in redshift. For practical purposes,
zmax = 108 is equivalent to W∞µ ≡ Wµ. The solid curve is the result for
power injection before the µ era, while the other curves suffer from some
reduced visibility at higher k. The faded line shows the results without neu-
trino damping, leading to a ' 30% increase across the window function.

This means one can use the simpler versions of the transfer func-
tion, valid in RD, given in Eqs. (2) and (5). The time dependence
— which before was included in the physics underlying the win-
dow function — has to be made more explicit. Using redshift z to
better match Chluba et al. (2015a), Eq. (8) can be generalized to

〈µGW〉(z = 0) =

∫ ∞

0
d ln k

∫ ∞

0
dzWµ(k, z)PT (k, z) , (9)

where we introduced the GW-µ-distortion window primitive
Wµ(k, z), which captures the physics behind the damping of GWs.
Note that with PT (k, z) = PT (k) we recover Eq. (8) by defining∫ ∞

0
Wµ dz = Wµ. The explicit form of the window primitive is4.

Wµ = 1.4 × 8H2η2

45τ̇
[T ′GW(k, z)

]2 TΘ(k, z) e−Γ∗γηJµ(z) , (10)

and for convenience we summarize here the quantities which are
relevant to calculate the window function (for their derivation and
further explanation we refer to Chluba et al. 2015a): τ̇ is the time
derivative of the Thomson optical depth. The termsTΘe−Γ∗γη contain
the physics of how the GW transfer function TGW couples to the
photon fluid. These terms can be reliably approximated as

TΘ(k, z) ≈ TΘ(ξ) ≈ 1 + 4.48ξ2 + 91ξ4

1 + 4.64ξ + 90.2ξ2 + 100ξ3 + 55ξ4 , (11a)

e−Γ∗γη ≈ 1 , (11b)

with ξ = k/τ′. The final term Jµ(η) is the energy branching ratio,
which gives the fraction of total energy injected into the photon
fluid that contributes to the µ distortion. We use the simple analytic
approximation of the branching ratio (‘method B’ in Chluba 2016):

Jµ(z) ≈


e−(z/zth)5/2
for z > 5 × 104

0 otherwise
, (12)

with zth = 1.98 × 106 denoting the redshift where thermalisation
becomes inefficient (see also Hu & Silk 1993).

4 We match the notation of Chluba et al. (2015a) with TGW ≡
√

2ηTh
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We employ one further approximation in assuming the injec-
tion happens instantaneously across all scales at a time η∗. There-
fore, the tensor perturbations are uncorrelated (PT (k, η < η∗) = 0)
up to η∗ when their power spectrum abruptly jumps to some value
that we will now determine. The spectrum is found at all times after
η∗ by redshifting ΩGW from the present-day value

ΩGW(k, η) =


a−4(η)
E2(η) ΩGW(k, η0) η > η∗

0 η < η∗
, E2(η) ≡ H2(η)

H2
0

, (13)

where we used a−4/E2 ∝ ρ̄GW/ρc.
We will only consider power injection in the RD era, hence

the tensor power spectrum is then obtained using Eq. (1) together
with Eq. (2), and reads

PT (k, η) =



12H2
0

a2k2[ j1(kη)]2 ΩGW(k, η0) η > η∗
0 η < η∗

(14)

Notice that if not for the fact that the tensor perturbations ap-
pear at η∗, the power spectrum would always be time-independent:
it is in fact the equivalent of the primordial one in the “standard”
scenario described in Chluba et al. (2015a).

Using that Eq. (14) is independent of time during RD and in-
serting this into Eq. (9), we can remove the time dependence in
the integrand, leaving only changes in the upper limit of integra-
tion. It is therefore sufficient to study a series of window functions
Wzmax

µ =
∫ zmax

0
Wµ dz for different upper limits in time. Examples of

Wzmax
µ are shown in Fig. 1. We can observe that even modes origi-

nating from z � 2× 106 contribute to the generation of distortions.
The flat plateau of the window function at k ' 0.1−103 Mpc−1 is not
affected until zmax . 5 × 105, and will rapidly approach Wzmax

µ ' 0
as zmax approaches 5 × 104.

For numerical applications, it is convenient to pre-tabulate
the tensor window function Wzmax

µ across k and injection redshift
zmax. Since the background cosmology is fixed to high precision
(Planck Collaboration et al. 2018), this procedure avoids additional
approximations.5 However, a few comments are in place: we can
further improve the treatment of the transition between the µ and
y-distortion eras, which here we modelled as a step-function [see
Eq. (12)]. Including the more gradual transition (e.g., see discus-
sion in Chluba 2016), enhances the contributions from the largest
scales (k . 10−2 Mpc−1), however, a more accurate treatment of
transfer effects is also required and left to future work.

With the procedure outlined in this section we can calculate
the tensor dissipation contribution to the present day value of µ-
distortions. However, other processes, such as dissipation of acous-
tic modes and Compton cooling also source µ-distortions, hence-
forth referred to as µother. Any non-detection of an enhanced level of
SD would straightforwardly constrain models that generate a large
µGW, comparable to or greater than µother. However, things are more
delicate when µGW becomes much smaller than the value of µother

expected in the standard cosmological model, µother ' 2 × 10−8

(e.g., Chluba 2016). In this regime, any actual analysis would re-
quire a marginalization of other sources, that we do not take into
account here. However, assuming standard slow-roll inflation, we
can in principle accurately predict the expected standard contribu-
tion given the power spectrum parameters measured at large angu-
lar scales (Chluba et al. 2012b; Khatri & Sunyaev 2013; Chluba &
Jeong 2014; Cabass et al. 2016; Chluba 2016). For simplicity, we
shall thus assume perfect removal of other µ-contributions.

5 A simple interpolation routine to calculate Wzmax
µ is available here:

https://github.com/CMBSPEC/GW2SD.git

Below we will consider the upper limit on µ-distortions set by
COBE/FIRAS (µ < 9 × 10−5 95%CL) (Mather et al. 1994; Fixsen
et al. 1996), and the forecasted constraints for PIXIE (µ < 3×10−8)
(Kogut et al. 2011), SuperPIXIE (µ < 7.7 × 10−9) (Kogut et al.
2019), Voyage 2050 (µ < 1.9 × 10−9) and 10×Voyage 2050 (µ <

1.9 × 10−10) (Chluba et al. 2019b), all of which already account for
the presence of foregrounds following Abitbol et al. (2017).

3.2 Scalar contributions

Above we discussed separating µGW from µother, taking the latter
to be the standard model expected value. A second discussion is
necessary, however, regarding the contribution that scalar pertur-
bations have to a µ signal. This is important, considering that en-
ergetic early-universe phenomena have the potential to generate
scalar perturbations as well as tensors, which will enhance the SD
production. In the following section we will discuss the scalar con-
tributions for models where it is possible to do so, but some state-
ments apply in general: Chluba et al. (2015a) show that the corre-
sponding window functions for scalar perturbations peak around
105 higher than for tensors, but for a narrower range of scales
(k ' 50 − 10, 000 Mpc−1 or f ' 8 × 10−14 − 1.5 × 10−11 Hz, as
previously discussed). Thus, for tensor perturbations to dominate
the spectral distortion signal the scalar spectrum created must be
less than 1 part in 105 of the tensor spectrum, or must be injected
on smaller scales than k ∼ 104Mpc−1. Provided both the wider ten-
sor window, and that some early processes will be almost invisible
to scalar probes, the machinery explained above for constraining
early tensor energy injection are still of interest and importance,
despite the relatively low sensitivity.

4 MINIMALLY PARAMETRIC CONSTRAINTS

In this section, we calculate the constraining power of spectro-
scopic CMB measurements in a minimally parametric fashion. As
in Campeti et al. (2021), we parametrize the primordial tensor
power spectrum using logarithmically spaced tophat functions cen-
tered around some ln ki with ln ki+1 − ln ki = 1.2∀i. This allow us
an easy comparison with Fig. 8 of their paper:

PT (k) =
∑

i

AiWi(k) , (15a)

Wi(k) =


1 if ln k ∈ [ln ki − 0.6, ln ki + 0.6]
0 otherwise

. (15b)

Therefore, for each i, we insert Eq. (15a) into Eq. (8), and calcu-
late the maximum value of Ai that is compatible with the chosen
〈µGW〉(η0) upper limit. With that information we then use Eq. (1) to
calculate the corresponding ΩGW constraint.

In Fig. 2 we show the sensitivity curves for COBE/FIRAS,
PIXIE, SuperPIXIE, Voyage 2050 and 10×Voyage 2050, which
all include estimated penalties from foregrounds. For comparison,
we also report the sensitivity curves from Campeti et al. (2021),
which recently compiled the results of many planned experiments
(Hazumi et al. 2019; Smith & Caldwell 2019; Arca Sedda et al.
2021; Sesana et al. 2019; Kuroyanagi et al. 2015; Crowder & Cor-
nish 2005; El-Neaj et al. 2020; Reitze et al. 2019; Hild et al. 2011;
Weltman et al. 2020). Moreover, we show the NANOGrav 12.5 year
observation (Arzoumanian et al. 2020), interpreted as GW stochas-
tic background according to their 5 frequency power-law model
(see Kuroyanagi et al. 2020, for more discussion on whether the
signal can be inflationary). Since the extrapolation of a red spectra
would be favourable for a SD detection, we conservatively assume
a flat spectrum.
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Figure 2. Upper limits on the energy density of gravitational waves from measurements of µ-distortions for various experimental configurations (COBE/FIRAS,
PIXIE, SuperPIXIE, Voyage 2050, 10×Voyage 2050). For ease of comparison, we also report the upper limits for various other CMB, PTA and direct detection
experiments (taken from Campeti et al. 2021), and the NANOGrav 12.5 years 95% confidence interval assuming a flat spectrum.

While the existing constraint derived from the COBE/FIRAS
data is a few order of magnitude higher than other probes, next
generation satellites will start to bridge nicely the frequency gap
existing between CMB observation and direct GW detection. It is
interesting to notice that the upper bound from SDs will cover a
very broad range of frequencies (more than 5 decades in f ). As
such, any signal that is not sharply peaked in frequency will gener-
ate a comparatively higher µ-distortion, tightening the constraints
on specific parametric models, as we will see in the next section.

5 CONSTRAINTS ON SPECIFIC MODELS

In this section, we consider concrete models that generate GWs
over a wide range of scales. For each of the following models it
is enough to insert their corresponding tensor power spectrum into
Eq. (8) or (9) to obtain the predicted µ-distortion, depending on
whether the injection is primordial or happens after reheating.

Generally speaking, once accounting for the limits on r from
Planck (Ade et al. 2018; Aghanim et al. 2020), we understand
that appreciable SDs can only be created by models with substan-
tially enhanced tensor power at small scales. To also avoid fu-
ture constraints at small scales, models with localized features at
f = 10−15 − 10−9 Hz are most promising. In the context of PTs, for
example, this identifies low-scale dark or hidden sector transitions
at energies ' 10 MeV - 10 eV in the post-inflation era as a target.

5.1 Single-field slow-roll inflation

As a benchmark we consider the tensor perturbations generated by
single-field slow-roll inflation. This model predicts a very low, al-
most scale invariant tensor spectrum, and as such we cannot expect
SD constraints to be competitive with either CMB measurements
or future direct detections at small scales. We however include the
model for completeness, and as a point of comparison. The tensor
spectrum from this model is given by

P sf
T = AT (k/k0)nT , (16)

where the amplitude of tensor and scalar perturbations AT and
AS are related by the tensor to scalar ratio by r ≡ AT /AS , and
nT = −r/8 (Lyth & Riotto 1999). Current constraints, mostly
driven by Planck low-` temperature and BICEP2/Keck B-modes
data, (Ade et al. 2018; Aghanim et al. 2020) set the upper limit
r0.002 < 0.06 (95%) at k = 0.002 Mpc−1. Upon noticing |nT | ≤
0.0075 ≈ 0, one can approximate the result by integrating a flat
spectrum yielding 〈µ〉(r) ≈ 1.68 × 10−13 r which gives the correct
result to within ≤ 5% for all values not ruled out by Planck. This
shows that for any allowed value of r the SD signal will be out of
reach for even the most sensitive SD mission concepts.

In principle this contribution is present as a component of
tensor spectrum in the other models considered in the following
sections. However, since the amount of SD it generates is any-
way negligible, we will omit it in the following. Note that the
Planck constraint on r will also be considered for other models.
Strictly speaking, the aforementioned constraint only apply to a
power-law tensor spectrum, a condition not necessarily met by
the models we will consider in the following. To provide some
context to the SD constraints we will draw, we opt to employ an
order-of-magnitude estimate of the Planck constraint, simply re-
quiring that any spectrum of tensor perturbations, PT (k), must sat-
isfy PT (k)/P sf

S (k)
∣∣∣
k=0.002 Mpc−1 < 0.06. In principle, a proper analy-

sis of the Planck and BICEP2/Keck data could be carried out to set
constraints on the models that will be discussed here. This, how-
ever, goes beyond the scope of the paper. LiteBIRD (Hazumi et al.
2019), providing low multipole BB information at much higher pre-
cision, will allow us to further improve the limits set by Planck on
the same range of scales in the near future.

5.2 Spectator SU(2) axions

Many inflationary models require the dynamics of additional spec-
tator fields active during the inflationary period, itself driven by a
separate scalar field. Generally speaking, the dynamics of the spec-
tator field generate tensor perturbations in addition to those pro-
duced by the vacuum fluctuations of the quasi de Sitter background.
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In this section, following Campeti et al. (2021), we consider
an axion-SU(2) spectator field based on the “chromo-natural” in-
flation model (Adshead & Wyman 2012; Dimastrogiovanni et al.
2017). Here, the SU(2) gauge fields acquire an expectation value,
the fluctuations around which include a tensor perturbation with
a bilinear coupling to the graviton. The dynamics of the spectator
SU(2) axion are such that gravitons of a particular helicity are am-
plified via a transient tachyonic instability, resulting in a (circularly
polarized) contribution to the tensor power spectrum.

The spectrum for this model is given by (see Thorne et al.
2018)

P SU(2)
T (k) = r∗P sf

R (k) exp
[
− 1

2σ2 ln2
(

k
kp

)]
, (17)

which relates to the spectrum of scalar perturbations

P sf
R = AS (k/k0)nS −1 . (18)

In order to constrain this model, we use the best-fit Planck param-
eters (Planck Collaboration et al. 2018) for Eq. (18). However, r∗,
kp and σ are related to the parameters of the gauge theory and are
essentially free to vary here. We take as a reasonable set of values,
those given in Campeti et al. (2021) (their model AX3) (r∗, kp, σ) =

(50, 106 Mpc−1, 4.8), which would yield µ = 2.1×10−12. Entertain-
ing the question as to which set of parameters would maximize the
µ distortion signal while satisfying both observational and model
constraints we find (r∗, kp, σ) = (265, 2.85 × 104 Mpc−1, 4.02).
However, even this best case scenario leaves no appreciable SD
signal, yielding µ = 2.1 × 10−11. This result can be understood by
considering the parabolic shape of the spectrum in logP-logk space,
which due to model constraints cannot peak to sharply (e.g. see
Eqs. (A8) and (A11) in Thorne et al. 2018). This means that a spec-
trum which avoids the Planck constraints cannot simultaneously
peak too high in the SD regime. In contrast, the models consid-
ered in the following subsections have spectra resembling broken
power laws, and can be much more effective in satisfying current
constraints while simultaneously generating significant SDs.

5.3 Ultra-light U(1) audible axions

The sensitivity of SD measurements to axion standard model exten-
sions have already been discussed in the literature (Mukherjee et al.
2018). In this subsection however we consider a model proposed in
Machado et al. (2019); Machado et al. (2020), in which the axions
specifically produce a strong GW signal. In this scenario (generic
in the context of string compactifications), one has the presence of
one or more U(1) axions with mass m and decay constant fφ that
couple to dark sector photons. At early times during radiation dom-
ination, when the Hubble parameter H is greater than m, the axion
field is over-damped and is frozen. Once H . m, corresponding to
the temperature T ≈ √

mMpl, the axion starts to oscillate around
the minimum of its potential, sourcing gauge field production of a
particular helicity that goes on to generate GWs. Since these GWs
are only produced on sub-horizon scales after the axion starts os-
cillating, the results of Sect. 3.1 are essential in finding the µ signal
accurately.

The audible axion scenario features a qualitative difference
with models that secondarily generate gravitation waves via gauge
field production during inflation, as the generation occurs during
radiation domination, when H < m. The oscillating axion at the
minimum of the potential must remain a sub-dominant contribution
to the energy budget, otherwise we’d have a phase of intermediate
matter domination.

It follows that the contribution of the oscillating axion and
the subsequently produced dark photons must be sufficiently sub-
leading to the energy density in the radiation fluid. Their relative
contributions to the curvature perturbation in total comoving gauge
will consequently be suppressed relative to the contribution from
fluctuations in the radiation fluid already present before dark pho-
ton production (originating from the vacuum fluctuations sourced
during inflation). Hence the contribution of scalar perturbations
sourced by axion dynamics to the µ−distortion signal will be sub-
leading to those generated by primordial perturbations from infla-
tion, and can safely be neglected.

This model is of particular interest to us as it produces a nar-
rower spectrum of GWs. Thus, to constrain its parameter space it
is important to have probes that can cover all phenomenologically
relevant frequencies. The GWs produced can be parametrized as a
spectrum of the form

Ω
U(1)
GW (k) =

6.3Ω
U(1)
GW ( fAA)

(
k/k̃

)1.5

1 +
(
k/k̃

)1.5
exp

[
12.9

(
k/k̃ − 1

)] , (19a)

with

k̃ = 1.3 × 1015 [
fAA/Hz

]
Mpc−1. (19b)

Here ΩGW( fAA) and fAA are a function of the free parameters of the
model. These parameters, as introduced in Machado et al. (2019);
Machado et al. (2020), are fφ, m, α and θ, relating to the fit param-
eters in Eq. (19a) via

fAA ≈ 6 × 10−4 Hz
[
αθ

66

]2/3 [ m
10meV

]1/2
, (20a)

Ω
U(1)
GW ( fAA) ≈ 1.67 × 10−4g−1/3

ρ,∗

[
fφ

Mpl

]4 [
θ2

α

]4/3

, (20b)

which have both been redshifted to their present-day values. The
first two free parameters (i.e., fφ and m) essentially dictate the
height and frequency of the peak in the power spectrum respec-
tively. The second two parameters are limited to α ∼ 10 − 100 and
θ ∼ O(1), and do not significantly change the shape of the spectrum
for the range of allowed values. These parameters are therefore de-
generate with the first two. We choose fiducial values of α = 60
and θ = 1, but the main results given here hold more generally.

The direct dependence of fpeak on m means that different types
of experiment will probe different mass scales. This is shown Fig. 3,
where vertical dotted lines distinguish where different detection
methods are dominant. From here it can be seen that SD are sensi-
tive to the ultralight limit of the U(1) audible axion model, a result
which again holds for any valid combination of α and θ.

Note that Planck extends the limits from COBE/FIRAS at low
masses to smaller values of fφ. Future SDs measurements could
significantly improve the limits from Planck to higher masses, cov-
ering a wider range of the parameter space of phenomenological
interest.

We note in particular how SDs can constrain masses in a range
not accessible to other measurements (10−22−10−13 eV). Such ultra-
light axions may be ubiquitous in particular string compactifica-
tions (Arvanitaki et al. 2010), and moreover, could be a viable dark
matter candidate were they to form a condensate at late times (Hui
et al. 2017; Marsh 2016), further illustrating the utility of SDs for
particle phenomenology.

© 0000 RAS, MNRAS 000, 000–000
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Figure 3. A contour plot showing the expected SD signal arising from dif-
ferent combinations of fφ and m in the U(1) model. Without loss of general-
ity, fiducial values of α = 60 and θ = 1 were chosen. Contours showing the
visibility of several proposed spectrometers are shown. Vertical dotted lines
indicate regions of the phase space where different probes are most sensitive
(from left to right: SD, PTA and Interferometry). Dotted lines continuing the
SD mission contours show the estimates ignoring late time injection.

5.4 Phase transitions beyond the Standard Model

The post-inflationary epoch may have seen a variety of first or-
der phase transitions (PTs) in theories that go beyond the stan-
dard model of particle physics. First order PTs are characterized
by the fact that latent energy is released, and phases of true vacuum
nucleate within false vacuum domains, resulting in bubble colli-
sions (BC) that generate a stochastic GW background. Moreover,
magneto-hydrodynamic (MHD) turbulence and sound waves (SW)
in the bulk plasma during and after the phase transition also source
sub-horizon GWs at commensurate frequencies. If these processes
take place during the µ-era or shortly before, they can potentially
result in measurable SDs. Here we once again use the results of
Sect. 3.1 to calculate the associated SDs.

Referring to the review of Caprini & Figueroa (2018), we see
that the spectra resulting from the three different mechanisms for
GW production from PTs are given by

h2ΩBC
GW( f ) = 1.67 × 10−5

(
H∗
β

)2 (
κBCα

1 + α

)2
(

100
g∗(T∗)

) 1
3

(21a)

×
(

0.1133w
0.42 + 32w

)
3.8( f / fBC)2.8

1 + 2.8( f / fBC)3.8 ,

h2ΩSW
GW( f ) = 2.65 × 10−6

(
H∗
β

) (
κvα

1 + α

) ( 100
g∗(T∗)

) 1
3

(21b)

× 3w
(

f
fSW

)3 (
7

4 + 3( f / fSW)2

) 7
2

,

h2ΩMHD
GW ( f ) = 3.35 × 10−4

(
H∗
β

) (
κMHDα

1 + α

) 3
2
(

100
g∗(T∗)

) 1
3

(21c)

× 3w ( f / fMHD)3

[
1 + ( f / fMHD)

] 11
3 (1 + 8π f /h∗)

,

with peak frequencies

χ0 =

[
β

H∗

] [ T∗
100GeV

] [g∗(T∗)
100

] 1
6

, (21d)

fBC = 1.65 × 10−5 Hz
(

0.62
1.8 − 0.13w + 32w

)
χ0 , (21e)

fSW = 1.9 × 10−5 Hz 3−1
w χ0 , (21f)

fMHD = 2.7 × 10−5 Hz 3−1
w χ0 . (21g)

Here, the three principal model parameters are α, β and 3w, which
fix the amount of latent heat released by the transition as a fraction
of the total energy density, inverse time duration of the PT, and
velocity of bubble walls respectively. Denoted with ∗ are quantities
at the time of the PT, making another key parameter zPT. The first
two parameters follow 0 ≤ α ≤ 1 and β/H∗ > 1.

The velocity of sound waves has been set to unity, since bub-
ble walls usually propagate close to the speed of light. Parameters
labelled κi ∈ [0, 1] give the weighted contribution from each mech-
anism. For this work we have used κBC = 1, κMHD = κv and

κv ≈ α

0.73 + 0.083
√
α + α

, (22)

the last of which is valid for 3w ' 1. The expected SD limits on PTs
given these considerations are shown in Fig. 4. Even for low-energy
PTs (α = 0.1) a PIXIE-like mission would explore some of the
parameter space not already excluded by Planck; however, it would
only see rather long PT. In the more energetic cases (α ≥ 0.5), SD
missions could realistically detect PT lasting small fractions of the
age of the Universe, and occurring relatively late in cosmic history.

Evidently, SDs provide a unique and complimentary window
into low scale phase transitions (corresponding to energy scales in
the range 10 Mev - 10 eV) that are not possible to probe with any
other observation. An important caveat to our discussion of this sce-
nario is the potential for the generation of sub-horizon scalar per-
turbations during and after phase transitions. Sub-dominant contri-
butions arising from the scalar field dynamics have been calculated
in Cutting et al. (2018), however retaining the scalar contributions
from sound waves and MHD turbulence generated after the transi-
tion will require further study, and remains an important open ques-
tion for the present analysis. Our limits can therefore be considered
conservative.

5.5 GUT cosmic string networks

Another tell tale sign of physics beyond the Standard Model is the
existence of topological defects. Excluding textures, the standard
model does not allow for any defects. However, larger gauge sym-
metries (ubiquitous in models that go beyond the Standard Model)
could admit symmetry breaking patterns that generate topological
defects in the early Universe (see Kibble 1980, 1982) which could
have persisted into cosmologically observable epochs. Although
the simplest models of monopoles and domain walls are tightly
constrained (see Sects. 13.5.3 and 14.3.3 in Vilenkin & Shellard
1994), cosmic strings networks remain a theoretical possibility and
can impart potentially observable GW signals (see Sect. 10.4 of
Vilenkin & Shellard 1994).

As an example, we consider a model proposed by Buchmuller
et al. (2019) which attempts leptogenesis within an SO(10) grand
unified theory via a U(1)B−L phase transition, where a local U(1)
baryon minus lepton number symmetry is spontaneously broken.

© 0000 RAS, MNRAS 000, 000–000
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Figure 4. A series of contour plots showing the expected SD signal arising from low scale first order phase transitions. Dotted lines (visible on the left) give the
sensitivity with standard window function, Wµ(k), showing that late power injection leads to a decrease of less than an order of magnitude for 105 < zPT < 106.
The limits from Planck are also shown for comparison. The temperature at the time of the PT can be found with TPT/MeV ≈ 2 × 10−10zPT.

The result of the B− L transition will be a meta-stable CS net-
work generated at the time of the transition, which over the course
of the collapse generates a mostly flat spectrum of GWs due to the
decay of string loops. An approximate form of their spectrum is
given in terms of the model parameters κ and Gµ as6

h2Ω CS
GW = h2Ω

plateau
GW min

[
( f / f∗)3/2 , 1

]
, (23a)

f∗ = 3 × 1014 Hz e−πκ/4
[ Gµ
10−7

]−1/2

, (23b)

h2Ω
plateau
GW = 8.04 Ωrh2

[Gµ
Γ

]1/2

. (23c)

Buchmuller et al. (2019) give a value of Γ ≈ 50 for this particular
model, and we use a value of Ωrh2 = 2.5 × 10−5.

In reality string network collapse would be a function of time,
but to match the formalism outlined in Sect. 3.1 we conservatively
assume the entire spectrum emerges at the final moment of collapse
given by Buchmuller et al. (2019)

zcollapse =

(
70
H0

)1/2 (
Γ

(Gµ)2

2πG
e−πκ

)1/4

. (24)

The spectrum grows ∝ f 3/2 up to f∗, and is flat for higher fre-
quencies. Furthermore, f∗ only depends weakly on Gµ but varies
significantly with κ. This means that once κ is large enough that the
spectrum is flat across the entire window of visibility for a given
experiment, the probe will only be sensitive to Gµ. With SD mis-
sions probing lower frequencies than astrophysical probes they will
be complementary in limiting the lower bounds of the κ parameter.
The potential of SD missions for constraining this model is shown
in Fig. 5.

Given that the GW spectra produced by CS network collapse
has a plateau at smaller scales, for any given sensitivity depicted in
Fig. 2, we see that any one of the probes depicted will be equally
good at detecting the GW background produced. It is also worth
noting that the type of spectrum considered here will hold more
generally for a wide range of CS models (see Figueroa et al. 2020).

6 Not to be confused with the SD amplitude µ. The combination Gµ will
always be in reference to the energy scale of the CS physics.

Figure 5. A contour plot showing the expected µ signal from a CS network
arising from a U(1)B−L phase transition at the GUT scale. The limit placed
by COBE/FIRAS is shown in red, and similarly for Planck in orange. Dashed
contours show the sensitivity of various proposed SD missions. Faint dotted
lines show the contours without using the zmax limited window function.

Although the generation of scalar perturbations of CS net-
works in the scaling regime is well understood, the situation is
much less clear for the scalar perturbations generated from the de-
cay of meta-stable networks. Moreover, it is unclear whether the
dominant decay channel will be via gravitational wave production
or scalar perturbations, and the answer will certainly be very model
dependent. This remains another open question as far as this study
is concerned, and the absence of any such detailed calculations is it-
self perhaps due to the fact that it may have been unclear in the past
what observational consequences, if any, sub-horizon generation of
scalar perturbations generated by CS network collapse would have.
We hope the results of this paper will provide the necessary moti-
vation for such calculations.
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6 DISCUSSION AND CONCLUSIONS

Highly energetic events in the early Universe, either during in-
flation or subsequently during radiation domination, can inject
power into the GW spectrum. This can include GWs from sources
within the standard ΛCDM cosmology, or from models that invoke
physics beyond it. Detecting the GW spectrum is therefore key to
further scrutinizing our current paradigm, as well as pushing our
knowledge of the early Universe to new and exciting areas. Future
experiments will probe these stochastic backgrounds, each sensi-
tive to a range of frequencies/wavelengths dictated by the nature
of the experiment. As we have highlighted here, a wide range of
GW frequencies ( f = 10−15–10−9 Hz) can only be probed by SD
observations. This large span of wavelengths compensates for the
relatively low efficiency of generating SDs from GWs, thus making
them a potentially powerful probe of physics beyond the Standard
Models of both particle physics and cosmology.

This work aims to introduce SDs as a complimentary probe
through which one can detect and constrain stochastic GW back-
grounds. The fundamental element to link these two messengers is
the k-space window function, which maps a given GW spectrum
into a SD signal imprinted before last scattering [see Eqs. 8 and 9].
In order to study the injection of power on sub-horizon scales, the
window function for primordial tensor perturbations has been gen-
eralised [see Eq. 9], leading to minor changes in some models (Fig.
3) but large changes in others (Fig. 5). This is essentially related
to the fact that GWs have less cosmic history to dissipate their en-
ergy to the photon-baryon plasma. A simple python tool is provided
at GW2SD7 and allows one to easily estimate SD limits on various
models, given the tensor power spectrum, PT (k, z), that comes into
existence at a single redshift z. This is certainly a good approxima-
tion for 1’st order phase transitions, and holds to a good approxi-
mation for scenarios that dynamically generate GWs over a short
duration. Refinements to account for the exact time-dependence of
the process are left to future work.

To illustrate the utility of SDs for GW cosmology, a series of
phenomenological models were discussed, and their resulting SD
signals studied: As expected, the tensor perturbations generated by
single-field slow-roll inflation are too weak to be measured with
SDs (Ota et al. 2014; Chluba et al. 2015a). Spectator axion-SU(2)
fields too, even in more favourable cases that we considered, will
realistically be out of reach in the foreseeable future. The Audible
axion model (Sect. 5.3) on the other hand, can have a large region
of its parameter space constrained by SDs, particularly for a wide
range of masses in the ultra-light regime (Fig. 3). Similarly, the
GWs from low scale (10 eV - 10 MeV) dark sector phase transitions
in the early Universe will be visible with future SD missions if the
relative energy content of the participating field is sufficiently large,
and the duration sufficiently long (see Sect. 5.4 and Fig. 4). The
typically flat GW spectra produced by CS networks can be seen by
many instruments, but SDs will be complementary to other probes
in being sensitive to string collapse especially in the µ-era. It is
noteworthy that some of the aforementioned models were already
constrained with COBE/FIRAS long before first limits from Planck
existed. Future CMB spectrometers like SuperPIXIE (Kogut et al.
2019) could establish a new frontier in this respect.

7 https://github.com/CMBSPEC/GW2SD.git

As we have discussed, both in general and for specific mod-
els, any SD constraints should include both the scalar and tensor
perturbations arising from energetic events (e.g. see Tashiro et al.
2013; Amin & Grin 2014, for SDs from scalar perturbations of CS
and PTs, respectively). This potential for combining sources is an-
other advantage SD experiments have over GW-based experiments,
since the latter are only sensitive to the direct tensor perturbations.
This advantage is not easily utilised for the models discussed in this
paper, however, since the necessary scalar spectra are generally ab-
sent from the literature. Where the inclusion is possible, it is again
important to highlight that SDs from tensor perturbations cover a
wider range of physical scales than SDs from scalar sources, thus
extending the reach of SDs to earlier epochs. In addition, some sce-
narios do not produce any significant scalar perturbations [e.g., the
axion-SU(2) model], making it crucial to account for SDs caused
by tensor perturbations. Overall, SDs uniquely probe the presence
of small-scale perturbations in regimes that are not directly acces-
sible, thus highlighting the important role that future CMB spec-
trometers could play in GW cosmology, and, by extension, beyond
the Standard Model phenomenology.

DATA AVAILABILITY

Window functions (e.g. Fig. 1) are available at https://github.
com/CMBSPEC/GW2SD.git.

ACKNOWLEDGMENTS

We would like to thank Ana Achucarro and Jose Juan Blanco-Pillado for
discussions about scalar perturbations generated during cosmic string col-
lapse. We also thank Paolo Campeti and Eiichiro Komatsu for providing the
data used in Fig. 2, together with helpful discussions regarding the mapping
between PT and ΩGW. This work was supported by the ERC Consolidator
Grant CMBSPEC (No. 725456) as part of the European Union’s Horizon
2020 research and innovation program. TK was further supported by STFC
grant ST/T506291/1. JC was also supported by the Royal Society as a Royal
Society URF at the University of Manchester, UK.

REFERENCES

Abbott B., et al., 2019, Phys. Rev. X, 9, 031040
Abbott B. P., et al., 2020a, The Astrophysical Journal Letters, 892, L3
Abbott R., et al., 2020b, The Astrophysical Journal Letters, 896, L44
Abitbol M. H., Chluba J., Hill J. C., Johnson B. R., 2017, Monthly Notices

of the Royal Astronomical Society, 471, 1126–1140
Ade P., et al., 2018, Phys. Rev. Lett., 121, 221301
Ade P., et al., 2019, JCAP, 02, 056
Adshead P., Wyman M., 2012, Phys. Rev. Lett., 108, 261302
Aghanim N., et al., 2020, Astron. Astrophys., 641, A6
Alam M. F. et al., 2020, arXiv e-prints, arXiv:2005.06490
Amin M. A., Grin D., 2014, Physical Review D, 90, 083529
Arca Sedda M. et al., 2021, arXiv e-prints, arXiv:2104.14583
Arvanitaki A., Dimopoulos S., Dubovsky S., Kaloper N., March-Russell

J., 2010, Phys. Rev. D, 81, 123530
Arzoumanian Z. et al., 2020, The Astrophysical Journal Letters, 905, L34
Buchmuller W., Domcke V., Murayama H., Schmitz K., 2019, arXiv e-

prints, arXiv:1912.03695
Burigana C., Danese L., de Zotti G., 1991, Astronomy & Astrophysics,

246, 49
Cabass G., Melchiorri A., Pajer E., 2016, Physical Review D, 93, 083515
Campeti P., Komatsu E., Poletti D., Baccigalupi C., 2021, Journal of Cos-

mology and Astroparticle Physics, 2021, 012

© 0000 RAS, MNRAS 000, 000–000



10 Kite et al.

Caprini C., Figueroa D. G., 2018, Class. Quant. Grav., 35, 163001
Chluba J., 2016, Monthly Notices of the Royal Astronomical Society, 460,

227
Chluba J. et al., 2019a, arXiv e-prints, arXiv:1909.01593
Chluba J., Dai L., Grin D., Amin M. A., Kamionkowski M., 2015a,

Monthly Notices of the Royal Astronomical Society, 446, 2871
Chluba J., Erickcek A. L., Ben-Dayan I., 2012a, The Astrophysical Jour-

nal, 758, 76
Chluba J., Hamann J., Patil S. P., 2015b, International Journal of Modern

Physics D, 24, 1530023
Chluba J., Jeong D., 2014, Monthly Notices of the Royal Astronomical

Society, 438, 2065
Chluba J., Khatri R., Sunyaev R. A., 2012b, Monthly Notices of the Royal

Astronomical Society, 425, 1129
Chluba J. et al., 2019b, BAAS, 51, 184
Chluba J., Sunyaev R. A., 2012, Monthly Notices of the Royal Astronom-

ical Society, 419, 1294
Crowder J., Cornish N. J., 2005, Phys. Rev. D, 72, 083005
Cutting D., Hindmarsh M., Weir D. J., 2018, Phys. Rev. D, 97, 123513
Daly R. A., 1991, The Astrophysical Journal, 371, 14
Danese L., de Zotti G., 1982, Astronomy & Astrophysics, 107, 39
Delabrouille J. et al., 2019, arXiv e-prints, arXiv:1909.01591
Dicus D. A., Repko W. W., 2005, Physical Review D, 72, 088302
Dimastrogiovanni E., Fasiello M., Fujita T., 2017, JCAP, 01, 019
El-Neaj Y. A., et al., 2020, EPJ Quant. Technol., 7, 6
Figueroa D. G., Hindmarsh M., Lizarraga J., Urrestilla J., 2020, Physical

Review D, 102, 103516
Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A., Wright

E. L., 1996, The Astrophysical Journal, 473, 576
Hazumi M., et al., 2019, J. Low Temp. Phys., 194, 443
Hild S., et al., 2011, Class. Quant. Grav., 28, 094013
Hu W., Scott D., Silk J., 1994, The Astrophysical Journal Letters, 430, L5
Hu W., Silk J., 1993, Physical Review D, 48, 485
Hui L., Ostriker J. P., Tremaine S., Witten E., 2017, Phys. Rev. D, 95,

043541
Illarionov A. F., Sunyaev R. A., 1975, Soviet Astronomy, 18, 413
Khatri R., Sunyaev R. A., 2013, Journal of Cosmology and Astroparticle

Physics, 6, 26
Kibble T. W. B., 1980, Physics Reports, 67, 183
Kibble T. W. B., 1982, Acta Physica Polonica B, 13, 723
Kogut A., Abitbol M. H., Chluba J., Delabrouille J., Fixsen D., Hill J. C.,

Patil S. P., Rotti A., 2019, in BAAS, Vol. 51, p. 113
Kogut A., Chluba J., Fixsen D. J., Meyer S., Spergel D., 2016, in

Proc.SPIE, Vol. 9904, SPIE Conference Series, p. 99040W
Kogut A., Fixsen D., Chuss D., Dotson J., Dwek E., et al., 2011, JCAP,

1107, 025
Kuroyanagi S., Nakayama K., Yokoyama J., 2015, PTEP, 2015, 013E02
Kuroyanagi S., Takahashi T., Yokoyama S., 2020, arXiv e-prints,

arXiv:2011.03323
Lyth D. H., Riotto A., 1999, Phys. Rept., 314, 1
Machado C. S., Ratzinger W., Schwaller P., Stefanek B. A., 2019, JHEP,

01, 053
Machado C. S., Ratzinger W., Schwaller P., Stefanek B. A., 2020, Physical

Review D, 102, 075033
Marsh D. J. E., 2016, Phys. Rept., 643, 1
Mather J. C. et al., 1994, The Astrophysical Journal, 420, 439
Mukherjee S., Khatri R., Wandelt B. D., 2018, Journal of Cosmology and

Astroparticle Physics, 2018, 045
Nakai Y., Suzuki M., Takahashi F., Yamada M., 2020, arXiv e-prints,

arXiv:2009.09754
Ota A., Takahashi T., Tashiro H., Yamaguchi M., 2014, Journal of Cos-

mology and Astroparticle Physics, 10, 29
Perera B., et al., 2019, Mon. Not. Roy. Astron. Soc., 490, 4666
Planck Collaboration et al., 2018, ArXiv:1807.06209
PRISM Collaboration et al., 2014, Journal of Cosmology and Astroparti-

cle Physics, 2, 6
Reitze D., et al., 2019, Bull. Am. Astron. Soc., 51, 035
Sesana A. et al., 2019, arXiv e-prints, arXiv:1908.11391

Smith T. L., Caldwell R., 2019, Phys. Rev. D, 100, 104055
Sunyaev R. A., Zeldovich Y. B., 1970, Astrophysics and Space Science,

9, 368
Sunyaev R. A., Zeldovich Ya. B., 1970, Astrophys. Space Sci., 7, 20
Tashiro H., Sabancilar E., Vachaspati T., 2013, Journal of Cosmology and

Astroparticle Physics, 8, 35
Thorne B., Fujita T., Hazumi M., Katayama N., Komatsu E., Shiraishi M.,

2018, Phys. Rev. D, 97, 043506
Vilenkin A., Shellard E. P. S., 1994, Cosmic strings and other topological

defects
Watanabe Y., Komatsu E., 2006, Phys. Rev. D, 73, 123515
Weinberg S., 2004, Physical Review D, 69, 023503
Weltman A., et al., 2020, Publ. Astron. Soc. Austral., 37, e002
Zeldovich Ya. B., Sunyaev R. A., 1969, Astrophys. Space Sci., 4, 301

© 0000 RAS, MNRAS 000, 000–000



5

Paper II: Clarifying transfer function

approximations for the large-scale

gravitational wave background in

ΛCDM

This paper offers a follow up to the first paper (chapter 4 of this thesis). We revisit and

model the transfer functions for tensor perturbations in the primordial Universe (see

chapter 3), making use of the Physics described in Watanabe & Komatsu (2006) and

Saikawa & Shirai (2018).

In performing the modelling from the ground up we are able to independently verify

the results of Weinberg (2004); Dicus & Repko (2005), and demonstrate some potential

mistakes which would easily go unnoticed in the literature. Firstly we find that analytic

approximations based on a Universe only containing matter and radiation will only

work using a corresponding modified current age of the Universe. Secondly we show

that correctly accounting for the density of relativistic particles (as compared to only

radiation) also provides a noticable correction. These previous two effects can mask

eachother, and thus make it difficult to fully reproduce some results in the literature.
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5: PAPER II: CLARIFYING TRANSFER FUNCTION APPROXIMATIONS FOR THE
LARGE-SCALE GRAVITATIONAL WAVE BACKGROUND IN ΛCDM

We also use the numerical treatment to verify the effects that late time acceleration

(see chapter 1) would have on the background of gravitational waves, which amount

mostly to phase changes in the low frequency part of the spectrum.
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ABSTRACT
The primordial gravitational wave background (GWB) offers an exciting future avenue of discovery for new physics. Its infor-
mation content encodes multiple eras in the early Universe’s history, corresponding to many orders of magnitude in frequency
and physical scale to be measured today. By numerically solving for the GW transfer functions we provide simple yet accurate
formulas describing the average power of the large-scale energy spectrum of the GWB for arbitrary primordial tensor power
spectra. In doing so we can pedagogically explain and clarify previous GWB literature, highlight the important cosmological
parameters of various GWB features, and reveal multiple ways in which cancelling conceptual errors can give deceptively ac-
curate results. The scales considered here are particularly important for CMB probes of the GWB, via B-modes and spectral
distortions. In particular, we carefully study the effects of both neutrino damping, and the precise nature of the transition be-
tween the radiation-dominated (RD) and matter-dominated (MD) eras. A byproduct of numerically solving the problem is the
ability to study the robustness of common approximations in the literature. Specifically, we show that a numerical treatment is
especially important around the RD–MD transition, and for a brief moment of history where neutrino damping occurs during
MD. In passing we also discuss the effects of late acceleration caused by dark energy – showing that this can be neglected in
most practical GWB applications – and the effects of changing relativistic degrees of freedom on the GWB at very small-scales.

Key words: cosmology: theory — gravitational waves —

1 INTRODUCTION

The detection of the first gravitational wave (GW) (LIGO Scientific
Collaboration & Virgo Collaboration 2016) opened a door to a novel
way of studying the Universe. Decades of studying the light arriving
from the cosmos has provided us with modern precision cosmology
as we know it, and with some poetic license, we are now able to hear
the Universe as well as see it.

The excitement of this prospect has led to a suite of new upcom-
ing probes (either proposed or under construction) which will listen
for GWs in different frequency bands (see Campeti et al. 2021, for
review). From lowest to highest frequency GWs we have CMB B-
mode measurements (Ade et al. 2018; Aghanim et al. 2020), spectral
distortion measurements (Kite et al. 2020), pulsar timing array mea-
surements (Perera et al. 2019; Alam et al. 2020), and finally direct
detection using interferometry (Abbott et al. 2020b,a). Through a
combination of all these probes we can construct a comprehensive
picture of the symphony of GWs in the Universe, and refine our un-
derstanding of fundamental physics in the process.

In this work, we focus on primordial origins of GWs rather than
astrophysical sources. Our study therefore relates to searches for a
stochastic gravitational wave background (GWB) rather than sin-

? E-mail: thomas.kite@manchester.ac.uk
† E-mail: jens.chluba@manchester.ac.uk
‡ E-mail: andrea.ravenni@manchester.ac.uk
§ E-mail: patil@lorentz.leidenuniv.nl

gle isolated events. The exact physics that will be revealed through
studying this background is broad and diverse (see Caprini &
Figueroa 2018, for review).

The goal of this paper is then twofold: firstly to pedagogically in-
troduce the physics of the GWB to clarify other literature, revealing
potential pitfalls in the analytic modelling, and secondly to provide
a simple yet accurate analytic description for the mapping between
the present-day large-scale GWB energy spectrum and the corre-
sponding primordial tensor power. The latter allows our results to
be applied to general inflationary models, making this work particu-
larly relevant to the interpretation of B-mode and spectral distortion
searches for new physics.

The mapping from underlying physical model to present-day ob-
servations requires a detailed understanding of the GW transfer
function, for which various solutions have been considered (e.g.,
Watanabe & Komatsu 2006; Dicus & Repko 2005; Caprini &
Figueroa 2018). We expand upon this literature with a numerical
treatment of the GWB which accounts for the nuanced cosmological
expansion through radiation-dominated (RD) and matter-dominated
(MD) eras, the late time accelerated expansion from dark energy
(DE) and the non-negligible damping from free-streaming neutri-
nos. This allows us to give the promised simple fits for the average
large-scale GWB energy spectrum in a number of fiducial cosmo-
logical scenarios.

Accurately accounting for the transition between RD and MD
eras is especially important in calculations of the transfer function

© 0000 The Authors
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2 Kite et al.

for non-standard thermal histories, such as those with epochs of
early matter domination frequently encountered in a variety of phe-
nomenological extensions of the standard cosmology (Acharya et al.
2008, 2019), or for scenarios where the primordial GW spectrum is
significantly enhanced or modulated, relevant, for instance, in sce-
narios of primordial black hole formation (Ballesteros et al. 2020;
Bhattacharya et al. 2021; Green & Kavanagh 2021; Arbey et al.
2021). We will discuss how the results of this paper can also be
straightforwardly extended to such applications.

This paper is organised as follows: in Sect. 2 we qualitatively re-
view the broad range of fundamental physics imprinted on the GWB.
This will aid the reader in understanding the more quantitative ap-
proach in Sect. 3, where we analytically solve the equation govern-
ing the evolution of GWs in limiting cases. These solutions, although
previously considered, will serve to clarify some confusion in the lit-
erature about their application. The numerical method is explained
and results shown in Sect. 4, focusing on the reliability of the an-
alytic results previously found. One region of parameter space not
captured well by existing approximations is the MD–RD transition,
which is important for CMB scale probes. Hence in this section we
provide simple fits for the large-scale GWB, providing an alternative
to the usual analytic approximations. More general features of the
GWB are discussed in Sect. 5, where we demonstrate the principal
cosmological dependence of neutrino damping and the main effects
of late time acceleration on the GWB. For completeness we include
some discussion of changes in the relativistic degrees of freedom
and their relevance to SD constraints on GW backgrounds. We point
out in this section how a combination of the simple fits and pretab-
ulated data on relativistic degrees of freedom can accurately model
the spectrum to within ∼ 5% on all scales. Finally we summarise
and conclude in Sect. 6.

2 PHYSICS CONTENT OF THE GWB

The study of cosmological perturbation theory explains the evo-
lution of perturbations on the otherwise smooth expanding FLRW
background, and is the foundation for much of modern cosmology
(Ma & Bertschinger 1995). For detailed explanation and derivations
with details about GWs see Weinberg (2008), but we summarise the
essential steps here. Perturbatively small terms are added to both
the metric gµν and the stress energy tensor Tµν, which can then
be equated through Einstein’s field equations. Three fundamental
types of perturbations emerge from this calculation: scalars, trans-
verse vectors and spatial transverse traceless tensors. The latter are
what we also understand as GWs. These waves couple to the corre-
sponding spatial transverse traceless tensor component within Tµν,
the anisotropic stress of the medium, Π, which provides a source
term that can damp the GWB.

This last point is quite important, as typically speaking the par-
ticle species in the primordial plasma do not carry considerable
anisotropic stresses: tightly-coupled fluids rapidly isotropize and are
dominated by their densities and velocities, after which comes a pe-
riod of free streaming dominated solely by velocity1. Only a brief
intermediate phase therefore leads to a non-negligible anisotropic
stress that can interact with and damp the GWB. The dominant
damping effects therefore arise from the GWs themselves sourcing

1 For a more general analysis that interpolates between the kinetic and hy-
drodynamic regimes, incorporating ambient matter interactions, see for in-
stance (Baym et al. 2017; Flauger & Weinberg 2018; Mirón-Granese 2020;
Zarei et al. 2021).

the anisotropic stress in the medium, which will lead to an integro-
differential equation that we solve numerically.

A subdominant contribution to the damping is added by the cos-
mic photon field. At early times the photon fluid inherits enough
energy from the GWB to produce a noteworthy distortion to the
blackbody spectrum (Chluba et al. 2015), but with no discernible
effect on the GWB. The GWB scales most affected by photons are
k ' 10−2 Mpc−1, amounting to a 14% reduction in the amplitude
squared according to the work of Saikawa & Shirai (2018). However,
we note that at these scales it is both possible and necessary to model
the photon decoupling with the full Boltzmann equation, rather than
using a modified version of the damping term [e.g., Eq. (17a) below],
which contains several simplifying assumptions. The damping effect
of photons will not significantly change the results of this paper, and
a full detailed treatment is left to future work.

The neutrino, on the other hand, has a considerable damping ef-
fect over a large set of scales. Previous studies show that the neutrino
field will damp the GWB amplitude squared by ' 35.6% (Wein-
berg 2004; Dicus & Repko 2005) at scales k & 1/500 Mpc−1. The
damping effect arising from neutrinos will be investigated below,
verifying and generalising on these previous studies. We note that it
is conceivable to treat the neutrino field with the same level of so-
phistication as the photon field: understanding how inherited energy
from the GWB will distort the otherwise thermal distribution of neu-
trino momenta, and modelling a gradual decoupling of the particles
through full Boltzmann hierarchies. However, also this program is
beyond the scope of this paper.

The bottom line then is that within the standard thermal history of
the Universe, the GWB is mostly free from the surrounding plasma,
only receiving small predictable damping effects from free stream-
ing neutrinos. The rest of the information encoded in the GWB
therefore comes from the state of the Universe at the time of horizon
crossing for each frequency, after which simple propagation occurs.
This is, in fact, the double-edged sword of GW cosmology: a feeble
interaction that simultaneously makes a clean and powerful probe of
almost the entirety of cosmological history, but which also makes
for an incredibly difficult detection at present time. A detection is a
sufficiently monumental task that glimpsing the GWB has become
the aspiration of many scientific teams, with a diverse set of probes.

One important state of the Universe’s history cleanly imprinted as
a GWB feature is the precise moment that relativistic particle species
no longer dominate the universal expansion, giving way to a matter
dominated era. Since GWs have a different evolution in each of the
eras, there is a predictable change in shape of the energy spectrum
(see Sect. 4.2). One goal of this paper is to elucidate this transition
in order to facilitate comparison between early and late Universe
probes of the GWB.

To model the moment of this transition it is important to cleanly
separate the cosmic inventory into relativistic and non-relativistic
particles. This usually equates to distinguishing massive and mass-
less species, but some subtleties arise when considering neutrinos.
We now know from data on neutrino oscillations (Fukuda et al. 1998;
Ahmad et al. 2001, 2002) to expect massive neutrinos, albeit with
masses limited to sub-eV scales (Planck Collaboration et al. 2018b;
Aker et al. 2021). The concordance model in Cosmology therefore
still treats these as massless entities in most applications. This is of-
ten sufficient since the sum of neutrino masses is predicted to be suf-
ficiently small that the early-universe dynamics will resemble that of
massless particles, even if at least two of the neutrino species must
be non-relativistic today (Lesgourgues & Pastor 2006).

In this paper, we therefore carefully distinguish the photon energy
density, Ωγ = 5.42×10−5 [T0/2.7255 K]4 [h/0.675]−2, from the total
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Clarifying transfer function approximations 3

relativistic energy density

Ωrel = Ωγ + Ων =

1 + Neff

[
7
8

] [
4

11

]4/3 Ωγ, (1)

which includes the neutrino energy density Ων. The number of rel-
ativistic degrees of freedom, Neff , parameterizes the extra massless
degrees of freedom relative to the photons. The factor of 7/8 arises
due to the differences in particle statistics (Bose-Einstein or Fermi-
Dirac), while the factor (4/11)4/3 relates to the energy release dur-
ing electron-positron annihilation. In this paper we assume the stan-
dard model expectation value of Neff = 3.046 (Mangano et al. 2005;
de Salas & Pastor 2016), which in turn gives Ωrel = 9.18 × 10−5

today. This distinction between the photon field and the full rela-
tivistic cosmic inventory has been ambiguous or neglected in some
literature, leading to additional confusion around the exact moment
of RD–MD transition (e.g. see discussion in sect. 5.2 in Caprini &
Figueroa 2018). As previously mentioned, resolving this disparity is
important for accurate comparison between the largest scale CMB
B-Modes and spectral distortion measurements, and constitute one
driving motivation for this work.

One more energy component needs to be included to complete
the cosmic inventory: the cosmological constant or dark energy2 ΩΛ.
Despite being the dominant form of energy today, it makes up a tiny
fraction of the Universe’s content at primordial times. The expected
effect of this component is only small changes on the largest phys-
ical scales, which can be verified numerically (Sect. 5.2). A more
notable difference from the late-time acceleration is the change in
the age of the Universe, which complicates the application of ana-
lytic solutions, as we clarify here.

The physics discussed thus far is all needed to accurately model
the GWB down to scales of k ' 103 Mpc−1. Beyond these scales
the spectral features arise from changes in the number of relativis-
tic degrees of freedom, g∗, as originally discussed in Watanabe &
Komatsu (2006), generalised by Boyle & Steinhardt (2008), and re-
cently solved to high precision by Saikawa & Shirai (2018). These
changes in the energy budget, arising from the cooling effect of the
universal expansion, cause small temporary changes in the expan-
sion rate, which is imprinted on the GWB from the moment of hori-
zon crossing. We will briefly discuss the importance of these effect
on spectral distortion constraints, leaving the details of the physics
to the aforementioned papers.

3 ANALYTIC GW SOLUTIONS

The equation of motion governing the evolution of a GW, derived
from cosmological perturbation theory, is given by (Weinberg 2004;
Watanabe & Komatsu 2006; Boyle & Steinhardt 2008)

∂2
ηh
λ
k + 2

a′

a
∂ηhλk + k2hλk = 16πGa2Πλ, (2)

where hλk(η) is the amplitude of the gravitational wave at wavenum-
ber k for each polarization λ = +,×, and Πλ(k, η) is the anisotropic
stress of the surrounding primordial plasma, both as a function of
wavenumber k and conformal time η. Primes denote derivatives re-
spect to conformal time, but we keep some explicit derivatives for
clarity later where we will change coordinates. The amplitude of a
physical GW can be written as the product of a transfer function with

2 For the purposes of this paper, ΩΛ will be referred to as dark energy and
cosmological constant interchangeably – only dark energy with w = −1 is
considered.

some initial amplitude hλk(η) = hλ,prim
k TGW(k, η), and as such we have

TGW(k, 0) = 1. This decomposition of transfer function and initial
condition helpfully separates the statistical from the deterministic,
as well as distinguishing the inflationary from the post-reheating dy-
namics.

A primary goal of this paper is to give simple yet precise estimates
for the energy density of the GWB, which measured relative to the
critical density is given by

ΩGW(k) =
ρGW

ρc
(k) =

PT (k)
12a2H2 [T ′GW(k)]2. (3)

Here, the primordial tensor power spectrum

PT (k) =
2k3

2π2

∑

λ

〈|hλ,prim
k |2〉 (4)

encodes the statistical properties of the initial conditions via an en-
semble average3. For many applications the energy density is the
essential quantity one needs to know, since any experiment measur-
ing the GWB is sensitive to its energy density at a given time and
scale/frequency. It is clear from Eq. (3) that fundamental link be-
tween the primordial PT and ΩGW at any other time is the transfer
function TGW, which we study in detail next.

3.1 Transfer function

As previously discussed, a key feature in the GWB is a distinctive
bend on physical scales corresponding to the transition between the
radiation-dominated4 (RD) and matter-dominated (MD) eras of the
Universe’s history. To understand this effect it is instructive to first
ignore both the contribution of DE and the effects of damping - the
former being negligible and the latter being an unnecessary compli-
cation to describe the physics of the transition. Solving the Friedman
Equations in this limit we have

η = 2
√

aΩm + Ωrel −
√

Ωrel

H0Ωm
, (5a)

a =
1
4
η2H2

0Ωm + ηH0

√
Ωrel, (5b)

a′

a
= aH = aH0

√
Ωma−3 + Ωrela−4. (5c)

Using these expressions one can find

a′

a
=

1
η

+
1

η + η∗
=

1
η∗

(
1
ξ

+
1

1 + ξ

)
, (6a)

η∗ = 1/k∗ = 4
√

Ωrel/H0Ωm. (6b)

The characteristic time-scale defined here is η∗ = 540.44 Mpc for
up-to-date cosmological parameters from Planck Collaboration et al.
(2018a). With this time-scale, the dimensionless quantities ξ = η/η∗
and κ = k/k∗ = kη∗ naturally emerge. Using these variables is ad-
vantageous for various reasons, but most notably it adds a degree
of invariance in considering different cosmologies. Note the com-
monly appearing term κξ = kη, which helps in matching to com-
mon approximations in the literature. Another common time-scale

3 We have followed the convention of Watanabe & Komatsu (2006) and
Saikawa & Shirai (2018), which can be expressed in terms of other con-
ventions by noting the normalisation of polarisation tensors in the latter ref-
erence, between Eq. (2.4) and Eq. (2.5).
4 We remind the reader that despite the misnomer we include relativistic
neutrinos here.
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for RD–MD equality is aeq = Ωrel/Ωm, defined simply as the time in
which energy densities of the respective components matched5.

By incorporating this change of variables to the differential equa-
tion we find an elegant form

∂2
ξTGW + 2

(
1
ξ

+
1

1 + ξ

)
∂ξTGW + κ2TGW ≈ 0. (7)

The characteristic time-scale used here can be further motivated by
noticing that it is the time that balances the two contributions to
Eq. (5b), showing it is closely related to the balance of matter and
radiation.

Using Eq. (7) it is possible to study the evolution of GWs far into
both RD (ξ � 1) and MD (ξ � 1). In each limiting case we obtain

2
(

1
ξ

+
1

1 + ξ

)
−→


2/ξ for RD
4/ξ for MD

, (8)

which offer simple solutions to Eq. (7) in terms of spherical Bessel
functions which we summarise here:

T RD
GW = A j0(κξ) − By0(κξ), (9a)

TMD
GW =

3
κξ

[
C j1(κξ) − Dy1(κξ)

]
, (9b)

with derivatives

T ′ RD
GW = −k

[
A j1(κξ) − By1(κξ)

]
, (10a)

T ′ MD
GW = −3k

κξ

[
C j2(κξ) − Dy2(κξ)

]
. (10b)

Here A, B, C and D are constants determined from initial condi-
tions and matching conditions which we discuss below. Note that
the derivatives here are still with respect to conformal time, which
yields factors of k. The terms involving spherical Bessel functions
of the first kind, jn, are constant at early times, and have been scaled
here such that A = C = 1 gives an early time normalisation to unity.
Spherical Bessel functions of the second kind, yn, are the decaying
modes.

The solutions given above are each valid deep into each regime,
but we have yet to discuss the transition between them. Note first
of all that MD scales (κ � 1) simply stay constant in the RD era,
since for those modes we have κξ � 1. On the contrary we must
be careful with the RD scales (κ � 1) during the MD era, since
these modes have already had time to evolve and decay by that time.
An approximation for this matching process is performed by Watan-
abe & Komatsu (2006) (henceforth WK06), where by assuming an
instantaneous transition one can solve

T RD
GW

∣∣∣∣∣
ξ=1

= TMD
GW

∣∣∣∣∣
ξ=1
, (11a)

T ′ RD
GW

∣∣∣∣∣
ξ=1

= T ′ MD
GW

∣∣∣∣∣
ξ=1
, (11b)

which gives a functional form to the constants previously defined:

A = 1, (12a)

B = 0, (12b)

C(κ) =
1
2
− cos(2κ)

6
+

sin(2κ)
3κ

, (12c)

D(κ) = − 1
3κ

+
κ

3
+

cos(2κ)
3κ

+
sin(2κ)

6
. (12d)

5 It is often unclear which time-scale an author uses, and as such we will
keep a strict convention here. The TGW approximations by Watanabe & Ko-
matsu (2006), which we discuss shortly, give the correct limiting cases using
η∗ as defined in this work.

This matches the equations given by WK06 once accounting for dif-
ferent variable conventions. A noteworthy difference in convention
is the lack a step function that enforces C → 1 and D → 0 for
κ � 1, which is already the natural tendency of the functions as they
are written here. Notice that the constant mode solution for the RD
scales will excite a decaying mode in the MD era, and thus D cannot
be ignored even if B has been.

3.2 Energy spectrum

By using the analytic forms derived in Sect. 3.1 the expected limits
of the energy spectrum Eq. (3) can be derived. Recalling that we are
only interested in the power spectrum normalised energy density as
seen today (η0 � η∗), we can take the limit in the MD era:

ΩGW

PT

∣∣∣∣∣
ξ0

=
1

12H2
0

[
T ′ MD

GW

]2

=
1

12H2
0

9
η2∗ξ

2
0

[
C j2(κξ0) − Dy2(κξ0)

]2 ,

(13)

from which the high and low κ limits can be derived. In both limits
however we note that any realistic probe of the GWB will have sen-
sitivity on scales much smaller than those crossing horizon in recent
times (k � 1/η0). This statement leads to κξ0 � 1 expansions, for
which we have (Watanabe & Komatsu 2006)

jn(x) ≈ sin(x − nπ/2)
x

for x � 1, (14a)

〈
jn(x)2〉 ≈

(
1
2

)
1
x2 for x � 1, (14b)

where angle brackets indicate averages over an oscillation, leading
to an explicit6 factor of 1/2.

For fixed ξ0 and large κ, the dominant term in the expansion
of Eq. (14) will have a linear term κ/3 ⊂ D(k) combined with
− cos(κξ0)/κξ0 ⊂ y2(κξ0). This gives a flat (albeit oscillating) spec-
trum to high frequencies:

〈
ΩGW

PT

∣∣∣∣∣
ξ0

〉 κ�1
↓≈ 9

12H2
0η

2∗ξ
2
0

〈 [
− κ

3
cos(κξ0)
κξ0

]2 〉

κξ0�1
↓≈

(
1
2

)
η2
∗

12H2
0η

4
0

=

(
1
2

)
Ωrel

12
.

(15)

Note however in the final equality we have used a value of η0 de-
rived from Eq. (5b), by setting a0 = 1. This may appear problem-
atic, since dark energy dominates the expansion from a & 3/4, and
thus changes the age of the Universe. The analytic approximations
derived here however were derived explicitly in a Universe without
DE, and should not be used in conjunction with DE-modified val-
ues of η0. This cancellation of errors is vindicated by the numerical
solutions (see Sect. 5.2).

To investigate the behaviour at low κ, we start with C(κ) → 1,
D(κ) → 0, and again apply the subhorizon condition κξ0 � 1. This
suggests the dominant term being − sin(κξ)/κξ ⊂ j2(κξ). A similar

6 For clarity we will keep this convention of explicit 1/2 throughout the
paper.
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Clarifying transfer function approximations 5

Figure 1. A figure showing an example of the neutrino damping term and
its effect on the transfer function at k = 10 Mpc−1. The top panel reveals
small phase shifts accompany a drop in amplitude of TGW around the time of
horizon crossing. Dashed lines indicate negative branches of the oscillating
function. The lower panel shows the damping term 16πGa2Πν. Dotted lines
show other terms in the differential equation associated with the wavenumber
and Hubble expansion.

calculation to above gives

〈
ΩGW

PT

∣∣∣∣∣
ξ0

〉 κ�1
↓≈ 1

12H2
0

9
η2∗ξ

2
0

〈 [
− sin(κξ0)

κξ0

]2 〉

κξ0�1
↓≈

(
1
2

)
Ωrel

12
9
κ2 .

(16)

These results will be used in Sect. 4.2 to choose a functional form
for an envelope fit to the data, and in turn verify the accuracy of the
numerical calculations.

3.3 Anisotropic stress

We previously discussed that some particles will contribute to the
anisotropic stress of the medium, and constitute damping terms to
the GW solution. These stresses are excited by the propagation of the
GW itself, and hence makes Eq. (2) an integro-differential equation,
requiring a more careful treatment than the previous section. We do
not derive any analytic solutions here, but instead quote the results
of Dicus & Repko (2005) (henceforth DR04). We give the form of
the damping integral here both for completeness, and to motivate a
numerical approach to solving the problem, as described in Sect. 4.

Explicitly evaluating the RHS of Eq. (2) for the case of neutrinos
gives (Weinberg 2004)

16πGa2Πλν = −24 fν

(
a′

a

)2 ∫ η

ην

K(k[η − η̄])T ′GW(η̄) hλ,prim
k dη̄, (17a)

fν =
Ων

Ωγ + Ων

1
1 + a/aeq

=
fν,0

1 + a/aeq
, (17b)

K(x) =
1
16

∫ 1

−1
(1 − s2)2eisxds =

j2(x)
x2

=
3 sin(x)

x5 − 3 cos(x)
x4 − sin(x)

x3 , (17c)

where ην is the time at which neutrinos decouple, corresponding to
a temperature of ' 2 MeV (e.g., Jeong et al. 2014).

An example of this damping term is shown in Fig. 1, where it is
seen that at the time of horizon crossing there is a significant damp-
ing of the wave followed by a period of regular propagation, albeit at
a lower overall amplitude. The dotted lines show approximate am-
plitudes for other terms in Eq. (2), revealing that the damping is
subdominant, and comparable only at horizon crossing.

We note in passing that more general particle interactions in
the collision time approximation contribute an additional expo-
nential suppression inside the integrand of Eq. (17a) of the form
exp [−

∫ η

η̄

dη′
τc(η′) ], where τc is the average time between particle colli-

sions (Baym et al. 2017), making manifest that tightly coupled par-
ticles rapidly isotropize and suppress anisotropic stresses, whereas
free streaming particles, for which τc → ∞ reduces to Eq. (17a). We
also note that Saikawa & Shirai (2018) use a modified expression for
the neutrino energy fraction fν which includes energy inherited from
e+e− annihilation. This leads to a slightly greater damping effect at
scales of k ∼ 3 × 104 Mpc−1, quickly adopting the same asymptotic
limit as found in this paper (See Fig. 8).

Within the RD era, the damped transfer functions are given by
DR04 in the form of a series sum of spherical bessel functions:

TGW(kη) =

∞∑

n=0

a2n j2n(kη). (18)

Although in principle this sum has infinitely many terms, in practice
only a few are needed. We will take this series with the 7 coefficients
provided by DR04 as a benchmark in the RD era, but differences are
expected as the universe becomes more matter dominated.

4 NUMERICAL SOLUTIONS

Evaluating the damped solution (see Sect. 3.3) has all the usual diffi-
culties of an integro-differential equation: it involves an integral over
the history of the GW’s own velocity, and it cannot be easily pretab-
ulated since the integrand depends on the upper limit of the integral
itself. In this work we use an iterative method to achieve the solution
to within some desired accuracy: the first iteration of the method as-
sumes no damping [therefore solving Eq. (7)] to achieve an initial
guess T (0)

GW. Each subsequent iteration calculates T (N)
GW by inserting

T (N−1)
GW to the damping integral. This has the advantage of allowing

the damping term to be precalculated for a series of values of η, and
then interpolated ready to use in a new iteration of the ODE solution.
This makes the solution tractable, even if still somewhat numerically
expensive, involving O(N) integrals for a total O(N2) algorithm.

The iteration process ends by some metric of convergence. Here
we sum the squared residuals between consecutive solutions for
T ′ (N)

GW and divide by the number of timesteps and the wavenumber
k. The former division guarantees an intensive metric for conver-
gence – independent of number of points considered – and the latter
accounts for the derivatives being ' k larger than the transfer func-
tions7 which are bounded −1 6 TGW 6 1.

Depending on the chosen wavenumber and desired precision, the
method takes ' 5–10 iterations to reach a final converged solu-
tion. This takes just a few seconds after moderate optimisation, us-
ing ODE solvers in the anisotropy module of CosmoTherm (Chluba
& Sunyaev 2012). This made it possible, with parallelisation, to

7 Alternatively residuals between undifferentiated TGW can be considered,
but derivatives are already stored in memory for the damping integral, hence
this approach constitutes a memory saving.
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Figure 2. A graph showing examples ofTGW for k/Mpc−1 ∈ [1, 0.01, 0.001].
Cases with neutrino damping (black) and without (blue) are shown. The for-
mer is approximated by WK06 (orange) and the latter by DR04 (red). It can
be seen that the free function is well approximated in each era, but not in
the RD–MD transition. The damped function was approximated only in the
RD era, hence showing large discrepancies at late times. It should be noted,
however, that shortly after the transition the damping becomes negligible.

Figure 3. Contour plots showing the difference between this work’s numeri-
cal solutions and approximations given by WK06, against both wavenumber
k and conformal time η. An orange dashed line shows kη = 1. Gray dashed
lines show RD–MD transition scales, keq and k∗, as defined in Sect. 3.1

quickly solve the many tens or hundreds of thousands of k values
needed to fit accurate envelopes to energy spectra.

4.1 Comparison to analytic results

To compare the analytic and numerical results we show a qualitative
comparison [Fig. 2], and quantitative comparisons [Figs. 3,4]. The
former illustrates that the waves usually differ more by an offset in
phase than a difference in overall amplitude. With that in mind, we
can properly interpret the contour plots, which reveal residuals oscil-
lating throughout the parameter space. This suggests that integrated

(a) DR04 residuals

(b) Damping effects

Figure 4. Contour plots showing where the presence of damping is most
important (top), and differences between this work’s numerical solutions and
approximations given by DR04 (bottom). This shows that the residuals in the
right panel are mostly driven by the end of RD, with only a small intermediate
phase showing both MD and damping behaviour simultaneously. An orange
dashed line shows kη = 1. Gray dashed lines show RD–MD transition scales,
keq and k∗, as defined in Sect. 3.1.

quantities across either time or wavenumber would be more accurate
than these figures initially suggest.

Deep in the RD era, we see an excellent agreement with both
WK06 and DR04 as expected. Deep in the MD era on the other
hand we see that we again have good agreement with WK06, albeit
worse than before due to the matching conditions which essentially
provide the MD initial conditions. Exactly at the transition is where
the most discrepancy is seen, although the RD–MD transition is rel-
atively short lived [Fig. 3]. The approximation by DR04 becomes
progressively worse into the MD era, since their coefficients were
derived assuming a RD Universe, accounting for the dominant part
of the residuals [Fig. 4a]. We also provide Fig. 4b, which reveals
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Figure 5. A graph showing ΩGW/PT across k as seen at η0. Two distinct re-
gions are discernible: a 1/k2 slope and a flat branch, corresponding to modes
entering horizon during MD and RD, respectively. Spectra are shown for full
ΛCDM with and without neutrino damping, and a simplified cosmology with
Λ = 0, Neff = 0. The best-fit envelopes (i.e., twice the average power) for
these cosmologies are shown with black lines, and given in Table 1.

how quickly the damping ceases once the MD era starts. Through
a comparison of the two figures therefore we can see that most of
the DR04 residuals are not from a poor modelling of damping, but
simply from not capturing the MD dynamics.

In summary these comparisons highlight the robustness of the an-
alytic approximations as well as the utility of the numerical solution
by showing the latter can fill the gaps expected from former, but only
in specific and brief regimes.

4.2 Simple fits for the large-scale GWB

In this subsection, we will give approximate fits for the energy spec-
trum of the GWB as measured at η0 derived from the fully numerical
treatment. This approach is greatly facilitated by knowing a sensible
functional form in which to package the results, as was discussed in
Sect. 3.2. Expecting a spectrum that interpolates between κ−2 and κ0

motivates a more general formula for approximating the numerical
results, which simply includes more general powers to capture the
subtleties of the RD–MD transition8. As well as including powers
between −2 and 0 we also include an inverse cubic term9, which
specifically in the ν damped scenario helps with the sharper increase
in the spectrum as damping ceases for low k:

〈
ΩGW

PT

∣∣∣∣∣
ξ0

〉
=

(
1
2

)
D Ωrel

12

(
1 + α1κ

−1 + α2κ
−3/2 + α3κ

−2 + α4κ
−3

)
,

(19)
where D is a coefficient to represent neutrino damping that we dis-
cuss more generally in Sect. 5.1. The quality of this fit can be seen
in Fig. 5, with corresponding coefficients given in Table 1. For ease
of comparison three fiducial Cosmologies have been chosen: the
first two corresponding to a best-fit Planck 2018 Universe, with and

8 Other attempts included having κ−1/2, and allowing for a general power
κγ. The fit used in the main text was chosen through trial and error, showing
better results with simpler coefficients than the other functional forms.
9 This term was not included in previous work (Kite et al. 2020). The
changes however are only a few percent, and outside the scales visible to
µ distortions.

without neutrino damping, while the third is a simplified cosmology
neglecting both neutrinos and ΩΛ. This third cosmology highlights
how simultaneously neglecting the neutrino contribution to the en-
ergy budget and the consequent neutrino damping will coinciden-
tally lead to almost correct results, departing from the full solution
by only ∼ 6%. We hope by providing this fit it may be easier to di-
agnose oversights in the literature (a similar cancellation of mistakes
with almost correct results will be discussed in Sect. 5.2).

By using the natural scale to define κ we yield simple values for
the α coefficients, with some implicit degree of cosmology indepen-
dence (Note the similarity between the first and third row in Table 1,
once accounting for changes in η∗).

Although only shown to k = 3 Mpc−1 here, that is sufficient to
show the limit of the GWB envelope indeed tends to Ωrel/12. This is
important, as the amplitude of the spectrum can be extrapolated be-
yond this scale without full calculation: cosmological dependence
is imprinted at the time of horizon crossing, and so evaluating a
given solution to kη & 100 with and without some physical effect
allows one to extrapolate10 the spectrum appropriately by multiply-
ing the appropriate ratio of transfer functions by Ωrel/12. We use
this to model the effects of changing relativistic degrees of freedom
in Sect. 5.3, which all occur at scales k & 103 Mpc−1.

5 ANALYSIS OF GWB FEATURES

In this section, we discuss some of the GWB features previously
mentioned in closer detail, with specific focus on the consequences
for SD constraints on the GWB. We start with aspects of neutrino
damping, then cover the late dark energy domination and finish with
a discussion of the early thermal history.

5.1 Neutrino damping

By comparing the solution to Eq. (2) with and without the damping
integral, and ignoring phase shifts of the transfer function, we can
define the damping factor D as the ratio of the amplitudes squared:[
T damped

GW

]2 ≈ D
[
T free

GW

]2
. This definition mirrors that introduced in

Sect. 4.2, but can now be applied to a single wave of wavenumber
k. This is useful since the damping will only affect a finite range of
scales, essentially givingD ≡ D(k).

Specifically we expectD to tend to unity both for large and small
k – the former since the modes were subhorizon before neutrinos
started free-streaming, and the latter because the energy density
of neutrinos was too small to have considerable effects. The low-
k shape of D is intrinsically linked with the MD–RD transition, a
moment which was relatively recent in cosmological history. The
exact low-k dependence of D therefore does not manifest clearly
in the GWB as seen today [e.g. convergence of damped and un-
damped solutions would look differently in Fig. 5 if the Universe
was older/younger]. Instead we turn our attention to the shape of
the damping envelope for large k, which in contrast reveals itself
clearly, as seen in Fig. 6 (for σ = 0, as introduced next). The
figure shows an expected smooth transition from the previously
discussed damping constant and unity, but with a plateau around
2 × 103 . k/Mpc−1 . 104. This feature is associated with the en-
ergy introduced to the medium from electron-positron annihilation

10 Note that Saikawa & Shirai (2018) perform a similar extrapolation on the
transfer functions themselves using the WKB approximation.
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8 Kite et al.

Cosmology D Ωrel η∗ α1 α2 α3 α4

ΛCDM free 1 9.18 × 10−5 540.44 Mpc 4.15 −4.55 11.08 −0.11
ΛCDM damped 0.642 9.18 × 10−5 540.44 Mpc 8.06 −8.46 17.86 −0.20
Λ = 0, Neff = 0 1 5.43 × 10−5 415.50 Mpc 4.17 −4.21 10.55 −0.01

Table 1. Coefficients to calculate ΩGW/PT from Eq. (19) for three fiducial Cosmologies.

(see Sect. 5.3), which prolongs the time at which the universe has
T ≈ 2 MeV, the temperature of neutrino decoupling.

The damping integral in Eq. (17a) assumed an instantaneous de-
coupling of the neutrinos, which leads to oscillations in the damp-
ing envelope, as noted in WK06. A more realistic scenario can be
achieved by introducing a factor to the integrand which smoothly
tends to 0 for η < ην and to unity for η > ην, with some characteris-
tic width σ governing the sharpness of transition:

∫ η

ην

(· · · ) −→
∫ η

0


1 + tanh ( η−ην

σ
)

2

 (· · · ) . (20)

The effects of this σ are also shown in Fig. 6. Moving forward we
adopt a fiducial value of σ = 0.2ην, which quickly converges to
the correct limits without spurious oscillations. The curve can be
approximately replicated by replacing the factor of D in the second
row of Table 1 with

D(χ) ≈ 0.642 + (1 − 0.642)
(11.08 χ)3 − (10.78 χ)2

(11.08 χ)3 − (9.41 χ)2 + 1
, (21)

where χ = k/3.5×105. This approximate curve is shown as a dashed
line in Fig. 6. We will see in Sect. 5.3 that this can be used to repli-
cate the entire GWB spectrum to arbitrarily large k.

Although this modified treatment of neutrino decoupling is by no
means considered accurate, it highlights an important dependence
of the precise shape of the damping envelope on the decoupling
physics. As mentioned above, a more accurate treatment including
the full decoupling, neutrino oscillations and possible neutrino spec-
tral distortions should be considered, is, however, beyond the scope
of this work.

The ceasing of damping effects at large k has not been included
in the calculation of spectral distortion window functions (Chluba
2014; Kite et al. 2020), meaning these have been underestimated.
With a full calculation we would see a boost in sensitivity of ' 36%
on scales 105 . k/Mpc−1 . 108. This nearly corresponds to a factor
of two in the observing time, rendering this correction non-trivial.
However, at k & 108 Mpc−1, the effect of relativistic degrees of free-
dom become more important, almost exactly canceling this omission
(again, see Sect. 5.3).

5.1.1 Cosmology dependence of the damping coefficient

The total amplitude of the damping carries Cosmological depen-
dence in the form of fν,0 = Ων/(Ωγ + Ων), as defined in Eq. (17a),
which in turn will depend on Neff . Using the iterative procedure for
the damping contributions (see Sect. 4) we find a ΛCDM value
of D = 0.642, differing slightly from Weinberg (2004), where
it was concluded that D = 0.644 by using Neff = 3, implying
fν,0 = 0.40523. By running the solution for values 0 6 fν,0 6 1
we find the fit

D = 1 − 0.45397 ζ + 0.11375 ζ2 − 0.01904 ζ3 + 0.00168 ζ4 (22)

where ζ = fν,0/0.40890. This choice of pivot value is derived from
the theoretically expected Neff = 3.046, since the current measured
value is poorly constrained to Neff = 2.99 ± 0.17 (Planck Collabora-
tion et al. 2018b). Inserting fν,0 = 0.40523, we obtain D = 0.6449,

Figure 6. Illustration for the damping envelope at large k. At k & 3 ×
105 Mpc−1, the envelope has essentially returned to the undamped solution,
while by k ' 103 Mpc−1 the waves reach the expectedD = 0.642. A param-
eter σ modulates the sharpness with which the neutrino decoupling occurs.
Each increment in colour corresponds to increasing σ by 0.1. The dashed
line shows the simple approximation given in Eq. (21).

Figure 7. A graph showing ΩGW/PT across k as seen at η0 in two different
Universes: a standard ΛCDM and one without a cosmological constant. Dif-
ferences are only present for the smallest k values, and correspond to phase
shifts rather than a difference in fundamental spectral shape.

which more closely matches the value of Weinberg (2004), and
matches the D = 0.645 of DR04, based on the same fν,0, thus con-
firming the equivalence of our treatments.

MNRAS 000, 000–000 (0000)



Clarifying transfer function approximations 9

5.2 Late time acceleration

The inclusion of a DE component in the Universe’s expansion does
not allow for simple analytic expressions like those given in Eq. (5).
Despite this, we can argue that the effects of a cosmological constant
will be small, since this component only becomes dominant at very
late times. The scale factor at which ΩΛ matches the contribution
from Ωm is given by

aΛ =

(
Ωm

ΩΛ

)1/3

, (23)

which takes a value of aΛ ' 3/4 with current best-fit parameters
(Planck Collaboration et al. 2018b), a value close to today’s scale
factor a0 = 1 (e.g. see vertical lines in Fig. 2). Recalling that the
effects of cosmological expansion are imprinted on the GWB at the
time of horizon crossing, this means that only large scales which
crossed horizon recently can be impacted in spectral shape. This can
be verified with the numerical solution – where arbitrary expansion
histories are easily included – as can be seen in Fig. 7. We see that the
spectral shape is unchanged, with only specific local maxima show-
ing a shift of position, and most of the spectrum simply receiving a
phase shift. Sensitivity to the shifted peaks would require sensitivity
to wavelengths spanning large fractions of the observable Universe,
which even if feasible would be heavily limited by cosmic variance.
Similarly the phase shift is invisible to probes which typically aver-
age the spectrum over one or many cycles. This suggests therefore
that late acceleration can be neglected for practical purposes.

Although the shape of the spectrum does not change significantly,
one important effect is in reducing the value of η0. In words, if
one includes late time accelerated expansion then the waves have
less time to evolve before the scale factor reaches today’s value of
a0 = 1. This means that when using the approximations given in
Eq. (9) one should use the wrong value η0 ≈ 15560 Mpc for more
accurate results in a full ΛCDM Universe. Using the correct value
of η0 ≈ 14120 Mpc gives a correspondingly younger spectrum, and
hence overall larger amplitude. This is shown in Fig. 7, where we
depict the expected limits of the analytic solution by plotting an in-
terpolated line of the local peaks.

Another potential cancellation of errors arises here. By inspect-
ing the second line in Eq. (15) we see that, with H0 held constant,
the fundamental dependence of the energy spectrum is ∝ η2

∗/η
4
0. A

cancellation of errors, which in fact gives the correct result to within
' 15%, is to use the lower η∗ from neglecting neutrinos, with the
lower η0 from a younger late-accelerated universe. This again makes
diagnosing discrepancies in the literature difficult, especially if there
is ambiguity between Ωrel and Ωγ.

5.3 Relativistic degrees of freedom

Accounting for the changing relativistic degrees of freedom involves
modifying the evolution of the scale factor (e.g., Watanabe & Ko-
matsu 2006, see):

a′ = a2H0

√
g∗ρ
g∗ρ0

(
g∗s0

g∗s

)4/3

Ωrela−4 + Ωma−3 + ΩΛ. (24)

The functions for g∗ρ and g∗s are available in pretabulated or func-
tional forms, together with much more detailed discussion of the
physics at play, in Saikawa & Shirai (2018).

This change in the energy budget can be interpreted as a departure
from the expected ρ ∝ a−4 behaviour of relativistic fluids, but only
in specific temperature ranges where there is some change in the
thermodynamics of the plasma, e.g., during phase transitions. These

small changes in the expansion rate will be imprinted on the GWB,
as illustrated in Fig. 8, where we again numerically solved the trans-
fer functions with modified expansion rates. It is noteworthy that this
change in the energy budget of relativistic particles changes the exact
relation between conformal time η, scale factor a, and temperature
T .

Fortunately, the lowest frequencies impacted by changes in the
relativistic energy budget are k ' 103 Mpc−1, which is deep into
the region of tensor modes which entered horizon during RD. This
means the limiting case of 〈ΩGW〉 = (1/2) Ωrel/12 in the absence
of any other physical effects can be safely extrapolated (see discus-
sion at the end of Sect. 4.2). In particular an extra factor which ap-
proximately accounts for the changes in the relativistic degrees of
freedom is given by (Saikawa & Shirai 2018)

〈Ωg∗
GW〉 ≈ 〈ΩGW〉

(
gρ
gρ0

) (
gs0

gs

)4/3

. (25)

Using the ΛCDM envelopes given in Table 1, noting that the ν

damped envelope requires the modification in Eq. (21), matches the
full solution to within ' 5% as measured with respect to our full nu-
merical solution. This means that the relatively simple fits in this pa-
per together with the pretabulated g∗ functions (see specifically Ap-
pendix A in Saikawa & Shirai (2018)) the entire ΛCDM GWB can
be replicated to high precision across a very large range of scales.

The g∗ effects discussed here were again neglected in previous cal-
culations of the spectral distortion window functions11. If the effects
were included they would remove a similar percentage of sensitiv-
ity as the damping effects, but over a different range of scales. This
combined with the over-extension of damping effects will lead to
almost unchanged results in Kite et al. (2020), but should be fully
accounted for in future distortion studies.

6 DISCUSSION AND CONCLUSION

The GWB offers an exciting new window to the physics of the early
Universe, and a diverse set of probes will soon begin the search for
this new signal. In this paper we give simple yet precise large-scale
functional forms for the GWB energy density, which can aid in esti-
mating the efficacy of some observations. The scales considered here
are especially helpful in comparing CMB B-modes and CMB spec-
tral distortion measurements (as required in Kite et al. 2020). More
generally, however, any comparison between early- or late-universe
probes requires understanding of the η∗ scale for MD–RD transition.

In this paper we endeavoured to firstly elucidate the physics at
play in the GWB in a pedagogical way, secondly to provide tools for
simple calculation of the large-scale energy spectrum, and finally
discuss the main features in the GWB with special attention on con-
sequences for spectral distortion calculations.

In Sect. 2 we qualitatively review the physical phenomena af-
fecting the large-scale spectrum. The most important of these is
the transition between a universe dominated by relativistic particle
species and matter. We explicitly discuss the importance of includ-
ing neutrinos, despite the common misnomer of radiation domina-
tion. A second important effect we discuss is that of neutrino damp-
ing via anisotropic stress in the medium. In Sect. 3 we give solu-
tions to the transfer function valid in RD and MD respectively [see

11 Note however that some of the models discussed in Kite et al. (2020)
implicitly included the g∗ effects in their energy spectra, and were thus in-
directly included in the distortion calculation. In future these should be in-
cluded in the window function itself for completeness and higher accuracy.
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Figure 8. A graph showing the GWB for an extremely wide range of scales, extending to the highest frequencies interferometry missions aim to measure, and
also the highest energy scales that known physics allow us to model. We show the onset of the effects of damping and the effects of changing relativistic degrees
of freedom. For comparison we show digitalised data from Saikawa & Shirai (2018), which matches well to the findings here.

Eqs. (9),(10)], and explain how these are matched at the transition
assuming this to be instantaneous [Eq. (12)]. These solutions give
expected limits for the energy density of the GWB [Eqs. (15),(16)].
In Sect. 4 we explain how the damping can be treated through an iter-
ative numerical method. This method is found to give results match-
ing those of WK06 and DR04 in the appropriate limits (see Fig. 2).
Energy spectra as seen today are shown for various limiting cases:
with and without damping, with and without DE, with and without
neutrinos (see Figs. 5,7). To replicate these spectra with ease, we
provide coefficients in Table 1 for use with Eq. (19), which is valid
to scales of k ' 103 Mpc−1. Sect. 5 finalises the analysis with discus-
sion of various GWB features: cosmological dependence of neutrino
damping, effects of late time accelerated expansion, and changes in
the number of relativistic degrees of freedom.

The effects included in this analysis were purely standard model
Physics. More generally one would apply the techniques discussed
here to verify the avenues of discovery for new Physics hidden in
the GWB. We note that the numerical method utilized in this work
can be straightforwardly generalized to non-standard thermal histo-
ries that transition from RD to MD and back one or more times, as
is the case in a variety of scenarios of beyond the standard model
physics (Acharya et al. 2008, 2019; Arbey et al. 2021). It can also be
extended to include the presence of other light, weakly interacting
particles, such as axions or axion-like particles in the early universe
(Marsh 2016). We defer the implementation of this to a future study.

Two of the features explored in this paper reveal inaccuracies in
previous calculations of tensor window functions, Wµ(k), used to cal-
culate SD amplitudes arising from primordial tensor power spectra
(e.g., Chluba et al. 2015). Previously damping has been included,
but extending to arbitrarily high k. The damping ceases to affect
the spectrum beyond k ' 105 Mpc−1 (see Fig. 6). However, the ef-
fects of the relativistic degrees of freedom were also not included
explicitly within Wµ, and would lead to consecutive over- and under-
estimations on scales k & 103 Mpc−1. Together all these changes

add to only small percent changes, rendering the conclusions of Kite
et al. (2020) still valid. The calculation of new and more precise
window functions remains as future work, where it would be appro-
priate to include the tensor perturbations within a full Boltzmann
code, and accurately model the GW-photon interaction, and thus
fully capturing the smooth decoupling of the photons, even in the
post-recombination era.

DATA AVAILABILITY

Data in all figures available at https://doi.org/10.5281/
zenodo.5141789. A full release of the CosmoTherm code is
planned for the near future, including the GW module used here.
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Paper III: Spectro-spatial evolution of

the CMB I: discretisation of the

thermalisation Green’s function

This paper is the first in a series of three papers (see chapter 7 and chapter 8) which

together aim to correctly model the frequency domain for the photon phase space

distribution (see chapter 2) within the Boltzmann hierarchy (see chapter 3).

The first step in this new formalism is to build a basis of spectral shapes which taken

together can discretise the frequency space such that thermalisation can be appropriately

modelled. To this end we define the boosted spectral shapes formed from applying x∂x

to the y-distortion spectral shape YSZ(x), understanding that this boosting operator is an

important aspect of early Universe perturbation theory (see chapter 3).

We show that in this basis we can model both energy exchanging photon interactions

through the Kompaneets operator and the emission or absorption of photons (again see

chapter 2). The theoretical arguments are supplemented with a comparison to the full

solutions offered by binning the frequency space and running a brute force calculation

(Chluba, 2013, 2015), which shows accurate results. Importantly this means replicating

the full solutions with 100 − 1000× less computational complexity, and also having
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physically representative and meaningful basis functions which directly map to the

anisotropic calculation explored in the following two papers.
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Abstract. Spectral distortions of the cosmic microwave background (CMB) have been recognized
as an important future probe of the early Universe. Existing theoretical studies primarily focused
on describing the evolution and creation of average distortions, ignoring spatial perturbations in the
plasma. One of the main reasons for this choice is that a treatment of the spectro-spatial evolution
of the photon field deep into the primordial Universe requires solving a radiative transfer problem
for the distortion signals, which in full detail is computationally challenging. Here we provide the
first crucial step towards tackling this problem by formulating a new spectral discretisation of the
underlying average thermalisation Green’s function. Our approach allows us to convert the high-
dimensional partial differential equation system (≃ 103 − 104 equations) into and set of ordinary
differential equations of much lower dimension (≃ 10 equations). We demonstrate the precision of
the approach and highlight how it may be further improved in the future. We also clarify the link of
the observable spectral distortion parameters (e.g., µ and y) to the computational spectral basis that
we use in our frequency discretisation. This reveals how several basis-dependent ambiguities can be
interpreted in future CMB analysis. Even if not exact, the new Green’s function discretisation can be
used to formulate a generalised photon Boltzmann-hierarchy, which can then be solved with methods
that are familiar from theoretical studies of the CMB temperature and polarisation anisotropies. We
will carry this program out in a series of companion papers, thereby opening the path to full spectro-
spatial exploration of the CMB with future CMB imagers and spectrometers.
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1 Introduction

Spectral distortions (SDs) of the cosmic microwave background (CMB) have now been recognized
as an important future probe of early-universe and particle physics. In particular the ability of CMB
SDs to constrain the primordial power spectrum at small scales [1–4] provides important motivation
to push the observational frontier with the next generation CMB experiments [5, 6]. However, much
of the recent theoretical work [e.g., 7–11] and experimental spectrometer concept studies [12–17]
focused primarily on the science of average distortion signals. It is known however that an average
distortion signal can form anisotropies through interaction with other perturbed quantities [4]. While
average distortion physics is often concerned with earlier times and thus sourced by larger k-modes,
the anisotropies formed from this average distortion would be prevalent on similar scales to usual
CMB anisotropies [explored further in 18, 19]. From the theoretical point of view it is clear that
distortion anisotropies should be smaller and thus harder to detect, however, one of the main reasons
for preferring average distortion science is that the computations of distorted CMB anisotropies of
primordial origin are difficult and currently beyond the possibilities of existing Boltzmann codes.

To illustrate this statement we highlight that numerically solving the full thermalisation problem
for SDs created on average by energy release now takes of order ≃ 30 seconds on a standard laptop
using CosmoTherm [7, 20]. While this is already highly optimised, it will be difficult to extend
this method to SD anisotropies, where in analogy to the standard CMB temperature fluctuations
[21, 22] one would have to solve the thermalisation problem for multiple k-modes. For each k-mode,
a multipole hierarchy would furthermore be required, overall boosting the computation by a factor
≃ 103. In addition, one would have to consider how to convert the final (frequency-dependent) signal
transfer functions into CMB observables, which further increases the complexity of the problem
over the standard CMB anisotropy computation, likely yielding single computations that would take
O(105 − 106) seconds. While not necessarily prohibitively expensive with modern computational
resources, this brute force approach would be overly-complicated for exploratory calculations and
not scalable in parameter forecasts and searches for new physics.

How could one make the problem more tractable? The most common approach is to simplify
the problem by considering limiting cases. In particular, scenarios in which the evolution of distor-
tions and primordial perturbations as well as thermalisation physics can be mostly separated come to
mind. This brings us to the well-known Sunyaev-Zeldovich (SZ) effect [23, 24], which is created by
anisotropic heating effects in the late Universe, sourcing y-type distortion anisotropies that peak at
several arcminute angular scales. This signal is highly non-Gaussian and requires an understanding of
the non-linear large-scale structure evolution, but then analytically translates the statistical properties
of the dark matter distribution into the y-field [25–29]. The SZ effect is therefore an important probe
for cosmology and cluster physics [30, 31].

Another example is the sourcing of y-distortion anisotropies by the mixing of blackbodies in
the perturbed universe [1, 2]. This second order effect leads to a fluctuating y-distortion sky [32, 33]
in addition to an average distortion [4] when perturbations dissipate by free-streaming and Thomson
scattering effects. For the fluctuating part, no spectral evolution has to be considered at the late stages
(redshift z ≲ 104), just like for the SZ effect – a linear perturbation description of the problem is
furthermore possible, yielding y-parameter transfer functions that are excited by first order tempera-
ture perturbations [33, 34]. If the amplitude of the small-scale curvature perturbations is modulated
by large-scale modes this can furthermore lead to correlated µ × T and y × T fluctuations [35–42],
which can be directly constrained using CMB imagers [see 43–45, for most recent forecasts and con-
straints]. Note that at the largest angular scales, the corresponding transfer problem was simplified
by neglecting details of the distortion evolution in the perturbed Universe [35, 40, 46].
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There are, however, a number of aspect to the thermalisation problem that have not been cap-
tured by any of these calculations. As explained in [4], if an average distortion is present during
the pre-recombination era, the standard density perturbations at first order will source distortion
anisotropies. Assuming the average SD is ∆n(0)

ν in terms of the photon occupation number, the SD
anisotropies will have a spectrum that follows ∆n(1)

ν ∝ −ν∂ν∆n(0)
ν [4]. Even without any spectral evo-

lution, the standard Doppler terms and potential perturbations therefore source distortion anisotropies,
which have not been evaluated for a more general average spectrum [see 33, for a treatment of occu-
pation number temperature and y-distortion]. Assuming that the average distortion saturates the limits
imposed by COBE/FIRAS [47, 48], one can expect distortion anisotropies at the level of ≃ 10−8–10−7

of the average CMB. This can exceed the signals expected from the aforementioned non-Gaussian
signals and can also be directly constrained with existing and future CMB imaging data. In addition,
the thermalisation efficiency should vary from patch to patch in the perturbed Universe. The required
terms in the photon Boltzmann equation were already discussed in [4]; however, only recently has
the effect been estimated using a separate universe approach [49]. In particular for modes that cross
the horizon at or after the recombination process completes this effect should be noticeable in the
transfer function solutions, but has not been computed using a full Boltzmann treatment.

To fully capitalise on the potential of spectral distortion anisotropy studies, as a first step we
need to formulate a generalized photon Boltzmann equation that goes beyond the standard tempera-
ture and polarisation anisotropies. The biggest bottleneck is due to the discretisation of the spectral
evolution, which currently is done with ≃ 103–104 bins in frequency, as explained above. In this
work, we obtain a new discretisation for the average frequency evolution that reduces the compu-
tational burden by a factor of ≃ 103 (Sect. 2). This allows us to model the thermalisation from
y → µ → T with a small number (≃ 10) of new spectral parameters, that can represent the exact
calculation from CosmoTherm to high precision. In contrast to other approximations, the solution
is no longer limited to the three standard spectral shapes but allows one to capture the dominant
contributions from the residual distortion [e.g., 50]. We also explain how the computational distor-
tion parametrisation can be mapped back onto the leading residual distortion spectra, which present
the main spectral shapes that may be testable in future applications (Sect. 3). we close with a brief
discussion of the next steps and remaining limitations in Sect. 4.

This paper is the first in a series of works that study the effect of spectro-spatial evolution of the
CMB. In paper II [18], we will formulate the generalised Boltzmann equation for distortions cause
by heating processes, strongly drawing on the results of this paper. In paper III [19], we will present a
detailed discussion of the distortion transfer functions and power spectra, highlighting the importance
of various physical effects and providing Fisher forecasts. We also plan subsequent papers that discuss
how the dissipation of acoustic modes in the presence of primordial non-Gaussianty causes spectral
distortion anisotropies, and which constraints on various scenarios can be expected. Overall we hope
this will provide further motivation to study SDs in the future.

2 Approximate ODE representation of the thermalisation Green’s function

In this section, we establish a novel way of modeling the spectral evolution of the average photon field
under repeated Compton scattering and thermal photon emission processes. In terms of perturbation
theory, this is akin to focusing on the background quantities only, which leads back to the Green’s
function approach for the thermalisation problem, as will be developed here. Anisotropic distortion
evolution from heating processes will be considered in papers II and III of the series.
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2.1 Brief recap of the thermalisation Green’s function

The efficiency of photon production and Comptonisation in the primordial plasma dictate various eras
with characteristic SD shapes which are defined below. At sufficiently early times, in the temperature
or T -era (2 × 106 ≲ z), thermalisation processes are very efficient and any excess energy is rapidly
converted into a temperature shift, G(x). Here x = hν/kTz where Tz = T0(1 + z) is the background
reference temperature, which is chosen to match today’s CMB temperature T0 = 2.7255 K [51].1 The
subsequent µ-era (5 × 104 ≲ z ≲ 2 × 106) is characterised by a lack of photon production, leading
to a chemical potential distortion, M(x). Finally, the y-era (z ≲ 5 × 104) renders photon energy
redistribution inefficient, leading to a distortion, Y(x), related to the well-known SZ effect, albeit in
this case of primordial origin.

The different characteristic spectra introduced above have the forms [e.g., 10, 52]

G(x) =
x ex

(ex − 1)2 , Y(x) = G(x)
[
x

ex + 1
ex − 1

− 4
]
, M(x) = G(x)

[
1
βM
− 1

x

]
, (2.1)

with βM = 3ζ(3)/ζ(2) ≈ 2.1923. In Sect. 2.4 we will describe how these can be obtained by boosts
of the average blackbody spectrum. Central properties of these spectra are summarised by their
dimensionless photon number density N f =

∫
x2 f (x) dx and energy density E f =

∫
x3 f (x) dx. The

corresponding integrals can be carried out analytically in terms of Riemann ζ-functions. Also using
the blackbody occupation number, nbb(x) = 1/(ex − 1), we then find:

Nnbb = 2ζ(3) ≈ 2.40411, Enbb =
π4

15
≈ 6.49394 (2.2a)

NG = 6ζ(3) = 3Nnbb ≈ 7.21234, EG = EY =
4π4

15
= 4Enbb ≈ 25.9758 (2.2b)

NY = NM = 0, EM =
2π6

135ζ(3)
− 6ζ(3) ≈ Enbb

1.40066
≈ 4.63635. (2.2c)

The absence of overall photon number for y and µ type distortions is by construction (and easily
achieved by subtracting G from alternative definitions). This convention has already been com-
monplace in the literature, but will become a fundamental simplifying fact in the novel treatment
introduced below.

While the heuristic decomposition into three distinct eras introduced above conveys the correct
physics to relatively high precision, it is much more convenient to have a robust framework in which
the results can be expanded and built upon. In [53] it was shown that the thermalisation problem can
be expressed as a Green’s function problem in the limit of small energy injection:

s = α f

∫ ∞

0
Js(z)

dQ
dz

dz, (2.3)

where s ∈ {Θ ≡ ∆T/Tz, µ, y} gives the signal amplitude of the corresponding SD ( f ∈ {G,Y,M}), Js

is a dimensionless energy branching ratio, and α f ≡ Enbb/E f ∈ {1/4, 1/4, 1.40066} is an energetic
conversion factor from a blackbody spectrum to the SD amplitude [easily read off from Eq. (2.2)].
The energy release is determined by the comoving relative energy injection rate, dQ

dz =
1
ργ

dQc
dz , where

dQc/dz directly follows from the photon collision term.
For clarity we note that the three era picture of the early Universe would correspond to simple

top-hat functions for Js [i.e., see ‘Method A’ in 54]. Other approximations for the energy branch-
ing ratios of varying accuracy exist [54], including the addition of intermediate spectral shapes

1This avoids having to deal with redshifting terms.
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known as residual distortions [50] and perturbative SD approximations for moderate scattering y-
parameter [55]. A byproduct of this work is the ability to generate accurate Green’s functions in a
generalized spectral basis to a precision comparable with full numerical treatments (see Sect. 2.2).

While the spectral shapes in Eq. (2.1) are physically motivated – each characteristic of a limiting
case for each phase in the early Universe – they are insufficient to model the general evolution of the
spectrum caused by heating processes. In the following sections we introduce a method for extending
this set of spectral functions and explain how this new spectral basis eventually allows for full spectro-
spatial solutions of primordial perturbations in the photon field.

2.2 Basic idea and lowest order solution of the thermalisation problem

As previously mentioned, in the µ-era all injected energy rapidly converts into the µ-distortion [1, 56–
58]. The net µ-parameter is given by the evolution equation ∂µ∂t ≈ γρ Q̇, where γρ ≡ αM ≈ 1.4007 and
Q̇ = dQ/dt. For a given Q̇, this equation can be solved with initial µ = 0.

Physically, the energy injection first leads to an increase in the distortion y-parameter by ẏ ≈ 1
4 Q̇,

which then quickly converts into µ. If we insert this intermediate step, we may instead write

∂y
∂t
≈ 1

4
Q̇ − 4τ̇θz y and

∂µ

∂t
≈ γρ 4τ̇θz (4y) ≈ 22.411 τ̇θz y. (2.4)

Here, 4y is the relative momentary energy density within the y-distortion part, θz = kBTz/mec2 is
the dimensionless temperature,2 and τ̇ = dτ/ dt = Ne σTc denotes the differential Thomson optical
depth, all with the common choice of constants. The average energy exchange rate is ⟨∆ν/ν⟩ ≃ 4θz
per scattering [59, 60], which determines how quickly energy flows from y to µ. This identifies
τ̇θz as a fundamental timescale in the thermalisation problem which contrasts with the timescale of
Thomson scattering τ̇ – a fact which will become important for the generalised Boltzmann hierarchy
(paper II). As we see in Fig. 1, the solution of this simple system roughly captures the transition
between the µ and y-eras, yielding the y-distortion visibility Jy ≈ e−4 yz , where we introduce the
scattering y-parameter yz =

∫
τ̇θz dt, and, from energy conservation, the µ-visibility Jµ ≈ 1 − Jy.

Following [61], the reduction of the chemical potential by the Bremsstrahlung (BR) and dou-
ble Compton (DC) processes is approximately given by µ̇|em/abs ≈ −γN xc τ̇θz µ with γN ≈ 0.7769.
Here, xc is the critical frequency between DC/BR emission and Compton scattering, with approxi-
mations as a function of redshift given in Sect. 3.3.1 of [11]. Every absorption event then removes
∆ρ̇γ/ργ ≈ α−1

M µ̇|em/abs of energy from the µ-distortion, which is immediately added back to the av-
erage temperature, causing a relative temperature shift Θ = ∆T/Tz. Assuming energy conservation,
we therefore have the corresponding temperature source term Θ̇|em/abs = − 1

4 γρ
µ̇|em/abs ≈ γN

4 γρ
xc τ̇θz µ.

Overall this means one has to solve the extended system

∂Θ

∂t
≈ γT xc τ̇θz µ,

∂y
∂t
≈ 1

4
Q̇ − 4τ̇θz y and

∂µ

∂t
≈ γρ 4τ̇θz (4y) − γN xc τ̇θz µ, (2.5)

with γT =
γN
4 γρ
≈ 0.1387, a task that can be easily carried out numerically. Assuming that the photon

production process only becomes important when y is already negligible, it is easy to show that
JT ≈ 1 − Jbb with distortion visibility Jbb ≈ e−(z/zµ)2.5

and zµ = 1.98 × 106 [57, 58]. We then have

Jy ≈ e−4yz , Jµ ≈ (1 − Jy)Jbb, and JT ≈ 1 − Jbb. (2.6)

As can be seen from Fig. 1, these simple approximations already capture the main dependence of the
distortion visibility on the injection redshift. The question of the next section is now whether we can
improve on this description to also include terms relating to the residual distortion.

2We will use dimensionless temperatures, θX = kTX/mec2, frequently, with TX ∈ {Te,Tz,Tγ}.

– 5 –



104 105 106 107

zinjection

10−3

10−2

10−1

100

J s
1

1+( 1+z
6×104 )2.581− e−[ 1+z

5.8×104 ]1.88

y µ Θ

Figure 1: Fractions of energy in y, µ and Θ as seen today after injecting a normalised narrow Gaussian of
energy at redshift zinjection. This illustrates that the Green’s function, as determined by Eq. (2.5), already broadly
reproduces the least square fit results given in [53] based on the frequency-binned Green’s function. The
transition redshift, zyµ ≈ 5 × 104, to the µ-regime is obtained in both approximations. However, in comparison
to the least square fits, Jy decays more rapidly towards high redshift.

2.3 Preliminaries

Neglecting photon production and heating terms, the relevant evolution equation for the distortion,
∆n = n − nbb, from the blackbody nbb = 1/(ex − 1) in the expanding Universe can be cast into the
compact form [7, 53]

∂∆n(x)
∂yz

≈ Θe Y(x) + K̂x ∆n(x) = Θe Y(x) + D̂x ∆n(x) + D̂∗x A(x)∆n(x), (2.7)

whereΘe =
∆Te
Tz

is the relative electron temperature difference and K̂x = D̂x+D̂∗xA is the Kompaneets
operator, constructed from the diffusion and recoil operators, D̂x = x−2∂xx4∂x and D̂∗x = x−2∂xx4,
with A = 1 + 2nbb = (ex + 1)/(ex − 1). The time variable is the scattering y-parameter as defined
above. The problem has been linearised in the distortion, an approximation that will be good unless
very large distortions are encountered [11, 20].3

For the electron temperature correction, ∆Te = Te − Tz, we assume that Compton equilibrium
is reached at all times.4 In the absence of external heating, this means that

∫
x3∂yz∆n dx ≈ 0, which

implies Θe ≈ Θeq with [e.g., see 63]

Θeq ≈ −
∫

x3K̂x ∆n dx
∫

x3Y(x) dx
=

∫
(x4∂x + x4A)∆n dx

4 Enbb

≡
∫

x3wy ∆n dx

4 Enbb

(2.8)

3Note that the equations have not been linearized with respect to the reference blackbody, hence the presence of A(x).
This leads to blackbody-induced stimulated scattering [62], which is highly important for reaching equilibrium [e.g., 61].

4For the average evolution, this limit is valid on average until very late times corresponding to redshift z ≲ 200.
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and the y-weight factor wy = Y/G = xA(x)−4 = x ex+1
ex−1 −4. Since the integrals in Eq. (2.8) will appear

multiple times, for convenience we introduce

η f =

∫
x3wy(x) f (x) dx

4 Enbb

and ϵ f =
1
α f
=

∫
x3 f (x) dx

Enbb

. (2.9)

The exact integrals that are encountered in our computations can all be given in terms of the Riemann
ζ-functions. For the basic spectral shapes we have ηG = 1, ηY ≈ 5.3996 and ηM ≈ 0.4561, as well as
ϵG = 4, ϵY = 4 and ϵM = 1/1.4007. For numerical applications we pre-compute all these integrals.

2.4 Spectral basis and approximate representation of the Kompaneets operator

The goal is to find an efficient spectral representation that captures the changes of the spectrum under
repeated Compton scattering as described by Eq. (2.7). The simplest decomposition considers the
three main spectral types appearing in the thermalisation problem introduced in Eq. (2.1). To build
intuition, we discuss this case in some detail, but eventually find it is insufficient. The required
refinements are presented right after.

It is instructive to understand the links of these basic spectra to that of the background blackbody
spectrum. Both G and Y are generated by applications of the boost generator5, Ôx = −x∂x:

G(x) = Ôxnbb(x), Y(x) = D̂xnbb(x) = Ôx(Ôx − 3)nbb(x). (2.10)

Making the Ansatz ∆n = ΘG(x) + y Y(x) + µM(x) and inserting back into Eq. (2.7) we obtain

Θ′G(x) + y′Y(x) + µ′M(x) = Θe Y(y) + Θ K̂x G(x) + y K̂x Y(x) + µ K̂x M(x), (2.11)

where the prime indicates the derivative with respect to yz. The stationary solution of the Kompaneets
equation, K̂x G(x)/x = 0, defines the null-space. Hence, the number-conserving definition of the µ-
distortion, which we are using here, will transform like the temperature shift. In fact both functions

KG ≡ K̂xG(x) = −Y(x) and KM ≡ K̂xM(x) = −Y(x)/βM ≡ −ηMY(x) (2.12)

nicely map back onto Y(x). However, the function KY (x) = K̂xY(x) has contributions that are not
spanned by G(x),Y(x) and M(x). We can nevertheless enforce a representation of KY (x) in terms of
G(x),Y(x) and M(x). Here, we are mostly interested in intensity functions. Knowing that KY (x) does
not carry photon number,6 we understand that only Y(x) and M(x) can contribute in our current basis.
Since with our finite basis, the representation will not be exact, we can demand that the contribution
of M to follow from energy conservation to improve matters, as discussed below.

This operator-function view of the mathematics allows us to make a choice of an inner product
on the functions. We can choose to define the matrix elements of the operator X̂ between the two
function F(x) and J(x) as

⟨F|X̂|J⟩ ≡ ⟨F|X̂J⟩ =
∫

x3F(x) [x3X̂J(x)] dx. (2.13)

Although by no means rigorous, this inner product-like operation helps us to define the expansion
coefficients heuristically. It is equivalent to taking the integrals over the two intensities x3F and
x3X̂J, and will be helpful later in ensuring energy conservation of the entire system.

5This name is related to the fact that Lorentz transformations of the average blackbody spectrum involve this operator.
6The integral

∫
x2KY (x) dx =

∫
x2K̂xY(x) dx vanishes since the Kompaneets operator conserves photon number.
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To decompose KY = K̂xY in the most simple approach we remap back to the basis using the
Ansatz |K̂xY⟩ ≈ a0|Y⟩ + a1|M⟩ and solve the system

⟨Y |K̂x|Y⟩ ≡ ⟨Y |KY⟩ ≈ ⟨Y |Y⟩ a0 + ⟨Y |M⟩ a1 (2.14a)

⟨M|K̂x|Y⟩ ≡ ⟨M|KY⟩ ≈ ⟨M|Y⟩ a0 + ⟨M|M⟩ a1. (2.14b)

This system is equivalent to the matrix equation b = MR a, where bi = ⟨Ri|KY⟩ for each function
of the representation basis, i.e., R0 = Y and R1 = M in the considered case. Similarly, we have the
basis mixing matrix MR,i j = ⟨Ri|R j⟩ and the corresponding representation coefficients a0 and a1. The
solution is then a = MR

−1 b, such that KY ≈ R · a with R = (Y(x),M(x))T and a = (a0, a1)T . Carrying
out the projection integrals and inverting the system we obtain KY ≈ −8.8169 Y(x) + 40.409 M(x).
However, since we used an incomplete basis, this approximation does not satisfy energy conservation.
Carrying out the energy integrals, we find EKY =

∫
x3KY (x) dx ≈ −21.598 by direct integration of

the exact function and EKY ≈ −8.8169 × 4 + 40.409/1.4007 = −6.4178 from the approximation.
Since energy and photon number conservation are the most fundamental aspects of the thermalisation
problem, this is not a solution we can work with.

To fix the problem, we replace the last equation in the system, Eq. (2.14), with the energy
conservation equation. This yields the augmented system

⟨Y |KY⟩ ≈ ⟨Y |Y⟩ a0 + ⟨Y |M⟩ a1 (2.15a)

EKY = EY a0 + EM a1, (2.15b)

which can still be thought of as b = MR a, but with modified last rows in b and MR according
to the energy conservation equation. By inverting the new system, this then yields the improved
representation KY (x) ≈ −3.4593 Y(x) − 10.871 M(x). Carrying out the energy integrals, we find
EKY ≈ −3.4593 × 4 − 10.871/1.4007 = −21.598, in agreement with the direct integral result.

We have now reformulated the problem once we also determine Θe ≈ Θeq. In vector notation,
our Ansatz reads ∆n = B · y, where now we include G(x) in the basis, i.e., B = (G(x),Y(x),M(x))T

and y = (Θ, y, µ)T . By inserting this Ansatz for ∆n into Eq. (2.8) for the Compton equilibrium
temperature perturbation, and carrying out the energy exchange integrals one finds

Θeq ≈


∫
x3wy(x) B dx

4Enbb

 · y = ηG Θ + ηY y + ηM µ ≈ Θ + 5.3996y + 0.4561µ. (2.16)

Inserting everything back into Eq. (2.11) and collecting terms, with Eq. (2.12) we then obtain

Θ′G(x) + y′Y(x) + µ′M(x) = ΘeY(x) − ΘY(x) + y KY − µ ηMY(x)

≈ 1.9403 y Y(x) − 10.871 y M(x). (2.17)

We note that the terms in the Compton equilibrium temperature ∝ Θ and µ cancel identically due to
the identities in Eq. (2.12). We furthermore comment that Eq. (2.17) can be also obtained by directly
carrying out the projections onto the basis starting from Eq. (2.7). We show this more formally in
Appendix B for the extended basis that is discussed in the next section.

Since the system in Eq. (2.17) has to be fulfilled for any x and because the spectral basis is non-
degenerate, by comparing coefficients, we obtain the ordinary differential equation (ODE) system

Θ′ ≈ 0, y′ ≈ 1.9403 y, µ′ ≈ −1.9403 (ϵY/ϵM) y. (2.18)

with ϵY/ϵM ≈ 5.6026. While these equations correctly represent the conservation of photon number
[only G(x) carries photon number but Θ does not change] and also energy (the sum of the energies
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in µ and y does not change), they do not yield the correct overall evolution: For the y parameter,
the solution is y(yz) ≃ y(0) e1.9403yz , while we saw in Sect. (2.2) that it should be more close to
y(yz) ≈ y(0) e−4yz , which due to the sign ensures that energy correctly flows from y → µ. What has
gone wrong? The approximate representation of KY (x) ≈ −3.4593 Y(x)− 10.871 M(x) is insufficient,
as could have been guessed. This can be appreciated in Fig. 2, where we compare the exact solution
of KY (x) with various approximations. In particular the high-frequency part of KY (x) is not well-
captured by this simplest approximation, a problem that we fix next.

2.5 Extension of the basis

To make progress, we need to extend the spectral basis, B. One of the natural selections is to use the
boost operator Ôx to find the extensions.7 In principle other choices that could potentially even sim-
plify the calculation either from the theoretical or the computational point of view can be imagined.
Our choice is motivated by the fact that Ôx is one of the fundamental operators generating the Kom-
paneets operator, K̂x. In fact, at x ≪ 1, the Kompaneets operator reduces to K̂ low

x = 6 + Ôx(Ôx − 5),
which commutes with Ôx (i.e., [K̂ low

x , Ôx] = 0) indicating a common basis. The boost operator also
commutes with the diffusion operator, [D̂x, Ôx] = 0, which further supports this choice also in more
general cases (see Appendix A). Finally, it appears in log-moment expansions of distortion spectra
related to heating processes, which were shown to have useful properties in terms of gauge-choices
[32, 34, 64].8 For G(x), we have ÔxG(x) = Ô2

xnbb(x) = 3G(x) + Y(x), which directly maps back onto
the old basis. For the boosts of M(x) and Y(x), new spectral shapes are generated. However, since
KM = K̂xM(x) = −ηMY(x) already maps back onto our basis, for now we only need to think about
extensions based on the functions

Yk(x) = (1/4)kÔk
xY(x). (2.19)

These functions can be readily computed using Mathematica or through the combinatoric sums
given in Appendix A, and are illustrated for a few cases in Fig. 3. The Yk are similar to those
functions appearing in asymptotic expansions of the SZ effect [65–68] and can furthermore be found
in perturbative expansions of the photon transfer problem [42, 55, 69, 70]. Note that Y0(x) ≡ Y(x).
We also added the factor of (1/4)k to make each of the Yk more comparable in amplitude. This
choice also ensures ϵYk ≡ 4. These functions all conserve photon number (

∫
x2Yk(x) dx = 0) and

hence provide a natural extension of the simple Y and M basis. As we will see in paper II, these also
naturally appear once Doppler-driving in the perturbed Universe is included.

2.6 Generalization of the ODE system

In this section, we outline the basic approach for obtaining a generalized ODE system in the extended
basis. By deciding about how many Yk we include in the Ansatz for ∆n, we have to determine the
representations for each of the9 KYk = K̂x Yk within this basis. To simplify the notation, let us again
write the extended representation basis as a vector R(x) = (Y(x),Y1(x), . . . ,YN(x),M(x))T . We will
denote R0 = Y0 ≡ Y and RN+1 = M, with all the other Rk = Yk in between. We then make the
Ansatz KYk ≈ R · aYk with aYk denoting the coefficients of each term in the representation basis,
a = (a0, a1, . . . , aN , aN+1)T . As above, we now have to compute the projection of KYk onto each of

7We stick to the terminology of boost operator because it is the generator of infinitesimal Lorentz boosts. In fact, the
Kompaneets equation merely follows from Lorentz boosts up to second order in the electrons velocity.

8Our considerations hold when working with the background spectrum. The picture will be more complicated in the
presence of inhomogeneities (e.g., see paper II).

9These arise from applying K̂x to the Ansatz for ∆n.
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Figure 2: Distortion shapes x3KY (x) and x3KY3 (x) for various approximations. Here the order refers to the
largest term in Yk that is included [i.e., 0. order only Y(x) and M(x); 5. order includes M(x) and all Yk(x) up to
Y5(x)]. The representations become increasingly accurate the more terms we add to the basis. Typically only
poor representation is obtained upon acting on the largest function in the basis – a problem which is mitigated
by the fact that less energy occupy these higher modes in numerical solutions.

– 10 –



10−1 100 101

x

−20

−15

−10

−5

0

5

10

15

x
3
Y
n

Y1

Y2

Y3

Y4

Y5
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the Ri. To ensure energy conservation, we will again determine µ using the energy integrals.10 This
then yields the following system of equations that determines the representation vector aYk :

⟨Y |KYk⟩ ≈ ⟨Y |Y⟩ aYk ,0 + ⟨Y |Y1⟩ aYk ,1 + . . . + ⟨Y |YN−1⟩ aYk ,N−1 + ⟨Y |YN⟩ aYk ,N + ⟨Y |M⟩ aYk ,N+1

⟨Y1|KYk⟩ ≈ ⟨Y1|Y⟩ aYk ,0 + ⟨Y1|Y1⟩ aYk ,1 + . . . + ⟨Y1|YN−1⟩ aYk ,N−1 + ⟨Y1|YN⟩ aYk ,N + ⟨Y1|M⟩ aYk ,N+1
... ≈ ... (2.20)

⟨YN |KYk⟩ ≈ ⟨YN |Y⟩ aYk ,0 + ⟨YN |Y1⟩ aYk ,1 + . . . + ⟨YN |YN−1⟩ aYk ,N−1 + ⟨YN |YN⟩ aYk ,N + ⟨YN |M⟩ aYk ,N+1

EYk ≈ EY aYk ,0 + EY1 aYk ,1 + . . . + EYN−1 aYk ,N−1 + EYN aYk ,N + EM aYk ,N+1,

The last equation is the energy conservation equation to determine the coefficient of M(x). We thus
have a matrix equation of the form bKYk

= MR aKYk
, which we can solve for aKYk

given a finite
representation basis. We again highlight the fact that the system was obtained using the energy
conservation equation. The matrix MR is therefore again nearly equivalent to the full basis mixing
matrix MR,i j = ⟨Ri|R j⟩. However, the last equation is replaced by the energy conservation equation,
even if not explicitly distinguished in the notation.

As an example, if we choose R(x) = (Y(x),Y1(x),M(x))T , we only have to determine the repre-
sentations for K̂xY and K̂xY1. Solving the corresponding systems of equations then yields

KY (x) ≈ 2.4717 Y(x) − 8.4907 Y1(x) + 3.4698 M(x) ≡ R · aY (2.21a)

KY1(x) ≈ 28.134 Y(x) − 26.125 Y1(x) − 55.089 M(x) ≡ R · aY1 . (2.21b)

Looking at Fig. 2, we see that now the match with the exact result for KY (x) is already very good.
We note that adding more terms to the basis evidently changes all the coefficients of the solution, and
also improves the result for the correspondence (see Fig. 2).

10We could really replace any one equation using energy conservation.
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Inserting Eq. (2.21) back into Eq. (2.7) and using ηY1 ≈ 7.8246 in Eq. (2.8), after collecting
coefficients we then find

Θ′G(x) + y′Y(x) + y′1Y1(x) + µ′M(x) = Θe Y(x) − ΘY(x) + y KY (x) + y1 KY1(x) − µ ηMY(x) (2.22)

≈ (7.8714y + 35.958y1) Y(x) − (8.4907y + 26.125y1) Y1(x) + (3.4698y − 55.089y1) M(x).

In Appendix B we give an alternative derivation that avoids the intermediate step of first representing
the KYk in terms of the basis. However, mathematically this is equivalent. By comparing the coeffi-
cients, one can again obtain a system for the evolution of Θ, y, y1 and µ. The solution of this system
now has the correct main properties. It conserves photon number and energy and leads to a solution11

y(yz) ≃ y(0) e−3.8 yz . Indeed this is very close to the correct Green’s function solution that neglects
any residual distortion contributions. However, the precision can be improved by further extending
the spectral basis (see Fig. 2).

Below we will give the solutions for systems that include up to Y15(x) in the basis. This already
provides a very accurate approximation for the exact themalisation Green’s function. The related
system can be readily generated using Mathematica following the procedure above. Schematically,
we can then express the effect of the Kompaneets operator on the distortion in the form

∆n′ = Θe Y + K̂x ∆n ←→ y′ ≈ MK y (2.23)

with y = (Θ, y, y1, . . . , yN , µ)T and where MK is the Kompaneets mixing matrix that directly depends
on the chosen spectral basis.12 By construction, this matrix merely rotates y → yk → µ under
energy conservation and thus has a zero first row and column. Even order systems are omitted, as
they are found to be numerically unstable.13 We suspect this is due to the second order nature of
the Kompaneets operator, but have no additional prove for this. The solution at any moment is then
∆n(x, yz) ≈ B(x) · y(yz) with the full spectral basis B(x) = (G(x),Y(x),Y1(x), . . . ,YN(x),M(x))T .

2.7 Adding the effect of photon production and heating

To add the effect of photon production by double Compton (DC) and Bremsstrahlung (BR), we make
use of the fact that once these become important, the yk will be extremely short-lived (i.e., decay
quickly, yk → 0). In this case, we can neglect the role of the Yk’s for photon production and the
analytic results for the µ-distortion evolution can be used [1, 61]. The net photon emission and
absorption term has the explicit form [7, 58, 61]

1
τ̇

∂n0

∂t

∣∣∣∣∣∣
em/abs

=
Λ(x, θe, θz) e−x θz/θe

x3

[
1 − n0

(
ex θz/θe − 1

)]
≈ −Λ(x, θz) (1 − e−x)

x3 ∆n0 +
Λ(x, θz)

x2 nbbΘe.

In the last step, we again linearised the problem with respect to the distortion [and Θe ≃ O(∆n)]. The
DC and BR emissivities can be computed accurately using DCpack [71] and BRpack [72].

As already explained in Sect. 2.2, we can think of the effect that photon emission and absorption
has on the distortion as a redistribution between µ and Θ. Overall this means

∂n0

∂yz

∣∣∣∣∣∣
em/abs

←→ γT xc µG(x) − γN xc µM(x), (2.24)

11This can be seen when assuming that the coefficient of Y1 evolves under quasi-stationary conditions. This implies the
condition 8.4907y + 26.125y1 ≈ 0 resulting in yqs

1 ≈ −0.32550 y, which yields the desired result similar to Eq. (2.4).
12We will provide the system for up to y15 under www.Chluba.de/CosmoTherm.
13One can change the weight function in the definition of the scalar-product, Eq. (2.13), to remedy this issue, but we did

not explore this option any further.
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as in Eq. (2.5). This greatly simplifies the thermalisation problem, essentially converting the collision
term into a source-sink term with built-in energy conservation.

To also add the effect of external heating, we assume that the distortions are generated through
a y-distortion source, y′ = (1/4)Q′, where Q′ = dQ/ dyz = (τ̇θz)−1 dQ/ dt in this context. For energy
release scenarios, this will be a very good approximation in the pre-recombination era, since heat
that is transferred to the baryons quickly reaches the photons through Compton scattering [e.g., see
7, 59]. The factor of αY = 1/4 converts the change of the relative energy density into the y-parameter.
Together we then have

∆n′ = Θe Y + K̂x ∆n + ∆n′|em/abs + ∆n′|h ←→ y′ ≈ MK y + D +
Q′

4
,

D = (γT xc µ, 0, 0, . . . , 0,−γN xc µ)T , Q′ =
(
0,Q′, 0, . . . , 0, 0)T . (2.25)

This equation now allows us to account for the effects of external heating and emission/absorption
with the source vectors, Q′ and D, respectively. Refinements to the treatment of photon emission
and absorption that include the effects of Yk(x) as well as other corrections to the leading order terms
can in principle be added following the method of [61]; however, for now we stop with this simple
description, emphasizing again that most of the thermalisation of distortions occurs deep into the
µ-era, when these effects are expected to be small.

It is worth noting that by formulating the heating as a vector in the extended spectral basis this
assumption can be generalised and other spectral shapes can in principle be sourced at late times [see
73, for photon injection distortion evolution]. This will not be explored in this paper – we adopt the
standard thermalisation picture and study excitations of the y-distortion amplitude through energy
injection as our benchmark in the following sections.

2.8 Solutions for the Green’s function after single injection

The thermalisation Green’s function has been successfully used to represent the spectral distortion
shapes from continuous heating [50, 53, 74]. With the above description we can reproduce the Green’s
function to high precision, as we show now. For this, we model the scenario of single injection in
Eq. (2.25) and introduce a narrow Gaussian heating rate at zinjection (or alternatively set an effective
initial condition for y at that redshift). Allowing this to evolve under successive scatterings we study
the state of the system y(zf) at the final redshift zf , and extract the corresponding spectral shape.

The result of this calculation for various basis sizes is shown in Fig. 4. Also shown is a compar-
ison to the exact result of CosmoTherm, which performs an analogous calculation by directly binning
the frequency space. The latter approach can be thought of as applying a "top hat" basis in x to the
same formalism discussed in Sect. 2, and thus is more precise at the cost of tracking thousands of
equations simultaneously. Despite the relative simplicity of the treatment derived here it is possible
to capture the transition from temperature shift to y-distortion through the intermediate µ and residual
eras accurately. The residual era in particular is captured by the expanded basis Yk, with Nmax = 9
already yielding very accurate results.

It is noteworthy that with the inclusion of the new spectral shapes Yk the definitions of y and
µ have a degree of degeneracy. This is most notable in the recession of the µ-era with increasing
Nmax and the existence of Jy > 1 in the residual era (energy conservation is ensured by cancellation
with the negative Jyk ). This apparent arbitrary labelling of energy with different coefficients is not
problematic, since the real physical observable that must converge is the spectrum, which indeed
remains stable as seen in the right panels of Fig. 4. This physical observable will itself be projected
onto some beneficial spectral shapes, as discussed in Sect. 3, which depend on the characteristics of
observing instrument [10, 50] or other theoretical choices.
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Figure 4: A figure showing the iterative improvements of augmenting the Yk basis. The rows show the
branching ratios across redshifts (left) and final spectrum at various energy injection redshifts (right) for
Nmax = 1, 5, 9. Gray lines in the branching ratio plots correspond to the Yk>0 coefficients, and dotted lines are
negative values. Dotted black lines in the spectrum plots show the full results performed with CosmoTherm.

While the spectra in Fig. 4 show each snapshot being captured accurately, we note that the
precise timings of the transition from one phase to the next appear slightly delayed relative to the full
CosmoTherm calculation.14 In Fig. 5 we show two time slices in the transition phases T → µ and
µ → y, again with their respective CosmoTherm comparison and an optimised least squares fit to the
full solution using the approximate basis of spectral functions. At z = 5 × 105 (left panel) we see
the approximate solution having part of a temperature shift while the full solution is almost a pure µ
distortion. Seeing that the optimised fit reproduces the CosmoTherm solution well, we conclude that
the approximate treatment slightly overestimates the thermalisation timescale. As explained in [61],
several additional aspects that are not captured by the simple treatment here do matter at the level of
a few percent. By more carefully treating the DC and BR thermalisation rate, which will lead to a
refined scaling of xc with time, one can probably improve the treatment; however, for our purpose the
current approximation shall suffice, and refinements are left to future work.

In the right panel of Fig. 5, we also see a snapshot at z = 105. It is apparent that the approximate
basis approaches the full solution, but does not capture it fully. For comparison, an optimised fit
(which allows one to smooth over any time-dependent mismatch) is shown but also fails to exactly
reproduce the curve in this case. We can therefore conclude the basis only has enough freedom to

14Videos illustrating the solution will become available at www.Chluba.de/CosmoTherm.
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Also shown is a least-squares fit (red dotted line) using the Y11 basis.

capture some — but not all — of the nuances of the residual era. Departures from the solution are
visible at low and intermediate frequencies (i.e., x ≲ 2) owing to the nature of the chosen basis (see
Fig. 3) and our focus on energy conservation, which is driven by the high-frequency tail. Additional
work on the optimal basis will likely remedy these limitations; however, we highlight that our treat-
ment already greatly improves the modeling of the residual era, which is barely captured using a
simple y + µ approximation. Hence, we again shall be content with the performance of the ODE
treatment and focus on applications to anisotropic distortions as the main next step (paper II).

3 Defining spectral distortion observables

In Fig. 4 we saw that the amplitude of the y distortion changes depending on the other amplitudes
within the expanded basis while leaving the actual photon spectrum unchanged. In this section, we
will formalize and further discuss this phenomenon in the context of changing basis. Heuristically,
we can see the space of valid spectra as an abstract vector space, and as such choose a basis for this
space. Provided the spectrum is a continuous function we expect a formal basis to be infinite, but
computationally a finite basis can suffice, if chosen well. The bottom line statement we emphasise
and highlight here then is that the underlying physics will be (and must be) independent of the choice
of basis, where the physics here is captured only by the full photon spectrum and not any individual
branching ratio or transfer function.

This gives the freedom to choose a basis which suits a given purpose most appropriately. In
this light we will introduce two new bases, which are useful for packaging and exporting the results
of the Yk basis or computation basis. At a given spectral sensitivity, only a finite number of spectral
parameters will be directly measurable, and it is moot to attempt determining the amplitudes (or
power and cross-power spectra) for all the spectral parameters inherent to the computation basis.
The other two bases introduced here are guided by the principle to compress the information in the
spectrum and prepare for easily extracting and interpreting the physics in observations.
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Although from our discussion it is clear that a better computation basis which captures all the
spectral complexity at low frequencies may exist, we are now interested in finding alternative rep-
resentations for the space spanned by our Yk basis. As explained in [50], for a given experimental
setting (e.g., frequency coverage and channel sensitivities) one can ask which spectral shapes are best
constrained aside from the standard distortions. These spectral shapes can be determined using a
principal component analysis. Mathematically, this can be thought of as an expansion of the spec-
trum into µ, y and Θ plus some additional spectral parameters, ri, to describe the residual distortion
shapes.15 The residual distortion shapes are the principal spectral components spanning the residual
distortion space and can be ranked by their observability, defining the observation basis. Denoting
the residual distortion eigenspectra as S(k), we find

∆Ii =

∫
Bi(ν)∆Iν dν = Θ∆IG

i + y∆IY
i + µ∆IM

i + ∆Ri, and ∆Ri =
∑

k=1

rk S (k)
i (3.1)

where ∆Iν = 2hν3/c2∆nν is the intensity corresponding to ∆nν, which is integrated over the bandpass,
Bi(ν). In our computation we shall use a simple top-hat bandpass centered around frequency νi with
a width ∆νi. Similarly, ∆IG

i , ∆IY
i and ∆Iµi are the band-averaged versions of the corresponding G, Y

and M intensities. The (band-averaged) residual distortion, ∆Ri, space is orthogonal to M, Y and G,
for the selected instrumental configuration. Since the binned spectral shapes can all be thought of as
simple vectors, we can directly obtain the µ, y, Θ and rk values for any distortion signal as



Θo

yo

µo



=



∆IG · ∆IG ∆IG · ∆IY ∆IG · ∆IM

∆IY · ∆IG ∆IY · ∆IY ∆IY · ∆IM

∆IM · ∆IG ∆IM · ∆IY ∆IM · ∆IM



−1 

∆IG · ∆I

∆IY · ∆I

∆IM · ∆I



and rk =
S(k) · ∆I
S(k) · S(k) . (3.2)

This assumes that the covariance of the spectral bands is diagonal, but extensions can be readily
given. The residual distortion parameters, by construction, will only receive contributions from the
yi of our computation basis, while Θo, µo and yo will be a superposition of the Θ, y and µ values
in the previous basis with extra contributions from the yi. The relevant rotation of the basis can be
precomputed (see Sect. 3.1). Given the observation basis S(k) we can therefore usually compress the
information into fewer observational parameters, as we show below.

In Fig. 6, we show the first few S(k) used in our computations below. The basis was created
assuming constant channel sensitivity and channel widths ∆ν = 1 GHz in the range νmin = 30 GHz
to νmax = 1000 GHz, mainly for illustration. We normalized all of these to carry ∆ργ/ργ = 4 of
energy. This choice makes them comparable in amplitude to the standard distortion shapes and the
level of the corresponding residual distortion parameter gives away its relative importance. Creating
the optimal distortion eigenmodes for more realistic experimental configurations is straightforward
following the procedure outlined in [10, 50]. We can see that the distortion eigenmodes exhibit an
increasing number of nodes, reminiscent of other orthogonal functions sets. In applications, this will
typically lead to the corresponding residual distortion parameter, ri, decreasing in amplitude.

In Fig. 7 we illustrate how this mapping to the observation basis modifies the appearance of
the branching ratios (left panels) and photon spectra (right panels). We immediately see that the y
distortion does not take on a relative energy contribution > 1 as it did in the computation basis (Fig. 4).
Further to this point, the total amplitude of y and µ are more stable for increasing yn>0, revealing

15In [50] the residual distortion amplitudes are referred to as µi, but we shall use a new nomenclature henceforth.
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Figure 6: First three residual distortion eigenmodes obtained for ∆ν = 1 GHz in the range νmin = 30 GHz to
νmax = 1000 GHz. These signals are orthogonal to the standard G, Y and M spectra and also among each other.
They have all been normalized to carry an energy of ∆ργ/ργ = 4.

that the modelling of spectral evolution is improving with basis size, but without the usual incurred
coefficient ambiguity as a trade-off. The spectra cover a smaller frequency range, as discussed above,
but otherwise show no significant departure from the result of the computational basis. Recall the
statement that the bottom line physical result – the spectrum – is independent of the chosen basis.

3.1 Efficient change of the basis

To accelerate the calculation we can precompute all ‘rotations’ from one basis to the other given the
distortion vectors (which depend on the experimental setting). Algorithmically, we have to bin all the
involved spectra from the various bases and then compute the relevant mixing matrices and subse-
quently invert the problem. This then defines the mixing matrix L, which maps y = (Θ, y, y1, ..., yN , µ)
to o = (Θo, yo, r1, ..., rM, µo) as o = L y. The dimension of the two spaces need not be the same, with
the observation basis having a lower dimension given that the observability of various independent
signal modes is usually reduced.

For our analysis, we pre-compute L for N = 15 and M = 6, but usually will only need r1, r2
and r3 to obtain a highly accurate representation of the full Yk basis result. Even for computations of
power spectra, this significantly reduces the dimensionality of the problem (see paper III). As shown
in Fig. 8, the residual distortion representation performs as well as the computation basis but with a
lot fewer components (see discussion next Section).
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Figure 7: As for Fig. 4, but now with results cast into the “observation” basis. Notice how now the y and µ
amplitudes are stable with increasing basis size. The spectra cover a smaller frequency range, as dictated by
realistic observational scenarios, however they do not otherwise change compared to the computational basis.
The residual era shows an effective negative temperature shift to achieve the correct spectral shape.

3.2 Performance and convergence

We are now in the position to compare the performance of the observation basis in representing
the distortion solutions obtained by using the computational Yk basis. Two aspects are immediately
worth noting: since the observation basis has a limited frequency coverage, it will not provide a
description of the distortion solution outside this domain. This is analogous to having limited sky
coverage, although there the properties of the spherical harmonic basis allows for some level of
statistical deconvolution in CMB analyses [75]. For the distortion spectra, this inversion problem will
not be possible unless as many distortion parameters as basis parameters are observed accurately.

Second, the number of independently observable modes will depend on the frequency domain
and frequency resolution as well as the sensitivity of the experiment. For example, it has been demon-
strated that distinguishing µ-type distortion spectra benefits from having frequency channels below
≃ 30 GHz [44, 76, 77]. However, a more comprehensive exploration of these dependencies aspects is
beyond the scope of this paper, and for our illustrations we will stick to the modes shown in Fig. 6.

To illustrate the performance of the observation basis, we consider the distortion caused by a
single energy injection at zh = 5×104 with ∆ργ/ργ = 10−5. In this regime, the residual distortion con-
tributions are expected to be largest and hence the departures from the standard µ and y description
are maximized. Looking at Fig. 8, we can immediately see that only the first few residual distortion
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Figure 8: Distortion (i.e., x3∆nx) after a single injection at zh = 5 × 104 with ∆ργ/ργ = 10−5 for various
representations of the signal. The labels gives the maximal spectral component in the respective basis aside
from the standard Θ, y and µ-description. The ‘exact’ result was obtained with the computation basis up to Y15.
The simple Θ, y and µ-descriptions fails at the level of several tens of percent in particular at low frequencies.
On the other hand, the distortion is extremely well represented once r2 or r3 are included. This is a compression
of the information by a factor of more than ≃ 5.

spectra are needed to accurately represent the distortion shape at the level of a few percent of the
dominant signal. This is a significant compression of the required information for the signal pro-
cessing. However, it also implies that from the precise distortion shape not as much information can
be directly extracted unless a very large distortion signal is present or extremely high sensitivity is
achieved [50].

3.3 Caveats of the observation basis and alternative description

We would like to highlight a few important aspects of the observation basis. While by construction,
Y , M and the Yk spectra do not carry photon number, the same is not true for the residual distortion
spectra. This implies that in the new representation, not only the y and µ parameters change but also
the temperature parameter is affected. Concretely, we have Θ ≈ 2.6 × 10−12, y ≈ 6.1 × 10−6 and
µ ≈ 3.0 × 10−8 for the example shown in Fig. 8 in the Y15-representation. When projecting onto the
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Figure 9: First three residual distortion eigenmodes obtained for ∆ν = 1 GHz in the range νmin = 30 GHz to
νmax = 1000 GHz and with an explicit photon number constraint to deproject G. These signals are orthogonal
to the standard Y and M spectra and also among each other, but no longer leave the amplitudes of G unaltered.
They have all been normalized to carry an energy of ∆ργ/ργ = 4.

observation basis we find Θo ≈ −9.2×10−7, yo ≈ 1.3×10−6 and µo ≈ 1.3×10−5. We injected energy
at a redshift where DC and BR are already very inefficient, such that Θ based on scattering physics
alone should be negligibly small. After the change of basis, in particular µo picks up a noticeable
contribution and Θo even drops below zero. This effect is known and originates from the fact that
the residual distortion construction is based on intensity projections [see Fig. 2 of 50]. The chosen
procedure is most close to what would be obtained using standard component separation methods in
future spectrometer analyses [e.g., 43, 44, 77]. Although the total energetics of the problem and also
the spectrum remain unchanged by the change of the representation, this behavior seems ambiguous.

An alternative observational procedure, without this apparent ambiguity, could be to fix the
temperature parameter Θ based on the number density of the photon field. In this case, one could
fully orthogonalize G to the distortion space and construct a pure residual scattering distortion repre-
sentation that is unaffected by the aforementioned effects. In Fig. 9, we show the result for the basis
vectors in this alternative construction procedure. While generally very similar to the previous set
of distortion modes (see Fig. 6), the alternative modes show a slightly differing pattern and overall
trend. These modes can only be use in cases where the temperature contribution can be independently
separated, as the modes no longer are orthogonal to G(x).

Fig. 10 shows how this basis again stabilises the y and µ amplitudes across basis size while
reproducing the same spectrum as the other bases. The difference however is that now the first
residual mode constitutes a more dominant fraction of the energy, and the temperature shift never
takes on its effective negative value. This is closer to the full scattering physics, since now number is
conserved, but the description is not akin to a realistic observation of the sky. In paper III we will use
these two bases wherever they are most illustrative, but always being careful and explicit.

In Fig. 11, we demonstrate that these alternative modes also represent the distortion shape very
well, with the difference being that the contribution from G was fixed independently using a number
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Figure 10: As for Fig. 4, but now with results cast into the “scattering” basis. Notice that in contrast to Fig. 7
there is no production of a negative temperature shift, since here we enforce a strict number conservation of
the residual modes, meaning no distortion shape can project onto G in the change of basis. Again the spectra
show no change compared to the computation basis.

density constraint. In the Y15 representation, one has Θ ≈ 2.6 × 10−12, y ≈ 6.1 × 10−6 and µ ≈
3.0 × 10−8 as before. Taking the full spectrum and imposing the photon number constraint to obtain
the amplitude of G and then fitting for y and µ, we obtain Θ ≈ 2.6 × 10−12, y ≈ 1.6 × 10−6 and
µ ≈ 7.7 × 10−6. Just like before, we see a significant change in the values for y and µ, but this time
no change to Θ. The total energy carried by G, Y and M is ∆ργ/ργ ≃ 4y + µ/1.4 ≈ 1.2 × 10−5,
implying that the residual distortion contributes ∆ργ/ργ ≃ −0.2 × 10−5. In contrast, for the Y15
representation we have ∆ργ/ργ ≈ 2.5 × 10−5 stored in the G, Y and M components, implying that
about ∆ργ/ργ ≈ −1.5 × 10−5 is in the Yk>0 terms, which is no small total correction. If we compare
all this to the lowest order computation using only Θ, y and µ in the ODE (i.e., a Y0-representation)
we obtain Θ ≈ 1.1 × 10−9, y ≈ 1.6 × 10−6 and µ ≈ 5.1 × 10−6. This demonstrates that the µ and y
decomposition is well captured by the alternative distortion eigenmodes.

However, in the outlined alternative procedure an observer has to evaluate the number integral
∝

∫
x2∆nx dx of the photon field, which in experimental settings has several challenges. First, unless

the distortion is measured in a sufficiently wide range of frequencies, this number integral would not
evaluate accurately. Specifically, over a finite frequency domain even

∫
x2Y dx and

∫
x2M dx are no

longer guaranteed to vanish, thereby breaking the ‘photon number orthogonality’. Second, to carry
out the integral, the frequency sampling has to be fine, which again usually runs into observational
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Figure 11: Same as Fig. 8 but using a photon number constraint to obtain the value for Θ.

difficulties. Third, the estimation of errors will be non-standard since the observable is based on
weighted sums of fluxes. Therefore, this approach is not expected to be realized in actual observa-
tions. Nevertheless, for theoretical calculations, we can use it for illustration when the focus is on the
energetics of the problem. We will therefore refer to this alternative basis as scattering basis, given
that it is constructed to focus on the spectral shapes that are introduced purely by Compton scattering
terms, which conserve photon number. We further discuss the benefits and differences of changing
the basis in paper III.

4 Discussion and conclusions

In this work we obtained an approximate ODE treatment for the thermalisation Green’s function for
heating processes, which captures most aspects of the full CosmoTherm calculation using an extended
spectral basis to describe the residual distortion evolution (Sect. 2). Instead of the expensive ‘top-hat’
frequency binning we use a spectral basis that is derived from boosts of the y-distortion spectrum.
This reduces the computational burden by a factor of ≃ 103, thereby providing one of the main steps
towards formulating a generalised photon Boltzmann hierarchy, that will allow us to compute the
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evolution of distortion anisotropies at first order in perturbation theory (see papers II and III). We
also clarify how the computational spectral basis can be compressed into fewer distortion shapes
that can be distinguished with a given experimental configuration, introducing the observation and
scattering basis (Sect. 3).

The new ODE representation of the thermalisation Green’s function given here is not perfect,
because not all the spectral shapes that are excited by heating processes can be spanned by the basis
functions we choose (see Fig. 5). However, we have demonstrated that this is not a severe problem
for the average distortion evolution, which specifically relies on conversion of Y(x) [as the main dis-
tortion source] to M(x) and G(x). The representation of the full Green’s function could probably be
improved by studying the eigenfunctions of the Kompaneets and boost operators more carefully. In
addition, weighting schemes and a modified truncation of the distortion basis could likely improve
the performance. One could also refine the treatment of photon emission processes, including the ef-
fect of the new distortion shapes. This is expected to modify the thermalisation efficiency, a problem
that may be solved perturbatively. Nevertheless, the novel ODE representation of the average ther-
malisation Green’s function is sufficiently accurate for approximate applications to SD anisotropies
caused by energy release, as we show in papers II and III.

It is very important to highlight that not all spectral distortion problems can be treated this way.
First, if the distortions are large, a full non-linear thermalisation problem is encountered, which re-
quire several extensions [11, 78]. However, given the distortion limits by COBE/FIRAS, this situation
is usually not relevant to the description of primordial distortions. Second, the Kompaneets equation
itself does not describe the general scattering problem in an isotropic medium. At high energies, the
full Compton kernel has to be applied, which can cause noticeable departures to the evolution [e.g.,
63]. Similarly, non-thermal distortions can in principle be excited by energy injection from particle
cascades [78–80], which cannot be treated with the presented formalism. And finally, distortions
created by direct photon injection can have a much richer spectral structure [73, 81] that cannot be
captured here. We leave these cases for future studies, noting that at least for linear problems extended
spectral bases should provide a means forward.

Overall, this paper is the first in a series of works discussing the evolution of SD anisotropies
generated by various physical mechanisms and how these might be constrained with future CMB
spectrometers and imagers. The results from these works should open the path for more realististic
SD anisotropy forecasts over a wide range of physics which previously were not possible. This will
hopefully spur additional activity on CMB spectral distortions, uniting the efforts of CMB imaging
and spectrometer approaches for probing the early Universe.
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A Useful operator properties

We can somewhat reduce the complexity of the above calculations by studying the properties of – and
relationships between – the operators D̂x, D̂∗x and Ôx. This will furthermore illustrate the suitability
of the expanded basis {Yk(x)}.

We first note that two of the main operators commute with one another:
[D̂x, Ôx

]
= 0, (A.1)

thus implying the potential existence of a shared eigenbasis. A logical step is to express the larger of
the operators in terms of the other, revealing the identities

D̂x = Ôx(Ôx − 3) = (Ôx − 3)Ôx = −3Ôx + (Ôx)2 = 4x∂x + x2 ∂2
x. (A.2)

The final equality can be easily found with a single application of the chain rule. However, it hints
towards a more generic recurrence relation, which yields the following combinatoric sum:

(Ôx)k = (−1)k
k∑

m=1

[
k
m

]
xm∂m

x , (A.3)

where the square brackets indicate Stirling set numbers, which counts partitions of an k-set into m
nonempty subsets. This expansion of the boost operator reveals that the reverse operation is non-
trivial – very specific weighted sums of xm∂m

x terms are needed to make a boost operator with some
power. Because of this, it is useful to be able to compose these expanded Ôx terms directly:

xa ∂a
x xb ∂b

x =

a∑

k=0

b!
(b − a + k)!

(
a
k

)
xb+k ∂b+k

x . (A.4)
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As noted in [82], xk∂k
xnbb has a recursion relation allowing for another combinatoric analytic solution

xk∂k
xnbb =

(−x)ke−x

(1 − e−x)k+1

k−1∑

m=0

〈
k
m

〉
e−mx (k > 0), (A.5)

where the angle brackets denote Eulerian numbers, defined as the number of permutations of the
numbers 1 to m in which exactly k elements are greater than the previous element. This expression
has very good convergence properties when summed starting from the highest power of e−mx.

DefiningHk(x) = (−x)ke−x/(1 − e−x)k+1, we are now in a position to write general expressions
using the above formulae:

D̂N
x =

N∑

k=0

(
N
k

)
3k

2N−k∑

m=1

[
2N − k

m

]
xm ∂m

x , (A.6)

(Ôx)Nnbb = (−1)N
N∑

k=1

[
N
k

]
Hk(x)

k−1∑

m=0

〈
k
m

〉
e−mx (N > 0), (A.7)

D̂N
x (Ôx)Mnbb = (−1)M

N∑

k=0

(
N
k

)
3k

2N+M−k∑

ℓ=1

[
2N + M − k

ℓ

]
Hℓ

ℓ−1∑

m=0

[
l
m

]
e−mx. (A.8)

We can generate the basis functions YN from the above expressions noticing that according to our
convention YN = (Ôx/4)NY = D̂x(Ôx/4)Nnbb:

YN = (−1/4)N
N+2∑

k=1

(
3
[
N + 1

k

]
+

[
N + 2

k

])
Hk

k−1∑

m=0

〈
k
m

〉
e−mx. (A.9)

Note that we have used
[
N + 1

N

]
= 0 to simplify the above expression, bringing two different powers

of derivatives under a single summation sign. Below we provide a few examples:

Y1(x) =
e−x

(
e−2x + 4e−x + 1

)
x3

4 (1 − e−x)4 − 3e−x (
e−x + 1

)
x2

2 (1 − e−x)3 +
e−xx

(1 − e−x)2 ,
(A.10)

Y2(x) =
e−x

(
e−3x + 11e−2x + 11e−x + 1

)
x4

16 (1 − e−x)5 −
9e−x

(
e−2x + 4e−x + 1

)
x3

16 (1 − e−x)4

+
e−x (

e−x + 1
)

x2

(1 − e−x)3 − e−xx

4 (1 − e−x)2 ,

(A.11)

Y3(x) =
e−x

(
e−4x + 26e−3x + 66e−2x + 26e−x + 1

)
x5

64 (1 − e−x)6 −
13e−x

(
e−3x + 11e−2x + 11e−x + 1

)
x4

64 (1 − e−x)5

+
43e−x

(
e−2x + 4e−x + 1

)
x3

64 (1 − e−x)4 − 9e−x (
e−x + 1

)
x2

16 (1 − e−x)3 +
e−xx

16 (1 − e−x)2 .

(A.12)

Despite the progress made above, the overall problem is not fully closed via combinatoric sums. The
operatorD∗x ∈ K̂x does not commute with the others. Instead we find

[
1
x
D̂∗x, Ôx

]
= 0,

[
D̂∗x

1
x
, Ôx

]
= 0,

[
D̂x,

1
x
D̂∗x

]
= 0,

[
Dx, D̂∗x

1
x

]
= 0, (A.13)
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showing that no such shared basis will exist, and thus for now we resort to the approximate numerical
projections discussed in the main text (see especially Fig. 2).

However, some more progress can be made my realising that D̂∗x always appears in conjunction
with with the factor A = (1 + 2nbb). It can be shown that A = 1

x

(
4 + Y

G

)
. This loose factor of 1/x

combines nicely with the commutators noted above. Specifically we can then write

D̂∗xA = −(Ôx − 3)
(
4 +

Y
G

)
. (A.14)

Combining this with Eq.(A.2) we can write

K̂x = (Ôx − 3)
[
Ôx − 4 − Y

G

]
= Ô2

x − 7Ôx + 12 + 3
Y
G
− Ôx

Y
G
, (A.15)

which essentially distils the misbehaving part of the Kompaneets operator to the previously named
y-weight factor wy = Y/G.

This expression of the Kompaneets operator makes it clearer to see how certain results arise
algebraically. Consider for example that K̂xG = −Y , and similarly K̂xM = −Y , where the latter result
follows from the former together with K̂x(G/x) = 0. The spectral shape, Y1, appears as intermediate
step in these calculations, but ends up cancelling. These results may not be interesting in isolation,
but they emphasise the fact that the cancellations only occur for simple shapes. Once you apply K̂x

to a distortion shape like Y you naturally get Y1 and Y2 that do not analytically cancel.

B Alternative derivation of the ODE system

To obtain the ODE system for the evolution of the spectrum, we can also directly project the evolution
equation. Making the Ansatz ∆n ≈ B · y (with definitions as in the main section for a given basis) and
then inserting this into the evolution equation, Eq. (2.7), we have

Θ′G(x) +
N∑

k=0

y′kYk(x) + µ′M(x) = Θe Y(x) − ΘY(x) +
N∑

k=0

yk KYk (x) − µ ηMY(x). (B.1)

Here, Y0 ≡ Y , KYk = K̂xYk and we used the identities in Eq. (2.12). Since only G(x) carries number
we immediately obtain Θ′ = 0 by carrying out the number integral

∫
x2 dx over this equation. Since

we know that −ΘY(x) on the right hand side of Eq. (B.1) cancels the corresponding term in the
Compton equilibrium temperature

Θe ≈


∫
x3wy(x) B dx

4Enbb

 · y ≈ Θ +
N∑

k=0

ηYk yk + ηM µ, (B.2)

and because there also is no term ∝ G(x), we only have to worry about the reduced problem

N∑

k=0

y′kYk(x) + µ′M(x) = (Θe − Θ − ηM µ) Y(x) +
N∑

k=0

yk KYk (x). (B.3)

By performing the projections onto all function of the representation basis R = (Y,Y1, . . . ,Yk,M)T ,
we obtain the system

MR y′ = (Θe − Θ − µ ηM) bY + K y. (B.4)
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where y = (y, y1, . . . , yk, µ)T and MR,i j = ⟨Ri|R j⟩ is the full mixing matrix. We also have the source
vector bY,i = ⟨Ri|R0⟩ = ⟨Ri|Y⟩ and Kompaneets matrix Ki j = ⟨Ri|KY j⟩.

As already explained in the main text, the system above will not yield a solution that correctly
conserves energy (although it will become better and better the more Yk are included). We therefore
replace the last row in the matrices MR and K and the last entry in bY with the corresponding energy
equation (as shown in the main text). The modified system has the same form as Eq. (B.4), just with
redefined matrices and vectors which we do not explicitly distinguish in the notation. The system can
be solved for y′ to obtain the evolution equation for y, y1, . . . , yN , µ as

y′ = (Θe − Θ − µηM) M−1
R bY + M−1

R K y. (B.5)

The rows of the matrix M−1
R K are composed of the representation vectors for the operators KYk . Note

that the matrix K is an (N + 2) × (N + 1) matrix, while MR
−1 is an (N + 2) × (N + 2) matrix, such

that M−1
R K also is an (N + 2) × (N + 1) matrix. In addition we have M−1

R bY = δi0, which simply
follows from the fact that b̃Y is the first column vector of the matrix MR. Since the matrix M−1

R K can
be determined by independently solving for the representations of KYk in terms of the representation
basis R, this means we have proven the equivalence with the approach used in the main text.
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7

Paper IV: Spectro-spatial evolution of

the CMB II: generalised Boltzmann

hierarchy

This paper is the second in a series of three papers (see chapter 6 and chapter 8) which

together aim to correctly model the frequency domain for the photon phase space

distribution (see chapter 2) within the Boltzmann hierarchy (see chapter 3).

With the spectral basis proven to work for the homogeneous Universe, this paper

explores the extended perturbation theory once the discrete frequency basis has been

included (i.e. the calculations outlined in Sect. 3.2 but generalising from f (1) = Θ(1)G).

The main body of text builds the picture in a more direct and pedagogical way,

including the construction of specific matrices and vectors for computation, before

presenting a bottom line equation which is a direct counterpart to the usual photon

hierarchy. The appendices explore different aspects of the perturbations to much greater

depth, which all feed into the bottom line result in the main text.

Importantly we show that local distorted photon patches arise from a combination of

an average background distorted photon spectrum and local inflationary perturbations.

This crucially means that inspecting the distorted anisotropies in the CMB sky reveal

93



7: PAPER IV: SPECTRO-SPATIAL EVOLUTION OF THE CMB II: GENERALISED
BOLTZMANN HIERARCHY

details about the average spectrum, thus providing a completely novel approch to

contraining average energy injection in the primordial plasma. While some aspects of

the solutions are discussed, the results are left to the following paper.
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Abstract. In this paper, we formulate a generalised photon Boltzmann hierarchy that allows us
to model the evolution and creation of spectral distortion anisotropies caused by energy release in
the early Universe. We directly build on our first paper in this series, extending the thermalisation
Green’s function treatment to the anisotropic case. We show that the problem can be described
with the common Boltzmann hierarchy for the photon field extended by new spectral parameters
– a step that reduces the complexity of the calculation by at least two orders of magnitude. Our
formalism describes the effects of i) Doppler and potential driving, ii) spectral evolution by Compton
scattering, iii) perturbed thermalisation and iv) anisotropic heating on the distortion anisotropies.
We highlight some of the main physical properties of the equations and also outline the steps for
computing CMB power spectra including distortion anisotropies. Limitations and extensions of the
formulation are also briefly discussed. The novel Boltzmann hierarchy given here is the basis for
a series of companion papers studying how distortion anisotropies evolve in the perturbed Universe
and which physical processes could be constrained using future CMB imaging techniques.
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1 Introduction

The cosmic microwave background (CMB) has been a goldmine for furthering our understanding of
the cosmos [1–5]. We are now entering a new phase, in which novel cosmological observables are
moving to the focus of our efforts [6–9]. One of these observables is spectral distortions (SDs) of the
CMB [10, 11]. In this work, we develop a novel Boltzmann formulation that can describe the evo-
lution of SD anisotropies created by energy release in the early Universe. We base the treatment on
our first paper in the series [12, henceforth referred to as paper I], which introduced a novel discreti-
sation of the thermalisation Green’s function to efficiently describe the evolution of average SDs. In
paper I, we were limited to running one single thermalisation history at the time, effectively obtaining
a solution for the average distortion intensity spectrum, ∆Iν(t), at a given time t and frequency ν. In
simple words, we now deliver the tools to repeat the calculation along multiple lines of sight and
including the effect of perturbations on the CMB signal evolution. This will open the way to study-
ing SD physics using standard methods known from CMB imaging, without the need for absolute
calibration, delivering new targets for experiments like Litebird [13], PICO [14] and CMB-S4 [6].

We refer the reader to paper I for more introduction and motivation to the topic. The steps taken
here explain in detail how to extend the thermalisation Green’s function treatment to the anisotropic
case. We are in particular keen on including thermalisation effects to the evolution. This captures
the full spectral evolution due to Compton scattering, double Compton (DC) and Bremsstrahlung
(BR), which are so crucial in the formation of SDs at redshifts z ≳ 104 [15–19]. These effects can
change the type of the distortion and gradually rotate y-type distortion sources into µ and ultimately
thermalise the distortion completely. The rotation is with respect to the energy in various spectral
components, which by construction is conserved across the spectral basis. A perturbative formulation
that includes some of the Doppler boosting effects has been given in [20] and [21, 22]; however, this
does not capture the effects of repeated Compton scattering at z > 105 and also does not describe the
conversion of µ to T , thus having limited applicability, which we overcome here.

In Sect. 2, we start by recapping the main outcomes of paper I. We then move on to describing
some of the distortion effects in the Thomson limit of the kinetic equation. This only captures the
effect of Doppler and potential driving as well as free-streaming mixing on the SD signals across the
sky, but provides valuable insight preparing for the general case. In Sect. 2.4, we add thermalisation
terms to complete our treatment. Details of the derivation are giving in Appendix A to C, which
we recommend for in depth reading. The tools for computing the CMB power spectra for various
combinations of temperature and SD parameters are given in Sect. 2.8, and a discussion of the basic
expectations is presented in Sect. 2.9. Numerical solutions and first forecasts will be presented in
paper III [23]. In Sect. 3, we present our conclusions and also highlight some of the limitation of the
formulation and further work that may become important.

2 Extended Boltzmann hierarchy with primordial spectral distortions

The goal of this section is the provide an approximate description of the spectro-spatial thermali-
sation problem at first order in perturbation theory. This greatly generalizes previous treatments of
the problem allowing us to capture the main sources of distortions in the presence of perturbations.
Unlike the usual split, here we have two small parameters to work with, one for the average energy
release, ϵγ = ∆ργ/ργ, and one for the primordial curvature perturbations, ζ. We keep terms up to
O(ϵγζ), thereby allowing to capture all linear order (spatial) perturbation effects.

We will use the approach presented in paper I to model the evolution of the local monopole
across the chosen spectral basis, while the spatial evolution is treated using the standard multipole
decomposition which includes the effect of Thomson scattering and free-streaming. We will make
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direct use of the main results from paper I and refer the interested reader to that paper for clarification
of the notation and details of the Green’s function discretisation and choice of basis functions.

2.1 Paper I and zeroth order problem

In paper I, we essentially solved the zeroth order photon equation for the evolution of the average
CMB spectrum. This problem can be described with the kinetic equation [see Sect. 4.1.1 of 24]:

1
τ̇

∂∆n(0)

∂t
≈ θzΘ(0)

eq Y + θz K̂x ∆n(0) − Λ (1 − e−x)
x3 ∆n(0) +

Λ

x2 nbbΘ
(0)
eq +

Q̇(0)

τ̇
Y. (2.1)

for the evolution of the photon occupation number distortion ∆n(0) ≡ ∆n(0)(t, x), defined with respect
to the average blackbody, nbb(x = hν/kBTz) = 1/(ex − 1) at a temperature Tz. Here, the dot denotes
time derivatives and we introduced the Thomson optical depth, τ =

∫
σTNec dt, which is evaluated

at the background level assuming the standard recombination history from CosmoRec [25]. The
temperature variables are presented as θi = kBTi/mec2, with θz ∝ Tz ∝ (1 + z). The Kompaneets
operator is denoted by K̂x = x−2∂xx4∂x + x−2∂xx4A(x), with A(x) = 1 + 2nbb(x), and Λ = Λ(x, θz)
determines the photon production rate by double Compton (DC) and Bremsstrahlung (BR). These can
be computed accurately using BRpack [26] and DCpack [27]. The electron temperature perturbation,
Θ

(0)
eq = ∆T (0)

e /Tz, and effective heating rate, Q̇(0), are given by

Θ
(i)
eq =

∫
x3∆n(i)

0 wy dx

4Enbb

and Q̇(0) ≡ Q̇(0)
c

ρz
, (2.2)

with y-weight factor wy = Y/G = xA(x) − 4 = x ex+1
ex−1 − 4 and where E f =

∫
x3 f (x) dx is the energy

density integral of f (x). The expression for Θ(i)
eq can be obtained by balancing Compton heating and

cooling (Appendix C.1). The distortion sources from heating relate directly to Q̇(0)
c from collisions

(see Appendix C.2). In equation (2.2), ρz =
8πh
c3

( kBTz
h

)4
Enbb ≈ 0.261 eV/cm3 [T0(1 + z)/2.726 K]4 is

the energy density of a blackbody at temperature Tz.
Usually, Eq. (2.1) is solved on a frequency-grid for the spectral distortion, ∆n(0)(t, x), e.g., using

CosmoTherm [28]. This task can become very time-consuming and certainly is not easily extendable
to anisotropic distortions. The main result of paper I was to demonstrate that the problem can be
approximately written as a matrix equation. The derivation uses the Ansatz ∆n(0)(t, x) ≈ B(x) · y(0)(t)
to discretise the average photon spectrum. Here, B = (G(x),Y(x),Y1(x), . . . ,YN(n),M(x))T denotes
the computation basis, based on the standard distortion shapes, G,Y and M as well as the boosted
signals, Yk = (1/4)kÔk

xY with boost generator, Ôx = −x∂x. This then yields the evolution equation

∂y(0)

∂t
≈ τ̇θz

[
MK y(0) + D(0)

]
+

Q̇(0)

4
,

D(0) =
(
γT xc µ

(0), 0, 0, . . . , 0,−γN xc µ
(0)

)T
, Q̇(0)

=
(
0, Q̇(0), 0, . . . , 0, 0

)T
. (2.3)

for the spectral parameters, y(0)(t). Here, xc is the critical frequency for photon emission, and the
emission coefficients are γT ≈ 0.1387 and γN ≈ 0.7769. The Kompaneets mixing matrix, MK

describes the (photon number- and energy-conserving) rotation of the spectral parameters in each
scattering, and is pre-computed for different basis sizes. From Eq. (2.3) one can already anticipate
the main thermalisation terms; however, a few augmentations will become important as we show
now. We also note, that for Eq. (2.3), the problem was linearised respect to the distortion. Possible
sources of distortions from photon injection processes [e.g., 29, 30] were also neglected and cannot
be readily treated within the proposed framework.
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2.2 General statement of the problem in first order of perturbation theory

At first order in perturbation theory, the evolution equation for the anisotropic photon occupation
number, n(1) = n(1)(t, x, r, γ̂), at location r and in the direction γ̂ reads [e.g., 31–33]

∂n(1)

∂t
+

cγ̂
a
· ∇n(1) + Ôxn(0)

(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
= C(1)[n]. (2.4)

Here, we work with the metric perturbations in conformal Newtonian gauge in which the line element
is ds2 = a2(−e2Ψ dη2 + e2Φδi j dxi dx j), when neglecting vector and tensor perturbations; C(1)[n] de-
notes the rather complicated collision term [e.g., 24, 34–36], that accounts for the effect of Thomson
scattering and thermalisation processes. Usually, one would neglect all distortions or thermalisation
effects, such that Ôxn(0) ≈ Ôxnbb ≈ G(x). With the Ansatz n(1) ≈ Θ(1) G(x), where Θ(1) = ∆T/T0 de-
scribes the fractional CMB temperature perturbation, this leads to the standard brightness temperature
equations in the Thomson limit [31, 33, 37]:

∂Θ(1)

∂t
+

cγ̂
a
· ∇Θ(1) +

∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1) = τ̇

[
Θ

(1)
0 +

1
10
Θ

(1)
2 − Θ(1) + β(1)χ

]
, (2.5)

where Θ(1)
ℓ

is the Legendre transform of the photon temperature field, Φ(1) and Ψ(1) are the potential
perturbations, β(1) the baryon speed, and χ = β̂ · γ̂ is the direction cosine between the baryon velocity
β and the photon direction, γ̂. Polarisation terms were not included here, but do not affect the main
arguments presented below. For our numerical solutions, they are added back as usual [31]. Equa-
tion (2.5) will now be generalized to include the effect of a non-vanishing average distortion, spectral
evolution, anisotropic heating and perturbed thermalisation. These effects lead to small corrections
to the brightness temperature equations but give the leading order terms in the distortion hierarchy.

Accounting for all the thermalisation effects self-consistently is beyond the scope of this pa-
per. However, if we assume that locally thermalisation is only mediated through the monopole part
of the spectrum, the situation becomes more tractable. This is in fact well-motivated since for the
anisotropies the much faster Thomson scattering process dominates, while Thomson terms are absent
in the monopole, making thermalisation terms dominant there [24, 36]. In particular the monopole
here is defined in the local inertial frame. We note, however, that changing frame would intro-
duce similar transformations in the Thomson and Compton scattering terms, and the arguments of
timescales would still hold true for the relevant pairings of non-monopole scattering terms.. We will
furthermore not attempt to solve for higher order corrections to the CMB temperature anisotropy field,
as this would entail a full treatment in second order perturbation theory [e.g., 35, 38, 39] including
additional modifications to more correctly treat distortion terms.

To better appreciate the various new effects we will proceed in a step-by-step manner first only
considering Thomson scattering terms, ∝ τ̇. These will reveal the optimal basis given an average
distortion and also already show the main effects in terms of distortion anisotropy generation. The
spectral evolution across the various distortion types is then included using the modified Green’s
function treatment with the spectral mixing occurring only in the local monopole. The scattering
efficiency is ∝ τ̇θz and hence suppressed relative to the Thomson terms. However, at z ≳ 104, we
expected spectral evolution to change the distortion signals in an observable way.

We give many of the derivation details in Appendix A. In addition, we will consider various
limiting solution in Appendix B. In Appendix C, we furthermore explicitly carry out some of the
approximations that are required to simplify the problem to the expressions given in the main text.
We refer the interested reader to these sections for an in depth understanding. However, we hope
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that the result presented in this section can be mostly understood without the detailed (and sometimes
cumbersome) derivations.

We also mention that the picture and interpretation of the results we develop below could po-
tentially be cast into another form using alternative variables and reference frames. For example, one
could use the local baryon frame to overcome some of the kinematic complications in the scattering
process [36]. Similarly, log-temperature moments [40] might provide the means to separate some of
the redshifting and scattering effects in a more transparent way. However, the methods applied here
closely follow the standard approach for CMB anisotropy computations [31, 41], extending them in
a minimal way to account for the evolution of the average spectrum. This is deemed to be a valuable
step in understanding the rich physics of CMB spectral distortion anisotropies.

2.3 Effect of Doppler and potential terms in the Thomson limit

As the first and simplest scenario, let us consider the case where heating happened well before the
recombination era and the average distortion is long frozen into its final state. We shall also assume
that any thermalisation effects and energy exchange terms can be neglected. Thomson scattering
isotropises the medium and leads to damping of the perturbations at small scales. This picture is
valid for modes that become dynamic at z ≲ 104. The photon evolution equation then reads

∂n(1)

∂t
+

cγ̂
a
· ∇n(1) + Ôxn(0)

(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
≈ τ̇

[
n(1)

0 +
1
10

n(1)
2 − n(1) + β(1)χ Ôxn(0)

]
(2.6)

using the Thomson collision term, Eq. (A.1). Here, we defined nℓ(t, x, r, γ̂) =
∑

m nℓm(t, x, r)Yℓm(γ̂)
using the spherical harmonic coefficients of the photon occupation number, nℓm(t, x, r). This defini-
tion implies n(0) ≡ n(0)

0 = n(0)
00 Y00 = n(0)

00 /
√

4π for the average spectrum, n(0)
0 =

∫
n(0) dΩ

4π , where the
solid angle is dΩ = d2γ̂ = dϕ dχ.

We now assume that the average spectrum is spectrally frozen, n(0)(x) = nbb(x)+∆n(0)(x), where
∆n(0)(x) is the departure from the blackbody, nbb(x) = 1/[ex − 1] at a temperature Tz. We can then
make the simple Ansatz n(1) ≈ Θ(1) G(x) + Σ(1) Ôx∆n(0).1 Assuming that Ôx∆n(0) , G(x), this results
in two identical photon Boltzmann hierarchies for Θ(1) and Σ(1) that are exactly like the standard
equation for the temperature perturbations. These can be obtained by simply comparing coefficients
of the two independent spectral functions or alternatively by taking the number and energy density
moments of the Boltzmann equation (see Appendix B.1). However, in contrast to the temperature
perturbations, at a given wavenumber k we start with the initial condition Σ(1) = 0 such that distortion
anisotropies are only sourced later when perturbations in the potentials and velocity field appear
[24]. The transfer functions and related power spectra can be computed directly using any Einstein-
Boltzmann code. Cross-correlations of the distortion and temperature fields thus probe Doppler and
integrated Sachs-Wolfe (ISW) terms. This can result in a novel noise floor for tests of primordial
non-Gaussianity from µ/y × T correlations, as we highlight in paper III.

2.3.1 Preparing for more general spectral evolution

As explained above, in the Thomson limit the problem described by Eq. (2.6) can in principle be
solved with only two independent variables,Θ(1) and Σ(1) [see Eq. (B.4) for the Boltzmann equations],
and the new spectral shape Ôx∆n(0) caused by boosts2 of the average distortion. For example, if

1For the considered case, one could also directly use n(1) ≈ Σ(1) Ôxn(0), but then the initial condition can not be as clearly
separated and an extension to the time-dependent case is not as straightforward.

2In this work we will refer to Ôx as the boost generator, because it appears in Lorentz transformations of a photon
spectrum. The first order Doppler term τ̇β(1)χ Ôxn(0) in Eq. (2.6) has its origin in this. However, for the terms relating to the
potentials, Ôx physically appears due to gravitational redshifting, which we do not distinguish explicitly.
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Figure 1: Representation of ÔxM(x) using varying elements in the basis. Even the lowest order representation
in terms of µ and y is highly accurate.

the average spectral distortion was a pure µ-distortion, the anisotropies would have the spectrum of
ÔxM(x). We could then observationally search for G(x) and ÔxM(x) and thereby extract information
on the perturbations, Θ(1) ∝ ζ and Σ(1) ∝ ϵρζ.

In more general situations, when spectral evolution is also included, using the computational
spectral basis we can write ∆n(0) ≈ y(0) · B and hence

Ôx∆n(0) = Θ(0)[3G(x) + Y(x)] + 4
N∑

k=1

y(0)
k−1 Yk(x) + y(0)

N ÔxYN(x) + µ(0) ÔxM(x), (2.7)

where we used ÔxG = 3G + Y . The first two groups of terms directly fall back onto the original
spectral basis, B; however, ÔxYN(x) = 4YN+1(x) and ÔxM(x) = [M(x)/G(x)]ÔxG(x) − G(x)/x lie
outside. As a simple fix, we could add these new spectral shapes to the basis and thereby keep
the precision of the average distortion. However, once we consider Compton scattering effects, this
approach becomes problematic, requiring a new truncation of the spectral hierarchy.

Instead of adding new spectra to the basis, we approximately represented ÔxYN(x) and ÔxM(x)
within the old spectral basis.3 The projection procedure is explained in detail in paper I. Just like for
the Kompaneets operator, one has to ensure energy conservation in the calculation; photon number
conservation is automatically built in, since YN and M do not carry number and hence ÔxYN and
ÔxM do not either. It turns out that ÔxM(x) is extremely well represented as a simple sum of µ
and y. Carrying out the projections, we find ÔxM(x) ≈ 0.3736 Y(x) + 1.9069 M(x); however, even
better precision can be achieved when including additional terms in Yk(x) (see Fig. 1). As for the
Kompaneets operator (see paper I), the largest error is always made when representing YN+1(x) with

3We tried several alternatives but found none of them to be more beneficial. A more general study is left for the future.
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only terms up to YN(x), as part of function space is omitted. However, less and less energy is carried
in these contributions such that the precision does not suffer much once Y5 or higher are included.

With these comments, schematically we can therefore always write the representations

ÔxYN(x) = 4YN+1(x) ≈ ON · B(x), ÔxM(x) ≈ Oµ · B(x) (2.8)

where ON and Oµ are the corresponding solution vectors in terms of y, y1, . . . , yN , µ (the projections
of G(x) never matter as ÔxYk and ÔxM do not carry photon number). This means we can express the
boosted average spectrum as Ôxn(0) ≈ b(0) · B with

b(0) =



1

0

0

0

...

0

0

0

0



+ MB y(0) =



1

0

0

0

...

0

0

0

0



+



3 0 0 0 · · · 0 0 0 0

1 0 0 0 · · · 0 0 ON,1 Oµ,1

0 4 0 0 · · · 0 0 ON,2 Oµ,2

0 0 4 0 · · · 0 0 ON,3 Oµ,3
...
...
...
...

...
...
...

...
...

0 0 0 0 · · · 0 0 ON,N−2 Oµ,N−2

0 0 0 0 · · · 4 0 ON,N−1 Oµ,N−1

0 0 0 0 · · · 0 4 ON,N Oµ,N

0 0 0 0 · · · 0 0 ON,N+1 Oµ,N+1





Θ(0)

y(0)
0

y(0)
1

y(0)
2

...

y(0)
N−2

y(0)
N−1

y(0)
N

µ(0)



, (2.9)

where we implicitly defined the boosting matrix, MB, noting that B has N + 3 entries starting with
G(x) for k = 0 and ending with M(x) for k = N + 2. Inserting n(1) = y(1) · B into Eq. (2.6) and
rearranging terms we can then write the photon Boltzmann equation in the Thomson limit as

∂y(1)

∂η
+ γ̂ · ∇y(1) ≈ −b(0)

0

(
∂Φ(1)

∂η
+ γ̂ · ∇Ψ(1)

)
+ τ′

[
y(1)

0 +
1

10
y(1)

2 − y(1) + β(1)χ b(0)
0

]
, (2.10)

where we now converted to conformal time, η =
∫ t

0 c dt′/a with τ′ = dτ/ dη = NeσTa, and also used
yℓ(t, r, γ̂) =

∑
m yℓm(t, r)Yℓm(γ̂) as before for nℓ. We furthermore made explicit that b(0) only has a

monopolar dependence, b(0) = b(0)
0 ≡

∫
b(0) dΩ

4π . For the example above, b(0)
0 was time-independent.

In more general situations it becomes a function of time, where ∆b(0)
0 = MB y(0)

0 provides sources
for distortion and temperature anisotropies. However, before we can treat this problem we need to
include the effects of spectral evolution into the equations, as we discuss in Sect. 2.4.

2.3.2 Changing the background temperature

One of the simplest problems that one can already consider with Eq. (2.10) is a time-dependent
change of the background temperature that leads to a departure from the standard ∝ (1 + z) scaling.
This limit describes average injection of G, which physically is hard to establish without efficient
thermalisation terms [42], but provides some intuition. Speculative scenarios could relate to the decay
of dark energy into photons [43, 44] or a treatment of energy release signals in the instantaneous
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thermalisation limit. It is also relevant to early treatments of temperature fluctuations at second order
in perturbations [38], warranting the discussion presented here.

Using the zeroth order equation, Eq. (2.1), with ∆n(0) = Θ
(0)
0 G, and assuming that the change

in the temperature is created by a time-dependent source term, G S T (t), we can easily verify that, as
expected, this leaves the average spectrum unchanged:

G
∂Θ(0)

0

∂t
= G S T + τ̇θz

[
Θ

(0)
eq Y + K̂x∆n(0)

0

]
− τ̇ Λ(x, θz) (1 − e−x)

x3 ∆n(0)
0 + τ̇

Λ(x, θz)
x2 nbbΘ

(0)
eq

= G S T + τ̇θzΘ
(0)
0

[
Y + K̂xG

]
− τ̇ Λ(x, θz)

x2 nbbΘ
(0)
0


∆n(0)

0

Θ
(0)
0 G

− 1

 ≡ G S T . (2.11)

Here, we used Θ(0)
eq = Θ

(0)
0 and (1 − e−x)/x = e−x(ex − 1)/x = nbb/G and assumed that the external

source has a spectrum G. We also used K̂xG = −Y , which causes all scattering terms to vanish, and
therefore no new spectral shapes other than G appear in the average evolution.

We can now ask how the evolution of the average CMB spectrum propagates into the anisotropies.
Knowing the solution of Θ̄(t) = Θ(0)(t), from equation (2.10), we then find the two hierarchies

∂Θ(1)

∂t
+

cγ̂
a
· ∇Θ(1) + b̄

(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
≈ τ̇

[
Θ

(1)
0 +

1
10
Θ

(1)
2 − Θ(1) + b̄ β(1)χ

]
. (2.12a)

∂y(1)

∂t
+

cγ̂
a
· ∇y(1) + Θ̄

(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
≈ τ̇

[
y(1)

0 +
1
10

y(1)
2 − y(1) + Θ̄ β(1)χ

]
. (2.12b)

with b̄(t) = (1 + 3Θ̄). This indicates that in addition to small modifications to the temperature
anisotropies, apparent y-distortion anisotropies are sourced. The latter are due to the mismatch of
the thermal spectrum of the initial anisotropies with respect to the new average blackbody at a tem-
perature T̄ = Tz(1+Θ̄), which generally does not scale like ∝ (1+ z). In the absence of thermalisation
effects, this indeed causes distortion anisotropies, as we illustrate now. However, since even a pure
blackbody temperature fluctuation has a y-type spectral contribution at second order inΘ [40, 45, 46],
to demonstrate that a distortion anisotropy is created we have to show that the photon number and
energy densities in the anisotropies do not simply obey the blackbody relations, with one effective
temperature describing the full spectrum.

To make progress, we therefore first ask the question how a spatially-varying blackbody spec-
trum changes when the average temperature is varied in a way that departs from the standard ∝ (1+z)
scaling. For this, we write the expression

n =
1

exp
(
hν/[kT̄ (1 + Θ)]

)
− 1
≡ nbb

(
x/[(1 + Θ̄)(1 + Θ)]

)
, (2.13)

where Θ describes the temperature anisotropies while Θ̄ is only time-dependent. At zeroth (no spatial
terms) and first order in perturbations (only up to terms ϵρζ) this implies

n(0) = nbb(x) + Θ̄G(x) (2.14a)

n(1) = Θ(1) [G(x) + Θ̄ ÔxG] = Θ(1)(1 + 3Θ̄) G(x) + Θ̄Θ(1) Y(x), (2.14b)

where we neglected terms O(Θ̄)2 and O(Θ(1))2. We comment immediately on the consistency of this
limit: terms O(Θ̄)2 do not add any spatial effects and thus are merely higher order corrections to the
average spectrum. Terms relating to O(Θ(1))2 ≃ O(ζ)2 are second order in the primordial curvature
perturbations, which we also do not consider here.
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The expressions in Eq. (2.14) seems to suggest that a y-type distortion is sourced at first order,
even if we started with a blackbody. However, the terms shown above are merely needed to precisely
transition from a blackbody at the initial temperature to a new blackbody when Θ̄ varies [e.g., 45, 46].
This begs the question if this Ansatz solves the evolution equations in Eq. (2.12), which would show
that no real distortion anisotropy is actually created?4 UsingDt[X] from Eq. (B.2a), we have

Dt[n(1)] = Dt[Θ(1)] G(x) +Dt[Θ̄Θ(1)]ÔxG = Dt[Θ(1)] [G(x) + Θ̄ÔxG] +Dt[Θ̄]Θ(1)ÔxG

= Dt[Θ(1)] Ôxn(0) + Θ(1) S T ÔxG, (2.15)

where Ôxn(0) ≡ G(x) + Θ̄ ÔxG and Dt[Θ̄] = ˙̄Θ = S T . Put together with the rest of the Liouville
operator [see Eq. (B.2) for relevant definitions], we then have

L[n(1)] = L[Θ(1)] Ôxn(0) + Θ(1) S T ÔxG ≡ Ôxn(0)CT [Θ(1)] + C(1)
therm[n], (2.16)

where we equated with the collision term, formally including both the Thomson terms, CT [Θ(1)], and
thermalisation effects, C(1)

therm[n]. We also used n(1) ≈ Θ(1) Ôxn(0) to factor Ôxn(0) out of C(1)
T [n].

If we now only consider the Thomson terms and integrate photon number and energy density,
with

∫
x2Ôxn(0) dx→3Nz(1+3Θ̄),

∫
x3Ôxn(0) dx→4ρz(1+4Θ̄),

∫
x2ÔxG dx→9Nz and

∫
x3ÔxG dx→16ρz,

we obtain the two equations

∫
L[n(1)] x2 dx → L[Θ(1)] + 3Θ(1) S T ≈ CT [Θ(1)],

∫
L[n(1)] x3 dx → L[Θ(1)] + 4Θ(1) S T ≈ CT [Θ(1)]. (2.17)

Here, we used the number density, Nz =
8π
c3

( kBTz
h

)3
Nnbb ≈ 411.0 cm−3 [T0(1 + z)/2.725 K]3, of a

blackbody at a temperature Tz and also neglected higher order terms in Θ̄. Since both equations have
to be fulfilled, this shows that the spectrum cannot be a blackbody anymore without additional ther-
malisation processes. The reason is that Y(x) does not carry photon number and only contributes to
the second equation, leading to an extra source of Θ(1) S T . The CMB anisotropies are thus distorted.

Since the only source spectra that are present in the Ansatz are G and Y , in the Thomson limit
we need an extra independent y-parameter to describe the full spectrum. Adding an extra term ydY(x)
to the Ansatz we previously used [i.e. using n(1) + y(1)

d Y(x) as our input], we then have

L[n(1)] =
(
L[Θ(1)] (1 + 3Θ̄) + 3Θ(1) S T

)
G +

(
Θ̄L[Θ(1)] + Θ(1)S T +Dt[y

(1)
d ]

)
Y

≡ CT [Θ(1)](1 + 3Θ̄)G +
(
Θ̄CT [Θ(1)] + CT [y(1)

d ] − β(1)χ
)

Y + C(1)
therm[n]. (2.18)

Here, we explicitly split the terms ∝ G and ∝ Y , since we now wish to keep track of distortion
contributions. By comparing coefficients we can find the modified system

L[Θ(1)] + 3Θ(1) S T ≈ CT [Θ(1)], (2.19a)

Θ̄L[Θ(1)] + Θ(1) S T +Dt[y
(1)
d ] ≈ Θ̄CT [Θ(1)] + CT [y(1)

d ] − β(1)χ, (2.19b)

4In strictly speaking, we need to include a second order average source term with a y-type spectrum to leave the average
blackbody unaffected (see Appendix B.2). This statement again emphasises that the appearance of terms ∝ Y(x) does not
immediately imply a real distortion. However, we skipped this intermediate step in the derivation.
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where we again neglected thermalisation effects. With Θ̄L[Θ(1)] ≈ Θ̄CT [Θ(1)], after dropping terms
≃ O(Θ̄)2, one then has the explicit evolution equations for Θ(1) and y(1)

d

∂Θ(1)

∂t
+

cγ̂
a
· ∇Θ(1) +

∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1) ≈ −3Θ(1) S T + τ̇

[
Θ

(1)
0 +

1
10
Θ

(1)
2 − Θ(1) + β(1)χ

]
, (2.20a)

∂y(1)
d

∂t
+

cγ̂
a
· ∇y(1)

d ≈ −Θ(1) S T + τ̇

[
y(1)

d,0 +
1
10

y(1)
d,2 − y(1)

d,0

]
. (2.20b)

These equations show that a non-vanishing y-parameter is created as perturbations mix through
Thomson scattering and free streaming in the presence of average CMB temperature changes. As al-
luded to above, the reason is that the spectrum of the initial temperature perturbations disagrees with
that of the evolving average blackbody. The change in the average blackbody temperature sources
Θ(1) and y(1)

d perturbations but on average no photons are created in the fluctuating part, implying that
the perturbed photon field is not consistent with that of pure blackbody temperature fluctuations: one
cannot simply transform all y-type terms away by redefining the temperature perturbations.

This discussion also shows that the Ansatz in Eq. (2.14) can be recast in terms of the effective
parameters Θ(1)

eff = Θ
(1)(1+ 3Θ̄) and y(1)

eff = y(1)
d + Θ̄Θ

(1). Indeed, using this redefinition with Eq. (2.20)
we recover Eq. (2.12). This clearly separates the origin of the distortion anisotropies, identifying
temperature raising y-contributions, y(1)

mix = Θ̄Θ
(1) from contributions that cannot thermalise, y(1)

d .
These terms can in principle be distinguished from simple higher order corrections ∝ (Θ(1))2 or
uncertainty∝ ∆T0 in the exact average present-day blackbody temperature∝ ∆T0Θ

(1). For the former,
this statement is evident since the related terms exhibit a different correlation structure. For the latter,
the effect would be time independent, which does change the correlation structure. However, a more
in depth discussion of these effects is beyond the scope of this work.

We mention that corrections ∝ Θ̄ ζ to the potentials and baryon velocity equations in principle
also need to be added to the Boltzmann hierarchy. For the velocity terms, we will more explicitly
discuss this in Sect. 2.6. However, here we are not interested in computing the exact corrections to the
temperature power spectra caused by changes of the background temperature, nor will we consider
cases when these terms become very important. For computing the physical y-parameter caused by
changes in the average CMB temperature, we can simply use the old set of equations to solve forΘ(1),
since all corrections ∝ Θ̄ ζ recursively enter the evolution equation for y(1) at higher order in Θ̄. In the
Thomson limit, we have thus completed the formulation of the problem and demonstrated that real y-
type distortion anisotropies are created by changing the average temperature. These could potentially
be used to test for departures from the standard CMB temperature-redshift relation; however, we
leave a more detailed discussion to future work.

2.3.3 Instantaneous thermalisation

We can extend our discussion to the case where thermalisation is always instantaneous. At the back-
ground level we then have a changing temperature according to ˙̄Θ = S T relative to Tz like before.
In the anisotropies, photon production and Compton scattering would always ensure that the spec-
trum of the fluctuating part thermalises under energy conservation. From the arguments leading up
to Eq. (2.17), we can therefore directly write

∂Θ(1)

∂t
+

cγ̂
a
· ∇Θ(1) +

∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1) ≈ −4Θ(1) S T + τ̇

[
Θ

(1)
0 +

1
10
Θ

(1)
2 − Θ(1) + β(1)χ

]
, (2.21)
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which with the parameter Θ(1)
eff = Θ

(1)(1 + 4Θ̄) can be cast into the equivalent form

∂Θ(1)
eff

∂t
+

cγ̂
a
· ∇Θ(1)

eff + b̄
(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
≈ τ̇

[
Θ

(1)
eff,0 +

1
10
Θ

(1)
eff,2 − Θ(1)

eff,0 + b̄β(1)χ

]
, (2.22)

with b̄ = (1 + 4Θ̄). The factor of 4 instead of 3 originates from the fact that the energy carried
by the y-distortion in the previous case now appears in the blackbody part due to the assumption of
instantaneous thermalisation.

Equation 2.22 indicates that one can simplify the computation by scaling all variables (also
Φ,Ψ and β) to absorb the factor of b̄ = (1 + 4Θ̄). However, assuming a general time-dependence of
Θ̄, new effects on the CMB power spectra would appear if this equation would be valid throughout
the recombination era: the time-dependence of the modes would be modified by the evolution of the
background temperature and a time-dependent rescaling of the temperature contrast would be folded
into the shape of the CMB power spectra, an effect that can principally be captured with the above
equations. Physically, this of course is an academic example to highlight how a coupling between
modes and the background can be formulated. Indeed, this effect is an apparent ’super-horizon’ effect,
which becomes even more obvious when we think about times before BBN, where multiple phase
transitions do increase the average blackbody temperature [e.g., 33, 47]. Due to quasi-instantaneous
thermalisation, this leads to a rescaling of the temperature variables at all scales, leaving the adiabatic
nature of the initial perturbations totally unchanged and merely modifying the initial conditions to
account for this modification. Clearly, for modes entering the horizon during BBN or before, there is
no tracer of the time-dependent effects that could be observed today, since all modes that witnessed
this effect have dissipated away by Silk damping. At the normal CMB scales, we are left with the
standard CMB anisotropy evolution (relative to the present-day higher temperature). However, in the
primordial gravitational wave background, as an example, the traces of the phase transitions are in
principle still visible [48, 49].

2.4 Effect of Compton scattering and photon production

Now that we understand how to account for the effect of boosting and Thomson scattering, we will
next include Compton scattering and photon production. These only affect the spectral evolution of
the local monopole and can be treated using our ODE representation of the Green’s function. We
will start by a simplistic treatment (Sect. 2.4.1) that just uses a perturbed version of the zeroth order
thermalisation terms, Eq. (2.3). A more rigorous derivation (Sect. 2.4.2) shows that a few additional
terms appear; however, the overall picture does not change crucially.

2.4.1 Simplistic inclusion of thermalisation terms

Starting from the description in Eq. (2.3), one can obtain a simple version for the thermalisation terms
at first order in perturbation theory. Perturbing τ̇ and including the potential perturbation due to the
local inertial frame transformation [e.g., following 35], one readily finds

∂y(1)

∂t

∣∣∣∣∣∣
therm

≈ τ̇θz
[
MK y(1) + D(1)

]
+ τ̇θz

(
δ(1)

b + Ψ
(1)

) [
MK y(0) + D(0)

]
+

3
2
τ̇θzΘ

(1)
0 D(0) +

Q̇(1)

4
,

D(1) =
(
γT xc µ

(1), 0, 0, . . . , 0,−γN xc µ
(1)

)T
, Q̇(1)

=
(
0, Q̇(1), 0, . . . , 0, 0

)T
(2.23)

Q̇(1) =
Q̇(1)

c

ρz
+ Ψ(1) Q̇(0)

c

ρz
.
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While the equation above has been obtained in a simplistic manner, it actually turns out that even
a more rigorous derivation does not change the result that much. The first group of terms simply
describes the spectral evolution of the first order distortion parameters. The second accounts for
corrections with respect to the average evolution from perturbations in the electron density and po-
tentials. Here, we used τ̇(1)/τ̇ ≈ δ(1)

b , assuming that we are far from the recombination era, such that
perturbed recombination effects [e.g., 35, 50, 51] can be omitted. The perturbed heating rate similarly
includes perturbations in the first order heating term from collisions in the local inertial frame, Q̇(1)

c ,
but also the effect of potentials on the zeroth order term.

However, the term 3
2 τ̇θzΘ

(1)
0 D(0) deserves a bit more explanation. It stems from perturbing the

critical frequency, xc, with respect to the local photon temperature. We assumed that only DC is
relevant for the emission processes, such that the photon emissivity is ∝ θγxc(θγ) ≃ θ3/2γ . Inserting
θγ = θz(1 + Θ0) then yields [θγxc(θγ)](1) ≈ θzxc(θz) (3/2)Θ(1)

0 . This term thus relates to perturbed
emission effects and modulates the zeroth order term, D(0). However, as we show below the coeffi-
cient of this term indeed changes to unity when a more careful account for modifications to the local
Compton and DC rate is carried out.

2.4.2 More rigorous treatment

In this section, we now obtain the thermalisation terms in a more rigorous manner. For this we have
to follow a few steps as outlined in Appendix A and C. After writing the full photon collision term
in Appendix A, one has to obtain the electron temperature in the given distorted radiation field. For
this we make use of the result of [35] and include the effect of Compton scattering (Appendix C.1).
While thermalisation terms are relevant, the electron temperature will always be extremely close to
the Compton equilibrium temperature, which greatly simplifies the problem and leads to an effective
heating term in the photon field as we demonstrate in Appendix C.2. The main result of that section is
Eq. (C.11) for the Compton terms and heating sources. This expression only neglects one stimulated
scattering correction, as explained in that section, but otherwise is consistent at order O(ϵρζ).

Translating Eq. (C.11) into matrix form using our spectral basis, we find the generalized Kom-
paneets terms at first order in perturbations

∂y(1)

∂t

∣∣∣∣∣∣
K
≈ τ̇θzMK y(1) + τ̇θz

(
δ(1)

b + Ψ
(1)

)
MK y(0) +

Q̇(1)

4
+ τ̇θzΘ

(1)
0

[
MD y(0) − S(0)

]
,

S(0) =
(
0, δ(0)
γ,0 + 4Θ(0)

e ,−4Θ(0)
e , . . . , 0, 0

)T
, (2.24)

where MD = (MB−3I)MB is the Doppler matrix (see Appendix C.2.1) andΘ(0)
e = Θ

(0)
eq +Q̇(0)

c /[4τ̇θzρz]
is the average electron temperature. We also used δ(0)

γ,0 = E
∆n(0)

0
/Enbb = 4Θ(0)

0 + 4
∑

n y(0)
0,n + ϵMµ

(0)
0 for

the photon energy density perturbation. Aside from the last group of terms, all the other are already
present in Eq. (2.23). As explained in Appendix C.2, the latter do not add any energy to the system,
but merely lead to a more minor change in the spectral distortion evolution.

In Appendix C.3 we carry out a careful derivation of the photon production terms. It turns out
that at first order in perturbations, a correction to the DC emissivity causes a modification of the re-
lated temperature correction term, changing 3

2 τ̇θzΘ
(1)
0 D(0) → τ̇θzΘ(1)

0 D(0) (see Appendix C.3.2). The
cause of this change is the precise balance between Compton and DC scattering terms, as explained
there. It is expected that the coefficient can change depending on which approximation for the DC
emissivity is actually used. In paper III, we will see that this modification is not expected to be as
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severe, but additional work may be needed. Put together we then have the thermalisation terms

∂y(1)

∂t

∣∣∣∣∣∣
therm

≈ τ̇θz
[
MK y(1) + D(1)

]
+ τ̇θz

(
δ(1)

b + Ψ
(1)

) [
MK y(0) + D(0)

]
+ τ̇θzΘ

(1)
0 D(0) +

Q̇(1)

4

+ τ̇θzΘ
(1)
0

[
MD y(0) − S(0)

]
,

D(1) =
(
γT xc µ

(1), 0, 0, . . . , 0,−γN xc µ
(1)

)T
, Q̇(1)

=
(
0, Q̇(1), 0, . . . , 0, 0

)T

S(0) =
(
0, δ(0)
γ,0 + 4Θ(0)

e ,−4Θ(0)
e , . . . , 0, 0

)T
, (2.25)

Q̇(1) =
Q̇(1)

c

ρz
+ Ψ(1) Q̇(0)

c

ρz
.

As explained in Appendix A.2.1, we neglected kinematic corrections to the perturbed thermalisation
terms, as these contribute at order ≃ β τ̇ θz and are therefore smaller than the boosting terms ∝ β τ̇
in the Thomson contributions. We do not expect this to modify the main conclusions although some
details might differ during the µ-era. Alternatively, one could perform the computation in the baryon
frame to avoid this complication of the calculation [see 36, for discussion], however, this is beyond
the scope of this work.

2.5 Final evolution equation

We are now in the position to write the full evolution equation in terms of the spectral basis y(0) and
y(1). Together with Eq. (2.9), (2.10) and Eq. (2.25) we find

∂y(0)
0

∂η
= τ′θz

[
MK y(0)

0 + D(0)
0

]
+

Q′(0)

4
, (2.26a)

∂y(1)

∂η
+ γ̂ · ∇y(1) = −b(0)

0

(
∂Φ(1)

∂η
+ γ̂ · ∇Ψ(1)

)
+ τ′

[
y(1)

0 +
1

10
y(1)

2 − y(1) + β(1)χ b(0)
0

]
+

Q′(1)

4
(2.26b)

+ τ′θz
{
MK y(1)

0 + D(1)
0 +

[
δ(1)

b + Ψ
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)}
,

where we made it explicit that the zeroth order solution is only a monopole and converted to confor-
mal time, η. The first line accounts for all terms in the Thomson limit and the effect of anisotropic
heating. The last row describes the spectral evolution, with MK y(1)

0 +D(1)
0 determining the main terms

and the other being related to perturbed thermalisation effects. Before we convert this into a photon
distortion parameter hierarchy in Fourier space, let us briefly discuss the expected effect of distortions
on the other Einstein-Boltzmann equations.

2.6 Effect of distortion on the other perturbation equations

While we have completed our reformulation of the photon evolution equation in the presence of
spectral distortions, we still have to consider how the other perturbation equations might be modified.
As an example, let us update the momentum exchange equation with the baryons. For this we have
to compute the integral 1

2

∫
x3 χC(1)[n] dx dχ. We shall neglect any small corrections from photon

emission and absorption terms. Since the Compton terms all only act on the monopole5, these also
do not contribute and one is only left with the Thomson scattering terms. The change of the baryon

5This statement changes if kinematic corrections are taken into account, but the correction is suppressed by a factor of
θz ≪ 1 in comparison to the Thomson terms.
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momentum by scattering with photons at first order in perturbations then is [33]

∂β(1)

∂η

∣∣∣∣∣
T
≈ −τ′ ρz

ρb

1
2

∫
x3χ

Enbb

[
n(1)

0 +
1
10

n(1)
2 − n(1) + β(1) χ Ôxn(0)

0

]
dx dχ

=
τ′

i

ρz

ρb

∫
x3dx
Enbb

[
ñ(1)

1 − i
β(1)

3
Ôxñ(0)

0

]
−→

∂β̃(1)

∂η

∣∣∣∣∣
T
= τ′

4ρz

3ρb

3
Θ̃

(1)
1 +

N∑

k=0

ỹ(1)
k,1 +

ϵM
4
µ̃(1)

1

 − β̃(1)

1 + 4Θ̃(0)
0 + 4

N∑

k=0

ỹ(0)
k,0 + ϵM µ̃

(0)
0



 (2.27)

with β̃(1) ≡ iβ(1) and f̃ℓ(η, x, r) = i
ℓ

2

∫
Pℓ(χ) f (η, x, χ, r) dχ = i

ℓ fℓ0(η, x, r)/
√

4π (2ℓ + 1) based on
the Legendre polynomials, Pℓ(χ). Also, ρz and ρb are the background level quantities (without any
distortion effects included).

The presence of distortions modifies the momentum exchange by a small amount. For consis-
tency, these terms should be included in the hierarchies presented below. Here, ρz(1+δ

(0)
γ,0) is the total

energy density of the average CMB with δ(0)
γ,0 = 4Θ̃(0)

0 +4
∑N

k=0 ỹ(0)
k,0+ϵM µ̃

(0)
0 . Similarly, the momentum

carried by the photon dipole is modified to ρz (Θ̃(1)
1 + δ

(1)
γ,1) with δ(1)

γ,1 =
∑N

k=0 ỹ(1)
k,1 +

ϵM
4 µ̃

(1)
1 . In the tight

coupling limit, one then has

β̃(1)
tc ≈

3
(
Θ̃

(1)
1 + δ

(1)
γ,1

)

1 + δ(0)
γ,0

≈
3
(
Θ̃

(1)
1 +

∑N
k=0 ỹ(1)

k,1 +
ϵM
4 µ̃

(1)
1

)

1 + 4Θ̃(0)
0 + 4

∑N
k=0 ỹ(0)

k,0 + ϵM µ̃
(0)
0

≈ 3Θ̃(1)
1 + O(Θ̃(1)

1 ∆n(0)). (2.28)

However, in practice the terms δ(0)
γ,0 and δ(0)

γ,1 are small corrections to the evolution equations of the
standard variables unless the average distortion amplitude becomes close to unity, which is ruled out
by COBE/FIRAS. In a similar way, the equations for the potentials and neutrinos as well as temper-
ature polarisation states see negligible effects from the presence of distortions unless a full second
order treatment is attempted. For our computation below we shall leave all the first order equations
unchanged and only add the new equations describing the distortion anisotropies. Unless anisotropic
heating effects are explicitly considered, this means that distortion perturbations are directly driven
by the standard perturbations known from the evolution of the CMB temperature with no direct dis-
tortion anisotropy sources from the distortions themselves, the latter being O(∆n(0))2.

2.7 Expression in Fourier space

To obtain the SD transfer functions we now carry out the final step of going to Fourier space. This
allows us to obtain the photon transfer functions using a treatment that is similar to that of the standard
perturbation equations [52, 53]. All the variables appearing above are functions of X(η, χ, r). Going
to Fourier space and using the expansion, X(η, χ, r) =

∑
ℓ(2ℓ + 1) (−i)ℓX̃ℓ(η, r) Pℓ(χ) in terms of the

Legendre polynomials, we then have [33, 37]

∂X
∂η
+ γ̂ · ∇X −→ ∂X

∂η
+ ikχX −→ ∂X̃ℓ

∂η
+ k

(
ℓ + 1
2ℓ + 1

X̃ℓ+1 − ℓ

2ℓ + 1
X̃ℓ−1

)
, (2.29)

where k denotes the wavenumber of the mode. The background evolution equation in Eq. (2.26) needs
no further modification. Carrying out the Fourier and Legendre transformations of all remaining
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terms, from Eq. (2.26) we then find the final photon hierarchy

∂y(0)
0

∂η
= τ′θz

[
MK y(0)

0 + D(0)
0

]
+

Q′(0)

4
, (2.30a)

∂ỹ(1)
0

∂η
= −k ỹ(1)

1 −
∂Φ̃(1)

∂η
b(0)

0 +
Q′(1)

4
(2.30b)

+ τ′θz
{
MK ỹ(1)

0 + D(1)
0 +

[
δ̃(1)

b + Ψ̃
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ̃

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)}
,

∂ỹ(1)
1

∂η
= k

(
1
3

ỹ0 −
2
3

ỹ2

)
+

k
3
Ψ̃(1) b(0)

0 − τ′
[
ỹ(1)

1 −
β̃(1)

3
b(0)

0

]
, (2.30c)

∂ỹ(1)
2

∂η
= k

(
2
5

ỹ(1)
1 −

3
5

ỹ(1)
3

)
− 9

10
τ′ ỹ(1)

2 , (2.30d)

∂ỹ(1)
ℓ≥3

∂η
= k

(
ℓ

2ℓ + 1
ỹℓ−1 −

ℓ + 1
2ℓ + 1

ỹℓ+1

)
− τ′ ỹ(1)

ℓ
. (2.30e)

Aside from the new terms in the monopole equations and the generalization of the potential and
Doppler sources in terms of the distortion parameters this system is identical to the standard bright-
ness equations [31, 33]. Setting the terms τ′θz and Q′ to zero and using b(0)

0 = (1, 0, . . . , 0) these are
identically recovered.6

We note, however, that here we neglected corrections from polarisation terms, which affect the
quadrupole equation [37, 54, 55]. For the standard temperature terms we can include these as usual,
but no attempt to correct polarisation effects for the distortion evolution are made here. This means
that the damping scales of the temperature and distortion anisotropies will differ slightly. For the
distortions, the Thomson scattering terms will be identical [56]; however, additional effects in the
thermalisation terms will have to be studied more carefully, a task that is left to future work but
should be possible, e.g., by starting from [36, 39].

2.8 Line of sight integration and power spectra

To close our discussion of the theoretical aspects, we briefly present the line of sight approach for ob-
taining the final signal power spectra. In principle the solutions to the photon hierarchy in Eq. (2.30)
are enough to compute the power spectra and cross-power spectra of two observables X and Y:

CXY
ℓ (η) =

2
π

∫
k2 dk P(k) X̂ℓ(η, k) Ŷℓ(η, k) (2.31)

once the corresponding transfer functions, in this context indicated by the hat, are obtained. How-
ever, this brute force approach becomes numerically challenging, as known from the standard CMB
anisotropies [57]. To simplify matters, we start by Fourier transforming Eq. (2.26b), which yields

∂y(1)

∂η
+ ikχ y(1) + τ′y(1) = SLOS, (2.32a)

SLOS ≡ −
(
∂Φ(1)

∂η
+ ikχΨ(1)

)
b(0)

0 + τ
′
[
y(1)

0 +
1
10

y(1)
2 + β

(1)χ b(0)
0

]
+

Q′(1)

4
(2.32b)

+ τ′θz
{
MK y(1)

0 + D(1)
0 +

[
δ(1)

b + Ψ
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)}
,

6In comparison to [37] we use ΘHu
ℓ = (2ℓ + 1)Θℓ, which also is the definition used in [31]. For Φ and Ψ, we follow the

sign convention of [37], which means we have ΦMa = −Φ as defined in [31].
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where now all variables are functions f (1) = f (1)(η, χ, k). Realizing that the only real differences
with respect to the temperature only case are that we now are dealing with a solution vector and a
vector for the sources, following the standard steps (see Appendix D) we can directly write down the
solution for ỹ(1)

ℓ
(η f , k) at the final conformal time, η f , as

ỹ(1)
ℓ

(η f , k) =
∫ η f

0
dη g(η) S̃ℓ(η, η f , k), (2.33)

S̃ℓ(η, η f , k) =

ỹ(1)
0 + Ψ̃

(1)b(0)
0 +

(
∂Ψ̃(1)

∂η
− ∂Φ̃

(1)

∂η

) b(0)
0

τ′

 jℓ(k∆η) + β̃(1)b(0)
0 j(1,0)

ℓ
(k∆η) +

ỹ(1)
2

2
j(2,0)
ℓ

(k∆η)

+

θz
[
MK ỹ(1)

0 + D̃(1)
0 +

[
δ̃(1)

b + Ψ̃
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ̃

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)]
+

Q′(1)

4τ′

 jℓ(k∆η).

Here, we introduced the Thomson visibility function, g(η) = τ′ e−τb = ∂ηe−τb with τb = τ(η f ) − τ(η)
and the Thomson optical depth τ =

∫ η
0 τ
′(η′) dη′. We also defined ∆η = η f − η for convenience. The

functions j(a,b)
ℓ

(x) are based on the usual spherical Bessel functions jℓ(x) [58]. Concretely we give
j(1,0)
ℓ

(x) = j′ℓ(x) = ∂x jℓ(x) and j(2,0)
ℓ

(x) = 1
2

[
3 j′′ℓ (x) + jℓ(x)

]
as in [37].

In comparison to the standard line of sight approach, we have the extra source terms coming
firstly from the spectral mixing by Compton scattering and perturbed thermalisation effects (∝ θz)
and secondly from anisotropic heating (∝ Q′(1)). In addition, we have a more general Doppler and
potential source vector (∝ b(0)

0 ), which in general is time-dependent.

2.8.1 Reduction to the experimental basis

As explained in Sect. 3 of paper I, with an experiment in mind we can reduce the number of spectral
parameters by going from the computation basis to the residual distortion representation. From the
results for the transfer functions, this can be achieved by applying a matrix L to the solution vector
y(1). We can then plot the transfer functions for a more limited number of parameters, e.g., Θ, y, r1
and µ, without loosing much information. In a similar manner we can simplify the computation of
power spectra to those of the parameters in the experimental basis. Here is it best to directly apply the
rotation to the source vector in the line-of-sight solution, Eq. (2.33). This reduces the computational
burden, since the power spectra need to be computed for a reduced number of variables.

We comment that directly applying the projection on the limited observation basis before even
computing the transfer function is not an optimal choice as in this case energy conservation is not
guaranteed to the same level of precision as with the computation basis. Even if this would further
reduce the computational burden, we thus do not recommend such an approach.

2.9 Basic expectations for the evolution of distortion anisotropies

While it is difficult to anticipate the detailed behavior of the distortion transfer functions by looking
at the system in Eq. (2.30), we can already understand some of the most important features. Firstly,
without average distortions, non-standard evolution of the average temperature (see Sect. 2.3.2) or
anisotropic heating no distortion anisotropies are generated at first order even in the perturbed uni-
verse [24]. This limit is evident without further explanation, as in this case the system simply becomes
identical to the standard temperature anisotropies at first order in perturbation theory.

Secondly, photon emission and Comptonisation effects ∝ θz ≃ 4.6 × 10−10(1 + z) can only be
important at z ≳ 104, like for the average distortion evolution. At later times, the spectral evolution is
mostly frozen and only direct distortion anisotropy sources from boosting and potentials (∝ Ôx∆n(0))
or anisotropic heating (∝ Q̇(1)Y) can create additional distortion anisotropies at significant levels. We

– 16 –



note that if isotropic heating is present (e.g., by particle decay) it is naturally expected that anisotropic
heating occurs unless the heating mechanism is detached from perturbations in the standard cosmic
fluid (e.g., independent of the dark matter density or local clock speed). In paper III, we will discuss
how distortion anisotropies from decaying or annihilating particles will manifest, and then provide
simple constraints on these cases.

Thirdly, the effect of distortions (and thermalisation effects) on the evolution of the standard
perturbation variables is negligible unless non-standard sources of temperature perturbations are con-
sidered. This means that in many scenarios with distortion anisotropies, the transfer functions of the
distortion variables will behave like a driven oscillator, following closely the corresponding temper-
ature variables. This approximation is possible unless we look at the generation and thermalisation
of large distortions during the early phases (z ≳ 5 × 106), where momentarily one could still imagine
average distortions µ(0)

0 ≃ 10−2 [59, 60] and hence efficient conversion into temperature perturbations
of noticeable level. However, we leave a more detailed discussion of this regime to future work.

Moving away from the main time-dependent aspects, let us consider the scale-dependence of
the distortion evolution. In the absence of anisotropic heating, distortion anisotropies are only gen-
erated once average distortions are present. This means that there will be a difference in the transfer
functions depending on when during the cosmic evolution of the mode the injection occurs. Crucial
moments are horizon crossing, diffusion damping and free-streaming, all known from the standard
CMB temperature anisotropies [e.g., 33, 61].

If we pick a mode of wavenumber k, we can distinguish three main regimes:

i) the average distortion is generated after the mode has fully damped away by Silk-damping
(k ≫ kD, where kD ≃ 4.0 × 10−6(1 + z)3/2 Mpc−1 is the Silk-damping scale [54, 62]). In this
case, no distortion anisotropies are formed because fluctuations in the plasma are no longer
present at the corresponding scale.

ii) the average distortion is generated when the mode is well within the horizon but at k ≲ kD. In
this regime, no sources of distortions from potential variations arise, and distortion anisotropies
are generated solely by Doppler terms and perturbed thermalisation effects while at z ≳ 104.

iii) the average distortion is generated while the mode is still super-horizon. In this case, both
Doppler and potential perturbations affect the distortion fluctuations. We will furthermore be
sensitive to perturbed thermalisation effects when considering the evolution at z ≳ 104.

We will quantify these general expectations in paper III. We also note that once anisotropic heating is
included, the statistical properties of the source of heat could be highly non-Gaussian in which case
a more general Boltzmann system may have to be solved. In addition, direct sourcing of distortions
in the regime k ≫ kD can still lead to significant distortions at very small scales, e.g., by phase
transitions or non-linear baryonic physics.

3 Discussion and conclusions
This work provides the main formulation of a new photon Boltzmann hierarchy, Eq. (2.26) and
Eq. (2.30), that allows us to compute the evolution of distortion anisotropies at first order in per-
turbation theory (Sect. 2). Distortion anisotropy sources from Doppler and potential terms as well as
anisotropic heating and perturbed thermalisation are accounted for. We also account for the spectral
evolution of the distortion based on an approximate ODE treatment for the thermalisation Green’s
function, which captures most aspects of the full calculation using an extended spectral basis to
describe the residual distortion evolution (see paper I). We furthermore demonstrate that the line-
of-sight approach can be generalized to simplify the computation of the CMB signal power spectra
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(Sect. 2.8). We briefly explain how the computation can be simplified by converting to a spectral
basis that is optimised for the experiment using a basis rotation as explained in paper I (Sect. 2.8.1)

Overall, this paper is the second step in a series of works discussing the production and evolution
of SD anisotropies generated by various physical mechanisms and how these might be constrained
with future CMB spectrometers and imagers, enabling more realististic SD anisotropy forecasts over
a wide range of physics. The new formulation furthermore is a first step towards a more general
and precise treatment of CMB temperature anisotropies at second order in perturbation theory. In
the standard approach [35, 38, 39], an ‘instantaneous thermalisation’ approximation is applied which
ensures full energy conservation for the photons but without allowing a rigorous separation of distor-
tion and temperature terms. With our new ODE representation of the distortion Green’s function, one
should be able to overcome this problem, even if additional generalisations will be needed.

We highlight that Doppler boosting and potential driving distortion source terms were omitted
in most previous discussions of primordial SD anisotropies, although the importance of these terms
was recognized earlier [24]. These terms are indeed small with respect to the standard tempera-
ture perturbation (hence not affecting the their evolution notably); however, for the SD anisotropies
they provide the leading order source terms once average distortions are present. Since SDs can be
spectrally distinguished, these terms remain relevant, leading to the independent distortion parameter
hierarchies we presented here. The resultant distortion anisotropies are expected to be significant as
long as the average distortion is at the level that COBE/FIRAS allows. A more quantitative discus-
sion will be given in paper III, and subsequent works. Importantly, in paper III we will demonstrate
that this effect allows one to derive limits on the average heating rate using existing and future CMB
anisotropy measurements.

Finally, the generalised Boltzmann system can still be improved. We did not consider the effect
of polarised distortions nor thermalisation/Compton scattering in the anisotropies, which could fur-
ther modify the result. We furthermore neglected kinematic corrections as well as small non-linear
Comptonisation terms and Comptonisation effects in the anisotropies. A brute force treatment of the
problem for single modes, even if computationally demanding, might reveal additional augmentations
to the problem that may require extra attention. It would also be extremely important to formulate
the problem in alternative gauges/frames, to check the consistency of the equations and also explore
possibilities for simplifying the computations, finding analytic approximations, and clarifying the
physical interpretation of the signals. We leave all these improvements of our method to the future;
however, our main results should not be affected. We therefore conclude that one of the main steps
towards quasi-exact computations of anisotropic SDs in the perturbed Universe is taken.
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A Derivation of the photon collision term at first order

In this section, we obtain the required terms of the collision term at first order in perturbations. For
this, we start from Appendix C3 through C7 of [24] and also consider some modifications due to the
transformation to the local inertial frame, adapting the treatments of [35, 63]. Additional details about
relativistic radiative transfer can be found in [36]. The goal is to include the thermalisation effects
and energy exchange for the local monopole and also account for all distortion sources that arise at
background level. In the derivation below, we neglect polarisation terms and non-linear corrections
to the distortion evolution, e.g., coming from the Kompaneets term due to stimulated recoil. This
means we drop terms O(∆n2

0), linearising the scattering problem; however, we explain why this seems
justified in our treatment of the problem, and also briefly outline how one might be able to account
for these effects in the future.

A.1 Thomson terms

Starting from the standard physics of CMB temperature anisotropies, the Thomson terms and first
order Doppler boosts carry over trivially, leading to [e.g., 38]

τ̇−1 C(1)[n]
∣∣∣
T = n(1)

0 +
1
10

n(1)
2 − n(1) + β(1) χ Ôxn(0) (A.1)

without further ado. Here, we introduced the direction cosine χ = γ̂ · β̂ between the velocity and
photon direction. We also defined nℓ(t, x, r, γ̂) =

∑
m nℓm(t, x, r)Yℓm(γ̂) using the spherical harmonic

coefficients of the photon occupation number, nℓm(t, x, r). It is important that, in contrast to the
usual treatment, we now include the average distortion in Ôxn(0) = G + Ôx∆n(0), as this leads to
distortion anisotropies, which would not arise otherwise. This is the leading order source term at the
level ∝ τ̇β(1) Ôx∆n(0)

0 , which becomes noticeable once the mode enters the horizon. Without average
distortions, this term vanished and consequently only temperature fluctuations are sourced.

In Eq. (A.1), we neglected small Klein-Nishina corrections ∝ θe = kBTe/mec2, as these do not
change the spectral shape of the photon field but merely modify the Thomson scattering rates of the
dipole, quadrupole and octupole [24, 64]. Some of these corrections have been considered in [22].

A.2 Kompaneets terms

Let us next consider the Comptonisation terms from the scattering of electrons and photon with non-
zero energy exchange, which leads to spectral evolution. We shall include these effects only for the
local monopole as Thomson terms are not suppressed for ℓ > 0 and hence dominate the evolution
there. The standard Kompaneets equation is [34, 65]

τ̇−1 C[n]
∣∣∣
K = θeD̂xn0 + θzD̂∗xn0(1 + n0) = ∆θeY + θeD̂x∆n0 + θzD̂∗xA∆n0 + θzD̂∗x∆n2

0

= ∆θe
[
Y + D̂x∆n0

]
+ θzK̂x∆n0 + θzD̂∗x∆n2

0. (A.2)

where we used D̂x = x−2∂xx4∂x, D̂∗x = x−2∂xx4, K̂x = D̂x + D̂∗xA and A = 1 + 2nbb. From the
first group of terms we see that the local difference between the electron and photon temperature is
the main source of distortions, leading to injection of Y with a source correction from D̂x∆n0. We
have not yet included the effect of transforming to the local inertial frame, which causes an overall
factor of (1+Ψ) that usually only becomes important at second order in perturbation theory [35, 63].
However, here we are dealing with a non-vanishing zeroth order term, which then required inclusion
of this factor already at first order in perturbation once non-zero distortions are present.
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Adding this factor and collecting terms, we then have the Compton collision terms at zeroth and
first order in perturbations,

C(0)[n]
τ̇

∣∣∣∣∣∣
CS
= ∆θ(0)

e Y + θzK̂x∆n(0)
0 + ∆θ

(0)
e D̂x∆n(0)

0 + θzD̂∗x(∆n(0)
0 )2 ≈ ∆θ(0)

e Y + θzK̂x∆n(0)
0 (A.3)

C(1)[n]
τ̇

∣∣∣∣∣∣
CS
= ∆θ(1)

e Y + θzK̂x∆n(1)
0 + ∆θ

(1)
e D̂x∆n(0)

0 + ∆θ
(0)
e D̂x∆n(1)

0 + 2θzD̂∗x∆n(0)
0 ∆n(1)

0

+

[
τ̇(1)

τ̇
+ Ψ(1)

] (
∆θ(0)

e Y + θz K̂x ∆n(0)
0

)

≈ ∆θ(1)
e Y + θzK̂x∆n(1)

0 +

[
τ̇(1)

τ̇
+ Ψ(1)

] C(0)[n]
τ̇

∣∣∣∣∣∣
CS
+ ∆θ(1)

e D̂x∆n(0)
0 + 4Θ(1)

0 ∆θ
(0)
e Y1. (A.4)

At zeroth order, we neglect the small correction ∝ ∆θ(0)
e D̂x∆n(0)

0 + θzD̂∗x(∆n(0)
0 )2, which does not

modify the leading order picture significantly, being second order in the average distortion. Also in
the standard thermalisation computation with CosmoTherm this approximation works to extremely
high precision unless large distortions are encountered [59, 60].

At first order, the leading source term is again due to differences in the local electron temperature
with respect to Tz. However, since Compton equilibrium is reached quickly, ∆θ(1)

e will be comparable
to that of the local photon temperature perturbation with corrections from the local distortion and
heating rate (see Appendix C.2). This source term therefore mainly captures the modulation of the
local thermal equilibrium by the variation of the ambient blackbody temperature.

The term ∆θ(0)
e D̂x∆n(1)

0 leads to a correction to the Comptonisation time-scale7 of ∆n(1)
0 , with

the dominant term given by θzK̂x∆n(1)
0 . Since ∆θ(0)

e ≃ O(∆n(0)
0 ), here we can use ∆n(1)

0 ≈ Θ(1)
0 G, such

that we obtain the source

D̂x∆n(1)
0 ≈ Θ(1)

0 D̂xÔxnbb ≡ Θ(1)
0 ÔxD̂xnbb = 4Θ(1)

0 Y1, (A.5)

as used in the last step of Eq. (A.4). We can also rewrite the term D̂x∆n(0)
0 = (Ôx − 3)Ôx∆n(0)

0 with
the method described in the main text to simplify the correction ∆θ(1)

e D̂x∆n(0)
0 , which is related to

perturbed scattering terms.
The term ∝ 2θzD̂∗x∆n(0)

0 ∆n(1)
0 modifies the stimulated Compton scattering rate of ∆n(1)

0 . This is
dominated by the blackbody part, ∝ D̂∗xA∆n(1)

0 , within the Kompaneets operator, so that we neglect
this correction. It is clear that this term in principle is of similar order as terms that we indeed
keep; however, since it merely modifies the exact timing of leading order scattering terms, we believe
that its omission does not change the main conclusions significantly. A full numerical solution will
be required to check the error this simplification introduces. For this, we can in principle start by
mapping this term back onto the spectral basis just like for the Kompaneets operator, K̂x. This will
yield a representation in matrix form, creating a rotation of the spectral vector like for K̂x; however,
we leave an exploration of this effect to the future.

The term ∝ τ̇(1)/τ̇ are also due to scattering time-scale modulations but this time from pertur-
bations in the electron density, which we include as τ̇(1)/τ̇ = N(1)

e /Ne ≈ δ(1)
b using the baryon density

perturbation, δ(1)
b . We shall neglect perturbed recombination effects here [e.g., 35, 50, 51]. These

should never become important in the regimes we are interested in, when θz is not too small already.
The terms ∝ Ψ(1) account for the transformation to the local inertial frame [35], which were omitted
in [24]. These terms lead to perturbed scattering effects once an average distortion is present.

7More precisely the Doppler broadening and boosting term, ∝ D̂x.
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To close the discussion of all the effects from Compton scattering, we mention that additional
velocity corrections appear that are related to dipole scattering and kinematic effects. However, to
simplify the problem we neglect these terms. From [24], it is clear that these terms can only be
relevant at high redshifts, where significant energy exchange occurs, as we briefly discuss now.

A.2.1 Kinematic corrections to the Kompaneets term

As already mentioned in the main text, we do not include any energy exchange effects mediated by
Compton scattering on the anisotropies in the spectrum. This means that in the rest frame of the
moving thermal electron distribution one has

∂n′(x′, γ̂′)
∂y′z

∣∣∣∣∣∣
K
≈ θe
θz
D̂x′ n′0(x′) + D̂∗x′ n′0(x′)[1 + n′0(x′)], (A.6)

where the primes on variables denote that they are evaluated in the moving frame. After a boost, the
average occupation number in the moving frame is n′0(x′) ≈

∫
n[x(x′, β, χ′), χ(β, χ′)] dχ′

2 ≈ n0(x′),
where x(x′, β, χ′) ≈ x′(1+βχ′) and χ(β, χ′) = (χ′+β)/(1+βχ′). Here we neglected possible corrections
O(βn1) from aberration effects on the restframe dipole spectrum to the monopole in the moving frame.
Using the invariance of D̂x′ ≡ D̂x and D̂∗x′ ≈ (1 − βχ)D̂∗x together with the transformation of the
scattering y-parameter we then have

∂n(x, γ̂)
∂yz

∣∣∣∣∣∣
K
= (1 − βχ)∂n

′(x′, γ̂′)
∂y′z

∣∣∣∣∣∣
K
≈ (1 − βχ)

{
θe
θz
D̂x n0(x′) + (1 − βχ) D̂∗x n0(x′)[1 + n0(x′)]

}

≈ θe
θz
D̂x n0(x) + D̂∗x n0(x)[1 + n0(x)] − βχ

{
θe
θz
D̂x n0(x) + D̂∗x n0(x)[1 + n0(x)]

}

− βχ D̂∗x n0(x)[1 + n0(x)] + βχ
{
θe
θz
D̂x + D̂∗x[1 + 2 n0(x)]

}
T (x) (A.7)

where in the last step we used x′ ≈ x(1−βχ) and n0(x′) ≈ n0(x)+βχT (x) with T (x) = Ôxn0(x). This
result is consistent with Eq. (C37) in [24] after omitting dipole scattering effects. Assuming small
departures from the average blackbody spectrum, ∆n0 ≪ 1, we can insert n0 = nbb + ∆n0 and then
linearize in ∆n0, which with T = G + Ôx∆n0 yields:

∂∆n(x, γ̂)
∂yz

∣∣∣∣∣∣
K
≈ ∆Te

Tz
Y(x) + K̂x ∆n0 − 2βχ

{
∆Te

Tz
Y(x) + K̂x ∆n0

}
+

Te

Tz
βχ

[
Y(x) + D̂x ∆n0

]

+ βχ

{
∆Te

Tz
D̂x + K̂x + 2D̂∗x ∆n0

}
G + βχ K̂xÔx∆n0 (A.8)

≈ ∆Te

Tz
Y + K̂x ∆n0 − βχ

{
∆Te

Tz
[Y − 4Y1] +

[
K̂x − K̂xÔx + D̂∗x (A − 2G)

]
∆n0

}

The first two terms are just the standard Kompaneets terms, while the last group of terms accounts
for first order velocity corrections. In computations, the terms in braces would be evaluated at back-
ground level and are of order βχ θz per Thomson event. However, given that from Thomson terms
we have a source ≃ βχT (x), these temperature correction terms are merely a small modification to
the main source term (suppressed by a factor of θz ≪ 1). It is therefore well-justified to neglect these
contribution unless high precision is needed, as already mentioned above. A more rigorous study of
these effects is deemed important for obtaining a self-consistent (gauge-independent) formulation of
the problem, in particular once scattering corrections from the anisotropies [24] are included.
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A.3 Photon number changing processes

Aside from scattering, which conserves photon number, we also have to treat the conversion of dis-
tortions into pure temperature shifts. This thermalisation process is mediated by the combined action
of Compton scattering and photon emission processes (DC and BR). Modelling the exact evolution
of the photon field when DC and BR are included is difficult; however, it is known that the evolution
of the high frequency spectrum (ν ≳ 1 GHz) is not affected by these processes once the µ-era ends
[15, 18, 19]. We can therefore obtain an approximate description that simply leads to a redistribu-
tion of energy between the µ parameter and local photon temperature. The net photon emission and
absorption term takes the explicit form [18, 19, 28]

∂n0

∂τ

∣∣∣∣∣∣
em
=
Λ(x, θe, θγ) e−x θz/θe

x3

[
1 − n0

(
ex θz/θe − 1

)]
(A.9)

in the local inertial frame. We introduced the photon emissivity, Λ(x, θe, θγ), which for DC scales
as Λ(x, θe, θγ) ∝ θ2γ being driven by the high-frequency blackbody photons [16, 27, 66]. For con-
venience, we shall use the shorthand notation Λ(x, θz) ≡ Λ(x, θz, θz) below. We neglect kinematic
correction to the emission process and also do not consider the energy exchange corrections from
this term. These are expected to be negligible and also require a more careful study of the emission
process. Some first steps have been outline in [24].

Photon production processes are in equilibrium if the CMB occupation number is given by
a blackbody at the electron temperature. Thus, defining the distortion with respect to nbb(x θz/θe)
would simplify several aspects of the computation; however, the invariance of the spectrum under
redshifting is no longer guaranteed, such that we will not use this alternative description.

Perturbing the equation and neglecting terms that are higher order in the average distortions, we
can find the emission term at zeroth and first order in perturbations as

∂n(0)
0

∂τ

∣∣∣∣∣∣
em
≈ −Λ(x, θz)(1 − e−x)

x3 ∆n(0)
0 +

Λ(x, θz)
x2 nbbΘ

(0)
e = −

Λ(x, θz)
x2

nbb

G

[
∆n(0)

0 − Θ(0)
e G

]
(A.10a)

∂n(1)
0

∂τ

∣∣∣∣∣∣
em
≈ −Λ(x, θz)

x2

nbb

G

[
∆n(1)

0 − Θ(1)
e G

]
+ Θ

(1)
0
Λ(x, θz)

x2

[
∆n(0)

0 e−x + (G − A + 1)Θ(0)
e

]

−
[
δ(1)

b + Ψ
(1)

] Λ(x, θz)
x2

nbb

G

[
∆n(0)

0 − Θ(0)
e G

]

− Θ(1)
0


∂ lnΛ
∂ ln θγ

∣∣∣∣∣∣
θz

+
∂ lnΛ
∂ ln θe

∣∣∣∣∣∣
θz


Λ(x, θz)

x2

nbb

G

[
∆n(0)

0 − Θ(0)
e G

]
, (A.10b)

where we used (1 − e−x)/x = nbb/G. For the first order equation, we can see that the tempera-
ture derivatives of the emission coefficient modify the thermalisation effect. In the DC era, one has
∂ lnΛ/∂ ln θe ≈ 0 and ∂ lnΛ/∂ ln θγ ≈ 2, where the latter signifies that most of the DC emission is
driven by the blackbody part of the CMB spectrum [27, 66, 67]. Corrections to the picture from BR
will be neglected here, but can in principle be added using BRpack [26]. However, in the BR era, pho-
ton production is already nearly frozen, such that our approximations should not make a significant
difference to the final distortion evolution.
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B Evolution in various limits

B.1 Evolution equations in Thomson limit

Assuming that the average distortion is frozen, we can use the Ansatz n(1) ≈ Θ(1) G(x) + Σ(1) Ôx∆n(0)

in Eq. (2.6). We then have
∫

x2n(1) dx ≈ NG Θ
(1) + 3Σ(1)

∫
x2∆n(0) dx ≡ NGΘ

(1) + 3N∆n(0) Σ(1) (B.1a)
∫

x3n(1) dx ≈ EG Θ
(1) + 4Σ(1)

∫
x3∆n(0) dx = EGΘ

(1) + 4E∆n(0) Σ(1), (B.1b)

where N f =
∫

x2 f (x) dx is the number integral of the spectral shape, f (x). Unless the average CMB
temperature was affected by the energy release process, we have N∆n(0) ≈ 0 and otherwise N∆n(0) ≈
NG Θ

(0)
0 . Taking the number and energy density moments of the Boltzmann equation, Eq. (2.6), with

Dt[X] =
∂X
∂t
+

cγ̂
a
· ∇X (B.2a)

L[X, b] =
∂X
∂t
+

cγ̂
a
· ∇X + b

(
∂Φ(1)

∂t
+

cγ̂
a
· ∇Ψ(1)

)
(B.2b)

CT[X, b] = τ̇
[
X0 +

1
10

X2 − X + b β(1)χ

]
(B.2c)

and Eq. (B.1) this then yields

L[Θ(1)] + 3Θ(0)
0 L[Σ(1)] ≈ CT[Θ(1)] + 3Θ(0)

0 CT[Σ(1)] (B.3a)

L[Θ(1)] +
4E∆n(0)

EG
L[Σ(1)] ≈ CT[Θ(1)] +

4E∆n(0)

EG
CT[Σ(1)], (B.3b)

where we used the shorthand L[X] = L[X, 1] and CT[X] = CT[X, 1]. By taking appropriate sums and
differences of these equations we can then find

L[Θ(1)] ≈ CT[Θ(1)], L[Σ(1)] ≈ CT[Σ(1)], (B.4)

as would have directly followed by comparing coefficients of the two types of spectra, G and Ôx∆n(0).
As noted in the main text, Θ(1) starts with initial conditions from inflation while Σ(1) = 0 until the
distortion is in place. The equations above do not allow solving the system while ∆n(0) is evolving.

B.2 Changing the average temperature at second order in Θ̄

In Sect. 2.3.2, we showed that at first order in Θ̄, a photon source term ∝ G(x) leaves the spectrum
invariant [confirm Eq. (2.11)]. Here we now ask what photon source do we need to obtain a blackbody
up to second order in Θ̄ ≪ 1. Writing the Taylor series for a blackbody as n ≈ nbb(x)+[Θ̄+Θ̄2] G(x)+
1
2 Θ̄

2 Y(x) and taking the time derivative (denoted with dot at fixed x) we have

ṅ ≈ G(x)[ ˙̄Θ + 2Θ̄ ˙̄Θ] + Θ̄ ˙̄ΘY(x) ≡ S G [G(x) + fY Y(x)]. (B.5)

If we demand that the average blackbody temperature should change like ˙̄Θ = S T , then we can triv-
ially write S G = (1 + 2Θ̄) S T . Similarly, we then have Θ̄ ˙̄Θ ≡ S G fY , which implies fY = Θ̄/[1 + 2Θ̄].
The overall evolution equation is then given by ṅ ≈ S T [(1+2Θ̄)G(x)+Θ̄Y(x)], which leaves a black-
body spectrum with changing temperature unchanged at second order in Θ̄. Note that the ’blackbody
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source’ is no longer independent of the solution for the blackbody temperature and requires a y-type
contribution to shift the maximum of n towards higher frequencies. At second order, one thus cannot
create a blackbody with a temperature-independent source.

However, we have an alternative way of describing the same situation. Defining the effective
temperature and y-parameters as Θ̄eff = Θ̄[1 + Θ̄] and ȳeff = Θ̄

2/2 ≈ Θ̄2
eff/2, we can similarly

determine the required source functions for G and Y. For the source of G, we then simply need
S G ≡ ˙̄Θeff = (1 + 2Θ̄) S T =

√
1 + 4Θ̄eff S T ≈ (1 + 2Θ̄eff) S T . Similarly, we have S Y = ˙̄yeff = Θ̄S T =

(
√

1 + 4Θ̄eff − 1)S T/2 ≈ Θ̄eff S T . Since up to second order in Θ̄ we have Θ̄2/2 ≈ Θ̄2
eff/2, this also

directly follows from S Y ≈ Θ̄eff
˙̄Θeff ≈ Θ̄eff S T . We therefore find the same source term as above,

but with Θ̄ → Θ̄eff . The solution for Θ̄eff is then Θ̄eff = [exp
(
2
∫

S t dt
)
− 1]/2 = [exp

(
2Θ̄

)
− 1]/2 ≈

Θ̄[1 + Θ̄], which as expected shows the equivalence of the two approaches.

C Physical approximations for the kinetic equation

C.1 Compton Electron temperature and Compton energy exchange

The energy exchange between electrons (and matter) and photons is controlled by the Compton scat-
tering collision term. Smaller corrections due to BR and DC emission processes can be neglected.
From Eq. (A.3), we can directly write the zeroth order energy exchange term as8

Λ
(0)
C = −

8πh
c3

(
kBTz

h

)4 ∫
x3τ̇

[
∆θ(0)

e Y + θzK̂x∆n(0)
0

]
dx ≡ κ

[
Θ

(0)
C − Θ(0)

e

]
(C.1a)

κ = 4ρzτ̇ θz, Θ
(0)
C ≡ Θ(0)

eq ≡ η∆n(0)
0
=

∫
x3∆n(0)

0 wy dx

4Enbb

≈ Θ(0)
0 +

∑

k

ηYk y(0)
k,0 + ηM µ

(0)
0 , (C.1b)

where ρz =
8πh
c3

( kBTz
h

)4
Enbb is the energy density of a blackbody at a temperature Tz andΘe = ∆Te/Tz

denotes the relative temperature difference of Te and Tz. For convenience we also introduced the
background Comptonisation rate, κ, which will be used frequently below. We furthermore used the
Compton integral, η f , and the energy integral, E f =

∫
x3 f (x) dx as defined in paper I.

With Eq. (A.4), but setting Ψ(1) = 0 to evaluate in the local inertia frame, we can also directly
write the first order Compton energy exchange rate as

Λ
(1)
C ≈ κ


−Θ(1)

e −
∫

x3
[
K̂x∆n(1)

0 + Θ
(1)
e D̂x∆n(0)

0

]
dx

4Enbb

− 4Θ(1)
0 Θ

(0)
e + δ

(1)
b

[
Θ

(0)
C − Θ(0)

e

]


= κ
{[

1 + δ(0)
γ,0

] [
Θ

(1)
C − Θ(1)

e

]
+

[
δ(1)

b + 4Θ(1)
0

] [
Θ

(0)
C − Θ(0)

e

]}
(C.2a)

Θ
(1)
C =

1

1 + δ(0)
γ,0



∫
x3∆n(1)

0 wy dx

4Enbb

− 4Θ(1)
0 Θ

(0)
eq

 ≈ Θ(1)
eq − Θ(1)

0 δ
(0)
γ,0 − 4Θ(1)

0 Θ
(0)
eq . (C.2b)

with δ(0)
γ,0 = E

∆n(0)
0
/Enbb = 4Θ(0)

0 +4
∑

n y(0)
0,n+ϵMµ

(0)
0 , which accounts for a small correction to the energy

density of the zeroth order photon field. We will see that this term ensures energy conservation with
respect to the scattering correction, ∆θ(1)

e D̂x∆n(0)
0 in Eq. (A.4).

8The sign is chosen such that for a blackbody spectrum with Tγ > Te one has Λ(0)
C > 0 or energy flow to the electrons.
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We comment that the Compton equilibrium temperature corrections, Θ(0)
C and Θ(1)

C , could also
have been obtained directly using the well-known expression [68, 69]

ΘC =

∫
x4n(1 + n) dx

4
∫

x3n dx
− 1 =

∫
x3∆n0 wy dx +

∫
x4∆n2

0 dx

4Enbb + 4
∫

x3∆n0 dx
(C.3a)

both at zeroth and first order in perturbation when non-linear distortion terms (∝ ∆n2
0) are neglected.

The direct path using the Compton collision term highlights the consistency of the result.

C.2 Electron temperature equation and effective photon heating rate

In this section, we consider solutions to the local electron temperature including perturbations in
the medium. Due to the presence of Compton scattering, the electron temperature is always pushed
extremely close to the Compton equilibrium temperature, with corrections from the heating terms
that appear in the electron temperature equation. This leads to an effective heating term in the photon
equation that is obtained here for conditions in the pre-recombination era.

To obtain the correct terms, we adapt the discussion of [35]. Denoting time-derivatives in this
context with ‘dot’, during the pre-recombination era and consistent up to first order in perturbations
one has9

CV

[
Ṫe + 2H Te + 2

(
β

3a
+ Φ̇

)
Te

]
= (1 + Ψ)

[
ΛC + Q̇c

]
(C.4)

for the electron temperature. Here, CV =
3
2 kB Ntot is the non-relativistic heat capacity of the baryons,

with Ntot = NH + NHe + Ne being the total number density of baryonic particles.
Armed with these ingredients we can now write down the evolution equation for the electron

temperature at background and perturbed level. This yields

C(0)
V

[
Ṫ (0)

e + 2HT (0)
e

]
= Λ

(0)
C + Q̇(0)

c ,

C(1)
V

[
Ṫ (0)

e + 2HT (0)
e

]
+C(0)

V

[
Ṫ (1)

e + 2HT (1)
e + 2

(
β(1)

3a
+ Φ̇(1)

)
T (0)

e

]
= Ψ(1)

[
Λ

(0)
C + Q̇(0)

c

]
+ Λ

(1)
C + Q̇(1)

c .

Assuming the plasma to be fully ionised one finds C(1)
V = C(0)

V δ
(1)
b .

The background level equation is well-known in connection with the standard recombination
and thermalisation problems [e.g., 18, 70]. In the pre-recombination era, Te will follow a sequence
of quasi-stationary states due to rapid Compton interactions, pushing T (0)

e ≈ Tz. Making the Ansatz
T (0)

e = Tz + ∆T (0)
e and setting ∆Ṫe

(0) ≈ 0, we find

C(0)
V

[
−HTz + 2HTz

(
1 + Θ(0)

e

)]
≈ κ

[
Θ

(0)
eq − Θ(0)

e

]
+ Q̇(0)

c .

→ Θ
(0)
e =

∆T (0)
e

Tz
≈ κΘ

(0)
eq + Q̇(0)

c − HC(0)
V Tz

κ + 2H C(0)
V

≈ Θ(0)
eq +

Q̇(0)
c

κ
, (C.5)

where in the second step we neglected the correction from the adiabatic cooling effect, which leads
to a tiny average distortion µcool ≃ −3 × 10−9 [28, 71, 72]. We could have directly obtained the
solution by setting Λ(0)

C + Q̇(0)
c ≡ κ

[
Θ

(0)
eq − Θ(0)

e

]
+ Q̇(0)

c ≈ 0, a fact that we will use when computing the
perturbed temperature solution. Starting with Eq. (C.5) for the electron temperature, we then obtain

∂∆n(0)
0

∂t

∣∣∣∣∣∣
K
= τ̇θz

[
Θ

(0)
e Y + K̂x∆n(0)

0

]
= τ̇θz

[
Θ

(0)
eq Y + K̂x∆n(0)

0

]
+

Q̇(0)
c

4ρz
Y (C.6)

9We use Ψ = ΨS and Φ = −ΦS.
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for the Kompaneets terms. The combination Θ(0)
eq Y + K̂x∆n(0)

0 can be replaced with the Kompaneets
matrix description→ MK y(0). Here, Θ(0)

eq ≈ Θ(0)
0 +

∑
k ηYk y(0)

k,0 + ηM µ
(0)
0 once ∆n2

0 terms are neglected.
From this we can also identify the relative effective heating rate

Q̇(0) ≡ Q̇(0)
c

ρz
, (C.7)

which then leads to the formulation for the background distortion evolution given in the main text.
We note that when exact Compton equilibrium is no longer reached, we can directly solve

the zeroth order temperature equation given above to compute the main distortion source term in
Eq. (C.6). In this regime, we can neglect the terms τ̇θz and simply find direct sources of y-distortions
without any spectral evolution. This only is expected to become important at z ≲ 200, which is a
regime we do not consider at this point, such that the quasi-stationary solution is valid.

To obtain the perturbed temperature solution, we take the anticipated short-cut assuming quasi-
stationary conditions (or more accurately, CV H/κ ≪ 1). This then yields

0 ≈ Ψ(1)
[
Λ

(0)
C + Q̇(0)

c

]
+ Λ

(1)
C + Q̇(1)

c . (C.8)

This expression neglects the perturbed corrections to the adiabatic cooling process, which are sub-
dominant for our purposes, but should lead to a minimal distortion anisotropy in ΛCDM. In our limit,
Λ

(0)
C ≈ κ

[
Θ

(0)
eq − Θ(0)

e

]
≈ −Q̇(0)

c and hence Λ(0)
C + Q̇(0)

c ≈ 0. With Eq. (C.2), this then implies

0 ≈ κ
{[

1 + δ(0)
γ,0

] [
Θ

(1)
C − Θ(1)

e

]
+

[
δ(1)

b + 4Θ(1)
0

] [
Θ

(0)
eq − Θ(0)

e

]}
+ Q̇(1)

c

≈ κ
[
1 + δ(0)

γ,0

] [
Θ

(1)
C − Θ(1)

e

]
−

[
δ(1)

b + 4Θ(1)
0

]
Q̇(0)

c + Q̇(1)
c (C.9)

By solving for Θ(1)
e and neglecting higher order distortion terms, we then finally find

Θ
(1)
e ≈ Θ(1)

C +
Q̇(1)

c

κ
−

[
δ(1)

b + 4Θ(1)
0

] Q̇(0)
c

κ
≈ Θ

(1)
eq

1 + δ(0)
γ,0

+
Q̇(1)

c

κ
− 4Θ(1)

0 Θ
(0)
eq −

[
δ(1)

b + 4Θ(1)
0

] Q̇(0)
c

κ
, (C.10)

where the term ∝ 4Θ(1)
0 accounts for variations of the local photon heat capacity. Putting everything

together, from Eq. (A.4) we find

∂∆n(1)
0

∂t

∣∣∣∣∣∣
K
≈ τ̇θz

[
Θ

(1)
e Y + K̂x∆n(1)

0 + Θ
(1)
e D̂x∆n(0)

0 + 4Θ(1)
0 Θ

(0)
e Y1

]
+ τ̇θz

[
δ(1)

b + Ψ
(1)

] [
Θ

(0)
e Y + K̂x∆n(0)

0

]

≈ τ̇θz
[
(Θ(1)

eq − Θ(1)
0 δ

(0)
γ,0)Y + K̂x∆n(1)

0 + 4Θ(1)
0 Θ

(0)
eq (Y1 − Y)

]
+ τ̇θz

[
δ(1)

b + Ψ
(1)

] [
Θ

(0)
eq Y + K̂x∆n(0)

0

]

+ τ̇θzΘ
(1)
0 D̂x∆n(0)

0 +


Q̇(1)

c

ρz
+ Ψ(1) Q̇(0)

c

ρz


Y
4
+ Θ

(1)
0

Q̇(0)
c

ρz
(Y1 − Y)

≈ τ̇θz
[
Θ

(1)
eq Y + K̂x∆n(1)

0

]
+ τ̇θz

[
δ(1)

b + Ψ
(1)

] [
Θ

(0)
eq Y + K̂x∆n(0)

0

]
+


Q̇(1)

c

ρz
+ Ψ(1) Q̇(0)

c

ρz


Y
4

+ τ̇θzΘ
(1)
0

(
D̂x∆n(0)

0 − δ(0)
γ,0 Y

)
+ 4τ̇θzΘ

(1)
0

Θ(0)
eq +

Q̇(0)
c

κ

 (Y1 − Y) (C.11)

for the Kompaneets terms at first order. We can identify Θ(1)
eq Y + K̂x∆n(1)

0 = MK y(1) like for the zeroth
order. We note that in the second line we used the equilibrium temperature differences to isolate
the effect of external heating terms. We also set Θ(1)

e D̂x∆n(0)
0 ≈ Θ(1)

0 D̂x∆n(0)
0 , given that the other

corrections to Θ(1)
e are higher order in the distortion.
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It is important to highlight that the terms in the last line of Eq. (C.11) do not add any extra
energy to the system, but merely redistribute the energy spectrally, leading to a correction to the
perturbed scattering effect. For the terms proportional to ∝ Y1−Y this is trivially seen when computing∫

x3Y dx =
∫

x3Y1 dx = 4Enbb . For the other term we have
∫

x3D̂x∆n(0)
0 dx = −

∫
x4∂x∆n(0)

0 dx =
4
∫

x3∆n(0)
0 dx = 4Enbb δ

(0)
γ,0. With

∫
x3Y dx = 4Enbb this identically chancels the remaining term in

the last line and also highlights how the term ∝ δ(0)
γ,0 is crucial for conserving energy.

The only terms in Eq. (C.11) leading to addition of energy are those ∝ Q̇(1)
c /ρz + Ψ

(1) Q̇(0)
c /ρz.

We thus identify them as

Q̇(1) ≡ Q̇(1)
c

ρz
+ Ψ(1) Q̇(0)

c

ρz
, (C.12)

which is used in the main text to formulate the first order heating rate. We highlight that the terms
Q̇(0)

c and Q̇(1)
c simply follow from the collision terms in the local inertial frame. One would have

naturally guessed this perturbed heating term when thinking about Q̇ ≈ (1 + Ψ)Q̇c/ρz.

C.2.1 Adding extra Doppler terms to the system

Since the terms in the last line of Eq. (C.11) do not add any extra energy (or photons) to the system,
we can in principle neglect them in our computation, without changing the consistency of the system.
However, it is fairly easy to include them once D̂x∆n(0)

0 is evaluated. Since they are expected to
change the exact distortion evolution across the residual era, this could provide extra time-dependent
information. Inserting our distortion representation, with D̂x = −3Ôx + Ô2

x we have

D̂xG = 4Y1, D̂xYn = 12Yn+1 + 16 Yn+2, D̂x∆n(0)
0 = 4Θ(0)

0 Y1 + D̂x∆n(0)
0,d

D̂x∆n(0)
0,d = 4

N−2∑

n=0

(3Yn+1 + 4Yn+2) y(0)
0,n + D̂xYN−1y(0)

0,N−1 + D̂xYN y(0)
0,N + D̂xM µ(0)

0 , (C.13)

where we separated the distortion only terms (i.e., those without G). We can in principle again use
our projection method to obtain descriptions of D̂xYN−1, D̂xYN and D̂xM in our computation basis,
but it is much easier to just apply the boost matrix, MB, defined in Eq. (2.9) for this purpose. It turns
out that we then have

D̂x∆n(0)
0 = (MB − 3I)MB y(0) = MD y(0) (C.14)

where I is the identity matrix. One can precompute the Doppler matrix MD = (MB − 3I)MB for
numerical applications to ease the computations.

C.2.2 Compton equilibrium spectrum

An important property of the Compton collision term operator is the associated equilibrium spectrum,
which leads to a stationary spectrum under repeated scatterings. At zeroth order in perturbations, we
trivially have ∆n(0)

0,eq = GΘ(0)
0 + M µ(0)

0 , as can be verified by using K̂xn(0)
0,eq = −Y (Θ(0)

0 + ηM µ
(0)
0 ) and

Θ
(0)
eq = Θ

(0)
0 + ηM µ

(0)
0 , which leads to cancellation of the Kompaneets term at zeroth order.

How does this work for the first order Comptonisation terms? If we assume no average distor-
tion or temperature shift and no heating, then from Eq. (C.11) we naturally have

∂∆n(1)
0

∂t

∣∣∣∣∣∣
K
≈ τ̇θz

[
Θ

(1)
eq Y + K̂x∆n(1)

0

]
, (C.15)
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which again has the general solution ∆n(1)
0,eq = GΘ(1)

0 + M µ(1)
0 and Θ(1)

eq = Θ
(1)
0 + ηM µ

(1)
0 . Due to the

absence of any source terms for M we would even expect µ(1)
0 = 0. Comptonisation would therefore

not modify the spectrum of temperature perturbations, as naturally expected.
Let us now assume that the average spectrum has a slightly higher temperature than Tz, i.e.,

∆n(0)
0,eq = GΘ(0)

0 . In the absence of external heating, from Eq. (C.11) we find

∂∆n(1)
0

∂t

∣∣∣∣∣∣
K
≈ τ̇θz

[
Θ

(1)
eq Y + K̂x∆n(1)

0

]
+ 8τ̇θzΘ

(1)
0 Θ

(0)
0 (Y1 − Y) (C.16)

Where we used D̂x∆n(0)
0 −δ(0)

γ,0 Y = 4Θ(0)
0 (Y1−Y). The first group of terms is again solved as before, but

the last term remains out of equilibrium. It neither adds energy nor photon number to the spectrum,
but just changes the spectral shape. This means that even if the average spectrum has reached a
thermal spectrum, the anisotropy spectrum is distorted unless photon production and redistribution
are very efficient. We remark that this conclusion does not change when adding back the omitted
stimulated scattering term, 2θzD̂∗x∆n(0)

0 ∆n(1)
0 .

C.3 Photon production in the µ-era

A pure µ-distortion spectrum, M, does not balance emission and absorption at low frequencies, lead-
ing to net photon production in the µ-era and slow evolution of the µ-parameter at high frequencies.
However, if we insert ∆n0 = G(x)Θ0 + M(x) µ0 into the collision term and compute the photon pro-
duction rate, we obtain a divergent result at low frequencies. We thus need to find a modified solution
for the distortion that fixes this problem.

C.3.1 Zeroth order treatment of photon production

If we consider the photon evolution equation at zeroth order, with Eq. (C.6) and (A.10a) we have

∂∆n(0)
0

∂τ
≈ θz

[
Θ

(0)
eq Y + K̂x∆n(0)

0

]
− Λ(x, θz)

x2

nbb

G

[
∆n(0)

0 − Θ(0)
eq G

]
, (C.17)

where we used (1 − e−x)/x = e−x(ex − 1)/x = nbb/G and assumed that the heating process led to
a non-zero initial chemical potential and temperature shift at the initial time. Clearly, a spectrum
∆n(0)

0 = Θ
(0)
eq G is a stationary solution of the problem. The strategy is now to assume quasi-stationary

evolution of the spectrum, which means the left hand side is set to zero, ∂τ∆n(0)
0 ≈ 0. Without

emission and absorption terms we know that the spectrum will not change in this case and simply
be given by ∆n(0)

0 = G(x)Θ(0)
0 + M(x) µ(0)

0 with Θ(0)
0 and µ(0)

0 fixed by the initial condition. However,
as already mentioned, at low frequency this does not solve the equation above. Energetically the
required correction does not matter much, which means we can still use Θ(0)

eq ≈ Θ(0)
0 + ηM µ

(0)
0 .

To obtain the correction to the spectrum, we take the low-frequency limit of Eq. (C.17), es-
sentially thinking of the problem as a high-frequency (↔ energy) evolution and low-frequency (↔
photon number) evolution [e.g., see 19, for more details]. The characteristic scale in the problem is the
critical frequency, xc ≪ 1, which is defined by the balance between photon emission processes and
Compton scattering [15, 16, 18, 19, 71, 73]. This frequency is determined (at leading order) by the
implicit equation Λ(xc, θz) ≈ θzx2

c , which assumes that the emission coefficient, Λ(xc, θz), is a slowly
varying function of x. In the DC-era, we have xc ≈ 8.6×10−4

√
(1 + z)/2 × 106, assuming the standard

CMB temperature for Tz. The idea is now to write the Ansatz ∆n(0)
0 = G(x)Θ(0)

0 g(x) + M(x) µ(0)
0 m(x)

with frequency-dependent correction functions g(x) and m(x). At x ≫ xc one has g(x) ≃ m(x) ≃ 1.
It is therefore useful to consider g(x) and m(x) as functions of ξ = xc/x instead of x. Starting
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from Eq. (C.17), multiplying it by −x2
c/[θzξ

4] (this is the leading order dependence) and replacing
x→ xc/ξ, with the Ansatz ∆n(0)

0 = G(xc/ξ)Θ
(0)
0 g(ξ) + M(xc/ξ) µ

(0)
0 m(ξ) we then find

0 ≈ µ(0)
0

[
∂2
ξm(ξ) − m(ξ)

]
+ xcµ

(0)
0

{
1
2

m(ξ)
ξ
+ ηM

[
2 − ξ2
ξ3

−
(
∂2

∂ξ2
m(ξ)
ξ
− m(ξ)
ξ

)]}

+ xcΘ
(0)
0

{
2 − ξ2
ξ3

[1 − g(ξ)] +
4
ξ2
∂ξg(ξ)

}
. (C.18)

up to first order in xc ≪ 1. Neglecting the terms ∝ xc, we have the physical solutions m(ξ) = exp(−ξ)
and g(ξ) = 1, which together gives

Gmod(x) ≈ G(x), Mmod(x) ≈ M(x) e−xc/x (C.19)

for the modified temperature and µ-distortion spectrum. The goal is now use this to obtain an expres-
sion for the photon production rate at lowest order in xc. Integrating the collision term in terms of
photon number10, we find

1
Nz

∂N(0)
c

∂τ
= −

∫
x2 dx Λ(x,θz)

x2
nbb
G

[
∆n(0)

0 − Θ(0)
eq G

]
∫

x2nbb(x) dx
≈ − θz

Nnbb

∫ ∞

0
x2

c

[
∆n(0)

0 − Θ(0)
eq G

]
dx

= − θz
Nnbb

∫ ∞

0
x2

c

[
GΘ(0)

0 + M m µ(0)
0 −G(Θ(0)

0 + ηM µ
(0)
0 )

]
dx

≈ θz
Nnbb

∫ ∞

0

x2
c

x2 µ
(0)
0 m(x) dx

=
θz µ

(0)
0

Nnbb

∫ ∞

0

x2
c

x2 e−xc/x dx =
(

3
4 γρ

)
γN θz xc µ

(0)
0 . (C.20)

from the collision term. This remarkable result is the key to understanding the rate of conver-
sion from µ(0)

0 → Θ
(0)
0 . Indeed, the reduction of the chemical potential amplitude is given by

∂tµ
(0)
0

∣∣∣
em/abs ≈ −γN τ̇θz xc µ

(0)
0 [19], which we use in main text. We highlight again that without

the low-frequency modification to the spectrum by the factor e−xc/x one would not have obtained a
finite photon production rate. At low frequencies, the distortion vanishes and the spectrum is in full
equilibrium with the electrons, stopping any emission and absorption.

We note that, while for the temperature term ∝ Θ(0)
0 an exact cancellation occurred, in the final

steps we had to drop the term ηMµ
(0)
0 , since it still diverges logarithmically towards x → 0. This is

because we did not include higher orders in xc. We can in principle use Eq. (C.18) to obtain correction
to the distortion spectra at first order in xc. However, the procedure becomes quite involved requiring
additional normalisation conditions and also the including of time-dependent corrections [see 19].
This is beyond the scope of this work and left to a future publication.

We also note that one can in principle evaluate the exact integral
∫

x2
c M(x)m(x) dx numerically.

This yields the correction xc → xc(1 − 1.65x0.88
c ), which indicates that photon production is a little

slower than in the soft photon limit. However, in terms of perturbations in xc this is not a consistent
treatment and other corrections are expected to have a similar level. We therefore do not recommend
adding these corrections until a more complete treatment of the problem is attempted.

10There is no contribution from the scattering terms.
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C.3.2 First order treatment of photon production

We can now repeat the same computation but at first order in perturbations. The emission terms at
first order in perturbations is given in Eq. (A.10b). Remembering that ∆n(0)

0 ≈ −µ(0)
0 m(x)/x2 gave the

leading order term at zeroth order and checking the coefficients of all functions, keeping only leading
order terms, we then find

∂n(1)
0

∂τ

∣∣∣∣∣∣
low

em/abs
≈ θzx2

c

x2

µ(1)
0

m(1)(x)
x2 +

δ(1)
b + Ψ

(1) + Θ
(1)
0


∂ lnΛ
∂ ln θγ

∣∣∣∣∣∣
θz

+
∂ lnΛ
∂ ln θe

∣∣∣∣∣∣
θz

− 1


 µ(0)

0
m(0)(x)

x2

 .

Assuming Λ ∝ θ2γ, we have ∂ lnΛ
∂ ln θγ

= 2. Realising that Y1 −Y ≈ 3/[2x] and Y ≈ −2/x at x ≪ 1, we can
also collect all leading order Compton terms in Eq. (C.11) as

∂∆n(1)
0

∂τ

∣∣∣∣∣∣
low

K
≈ θz

{
K̂ low

x ∆n(1)
0 +

[
δ(1)

b + Ψ
(1)

]
K̂ low

x ∆n(0)
0 + Θ

(1)
0 D̂x∆n(0)

0 + 2D̂∗x∆n(0)
0 ∆n(1)

0

}

with K̂ low
x = x−2∂xx4[∂x+2/x] ≡ x−2∂xx2∂xx2. We added the term 2D̂∗x∆n(0)

0 ∆n(1)
0 ≈ 2Θ(1)

0 D̂∗x∆n(0)
0 G(x),

which naturally cancels some of the logarithmic corrections at low frequencies. However, in the over-
all evolution at high frequencies it should not be as important.

From the first order computation it is clear that the term ∝ δ(1)
b + Ψ

(1) will be canceled by the
corresponding zeroth order emission term. Inserting ∆n(i)

0 ≈ −µ(i)
0 m(i)(x)/x2 and adding the emission

terms we then obtain

0 ≈ µ(1)
0 K̂ low

x
m(1)(x)

x2 + Θ
(1)
0 µ

(0)
0

[
D̂x

m(0)(x)
x2 + D̂∗x

m(0)(x)
x3

]
− x2

c

x4

[
µ(1)

0 m(1)(x) + Θ(1)
0 µ

(0)
0 m(0)(x)

]
.

after dividing through by −θz. Transforming to ξ = xc/x with ∂x = −(xc/x2)∂ξ we then have K̂ low
x =

(x2
c/x

4) ∂2
ξ x

2, D̂xx−2 = (x2
c/x

4) ∂ξξ−2∂ξξ
2 and D̂∗xx−3 = −(x2

c/x
4) ∂ξξ−1 such that D̂xm(0)(x)/x2 =

(x2
c/x

4)[1 − 2/ξ − 2/ξ2]m(0)(ξ) and D̂∗xm(0)(x)/x3 = (x2
c/x

4)[2/ξ + 2/ξ2]m(0)(ξ)

0 ≈ µ(1)
0

[
∂2
ξm

(1)(ξ) − m(1)(ξ)
]
+ Θ

(1)
0 µ

(0)
0

[
∂ξξ
−2∂ξξ

2m(0)(ξ) − ∂ξξ−1 m(0)(ξ) − m(0)(ξ)
]

≈ µ(1)
0 m(0)(ξ)

[
∂2
ξ f − 2∂ξ f

]
. (C.21)

where in the last line we made the Ansatz m(1)(ξ) = m(0)(ξ) f (ξ). We then obtain f = 1 as the main
physical solution. This means that the first order perturbed distortion spectrum is identical to that of
the zeroth order and highlights that the Comptonisation and emission correction terms cancel each
other. We can therefore directly write the full photon production term as

1
Nz

∂N(1)
c

∂τ
≈

(
3

4 γρ

)
γN θz xc

[
µ(1)

0 +
(
δ(1)

b + Ψ
(1) + Θ

(1)
0

)
µ(0)

0

]
. (C.22)

In addition to the expected term −γN τ̇θz xc µ
(1)
0 , we therefore have the correction −γN τ̇θz xc

(
δ(1)

b +

Ψ(1) + Θ
(1)
0

)
µ(0)

0 , yielding a total reduction rate of

∂tµ
(1)
0 ≈ −γN τ̇θz xc

[
µ(1)

0 +
(
δ(1)

b + Ψ
(1) + Θ

(1)
0

)
µ(0)

0

]
. (C.23)

Following our approach for the zeroth order evolution, this can be used to model the redistribution of
energy between µ(1)

0 and Θ(1)
0 .
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In the µ-era, we have a photon production rate ≃ θγxc ∝ θ3/2γ , where the local photon tem-
perature matters. If the temperature changes, then both photon diffusion and DC/BR emission find
a new equilibrium, naively yielding a perturbation to the photon production term ≃ [θγxc(θγ)](1) ∝
θzxc(θz) [(1+Θ0)3/2](1) ≈ θzxc(θz) (3/2)Θ(1)

0 , as also used in Sect. 2.4.1. Why is the coefficient in front
of Θ(1)

0 equal to 1? The reason is that in comparison to the zeroth order treatment we have three un-
expected terms appearing in our quasi-stationary equation. For the emission process, this is the term
−θz(x2

c/x
4)µ(0)

0 m(0)(x), while for the Compton contribution they are θzΘ
(1)
0 D̂x∆n(0)

0 +2θzD̂∗x∆n(0)
0 ∆n(1)

0 .
Neglecting all these terms we have the quasi-stationary equation

0 ≈ µ(1)
0 K̂ low

x
m(1)(x)

x2 − x2
c

x4

[
µ(1)

0 m(1)(x) + 2Θ(1)
0 µ

(0)
0 m(0)(x)

]
.

Carrying out the transformations as above, this then yields the equation

0 ≈
{
µ(1)

0

[
∂2
ξ f − 2∂ξ f

]
− 2Θ(1)

0 µ
(0)
0

}
m(0)(ξ),

which has the physical solution f = 1 − Θ(1)
0 µ

(0)
0 ξ/µ

(1)
0 or µ(1)

0 m(1)
0 (ξ) ≈ (µ(1)

0 − Θ(1)
0 µ

(0)
0 ξ) m(0)

0 (ξ).
Evaluating the photon production term with this correction, we find a contribution −Θ(1)

0 µ
(0)
0 from the

terms µ(1)
0 m(1)(ξ), which put together again yields the correct result, −Θ(1)

0 µ
(0)
0 +2Θ(1)

0 µ
(0)
0 = Θ

(1)
0 µ

(0)
0 .

If we now only neglect the Compton terms θzΘ
(1)
0 D̂x∆n(0)

0 + 2θzD̂∗x∆n(0)
0 ∆n(1)

0 , we find

0 ≈
{
µ(1)

0

[
∂2
ξ f − 2∂ξ f

]
− Θ(1)

0 µ
(0)
0

}
m(0)(ξ).

yielding µ(1)
0 m(1)

0 (ξ) ≈ (µ(1)
0 − 1

2Θ
(1)
0 µ

(0)
0 ξ) m(0)

0 (ξ) and hence a contribution −Θ(1)
0 µ

(0)
0 /2 from the pro-

duction integral over µ(1)
0 m(1)(ξ). Put together this then gives −Θ(1)

0 µ
(0)
0 /2+Θ

(1)
0 µ

(0)
0 = (1/2)Θ(1)

0 µ
(0)
0 ,

which now is short of the expected result. Indeed, if we would only have used [xc](1) ≃ [(1+Θ0)1/2](1),
this would have been the result, highlighting the link to the emission process only.11

If we only neglect the extra photon emission term, −θz(x2
c/x

4)µ(0)
0 m(0)(x), we again obtain

0 ≈
{
µ(1)

0

[
∂2
ξ f − 2∂ξ f

]
− Θ(1)

0 µ
(0)
0

}
m(0)(ξ).

and hence a contribution −Θ(1)
0 µ

(0)
0 /2 from the production integral over µ(1)

0 m(1)(ξ). But now adding
things together we have−Θ(1)

0 µ
(0)
0 /2+2Θ(1)

0 µ
(0)
0 = (3/2)Θ(1)

0 µ
(0)
0 . This suggests that the naive estimate

does not capture the full effect of changing the DC emissivity with temperature.
While this is somewhat satisfying, we note that the required effect stems from a higher order

correction caused by the absorption term ∝ −∆n0 (ex θz/θe − 1) in Eq. (A.9), which does not contribute
at zeroth order, and hence can also not be captured by perturbing the zeroth order equation. In
reality, additional corrections can be expected since the frequency dependence of the DC emissivity,
Λ, may also modify matters. This was highlighted before as part of the analytic computations for
the distortion visibility function [19, 71]. Overall this shows that the precise scaling may depend on
which approximation for the photon emissivity is indeed used. However, a more detailed discussion
is beyond the scope of this work.

11The extra factor θγ in the photon production term ∝ θγxc comes from Compton scattering only.
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D Details of the derivation for the line-of-sight integral solution.

To simplify Eq. (2.32) and obtain an expression for ỹ(1)
ℓ

(η f , k) at the conformal time η f , we follow the
standard steps [57]. Defining the Thomson optical depth as τ =

∫ η
0 τ
′(η′) dη′, it then follows

∂ηy(1) + ikχ y(1) + τ′y(1) = e−(ikχη+τ)∂η
[
eikχη+τ y(1)

]
. (D.1)

We can therefore formally integrate Eq. (2.32) [57]

y(1)(η f , χ, k) =
∫ η f

0
dη e−ikχ∆η−τb SLOS(η, χ, k) (D.2)

to obtain the solution at the final time η f . Here we defined τb = τ(η f ) − τ(η) and ∆η = η f − η for
convenience. Note that now ∂ητb = −τ′.

In the source term, three types angular dependencies appear:

SLOS, 0 = τ
′ ỹ(1)

0 − b(0)
0
∂Φ̃(1)

∂η
+

Q′(1)

4
, (D.3a)

Stherm
LOS, 0 = τ

′θz
[
MK ỹ(1)

0 +D(1)
0 +

[
δ̃(1)

b + Ψ̃
(1)
b

] (
MK y(0)

0 +D(0)
0

)
+Θ̃

(1)
0 D(0)

0

]
(D.3b)

SLOS, 1 ≡ −b(0)
0 ikχΨ(1) + τ′β(1)χ b(0)

0 = −ikχ
[
Ψ̃(1) +

τ′

k
β̃(1)

]
b(0)

0 , (D.3c)

SLOS, 2 ≡ τ
′

10
y(1)

2 = −
τ′

2
ỹ(1)

2 P2(χ). (D.3d)

Here we separated thermalisation terms ∝ τ′θz from other sources. Inserting this back into Eq. (D.2)
and carrying out the Legendre transform, we then have

ỹ(1)
ℓ

(η f , k) =
i
ℓ

2

∫
Pℓ(χ) y(1)(η f , χ, k) dχ =

∫ η f

0
dη g(η) S̃ℓ(η, η f , k), (D.4a)

S̃ℓ(η, η f , k) =
i
ℓ

2

∫
Pℓ(χ) e−ikχ∆η

SLOS(η, χ, k)
τ′

dχ, (D.4b)

where we introduced the visibility function, g(η) = τ′ e−τb = ∂ηe−τb . Using the identity [37]

e−ikχ∆η =
∑

ℓ

(−i)ℓ(2ℓ + 1) jℓ[k∆η] Pℓ(χ), (D.5)

in terms of spherical bessel function, jℓ(x), we then encounter the following cases

i
ℓ

2

∫
Pℓ(χ) e−ikχ∆η dχ = jℓ(k∆η), (D.6a)

i
ℓ

2

∫
Pℓ(χ) (−ikχ) e−ikχ∆η dχ = ∂∆η jℓ(k∆η) = k

[
ℓ

2ℓ + 1
jℓ−1(k∆η) − ℓ + 1

2ℓ + 1
jℓ+1(k∆η)

]
, (D.6b)

i
ℓ

2

∫
Pℓ(χ) [−P2(χ)] e−ik∆χη dχ =

jℓ(k∆η)
2

+
3
2
∂2

k∆η jℓ(k∆η), (D.6c)

in Eq. (D.4b). Putting things together we then find S̃ℓ(η, η f , k) as given in Eq. (2.33).12

12As an intermediate step we used that
∫

g(η) k
τ′ Ψ̃

(1) j′ℓ(kη) dη =
∫

g(η) 1
τ′ [∂ηΨ̃(1)] jℓ(kη) dη +

∫
g(η)Ψ̃(1) jℓ(kη) dη since

kΨ̃(1) j′ℓ(k∆η) = [∂ηΨ̃(1)] jℓ(k∆η) − ∂η[Ψ̃(1) jℓ(k∆η)].
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8

Paper V: Spectro-spatial evolution of

the CMB III: transfer functions,

power spectra and Fisher forecasts

This paper is the third and final in a series of three papers (see chapter 6 and chapter 7)

which together aim to correctly model the frequency domain for the photon phase space

distribution (see chapter 2) within the Boltzmann hierarchy (see chapter 3).

With the spectral basis constructed and verifed in the first paper, and the details

of perturbation theory explored in the second paper, this paper contains the numerical

results for the extended Boltzmann hierarchy. We present photon transfer functions with

distorted spectral shapes, CMB power spectra, and forecasts for global energy release.

The distorted SED transfer functions contain three main sources, which allow us

to distinguish energy injection times and potentially injection mechanism too. These

three sources also manifest in the CMB power spectra which show clearly different

spectra for different injection times, including overall sign changes and local acoustic

peak structure changes.

We demonstrate that observing cross correlations between distortion amplitudes

and temperature anisotropies allows for placing constraints on the total average energy
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8: PAPER V: SPECTRO-SPATIAL EVOLUTION OF THE CMB III: TRANSFER
FUNCTIONS, POWER SPECTRA AND FISHER FORECASTS

injection. Fisher forecasts reveal that current data from Planck will not yield any

improvements over COBE/FIRAS, however future imagers like LiteBIRD or PICO have

potential to improve on current constraints through completely novel means.
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Abstract. In this paper, we provide the first computations for the distortion transfer functions of the
cosmic microwave background (CMB) in the perturbed Universe, following up on paper I and II in
this series. We illustrate the physical effects inherent to the solutions, discussing and demonstrating
various limiting cases for the perturbed photon spectrum. We clarify the relationship between distor-
tion transfer functions and the photon spectrum itself, providing the machinery that can then compute
constrainable CMB signal power spectra including spectral distortions for single energy injection and
decaying particle scenarios. Our results show that the µ× T and y× T power spectra reach levels that
can be constrained with current and future CMB experiments without violating existing constraints
from COBE/FIRAS. The amplitude of the cross-correlation signal directly depends on the average
distortion level, therefore establishing a novel fundamental link between the state of the primordial
plasma from redshift 103 ≲ z ≲ 3 × 106 and the frequency-dependent CMB sky. This provides a
new method to constrain average early energy release using CMB imagers. As an example we derive
constraints on single energy release and decaying particle scenarios. This shows that LiteBIRD may
be able to improve the energy release limits of COBE/FIRAS by up to a factor of ≃ 2.5, while PICO
could tighten the constraints by more than one order of magnitude. The signals considered here could
furthermore provide a significant challenge to reaching cosmic variance-limited constraints on pri-
mordial non-Gaussianity from distortion anisotropy studies. Our work further highlights the immense
potential for a synergistic spectroscopic approach to future CMB measurements and analyses.
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1 Introduction

The study of perturbations in the primordial plasma has delivered a wealth of cosmological informa-
tion in the past two decades. Through a combination of theoretical and numerical tools it has been
possible to yield not only strong constraints on the initial conditions that seed these perturbations, but
also tight limits on the exact constituents of the cosmic inventory [1, 2]. All this insight into the Uni-
verse’s primordial origins ensued from observations of the photon anisotropies at the last scattering
surface, an avenue of discovery in turn made possible by the tight coupling between photons and the
rest of the plasma mediated via the baryonic components of the fluid [3–6].

While traditional approaches to studying the early Universe via the Einstein-Boltzmann equa-
tions [7–9] capture many aspects of the problem, it is arguable that an entirely novel dimension is still
on the table. In its complete form, the photon phase space distribution carries dependence on time,
spatial coordinates and momentum. Through various manipulations (Fourier transforms and spherical
harmonic projections) and assumptions (e.g., Gaussian perturbations) these degrees of freedom are
captured with wavenumber k and Legendre moment ℓ. The momentum of the distribution is usually
only crudely captured by modelling the frequency spectrum as a blackbody with varying tempera-
ture – a consequence of assuming that all energy is thermalised instantaneously in most primordial
scenarios. It is well known, however, that the primordial photon spectrum has a greater diversity of
spectral shapes at the background level, known as Spectral Distortions (SDs) [10–16].

In the first paper of this series [17, henceforth ‘paper I’], we generalised and expanded the tradi-
tional average Boltzmann hierarchy to also span the dimension offered through spectral dependence.
By understanding the photon frequency hierarchy as a discretised sum over new basis functions,
Yn(x), of dimensionless frequency x, we can accurately model the evolution of the photon spectrum
including the residual-era. In the second paper [18, henceforth ‘paper II’] we use this discretised
formalism to extend the spatial Boltzmann hierarchy, thus completing the triad of variables, leaving
no information unexplored in the photon sector of the primordial plasma. This allows us to include
the main effects relevant to the evolution of primordial distortion anisotropies, namely, Doppler and
potential driving, anisotropic heating, perturbed thermalisation and the full spectral evolution from
y→ µ→ T across cosmic history.

We previously showed this method works for the evolution of the background spectrum by
replicating the average thermalisation Green’s function [19, 20]. In this paper (Sect 2.3), we apply
this formalism to the evolution of anisotropic photon spectra. By studying numerical solutions for
the spectrum we show that in the presence of average distortions there are three dominant sources
of anisotropies. Firstly, and perhaps most familiar, is Doppler boosting of the background spectrum,
whether this originates from potential decay or baryonic Doppler driving [21]. The boost operator,
Ôx = −x∂x, is also responsible for the cosmic microwave background (CMB) temperature and distor-
tion dipole induced by our own motion [22–24]. Secondly we have direct anisotropic heating, where
the same mechanism causing a global source of energy will inevitably have some patch-to-patch vari-
ations (i.e. via variations in local clocks). Finally there is a source of anisotropies associated with the
diffusion of the background spectrum, modulated by local temperature patches [see Eq. (2.1b)].

A crucial step for interpreting perturbed spectra in terms of SED (i.e., spectral energy distribu-
tion) amplitudes is discussed in Sect. 2.5. Essentially, there are many ways of describing a spectrum
as a series of coefficients, an ambiguity which is important for relating the modelled spectrum and
observations (see Sect. 5.2). If one took the SED amplitudes in the Yn basis at face value they would
falsely imply that almost no y and µ distortions are present. In reality because of mutual cancellations
and non-trivial overlaps between the modes it is possible to compress the information by projecting
out the usual SD amplitudes, using only a few residual modes to capture the rest (see paper I). We
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use this Principle Component Analysis (PCA) technique to show results in a reliable way, which is
motivated by the observational procedure.

With these clear definitions of SED amplitude we can calculate transfer functions for different
spectral modes (Sect. 3), which thus allows us to present power spectra for the photon spectrum (see
Sect 4). This direct link to what would be seen across the CMB sky is a big step in SD cosmology,
since we can now infer properties of the background spectrum from the SD anisotropies, and therefore
place limits on primordial energy release. Furthermore, we argue it is possible to place limits on
the time and details of the injection by studying the shapes and relative heights of the SD acoustic
peaks. We demonstrate this technique by presenting forecasted constraints on single energy injection
and particle decay (Sect. 5). With current data from Planck we forecast independent and novel limits
which are comparable with COBE/FIRAS. With future missions like LiteBIRD and PICO it is possible
to push the limits to be an order of magnitude better than COBE/FIRAS, and with potentially much
more discriminatory power as to the cause of injection. This opens the exciting opportunity for
full spectro-spatial explorations of early-universe and particle physics, bringing CMB anisotropy and
spectral distortion science together. In future, this synergy will be further explored and demonstrated,
firstly by focusing on the detailed evolution of non-Gaussian perturbations and secondly with detailed
forecasts based on Planck data using realistic sky simulation.

2 Generalized photon Boltzmann hierarchy

2.1 Brief recap of the important equations from paper I+II

For convenience we briefly summarise the bottom line results from the companion papers, which we
refer to for more details and clarification of notation. The treatment of paper I introduces a new set
of spectral shapes which in addition to the usual shapes form a sufficiently complete basis to model
spectral evolution, as seen by comparing to full binned calculations while reducing the number of
equations by at two or three orders of magnitude [25, 26]. In the new formalism, the photon moments
are packaged together with SD moments in a vector, y, with convention y = (Θ, y, y1, ..., yn, µ)T.
These spectral parameters decompose the distortion SED into temperature shift, G(x), y-distortion,
Y(x), nth boost of Y , Yn(x) = (1/4)nÔn

xY(x), and µ-distortion, M(x). The boost operator is simply
Ôx = −x∂x with dimensionless frequency variable x = hν/kBTz, where the reference temperature
variables scales as Tz ∝ (1 + z).

The treatment of paper II generalises and extends the standard spatial Boltzmann hierarchy for
early-universe perturbations [7–9] to describe the full spectro-spatial evolution of the photon field.
As such, many equations remain the same as for the standard Boltzmann hierarchy, unless otherwise
stated.1 Specifically, the gravitational potentials, matter densities and velocities and neutrino pertur-
bations remain unchanged. Spanning the same basis as mentioned above, we define a heating vector
Q and thermalisation vector D. The former usually only has one non-zero entry contributing to the
y-distortion amplitude, while the latter sources Θ from µ to capture the effect of photon production
processes. The Kompaneets operator, describing the Compton scattering process in the spectral dif-
fusion problem of the local monopole spectrum, is cast into the same vector space and can thus be
represented by a scattering matrix, MK, which gradually converts Y(x) to M(x) along a sequence of
intermediate Yn(x) spectra. A similar description exists for the Doppler boosting operator; however,
by construction this appears in the equation as b = MBy + (1, 0, 0, ...)T, where we have added an
inhomogeneous contribution to the Θ component arising from boosts on the background blackbody.

1In comparison to [9] we use ΘHu
ℓ = (2ℓ + 1)Θℓ, which also is the definition used in [7]. For Φ and Ψ, we follow the

sign convention of [9], which means we have ΦMa = −Φ as defined in [7].
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MD = MB(MB − 3I) is similarly associated with the boost operator, being the matrix counterpart
of the diffusion operator D̂x = x−2∂xx4∂x. Both MK and MB for various representations have been
explained in paper I & II and can be found at www.chluba.de/CosmoTherm, together with several
illustrating videos.

Superscript X(n) shall indicate the order of perturbation, while subscript Xℓ ≡ ∑m=ℓ
m=−ℓ XℓmYℓm

indicates the angular moment of the variable2 (e.g. y(1)
2 is the summed quadrupole of the photon

vector at first perturbed order). We shall use ỹℓ for the corresponding Legendre coefficient. We
furthermore use conformal time η to describe the evolution. The photon equations in this extended
Boltzmann hierarchy are then given by (see paper II)

∂y(0)
0

∂η
= τ′θz

[
MK y(0)

0 + D(0)
0

]
+

Q′(0)

4
, (2.1a)

∂y(1)

∂η
+ γ̂ · ∇y(1) = −b(0)

0

(
∂Φ(1)

∂η
+ γ̂ · ∇Ψ(1)

)
+ τ′

[
y(1)

0 +
1

10
y(1)

2 − y(1) + β(1)χ b(0)
0

]
+

Q′(1)

4
(2.1b)

+ τ′θz
{
MK y(1)

0 + D(1)
0 +

[
δ(1)

b + Ψ
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)}
,

D(0) =
(
γT xc µ

(0), 0, 0, . . . , 0,−γN xc µ
(0)

)T
, D(1) =

(
γT xc µ

(1), 0, 0, . . . , 0,−γN xc µ
(1)

)T
,

Q̇(0)
=

0,
Q̇(0)

c

ρz
, 0, . . . , 0, 0


T

, Q̇(1)
=

0,
Q̇(1)

c

ρz
+ Ψ(1) Q̇(0)

c

ρz
, 0, . . . , 0, 0


T

,

S(0) =
(
0, δ(0)
γ,0 + 4Θ(0)

e ,−4Θ(0)
e , . . . , 0, 0

)T
,

where the first equation describes the effect of energy release on the average CMB spectrum, and the
second is for the CMB anisotropies. For details on all terms we refer the reader to paper II, however
the most important terms for this paper are discussed in the following paragraphs.

For convenience we also give the Fourier and Legendre transformed form of the equations,
where k shall denote the wavenumber of the mode. These equations more closely resemble the
traditional implementation of Eq. (2.1) in Einstein-Boltzmann solvers [e.g., 27, 28]

∂y(0)
0

∂η
= τ′θz

[
MK y(0)

0 + D(0)
0

]
+

Q′(0)

4
, (2.2a)

∂ỹ(1)
0

∂η
= −k ỹ(1)

1 −
∂Φ̃(1)

∂η
b(0)

0 +
Q′(1)

4
(2.2b)

+ τ′θz
{
MK ỹ(1)

0 + D(1)
0 +

[
δ̃(1)

b + Ψ̃
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ̃

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)}
,

∂ỹ(1)
1

∂η
= k

(
1
3

ỹ0 −
2
3

ỹ2

)
+

k
3
Ψ̃(1) b(0)

0 − τ′
[
ỹ(1)

1 −
β̃(1)

3
b(0)

0

]
, (2.2c)

∂ỹ(1)
2

∂η
= k

(
2
5

ỹ(1)
1 −

3
5

ỹ(1)
3

)
− 9

10
τ′ ỹ(1)

2 , (2.2d)

∂ỹ(1)
ℓ≥3

∂η
= k

(
ℓ

2ℓ + 1
ỹℓ−1 −

ℓ + 1
2ℓ + 1

ỹℓ+1

)
− τ′ ỹ(1)

ℓ
, (2.2e)

2In rare cases of denoting the angular moment of one of the Yn(x) amplitudes we will use yn,ℓ as the convention, and
similarly will rename the y-distortion amplitude y0,ℓ. In many cases we simply label the ℓ explicitly for clarity.
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and can be solved using stiff ordinary differential equation (ODE) routines [29]. The equation set
takes a form that is extremely similar to the standard photon brightness temperature equation with the
differences that i) the average CMB monopole can evolve, ii) Doppler and potential driving terms now
affect various spectral parameters and iii) the local monopole sees new effects from thermalisation
process and energy injection. Some first discussion of the expected physical effects was already
given in paper II. Here, we will now demonstrate all these using numerical solutions of the transfer
functions, and illustrate how they eventually affect the CMB signal power spectra. Note that we
have not included polarisation effects in our description of the spectro-spatial problem; however, this
should not affect the main conclusions significantly. We have included polarisation effects for the
standard Θ, which on the one hand allows us to compare power spectrum solutions with CLASS, and
on the other hand provides important cross correlations between SD and E-modes (see Sect. 5).

2.2 Principal sources of anisotropic distortions

It will be useful for interpreting the following sections results to pause and discuss some features
of Eq. (2.1). Firstly we note the presence of distinct timescales: Thompson terms are weighted by
τ′ while Kompaneets and thermalisation terms are weighted by τ′θz, where θz = kBTz/mec2 is the
dimensionless temperature variable. This implies the former is the dominant interaction, however
only affecting higher multipoles of the distribution, leaving the latter as the dominant term for the
monopole. We note that τ′θz decreases with time, lending it greater importance in the µ-era. Further-
more the production of photons carries an implicit timescale in the critical frequency xc, effectively
shutting off photon creation for z ≲ 2 × 105 [30].

Following some mechanism of average energy injection Q′(0) which forms the background dis-
tortion, three main sources of anisotropic distortions are present: boosting, anisotropic heating and
perturbed thermalisation.

• Firstly the boosted background spectrum b(0)
0 appears twice in Eq. (2.1b), once as gravitational

boosting which is strongly associated with horizon crossing, and again as the Doppler boosting
from local baryon velocities β(1). This simply sources the boosted spectrum, e.g. for early
energy injection times there will be a spectrum resembling ÔxM(x) sourced in local patches.
One hallmark of the boosting effect is that early time injection yields ÔxM(x), which gives a
same-sign combination of y(1) and µ(1) from performing the PCA projection. On the contrary
late time injection yields ÔxY(x), which gives an opposite-sign combination of y(1) and µ(1).

• The second source is from direct anisotropic heating, which can be from modulations of the
background heating ≃ Ψ(1)Q′(0)

c or from an explicit model dependent heating term Q′(1)
c (be-

low we will consider the heating from decaying particles which is thus modulated by δdm).
These terms arise momentarily from energy injection, and then undergo thermalisation through
MKy(1)

0 + D(1)
0 . There is one more term following this behaviour other than these two explicit

ones: while arising from Kompaneets scattering, the term Θ(1)
0 Q̇(0)

c /4τ′θz = Θ
(1)
0

(
Θe − Θeq

)
∈

Θ
(1)
0 S in practice resembles a modulation to heating. It arises from terms associated with elec-

tron heating, and importantly carries the inverse time scale τ′θz which makes it manifest at
late times unlike other scattering terms. Physically this is because at early times the electrons
quickly reaches equilibrium with photons (Θe ≈ Θeq). At late times however we see this term
change the details of energy injection to the local photon patch. To avoid the risk of introduc-
ing a misnomer we clarify: this term does not inject energy, but simply changes which spectral
shape is excited, with a shift between Y(x) and Y1(x).
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• The third and final source is perturbed thermalisation, including perturbed scattering effects
∝

[
δ(1)

b + Ψ
(1)

]
MKy(0)

0 and perturbed emission ∝
[
δ(1)

b + Ψ
(1) + Θ

(1)
0

]
D(0)

0 . These simply modify

the local thermalisation timescale of MKy(1)
0 + D(1)

0 according to the average spectrum. Also
within perturbed scattering we find MDy(0) − S(0), once the aforementioned heating term has
been extracted. This part of perturbed scattering sources a local spectral shape resembling the
diffusion operator applied to the background together with a shift from Y to Y1 according to
Θeq. All of these effects are typically important at earlier times only.

These three sources are shown in Fig. 1. Furthermore see Sect. 3.1.1 for more details on these physics
switches which we make extensive use of to distil the physical picture throughout the paper.

We provide a disclaimer for the choice of groupings both for sources and for the switches in-
troduced later: there is no unique choice of this decomposition, and many terms fit into multiple
categories from a physical point of view. Consider for example the heating term which has been
extracted from S(0) whose origin is in the physics of Kompaneets scattering, however its behaviour
can be thought of as a form of anisotropic heating. Even the term Ψ(1)Q′c is associated with local
thermalisation efficiency, and is not a direct form of energy injection per se. Generally, considering
this paper is largely concerned with the presentation of numerical results, we have taken a qualita-
tive view of bottom line behaviour rather than a fundamental view of the underlying physics when
choosing our grouping of terms.

2.3 Broad picture for the anisotropic photon spectrum

In paper I, we showed how the extended Yn frequency basis can accurately capture the evolution
of the background spectrum by reproducing much more expensive binned frequency calculations
within CosmoTherm [19, 31]. The goal in this paper is to apply this new basis to the generalised
Boltzmann hierarchy and explore the evolution of the anisotropic photon spectrum. In contrast to
the background spectrum, this will depend on wavenumber k and angular scale ℓ, as is familiar from
usual early-universe perturbation theory, a fact which renders the usual binned spectral treatments
prohibitively expensive.

To study the three main anisotropic distortion sources we numerically solve scenarios with
∆ρ/ρ = 10−5 Dirac-δ energy injection at fiducial times z = 5× 105 (µ-era), z = 5× 104 (residual-era),
z = 5 × 103 (y-era). In Fig. 1 we show the corresponding spectrum for k = 0.01 Mpc−1 at three time
slices, showing the time dependence of different sources. Note that we show the purely distorted
spectrum with energy dimensions x3∆ f (x), meaning we have subtracted the local temperature shift
Θ(1). This is common throughout the paper to avoid inflationary perturbations dominating the figures
(typically ≃ 105 larger).

Typically speaking the leftmost panels will show the spectrum shortly after the energy injection
(corresponding to super-horizon state for the top two rows). The rightmost panel shows the spectrum
at late times – around recombination or later. We see that in all cases the boosting sources grow
strongly form left to right, starting at horizon crossing (gravitational boosting) and continuing sub-
horizon (baryonic Doppler boosting). The other two sources are only important for early injection
times, and dominate over the boosting sources deep in the µ-era. Notice that the earliest injection
times yield anisotropic spectra with unfamiliar three-peak structure arising from both MDy(0) and Y1−
Y (see perturbed thermalisation term), and cannot be easily recognised as a simple y or µ spectrum.
Anisotropic heating on the other hand initially sources y (with a small y1 correction), which then has
the opportunity thermalise via the equivalent terms to the average spectrum [see first terms in second
row of Eq. (2.1b) in comparison to Eq. (2.1a)], and thus follows the same evolution as the average
distortion picture. For example, the spectra from anisotropic heating cross the zero at x ≃ 1 and x ≃ 2
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Figure 1: Snapshots of the SD spectrum for ℓ = 0 and k = 0.01 Mpc−1 arising from several injection redshifts.
The rows show, from top to bottom, injection at z = 5 × 105, z = 5 × 104 and z = 5 × 103. Left to right show
different stages of evolution for each injection scenario. Coloured lines in each panel show the spectrum with
only one class of source terms included.

for µ and residual-era injection respectively, emulating the usual three era picture. The anisotropic
heating spectrum in the third row however does not correspond simply to a y distortion due to the
term ∝ Θ(1)

0 [Y1(x) − Y(x)] ∈ Θ(1)
0 S(0), which has no opportunity to thermalise in the late Universe.

All of these spectral shapes can be recognised in Fig. 2, where each of the important operators
are demonstrated. For example, we can see that spectral shapes with the three peak structure arise
from D̂x (early injection perturbed thermalisation) and Y1 − Y (late time anisotropic heating). In
the middle panel we show boosted spectra, where it is important to note ÔxM projects onto a same-
sign mix of Y and M and is well captured by these two numbers. On the other hand, ÔxY gives an
opposite-sign mix, and additionally needs around two residual modes to converge (see Sect. 2.5). This
dependence on residual modes will manifest later in late time injection power spectra (see Fig. 21).
Likewise, D̂xM requires at least two residual modes to converge, however, we will see later that early
time injection power spectra do not in fact make as heavy use of residual mode information, likely
from some cancellation of residual modes with other sources. Comparing individual SED amplitudes
here can be somewhat misleading considering the different energies they carry (this leads to µ often
being ≈ 1.401/0.25 = 5.6 times larger than y), but we can loosely assert that boosting the average y
distortion – the dominant late time behaviour – yields a µ amplitude four times the size of y, however
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Figure 2: A figure showing the main types of spectral shape. Note that they have been re-scaled by arbitrary
constants to make them all comparable. The leftmost panel shows the usual shapes familiar from average
frequency evolution, and also the limiting case for anisotropic injection before the y-era. The middle panel
shows the boosted spectra for both Y and M. The rightmost panel shows the diffusion operator acting on Y and
M as well as Y1 − Y , shapes that all emerge from early time thermalisation effects and late time anisotropic
heating (recognisable by their three peak structure). Some numerical approximations are shown in gray lines.

D̂xM carries closer to six times as much µ as y. This will be further exacerbated by anisotropic
heating thermalising to a µ distortion. We will verify later that the early universe injection will yield
much stronger µ × µ correlations than y × y (see Fig. 22).

2.4 Convergence of the photon spectrum

When studying the background spectrum there is the luxury of comparing to the full CosmoTherm
calculation (see Sect. 2.8 in the companion paper I). This has demonstrated that the ODE represen-
tation of the thermalisation problem is highly accurate and captures the main physical features of
the full treatment. For anisotropies, however, the parameter space grows in many dimensions, and a
direct CosmoTherm convergence benchmarks would be quite expensive. Despite this limitation we
can expect the anisotropic treatment to perform well. It can be seen in Eq. (2.1) that the sources
of anisotropies arise either from direct sources of y, or the matrix forms of the boost and diffusion
operators (Ôx → MB, D̂x → MD), precisely the operators around which the spectral basis was con-
structed. The bottom line is that the process of boosting is captured exactly in this formalism, not
approximately, as long as the dominant part of a spectrum is relying mostly on N < Nmax. More con-
cretely, the only boosted SEDs not directly contained in the basis are ÔxYNmax(x) and ÔxM(x). For
the first case we note that yNmax becomes smaller for growing Nmax, with y15 only seeing significant
contributions in very narrow windows of the residual-era (z ≈ 105 providing a worst case scenario).
For the second case we have shown ÔxM(x) to map extremely well back into the basis even with
Nmax ≤ 1 (see paper I). This all means that the accuracy of the anisotropic evolution will typically be
limited by the accuracy of the average evolution.

In Fig. 3 we show the photon spectrum for 0 ≤ Nmax ≤ 15 at various single energy injection
redshifts (from top to bottom row: zinjection = 5 × 105, 105, 5 × 104, 5 × 103). From left to right
we show different stages of the evolution, from the stable super-horizon state through to late post-
recombination evolution. We can immediately see that earlier injection times see poorer convergence
than later times, with z = 105 performing the worst as expected. This is due to the only late time
source being the boost operator, which given the arguments above is well captured in this basis. The
greater diversity of sources for the µ-era injection puts more strain on the numerical method, however,
we note that between Nmax = 15 and Nmax = 13 we only see sub-percent changes in the right most
panels of Fig. 3. This statement depends on the moment you observe the spectrum, which is why we
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Figure 3: Snapshots of the SD spectrum for ℓ = 0 and k = 0.01 Mpc−1 arising from several injection redshifts.
Within each panel, we show the solution when varying the size of the computation basis. For zinjection ≲ 5×103

and zinjection ≳ 5 × 105 convergence is extremely rapid, while for intermediate cases, a basis with Y15 starts to
shows its limitations.

opted to study the spectra in Fig. 3 at the same moments of time in a given column, unlike Fig. 1
where we prioritised elucidating physical sources at various moments of evolution. We note that in
Fig. 32 and Fig. 33 we perform a similar convergence analysis for the power spectra which gives a
less time dependent sense of the performance of the basis.

Notably the spectrum for y-era injection (bottom row) is captured almost exactly even with
just Y1 since the expected limiting case ÔxY = 4Y1 is precisely captured in that basis (late energy
injection sees very little contribution from other sources, see Fig. 1). The µ-era injection (top row of
Fig. 3) shows similarly good result. The main source in this era is less clear than for late times, but is
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Figure 4: Differences between monopole SED transfer functions in various bases (upper panels) and the
corresponding SD signals at three snapshots (lower panels). The transfer functions correspond to waves with
k = 0.01 Mpc−1 following an energy injection of ∆ρ/ρ = 10−5 at z = 5× 104. The amplitude of Θ is subtracted
prior to changing basis, to avoid hiding the signal under primordial fluctuations five orders of magnitude larger.
In this way, we highlight the fictitious Θ from the unconstrained change of basis (observation basis). The
solid/gray lines in each panel represent the residual modes for the given basis. In the computation basis, these
higher order contributions exceed the y and µ transfer functions, while for the scattering and observation basis,
they contribute marginally, as anticipated. In spite of the drastic SED parameter differences for the three basis,
the basis-independence of the SD signal is demonstrated in the lower panels.

some mix of ÔxM(x), D̂xM(x), M(x) and Y1(x)− Y(x), all of which are captured well in this basis. It
should be highlighted that the transition from T to µ-era is slower in this formalism compared to usual
numerical solutions and thus a study of convergence here is not the whole picture. In essence some
small thermalisation from µ(0) to Θ(0) occurred where we would not have expected any; however,
the correction is small and can likely be eliminated with further improvements of the thermalisation
treatment (see paper I for discussion).

2.5 Change of basis

It is explained in paper I that there is a large degree of degeneracy between the Yn(x) spectral shapes
and the more common G(x), Y(x) and M(x). Upon solving the average spectral evolution this led to
seemingly very different energy branching ratios for SED amplitudes that otherwise converged to the
same expected resulting photon spectrum. This problematic disconnect between branching ratios (or
soon transfer functions) can be remedied by performing a change of basis in which a new set of basis
function SEDs are chosen that better suit the physics being studied.
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In particular one can prioritise the regular SED shapes by first performing a projection onto
G(x), Y(x) and M(x), and subsequently constructing a set of orthogonal SED through PCA. We
will construct two such bases: firstly the observation basis, which as the name suggests performs
a PCA on the binned frequency space3 to allow direct comparison to results that are akin to what
would be obtained in real measurements. This basis was first considered in [32] and compresses the
accessible signal information significantly. Secondly, the scattering basis, which is constructed as
before, but with the additional constraint of photon number, so no other SED will project to G(x)
and vice-versa. This final basis highlights the fact that subtracting the theoretically accurate G(x)
from an observationally acquired spectrum is usually not possible provided the finite binning of an
experiment. In this light the Yn(x) basis will be called the computation basis, since it has been
constructed to model the boosting/diffusion/scattering processes dictating the evolution of photons in
plasma. This new vocabulary emphasises the basis-independence of the CMB spectrum anisotropies
in contrast to the basis-dependence of SED amplitudes – a fact which should be present in the readers
mind when interpreting any results in the subsequent sections in this paper, especially for detection
prospects (Sect. 5).

While transfer functions will be discussed extensively in Sect. 3, we show a single example
in Fig. 4 to illustrate the difference in basis choice. Focusing on the upper row first, the upper left
panel shows the computation basis with residual modes y(1)

n,0 typically dominating over the y(1)
ℓ=0 and

µ(1)
ℓ=0 amplitudes. This is understood since the background spectrum consists of a wide mix of y(0)

n

following energy injection in the residual-era, as these get boosted to perturbed spectra with y(1)
n+1,1.

Only for y(0)
Nmax

and µ(0) does this boosting mix directly into y(1)
ℓ

or µ(1)
ℓ

. The upper middle panel in the
upper row of Fig. 4 shows the results of casting to the scattering basis – projecting the spectrum back
onto the main SED and using residual modes to capture the remaining signal. This can indeed be
seen to give the same spectral shape while compressing the information to the usual SD amplitudes
and just a small contribution from residual modes (see lower panels). Finally the upper right panel
shows the observation basis, representing what could be seen with a binned observation of the sky.
Most notably it can be seen that some Θ(1)

ℓ
is generated by counteracting an increase in µ(1)

ℓ
, a result

of inferring spectral shapes from a limited window of visibility.4 However, the representation of the
signal is independent of these parametrisation aspects (lower panels in Fig. 4).

3 Numerical solutions for distortion transfer functions

With some understanding of SED transfer functions and how these map to a corresponding distorted
photon spectrum, we are now in the position to gain a more intuitive understanding of the behavior of
distortion anisotropies and their evolution. Like for the thermalisation Green’s function it is instruc-
tive to first consider single redshift injections of average energy from which we will then distill some
of the physics for distortion modes at various scales. All results in the following section are shown in
the scattering basis (see Fig. 4 for illustration), meaning that µ and y are usually representative of the
spectrum, with only minor contributions from the residual modes which will not be highlighted here.
The primordial temperature fluctuations have not been subtracted this time, allowing for comparison
of relative phases between the SED parameter amplitudes.

3We take a fiducial binning from νmin = 30 GHz to νmax = 1000 GHz with steps ∆ν = 1 GHz
4This effect is familiar in different settings [19, 20].
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3.1 Numerical setup

To solve the coupled system of Boltzmann equations we extend the anisotropy module of CosmoTherm
[25]. We set adiabatic initial conditions for the standard perturbations while the distortion parame-
ters are initially set to zero, given that no initial inflationary distortion signals are expected. The
ODE system is solved using a sixth order Gear’s method with adaptive time-stepping. This method
is stiffly-stable and does not require any separate treatment in the tight-coupling regime. The cor-
responding solver was implemented to solve the cosmological recombination problem [29, 33]. A
relative precision of ≃ 10−4 is requested and redshift is used as the main time-variable.

We truncated the multipole hierarchy following [7]. Depending on the scale, we include a
varying number of multipoles for CMB temperature and polarisation anisotropies, neutrinos and the
distortion parameters. We find that ℓmax = 15 is sufficient to achieve accurate power spectrum results;
however, for the transfer functions in this section we expand this greatly (up to ℓmax = 100) to
ensure no reflected energy in the shown time intervals. We do not include reionisation or perturbed
recombination effects in our treatment. Also, polarisation effects are only treated carefully for the
temperature perturbations, not for the distortion parameters. However, these approximations are not
expected to change the overall picture significantly.

3.1.1 Switching the physics

For the results presented below, it is instructive to switch on/off various physical effects. The goal is
to illustrate the effect on the distortion anisotropies, so in all cases, we do not modify the standard per-
turbation equations for temperature and polarisation terms. We introduce various physical switches in
relation to the sources mentioned in Sect. 2.2 (also see Fig. 1): Doppler/potential boosting, perturbed
emission/scattering, and anisotropic heating.

• Referring to Eq. (2.2), switching off Doppler boosting (here sometimes also referred to as
Doppler driving) means we drop the term ∝ β̃(1)b(0)

0 /3 in the dipole equations of the distortions.

• Similarly, to switch off potential driving we drop the terms −∂ηΦ̃(1)b(0)
0 and kΨ̃(1) b(0)

0 /3 in the
monopole and dipole equations of the distortions. These two switches are presented together
simply as boosting.

• Perturbed emission off means not accounting for the group of terms ∝
[
δ̃(1)

b + Ψ̃
(1) + Θ̃

(1)
0

]
D(0)

0
in the monopole distortion equation.

• Similarly perturbed scattering off means not accounting for the group of terms

∝
[
δ̃(1)

b + Ψ̃
(1)

]
MK y(0)

0 + Θ̃
(1)
0

(
MDy(0)

0 − S(0)
)

in the monopole distortion equation, except the aforementioned terms within S(0) which are
deemed anisotropic heating (see Sect. 2.2). These previous two switches together make up
perturbed thermalisation.

• Finally neglecting anisotropic heating means omitting all terms within Q′(1)/4, and also the
terms ∝ Q′c/4τ′θz within S(0).

The purely spatial thermalisation terms MK ỹ(1)
0 + D(1)

0 are always switched on, meaning there is a
similar evolution for spatial spectra as for average spectra. This is not to say that all sources will
undergo a simple thermalisation process, since terms like MD y(0) will continuously source from
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Figure 5: CMB transfer functions for single heating at zinjection = 5×105 with∆ργ/ργ = 10−5 and wavenumber k
as labeled. This leads to an average distortion that freezes withΘ(0) ≈ 4.9×10−6, y(0) ≈ 0.0 and µ(0) ≈ 1.1×10−5

at z ≲ 105. The numerical solutions are computed using Nmax = 15 with a rotation to the scattering basis
(Sect. 2.5). Dashed vertical lines show times of horizon crossing (gray) and energy injection (red).

the average spectrum, and boosting sources typically only occur after the early-time thermalisation
window (this is true for k modes which influence the CMB power spectrum).

One small clarification about the nomenclature of the perturbed thermalisation terms is in or-
der. Physically, the thermalisation process requires the combined action of Compton scattering and
DC/BR emission and absorption [11, 14, 16, 34]. When we say ‘perturbed scattering’, we mean
‘perturbed Compton scattering’ as opposed to ‘perturbed Thomson scattering’, which has no effect
on the spectral shape but would only slightly modify the Thomson visibility function, leading to a
higher order effect [e.g., 35]. The term ‘perturbed emission’ is indeed somewhat misleading as it
includes the change in the balance between DC/BR emission and Compton up-scattering, which ulti-
mately defines the distortion visibility [25, 30]. This latter effect was estimated by [36] in the context
of primordial non-Gaussianity, and originates from changes in the thermalisation efficiency around
zµ ≃ 2 × 106 due to the presence of perturbations. To not confuse it with ‘perturbed thermalisation’
(which includes all terms), we shall choose to use ‘perturbed emission’ instead of e.g., ‘perturbed
thermalisation efficiency’ or ‘perturbed visibility’.
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Figure 6: Same as Fig. 5, but focusing on µ(1)
0 (left column) and y(1)

0 (right column) for k = 0.01 Mpc−1.
Perturbed thermalisation effects (here dominated by DC and BR emission effects) are switched off for the
red/dashed line, showing a reduction of around half the initial local distortion, however illustrating that the
overall late evolution is not affected significantly by these corrections. Excluding the effect of Doppler and
potential driving for the distortion anisotropies shows that without potential driving the modes simply decay
and oscillate around a zero point. Doppler driving adds a small correction to this picture, most important
around recombination. Switching off perturbed thermalisation leads the local y distortion to only show an
initial transient spike, which rapidly thermalises through MKy(1)

0 + D(1)
0 (never switched off). Anisotropic

heating (orange) contributes about 1/2 of the initial µ(1) distortion, and does not source y(1). Finally, only
neglecting Doppler driving shows clearly how the slow part of the evolution is dominated by potential decay
(purple/dash-double-dotted line).
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Figure 7: Same as Fig. 6, but for k = 0.1 Mpc−1.

3.2 Anisotropies for energy injection in the µ-era

We begin our analysis by considering average energy release deep into the µ-era (z > 3 × 105). We
illustrate the transfer functions for Θ(1), y(1) and µ(1) in the various columns of Fig. 5 for a single
heating occurring at redshift zinjection = 5× 105, varying the wavenumber of the mode in the columns.
In this figure (as well as Fig. 8 and Fig. 11) the transfer functions for Θ(1) behave all as expected
and well-known for adiabatic perturbations [e.g., 6]. Similarly, as expected, distortion anisotropies
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Figure 8: CMB transfer functions for single heating at zinjection = 5×104 with ∆ργ/ργ = 10−5 and wavenumber
k as labeled. This leads to an average distortion that freezes with Θ(0) = 7.5 × 10−9, y(0) = 3.9 × 10−7 and
µ(0) = 1.2 × 10−5 at z ≲ 8000. The numerical solutions are computed using Nmax = 15 with a rotation to the
scattering basis. Dashed vertical lines show times of horizon crossing (gray) and energy injection (red).

only become visible after the average distortion is present. Additionally Fig. 6 and Fig. 7 show the
k = 0.01 Mpc−1 and k = 0.1 Mpc−1 modes with various physics switches on/off.

Focusing on the early evolution we see that following the creation of an average distortion there
is both a local monopole y and µ sourced. We can see by inspecting the upper-left panel of Fig. 1 that
this is equal parts from anisotropic heating and the perturbed scattering terms, as verified in Fig. 6.
This evolution quickly reaches an equilibrium state, where the mode then waits till horizon crossing,
upon which the boosting effects from gravitational potential decay and doppler boosting begin. These
negatively drive both µ and y, where the equal sign is characteristic of ÔxM(x) [we will see opposite
sign mixes later from ÔxY(x)]. At late times the distortion SED transfer functions oscillate around
a varying mean, mostly driven by the gravitational potentials, with small corrections from baryonic
Doppler boosts, again as seen from Fig. 6. Note, however, that the time of recombination receives
large contributions from baryonic Doppler driving (red line in Fig. 6), which makes it an important
source to CMB power spectra. By further inspecting Fig. 7 we can distinguish that the oscillations
in the tight coupling phase are associated with potential driving, while the baryonic Doppler boosts
mainly contribute at horizon crossing.

There is a small transient phase of evolution before reaching the superhorizon equilibrium state
(also seen well in the right panel of Fig. 6). This can be seen as the equivalent thermalisation process
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0 (left column) and y(1)

0 (right column) for k = 0.01 Mpc−1.
Similar general trends hold to Fig. 6. Perturbed thermalisation and anisotropic heating effects again show
equal importance to super-horizon evolution, while boosting is now more important and drives opposite signs
for µ(1) and y(1).
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Figure 10: Same as Fig. 9, but for k = 1 Mpc−1.

to what we see for average distortions MK ỹ(1)
0 + D(1)

0 , except with a slowing effect captured in, e.g.,
the term ∝

[
δ̃(1)

b + Ψ̃
(1)

]
MK y(0)

0 . This signifies a small delay to the conversion of y to µ with respect to

the average distortion, since δ̃(1)
b + Ψ̃

(1) < 0 for adiabatic modes. Because for the considered case, the
conversion to µ is extremely rapid, this manifests in a small peak in the µ0 and y0 transfer functions
before reaching its super-horizon plateau. For later injections, this evolution will be more visible
since the conversion from y to µ is less rapid (see Fig. 8).

Focusing on the late evolution, broadly speaking, we can see that aside from minor phase dif-
ferences the transfer functions of the respective multipoles of all spectral parameters behave simi-
larly. This is expected since the main driver during the late phase is Doppler driving and decaying
potentials, which source the distortion anisotropies in very much the same way to the temperature
anisotropies. This also means that the distortion-temperature correlations should be significant, as we
further demonstrate below.
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Figure 11: CMB transfer functions for single heating at zinjection = 5×103 with ∆ργ/ργ = 10−5 and wavenumber
k as labeled. This leads to an average distortion that freezes with Θ(0) ≈ 3.5 × 10−12, y(0) ≈ 2.5 × 10−6 and
µ(0) ≈ 2.0×10−7. The numerical solutions are computed using Nmax = 15 with a rotation to the scattering basis
(Sect. 2.5). Dashed vertical lines show times of horizon crossing (gray) and energy injection (red).

Regardless of what occurs super-horizon, horizon-crossing will drive a source of both µ and
y anisotropies (noticeable shortly after the gray vertical lines). This boosting typically occurs long
after the ceasing of thermalisation (for k-modes relevant to CMB power spectra), and will become
the dominant sources for late injection (see Fig. 11).

We also mention that one source of y-distortion anisotropies is from the shift in the average
CMB temperature by thermalisation. This comes from the Doppler boost of Θ(0) (ÔxG = Y +3G) and
for the early injection considered here is found to cause y(1)

0 ≃ −10−7ζ. At this level, several other
terms will become important so that we leave a more detailed investigation to the future. We note,
however, that this y-distortion mode could in principle allow us to test changes to the temperature-
redshift relation caused at late phases of the cosmic history. To leading order, the expected signal can
be thought of as a mismatch of the average CMB spectrum and the spectrum of the CMB anisotropies
due to the independent evolution of the average spectrum [37]. In addition, entropy production right
after the Big Bang Nucleosythesis era could be tested, which given current CMB anisotropy con-
straints on the helium abundance could still accommodate ∆ργ/ργ ≃ 0.01 [38, 39].
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Figure 12: Same as Fig. 11, but focusing on µ(1)
0 (left column) and y(1)

0 (right column) for k = 0.01 Mpc−1.
Perturbedd thermalisation is not shown now, since it has no effect (verified independently). Anisotropic heating
sources both µ(1) and y(1) via projections of Y − Y1. Other than this boosting is the dominant source, showing
the usual behaviour with the opposite sign mix of µ(1) and y(1).

3.3 Anisotropies for energy injection in the residual distortion era

We next consider injection at zinjection = 5 × 104, an approximate midpoint of the residual distortion
era (104 ≲ z ≲ 3 × 105). The average distortion now has a non-vanishing y-distortion contribution –
amounting to ≃ 50% of total energy for this redshift. Needless to say, the transfer functions for Θ(1)

remain unchanged, but are shown again in Fig. 8 for convenience.
The distortion transfer functions all show similar overall behavior as for zinjection = 5 × 105

except for some subtle yet notable changes. At z ≲ 2 × 105, DC emission and absorption terms
become negligible, like for the average evolution [30]. However, perturbed scattering effects are still
relevant, and in comparable to the anisotropic heating (see Fig. 1). The super-horizon evolution now
shows both y(1) and µ(1) contributions from anisotropic heating, however the MD operator together
with (Y1 − Y) causes anisotropic µ(1) to dominate the picture (see Fig. 9).

Both the µ and y transfer functions become highly correlated around horizon crossing, with
boosting now carrying more importance compared to earlier injection times. The mix of both y(0)

and µ(0) at background now produces boosted opposite sign mixes of local y(1) and µ(1), an effect
characteristic of late time injection.

One more small detail we can see in this later injection picture is the effect of injecting a dis-
tortion while in sub-horizon evolution, like the case of k = 1.0 Mpc−1. We can see by comparing
the leftmost column of Fig. 8 (compare to Fig. 5) that the oscillations begin immediately following
the formation of an average distortion, since many driving sources (e.g. Doppler boosting) are still
in effect, and in particular drive with the same frequency in either case. The lack of a super-horizon
equilibrium however reduces the noticeable effect of the offset varying mean. Injecting energy close
to or after horizon-crossing for smaller k will leave noticeable impacts on the CMB power spectrum,
which would be most prominent in the y-era. We see this effect in Sect. 18. To see this clearer we
include Fig. 10, where we can explicitly see a lack of contribution from Doppler driving, considering
the lack of an average distortion at the time of horizon-crossing. The perturbed thermalisation and
anisotropic heating terms are still able to cause a slight offset of the oscillation, but it is much less
dramatic than for modes with a full super-horizon phase.
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Figure 13: Decaying particle distortion transfer functions for µ(1)
ℓ=0 (left column) and y(1)

ℓ=0 (right column) at
k = 0.01 Mpc−1 and a total energy release of ∆ργ/ργ = 10−5. In each figure, we varied the lifetime of the
particle. Anisotropic heating is not included here. For the short-lifetimes, perturbed thermalisation effects are
visible before horizon-crossing.

3.4 Anisotropies for energy injection in the y-era

As a last illustration, we consider distortion anisotropies for injection at zinjection = 5×103, as shown in
Fig. 11. The average distortion is mainly a y-type signal with a ≃ 2% energy contribution from µ. At
this late stage, none of the perturbed thermalisation effects (i.e., scattering and emission corrections)
contribute significantly, and the evolution is dominated by the Doppler and potential driving terms
upon horizon-crossing. We see by inspecting Fig. 12 that perturbed thermalisation gives an initial
boost predominantly µ, but potential driving is the dominant source.

We can see that in all cases shown in Fig. 11 the distortion transfer functions very quickly
become highly correlated at a fixed ratio, i.e., y(1)

ℓ
∝ µ(1)

ℓ
. This is expected since there is no spectral

evolution and the anisotropies simply follow ÔxY .
The k = 0.01 Mpc−1 mode crosses horizon very soon after the injection time, and as such still

receives the potential boosting contribution. Note however that a smaller k could have undergone
gravitational decay before an average distortion existed in the Universe. We will see later that some
peaks in the CMB power spectrum are hindered by very late injection time, since they receive Doppler
driving but not potential decay (see Fig. 4.3.1).

3.5 Anisotropic heating from decaying particles

All of the discussion presented above only considered an average heating processes at a single red-
shift. Another interesting case we consider is due to heating by decaying particles, for which two
additional aspects become important. Firstly, decaying particle scenarios lead to a more complicated
time-dependent evolution of the average distortion [e.g., 25, 32, 40]. This will affect the main distor-
tion transfer functions in interesting ways. Secondly, assuming that the decaying particle densities are
modulated by perturbations in the cosmic fluid, anisotropic energy release will occur, which directly
creates distortion anisotropies [the Q′c

(1) ∈ Q′(1) term in Eq. (2.1b)]. While the average energy release
has been used to constrain decaying particle scenarios based on COBE/FIRAS data [26, 32, 41, 42],
the latter effect was never before discussed.
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Figure 14: Snapshot of the first three decaying particle distortion transfer functions for µ(1) (left column) and
y(1) (right column) at z = 1100 for a total energy release of ∆ργ/ργ = 10−5. Each row shows a different
multipole of the SED amplitude. In each figure, we varied the lifetime of the particle.

3.5.1 Time-dependent heating effect on the distortion transfer functions

Following [25, 43], we implemented a simple heating module for decaying particles, assuming a
constant lifetime, tX = 1/ΓX , and mass of the particle, mX . The average relative heating rate can then
be expressed as [see Eq. (6) of 43]

dQ(0)

dt
≈ mXc2 ΓX NX

ργ
=
ρX,0 ΓX e−ΓX t

ργ,0(1 + z)
≈ 4.85 × 103 fdm

[
Ωcdmh2

0.12

]
ΓX e−ΓX t

1 + z
, (3.1)

where in the last step we introduced fdm = ρX,0/ρcdm,0 to allow varying the fraction of dark matter
that the particle can make up. Note that calligraphic Q (as compared to Qc) is normalised by 1/ρz,
making these expressions match the terms appearing in Eq. (2.1).

In Fig. 13, we illustrate the distortion monopole solutions for various particle lifetimes. We
fixed the total energy release to ∆ργ/ργ = 10−5 by adjusting fdm. Comparing to the single injection
transfer functions above it is clearly visible how different decay rates smoothly vary across different
distortion eras, with shorter (longer) lifetimes having the characteristic final same-sign (opposite-
sign) combination of y(1)

ℓ=0 and µ(1)
ℓ=0 from the boosting effects. This is related to the switch of the

early (late) average distortion being M (Y), as discussed in Sect. 2.2. For our illustration we focused
on k = 0.01 Mpc−1, however, the overall picture does not change much when varying k. We also
restricted ourselves to decays in the pre-recombination era, such that we could neglect the direct
effects of decay on the ionisation history [44, 45]. The latter scenarios can be directly constrained
using CMB anisotropies.
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Figure 15: As for Fig. 14 but now perturbed decay was included here, with the effect becoming visible in
particular for yℓ and late times.

3.5.2 Perturbed decay effect on the distortion transfer functions

In the previous section, we only consider the isotropic part of the heating process. However, if the
decaying particle density is assumed to follow the dark matter distribution, we will also have an
anisotropic heating term (see Appendix A for a brief derivation).

dQ(1)
c

dt
≈ δ(1)

cdm
dQ(0)

c

dt
, (3.2)

which approximately accounts for the effect of number density modulation that acts alongside the
usual modulation of the local time in each Hubble patch ∝ Ψ(1) [present for all heating mechanisms
as per Eq. (2.1)]. We also assume that heating always only affects the local monopole, sourcing y(1)

ℓ=0.
In Fig. 14, we show snapshots of the monopole, dipole and quadrupole µ(1)

ℓ
and y(1)

ℓ
distortion

transfer functions at z = 1100, thus highlighting relative contributions to the SD power spectra (see
Sect. 4). The lifetime of the decaying particle is varied in each panel. Broadly speaking, the longer
the lifetime the larger the contribution of y(1).

In Fig. 15 we show the same figure, with perturbed decay included. For the longest lifetimes we
can see a significant enhancement directly from the perturbed decay term (e.g., blue/dashed-dotted
lines). This effect is not visible in the µ(1) transfer function, since at these late times there is no chance
for the distortion to thermalise (this could be different for much earlier times than z = 1100, however
here we are concerned with CMB power spectra).

In contrast to the previous discussions, we find that for the short lifetimes perturbed thermalisa-
tion effects contribute noticeably to µ(1)

ℓ=0 at k ≲ 0.01 Mpc−1, and in fact almost cancel the anisotropic
heating effects with the perturbed decay included. To illustrate these last two statements more clearly,
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Figure 16: Snapshot of the decaying particle distortion transfer functions for µ(1)
0 (left column) and y(1)

0 (right
column) at z = 1100 and a total energy release of ∆ργ/ργ = 10−5. The particle lifetime was fixed as annotated
but physical contributions were varied. The numerical solutions are computed using Nmax = 15 and the transfer
functions are given in the scattering basis.

in Fig. 16 we fixed the lifetimes as annotated but explicitly vary the physics. Perturbed thermalisation
decreases rapidly for longer lifetimes (right panel), leaving anisotropic heating as the dominant driv-
ing force which enhances the fluctuation amplitude at intermediate and large scales. As the red line in
Fig. 16 indicates, this contribution, is quite smooth without acoustic oscillations. In the left panel we
see a combined effect of perturbed thermalisation and anisotropic heating almost cancelling, contrary
to the intuition built in Fig. 1. This is due to the aforementioned combination of δ(1)

cdm +Ψ
(1) which in

adiabatic initial conditions evaluate to reverses the sign of the anisotropic heating had we neglected
perturbed decay.

We can anticipate that for lifetimes tX ≳ 1012 s, the effects may become even more dramatic;
however, in this regime also changes to the ionisation history ought to be included. In this case,
the Doppler and potential driving effects will reduce, and pure anisotropic heating terms, leading to
y × y-type distortions only, will dominate. We will consider this regime in future work.

4 CMB power spectra with primordial distortions

Studying the transfer functions in Sect. 3 has revealed many important physical aspects in the evolu-
tion of anisotropic photon spectra: three main types of source connect the average distorted spectrum
to local distortions patches. At early times the picture is dominated by anisotropic heating and per-
turbed thermalisation, with late times seeing main contributions from boosting sources. These local
distortion patches undergo their own evolution including Thompson scattering and thermalisation
terms yielding complex SED transfer functions.

This all tells us that the simple three-era picture of average spectral distortions does not exist
in the anisotropic case, or at least not as directly. Studying the various limiting cases of energy
injection into the µ- and y-eras reveals that a mix of both µ(1) and y(1) will almost always be present in
the anisotropic spectrum. It is feasible that by carefully studying the composition of the anisotropic
spectrum one could deduce what composition of X, ÔxX, D̂xX and Y1(x) − Y(x) is present, where
X = M(x) or Y(x) would give a sense of the origin of the anistropic signal. The bottom line is that
there still is a three-era picture, encoded by complex mixes of the SEDs making up the simple picture
at background level.
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The simplicity lost in the SD description allows us to yield an exciting gain in observational
power. Using the formalism described in this paper we can calculate power spectra from the primor-
dial SED perturbations, and thus open the door to apply the conventional tools used in CMB analysis,
but now resolving nuanced spectral shapes in place of a simple blackbody. By measuring the cross
correlations of temperature with µ(1) or y(1) we can not only place novel constraints on the total en-
ergy release in the primordial plasma, but we can also potentially infer the time of this injection.
Furthermore, the precise shape of the spectrum could additionally reveal details of the energy injec-
tion itself, with multiple injection or continuous energy release scenarios producing distinct power
spectra. We illustrate these points by again studying the range of power spectra arising from single
injection events, and contrasting with the particle decay scenarios.

Given the context of observation, the results will now be shown only in the observation basis
(see Sect. 2.5). We remind the reader that this projects the Yn(x) SEDs back to G(x), Y(x) and M(x),
making only small use of the residual modes. The observation basis in particular does not preserve
photon number in this projection, since the process of finitely binning and observing the frequency
space would not allow for number estimates in real observation (see paper I). Because of this, the
basis will typically slightly exaggerate the physical µ amplitude and compensate with a negative
temperature shift, as seen in Fig. 4. However, given the COBE/FIRAS constraints on average energy
release, the latter is too minor to change the temperature fluctuation significantly, unless more minor
(second order) effects would be considered. We are thus left with a marginal boost of µ due to this
interplay at the start of the residual distortion era (see [20, 32] and paper I).

Evolving the various SED amplitudes until today can be performed with the usual line-of-sight
(LOS) integration by including the modified system in Eq. (2.1). Again we summarise the bottom
line from the companion paper II:

ỹ(1)
ℓ

(η f , k) =
∫ η f

0
dη g(η) S̃ℓ(η, η f , k), (4.1)

S̃ℓ(η, η f , k) =

ỹ(1)
0 + Ψ̃

(1)b(0)
0 +

(
∂Ψ̃(1)

∂η
− ∂Φ̃

(1)

∂η

) b(0)
0

τ′

 jℓ(k∆η) + β̃(1)b(0)
0 j(1,0)

ℓ
(k∆η) +

ỹ(1)
2

2
j(2,0)
ℓ

(k∆η)

+

θz
[
MK ỹ(1)

0 + D̃(1)
0 +

[
δ̃(1)

b + Ψ̃
(1)

] (
MK y(0)

0 + D(0)
0

)
+ Θ̃

(1)
0

(
D(0)

0 + MD y(0) − S(0)
)]
+

Q′(1)

4τ′

 jℓ(k∆η).

We note again that the first entry in spectral parameter vector y(1)
ℓ

is the standard temperature per-
turbation (see Sect. 4.2). The other SED amplitudes are all smaller in proportion to the total energy
injection. Throughout this section we inject total energy ∆ρ/ρ = 10−5, yielding typical dimensionless
power spectra of magnitude DΘµ

ℓ
≃ DΘy

ℓ
≃ 10−5DΘΘ

ℓ
. Given DΘΘ

ℓ
≃ 10−9 at the largest scales in

standard ΛCDM, this implies a typical cross-power spectrum amplitude of DΘµ
ℓ
≃ DΘy

ℓ
≃ 10−14 in

dimensionless units. As we discuss in Sect. 5, this level is in fact just below the sensitivity of Planck
but already exceeds the sensitivity of LiteBIRD and PICO.

To compute the signal power spectra one can apply the standard formula

CXY
ℓ (η) =

2
π

∫
k2 dk P(k) X̂ℓ(η, k) Ŷℓ(η, k), (4.2)

where the transfer functions for the variables X and Y are used together with the standard curvature
power spectrum, P(k). We shall assume the standard cosmological parameters [2] in all our compu-
tations below. We will present results with the usual normalisationDXY

ℓ =
ℓ(ℓ+1)

2π CXY
ℓ .
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4.1 Numerical setup

The calculation of power spectra using Eq. (4.1) can be numerically challenging. Here we provide
details on the new implementation of this calculation within CosmoTherm, which relied heavily on
the advice provided in section V of [46].

Transfer functions for sufficiently large k undergo Silk damping [5] long before recombination,
and do not impact the CMB power spectrum. On the contrary, modes with low k have not yet crossed
horizon even at modern times, and thus also have no influence on the CMB spectrum. We therefore
limit our calculations to 2 × 10−5 ≤ k/Mpc−1 ≤ 0.5, with an understanding that the larger (lower) k
in this range impact the high (low) ℓ power spectrum. In particular, we highlight that k = 0.01 Mpc−1

corresponds roughly to the scale of the first peak in the temperature power spectrum, since it reaches
its maximum amplitude at recombination (see e.g. Fig. 4). Most figures in Sect. 3 showed this mode,
which can be helpful in observing some of the physical effects discussed below.

One of the largest complicating aspects of the power spectrum calculation is the combination of
a slow varying source with a rapidly oscillating bessel function under the same integrand. To illustrate
this, we schematically5 write

I =
∫ η f

0
dη g(η)S(η, k) jℓ(k∆η), (4.3)

where we have split the source S from Eq. (4.1) into a source explicitly dependent on perturbed
quantities and the leading spherical Bessel function.

Given this decomposition the approach will be to pretabulate a relatively sparse grid of S(η, k)
in a relevant region. This greatly simplifies the calculation since the source function varies slowly in
log space while also being expensive to calculate – requiring evolving the primordial perturbations
forward from much earlier times. The penalty is increased in this new framework where establishing
an accurate background spectrum requires solving even background equations from the time of energy
injection, long before relevant scales have crossed horizon. The relevant region for this pretabulation
is dictated by the visibility function, which in practice can be seen as restricting the integral limits
to concentrate around recombination z ≈ 1100. This is slightly different for the Integrated Sachs-
Wolfe effect, whose terms contain an explicit 1/τ′ which can be interpreted of as changing g(η) →
exp

(
τ(η f ) − τ(η)

)
and thus stretching the region of importance all the way to modern times. In the

calculations shown below we create a pretabulated region with 500 points k/Mpc−1 ∈ [
2 × 10−5, 0.5

]

and 1000 points η/Mpc ∈ [
200, η0

]
, crucially both being log-spaced.

These 2D grids are then interpolated and used for integration with the Bessel functions, which
is best done in linear space since the Bessel function zeros are – for our purposes – spaced evenly.
To efficiently integrate a highly oscillatory function, in CosmoTherm we use Chebyshev integration
techniques, and find the integral across η converges with ≃ 210 samples. Another large efficiency
boost in the code is to cache the values of the necessary spherical Bessel function6, knowing that
k∆η falls between 0 and some maximal value kmax(η0 − ηmin) ≈ 0.5 × 15000 = 7500.7 Finally, it
is noteworthy that the power spectrum is a smooth function, and not all jℓ need to be integrated. In
practice the sampling can become quite sparse towards high ℓ, with a cubic spline making up the
missing evaluations.

Following the integral across conformal time we are effectively left with X(η0, k), and the inte-
gral across k can be performed as required. Here, the benefit of the pretabulated sources has become

5Note that to fully express Eq. (4.1) in this form we would take a summation over jℓ(k∆η), j(1,0)
ℓ (k∆η) and j(2,0)

ℓ (k∆η)
with their corresponding sources, however here our aim is to clarify the computation and will use the simpler expression
with a single source.

6We use the Boost-library www.boost.org to accelerate the computation and achieve high precision.
7This statement is somewhat cosmology-dependent; however, 7500 is already quite conservative.
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Figure 17: A figure showing the standard, albeit dimensionless, CMB power spectra (ΘΘ, ΘE, EE) both in
CLASS [28] and CosmoTherm. The top panel shows that only qualitative differences exist for very low ℓ in the
E mode spectra. The bottom panel reveals through the residuals that differences are below the percent level
across the entire ℓ range.

apparent, since many more points are required to effectively capture the oscillations in X(η0, k) than in
S(η, k), again because of the spherical Bessel function in the time integrand. Specifically, we calculate
≳ 4000 points in X(η0, k) from our original grid of only 500 S(η, k) points, and have thus reduced the
number of Boltzmann hierarchy calculations by an order of magnitude. This is especially noteworthy
in this new treatment of the frequency space, where we have an additional > (ℓmax + 1) × (Nmax + 2)
equations compared to the standard Boltzmann solvers.8 For our chosen parameters of Nmax = 15
and ℓmax = 15 this amounts to 272 new equations on top of the 5 + 2ℓmax = 35 needed for the stan-
dard calculation (Φ, δcdm, ucdm, δb, ub, Θℓ, νℓ). Assuming some form of matrix inversion scaling like
O(N3) we get a solution taking over 1h where it would have previously taken 10s (even an optimistic
scaling of O(N2) yields a factor of > 10, giving 13m in place of 10s). In this first implementation of
the problem, we have had a focus on accuracy and convergence over efficiency, and therefore shall
be content with these performance numbers. We find that increasing any parameters here (e.g. ℓmax
and k or η samples) yields no appreciable change to the final results [see however Appendix B for
discussion of convergence across Nmax]. The efficiency can likely be increased however following
more optimization similar to what has gone into state-of-the-art Boltzmann solvers like CAMB [27]
and CLASS [28].

8In this, the +2 comes from µ and y, while the +1 comes from the fact that the SD sector must be solved at the
background level too.
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4.2 CMB temperature power spectrum benchmark

The first entry in the photon vector y(1) in this implementation reproduces the CLASS CΘΘ
ℓ

power
spectrum to high precision as shown in Fig. 17. The absolute value of relative differences between
CosmoTherm and CLASS amounts to 0.03% for DΘΘ

ℓ
and 0.29% for DEE

ℓ once averaging over 2 ≤
ℓ ≤ 3000 (or 0.02% and 0.03% for averaging residuals without absolute value).9 These results are
achieved in ≃ 30s (wall time) running in parallel over 64 cores, showing some lack of optimisation
compared to CLASS, however comparable performance can most likely be achieved with further work.
We note that the ΘE and EE quadrupole appear much larger in CosmoTherm than in CLASS, however
this will not impact the forecasts considering the cosmic variance at those scales.

4.3 Single injection CMB power spectra

We now have all the ingredients to compute the first CMB parameter power spectra. In Fig. 18, we
show the Θ× µ, Θ× y and Θ× r1 power spectra for various injection redshifts and ∆ργ/ργ = 10−5. A
rich acoustic peak structure is revealed, with a clear dependence on the injection epoch.

Starting with late time injection we can see that the peaks in Θµ and Θy are the same shape,
with only some negative coefficient relating the two. This is due to boosting as the only source at
sufficiently late times, as seen and discussed throughout Sect. 3. This intuition is reinforced by the
ratio of observed µ and y energies in Fig. 19, which approaches a consistent value for late time injec-
tion. Furthermore the fact that the peaks in the power spectra have similar appearance the usual ΘΘ
spectrum hints towards the common source of Doppler boosting, which can be verified by inspecting
Fig. 20. Finally we note that the low ℓ part of the spectrum is similarly due to the late time ISW
effect, again familiar from the standard Cosmological picture.

The earlier times are more complicated, with anisotropic heating and perturbed thermalisation
taking on more importance and frequently counteracting the minimal contributions from boosting
(see Fig. 6 and compare to top row of Fig. 1). This can be immediately seen by how odd peaks are
strongly suppressed in the Θ × µ spectrum, indicating a source which is not governed by Doppler
peaks. In fact, the prevalence of even peaks hints towards the effect of baryon loading, variables
which partly modulate the local thermalisation efficiency. In the Θ × y spectrum the Doppler peaks
are still appreciable, a consequence of perturbed scattering favouring the creation of µ(1) through
perturbed thermalisation (through both MDy(0)

0 and Y1 − Y) and anisotropic heating thermalising to a
µ(1) spectrum, thus leaving the small boosts as sole contributors to local y(1) distortions.

The amplitude of the Θ× r1 power spectrum is roughly one order of magnitude below the Θ× y,
indicating that only about 10% of the SD-energy is contained in this observable. Higher residual
distortion power spectra (see Sect. 4.3.2) drop further in amplitude, indicating fast convergence of
the signal model and information.

The range of timings varies quite smoothly in the residual-era, but the spectra start to overlap
more at the extremes. This implies a strong level of time sensitivity in observation for residual-era in-
jection, while differentiating the moment injection in, say, the y-era will require strong measurements
on individual peaks (see discussion in Sect. 5.3). In the case of the µ-era the discriminating power is
quite reduced, with peaks mostly overlapping till injection at z ≲ 2 × 105, the moment thermalisation
becomes inefficient and the residual-era begins. Nevertheless, a tomographic picture is revealed at
103 ≲ zinjection ≲ 105.

9We included polarisation effects on the temperature equations but removed reionisation effects from CLASS for this
comparison.
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Figure 18: The power spectra for Θ × µ, Θ × y and Θ × r1 over a range of 50 single-injection redshifts. Blue
lines show early injection into the µ-era and red lines show late injection in the y-era. The vertical dashed line
shows a division between log-spaced ℓ values (left) and linear-spaced values (right). For reference, we show
the familiar Θ × Θ power spectrum (rescaled within each panel). Comparing the acoustic peak structure, we
recognize that Θ ×Θ and the respective Θ × µ/y/r1 power spectra are in phase, a sign of their common origins
(e.g., Doppler boosting).

The correlations y × E and µ × E are also important for the forecasts (Sect. 5) and are shown
in Appendix D. They are generally more complex and thus less illustrative than the correlations with
temperature, hence their omission from main text.

4.3.1 Isolating various physical effects

The power spectra are complex and composite statistics, where each ℓ involves contributions from
many k modes which thus encode different times of horizon crossing and thus different relative con-
tributions of aniostropic distortions sources. In order to distil some physics from these data we will
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Figure 19: A figure showing ratios of power spectra, illustrating the relative composition of the spectrum in
terms of y and µ. The additional factors normalise the amplitudes to their energy content. Both the average
change in the µ/y ratio as well as the ℓ-dependent change provide the means to distinguish energy injection
scenarios.

again rely on the switches10 explained in Sect. 3.1.1. We furthermore decompose boosting sources
into Doppler boosting from baryon velocities and gravitational potential decay (the latter contributing
mostly to late time ISW effects).

These switches allow us to dissect the rich features in the acoustic peaks themselves. To isolate
a physical effect we calculate the power spectrum with and without the relevant terms in the evolution
equations, and plot the difference between the two. For example, the Doppler contribution is found
by subtracting the solution without Doppler driving from the full solution.11

The main point Fig. 20 illustrates is that Doppler driving is the dominant effect on the SD power
spectra, with only early injection times seeing another comparable term. At these early times we have
already seen that anisotropic heating and perturbed thermalisation become large contributors to the
SD signal. Potential driving terms are most important at large scales (ℓ ≤ 30–40), introducing an
integrated Sachs-Wolfe plateau to distortion signals. Although less important at small scales (high ℓ),
the potential driving terms provide important time-dependent information.

One notable feature in the single injection scenario is that for the latest of injection times the
first peak starts to wane while the second peak continues its growth. The turn over point in the first
peak happens around zinjection ≈ 2 × 104. Similarly we see the third and fourth peak affected by the
late injection. We can see that these changes are primarily caused by changes in the potential driving
late into the y-era. Starting with zinjection = 5 × 103 we see that potentials don’t drive ℓ > 1000,
which received contributions from k-modes which were deep into the horizon at the time of injection,
and thus saw almost no potential driving. Even for ℓ < 1000 we see smaller potential effects with
decreasing injection redshift, which are likely caused by some combination of the aforementioned
effect spreading over ℓ and the fact that potential decay is greatly reduced close-to and beyond the
matter-radiation transition. These potential decay effects are also visible, although less clearly, in
the transient effects on the monopole and dipole transfer functions in the central column of Fig. 8
(injection near horizon crossing) and Fig. 11 (sub-horizon injection). This is in contrast to Fig. 5
where the same mode received large boosting from potential decay at the time of horizon crossing,
since the average SED amplitudes had been sourced prior.

10We chose to leave the temperature equations unchanged and only switch distortion drivers
11There is no way of showing the true isolated effects since the power spectrum is a squared statistic, and thus no simple

superposition principle can be used. This technique however is highly illustrative.
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Figure 20: Three figures showing the power spectra for Θ × µ and Θ × y for the three usual single-injection
redshifts corresponding to each main SD era. Different lines indicate the inclusion or exclusion of a physical
term (made more explicit in main text). A vertical dashed line shows a division between log-spaced ℓ values
(left) and linearly-spaced values (right).
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Figure 21: As for Fig. 18 but this time showing correlations between Θ the higher residual distortion modes,
r2, r3 and r4.

The anisotropic heating contributions enhance µ at early injection times, and a mix of both µ
and y for all other times. While this follows the conventional picture in the residual-era – energy
thermalises to some intermediate spectral shape – it is initially surprising for the late injection times.
This is due to the additional anisotropic heating term we identify within S(0) (see Sect. 2.2), which
sources a spectral shape corresponding to Y1(x) − Y(x), thus having a nonzero projection onto M(x).

By individually switching perturbed emission and perturbed scattering (not shown) we can con-
firm that emission is only ever a small subdominant contribution for the injection times considered
here, and furthermore the dominant part of perturbed scattering is the MDy(0) and (Y1−Y) terms, with
the other terms simply providing a delaying effect on the natural thermalisation local anisotropies
undergo.
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4.3.2 Higher-residual power spectra

In Fig. 21 we present the cross correlations forΘ×r2/r3/r4, which show the amount of information not
captured by the simple decomposition shown above. Importantly the residual modes are rank ordered
by their relative importance as can be seen by the decreasing amplitude (they are all normalised
similarly to the y distortion, with a relative energy density Ern = rn/4).

Interestingly, we see how Θ × r2 and Θ × r3 follow a similar growing shape to the Θ × y
spectrum for late times. This can be understood by considering that the dominant signal source of
power spectra is often the Doppler driving term (see Fig. 20), and upon studying boosts of Y(x)
around two residual modes are required for a good fit (see Fig. 2). In a similar way the µ-era injection
makes less use of residual modes, a fact which relates to the decreased importance of the boosting
sources. We see the residual modes amplitude drop by around a factor of 5 for increasing rn, showing
the decreasing contributions. The remaining energy content in r4 is quite small, a fact which relates
also to convergence within the basis – we notice small, albeit non-negligible changes in the amplitude
of r4 when increasing from, e.g., Nmax = 13 to Nmax = 15, which currently is close to the limits of
our computation. This all hints towards the statement that using roughly 6 numbers (Θ, µ, y, r1/2/3)
is enough information to fully parameterise the photon spectra in the basis chosen here, however
≃ 18 are needed in the computation basis to capture the evolution in the most difficult regimes.
This statement is, of course, basis dependent (see Sect. 2.5), and specifically it does not exclude the
possibility of finding an optimised smaller basis for given energy release scenarios and eras. We
discuss this possibility and implications in Sect. 5.2.

4.3.3 Distortion auto-power spectra

Although they are far below the detection prospects of even future imagers (see Sect. 5) it is illus-
trative to study the purely SD power spectra. In Fig. 22 we show the µ × µ, y × y and µ × y spectra,
together with a rescaled Θ × Θ spectrum for comparison.

The auto-power spectra show almost exactly the same structure for late injection times (upto an
overall scale) since dominant source is boosting, yielding a fixed ratio of of y(1) and µ(1) amplitudes
regardless of the ℓ. An extension of this is that that the cross spectrum µ × y shows a similar shape
but with a negative sign, since the boost of Y(x) matches opposite sign mixes of the y(1) and µ(1).

The first and third peak in Θ × Θ spectrum appears to have no corresponding peak in the SD
case. The effect is actually slightly exaggerated – if the early injection times were amplified for Θ× y
(blue line in the middle row) then the peaks would in fact be present with the expected ratios, but not
for late time injection. In Figs. 34, 35 and 36 in Appendix C we show the effects of physical switches
on the distortion spectra in the three characteristic eras. Those figures suggest that this loss of peaks
for late time injection occurs due to the missing potential driving terms from energy injection close
to horizon-crossing.

Interestingly while there is a strong correlation of Θ× y for early injection times, there is a very
low correlation of y × y distortions and a complex pattern of µ × µ. In particular at the lowest ℓ we
see greatly enhanced µ × µ since the super-horizon sources favour production of µ(1) distortions. The
first feature in the y × y is associated with boosting of those modes at horizon crossing, before which
there are no strong sources of anisotropic y(1) [see overall scales in Fig. 6].

4.4 Decaying particle CMB power spectra

In Fig. 23 and Fig. 24, we show the CMB power spectrum for various particle decay lifetimes, where
in the latter figure we include effects of perturbed decay (see Sect. 3.5). Without perturbed decay the
curves resemble those seen in Sect. 4.3, showing that the single injection scenario, while unphysical,
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Figure 22: A similar figure to Fig. 18 but now showing the µ × µ (top), y × y (middle) and µ × y (bottom)
spectra. Shown for comparison is the (re-scaled) dimensionless temperature power spectrum.

serves as a good illustration of realistic continuous energy injection scenarios if the window of energy
creation is sufficiently narrow. The perturbed decay on the other hands changes both the early and
late injection scenarios. Due to the adiabatic initial conditions, injection in the µ-era sees a partial
cancellation between the new ∝ δcdm term and the ∝ Ψ term within the usual anisotropic heating. This
allows boosting to take a more central role in the formation of the anisotropic spectrum, and thus a
more dominant first peak in the power spectrum (see Fig. 20). However, the biggest notable feature
is the enhancement (reduction) of the odd (even) peaks in the late injection time Θ × y spectrum.

The effect of perturbed decay on the spectra is well illustrated by again taking a ratio of the
relative y and µ energy densities as seen through their cross correlation with temperature fluctuations.
This is shown in Fig. 25, where the bottom panel indicates a large enhancement towards the y energy
density beyond ℓ = 1000. This is understood since the perturbed decay injects energy directly into y,
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Figure 23: A figure showing the power spectra for Θ × µ (top panel) and Θ × y (bottom panel) over a range of
decaying particle lifetimes. Blue lines show short lifetimes, thus decaying predominantly in the µ-era, while
red lines show long lifetimes, therefore decaying predominantly in the y-era. A vertical dashed line shows a
division between log spaced ℓ values (left) and linearly spaced values (right).

which has no time to boost into a mixed spectrum for the later injection scenarios. This model serves
as a motivating example and an enticing hint that a powerful future probe of concrete energy injection
mechanisms could be to detect specific enhanced peaks in CMB power spectra.

5 Fisher forecasts
To assess the detectability of the signal and have a mean to compare the prospective constraints on
energy injection to the COBE/FIRAS [47, 48] limits we use a Fisher matrix forecast, which allows
us to quickly set a lower bound on parameter errors for a given instrumental configuration. Here
we consider a simplified scenario where the only free parameter is the fractional injected energy
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Figure 24: Same as Fig. 23, but now including an anisotropic heating term from the perturbed decay of particles
modulated by local matter densities.

∆ρ/ρ, while all other cosmological parameters and remaining energy-release-model parameters (e.g.
redshift of injection or decaying particle lifetime) are fixed.

As observables we consider using all the cross correlations between spectral distortions µ and y
and CMB primary anisotropies T and E, neglecting the residual distortion contributions. In this case,
the estimate of the ∆ρ/ρ error reads

σ∆ρ/ρ =


∑

ℓ

(
∂∆ρ/ρĈℓ

)T
Σ−1
ℓ ∂∆ρ/ρĈℓ


−1/2

. (5.1)

Here Ĉℓ =
(
ĈµT
ℓ
, ĈµE
ℓ
, ĈyT
ℓ
, ĈyE
ℓ

)T
is a vector of the observable spectra. To build our intuition we will

also show partial results that involve only a subset of spectra; those cases are produced by simply
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Figure 25: As for Fig. 19, but now for the case of particle decay. Importantly the bottom panel shows the
effects of perturbed decay, which affects the peaks ℓ > 1000.

removing the irrelevant entries from Ĉℓ and from their covariance matrix Σℓ.12

In principle, additional information on the fractional injected energy could be extracted from
the spectral distortion auto and cross-correlations. However, in a real world scenario they are too faint
compared to noise and foregrounds to be measured successfully.

To compute the errors, we use the power spectra from the previous sections. Those were all
computed using ∆ρ/ρ = 10−5, but since the cross-power spectra considered here simply scale linearly
with ∆ρ/ρ, the derivatives in Eq. (5.1) are trivially obtained. We specify that all limits shown here
are calculated assuming a non-detection of the spectra in question. The elements of the covariance
matrix have the form

Σ
(
Ĉαa
ℓ , Ĉ

βb
ℓ

)
=

1
fsky(2ℓ + 1)

(
Ĉαβ
ℓ

Ĉab
ℓ + Ĉαb

ℓ Ĉβa
ℓ

)
. (5.2)

We model each component as Ĉαβ
ℓ
= Cαβ

ℓ
+ Nαβ

ℓ
, where the first terms are the theoretical spectrum

previously calculated and the Nℓ are the Constrained Internal Linear Combination (CILC) [49] noise
that we will now discuss.

To simulate the impact of foregrounds and instrumental noise on the cross correlations recov-
ered from actual maps, we employ the method outlined in [50, 51] according to the implementation
of [52], to which we refer for the details. Working at power spectrum level, we write, for any ℓ, the
inter-frequency-channel covariance as sum over instrumental noise, foregrounds and cosmological
signals Cℓ,νν′ = Nν

ℓ
δνν′ +

∑
i∈foregrounds Ci

ℓ,νν′ +
∑

i∈signals Ci
ℓ,νν′ . The Kronecker-δ encodes the fact that

12We point out that here we implicitly disregarded ℓ couplings even thought they would be non-negligible in an actual
survey due to masking and foregrounds. This will be discussed in detail with the analysis of the Planck maps in future
work.
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we take the instrumental noise to be uncorrelated across different channels; the foregrounds encom-
pass dust, synchrotron, free-free, radio and infrared sources [51, 53–55]; the signal are again the ones
described previously and we model them as perfectly correlated at all frequencies. To relate the noise
and foreground SEDs to the adimensional theoretical spectra we convert them in thermodynamic
units with the standard relation Θ = c2G(x)−1ν−3/(2h)∆Iν, using TCMB = 2.7255 K in the conversion.
For the SD contributions, this transformation does not remove the frequency-dependence, which is
accounted for in the component separation process [e.g., 56]. As it is now well known [57], depro-
jecting different spectral shapes is essential to obtain unbiased spectral measurements. Following the
rationale of deprojecting stronger signals from the fainter maps, we consider the noise contribution
to the temperature power spectrum as obtained with the standard ILC

NTT
ℓ =

[
G(ν)C−1

ℓ,νν′G(ν′)
]−1
, (5.3)

the y (tSZ) spectrum as obtained with CILC deprojecting T , and µ deprojecting both T and y, i.e.

Nyy
ℓ
=

[
(Y0,G)(ν)C−1

ℓ,νν′ (Y0,G)T (ν′)
]−1

0,0
, Nµµ

ℓ
=

[
(M,Y0,G)(ν)C−1

ℓ,νν′ (M,Y0,G)T (ν′)
]−1

0,0
. (5.4)

While the cross correlations like Nµy
ℓ

might be important if we were considering the related spectrum
as an observable to be analyzed, for which they could constitute a bias [58], they are subdominant in
the covariance and thus neglected.13 Likewise, we consider the temperature and polarisation power
spectra to be de facto cosmic variance limited. We apply the methodology just described to Planck
[59], which represent the current state of the art, LiteBIRD [60] as a near-future advancement, and
PICO [61] as more futuristic scenario. We summarize the instrument specifications we use in ap-
pendix E. In all cases we conservatively assume fsky = 0.65, and set the maximum ℓ in the sum in
Eq. (5.1) high enough to saturate the constraints.

The surveys considered here rely on differential measurements, therefore it is worth noticing
that an accurate inter-channel calibration is needed to prevent biasing the measured spectra [57, 62].
However, in each case, the designed accuracy is low enough to prevent a bias significant compared to
the survey sensitivity [57]. A precise modelling of the frequency channels band-pass was found to not
be fundamental in [58]. Therefore, neither of these two effects will be included at this stage. Future
studies should also consider other frequency dependent anisotropic signals, like the Rayleigh scatter-
ing at recombination, or resonant scattering with metallic elements in the dark ages [see discussion
in Sect. 2.7 of 63]. These other signals constitute additional foregrounds that need to be separated
due to their distinct distortion shape. In the case of the Rayleigh scattering, which is the brightest of
the aforementioned signals [64], the peculiar ν4 spectral shape would be easily distinguishable during
component separation. Moreover, such spectral dependence also means that at low frequency, where
most of the signal is concentrated for both µ and y, Rayleigh scattering is negligible. Therefore we
choose to not consider the Rayleigh scattering foreground here. The details of such a component sep-
aration however depends on the quantity and distribution of frequency channels, and warrants future
work.

In Fig. 26 we show (blue) the Θ × µ cross-correlation for three different injection times and
a total energy release of ∆ρ/ρ = 3 × 10−5, compatible with the 1σ COBE/FIRAS limit. That has
to be compared with (green) the square root of the covariance element as defined in Eq. (5.2). For
reference we compare the signal to (orange) the “standard” calculation for Θ × µ from primordial
non-Gaussianity [65, 66] with f loc

NL = 3000, close to the 1σ Planck limit [58]. We can appreciate that
with these specific values of f loc

NL and ∆ρ/ρ they are comparable in amplitude.

13In fact in [58] it was found that using de-projected maps NµTℓ is negligible, even as a bias.
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Figure 26: A figure showing the expected Θ × µ power spectra (blue) for various injection times with energy
release ∆ρ/ρ = 3 × 10−5. Also shown for comparison are the noise curves (green) for various instruments and
a predicted signal from primordial non-gaussianity (orange).

The same exercise is repeated in Fig. 27 for theΘ×y cross correlation. The only difference is that
here we show for reference (orange) the Sunyaev-Zeldovich (SZ) cross correlation with ISW, tSZ×Θ.
This signal would in principle constitute a bias to the Θ × y cross correlation from energy injection.
Here we disregard this problem; however, we point out that the vastly different ℓ dependence would
possibly allow for a successful signal disentanglement. Conversely, existing primordial distortion
anisotropies would provide a noise contribution to SZ searches for the ISW effect [67, 68]. We also
specify that this contribution is included in the covariance calculation, but as one can expect, it has a
negligible effect on the results.

In Fig. 28 we show the constraints on single injection scenario as a function of the injection
redshift. In all the panels we can appreciate a subtle distinctions in three regimes which coincide
with the standard y, residual and µ-eras. Generally speaking µ-era injection is less constrainable than
the residual and y-era injections. In Fig. 6 we see that the perturbed thermalisation and anisotropic
heating sources actually oppose the boosting source for early injection times. The boosting source
however flips the sign of its µ(1) source as the background spectrum contains more contributions of
y(0). In Fig. 9 this leads to an additive effect of boosting for late times. This likely explains both the
lack of constraining power at early times as well as the small step around z ≈ 7 × 104 within each
panel of Fig. 28. The other small step occurs around z ≈ 2 × 105, hinting towards the thermalisation
terms becoming inefficient. Similarly a small decrease of constraining power is seen at z ≈ 106 since
part of the distortion thermalised to a simple temperature shift.

Combining constraints from µ and y distortions would allow us to set tight limits on the energy
injection throughout the whole post-T -era universe history. In particular next generation and futuris-
tic satellites, thanks to their ability to remove foregrounds due to ample frequency coverage, will set
constraints exceeding COBE/FIRAS’. Further to µ and y we could feasibly use the residual r distor-
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Figure 27: A figure showing the expected Θ × y power spectra (blue) for various injection times with energy
release ∆ρ/ρ = 3 × 10−5. Also shown for comparison are the noise curves (green) for various instruments and
a predicted signal from the thermal Sunyaev-Zeldovich effect (orange).
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Figure 28: Four figures showing the forecasts for time dependent constraints on single energy injection using
different cross correlations. Also shown is the COBE/FIRAS limit on energy release at a time-independent
∆ρ/ρ = 3 × 10−5. How much a given instrument could improve on the COBE/FIRAS measurement is shown in
multiplicative factors in the plot.

tions to improve the results further. These however are at least an order of magnitude smaller as seen
in Sect. 4, but could carry details of time dependence. We will carry on a more detailed discussion in
the next section.
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Figure 29: Four figures showing the forecasts for decaying particle constraints using different cross correla-
tions. Crucially these constraints ignore the effects of perturbed decay. Also shown is the FIRAS limit on
energy release at a time-independent ∆ρ/ρ = 3 × 10−5. How much a given instrument could improve on the
COBE/FIRAS measurement is shown in multiplicative factors in the plot.
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Figure 30: As for Fig. 29, but now including the effects of perturbed decay. The constraints are reduced around
the residual distortion era.

In Fig. 29 and Fig. 30 we show the equivalent constraints for decaying particle scenarios of dif-
ferent lifetimes with and without perturbed decay. As seen above from directly inspecting the power
spectra, these models hold many similarities with the single-injection scenarios. The big differences
emerge when including the effects of perturbed decay. Interestingly these serve to decrease constrain-
ing power, which may initially be counter intuitive. One problem for constraining this model is that
the enhancements from dark matter modulations typically occur for ℓ > 1000 (see Fig. 25) while
the maximum constraining power usually comes from 100 ≤ ℓ ≤ 1000. Furthermore we previously
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commented that the combination of Ψ(1) + δ(1)
cdm in adiabatic initial conditions imply some mutual

cancellation, thus reducing the overall effect of anisotropic heating. With anisotropic heating effec-
tively halved (and flipped sign) the early time constraints decrease, and a noticeable peak emerges.
This peak is due to the dependence on boosting sources, which between early and late times cross a
specific mix of y(0) and µ(0) which boosts to give no µ(1) contribution.

This example is illustrative of the high degree of model dependence in constraints when it comes
to energy injection modulated directed by local perturbed quantities. On the other hand, the case with-
out perturbed decay illustrates that single injection models do a good job of representing continuous
injection mechanisms assuming they have narrow windows. Overall, our forecasts demonstrate the
immense potential for SD anisotropy studies with CMB imagers.

5.1 Accessing information from the residual distortions

As we have seen in Sect. 4, additional information could be gleaned from the residual distortion
signals. In the estimates given above, we neglected this component for several reasons. Firstly, one
does not expect this to improve the detection limits by more than ≃ 10 − 20%, given that the overall
energy contained in the residual spectra is at that level relative to the y-distortion. However, in the
residual distortion era, the effect could be slightly more noticeable. Secondly, the residual distortion
modes used in our presentation where constructed for a PIXIE-like configuration [69, 70]. As such,
one cannot directly translate these to the experimental configurations assumed in the forecasts, and
an experiment-specific analysis would be required. Thirdly, for µ and y-type distortion signals, we
already have some level of understanding about how foregrounds might affect the constraints [56, 58,
71], but for the residual distortion modes, a more comprehensive analysis is outstanding. Solving
these issues is beyond the scope of this paper, such that we do not attempt further improvements of
our forecasts. We note, however, that in particular in the residual distortion era, one expects additional
gains. In addition, should one detect a SD signal with future CMB imagers, we expect the residual
distortion information to provide more leverage towards distinguishing various distortion signals, as
also understood from the average distortion science [32, 40].

5.2 Further optimizing and reducing the observation basis

We close by remarking on further optimizing the observation basis. The construction so far was
motivated by conserving the meaning of the standard CMB signals, G, Y and M. However, we now
understand that for the SD anisotropies the ÔxY , ÔxM, D̂xM and Y −Y1 SEDs also play central roles.

A pure y-anisotropy can be created by late perturbed energy release (z ≲ 104), as in the example
of decaying particles. Another example would be perturbed dark matter annihilation, SZ clusters
or the dissipation of acoustic modes from primordial perturbations, which all intrinsically source Y .
Pure µ-distortion anisotropies can be sourced by perturbed energy release at z ≳ 105 from annihila-
tion/decay or acoustic mode dissipation.

Without imposing a theory prior, one should therefore consider adding ÔxY = 4Y1, ÔxM and
D̂xM to the standard distortion shapes relevant to CMB anisotropy analysis. This means, in total six
CMB SED amplitudes would have to be determined. Given that ÔxM is extremely well represented
by a simple superposition of Y and M, large degeneracies would be found. Similarly, ÔxY does have
significant projections onto G, Y and M, such that without further study it is unclear how much this
extended standard SED basis would help.

However, if one can with certainty assume that the energy release occurred at z ≲ 104, our
computations have demonstrated (see Fig. 3) that one could indeed simply use G, Y and ÔxY = 4Y1
for the full analysis. This would ensure that no information is lost, even if the SEDs are not fully
independent. In reality, in this regime, one could even get away with simply using a Y1-distortion
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the constraining power is.

hierarchy without the need of further SED rotation. We will investigate the utility of these alterna-
tive analysis methods in the future, highlighting that the current observation basis provides a more
agnostic approach to the challenge of extracting all the information from the CMB sky.

5.3 Extracting the time of injection

In much of Sect. 4 we alluded to strong time dependence encoded in the power spectrum. Consider
for example Fig. 19 where by taking ratios of the measured CMB power spectra there is a relatively
smooth gradient between early and late injection times. To understand what time sensitivity future
imagers might have on energy injection times we take an average of this ratio in the range 100 ≤
ℓ ≤ 1000, where we have seen most of the constraining power to reside. This process is shown in
Fig. 31, where we can see the previously discussed plateau for early and late injection time, as well
as a strong gradient for residual-era injection. Changing the energy release model subtly modifies the
shape of the curve, but the general trends within each era hold regardless of exact energy injection
mechanism.

The figure simply shows that constrainable metrics exist for time dependence, however, a much
more robust approach would be to perform full MCMC searches for a given models parameters.
This is motivated by the fact that individual peaks of the spectra could break the plateaus deep into
a given era (e.g. the first and second peak in Fig. 18 would reveal how late into the y-era energy
injection occurred). To perform these kind of searches it would be necessary to optimise the numerical
treatment. With future work this should be possible, considering that the largest burden in the current
code is pushing to Nmax = 15, which as seen in Fig. 32 and Fig. 33 yields small percent changes
which could be neglected for broad parameter searches.

6 Discussion and Conclusions

This paper has taken a step-by-step approach to presenting the spectro-spatial evolution of the photon
spectrum. Starting with the photon spectrum, we discussed dominant contributions to the anisotropic
spectrum and the different limits they see their greatest importance. We followed with a careful
treatment of basis choices for representing these spectra as transfer functions of SED amplitudes.
This opened a long discussion on the relevant physics for different injection eras, which culminated
in the presentation of distortion power spectra, which show a complex superposition of many physical

– 41 –



effects previously analysed. Finally, we used the predicted power spectra to forecast constraints on
primordial energy injection which are comparable with or exceed modern limits from COBE/FIRAS,
thus constituting independent tests of primordial physics.

This detailed step-by-step approach should not distract from the novelty of this formalism and
the wealth of opportunities in it: it is now possible to infer valuable information about the background
photon spectrum in a potentially more time sensitive way by viewing the spectrum in anisotropic
patches of the CMB sky. This allows us to push our understanding of primordial physics beyond the
opaque CMB curtain and gain insight to z ≃ 2 × 106 using well-known CMB imaging techniques.

In essence the time sensitivity arises from the fact that we can distinguish anisotropic heating
[creating M(x), Y(x) or Y1 + Y(x)], perturbed thermalisation [creating D̂xM(x) and Y1(x) − Y(x)] and
boosting [producing ÔxM(x) or ÔxY(x) depending on the background spectrum]. Fully exploiting
this time dependence will require more sophisticated analysis tools and a further optimised numerics
(see Sect. 5.3). The variety of spectral modes has strong potential for discriminating and isolating
the physical origin of any energy injection in the primordial plasma, even if it is clear that additional
optimisation of the analysis may be needed (see Sect. 5.2).

In our analysis we clearly isolated the main effects: Early energy injection see source terms arise
from Compton scattering, perturbed scattering, perturbed emission and direct anisotropic heating. At
late times the main sources are Doppler and potential driving, which are well-known in connection
with the acoustic peaks seen in the regular temperature power spectra. Each of these were individually
illustrated in detail, showing that new insight can be gained deep into the pre-recombination era (e.g.,
see Figs. 9, 15 and 20) by accessing the full spectro-spatial information.

The probably most significant conclusion from this work is that through measurements of SD
anisotropies CMB imagers like Planck [59], LiteBIRD [60] and PICO [61] can provide limits on the
average energy release at various epochs. These limits are expected to be comparable with those
from COBE/FIRAS in the case of Planck, while LiteBIRD and PICO could supersede COBE/FIRAS
several times (see Sect. 5). For PICO, we see possible gains by more than one order of magnitude
for energy injection at z ≲ 5 × 104 (see Fig. 28). Evidently, a PIXIE-like CMB spectrometer, directly
targeting the average distortion, could improve these limits many-fold [e.g., 72, 73]; however, the
experimental methods and analysis techniques are quite different, and the complementarity of the
constraints highlights the unique synergy between the approaches.

Although our estimates are based on simple Fisher forecasts, similar methods have already been
shown to be reliable [58], building confidence in our results. Nevertheless, we plan to carry out a more
rigorous analysis using detailed foreground simulations and including other experimental effects to
further refine these results in future work. We do not expect the main conclusion to change: CMB
imaging and distortion science have now been united to allow full spectro-spatial considerations of
CMB physics. Extended forecasts that consider the benefits of ground-based observations with The
Simons Observatory [74], CMB-S4 [75] and other space-mission concepts [76–79] are also planned.

We close with a few words about the path forward. First and foremost, it would be important
to improve the analytic understanding of the solutions. In addition, our solutions clearly show that
in the tight-coupling regime the distortion dipole transfer functions all follow yn,1 ∝ µ1 ∝ Θ1 once
the average distortion has been created (see Sect. 3). With this tracking solution and approximation
for the potential Φ, the distortion monopoles can be modelled using WKB approximations. Some
complications arise from the SD evolution by Compton scattering terms and the transformation to the
optimal observation basis. However, we leave a more detailed study to future work.

A simple and immediate extension of this work is to investigate the effects of different initial
conditions beyond adiabatic modes as well as the effects of different heating mechanisms. In this
paper the case of perturbed decay as a trace of dark matter illustrated the importance of both these
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avenues of exploration. Firstly the adiabaticity of the initial perturbations are capable of cancelling
or enhancing important thermalisation terms, providing an additional test to the usual CMB temper-
ature power spectra. A comprehensive study in this direction would complement the work on initial
conditions and SD physics for the average photon spectrum [80]. Secondly, modulating local heating
by perturbed quantities with known effects on the temperature power spectra yield powerful and pre-
dictable correlations. If observable, these concrete enhancements to the CMB power spectra could
provide smoking guns of concrete heating mechanisms and therefore new physics.

Furthermore, here we only illustrated the SD anisotropy physics for single energy injection and
decaying particle scenarios, focusing on the distortion signals. However, other mechanisms can be
considered. For instance, dark matter annihilation should similarly lead to anisotropic distortions.
For s-wave (i.e., temperature-independent) annihilation, these signals ought to be small from the pre-
recombination era, given existing constraints from Planck [e.g., 2]; however, due to perturbed decay,
∝ δcdm, late time y-type anisotropies could be sourced by the non-linear growth of structure, enhanc-
ing the expected signal. Sommerfeld boosts of the annihilation rate [81] or a varying temperature
dependence of the annihilation cross section [e.g., p-wave annihilation 40] could further modify the
signals. In addition, cosmic bubble collisions [82–84], primordial black holes [85–88], primordial
magnetic fields [89–92] or dark matter scattering effects [93–95] could lead to anisotropic energy
release, which can now be modelled more accurately using our novel approach. For this, the possible
changes to the ionisation history [44, 45, 96, 97] should be taken into account using state of the art
recombination codes like CosmoRec, an extension that we plan for the near future.

The computations of the SD anisotropies from primordial non-Gaussianity [65, 98] could also
be refined, accurately treating all the transfer effects [see 99, 100, for some previous analytic at-
tempts], which will be crucial for distinguishing these signals from contaminations and foregrounds.
Specifically, this latter problem deserves additional attention, as the SD anisotropies we considered
here could act as a new foreground to extracting information about primordial non-Gaussianity as
long as we have no significantly improved upper limit on average energy release from absolute spec-
trometers such as PIXIE. This can be appreciated from Fig. 26, which demonstrates that at the level of
fnl = 3000, the possible anisotropic distortion signals due to average energy release are comparable.
Without theoretical prior, it will be challenging to eliminate this uncertain contribution using CMB
imaging alone. Even if the µ × T signal from primordial non-Gaussianity differs from the signals
discussed here, it will be hard to reach a cosmic-variance limited measurement suggested by theory
[98, 101] unless we could limit the average energy release to ∆ρ/ρ ≲ 10−11. Similar comments could
impede polarisation-distortion correlation studies, which have the potential to shed new light on in-
flation physics [102]. Attempts to extract information about the ISW effect from SZ cluster-induced
y × T correlations [67, 68] would also be affected. We plan to investigate these aspect more carefully
in future work, hoping that the new perspectives given here provide further motivation to think about
an extended synergistic approach in the future of CMB exploration.
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A Perturbed decay term for decaying particle scenarios

For the average heating rate by particle decay we simply used

da4ρ(0)
γ

a4 dt
= − da3ρ(0)

X

a3 dt
= mXc2 ΓXN(0)

X , (A.1)

which follows from the Collision term for the decaying particle. Here, we assumed rapid transfer of
energy to the photon field though Compton scattering. This then give the relevant heating term

dQ(0)

dt
=

da4ρ(0)
γ

a4ρ(0)
γ dt

=
mXc2 ΓXN(0)

X

ρ(0)
γ

(A.2)

for the background evolution with N(0)
X = N(0)

X (t = 0) e−ΓX t.
To obtain the perturbed decay term for decaying particle scenarios, we can similarly use the

evolution equation given by [103]

∂

∂η
δ(1)

X = −kβX − 3
∂

∂η
Φ(1) − aΓX Ψ

(1) (A.3)

for the perturbations in a decaying particle component, δ(1)
X = N(1)

X /N
(0)
X . We switched to our conven-

tion for the sign of Φ, which is −ΦA. Aside from the last term, this is simply like the standard dark
matter equation [7]. The last term gives rise to extra energy release from changes in the local time.
Together with contributions from perturbations in the density of the decaying particle, the release of
energy to the photon field then is given by

da4ρ(1)
γ

a4 dt
= δ(1)

X

da4ρ(0)
γ

a4 dt
+ mXc2 N(0)

X ΓX Ψ
(1) ≡

[
δ(1)

X + Ψ
(1)

] da4ρ(0)
γ

a4 dt
. (A.4)

This implies

dQ(1)

dt
=

[
δ(1)

X + Ψ
(1)

] dQ(0)

dt
, (A.5)

which includes the particle density and local potential modulation effects. If we furthermore assume
that δX ≃ δcdm, we obtain the expression in Eq. (3.2). This expression can also be directly obtained
when thinking of the corrections from Ψ(1) to the background collision term [35]. A more in depth
derivation is given in the Appendix of paper II, which also includes effects from the local heat capacity
modulation.

B Power spectrum convergence

Analogously to Fig. 3, we can study the convergence of the power spectra, and build confidence in
the extended basis. Again we show the three redshifts corresponding to the three eras (z = 5 × 105,
z = 5 × 104 and z = 5 × 103), but with one additional residual-era injection which is typically
the poorest converged in this formalism (i.e., z = 105, see paper I). We see in Fig. 32 and Fig. 33
that similar results hold as for studying individual spectra: the y-era injection requires only a single
additional mode y1 by construction, while the residual- and µ-era injections requires around 3-5
modes. Only the second panel shows an appreciable difference between Nmax = 13 and Nmax = 15,
however this only amounts to a ≲ 2% difference. These levels of departures are at the limit of our
computations, on par with other neglected effects.

– 50 –



C Physical effects in SD power spectra

For completeness, we include the pure distortion power spectra with various physical switches, which
helps illustrate the origin of concrete features. Many of these will be very analogous to those dis-
cussed in Sect. 4.3.1, but are useful to see in the absence of structure familiar from the temperature
power spectra.

Referring to Figs. 34, 35 and 36, the first feature we note is the lack of thermalisation contri-
butions for late injection. At early injection times thermalisation sources both µ(1) and y(1) through
the MDy(0)

0 and (Y1 − Y) terms. We independently verify perturbed photon emission only influences
µ(1), and is a small exclusively early time effect. Anisotropic heating exclusively sources µ(1) at early
times as expected, with other times sourcing a mix of both primary SEDs. We can also again see a
characteristic ceasing of potential boosts at the late time, since much of the energy is injected either
sub-horizon or very close to horizon crossing. Interestingly we see that the residual-era injection sees
a remnant of the first power spectrum peak in both µ × µ and y × y. For the later injection times that
Doppler peak is lost in both cases, and at early times it is only present in the y × y spectrum given
that boosting is a subdominant contribution to the µ(1) SED in the presence of anisotropic heating and
perturbed thermalisation.

D Correlations with E-modes

For completeness we show the correlations between distortion SEDs and temperature polarisation E-
modes. While these are more difficult to interpret than the correlations with local temperature, they
are a crucial contribution to the sensitivity within the forecasts. As seen in Fig. 37 these have complex
and strongly time dependent patterns. By inspecting Fig. 38 this complexity can be attributed to a
strong correlation driven through perturbed thermalisation and anisotropic heating which, unlike the
cases seen earlier, are almost comparable in amplitude to the Doppler boosting term rather than being
a small correction. Recalling that perturbed thermalisation and anisotropic heating largely cancel in
the case of perturbed decay, this can explain the significant loss of power in the µ × E (dashed blue
lines) within Fig. 30 compared to Fig. 28.

As is very familiar by now, for late time injection these terms become less important and the
signal relies more on the boosting mechanism. This together with the characteristic sign flip for µ(1)

for boosting early and late time injections yields a strong overall flip of the µ × E power spectrum.

E Survey specifications

In table 1 we summarize the specifications of Planck that we use in the forecasts, in table 2 we do the
same for LiteBIRD and in table 3 for PICO.
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Channel [GHz] Effective beam FWHM [arcmin] Temperature Noise [µK arcmin]
30 32.29 150
44 27.94 162
70 13.08 210

100 9.66 77
143 7.22 33
217 4.90 47
353 4.92 154
545 4.67 818
857 4.22 30019

Table 1: Planck specifications from [59].

Channel [GHz] Effective beam FWHM [arcmin] Temperature Noise [µK arcmin]
40 70.5 37.42 /

√
2

50 58.5 33.46 /
√

2
60 51.1 21.31 /

√
2

68 41.6 16.87 /
√

2
78 36.9 12.07 /

√
2

89 33.0 11.30 /
√

2
100 30.2 6.56 /

√
2

119 26.3 4.58 /
√

2
140 23.7 4.79 /

√
2

166 28.9 5.57 /
√

2
195 28.0 5.85 /

√
2

235 24.7 10.79 /
√

2
280 22.5 13.80 /

√
2

337 20.9 21.95 /
√

2
402 17.9 47.45 /

√
2

Table 2: LiteBIRD specifications from [60].
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Figure 32: Two figures illustrating convergence of the power spectra for increasing Nmax. Shown are the Θ× µ
and Θ×y spectra at early injection redshifts. The vertical dashed line shows a division between linearly-spaced
ℓ values (left) and log-spaced values (right).
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Figure 33: As for Fig. 32 but for late injection redshifts.
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Figure 34: A figure showing the distortion power spectra from injection at zinjection = 5 × 105 with different
physical switches.
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Figure 35: As for Fig. 34 but for zinjection = 5 × 104.
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Figure 36: As for Fig. 34 but for zinjection = 5 × 103.
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Figure 37: The power spectra for E × µ and E × y over a range of 50 single-injection redshifts. Blue lines
show early injection into the µ-era and red lines show late injection in the y-era. The vertical dashed line
shows a division between log-spaced ℓ values (left) and linear-spaced values (right). For reference, we show
the familiar Θ × E power spectrum (rescaled within each panel).
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Figure 38: Three figures illustrating the E × µ (top panel) and E × y (bottom panel) power spectra with various
terms switched off. The figures from top to bottom show injection redshifts 5 × 105, 5 × 104 and 5 × 103. The
vertical dashed line shows a division between linearly-spaced ℓ values (left) and log-spaced values (right).
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Channel [GHz] Effective beam FWHM [arcmin] Temperature Noise [µK arcmin]
21 38.4 23.9 /

√
2

25 32.0 18.4 /
√

2
30 28.3 12.4 /

√
2

36 23.6 7.9 /
√

2
43 22.2 7.9 /

√
2

52 18.4 5.7 /
√

2
62 12.8 5.4 /

√
2

75 10.7 4.2 /
√

2
90 9.5 2.8 /

√
2

108 7.9 2.3 /
√

2
129 7.4 2.1 /

√
2

155 6.2 1.8 /
√

2
186 4.3 4.0 /

√
2

223 3.6 4.5 /
√

2
268 3.2 3.1 /

√
2

321 2.6 4.2 /
√

2
385 2.5 4.5 /

√
2

462 2.1 9.1 /
√

2
555 1.5 45.8 /

√
2

666 1.3 177.0 /
√

2
799 1.1 1050.0 /

√
2

Table 3: PICO specifications from [61].
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Conclusion

In some sense the ultimate goal of this thesis was to understand Cosmological Per-

turbation Theory (CPT), which sits at the heart of modern early-universe Cosmology.

It is this framework that allows us to understand the complex interactions within the

plasma which filled the entire observable Universe for the first 380 thousand years. This

framework has delivered extremely precise calculations of the statistics of temperature

spots in the CMB sky, and the corresponding observational dataset has arguably pushed

early-Universe research into the realm of a precision science. The bias towards early

times present throughout this thesis should not detract from the importance ot CPT

for the later Universe - the formalism studied here serves as the initial conditions for

the perturbations which at later times collapse non-linearly and form the large scale

structure we observe around us.

Understanding early universe perturbations first requires an understanding of the

average Universe, both in its expansion (Sect. 1.2) and contents (Sect. 1.3). Both of these

components receive corresponding inhomogeneities (Sect. 3.3 and Sect. 3.1 respectively)

when studying perturbation theory, and they ultimately govern the anisotropies seen in

the CMB sky.

We present an initially tangential topic in chapter 2, which involves a detailed look

at the photon spectrum and relevant thermalisation processes which can create spectral

distortions (SDs). We explain in that chapter how this impacts the average photon
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9: CONCLUSION

spectrum of the CMB sky, leaving the more novel and exciting implications for the

following chapters.

With the introductory chapters in place, we can readily interpret the paper within

chapter 4 as a study of tensorial perturbations and their sourcing of average an µ

distortion in the CMB sky via a dissipation of energy into the primordial plasma. The

following paper within chapter 5 is a follow up, less concerned with SDs, but instead

focused on providing a demystifying close look at the tensor perturbations themselves.

The final three papers contained within this thesis (chapters 6-8) provide the most

exciting and novel work, in essence uniting the discussions of chapters 2 and 3. The

formalism introduced there extends the standard Boltzmann hierarchy to span the

frequency domain, and thus allows for a full spectro-spatial view of the CMB sky.

While this thesis has concentrated on introducing a lot of theory, it is important to

not lose sight of the consequences and impact of this research: the all important why?

Recall the introduction to chapter 2, where it was emphasised that most of what we have

from the early-Universe is a photon background. While sounding simple, this dataset is

rich, and has allowed for tangible answers to some of the biggest questions regarding

the structure and origin of the Universe. Spectral distortions allow for one way of

studying this photon background even closer. The data from COBE/FIRAS allows us

to constrain SD amplitudes to the order of 10−6-10−5 (Fixsen et al., 1996), which in

turn means we understand the thermodynamics of the primordial plasma to one part in

∼ 100 thousand ranging all the way back to 3 minutes after the big bang. That is an

incredible statement in itself, and with modern technology we could do much better.

One of the many reasons chapters 6-8 are so exciting is that they give us a new way

of constraining these average SD amplitudes, and thus placing tighter limits on what

processes could have happened in the primordial plasma.

The novelty of the spectro-spatial Boltzmann hierarchy simultaneously invites

excitement for future exploration as well as humility in the results. While it is possible

that the modelling presented could become a new standard for constraining early

universe Physics (especially in the context of state of the art imagers pushing beyond
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the limits of Planck), it should also be recognised that much more work needs to be

done to verify and consolidate this first push in a radically new direction.

One clear next step for building confidence in the new spectro-spatial Boltzmann

hierarchy will be to study the equations analytically. This process will likely be much

easier in certain limiting regimes, like for late time energy injection where SD patches

are governed mostly by Doppler boosting of the average spectrum, or for low ` where

most k modes were superhorizon till recent times. Furthermore, building an analytic

understanding about the nature of energy injection is important, as this holds importance

for both the gauge choice and adiabaticity of the perturbations. While analytic solutions

would strongly increase the confidence in the results of chapter 8, it is worth noting that

a holistic analytic understanding of standard CMB temperature anisotropies followed

the numerical work by up to two decades1.

Beyond developing analytic solutions a second numerical test can in principle be

achieved with a more brute force approach. We have previously mentioned the numerical

packages capable of calculating collision terms to high precision (Sarkar et al., 2019;

Ravenni & Chluba, 2020; Chluba et al., 2020b), which within CosmoTherm can find

spectral evolution for the average CMB (Chluba, 2013, 2015). In principle this binned

frequency approach could be extended to modelling the anisotropic evolution. This

is mentioned as a computationally expensive option in the introductory statements of

chapter 6, and while it wouldn’t be feasible to use this approach in future spectro-spatial

CMB calculations it could provide some limited costly cross-checks.

Within the extended frequency hierarchy itself some clear improvements can be

made. In chapter 6 we point out two ways in which the spectral basis is insufficient to

replicate the full CosmoTherm results: firstly a delayed onset of the µ-era (excessive

photon production), and secondly the basis not quite capturing the residual-era spectral

shapes for energy injection around zinjection ∼ 105. These problems motivate two

improvements left to future work. Firstly revisiting the problem of photon production,

1Based on the introductory statements of (Hu & Sugiyama, 1995), where 5-10% agreement between
analytics and numerics is achieved on all scales, while referencing numerical solutions from 25 years
prior.
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which is known to have more sophisticated formulations which could improve the

frequency hierarchy (Chluba, 2014a). Secondly studying better choices of spectral basis

which capture vital information in the frequency space between the µ and y distortion

peaks. This could be more physically and theoretically motivated (we considered briefly

considered shapes following ÔN
x (YSZ/x) which had promising mathematical properties)

or simply a numerical choice of basis (e.g. built from PCA).

In brief then we can say that many directions remain to explore with this work. The

papers presented in chapters 6-8 constitute the opening of a door to a new branch of

work, not the closing of one.

The surface of the Earth is the shore of the cosmic ocean. On this shore,

we’ve learned most of what we know. Recently, we’ve waded a little

way out, maybe ankle-deep, and the water seems inviting. Some part of

our being knows this is where we came from. We long to return, and we

can, because the cosmos is also within us. We’re made of star stuff. We

are a way for the cosmos to know itself.

–Carl Sagan, Cosmos
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Appendix A

Mathematical tools

A.1 Legendre transform

The legendre polynomials (Abramowitz & Stegun, 1965) P`(x) make up a complete

and orthogonal basis for functions on the interval x ∈ [−1, 1]. They are associated with

angular distribution, with the interval usually intepreted as x ∈ [cos(θ = 0), cos(θ =

π)]. With the basis being orthogonal we can use familiar mathematics to deduce the

projection integrals. We start with an ansatz that1

f (x) =

∞∑

`=0

f̂` P`(x), (A.1)

and then assert that we can derive a given component f̂`1 with the corresponding integral

over (2` + 1)P`1/2. This assertion holds due to the orthogonality condition

∫ +1

−1
dxP`1(x)P`2(x) =

2
2` + 1

δ`1 `2 , (A.2)

1We drop the Einstein summation convention, since here the indices have no relation to manifolds
and curvature.
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and can be seen as a generalisation of the notion that dotting a usual cartesian 3-vector

with basis vector ex gives the x component of the vector:

f̂`1 =

∫ +1

−1
dx f (x)

2` + 1)
2
P`1(x) (A.3)

The bottom line here is that a function which depends on space can be decomposed

into angle and length scale, with the former thus compressed into legendre moments

Θ(xµ)→ Θ(|x|)`. Additionally, any time this variable appears with an explicit factor of

the angle (here x) we use the recursion relation

xP`(x) =
1

2` + 1
[(` + 1)P`+1(x) + `P`−1(x)] . (A.4)

This appears, for example, in the collision term Eq. 3.4.

A.2 Spherical Harmonics

Similar to the Legendre polynomials we can use spherical harmonics Y`m(θ, φ) as a

complete and orthogonal basis for angular space (Abramowitz & Stegun, 1965). In

this case we have X(θ, φ) =
∑
`

∑`
m=−` X`mY`m(θ, φ), where X`m =

∫
X(θ, φ)Y∗`m(θ, φ).

We won’t make extensive use of these functions, however they appear implicitly in

our formulation of cosmological perturbation theory (chapter 3) where we define

X` =
∑

m X`mY`m.

A.3 Fourier transform

The fourier transform of function f (x) is defined as

f̃ (k) =

∫
f (x)e−ikx dx, (A.5)
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A.3: FOURIER TRANSFORM

which can be understood as a projection of the function onto its corresponding plane

wave representation exp(ikx). The inverse transform is similarly given by

f (x) =
1

2π

∫
f̃ (k)eikx dk. (A.6)

One important consequence of this transformation is that spatial derivatives are sim-

ply mapped to factors of the underlying wavenumber k. This simply follows from

considering

∂x f (x) =
1

2π

∫
f̃ (k) ∂xeikx dk = ik f̃ (k). (A.7)

Outside of this appendix we will no longer explicitly label Fourier transforms with

tildes.

103



A: MATHEMATICAL TOOLS

104



References

Abazajian K. N. et al., 2015, Astroparticle Physics, 63, 66

Abbott B., et al., 2019, Phys. Rev. X, 9, 031040

Abramowitz M., Stegun I. A., 1965, Handbook of mathematical functions with formulas,
graphs, and mathematical tables

Adler R. J., Casey B., Jacob O. C., 1995, American Journal of Physics, 63, 620

Arnett W. D., Bahcall J. N., Kirshner R. P., Woosley S. E., 1989, ARA&A, 27, 629

Bardeen J. M., 1980, Phys. Rev. D, 22, 1882

Birkhoff G. D., Langer R. E., 1923, Relativity and modern physics

Callin P., 2006, arXiv e-prints, astro

Caprini C., Figueroa D. G., 2018, Class. Quant. Grav., 35, 163001

Carroll S. M., 2004, Spacetime and geometry. An introduction to general relativity

Celoria M., Matarrese S., 2018, arXiv e-prints, arXiv:1812.08197

Chluba J., 2013, Monthly Notices of the Royal Astronomical Society, 434, 352

Chluba J., 2014a, Monthly Notices of the Royal Astronomical Society, 440, 2544

Chluba J., 2014b, arXiv e-prints, arXiv:1405.6938

Chluba J., 2015, Monthly Notices of the Royal Astronomical Society, 454, 4182

Chluba J., 2016, MNRAS, 460, 227

Chluba J., Dai L., Grin D., Amin M. A., Kamionkowski M., 2015a, Monthly Notices of
the Royal Astronomical Society, 446, 2871

Chluba J., Grin D., 2013, MNRAS, 434, 1619

Chluba J., Hamann J., Patil S. P., 2015b, International Journal of Modern Physics D, 24,
1530023

Chluba J., Jeong D., 2014, Monthly Notices of the Royal Astronomical Society, 438,

105



REFERENCES

2065

Chluba J., Khatri R., Sunyaev R. A., 2012, Monthly Notices of the Royal Astronomical
Society, 425, 1129

Chluba J., Ravenni A., Acharya S. K., 2020a, arXiv e-prints, arXiv:2005.11325

Chluba J., Ravenni A., Bolliet B., 2020b, Monthly Notices of the Royal Astronomical
Society, 492, 177

Chluba J., Sazonov S. Y., Sunyaev R. A., 2007, Astronomy and Astrophysics, 468, 785

Chluba J., Sunyaev R. A., 2004, Astronomy and Astrophysics, 424, 389

Chluba et al, 2019, Bulletin of the American Astronomical Society, 51, 184

Clifton T., Ferreira P. G., Padilla A., Skordis C., 2012, Phys. Rep., 513, 1

Dicus D. A., Repko W. W., 2005, Phys. Rev. D, 72, 088302

Dodelson S., 2003, Modern cosmology

Elwert G., Haug E., 1969, Physical Review, 183, 90

Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A., Wright E. L., 1996,
Astrophysical Journal, 473, 576

Gourgoulhon E., 2012, 3+1 Formalism in General Relativity, Vol. 846

Griffiths D. J., 2017, Introduction to Electrodynamics

Guth A. H., 1981, Phys. Rev. D, 23, 347

Hu W., Sugiyama N., 1995, ApJ, 444, 489

Hu W., Sugiyama N., 1996, ApJ, 471, 542

Hu W., White M., 1996, ApJ, 471, 30

Jauch J. M., Rohrlich F., 1976, The theory of photons and electrons. The relativis-
tic quantum field theory of charged particles with spin one-half. Addison-Wesley
Publishing Company

Kamionkowski M., 2021, Phys. Rev. D, 104, 063512

Kite T., Chluba J., Ravenni A., Patil S. P., 2022, MNRAS, 509, 1366

Kompaneets A. S., 1957, Soviet Journal of Experimental and Theoretical Physics, 4,
730

Lesgourgues J., 2011, arXiv e-prints, arXiv:1104.2932

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

LIGO Scientific Collaboration, Virgo Collaboration, 2016, Physical Review Letters,

106



REFERENCES

116, 061102
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