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Abstract 
 

DECENTRALISED AND PRIVACY-PRESERVING MACHINE 

LEARNING APPROACH FOR DISTRIBUTED DATA RESOURCES 

Mona Ghotaish Alkhozae 

A thesis submitted to The University of Manchester for 

the degree of Doctor of Philosophy, 2022 
 

Distributed machine learning has become a significant approach due to the high 

demand for distributed and large-scale data processing. However, some issues related to 

distributed machine learning for distributed data resources, including data transfer 

restrictions, privacy, and communication and computation costs have not been properly 

addressed. Therefore, it brings challenges to tackle these issues when developing a 

distributed learning method without data sharing between the distributed sites, 

centralising the distributed data resources for central learning, or using complicated 

learning methods. 

In this thesis, we addressed these issues by developing decentralised privacy-

preserving learning approaches that allow distributed sites utilising distributed data 

resources to construct global and local combined prediction models without sharing, 

moving distributed data to a centralised database or using a central location for iterative 

communication or computation. Furthermore, the exchanged information between 

distributed sites is restricted to only trained local models and information about models 

performance to overcome data restriction issues, privacy concerns, and minimising data 

transformation costs. We focused on several model selection and combination strategies 

to achieve the optimal combined global and local models that maximise the combined 

models predictive performance. We selected and combined the best models using linear 

and nonlinear combination methods, stepwise models selection and combination method, 

and by using all possible sites sequence combinations approach. 
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The experimental evaluation conducted on different classification and regression 

datasets demonstrated that our approach performed comparably or better than the 

centralised learning approach or other existing distributed learning methods in most 

datasets. Furthermore, we overcame data privacy concerns and server issues by avoiding 

data sharing or centralisation or using a server for iterative learning or intermediate 

models updates sharing. This thesis contributes toward developing a simpler and effective 

machine learning approach and direction for decentralised privacy-preserving machine 

learning. It keeps data locally for each site and combines diverse and accurate models 

instead of complicated ways that increase communication and computational overheads 

without sacrificing predictive performance. Furthermore, it can be applied to large and 

distributed data resources that cannot be analysed in a single location, reduces 

coordination overhead for large-scale analyses, and reduces cost by avoiding a powerful 

central server requirement.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

 
 

Declaration 

 
No portion of the work referred to in the thesis has been submitted 

in support of an application for another degree or qualification of 

this or any other university or other institute of learning. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

 

Copyright 
 

 
i. The author of this thesis (including any appendices and/or schedules to this thesis) 

owns certain copyright or related rights in it (the “Copyright”) and s/he has given 

the University of Manchester certain rights to use such Copyright, including for 

administrative purposes.  

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic 

copy, may be made only in accordance with the Copyright, Designs and Patents 

Act 1988 (as amended) and regulations issued under it or, where appropriate, in 

accordance with licensing agreements which the University has from time to time. 

This page must form part of any such copies made.  

iii. The ownership of certain Copyright, patents, designs, trademarks and other 

intellectual property (the “Intellectual Property”) and any reproductions of 

copyright works in the thesis, for example graphs and tables (“Reproductions”), 

which may be described in this thesis, may not be owned by the author and may be 

owned by third parties. Such Intellectual Property and Reproductions cannot and 

must not be made available for use without the prior written permission of the 

owner(s) of the relevant Intellectual Property and/or Reproductions.  

iv. Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property and/or 

Reproductions described in it may take place is available in the University IP Policy 

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any 

relevant Thesis restriction declarations deposited in the University Library, the 

University Library’s regulations (see 

http://www.library.manchester.ac.uk/about/regulations/) and in the University’s 

policy on Presentation of Theses.  
 

 

 



 22 

 

Acknowledgements 
 

First of all, I would like to express my sincere thanks and gratitude to my 

supervisor Professor Xiao-Jun Zeng for his continuous support and guidance during my 

research work. He enriched my research knowledge and experience with his invaluable 

knowledge, precious advice, and feedback. Additional thanks to him for reviewing and 

proofreading this thesis. 

I would like to extend my deepest thankfulness to my beloved parents Ghotaish 

and Maisha, and my sisters and brothers, who are always proud of me. They always 

believe in me and encourage me to be strong in difficult times, support me when I am 

down and depressed, and understand and take care of my daughters. Without them and 

their endless love and prayers to keep my spirits and motivation high during these times, 

I would not have been able to complete this thesis. 

I am thankful for my beloved daughters, my happiness, Reem and Maram, for 

their patience during my study and their understanding when I can't be with them on their 

occasions and other celebrations. Thanks for the lovely and motivational messages they 

sent and still send to me: “we are so proud of you”, “you are the best mum”, “we love you, 

and you mean everything to us”, and “be strong”. These messages keep me motivated and 

strong to complete my study. Special thanks to my friends for the good times we had, their 

kindness, inspiration, and support. I’m lucky to have them. 

 

 

 

 

 

 

 

 

 

 



 23 

 

Chapter 1 
 

Introduction 
 
 

1.1 CHAPTER OVERVIEW 

This chapter views the research scope of this thesis in section 1.2 and the 

motivations in section 1.3. Sections 1.4 and 1.5 display the research questions and 

our objectives, respectively. Then, our contributions are presented in section 1.6. 

Finally, the thesis organisation is shown in section 1.7. 

 

1.2 BACKGROUND 

There is significant progress in distributed machine learning research, and 

more advanced and practical learning strategies are required in the fast-growing 

distributed learning environment. The increasing necessity of distributed machine 

learning applications is attracting more attention from developers and researchers 

due to the high demand for large-scale and distributed data processing [1]. It helps 

to reduce communication and computational overheads, improve data processing 

robustness and scalability, and overcome data privacy issues [1 - 4]. In addition, 

it solves the algorithm complexity and memory limitation problem in large-scale 

machine learning [5, 9]. 

There are different methods for distributed learning, such as combining 

models to develop a shared/global model, using ensemble learning methods, 

combining models results using meta-learning, clustering local models, and 

moving the distributed data to a central site for a centralised learning process to 

build a global model [9, 10]. Ensemble learning is centralised machine learning 
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that relies on data resampling, such as Bagging and Boosting. It builds a set of 

models from different subsets of the training data and decides by voting or 

averaging the models outcomes [8, 13]. However, it is not possible when the data 

resources are distributed, not exchangeable, and private. Also, ensemble learning 

methods increase the computational time and are not practically scalable and 

suitable for distributed environments since the distributed data should first be 

collected at a central server and may face single-point failure or data privacy 

issues [3, 5, 9, 11, 12, 14]. Therefore, data privacy-preserving solutions and 

learning computation improvements are required and should be considered where 

the data are distributed.  

Several distributed machine learning methods were proposed to develop 

a generalised model for distributed sites and overcome centralised machine 

learning issues and distributed data resource restrictions. There are two main 

categories of distributed machine learning. The first one focuses on developing 

distributed processing, where centralised data resources are processed by 

distributed and parallel computation. Such distributed machine learning methods 

aim to improve prediction performance, scalability, processing speed 

computation performance, memory limitation problems, and algorithm 

complexity [11, 14, 43]. Well-known technologies such as Hadoop [129] and 

Spark [130] are developed to scale up learning algorithms in distributed machine 

learning, process large data sets, and reduce the capital cost of distributed learning 

[5, 17, 132]. 

The other category focuses on distributed data resources to overcome 

limited network bandwidth, data restriction issues, privacy concerns, and 

minimising data transformation costs. In particular, privacy-preserving is often 

one of the most critical issues to be addressed. The distributed machine learning 

methods in this category are also often called decentralised machine learning. In 

the second category of distributed or decentralised machine learning, several 

distributed learning methods were proposed to solve distributed data resources 

issues and to develop a generalised model for distributed sites. It is suitable for 

applications that deal with large and distributed datasets that cannot be analysed 

in a single location. Furthermore, it is used to increase the performance of the 

models, a solution for algorithm complexity, and overcome centralised storage 

problems [5, 9, 93, 98]. 
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A distributed learning approach called federated learning (FL) provides a 

practical approach to learning from distributed data without sharing data while 

protecting private data with privacy-preserving techniques. Data privacy is 

protected where a global model is developed by combining models that have been 

trained locally on distributed sites without collecting the data on a central server 

[35, 90, 103]. First, the data at each site is used to compute an update of a received 

model from a central server without sharing data. Then, the model update is 

transmitted back to the server and combines these model updates to compute a 

new global model. The global model is sent back to the sites, and the 

communication rounds continue until a needed convergence is achieved. FL uses 

a server to coordinate the learning process and perform many model parameters 

update iterations between the server and sites [88, 89, 95, 167]. It is designed to 

provide a secure architecture for distributed learning and preserve data privacy 

for the participated sites by avoiding sending the data to a central server [166, 

167]. Various methods are proposed to preserve data privacy in distributed 

learning environments while ensuring good prediction performance. These 

methods preserve the privacy of model output or intermediate statistical results 

by using differential privacy (DP), cryptographic approaches to protect the data 

or results, or secure multiparty computation protocol (MPC) [1, 14, 59, 62, 63, 

89, 90, 188, 189].  

Several learning approaches aim to reduce communication costs, decrease 

model update time, fault tolerance and server issues, and privacy concerns related 

to models updates information. Decentralised machine learning is proposed as a 

solution for these challenges. It does not rely on a server to control the learning 

process between the sites. Instead, the computations and learning process control 

in decentralised learning are distributed among multiple sites and include all the 

benefits of distributed computing without moving or sharing the distributed data. 

Furthermore, it preserves data privacy, reduces coordination overhead for large-

scale analyses, can scale to multiple sites, and reduces cost by avoiding the 

requirement for a powerful central server [100]. 
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1.3 MOTIVATIONS 

There have been considerable efforts on distributed machine learning for 

distributed data resources. However, developing a distributed learning method 

that overcomes several issues related to data privacy and restrictions, 

communication and computation costs, and server concerns is still challenging. 

In this thesis, we focus on developing decentralised learning approaches for 

private data without sharing or centralising the distributed data or using a server 

for coordinating the learning process. Also, we propose model selection and 

combinations methods to overcome the following challenges: 

1. Distributed machine learning methods that involve transferring, sharing, or 

combining distributed data to create a central data resource are time-

consuming and incur concerns related to storage cost, communication and 

computational costs, and data privacy issues. In addition, it faces single point 

of failure issues and scalability issues [14, 32, 63, 89, 95, 97, 103, 108, 109, 

111]. Furthermore, merging data to a central location is not possible when the 

distributed data resources are private and not exchangeable. Therefore, this 

motivates us to find alternative learning strategies to overcome the centralised 

machine learning issues, preserve data privacy, and improve learning 

performance with distributed computation. 

2. Some distributed learning methods are centralised modelling, exchanging 

many information and intermediate results to get a general model, or using 

complex techniques to preserve data privacy. For example, in FL, there are 

challenges related to communication costs due to the learning process 

involving many communication rounds between the sites and the server to 

build a global model, and privacy concerns related to models updates 

information [14, 32, 63, 89, 95, 103]. Furthermore, the server coordinates the 

learning process and performs many model parameters update iterations 

between the server and sites. Since the server takes control during the learning 

process, federated learning faces risks of attacks to extract private information 

from model gradients or single points of failure [89, 97, 165, 187, 191]. On the 

other hand, decentralised machine learning preserves data privacy, can scale 

to multiple sites, reduces cost by avoiding the requirement for a powerful 

central server, and reduces coordination overhead for large-scale analyses 
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[100].  Our motivation is to develop decentralised machine learning without 

using a server to control the learning process to overcome iterative learning 

overhead and central server issues. 

3. Despite the effectiveness of privacy-preserving learning techniques, there are 

some challenges. For example, MPC increases computation and 

communication overheads and requirements [14, 58]. In addition, Differential 

privacy involves adding noise (data alteration) and may not be suitable for 

applications where high-quality models are needed as it reduces the quality of 

data and hence its utility [14, 62, 88]. Also, the encrypted training data requires 

high computational requirements [14, 59, 60, 96]. Thus, we aim to find a 

simple privacy-preserving learning approach that overcomes communication 

and computational issues without exchanging intermediate computing updates 

between sites and carefully considers data privacy during the learning process. 

4. Model combination strategy is a promising approach to build an optimal 

combined model for distributed sites to improve the prediction performance. 

Computation and communication costs and the amount of transferred 

information are important factors that must be considered for efficient 

decentralised machine learning [4, 87].  Thus, paying attention to robust 

decentralised model learning and combination strategies is desired to improve 

the combined model performance. This triggers our motivation to develop an 

optimal combined model for distributed sites using a decentralised version of 

model selection and combination strategies that will enhance prediction 

performance without using complicated learning process to minimise the 

computation and communication costs. Furthermore, the proposed method 

only exchanges models with minimal data information instead of raw data to 

overcome data privacy issues. 

1.4 RESEARCH QUESTIONS 

The research questions in this thesis can be stated as follows: 

- How to develop a global model from multiple data resources that are distributed, 

private, and not exchangeable to be as accurate as the models learned from 

centralising these data resources to a central database?  

- Can a site improve its local prediction model performance by utilising learning 
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outcomes from other sites data resources without sharing, centralising, or 

disclosing the privacy of these data resources?  

1.5 AIMS AND OBJECTIVES  

The thesis aimed to achieve the following objectives: 

1) Computation effectiveness by avoiding the time and cost of data 

centralisation or data transferring between the distributed sites during the 

learning process.  

2) Preserve data privacy for each site by avoiding data sharing between the 

distributed sites, combining the distributed datasets into central data, or 

exchanging many intermediate results and information. Each site avoids 

sharing its local data with other sites and performs the learning process 

locally; thus, it keeps the data private and not exposed to other sites. 

3) Avoid using complex privacy-preserving methods or server for iterative 

learning or controlling the learning process to minimise communication and 

computation overheads and avoid single points of attacks or failure risks. 

4) Maintain the learning performance at a similar level as centralised machine 

learning with less iterative learning process and exchanged information 

between the distributed sites. We aim to build a global model from 

distributed data resources, preserve data privacy for each site, and improve 

prediction performance comparable to centralised machine learning. 

5) Optimise the local prediction performance for each site by efficiently 

utilising its local models and other local models learning from other sites to 

develop a local combined model. 

6) Develop an efficient model combination strategy by designing simple, 

accurate, and scalable combination methods to achieve optimal combined 

model at global and local levels.  

1.6 CONTRIBUTIONS 

The contributions can be described briefly as the following: 

• Develop a decentralised learning approach for distributed data resources 

without using centralised machine learning method or relying on a central 

location for iterative communication or computation. We build combined 
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prediction models derived from local learning outcomes at global and 

local levels. Our privacy contribution is keeping data locally on each site; 

only the learning outcomes and minimum information (local models and 

model performance information) are exchangeable. In addition, each site 

overcomes its local model limitations by utilising other sites models with 

minimal communication and information transfer to build its local 

combined model. We use simple and efficient linear model combination 

models to utilise and combine the selected models from distributed sites 

to develop the local and global combined models. This approach is 

presented in Chapter 3. 

• Develop a robust combined model using a decentralised version of model 

selection and nonlinear model combination strategies and try to achieve 

the best-combined model at global and local levels that could improve 

prediction performance for all distributed sites. Furthermore, the proposed 

method preserves data privacy by avoiding data sharing or centralisation 

and with fewer communication rounds than FL to develop the local and 

global combined models. In chapter 4, we present the proposed approach. 

• Develop a decentralised alternative to the federated learning approach 

without using a server or exchanging intermediate computing updates to 

overcome iterative learning process issues. We propose model selection 

and updating strategies that make the final combined model optimal and 

valuable for all sites. This approach could minimise communication and 

computation overheads and preserve data privacy by only passing the 

models between the distributed sites and updating the models locally in 

each location without exchanging models updates information. It only 

selects and updates the best-performing models in all sites and discards 

the others to decrease model update time and overhead. We use a simple 

linear combination method to combine the best-updated models to 

develop combined models at global and local levels with less information 

sharing between the distributed sites. We show our proposed method in 

Chapter 5. 

• Develop a decentralised learning approach that applies all possible sites 

sequence combinations and model selection approaches to achieve the 
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optimal global combined model without exchanging data or models 

updates information between the distributed sites. These strategies can 

contribute to preserve data privacy by performing models selection and 

updating methods locally and minimise communication and computation 

overheads. This approach is presented in Chapter 6. 

 

1.7 THESIS OUTLINE 

This thesis is organised as follows. 

Chapter 1: presents the research background, motivations, and objectives. Then, 

the research questions, contributions, and thesis organisations are stated in this 

chapter. 

Chapter 2: shows background on distributed machine learning and its 

challenges, privacy-preserving methods, machine learning techniques, and 

performance evaluation measures. In addition, it presents model selection and 

combination approaches and the research works proposed in the distributed 

learning field. Finally, this chapter views the research limitations and challenges, 

followed by our proposed methods to overcome these challenges. 

Chapter 3: presents a proposed decentralised learning approach using a linear 

combination approach to develop global and local combined models for 

distributed sites. Then, it shows the analysis and discussion of the results.  

Chapter 4: shows our proposed decentralised learning approach using a 

nonlinear model combination approach to build global and local combined 

models and presents our analyses and discussion of the results. 

Chapter 5: presents a proposed decentralised learning strategy to build global 

and local models using Gossip learning method, stepwise model selection, and a 

linear model combination approach. Then, it views the analysis and discussion of 

the results. 

Chapter 6: shows our proposed decentralised learning method for global 

combined model development using all possible sites sequence combinations 

approach. Also, it presents our discussion and analyses of the results. 

Chapter 7: This chapter shows our conclusions for this thesis and outlines future 

research directions. 
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Along with these chapters, the thesis contains four appendices. Appendix 

A presents 5-fold and 10-fold Cross-Validation Results, and datasets distributions 

and Appendix B shows the detailed global and local level modelling results in 

chapter 3. Appendix C shows the detailed results of the decentralised learning 

approach in Chapter 5, and Appendix D illustrates the detailed results of the 

decentralised learning approach in Chapter 6.  
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Chapter 2 

 

Background and Related Works 

 
 

2.1 CHAPTER OVERVIEW 

This chapter presents background information for the topics covered in the rest 

of the thesis. Sections 2.2 and 2.3 cover machine learning techniques and performance 

evaluation metrics, respectively. Distributed machine learning is presented in section 2.4, 

and section 2.5 shows the challenges in distributed machine learning. Section 2.6 shows 

privacy-preserving machine learning approaches, and model combination approaches are 

presented in Section 2.7. Several research works related to distributed machine learning, 

model selection, and combination methods for distributed data resources are shown in 

Section 2.8. Analysis and discussion of research challenges and limitations in distributed 

machine learning field are presented in Section 2.9. Finally, this chapter is summarised 

in Section 2.10.  

 

2.2 MACHINE LEARNING TECHNIQUES  

Machine learning techniques aim to develop models to perform different tasks 

such as classification, estimation, and prediction. Predictive modelling is developing a 

model that can predict an outcome based on given input variables. When choosing a 

machine learning technique, optimising the selection of predictive modelling method 

options can be beneficial for increased reliability and performance [113]. Classification 

and regression are the most common machine learning algorithms. 
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In classification, the learning function classifies the input data into one of several 

predefined output classes. Many learning algorithms are used to build classification 

models, such as Decision Tree (DT) [112, 145, 146], Artificial neural network technique 

(ANN) [112, 145], Random forests (RF) [145, 149, 150], K-Nearest Neighbor algorithm 

(KNN) [145, 148],  Support Vector Machine algorithm (SVM) [112, 145], Logistic 

regression (LR) [145], and Naive Bayes (NB) algorithm [112, 145]. Regression is a 

supervised learning and statistical task used to define the relationships between inputs 

and continuous outputs from training data and to predict new input data [145]. The 

regression algorithms are Linear regression (LR) [145], Regression trees [147], A Radial 

Basis Function Neural Network (RBFNN) [114, 115], Selection Operator regression 

(LASSO) [151,172-174], Ridge [153, 172-174],  ElasticNet [152, 171-174], Support 

Vector Regressor (SVR) [157, 173], K-Nearest Neighbor Regressor (KNNR) [148, 159], 

Random Forest Regressor (RFR) [149, 173], Decision Tree Regressor (DTR) [146, 

173,174], and Neural Network Regressor (NNR) [158]. 

Data preprocessing and learning algorithms selection can significantly affect 

model performance. Data preprocessing is a common and important step for preparing 

raw data to a proper and understandable format for a learning algorithm. Basic data 

preprocessing techniques such as data cleaning, data transformation, and feature 

extraction and reduction make data adequate for machine learning tasks [41, 43, 113]. 

2.3 PERFORMANCE EVALUATION METRICS 

Once a model is developed using a machine learning algorithm, it is essential to 

estimate its performance. Cross-validation is one of the most common approaches for 

evaluating a model performance by holding out a subset of the training data for 

evaluation and then repeating this process across several subsets/partitions. The result is 

calculated as the average of all process rounds results [112]. Cross-validation is the 

standard way to evaluate the robustness of the model and minimise overlap among 

dataset partitions [39, 125]. For reliable results, 10-fold cross-validation is suitable [39]. 

In classification tasks, Confusion Matrix, Receiver Operator Characteristic 

(ROC) curve, and Area Under the Curve (AUC) are used to measure the model 

performance and test a classification model quality [145]. As illustrated in Table 2.1, the 

confusion matrix is a table of prediction results to visualise model performance. The 
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number of correct and incorrect classification predictions are summarised with count 

values and divided by each class label.  

 
Table 2.1. Confusion Matrix 

 
Actual Class 

Positive (P) Negative (N) 

Predicted 

Class 

Positive (P) True Positive (TP) False Positive (FP) 

Negative (N) False Negative (FN) True Negative (TN) 

 

The ROC curve is a popular validation method for assessing model performance 

[116], and AUC of ROC curve measures the model predictive capacity [117]. As shown 

in Figure 2.1, the ROC curve is a graph that plots True Positive Rate (Y-axis) against the 

False Positive Rate (X-axis). AUC is based on the ROC curve, and the AUC threshold 

values range from 0.5 to 1. 1 indicates the best performance, and 0.5 shows poor 

performance [112]. 

 

AUC = (∑TP	 +	∑TN	) / (P + N),                         (2.3) 

 

where ∑TP	 is the total number of positive examples that are correctly predicted, ∑TN	 

is the total number of negative examples that are correctly predicted, P is the total 

number of positive examples, and N is the total number of negative examples. 

 

 
Figure 2.1: ROC curve and AUC 
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In addition, model performance is measured in terms of sensitivity (recall), 

specificity, precision, F- measure, and accuracy. Sensitivity (recall) is the ratio of true 

positives correctly predicted by model, whereas specificity is the ratio of true negatives 

correctly predicted. Precision is the correct prediction ratio of the positive cases to all 

positive cases, and accuracy is the ratio for the correct predictions [101, 112]. F-measure 

score is a harmonic mean of precision and recall and the most commonly used 

performance metric of machine learning, mainly when the data set is unevenly 

distributed. Since F-measure equally weights both false positives and false negatives, it 

offers a less biased metric than accuracy [155, 184]. The accuracy, sensitivity, specificity, 

precision, recall, and F-measure were calculated as follows [145, 155]:  

 

Accuracy = (TP + TN) / (TP + TN + FP + FN)        (2.4) 

 

Sensitivity (recall) = TP / (TP + FN)                     (2.5) 

 

Specificity = TN / (FP + TN)                                 (2.6) 

 

Precision = TP / (TP + FP)                                    (2.7) 

 

F − measure = !	×$%&'&()*+	×%&',--
$%&')(*+.%&',--

= 	2TP/(2TP + FP + FN),             (2.8) 

 

where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative examples. 

 

For regression tasks, Sum of Squares Error (SSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Percentage Error (MAPE) are simple and easy to compute 

to evaluate model performance. The prediction error is the difference between the actual 

and predicted values [101, 162]. The Root Mean Square Error (RMSE) metric is defined 

as a distance measure between the predicted and the actual value. The smaller RMSE 

value, the better is the predictive model performance. The mean absolute percentage error 

(MAPE) measures a model accuracy as a percentage [101]. 

SSE= ∑ |y) −	y/6|0
)12

!                        (2.9) 
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RMSE= 72
0
		∑ |y) −	y/6|0

)12
!               (2.10) 

MAPE = 2
0
		∑ | 3!4	3"5

3!
|0

)12  *100,               (2.11) 

where y) is the actual value and y/6  is the predicted value for m data samples	(i = 1,… ,

m). 

2.4 DISTRIBUTED MACHINE LEARNING 

There is considerable progress in distributed machine learning research field. The 

objective of distributed machine learning is to perform the learning task based on the 

distributed resources, including data, processors, and machine learning algorithms. More 

advanced and practical distributed learning strategies are essential in the current fast-

growing environments [2, 98]. There are two main categories of distributed machine 

learning. The first one focuses on distributed processing, where centralised data 

resources are processed by distributed and parallel computations. Such distributed 

machine learning methods aim to improve scalability, processing speed computation 

performance, memory limitation problems in large-scale environments, and algorithm 

complexity [11, 14, 43]. Well-known technologies such as Hadoop [129] and Spark 

[130] are developed to scale up learning algorithms in distributed machine learning. The 

other category focuses on distributed data resources to overcome limited network 

bandwidth, data restriction issues, privacy concerns, and minimising data transformation 

costs. Machine learning for distributed data resources mainly falls into three approaches: 

centralised machine learning, distributed/federated machine learning, and decentralised 

machine learning. In centralised machine learning, distributed data is transferred to a 

central location for the learning process. In contrast, distributed and decentralised 

learning is developed when data transmission between distributed sites is not allowed 

due to data privacy restrictions. 

 

2.4.1 Centralised Machine Learning 

In centralised machine learning, distributed data is moved to a central 

server for the learning process. As illustrated in Figure 2.2, all the computations 

are carried out on a server for central processing to train a general model that 

can be applied to all distributed sites [9, 14]. Ensemble learning approaches are 
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under centralised learning process and aim to enhance the prediction 

performance, such as Bagging and Boosting. In ensemble learning, a learning 

algorithm is trained over a dataset and relies on data resampling to build a set 

of models. Then, combine these models outputs to get the final prediction [14]. 

However, the centralised learning approach is infeasible for most machine 

learning applications due to data privacy and protection rules, internal policies 

forced by some organisations, or limited network bandwidth [4, 140]. 
 

 
Figure 2.2: Centralised Machine Learning 

 

For this reason, there is an increasing interest in building a general model 

using data distributed across different sites without transferring or moving data 

between distributed sites or to a central location [51, 140]. 

Distributed/Federated and decentralised learning methods deal with the above 

issues to learn from distributed data without moving or sharing the distributed 

data [9]. 

 

2.4.2 Distributed and Federated Machine Learning 

Distributed machine learning is adopted due to the high demand for large-

scale and distributed data processing. It is a way of scaling up learning 

algorithms by allocating the learning process on multiple sites and performing 

the learning algorithms over physically distributed datasets. In addition, it 

solves issues with algorithm complexity, improves processing speed and 

computation performance, and memory limitation problems in large-scale 

machine learning [5, 9, 93, 98]. In distributed learning, the computations are 

distributed to multiple sites, and the data are processed in a parallelised fashion, 

iteratively training a model on isolated datasets, and obtaining a shared model 
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as if data were centralised [14]. Several open-source software projects enable 

distributed computing, such as Hadoop [129] and Spark [130]. 

Distributed learning approaches allow multiple sites to keep their datasets 

unexposed and collaborate on a learning objective by iterative local 

computation and message passing. Thus. It reduces network traffic, less 

network bandwidth, and preserves data privacy [1, 2, 4, 14, 92]. Federated 

learning (FL) is an alternative to allow for the collaborative training of models 

without sharing raw data and is proposed to solve data privacy and restriction 

issues [90]. As shown in Figure 2.3, several sites participate in the learning 

process, while the server is responsible for controlling the modelling process, 

and a global model is learned by aggregating models that have been trained 

locally on distributed sites [103]. FL approach preserves the data privacy for 

each site by performing collaborative learning that never requires the data in the 

distributed sites to be centralised. First, the server learns a global model based 

on its available data and then sends the model to the distributed sites. Secondly, 

each site trains the received model and computes model updates based on the 

local data. Next, the updated model parameters are sent back to the server. 

Finally, the server updates its global model based on the received model 

parameters to generate a new global model. This process is repeated until the 

model parameters desired convergence level is achieved [14, 95, 102, 140]. 

Several methods aim to reduce communication costs, decrease model 

update time, fault tolerance and server issues, and privacy concerns related to 

models updates information. Thus, decentralised machine learning is proposed 

as a solution for these challenges. 

 
Figure 2.3: Distributed/Federated Machine Learning 
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2.4.3 Decentralised Machine Learning 

As illustrated in Figure 2.4, both the computations and learning process 

control in decentralised machine learning are distributed among multiple sites and 

include all the benefits of distributed computing. Gossip learning is an example of 

decentralised learning for learning models from distributed data without central 

control.  

I. Gossip Learning Approach 

It is based on multiple models that move between distributed sites over 

the network. The models are trained on sites local data using online learning 

algorithm to improve the models performance, and then combined using 

combination learning methods. Online algorithm is a stochastic gradient 

descent (SGD) and can be applied as a learning algorithm to update the 

models using a continuous stream of data records. The models are updated 

when visiting a site using the local data. First, the site initialises a model and 

then sends the model to another site over the network. Then, each site updates 

the received model using its local data and combines it with its local model. 

Combining models is achieved by averaging model parameters based on the 

gradients number that contains the given parameter and updating it using the 

local data set. It is a scalable and robust learning process, and there is no 

single point of failure [139 - 141]. 

 

 
Figure 2.4: Decentralised Machine Learning 
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II. Stochastic Gradient Decent (SGD) 

One of the most easily distributed learning algorithms is Stochastic Gradient 

Decent (SGD). Supervised learning can be considered as an optimisation problem, 

where we want to minimise the empirical risk	𝐸(𝑓) of the model 𝑓(𝑥)[142,156]:  

𝐸(𝑓) = 	 2
6
	∑ 𝑄	(𝑧7 , 𝑤)6

712 =	 2
6
	∑ ℓ6

712 	(𝑓(𝑥7; 𝑤), 𝑦7),      (2.1) 

where 𝑄	(𝑧7 , 𝑤) = ℓ(𝑓(𝑥7), 𝑦7) is a loss function of model for training data example 

	𝑧7 , 𝑧7 = (𝑥7 , 𝑦7), i= 1, …, n, and 𝑤 is the model weight/update. 

 

In SGD, the goal is to minimise the model loss function. The basic idea is that 

they iterate over the training examples in random order repetitively. For each 

training example, it calculates the gradient of the loss function, then modifies the 

model along this gradient to reduce model error on this example according to the 

following rule [142,156]: 

𝑤8.2 =	𝑤8 −	𝛾8	𝛻9 	𝑄(𝑧8 , 𝑤8),                   (2.2) 

where 	𝛾8	is the learning rate at iteration t, 𝑤8.2	and	𝑤8 are the model 

weight/update, and 𝛻9 	𝑄(𝑧8 , 𝑤8) is a gradient estimate of the loss function. 

Update the model with the gradient of the sum of the loss functions of a few 

data examples using mini-batches instead of only one in each iteration can be used 

for fast distributed implementations and accelerated model convergence [143,161]. 

2.5 DISTRIBUTED MACHINE LEARNING CHALLENGES 

Distributed machine learning methods that involve transferring data, sharing data, 

or combining distributed datasets to create a central data resource will incur serious 

concerns such as storage costs, data transformation costs, and data privacy issues [32, 

108, 109, 111]. Pooling distributed data at a central location for learning is impractical 

for sensitive and private data. Centralised machine learning is not feasible in distributed 

environments and could increase bandwidth overhead and computational load, single 

point of failure issues, and scalability issues [3, 5, 9, 14, 51, 93, 100].  

One solution is relying on a central server for coordination/computation without 

sharing data between distributed sites. Federated learning has increased interest from the 
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research community for distributed machine learning. It preserves data privacy by 

learning a shared model without moving the data to a central server. The adoption of 

distributed and federated learning shows emerging approaches to manage privacy 

concerns and facilitate scientific research without directly sharing data [35, 100, 101].  

Challenges in federated learning include communication costs between the sites 

and the server, learning process time, and privacy concerns related to models updates 

information [14, 32, 63, 89, 95, 103]. Therefore, it is crucial to minimise communication 

costs and provide privacy-preserving techniques for robust privacy protections [14, 

102]. In addition, the server takes control during the learning process, so federated 

learning faces risks of a single point of failure or attacks [89, 97, 187, 191].   

Decentralised machine learning does not rely on a central server to control the 

learning process between the sites. As a result, it preserves data privacy, can scale to 

multiple sites, reduces cost by avoiding the requirement for a powerful central server, 

and reduces coordination overhead for large-scale analyses [100]. 

2.6 PRIVACY-PRESERVING IN DISTRIBUTED MACHINE LEARNING 

Distributed and federated learning approaches are proposed to preserve data 

privacy during the learning process without sharing the data between sites. Nevertheless, 

there is privacy concern related to models updates information exchanged between sites. 

Therefore, it is essential to provide privacy-preserving techniques for robust privacy 

protections [14, 102]. Privacy-preserving federated learning approaches aim to avoid 

inference over the messages exchanged between sites during the learning process while 

ensuring the final model has acceptable performance [90] and protecting model 

gradients during training from malicious attacks [187]. There are many techniques used 

to preserve data privacy in the federated learning approach, by using: Differential 

Privacy (DP), Cryptographic methods such as Homomorphic Encryption (HE), or 

Secure Multiparty Computation protocol (SMC). Differential Privacy (DP) preserves 

the privacy of models outputs or intermediate analysis and statistical results by adding 

noise into the gradients and data [1, 14, 63, 90]. HE allows secure computations over 

encrypted data or results without decryption on a computing platform [14, 59, 62, 89]. 

SMC enables distributed computations on encrypted data without decryption and 

excludes the need for a central trusted location for computations [59, 89, 90]. Each data 

is divided into several parts and allocated these parts to the sites. Then, the sites follow 
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a protocol and compute a function on their inputs without revealing their information to 

other sites, and the final result is shared among them. However, SMC alone is not enough 

to preserve data privacy. Thus, a combination of SMC with other methods such as DP 

is required for better privacy results [14].  

2.7 MODEL COMBINATION APPROACHES 

There are two important issues in combining multiple models to build an optimal 

combined model. One is that the models must be diverse and accurate to perform better. 

The other issue is the combination method, which is regarding how to combine the 

outputs of individual models [123, 124]. 

 

2.7.1 Models Selection Strategies 

A fundamental step in building an efficient combined model is the selection 

of models. However, a poor model selection strategy could lead to a combined model 

performing worse than the individual models' performance that formed the combined 

model [32]. Therefore, several selection strategies are used to build a combined 

model. 

I. Static and Dynamic Model Selection Strategies 

In static selection, the best model selection is defined during a training 

phase, such as Boosting and Bagging. While in dynamic model selection, the 

model selection is made during a testing phase. For each new sample, the most 

competent models are selected by some competency measures [52, 53]. In 

Dynamic Selection (DS), the key is how to choose the most competent models 

for any given new sample [67]. First, the competence of the models is estimated 

based on a local region of the feature space where the new sample is located. 

This region can be defined by different methods, such as applying the K-

Nearest Neighbors technique, finding the neighbourhood of this new sample, 

or using clustering techniques. Then, the competence level of the base models 

is estimated, considering only the examples belonging to this local region 

according to a selection criterion; these include the accuracy of the models in 

this local region or ranking and probabilistic models. The model that achieved 

a definite competence level is selected [65, 67,104, 160]. 
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Dynamic model selection is divided into Dynamic Classifier Selection 

(DCS) and Dynamic Ensemble Selection (DES). In DCS, only one model is 

selected for each test example, such as Overall Local Accuracy (OLA) [54], 

Local Classifier Accuracy (LCA) [54], Modified Local Accuracy (MLA) [55], 

Classifier Rank [56], and Multiple Classifier Behavior (MCB) [57]. In DES, 

an ensemble of models is selected for each test example. For a new test 

example, DES aims to select the competent models for the local region in the 

feature space where the test example is located [65, 160]. For example, META-

DES assumes that the DES problem is a meta-problem. Meta-features are 

derived from the training data and represent different criteria to measure the 

model competence level for new examples classification. It is used to learn a 

meta-model to predict whether a model is competent to classify an input 

example or not [65]. First, the meta-features for each model are obtained from 

the input example and sent as input to the meta-model. Then, the meta-model 

estimates the competence level of the model for the new example 

classification. Finally, the models with a competence level higher than a 

defined threshold are selected [65]. In K-Nearest-Oracles (KNORA) based 

approaches, the accuracy metric is used as the selection criterion. It first finds 

K-Nearest Neighbors of the example to be classified and then selects a subset 

of models which can correctly classify all the neighbors. Finally, majority 

voting is usually used to combine the outputs of the selected models. K-Nearest 

Oracles Eliminate (KNORA-E) and K- Nearest Oracles Union (KNORA-U) 

are based on KNORA approach [160]. KNORA-E selects the models that 

identify all data examples belonging to the competence region and then applies 

the majority voting method. 

In contrast, KNORA-U selects the models that correctly classify at least 

one example in the region of competence and perform a weighted voting 

method. The model weight is based on the number of correctly classified 

instances. In KNORA-E approach, the competence region size is reduced if no 

model is selected, and then start searching for competent models [66]. 

Dynamic Ensemble Selection performance (DES-P) selects all models that 

achieve a classification performance in the local region of competence higher 

than the random classifier (RC) performance. The performance of the random 

classifier is defined by RC = 1/C, where C is the number of classes in the 
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problem [18]. K-nearest output profiles (KNOP) use accuracy metric to 

evaluate the models. It is similar to the KNORA-U approach, but KNORA-U 

works in the feature space, while KNOP works in the decision space to estimate 

the region of competence. K-Nearest Neighbors (DES-KNN) uses diversity 

and accuracy measures to select the models. First, the most accurate models in 

the region of competence are selected. Then, the more diverse models from the 

most accurate models are selected [67]. After the model selection step, it is 

essential to consider the selected models in a proper model combination 

approach to improve overall prediction performance. 

 

II. Stepwise Model Selection Strategy 

It aims to optimise combined model performance. It is adopted to add 

superior models or remove poor models from a given set of candidate models 

according to a specified performance threshold. The remaining models are 

used to develop the combined model [105, 106]. The stepwise model selection 

strategy selects desired surrogate models from a given set of candidate models 

within a sequence. It begins with a combination of models. Then, if a model 

was not in the combination but significantly affected the response positively, 

the model is added to the combination. If a model in the combination does not 

significantly affect the response, the model is removed from the combination. 

This process is repeated until no model needs to be added or removed from the 

combination. Finally, the final selected models are combined using 

combination methods [106]. 

 

2.7.2 Model Combination Methods 

Since distributed learning aims to produce a learning result for distributed 

data resources, the learning outcomes from distributed sites must be appropriately 

combined. This can be achieved by combining local models predictions or local 

models [92, 121]. An optimal combination approach is required to develop an 

efficient combined model to improve distributed learning performance [4, 40]. The 

combination approach should take advantage of local models strengths while 

ignoring models weaknesses. Its success depends on how accurate, diverse, and 

independent the individual models are and how well the combination method can be 
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determined [13, 83, 108, 125]. Diversity can be achieved by combining distributed 

and heterogeneous models, such that these models disagree with when predicting a 

new test data. Therefore, combining diverse models will balance the individual 

models weaknesses and produce a good combination approach, even with the 

simplest combination methods [18, 125, 126]. 

When the models outputs are discrete values, majority voting and weighted 

voting combination methods are commonly used [163]. The majority voting selects 

the final predicted value based on the most voted predicted class. The weighted 

voting method is a linear combination method used to improve model performance 

by combining models prediction results and selecting the highest vote based on the 

individual models weights. Therefore, it is required to define proper weight for each 

model, such as using average model performance in training data to assign the model 

weight. Averaging method takes the average sum of model performance to get the 

final prediction result [163]. If the models outputs are continuous, other model 

combination methods, such as the simple average, sum, weighted average, etc., can 

be used [121]. Linear and nonlinear combination methods are developed to combine 

the models outputs. Linear model combination methods combine models outputs in 

a linear fashion, such as the sum, mean, median, simple average, weighted average, 

etc. Nonlinear combination methods include rank-based combiners or using 

nonlinear learning algorithms such as decision tree, neural network, and support 

vector machine to combine models outputs as a high-level model (meta-model) [31, 

120, 125]. 

 

1. Linear Combination Methods 

In the linear combination methods, the final model result is a linear 

combination of several models. It is the simplest combination method, does not 

require learning procedures, and balances individual models overfitting [125]. A 

combination model can improve prediction performance if it combines models in 

an appropriate way. It is the most frequently used combination rule, and it has 

been shown that a linear model combination would give a smaller error variance 

than any single model. As a result, the accuracy could be improved for the model. 

Linear combination method uses the weighted-average method to predict the 
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results obtained by all individual models [115, 123]. It was first proposed by 

[131]; the basic form of the linear combination model can be formulated as [131]: 

 

𝑓(𝑥) = 	∑ 𝑤7𝑓7:
712 (𝑥),	                    (2.12) 

 

where 𝑤7 is the weight of the ith prediction model, 𝑓7 is the ith predictive value, 

m the number of prediction models, and ∑ 𝑤7 = 1:
712   , 𝑤7 ≥ 0	; 1,2, … ,𝑚. 

This model combination approach success depends on how well the 

weights in model combination can be determined [13, 83, 108, 125]. The model 

weighting method can be defined as assessing the efficiency of each model and 

assigning an appropriate weight value that reflects model importance in the 

combined model. Each model weight coefficient is calculated by examining the 

actual and predicted values of training data. Thus, the coefficients are assigned to 

the models considering their prediction performance, and finally, the weighted 

predictions are combined. It would affect the model accuracy directly, so selecting 

a proper weighting coefficient is the core [122, 128, 135]. It can be estimated in 

different ways: 

 

1) Simple Average Method (SA): 

In SA, all models are equally weighted; the weight of each model is 

equal to the average models number. 

 

w) = 1/𝑛 , i= 1, 2, …, n,                  (2.13) 

 

where, 0 ≤ w) ≤1,∑ w) = 1+
)12 , and n is the number of models. 

 

It is the simplest method, but it ignores the model performances in the 

combination and is affected by extreme values or outliers; therefore, the 

variation of model errors can be high [118]. Simple Average method is the 

optimal linearly combining method if the individual models show identical 

performances and error variance. Otherwise, assigning weight based on model 

performance can provide improved results [45, 83, 84, 86]. 
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2) Error-based Method: 

The weight for each model is inversely proportional to the model error. 

A small weight is assigned to the model with a large error and vice versa [118]. 

 

𝑤7 =	𝑒742/∑ 𝑒7426
712  , i= 1,2, …, n,                   (2.14) 

 

where 𝑒7 denotes the error of the ith model, 0 ≤ w) ≤1,∑ w) = 1+
)12 	and n is 

the number of models. 

                    

 

3) Performance-based Method (Accuracy): 

In the performance-based method, the weight for each model M) is 

related to the model accuracy. The larger weight is assigned to the model with 

larger accuracy. 

 

w) 	=
;''<%,'3	(>!)	

∑ ;''<%,'3	(>!)#
!$%

 ,               (2.15) 

              where i=1, 2, …, n and  ∑ w) 	= 1+
)12 . 

For example, the accuracy of the classification model is calculated by 

dividing the number of correct predictions by the total predictions number. The 

model accuracy for the regression model is based on the difference between 

the observed and predicted values. First, we calculate the Mean Average 

Percentage Error (MAPE), and then we compute the model accuracy. 

MAPE (M)) = 2
+
		∑ | 3!4	3"5

3!
|+

)12  *100,             (2.16) 

where y) is the actual value and y/6  is the predicted value for n data samples. 

Accuracy	(M)) = 100 − MAPE	(M))													 (2.17) 

 

Assigning model weight based on its performance is both a rational and 

advantageous approach and overcoming the limitations of the statistical 

combination approaches such as the simple average method [86]. 
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4) Weighting Method using Shapley Value:  

The Shapley Value is a mathematical method used to solve 

cooperation games with multiple players. It allows achieving an efficient and 

fair allocation of team total revenue among the several cooperative players. 

The aim of reducing the combined model prediction error can be considered 

as the goal of a cooperative game, where each model is a player in the process 

of combining the model. It calculates the model weight coefficient by 

evaluating the model contributions and corresponds to the average of the 

marginal contributions of the models associated with all possible models 

orders across all combinations. The marginal contribution is the difference 

between the prediction value when including that model, and the prediction 

reached without including that model. Every model weight can be determined 

according to the error distribution [127, 128, 133, 134]. Model weighting 

method using the Shapley Value steps as follow: 

1) Suppose we have a set S of n models taking part in the combined model, 

S = {1, 2, …, n}, and  𝑒7 	is the prediction error of model i, i= 1, 2, …, n. 

2) Calculate total error E of all prediction models: 

E	 = 	 2
6
∑ 𝑒76
712                        (2.18) 

3) Calculate the combined error 𝐸(𝑠7) of a combination subset 𝑠7: 

𝐸(𝑠7) 	= 	
2
:
∑ 𝑒7:
712 ,                  (2.19) 

where 𝑠7 is a subset of S, and m is the number of the models in 𝑠7. 

4) Calculate the Shapley Value of the model i: 

𝜑7(𝑣) = 	∑
(64|B&|)!((|B&|)42)	!

6!B7	∈E 	 ∗ 	 [𝐸(𝑠7) 	− 	𝐸	(𝑠7 − {𝑖})],    (2.20) 

where |s)| is the number of models in the combination, and s)−{𝑖} is a set 

obtained from s) by removing i-th model from the combination. 

 

5) Finally, calculate the weight of model i: 
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𝑤7 =	
2

642
	 ∗ 	F4	G&(H)

F
		 , i= 1,2, …, n                  (2.21) 

The following is an example of the Shapley Value calculation for a model in 

a combination of 3 prediction models:  

• If we have 3 models I = {1, 2, 3} and its errors 𝑒2 =	9, 𝑒! =	8.49, and 𝑒I =

	8.92 

• All possible models subsets are: 

s2 = {1},	s! = {2},	sI = {3},	sJ = {1, 2},	sK = {2, 3},	sL = {1, 3}, and 

sM = {1, 2	,3} 

• The models subsets that contain model 1 are	s2, sJ	, sL, and sM. 

• The total error E = 8.8 

• The combined error of the combination subset 𝑠7 are: 

𝐸(𝑠2) = 9, 𝐸(𝑠J) = 8.7, 𝐸(𝑠L) = 8.9, 𝐸(𝑠M) = 8.8 

• Then, calculate the Shapley Value for model 1 in 	s2, sJ	, sL, and sM as 

follows: 

𝜑_1	(𝑣) = 			 (3 − 1)! (1 − 1)!/3! ∗ 	 [𝐸({1}) − 𝐸	({1} − {1})] +	(3

− 1)!	(1 − 1)!/3! 		∗ 	 [𝐸({1,2}) − 	𝐸	({1,2} − {1})]

+			 (3 − 2)! (2 − 1)!/3! 		∗ 	 [𝐸({1,3}) − 	𝐸	({1,3}

− {1})] +		 (3 − 3)! (3 − 1)!/3! 		∗ 	 [𝐸({1,2,3})

− 	𝐸	({1,2,3} − {1})] 

		= 		2/6	 ∗ 	 [𝐸({1})] 	+ 1/6	 ∗ 	 [𝐸({1,2}) 	− 	𝐸	({2})] 	+ 		1/6	

∗ 	 [𝐸({1,3}) 	− 	𝐸	({3})] + 		2/6	 ∗ 	 [𝐸({1,2,3}) 	

− 	𝐸	({2,3})] 

		= 		2/6 ∗ 	9	 + 		1/6	 ∗ (8.7	 − 	8.49) 	+ 		1/6	 ∗ (8.9	 − 	8.92) +

		2/6	 ∗ (8.8	 − 	8.7)  

= 3.06 

• Calculate the weight of model 1: 

𝑤2 =	
2

642
	 ∗ 	F4	G%(H)

F
		= 2

!
	 ∗ 	N.N4	I.PL

N.N
		= 0.33 
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• By applying the same steps on model 2 and model 3, the Shapley Values 

are 𝜑!(𝑣) = 2.7	and 𝜑I(𝑣) = 3.01, and the models weights are 𝑤! =

0.35		and 𝑤I = 0.32. 

• 𝜑2(𝑣) +	𝜑!(𝑣) +	𝜑I(𝑣) = 8.8 = E; this indicated that the calculation of 

the shared error of each model is correct.  

 

2. Nonlinear Combination Methods: 

For models outputs 𝑓2(𝑥), … , 𝑓Q(𝑥) of k individual models, we can 

combine them as follows to get the nonlinear combination for y(x) [94]: 

𝑦	(𝑥) = 	𝑔	(𝑓2(𝑥), 𝑓!(𝑥), … , 𝑓Q(𝑥)),                  (2.22) 

where 𝑔 is a nonlinear function that used to combine the models outputs. 

Nonlinear combination methods include using nonlinear learning 

algorithms to combine the base models outputs as a high-level model (meta-

model), rank-based combiners such as majority voting, or hierarchical 

combination techniques [19, 31, 120, 125]. Nonlinear combination using meta-

learning is performed by taking the outputs of the base model for the validation 

data as the input for the training to develop a meta-model and then applying the 

meta-model on the base models outputs for the test data to predict the result [13]. 

Meta-learning [72] deals with the problem of computing a global model from 

distributed data resources [28], aims to improve the quality of selection and the 

combination of models, and selects the reasonable model according to the 

relevance of different data sources [4]. Meta-learning performance not only 

depends on the base models but also on correct model selection for the high-level 

model [13]. Since meta-learning depends upon base models and a model which 

selects/weights those models, it is considered a two-level hierarchical model 

combination. 

Another hierarchical model combination is based on a hierarchical 

strategy that filters out the best-performing models based on a model-

encompassing test. First, models are ranked according to a performance measure 

and then selected for combination such that each model is not encompassed by 

any competing models. Thus, the hierarchical procedure represents a compromise 
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between model selection and model averaging. Next, larger weights are assigned 

to models with higher performances. Finally, models with lower accuracy and are 

encompassed by all other models are discarded, as their weights will be 

insignificant [19]. 

 

2.8 RELATED WORKS 

In the following content of this section, research works for distributed and 

decentralised machine learning methods are presented in section 2.8.1. Section 2.8.2 

shows several proposed approaches using model selection and combination strategies 

to build a combined model. 

 

2.8.1 Distributed and Decentralised Machine Learning 

Several machine learning methods have been proposed and focused on 

improving the prediction performance of regression and classification models. 

Some of these proposed approaches are under centralised learning or data sharing 

methods [7, 37, 40, 44, 48, 91, 99, 177, 182]. For example, Kasturi et al. [177] 

proposed a distributed learning method for distributed data. First, each site sent 

its distribution parameters with its local model parameters to the server. Then the 

server regenerated the data and combined it to use it for global model building. 

Then the global model is sent to the distributed sites. The experiment results 

showed that the proposed method was similar to the federated and centralised 

learning approaches. The proposed learning approach in [182] used Spark 

environment for a real-time distributed learning method to predict heart disease. 

First, the datasets are streamed from distributed sites, and then the predicted 

results with the data streams are stored in a database for real-time monitoring. 

They evaluated their method in terms of execution time and accuracy, which 

showed improved results. In [37], they proposed a predictive method using five 

heterogeneous classification models and a weighted voting method to determine 

the final prediction, where weights are assigned based on model accuracy. Their 

approach provided a significant improvement compared to other classifiers. The 

proposed ensemble method in [48] used hierarchical majority voting (HMV) and 

multi-layer classification based on a combination of seven heterogeneous 
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classifiers. They assessed their strategy on different datasets and showed that their 

proposed method obtained higher accuracy than other models and ensemble 

techniques. 

Several distributed machine learning methods were proposed to overcome 

centralised machine learning issues and distributed data resource restrictions, and 

to develop a generalised model for distributed sites. For example, [23] introduced 

geo-distributed learning for geographically distributed datasets by implementing 

a communication-sparse learning algorithm to reduce bandwidth consumption 

costs and speed up the learning process. The results showed that their method 

could reduce the cost of communication bandwidth. Other distributed learning 

approaches have been used to optimise the learning process without using the 

centralised learning method. For example, [35] proposed a federated learning 

method and model considering the site models participation to the global model 

on the server and with an optimisation technique during server combination. They 

proposed an optimisation technique to measure selected sites importance and 

accelerate the learning process. Their federated learning approach reduced the 

algorithm complexity and communication cost. The Bayesian network model 

using distributed learning approach proposed in [41] showed prediction accuracy 

improvement in some hospitals and worse in others based on data from 5 hospitals 

in 3 countries. The hospitals iteratively communicate with a central site and 

aggregate models statistical results. Also, a federated learning approach using 

distributed SVM algorithm in [11] is used to predict hospitalisations for cardiac 

disease based on patients’ medical history in Electronic Health Records (EHRs). 

They achieved similar accuracy and low communication cost compared with a 

centralised and alternative distributed algorithm. 

Other studies applied privacy-preserving methods to overcome data 

privacy restrictions. For example, [90] developed a privacy-preserving federated 

learning method using differential privacy and secure multiparty computation and 

compared it with two different learning algorithms: decision trees and neural 

networks. Their method outperformed other approaches in accuracy and 

scalability. Also, the issue of site dropout from the network during FL has been 

addressed in [166] by developing a dropout-robust and an iterative secure global 

gradient computation protocol using homomorphic encryption (HE) to preserve 

the data and model privacy. The experimental results showed the feasibility of 
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their method. Others proposed distributed learning methods in [96, 170, 176, 178 

- 181] rely on encryption techniques to preserve the data or model privacy during 

the learning process. 

Gossip learning is a decentralised alternative to federated learning and a 

competitive approach to the federated learning method [139-144]. For example, 

[139] is a proposed gossip-learning approach for linear classification models and 

a continuous combination of the models in the network using the weighted voting 

method. As a result, every site has at least one model available locally; thus, all 

the sites can perform a prediction. Their strategy showed the performance and 

robustness of the proposed approach and provided reasonable protection against 

uncovering private data. 

 

2.8.2 Models Selection and Combination Approaches 

Appropriate model combination methods can improve the predictive 

capabilities of the prediction models [77]. Many studies showed that combining 

or ensembling multiple models created unbiased models, achieved high prediction 

accuracy, and outperformed individual model predictions [13, 15, 16, 18-21, 36, 

37, 39, 42, 44, 83, 85, 111, 119]. Distributed learning outcomes from distributed 

sites can be combined either by combining model prediction results or prediction 

models [111, 92]. The combination approach should take advantage of local 

models strengths while ignoring models weaknesses. Model combination success 

depends on how accurate, diverse, and independent the individual models are and 

how the models weighting strategy can be determined [13, 83, 108, 125]. 

Diversity can be achieved by combining distributed and heterogeneous models. 

Combining diverse models will balance the individual models weaknesses and 

produce a good combination approach, even with the simplest combination 

scheme [125, 126]. Dynamic model selection (DES) achieved better results in 

many studies [18, 57, 64-70]. 

Model combination using stepwise model selection obtained high 

accuracy compared with other combination approaches and showed the benefit of 

this selection method on the combined model performance [106, 107]. In [2], 

several global models built from different strategies are compared to the 

centralised learning method and other distributed learning methods. The main 
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idea behind these different strategies is to understand the behavior of a global 

model constructed with classifiers copied from the local models. It could be seen 

that the accuracy of distributed learning methods is competitive compared to 

centralised learning methods. Also, the weighted classifier method got better 

accuracy when compared to other strategies. 

Different model weighting approaches are used for linear model 

combination to make the final decision. Assigning weights to the models based 

on their performances is a rational and advantageous approach [76, 77, 81, 86]. It 

is a simple and optimal combination method for models and is often more efficient 

and reliable than other complicated techniques [33, 45-47, 86].  

From [3] and [25], we concluded that learning outcome quality depends 

on model combination strategy at the global level of distributed learning, and 

model combination using a suitable selection strategy is more accurate than that 

formed from a single model. 

An example of model selection and combination strategies is proposed in 

[6], which used statistical significance tests to select and combine accurate models 

built from a centralised dataset. They developed three effective voting methods 

to predict breast cancer: by the highest significance index (EV1), the lowest error 

rate models (EV2), and by the highest three significance index models (EV3). 

Their methods are comparable in accuracy to recent combining methods and have 

a low computational cost. Also, Rathore and Kumar investigated ensemble 

methods performance using three techniques to build ensemble methods with four 

combination rules for combining the ensemble outputs. The combination methods 

achieved better performance than the individual models, leading Rathore and 

Kumar to conclude that the heterogeneous approach outperformed homogeneous 

methods developed from a centralised dataset [31]. 

There are also other approaches been proposed for model selection and 

combination methods. For example, Li et al. [32] developed a distributed privacy-

preserving combination method based on an ensemble method for developing 

robust prediction models from medical data by calculating the data distribution 

for the local models and combining the best models based on the distribution 

differences without disclosing sensitive data. Each site shares its local model with 

other sites and builds a specific combined model based on its specifications. It 

detects the data distribution difference and transfers useful knowledge. The 
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proposed method performed better than the original local models constructed on 

each site data separately.  

Similar model combination approaches using the F-measure for model 

weighting strategy are proposed in [36] and [49]. In [36], the model weight is 

based on the F-measure value of the training data set to develop a weighted voting 

method of five heterogeneous models for heart disease prediction. It achieved 

high diagnosis accuracy compared with individual models. Also, in [49], they 

used a weighted voting method for predicting heart disease using five 

heterogeneous models. The weight for each model is computed based on the F-

measure of the training dataset, and the result of the ensemble model is the label 

with the highest weighted vote. They compared their method with individual and 

ensemble models, and the proposed method outperforms other approaches. In 

addition, F-measure showed higher accuracy when compared to combined models 

and randomly selected models in [185]. 

The proposed model selection strategy in [38] used a decision-making 

model to identify the prediction models superiority over others by estimating the 

models accuracy. It used confusion matrix and error measures to develop a 

performance ranking of classification models. The proposed method considered 

different information types from various performance metrics and provided firm 

rankings. 

From the proposed research works in [127], [128], and [133], we conclude 

that the combined models developed by calculating the weight factor of each 

model using the Shapley Value (SV) method improved the prediction 

performance. For example, in [133], they compared a linear combination 

approach with two weighting methods, namely Information Entropy (IE) method 

and Shapley Value (SV) method. The Shapley Value method proved to be more 

capable of better combining individual models and improving the predictions for 

test data. Furthermore, the research showed improvements by using an 

appropriate linear combination of individual models.  

Many studies showed that nonlinear combination methods achieved high 

prediction accuracy and outperformed individual model predictions and other 

ensemble methods [31, 71, 73 – 82]. For example, in [81], they proposed different 

nonlinear combination methods to predict diabetes and involved two steps: model 

selection and combination. They applied several nonlinear combination methods 
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considering the best combiner method, which integrates the selected models 

results by utilising the prediction information obtained from the base models. The 

proposed method outperformed individual learning approaches and other 

ensemble methods.  

Nonlinear model combination based on meta-learning improved 

prediction performance over individual models and other ensemble models. For 

example, in [77], they proposed a nonlinear combination method using random 

forest-based meta-learning for prostate cancer detection. It showed better 

performance than ensemble methods and other single learning algorithms. Also, 

in [169], they proposed heterogeneous classification models ensemble with fuzzy 

rule-based meta-model. Their strategy is competitive compared to several 

ensemble methods and individual learning algorithms. The proposed nonlinear 

combination model in [125] using diverse classification models predictions for 

meta-learning showed improved prediction performance over individual 

classification models. Also, [120] used decision tree forest (DTF) for meta-model 

learning for their proposed heterogeneous ensemble method with two linear and 

nonlinear combination methods. The nonlinear combination method 

outperformed the linear combination methods, and the combined methods 

outperformed other single models. 

A similar meta-learning method using decision trees for the nonlinear 

combination was found in [31]. It is a nonlinear combination approach using 

decision tree and gradient boosting regression to predict the number of faults in a 

given software system. Experiment results showed that the proposed approach 

improved prediction accuracy over individual prediction models. Also, 

heterogeneous ensemble methods based on the nonlinear combination method 

outperformed homogeneous ensemble methods.  

An artificial neural network (ANN) is used for nonlinear model 

combination in [136]. The experiment results showed that the proposed approach 

is superior to the common practice of linear combination and generally performed 

better than individual models. 

Nonlinear model combination based on hierarchical model combination 

showed improved results over individual models. For example, in [138], they 

proposed a hierarchical model combination approach to tourism forecasting 

problem that combines linear and nonlinear combination methods predictions 
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using the simple average approach. Their method outperformed individual 

learning models. 

2.9 CRITICAL ANALYSIS 

Although the existing research works have made considerable contributions to 

distributed machine learning research, there still exist some challenges and limitations 

to these learning methods. We summarise these limitations as follows: 

1. Distributed machine learning methods in some studies mentioned above that 

involve sharing or combining distributed datasets to create a central data 

resource incur some serious issues and concerns related to communication, 

privacy issues, and data transformation costs. In addition, it is not possible when 

the distributed data resources are private and not exchangeable. Therefore, it is 

necessary to find alternative learning strategies to overcome the centralised 

machine learning issues. Such a strategy could contribute to preserving data 

privacy and improving learning performance. 

2. Some studies dealing with distributed learning issues are centralised modelling, 

exchanging lots of information and intermediate results to get a general model 

or using complex methods to preserve data privacy. For example, Federated 

Learning (FL) is designed for distributed sites to preserve data privacy by 

avoiding sending the data to a central location. However, the learning process 

involves many communication rounds between the sites and the server to build 

a global model. Thus, there is a communication cost in Federated Learning. 

Furthermore, the server coordinates the learning process and performs many 

model parameters update iterations between the server and sites. Since the 

server takes control during the learning process, federated learning faces risks 

of single points of failure or attacks. Hence, it is highly desired to focus on 

decentralised machine learning to remove central location assumption for 

control and coordinate the learning process. Such an approach would allow us 

to overcome iterative learning overhead and central server issues. 

3. Privacy-preserving federated learning techniques are proposed to preserve data 

privacy and models updates information. These methods use Differential 

Privacy (DP), which preserves the privacy of model output or intermediate 

statistical results, cryptographic approaches to protect the data or results, or 
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Secure Multiparty Computation protocol (SMC). Despite the effectiveness of 

these techniques, SMC causes huge computation time and requires extensive 

communication between the associated sites, and it has a considerable 

communication cost as its processes need to communicate encrypted data with 

each other across the network, and the communicating sites must remain online 

during joint computation [14, 58]. In addition, the learning speed on the 

encrypted training data is decreased due to the computation overheads, and it is 

not practical to be used in real applications [61, 88, 96]. Differential privacy 

involves adding noise (data alteration) and may not be suitable for applications 

where high-quality models are needed as it reduces the quality of data and hence 

its utility [14, 62, 88]. One main limitation is that existing federated learning 

approaches overall are still an iterative learning process and require iteratively 

exchanging the gradient information. Therefore, it is still computationally 

intensive and requires a lot of information sharing, which still inherits some 

privacy-preserving risk. Due to the above communication and computational 

issues, further efforts should be done to overcome these issues without using 

complex approaches for distributed learning and carefully considering data and 

model privacy during the learning process. 

4. Model combination strategy is a promising approach to build an optimal 

combined model to improve the prediction performance and overcome 

individual model limitations. Exchanging models between the distributed sites 

instead of the raw data is a solution to overcome the data privacy and restriction 

issues [4, 50, 100. 108]. The challenge here is to develop a decentralised version 

of model selection and combination strategies to build an optimal combined 

model for distributed sites with less information sharing and communication and 

computation overheads. Thus, paying attention to model selection and 

combination strategies is desired to improve the performance of the combined 

model. This triggers our motivation to propose and develop a robust and optimal 

combined model using a decentralised version of model selection and 

combination strategies that could improve prediction performance for all 

distributed sites and preserve data privacy. 
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2.10   SUMMARY 

This chapter presented an overview of machine learning techniques, distributed 

machine learning approaches, and followed by the challenges in the distributed learning 

area. Then, we showed privacy-preserving machine learning approaches and model 

combination approaches, and several research works. We have also analysed the 

research limitations and challenges of the research works and the possible approaches to 

tackle these challenges.  
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Chapter 3  

 

Linear Model Combination Approach 
 
 

3.1 CHAPTER OVERVIEW  

This chapter presents our proposed decentralised learning approach using 

linear model combination method for distributed data sources to develop a global 

and combined model. Section 3.2 views our contribution and aims to develop a 

global combined model using decentralised learning and linear combination 

approaches. The proposed method for classification with its experiment results and 

discussion are shown in section 3.3 and regression algorithms in section 3.4. Finally, 

section 3.5 presents the chapter summary. 
 
 

3.2 INTRODUCTION 

We develop a decentralised machine learning approach to distributed, private, 

and un-exchangeable data resources without exchanging lots of intermediate 

information, using a centralised machine learning method, or using a central site for 

iterative communication or computation. This approach is proposed to overcome data 

restriction issues, preserve data privacy for each site, and avoid the iterative learning 

process overhead and server issues. We develop a global combined model derived 

from local learning outcomes from the distributed sites with minimal communication 

between the sites. Besides, we develop a local combined model in each site by 

utilising learning outcomes from other sites data resources and its local data to 

improve its local prediction performance. We use a linear combination approach of 

heterogeneous models to utilise and combine the selected models from distributed 
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sites. We focus on models evaluation, selection, and combination strategies instead 

of complicated methods without revealing any information about data and only 

exchange the trained models and evaluation results with fewer computation and 

communication rounds than federated learning. 

3.3 PROPOSED METHOD FOR CLASSIFICATION ALGORITHMS 

The proposed method addresses individual model limitations by utilising 

distributed data resources to develop combined prediction models at global and local 

levels without data transformation between sites to preserve the privacy of local data 

resources. For this purpose, the related model names and definitions used in our 

methodology are first introduced in Table 3.1. 

Table 3.1. Models Names and Descriptions 

Model Notation Meaning 

Local Model M'( 
The local model that developed in site i using j 

classification algorithm 

Received Model M'’	( A model that received from other sites i+ 

Best local model accuracy M'(∗ 
The local model in site i that has the best accuracy 

developed by j ∗ classification algorithm 

Best local model F-measure M'(∗∗ 
The local model in site i that has the best F-measure 

developed by j ∗∗ classification algorithm 

Best Global Average Model 

Accuracy 
M'(∗
-  

The best global average accuracy in site i after 

evaluating the models M'(	in	all sites and calculating 

the average accuracy 

Best Global Average Model 

F-measure 
M'(∗∗
-  

The best global average F-measure in site i after 

evaluating the models M'(	in	all sites and calculating 

the average F-measure 

Global Combined Model (1) M-∗ 
The final global combined model that combines the 

best global average model accuracy M'(∗
- 	from each site 

Global Combined Model (2) M-∗∗ 

The final global combined model that combines the 

best global average model F-measure M'(∗∗
-  from each 

site 

Best Model Accuracy M'’(∗ 
The selected model from other sites i+ which is better 

than or equal to the best local model accuracy M'(∗ 

Best Model F-measure M'’(∗∗ 
The selected model from other sites i+ which is better 

than or equal to the best local model F-measure M'(∗∗ 
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List of the best accuracy 

models 
M.// 

List of the best local model accuracy M'(∗ and the 

selected models of the best accuracy from other sites 

M'’(∗ that will linearly be combined to build the local 

combined model. 

List of the best F-measure 

models 
M0 

List of the best local model F-measure M'(∗∗and the 

selected models of the best F-measure from other sites 

M'’(∗∗ that will linearly be combined to build the local 

combined model. 

Local Combined Model (1) M'
1∗ 

The final local combined model in site i that combines 

the best local model accuracy of the site i with the best 

models accuracy from other sites  

Local Combined Model (2) M'
1∗∗ 

The final local combined model in site i that combine 

the best local model F-measure of the site i with the 

best models F-measure from other sites  

 
 

3.3.1 Global-level Modelling Approach 

We aim to build a global combined model at the central server by 

combining the best global average model from each site. Figure 3.1 shows that 

each site builds local and heterogeneous models on their local data using 

different classification algorithms. We develop heterogeneous models because 

a single model may perform well in one dataset and not fit well in others. 

Therefore, we build diverse models to find a suitable model for all distributed 

sites. Second, each site takes advantage of its local models strength while 

ignoring the models weaknesses by selecting the best local model using 10-

fold cross-validation technique. We selected 10-fold cross-validation based on 

our experiments using 5-fold and 10-fold cross-validation, and 10-fold cross-

validation showed better results than 5-fold cross-validation on different 

classification and regression datasets (Appendix A). Next, each site shares its 

local models with other sites for general evaluation to find good models as 

candidates for future selection and combination to build a well-

generalised/global model for all sites. Then, when a site receives other sites 

local models, it first calculates the prediction accuracy of these models based 

on its local data and then sends back the models with its evaluation results to 

the sites, and with the local data size used for evaluation. Each site should not 

get more information about the received model during evaluation than the 



 63 

prediction accuracy of its local data, which will preserve the models’ privacy. 

Then, each site will receive its local models evaluation results from other sites, 

calculate the average accuracy of its local models and send the best global 

average model with its average accuracy to the server. Finally, the server 

combines the models using a linear combination method by weighting the 

models based on its average accuracy to develop the global combined model. 

This approach develops a global model without centralising the data for the 

learning process. This will overcome the risks of a centralised architecture, 

such as computational load and single point of failure. In addition, the 

proposed method does not expose the data resource and hence preserves data 

privacy and uses minimum exchanged information between the distributed 

sites and the server to mitigate the computation and communication overhead 

between the server and sites. 

 

Figure 3.1. The Proposed Method for Global-Level Modelling using Linear Combination 

Approach 

The following steps implement the above idea:  

1) As illustrated in Figure 3.2, for each site S) , where i = 1,2, … , n: 

o Apply different j learning algorithms, where j = 1,2, … ,m to build local 

models M)R.  

o Use 10-fold cross-validation results to evaluate the local models M)R 

based on the local data in site S) and calculates the accuracy 

Acc	fM)Rg	and F-measure F	fM)Rg using confusion matrix. 

Acc	fM)Rg 	= 	TP + TN/(TP + TN + FP + FN)         (3.1) 
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F	fM)Rg = 	2TP/(2TP + FP + FN)                (3.2) 

, where TP is true positive, TN is true negative, FP is false positive, and 

FN is false negative examples. 

o Select the best local accuracy model 	M)R∗ and the best local F-measure 

model	M)R∗∗. 

2) Each site sends its local models M)R to other sites for global evaluation to 

see which model got the best performance globally and select the best 

average models as follows: 

o Each site will receive models from other sites	M)’	R, then start to evaluate 

these models over its local dataset and calculate the accuracy Acc(M)’	R) 

and	FfM)’	Rg, (iU = 1, . . , i − 1, i + 1,… , n). 

o Send the evaluated models back to the sites with the evaluation results. 

o Each site S): 

a) Receive the evaluation results Acc	(M)R) and F	(M)R)  of its local models 

M)R from other sites with the number of data samples that used for 

evaluation.  

b) Calculate the global average accuracy and the global average F-

measure for each local model. 

Acc	(M)R) = ∑ V2
V	
∗ Acc	(M)R

+
W12 )	in	SW          (3.3)  

F	(M)R) = ∑ V2
V	
∗ F	(M)R

+
W12 )	in	SW                  (3.4) 

, where k is sites number, DW is the number of samples of site k, and 

D is all sites’ data samples number 

c) Select the best global average accuracy M)R∗
X  and the best global average 

F-measure	M)R∗∗
X . 

d) Send the selected best global average models with its evaluation 

results	Acc	(M)R∗
X ) and F		(M)R∗∗

X ) to the server. 

3) As shown in Figure 3.3, the server combines the received models by linear 

combination method to develop global combined models. We develop two 

global combined models MX∗ and	MX∗∗. MX∗ is the global combined 

model that combines the best global average model accuracy from each 

site, and MX∗∗ is the global combined model that combines the best global 
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average model F-measure from each site. The linear combination method 

implementation is as follows: 

a) The server receives two models from each site, the best global average 

accuracy M)R∗
X  with its global average accuracy	Acc	fM)R∗

X g, and the best 

global average F-measure 	M)R∗∗
X  with its F-measure	F	(M)R∗∗

X ). 

b) The server combines the best global average accuracy models by 

weighting the models based on its global average accuracy	AccfM)R∗
X g, 

and combines the best global average F-measure models by weighting 

the models based on its global average F-measure	FfM)R∗∗
X g. We 

calculate the weighted average to get an unbiased model weight 

obtained by weighting each model based on its global accuracy and F-

measure [30, 33, 86]. The most accurate model will get higher weight, 

and the less accurate model will get low weight. Models’ weights are 

constrained such that their sum is equal to one. 

w>!3∗
4 =

;''	(>!3∗
4 )

∑ ;''	(>!3∗
4 )#

!$%
    , i=1, 2, …, n             (3.5) 

where, 0 <= w>!3∗
4  <=1 and  ∑ w>!3∗

4 = 1+
)12  

w>!3∗∗
4 =

Y	(>!3∗∗
4 )

∑ Y	(>!3∗∗
4 )#

!$%
	         , i=1, 2, …, n        (3.6) 

where, 0 <= w>!3∗∗
4  <=1 and  ∑ w>!3∗∗

4 = 1+
)12  

c) The server linearly combines the models to develop the global models 

by using the weighted voting method. We use the weighted voting 

method as the linear combination strategy because it is the most 

popular strategy and an advantageous approach and has a significant 

impact on the prediction results in the combination [33, 34, 84, 86].  

 

MX∗	(x) = 	max∑ w>!3∗
4 	M)R∗

X 	(x)+
)12           (3.7) 

MX∗∗	(x) = 	max∑ w>!3∗∗
4 	M)R∗∗

X 	(x)+
)12                  (3.8) 
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Figure 3.2. Global-Level Modelling Method 

 

 
Figure 3.3. Linear Model Combination Approach 

 
 

3.3.2 Local-level Modelling Approach 

In the local-level modelling, the basic idea is, for each data site, to 

find the best local combined model by utilising the local data resource and the 

local prediction models from the other sites. The main advantages of such an 

idea are that, firstly, only the local prediction models from the other sites are 

used, and therefore we save the cost of data transformation from one site to 

another. As we know, data transformation is time-consuming and costly if the 
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datasets are large. Therefore, such an approach greatly improves the 

computation effectiveness and efficiency; secondly, there is no data sharing or 

transformation, whereas the only information exchanged between different sites 

are local models and the evaluation results and data size. Such an approach does 

not disclose the data resource and therefore preserves data privacy. Each site 

tries to find the best local combined model by utilising the best local models 

from the other sites. According to the results of the received models from other 

sites that evaluated based on sites local data, each site will compare these results 

with its own best local model result and select the best models. Then, each site 

combines the selected models using linear combination methods to build the 

local combined model. The proposed approach for local-level modelling is 

illustrated in Figure3.4. 

 

Figure 3.4. The Proposed Method For Local-Level Modelling Using Linear Combination 

 

The proposed local-level modelling is illustrated in Figure 3.5 and 

implemented by the following steps: 

1) When a site i receives models from other sites M)’	R, and evaluate these 

models over its local dataset and calculate the model accuracy Acc(M)’	R) 

and F-measure F(M)’	R): 

a) Compare the model accuracy Acc	(M)’	R) and F-measure F	(M)’	R) of the 

received models with its best local model accuracy Acc	(M)R∗) and best 

local model F-measure	F	(M)R∗∗). 

b) Select the best model accuracy M)’R∗ and the best model F-measure M)’R∗∗ 

from each site as follows: 
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o Method L1:  

- Select the best model accuracy M)’R∗ from site i’ if: 

 Acc	(M)’	R)  ≥ Acc	(M)R∗) 

- Select the best model F-measure M)’R∗∗ from site i’ if: 

 F	(M)’	R)  ≥ F	(M)R∗∗) 

The aim of this method is to utilise the best models learned from other 

data resources to build an accurate local combined model. 

Alternatively:  

o Method L2: Select the best model from each site, even if it is not better 

than the best local model. We proposed this method if the best local 

model performance is better than the received models, but there is not 

much difference between the models results. We apply this selection 

method for the best model accuracy and F-measure. 

2) In each site i, we apply linear combination method to develop two local 

combined models 	M)
Z∗ and		M)

Z∗∗. M)
Z∗ is the final local combined model 

that combines the best local model accuracy M)R∗ and the selected best 

model accuracy from other sites M)’R∗. M)
Z∗∗ is the final local combined 

model that combines the best local model F-measure M)R∗∗	and the selected 

best model F-measure from other sites	 M)’R∗∗. We aim to reduce model 

biases and errors in individual models when combining the models rather 

than selecting an individual model. Each site calculates and assigns weights 

for the best local model and the selected models from other sites to perform 

the linear combination as follows: 

a) Site i has a list of the best models accuracy M;'', where M;'' is the best 

local model accuracy M)R∗ and the selected models of the best accuracy 

from other sites M)’R∗, M;''={M)R∗	, M)’R∗, … , M+R∗} , where i = 1, 2, …, 

n ,and its prediction accuracy results. Also, the site i has a list of the best 

models F-measure MY, where MY is the best local model F-measure M)R∗∗ 

and the selected models of the best F-measure from other sites	M)’R∗∗, 

MY = {	M)R∗∗, M)’R∗∗, … , M+R∗∗} and its F-measure results. 

b) For each model in M;'', calculate model weight based on its average 

accuracy and average F-measure: 
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w>!3∗ =
;''	(>!3∗)

∑ ;''	(>!3∗)#
!$%

 ,                   (3.9) 

where, i=1, 2, ..., n, 0 <= w>!3∗ <=1 and  ∑ w>!3∗ = 1+
)12  

w>!3∗∗ =
Y	(>!3∗∗)

∑ Y	(	>!3∗∗)#
!$%

 ,                       (3.10) 

where, i=1, 2, ..., n, 0 <= w>!3∗∗ <=1 and  ∑ w>!3∗∗ = 1+
)12  

c) Combine the models to develop the final local combined model of the 

best models’ accuracy M)
Z∗ , and the final local combined model of the 

best models F-measure M)
Z∗∗ by using the weighted voting method to 

predict x. 

M)
Z∗(x) = 	max∑ w>!3∗ 	M)R∗	(x)+

)12                          (3.11) 

M)
Z∗∗(x) = 	max∑ w>!3∗∗ 	M)R∗∗	(x)+

)12                       (3.12) 

 

 
Figure 3.5. Local-Level Modelling Method 
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3.3.3 Experimental Study 

The experiments are conducted to evaluate the performance of our 

proposed methods for the global and local combined model.  

I. Datasets 

We used eight databases: blood transfusion, liver disease, diabetes, 

heart disease, lower back pain (spine disease), breast cancer Wisconsin 

(Diagnostic), breast cancer Wisconsin (Original) [29], and cardiovascular 

diseases [27]. Before performing the experiments, we preprocessed the 

datasets to a suitable data format. The datasets are with a binary target value, 

0 and 1. All datasets variables except blood transfusion dataset are patient 

information and medical diagnosis or measurement values. Table 3.2 

describes the datasets that used to train the models and evaluate the combined 

models. The datasets size except for cardiovascular disease are small, we 

could not find large and useful datasets publicly available to apply our 

proposed methods, and we will investigate this issue in future research. 

Table 3.2. Datasets Descriptions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Datasets Data Size No. of attributes 

Diabetes 
768 

Positive: 268 (34.9%) 
Negative 500 (65.1%) 

9 

Liver disease 
579 

Positive: 414 (71.5%) 
Negative 165 (28.5%) 

11 

Breast Cancer Wisconsin 
(Diagnostic) 

569 
Positive: 212 (37.3%) 
Negative 357 (62.7%) 

31 

Blood transfusion 
748 

Positive: 178 (23.8%) 
Negative 570 (76.2%) 

5 

Heart disease 
303 

Positive: 165 (54.5%) 
Negative 138 (45.5%) 

14 
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II. Simulating Distributed Data 

We applied the proposed methods using two dataset partitioning 

strategies to mimic a real-world scenario for distributed datasets 

(independent datasets) for distributed sites. The strategies are (1) random 

data partitioning approach and (2) non-random data partitioning 

approach. For non-random data partitioning approach, we partitioned the 

data based on patients’ age; we assumed each partition is from a hospital 

whose patients are in a specific age range to simulate the distributed data. 

The data are liver disease, diabetes, and heart disease datasets. We 

assume that the distributed sites are homogeneous, and the data are 

independent and identically distributed in this study. Also, the sites 

agreed on the learning algorithms that will be used for learning models 

and have the same data attributes and target. Therefore, we divided each 

dataset into different parts as distributed sites site1, site2, and site3. In 

each site, the dataset is divided into local and validation data. The local 

data partition is used to develop and evaluate the local models and assess 

the received models. The validation data is used to evaluate the final 

global and local combined model. We assume all the sites will strictly 

follow the proposed approach, and sites collusion will not happen 

between the sites, which means the sites only share the local models and 

evaluation results with others during the learning process. Besides, we 

do not consider the outside attack cases in the distributed environment. 

Furthermore, the data for each site is private and un-exchangeable and 

will not be directly shared or exposed to other sites. 

 
 

Lower back pain (Spine disease) 
310 

Positive: 210 (67.8%) 
Negative 100 (32.2%) 

13 

Breast Cancer Wisconsin 
(Original) 

683 
Positive: 239 (35%) 
Negative 444 (65%) 

10 

Cardiovascular disease 
68783 

Positive: 34041 (49.5%) 
Negative 34742 (50.5%) 

12 
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III. Models Building and Evaluation 

Well-known classification algorithms are used to build the local 

prediction models in each site: K-Nearest Neighbor, Logistic Regression, 

Neural Network, Support Vector Machine, Random Forests, Decision 

tree, and Naïve Bayes. We built diverse binary-class prediction models 

to predict blood transfusion, liver disease, diabetes, heart disease, lower 

back pain (spine disease), Breast Cancer Wisconsin (Diagnostic), Breast 

Cancer Wisconsin (Original), and cardiovascular diseases datasets 

(positive or negative) depending on the patients’ diagnosis. In each site, 

the local models are trained on the local training dataset from its local 

dataset. We used 10-fold cross-validation to prevent selection-biased 

results from being drawn from a single partition of the local data into 

training and test sets and maintained the same class distribution in each 

subset. K-fold cross-validation is a form of bootstrapping by random 

sampling with replacement. We used accuracy and F-measure metrics in 

model evaluation, selection, and weighting strategies. We used the F-

measure metric for model evaluation because some datasets, such as liver 

disease, blood transfusion, and lower back pain (Spine disease), are 

imbalanced. It is the most commonly used performance metric of 

machine learning, mainly when the data set is imbalanced. F-measure is 

the harmonic mean of precision and recall and a less biased metric than 

accuracy. It equally weights both false positives and false negatives and 

provides more weight to correctly classified samples in the minority class 

[155, 184]. 

 

IV. Combined Model Evaluation Methods 

1) Global Combined Model Evaluation:  

a) Testing accuracy: in each site, we evaluated the global combined 

models MX∗ and MX∗∗ based on the site local validation data instead 

of the server because the sites will not share their validation data with 

the server and only send the global combined model results and 

number of validation data samples to the server. Then, the server 



 73 

calculated the global average accuracy of the global combined 

models. 

b) Training accuracy: each site evaluated the final global combined 

model based on its local data that used to train the local models. Then, 

the sites send the evaluation results to the server with the number of 

local data samples to calculate the average training accuracy. 

2) Local Combined Model Evaluation: we calculated the final local 

combined models accuracy based on the local validation data and 

compared it with other combination methods, average accuracy, and 

majority voting methods. In addition, we compared our proposed 

methods with the best local model accuracy M)R∗ and the best local 

model F-measure M)R∗∗. 

In addition, we evaluated the global combined model and 

compared the model with other combination methods, average 

accuracy, and majority voting [163]. Besides, we compared it with a 

technique that if each site sends the best local model accuracy and F-

measure to the server instead of sending the best global average model 

(Best Local Models Combination). In addition, the proposed method 

is compared with the centralised learning approach and Single Best 

Model. Single Best Model is the model of the best prediction result 

from the selected models that formed the global combined model. 

Furthermore, we evaluated the local combined model. We compared 

the model with the dynamic ensemble selection (DES) methods: 

KNORA-U, KNORA-E, DES-P, META-DES, KNOP, and DES-KNN 

dynamic ensemble methods. We applied DES methods in each site on 

the received models from other sites using the local data and then 

evaluating the selected models. DES works by estimating the 

competence level of each model from a pool of models during the 

classification or testing phase. The most competent models are selected 

for each new sample by different competency measures [52, 53]. 
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V. Experiment Results and Analysis 

1) Random Data Partitioning Approach: 

As shown in Table 3.3, for each site, we split the datasets into 

two main parts, local and validation data. The local data is used to build 

the local models and evaluate the received models from other sites. The 

validation data is used to evaluate the combined models of the global and 

local level modelling methods. Datasets distributions are shown in 

Appendix A. 

Table 3.3. Datasets Partitions 

 

 

 

 

 

 

 

 

 

 

I. Global-level Modelling Results: 

The global-level modelling approach detailed results are 

illustrated in Appendix B. Table 3.4 shows evaluation results for blood 

transfusion dataset and compares the combined models with the other 

model combination methods, centralised learning approach, and the single 

best model. Single Best Model is the model of the best prediction result 

from the selected models that formed the global combined model. For 

example, the global combined model combines three models, LR model 

from site 1, SVM model from site 2, and LR model from site 3. When we 

Datasets 
Site 1 Site 2 Site 3 

Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Diabetes 300 40 150 35 218 25 

Liver disease 248 25 148 40 103 15 

Breast Cancer 
Wisconsin (Diagnostic) 200 20 150 30 150 19 

Blood transfusion 250 35 150 30 248 35 

Heart disease 100 15 93 20 60 15 

Lower back pain (Spine 
disease) 100 20 50 14 110 16 

Breast Cancer 
Wisconsin (Original) 156 60 240 70 107 50 

Cardiovascular disease 13800 6900 20066 10034 11988 5995 
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evaluated these models individually, LR model from site 3 was the best 

model performance. The Single Best Model is slightly better than the other 

methods, and our proposed method got close results compared to the 

centralised learning approach. 

Table 3.4. The Global Combined Model and Centralised Learning Approach 
Evaluation for Blood Transfusion Dataset 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Table 3.5 illustrates the global-level modelling results for breast 

cancer Wisconsin (Diagnostic) dataset. The results of the single best 

models are slightly better than the other methods, and our proposed 

method is not far from the centralised learning method result. 

Table 3.5. Global Combined Model and Centralised Learning Approach Evaluation for 
Breast Cancer Wisconsin (Diagnostic) Dataset 

 
 
 
 
 

For diabetes dataset, Table 3.6 shows that our proposed approach 

got similar and close results compared to the centralised learning 

approach.  

Models Selection Metric Combination 
Method 

Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 59% 
Average Accuracy 60% 
Majority Voting 59% 

F-measure Weighted Voting 59% 
Majority Voting 59% 

Single Best Model (LR model – S3) 62% 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 51% 
Average Accuracy 60% 
Majority Voting 48% 

F-measure Weighted Voting 61% 
Majority Voting 61% 

Single Best Model (LR model – S3) 61% 
Centralised Learning Approach (LR model) 60% 

Models Selection Metric Combination Method Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 94% 
Average Accuracy 93% 
Majority Voting 94% 

F-measure Weighted Voting 93% 
Majority Voting 93% 

Single Best Model (LR model – S1) 97% 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 91% 
Average Accuracy 93% 
Majority Voting 91% 

F-measure Weighted Voting 94% 
Majority Voting 94% 

Single Best Model (RF model – S2) 95% 
Centralised Learning Approach (RF model) 96% 
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Table 3.6. Global Combined Model and Centralised Learning Approach Evaluation for 
Diabetes Dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Tables 3.7 and 3.9, the centralised learning approach shows 

better performance than our proposed method for liver and spine disease 

datasets, but it is not far from our proposed method result in Table 3.8 for 

heart disease dataset. 

Table 3.7. Global Combined Model and Centralised Learning Approach Evaluation for 
Liver Disease Dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.8. Global Combined Model and Centralised Learning Approach Evaluation for 
Heart Disease Dataset 

Models Selection Metric Combination 
Method 

Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 78% 
Average Accuracy 75% 
Majority Voting 78% 

F-measure Weighted Voting 77% 
Majority Voting 76% 

Single Best Model (RF model – S2) 78% 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 76% 
Average Accuracy 76% 
Majority Voting 77% 

F-measure Weighted Voting 78% 
Majority Voting 78% 

Single Best Model (RF model – S2) 78% 
Centralised Learning Approach (LR model) 78% 

Models Selection Metric Combination Method Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 65% 
Average Accuracy 66% 
Majority Voting 65% 

F-measure Weighted Voting 65% 
Majority Voting 65% 

Single Best Model (SVM model - S1) 68% 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 66% 
Average Accuracy 69% 
Majority Voting 67% 

F-measure Weighted Voting 65% 
Majority Voting 65% 

Single Best Model (LR model– S3) 75% 
Centralised Learning Approach (NB model) 78% 

Models Selection Metric Combination Method Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 86% 
Average Accuracy 84% 
Majority Voting 86% 

F-measure Weighted Voting 86% 
Majority Voting 86% 

Single Best Model (RF model - S3) 86% 
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Table 3.9. Global Combined Model and Centralised Learning Approach Evaluation for 
Spine Disease Dataset 

 
 
 
 

For breast cancer Wisconsin (Original) and cardiovascular 

diseases datasets, Tables 3.10 and 3.11 show that the results of the 

proposed method and the centralised learning method got equal 

performance. 

Table 3.10. Global Combined Model and Centralised Learning Approach Evaluation for 
Breast Cancer Wisconsin (Original) Dataset 

 

 

 

 

 

 

 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 88% 
Average Accuracy 87% 
Majority Voting 90% 

F-measure Weighted Voting 81% 
Majority Voting 80% 

Single Best Model (RF model-S2) 97% 
Centralised Learning Approach (LR model – NB model) 92% 

Models Selection Metric Combination Method Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 59% 
Average Accuracy 60% 
Majority Voting 59% 

F-measure Weighted Voting 58% 
Majority Voting 60% 

Single Best Model (RF model- S3) 62% 

Best Local 
Models 

Combination 

Accuracy Weighted Voting 58% 
Average Accuracy 60% 
Majority Voting 60% 

F-measure Weighted Voting 54% 
Majority Voting 58% 

Single Best Model (RF model -S3) 65% 
Centralised Learning Approach (RF model – KNN model) 66% 

Models Selection 
Metric 

Combination Method Accuracy 

Global-level modelling 

Accuracy Weighted Voting 98% 
Average Accuracy 98% 
Majority Voting 98% 

F-measure Weighted Voting 98% 
Majority Voting 98% 

Single Best Model (RF model-S1) 98% 

Best Local Models 
Combination 

Accuracy Weighted Voting 98% 
Average Accuracy 98% 
Majority Voting 99% 

F-measure Weighted Voting 99% 
Majority Voting 99% 

Single Best Model (KNN model – S3) 99% 
Centralised Learning Approach (LR model – RF model – NN model) 98% 
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Table 3.11. Global Combined Model and Centralised Learning Approach Evaluation for 
Cardiovascular Disease Dataset 

 
 
 
 

 

 

Figure 3.6 shows the ROC Curve and AUC of the global-level 

modelling developed by the two-selection metrics and compared with the 

centralised machine learning. It shows that the proposed method and 

centralised learning approach got comparable or close results. In Figures 

(a) and (e), the AUC is equal to 0.5 for bold transfusion and liver disease 

datasets, respectively, which means the global combined model is unable 

to predict the classes correctly. It ranks a randomly selected positive 

example higher than a negative example 50% of the time. Thus, the model 

is not working, as its predictive ability is not better than random guessing. 

This issue may occur because the dataset used for testing is small and 

insufficient to represent the overall global model performance, and we 

will investigate this problem in future. 

(a) Blood Transfusion (b) Breast Cancer Wisconsin (Diagnostic 

Models Selection Metric Combination 
Method 

Accuracy 

Global-level modelling 

Accuracy Weighted Voting 73% 
Average Accuracy 73% 
Majority Voting 73% 

F-measure Weighted Voting 73% 
Majority Voting 73% 

Single Best Model (LR-S1) 73% 

Best Local Models 
Combination 

Accuracy Weighted Voting 73% 
Average Accuracy 73% 
Majority Voting 73% 

F-measure Weighted Voting 73% 
Majority Voting 73% 

Single Best Model (LR-S1) 73% 
Centralised Learning Approach (LR model) 73% 
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(c) Diabetes 
   

(d) Heart Disease 

 
(e) Liver disease 

 
(f) Spine disease 

(g) Breast Cancer Wisconsin (original) (h) Cardiovascular disease 

Figure 3.6. ROC Curve Analysis 

Table 3.12 presents the training and testing accuracy for the 

proposed method and centralised learning approach. In diabetes, heart 

disease, liver disease, and Breast Cancer Wisconsin (Original) datasets, 

the training accuracy for the centralised machine learning approach is 

lower than testing accuracy. This may happen because the testing data is 

small or similar to the training data after splitting the data into training 

and testing datasets, and the model unexpectedly performed better on the 

test data than the training data. Furthermore, the centralised machine 

learning approach result is from a single model. Generally, a model with 

fewer parameters is less likely to overfit than a combined model. 

However, the difference between the testing and training accuracy is 

insignificant. 
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Table 3.12. The Training and Testing Accuracy for the Proposed Method and 
Centralised Learning Approach 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Table 3.13 shows the global-level modelling results for the 

randomly partitioned data and compares the proposed global combined 

model with the related works [6, 48, 96, 166, 170, 176-182]. The proposed 

approaches in [6] and [48] are based on centralised machine learning. In 

[96], the proposed method is a two-party collaborative classification using 

an encryption technique. The proposed approaches in [166], [170], and 

[176-181] are federated learning using encryption method, and in [182] is 

based on distributed processing using Spark. The proposed methods 

outperformed most proposed research works in diabetes, heart disease, 

and breast cancer Wisconsin (Original) datasets. In liver disease dataset, 

the proposed approach in [48] outperformed the other methods, and the 

proposed methods in [96] is better than the other approaches in diabetes 

dataset. 

Dataset Models Selection 
Metric 

Testing 
Accuracy 

Training 
accuracy 

Blood Transfusion Global-level modelling Accuracy 59% 80% 
F-measure 59% 80% 

Centralised learning approach 60% 79% 
Breast Cancer 

Wisconsin 
(Diagnostic) 

Global-level modelling Accuracy 94% 97% 
F-measure 93% 96% 

Centralised learning approach 96% 97% 
Diabetes Global-level modelling Accuracy 78% 83% 

F-measure 77% 78% 
Centralised learning approach 78% 77% 

Heart Disease Global-level modelling Accuracy 86% 86% 
F-measure 86% 86% 

Centralised learning approach 92% 82% 
Liver Disease Global-level modelling Accuracy 65% 74% 

F-measure 65% 70% 
Centralised learning approach 78% 72% 

Spine Disease Global-level modelling Accuracy 59% 87% 
F-measure 58% 92% 

Centralised learning approach 66% 87% 
Breast Cancer 

Wisconsin 
(Original) 

Global-level modelling Accuracy 98% 96% 
F-measure 98% 96% 

Centralised learning approach 98% 97% 
Cardiovascular 

Disease 
Global-level modelling Accuracy 73% 73% 

F-measure 73% 73% 
Centralised learning approach 73% 73% 
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Table 3.13. Global Combined Model Evaluation Compared with Research Works  

 

II. Local-level Modelling Results: 

Table 3.14 shows the local combined model evaluation for blood 

transfusion dataset; we compared Method L1 and Method L2 methods 

with average accuracy and majority voting combination methods (MV) 

for the selected models based on accuracy and F-measure performance 

metrics. Besides, we compared the results of the proposed methods with 

the best local model in each site and DES methods. Our method 

outperformed the best local model in all sites. Furthermore, it is better than 

the DES methods in site 1 and comparable results in the other sites; thus, 

we conclude that the distributed sites can utilise other sites models to 

improve the prediction accuracy. 

Table 3.14. Blood Transfusion Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting 57% 60% - 
Average Accuracy 51% 55% - 
Majority Voting 51% 60% - 

F-measure Weighted Voting 51% 60% 60% 
Majority Voting 51% 60% 63% 

Models Selection 
Metric 

Combination 
Method 

Breast 
Cancer 

Wisconsin 
(Diagnostic) 

Diabetes Heart 
Disease 

Liver 
Disease 

Breast 
Cancer 

Wisconsin 
(Original) 

Global-level 
modelling 

Accuracy Weighted Voting 94% 78% 86% 65% 98% 
Average Accuracy 93% 75% 84% 66% 98% 
Majority Voting 94% 78% 86% 65% 98% 

F-measure Weighted Voting 93% 77% 86% 65% 98% 
Majority Voting 93% 76% 86% 65% 98% 

Single Best Model 97% 78% 86% 68% 98% 
Tsoumakas et al. [6] - EV1 - 77% 84% - 97% 
Tsoumakas et al. [6] - EV2 - 77% 83% - 97% 
Tsoumakas et al. [6] - EV 3 - 77% 85% - 97% 
Bashir et al. [48] - 77% 84% 71% 97% 
Zhang et al.  [96] - 80% - - - 
Mandal et al. [166] 96% 76% - - - 
Wang et al. [170] - 77% - - 96% 
Gao et al. [176] - - 72% - 95% 
Kasturi et al. [177] - - - - 96% 
Ma et al. [178] - - - - 96% 
Haque et al. [179] - 78% 82% - 98% 
Sav et al. [180] - - - - 97% 
Froelicher et al. [181] - 78% - - 96% 
Ed-daoudy and Maalmi [182] - - 82% - - 
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Method L2 Accuracy Weighted Voting - - 63% 
Average Accuracy - - 58% 
Majority Voting - - 63% 

F-measure Weighted Voting - - 60% 
Majority Voting - - 63% 

The Best Local Model 51% 40% 54% 
 

Dynamic 
Ensemble 
Selection 

KNORA-U 51% 60% 66% 
KNORA-E 43% 43% 60% 

DES-P 51% 60% 57% 
META-DES 43% 60% 60% 

KNOP 34% 60% 66% 
DES-KNN 46% 40% 46% 

 

 

Figure 3.7. Local-Level Modelling Accuracy vs The Best Local Model For Blood 
Transfusion Dataset 

For breast cancer Wisconsin (Diagnostic) dataset in Table 3.15, 

the local combined model results outperformed the best local model in site 

3 and are in par with the best local model results in site 1 and site 2. In 

addition, the local combined model results are better or similar to DES 

methods performance in site 1 and 3. 

Table 3.15. Breast Cancer Wisconsin (Diagnostic) Prediction Accuracy for Local 
Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting 90% 93% 89% 
Average Accuracy 93% 93% 92% 
Majority Voting 90% 93% 89% 

F-measure Weighted Voting 90% 93% - 
Majority Voting 90% 93% - 

Method L2 Accuracy Weighted Voting 95% - 95% 
Average Accuracy 93% - 95% 
Majority Voting 95% - 95% 

F-measure Weighted Voting 95% - 89% 
Majority Voting 95% - 95% 

The Best Local Model 95% 93% 89% 

Dynamic 
Ensemble 
Selection 

KNORA-U 90% 97% 95% 
KNORA-E 90% 97% 89% 

DES-P 90% 97% 95% 
META-DES 95% 97% 89% 

KNOP 95% 97% 89% 
DES-KNN 95% 97% 89% 
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Figure 3.8. Local-Level Modelling Accuracy vs The Best Local Model for Breast 
Cancer Wisconsin (Diagnostic) 

In Table 3.16, the proposed local level modelling results for 

diabetes dataset showed that each site could utilised from other sites 

models to improve its prediction performance. Moreover, the local 

combined model in site 3 is better than DES methods and got close results 

in site 2. 

Table 3.16. Diabetes Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting 75% 80% 72% 
Average Accuracy 67% 77% 75% 
Majority Voting 68% 80% 76% 

F-measure Weighted Voting 70% 69% 72% 
Majority Voting 75% 69% 76% 

Method L2 Accuracy Weighted Voting 78% - 76% 
Average Accuracy 69% - 75% 
Majority Voting 78% - 72% 

F-measure Weighted Voting 78% 74% - 
Majority Voting 78% 74% - 

The Best Local Model 68% 74% 68% 

Dynamic 
Ensemble 
Selection 

KNORA-U 78% 83% 68% 
KNORA-E 72% 74% 68% 

DES-P 80% 80% 64% 
META-DES 68% 80% 64% 

KNOP 72% 83% 72% 
DES-KNN 82% 83% 68% 

 

 

Figure 3.9. Local-Level Modelling Accuracy vs The Best Local Model for 
Diabetes Dataset 
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As shown in Table 3.17 for heart diseases dataset, the proposed 

local combined model in site 2 and site 3 is better than the best local model 

and got close results in site 1. The local combined model and some DES 

methods got similar or comparable results in all sites. 

Table 3.17. Heart Disease Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination method Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting 87% 95% 87% 
Average Accuracy 90% 91% 85% 
Majority Voting 93% 95% 87% 

F-measure Weighted Voting 87% 95% 87% 
Majority Voting 73% 90% 80% 

Method L2 Accuracy Weighted Voting 87% - - 
Average Accuracy 89% - - 
Majority Voting 87% - - 

F-measure Weighted Voting 87% - - 
Majority Voting 87% - - 

The Best Local Model 93% 85% 80% 
 

Dynamic 
Ensemble 
Selection 

KNORA-U 87% 95% 87% 
KNORA-E 99% 60% 67% 

DES-P 87% 85% 87% 
META-DES 80% 85% 87% 

KNOP 87% 90% 93% 
DES-KNN 87% 80% 80% 

 

 

Figure 3.10. Local-level modelling accuracy vs the best local model for Heart 
disease dataset 

For liver disease dataset, the local combined model results in 

Table 3.18 are in par with the best local models results in all sites. In 

addition, most dynamic ensemble selection methods are similar to or 

better than our proposed combined model. 
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Table 3.18. Liver Disease Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination method Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting - - 67% 
Average Accuracy - - 62% 
Majority Voting - - 60% 

F-measure Weighted Voting - 65% 60% 
Majority Voting - 65% 60% 

Method L2 Accuracy Weighted Voting 68% 68% - 
Average Accuracy 68% 67% - 
Majority Voting 68% 68% - 

F-measure Weighted voting 68% - - 
Majority Voting 68% - - 

The Best Local Model 68% 68% 67% 
 

Dynamic 
Ensemble 
Selection 

KNORA-U 68% 72% 60% 
KNORA-E 68% 65% 67% 

DES-P 68% 72% 67% 
META-DES 68% 80% 73% 

KNOP 68% 75% 60% 
DES-KNN 72% 72% 67% 

 

 

Figure 3.11. Local-Level Modelling Accuracy vs The Best Local Model for Liver 
Disease Dataset 

In Table 3.19, the local combined model results got better results 

than the best local model and DES methods in site 1, and similar results 

in site 2 for spine disease dataset.  

Table 3.19. Spine Disease Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting - 50% - 
Average Accuracy - 54% - 
Majority Voting - 50% - 

F-measure Weighted Voting - 50% - 
Majority Voting - 50% - 

Method L2 Accuracy Weighted Voting 65% 50% 69% 
Average Accuracy 55% 52% 69% 
Majority Voting 55% 57% 69% 

F-measure Weighted Voting 60% - 69% 
Majority Voting 60% - 75% 

The Best Local Model 55% 50% 75% 
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Dynamic 
Ensemble 
Selection 

KNORA-U 55% 50% 69% 
KNORA-E 50% 50% 75% 

DES-P 55% 50% 69% 
META-DES 55% 50% 75% 

KNOP 55% 50% 75% 
DES-KNN 55% 50% 69% 

 
 

 

Figure 3.12. Local-Level Modelling Accuracy vs The Best Local Model for Spine 
Disease Dataset 

For Breast Cancer Wisconsin (Original) dataset, Table 3.20 

shows that the proposed local combined model, the best local model, and 

DES methods got close results. 

Table 3.20. Breast Cancer Wisconsin (Original) Prediction Accuracy for Local 
Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting - 99% 99% 
Average Accuracy - 98% 98% 
Majority Voting - 99% 99% 

F-measure Weighted Voting - - 99% 
Majority Voting - - 99% 

Method L2 Accuracy Weighted Voting 97% - - 
Average Accuracy 97% - - 
Majority Voting 97% - - 

F-measure Weighted Voting 97% 97% - 
Majority Voting 97% 97% - 

The Best Local Model 98% 99% 99% 
 

Dynamic 
Ensemble 
Selection 

KNORA-U 98% 97% 98% 
KNORA-E 98% 99% 98% 

DES-P 98% 97% 98% 
META-DES 98% 97% 98% 

KNOP 98% 97% 98% 
DES-KNN 98% 99% 98% 

 



 87 

 

Figure 3.13. Local-Level Modelling Accuracy vs The Best Local Model for Breast 
Cancer Wisconsin (Original) Dataset 

In Table 3.21, the local combined model for cardiovascular 

disease dataset got similar results in site 2 and site 3 compared with the 

best local model. The best local model in site 1 is slightly better than the 

proposed method. In addition, some DES methods results are similar to or 

close to our approach and the best local model results. 

Table 3.21. Cardiovascular Diseases Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 Accuracy Weighted Voting 73% 73% 72% 
Average Accuracy 73% 73% 72% 
Majority Voting 73% 73% 72% 

F-measure Weighted Voting 73% 73% 72% 
Majority Voting 73% 73% 72% 

Method L2 Accuracy Weighted Voting - - - 
Average Accuracy - - - 
Majority Voting - - - 

F-measure Weighted Voting - - 72% 
Majority Voting - - 72% 

The Best Local Model 74% 73% 72% 
 

Dynamic 
Ensemble 
Selection 

KNORA-U 73% 73% 72% 
KNORA-E 69% 67% 68% 

DES-P 72% 72% 71% 
META-DES 66% 71% 65% 

KNOP 66% 73% 65% 
DES-KNN 71% 72% 71% 
 

 

Figure 3.14. Local-Level Modelling Accuracy vs The Best Local Model for 
Cardiovascular Diseases Dataset 
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2) Non-random Data Partitioning Approach: 

We split the data by age and tried to get different data 

distributions to mimic a real-world scenario for distributed datasets 

for distributed sites. Table 3.22 shows our partition strategy for the 

three datasets between the sites, and Table 3.23 shows the datasets 

partitions size. Local data is used to build the local models in each 

site and evaluate the received models from other sites. The second 

partition is used to evaluate the combined models of the global and 

local level modelling methods. Datasets distributions are illustrated 

in Appendix A. 

Table 3.22. Datasets Partitioning Scenarios 

Datasets Site1 Site2 Site3 

Diabetes Age: less than 30  Age: bigger than or equal 30 

and less than or equal 45 

Age: bigger than 

45 

Liver 

Disease 

Age: less than or 

equal to 30 

Age: bigger than 30 and less 

than 60 

Age: bigger than 

or equal to 60 

Heart 

Disease 

Age: less than or 

equal to 45 

Age: bigger than 45 and less 

than 60 

Age: bigger than 

or equal to 60 

 

Table 3.23. Datasets Partitions 

Datasets Site 1 Site 2 Site 3 
Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Diabetes 349 47 211 43 87 31 
Liver disease 94 20 299 33 116 17 
Heart disease 44 20 116 33 68 22 

 
 

I. Global-level Modelling Results: 

The detailed results for the global-level modelling are shown in 

Appendix B. For diabetes dataset, Table 3.24 shows that the global level 

modelling and the centralised learning approach results are close. 
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Table 3.24. Global Combined Model and Centralised Learning Approach 
Evaluation for Diabetes Dataset 

 

 

 
 
 
 
 
 

 

Table 3.25 and 3.26 shows that our proposed method results are 

close to the centralised learning approach results. For heart and liver 

disease datasets, respectively.  

Table 3.25. Global Combined Model and Centralised Learning Approach Evaluation for 
Heart Disease Dataset 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3.26. Global Combined Model and Centralised Learning Approach Evaluation for 
Liver Disease Dataset 

Models Selection 
Metric 

Combination Method Accuracy 

Global-level 
modelling 

Accuracy Weighted Voting 66% 
Average Accuracy 65% 
Majority Voting 68% 

F-measure Weighted Voting 67% 
Majority Voting 68% 

Single Best Model (LR model – S2) 67% 

Best Local Models 
Combination 

Accuracy Weighted Voting 68% 
Average Accuracy 66% 
Majority Voting 73% 

F-measure Weighted Voting 67% 
Majority Voting 73% 

Single Best Model (NB model -S2) 72% 
Centralised Learning Approach (LR model) 69% 

Models Selection 
Metric 

Combination Method Accuracy 

Global-level modelling 

Accuracy Weighted Voting 87% 
Average Accuracy 83% 
Majority Voting 85% 

F-measure Weighted Voting 85% 
Majority Voting 85% 

Single Best Model (NB model – S3) 88% 

Best Local Models 
Combination 

Accuracy Weighted Voting 87% 
Average Accuracy 83% 
Majority Voting 85% 

F-measure Weighted Voting 84% 
Majority Voting 85% 

Single Best Model (NB model – S3) 88% 
Centralised Learning Approach (DT model) 88% 

Models Selection 
Metric 

Combination Method Accuracy 

Global-level modelling 

Accuracy Weighted Voting 72% 
Average Accuracy 72% 
Majority Voting 72% 

F-measure Weighted Voting 72% 
Majority Voting 72% 

Single Best Model (SVM model- S2) 74% 
Accuracy Weighted Voting 73% 
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Figure 3.15 illustrates the ROC curve analysis for the proposed 

method and the centralised learning methods for diabetes, heart disease, 

and liver disease dataset. The proposed method results are close to the 

centralised learning approach. Table 3.27 shows the training and testing 

accuracy for the proposed method and the centralised learning approach. 

 

  
(a) Diabetes  

(b) Heart disease 

                                                                                  
(c) Liver disease 

Figure 3.15. ROC Curve Analysis 

 

Best Local Models 
Combination 

Average Accuracy 69% 
Majority Voting 67% 

F-measure Weighted Voting 72% 
Majority Voting 72% 

Single Best Model (SVM model -S2) 76% 
Centralised Learning Approach (SVM model) 74% 
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Table 3.27. The Training and Testing Accuracy for The Proposed Method and 
Centralised Learning Approach 

 
 
 
 
 

 

 

 

Table 3.28 shows the global level modelling results compared with the 

related works [6, 48, 96, 166, 170, 176, 179, 181, 182]. Our method got better 

results in heart disease and liver disease datasets. 

Table 3.28. Global Combined Model Evaluation Compared with Research Works  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

II. Local-Level Modelling Results: 

In Table 3.29, the best local model result for diabetes dataset in 

site 2 is slightly better than our method, while in sites 1 and 3, the results 

of our proposed method are better than the best local model. In addition, 

the proposed local combined model got better results than most DES 

methods in sites 1 and 2. 

Dataset Models Selection 
Metric 

Testing 
Accuracy 

Training 
accuracy 

Diabetes Global-level 
modelling 

Accuracy 66% 78% 
F-measure 67% 79% 

Centralised learning approach 69% 78% 
Heart Disease Global-level 

modelling 
Accuracy 87% 85% 
F-measure 85% 84% 

Centralised learning approach 88% 83% 
Liver Disease Global-level 

modelling 
Accuracy 72% 73% 
F-measure 72% 73% 

Centralised learning approach 74% 72% 

Models Selection 
Metric 

Combination 
Method 

Diabetes Heart 
Disease 

Liver 
Disease 

Global-level 
modelling 

Accuracy Weighted Voting 66% 87% 72% 
Average Accuracy 65% 83% 72% 
Majority Voting 68% 85% 72% 

F-measure Weighted Voting 67% 85% 72% 
Majority Voting 68% 85% 72% 

Single Best Model 67% 88% 74% 
Tsoumakas et al. [6] - EV1 77% 84% - 
Tsoumakas et al. [6] - EV2 77% 83% - 
Tsoumakas et al. [6] - EV 3 77% 85% - 
Bashir et al. [48] 77% 84% 71% 
Zhang et al.  [96] 80% - - 
Mandal et al. [166] 76% - - 
Wang et al. [170] 77% - - 
Gao et al. [176] - 72% - 
Haque et al. [179] 78% 82% - 
Froelicher et al. [181] 78% - - 
Ed-daoudy and Maalmi [182] - 82% - 
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Table 3.29. Diabetes Prediction Accuracy for Local Combined Model for Diabetes 
Dataset 

Methods Selection metric Combination method Site1 Site2 Site3 

Method L1 
Accuracy 

Weighted Voting - 65% - 
Average Accuracy - 64% - 
Majority Voting - 63% - 

F-measure Weighted Voting 77% 56% - 
Majority Voting 72% 63% - 

Method L2 
Accuracy 

Weighted Voting 72% 65% 58% 
Average Accuracy 71% 62% 59% 
Majority Voting 70% 60% 58% 

F-measure Weighted Voting 74% - 58% 
Majority Voting 72% - 58% 

The Best Local Model 70% 67% 52% 

Dynamic 
Ensemble 
Selection 

KNORA-U 74% 56% 77% 
KNORA-E 68% 53% 61% 

DES-P 72% 58% 77% 
META-DES 68% 51% 71% 

KNOP 72% 56% 74% 
DES-KNN 77% 58% 74% 

 

 
Figure 3.16. Local-Level Modelling Accuracy vs The Best Local Model for Diabetes 

Dataset 

For heart disease dataset, Table 3.30 shows that the local 

combined model outperformed the best local model in site 1 and got a 

similar performance in site 2. While in site 3, the best local model result 

is better than the proposed local combined model. Some DES methods 

results are better than the proposed method and the best local model in site 

1 and site 2. 

Table 3.30. Heart Disease Prediction Accuracy for Local Combined Model 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 
Accuracy 

Weighted Voting 85% 85% 82% 
Average Accuracy 83% 84% 80% 
Majority Voting 85% 88% 82% 

F-measure Weighted Voting 85% 88% 82% 
Majority Voting 85% 88% 82% 

Method L2 Accuracy 
Weighted Voting 85% - 82% 

Average Accuracy 84% - 78% 
Majority Voting 85% - 77% 
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Figure 3.17. Local-Level Modelling Accuracy vs The Best Local Model for 

Heart Disease Dataset 

As shown in Table 3.31, the local combined model got better 

accuracy than the best local model and DES methods in site 1 for liver 

disease dataset. In site 2 and site 3, the best local model has the best 

accuracy but is not far from our results. Some DES methods results are 

similar to or better than the proposed method and the best local model in 

site 2 and site 3. 

Table 3.31. Liver Disease Prediction Accuracy for Local Combined Model 
 

Methods Selection 
metric 

Combination 
method 

Site1 Site2 Site3 

Method L1 
Accuracy 

Weighted Voting - - 71% 
Average Accuracy - - 73% 
Majority Voting - - 71% 

F-measure Weighted Voting 65% - 71% 
Majority Voting 65% - 71% 

Method L2 
Accuracy 

Weighted Voting 40% 76% 71% 
Average Accuracy 52% 77% 72% 
Majority Voting 40% 76% 71% 

F-measure Weighted voting - 76% 71% 
Majority Voting - 76% 71% 

The Best Local Model 50% 79% 76% 

Dynamic 
Ensemble 
Selection 

KNORA-U 50% 67% 76% 
KNORA-E 50% 76% 76% 

DES-P 40% 58% 71% 
META-DES 45% 76% 76% 

KNOP 55% 73% 82% 
DES-KNN 45% 61% 71% 

F-measure Weighted Voting 85% - 86% 
Majority Voting 85% - 82% 

The Best Local Model 75% 88% 91% 

Dynamic 
Ensemble 
Selection 

KNORA-U 90% 88% 86% 
KNORA-E 80% 91% 91% 

DES-P 90% 91% 86% 
META-DES 85% 82% 82% 

KNOP 85% 91% 86% 
DES-KNN 85% 82% 91% 
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Figure 3.18. Local-Level Modelling Accuracy vs The Best Local Model for Liver 
Disease Dataset 

 
 
 

3.3.4 Discussion and Evaluation  

 
We evaluated the reliability and prediction performance of the global 

combined model for the data that was partitioned randomly and non-randomly. 

We compared the proposed global combined model for the randomly partitioned 

datasets with the centralised learning approach that moves all distributed data to 

a centralised database. Our method results are in par with the centralised learning 

approach in diabetes, cardiovascular disease, and breast cancer Wisconsin 

(Original) datasets and close performance in blood transfusion and breast cancer 

Wisconsin (Diagnostic) datasets. The combined models selected by accuracy 

metric are similar to or slightly better than F-measure selection metric, and no 

significant differences in results between the combination methods, weighted 

voting, majority voting, and average accuracy. For the non-randomly partitioned 

datasets, we compared the global combined model with the centralised learning 

approach. The proposed method results are close to the centralised learning 

approach in all datasets. The global combined model selected by accuracy metric 

is better than the global combined model selected by F-measure selection metric 

in the heart disease dataset, and the combined model selected by accuracy and 

F-measure metrics got similar results in the liver disease dataset. In diabetes 

dataset, the combined model selected by F-measure is slightly better than 

accuracy selection metric. The weighted model combination method is slightly 

better than other methods in the heart disease dataset, and similar to majority 
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voting and average accuracy in the liver disease dataset. In the diabetes dataset, 

the majority voting is the best but not far from the other combination methods. 

We developed a global model that performs similarly or close to the 

centralised learning approach without sharing the data between distributed sites 

to preserve data privacy, send the data to a central location, or use a server to 

control the learning process to avoid server issues and overheads. We saved the 

cost and time of data transformation from one site to another or a central location. 

We developed the combined models with fewer communication rounds, and 

minimal information exchanged between distributed sites. The proposed linear 

combination approach did not expose the data resource and preserved data 

privacy. It showed its efficiency and applicability in the distributed environment. 

We compared the proposed local combined model results with the best local 

model and DES methods, and we achieved improved performance compared 

with the best local model in each site. Furthermore, we proved that the 

distributed sites could utilise other sites models to improve the prediction 

accuracy without exchanging the data between sites, which will preserve data 

privacy. In addition, the proposed linear combination approach is easy to 

implement in distributed environments and could be applied to solve issues 

related to large data, such as memory limitation and huge data transformation 

costs and time. However, the proposed method exchanged the models instead of 

data to preserve data privacy and there is a possibility for malicious attacks on 

the trained models to retrieve training data or reveal meaningful information. We 

did not consider model attacks case in the distributed environment. It is beyond 

the scope of our thesis, and we will consider these issues to analyse the possible 

malicious attacks on distributed sites and exchanged models in future research. 

3.4 PROPOSED METHOD FOR REGRESSION ALGORITHMS 

The proposed method addresses individual model limitations by utilising 

distributed data resources to develop combined prediction models at global and local 

levels without data transformation between sites to preserve the privacy of local data 

resources. For this purpose, the related model names and definitions used in our 

methodology are first introduced in Table 3.32. 
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Table 3.32. Models Names and Descriptions. 

 
 
 

 
 

3.4.1 Global-level Modelling Approach 
 

We aim to build a global combined model at the central server by combining 

the best global average model RMSE and MAPE from each site. We apply the same 

approach steps that used in section 3.3.1, but we use RMSE and MAPE metrics for 

model evaluation, selection, and combination approaches. 

1) For each site S) , where i = 1,2, … , n: 

Model Notation Meaning 
Local Model M'( The local model that developed in site i using j 

regression algorithm 
Received Model M'’	( Model that received from other sites	i’ 
Best local model MAPE M'(∗ The local model in site i that has the lowest MAPE and 

developed by j* regression algorithm 
Best local model RMSE M'(∗∗ The local model in site i that has the lowest RMSE and 

developed by j** regression algorithm 
Best Model MAPE M'’(∗ The selected model from other sites 	i’	which is lower 

than or equal to the best local model MAPE  
Best Model RMSE M'’(∗∗ The selected model from other sites 	i’	which is lower 

than or equal to the best local model RMSE  
Best Global Average Model 
MAPE 

M'(∗
-  The best average MAPE model in site i after global 

evaluation and average MAPE calculation 
Best Global Average Model 
RMSE 

M'(∗∗
-  The best average RMSE model in site i after global 

evaluation and average RMSE calculation 
Global Combined Model (1) M-∗ The final global combined model at the server that 

combine the best global average model MAPE from 
each site M'(∗

-  
Global Combined Model (2) M-∗∗ The final global combined model at the server that 

combine the best global average model RMSE from 
each site M'(∗∗

-  
List of the best models 
MAPE 

M5.67 List of the best local model MAPE M'(∗ and the 
selected models of the best MAPE from other sites 
M'’(∗ that will linearly be combined to build the local 
combined model 

List of the best models 
RMSE 

M8597 List of the best local model RMSE M'(∗∗and the 
selected models of the best RMSE from other sites 
M'’(∗∗ that will linearly be combined to build the local 
combined model 

Local Combined Model (1) M'
1∗ The final local combined model in site i that combine 

the best local model MAPE of the site i with the best 
models MAPE from other sites  

Local Combined Model (2) M'
1∗∗ The final local combined model in site i that combine 

the best local model RMSE of the site i with the best 
models RMSE from other sites  
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o Apply different j learning algorithms, where j = 1,2, … ,m to build local 

models M)R.  

o Use 10-fold cross-validation results to evaluate the local models M)R based 

on the local data in site S). 

o Calculates the RMSE (M)R) and MAPE (M)R) based on local data error results. 

RMSE (M)R) = 72
0
		∑ |y) −	y/6|0

)12
!                     (3.13) 

MAPE (M)R) = 2
0
		∑ | 3!4	3"5

3!
|0

)12  *100                (3.14) 

, where y) is the actual value and y/6  is the predicted value for m data 

samples. 

2) Each site sends its local models M)R to other sites for global evaluation as 

follows: 

o Each site i will receive models from other sites	M)’	R, then start to evaluate 

these models over its local dataset and calculate MAPE and RMSE for each 

received model MAPE	(M)’	R) and RMSE	(M)’	R) 

o Send the evaluated models back to the sites with its evaluation results. 

o In each site S): 

a) Receive the evaluation results MAPE	(M)R) and RMSE	(M)R) of its local 

models M)R from other sites with sites data samples number that used for 

evaluation. 

b) Calculate the global average MAPE and global average RMSE for each 

local model. 

MAPE	(M)R) = ∑ V2
V	
∗ MAPE	(M)R

+
W12 )	in	SW                (3.15) 

RMSE	(M)R) = ∑ V2
V	
∗ RMSE	(M)R

+
W12 )	in	SW                 (3.16) 

, where k is the number of sites, DW is the number of samples of site k 

and D is all sites’ samples number. 

c) Select the best model(s) based on the best global average MAPE (M)R∗
X )  

and the best global average RMSE(	M)R∗∗
X ). 

d) Send the selected global average models with its evaluation 
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results,	MAPE	(M)R
X∗),	RMSE	(M)R

X∗),	MAPE	(M)R
X∗∗), and RMSE	(M)R

X∗∗) to 

the server. 

3) The server combines the received models to develop two final global combined 

models MX∗ and MX∗∗	using linear combination methods, MX∗	is the final global 

combined model at the server that combines the best global average model 

MAPE from each site, and MX∗∗	The final global combined model at the server 

that combines the best global average model RMSE from each site, the server 

performs the linear combination method as follows: 

a) The server receives two models from each site, the best global average 

MAPE M)R∗
X  and the best global average RMSE M)R∗∗

X  with its global average 

results,	MAPE	(M)R
X∗),	RMSE	(M)R

X∗),	MAPE	(M)R
X∗∗), and RMSE	(M)R

X∗∗). 

b) The server combines the best global average MAPE model M)R∗
X  by 

calculating the weight of each model based on its global average results. 

Also, it combines the best global average model RMSE M)R∗∗
X  by weighting 

the models based on its global average results. 

c) We apply four different weighting methods to develop the final global 

combined models MX∗ and MX∗∗, the most accurate model will get higher 

weight, and the less accurate model will get low weight, and models’ weights 

are constrained such that their sum is equal to one. The weighting methods 

are: 

 

i. Simple Weight Average Method:  

w>!3∗
4  = 2

+
                          (3.17) 

, where 0 <= w>!3∗
4  <=1,  ∑ w>!3∗

4 = 1+
)12 , and n is the number of models. 

 

w>!3∗∗
4  = 2

+
                          (3.18) 

, where 0 <= w>!3∗∗
4 <=1, ∑ w>!3∗∗

4 = 1+
)12 , and n is the number of 

models. 

 

ii. Error-based (RMSE): weight for each model M) is taken to be 

inversely proportional to the model error. 
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w>! =	
&%%*%:!

;%

∑ &%%*%:!
;%#

!$%
                      (3.19) 

 

We use RMSE for models error, higher RMSE is given a smaller weight. 

w>!3∗
4 =	

%
<:=>	:!3∗

4

∑ %
<:=>:!3∗

4
#
!$%

             (3.20) 

, where ∑ w>!3∗
4

+
)12 = 1 

w>!3∗∗
4 =	

%
<:=>	:!3∗∗

4

∑ %
<:=>	:!3∗∗

4
#
!$%

             (3.21) 

, where ∑ w>!3∗∗
4

+
)12 = 1 

iii. Performance-based (Accuracy): Calculates the accuracy for each local 

model M)R∗
X  and M)R∗∗

X . 

Acc (M)R∗
X ) = 100 - MAPE (M)R∗

X )       (3.22) 

Acc (M)R∗∗
X ) = 100 - MAPE (M)R∗∗

X )     (3.23)                             

Then, 

w>!3∗
4 =

;''	(>!3∗
4 )	

∑ ;''	(>!3∗
4 )#

!$%
                          (3.24) 

, where i=1, 2, …, n and  ∑ w>!3∗
4 = 1+

)12  

 

w>!3∗∗
4 =

;''	(>!3∗∗
4 )

∑ ;''(	>!3∗∗
4 )#

!$%
                          (3.25) 

, where i=1, 2, …, n and  ∑ w>!3∗∗
4 = 1+

)12  

iv. Shapley Value: 

a) Calculate total RMSE of the models. 

RMSE∗ 	= 	 2
+
l RMSE	M)R∗

X
+

)12
                  (3.26) 



 100 

RMSE∗∗ =	 2
+
l RMSE	M)R∗∗

X
+

)12
                  (3.27) 

, where n is the number of models. 

b) Calculate Shapley value: 

φ[
:!3∗
4 (v) = 	∑ w	(|s)|)()	∈( 	 ∗ 	 [RMSE	(s)) 	− 	RMSE		(s) − {i})]   (3.28) 

φ[
:!3∗∗
4 (v) = 	∑ w	(|s)|)()	∈( 	 ∗ 	 [RMSE	(s)) 	− 	RMSE		(s) − {i})]   (3.29) 

where, w(|s)|) = 	
(+4|(!|)!((|(!|)42)	!

+!
                (3.30) 

s) is the set containing the best global average model, |s)| is the number 

of models in the combination, RMSE	(s)) is the combined RMSE of this 

combination subset, and s)−{𝑖} is a set obtained from s) by removing i-

th model in the combination. 

c) Calculate the weight of each model in the combination: 

w>!3∗
4 =	 2

+42
	 ∗ 	

\>]^	∗4	_?
:!3∗
4 (`)

\>]^	∗
		 , i= 1, 2, …, n       (3.31) 

w>!3∗∗
4 =	 2

+42
	 ∗ 	

\>]^	∗∗4	_?
:!3∗∗
4 (`)

\>]^∗∗
		 , i= 1, 2, …, n           (3.32) 

d) The server linearly combines the models to develop the global 

model to predict x.  

MX∗	(x) =l w>!3∗
4 	M)R∗

X
+

)12
(x)                  (3.33) 

MX∗∗	(x) =l w>!3∗∗
4 	M)R∗∗

X
+

)12
(x)                 (3.34) 
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3.4.2 Local-level Modelling Approach: 

In the local-level modelling, each data site tries to find the best local 

combined model by utilising the local data resource and the local prediction models 

from the other sites. We apply the same approach that used in section 3.3.2 but by 

using RMSE and MAPE evaluation metrics for model evaluation, selection, and 

combination methods. 

1) When a site i receives models from other sites M)’	R, evaluate these models over 

its local dataset, and calculate the MAPE(M)’	R) and RMSE(M)’	R). 

a) Compare MAPE	(M)’	R)  and RMSE	(M)’	R) of the received models with its 

best local model MAPE	(M)R∗) and best local model RMSE	(M)R∗∗). 

b) Select the best model MAPE	(M)’R∗) and the best model RMSE	(M)’R∗∗) 

from each site, we select two models to develop two local combined 

models M)
Z∗ and M)

Z∗∗, M)
Z∗ is the final local combined model that 

combines the best local model MAPE 	M)R∗ and the selected best model 

MAPE from other sites M)’R∗. And M)
Z∗∗ is the final local combined model 

that combines the best local model RMSE M)R∗∗ and the selected best 

model RMSE from other sites M)’R∗∗. The aim of this method is to utilise 

the best models learned from other data resources to build an accurate 

local combined model. 

2) Apply linear combination method to develop two local combined models 	M)
Z∗ 

and 	M)
Z∗∗ in each site i. Each site i calculates and assigns weights for the best 

local model and the selected models from other sites to perform the linear 

combination as follows: 

a) Each site i has a list of the best models MAPE M>;a^, where M>;a^ is the 

best local model MAPE M)R∗ and the selected models of the best MAPE 

from other sites M)’R∗, M>;a^= {M)
∗, M)’

∗, … ,M+
∗} , where i = 1, 2, …, n ,and 

its evaluation results, MAPE	(M)
∗) and RMSE	(M)

∗). Also, the site i has a list 

of the best models RMSE M\>]^, where M\>]^ is the best local model 

RMSE M)R∗∗ and the selected models of the best RMSE from other sites 

	M)’R∗∗, M\>]^ =	 {M)
∗∗, M)’

∗∗, … ,M+
∗∗}	 and its evaluation results, 

MAPE	(M)
∗∗)	and	RMSE	(M)

∗∗). 

b) Calculate models weights for the selected models in M>;a^ and M\>]^ 
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using four weighting methods: 

 

i. Simple Weight Average Method:  

w>!
∗ = 2

+
                           (3.35) 

, where 0 <= w>!
∗ <=1,  ∑ w>!

∗ = 1+
)12 , and n is the number of models. 

 

w>!
∗∗ = 2

+
                           (3.36) 

, where 0 <= w>!
∗∗ <=1, ∑ w>!

∗∗ = 1+
)12 , and n is the number of models. 

 

ii. Error-based (RMSE): The weight for each model M) is taken to be 

inversely proportional to the model error. 

w>! =	
&%%*%:!

;%

∑ &%%*%:!
;%#

!$%
                       (3.37) 

We use RMSE for models error; higher RMSE is given a smaller 

weight. 

w>!
∗ =	

%
<:=>	:!

∗

∑ %
<:=>	:!

∗
#
!$%

                      (3.38) 

, where ∑ w>!
∗+

)12 = 1 

w>!
∗∗ =	

%
<:=>	:!

∗∗

∑ %
<:=>	:!

∗∗
#
!$%

                      (3.39) 

, where ∑ w>!
∗∗+

)12 = 1 

iii. Performance Based (Accuracy): Calculates the accuracy for each 

model M)
∗ and M)

∗∗ 

Acc (M)
∗) = 100 - MAPE (M)

∗)              (3.40) 

Acc (M)
∗∗) = 100 - MAPE (M)

∗∗)            (3.41)                        

Then, 

 

w>!
∗ = ;''	>!

∗

∑ ;''	>!
∗#

!$%
                                   (3.42) 



 103 

w>!
∗∗ = ;''	>!

∗∗

∑ ;''	>!
∗∗#

!$%
                               (3.43) 

iv. Shapley Value: 

a) Calculate total RMSE of the models. 

RMSE	∗ 	= 	 2
+
o RMSE	M)

∗+
)12                (3.44) 

RMSE	∗∗ 	= 	 2
+
o RMSE	M)

∗∗+
)12              (3.45) 

, where n is the number of models 

b) Calculate Shapley value: 

φ>!
∗(v) = 	∑ w	(|s)|)()	∈( 	 ∗ 	 [RMSE(s)) 	− 	RMSE(s) − {i})]        (3.46) 

φ>!
∗∗(v) = 	∑ w	(|s)|)()	∈( 	 ∗ 	 [RMSE	(s)) 	− 	RMSE(s) − {i})]         (3.47) 

where w(|s)|) = 	
(+4|(!|)!((|(!|)42)	!

+!
                      (3.48) 

s) is the set containing the best models, |s)| is the number of models 

in the combination, RMSE	(s)) is the combined RMSE of this 

combination subset, and s)−{𝑖} is a set obtained from s) by 

removing i-th model in the combination. 

c) Calculate the weight of each model in the combination: 

w>!
∗ =	 2

+42
	 ∗ 	

\>]^	∗4	_:!
∗(`)

\>]^	∗
		 , i= 1, 2,…, n                  (3.49) 

w>!
∗∗ =	 2

+42
	 ∗ 	

\>]^	∗∗4	_:!
∗∗(`)

\>]^	∗∗
		 , i= 1, 2,…, n              (3.50) 

3) Combine the models to develop our proposed local combined model M)
Z∗ to 

predict x. 

M)
Z∗(x) =l w>!

∗ 	M)
∗

+

)12
(x)                             (3.51) 
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M)
Z∗∗(x) =l w>!

∗∗ 	M)
∗∗

+

)12
(x)                         (3.52) 

 

3.4.3 Experimental Study 

The experiments are performed to evaluate the proposed method 

performance and compared it with related work and a centralised learning 

approach. 

I. Datasets 

We used three databases: Parkinson disease, Boston housing, and 

Abalone datasets [29]. Before conducting the experiments, the databases 

are first preprocessed to a suitable data format. Parkinson disease data 

features are patient age and biomedical voice measurement with two target 

values, motor Unified Parkinson’s Disease Rating Scale (UPDRS) and total 

Unified Parkinson’s Disease Rating Scale (UPDRS). The target values 

show the measurement of presence and severity of Parkinson disease. 

Total-UPDRS ranges between 0–176, 0 reflecting healthy status and 176 

indicating total disability. Motor-UPDRS, which denotes to the motor 

section, the range is between 0–108, 0 indicates healthy status and 108 

severe case. Boston housing dataset is from several suburbs in Boston and 

includes economic, demographic, and land use features, and the median 

price of houses is the target value. Abalone dataset features are physical 

measurements that are used to predict the age of Abalone. We replaced the 

target value rings with age (rings + 1.5 = Abalone age in years). Table 3.33 

describes the datasets that are used to train and test the models. 

Table 3.33. Datasets Descriptions. 

Datasets Data size No. of attributes 
Parkinson 5875   18 
Boston housing 506 14 
Abalone 4166 8 

 

II. Simulating Distributed Data 

We applied the proposed methods using two dataset partitioning 

strategies: (1) random data partitioning approach and (2) non-random data 
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partitioning approach. For the non-random data partitioning approach, we 

partitioned the Parkinson disease dataset by patient age and Boston housing 

dataset by per capita crime rate by town attribute to simulate that each data 

comes from different regions. Therefore, we divided each dataset into 

different parts as distributed sites site1, site2, and site3. In each site, the 

dataset is divided into local data and validation datasets. The local data 

partition is used to develop and evaluate the local models and evaluate the 

received models. The validation data is used to evaluate the final global and 

local combined model. 

 

III. Models Building and Evaluation 

Well-known regression algorithms are used to build the local 

prediction models: Linear Regression (LR), Random Forest Regressor 

(RFR), Radial Basis Function Neural Network (RBFNN), K-Nearest 

Neighbor Regressor (KNNR), Decision tree regression (DTR), Support 

Vector Regressor (SVR), Neural Network Regressor (NNR), Lasso, 

ElasticNet, and Ridge. In each site, the local models are trained on the local 

training dataset from its local dataset. We used RMSE and MAPE metrics 

in model evaluation, selection, and weighting strategies. 

 

IV. Combined Model Evaluation 

1) Global Combined Model Evaluation 

a) Testing error: we evaluated the final global combined models in each site 

based on the local validation data of the site. We sent the global combined 

model SSE and MAPE results with the number of validation data samples to 

the server. Then, the server calculated the global average MAPE and RMSE 

of the global combined model. To calculate the global RMSE of the global 

combined models, each site i: 

i. Compute SSE of the global combined models	SSE)(MX∗) 

and	SSE)(MX∗∗). 

SSE)	(MX∗)= ∑ |yb>
4∗ −	ypb>

4∗|+
b12

!
          (3.53) 
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, where t is the sample number t=1, …, n, yb>
4∗ is the actual value, and 

ypb>
4∗ is the predicted value for n data samples. 

SSE)	(MX∗∗)= ∑ |yb>
4∗∗ −	ypb>

4∗∗|+
b12

!
          (3.54) 

, where t is the sample number t=1, …, n, yb>
4∗∗ is the actual value, 

and ypb>
4∗∗ is the predicted value for n data samples. 

ii. Send the evaluation results with the number of local validation data 

samples to the server. The server will calculate the average RMSE by 

dividing the sum of SSE from all sites by the number of validation data 

samples of all sites D, then get the square root error to get RMSE (MX∗) 

and RMSE (MX∗∗). 

RMSE (MX∗)  = 7∑ ]]^!(>4∗#
!$% )

V
             (3.55) 

RMSE (MX∗∗)  = 7∑ ]]^!(>4∗∗#
!$% )

V
            (3.56) 

, where D is the total number of data samples from all sites, and n is the 

number of sites 

Also, calculate the average MAPE (MX∗) and MAPE (MX∗∗). 

MAPE	(MX∗) 	= ∑ V!
V	
∗ MAPE)(MX∗)	+

)12                 (3.57) 

MAPE	(MX∗∗) 	= ∑ V!
V	
∗ MAPE)(MX∗∗)	+

)12               (3.58) 

, where D) is the number of samples of site i and D is all sites’ samples 

number. 

b) Training error: each site evaluated the final global combined model based on 

its local data that used to train the local models. Then, each site sends the 

evaluation results SSE and MAPE to the server with the number of local data 

samples to calculate the average training MAPE and RMSE. 
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2) Local Combined Model Evaluation: we calculated the local combined 

models MAPE and RMSE based on the local validation data and compared 

with the best local model RMSE M)R∗ and the best local model MAPE	M)R∗∗. 

 
V. Experiment Results and Analysis 

1) Random Data Partitioning Approach: 

As shown in Table 3.34, for each site, we split the datasets into 

two main parts. The first one is used as the local dataset used to build the 

local models and evaluate the received models from other sites, and the 

second part is used to evaluate the combined models of the global and local 

level modelling methods. Datasets distributions are shown in Appendix A. 

 

Table 3.34. Datasets Partitions 

Datasets Site 1 Site 2 Site 3 
Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Parkinson 1402 515 1004 443 1846 665 
Boston housing 160 49 94 21 140 42 
Abalone 998 403 1293 589 599 284 

 
 
 

I. Global-level Modelling Results: 

 The detailed results for the global-level modelling are in 

Appendix B. Table 3.35 shows the proposed method evaluation results for 

Parkinson disease (Total UPDRS) dataset. It compares the results with a 

technique that if each site sends the best local model MAPE and RMSE 

to the server instead of sending the best global average model (Best Local 

Models Combination). Besides, the proposed method results are 

compared with the centralised learning approach. The centralised learning 

approach result is slightly better than the proposed method. Table 3.36 

shows the training and testing error for the proposed method and the 

centralised learning approach.  
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Table 3.35. Global-level Modelling and Centralised Learning Approach Evaluation for 
Parkinson Disease (Total UPDRS) 

 
 
 
 
 
 
 

 

 

 

 

 

 

Table 3.36. Global Combined Model and Centralised Learning Approach Training and 
Testing Error for Parkinson Disease (Total UPDRS) Dataset 

 

 

 

 

 

 

As shown in Table 3.37, the global-level modelling and 

centralised learning approach results for Parkinson disease (Motor 

UPDRS) dataset are close. In addition, it shows the global-level modelling 

results using MAPE selection metric are slightly better than RMSE 

selection metric, and the RMSE results for the weighting method using 

error-based approach are slightly better than the other weighting methods. 

Table 3.38 shows the training and testing errors for the proposed method 

and centralised learning approach. 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE Simple average 28.38 9.10 
Error-based (RMSE)) 28.24 8.98 

Performance-based (Accuracy) 28.36 9.03 
Shapley value 28.27 8.97 

RMSE Simple average 28.38 9.10 
Error-based (RMSE) 28.24 8.98 

Performance-based (accuracy) 28.36 9.03 
Shapley value 28.27 8.97 

Best Local Models 
Combination 

MAPE Simple average 27.97 8.47 
Error-based (RMSE) 27.84 8.54 

Performance-based (accuracy) 28.04 8.46 
Shapley value 27.91 8.54 

RMSE Simple average 27.97 8.47 
Error-based (RMSE) 27.84 8.54 

Performance-based (accuracy) 28.04 8.46 
Shapley value 27.91 8.54 

Centralised Learning Approach (RFR model) 24.24 7.53 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE Simple average 28.38 9.10 27.41 9.72 
Error-based (RMSE) 28.24 8.98 27.53 9.61 

Performance-based (Accuracy) 28.36 9.03 27.49 9.65 
Shapley value 28.27 8.97 27.60 9.61 

RMSE Simple average 28.38 9.10 27.41 9.72 
Error-based (RMSE) 28.24 8.98 27.53 9.61 

Performance-based (accuracy) 28.36 9.03 27.49 9.65 
Shapley value 28.27 8.97 27.60 9.61 

Centralised Learning Approach 24.24 7.53 23.53 8.30 
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Table 3.37. Global-level Modelling and Centralised Learning Approach Evaluation for 
Parkinson Disease (Motor UPDRS) 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.38. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Parkinson Disease (Motor UPDRS) 

 

 

 

 

 

 

Table 3.39 illustrates the global combined model 

evaluation compared with centralised learning approach for 

Abalone dataset. Our method using Shapley value for model 

combination approach got the best RMSE and MAPE results. The 

training and testing error for the proposed method and the 

centralised learning approach is shown in Table 3.40. 

 

 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE Simple average 36.64 7.36 
Error-based (RMSE) 36.49 7.30 

Performance-based (Accuracy) 36.50 7.34 
Shapley value 36.60 7.32 

RMSE Simple average 38.48 7.48 
Error-based (RMSE)) 38.62 7.46 

Performance-based (accuracy) 38.65 7.48 
Shapley value 38.42 7.48 

Best Local 
Models 

Combination 

MAPE Simple average 34.70 7.03 
Error-based (RMSE) 34.63 7.01 

Performance-based (accuracy) 34.62 7.45 
Shapley value 34.26 6.99 

RMSE Simple average 34.70 7.03 
Error-based (RMSE) 34.63 7.01 

Performance-based (accuracy) 34.62 7.45 
Shapley value 34.26 6.99 

Centralised Leanring Approach (RFR model) 35.47 6.98 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE Simple average 36.64 7.36 27.20 6.22 
Error-based (RMSE) 36.49 7.30 27.26 6.19 

Performance-based (Accuracy) 36.50 7.34 27.12 6.24 
Shapley value 36.60 7.32 27.33 6.19 

RMSE Simple average 38.48 7.48 32.73 7.34 
Error-based (RMSE) 38.62 7.46 33.07 7.33 

Performance-based (accuracy) 38.65 7.48 32.98 7.34 
Shapley value 38.42 7.48 32.68 7.33 

Centralised Learning Approach 35.47 6.98 24.78 6.15 
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Table 3.39. Global-level Modelling and Centralised Learning Approach Evaluation for 
Abalone Dataset 

 

 

 

 

 

 

 

 

 

 

 

Table 3.40. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Abalone Dataset 

 

 

For Boston housing dataset in Table 3.41, the proposed 

method is slightly better RMSE than the centralised learning 

approach, and Table 3.42 shows the training and testing error for the 

global combined model and centralised learning approach. 

 

 

 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE Simple average 14.01 2.77 
Error-based (RMSE) 13.86 2.71 

Performance-based (Accuracy) 13.92 2.72 
Shapley value 13.90 2.71 

RMSE Simple average 13.24 2.39 
Error-based (RMSE) 13.24 2.39 

Performance-based (accuracy) 13.35 2.37 
Shapley value 13.14 2.36 

Best Local 
Models 

Combination 

MAPE Simple average 13.97 2.79 
Error-based (RMSE) 13.96 2.78 

Performance-based (accuracy) 13.86 2.75 
Shapley value 13.86 2.75 

RMSE Simple average 13.26 2.40 
Error-based (RMSE)) 13.31 2.39 

Performance-based (accuracy) 13.36 2.38 
Shapley value 13.32 2.38 

Centralised Learning Approach (NNR model) 13.69 2.39 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE Simple average 14.01 2.77 12.30 2.25 
Error-based (RMSE) 13.86 2.71 12.46 2.22 

Performance-based (Accuracy) 13.92 2.72 12.48 2.23 
Shapley value 13.90 2.71 12.47 2.22 

RMSE Simple average 13.24 2.39 12.62 2.06 
Error-based (RMSE) 13.24 2.39 12.62 2.06 

Performance-based (accuracy) 13.35 2.37 12.88 2.05 
Shapley value 13.14 2.36 12.89 2.05 

Centralised Learning Approach 13.69 2.39 13.28 2.12 



 111 

Table 3.41. Global-Level Modelling and Centralised Learning Approach Evaluation for Boston 
Housing Dataset 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.42. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Boston Housing Dataset 

 

 

 

 

 

In Table 3.43, we compared our method RMSE results with a proposed 

method RMSE result obtained from [166] for Boston housing dataset, and our 

proposed method outperformed the proposed method in [166]. 

Table 3.43. Datasets Evaluation for Global-level Modelling for Boston Housing Dataset 

 

 

 

 

 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE 

Simple average 14.72 3.43 
Error-based (RMSE) 13.94 3.17 

Performance-based (Accuracy) 14.89 3.42 
Shapley value 13.94 3.17 

RMSE 

Simple average 15.32 3.25 
Error-based (RMSE) 14.32 3.10 

Performance-based (accuracy) 14.41 3.45 
Shapley value 14.32 3.10 

Best Local 
Models 

Combination 

MAPE 

Simple average 16.64 3.87 
Error-based (RMSE) 13.63 3.04 

Performance-based (accuracy) 17.90 4.29 
Shapley value 13.63 3.04 

RMSE 

Simple average 16.64 3.87 
Error-based (RMSE) 13.63 3.04 

Performance-based (accuracy) 17.90 4.29 
Shapley value 13.63 3.04 

Centralised Learning Approach (SVR model) 11.96 3.20 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE 

Simple average 14.72 3.43 13.57 4.11 
Error-based (RMSE) 13.94 3.17 11.98 3.86 

Performance-based (Accuracy) 14.89 3.42 13.32 3.98 
Shapley value 13.94 3.17 11.98 3.86 

RMSE 

Simple average 15.32 3.25 14.53 3.87 
Error-based (RMSE) 14.32 3.10 12.56 3.80 

Performance-based (accuracy) 14.41 3.45 15.07 4.46 
Shapley value 14.32 3.10 12.56 3.80 

Centralised Learning Approach 11.96 3.20 17.39 5.45 

Methods Selection 
metric 

Weighting method Boston 
Housing 

Global Combined 
Model 

MAPE 

Simple average 3.43 
Error-based (RMSE) 3.17 

Performance-based (Accuracy) 3.42 
Shapley value 3.17 

RMSE 

Simple average 3.25 
Error-based (RMSE) 3.10 

Performance-based (accuracy) 3.45 
Shapley value 3.10 

Mandal et al. [166] 4.91 



 112 

II. Local-level Modelling Results: 

As shown in Table 3.44, the proposed local combined model for 

Parkinson disease (Total UPDRS) dataset performs better than the best local 

model in site 1 and site 2. 

Table 3.44. Parkinson Disease (Total UPDRS) Dataset Evaluation Results for Local-Level 
Modelling 

 

  
(a) (b) 

Figure 3.19. Parkinson Disease  (Total UPDRS) Dataset Local-Level Modelling 
Evaluation and The Best Models Selected By, (a) MAPE, and (b) RMSE 

Table 3.45 shows the local-level modelling results for Parkinson Disease 

(Motor UPDRS). The best local model results are better than the proposed methods 

in site 2 and site 3, while in site 1, our method RMSE result is slightly better. 

Table 3.45. Local-level Modelling Evaluation for Parkinson Disease (Motor UPDRS) 
 

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 9.17 22.02 8.33 30.06 8.01 29.29 
Error-based (RMSE) 8.78 22.64 8.76 31.37 7.61 28.37 

Performance-based (Accuracy) 9.02 22.25 8.23 29.7 8.02 29.92 
Shapley value 8.77 22.67 8.86 31.7 8.46 30.55 

The Best Local Model (using MAPE for model selection) 9.36 26.69 10.23 36.18 6.95 23.71 

Local-
Level 

Modelling 
RMSE 

Simple average 9.01 21.75 8.33 30.06 8.57 31.69 
Error-based (RMSE) 8.64 22.30 8.76 31.37 7.95 29.98 

Performance-based (Accuracy) 8.83 21.94 8.61 30.88 8.32 31.21 
Shapley value 8.64 22.34 8.86 31.7 7.94 30.02 

The Best Local Model (using RMSE for model selection) 9.36 26.69 10.23 36.18 6.95 23.71 

Method Selectio
n Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 6.28 27.31 6.73 35.49  7.14 39.35 
Error-based (RMSE) 6.03 26.37 6.42 33.87 7.09 39.44 

Performance-based (Accuracy) 5.96 26.12 6.40 33.43 7.06  38.94 
Shapley value 6.03 26.37 6.51 34.49  7.06 38.94 

The Best Local Model (using MAPE for model selection) 5.99 26.12 5.58 23.84 6.68 33.43 

Local-
Level 

Modelling 
RMSE 

Simple average 6.48 28.38 6.72 36.05 7.42 42.29 
Error-based (RMSE) 6.12 26.99 6.52 35.07 7.31 41.64 

Performance-based (Accuracy) 6.12 26.99 6.52 35.07 7.31 41.64 
Shapley value 6.19 27.28 6.46 34.64 7.31 41.64 

The Best Local Model (using RMSE for model selection) 5.99 26.14 5.58 23.84  6.68 33.43 
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Figure 3.20. Parkinson Disease  (Motor UPDRS) Local-Level Modelling Evaluation And The 
Best Models Selected By, (a) MAPE, and (b) RMSE 

 

For Abalone dataset, Table 3.46 shows the local combined model results are 

slightly better than the best local models in all sites. 

Table 3.46. Local-level Modelling and Centralised Learning Approach Evaluation for Abalone 
dataset 

 

 

 

 

 

 

 
 

(a) (b) 

Figure 3.21. Abalone Local-Level Modelling Evaluation and The Best Models Selected By, (a) 
MAPE, and (b) RMSE 

 

The local combined model results in Table 3.47 for Boston housing dataset show 

better results than the best local model in site 2 and site 3 and close results in site 1. 

  
(a) (b) 

  

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 2.56 13.11 2.79 14.14 3.04 15.69 
Error-based (RMSE) 2.56 13.11 3.34 16.88 3.03 15.66 

Performance-based (Accuracy) 2.56 13.11 2.76 14.13 2.98 15.53 
Shapley value 2.53 13.16 2.78 14.13 3.03 15.66 

The Best Local Model (using MAPE for model selection) 2.82 14.72 2.93 14.55 3.14 16.29 

Local-
Level 

Modelling 
RMSE 

Simple average 2.54 13.65 2.35 12.73 2.63 14.45 
Error-based (RMSE) 2.51 13.83 2.83 14.39 3.14 16.43 

Performance-based (Accuracy) 2.52 13.76 2.32 12.79 2.61 14.47 
Shapley value 2.51 13.77 2.32 12.82 2.63 14.45 

The Best Local Model (using RMSE for model selection) 2.57 14.79 2.33 12.55 2.65 15.19 
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Table 3.47. Local-level Modelling and Centralised Learning Approach Evaluation for Boston Housing 
Dataset 

 
 
 

 
 

(a) (b) 

Figure 3.22. Boston Housing Local-Level Modelling Evaluation and The Best Models Selected By, (a) 
MAPE, and (b) RMSE 

 
 

2) Non-random data partitioning Approach: 

We partitioned the Parkinson disease dataset by patient age and 

Boston housing dataset by crime rate attribute to simulate that each 

data comes from different regions. Table 3.48 shows our partition 

strategy for the datasets between the sites, and Table 3.49 shows the 

datasets partitions size. The local data is used to build the local models 

in each site and evaluate the received models from other sites. The 

second partition is used to evaluate the combined models of the global 

and local level modelling methods. Datasets distributions are 

illustrated in Appendix A. 

Table 3.48. Datasets Partitioning Scenarios 

Datasets Site1 Site2 Site3 
Parkinson Age: less than 

or equal to 60  
Age: bigger than 60 and less 
than or equal to 70 

Age: bigger 
than 70 

Boston housing Crime rate: less 
than 0.1 

Crime rate: bigger than or 
equal to 0.1 and less than 0.99 

Crime rate: 
bigger than 1 

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 3.67 18.31 2.02 5.99 3.34 16.16 
Error-based (RMSE) 3.42 16.64 2.25 6.05 3.27 16.00 

Performance-based (Accuracy) 3.58 17.80 1.91 5.93 3.35 16.24 
Shapley value 3.33 15.90 3.91 11.73 3.27 16.00 

The Best Local Model (using MAPE for model selection) 3.25 14.01 4.69 12.75 3.25 16.08 

Local-
Level 

Modelling 
RMSE 

Simple average 3.67 18.31 2.86 6.94 3.22 15.34 
Error-based (RMSE) 3.33 15.90 2.88 7.09 3.21 15.55 

Performance-based (Accuracy) 3.64 18.17 4.29 12.39 3.26 15.59 
Shapley value 3.33 15.90 2.88 7.09 3.21 15.55 

The Best Local Model (using RMSE for model selection) 3.25 14.01 4.69 12.75 3.25 16.08 



 115 

Table 3.49. Dataset Partitions 

Datasets Site 1 Site 2 Site 3 
Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Local 
data 

Validation 
data 

Parkinson 1457 576 1460 511 1416 455 
Boston housing 112 40 130 50 133 41 

 
 
 
 

I. Global-level Modelling Results: 

The detailed results for the global level modelling are in 

Appendix B. Table 3.50 compares the global combined model with 

the centralised learning approach for Parkinson disease (Total 

UPDRS) dataset. RMSE results for all methods are close, and MAPE 

of our method using Shapley value for model weighting is slightly 

better than other methods. The training and testing error results are 

shown in Table 3.51. 

 

Table 3.50. Global-Level Modelling and Centralised Learning Approach Evaluation for 
Parkinson Disease (Total UPDRS) Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE 

Simple average 25.18 8.20 
Error-based (RMSE) 25.26 8.20 

Performance-based (Accuracy) 25.37 8.21 
Shapley value 25.09 8.19 

RMSE 

Simple average 24.94 8.44 
Error-based (RMSE) 24.75 8.46 

Performance-based (accuracy) 25.21 8.42 
Shapley value 24.71 8.46 

Best Local 
Models 

Combination 

MAPE 

Simple average 27.12 8.48 
Error-based (RMSE) 27.23 8.49 

Performance-based (accuracy) 27.81 8.55 
Shapley value 27.12 8.49 

RMSE 

Simple average 27.12 8.48 
Error-based (RMSE) 27.23 8.49 

Performance-based (accuracy) 27.81 8.55 
Shapley value 27.12 8.49 

Centralised Learning Approach (LR model) 25.22 8.17 
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Table 3.51. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Parkinson Disease (Total UPDRS) Dataset 

 

 

 

 

 

For Parkinson disease (Motor UPDRS) dataset, our global 

combined model RMSE result in Table 3.52 is slightly better than the 

centralised learning approach, while MAPE result for the centralised 

learning approach is the best result. The training and testing error for 

the proposed method and the centralised learning approach is 

illustrated in Table 3.53. 

 

Table 3.52. Global-Level Modelling and Centralised Learning Approach Evaluation for 
Parkinson Disease (Motor UPDRS) Dataset 

 

 

 

 

 

 

 

 

 

 

 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE 

Simple average 25.18 8.20 34.18 10.42 
Error-based (RMSE) 25.26 8.20 34.14 10.44 

Performance-based (Accuracy) 25.37 8.21 33.43 10.37 
Shapley value 25.09 8.19 34.21 10.40 

RMSE 

Simple average 24.94 8.44 41.69 11.58 
Error-based (RMSE) 24.75 8.46 42.13 11.56 

Performance-based (accuracy) 25.21 8.42 41.13 11.59 
Shapley value 24.71 8.46 42.18 11.56 

Centralised Learning Approach 25.22 8.17 40.04 11.13 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE 

Simple average 34.1 7.2 
Error-based (RMSE) 34.5 7.2 

Performance-based (Accuracy) 33.4 7.1 
Shapley value 34.5 7.2 

RMSE 

Simple average 37.4 7.5 
Error-based (RMSE) 37.7 7.5 

Performance-based (accuracy) 37.1 7.4 
Shapley value 37.8 7.5 

Best Local 
Models 

Combination 

MAPE 

Simple average 35.6 7.5 
Error-based (RMSE) 36.4 7.6 

Performance-based (accuracy) 36.6 7.6 
Shapley value 36.2 7.6 

RMSE 
 

Simple average 35.6 7.5 
Error-based (RMSE) 36.4 7.6 

Performance-based (accuracy) 36.6 7.6 
Shapley value 36.2 7.6 

Centralised Learning Approach (LR model) 30.68 7.3 
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Table 3.53. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Parkinson Disease (Motor UPDRS) Dataset 

 

 

 
 
 
 
 

 

Table 3.54 shows that the centralised learning approach is 

slightly better than our proposed method for Boston housing dataset. 

Table 3.55 illustrates the training and testing error results for the 

proposed method and the centralised learning approach. 

Table 3.54. Global-level Modelling and Centralised Learning Approach Evaluation for 
Boston Housing Dataset 

 

 

 

 

 

 

 

 

 

 

 

Table 3.55. Global Combined Model and Centralised Learning Approach Training and Testing 
Error for Boston Housing Dataset 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-level 
modelling 

MAPE 

Simple average 34.1 7.2 38.4 7.7 
Error-based (RMSE) 34.5 7.2 38.6 7.7 

Performance-based (Accuracy) 33.4 7.1 37.5 7.7 
Shapley value 34.5 7.2 38.6 7.7 

RMSE 

Simple average 37.4 7.5 45.7 8.5 
Error-based (RMSE) 37.7 7.5 46.1 8.5 

Performance-based (accuracy) 37.1 7.4 45.5 8.5 
Shapley value 37.8 7.5 46.1 8.5 

Centralised Learning Approach 30.68 7.3 34.4 6.9 

Methods Selection 
metric 

Weighting method MAPE RMSE 

Global-level 
modelling 

MAPE 

Simple average 15.92 3.68 
Error-based (RMSE) 16.02 4.19 

Performance-based (Accuracy) 16.02 4.19 
Shapley value 16.20 3.67 

RMSE 

Simple average 20.35 3.77 
Error-based (RMSE) 20.35 3.77 

Performance-based (accuracy) 20.28 3.76 
Shapley value 18.31 4.02 

Best Local 
Models 

Combination 

MAPE 

Simple average 20.35 3.77 
Error-based (RMSE) 19.01 4.13 

Performance-based (accuracy) 20.88 3.83 
Shapley value 21.41 3.97 

RMSE 

Simple average 23.76 4.35 
Error-based (RMSE) 22.73 4.63 

Performance-based (accuracy) 21.15 4.34 
Shapley value 25.65 4.73 

Centralised Learning Approach (RFR model) 13.31 3.38 

Methods Selection 
metric 

Weighting method Testing error Training error 
MAPE RMSE MAPE RMSE 

Global-
level 

modelling 

MAPE 

Simple average 15.92 3.68 13.29 4.26 
Error-based (RMSE) 16.02 4.19 14.32 4.96 

Performance-based (Accuracy) 16.02 4.19 14.32 4.96 
Shapley value 16.20 3.67 13.33 4.24 

RMSE Simple average 20.35 3.77 15.04 4.08 
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For Boston housing dataset, Table 3.56 shows that our proposed method 

RMSE result using MAPE selection and model combination using Shapley value 

is better than the proposed approach in [166]. Besides, all model weighting 

methods got close RMSE results. 

Table 3.56. Datasets Evaluation for Global-level Modelling for Boston housing dataset 
 

 

II. Local-level Modelling Results: 

In Table 3.57 for Parkinson disease (Total UPDRS) 

dataset, the local combined model results in site 1 and site 2 are better 

than the best local model. 

Table 3.57. Local-level Modelling and Centralised Learning Approach Evaluation for Parkinson 
Disease (Total UPDRS) dataset 

 

 

 

 

 

 

 

Error-based (RMSE) 20.35 3.77 15.04 4.08 
Performance-based (accuracy) 20.28 3.76 14.96 4.07 

Shapley value 18.31 4.02 13.92 4.52 
Centralised Learning Approach 13.31 3.38 11.51 3.27 

Methods Selection 
metric 

Weighting method Boston 
Housing 

Global Combined 
Model 

MAPE 

Simple average 3.68 
Error-based (RMSE) 4.19 

Performance-based (Accuracy) 4.19 
Shapley value 3.67 

RMSE 

Simple average 3.77 
Error-based (RMSE) 3.77 

Performance-based (accuracy) 3.76 
Shapley value 4.02 

Mandal et al. [166] 4.91 

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 6.79 23.37 6.78 30.57 10.84 24.05 
Error-based (RMSE) 6.67 22.38 7.07 31.72 9.99 22.83 

Performance-based (Accuracy) 6.75 22.24 6.74 30.14 10.54 23.66 
Shapley value 6.67 22.30 6.98 31.29 9.95 22.78 

The Best Local Model (using MAPE for model selection) 8.26 22.56 7.89 31.77 8.96 20.09 

Local-
Level 

Modelling 
RMSE 

Simple average 6.19 22.21 6.56 28.95 10.79 24.05 
Error-based (RMSE) 6.16 21.28 6.78 29.98 9.98 22.83 

Performance-based (Accuracy) 6.19 21.02 6.32 27.67 10.50 23.67 
Shapley value 6.17 21.27 6.78 29.98 9.96 22.82 

The Best Local Model (using RMSE for model selection) 8.25 22.56 7.89 31.77 8.96 20.09 



 119 

  
(a) (b) 

Figure 3.23. Parkinson Disease (Total UPDRS) Dataset Local-Level Modelling 
Evaluation and The Best Models Selected By, (a) MAPE, and (b) RMSE 

 

In Table 3.58, our proposed method results in site 1 and site 

2 are better than the best local model RMSE results for Parkinson 

disease (Motor UPDRS) dataset, while the best local model is slightly 

better MAPE than our method in site 2 and site 3. 

Table 3.58. Local-Level Modelling and Centralised Learning Approach Evaluation for Parkinson 
Disease (Motor UPDRS) Dataset 

 

 

 

 

 

 

  
(a) (b) 

Figure 3.24. Parkinson Disease (Motor UPDRS) Dataset Local-Level Modelling 
Evaluation And The Best Models Selected By, (a) MAPE, and (b) RMSE 

 

For Boston housing dataset in Table 3.59, we found that 

the local combined model got better RMSE results in site 1 and site 2 

using Shapley value for the model weighting method. 

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 5.7 31.96 6.59 43.26 9.16 25.97 
Error-based (RMSE) 5.5 29.13 6.73 44.01 8.73 24.94 

Performance-based (Accuracy) 5.4 27.52 6.36 40.88 8.94 25.48 
Shapley value 5.4 28.97 6.68 43.71 8.67 24.78 

The Best Local Model (using MAPE for model selection) 6.4 23.17 7.02 40.64 8.36 22.63 

Local-
Level 

Modelling 
RMSE 

Simple average 5.9 33.88 6.46 42.66 9.16 25.97 
Error-based (RMSE) 5.6 29.17 6.56 43.17 8.73 24.94 

Performance-based (Accuracy) 5.6 29.17 6.56 43.17 8.94 25.48 
Shapley value 5.7 30.71 6.56 43.04 8.67 24.79 

The Best Local Model (using RMSE for model selection) 6.4 23.17 7.02 40.64 8.36 22.63 
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Table 3.59. Local-level Modelling and Centralised Learning Approach Evaluation for Boston 
Housing dataset 

 

 

 

 

 

 

 

  
(a) (b) 

Figure 3.25. Boston Housing Local-level Modelling evaluation and the best models selected by, 
(a) MAPE, and (b) RMSE 

 

3.4.4 Discussion and Evaluation 

We evaluated the global combined model prediction performance and 

compared it with a research study and a centralised learning approach that 

moves all distributed data to a centralised database. Our proposed method 

for the randomly partitioned datasets is slightly better than the centralised 

learning method in Abalone and Boston housing datasets. In Parkinson 

disease dataset, the centralised learning approach performed slightly better. 

In addition, the model weighting method using Shapley values is slightly 

better than other methods. For the non-randomly partitioned datasets, our 

proposed global combined model is slightly better than the centralised 

learning approach in Parkinson disease (Motor UPDRS) dataset, and close 

results in Parkinson disease (Total UPDRS) and Boston Housing datasets. 

We found that the proposed method could perform comparable to or better 

than the centralised learning method, overcoming the centralised learning 

issues and overheads and preserving data privacy. We saved the cost and 

Method Selection 
Metric 

Weighting Method Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 
MAPE 

Simple average 3.16 6.86 2.60 11.45 5.02 30.07 
Error-based (RMSE) 3.82 10.60 3.35 14.24 4.42 28.32 

Performance-based (Accuracy) 4.91 12.53 3.44 14.15 4.77 29.74 
Shapley value 1.98 5.43 2.56 11.29 4.43 29.13 

The Best Local Model (using MAPE for model selection) 2.11 5.99 2.62 11.42 3.61 24.04 

Local-
Level 

Modelling 
RMSE 

Simple average 2.86 9.32 2.26 9.98 6.05 47.41 
Error-based (RMSE) 3.07 8.50 3.02 12.18 5.25 41.74 

Performance-based (Accuracy) 2.81 9.17 2.23 9.93 5.56 43.44 
Shapley value 3.07 8.50 2.09 9.49 5.18 40.86 

The Best Local Model (using RMSE for model selection) 2.11 5.99 2.38 9.32 3.61 24.04 
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time of data transformation from one site to another or a central location. 

We developed the combined models with fewer communication rounds, and 

minimal information exchanged between distributed sites. In the local level 

modelling approach, we proved that the distributed sites could utilise other 

sites models to improve the prediction performance with fewer 

communication rounds and without sharing data between the sites to 

preserve data privacy. In addition, the proposed approach could be applied 

to solve issues related to large data, such as memory limitation and huge 

data transformation costs. However, as discussed in section 3.3.4, there is a 

possibility for malicious attacks on the trained models and we will consider 

this issue in future research. 

 

3.5 SUMMARY 

 
This chapter presented our proposed global and local level modelling using 

the linear combination method. We simulated distributed sites using different dataset 

partitioning scenarios and developed local and global combined models using 

different models selection and combining approaches. The final model weights used 

in the global combined model are calculated based on average accuracy using all sites 

datasets. This will contribute to developing an unbiased and generalised global model 

for all distributed sites. We evaluated the performance of the proposed local and 

global level modelling methods on different classification and regression datasets 

with different models selection and combination strategies. It showed its efficiency 

and applicability in the distributed environment. The global-level modelling for 

classification datasets got similar results with the centralised learning method in most 

datasets, and the single best model of the proposed method got similar results with 

the centralised learning method in several datasets. The results of the global 

combined model for regression datasets are slightly better or close to the centralised 

learning approach. In the local-level modelling approach, all sites are utilised from 

other sites models and improved the prediction performance without requiring data 

sharing, and there are no poor results obtained by models combining methods. 
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We used simple model evaluation and selection strategies instead of 

complicated methods that need more communication and computational cost and less 

information exchange than FL. We developed a global combined model without 

moving the local data to another site or a central server. The proposed method did 

not expose the data resource and hence preserved data privacy. We developed a 

combined local model for each site by utilising the learning outcomes from other 

local data resources. As a result, we saved the cost and time of data transformation 

from one site to another, improved computation effectiveness and efficiency, and 

preserved data privacy. We developed well-generalised combined models by 

weighting the final model weights used in global combined models based on average 

accuracy using all sites datasets. Part of this chapter is published in [22]. 
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Chapter 4 
 

Nonlinear Model Combination Approach 
 
 
 

4.1 CHAPTER OVERVIEW  

This chapter presents our proposed decentralised machine learning method 

to build global and local combined models using a nonlinear model combination 

approach. First, section 4.2 views our contribution and aims to develop the combined 

models using the decentralised learning approach. Then, the proposed method for 

classification with its experiment results and discussion are shown in section 4.3 and 

for regression algorithms in section 4.4. Finally, section 4.5 presents the chapter 

summary. 

 

4.2 INTRODUCTION 

We propose a decentralised machine learning method based on the nonlinear 

model combination approach, which allows distributed sites to build combined 

prediction models at global and local levels without sharing or disclosing distributed 

data resources. This method is proposed to address several issues such as data 

privacy, data transfer restrictions, and communication and computation costs. We 

avoid exchanging lots of intermediate information, using a centralised machine 

learning method, or using a central site for iterative learning process to minimise 

communication or computation overheads. The proposed method restricts the 

exchanged information between sites with only the local models learned from the 

local data and therefore shares minimal information. We aim to build a global 

combined model derived from local learning outcomes and an optimal local 
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combined model by utilising learning outcomes from other sites data resources and 

its local data. 

Furthermore, using a nonlinear combination approach of heterogeneous 

models to utilise and combine the selected models from distributed sites. The local 

base models between distributed sites are diverse, and it is sensible to consider using 

them in combination to overcome individual models limitations and improve the 

prediction performance. Moreover, with much less information sharing and without 

the iterative computing process between local sites and the central server, the 

proposed approach can achieve strong performance, which often is as good as 

centralised machine learning. Therefore, the proposed method leads toward to a 

simpler and new direction for decentralised privacy-preserving machine learning. 

 

4.3 PROPOSED METHOD FOR CLASSIFICATION ALGORITHMS 

We develop a decentralised version of nonlinear combination approach for 

distributed and private data resources. The proposed decentralised learning and 

nonlinear combination methods address individual model limitations by utilising 

distributed data to develop global and local combined prediction models without 

data transformation between distributed sites to preserve data privacy. The 

exchanged information between distributed sites is only the models, accuracy/F-

measurement, and data size. We use different classification algorithms to develop 

heterogeneous prediction models. We develop a global combined model at the 

central server by nonlinearly combining the best average accuracy/F-measure model 

from each distributed site. Also, build a local combined model in each site by 

utilising and nonlinearly combining the best local models from the other sites. For 

this purpose, the related symbols and definitions used in our approach are first 

introduced in Table 4.1. 

 
Table 4.1. Models Names and Descriptions 

Model Notation Meaning 

Local Data D' 

Local data in site i that used for local models learning, 

evaluate the received models from other sites, and local 

meta-models learning. 
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Local Model M'( 
A local model that developed in site i using j 

classification algorithm 

Best local model M'(∗ and M'(∗∗ 

The best local model in site i, which have the best 

accuracy using j* classification algorithm, and the best 

F-measure using j** classification algorithm, 

respectively 

Received Model M'’	( Model in site i that received from another site i' 

Selected Model M'’(∗ and M'’(∗∗ 

Selected model in site i that selected from other sites i' 

which is better than the best local model accuracy M'(∗ 

and better than the local model F-measure M'(∗∗ 

respectively 

Best average 

accuracy and F-

measure model 

M'(∗
-  and M'(∗∗

-  

The best average accuracy model and the best average 

F-measure model in site i after global evaluation will 

nonlinearly combined to build the global combined 

model 

List of the best 

models 

M-@.// and 	

M-@0 

List of the best average accuracy models and the best 

average F-measure models from all sites 

Meta-model 
M'(
-@5ABC@.// and 	

M'(
-@5ABC@0 

Meta-model which developed from M-@.// models list 

outputs and from M-@0 models list outputs in site i 

using j learning algorithms respectively 

Local test data D'DE 
Local test data in site i used for meta-models 

evaluation 

The best meta-

model 

M'(∗
FAEB	-@5ABC@.// 

and M'(∗∗
FAEB	-@5ABC@0 

The best meta-model in site i from 	M'(
-@5ABC@.// 

models and M'(
-@5ABC@0 models, respectively 

The global 

combined model 

M-@57D.@.// and 

M-@57D.@0 

The global combined model at the server that combine 

the best meta-models M'(∗
FAEB	-@5ABC@.// and the best 

meta-models M'(∗∗
FAEB	-@5ABC@0 , respectively 

List of the best 

accuracy models 
M.// 

List of the best local model accuracy M'(∗ and the 

selected models of the best accuracy from other sites 

M'’(∗ that will nonlinearly be combined 

List of the best F-

measure models 
M0 

List of the best local model F-measure M'(∗∗and the 

selected models of the best F-measure from other sites 

M'’(∗∗ that will nonlinearly be combined 

Local Meta-

model 

M'(
1@5ABC@.// and 	

M'(
1@5ABC@0 

Meta-model in site i which developed from M.// 

models list outputs and  M0 models list outputs, 

respectively 
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The best meta-

model (Local 

combined Model) 

M'(∗
FAEB	1@5ABC@.// 

and 	

M'(∗∗
FAEB	1@5ABC@0 

The best meta-model in site i and selected form 

M'(
1@5ABC@.// models and 	M'(

1@5ABC@0 , respectively 

 
 

4.3.1. Global-level Modelling Approach 

We aim to build a global combined model at the central server by 

nonlinearly combining the best average accuracy/F-measure model from each 

distributed site. First, each site builds heterogeneous local models on their 

local data using different classification algorithms. Our aim for developing 

several models not only an individual model, because a model may perform 

well in a dataset and not in other datasets and building a single model may not 

fit well for particular datasets. So, we develop different models to find a good 

model for all sites. Second, each site selects its best local model using the 10-

fold cross-validation technique. Next, each site shares its local models with 

other sites for general evaluation to find the best models as candidates for 

selection and combination to build a global model for all sites. Then, when a 

site receives local models from other sites, it first evaluates the models based 

on its own local data, then sends the models back with its evaluation results to 

the sites and with the local data size that used for evaluation. Each site should 

not get more information about the received model during evaluation than the 

evaluation results of its local data, which will preserve the models privacy. 

Then, each site will receive its local models evaluation results from other sites 

and calculate the average accuracy/F-measure of its local models. Finally, 

combine the best average accuracy/F-measure model from each site using a 

nonlinear combination method to develop the global combined model. The 

proposed approach is illustrated in Figure 4.1. 
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Figure 4.1. The Proposed Method for Global-level Modelling Approach 

 

Figure 4.2 shows steps 1 and 2 for local model building and best 

average accuracy and F-measure models calculations, and it is similar to 

chapter 3 steps in section 3.3.1. The following steps implement the above idea: 

1) Each site S) , where i = 1,2, … , n: 

iii. Apply different j learning algorithms, where j = 1, 2, … ,m to build local 

models	M)R. 

iv. Use 10-fold cross-validation results to evaluate the local models M)R based 

on the local data 	D) and calculates the accuracy Acc	fM)Rg	and F-measure 

F	fM)Rg using confusion matrix. 

Acc	fM)Rg 	= 	TP + TN/(TP + TN + FP + FN)   (4.1) 

F	fM)Rg = 	2TP/(2TP + FP + FN)      (4.2) 

, where TP is true positive, TN is true negative, FP is false positive, and 

FN is false negative examples. 

2) After building the local models, each site sends its local models M)R to other sites 

for global evaluation to see which model performs best globally, and select the 

best average models as follows: 

1. Each site i will receive models from other sites	M)’	R, then start to evaluate 

these models over its local dataset D) and calculate the accuracy Acc(M)’	R) 

and	FfM)’	Rg, where	iU = 1,… , i − 1, i + 1,… , n) and j = 1, 2, … ,m 

2. Send the evaluated models back to the sites with the evaluation results. 
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3. Each site: 

a) Receive the evaluation results Acc	(M)R) and F	(M)R)  of its local 

models M)R from other sites with the number of data samples that 

used for evaluation. 

b) Calculate the average accuracy and average F-measure for each 

local model. 

Acc	(M)R) = ∑ V2
V	
∗ Acc	(M)R

+
W12 )	in	SW      (4.3)  

F	(M)R) = ∑ V2
V	
∗ F	(M)R

+
W12 )	in	SW            (4.4) 

, where k is sites number, DW is the number of samples of site k, and D is 

all sites’ data samples number 

c) Select the best average accuracy M)R∗
X  and the best average F-

measure	M)R∗∗
X . 

3) Each site sends its best average accuracy model M)R∗
X  and best average F-measure 

model M)R∗∗
X  to the other sites to start the nonlinear combination approach. We 

implement the nonlinear combination method in each site instead of the server 

because there is no data at the server, and the sites will not share their local data 

with the server. We perform two nonlinear combination scenarios to build the 

global combined models; the first scenario is for the best average accuracy model 

M)R∗
X  and the other one is for the best average F-measure model	M)R∗∗

X . Figures 4.3 

and 4.4 show the nonlinear combination scenario for the best average accuracy 

models. The nonlinear combination method is as follows: 

- In each site i: 

a) We have a list of the best average accuracy models MX4;''	from all n sites, 

MX4;''= {M)R∗
X , M)’R∗

X , … . , M+R∗
X }, and a list of the best average F-measure 

models MX4Y from all n sites, MX4Y= {M)R∗∗
X , M)’R∗∗

X , … . , M+R∗∗
X }. 

b) Apply each model over the local dataset D) to generate two meta-datasets 

{xbU	, yb} and {x′bU 	, yb}, where 

xbU = {M)R∗
X (xb),M)’R∗

X (xb), … . , M+R∗
X (xb)}        (4.5) 

xbUU = {M)R∗∗
X (xb),M)’R∗∗

X (xb), … . , M+R∗∗
X (xb)}     (4.6) 

, where t = 1, …, p, p is the local dataset samples number, and yb is the 

predicted value. The prediction results by each model as independent 
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variables and their corresponding actual prediction result as the dependent 

variable. 

c) Build several meta-models by applying j different learning algorithms on 

the generated meta-datasets, the meta-models M)R
X4>&b,4;'' are developed 

from the meta-dataset that generated from MX4;'' model list outputs, and  

M)R
X4>&b,4Y are developed from the meta-dataset that generated from MX4Y 

model list outputs, j=1, …, m. The meta-models inputs are MX4;'' or MX4Y 

models predictions, and the output is the actual predicted value. 

d) After building the meta-models, select the best meta-models 

M)R∗
c&(b	X4>&b,4;'' and M)R∗∗

c&(b	X4>&b,4Y	as follow: 

i. Apply the models in MX4;'' over  D)d( and use the models outputs as 

input features to meta-models	M)R
X4>&b,4;''. Also, apply the models 

in MX4Y over D)d( and use the models outputs as input features to 

meta-models	M)R
X4>&b,_Y. 

ii. Apply the meta-models on the input data and predict the result. 

iii. Evaluate the meta-models using the local test data, then select the best 

meta-model M)R∗
c&(b	X4>&b,4;'' and M)R∗∗

c&(b	X4>&b,4Y. 

e) Send the best meta-models to the server. 

4) As shown in Figure 4.4, the server receives the best meta-models from each site 

and combines the meta-models M)R∗
c&(b	X4>&b,4;'' to build the global 

model	MX4>^d;4;'', and the meta-models M)R∗∗
c&(b	X4>&b,4Y to build the global 

model	MX4>^d;4Y. 

5) The final global combined models MX4>^d;4;'' and MX4>^d;4Y is meta-models 

combination and used to predict a result y of x, the predicted result y is the meta-

models average results. 
 

y(x) = MX4>^d;4;''[M)R∗
c&(b	X4>&b,4;''(x), … ,M+R∗

c&(b	X4>&b,4;''(x)] (4.7) 
 

y(x) = MX4>^d;4Y	[M)R∗∗
c&(b	X4>&b,4Y(x), … ,M+R∗∗

c&(b	X4>&b,4Y(x)]   (4.8) 
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Figure 4.2. Local Model Building and Best Average Models Calculations 

 

Figure 4.3. Meta-learning Method in Global-level Modelling 
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Figure 4.4. Global Combined Model at The Server 

 

4.3.2. Local-level Modelling Approach 

The basic idea for each site is to find the best local combined model 

by utilising other sites local models. Thus, there is no data sharing or 

transformation, and the only information exchanged between distributed sites 

are local models and the evaluation results; such a method does not disclose 

the data resource and preserves data privacy. Each site tries to find the best 

local combined model by utilising the best local models from the other sites. 

Then, the sites combine the selected best models using the nonlinear 

combination method.  

 

Figure 4.5. Local-level Modelling Approach 

 

The following steps implement local-level modelling: 

1) When a site i receives models from other sites M)’	R, evaluate these models 

over its local dataset D), and calculate the accuracy Acc(M)’	R) and F-
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measure F(M)’	R): 

a) Compare the accuracy Acc	(M)’	R)  and F-measure F	(M)’	R) of the 

received models with its best local model accuracy Acc	(M)R∗) and 

best local model F-measure	F(M)R∗∗). 

b) Select the best model accuracy 	M)’R∗ and the best model F-measure 

	M)’R∗∗ from each site as follows: 

o Method L1: 

- Select the best model accuracy M)’R∗ from site i’ if: 

Acc	(M)’	R)  >=	Acc	(M)R∗)	). 

- Select the best model F-measure M)’R∗∗from site i’ if: 

F	(M)’	R)  >=	F	(M)R∗∗). 

This method utilises the best models learned from other data 

resources to build an accurate local combined model.  

o Method L2: Select the best model from each site even if the 

selected model not performed better than the best local model. 

We proposed this method if the best local model result is 

better than the received models, but there is little difference 

between the best local model and the received models results. 

We apply this selection method for the best model accuracy 

and F-measure. 

2) In each site i, we apply two nonlinear combination methods to build two 

local combined models. The first local combined model is by combining 

the best local model accuracy M)R∗ and the selected models from other 

sites M)’R∗. The other local combined model is by combining the best local 

model F-measure M)R∗∗ and the selected models from other sites M)’R∗∗. 

The nonlinear combination scenario for the best accuracy models as 

follows: 

a) Site i has a models list of the best accuracy	M;'', where M;'' is the 

list of the best local model accuracy and the selected models of the 

best accuracy from other sites	M;'' =	 {M)R∗, M)’R∗, … ,M+R∗}, where 

I = 1, 2, …, n. Also, the site i has a models list of the best F-measure 

MY, where MY is list of the best local model F-measure and the 
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selected models of the best F-measure from other sites, MY =

	M)R∗∗, M)’R∗∗, … ,M+R∗∗}. 

b) Apply each model over the local dataset Df to generate two meta-

data {xbU	, yb} and {x′bU 	, yb}, where 

xbU = {M)R∗(xb),M)’R∗(xb), … . , M+R∗(xb)}        (4.9) 

xbUU = {M)R∗∗(xb),M)’R∗∗(xb), … . , M+R∗∗(xb)}    (4.10) 

, where t = 1, …, p, p is the local dataset samples number, and 	yb is 

the predicted value. The prediction results by each model as 

independent variables and their corresponding actual prediction 

result as the dependent variable. 

c) Build several meta-models by applying j different learning 

algorithms on the generated meta-datasets, the meta-models 

M)R
Z4>&b,4;'' are developed from the meta-dataset that generated 

from M;'' models outputs, and  M)R
Z4>&b,4Y are developed from the 

meta-data that generated from MY models outputs, j=1, …, m. The 

meta-models inputs are M;'' or MY models predictions, and the 

output is the actual predicted value. 

d) After building the meta-models, select the best meta-

models	M)R∗
c&(b	Z4>&b,4;''	and M)R∗∗

c&(b	Z4>&b,4Y	as follows: 

1. Apply the models M;'' over D)d( and use the models outputs as 

input features to meta-models	M)R
Z4>&b,4;''. Also, apply the 

models MY over D)d( and use the models outputs as input features 

to meta-models	M)R
Z4>&b,4Y. The meta-models inputs are M;'' or 

MY models predictions, and the output is the actual predicted 

value. 

2. Apply the meta-models on the input data and predict the result. 

3. Evaluate the prediction performance of the meta-models using 

the local test data and select the best meta-models 

M)R∗
c&(b	Z4>&b,4;'' and M)R∗∗

c&(b	Z4>&b,4Y.  

e) The final local combined model of a site i to predict a result y of	x 

that used to make a prediction on the test data is: 
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y(x) = 	M)R∗
c&(b	Z4>&b,4;''	[M)R∗(x),M)’R∗(x), … . , M+R∗(x)]   (4.11) 

y(x) = 	M)R∗∗
c&(b	Z4>&b,4Y	[M)R∗∗(x),M)’R∗∗(x), … . , M+R∗∗(x)]    (4.12) 

 

Figure 4.6 shows the local level modelling and nonlinear combination 

in each site i. Here we present the scenario for the best models that selected 

by accuracy metric to develop the local combined model	M)R∗
c&(b	Z4>&b,4;''. 

 

Figure 4.6. Local Level Modelling and Nonlinear Combination In Each Site 

 

4.3.3. Experimental Study 

The experiments are conducted to evaluate the performance of our 

proposed methods. We evaluated the prediction performance, compared it 
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with different studies, and centralised learning approach that moves all 

distributed data to a centralised database. 

I. Datasets 

We used the eight databases that used in chapter 3 (Section 3.3.3): 

blood transfusion, liver disease, diabetes, heart disease, lower back pain 

(spine disease), breast cancer Wisconsin (Diagnostic), breast cancer 

Wisconsin (Original) [29], and cardiovascular diseases [27]. We 

partitioned the data in each site into three splits; the first one is used as the 

local dataset used to develop the local models, evaluate the received 

models from other sites, and develop the meta-models, and the second part 

(local test data) is used for meta-models evaluation. The last part is used 

to assess the local and global combined models. 

II. Simulating distributed data 

We used the two dataset partitioning strategies that used in 

chapter 3 (Section 3.4.3): (1) random data partitioning approach and 

(2) non-random data partitioning approach. We divided each dataset 

into different parts as distributed sites: site1, site2, and site3. 

 

III. Models building and evaluation 

We applied the classification algorithms that used in chapter 

3 (Section 3.3.3) to develop the local models: K-Nearest Neighbor, 

Logistic Regression, Neural Network, Support Vector Machine, 

Random Forests, Decision tree, and Naïve Bayes. We built diverse 

binary-class prediction models to predict diabetes, heart disease, blood 

transfusion, liver disease, lower back pain (spine disease), 

cardiovascular diseases, and breast cancer datasets (positive or 

negative) depending on the patients' diagnosis. Different local models 

are trained in each site on the local training dataset from its local 

dataset. We used 10-fold cross-validation to prevent selection-biased 

results from being drawn from a single split of the local data into 

training and test sets. We applied two model selection strategies that 

select the best models based on accuracy and F-measure.  
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IV. Combined Model Evaluation Methods 

1) Global Combined Model Evaluation: 

a) Testing accuracy: We evaluated the global combined models 

MX4>^d;4;'' and MX4>^d;4Y in each site instead of the server 

because the sites will not share their validation data with the 

server. Each site applies the best global average models over 

the validation data and uses the models outputs as input features 

to the meta-models (the global combined model is meta-models 

combination). Then, apply the meta-models on the input data, 

predict the result, average the results of the meta-models, and 

send it to the server with the number of validation data samples. 

Next, the server receives the sites evaluation results and then 

calculates the global weighted average accuracy of the global 

combined models. 

b) Training accuracy: each site evaluated the global combined 

models output for the x that used as input to develop meta-data 

to train the meta-model. Finally, average the meta-models 

results and send it to the server with the number of local data 

samples to calculate the global weighted average accuracy. 

2) Local Combined Model Evaluation: Each site calculates the 

accuracy of the final local combined models M)R∗
c&(b	Z4>&b,4;'' 

and M)R∗∗
c&(b	Z4>&b,4Y based on the local validation data and 

compare it with the best local models accuracy M!"∗ and M!"∗∗. 

In addition, we evaluated and compared the global 

combined model with a technique that if nonlinearly combines 

the best local model from each site instead of the best global 

average model (Best Local Models Combination). 

Furthermore, we evaluated and compared the local combined 

model with the dynamic ensemble selection (DES) methods: 

KNORA-U, KNORA-E, DES-P, META-DES, KNOP, and DES-

KNN dynamic ensemble methods. 
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V. Experiment Results and Analysis 

1) Random data partitioning Approach: 

i. Global-level modelling results: 
In Tables 4.2 and 4.3, we compared the proposed methods 

with the centralised learning approach and the proposed Best Local 

Models Combination method. The results of our method using the 

two model selection metrics are similar to or better than the other 

method in most datasets. In addition, our method got similar results 

with the centralised learning in breast cancer and cardiovascular 

diseases datasets and close results in blood transfusion, spine 

disease, and heart disease datasets. In diabetes, the proposed method 

outperformed the centralised learning approach. As we discussed, 

the centralised learning approach has many issues and is inadequate 

for private and un-exchangeable data in a distributed environment. 

Table 4.2. Global Combined Method and Centralised Learning Approach Evaluation (1) 

 

 

 

 

Table 4.3. Global Combined Method and Centralised Learning Approach Evaluation (2) 

 

 

 

 

Methods Selection 
Metric 

Blood 
transfusion 

Breast 
Cancer 

Wisconsin 
(Diagnostic) 

Diabetes Heart 
Disease 

Global-level 
modelling 

Accuracy 57% 94% 80% 88% 
F-measure 57% 94% 79% 89% 

Best Local Models 
Combination 

Accuracy 53% 95% 78% 88% 
F-measure 54% 95% 74% 90% 

Centralised Learning 60% 96% 78% 92% 

Methods Selection 
Metric 

Spine 
Disease 

Liver 
Disease 

Breast 
Cancer 

Wisconsin 
(Original) 

Cardiovascular 
diseases 

 

Global-level 
modelling 

Accuracy 62% 68% 98% 73% 
F-measure 62% 68% 98% 73% 

Best Local Models 
Combination 

Accuracy 61% 68% 98% 73% 
F-measure 59% 68% 98% 73% 

Centralised Learning 66% 78% 98% 73% 
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Figure 4.7. Prediction Accuracy for Global Combined Model and Centralised Machine Learning 

 

Table 4.4 shows the training and testing accuracy for the 

proposed method and centralised learning approach. 

Table 4.4. Training and Testing Accuracy for the Proposed Method and Centralised 
Learning Approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Datasets Models Selection 
Metric 

Testing 
Accuracy 

Training 
accuracy 

Breast Cancer 
Wisconsin 

(Diagnostic) 

Global-level modelling 
Accuracy 94% 95% 
F-measure 94% 95% 

Centralised Learning Approach 96% 97% 

Blood 
Transfusion 

Global-level modelling 
Accuracy 57% 83% 
F-measure 57% 83% 

Centralised Learning Approach 60% 79% 

Diabetes 
Global-level modelling 

Accuracy 80% 84% 
F-measure 79% 84% 

Centralised Learning Approach 78% 77% 

Heart Disease 
Global-level modelling 

Accuracy 88% 86% 
F-measure 89% 86% 

Centralised Learning Approach 92% 82% 

Liver Disease 
Global-level modelling 

Accuracy 68% 79% 
F-measure 68% 79% 

Centralised Learning Approach 78% 72% 

Spine Disease 
Global-level modelling 

Accuracy 62% 90% 
F-measure 62% 90% 

Centralised Learning Approach 66% 87% 
Breast Cancer 

Wisconsin 
(Original) 

Global-level modelling 
Accuracy 98% 97% 
F-measure 98% 97% 

Centralised Learning Approach 98% 97% 

Cardiovascular 
diseases 

Global-level modelling 
Accuracy 73% 73% 
F-measure 73% 73% 

Centralised Learning Approach 73% 73% 
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Table 4.5 shows the prediction accuracy of our global-level 

modelling method for the randomly partitioned datasets and 

compares it with different research works [6, 48, 96, 166, 170, 176-

182]. The proposed methods outperformed most of the related works 

except liver disease dataset and got close results in breast cancer 

Wisconsin (Diagnostic) dataset. 
 

Table 4.5. Global Combined Model and Research Works Evaluation 

 

 

 

 

 

 

 

Furthermore, we compared our nonlinear combination 

method with our proposed decentralised learning approach using 

linear model combination method in chapter 3 (section 3.3) and 

published in [22]. Both methods followed similar model building 

and selection strategies but differed in model combination approach. 

In [22], the selected models are combined in a linear combination 

method using the weighted combination method. As shown in Table 

4.6, our nonlinear combination method is slightly better than the 

other method in diabetes, heart disease, spine disease, and liver 

disease datasets. In breast cancer and cardiovascular disease 

datasets, both methods got similar results. In blood transfusion 

dataset, the linear method is slightly better than the nonlinear 

method. 

Methods Selection 
Metric 

Breast 
Cancer 

Wisconsin 
(Diagnostic) 

Diabetes Heart 
Disease 

Liver 
Disease 

Breast 
Cancer 

Wisconsin 
(Original) 

Global-level 
modelling 

Accuracy 94% 80% 88% 68% 98% 
F-measure 94% 79% 89% 68% 98% 

Tsoumakas et al. [6] - EV1 - 77% 84% - 97% 
Tsoumakas et al. [6] - EV2 - 77% 83% - 97% 
Tsoumakas et al. [6] - EV 3 - 77% 85% - 97% 
Bashir et al. [48] - 77% 84% 71% 97% 
Zhang et al.  [96] - 80% - - - 
Mandal et al. [166] 96% 76% - - - 
Wang et al. [170] - 77% - - 96% 
Gao et al. [176] - - 72% - 95% 
Kasturi et al. [177] - - - - 96% 
Ma et al. [178] - - - - 96% 
Haque et al. [179] - 78% 82% - 98% 
Sav et al. [180] - - - - 97% 
Froelicher et al. [181] - 78% - - 96% 
Ed-daoudy and Maalmi [182] - - 82% - - 
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Table 4.6. Linear And Nonlinear Combination Methods Evaluation Results 

Dataset 
Linear 

Combination 
Method 

Nonlinear 
Combination 

Method 
Blood transfusion 59% 57% 
Breast Cancer Wisconsin (Original) 98% 98% 
Breast Cancer Wisconsin (Diagnostic) 94% 94% 
Diabetes 78% 80% 
Heart Disease 86% 89% 
Spine Disease 59% 62% 
Liver Disease 65% 68% 
Cardiovascular disease 73% 73% 

 

ii. Local-level modelling results: 

Tables 4.7 – 4.14 show the local combined model results 

for all datasets. We compared Method L1 and Method L2 with the 

best local model in each site. Our approach got better or similar 

accuracy than the best local model in most of the datasets except in 

heart disease dataset (site1). The local combined models results 

using the two model selection metrics are similar or close. 

Furthermore, in each site, we applied dynamic ensemble selection 

(DES) methods to the received models from other sites. Our 

methods outperformed the best local model in most datasets sites 

and got better or similar results with DES methods in most datasets 

sites. We achieved that the distributed sites could utilise other sites 

models to improve the prediction performance without sharing data.  

Table 4.7. Local Combined Model Evaluation for Blood Transfusion Dataset  

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy 54% 40% - 
F-measure 51% 40% 66% 

Method L2 Accuracy - - 60% 
F-measure - - 60% 

The Best Local Model 51% 40% 54% 

Dynamic 
Ensemble 
Selection 

KNORA-U 51% 60% 66% 
KNORA-E 43% 43% 60% 
DES-P 51% 60% 57% 
META-DES 43% 60% 60% 
KNOP 34% 60% 66% 
DES-KNN 46% 40% 46% 
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Table 4.8. Local Combined Model Evaluation for Diabetes Dataset  

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy 73% 86% 68% 
F-measure 75% 66% 76% 

Method L2 Accuracy 78% - 68% 
F-measure 73% 83% - 

The Best Local Model 68% 74% 68% 

Dynamic 
Ensemble 
Selection 

KNORA-U 78% 83% 68% 
KNORA-E 72% 74% 68% 

DES-P 80% 80% 64% 
META-DES 68% 80% 64% 

KNOP 72% 83% 72% 
DES-KNN 82% 83% 68% 

 

Table 4.9. Local Combined Model Evaluation for Heart Disease Dataset 

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy 80% 95% 80% 
F-measure 73% 95% 80% 

Method L2 Accuracy 80% - - 
F-measure 80% - - 

The Best Local Model 93% 85% 80% 

Dynamic 
Ensemble 
Selection 

KNORA-U 87% 95% 87% 
KNORA-E 99% 60% 67% 

DES-P 87% 85% 87% 
META-DES 80% 85% 87% 

KNOP 87% 90% 93% 
DES-KNN 87% 80% 80% 

 

Table 4.10. Local Combined Model Evaluation for Liver Disease Dataset 

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy - - 67% 
F-measure - 65% 73% 

Method L2 Accuracy 68% 70% - 
F-measure 68% - - 

The Best Local Model 68% 68% 67% 

Dynamic 
Ensemble 
Selection 

KNORA-U 68% 72% 60% 
KNORA-E 68% 65% 67% 

DES-P 68% 72% 67% 
META-DES 68% 80% 73% 

KNOP 68% 75% 60% 
DES-KNN 72% 72% 67% 

 

Table 4.11. Local Combined Model Evaluation for Spine Disease Dataset 

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy - 50% - 
F-measure - 50% - 

Method L2 Accuracy 65% 50% 75% 
F-measure 60% - 75% 
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The Best Local Model 55% 50% 75% 

Dynamic 
Ensemble 
Selection 

KNORA-U 55% 50% 69% 
KNORA-E 50% 50% 75% 

DES-P 55% 50% 69% 
META-DES 55% 50% 75% 

KNOP 55% 50% 75% 
DES-KNN 55% 50% 69% 

 

Table 4.12. Local Combined Model Evaluation for Breast Cancer Wisconsin 
(original) Dataset  

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy - 99% 99% 
F-measure - - 99% 

Method L2 Accuracy 98% - - 
F-measure 98% 97% - 

The Best Local Model 98% 99% 99% 

Dynamic 
Ensemble 
Selection 

KNORA-U 98% 97% 98% 
KNORA-E 98% 99% 98% 

DES-P 98% 97% 98% 
META-DES 98% 97% 98% 

KNOP 98% 97% 98% 
DES-KNN 98% 99% 98% 

 

Table 4.13. Local Combined Model Evaluation for Breast Cancer Wisconsin 
(diagnostic) Dataset  

Methods Selection 
metric 

Site1 Site2 Site3 

Method L1 Accuracy 95% 93% 89% 
F-measure 95% 97% - 

Method L2 Accuracy 99% - 89% 
F-measure 99% - 89% 

The Best Local Model 95% 93% 89% 

Dynamic 
Ensemble 
Selection 

KNORA-U 90% 97% 95% 
KNORA-E 90% 97% 89% 

DES-P 90% 97% 95% 
META-DES 95% 97% 89% 

KNOP 95% 97% 89% 
DES-KNN 95% 97% 89% 

 

Table 4.14. Local Combined Model Evaluation for Cardiovascular Diseases 
Dataset  

Methods Selection metric Site1 Site2 Site3 

Method L1 Accuracy 74% 73% 72% 
F-measure 74% 73% 72% 

Method L2 Accuracy - - - 
F-measure - - 73% 

The Best Local Model 74% 73% 72% 

 
KNORA-U 73% 73% 72% 
KNORA-E 69% 67% 68% 

DES-P 72% 72% 71% 
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Dynamic 
Ensemble 
Selection 

META-DES 66% 71% 65% 
KNOP 66% 73% 65% 

DES-KNN 71% 72% 71% 
 

2) Non-random data partitioning Approach: 

i. Global-level Modelling Results: 

Table 4.15 shows that our combined model selected by 

accuracy metric performed slightly better or similar to F-measure 

model selection metric in most sites. We compared the prediction 

accuracy of the global combined model with a method that if 

each site sends the best local model to the server instead of 

sending the best global average model (Best Local Models 

Combination). The results of the global combined model got 

similar or close results to the best local model combination 

method. In addition, we got close results with the centralised 

learning approach, and the global combined model results using 

the two model selection metrics are similar. 

Table 4.15. Global Combined Model and Centralised Learning Approach 
Evaluation  

 
 
 
 

 

 

 

Table 4.16. Training and Testing accuracy for the Proposed Method and 
Centralised Learning Approach 

 
 
 
 
 
 
 
 
 
 

Models Selection 
Metric 

Diabetes Heart 
Disease 

Liver 
Disease 

Global-level modelling Accuracy 67% 83% 72% 
F-measure 65% 83% 72% 

Best Local Models 
Combination 

Accuracy 65% 83% 70% 
F-measure 65% 83% 72% 

Centralised Learning Approach 69% 88% 74% 

Datasets Models Selection 
Metric 

Testing 
Accuracy 

Training 
accuracy 

Diabetes Global-level 
modelling 

Accuracy 67% 73% 
F-measure 65% 80% 

Centralised Learning Approach 69% 78% 
Heart Disease Global-level 

modelling 
Accuracy 83% 82% 
F-measure 83% 82% 

Centralised Learning Approach 88% 83% 
Liver Disease Global-level 

modelling 
Accuracy 72% 81% 
F-measure 72% 81% 

Centralised Learning Approach 74% 72% 
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Besides, we compared the proposed decentralised learning 

approach using nonlinear model combination method with the 

related works [6, 48, 69, 166,170, 176, 179,181,182]; Table 4.17 

shows that the research works are better than our proposed method 

in diabetes dataset, and our method is slightly better than some 

approaches in heart disease and liver disease datasets. 

 
Table 4.17. Global Combined Model and Related Works Evaluation 

 

 

 

 

 

We compared our nonlinear combination method with our 

proposed decentralised learning approach using linear model 

combination method in chapter 3 (section 3.3) and published in [22]. 

As presented in Table 4.18, the proposed nonlinear and linear 

combination methods got similar results in diabetes and liver 

disease datasets, while in heart disease dataset, the linear 

combination method is slightly better than the other method.  

Table 4.18. Linear And Nonlinear Combination Methods Evaluation Results 

Dataset Linear Combination 
Method 

Nonlinear Combination 
Method 

Diabetes 67% 67% 
Heart Disease 87% 83% 
Liver Disease 72% 72% 

 

ii. Local-level modelling results: 

As shown in Tables 4.19- 4.21, the local combined 

model is better or similar to the best local models only in liver 

Models Selection 
Metric 

Diabetes Heart 
Disease 

Liver 
Disease 

Global-level modelling Accuracy 67% 83% 72% 
F-measure 65% 83% 72% 

Tsoumakas et al. [6] - EV1 77% 84% - 
Tsoumakas et al. [6] - EV2 77% 83% - 
Tsoumakas et al. [6] - EV 3 77% 85% - 
Bashir et al. [48] 77% 84% 71% 
Zhang et al.  [96] 80% - - 
Mandal et al. [166] 76% - - 
Wang et al. [170] 77% - - 
Gao et al. [176] - 72% - 
Haque et al. [179] 78% 82% - 
Froelicher et al. [181] 78% - - 
Ed-daoudy and Maalmi [182] - 82% - 
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disease dataset in site 3. Therefore, the local combined model 

using the two model selection metrics results are similar or close. 

Also, we compared the local combined model with DES 

methods. It shows that some DES methods results are better than 

our method. 

Table 4.19. Local Combined Model Evaluation for Diabetes Dataset 

Methods Selection metric Site1 Site2 Site3 

Method L1 Accuracy - 72% - 
F-measure 74% 77% - 

Method L2 Accuracy 74% 77% 53% 
F-measure 74% - 53% 

The Best Local Model 70% 67% 52% 

Dynamic 
Ensemble 
Selection 

KNORA-U 74% 56% 77% 
KNORA-E 68% 53% 61% 

DES-P 72% 58% 77% 
META-DES 68% 51% 71% 

KNOP 72% 56% 74% 
DES-KNN 77% 58% 74% 

 

Table 4.20. Local Combined Model Evaluation for Heart Disease Dataset 

Methods Selection metric Site1 Site2 Site3 
Method L1 Accuracy 80% 88% 91% 

F-measure 80% 85% 91% 
Method L2 Accuracy 80% - 91% 

F-measure 80% - 91% 
The Best Local Model 75% 88% 91% 

Dynamic 
Ensemble 
Selection 

KNORA-U 90% 88% 86% 
KNORA-E 80% 91% 91% 

DES-P 90% 91% 86% 
META-DES 85% 82% 82% 

KNOP 85% 91% 86% 
DES-KNN 85% 82% 91% 

 
 

Table 4.21. Local Combined Model Evaluation for Liver Disease Dataset 

Methods Selection metric Site1 Site2 Site3 
Method L1 Accuracy - - 71% 

F-measure 65% - 71% 
Method L2 Accuracy 40% 79% 71% 

F-measure - 79% 71% 
The Best Local Model 50% 79% 76% 

Dynamic 
Ensemble 
Selection 

KNORA-U 50% 67% 76% 
KNORA-E 50% 76% 76% 

DES-P 40% 58% 71% 
META-DES 45% 76% 76% 

KNOP 55% 73% 82% 
DES-KNN 45% 61% 71% 
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4.3.4. Discussion and Evaluation 
 

The proposed method results for randomly partitioned 

datasets showed that the global model performance is in par with the 

centralised learning approach in breast cancer Wisconsin (Original) 

and cardiovascular diseases datasets, and got close results in blood 

transfusion, breast cancer Wisconsin (Diagnostic), heart disease, 

and spine disease datasets. Our method is slightly better than the 

centralised learning approach in diabetes dataset. In non-random 

partitioned data, the proposed method and the centralised learning 

approach results are close.  The results showed that we could 

improve the prediction performance as similar as or better than the 

centralised learning approach without using a server for models 

learning, controlling the learning process, or sharing the data. Our 

method overcomes central location issues and overheads and 

preserves data privacy. Compared to federated learning, which 

requires sharing gradient information and iterative learning 

communication, the proposed nonlinear combination approach 

provides an effective alternative with much less information sharing 

and reduced computation cost. Also, it could be applied to solve 

issues related to large data, such as memory limitation and huge data 

transformation costs and time. The results of the proposed local 

level modelling approach showed that the distributed sites could 

improve the prediction performance using other sites models 

without sharing data. However, there is a possibility for malicious 

attacks on the trained models to retrieve training data or reveal 

meaningful information. It is beyond the scope of our thesis, and in 

future research, we will consider these issues to analyse the possible 

malicious attacks on distributed environments. 
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4.4 PROPOSED METHOD FOR REGRESSION ALGORITHMS 

We apply the global and local level modelling approaches proposed in 

sections 4.3.1 and 4.3.2, but we use RMSE and MAPE evaluation metrics instead 

of accuracy and F-measure metrics that used for classification algorithms. 

The final global combined models at the server are MX4>^d;4\>]^ 

and	MX4>^d;4>;a^, where MX4>^d;4\>]^	combines the best meta-models 

M)R∗
c&(b	X4>&b,4\>]^ from each site, and MX4>^d;4>;a^ combines the best meta-

models M)R∗∗
c&(b	X4>&b,4>;a^ that used to predict a result y of	x as follows: 

y(x) = M$%&'()%*&+'[M!"∗
,-./	$%&-/1%*&+'(x), … ,M2"∗

,-./	$%&-/1%*&+'(x)]      (4.13) 

y(x) = M$%&'()%&)3'	[M!"∗∗
,-./	$%&-/1%&)3'(x), … ,M2"∗∗

,-./	$%&-/1%&)3'(x)]     (4.14) 

 

The local combined models in each site i are the best meta-models 

M)R∗
c&(b	Z4>&b,4\>]^ and	M)R∗∗

c&(b	Z4>&b,4>;a^: 

y(x) = 	M!"∗
,-./	4%&-/1%*&+'	[M!"∗(x),M!’"∗(x), … . , M2"∗(x)]   (4.15) 

y(x) = 	M!"∗∗
,-./	4%&-/1%&)3'	[M!"∗∗(x),M!’"∗∗(x), … . , M2"∗∗(x)]    (4.16) 

 

, where M)R∗ are the best local model RMSE in site i and the selected model from 

other sites, and M)R∗∗ are the best local model MAPE in site i and the selected model 

from other sites, i=1,..,n. 

4.4.1. Experimental Study 

We evaluated the reliability and prediction performance of our 

proposed decentralised learning approach using nonlinear model 

combination method and compared it with different studies and a 

centralised learning approach that moves all distributed data to a 

centralised database. 

I. Datasets 

We used the three databases used in chapter 3 (Section 

3.4.3): Parkinson disease, Boston housing, and Abalone datasets 

[29]. We partitioned the data in each site into three main splits; the 

first one is the local dataset that is used to develop the local models, 
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evaluate the received models from other sites, and develop the meta-

models, the second part (local test data) is used for meta-models 

evaluation, and the last part is used to evaluate the final combined 

local and global combined models. 

II. Simulating Distributed Data 

We used the two dataset partitioning strategies that 

applied in chapter 3 (Section 3.4.3): (1) random data partitioning 

approach and (2) non-random data partitioning approach. 

Therefore, we divided each dataset into different parts as 

distributed sites site1, site2, and site3. 

 

III. Models Building and Evaluation 

We applied the regression algorithms that used in chapter 

3 (Section 3.4.3) to develop the local models: Linear Regression 

(LR), Random Forest Regressor (RFR), Radial Basis Function 

Neural Network (RBFNN), K-Nearest Neighbor Regressor 

(KNNR), Decision tree regression (DTR), Support Vector 

Regressor (SVR), Neural Network Regressor (NNR), Lasso, 

ElasticNet, and Ridge. Different local models are trained in each 

site on the local training dataset from its local dataset. We used 10-

fold cross-validation results to evaluate the local models and 

applied two model selection strategies that select the best models 

based on RMSE and MAPE.  

 

IV. Combined Model Evaluation Methods 

1) Global Combined Model Evaluation 

a) Testing error: we evaluated the final global combined models 

M$%&'()%*&+' and M$%&'()%&)3'	in each site based on the 

local validation data of the site. We evaluated the global 

combined model in each site instead of the server because the 

sites will not share their validation data with the server. Each 

site applies the best global average models over the validation 

data and uses the models outputs as input features to the meta-
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models (the global combined model is meta-models 

combination). Then, apply the meta-models on the input data 

and predict the result. Finally, it sends the averaged global 

combined model evaluation results SSE and MAPE with the 

number of validation data samples to the server. Then, the 

server calculates the average RMSE by dividing the sum of 

averaged SSE from all sites by the number of validation data 

samples of all sites, then gets the square root error to get the 

RMSE. Also, it calculates the average MAPE. We compare the 

global combined models with the centralised learning approach 

and other research works. 

b) Training error: each site evaluated the global combined 

models output for the x that used as input to develop meta-data 

to train meta-model.  Finally, average the meta-models results 

SSE and MAPE and send it to the server with the number of 

local data samples to calculate the global average RMSE and 

MAPE. 

2) Local Combined Model Evaluation: Each site calculated the 

MAPE and RMSE of the local combined models based on the 

local validation data and compared it with the best local model 

M)R
∗  and	M)R

∗∗. Also, we compare the local models with DES 

methods. 

In addition, we evaluated and compared the global 

combined model with a technique that if nonlinearly combines 

the best local model from each site instead of the best global 

average model (Best Local Models Combination). 

 

V. Experiment Results and Analysis 

1) Random Data Partitioning Approach: 

i. Global-level Modelling results 

Table 4.22 shows the global model evaluation 

compared with the centralised learning approach and the 
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proposed Best Local Models Combination approach. For 

Parkinson Disease (Total UPDRS) dataset, the results show that 

the centralised learning approach outperformed the other 

methods. Also, it shows that the prediction results for Parkinson 

Disease (Motor UPDRS) dataset and the centralised learning 

approach results are the best but not far from our method 

results. For Boston housing and Abalone datasets, the 

centralised learning approach and our method RMSE results are 

close. The global combined model results using RMSE metric 

for model selection method are slightly better than MAPE 

selection metric in most datasets. 

 

Table 4.22. Global Combined Model and Centralised Learning Approach 
Evaluation  

Dataset Methods Selection 
metric MAPE RMSE 

Parkinson 
Disease (Total 

UPDRS) 

Global-level modelling MAPE 33.05 10.29 
RMSE 32.51 10.16 

Best Local Models 
Combination 

MAPE 34.77 11.33 
RMSE 33.45 10.64 

Centralised Learning Approach 24.24 7.53 

Parkinson 
Disease (Motor 

UPDRS) 

Global-level modelling MAPE 38.13 8.35 
RMSE 40.56 8.22 

Best Local Models 
Combination 

MAPE 37.80 8.16 
RMSE 37.93 8.21 

Centralised Learning Approach 35.47 6.98 

Boston Housing 

Global-level 
modelling 

MAPE 17.35 3.98 
RMSE 15.48 3.55 

Best Local Models 
Combination 

MAPE 15.24 3.81 
RMSE 15.14 3.56 

Centralised Learning Approach 11.96 3.20 

Abalone 

Global-level 
modelling 

MAPE 13.88 2.47 
RMSE 13.76 2.43 

Best Local Models 
Combination 

MAPE 14.74 2.62 
RMSE 13.66 2.42 

Centralised Learning Approach 13.69 2.39 
 
 

Table 4.23 presents the training and testing error for the 

proposed method and centralised learning approach. 
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Table 4.23. Training and Testing Error for the Proposed Method and 
Centralised Learning Approach 

 
 
 
 

 

 

 
Table 4.24 shows RMSE results for the proposed approach 

using nonlinear model combination method for the randomly 

partitioned datasets compared with the proposed linear model 

combination method in chapter 3 (section 3.4), the centralised 

learning approach, and the proposed method in [166]. It shows that 

our method using the linear model combination approach is slightly 

better than the other methods in Boston housing and Abalone 

datasets. For Parkinson disease dataset, the centralised learning 

method outperformed the nonlinear combination method but it is not 

far from the linear combination method RMSE results.  

 
Table 4.24. Global Combined Model Methods and Centralised Learning 

Approach Evaluation for Random Partitioned Data 

Dataset 
Linear 

Combination 
Method 

Nonlinear 
Combination 

Method 

Centralised 
Learning 
Approach 

Mandal et 
al. [166] 

Parkinson Disease 
(Total UPDRS) 8.97 10.16 7.53 - 

Parkinson Disease 
(Motor UPDRS) 7.30 8.22 6.98 - 

Boston Housing 3.10 3.55 3.20 4.91 

Abalone 2.36 2.43 2.39 - 

 
 

Dataset Methods 
Selection 

metric 
Testing error Training error 

MAPE RMSE MAPE RMSE 
Parkinson 

Disease (Total 
UPDRS) 

Global-level 
modelling 

MAPE 33.05 10.29 30.06 10.54 
RMSE 32.51 10.16 29.80 10.74 

Centralised Learning Approach 24.24 7.53 23.53 8.30 
Parkinson 

Disease (Motor 
UPDRS) 

Global-level 
modelling 

MAPE 38.13 8.35 28.29 7.85 
RMSE 40.56 8.22 31.84 7.78 

Centralised Learning Approach 35.47 6.98 24.78 6.15 

Boston 
Housing 

Global-level 
modelling 

MAPE 17.35 3.98 14.32 4.86 
RMSE 15.48 3.55 13.61 4.50 

Centralised Learning Approach 11.96 3.20 17.39 5.45 

Abalone 
Global-level 
modelling 

MAPE 13.88 2.47 13.33 2.13 
RMSE 13.76 2.43 13.04 2.08 

Centralised Learning Approach 13.69 2.39 13.28 2.12 
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ii. Local-level Modeling result 

Tables 4.25 – 4.28 show the local combined evaluation 

results in each site, compared with the best local model for 

Parkinson Disease (Total UPDRS), Parkinson Disease (Motor 

UPDRS), Boston housing, and Abalone datasets. The results 

show that our method results are better than the best local model 

in all datasets except in site1 in Abalone dataset, the best local 

model RMSE result is slightly better than the proposed method. 

We conclude that each site could improve the prediction 

performance by utilising other sites models without sharing the 

data. The global combined model results using RMSE method 

are slightly better than MAPE in most distributed sites. 

Table 4.25. Local Combined Model Evaluation for Parkinson Disease (Total 
UPDRS) Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling MAPE 

8.29  23.22 8.47 27.24 6.83 19.88 

The Best Local 
Model 9.36 26.69 10.23 36.18 6.95 23.71 

Local-Level 
Modelling RMSE 

8.27 22.97 10.33 36.53 6.72 19.39 

The Best Local 
Model 9.36 26.69 10.23 36.18 6.95 23.71 

 

Table 4.26. Local Combined Model Evaluation for Parkinson Disease (Motor 
UPDRS) Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling MAPE 

5.92 25.36 5.63 23.86 6.59 31.02 

The Best 
Local Model 5.99 26.14 5.58 23.84 6.68 33.43 

Local-Level 
Modelling RMSE 

5.76 24.81 5.56 20.61 6.60 33.24 

The Best 
Local Model 5.99 26.14 5.58 23.84  6.68 33.43 
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Table 4.27. Local Combined Model Evaluation for Boston Housing Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling MAPE 

2.79 12.99 2.31 8.84 3.55 17.37 

The Best Local 
Model 3.25 14.01 4.69 12.75 3.25 16.08 

Local-Level 
Modelling RMSE 

2.85 12.20 2.62 8.76 2.99 13.63 

The Best Local 
Model 3.25 14.01 4.69 12.75 3.25 16.08 

 

Table 4.28. Local Combined Model Evaluation for Abalone Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling MAPE 

2.63 14.35 2.73 14.19 2.59 14.87 

The Best Local 
Model 2.82 14.72 2.93 14.55 3.14 16.29 

Local-Level 
Modelling RMSE 

2.63 14.34 2.18 12.33 2.62 14.96 

The Best Local 
Model 2.57 14.79 2.33 12.55 2.65 15.19 

 

2) Non-random Data Partitioning Approach: 

i. Global-level Modeling result 

Table 4.29 shows the global combined model and 

centralised learning approach results and the testing and 

training errors for Parkinson disease (Total UPDRS), Parkinson 

disease (Motor UPDRS), and Boston housing datasets. Our 

method outperformed the centralised learning approach in 

Parkinson Disease (Total UPDRS) dataset and got close results 

in Parkinson disease (Motor UPDRS) and Boston housing 

datasets. The evaluation results using the two model selection 

methods are close. 
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Table 4.29. Global Combined Model and Centralised Learning Approach 
Evaluation 

 
 
 
 
 

 

 

Table 4.30. Training and Testing Error for for the Proposed Method and 
Centralised Learning Approach 

 
 
 

 
 
 
 
 
 
 
 
 

In Table 4.31, our proposed approach using nonlinear 

combination method is better than the linear combination method 

and centralised learning approach in Parkinson Disease (Total 

UPDRS). The centralised learning approach result in the Boston 

housing dataset is slightly better than the linear combination 

method. 

Table 4.31. Global Combined Model Methods and Centralised Learning 
Approach Evaluation for Non-random Partitioned Data 

Dataset 
Linear 

Combination 
Method 

Nonlinear 
Combination 

Method 

Centralised 
Learning 
Approach 

Mandal et 
al. [166] 

Parkinson Disease 
(Total UPDRS) 8.19 6.94 8.17 - 

Dataset Methods Selection 
metric 

MAPE RMSE 

 Global-level modelling MAPE 22.26 6.94 

Parkinson Disease 
(Total UPDRS) 

RMSE 23.22 7.14 
Best Local Models 

Combination 
MAPE 22.45 7.01 
RMSE 22.46 7.02 

Centralised Learning Approach 25.22 8.17 

Parkinson Disease 
(Motor UPDRS) 

Global-level modelling MAPE 41.52 9.51 
RMSE 38.15 8.51 

Best Local Models 
Combination 

MAPE 41.29 9.43 
RMSE 40.85 9.29 

Centralised Learning Approach 30.68 7.3 

Boston Housing 

Global-level modelling MAPE 16.9 4.26 
RMSE 16.2 4.01 

Best Local Models 
Combination 

MAPE 23.3 4.87 
RMSE 22.6 4.69 

Centralised Learning Approach 13.31 3.38 

Dataset Methods Selection 
metric 

Testing error Training error 
MAPE RMSE MAPE RMSE 

Parkinson Disease 
(Total UPDRS) 

Global-level 
modelling 

MAPE 22.26 6.94 24.62 7.52 
RMSE 23.22 7.14 24.97 7.91 

Centralised Learning Approach 25.22 8.17 40.04 11.13 

Parkinson Disease 
(Motor UPDRS) 

Global-level 
modelling 

MAPE 41.52 9.51 40.27 9.57 
RMSE 38.15 8.51 45.14 9.81 

Centralised Learning Approach 30.68 7.3 34.4 6.91 

Boston Housing 
Global-level 
modelling 

MAPE 16.9 4.26 16.6 5.28 
RMSE 16.2 4.01 16.3 5.01 

Centralised Learning Approach 13.31 3.38 11.51 3.27 
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Parkinson Disease 
(Motor UPDRS) 7.1 8.51 7.3 - 

Boston Housing 3.67 4.01 3.38 4.91 

 

ii. Local-level Modeling Result 

Tables 4.32 – 4.34 show the local combined models 

RMSE results in each site compared with the best local model 

for Parkinson disease (Total UPDRS), Parkinson disease 

(Motor UPDRS), and Boston housing datasets. Our method is 

better than the best local models in most datasets sites, and the 

results using the two model selection metrics are close. 

Table 4.32. Local Combined Model Evaluation for Parkinson Disease (Total 
UPDRS) Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling 

MAPE 
5.82 16.96 7.48 27.77 7.80 21.77 

The Best Local 
Model 

8.26 22.56 7.89 31.77 8.96 20.09 

Local-Level 
Modelling 

RMSE 
5.86 17.12 7.38 28.12 7.88 22.10 

The Best Local 
Model 8.25 22.56 7.89 31.77 8.96 20.09 

 
 
 

Table 4.33. Local Combined Model Evaluation for Parkinson Disease (Motor 
UPDRS) Dataset 

 
 
 

 

 

 

 

 

 

 

 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling 

MAPE 
6.32 22.66 6.76 36.99 6.50 22.84 

The Best Local 
Model 6.4 23.17 7.02 40.64 8.36 22.63 

Local-Level 
Modelling 

RMSE 
6.39 23.26 6.81 37.67 7.07 23.17 

The Best Local 
Model  

6.4 23.17 7.02 40.64 8.36 22.63 
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Table 4.34. Local Combined Model Evaluation for Boston Housing Dataset 

Method Selection 
metric 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-Level 
Modelling MAPE 

1.84 4.97 2.20 9.35 4.27 24.58 

The Best 
Local Model 2.11 5.99 2.62 11.42 3.61 24.04 

Local-Level 
Modelling RMSE 

1.81 5.32 2.08 8.77 3.18 22.34 

The Best 
Local Model 2.11 5.99 2.38 9.32 3.61 24.04 

 
 

4.4.2. Discussion and Evaluation 

The proposed global level modelling using nonlinear model 

combination method for random partitioned data showed that the 

centralised learning approach results are better than our method in 

Parkinson disease dataset and close results in Abalone and Boston 

housing datasets. On the other hand, in non-random partitioned data, 

the centralised learning approach RMSE results are better but not 

far from the global combined model. The global combined model 

results using RMSE method are slightly better than MAPE in most 

distributed sites. We proposed a decentralised learning approach for 

distributed datasets to build a global combined model without data 

sharing between the sites, centralising the data to a central database, 

or using a server to control the learning process or iterative 

communication. We avoid server issues and overheads and data 

transformation cost. Also, we preserved data privacy and avoided 

using complex privacy-preserving methods. The proposed method 

could be applied to solve issues related to large data, such as 

memory limitation and huge data transformation costs and time. The 

local level modelling results in randomly partitioned datasets 

showed that our method results are better than the best local model 

in all datasets except in site1 in Abalone dataset. For non-random 

partitioned datasets, the local combined model outperformed the 

best local models in most datasets sites, and the results using the two 

model selection metrics are close. We conclude that each site could 

improve the prediction performance by utilising other sites models 
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without sharing the data. As discussed in 4.3.4, there is a possibility 

for malicious attacks on the trained models of the distributed sites, 

and we will consider this issue in future. 

 

4.5 SUMMARY 

This chapter presented our proposed decentralised learning using nonlinear 

model combination methods for classification and regression algorithms.  We 

developed global and local-level modelling approaches for distributed data resources 

to build combined global and local prediction models without sending the local data 

between the distributed sites or centralising the datasets to a central location. In 

global-level modelling, we used simple model evaluation and selection strategies 

instead of complicated approaches that need more communication between the 

distributed sites and less information exchange than federated learning. Furthermore, 

the proposed method did not expose the data and hence preserved data privacy. We 

developed a combined local model for each site by utilising the learning outcomes 

from local data resources from other sites.  

The experiments showed similar or close results to the centralised learning 

approach when using classification algorithms. When using regression algorithms, 

our method showed better performance than the centralised learning approach in 

Parkinson disease (Total UPDRS) dataset that partitioned non-randomly, and close 

or similar results in the other dataset. The local combined model showed better 

prediction performance than the best local model in most datasets, proving that each 

site can utilise other sites models to improve the prediction performance without 

sharing the data between sites to preserve data privacy. Compared with the popular 

privacy-preserving approach such as federated learning which requires sharing 

gradient information and iterative learning communication, the proposed nonlinear 

combination approach provides an effective alternative with much less information 

sharing and reduced computation cost. We saved the time and cost of data 

transformation between sites, improved computation efficiency, and preserved data 

privacy. 
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Chapter 5 
 

Model Combination Method using Stepwise Model 

Selection Approach 

 

 

5.1 CHAPTER OVERVIEW  

This chapter presents our proposed decentralised learning method and model 

combination method using stepwise model selection approach. The approach 

performs stepwise model selection and updating in each site locally and in a 

decentralised learning fashion using Gossip learning method. Section 5.2 views our 

contribution and aims to develop decentralised learning using stepwise model 

selection method. Then, the proposed decentralised methods for classification with 

the experiment results and discussion are shown in section 5.3 and for regression 

algorithms in section 5.4. Finally, this chapter is summarised in section 5.5. 

 

5.2 INTRODUCTION 

We propose a decentralised learning approach and stepwise model selection 

strategy to distributed, private, and un-exchangeable data resources to develop 

global and local combined models without using a central site to control the learning 

process. We use stepwise model selection strategy to optimise the performance of 

the combined models by selecting the superior models within a sequence from a set 

of models according to a specified performance threshold. We perform stepwise 

model selection and updating approach in each site locally and in a decentralised 

learning fashion using Gossip learning method. Gossip learning is a decentralised 
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learning alternative to federated learning without central control and a competitive 

approach to the federated learning method. It is based on models transferred between 

distributed sites and updated on sites local data using Stochastic Gradient Descent 

(SGD) to improve the models performance, and then combined the models using 

combination learning methods. Models combining is performed using a linear 

combination approach. We aim to preserve data privacy and model updates for each 

site, mitigate the iterative learning process overhead and communication cost, and 

overcome the centralised learning issues. In addition, our method only exchanges 

the trained models with minimal information and fewer communication rounds than 

federated learning. 

 

5.3 PROPOSED METHOD FOR CLASSIFICATION ALGORITHMS 

We develop a combined model at global and local levels using Gossip 

learning and stepwise model selection methods. First, we apply stepwise model 

selection method and update the selected models using mini-batch stochastic 

gradient descent. Finally, apply a linear combination method to develop the 

combined model for the final selected models. 

 

5.3.1. Global-level Modelling Approach 

We develop a decentralised alternative to the federated learning approach 

without using a server or exchanging intermediate computing updates to overcome 

iterative learning process issues. We perform model selection strategy using 

stepwise model selection method, then update the selected models locally in each 

site using Gossip learning approach to make the final combined model optimal and 

valuable for all sites. The stepwise model selection strategy is used to select the 

superior models within a sequence from a set of models and discard the poor 

performance models. Then, update the selected models using mini-batch SGD 

approach using Gossip learning method, then combine the updated models using 

linear combination learning method. We aim to minimise communication and 

computation overheads and preserve data privacy by only passing the models 

between the distributed sites and updating the models locally in each location 

without exchanging models updates information. We used a simple linear 
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combination method to combine the best-updated models to develop global 

combined model with less information sharing between the distributed sites. We 

apply the proposed decentralised learning approach as follows: 

1. Each site builds different classification local models using different 

classification algorithms and then passes these models to other sites. 

2. When a site receives local models from other sites, it first evaluates the models 

based on its local data, then sends the models back with the evaluation results 

to the sites with the local data size that used for evaluation. 

3. Each site will receive its local models evaluation results from other sites and 

calculate the average accuracy of its local models. 

4. For each classification model, for example, SVM model, we perform the 

stepwise model selection and Gossip learning strategies as follows: 

a) In all sites, we compare the average accuracy for the models then select the 

best average accuracy model and discard the other models. 

b) Send the selected model to the other sites for updating process using mini-

batch SGD without losing the previous site data information. Each site 

updates the model using its local data and keeps the previous models 

updates from other sites data. 

c) After the sites finish the model updating process, each site has an updated 

model. So, we send these updated models to all sites for evaluation and 

calculate the average accuracy. 

d) Select the best average accuracy model and send it to the other sites for the 

updating process. We send the model to the sites that still not update the 

selected model. 

e) We repeat steps (c) and (d) until all the sites update the model.  We aim to 

get a final updated model that performs better globally by only selecting 

and updating the best average accuracy model. 

5. Apply step 4 to all classification models that used to build the local models. 

6. When all classification models are updated using all sites data, we send these 

updated models to all sites to recalculate the final average accuracy. Then, each 

site sends the evaluated models with the average accuracy and data size to the 

server. 
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7. The server selects and combines the best average accuracy models using the 

linear combination method to develop the global combined model. The weight 

for each model is calculated based on its average accuracy. 

This approach does not expose the data and hence preserves data privacy. In 

addition, there is no computation overhead between the distributed sites and the 

server, avoid central control for the learning or updating processes, and use 

minimum exchanged information between the sites and the server. The related model 

names and definitions used in our methodology are introduced in Table 5.1. 

 

Table 5.1. Models Names and Descriptions (1). 

Model Notation Meaning 

Local Model M'( 
The local model that developed in site i using j 
classification algorithm 

Best Average Accuracy 
Model 

M'∗( 
The best average accuracy model among all sites 
for each j learning algorithm 

Updated Model M'∗(
G@'’ The updated model M'∗( using site i’ local data 

Best Average Accuracy 
Updated Model 

M'∗(
G@'’∗ The best average accuracy model during updating 

process and after evaluation using all sites data 

Best Average Accuracy 
Final Updated Model 

M'∗(∗
G@'’∗ 

The best average accuracy of the final updated 
model after updating process and after average 
accuracy calculation using all sites data 

Global Combined Model M-∗ 
The final global combined model at the server that 
combines the best average accuracy updated 
models using the linear model combination method 

 
 

The following steps implement the above idea:  

1) Similar to our methodology for local models building and average accuracy 

calculations in chapter 3 (section 3.3.1), each site S) apply j learning algorithms 

to build its local model M)R where i = 1,2, … , n and j = 1,2, … ,m, send its local 

models to other sites for evaluation, receive its local models evaluation results 

from other sites, and calculate the average accuracy for the local models 

Acc	(M)R). 

2) As illustrated in Figure 5.1, for each model developed by a learning algorithm j 

in all sites i, where j = 1,2, … ,m: 

a) Compare the average accuracy of the models Acc	fM)Rg and select the best 

average accuracy model	M)∗R. 

b) Send the selected model M)∗R to other sites i’, (iU = 1,… , i − 1, i + 1,… , n). 
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c) Start stepwise model selection and updating process as follows: 

1. Each site i’ update the received model M)∗R based on its local data using 

mini-batch stochastic gradient descent method as follows: 

- Divide the local data 	D)’ into batches b. 

- For each batch of p examples 𝑥8	with corresponding target value 𝑦8, 

t = 1,2,…, p:  

i. Compute the gradient estimate of the loss function [143,161]: 

𝑔 = 	 2
g
	∇[ ∑ ℓg

812 	f(M)∗R	(𝑥8	; 𝑤g, 𝑦8)           (5.1) 

ii. Update model parameter	𝑤 = 	𝑤 − 	𝛾𝑔, where 𝛾 is the learning 

rate, and w is the model parameter. 

2. After updating the model M)∗R using the sites i’ local data, we have 

different updated model versions M)∗R
h4)’. Therefore, we send the 

updated models to all sites for evaluation, then calculate the average 

accuracy Acc	(M)∗R
h4)’),  

Acc	(M)∗R
h4)’) = ∑ V2

V	
∗ Acc	(M)∗R

h4)’+
W12 )	in	SW,          (5.2)  

where k is the sites number, DW is the number of samples of site k, and 

D is all sites data samples number. 

3. Select the best average accuracy model M)∗R
h4)’∗ and discard the other 

models. 

4. Send the selected model M)∗R
h4)’∗ to the other sites for updating process. 

The sites that do not update the selected model will receive the model. 

Our aim for sending the updated models to all sites is to calculate the 

average accuracy and then select the best model for the next updating 

step because we want to update the model that performs well for all 

sites. 

3) Repeat step c until the selected model is updated using all sites local data. 

4) After updating all the learning models j, send the final updated models M)∗R
h4)’∗ 

to all sites for final evaluation. 

5) Each site evaluates the models M)∗R
h4)’∗  and sends the models with its evaluation 

results and the data size that is used for models evaluation to the server. 
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6) As illustrated in Figure 5.2, the server receives the evaluated models M)∗R
h4)’∗ 

from all sites with its evaluation results and the data size that is used for 

evaluation. 

7) Calculates the global average accuracy	Acc	fM)∗R
h4)’∗g. 

Acc	(M)∗R
h4)’∗) = ∑ V2

V	
∗ Acc	(M)∗R

h4)’∗+
W12 )	in	SW,          (5.3)  

where k is sites number, DW is the number of samples of site k, and D is all 

sites data samples number. 

8) Compare the average accuracy for all updated j models Acc	(M)∗R
h4)’∗) and select 

the best updated models	M)∗R∗
h4)’∗. 

9) The server assigns weight to the selected models 	M)∗R∗
h4)’∗ based on its average 

accuracy. We weight each model based on its average accuracy to get an 

unbiased model weight [30, 33, 86]. The most accurate model will get higher 

weight, and the less accurate model will get low weight. Models weights are 

constrained such that their sum is equal to one. 

w	>!∗3∗
H;!’∗ =

;''	(	>!∗3∗
H;!’∗)

∑ ;''	(	>!∗3∗
H;!’∗)#

!$%
                 (5.4) 

, where i=1, 2, …, n, 0 <= w	>!∗3∗
H;!’∗ <=1 , and  ∑ w	>!∗3∗

H;!’∗ = 1+
)12  

10) The server linearly combines the models to develop the global model MX∗: 

MX∗	(x) = max∑w>!∗3∗
H;!’∗M)∗R∗

h4)’∗	(x)          (5.5) 
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Figure 5.1. Stepwise model selection and updating methods 

 
 
 

 
Figure 5.2. Final Models Selection and Combination Methods 

 
 
 

5.3.2. Local-level Modelling Approach 

We develop model selection and updating strategies to build a local 

combined model in each site. Our aim is to preserve data privacy by only passing 

the models between the distributed sites and updating these models locally in each 

site without exchanging models updates information. We used a simple linear 

combination method to combine the best-updated models to develop the local 

combined model with less information sharing between the distributed sites.  
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In the local-level modelling, each site tries to find the best local combined 

model by utilising the local data resource and the prediction models from other sites. 

Each site evaluates other sites models based on its local data, compares the results 

with its best local model result that selected using 10-fold cross-validation, and 

selects the best models as candidates for the updating process and discards the other 

models. We perform the model selection approach for the best models before the 

model updating process instead of updating all received models to avoid models 

update computation overhead and decrease computation time. Then, the site updates 

the selected models using mini-batches stochastic gradient descent, evaluates the 

updated models, then selects the best-updated models to combine with its best local 

model using linear combination methods to build the local combined model. We aim 

to reduce model biases and errors in individual models when combining the models 

rather than selecting a single model. 

The main advantages of such an idea are that, firstly, only the local models 

from the other sites are used, and therefore we save the cost of data transformation 

from one site to another. As we know, data transformation is time-consuming and 

costly if the datasets are large. Therefore, such an approach greatly improves 

computation effectiveness and efficiency. Secondly, as there is no data sharing or 

transformation, whereas the only information exchanged between different sites are 

local models and the evaluation results and data size, such an approach does not 

disclose the data resource and therefore preserves data privacy. In addition, it 

addresses individual model limitations by utilising distributed data resources to 

develop a combined prediction model and preserve the privacy of local data 

resources. The related model names and definitions used in our methodology are 

presented in Table 5.2.  

 

Table 5.2. Models Names and Descriptions (2) 

Model Notation Meaning 
Best Accuracy 
Local Model 

M'(∗ 
The local model in site i that has the best accuracy using 
j* learning algorithm 

Received 
Model 

M'’	( 
Model in site i that received from other sites i’ 

Best Accuracy 
Model 

M'’(∗ 
The selected model from other sites i’ which is better 
than or equal to the best local model accuracy M'(∗ 

Updated 
Model 

M'’(∗
G@' The updated model M'’(∗ using the site i local data 
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List of the 
Best Accuracy 
Models 

M 

A list of the best local model accuracy M'(∗ and the 
selected updated models of the best accuracy from other 
sites M'’(∗

G@' that will linearly be combined to build the 
local combined model 

Local 
Combined 
Model 

M'
1∗ 

The final local combined model in site i that combine 
the best local model accuracy of the site i with the best 
updated models from other sites  

 
 

Each site locally performs stepwise model selection and model updating 

methods. As shown in Figure 5.3, each site i receives models from other sites M)’	R, 

evaluate these models over its local dataset D), and calculate the accuracy Acc(M)’	R), 

then: 

1) Compare the accuracy Acc	(M)’	R) of the received models with its best local 

model accuracy	Acc	(M)R∗). 

2) Select the best model accuracy M)’R∗ from each site and discard the other 

models as follows: 

o Method L1: Select the best model accuracy M)’R∗ from site i’ if: 

 Acc	(M)’	R)  >=	Acc	(M)R∗) 

o Method L2: Select the best model from each site even if the selected 

model not performed better than the best local model. We proposed this 

method if the best local model result is better than the received models, 

but there is little difference between the best local model and the 

received model results. 

3) After the selection process, update the selected models M)’R∗ using its local 

data by performing mini-batch SGD method as follows: 

a) Divide the local data 	D) into batches b 

b) For each batch of p examples 𝑥8	with corresponding target value 𝑦8, 

t = 1,2,3, …, p:  

1. Compute the gradient estimate of the loss function [143,161]: 

𝑔 = 	 2
g
	∇[∑ ℓg

812 	fM)’R∗	(𝑥8	; 𝑤g, 𝑦8)         (5.6) 

2. Update model parameter 𝑤 = 	𝑤 − 	𝛾𝑔, where 𝛾 is the learning 

rate and w is the model parameter 

4) Evaluate the updated models M)’R∗
h4) and select the best-performed updated 

models and discard the other updated models using a defined model 



 167 

performance threshold. 

5) Combine the best local model M)R∗ and the selected updated models M)’R∗
h4) 

using the linear combination to develop the local combined model 	M)
Z∗ as 

follows: 

a) Site i has the best models M, where M is the list of the best local 

model and the selected updated models from other sites	M)
∗, M= 

{M2
∗, M!

∗ , … . , M+
∗} and their accuracy	Acc	(M)

∗). 

b) Calculate models weights for the models M)
∗, the model weight is 

computed based on its average accuracy [30, 86]: 

w>!
∗ = ;''	>!

∗

∑ ;''		>!
∗#

!$%
 ,                      (5.7) 

where i=1, 2,… ,n, 0 <= w>!
∗ <=1 and  ∑ w>!

∗ = 1+
)12  

c) Combine the models to develop the proposed local combined model 

M)
Z∗ by using the weighted voting method to predict x. 

M)
Z∗(x) = 	max∑ w>!

∗ 	M)
∗
(i)

+
)12               (5.8)  

 

 
Figure 5.3.  Local-level Modelling Method 
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5.3.3. Experimental Study 

We evaluated and compared the prediction performance of the 

proposed global and local level modelling methods with different studies 

and centralised learning approach that moves all distributed data to a 

centralised database. 

 

I. Distributed Data Simulation  

We applied our methods to the datasets that used for the proposed 

approach using linear combination method in Chapter 3 (section 3.3.3): 

blood transfusion, liver disease, diabetes, heart disease, lower back pain 

(spine disease), Breast Cancer Wisconsin (Diagnostic), Breast Cancer 

Wisconsin (Original) [29], and cardiovascular diseases [27]. Also, we 

applied the data partitioning strategies that used in chapter 3 (section 3.3.3) 

to simulate distributed site data: (1) random data partitioning and (2) non-

random data partitioning. Therefore, we divided each dataset into different 

parts as distributed sites site1, site2, and site3. At each site, the dataset is 

divided into local and validation data. The local data partition is used to 

develop the local models, evaluate the received models, and update the 

selected models. The validation data is used to evaluate the final global and 

local combined model.  

 
II. Models Building and Evaluation 

We applied different learning methods that allow for frequent model 

updating processes when new data is available. The learning algorithms that 

are used for model building and updating methods are Support Vector 

Machine (linear and nonlinear SVM), Neural Network (NN), Naïve Bayes 

(NB), Random Forest (RF), Decision Tree (DT), and Logistic Regression 

(LR). We used SGD Classifier in [174, 175] to implement Stochastic 

Gradient Descent learning for SVM and LR. For the model update 

approach, some Python methods have been used in DT, RF, linear and 

nonlinear SVM, NN, and LR algorithms to reuse a trained model in its 

previous state to start the model updating process [175]. We updated the 

model weights using mini-batch SGD in linear and nonlinear SVM, NN, 
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LR, and NB algorithms. Not all learning algorithms use gradient descent 

algorithm for model training and updating methods, such as decision tree 

algorithms. In DT and RF, the model update approach adds successive trees 

to the previous model. In DT, we used Gradient Boosting to produce a 

prediction model in the form of an ensemble of prediction models [174, 

175]. Each model tries to improve on its predecessor by reducing the errors. 

But instead of fitting a model on the data at each iteration, it fits a new 

model to the residual errors made by the previous model. It builds trees one 

by one in a sequential method, and each tree needs the results of the 

previous tree. In each step, the models fit on the negative gradient of the 

loss function. 

In addition, we observed the effects of the learning rate, iterations 

number, and mini-batches SGD updates on model performance during 

updating process in blood transfusion dataset. The learning rate controls 

how much to change the model according to the estimated model error each 

time the model weights are updated. Figure 5.4 shows the impact of 

learning rate on DT model performance of site 1 during updating process 

using site 2 local data. In our method, we chose the learning rate value = 

0.1. 

 

Figure 5.4. Learning Rate Effect on DT Model performance  
 

Figure 5.5 shows site 1 NN model accuracy during updating process 

using mini-batch stochastic gradient descent using: (a) site 2 local data and 

(b) site 3 local data. As shown, NN model performance is optimised during 

mini-batch SGD updates. 
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(a) using site 2 local data 

 

(b) using site 3 local data 
 

Figure 5.5. NN model accuracy during updating process using mini-batch stochastic 
gradient descent 

 
The iterations number in SGD is the number of complete passes of 

the entire training dataset during the learning process. Figure 5.6 illustrates 

the effect of iteration number in LR model using SGD in site 1. The best 

accuracy when we used 10 iterations in site1 = 76 %, and the worst accuracy 

was 52 % when we chose 300 iterations. 

 

 
Figure 5.6. Effect of Iteration Number in LR Model Using SGD 

 
 

In NN algorithm, we used adaptive learning rate method with the 

initial learning rate value = 0.001. The adaptive learning method keeps the 

learning rate fixed to the specified learning rate (initial learning rate) as long 

as model loss decreases or performance improves. If not, it divides the 

current learning rate by 5 [175]. As shown in Figure 5.7, adaptive 

performed better than constant and invscaling learning rate methods. 

Constant learning rate method keeps the learning rate fixed, while in 

invscaling, the learning rate at each time step gradually decreases through 

a learning process. In addition, we used adaptive learning rate method in 

LR and SVR algorithms [175]. 
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Figure 5.7. Effect of Learning Rate on NN Model using SGD in Site 1 

 

III. Experiments Results 

We compared the global combined model results with other 

combination methods: average accuracy and majority voting. Also, 

compared with the best-updated model (Single Best Model). For each site, 

we compared the local combined model with the best local model. 

 

1) Random Data Partitioning: 

i. Global-level modelling results: 

The detailed results for the global-level modelling are illustrated 

in Appendix C. We evaluated the global combined models in each site 

instead of the server because the sites will not share their validation data 

with the server. The evaluation results are sent to the server with the test 

data size. Finally, the server received the evaluation results from the 

sites and calculated the global average accuracy of the global combined 

models. Our method outperformed the other combination methods. 

Table 5.3 shows the global combined model evaluation results for heart 

disease, breast cancer Wisconsin (Diagnostic), diabetes, liver disease, 

blood transfusion, lower back pain (spine disease), breast cancer 

Wisconsin (Original), and cardiovascular diseases datasets and 

compared to average accuracy and majority voting combination 

methods and with the best-updated model. Our proposed method 

outperformed the others in all datasets except in Breast Cancer 

Wisconsin (Diagnostic), Diabetes, and cardiovascular disease datasets; 

majority voting got similar results with our method. 
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Table 5.3. Global Combined Model Evaluation for Random Partitioned Data 

 

 

 

 

In Table 5.4, we compared the proposed method using stepwise 

model selection and Gossip learning approaches for the randomly 

partitioned datasets with our proposed linear and nonlinear combination 

methods in chapters 3 and 4, respectively, and with the centralised 

learning approach. Our proposed method using stepwise model selection 

strategy outperformed the centralised learning in blood transfusion, 

breast cancer Wisconsin (Diagnostic), diabetes, lower back pain (spine 

disease), and liver disease datasets, close results in breast cancer 

Wisconsin (Original) and heart disease datasets, and a similar result in 

cardiovascular disease dataset. Furthermore, compared to the proposed 

linear and nonlinear methods, our method is the best in blood 

transfusion, Breast Cancer Wisconsin (Diagnostic), diabetes, heart 

disease, spine disease, liver disease datasets, a similar result in 

cardiovascular disease dataset, and close result in Breast Cancer 

Wisconsin (Original) dataset.  

Table 5.4. All Proposed Methods Evaluation for Random Partitioned Data 

Dataset Global Combined Model Single Best Model 
Weighted 

Voting 
Average 
Accuracy 

Majority 
Voting 

Heart Disease 90% 84% 88% 86% (NN-S213) 
Breast Cancer 
Wisconsin (Diagnostic) 98% 90% 98% 86% (SVM linear-S321) 

Diabetes 81% 73% 81% 76% (DT-S231) 

Liver Disease 83% 69% 79% 65% (DT-S312) 

Blood Transfusion 63% 47% 59% 59% (RF-S231) 

Lower back pain (spine 
disease) 71% 56% 66% 54% (DT-S231) 

Breast Cancer 
Wisconsin (Original) 97% 91% 94% 94% (LR-S231) 

Cardiovascular disease 73% 70% 73% 73% (RF-S231, DT-
S213) 

Dataset Linear 
combination 

method 

Nonlinear 
combination 

method 

Stepwise Model 
Selection 
Approach 

Centralised 
learning 

Blood transfusion 59% 57% 63% 60% 

Breast Cancer Wisconsin 
(Diagnostic) 94% 94% 98% 96% 



 173 

 
 
 
 
 
 

 

 
Figure 5.8.  Global Combined Model Evaluation vs Centralised Learning for Random 

Partitioned Data 
 

Table 5.5 shows the prediction accuracy of our proposed method 

using stepwise model selection for the data partitioned randomly and 

compared with the proposed linear and nonlinear methods and with 

different distributed learning methods proposed in [6, 48, 96, 166, 170, 

176-182]. The proposed method using stepwise model selection 

outperformed the related works in breast cancer Wisconsin (Diagnostic), 

diabetes, heart disease, and liver disease datasets and got close result in 

breast cancer Wisconsin (Original) dataset.  

 

Table 5.5. Distributed Learning Methods Evaluation for Random Partitioned Data  

Breast Cancer Wisconsin 
(Original) 98% 98% 97% 98% 

Diabetes 78% 80% 81% 78% 

Heart Disease 86% 89% 90% 92% 

Lower back pain (spine 
disease) 59% 62% 71% 66% 

Liver Disease 65% 68% 83% 78% 

Cardiovascular disease 73% 73% 73% 73% 

Method Breast Cancer 
Wisconsin 

(Diagnostic) 

Breast Cancer 
Wisconsin 
(Original) 

Diabetes Heart 
Disease 

Liver 
Disease 

Linear Combination Method 94% 98% 78% 86% 65% 
Nonlinear Combination Method 94% 98% 80% 89% 68% 
Stepwise Model Selection Approach 98% 97% 81% 90% 83% 
Tsoumakas et al. [6] - EV1 - 97% 77% 84% - 
Tsoumakas et al. [6] - EV2 - 97% 77% 83% - 
Tsoumakas et al. [6] - EV 3 - 97% 77% 85% - 
Bashir et al. [48] - 97% 77% 84% 71% 
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ii. Local-level modelling results: 

The local-level modelling detailed results are illustrated in 

Appendix C. Tables 5.6 - 5.13 present the evaluation results for 

blood transfusion, breast cancer Wisconsin (Diagnostic), diabetes, 

heart disease, liver disease, lower back pain (spine disease), breast 

cancer Wisconsin (Original), and cardiovascular diseases datasets. 

It compares it with average accuracy, majority voting methods, and 

the best local model. Our method performance is better or similar to 

the best local model in most of the datasets, except in spine disease 

dataset in site 1 and site 3, and in breast cancer Wisconsin 

(Diagnostic) dataset in site 2. Thus, we conclude that the distributed 

sites can utilise other sites models to improve the prediction 

accuracy. 

Table 5.6. Local Combined Model Evaluation for Blood Transfusion Dataset 

 

 

 

Table 5.7. Local Combined Model Evaluation for Breast Cancer Wisconsin 
(Diagnostic) dataset 

 
 
 
 
 
 

Zhang et al.  [96] - - 80% - - 
Mandal et al. [166] 96% - 76% - - 
Wang et al. [170] - 96% 77% - - 
Gao et al. [176] - 95% - 72% - 
Kasturi et al. [177] - 96% - - - 
Ma et al. [178] - 96% - - - 
Haque et al. [179] - 98% 78% 82% - 
Sav et al. [180] - 97% - - - 
Froelicher et al. [181] - 96% 78% - - 
Ed-daoudy and Maalmi [182] - - - 82% - 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 51% 60% 66% 
Average Accuracy 51% 58% 66% 
Majority Voting 51% 57% 66% 

The Best Local Model 51% 60% 66% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 95% 99% 84% 
Average Accuracy 95% 90% 82% 
Majority Voting 95% 99% 84% 

The Best Local Model 95% 99% 84% 
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Table 5.8. Local Combined Model Evaluation for Diabetes dataset 

 
 
 
 
 
 

Table 5.9. Local Combined Model Evaluation for Heart disease dataset 

 
 
 
 

Table 5.10. Local Combined Model Evaluation for Lower back pain (spine 
disease) dataset 

 
 
 
 
 
 

Table 5.11. Local Combined Model Evaluation for Breast Cancer Wisconsin 
(Original) dataset 

 
 
 
 
 
 

Table 5.12. Local Combined Model Evaluation for Liver disease dataset 

 
 
 
 
 
 

Table 5.13. Local Combined Model Evaluation for Cardiovascular disease 
dataset 

 
 
 
 
 
 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 75% 80% 60% 
Average Accuracy 71% 78% 59% 
Majority Voting 75% 80% 56% 

The Best Local Model 70% 80% 56% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 73% 90% 73% 
Average Accuracy 71% 90% 75% 
Majority Voting 73% 90% 73% 

The Best Local Model 60% 90% 67% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 55% 71% 62% 
Average Accuracy 62% 67% 75% 
Majority Voting 65% 64% 69% 

The Best Local Model 65% 71% 88% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 97% 96% 98% 
Average Accuracy 92% 97% 63% 
Majority Voting 98% 96% 90% 

The Best Local Model 97% 99% 98% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 72% 75% 67% 
Average Accuracy 71% 73% 70% 
Majority Voting 72% 72% 73% 

The Best Local Model 72% 68% 67% 

Methods Combination method Site1 Site2 Site3 

Local-Level 
Modelling 

Weighted Voting 74% 73% 72% 
Average Accuracy 74% 73% 51% 
Majority Voting 74% 73% 72% 

The Best Local Model 74% 73% 72% 
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Table 5.14 shows the evaluation results for our proposed 

local level modelling method compared with our proposed linear 

and nonlinear combination methods for the randomly partitioned 

datasets. The results are compared with the best local model in each 

site. The proposed method using stepwise model selection got better 

or similar results compared with the best local model results, except 

in spine disease dataset in two sites. The nonlinear combination 

method performed better than other methods in most sites datasets. 

In diabetes, the local combined model of the proposed linear and 

nonlinear methods is better than the best local model in all sites. Our 

proposed method using stepwise model selection proved that we 

could utilise other sites models to build an accurate combined model 

without sharing the data between the sites to preserve the data 

privacy for each site. 

Table 5.14. Local Combined Model Evaluation for Random Partitioned Data  

 

 

 

 

 

 

 

 

 

 

 

 

2) Non-random Data Partitioning:  

i. Global-level Modelling Results: 

Table 5.15 shows the global combined model evaluation 

results for diabetes, heart disease, and liver disease datasets that 

partitioned non-randomly and compared with other model 

combination methods and the best-updated model.  The results of 

Dataset Linear combination 
method 

Nonlinear combination 
method 

Stepwise Model 
Selection Approach 

Blood transfusion The best in all sites Better in two sites and 
similar in one site Similar in all sites 

Breast Cancer 
Wisconsin (Diagnostic) Similar in two sites Better in two sites and 

similar in one site Similar in all sites 

Breast Cancer 
Wisconsin (Original) Similar in two sites Similar in all sites Similar in two sites 

Diabetes The best in all sites The best in all sites Better in two sites 
and similar in one site 

Heart Disease Better in two sites Better in one site and 
similar in one site 

Better in two sites 
and similar in one site 

Lower back pain (spine 
disease) 

Better in one site 
and similar in one 

site 

Better in one site and 
similar in two sites Similar in one site 

Liver Disease Similar in all sites Better in two sites and 
similar in one site 

Better in one site and 
similar in two sites 

Cardiovascular disease Similar in two sites Better in one site and 
similar in two sites Similar in all sites 
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our approach are not far from the best results. The best-updated 

model (Single Best Model) is the best in heart disease and liver 

disease datasets. In diabetes dataset, the majority voting method is 

the best. 

Table 5.15. Global Combined Model Evaluation for Non-random 
Partitioned Data 

 

 

Table 5.16 shows the evaluation results for our proposed 

method using stepwise model selection compared with the proposed 

linear and nonlinear model combination methods and the centralised 

learning approach. The centralised learning approach is slightly 

better than our methods, but its results are close to our proposed 

methods. As we discussed, the centralised learning approach has 

many issues and is inadequate for private and un-exchangeable data 

in a distributed environment. Compared to the proposed linear and 

nonlinear methods, the results are similar in diabetes dataset and 

close results in heart and liver disease datasets. 

Table 5.16. Global Combined Model and Centralised Learning Evaluation for 
Non-random Partitioned Data  

Dataset Linear 
combination 

method 

Nonlinear 
combination 

method 

Stepwise 
Model 

Selection 
Approach 

Centralised 
learning 

Diabetes 67% 67% 67% 69% 
Heart Disease 87% 83% 82% 88% 
Liver Disease 72% 72% 71% 74% 

 
 

Dataset Global Combined Model Single Best 
Model Weighted 

Voting 
Average 
Accuracy 

Majority 
Voting 

Diabetes 67% 59% 68% 60% (NN-S123) 
Heart Disease 82% 68% 82% 85% (NN-S213) 
Liver Disease 71% 71% 70% 72% (NN-S231) 
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Figure 5.9.  Global Combined Model Evaluation vs Centralised Learning for 

Non-random Partitioned Data 
 

Table 5.17 shows the evaluation of our proposed methods and 

the research works [6, 48, 96, 166, 170, 176, 179, 181, 182]. It shows 

that the linear combination method is slightly better than other 

approaches in the heart disease dataset. In liver disease dataset, all 

methods got close and better results, and for diabetes dataset, [96] 

outperformed the other methods. 

Table 5.17. Distributed Learning Methods Evaluation for Non-random 
Partitioned Data 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

ii. Local-level Modelling Results: 

The following Tables 5.18 – 5.20 show the local combined 

model accuracy in each site for diabetes, heart disease, and liver 

disease datasets compared with the best local model and other 

model combination methods. Our method got better or similar 

Method Diabetes Heart 
Disease 

Liver 
Disease 

Linear Combination Method 67% 87% 72% 
Nonlinear Combination Method 67% 83% 72% 
Stepwise Model Selection Approach 67% 82% 71% 
Tsoumakas et al. [6] - EV1 77% 84% - 
Tsoumakas et al. [6] - EV2 77% 83% - 
Tsoumakas et al. [6] - EV 3 77% 85% - 
Bashir et al. [48] 77% 84% 72% 
Zhang et al.  [96] 80% - - 
Mandal et al. [166] 76% - - 
Wang et al. [170] 77% - - 
Gao et al. [176] - 72% - 
Haque et al. [179] 78% 82% - 
Froelicher et al. [181] 78% - - 
Ed-daoudy and Maalmi [182] - 82% - 
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results than the best local model except in diabetes dataset in site 

1, heart disease dataset in site 2, and liver disease dataset in site 1. 

Table 5.18. Local Combined Model Evaluation for Diabetes dataset 

 
 
 
 

 

Table 5.19. Local Combined Model Evaluation for Heart disease dataset 

 
 

 
 

 

Table 5.20. Local Combined Model Evaluation for Liver disease dataset 

 
 

 
 
 
 

As shown in Table 5.21, the proposed methods got better 

or similar results in most datasets compared with the best local 

model in each site. Therefore, the sites are utilised from other sites 

models using the proposed methods. 

Table 5.21. Local Combined Model Evaluation for Non-random Partitioned Data  

Dataset Linear combination 
method 

Nonlinear 
combination method 

Stepwise Model 
Selection Approach 

Diabetes Better in two sites The best in all sites Better in one site and 
similar in one site 

Heart Disease Better in one site and 
similar in one site 

Better in one site and 
similar in two sites 

Better in one site and 
similar in one site 

Liver Disease Better in one site Better in one site and 
similar in one site 

Better in one site and 
similar in one site 

 
 

5.3.4. Discussion and Evaluation 

The global combined model that developed using stepwise model 

selection and Gossip learning approaches showed improved prediction accuracy 

in most datasets compared to the centralised learning approach and the linear 

and nonlinear combination methods, especially in spine disease and liver disease 

Methods Combination method Site1 Site2 Site3 
Local-Level 
Modelling 

Weighted Voting 72% 63% 58% 
Average Accuracy 73% 63% 64% 
Majority Voting 74% 63% 65% 

The Best Local Model 73% 63% 52% 

Methods Combination method Site1 Site2 Site3 
Local-Level 
Modelling 

Weighted Voting 80% 85% 86% 
Average Accuracy 78% 83% 77% 
Majority Voting 80% 85% 86% 

The Best Local Model 75% 88% 86% 

Methods Combination method Site1 Site2 Site3 
Local-Level 
Modelling 

Weighted Voting 40% 76% 94% 
Average Accuracy 45% 75% 78% 
Majority Voting 45% 76% 82% 

The Best Local Model 50% 76% 71% 
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datasets that are partitioned randomly. For the non-randomly partitioned 

datasets, our proposed decentralsied learning using stepwise model selection 

method got comparable results with the proposed linear and nonlinear 

combination methods and the centralised learning approach. Thus, the results 

showed that our proposed method could perform better or be comparable to the 

centralised learning approach without sharing distributed datasets to preserve 

data privacy. We saved the cost and time of data transformation from one site 

to another or data centralisation. Also, avoid using a server for controlling the 

learning process to avoid server issues and iterative communication and 

computation overheads. Therefore, we developed the global combined model 

and performed the models building and updating processes locally to preserve 

data privacy. Furthermore, the local combined model results showed that we 

could utilise other sites models to build an optimal and accurate combined 

model without sharing the data between the sites to preserve the data privacy 

for each site.  

The impact of sites number on the combined model performance is not 

our focus in this thesis. However, increased computation and communication 

overheads, time-consuming, and scalability issues may arise if we deal with 

large sites number. It involves exchanging model rounds to compute the global 

average performance. These issues can be addressed by developing different 

selective decentralised learning strategies. For example, we could develop a 

search strategy that only considers the best sites contributions by examining its 

local models performance to include these sites in the decentralised learning 

process. This may reduce computation and communication overheads and time 

and enhance the proposed method scalability. In addition, there is a possibility 

for malicious attacks on the trained models to reveal meaningful information or 

retrieve training data. In future research, we will consider malicious attacks 

possibility on distributed sites and exchanged models. 

 

5.4 PROPOSED METHOD FOR REGRESSION ALGORITHMS 

Our method develops a combined model at global and local levels using 

a decentralised learning method. First, we apply the model selection strategy 
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using stepwise model selection method, then update the selected models using 

mini-batch stochastic gradient descent. Finally, apply the linear combination 

method to develop the combined model for the final selected models. 

In global and local level modelling approaches, we apply the methods 

used in classification algorithms in sections 5.3.1 and 5.3.2 and use RMSE and 

MAPE metrics for model performance evaluation instead of accuracy metric. 

We use RMSE for the model selection approach and apply the linear model 

combination method that assigns model weight by using simple weight average, 

error-based (RMSE), and performance-based (Accuracy) approaches. 

 
5.4.1. Experimental Study 

We conducted experiments to evaluate the prediction 

performance of the proposed method. We compared it with a centralised 

learning approach that moves all distributed data to a centralised 

database and with a distributed learning work [166]. 

I. Distributed Data Simulation  

We applied our methods to the datasets that used in chapter 

3 (section 3.4.3): Parkinson disease, Boston housing, and Abalone 

datasets [29]. Before performing the experiments, the databases are 

first preprocessed to a suitable data format. We used data 

standardisation to adjust features to a common scale, such that the 

processed features have a mean of 0 and a standard deviation of 1. It 

is performed by subtracting the mean and then dividing by its 

standard deviation, and it is recommended to optimise the learning 

process in SGD [173-175]. Next, we applied data partitioning 

strategies that used in chapter 3 (section 3.4.3) to simulate 

distributed sites data: (1) random data partitioning and (2) non-

random data partitioning. We assume that the distributed sites are 

homogeneous, and the data are independent and 

identically distributed in this study. We divided each dataset into 

different parts as distributed sites site1, site2, and site3. At each site, 

the dataset is divided into local and validation data. The local data 

partition is used to develop the local models, evaluate the received 
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models, and update the selected models. The validation data is used 

to assess the final global and local combined model.  

 

II. Models Building and Evaluation 

We used different regression algorithms for model building 

and updating methods. The algorithms are Linear Regression (LR), 

Support Vector Regression (SVR), Decision Tree Regression 

(DTR), Neural Network Regressor (NNR), Random Forest 

Regressor (RFR), Least Absolute Shrinkage and Selection Operator 

regression (LASSO), Ridge, and ElasticNet. For LR, SVR, NNR, 

LASSO, Ridge, and ElasticNet, we used mini-batch Stochastic 

Gradient Descent, while in RFR and DT, we added model to the 

previous model. We applied SGD Regressor to implement 

Stochastic Gradient Descent (SGD) learning for LR, SVR, LASSO, 

Ridge, and ElasticNet algorithms [173-175]. Some Python methods 

have been used in LR, SVR, NNR, DTR, RFR, LASSO, Ridge, and 

ElasticNet algorithms to reuse a trained model in its previous state 

to perform the model update method [175]. Also, we updated the 

weights of an existing model using mini-batch SGD in LR, SVR, 

NNR, LASSO, Ridge, and ElasticNet algorithms [174, 175]. In 

DTR, we used Gradient Boosting Regressor to build the model in an 

additive fashion. In each step, a regression tree is fit on the negative 

gradient of the loss function. RFR is an ensemble method; we reused 

the previous model, trained different decision trees on data samples, 

and added it to the ensemble model [173-175]. The learning rate 

value for DTR model is 0.1, LR, SVR, LASSO, Ridge, and 

ElasticNet models is 0.01 with invscaling learning rate method, and 

in NNR model is 0.001 with constant learning rate method. For 

model evaluation and selection approaches, we used RMSE 

evaluation metric. 

Figures 5.10 and 5.11 illustrate model updating method using 

mini-batch SGD for the best average RMSE model using other sites 

data.  It shows LR model of site 1 for Abalone dataset that randomly 
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partitioned before and after updating in site 2 and 3. In site 2, LR 

model RMSE = 1.99 before updating, and RMSE = 2.08 after 

updating process. While in site3, LR model RMSE = 2.40 before 

updating, and RMSE = 2.49 after updating process.   

 

  

 

(a) Before updating the model 

 

(b) After updating the model 
 

Figure 5.10.  Site 1 LR Model in site 2 

 

  

 

(a) Before updating the model 

 

(b) After updating the model 
  

Figure 5.11. Site 1 LR Model in site 3 
 

Then, after evaluating the two updated models in all sites, we 

found that the LR model that updated in site 2 got better average RMSE 

than LR model that updated in site 3. Therefore, we select and send the 

best average RMSE model to the other sites that still not update this 
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model (i.e. site 3). Figure 5.12 shows LR model before and after 

updating process in site 3. LR model RMSE = 2.97 before updating, and 

RMSE = 2.49 after updating process. LR model performance (RMSE) is 

improved after updating process. 

 

  

 
(a) Before updating the model 

 
(b) After updating the model 

 
Figure 5.12.  LR updated Model in Site 3 

 

 
III. Experiments Results 

We show the global and local level modelling results for the datasets 

partitioned in random and non-random scenarios. We compared the global 

combined model results with the best updated model (Single Best Model). 

In addition, for each site, we compared the local combined model with the 

best local model. 
 

1) Random data partitioning: 

i. Global-level modelling results: 

The detailed results for the global-level modelling are illustrated 

in Appendix C. We evaluated the global combined models in each site 

instead of the server because the sites will not share their validation data 

with the server. Then, we sent the evaluation results to the server with the 

number of test data samples. Finally, the server receives the evaluation 

results from the sites, and then the global average RMSE and MAPE of 

the global combined models are calculated. Table 5.22 shows the global 
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combined model evaluation results for Abalone, Parkinson (Total 

UPDRS), Parkinson (Motor UPDRS), and Boston Housing datasets that 

are partitioned randomly and compared with the best updated model 

(single best model). For Abalone dataset, all combination methods got 

similar and better results, while the linear model combination using the 

simple average method is slightly better than other methods in Parkinson 

(Motor UPDRS) and Boston Housing datasets. Besides, the best updated 

model in Parkinson (Total UPDRS) dataset performed better than the 

global combined models, and in the other datasets, the results are close.  

 

Table 5.22. Global Combined Model Evaluation for Random Partitioned Data 

 

 
 

 

 

In Table 5.23, we compared the proposed method using stepwise 

model selection approach for the randomly partitioned datasets with our 

proposed linear and nonlinear combination and the centralised learning 

approach. The centralised learning approach got better RMSE results in 

Parkinson disease (Total UPDRS) and Parkinson disease (Motor UPDRS) 

datasets. Our proposed linear combination method outperformed the other 

methods and the centralised learning approach for Abalone and Boston 

Housing datasets. 
 

Dataset 

Global Combined Model 
Single Best Model 

Simple average 
Error-based 

(RMSE) 
Performance-

based (Accuracy) 
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Abalone 2.4 13% 2.4 13% 2.4 13% 2.4 
(LASSO – S231) 14% 

Parkinson 
(Total 

UPDRS) 
10.06 47% 10.06 47% 10.09 48% 8.97 

(RFR – S312) 41% 

Parkinson 
(Motor 

UPDRS) 
8.84 62% 8.88 63% 8.90 63% 8.70 

(RFR – S312) 60% 

Boston 
Housing 

4.1 16% 4.2 16% 4.2 16% 4.4 
(RFR – S312) 16%  
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Table 5.23. The Proposed Methods and Centralised Learning Approach Evaluation for Random 
Partitioned Data  

 
 
 
 
 
 
 
 
 

 

 
 

Figure 5.13.  The Proposed Methods and Centralised Learning Approach Evaluation for 
Random Partitioned Data 

 
 
Table 5.24 shows the RMSE results of our proposed method using 

stepwise model selection approach for Boston housing dataset compared 

with our proposed linear and nonlinear methods and the distributed 

learning method proposed in [166]. Our proposed linear combination 

method performed better than the other methods. 

Table 5.24. Distributed Learning Methods Evaluation for Boston Housing Dataset  

 
 
 

 
 

 

 

 

Dataset Linear 
combination 

method 

Nonlinear 
combination 

method 

Stepwise Model 
Selection 
Approach 

Centralised 
learning 

Parkinson disease 
(Total UPDRS) 

8.97 10.16 10.06 7.53 

Parkinson disease 
(Motor UPDRS) 7.30 8.22 8.84 6.98 

Abalone 2.36 2.43 2.40 2.39 

Boston Housing 3.10 3.55 4.10 3.20 

Method Boston Housing 
Linear Combination Method 3.10 
Nonlinear Combination Method 3.55 
Stepwise Model Selection Approach 4.10 
Mandal et al. [166] 4.91 
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ii. Local-level Modelling Results: 

Tables 5.25 - 5.28 show the local-level modelling results 

for Parkinson (Total UPDRS), Parkinson (Motor UPDRS), Boston 

Housing, and Abalone datasets that partitioned randomly and 

compared with the best local model. Our method is better than the 

best local model in Parkinson (Motor UPDRS) dataset in all sites 

and better in two sites in Parkinson (Total UPDRS) and Boston 

Housing datasets. Furthermore, in Abalone dataset, we got better 

result in one site and close results with the other two sites. Thus, 

we conclude that the distributed sites can utilise other sites models 

to improve the prediction performance. 

Table 5.25. Local Combined Model Evaluation for Parkinson (Total UPDRS) dataset 

 

 

 

 

 

 

Table 5.26. Local Combined Model Evaluation for Parkinson (Motor UPDRS) dataset 

 

 

 

 

 

Table 5.27. Local Combined Model Evaluation for Boston Housing dataset 

 

 

 

 

 

 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 12.11 69.08 7.77 25.71 13.02 58.52 
Error-based 

(RMSE) 12.29 70.17 8.09 26.03 13.24 59.40 

Performance-
based (Accuracy) 12.34 70.52 7.89 25.97 13.02 58.52 

The Best Local Model (Single 
Model) 12.11 67.16 9.29 28.09 14.78 64.78 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 8.83 69.62 9.01 54.46 9.78 59.74 
Error-based 

(RMSE) 8.80 68.83 9.01 54.46 10.14 62.80 

Performance-
based (Accuracy) 8.89 70.05 9.00 54.44 9.78 59.74 

The Best Local Model (Single 
Model) 9.39 71.46 9.51 55.45 11.97 75.33 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 3.75 17.07 5.68 21.66 4.08 17.63 

Error-based 
(RMSE) 3.67 17.19 7.34 28.02 4.97 20.84 

Performance-
based (Accuracy) 3.70 17.21 4.14 17.22 4.32 20.37 

The Best Local Model (Single 
Model) 3.60 17.29 9.51 36.83 6.38 29.38 
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Table 5.28. Local Combined Model Evaluation Results for Abalone dataset 

 
 

Table 5.29 shows the proposed local level modelling 

results using stepwise model selection strategy compared with the 

proposed linear and nonlinear combination methods for randomly 

partitioned datasets. The results are compared with the best local 

model in each site. The proposed method using stepwise model 

selection got improved results in Parkinson disease (Motor 

UPDRS) dataset for all sites and better results in one or two sites 

for the other datasets. The nonlinear combination method 

outperformed the best local model in Parkinson disease (Motor 

UPDRS), Parkinson disease (Motor UPDRS), and Boston Housing 

datasets in all sites. Therefore, the distributed sites can improve the 

prediction performance using other sites models and without 

sharing data to preserve data privacy.   

Table 5.29. The Proposed Methods Evaluation for Random Partitioned Data  

Dataset Linear combination 
method 

Nonlinear combination 
method 

Stepwise Model 
Selection Approach 

Parkinson disease 
(Total UPDRS) Better in two sites The best in all sites Better in two sites and 

similar in one site 
Parkinson disease 
(Motor UPDRS) Better in one site The best in all sites The best in all sites 

Abalone The best in all sites Better in two sites and 
similar in one site Better in one site 

Boston Housing Better in two sites The best in all sites Better in two sites 

 

 

 

 

 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 2.91 14.91 2.39 12.57 3.46 18.52 
Error-based 

(RMSE) 3.47 17.74 2.39 12.57 3.28 17.40 

Performance-
based (Accuracy) 3.47 17.74 2.39 12.57 4.12 23.82 

The Best Local Model (Single 
Model) 3.18 16.16 2.35 12.51 2.57 14.72 
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2) Non-random data partitioning:  

i. Global-level modelling results: 

Table 5.30 shows the global combined model evaluation 

results for Parkinson (Total UPDRS), Parkinson (Total UPDRS), 

and Boston Housing datasets that partition non-randomly and 

compared with the best updated model (single best model). The 

global combined model is slightly better than the best updated 

model in Parkinson datasets and comparable performance in 

Boston housing data. 

Table 5.30. Global Combined Model Evaluation for Non-random Partitioned 
Data 

 

 
 

For the datasets that are non-randomly divided, Table 5.31 

shows the results for proposed method using stepwise model 

selection approach compared with the linear and nonlinear model 

combination methods and the centralised learning approach. The 

centralised learning approach outperformed the other methods in 

Boston Housing dataset. The nonlinear combination method got 

better RMSE result in Parkinson disease (Total UPDRS) dataset, 

and the linear combination method is the best in Parkinson disease 

(Motor UPDRS) dataset. On the other hand, our method using 

stepwise model selection approach got lower performance in 

Parkinson disease (Total UPDRS) and Boston Housing datasets 

and close result to the other methods in Parkinson disease (Motor 

UPDRS) dataset. 

 

Dataset 

Global Combined Model 
Single Best Model Simple average Error-based 

(RMSE) 
Performance-

based (Accuracy) 
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Parkinson 
(Total 

UPDRS) 
10.1 34% 10.1 34% 10.2 34% 10.5 

(RFR-S312) 34% 

Parkinson 
(Motor 

UPDRS) 
7.8 32% 7.6 32% 7.7 32% 8.02 

(Ridge – S123) 39% 

Boston 
Housing 7.1 42% 7.2 43% 7.2 43% 7.2 

(DTR- S231) 43% 
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Table 5.31. The Proposed Methods and Centralised Learning Approach Evaluation for Non-
random Partitioned Data  

Dataset Linear 
combination 

method 

Nonlinear 
combination 

method 

Stepwise Model 
Selection 
Approach 

Centralised 
learning 

Parkinson disease 
(Total UPDRS) 8.19 6.94 10.1 8.17 

Parkinson disease 
(Motor UPDRS) 7.1 8.51 7.6 7.3 

Boston Housing 3.67 4.01 7.1 3.38 

 
 

 
 

Figure 5.14.  The Proposed Methods and Centralised Learning Approach 
Evaluation for Non-random Partitioned Data 

 
 

Table 5.32 shows the RMSE results for Boston housing 

dataset that are non-random partitioned for all proposed methods 

and the proposed approach in [166]. Our proposed linear 

combination method outperformed the other approaches.  
 

Table 5.32. Distributed Learning Methods Evaluation for Boston Housing Dataset 

 
Method Boston Housing 
Linear Combination Method 3.67 
Nonlinear Combination Method 4.01 
Stepwise Model Selection Approach 7.1 
Mandal et al. [166] 4.91 

 
 

ii. Local-level modelling results: 

Tables 5.33 - 5.35 show the local combined model results 

in each site for Parkinson (Total UPDRS), Parkinson (Total 

UPDRS), and Boston Housing dataset compared with the best 
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local model. Our method outperformed the best local model in 

Parkinson (Total UPDRS) in site 2, and slightly better or close 

results to the best local in other datasets sites. 

 

Table 5.33. Local Combined Model Evaluation for Parkinson (Total UPDRS) dataset 

 
 
 
 
 
 
 
 
 
 

Table 5.34. Local Combined Model Evaluation for Parkinson (Motor UPDRS) Dataset 

 
 
 
 
 
 
 
 
 
 
 

Table 5.35. Local Combined Model Evaluation for Boston Housing dataset 

 
 
 
 
 
 
 
 

 

For the non-randomly partitioned datasets, as shown in 

Table 5.36, the proposed method using stepwise model selection 

approach got better RMSE results than the best local model in 

Parkinson disease (Motor UPDRS) dataset, and better results in 

one or two sites in Parkinson disease (Total UPDRS) and Boston 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 13.62 51.01 5.25 20.20 9.66 23.84 
Error-based 

(RMSE) 13.62 51.01 5.89 23.07 9.62 23.78 

Performance-
based (Accuracy) 13.62 51.01 5.45 21.23 9.66 23.84 

The Best Local Model (Single 
Model) 13.21 48.11 9.12 35.42 10.67 25.51 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 11.45 65.87 7.62 39.51 8.18 25.13 

Error-based 
(RMSE) 11.36 65.36 6.91 36.43 8.24 25.30 

Performance-based 
(Accuracy) 11.43 65.77 7.33 38.53 8.29 25.45 

The Best Local Model (Single 
Model) 11.95 66.85 7.36 38.93 8.79 26.39 

Method Combination 
Method 

Site1 Site2 Site3 
RMSE MAPE RMSE MAPE RMSE MAPE 

Local-
Level 

Modelling 

Simple average 2.38 6.77 5.09 16.53 5.77 30.83 
Error-based 

(RMSE) 2.42 6.74 5.11 16.71 5.78 30.91 

Performance-
based (Accuracy) 2.39 6.76 5.09 16.54 5.77 30.84 

The Best Local Model (Single 
Model) 2.54 7.88 5.09 15.99 5.75 30.72 
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Housing datasets. The nonlinear combination method is the best in 

all datasets. 
 

Table 5.36. The Proposed Methods Evaluation for Non-random Partitioned Data  

 
 
 
 
 
 
 
 
 
 

5.4.2. Discussion and Evaluation 

We compared the proposed method using stepwise model selection 

approach for the randomly partitioned datasets with our proposed linear and 

nonlinear combination and the centralised learning methods. All methods results 

are close in Abalone dataset, and the proposed linear combination method is 

slightly better than other methods and the centralised learning approach in 

Abalone and Boston Housing datasets. The centralised learning approach got 

better RMSE results in Parkinson disease (Total UPDRS) and Parkinson disease 

(Motor UPDRS) datasets. In non-randomly partitioned datasets, our method got 

lower performance in Parkinson disease (Total UPDRS) and Boston Housing 

datasets and a close result to the other methods in Parkinson disease (Motor 

UPDRS) dataset. The nonlinear combination method got better RMSE result in 

Parkinson disease (Total UPDRS) dataset, and the linear combination method is 

the best in Parkinson disease (Motor UPDRS) dataset. The centralised learning 

approach outperformed the other methods in Boston Housing dataset. We 

developed a global combined model without sharing data between distributed 

sites to preserve data privacy. We saved the cost and time of data transformation 

from one site to another or data centralisation. Also, avoid using a server for 

controlling the learning process to avoid server issues and iterative 

communication and computation overheads. We achieved comparable 

performance to the centralised learning approach in some datasets. We preserved 

data privacy and models updates for each site by performing model building and 

updating methods locally. From the local combined models results for the 

Dataset Linear combination 
method 

Nonlinear 
combination method 

Stepwise Model 
Selection Approach 

Parkinson disease 
(Total UPDRS) Better in two sites The best in all sites Better in two sites 

Parkinson disease 
(Motor UPDRS) Better in two sites The best in all sites The best in all sites 

Boston Housing Better in two sites The best in all sites Better in one site and 
similar in one site 
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randomly and non-randomly partitioned datasets, we conclude that the 

distributed sites can utilise other sites models to improve the prediction 

performance without sharing the data between the sites to preserve the data 

privacy for each site. However, as discussed in section 5.3.4, several issues may 

arise if we deal with large sites number, such as increased computation and 

communication overheads, time-consuming, and scalability issues. In addition, 

there is a possibility of malicious attacks on the exchanged models. In future, we 

will suggest decentralised machine learning strategies to overcome these 

problems. 

 

5.5 SUMMARY 

This chapter presented our proposed decentralised learning methods using 

stepwise model selection approach for classification and regression algorithms. Our 

contribution is developing a decentralised learning approach to multiple, un-

exchangeable, and distributed data resources without using a centralised learning 

method. At the same time, overcome individual local model limitations by utilising 

knowledge from other sites local models but keeping minimal communication in-

between and preserving local data privacy. We aim to develop a global combined 

model for distributed sites without centralising data, share the data between the 

distributed sites, or use a central location to control the learning process. In addition, 

a site can build a local combined model by utilising other sites local models to improve 

the prediction performance. One of our objectives is to enhance the prediction 

performance as possible by examining different model selection and combination 

methods.  

We investigated several model selection, weighting, and combination methods 

with different classification and regression algorithms. The experiment results showed 

that our proposed decentralised learning method using stepwise model selection 

approach to develop a global combined model performed better for classification 

algorithms than regression in most datasets. The global combined model using 

classification algorithms outperformed the centralised learning approach in most 

datasets and got close results for the remaining randomly partitioned datasets. In 

addition, for non-random partitioned data, the global combined model results and the 
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centralised learning approach are close. In the global combined model using 

regression algorithms for randomly partitioned data, our method got close results with 

the centralised learning approach in Abalone and Boston housing datasets and lower 

prediction performance in Parkinson datasets. In Parkinson disease (Motor UPDRS), 

our method and the centralised learning approach results are close for the non-

randomly partitioned data. We proved that we could maintain the learning 

performance at a similar level as centralised machine learning, and the distributed sites 

could utilise other sites models to improve the prediction performance.  

The proposed model combination method using the stepwise model selection 

approach showed that we could improve the prediction performance at the global and 

local level for the distributed sites without using a central location to coordinate or 

control the learning process. We overcame the centralised learning control issues and 

preserved data privacy by avoiding data sharing between distributed sites or a server. 
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Chapter 6 

 

Model Combination Method Using All Possible 

Sequence Combinations Approach 

 
 

6.1 CHAPTER OVERVIEW 

 
This chapter presents our proposed decentralised learning and model 

combination methods using all possible sequence combinations approach. Section 

6.2 views our contribution and aims to develop a global combined model using all 

possible sequence combinations approach. Next, the proposed method for 

classification with its experiment results and discussion are shown in section 6.3 and 

for regression algorithms in section 6.4. Finally, section 6.5 presents the chapter 

summary. 

  

6.2 INTRODUCTION 

Proper model selection and combination strategies are fundamental for 

building an efficient combined model to improve prediction performance. Our 

contribution is developing a decentralised learning approach to un-exchangeable and 

distributed data without using a centralised learning method, exchanging lots of 

intermediate information, or using a central site for iterative communication or 

computation. Our focus in this chapter is on models evaluation and combination 

strategies using all possible sequence combinations approach to achieve the best-

combined global model. We aim to build a global combined model with minimal 
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exchanged information without sharing data between distributed sites to preserve 

data privacy and save the time and cost of data transformation between sites. 

Moreover, develop a learning approach for distributed sites without using 

complicated methods that need more communication between distributed sites or a 

central site to coordinate the learning process. The proposed decentralised learning 

method passes the trained models and evaluation results between the sites with 

minimal communication rounds than federated learning. We perform the model 

selection method using Gossip learning approach and the updating process using 

mini-batches stochastic gradient descent in each site locally and in a decentralised 

learning fashion. Finally, combine the final models using a linear combination 

approach.  

 

6.3 PROPOSED METHOD FOR CLASSIFICATION ALGORITHMS 

6.3.1. Global-level Modelling Approach: 

We develop a global combined model using all possible sequence 

model combinations method. We aim to enhance the prediction performance 

by examining all possible sites sequences to build a global combined model. 

The proposed approach performs model selection and updating methods in 

each site locally in a decentralised learning fashion using Gossip learning 

method, then combines the best-updated models at the server using the linear 

combination method. First, we define all possible sequences for the 

participating sites; then, we apply the proposed method for each sequence. 

Figure 6.1 shows the proposed approach for one sequence. The first site in the 

sequence builds different local models using different classification 

algorithms, and then the site sends these models to the following site. Next, the 

following site evaluates the received models, selects the best models, and 

updates the selected models using mini-batch stochastic gradient descent. After 

updating, the site selects the best-updated models and sends the selected 

models to the following site in the sequence. Each site evaluates the models 

and only updates the best-updated models without losing the previous site data 

information. 
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Figure 6.1. Sequence Learning Approach 

 

As illustrated in Figure 6.2, after finishing model selection and 

updating processes using all sites data, we send the final models to all sites for 

final evaluation. Each site evaluates the received models based on their local 

data and then sends the models with their evaluation results and the data size 

to the server. Then, the server calculates the average models' accuracy., and 

combines the models using the linear combination method by assigning weight 

for each model based on its average accuracy to develop the global combined 

model. This approach does not expose the data resource and hence preserves 

data privacy. In addition, there is no computation or communication overhead 

between the server and distributed sites and minimum exchanged information 

between the sites and the server. 

 
 

Figure 6.2. Models Combination Approach 
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After defining all possible sequences for the participated sites	S),	i =

1,2, … , n, where n is the sites number, and sequences number=n!, we apply the 

following steps for each sequence. Figure 6.3 illustrates the global-level 

modelling approach for one sequence: 

1) The first site S) in the sequence: 

a) Apply different j learning algorithms to build local models MR, j = 1,2, … ,m 

, where j is the algorithms number 

b) Use 10-fold cross-validation results to evaluate the models MR based on the 

local data in site S) and calculates the accuracy Acc	fMRg	using confusion 

matrix. 

c) Send the best models MR∗ to the next site in the sequence 

2) The next site receives the models then: 

a) Update the models based on its local date using mini-batch stochastic 

gradient descent method as follows: 

i. Divide the local data 	D) into batches b 

ii. For each batch of p examples 𝑥8	with corresponding target value 𝑦8, t 

= 1,2,3, …, p:  

iii. Compute the gradient estimate of the model loss function [143,161]: 

𝑔 = 	 2
g
	∇[∑ ℓg

812 	f(MR∗	(𝑥8	; 𝑤g, 𝑦8)           (6.1) 

iv. Update model parameter 𝑤 = 	𝑤 − 	𝛾𝑔, where 𝛾 is the learning rate, 

and w is the model parameter. 

For example, we calculate 𝑔 of the loss function (prediction error) for 

SVM model, then we update the model with the gradient of the sum 

of the loss functions to minimise model error. In the model update 

approach for SVM model, we reuse a trained model in its previous 

state to start the updating process. In DT algorithm, the model update 

approach adds successive DT model to the previous model 

sequentially. Each DT model tries to improve on its predecessor by 

reducing model errors and fitting a new model to the residual errors 

made by the previous model. In each step, the models fit on the 

negative gradient of the loss function. 

b) Evaluates the updated models Acc	(MR∗). 
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c) Select the best updated models MR∗ using a defined performance threshold.  

d) Send the selected model to the next site in the sequence. 

3) Repeat the step 2 until finish the sites sequence and the selected models MR∗ 

being updated using all n sites local data, then: 

a) Send the final updated models to all sites for final evaluation. 

b) Each site evaluates the received models based on its local data, then sends 

the evaluated models with the evaluation results and the data size to the 

server. 

4) The server combines the received models using the linear combination method 

as follows: 

a) Calculates the average accuracy for each model	Acc	fMR∗g. 

Acc	(MR∗) = ∑ V!
V	
∗ Acc	(MR∗

+
)12 )	in	S)                (6.2)  

, where i is site number, D) is the number of samples of site i, and D is all 

sites’ data samples number. 

b) Weighting each model based on its average accuracy	AccfMR∗g. 

w>3∗ =
;''	(>3∗)

∑ ;''	(>3∗)#
!$%

 ,                      (6.3) 

, where i=1, 2, …, n, 0 <= w>3∗ <=1 and  ∑ w>3∗ = 1+
)12  

c) Linearly combines the models to develop the global model MX∗: 

MX∗	(x) = max∑w>3∗MR∗	(x)                (6.4) 
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Figure 6.3. The Proposed Decentralised Learning Method 

 
 
6.3.2. Experimental Study 

The experiments are performed to evaluate the proposed global 

combined model performance, compared with different studies and the 

centralised learning approach that moves all distributed data to a centralised 

database. 

 

I. Distributed Data Simulation 

We applied the method to the datasets that used in chapter 3 (section 

3.3.3). We used three databases: blood transfusion, diabetes (non-randomly 

partitioned), and heart disease datasets [29]. Therefore, we divided each 

dataset into different parts as distributed sites site1, site2, and site3. At each 

site, the dataset is divided into local and validation data. The local data 

partition is used to develop the local models, evaluate the received models, 

and update the selected models. The validation data is used to assess the 

final global and local combined model. 
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II. Models Building and Evaluation 

We applied the classification learning algorithms for model building 

and updating methods that used in chapter 5 (section 5.3.3). The algorithms 

are Support Vector Machine (linear and nonlinear SVM), Neural Network 

(NN), Naïve Bayes (NB), Random Forest (RF), Decision Tree (DT), and 

Logistic Regression (LR). We evaluated the global combined models in 

each site instead of the server because the sites will not share their 

validation data with the server. Each site sends the evaluation results to the 

server with the test data size. Then, the server receives the sites evaluation 

results and calculates the average accuracy of the global combined model. 
 

 
III. Experiments Results 

In Appendix D, we present the detailed results for the global-level 

modelling approach. Table 6.1 compares the proposed method with model 

combination using average accuracy, and the centralised learning approach 

for blood transfusion dataset that randomly partitioned. Our proposed 

method got the best result for the sequence Site1- Site2- Site3, and the two 

sequences that start from site 1 performed better than other sites sequences. 

Our proposed combination method is better than the combination method 

using average accuracy in most sites sequences. 

Table 6.1. Global Combined Model Evaluation for All Sites Sequences for Blood 
Transfusion Dataset 

Sequence Combination method Accuracy  

Site1- Site2- Site3 The Proposed Method 61% 
Using Average accuracy 59% 

Site1- Site3- Site2 The Proposed Method 55% 
Using Average accuracy 54% 

Site2- Site1- Site3 The Proposed Method 52% 
Using Average accuracy 53% 

Site2- Site3- Site1 The Proposed Method 52% 
Using Average accuracy 53% 

Site3- Site1- Site2 The Proposed Method 52% 
Using Average accuracy 50% 

Site3-Site2- Site1 Single model 53% 
Centralised learning approach 60% 

 

Table 6.2 shows the evaluation results for diabetes dataset that non-

randomly partitioned. Our proposed method is slightly better than the 
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centralised learning method for the sequences Site2- Site3- Site1 and Site3- 

Site2- Site1. Furthermore, the proposed method is better than the 

combination method using average accuracy in all sites sequences except 

in Site2- Site1- Site3 sequence. 

Table 6.2. Global Combined Model Evaluation for All Sites Sequences for Diabetes 
Dataset 

Sequence Combination method Accuracy 

Site1- Site2- Site3 The Proposed Method 62% 
Using Average accuracy 60% 

Site1- Site3- Site2 The Proposed Method 68% 
Using Average accuracy 67% 

Site2- Site1- Site3 The Proposed Method 52% 
Using Average accuracy 61% 

Site2- Site3- Site1 The Proposed Method 71% 
Using Average accuracy 62% 

Site3- Site1- Site2 The Proposed Method 67% 
Using Average accuracy 63% 

Site3- Site2- Site1 The Proposed Method 71% 
Using Average accuracy 66% 

Centralised learning approach 69% 
 
 

For heart disease dataset that randomly partitioned, Table 6.3 shows 

that the central learning approach is better than our method but not far from 

our results for the sequences Site3-Site1-Site2 and Site3-Site2-Site1. Our 

proposed combination method performed better than the combination 

method using average accuracy in three sequences and a similar result in 

one sequence. 

Table 6.3. Global Combined Model Evaluation for All Sites Sequences for Heart 
Disease Dataset 

 
Sequence Combination method Accuracy 

Site1- Site2- Site3 The Proposed Method 72% 
Using Average accuracy 83% 

Site1- Site3- Site2 The Proposed Method 80% 
Using Average accuracy 79% 

Site2- Site1- Site3 The Proposed Method 80% 
Using Average accuracy 81% 

Site2- Site3- Site1 The Proposed Method 83% 
Using Average accuracy 83% 

Site3- Site1- Site2 The Proposed Method 90% 
Using Average accuracy 86% 

Site3- Site2- Site1 The Proposed Method 90% 
Using Average accuracy 81% 

Centralised learning Approach 92% 
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Table 6.4 shows the results of the proposed method using all 

possible sites sequences approach compared with the proposed linear, 

nonlinear combination methods and models combination method using the 

stepwise model selection approach in chapters 3, 4, and 5, respectively, and 

with the centralised learning approach. In diabetes dataset, all possible sites 

sequences approach outperformed the other methods, and the result is 

slightly better than the centralised learning approach in blood transfusion 

dataset. Furthermore, the stepwise model selection approach is better than 

other methods in blood transfusion dataset and close to the proposed all 

possible sites sequences method. In heart disease dataset, the stepwise 

model selection approach and the proposed all possible sites sequences 

method results are similar and close to the centralised learning approach 

result. We conclude that we could improve the prediction performance and 

get better or comparable results compared to the centralised learning 

performance without using a server to coordinate the learning process or 

centralise the data with minimum information exchanged and 

communication rounds. 

Table 6.4. Global Combined model and Centralised Learning Approach Evaluation 

 
 

 
  
 
 
 
 
 
 

 
 

Figure 6.4. Global Level Modelling Methods and Centralised Learning Approach Evaluation 

Method Blood 
transfusion 

Heart 
Disease 

Diabetes (non-
randomly partitioned) 

Linear combination method 59% 86% 67% 
Nonlinear combination method 57% 89% 67% 
Stepwise Model Selection Approach 63% 90% 67% 
All Possible Sequences Method 61% 90% 71% 
Centralised Machine Learning 60% 92% 69% 
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Table 6.5 presents our proposed method using all possible sequence 

combinations approach. We compared it to our proposed methods using linear 

and nonlinear model combination methods in chapters 3, 4, the proposed method 

using stepwise model selection approach in chapter 5, and with the research 

works [6, 48, 96, 166, 170 176,179, 181, 182]. There are no research works 

found for blood transfusion dataset, thus, we exclude it from the table.  Our 

proposed all possible sequences and the stepwise models selection methods 

results are better than other methods in heart disease dataset. For diabetes 

dataset, the proposed method in [69] outperformed the other methods. 

Table 6.5. Global Combined Models and related works Evaluation 

 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3.3. Discussion and Evaluation 
 

The global combined model shows improved performance compared to 

the centralised learning approach. In diabetes dataset, the proposed method 

using all possible sites sequences method outperformed the linear and nonlinear 

combination and the centralised learning methods. For blood transfusion 

dataset, the proposed method is slightly better than the centralised learning 

approach and close to the stepwise model selection approach. In heart disease 

dataset, the stepwise model selection approach and the proposed approach using 

all possible sites sequences method results are similar and close to the 

centralised learning approach result. We improved the prediction performance 

Method Heart 
Disease 

Diabetes (Partitioned in a 
non-random method) 

Linear Combination Method 86% 67% 
Nonlinear Combination Method 89% 67% 
Stepwise Model Selection Approach 90% 67% 
All Possible Sequences Method 90% 71% 
Tsoumakas et al. [6] - EV1 84% 77% 
Tsoumakas et al. [6] - EV2 83% 77% 
Tsoumakas et al. [6] - EV 3 85% 77% 
Bashir et al. [48] 84% 77% 
Zhang et al.  [96] - 80% 
Mandal et al. [166] - 76% 
Wang et al. [170] - 77% 
Gao et al. [176] 72% - 
Haque et al. [179] 82% 78% 
Froelicher et al. [181] - 78% 
Ed-daoudy and Maalmi [182] 82% - 
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and got better, or comparable results compared to the centralised learning 

performance without centralising the distributed datasets or using a server to 

coordinate the learning process to avoid the centralised learning control issues 

and overheads. We built the local models and updated the selected model locally 

with minimum information exchanged and communication rounds. The 

proposed approach exchanges the trained models and evaluation results, and this 

practical approach can substantially reduce privacy disclosure risks. 
 

However, increased computation and communication overheads, time-

consuming, and scalability issues may arise if we deal with large sites number. 

It involves large sites sequences number, and the developed global model from 

each sequence. These issues can be addressed by proposing a search strategy 

that examines and selects the sequences of the best global average performance 

before performing models combining phase to develop the global model. This 

may reduce computation and communication overheads and time and enhance 

the proposed method scalability. In addition, malicious attacks are possible on 

the trained models to retrieve training data or reveal meaningful information. In 

future, we will consider this issue and find a decentralised machine learning 

strategy to overcome this problem. 
 

6.4 PROPOSED METHOD FOR REGRESSION ALGORITHMS 

 
We develop a global combined model for regression algorithms using 

the similar approach that used in section 6.3.1, but we use RMSE and MAPE 

metrics for model performance evaluation instead of accuracy metric. We use 

RMSE for the model selection approach and then apply linear model 

combination methods by assigning a model weight using simple weight average, 

error-based (RMSE), and performance-based (Accuracy) approaches. 

 

6.4.1. Experimental Study 
 

We conducted experiments to evaluate the performance of the proposed 

method. We compared the global combined model with a centralised learning 

approach that moves all distributed data to a centralised database. 
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I. Distributed Data Simulation 
 

We applied our methods to the same preprocessed datasets that used in 

Chapter 3 (section 3.4.3): Parkinson disease and Abalone datasets [29]. We 

divided each dataset into different parts as distributed sites site1, site2, and site3. 

At each site, the dataset is divided into local and validation data. The local data 

partition is used to develop the local models, evaluate the received models, and 

update the selected models. The validation data is used to evaluate the final 

global and local combined model. 
 

II. Models Building and Evaluation 
 

We applied the same learning methods for model building and updating 

methods that used in chapter 5 (section 5.4.1). The algorithms are Linear 

Regression (LR), Support Vector Regression (SVR), Decision Tree Regression 

(DTR), Neural Network Regressor (NNR), Random Forest Regressor (RFR), 

Least Absolute Shrinkage and Selection Operator regression (LASSO), Ridge, 

and ElasticNet. We evaluated the global combined models in each site, and then 

each site sent the evaluation results to the server with the test data size. Finally, 

the server received the evaluation results and calculated the average RMSE of 

the global combined models. 
 

III. Experiments Results 
 

The detailed results for the proposed method are illustrated in 

appendix D. Figure 6.5 shows LR model updating process for Abalone 

dataset during the sequence site1-site2-site3 using mini-batch SGD. Local 

RMSE for LR model in site 1 = 2.23. Then, in site 2, LR model RMSE after 

updating process = 2.08. While in site3, LR model RMSE after updating 

process = 2.49. 
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(a) using site 2 local data 

 

(b) using site 3 local data 

 
Figure 6.5.  LR model updating method using mini-batch SGD 

 

Table 6.6 shows the linear combination method using error-based 

model weighting is better than the other weighting methods in most sites 

sequences. In addition, we compare the global combined models for all 

sites sequences with the centralised learning approach. The central learning 

approach is slightly better than the proposed method in all sequences. We 

performed a statistical significance analysis to interpret the results and 

investigate if the centralised learning approach difference from our method 

is significant. We performed the evaluation experiment 100 times and 

computed the RMSE results difference between the centralised learning 

approach and our decentralised learning method as follows: 

 

RMSEV)jj&%&+'& =	RMSEV&'&+b%,-)(&k - RMSEl&+b%,-)(&k     (6.5) 

 

If RMSEV)jj&%&+'& > 0 in 95% of the experiments or more, then it 

implies that the differences between the centralised learning approach 

result and our method are statistically significant. We found that the 

centralised learning approach difference is significant in 98% of the 

experiments.  
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Table 6.6. Global Combined Model Evaluation (RMSE) for All Sites Sequences for 
Abalone Dataset 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Table 6.7 compares the RMSE results of our global combined 

models for all sites sequences with the centralised learning approach for 

Parkinson disease (Total UPDRS) dataset that randomly partitioned. The 

proposed method using the error-based model weighting approach is 

slightly better than the central learning approach. In addition, the linear 

combination methods results in the sequence site1 – site 2 – site 3 are better 

than the other sequences. 

Table 6.7. Global Combined Model Evaluation (RMSE) for All Sites Sequences 
Parkinson disease (Total UPDRS) dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sequence Linear Model Combination Method RMSE 

Site 1- Site 2- Site 3 
Simple average 2.52 

Error-based (RMSE) 2.52 
Performance-based (Accuracy) 2.52 

Site 1- Site 3- Site 2 
Simple average 2.85 

Error-based (RMSE) 2.79 
Performance-based (Accuracy) 2.85 

Site 2- Site 1- Site 3 
Simple average 2.53 

Error-based (RMSE) 2.51 
Performance-based (Accuracy) 2.53 

Site 2- Site 3- Site 1 
Simple average 2.68 

Error-based (RMSE) 2.64 
Performance-based (Accuracy) 2.64 

Site 3- Site 1- Site 2 
Simple average 2.85 

Error-based (RMSE) 2.80 
Performance-based (Accuracy) 2.79 

Site 3- Site 2- Site 1 
Simple average 2.68 

Error-based (RMSE) 2.64 
Performance-based (Accuracy) 2.68 

Centralised learning approach 2.39 

Sequence Linear Model Combination Method RMSE 

Site 1- Site 2- Site 3 
Simple average 8.79 

Error-based (RMSE) 7.46 
Performance-based (Accuracy) 9.48 

Site 1- Site 3- Site 2 
Simple average 9.9 

Error-based (RMSE) 9.9 
Performance-based (Accuracy) 9.9 

Site 2- Site 1- Site 3 
Simple average 9.6 

Error-based (RMSE) 9.6 
Performance-based (Accuracy) 9.6 
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Table 6.8 compares the global combined models for all sites 

sequences with the centralised learning approach for Parkinson disease 

(Motot UPDRS) dataset that partitioned non-randomly. Our proposed 

method in the sequence Site 1- Site 3- Site 2 outperformed all other sites 

sequences and centralised learning approach. In addition, the linear 

combination method RMSE results using the error-based model weighting 

approach got the best RMSE results in most sites sequences. 

Table 6.8. Global Combined Model Evaluation (RMSE) for All Sites Sequences for 
Parkinson disease (Motor UPDRS) dataset 

Sequence Linear Model Combination Method RMSE 

Site 1- Site 2- Site 3 
Simple average 10.79 

Error-based (RMSE) 10.79 
Performance-based (Accuracy) 10.79 

Site 1- Site 3- Site 2 
Simple average 7.23 

Error-based (RMSE) 7.05 
Performance-based (Accuracy) 7.22 

Site 2- Site 1- Site 3 
Simple average 12.01 

Error-based (RMSE) 11.98 
Performance-based (Accuracy) 11.99 

Site 2- Site 3- Site 1 
Simple average 10.51 

Error-based (RMSE) 10.60 
Performance-based (Accuracy) 10.61 

Site 3- Site 1- Site 2 
Simple average 7.98 

Error-based (RMSE) 7.93 
Performance-based (Accuracy) 7.97 

Site 3- Site 2- Site 1 
Simple average 10.47 

Error-based (RMSE) 10.47 
Performance-based (Accuracy) 10.47 

Centralised learning approach 7.3 
 

Table 6.9 shows the global combined model evaluation results 

using all possible sites sequences method compared with the proposed 

linear and nonlinear combination methods in chapters 3 and 4, respectively, 

and with the proposed model combination using the stepwise model 

selection approach in chapter 5. Our proposed method using all possible 

Site 2- Site 3- Site 1 
Simple average 11.9 

Error-based (RMSE) 11.9 
Performance-based (Accuracy) 11.9 

Site 3- Site 1- Site 2 
Simple average 10.30 

Error-based (RMSE) 10.38 
Performance-based (Accuracy) 10.31 

Site 3- Site 2- Site 1 
Simple average 11.63 

Error-based (RMSE) 11.56 
Performance-based (Accuracy) 11.76 

Centralised learning approach 7.53 
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sites sequences approach in Parkinson disease (Total UPDRS) and 

Parkinson disease (Motor UPDRS) datasets is better than the other methods 

and the centralised learning approach. Furthermore, in Abalone dataset, the 

linear combination method is slightly better than other methods. Our 

proposed methods achieved somewhat improved results than the 

centralised learning approach. 

Table 6.9. Global Combined Models and Centralised Learning Approach Evaluation 

Method Parkinson disease 
(Total UPDRS) 

Abalone Parkinson disease (Motor 
UPDRS) (non-randomly 

partitioned) 
Linear combination 

method 8.97 2.36 7.1 

Nonlinear 
combination method 10.16 2.43 8.51 

Stepwise Model 
Selection Approach 10.06 2.40 7.6 

All Possible 
Sequences Method 7.46 2.51 7.05 

Centralised learning 7.53 2.39 7.3 

 
 

 
Figure 6.6. Global Level Modelling Methods and Centralised Learning Approach Evaluation 

 
 

6.4.2. Discussion and Evaluation 
 

We examined all possible sites sequences for the model 

combination approach to develop the global combined model and 

evaluated results with the previously proposed methods in chapters 3, 4, 

and 5 and with the centralised learning approach. The proposed method 

using all possible sites sequences approach is better than the other proposed 
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methods and the centralised learning approach in Parkinson disease (Total 

UPDRS) and Parkinson disease (Motor UPDRS) datasets. In Abalone 

dataset, all methods results are close, and the linear combination method is 

slightly better than other methods. Furthermore, our proposed methods 

showed slightly improved results compared to the centralised learning 

approach using a decentralised learning approach. Moreover, the method 

performed the model building, selection, and updating processes locally to 

avoid data and models updates sharing between the distributed sites to 

preserve data privacy. Also, we developed the global model without using 

a server to coordinate the learning process to avoid server issues and 

communication and computation overheads. However, as discussed in 

section 6.3.3, there are several concerns, such as malicious attacks on the 

trained model or if we deal with a large sites number. We will consider 

these issues in future and propose solutions to overcome these concerns. 

6.5 SUMMARY 

In this chapter, we proposed decentralised learning and model combination 

methods using all possible sequence combinations for classification and regression 

algorithms. We considered all possible sites sequences during model learning, 

selection, weighting, and combination methods. Our contribution is developing a 

decentralised learning approach to private and distributed data resources without using 

a centralised learning method and preserving sites data privacy. Our aim is to develop 

a global combined model for distributed sites without centralising the data, share the 

data between the distributed sites, or use a central location to control the learning 

process. One of our objectives is to enhance the prediction performance as possible 

by examining all possible sites sequences to develop the global combined model. The 

experiment results showed that the proposed approach outperformed the centralised 

learning approach in most datasets. Thus, we could maintain the learning process at a 

similar level as centralised machine learning and improve the prediction performance 

at the global level for the distributed sites without using a centralised location for 

coordinating or controlling the learning process. Furthermore, we overcame the 

centralised learning control issues and preserved data privacy by avoiding sharing data 

between distributed sites or server. 
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Chapter 7 
 

Conclusion and Future Work 
 

 

7.1 OVERVIEW AND CONTRIBUTIONS OF THE THESIS 

 
- We developed a decentralised learning approach for distributed data resources 

without using centralised machine learning method or relying on server for 

iterative communication or computation. We built combined prediction models 

derived from local learning outcomes at global and local levels using simple and 

efficient linear model combination models. Our privacy contribution is keeping 

data locally on each site and only the learning outcomes and minimum 

information (local models and model performance information) are 

exchangeable. We simulated distributed sites using different dataset partitioning 

scenarios and evaluated the performance of the proposed local and global level 

modelling methods on different classification and regression datasets. Our 

method showed its efficiency and applicability in the distributed environment. 

The global-level modelling for classification datasets got close or similar results 

with the centralised learning method in several datasets. In addition, the results 

of the global combined model for regression datasets are slightly better or close 

to the centralised learning approach. In the local-level modelling approach, all 

sites are utilised from other sites models and improved the prediction 

performance with minimal communication and information transfer to build its 

local combined model without requiring data sharing. There are no poor results 

obtained by models combining methods. We avoid using complicated methods 

that need more communication and computational cost and less information 

exchange than FL. We developed a global combined model without moving the 
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local data to another site or a central server. The proposed method did not expose 

the data resource and hence preserved data privacy. We saved the cost and time 

of data transformation from one site to another and preserved data privacy. 

- We developed global combined model using a decentralised version of model 

selection and nonlinear model combination strategies. The proposed method 

preserved data privacy by avoiding data sharing or centralisation with fewer 

communication rounds than FL. We developed a combined local model for each 

site by utilising the learning outcomes from local data resources from other sites. 

We conducted experiments on classification and regression datasets. The 

experiments showed similar or close results to the centralised learning approach 

for classification datasets, and comparable or better performance than the 

centralised learning approach for the regression datasets. The local combined 

model showed better prediction performance than the best local model in most 

datasets, proving that each site can utilise other sites models to improve the 

prediction performance without sharing the data between sites to preserve the 

data privacy. The proposed nonlinear combination approach provides an 

effective alternative with much less information sharing to preserve data privacy 

and reduced communication and computation costs. 

- We developed a decentralised alternative to the federated learning approach 

without using a server or exchanging intermediate computing updates to 

overcome iterative learning process issues. We proposed model selection and 

updating strategies using stepwise model selection method and gossip learning 

approach that make the final combined model optimal and valuable for all sites. 

We minimised communication and computation overheads and preserved data 

privacy by only passing the models between the distributed sites and updating 

the models locally in each location without exchanging models updates 

information. We used a simple linear combination method to combine the best-

updated models to develop combined models at global and local levels with less 

information sharing between the distributed sites. The experiment results 

showed that the proposed method performed better for classification datasets 

than regression. The global combined model using classification algorithms 

outperformed the centralised learning approach in most datasets and got close 

results for the remaining randomly partitioned datasets. In addition, for non-

random partitioned data, the global combined model results and the centralised 
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learning approach are close. In the global combined model using regression 

algorithms, our method got close results with the centralised learning approach 

in some datasets. In addition, we showed that we could improve the prediction 

performance at the global and local level for the distributed sites without using 

a central location to coordinate or control the learning process. We overcame 

the centralised learning control issues and preserved data privacy by updating 

the models locally and avoiding data sharing between distributed sites or a 

server. 

- We developed a decentralised learning approach that applies all possible 

sequence combinations approach to achieve the optimal global combined model 

without exchanging data or models updates information between the distributed 

sites. We preserved data privacy by performing the models selection and 

updating methods locally and minimised the communication and computation 

overheads. We improved the prediction performance and got better or 

comparable results compared to the centralised learning performance without 

sharing data or using a server to coordinate the learning process. The proposed 

method performed the model building, selection, and updating processes locally 

with minimum information exchanged and communication rounds, and 

preserved data and models updates. In addition, we developed the global model 

without using a server to coordinate the learning process to avoid server issues 

and communication and computation overhead. The proposed method showed 

improved performance compared to the centralised learning approach in most 

datasets. Thus, we could maintain the learning process at a similar level as 

centralised machine learning and improve the prediction performance at the 

global level for the distributed sites without using a centralised location for 

coordinating or controlling the learning process. 

In general, the proposed decentralised learning methods 

contributed to preserved data privacy by avoided raw data sharing or moving 

to a centralised database to perform data resampling like the ensemble learning 

methods.  Instead, these methods exchange the trained models and evaluation 

results, and this practical approach can substantially reduce privacy disclosure 

risks. Also, we avoided exchanging many intermediate information, using 

complicated privacy-preserving techniques, or relying on a central server for 

iterative computation and communication like federated learning. We focused 
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on model evaluation, selection, and combination strategies to achieve the 

optimal combined global and local models that maximise the combined 

models performance. These methods lead toward a simpler and new direction 

for decentralised privacy-preserving machine learning by keeping data locally 

for each site and combining diverse and accurate models instead of 

complicated ways that increase communication and computational overheads. 

We used simple linear and nonlinear combination methods to combine the best 

models to develop the global and local combined models with less information 

sharing between the distributed sites. The proposed approaches achieved 

improved performance at a similar level as centralised machine learning in 

most datasets. In addition, the distributed sites are utilised form other sites data 

resources to improve its prediction performance. We show the main findings 

in section 7.2 and the limitations and obstacles we faced in section 7.3. Finally, 

the future works and the chapter summary are presented in sections 7.4 and 

7.5, respectively. 

7.2 MAIN FINDINGS 

The evaluation results for the proposed decentralised learning methods 

showed that we could achieve better, or comparable prediction performance 

compared to the centralised learning approach. We developed the global model 

without pooling the distributed dataset to a central database, sharing data 

between the distributed sites, or using a server for the learning process. 

For the randomly partitioned classification datasets, the global 

combined model for the proposed decentralised learning method using stepwise 

model selection approach performed better than the centralised learning 

approach in most datasets, while the proposed methods using linear and 

nonlinear combination methods got similar or close performance to the 

centralised learning approach. The decentralised learning approach using all 

possible sites sequence combinations strategy is better than or close to the 

centralised learning approach. Compared to the research works [6, 48, 96, 166, 

170, 176-182], the proposed decentralised learning method using stepwise 

model selection approach achieved better results than the proposed methods 

using linear and nonlinear combination methods in most datasets. For non-
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randomly partitioned data, our proposed methods and the centralised learning 

approach performance got close performance. The decentralised learning 

approach using all possible sites sequence combinations strategy for a dataset is 

slightly better than the other proposed methods and the centralised learning 

approach. Furthermore, the proposed method using linear combination method 

is slightly better or close to the research works [6, 48, 96, 166, 170, 176-182], 

while the proposed learning method using nonlinear combination approach and 

stepwise model selection approach got similar or close performance to the 

research works in two datasets. 

For local-level modelling approach evaluation, we compared the local 

combined model results with the best local model in all sites. Most of distributed 

sites improved their local performance by utilising knowledge from other sites 

and overcoming their individual model limitations without sharing data to 

preserve their local data privacy. 

For the randomly partitioned regression datasets, the proposed method 

using the linear combination method is slightly better than our proposed method 

using linear nonlinear combination approach, the proposed method using 

stepwise model selection approach, and the centralised learning approach in 

some datasets and close performance in the other datasets. Furthermore, all our 

proposed methods results are better than the research work in [166].  In addition, 

the decentralised learning approach using all possible sites sequence 

combinations strategy is better than the other proposed methods and the 

centralised learning approach in two datasets. For non-randomly partitioned 

data, the decentralised learning approach using all possible sites sequence 

combinations approach is better than the other proposed methods and the 

centralised learning approach in a dataset. The decentralised learning approach 

using the nonlinear model combination performed better than the other methods 

and the centralised learning approach in a dataset. In contrast, the proposed 

method using the stepwise model selection strategy did not perform well in two 

datasets. In addition, the proposed method using the linear combination method 

performed better or close to the centralised learning approach. Compared to the 

research work in [166], the proposed methods using the linear and nonlinear 

combination approaches performed better than [166]. Besides, the distributed 
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sites improved their local performance by utilising learning outcomes from 

other sites data resources to develop a global combined model without sharing, 

centralising, or disclosing the privacy of these data resources. 

We avoided centralising the distributed data to a central location, 

sharing data between the distributed sites, or exchanging lots of intermediate 

information during the learning process. As a result, we minimised the 

communication costs for computation effectiveness and saved time of data 

transformation. Furthermore, only the learning outcomes and minimal 

information (learned models and model performance information) are 

exchangeable, and therefore we preserved local data privacy for each site. 

Moreover, we used simple model evaluation and selection strategies instead of 

complex privacy-preserving methods to avoid extensive communication 

between sites and minimise computation overhead. Moreover, we minimised 

communication overhead and single points of attacks or failure risks by avoiding 

using a server for iterative learning or controlling the learning process. 

The proposed methods could be considered a promising aspect of 

privacy-preserving decentralised learning approach where data privacy 

concerns are significant and data privacy preservation is essential. Also, these 

methods could be applied to solve issues related to large data, such as memory 

limitation and huge data transformation cost and time. It could be partitioned 

into distributed data subsets and apply the decentralised learning for more 

efficient model learning and analysis and avoid server issues and overheads. 

However, increased computation and communication overheads, time-

consuming, and scalability issues may arise if we deal with large sites number. 

It involves exchanging model rounds to compute the global average 

performance, large sites sequences number, and the developed global model 

from each sequence. The impact of sites number on the combined model 

performance is not our focus, but these issues can be addressed by developing 

different selective decentralised learning strategies. These issues can be 

addressed by developing different selective decentralised learning strategies. 

For example, we could develop a search strategy that only considers the best 

sites contributions by examining its local models performance to include these 

sites in the decentralised learning process. Also, we could propose a search 
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strategy that examines and selects the sequences of the best global average 

performance before performing models combining phase to develop the global 

model. This may reduce computation and communication overheads and time 

and enhance the proposed method scalability. In addition, the proposed 

decentralised machine learning approaches only exchange the trained models 

instead of data to preserve data privacy, and there is a possibility for malicious 

attacks on the models to reveal meaningful information or retrieve training data. 

We did not consider model attack cases in the distributed environment, and it is 

beyond the scope of our thesis. In future research, we will consider these issues 

to analyse the possible malicious attacks on distributed sites and exchanged 

models. 

The proposed decentralised machine learning approaches are used to 

develop a global/local combined prediction model from multiple data resources 

that are distributed, private, and not exchangeable. In addition, these approaches 

avoided using a server to coordinate the learning process to overcome server 

issues and minimise communication and computation overheads. It showed its 

efficiency and applicability in the distributed environment and preserved data 

privacy. To apply these methods to distributed data resources, the distributed 

sites should first agree on the learning algorithms that will be used for learning 

models and have the same data attributes and target. Second, the sites must agree 

not to expose the data to another site, collude to retrieve the data from the model, 

or respond to or disclose their models to an external party. In addition, the 

distributed sites must share the models only with the agreed/trusted sites. The 

proposed approaches using stepwise model selection strategy and all possible 

sequence combinations approach are efficient and improved the prediction 

performance in distributed environment. However, it is not preferred if we deal 

with large sites number due to the increased computation and communication 

overheads, time-consuming, and scalability issues. The decentralised machine 

learning approaches using linear and nonlinear combination methods can be 

used to avoid large sites number issues. 
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7.3 OBSTACLES AND LIMITATIONS 

In chapter 3, we faced an issue related to the model selection strategy 

in the local level modelling approach when the performance of the received 

models from other sites is lower than the best local model. As a result, there will 

be no selected models to develop the combined local model. We addressed this 

problem by proposing another model selection strategy (Method L2) to 

select the best model from each site even if the model did not perform better but 

not worse than the best local model performance. In addition, we could not find 

large and distributed datasets publicly available to apply our proposed methods, 

and we will investigate this issue in future research. However, from our 

experiments, even with small datasets, we improved the decentralised machine 

learning performance compared to the centralised machine learning approach 

and obtained reliable prediction results. In addition, we developed data 

partitioning scenarios to mimic the distributed data on the selected classification 

and regression datasets from [29] and [27]. The proposed decentralised learning 

methods focused on the best model selection. In chapters 3 and 4, in local level 

modelling, each site selected the best local model and compared the model with 

received models from other sites. An issue may arise if not all local models in a 

site perform well, and this will affect the combined model performance. We did 

not face this problem, but our solution is to find a different way to improve the 

learning algorithms to develop better local models performance or modify the 

model selection strategy. 

In chapter 6, the proposed method selects the best models and then 

sends these models to other sites for updating process. We set a model 

performance threshold for model selection approach, but we faced an issue in 

some datasets  when all models were lower than the predefined selection 

threshold. We addressed this problem by minimising the selection threshold to 

an acceptable performance level, and this solution did not adversely affect the 

global model performance. 

The proposed decentralised learning methods developed the global 

model without data sharing or centralisation to achieve preserving data privacy 

objective. Therefore, when we evaluated the global model, we did not place 
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shared/open data in the server to assess the global model. Instead, we evaluated 

the global model in each site using the local evaluation dataset and then took the 

weighted average performance. 

Our aim is to design decentralised learning methods that preserve data 

privacy and avoid using a central location for the iterative learning process. We 

exchanged the models instead of data, but there is a possibility for malicious 

attacks on the trained models to retrieve training data or reveal meaningful 

information [26, 137, 164, 186, 190, 192]. Model privacy should be considered 

when developing approaches for distributed machine learning. In our proposed 

methods, we did not consider model attacks case in the distributed environment, 

and it is beyond the scope of our thesis. To minimise this risk in our proposed 

methods, we assumed the participated sites agreed not to expose the data to 

another site, collude to retrieve the data from the model, or respond to or disclose 

their models to an external party. In addition, the distributed sites only share the 

models with the agreed/trusted sites. Privacy-preserving federated learning 

approaches are proposed to preserve data privacy and secure models, such as 

Differential Privacy (DP), Cryptographic methods, or Secure Multiparty 

Computation protocol (SMC). Despite its efficiency in preserving the data and 

model privacy, it faces challenges and requirements and is discussed in chapter 

2 (section 2.9). Also, privacy-preserving federated learning approaches do not 

always guarantee to preserve model privacy. For example, in [186], the 

differential privacy approach was ineffective against their model attack 

approach. In addition, DP may significantly reduce the model prediction 

performance [26]. Thus, future research will consider these issues to analyse the 

possible malicious attacks on distributed sites and exchanged models and 

propose a reliable and robust privacy-preserving decentralised learning 

approach that could prevent these attacks, preserve data privacy, and secure 

models without complex privacy-preserving techniques. 

Our approaches are decentralised learning and depend on 

communication between the distributed sites to develop the global model. An 

arisen question is, “how these approaches will deal with incomplete information 

sent between the participated sites during learning or sent to the server for 

models combination?”. This issue will be addressed as follows: the participating 
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sites must first agree to remain active during model learning, computation, and 

combination processes. However, if a site dropped or did not send the required 

information, the decentralised learning will continue. For example, in chapters 

3 and 4, suppose a site dropped or did not send the required information to the 

server for the model combination approach. In that case, the server will discard 

this site and complete the combination step with the active sites that sent its best 

global average model with the evaluation result and data size. We continue the 

learning and combination procedures because the global average model in each 

site and the global combined model in the server is a weighted model calculated 

based on the average evaluation results using all active sites data. In chapter 5, 

we updated a model in each site using the site local data, evaluated the model 

after each update step in all sites, and then took the weighted average 

performance to decide the next update step. If a site becomes offline, the 

decentralised learning approach will continue and recompute the average model 

performance with the active sites information. However, the inactive sites will 

not use the global model, and we should start the decentralised learning to 

include these sites and rebuild the global model. 

In our thesis, we applied the proposed methods using three distributed 

sites data, and the impact of sites number on the combined model performance 

is not our focus. Our objective is to develop an optimal global model for 

distributed sites without sharing data, using a server for the iterative learning 

process, or using a centralised learning approach. In addition, to show that we 

could achieve global model prediction performance at a similar level as the 

centralised learning approach and if a distributed site can utilise other sites 

learning outcomes to improve its local prediction performance. However, 

increased computation and communication overheads, time-consuming, and 

scalability issues may arise if we deal with large sites number. It involves 

exchanging model rounds to compute the global average performance, large 

sites sequences number (the proposed method in chapter 6), and the developed 

global model from each sequence. As discussed in section 7.2, these issues can 

be addressed by developing different selective decentralised learning strategies.  
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7.4 FUTURE WORK 

In the future, we will evaluate the reliability of the proposed methods 

by analysing the privacy of the combined models and measuring the 

computational, communication time, and costs. In addition, further research and 

experimental design will be considered for future studies that could address the 

problems and limitations discussed above. For example, analyse the potential 

model hacking and malicious attacks and examine the impact of collaborating 

sites number and local data size on the performance of local and global 

combined models. In future research, we will design decentralised learning 

approaches that preserve both data and model privacy without extensive 

communication between the associated sites or use complex privacy-preserving 

methods to avoid high computational requirements and overheads. Also, we will 

try to find large and distributed datasets from different resources to apply the 

proposed decentralised methods. 

7.5 SUMMARY 

This chapter showed an overview of the proposed decentralised learning 

methods developed for distributed data resources without using a server for 

iterative learning process or centralised learning approaches. In addition, we 

showed the main findings, the limitations and the obstacles we faced. We 

proposed several solutions for the limitations of the proposed methods. Then, we 

suggested future works to improve the proposed approaches in distributed 

learning environments. 
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Appendix A 
 

 
In this appendix, we present 5-fold and 10-fold cross validation results and the 

distributed datasets distributions for the classification and regression data that partitioned in 

random and non-random ways. 

 

 
1) 5-fold and 10-fold Cross Validation Results 

 
a) Classification 

 

Dataset Models 5-fold Cross-
Validation 

10-fold Cross-
Validation 

Breast Cancer 
Wisconsin 
(Diagnostic)  
 

LR Accuracy 93% 94% 
F-measure 93% 93% 

RF Accuracy 93% 94% 
F-measure 94% 93% 

NB Accuracy 94% 93% 
F-measure 93% 93% 

KNN Accuracy 90% 91% 
F-measure 90% 90% 

DT Accuracy 9% 90% 
F-measure 80% 87% 

SVM Accuracy 52% 52% 
F-measure 36% 36% 

NN Accuracy 52% 57% 
F-measure 35% 39% 

Diabetes LR Accuracy 72% 72% 
F-measure 61% 57% 

RF Accuracy 69% 69% 
F-measure 53% 55% 

NB Accuracy 71% 72% 
F-measure 60% 62% 

KNN Accuracy 63% 62% 
F-measure 43% 49% 

DT Accuracy 63% 61% 
F-measure 51% 55% 

SVM Accuracy 62% 62% 
F-measure 47% 47% 
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NN Accuracy 61% 62% 
F-measure 47% 47% 

Heart Disease LR Accuracy 84% 82% 
F-measure 84% 83% 

RF Accuracy 79% 83% 
F-measure 81% 84% 

NB Accuracy 82% 83% 
F-measure 87% 80% 

KNN Accuracy 63% 66% 
F-measure 61% 61% 

DT Accuracy 64% 76% 
F-measure 73% 76% 

SVM Accuracy 54% 56% 
F-measure 38% 41% 

NN Accuracy 59% 58% 
F-measure 46% 37% 

Cardiovascular 
 Disease 

LR Accuracy 72% 72% 
F-measure 70% 72% 

RF Accuracy 70% 71% 
F-measure 69% 70% 

NB Accuracy 71% 71% 
F-measure 67% 71% 

KNN Accuracy 68% 69% 
F-measure 67% 68% 

DT Accuracy 62% 63% 
F-measure 61% 63% 

SVM Accuracy 67% 67% 
F-measure 67% 67% 

NN Accuracy 59% 53% 
F-measure 41% 39% 

Diabetes 
(non-randomly 
partitioned) 

LR Accuracy 84% 84% 
F-measure 47% 50% 

RF Accuracy 84% 84% 
F-measure 46% 49% 

NB Accuracy 85% 85% 
F-measure 57% 55% 

KNN Accuracy 81% 83% 
F-measure 45% 42% 

DT Accuracy 79% 77% 
F-measure 40% 48% 

SVM Accuracy 80% 80% 
F-measure 51% 52% 

NN Accuracy 78% 79% 
F-measure 51% 51% 

Liver Disease 
(non-randomly 
partitioned) 

LR Accuracy 63% 62% 
F-measure 59% 60% 

RF Accuracy 72% 69% 
F-measure 67% 66% 

NB Accuracy 59% 59% 
F-measure 44% 39% 

KNN Accuracy 58% 58% 
F-measure 59% 54% 

DT Accuracy 59% 60% 
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b) Regression 
 

F-measure 56% 57% 
SVM Accuracy 52% 54% 

F-measure 69% 69% 
NN Accuracy 56% 48% 

F-measure 46% 43% 

Dataset Models 5-fold Cross-
Validation 

10-fold Cross-
Validation 

Abalone 
 

LR RMSE 2.20 2.21 
MAPE 14.08 14.16 

RFR RMSE 2.25 2.21 
MAPE 13.79 14.00 

RBFNN RMSE 2.24 2.21 
MAPE 27.37 27.38 

KNNR RMSE 2.29 2.26 
MAPE 13.69 13.48 

DTR RMSE 2.78 2.77 
MAPE 16.30 17.05 

SVR RMSE 2.54 2.51 
MAPE 13.64 13.54 

NNR RMSE 2.13 2.14 
MAPE 13.44 13.49 

LASSO RMSE 3.11 3.10 
MAPE 21.74 21.76 

Ridge RMSE 2.28 2.27 
MAPE 14.42 14.39 

ElasticNet RMSE 3.06 3.06 
MAPE 21.23 21.26 

Parkinson 
Disease (total 
UPDRS) 

LR RMSE 10.32 10.29 
MAPE 28.49 28.43 

RFR RMSE 9.11 9.04 
MAPE 23.39 22.99 

RBFNN RMSE 11.88 11.85 
MAPE 35.01 34.91 

KNNR RMSE 11.37 11.48 
MAPE 31.18 31.31 

DTR RMSE 12.33 11.93 
MAPE 27.73 25.98 

SVR RMSE 12.11 12.03 
MAPE 30.23 29.96 

NNR RMSE 10.84 10.81 
MAPE 31.17 31.12 

LASSO RMSE 11.90 11.89 
MAPE 34.65 34.63 

Ridge RMSE 11.16 11.14 
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MAPE 32.21 32.15 
ElasticNet RMSE 11.89 11.89 

MAPE 34.64 34.64 
Boston 
Housing 

LR RMSE 4.77 4.77 
MAPE 17.82 17.88 

RFR RMSE 4.09 3.63 
MAPE 13.25 12.93 

RBFNN RMSE 7.81 7.76 
MAPE 28.66 28.78 

KNNR RMSE 6.69 6.47 
MAPE 21.75 21.69 

DTR RMSE 5.57 4.78 
MAPE 18.96 17.37 

SVR RMSE 4.62 4.51 
MAPE 16.05 16.04 

NNR RMSE 9.82 7.16 
MAPE 40.51 31.39 

LASSO RMSE 5.08 4.88 
MAPE 17.36 16.91 

Ridge RMSE 4.53 4.55 
MAPE 17.24 17.39 

ElasticNet RMSE 4.89 4.72 
MAPE 16.94 16.79 
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2) Datasets Distributions 
 
 
 
 
a) Classification: 

 
We used eight classification databases: blood transfusion, liver disease, 

diabetes, heart disease, lower back pain (spine disease), breast cancer Wisconsin 

(Diagnostic), breast cancer Wisconsin (Original) [29], and cardiovascular diseases 

[27]. The datasets are with a binary target value, 0 and 1. We applied the proposed 

methods using two dataset partitioning strategies to mimic a real-world scenario for 

distributed datasets for distributed sites. The strategies are (1) random data 

partitioning approach and (2) non-random data partitioning approach. For non-

random data partitioning approach, we partitioned the data based on patients’ age; we 

assumed each partition is from a hospital whose patients are in a specific age range to 

simulate the distributed data. The data are liver disease, diabetes, and heart disease 

datasets. Therefore, we divided each dataset into different parts as distributed sites 

site1, site2, and site3. 

 
I. Randomly Partitioned data: 

 
1. Blood Transfusion  

 
Site1 Site2 Site3 

   
 

 
2. Breast Cancer Wisconsin (Diagnostic)  

Site 1 Site 2 Site 3 
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3. Diabetes 

Site 1 Site 2 Site 3 

   
 
 

4. Heart Disease 
Site 1 Site 2 Site 3 

   
 

5. Liver Disease 
Site 1 Site 2 Site 3 

   

 
6. Spine Disease  

Site 1 Site 2 Site 3 

   
 
 

7. Breast Cancer Wisconsin (Original)  
Site 1 Site 2 Site 3 
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8. Cardiovascular diseases  
Site 1 Site 2 Site 3 

   
 
 

II. Non-randomly Partitioned Data: 
1. Diabetes 

Site 1 Site 2 Site 3 

   
 

2. Heart Disease 
Site 1 Site 2 Site 3 

   
 

3. Liver Disease  
Site 1 Site 2 Site 3 

   
 

b) Regression 
 

We used three regression databases: Parkinson disease, Boston housing, 

and Abalone datasets [29]. Parkinson disease data features are patient age and 

biomedical voice measurement with two target values, motor Unified Parkinson’s 

Disease Rating Scale (UPDRS) and total Unified Parkinson’s Disease Rating Scale 
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(UPDRS). The target values show the measurement of presence and severity of 

Parkinson disease. Total-UPDRS ranges between 0–176, 0 reflecting healthy status 

and 176 indicates total disability. Motor-UPDRS, which denotes to the motor 

section, the range is between 0–108, 0 indicates healthy status and 108 severe 

cases. Boston housing dataset are from several suburbs in Boston and includes 

economic, demographic, and land use features, and the median price of houses is 

the target value. Abalone dataset features are physical measurements that used to 

predict the age of Abalone. We applied the proposed methods using two dataset 

partitioning strategies: (1) random data partitioning approach and (2) non-random 

data partitioning approach. For the non-random data partitioning approach, we 

partitioned the Parkinson disease dataset by patient age and Boston housing dataset 

by per capita crime rate by town attribute to simulate that each data comes from 

different region. Therefore, we divided each dataset into different parts as 

distributed sites site1, site2, and site3. 

I. Randomly Partitioned Data: 
1. Parkinson Disease (Total UPDRS) 

 
 
 
 
 
 
 
 
 

2. Parkinson Disease (Motor UPDRS) 
 
 
 
 
 
 
 
 

3. Abalone  
Site1 Site2 Site3 

   

Site1 Site2 Site3 

   

Site1 Site2 Site3 
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4. Boston Housing  

Site1 Site2 Site3 

   

 
 

II. Non-randomly Partitioned Data: 
1. Parkinson Disease (Total UPDRS) 

 
 
 
 
 
 
 
 
 

2. Parkinson Disease (Motor UPDRS) 
 
 
 
 
 
 
 
 

 
3. Boston Housing 

Site1 Site2 Site3 

   

Site1 Site2 Site3 

   

Site1 Site2 Site3 
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Appendix B 
 
 
Detailed Results for the Proposed Method in Chapter 3 
 

In this appendix we show the detailed results for global and local-level modelling 

approaches for the classification and regression datasets. It shows models evaluation results 

locally using 10-fold cross-validation results, on other distributed sites, and the average 

prediction performance based on sites data size. 

 
a) Classification: 

I. Randomly Partitioned Dataset: 
1. Blood Transfusion Dataset 

Table B. 1. Site 1 Models Evaluation Using Accuracy Metric  
 
 
 
 
 
 
 

 

 
Table B. 2. Site 1 Models Evaluation Using F-Measure  

Models Local F-measure 
(D1) 

On Site2 (D2) On Site3 (D3)  Average F-
measure 

LR (M!!) 85% 94% 87% 88% 
RF (M!") 79% 95% 84% 85% 
NB (M!#) 83% 94% 87% 87% 

KNN (M!$) 80% 92% 85% 85% 
DT (M!%) 79% 80% 78% 79% 

SVM (M!&) 84% 95% 86% 87% 
NN (M!') 65% 92% 86% 79% 

 
 

Table B. 3. Site 2 Models Evaluation Using Accuracy Metric  
Models Local accuracy 

(D2) 
On Site1 

(D1) 
On Site3 (D3)  Average accuracy 

LR (M"!) 88% 65% 74% 74% 
RF (M"") 86% 53% 65% 65% 
NB (M"#) 85% 67% 75% 74% 

KNN (M"$) 85% 72% 76% 77% 

Models Local accuracy (D1) On Site2 (D2) On Site3 (D3) Average 
accuracy 

LR (M!!) 74% 89% 78% 79% 
RF (M!") 68% 91% 75% 76% 
NB (M!#) 73% 89% 78% 78% 

KNN (M!$) 67% 85% 75% 74% 
DT (M!%) 70% 69% 67% 68% 

SVM (M!&) 73% 91% 75% 78% 
NN (M!') 72% 86% 76% 77% 
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DT (M"%) 81% 55% 62% 64% 
SVM (M"&) 85% 77% 75% 78% 
NN (M"') 81% 73% 76% 76% 

 
 

Table B. 4. Site 2 Models Evaluation Using F-Measure  
Models Local F-measure 

(D2) 
On Site1 (D1) On Site3 (D3) Average F-

measure 
LR (M"!) 93% 74% 81% 81% 
RF (M"") 92% 58% 72% 71% 
NB (M"#) 91% 79% 84% 84% 

KNN (M"$) 92% 83% 86% 86% 
DT (M"%) 90% 62% 70% 71% 

SVM (M"&) 92% 85% 86% 87% 
NN (M"') 92% 85% 86% 87% 

 
 

Table B. 5. Site 3 Models Evaluation Using Accuracy Metric  
Models Local accuracy 

(D3) 
On Site1 (D1) On Site2 (D2) Average accuracy 

LR (M#!) 77% 74% 89% 79% 
RF (M#") 79% 74% 83% 78% 
NB (M##) 77% 70% 89% 77% 

KNN (M#$) 74% 71% 87% 76% 
DT (M#%) 77% 73% 85% 77% 

SVM (M#&) 77% 72% 85% 77% 
NN (M#') 75% 73% 86% 77% 

 
 

Table B. 6. Site 3 Models Evaluation Using F-Measure  
 
 

 

 

 

2. Breast Cancer Wisconsin (Diagnostic): 

Table B. 7. Site 1 models evaluation using accuracy metric 
Models Local 

accuracy (D1) 
On Site2 (D2) 

(Best local model = 97%) 
On Site3 (D3) 

(Best local model = 97%) 
Average 
accuracy 

LR (M!!) 94% 97% 94% 95% 
RF (M!") 94% 95% 96% 95% 
NB (M!#) 93% 95% 95% 94% 

KNN (M!$) 91% 95% 95% 93% 
DT (M!%) 90% 87% 79% 86% 

SVM (M!&) 52% 76% 65% 63% 
NN (M!') 57% 76% 65% 65% 

 
Table B. 8. Site 1 models evaluation using F-measure 

Models Local F-
measure (D1) 

On Site2 (D2) 
(Best local model = 92%) 

On Site3 (D3) 
(Best local model = 96%) 

Average 
F-measure 

LR (M!!) 93% 95% 92% 93% 
RF (M!") 93% 90% 95% 92% 
NB (M!#) 93% 91% 94% 92% 

KNN (M!$) 90% 89% 92% 90% 
DT (M!%) 87% 79% 74% 80% 

SVM (M!&) 36% 66% 51% 49% 
NN (M!') 39% 66% 51% 51% 

Models Local F-measure (D3) On Site1 (D1) On Site2 (D2) Average F-
measure 

LR (M#!) 87% 84% 94% 87% 
RF (M#") 87% 84% 91% 86% 
NB (M##) 86% 81% 94% 85% 

KNN (M#$) 85% 82% 93% 85% 
DT (M#%) 83% 83% 92% 85% 

SVM (M#&) 86% 84% 92% 86% 
NN (M#') 86% 85% 92% 87% 
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Table B. 9. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 94%) 
On Site3 (D3) 

(Best local model = 97%) 
Average 
accuracy 

LR (M"!) 95% 90% 91% 92% 
RF (M"") 95% 89% 97% 93% 
NB (M"#) 97% 91% 95% 94% 

KNN (M"$) 95% 85% 92% 90% 
DT (M"%) 96% 86% 87% 89% 

SVM (M"&) 76% 52% 65% 63% 
NN (M"') 63% 52% 65% 59% 

 
 

Table B. 10. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model = 93%) 
On Site3 (D3) 

(Best local model = 96%) 
Average 

F-measure 
LR (M"!) 89% 89% 87% 88% 
RF (M"") 92% 87% 95% 90% 
NB (M"#) 90% 90% 94% 91% 

KNN (M"$) 83% 82% 88% 84% 
DT (M"%) 90% 84% 82% 85% 

SVM (M"&) 66% 36% 51% 52% 
NN (M"') 57% 36% 51% 49% 

 
 

Table B. 11. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model = 94%) 
On Site2 (D2) 

(Best local model = 97%) 
Average 
accuracy 

LR (M#!) 96% 94% 94% 95% 
RF (M#") 97% 91% 96% 94% 
NB (M##) 97% 90% 97% 94% 

KNN (M#$) 92% 89% 95% 92% 
DT (M#%) 95% 88% 95% 92% 

SVM (M#&) 65% 52% 76% 63% 
NN (M#') 55% 52% 76% 60% 

 
Table B. 12. Site 3 models evaluation using F-measure 

Models Local F-measure 
(D3) 

On Site1 (D1) 
(Best local model = 93%) 

On Site2 (D2) 
(Best local model = 92%) 

Average 
F-measure 

LR (M#!) 92% 93% 87% 91% 
RF (M#") 95% 90% 91% 92% 
NB (M##) 96% 89% 93% 93% 

KNN (M#$) 89% 87% 90% 89% 
DT (M#%) 94% 87% 88% 90% 

SVM (M#&) 51% 36% 66% 51% 
NN (M#') 37% 36% 66% 45% 

 
 

3. Diabetes: 

Table B. 13. Site 1 models evaluation using accuracy metric 
Models Local accuracy 

(D1) 
On Site2 (D2) 

(Best local model = 73%) 
On Site3 (D3) 

(Best local model = 81%) 
Average 
accuracy 

LR (M!!) 72% 75% 82% 76% 
RF (M!") 69% 75% 82% 75% 
NB (M!#) 72% 75% 78% 75% 

KNN (M!$) 62% 75% 78% 71% 
DT (M!%) 61% 67% 71% 66% 

SVM (M!&) 62% 61% 73% 65% 
NN (M!') 62% 61% 73% 65% 
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Table B. 14. Site 1 models evaluation using F-measure 
Models Local F-

measure (D1) 
On Site2 (D2) 

(Best local model = 66%) 
On Site3 (D3) 

(Best local model = 57%) 
Average 

F-measure 
LR (M!!) 57% 62% 61% 59% 
RF (M!") 55% 63% 64% 60% 
NB (M!#) 62% 65% 62% 63% 

KNN (M!$) 49% 67% 61% 57% 
DT (M!%) 55% 58% 52% 55% 

SVM (M!&) 47% 47% 53% 49% 
NN (M!') 47% 47% 53% 49% 

 
 

Table B. 15. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 72%) 
On Site3 (D3) 

(Best local model = 81%) 
Average 
accuracy 

LR (M"!) 72% 70% 78% 73% 
RF (M"") 73% 71% 79% 74% 
NB (M"#) 71% 71% 78% 73% 

KNN (M"$) 70% 68% 71% 69% 
DT (M"%) 66% 67% 73% 69% 

SVM (M"&) 61% 62% 73% 65% 
NN (M"') 60% 62% 72% 65% 

 
 

Table B. 16. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model = 62%) 
On Site3 (D3) 

(Best local model = 57%) 
Average 

F-measure 
LR (M"!) 57% 58% 60% 58% 
RF (M"") 60% 61% 61% 61% 
NB (M"#) 63% 63% 65% 64% 

KNN (M"$) 66% 59% 54% 59% 
DT (M"%) 55% 58% 57% 57% 

SVM (M"&) 47% 47% 52% 49% 
NN (M"') 49% 46% 53% 49% 

 
Table B. 17. Site 3 models evaluation using accuracy metric 

Models Local accuracy 
(D3) 

On Site1 (D1) 
(Best local model = 72%) 

On Site2 (D2) 
(Best local model = 73%) 

Average 
accuracy 

LR (M#!) 78% 72% 71% 74% 
RF (M#") 78% 74% 75% 76% 
NB (M##) 81% 72% 73% 75% 

KNN (M#$) 80% 69% 66% 72% 
DT (M#%) 74% 68% 72% 71% 

SVM (M#&) 73% 62% 61% 65% 
NN (M#') 70% 62% 62% 65% 

 
Table B. 18. Site 3 models evaluation using F-measure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models Local F-measure 
(D3) 

On Site1 (D1) 
(Best local model = 62%) 

On Site2 (D2) 
(Best local model = 66%) 

Average 
F-measure 

LR (M#!) 49% 56% 48% 52% 
RF (M#") 50% 61% 60% 57% 
NB (M##) 57% 57% 58% 57% 

KNN (M#$) 52% 50% 43% 49% 
DT (M#%) 51% 59% 60% 57% 

SVM (M#&) 48% 47% 47% 47% 
NN (M#') 43% 47% 47% 46% 
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4. Heart disease: 

Table B. 19. Site 1 models evaluation using accuracy metric 
Models Local accuracy 

(D1) 
On Site2 (D2) 

(Best local model = 76%) 
On Site3 (D3) 

(Best local model = 76%) 
Average 
accuracy 

LR (M!!) 82% 75% 85% 80% 
RF (M!") 83% 76% 80% 80% 
NB (M!#) 83% 74% 83% 80% 

KNN (M!$) 66% 56% 72% 64% 
DT (M!%) 76% 77% 80% 77% 

SVM (M!&) 56% 45% 37% 47% 
NN (M!') 58% 45% 37% 48% 

 
 
 

Table B. 20. Site 1 models evaluation using F-measure 
Models Local F-

measure (D1) 
On Site2 (D2) 

(Best local model = 75%) 
On Site3 (D3) 

(Best local model = 84%) 
Average F-

measure 
LR (M!!) 83% 75% 88% 81% 
RF (M!") 83% 78% 83% 81% 
NB (M!#) 80% 75% 86% 80% 

KNN (M!$) 61% 69% 81% 69% 
DT (M!%) 76% 80% 82% 79% 

SVM (M!&) 41% 28% 20% 31% 
NN (M!') 37% 28% 29% 32% 

 
 

Table B. 21. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 83%) 
On Site3 (D3) 

(Best local model = 76%) 
Average 
accuracy 

LR (M"!) 76% 84% 83% 81% 
RF (M"") 73% 76% 82% 76% 
NB (M"#) 74% 78% 80% 77% 

KNN (M"$) 65% 73% 48% 64% 
DT (M"%) 68% 52% 75% 63% 

SVM (M"&) 58% 46% 63% 54% 
NN (M"') 57% 54% 37% 51% 

 
 

Table B. 22. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model = 83%) 
On Site3 (D3) 

(Best local model = 84%) 
Average 

F-measure 
LR (M"!) 74% 84% 87% 81% 
RF (M"") 75% 74% 85% 77% 
NB (M"#) 73% 76% 84% 77% 

KNN (M"$) 72% 70% 54% 67% 
DT (M"%) 65% 63% 81% 68% 

SVM (M"&) 72% 63% 78% 70% 
NN (M"') 37% 66% 51% 52% 

 
 

Table B. 23. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model = 83%) 
On Site2 (D2) 

(Best local model = 76%) 
Average 
accuracy 

LR (M#!) 73% 68% 70% 70% 
RF (M#") 75% 82% 75% 78% 
NB (M##) 76% 62% 72% 69% 

KNN (M#$) 73% 64% 58% 64% 
DT (M#%) 68% 79% 76% 75% 

SVM (M#&) 63% 46% 55% 53% 
NN (M#') 41% 43% 44% 43% 
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Table B. 24. Site 3 models evaluation using F-measure 

Models Local F-measure 
(D3) 

On Site1 (D1) 
(Best local model = 83%) 

On Site2 (D2) 
(Best local model = 75%) 

Average 
F-measure 

LR (M#!) 84% 74% 76% 77% 
RF (M#") 80% 82% 79% 80% 
NB (M##) 82% 32% 71% 58% 

KNN (M#$) 76% 68% 69% 70% 
DT (M#%) 77% 77% 80% 78% 

SVM (M#&) 78% 63% 71% 69% 
NN (M#') 31% 47% 54% 46% 

 
 

5. Liver Disease: 

Table B. 25. Site 1 models evaluation using accuracy metric 
Models Local accuracy 

(D1) 
On Site2 (D2) 

(Best local model = 69%) 
On Site3 (D3) 

(Best local model = 66%) 
Average 
accuracy 

LR (M!!) 72% 66% 66% 69% 
RF (M!") 75% 67% 60% 70% 
NB (M!#) 50% 45% 58% 50% 

KNN (M!$) 68% 66% 58% 65% 
DT (M!%) 69% 56% 59% 63% 

SVM (M!&) 76% 67% 65% 71% 
NN (M!') 44% 36% 44% 42% 

 
 

Table B. 26. Site 1 models evaluation using F-measure 
Models Local F-

measure (D1) 
On Site2 (D2) 

(Best local model = 80%) 
On Site3 (D3) 

(Best local model = 73%) 
Average 

F-measure 
LR (M!!) 83% 80% 79% 81% 
RF (M!") 84% 78% 74% 80% 
NB (M!#) 51% 32% 53% 46% 

KNN (M!$) 81% 76% 70% 77% 
DT (M!%) 78% 65% 69% 72% 

SVM (M!&) 87% 80% 79% 83% 
NN (M!') 20% 10% 26% 18% 

 
 

Table B. 27. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 76%) 
On Site3 (D3) 

(Best local model = 66%) 
Average 
accuracy 

LR (M"!) 69% 71% 68% 70% 
RF (M"") 67% 74% 63% 70% 
NB (M"#) 51% 63% 64% 60% 

KNN (M"$) 65% 73% 60% 68% 
DT (M"%) 60% 68% 60% 64% 

SVM (M"&) 67% 75% 65% 71% 
NN (M"') 35% 33% 40% 35% 

 
 

Table B. 28. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model = 87%) 
On Site3 (D3) 

(Best local model = 73%) 
Average 

F-measure 
LR (M"!) 77% 82% 79% 80% 
RF (M"") 73% 84% 74% 79% 
NB (M"#) 49% 70% 66% 63% 

KNN (M"$) 76% 83% 73% 79% 
DT (M"%) 66% 78% 69% 73% 

SVM (M"&) 80% 85% 79% 82% 
NN (M"') 25% 21% 16% 21% 
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Table B. 29. Site 3 models evaluation using accuracy metric 

Models Local accuracy 
(D3) 

On Site1 (D1) 
(Best local model = 76%) 

On Site2 (D2) 
(Best local model = 69%) 

Average 
accuracy 

LR (M#!) 66% 71% 64% 68% 
RF (M#") 64% 66% 61% 64% 
NB (M##) 65% 62% 53% 60% 

KNN (M#$) 53% 64% 58% 60% 
DT (M#%) 59% 69% 68% 67% 

SVM (M#&) 65% 75% 67% 71% 
NN (M#') 35% 25% 33% 29% 

 
 
 

Table B. 30. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model = 87%) 
On Site2 (D2) 

(Best local model = 80%) 
Average 

F-measure 
LR (M#!) 73% 81% 69% 76% 
RF (M#") 68% 78% 71% 74% 
NB (M##) 64% 68% 49% 62% 

KNN (M#$) 65% 75% 67% 71% 
DT (M#%) 65% 80% 76% 76% 

SVM (M#&) 79% 86% 80% 83% 
NN (M#') 25% 18% 16% 19% 

 
 
 

6. Spine Disease:  

Table B. 31. Site 1 models evaluation using accuracy metric 
Models Local accuracy 

(D1) 
On Site2 (D2) 

(Best local model = 93%) 
On Site3 (D3) 

(Best local model = 79%) 
Average 
accuracy 

LR (M!!) 94% 88% 73% 84% 
RF (M!") 94% 92% 76% 86% 
NB (M!#) 92% 90% 61% 79% 

KNN (M!$) 95% 94% 78% 88% 
DT (M!%) 91% 84% 71% 81% 

SVM (M!&) 85% 66% 53% 68% 
NN (M!') 57% 82% 65% 65% 

 
 

Table B. 32. Site 1 models evaluation using F-measure 
Models Local F-

measure (D1) 
On Site2 (D2) 

(Best local model = 93%) 
On Site3 (D3) 

(Best local model = 82%) 
Average 

F-measure 
LR (M!!) 97% 90% 65% 82% 
RF (M!") 98% 94% 72% 86% 
NB (M!#) 95% 92% 73% 85% 

KNN (M!$) 97% 95% 75% 87% 
DT (M!%) 95% 88% 71% 84% 

SVM (M!&) 92% 80% 69% 80% 
NN (M!') 75% 82% 61 % 70% 

 
 

Table B. 33. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 95%) 
On Site3 (D3) 

(Best local model = 79%) 
Average 
accuracy 

LR (M"!) 86% 89% 72% 81% 
RF (M"") 93% 90% 76% 85% 
NB (M"#) 92% 91% 75% 84% 

KNN (M"$) 86% 92% 77% 85% 
DT (M"%) 89% 84% 77% 82% 

SVM (M"&) 66% 85% 53% 68% 
NN (M"') 66% 86% 68% 75% 
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Table B. 34. Site 2 models evaluation using F-measure 

Models Local F-
measure (D2) 

On Site1 (D1) 
(Best local model = 98%) 

On Site3 (D3) 
(Best local model = 82%) 

Average 
F-measure 

LR (M"!) 85% 94% 64% 80% 
RF (M"") 92% 94% 73% 85% 
NB (M"#) 93% 95% 70% 84% 

KNN (M"$) 90% 95% 73% 85% 
DT (M"%) 91% 91% 73% 83% 

SVM (M"&) 80% 92% 36% 66% 
NN (M"') 40% 83% 65% 67% 

 
 
 

Table B. 35. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model = 95%) 
On Site2 (D2) 

(Best local model = 93%) 
Average 
accuracy 

LR (M#!) 75% 88% 90% 83% 
RF (M#") 79% 90% 88% 84% 
NB (M##) 79% 90% 90% 85% 

KNN (M#$) 76% 92% 92% 85% 
DT (M#%) 69% 93% 88% 82% 

SVM (M#&) 53% 85% 66% 68% 
NN (M#') 55% 91% 88% 75% 

 
 

Table B. 36. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model = 98%) 
On Site2 (D2) 

(Best local model = 93%) 
Average 

F-measure 
LR (M#!) 77% 93% 93% 86% 
RF (M#") 82% 94% 92% 89% 
NB (M##) 76% 94% 93% 86% 

KNN (M#$) 74% 95% 94% 86% 
DT (M#%) 74% 96% 91% 86% 

SVM (M#&) 69% 92% 80% 80% 
NN (M#') 45% 95% 91% 73% 

 
 

7. Breast Cancer Wisconsin (Original):  

Table B. 37. Site 1 models evaluation using accuracy metric 
Models Local 

accuracy (D1) 
On Site2 (D2) 

(Best local model =95%) 
On Site3 (D3) 

(Best local model =99%) 
Average 
accuracy 

LR (M!!) 95% 95% 99% 96% 
RF (M!") 98% 95% 99% 97% 
NB (M!#) 96% 95% 98% 96% 

KNN (M!$) 97% 95% 98% 96% 
DT (M!%) 89% 92% 95% 92% 

SVM (M!&) 95% 93% 96% 94% 
NN (M!') 93% 95% 98% 95% 

 
 

Table B. 38. Site 1 models evaluation using F-measure 
Models Local F-

measure (D1) 
On Site2 (D2) 

(Best local model =96%) 
On Site3 (D3) 

(Best local model =99%) 
Average F-

measure 
LR (M!!) 95% 95% 99% 96% 
RF (M!") 98% 95% 99% 97% 
NB (M!#) 96% 95% 98% 96% 

KNN (M!$) 97% 95% 98% 96% 
DT (M!%) 91% 92% 95% 92% 

SVM (M!&) 95% 93% 96% 94% 
NN (M!') 94% 95% 98% 95% 
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Table B. 39. Site 2 models evaluation using accuracy metric 

Models Local accuracy 
(D2) 

On Site1 (D1) 
(Best local model = 98%) 

On Site3 (D3) 
(Best local model =99%) 

Average 
accuracy 

LR (M"!) 94% 92% 99% 94% 
RF (M"") 95% 94% 99% 95% 
NB (M"#) 95% 95% 99% 96% 

KNN (M"$) 95% 92% 99% 95% 
DT (M"%) 93% 89% 99% 93% 

SVM (M"&) 95% 91% 98% 94% 
NN (M"') 93% 89% 98% 93% 

 
 

Table B. 40. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model =98%) 
On Site3 (D3) 

(Best local model =99%) 
Average 

F-measure 
LR (M"!) 96% 92% 99% 95% 
RF (M"") 95% 94% 99% 95% 
NB (M"#) 95% 95% 99% 96% 

KNN (M"$) 95% 92% 99% 95% 
DT (M"%) 94% 89% 99% 93% 

SVM (M"&) 95% 91% 98% 94% 
NN (M"') 95% 89% 98% 94% 

 
 

Table B. 41. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model =98%) 
On Site2 (D2) 

(Best local model =95%) 
Average 
accuracy 

LR (M#!) 96% 83% 91% 89% 
RF (M#") 98% 92% 94% 94% 
NB (M##) 96% 94% 93% 94% 

KNN (M#$) 99% 88% 95% 94% 
DT (M#%) 96% 88% 91% 91% 

SVM (M#&) 96% 93% 93% 94% 
NN (M#') 95% 83% 91% 89% 

 
 

Table B. 42. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model =98%) 
On Site2 (D2) 

(Best local model =96%) 
Average F-

measure 
LR (M#!) 96% 83% 91% 90% 
RF (M#") 98% 92% 94% 94% 
NB (M##) 97% 94% 93% 94% 

KNN (M#$) 99% 88% 95% 94% 
DT (M#%) 96% 88% 91% 91% 

SVM (M#&) 96% 93% 93% 94% 
NN (M#') 93% 83% 91% 89% 

 
8. Cardiovascular diseases 

Table B. 43. Site 1 models evaluation using accuracy metric 
Models Local 

accuracy (D1) 
On Site2 (D2) 

(Best local model =73%) 
On Site3 (D3) 

(Best local model =73%) 
Average 
accuracy 

LR (M!!) 72% 73% 73% 73% 
RF (M!") 71% 71% 71% 71% 
NB (M!#) 71% 71% 71% 71% 

KNN (M!$) 69% 69% 68% 69% 
DT (M!%) 63% 63% 64% 63% 

SVM (M!&) 67% 67% 68% 67% 
NN (M!') 53% 50% 50% 51% 
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Table B. 44. Site 1 models evaluation using F-measure 

Models Local F-
measure (D1) 

On Site2 (D2) 
(Best local model =73%) 

On Site3 (D3) 
(Best local model =73%) 

Average 
F-measure 

LR (M!!) 72% 73% 72% 72% 
RF (M!") 70% 71% 71% 71% 
NB (M!#) 71% 71% 70% 71% 

KNN (M!$) 68% 69% 68% 68% 
DT (M!%) 63% 63% 64% 63% 

SVM (M!&) 67% 67% 68% 67% 
NN (M!') 39% 33% 33% 35% 

 
 
 

Table B. 45. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model =72%) 
On Site3 (D3) 

(Best local model =73%) 
Average 
accuracy 

LR (M"!) 73% 72% 73% 73% 
RF (M"") 71% 71% 70% 71% 
NB (M"#) 71% 71% 71% 71% 

KNN (M"$) 69% 68% 68% 68% 
DT (M"%) 64% 64% 63% 64% 

SVM (M"&) 68% 68% 68% 68% 
NN (M"') 53% 51% 50% 52% 

 
 

Table B. 46. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model =72%) 
On Site3 (D3) 

(Best local model =73%) 
Average F-

measure 
LR (M"!) 73% 72% 73% 73% 
RF (M"") 71% 71% 70% 71% 
NB (M"#) 71% 71% 71% 71% 

KNN (M"$) 68% 68% 68% 68% 
DT (M"%) 63% 64% 63% 63% 

SVM (M"&) 68% 68% 68% 68% 
NN (M"') 53% 34% 33% 42% 

 
 

Table B. 47. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model =72%) 
On Site2 (D2) 

(Best local model =73%) 
Average 
accuracy 

LR (M#!) 73% 72% 73% 73% 
RF (M#") 71% 71% 71% 71% 
NB (M##) 71% 71% 71% 71% 

KNN (M#$) 69% 68% 69% 69% 
DT (M#%) 63% 62% 63% 63% 

SVM (M#&) 67% 67% 67% 67% 
NN (M#') 59% 51% 50% 53% 

 
 

Table B. 48. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model =72%) 
On Site2 (D2) 

(Best local model =73%) 
Average F-

measure 
LR (M#!) 73% 72% 73% 73% 
RF (M#") 71% 71% 71% 71% 
NB (M##) 71% 71% 70% 70% 

KNN (M#$) 68% 68% 69% 68% 
DT (M#%) 64% 62% 63% 63% 

SVM (M#&) 67% 67% 67% 67% 
NN (M#') 46% 34% 33% 37% 
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II. Non-randomly Partitioned Dataset: 
 

1. Diabetes Dataset  

Table B. 49. Site 1 Models Evaluation Using Accuracy Metric 
Models Local accuracy 

(D1) 
On Site2 (D2) On Site3 (D3) Average accuracy 

LR (M!!) 84% 66% 62% 76% 
RF (M!") 84% 69% 62% 76% 
NB (M!#) 85% 68% 68% 77% 

KNN (M!$) 83% 63% 56% 72% 
DT (M!%) 77% 63% 59% 70% 

SVM (M!&) 80% 51% 45% 66% 
NN (M!') 79% 51% 45% 65% 

 
 

Table B. 50. Site 1 Models Evaluation Using F-Measure 
Models Local F-

measure (D1) 
On Site2 (D2) On Site3 

(D3)  
Average F-measure 

LR (M!!) 50% 55% 55% 52% 
RF (M!") 49% 65% 65% 56% 
NB(M!#) 55% 69% 73% 62% 

KNN (M!$) 42% 49% 50% 45% 
DT (M!%) 48% 65% 67% 56% 

SVM (M!&) 52% 35% 28% 32% 
NN (M!') 51% 35% 28% 43% 

 
Table B. 51. Site 2 Models Evaluation Using Accuracy Metric 

Models Local 
accuracy (D2) 

On Site1 (D1) On Site3 
(D3) 

Average accuracy 

LR (M"!) 66% 82% 71% 75% 
RF (M"") 64% 78% 70% 72% 
NB (M"#) 68% 81% 68% 75% 

KNN (M"$) 64% 71% 57% 67% 
DT (M"%) 62% 71% 64% 67% 

SVM (M"&) 50% 80% 45% 65% 
NN (M"') 52% 80% 45% 66% 

 
Table B. 52. Site 2 Models Evaluation Using F-Measure 

Models Local F-
measure (D2) 

On Site1 (D1) On Site3 (D3) Average F-measure 

LR (M"!) 62% 60% 73% 62% 
RF (M"") 61% 55% 71% 59% 
NB (M"#) 64% 57% 68% 61% 

KNN (M"$) 62% 42% 61% 51% 
DT (M"%) 63% 43% 63% 52% 

SVM (M"&) 34% 53% 30% 44% 
NN (M"') 40% 53% 28% 45% 

 
 

Table B. 53. Site 3 Models Evaluation Using Accuracy Metric 
Models Local accuracy 

(D3) 
On Site1 (D1) On Site2 (D2)  Average accuracy 

LR (M#!) 61% 48% 62% 54% 
RF (M#") 67% 70% 64% 68% 
NB (M##) 65% 73% 63% 69% 

KNN (M#$) 75% 63% 62% 64% 
DT (M#%) 61% 60% 64% 61% 

SVM (M#&) 55% 20% 49% 34% 
NN (M#') 51% 80% 51% 67% 
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Table B. 54. Site 3 Models Evaluation Using F-Measure 
Models Local F-

measure (D3)  
On Site1 (D1) On Site2 (D2) Average F-measure 

LR (M#!) 71% 40% 65% 52% 
RF (M#") 73% 49% 64% 57% 
NB (M##) 64% 42% 58% 50% 

KNN (M#$) 79% 43% 64% 55% 
DT (M#%) 64% 36% 61% 48% 

SVM (M#&) 71% 33% 66% 49% 
NN (M#') 34% 48% 56% 44% 

 

2. Heart disease: 

Table B. 55. Site 1 models evaluation using accuracy metric 
 
 
 

 
 
 
 
 
 
 

 
Table B. 56. Site 1 models evaluation using F-measure 

Models Local F-
measure (D1) 

On Site2 (D2) 
(Best local model = 78%) 

On Site3 (D3) 
(Best local model = 79%) 

Average F-
measure 

LR (M!!) 92% 81% 69% 80% 
RF (M!") 89% 79% 74% 79% 
NB (M!#) 86% 78% 74% 78% 

KNN (M!$) 85% 72% 56% 70% 
DT (M!%) 88% 81% 68% 78% 

SVM (M!&) 87% 67% 61% 69% 
NN (M!') 31% 32% 40% 34% 

 
Table B. 57. Site 2 models evaluation using accuracy metric 

Models Local accuracy 
(D2) 

On Site1 (D1) 
(Best local model = 89%) 

On Site3 (D3) 
(Best local model = 81%) 

Average 
accuracy 

LR (M"!) 77% 91% 84% 82% 
RF (M"") 73% 86% 76% 76% 
NB (M"#) 76% 89% 84% 81% 

KNN (M"$) 53% 66% 49% 54% 
DT (M"%) 73% 86% 60% 72% 

SVM (M"&) 51% 73% 46% 54% 
NN (M"') 64% 86% 74% 71% 

 
 

Table B. 58. Site 2 models evaluation using F-measure 
Models Local F-

measure (D2) 
On Site1 (D1) 

(Best local model = 92%) 
On Site3 (D3) 

(Best local model = 79%) 
Average 

F-measure 
LR (M"!) 78% 94% 80% 82% 
RF (M"") 78% 91% 71% 78% 
NB (M"#) 74% 93% 82% 80% 

KNN (M"$) 62% 77% 44% 59% 
DT (M"%) 71% 91% 53% 69% 

SVM (M"&) 65% 84% 61% 67% 
NN (M"') 42% 91% 67% 37% 

 
 
 

Models Local accuracy 
(D1) 

On Site2 (D2) 
(Best local model = 77%) 

On Site3 (D3) 
(Best local model = 81%) 

Average 
accuracy 

LR (M!!) 89% 79% 75% 79% 
RF (M!") 89% 74% 72% 76% 
NB (M!#) 82% 76% 76% 77% 

KNN (M!$) 77% 64% 49% 62% 
DT (M!%) 79% 77% 65% 74% 

SVM (M!&) 77% 51% 44% 54% 
NN (M!') 36% 49% 56% 49% 
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Table B. 59. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model = 89%) 
On Site2 (D2) 

(Best local model = 77%) 
Average 
accuracy 

LR (M#!) 75% 86% 78% 79% 
RF (M#") 71% 82% 79% 77% 
NB (M##) 81% 86% 78% 80% 

KNN (M#$) 54% 59% 47% 51% 
DT (M#%) 58% 61% 76% 68% 

SVM (M#&) 56% 23% 49% 46% 
NN (M#') 60% 23% 49% 47% 

 
 
 

Table B. 60. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model = 92%) 
On Site2 (D2) 

(Best local model = 78%) 
Average F-

measure 
LR (M#!) 75% 91% 79% 80% 
RF (M#") 71% 87% 80% 79% 
NB (M##) 79% 91% 79% 81% 

KNN (M#$) 49% 68% 39% 47% 
DT (M#%) 50% 71% 75% 67% 

SVM (M#&) 40% 8% 32% 30% 
NN (M#') 46% 8% 32% 32% 

 
3. Liver Disease: 

Table B. 61. Site 1 models evaluation using accuracy metric 
Models Local accuracy 

(D1) 
On Site2 (D2) 

(Best local model = 77%) 
On Site3 (D3) 

(Best local model = 74%) 
Average 
accuracy 

LR (M!!) 62% 63% 62% 62% 
RF (M!") 69% 64% 66% 65% 
NB (M!#) 59% 58% 61% 58% 

KNN (M!$) 58% 60% 62% 60% 
DT (M!%) 60% 60% 62% 60% 

SVM (M!&) 54% 76% 72% 71% 
NN (M!') 48% 24% 26% 28% 

 
Table B. 62. Site 1 models evaluation using F-measure 

Models Local F-
measure (D1) 

On Site2 (D2) 
(Best local model = 87%) 

On Site3 (D3) 
(Best local model = 85%) 

Average F-
measure 

LR (M!!) 60% 71% 69% 68% 
RF (M!") 66% 72% 72% 71% 
NB (M!#) 39% 64% 65% 59% 

KNN (M!$) 54% 67% 68% 65% 
DT (M!%) 57% 69% 70% 67% 

SVM (M!&) 69% 86% 84% 82% 
NN (M!') 43% 12% 11% 18% 

 
 

Table B. 63. Site 2 models evaluation using accuracy metric 
Models Local accuracy 

(D2) 
On Site1 (D1) 

(Best local model = 69%) 
On Site3 (D3) 

(Best local model = 74%) 
Average 
accuracy 

LR (M"!) 75% 54% 74% 71% 
RF (M"") 71% 64% 69% 69% 
NB (M"#) 51% 61% 49% 52% 

KNN (M"$) 71% 52% 66% 66% 
DT (M"%) 60% 55% 63% 59% 

SVM (M"&) 77% 54% 74% 72% 
NN (M"') 33% 50% 33% 36% 
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Table B. 64. Site 2 models evaluation using F-measure 

Models Local F-
measure (D2) 

On Site1 (D1) 
(Best local model = 69%) 

On Site3 (D3) 
(Best local model = 85%) 

Average 
F-measure 

LR (M"!) 86% 70% 85% 83% 
RF (M"") 84% 74% 80% 81% 
NB (M"#) 55% 45% 48% 51% 

KNN (M"$) 82% 65% 78% 78% 
DT (M"%) 76% 62% 73% 73% 

SVM (M"&) 87% 70% 85% 83% 
NN (M"') 18% 15% 19% 18% 

 
 

Table B. 65. Site 3 models evaluation using accuracy metric 
Models Local accuracy 

(D3) 
On Site1 (D1) 

(Best local model = 69%) 
On Site2 (D2) 

(Best local model = 77%) 
Average 
accuracy 

LR (M#!) 74% 55% 72% 69% 
RF (M#") 68% 59% 73% 69% 
NB (M##) 62% 66% 60% 61% 

KNN (M#$) 67% 62% 69% 67% 
DT (M#%) 70% 61% 66% 66% 

SVM (M#&) 73% 54% 76% 71% 
NN (M#') 42% 45% 49% 47% 

 
 

Table B. 66. Site 3 models evaluation using F-measure 
Models Local F-measure 

(D3) 
On Site1 (D1) 

(Best local model = 69%) 
On Site2 (D2) 

(Best local model = 87%) 
Average 

F-measure 
LR (M#!) 79% 65% 83% 79% 
RF (M#") 80% 68% 83% 79% 
NB (M##) 66% 59% 67% 65% 

KNN (M#$) 80% 71% 81% 79% 
DT (M#%) 73% 65% 77% 74% 

SVM (M#&) 85% 70% 86% 83% 
NN (M#') 55% 46% 60% 56% 

 
 
b) Regression: 

I. Randomly Partitioned Dataset:  

1. Parkinson Disease (Total UPDRS): 
Table B. 67. Site 1 Models Evaluation Using MAPE Metric  

Models Local MAPE 
(D1) 

On Site2 (D2) On Site3 (D3) Average 
MAPE 

LR (M!!) 28% 59% 49% 45% 
RFR (M!") 23% 52% 40% 37% 

RBFNN (M!#) 35% 51% 37% 39% 
KNNR (M!$) 31% 53% 38% 39% 
DTR (M!%) 26% 57% 46% 42% 
SVR (M!&) 30% 46% 33% 35% 
NNR (M!') 31% 58% 44% 43% 
Lasso (M!() 35% 49% 38% 39% 
Ridge (M!)) 32% 59% 38% 41% 

ElasticNet (M!!*) 35% 51% 35% 39% 
  

Table B. 68. Site 1 Models Evaluation Using RMSE Metric 
Models Local RMSE 

(D1) 
On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 10.30 14.55 18.60 14.91 
RFR (M!") 9.04 13.34 11.96 11.32 

RBFNN (M!#) 11.85 11.92 10.28 11.18 
KNNR (M!$) 11.48 13.59 11.31 11.90 
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DTR (M!%) 11.93 15.58 14.49 13.90 
SVR (M!&) 12.03 10.94 9.64 10.74 
NNR (M!') 10.81 13.25 11.89 11.86 
Lasso (M!() 11.89 11.32 10.51 11.16 
Ridge (M!)) 11.14 13.68 10.65 11.53 

ElasticNet (M!!*) 11.89 11.43 9.70 10.83 
 

 
Table B. 69. Site 2 Models Evaluation Using MAPE Metric  

Models Local MAPE 
(D2) 

On Site1 (D1) On Site3 (D3) Average MAPE 

LR (M"!) 23% 37% 32% 31% 
RFR (M"") 17% 39% 30% 30% 

RBFNN (M"#) 31% 28% 36% 32% 
KNNR (M"$) 26% 33% 32% 31% 
DTR (M"%) 20% 43% 32% 33% 
SVR (M"&) 24% 29% 31% 29% 
NNR (M"') 22% 29% 33% 29% 
Lasso (M"() 27% 30% 32% 30% 
Ridge (M")) 22% 33% 31% 30% 

ElasticNet (M"!*) 27% 28% 32% 29% 
 
 

Table B. 70.  Site 2 Models Evaluation Using RMSE Metric 
Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 

LR (M"!) 7.24 15.31 13.82 12.76 
RFR (M"") 5.42 16.23 13.74 12.60 

RBFNN (M"#) 8.28 14.19 18.41 14.63 
KNNR (M"$) 7.54 14.57 13.39 12.40 
DTR (M"%) 7.17 17.40 14.51 13.73 
SVR (M"&) 7.69 14.55 13.42 12.44 
NNR (M"') 6.66 14.40 13.48 12.17 
Lasso (M"() 8.29 14.05 13.16 12.30 
Ridge (M")) 6.86 14.64 13.34 12.24 

ElasticNet (M"!*) 8.28 14.16 13.14 12.33 
 
 

Table B. 71. Site 3 Models Evaluation Using MAPE Metric  
Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 

LR (M#!) 25% 35% 37% 31% 
RFR (M#") 17% 37% 37% 28% 

RBFNN (M##) 32% 32% 41% 34% 
KNNR (M#$) 25% 35% 45% 33% 
DTR (M#%) 21% 42% 39% 32% 
SVR (M#&) 29% 33% 40% 33% 
NNR (M#') 27% 34% 31% 31% 
Lasso (M#() 31% 35% 32% 33% 
Ridge (M#)) 26% 34% 36% 31% 

ElasticNet (M#!*) 31% 31% 38% 33% 
 

Table B. 72. Site 3 Models Evaluation Using RMSE Metric 

Models Local RMSE 
(D3) 

On Site1 (D1) On Site2 (D2) Average RMSE 

LR (MIJ) 8.04 13.07 9.05 9.94 
RFR (MIK) 6.27 14.47 9.49 9.73 

RBFNN (MII) 9.09 12.46 9.68 10.34 
KNNR (MIL) 8.09 12.99 10.91 10.37 
DTR (MIM) 8.47 16.56 11.09 11.76 
SVR (MIN) 8.55 12.54 9.39 10.06 
NNR (MIO) 8.28 13.45 7.84 9.88 
Lasso (MIP) 9.03 13.42 8.02 10.24 
Ridge (MIQ) 8.20 12.83 8.74 9.85 

ElasticNet (MIJR) 9.04 12.38 9.37 10.22 
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2. Parkinson Disease (Motor UPDRS): 

 
Table B. 73. Site 1 models evaluation using MAPE metric  

Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 
LR (M!!) 28% 52% 45% 41% 

RFR (M!") 23% 47% 41% 36% 
RBFNN (M!#) 37% 42% 38% 39% 
KNNR (M!$) 32% 47% 41% 39% 
DTR (M!%) 28% 56% 49% 44% 
SVR (M!&) 35% 47% 38% 39% 
NNR (M!') 32% 45% 41% 38% 
Lasso (M!() 37% 47% 44% 42% 
Ridge (M!)) 34% 51% 42% 41% 

ElasticNet (M!!*) 37% 41% 37% 38% 
 
 

Table B. 74. Site 1 models evaluation using RMSE 
Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 6.83 9.49 10.44 9.03 
RFR (M!") 5.97 9.24 8.74 7.94 

RBFNN (M!#) 8.16 7.98 7.94 8.02 
KNNR (M!$) 7.76 9.39 9.02 8.69 
DTR (M!%) 8.44 11.29 11.05 10.25 
SVR (M!&) 7.86 8.46 7.82 7.98 
NNR (M!') 7.34 7.46 8.20 7.74 
Lasso (M!() 8.25 8.31 8.69 8.46 
Ridge (M!)) 7.61 9.31 8.54 8.42 

ElasticNet (M!!*) 8.25 7.29 7.48 7.69 
 
 

Table B. 75. Site 2 models evaluation using MAPE metric  
Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 

LR (M"!) 23% 44% 31% 33% 
RFR (M"") 17% 46% 29% 32% 

RBFNN (M"#) 32% 33% 36% 34% 
KNNR (M"$) 27% 38% 32% 33% 
DTR (M"%) 21% 50% 35% 36% 
SVR (M"&) 25% 34% 31% 31% 
NNR (M"') 23% 35% 33% 32% 
Lasso (M"() 28% 35% 34% 33% 
Ridge (M")) 23% 38% 30% 31% 

ElasticNet (M"!*) 28% 32% 32% 32% 
 

Table B. 76. Site 2 models evaluation using RMSE  
Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 

LR (M"!) 5.45 10.76 8.01 8.31 
RFR (M"") 4.0 11.62 7.37 7.98 

RBFNN (M"#) 8.44 8.94 14.02 11.00 
KNNR (M"$) 5.72 9.75 7.62 7.87 
DTR (M"%) 5.46 12.67 8.61 9.20 
SVR (M"&) 5.74 9.36 7.42 7.66 
NNR (M"') 5.07 9.25 7.73 7.60 
Lasso (M"() 6.20 9.11 7.63 7.78 
Ridge (M")) 5.19 9.83 7.08 7.54 

ElasticNet (M"!*) 6.19 8.86 7.53 7.68 
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Table B. 77. Site 3 models evaluation using MAPE metric  
Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 

LR (M#!) 28% 39% 33% 33% 
RFR (M#") 18% 41% 37% 31% 

RBFNN (M##) 35% 36% 37% 36% 
KNNR (M#$) 28% 39% 41% 35% 
DTR (M#%) 21% 46% 43% 35% 
SVR (M#&) 32% 37% 37% 35% 
NNR (M#') 31% 42% 33% 35% 
Lasso (M#() 35% 40% 27% 35% 
Ridge (M#)) 29% 39% 32% 33% 

ElasticNet (M#!*) 35% 35% 34% 35% 
 
 

Table B. 78. Site 3 models evaluation using RMSE  

 
 
 

3. Abalone: 
 

Table B. 79. Site 1 models evaluation using MAPE metric  
Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 

LR (M!!) 14% 15% 14% 14% 
RFR (M!") 14% 14% 14% 14% 

RBFNN (M!#) 27% 25% 28% 26% 
KNNR (M!$) 14% 13% 14% 14% 
DTR (M!%) 17% 18% 19% 18% 
SVR (M!&) 14% 12% 13% 13% 
NNR (M!') 14% 14% 14% 14% 
Lasso (M!() 22% 14% 14% 17% 
Ridge (M!)) 15% 14% 14% 15% 

ElasticNet (M!!*) 21% 20% 21% 21% 
 
 

Table B. 80. Site 1 models evaluation using RMSE  
Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 2.21 2.01 2.34 2.15 
RFR (M!") 2.21 2.03 2.53 2.19 

RBFNN (M!#) 2.21 1.91 2.45 2.12 
KNNR (M!$) 2.26 1.91 2.62 2.18 
DTR (M!%) 2.77 2.88 3.32 2.93 
SVR (M!&) 2.51 1.91 2.63 2.27 
NNR (M!') 2.14 1.91 2.32 2.07 
Lasso (M!() 3.10 1.95 2.35 2.43 
Ridge (M!)) 2.27 1.94 2.36 2.14 

ElasticNet (M!!*) 3.06 2.57 3.45 2.92 
 

 
 
 
 
 
 

Models Local RMSE (D3) On Site1 (D1) On Site2 (D2) Average RMSE 
LR (M#!) 6.32 9.19 6.60 7.33 

RFR (M#") 4.96 10.41 7.35 7.32 
RBFNN (M##) 7.25 8.42 6.82 7.53 
KNNR (M#$) 6.48 9.24 7.75 7.69 
DTR (M#%) 6.55 12.08 9.11 8.98 
SVR (M#&) 6.86 8.59 6.82 7.42 
NNR (M#') 6.57 9.59 6.25 7.49 
Lasso (M#() 7.2 9.54 5.70 7.62 
Ridge (M#)) 6.47 9.08 6.17 7.26 

ElasticNet (M#!*) 7.20 8.36 6.58 7.44 
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Table B. 81. Site 2 models evaluation using MAPE metric  
 

Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 
LR (M"!) 12% 13% 13% 13% 

RFR (M"") 13% 13% 14% 13% 
RBFNN (M"#) 24% 26% 27% 26% 
KNNR (M"$) 12% 13% 14% 13% 
DTR (M"%) 15% 17% 18% 17% 
SVR (M"&) 11% 14% 13% 13% 
NNR (M"') 12% 13% 13% 12% 
Lasso (M"() 20% 13% 12% 15% 
Ridge (M")) 12% 13% 13% 13% 

ElasticNet (M"!*) 18% 21% 21% 20% 
 

Table B. 82. Site 2 models evaluation using RMSE  
 

Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 
LR (M"!) 1.85 2.35 2.40 2.19 

RFR (M"") 1.91 2.28 2.65 2.23 
RBFNN (M"#) 1.94 2.39 2.53 2.26 
KNNR (M"$) 1.87 2.27 2.70 2.22 
DTR (M"%) 2.44 2.88 3.37 2.83 
SVR (M"&) 1.99 2.76 2.85 2.51 
NNR (M"') 1.82 2.30 2.41 2.16 
Lasso (M"() 2.62 2.31 2.41 2.44 
Ridge (M")) 1.87 2.45 2.51 2.26 

ElasticNet (M"!*) 2.51 3.06 3.47 2.95 
 

Table B. 83. Site 3 models evaluation using MAPE metric  
 

Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 
LR (M#!) 14% 14% 14% 14% 

RFR (M#") 15% 15% 15% 15% 
RBFNN (M##) 30% 28% 26% 28% 
KNNR (M#$) 14% 14% 14% 14% 
DTR (M#%) 19% 19% 19% 19% 
SVR (M#&) 13% 14% 12% 13% 
NNR (M#') 13% 14% 14% 14% 
Lasso (M#() 23% 13% 14% 17% 
Ridge (M#)) 14% 14% 14% 14% 

ElasticNet (M#!*) 21% 22% 21% 21% 
 

Table B. 84. Site 3 models evaluation using RMSE  
 

 
 
 
 
 
 
 
 
 
 

Models Local RMSE (D3) On Site1 (D1) On Site2 (D2) Average RMSE 
LR (M#!) 2.27 2.29 1.96 2.21 

RFR (M#") 2.60 2.44 2.27 2.46 
RBFNN (M##) 2.40 2.44 2.03 2.34 
KNNR (M#$) 2.49 2.40 2.04 2.36 
DTR (M#%) 3.35 3.24 3.20 3.27 
SVR (M#&) 2.61 2.60 1.94 2.47 
NNR (M#') 2.29 2.24 1.94 2.19 
Lasso (M#() 3.44 2.25 1.92 2.59 
Ridge (M#)) 2.36 2.37 1.96 2.28 

ElasticNet (M#!*) 3.28 3.01 2.55 3.01 
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4. Boston housing: 
 
 

Table B. 85. Site 1 models evaluation using MAPE metric  
Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 

LR (M!!) 18% 15% 21% 18% 
RFR (M!") 13% 12% 16% 14% 

RBFNN (M!#) 29% 27% 48% 35% 
KNNR (M!$) 22% 22% 27% 24% 
DTR (M!%) 17% 13% 19% 17% 
SVR (M!&) 16% 15% 21% 18% 
NNR (M!') 31% 35% 32% 32% 
Lasso (M!() 17% 16% 19% 17% 
Ridge (M!)) 17% 16% 21% 18% 

ElasticNet (M!!*) 17% 17% 20% 18% 
 
 

Table B. 86. Site 1 models evaluation using RMSE  
Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 4.77 7.52 5.00 5.51 
RFR (M!") 3.63 6.01 3.40 4.12 

RBFNN (M!#) 7.76 11.70 10.15 9.55 
KNNR (M!$) 6.47 9.81 7.16 7.51 
DTR (M!%) 4.78 5.72 4.82 5.02 
SVR (M!&) 4.51 8.62 6.03 6.03 
NNR (M!') 7.16 13.15 8.71 9.14 
Lasso (M!() 4.88 7.76 3.79 5.18 
Ridge (M!)) 4.55 7.65 5.10 5.48 

ElasticNet (M!!*) 4.72 7.77 5.54 5.74 
 
 

Table B. 87. Site 2 models evaluation using MAPE metric  
Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 

LR (M"!) 17% 63% 74% 56% 
RFR (M"") 15% 30% 42% 31% 

RBFNN (M"#) 35% 49% 71% 53% 
KNNR (M"$) 27% 71% 93% 68% 
DTR (M"%) 19% 32% 32% 29% 
SVR (M"&) 14% 65% 75% 57% 
NNR (M"') 40% 58% 62% 55% 
Lasso (M"() 16% 49% 52% 42% 
Ridge (M")) 15% 62% 72% 54% 

ElasticNet (M"!*) 18% 44% 51% 40% 
 
 

Table B. 88. Site 2 models evaluation using RMSE  
Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 

LR (M"!) 4.94 14.60 13.81 12.01 
RFR (M"") 5.003 6.71 6.98 6.39 

RBFNN (M"#) 10.19 9.66 11.61 10.48 
KNNR (M"$) 8.86 15.65 15.86 14.10 
DTR (M"%) 6.79 9.78 7.35 8.20 
SVR (M"&) 4.81 15.69 14.21 12.57 
NNR (M"') 11.85 14.44 12.40 13.09 
Lasso (M"() 5.16 11.77 10.09 9.59 
Ridge (M")) 4.81 14.43 13.53 11.81 

ElasticNet (M"!*) 5.35 10.02 9.45 8.70 
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Table B. 89. Site 3 models evaluation using MAPE metric  
Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 

LR (M#!) 22% 20% 18% 20% 
RFR (M#") 15% 15% 13% 15% 

RBFNN (M##) 48% 28% 27% 35% 
KNNR (M#$) 25% 27% 28% 26% 
DTR (M#%) 17% 18% 17% 17% 
SVR (M#&) 21% 17% 16% 18% 
NNR (M#') 74% 16% 15% 37% 
Lasso (M#() 20% 84% 72% 58% 
Ridge (M#)) 21% 20% 18% 20% 

ElasticNet (M#!*) 20% 19% 19% 19% 
 
 

Table B. 90. Site 3 models evaluation using RMSE  
 

 
 
 
 

II. Non-randomly Partitioned Dataset: 
 

1. Parkinson Disease (Total UPDRS): 

Table B. 91. Site 1 Models Evaluation Using MAPE Metric  
Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 

LR (M!!) 35% 47% 31% 38% 
RFR (M!") 25% 45% 34% 35% 

RBFNN (M!#) 48% 44% 28% 40% 
KNNR (M!$) 33% 44% 31% 36% 
DTR (M!%) 31% 54% 42% 42% 
SVR (M!&) 33% 45% 30% 36% 
NNR (M!') 36% 44% 31% 37% 
Lasso (M!() 41% 44% 29% 38% 
Ridge (M!)) 37% 44% 30% 37% 

ElasticNet (M!!*) 40% 46% 27% 38% 
 
 

Table B. 92. Site 1 Models Evaluation Using RMSE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models Local RMSE (D3) On Site1 (D1) On Site2 (D2) Average RMSE 
LR (M#!) 4.48 5.26 8.00 5.64 

RFR (M#") 3.61 4.26 7.78 4.87 
RBFNN (M##) 9.87 7.81 11.70 9.47 
KNNR (M#$) 6.85 7.07 11.21 7.98 
DTR (M#%) 3.93 5.10 9.17 5.65 
SVR (M#&) 4.64 4.73 7.53 5.37 
NNR (M#') 13.51 4.50 6.04 8.07 
Lasso (M#() 4.93 17.26 17.04 12.83 
Ridge (M#)) 4.36 5.25 8.03 5.59 

ElasticNet (M#!*) 5.09 5.00 7.72 5.68 

Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 
LR (M!!) 8.96 12.63 14.94 12.15 

RFR (M!") 7.05 12.71 16.78 12.14 
RBFNN (M!#) 11.03 11.61 14.49 12.36 
KNNR (M!$) 8.87 12.20 15.74 12.24 
DTR (M!%) 9.69 15.37 18.65 14.53 
SVR (M!&) 9.41 12.53 15.06 12.31 
NNR (M!') 9.25 12.15 15.52 12.28 
Lasso (M!() 9.69 11.93 15.16 12.23 
Ridge (M!)) 9.06 11.66 14.61 11.75 

ElasticNet (M!!*) 9.68 11.69 14.02 11.78 
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Table B. 93. Site 2 Models Evaluation Using MAPE Metric  
 

Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 
LR (M"!) 41% 56% 29% 42% 

RFR (M"") 33% 53% 31% 39% 
RBFNN (M"#) 49% 59% 25% 44% 
KNNR (M"$) 43% 56% 29% 43% 
DTR (M"%) 39% 61% 40% 46% 
SVR (M"&) 45% 66% 27% 46% 
NNR (M"') 44% 61% 24% 43% 
Lasso (M"() 48% 62% 25% 45% 
Ridge (M")) 43% 54% 29% 42% 

ElasticNet (M"!*) 48% 59% 24% 44% 
 
 

Table B. 94. Site 2 Models Evaluation Using RMSE  
 

Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 
LR (M"!) 9.37 12.19 13.38 11.63 

RFR (M"") 8.40 11.60 14.23 11.38 
RBFNN (M"#) 10.55 11.44 12.22 11.40 
KNNR (M"$) 10.24 11.92 12.98 11.70 
DTR (M"%) 11.45 14.12 17.38 14.29 
SVR (M"&) 10.37 12.88 13.13 12.12 
NNR (M"') 9.88 11.87 12.41 11.38 
Lasso (M"() 10.59 11.97 12.26 11.60 
Ridge (M")) 9.76 11.13 13.29 11.37 

ElasticNet (M"!*) 10.59 11.32 12.08 11.32 
 
 
 

Table B. 95. Site 3 Models Evaluation Using MAPE Metric  
 

Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 
LR (M#!) 25% 89% 85% 67% 

RFR (M#") 19% 82% 62% 55% 
RBFNN (M##) 28% 78% 61% 56% 
KNNR (M#$) 26% 76% 61% 54% 
DTR (M#%) 22% 86% 67% 59% 
SVR (M#&) 25% 68% 56% 51% 
NNR (M#') 28% 85% 65% 60% 
Lasso (M#() 28% 85% 65% 60% 
Ridge (M#)) 27% 83% 64% 58% 

ElasticNet (M#!*) 28% 78% 61% 56% 
 

Table B. 96. Site 3 Models Evaluation Using RMSE  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Models Local RMSE (D3) On Site1 (D1) On Site2 (D2) Average RMSE 
LR (M#!) 9.58 19.41 26.13 18.46 

RFR (M#") 7.77 16.06 13.17 12.38 
RBFNN (M##) 10.53 14.52 12.09 12.40 
KNNR (M#$) 10.16 14.96 12.77 12.65 
DTR (M#%) 10.48 17.99 15.15 14.58 
SVR (M#&) 10.69 12.93 11.49 11.71 
NNR (M#') 10.32 15.84 13.15 13.13 
Lasso (M#() 10.57 15.80 13.21 13.22 
Ridge (M#)) 10.22 15.36 12.92 12.86 

ElasticNet (M#!*) 10.56 14.42 12.15 12.39 
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2. Parkinson Disease (Motor UPDRS): 

Table B. 97. Site 1 models evaluation using MAPE metric  
Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 

LR (M!!) 36% 54% 34% 41% 
RFR (M!") 27% 51% 36% 38% 

RBFNN (M!#) 48% 50% 30% 42% 
KNNR (M!$) 35% 51% 34% 40% 
DTR (M!%) 31% 58% 44% 44% 
SVR (M!&) 34% 50% 32% 39% 
NNR (M!') 37% 50% 31% 40% 
Lasso (M!() 41% 49% 32% 41% 
Ridge (M!)) 38% 50% 33% 41% 

ElasticNet (M!!*) 41% 51% 29% 41% 
 
 

Table B. 98. Site 1 models evaluation using RMSE 
Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 6.98 10.15 10.16 9.09 
RFR (M!") 5.51 10.05 11.52 9.00 

RBFNN (M!#) 8.54 9.24 9.56 9.11 
KNNR (M!$) 6.89 9.78 10.65 9.09 
DTR (M!%) 7.26 11.91 13.20 10.77 
SVR (M!&) 7.21 9.70 10.16 9.01 
NNR (M!') 7.17 9.43 10.04 8.87 
Lasso (M!() 7.44 9.54 10.28 9.08 
Ridge (M!)) 7.02 9.29 9.86 8.71 

ElasticNet (M!!*) 7.44 9.22 9.22 8.62 
 
 

Table B. 99. Site 2 models evaluation using MAPE metric  
Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 

LR (M"!) 45% 58% 32% 45% 
RFR (M"") 34% 55% 35% 41% 

RBFNN (M"#) 54% 58% 28% 47% 
KNNR (M"$) 48% 58% 33% 46% 
DTR (M"%) 38% 71% 40% 49% 
SVR (M"&) 49% 63% 31% 48% 
NNR (M"') 48% 63% 28% 47% 
Lasso (M"() 53% 61% 29% 48% 
Ridge (M")) 47% 54% 33% 45% 

ElasticNet (M"!*) 53% 58% 29% 46% 
 

Table B. 100. Site 2 models evaluation using RMSE  
Models Local RMSE (D2) On Site1 (D1) On Site3 (D3)  Average RMSE 

LR (M"!) 7.44 10.01 9.37 8.93 
RFR (M"") 6.36 9.29 9.85 8.49 

RBFNN (M"#) 8.53 8.62 8.33 8.49 
KNNR (M"$) 8.49 9.41 9.77 9.22 
DTR (M"%) 8.66 12.46 11.39 10.83 
SVR (M"&) 8.30 9.49 9.16 8.98 
NNR (M"') 7.94 9.25 8.06 8.42 
Lasso (M"() 8.59 8.99 8.27 8.62 
Ridge (M")) 7.91 8.56 9.60 8.68 

ElasticNet (M"!*) 8.59 8.45 8.09 8.38 
 
 

Table B. 101. Site 3 models evaluation using MAPE metric  
Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 

LR (M#!) 23% 87% 86% 66% 
RFR (M#") 19% 81% 72% 57% 

RBFNN (M##) 29% 74% 65% 56% 
KNNR (M#$) 25% 73% 69% 56% 
DTR (M#%) 23% 82% 75% 61% 
SVR (M#&) 27% 77% 68% 58% 
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NNR (M#') 26% 77% 74% 59% 
Lasso (M#() 29% 76% 73% 60% 
Ridge (M#)) 25% 83% 72% 61% 

ElasticNet (M#!*) 29% 72% 64% 55% 
 
 

Table B. 102. Site 3 models evaluation using RMSE  

 
 

 
3. Boston housing: 

Table B. 103. Site 1 models evaluation using MAPE metric  
Models Local MAPE (D1) On Site2 (D2) On Site3 (D3) Average MAPE 

LR (M!!) 11% 14% 43% 23% 
RFR (M!") 9% 11% 50% 24% 

RBFNN (M!#) 25% 34% 87% 50% 
KNNR (M!$) 21% 22% 45% 30% 
DTR (M!%) 12% 16% 51% 27% 
SVR (M!&) 11% 14% 34% 21% 
NNR (M!') 38% 42% 85% 56% 
Lasso (M!() 14% 44% 46% 36% 
Ridge (M!)) 11% 14% 39% 22% 

ElasticNet (M!!*) 15% 26% 89% 45% 
 
 

Table B. 104. Site 1 models evaluation using RMSE  
Models Local RMSE (D1) On Site2 (D2) On Site3 (D3) Average RMSE 

LR (M!!) 3.33 3.92 11.00 6.25 
RFR (M!") 3.13 3.23 9.00 5.25 

RBFNN (M!#) 7.67 8.91 13.10 10.02 
KNNR (M!$) 6.96 8.33 9.73 8.42 
DTR (M!%) 3.92 4.42 9.76 6.16 
SVR (M!&) 3.59 3.86 9.11 5.64 
NNR (M!') 11.37 10.09 15.39 12.35 
Lasso (M!() 4.37 15.23 13.41 11.34 
Ridge (M!)) 3.21 3.85 10.38 5.97 

ElasticNet (M!!*) 4.72 7.57 16.78 9.98 
 

 
Table B. 105. Site 2 models evaluation using MAPE metric  

Models Local MAPE (D2) On Site1 (D1) On Site3 (D3) Average MAPE 
LR (M"!) 11% 9% 59% 27% 

RFR (M"") 9% 12% 35% 19% 
RBFNN (M"#) 27% 21% 72% 41% 
KNNR (M"$) 21% 23% 34% 26% 
DTR (M"%) 14% 15% 31% 21% 
SVR (M"&) 11% 11% 58% 28% 
NNR (M"') 59% 19% 73% 52% 
Lasso (M"() 11% 20% 85% 41% 
Ridge (M")) 10% 10% 59% 27% 

ElasticNet (M"!*) 14% 15% 51% 27% 
 

Models Local RMSE (D3) On Site1 (D1) On Site2 (D2) Average RMSE 
LR (M#!) 6.07 13.05 16.55 11.95 

RFR (M#") 5.39 11.94 10.97 9.47 
RBFNN (M##) 7.22 10.45 9.57 9.10 
KNNR (M#$) 6.61 10.93 10.46 9.36 
DTR (M#%) 7.38 13.10 12.06 10.88 
SVR (M#&) 6.68 10.92 10.06 9.24 
NNR (M#') 6.40 11.19 11.75 9.81 
Lasso (M#() 7.20 11.04 11.42 9.91 
Ridge (M#)) 6.37 11.81 10.61 9.63 

ElasticNet (M#!*) 7.19 10.12 9.39 8.92 
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Table B. 106. Site 2 models evaluation using RMSE  
Models Local RMSE (D2) On Site1 (D1) On Site3 (D3) Average RMSE 

LR (M"!) 2.85 3.47 10.78 5.85 
RFR (M"") 2.84 4.03 7.63 4.89 

RBFNN (M"#) 8.19 8.23 11.56 9.39 
KNNR (M"$) 6.71 8.10 9.33 8.05 
DTR (M"%) 3.93 5.19 8.08 5.78 
SVR (M"&) 3.10 4.08 10.33 5.96 
NNR (M"') 14.45 6.16 12.96 11.44 
Lasso (M"() 3.67 6.27 16.16 8.88 
Ridge (M")) 2.81 3.51 10.68 5.81 

ElasticNet (M"!*) 4.40 4.85 8.56 6.01 
 
 
 

Table B. 107. Site 3 models evaluation using MAPE metric  
Models Local MAPE (D3) On Site1 (D1) On Site2 (D2) Average MAPE 

LR (M#!) 29% 31% 30% 30% 
RFR (M#") 19% 15% 14% 16% 

RBFNN (M##) 39% 30% 24% 31% 
KNNR (M#$) 27% 36% 34% 32% 
DTR (M#%) 24% 20% 20% 22% 
SVR (M#&) 21% 27% 29% 26% 
NNR (M#') 61% 21% 22% 36% 
Lasso (M#() 26% 31% 29% 29% 
Ridge (M#)) 29% 59% 59% 48% 

ElasticNet (M#!*) 27% 19% 18% 22% 
 
 

Table B. 108. Site 3 models evaluation using RMSE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models Local RMSE 
(D3) 

On Site1 (D1) On Site2 (D2) Average RMSE 

LR (M#!) 6.22 8.92 8.46 7.80 
RFR (M#") 4.37 5.33 4.90 4.84 

RBFNN (M##) 9.07 12.05 10.63 10.50 
KNNR (M#$) 6.19 12.73 12.13 10.20 
DTR (M#%) 5.09 8.85 8.51 7.40 
SVR (M#&) 6.69 10.73 11.34 9.51 
NNR (M#') 11.52 9.02 9.37 10.03 
Lasso (M#() 6.36 8.92 8.46 7.85 
Ridge (M#)) 7.19 18.09 16.49 13.67 

ElasticNet (M#!*) 6.36 7.92 7.08 7.07 
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Appendix C 

 
 
Detailed Results for the Proposed Method in Chapter 5 
 
 

This appendix presents the global and local level modelling detailed results using 

stepwise model selection and gossip learning methods for classification and regression 

datasets. 
 

Global-level Modelling: 

a) Classification 

I. Randomly Partitioned Data: 

1. Heart Disease Dataset: 

The following tables show the detailed steps results for heart disease dataset that 

partitioned randomly. Tables C.1 – C.3 show the site1, site2, and site3 local models 

accuracy, the models evaluation results in other sites, and the weighted average accuracy 

based on the data size that used for evaluation. 

 
Table C. 1. Site 1 Local Models Evaluation Results for heart disease dataset 

 
 
 
 
 
 
 
 
 
 
 

Table C. 2. Site 2 Local Models Evaluation Results for heart disease dataset 
 
 
 
 
 
 
 
 
 
 

S1 In S2 In S3 Weighted average 
accuracy Models Accuracy Accuracy Accuracy 

LR 75% 60% 62% 66% 
RF 79% 71% 77% 75% 
NB 85% 73% 78% 79% 
SVM (nonlinear) 78% 63% 67% 70% 
SVM (linear) 80% 70% 77% 75% 
NN 81% 73% 78% 77% 
DT (GD) 82% 70% 87% 79% 

S2 In S1 In S3 Weighted average 
accuracy Models Accuracy Accuracy Accuracy 

LR 69% 83% 73% 75% 
RF 70% 78% 80% 75% 
NB 75% 84% 82% 80% 
SVM (nonlinear) 66% 80% 75% 74% 
SVM (linear) 67% 75% 70% 71% 
NN 74% 83% 80% 79% 
DT (GD) 72% 78% 85% 77% 
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Table C. 3. Site 3 Local Models Evaluation Results for heart disease dataset 

 
 
 
 
 

 

 

 

For each learning model, we select the best average accuracy model.  

Table C. 4. Local Models Average Accuracy for All sites  
 

 

 

 

 

Then, we sent the selected models to other sites and applied mini-batch stochastic 

gradient descent to update the models. Table C.5 shows the selected LR model of site 2 after 

sending it to site 1 and site 3 for updating method.  
 

Table C. 5. Logistic Regression (LR) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C.6 shows the updated models evaluation results in all sites and the weighted 

average accuracy. LR model of site 2 that is updated in site 3 is the best. Therefore, we 

sent this model to site 1 to update it, as shown in Table C.7. 
 

Table C. 6. Logistic Regression (LR) Updated Model Evaluation Results 
 

 

Table C. 7. Logistic Regression (LR) Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Tables C.8-C.25 show the same model selection and updating strategies that are 

applied to LR model for all learning models RF, NB, SVM, NN, and DT algorithms. 
 

S3 In S1 In S2 Weighted average 
accuracy Models Accuracy Accuracy Accuracy 

LR 75% 75% 60% 69% 
RF 82% 87% 75% 81% 
NB 77% 81% 75% 78% 
SVM (nonlinear) 73% 79% 73% 75% 
SVM (linear) 79% 76% 68% 74% 
NN 82% 80% 72% 77% 
DT (GD) 80% 82% 74% 78% 

Models S1 model 
average 
accuracy 

S2 model 
average 
accuracy 

S3 model 
average 
accuracy 

The best model 

LR 66% 75% 69% LR-S2 
RF 75% 75% 81% RF-S3 
NB 79% 80% 78% NB-S2 
SVM (nonlinear) 70% 74% 75% SVM (nonlinear)-S3 
SVM (linear) 75% 71% 74% SVM (linear)-S1  
NN 77% 79% 77% NN-S2 
DT 79% 77% 78% DT-S1 

The best 
model 

In S1 (LR-S21) In S3 (LR-S23) 
Before update After update Before update After update 

LR-S2 83% 81% 73% 77% 

The best model In S1 In S2 In S3 Weighted Average accuracy 
LR-S21 81% 63% 67% 71% 
LR-S23 75% 68% 77% 73% 

The best model In S1 (LR-S231) 
Before update After update 

LR-S23 75% 81% 
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Table C. 8. Random Forest (RF) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 9. Random Forest (RF) Updated Model Evaluation Results  
 

 

 

Table C. 10. Random Forest (RF) Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 11. Naïve Bayes (NB) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 12. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 

 

Table C. 13. Naïve Bayes (NB) Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 14. Nonlinear Support Vector Machine (SVM) Model Evaluation Results Before and After Updating 
Method 

 

 

 

Table C. 15. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  

 

 

 

The best model In S1 (RF-S31) In S2 (RF-S32) 
Before update After update Before update After update 

RF-S3 87% 90% 75% 89% 

The best model In S1 In S2 In S3 Weighted average accuracy 
RF-S31 90% 72% 77% 80% 
RF-S32 80% 89% 82% 83% 

The best model In S1 (RF-S321) 
Before update After update 

RF-S32 80% 91% 

The best 
model 

In S1 (NB-S21) In S3 (NB-S23) 
Before update After update Before update After update 

NB-S2 84% 83% 82% 87% 

The best model In S1 In S2 In S3 Weighted average accuracy 
NB-S21 83% 73% 73% 77% 
NB-S21 81% 75% 87% 80% 

The best model In S3 (NB-S213) 
Before update After update 

NB-S21 87% 85% 

The best model In S1(SVM (nonlinear)-S31) In S2 (SVM nonlinear-S32) 
Before update After update Before update After update 

SVM nonlinear -S3 79% 85% 73% 73% 

The best model In S1 In S2 In S3 Weighted average accuracy 
SVM nonlinear-S31 85% 65% 80% 76% 
SVM nonlinear-S32 78% 73% 82% 77% 
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Table C. 16. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results Before and After 
Updating Method 

 

 

Table C. 17. Linear Support Vector Machine (SVM) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 18. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

 

Table C. 19. Linear Support Vector Machine (SVM) Updated Model Evaluation Results Before and After Updating 
Method 

 

 

 

Table C. 20. Neural Network (NN) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 21. Neural Network (NN) Updated Model Evaluation Results  
 

 

 

Table C. 22. Neural Network (NN) Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 23. Decision Tree (DT) Model Evaluation Results Before and After Updating Method 
 

 

 

 

The best model In S1 (SVM nonlinear-S321) 
Before update After update 

SVM nonlinear-S32 78% 81% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
Before update After update Before update After update 

SVM linear-S1 70% 73% 77% 83% 

The best model In S1 In S2 In S3 Weighted average accuracy 
SVM linear-S12 83% 73% 75% 77% 
SVM linear-S13 76% 72% 83% 76% 

The best model In S3 (SVM linear-S123) 
Before update After update 

SVM linear-S12 75% 87% 

The best model In S1 (NN-S21) In S3 (NN-S23) 
Before update After update Before update After update 

NN-S2 83% 83% 80% 68% 

The best model In S1 In S2 In S3 Weighted average accuracy 
NN-S21 83% 90% 80% 85% 
NN-S23 62% 67% 68% 65% 

The best model In S3 (NN-S213) 
Before update After update 

NN-S21 80% 80% 

The best model In S2 (DT-S12) In S3 (DT-S13) 
Before update After update Before update After update 

DT-S1 70% 92% 87% 90% 
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Table C. 24. Decision Tree (DT) Updated Model Evaluation Results  
 

 

 

Table C. 25. Decision Tree (DT) Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Finally, we evaluated the final updated models in all sites and then sent the models 

with their evaluation results and the data size used for models evaluation to the server. The 

server calculates the average accuracy for each model and then selects the best average 

accuracy models for the linear combination method. As illustrated in Table C.26, the best 

three models are selected and combined using the linear combination method. 

 
Table C. 26. Updated Models Evaluation Results in All sites  

 

 

 

 

We applied the same methodology on the rest of classification datasets. 

2. Blood Transfusion Dataset: 

Table C. 27. Site 1 local models evaluation 
 
 
 
 
 
 
 
 
 
 

 
Table C. 28. Site 2 local models evaluation 

 
 
 
 
 
 
 
 
 
 

 

The best model In S1 In S2 In S3 Weighted average accuracy 
DT-S12 73% 92% 78% 81% 
DT-S13 82% 72% 90% 80% 

The best model In S3 (DT-S123) 
Before update After update 

DT-S12 78% 92% 

The best model In S1 In S2 In S3 Weighted average accuracy 
LR-S231 81% 63% 67% 71% 
RF-S321 91% 72% 77% 80% 
NB-S213 80% 71% 85% 78% 
SVM nonlinear-S321 81% 59% 67% 70% 
SVM linear-S123 77% 71% 87% 77% 
NN-S213 83% 90% 80% 84% 
DT-S123 82% 72% 92% 81% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 68% 35% 41% 50% 
RF 62% 63% 75% 67% 
NB 73% 86% 78% 78% 
SVM (nonlinear) 70% 85% 74% 75% 
SVM (linear) 70% 87% 77% 77% 
NN 74% 89% 77% 79% 
DT (GD) 73% 89% 78% 79% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 87% 53% 54% 61% 
RF 76% 72% 77% 75% 
NB 85% 71% 75% 76% 
SVM (nonlinear) 84% 72% 78% 77% 
SVM (linear) 75% 76% 80% 77% 
NN 87% 74% 77% 78% 
DT (GD) 87% 68% 75% 75% 
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Table C. 29. Site 3 local models evaluation 
 
 
 
 
 
 
 
 

 

Table C. 30. Local Models Average Accuracy for All sites  
 
 

 

 

 

 

 

Table C. 31. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 32. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
 

Table C. 33. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 34. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 

 

Table C. 35. Random Forest (RF) Updated Model Evaluation Results  
 

 

 
 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 72% 57% 55% 62% 
RF 65% 76% 87% 74% 
NB 74% 70% 85% 75% 
SVM (nonlinear) 71% 64% 79% 70% 
SVM (linear) 71% 56% 61% 63% 
NN 76% 74% 89% 78% 
DT (GD) 76% 74% 88% 78% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 50% 61% 62% LR-S3 
RF 67% 75% 74% RF-S2 
NB 78% 76% 75% NB-S1 
SVM (nonlinear) 75% 77% 70% SVM (nonlinear)-S2 
SVM (linear) 77% 77% 63% SVM (linear)-S1 and S2 
NN 79% 78% 78% NN-S1 
DT 79% 75% 78% DT-S1 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 62% 79% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S31 62% 65% 66% 64% 
LR-S32 71% 79% 74% 74% 

The best model In S1 (LR-S321) 
After update the model 

LR-S32 72% 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 92% 93% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 92% 77% 74% 82% 
RF-S23 75% 80% 93% 83% 
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Table C. 36. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 37. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 

 
Table C. 38. Naïve Bayes (NB) Updated Model Evaluation Results  

 

 

Table C. 39. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 40. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 41. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
 

Table C. 42. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 43. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 44. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

 

The best model In S1 (RF-S231) 
After update the model 

RF-S23 92% 

The best model In S2 (NB-S12) In S3 (NB-S13) 
After update the model After update the model 

NB-S1 65% 77% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S12 61% 65% 58% 61% 
NB-S13 70% 85% 77% 76% 

The best model In S2 (NB-S132) 
After update the model 

NB-S13 85% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 73% 73% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 73% 86% 75% 77% 
SVM nonlinear-S23 68% 83% 73% 73% 

The best model In S3 (SVM nonlinear-S213) 
After update the model 

SVM nonlinear-S21 79% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 87% 73% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 74% 87% 78% 79% 
SVM linear-S13 67% 86% 73% 74% 
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Table C. 45. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 46. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 47. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
 

Table C. 48. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 49. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
 

Table C. 50. Neural Network (NN) Updated Model Evaluation Results  
 

 
 

Table C. 51. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 52. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

Table C. 53. Decision Tree (DT) Updated Model Evaluation Results  
 

 

The best model In S3 (SVM linear-S123) 
After update the model 

SVM linear-S12 73% 

The best model In S1(SVM linear-S21) In S3 (SVM linear-S23) 
After update the model After update the model 

SVM linear-S2 73% 77% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S21 73% 87% 77% 78% 
SVM linear-S23 74% 89% 77% 79% 

The best model In S1 (SVM linear-S231) 
After update the model 

SVM linear-S23 73% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 80% 76% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 65% 80% 73% 71% 
NN-S13 69% 87% 76% 76% 

The best model In S2 (NN-S132) 
After update the model 

NN-S13 86% 

The best model In S2 (DT-S12) In S3 (DT-S13) 
After update the model After update the model 

DT-S1 96% 92% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S12 72% 96% 74% 78% 
DT-S13 64% 78% 92% 77% 
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Table C. 54. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 55. Updated Models Evaluation Results in All sites  
 

 

 

 
 

3. Breast Cancer Wisconsin (Diagnostic):  

Table C. 56. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 57. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 58. Site 3 Local Models Evaluation 
 
 
 
 
 
 

 

 

Table C. 59. Local Models Average Accuracy for All sites  

The best model In S3 (DT-S123) 
After update the model 

DT-S12 92% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S321 72% 87% 77% 77% 
RF-S231 92% 77% 74% 82% 
NB-S132 70% 85% 76% 76% 
SVM nonlinear-S213 71% 89% 79% 78% 
SVM linear-S123 72% 82% 73% 75% 
SVM linear-S231 73% 87% 77% 78% 
NN-S132 73% 86% 76% 77% 
DT-S123 64% 77% 92% 77% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 94% 85% 95% 92% 
RF 94% 85% 97% 92% 
NB 92% 83% 96% 90% 
SVM (nonlinear) 94% 83% 97% 92% 
SVM (linear) 92% 83% 95% 90% 
NN 96% 87% 97% 94% 
DT (GD) 93% 85% 96% 91% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 96% 88% 94% 92% 
RF 96% 81% 93% 89% 
NB 96% 84% 97% 91% 
SVM (nonlinear) 95% 85% 93% 90% 
SVM (linear) 95% 87% 96% 92% 
NN 97% 85% 94% 91% 
DT (GD) 95% 82% 93% 89% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 99% 92% 93% 94% 
RF 96% 89% 92% 92% 
NB 97% 90% 89% 92% 
SVM (nonlinear) 99% 92% 95% 95% 
SVM (linear) 98% 92% 97% 95% 
NN 98% 90% 93% 93% 
DT (GD) 95% 89% 90% 91% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 92% 92% 94% LR-S3 
RF 92% 89% 92% RF-S1 - RF-S3 
NB 90% 91% 92% NB-S3 
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Table C. 60. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 61. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
 

Table C. 62. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 63. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
 

Table C. 64. Random Forest (RF) Updated Model Evaluation Results  
 

 
 

Table C. 65. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 66. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
 

Table C. 67. Random Forest (RF) Updated Model Evaluation Results  
 

 

SVM (nonlinear) 92% 90% 95% SVM (nonlinear)-S3 
SVM (linear) 90% 92% 95% SVM (linear)-S3 
NN 94% 91% 93% NN-S1 
DT 91% 89% 91% DT-S1 - DT-S3 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 95% 95% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S31 95% 79% 93% 90% 
LR-S32 86% 95% 96% 92% 

The best model In S1 (LR-S321) 
After update the model 

LR-S32 89% 

The best model In S2 (RF-S12) In S3 (RF-S13) 
After update the model After update the model 

RF-S1 98% 98% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S12 81% 98% 92% 89% 
RF-S13 89% 92% 98% 93% 

The best model In S2 (RF-S132) 
After update the model 

RF-S13 99% 

The best model In S1 (RF-S31) In S2 (RF-S32) 
After update the model After update the model 

RF-S3 98% 98% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S31 98% 87% 97% 94% 
RF-S32 80% 98% 93% 89% 
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Table C. 68. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 69. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
 

Table C. 70. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
 

Table C. 71. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 72. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 73. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

Table C. 74. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 75. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 76. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
 

The best model In S2 (RF-S312) 
After update the model 

RF-S31 94% 

The best model In S1 (NB-S31) In S2 (NB-S32) 
After update the model After update the model 

NB-S3 89% 97% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S31 89% 86% 95% 90% 
NB-S32 81% 97% 91% 89% 

The best model In S2 (NB-S312) 
After update the model 

NB-S31 97% 

The best model In S1(SVM (nonlinear)-S31) In S2 (SVM nonlinear-S32) 
After update the model After update the model 

SVM nonlinear -S3 94% 81% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S31 94% 81% 90% 89% 
SVM nonlinear-S32 88% 81% 81% 84% 

The best model In S2 (SVM nonlinear-S312) 
After update the model 

SVM nonlinear-S31 90% 

The best model In S1 (SVM linear)-S31) In S2 (SVM linear)-S32) 
After update the model After update the model 

SVM (linear)-S3 92% 93% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S31 92% 74% 85% 84% 
SVM linear-S32 80% 93% 88% 86% 
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Table C. 77. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 78. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
 

Table C. 79. Neural Network (NN) Updated Model Evaluation Results  
 

 
 

Table C. 80. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 81. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

Table C. 82. Decision Tree (DT) Updated Model Evaluation Results  
 

 
 

Table C. 83. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 84. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
 

Table C. 85. Decision Tree (DT) Updated Model Evaluation Results  
 

 

 

The best model In S1 (SVM linear-S321) 
After update the model 

SVM linear-S32 96% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 91% 83% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 74% 91% 81% 81% 
NN-S13 82% 79% 83% 82% 

The best model In S2 (NN-S132) 
After update the model 

NN-S13 93% 

The best model In S2 (DT-S12) In S3 (DT-S13) 
After update the model After update the model 

DT-S1 98% 98% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S12 82% 98% 91% 89% 
DT-S13 90% 91% 98% 93% 

The best model In S2 (DT-S132) 
After update the model 

DT-S13 97% 

The best model In S1 (DT-S31) In S2 (DT-S32) 
After update the model After update the model 

DT-S3 98% 98% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S31 98% 86% 94% 93% 
DT-S32 82% 98% 91% 89% 
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Table C. 86. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 87. Updated Models Evaluation Results in All sites  
 

 

 

 

 

4. Diabetes: 

Table C. 88. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 89. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 90. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The best model In S2 (DT-S312) 
After update the model 

DT-S31 93% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S321 89% 83% 93% 88% 
RF-S132 81% 99% 93% 90% 
RF-S312 80% 94% 91% 88% 
NB-S312 85% 97% 97% 92% 
SVM nonlinear-S312 90% 90% 86% 89% 
SVM linear-S321 96% 88% 97% 94% 
NN-S132 81% 93% 91% 88% 
DT-S132 82% 97% 91% 89% 
DT-S312 82% 93% 91% 88% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 68% 64% 72% 68% 
RF 68% 70% 79% 72% 
NB 70% 75% 80% 74% 
SVM (nonlinear) 67% 67% 70% 68% 
SVM (linear) 66% 71% 72% 69% 
NN 73% 76% 82% 77% 
DT (GD) 67% 73% 81% 73% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 70% 68% 72% 70% 
RF 70% 71% 78% 73% 
NB 71% 73% 80% 75% 
SVM (nonlinear) 66% 72% 78% 73% 
SVM (linear) 68% 68% 74% 70% 
NN 75% 71% 80% 75% 
DT (GD) 72% 71% 77% 73% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 76% 70% 75% 73% 
RF 79% 70% 71% 73% 
NB 80% 72% 72% 75% 
SVM (nonlinear) 73% 68% 66% 69% 
SVM (linear) 73% 68% 67% 69% 
NN 81% 73% 75% 76% 
DT (GD) 78% 71% 71% 73% 
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Table C. 91. Local Models Average Accuracy for All sites  
 

 

 

 

 

Table C. 92. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 93. Logistic Regression (LR) Updated Model Evaluation Results  
 

 

Table C. 94. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 95. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
 

Table C. 96. Random Forest (RF) Updated Model Evaluation Results  
 

 
 

Table C. 97. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 98. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
 

 

 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 68% 70% 73% LR-S3 
RF 72% 73% 73% RF-S2 - RF-S3 
NB 74% 75% 75% NB-S2 - NB-S3 
SVM (nonlinear) 68% 73% 69% SVM (nonlinear)-S2 
SVM (linear) 69% 70% 69% SVM (linear)-S2  
NN 77% 75% 76% NN-S1 
DT 73% 73% 73% DT-S1 - DT-S2- DT-S3 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 70% 75% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S31 70% 73% 78% 73% 
LR-S32 68% 75% 65% 68% 

The best model In S2 (LR-S312) 
After update the model 

LR-S31 75% 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 97% 97% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 97% 77% 78% 86% 
RF-S23 70% 74% 97% 80% 

The best model In S3 (RF-S) 
After update the model 

RF-S21 91% 

The best model In S1 (RF-S31) In S2 (RF-S32) 
After update the model After update the model 

RF-S3 96% 61% 
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Table C. 99. Random Forest (RF) Updated Model Evaluation Results  
 

 

Table C. 100. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 101. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
 

Table C. 102. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 

Table C. 103. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 104. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
 

Table C. 105. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
 

Table C. 106. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 107. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

The best model In S1 In S2 In S3 Average accuracy 
RF-S31 96% 75% 77% 85% 
RF-S32 62% 61% 73% 65% 

The best model In S2 (RF-S312) 
After update the model  

RF-S31 95% 

The best model In S1 (NB-S21) In S3 (NB-S23) 
After update the model After update the model 

NB-S2 73% 82% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S21 73% 71% 77% 74% 
NB-S23 72% 72% 82% 75% 

The best model In S1 (NB-S231) 
After update the model 

NB-S23 72% 

The best model In S1 (NB-S31) In S2 (NB-S32) 
After update the model After update the model 

NB-S3 73% 75% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S31 73% 71% 77% 74% 
NB-S32 76% 75% 77% 76% 

The best model In S1 (NB-S321) 
After update the model 

NB-S32 72% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 72% 72% 
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Table C. 108. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

 

Table C. 109. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 110. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
 

Table C. 111. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

Table C. 112. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 113. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
 

Table C. 114. Neural Network (NN) Updated Model Evaluation Results  
 

 
 

Table C. 115. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 116. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 72% 75% 78% 75% 
SVM nonlinear-S23 69% 71% 72% 70% 

The best model In S3 (SVM nonlinear-S213) 
After update the model 

SVM nonlinear-S21 75% 

The best model In S1 (SVM linear)-S21) In S3 (SVM linear)-S23) 
After update the model After update the model 

SVM (linear)-S2 70% 74% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S21 70% 73% 75% 72% 
SVM linear-S23 69% 69% 74% 71% 

The best model In S3 (SVM linear-S213) 
After update the model 

SVM linear-S21 74% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 65% 72% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 65% 65% 70% 67% 
NN-S13 63% 61% 72% 66% 

The best model In S3 (NN-S123) 
After update the model 

NN-S12 70% 

The best model In S2 (DT-S12) In S3 (DT-S13) 
After update the model After update the model 

DT-S1 96% 92% 
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Table C. 117. Decision Tree (DT) Updated Model Evaluation Results  
 

 
 

Table C. 118. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 119. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

 

Table C. 120. Decision Tree (DT) Updated Model Evaluation Results  
 

 

Table C. 121. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 122. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
 

Table C. 123. Decision Tree (DT) Updated Model Evaluation Results  
 

 

Table C. 124. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 125. Updated Models Evaluation Results in All sites  

The best model In S1 In S2 In S3 Average accuracy 
DT-S12 71% 96% 75% 78% 
DT-S13 72% 75% 92% 79% 

The best model In S2 (DT-S132) 
After update the model 

DT-S13 93% 

The best model In S1 (DT-S21) In S3 (DT-S23) 
After update the model After update the model 

DT-S2 82% 90% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S21 82% 77% 79% 80% 
DT-S23 72% 75% 90% 79% 

The best model In S3 (DT-S213) 
After update the model 

DT-S21 95% 

The best model In S1 (DT-S31) In S2 (DT-S32) 
After update the model After update the model 

DT-S3 95% 97% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S31 95% 77% 79% 86% 
DT-S32 71% 97% 76% 78% 

The best model In S2 (DT-S312) 
After update the model 

DT-S31 93% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S312 70% 75% 75% 73% 
RF-S213 70% 74% 91% 78% 
RF-S312 72% 95% 75% 78% 
NB-S231 72% 72% 79% 74% 
NB-S321 72% 72% 79% 74% 
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5. Liver Disease: 

Table C. 126. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 127. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 

 
Table C. 128. Site 3 Local Models Evaluation 

 
 
 

 

 

 

Table C. 129. Local Models Average Accuracy for All sites  
 

 

 

 
 

Table C. 130. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

SVM nonlinear-S213 72% 70% 75% 73% 
SVM linear-S213 69% 69% 74% 71% 
NN-S123 65% 65% 70% 67% 
DT-S132 71% 93% 75% 77% 
DT-S213 72% 75% 95% 80% 
DT-S312 71% 93% 76% 77% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 68% 68% 65% 67% 
RF 67% 63% 55% 63% 
NB 50% 50% 63% 53% 
SVM (nonlinear) 64% 70% 67% 66% 
SVM (linear) 71% 62% 64% 67% 
NN 73% 65% 65% 69% 
DT (GD) 74% 64% 65% 69% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 64% 60% 60% 61% 
RF 59% 68% 62% 64% 
NB 52% 52% 62% 54% 
SVM (nonlinear) 66% 73% 61% 68% 
SVM (linear) 58% 56% 51% 56% 
NN 67% 70% 69% 69% 
DT (GD) 64% 71% 65% 68% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 64% 54% 53% 56% 
RF 62% 60% 65% 62% 
NB 63% 54% 55% 56% 
SVM (nonlinear) 68% 68% 64% 67% 
SVM (linear) 60% 54% 55% 55% 
NN 56% 72% 64% 66% 
DT (GD) 65% 74% 66% 70% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 67% 61% 56% LR-S1 
RF 63% 64% 62% RF-S2 
NB 53% 54% 56% NB-S3 
SVM (nonlinear) 66% 68% 67% SVM (nonlinear)-S2 
SVM (linear) 67% 56% 55% SVM (linear)-S1 
NN 69% 68% 66% NN-S1 
DT 69% 68% 70% DT-S3 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 72% 65% 
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Table C. 131. Logistic Regression (LR) Updated Model Evaluation Results  
 

 

Table C. 132. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 133. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
  

Table C. 134. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 135. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 136. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
 

Table C. 137. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 138. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 139. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

The best model In S1 In S2 In S3 Average accuracy 
LR-S12 66% 72% 64% 67% 
LR-S13 66% 64% 65% 65% 

The best model In S3 (LR-S123) 
After update the model 

LR-S12 65% 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 84% 83% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 84% 66% 62% 74% 
RF-S23 64% 58% 83% 66% 

The best model In S3 (RF-S213) 
After update the model 

RF-S21 87% 

The best model In S1 (NB-S31) In S2 (NB-S32) 
After update the model After update the model 

NB-S3 50% 53% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S31 50% 50% 63% 53% 
NB-S32 52% 53% 62% 54% 

The best model In S1 (NB-S321) 
After update the model 

NB-S32 50% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 73% 69% 
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Table C. 140. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 141. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 142. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 143. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 144. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 145. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 146. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 147. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 148. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 73% 66% 61% 68% 
SVM nonlinear-S23 61% 63% 69% 63% 

The best model In S3 (SVM nonlinear-S213) 
After update the model 

SVM nonlinear-S21 68% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 59% 56% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 58% 59% 64% 59% 
SVM linear-S13 63% 58% 56% 60% 

The best model In S2 (SVM linear-S132) 
After update the model 

SVM linear-S13 70% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 59% 70% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 67% 59% 57% 63% 
NN-S13 67% 70% 70% 68% 

The best model In S2 (NN-S132) 
After update the model 

NN-S13 68% 

The best model In S1 (DT-S31) In S2 (DT-S32) 
After update the model After update the model 

DT-S3 86% 85% 
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Table C. 149. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 150. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 151. Updated Models Evaluation Results in All sites  
 

 

 

 

6. Spine Disease: 

Table C. 152. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 153. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 154. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 

The best model In S1 In S2 In S3 Average accuracy 
DT-S31 86% 64% 62% 75% 
DT-S32 69% 85% 66% 73% 

The best model In S2 (DT-S312) 
After update the model 

DT-S31 92% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S123 66% 64% 65% 65% 
RF-S213 64% 58% 87% 68% 
NB-S321 50% 50% 63% 53% 
SVM nonlinear-S213 65% 64% 68% 65% 
SVM linear-S132 65% 70% 61% 66% 
NN-S132 68% 68% 67% 68% 
DT-S312 69% 92% 66% 75% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 88% 90% 72% 82% 
RF 97% 90% 54% 78% 
NB 92% 78% 60% 76% 
SVM (nonlinear) 89% 94% 64% 80% 
SVM (linear) 90% 90% 69% 82% 
NN 87% 76% 55% 72% 
DT (GD) 92% 84% 54% 75% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 84% 88% 71% 80% 
RF 79% 90% 75% 82% 
NB 87% 83% 78% 82% 
SVM (nonlinear) 79% 82% 76% 79% 
SVM (linear) 77% 86% 65% 76% 
NN 84% 86% 72% 80% 
DT (GD) 78% 82% 75% 78% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 75% 87% 86% 82% 
RF 76% 77% 92% 80% 
NB 77% 62% 70% 70% 
SVM (nonlinear) 75% 77% 92% 79% 
SVM (linear) 74% 75% 90% 78% 
NN 76% 68% 82% 74% 
DT (GD) 80% 70% 92% 78% 
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Table C. 155. Local Models Average Accuracy for All sites  
 

 

 

 

 

Table C. 156. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 

Table C. 157. Logistic Regression (LR) Updated Model Evaluation Results  
 

 

Table C. 158. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 159. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 160. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 161. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method  
 

 
  

Table C. 162. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 

 
  

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 82% 80% 82% LR-S1 - LR-S3 
RF 78% 82% 80% RF-S2 
NB 76% 82% 70% NB-S2 
SVM (nonlinear) 80% 79% 79% SVM (nonlinear)-S1 
SVM (linear) 82% 76% 78% SVM (linear)-S1 
NN 72% 80% 74% NN-S2 
DT 75% 78% 78% DT-S2 - DT-S3 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 78% 69% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S12 77% 78% 63% 72% 
LR-S13 63% 76% 69% 68% 

The best model In S3 (LR-S123) 
After update the model 

LR-S12 69% 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 81% 98% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S31 81% 82% 66% 75% 
LR-S32 91% 98% 75% 86% 

The best model In S1 (LR-S321) 
After update the model 

LR-S32 81% 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 99% 97% 
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Table C. 163. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 164. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 165. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 

Table C. 166. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 167. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 168. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 169. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 170. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 171. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 99% 90% 54% 79% 
RF-S23 72% 84% 97% 84% 

The best model In S1 (RF-S231) 
After update the model 

RF-S23 95% 

The best model In S1 (NB-S21) In S3 (NB-S23) 
After update the model After update the model 

NB-S2 89% 80% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S21 89% 66% 53% 70% 
NB-S23 62% 70% 80% 71% 

The best model In S1 (NB-S231) 
After update the model 

NB-S23 89% 

The best model In S2 (SVM (nonlinear)-S12) In S3 (SVM nonlinear-S13) 
After update the model After update the model 

SVM nonlinear -S1 76% 69% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S12 83% 76% 59% 72% 
SVM nonlinear-S13 54% 80% 69% 65% 

The best model In S3 (SVM nonlinear-S123) 
After update the model 

SVM nonlinear-S12 69% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 88% 73% 
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Table C. 172. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 173. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 174. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 175. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 176. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 177. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
  

Table C. 178. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 179. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 180. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 86% 88% 69% 80% 
SVM linear-S13 73% 80% 73% 74% 

The best model In S3 (SVM linear-S123) 
After update the model 

SVM linear-S12 76% 

The best model In S1 (NN-S21) In S3 (NN-S23) 
After update the model After update the model 

NN-S2 86% 73% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S21 86% 98% 72% 83% 
NN-S23 57% 76% 73% 67% 

The best model In S3 (NN-S213) 
After update the model 

NN-S21 72% 

The best model In S1 (DT-S21) In S3 (DT-S23) 
After update the model After update the model 

DT-S2 97% 92% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S21 97% 82% 54% 77% 
DT-S23 72% 86% 92% 83% 

The best model In S1 (DT-S231) 
After update the model 

DT-S23 92% 

The best model In S1 (DT-S31) In S2 (DT-S32) 
After update the model After update the model 

DT-S3 89% 99% 
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Table C. 181. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 182. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 

 

Table C. 183. Updated Models Evaluation Results in All sites  
 

 

 

 

 

 
7. Breast Cancer Wisconsin (Original): 

Table C. 184. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 185. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 186. Site 3 Local Models Evaluation 
 

The best model In S1 In S2 In S3 Average accuracy 
DT-S31 89% 82% 54% 74% 
DT-S32 81% 99% 75% 82% 

The best model In S1 (DT-S321) 
After update the model 

DT-S32 92% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S123 63% 76% 69% 68% 
LR-S321 81% 82% 66% 75% 
RF-S231 99% 90% 54% 79% 
NB-S231 89% 66% 53% 70% 
SVM nonlinear-S123 80% 80% 69% 76% 
SVM linear-S123 58% 78% 76% 69% 
NN-S213 58% 78% 76% 69% 
DT-S231 86% 98% 72% 83% 
DT-S321 92% 82% 54% 75% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 96% 95% 93% 95% 
RF 95% 93% 97% 94% 
NB 96% 95% 96% 95% 
SVM (nonlinear) 96% 96% 96% 96% 
SVM (linear) 93% 95% 96% 95% 
NN 96% 95% 98% 96% 
DT (GD) 96% 95% 96% 95% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 93% 97% 98% 95% 
RF 96% 92% 96% 95% 
NB 96% 95% 97% 96% 
SVM (nonlinear) 94% 97% 92% 94% 
SVM (linear) 93% 93% 97% 94% 
NN 95% 97% 99% 96% 
DT (GD) 95% 91% 98% 94% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 99% 90% 93% 93% 
RF 97% 86% 87% 89% 
NB 96% 92% 95% 94% 
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Table C. 187. Local Models Average Accuracy for All sites  
 

 

 

 
  

Table C. 188. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 189. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 190. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 191. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 192. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 193. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 

 
  

SVM (nonlinear) 99% 88% 96% 94% 
SVM (linear) 99% 90% 95% 94% 
NN 99% 89% 94% 93% 
DT (GD) 97% 78% 84% 85% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 95% 95% 93% LR-S1 - LR-S2 
RF 94% 95% 89% RF-S2 
NB 95% 96% 94% NB-S2 
SVM (nonlinear) 96% 94% 94% SVM (nonlinear)-S1 
SVM (linear) 95% 94% 94% SVM (linear)-S1  
NN 96% 96% 93% NN-S1 - NN-S2 
DT 95% 94% 85% DT-S1 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 88% 99% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S12 79% 88% 90% 86% 
LR-S13 94% 95% 99% 95% 

The best model In S2 (LR-S132) 
After update the model 

LR-S13 88% 

The best model In S1 (LR-S21) In S3 (LR-S23) 
After update the model After update the model 

LR-S2 97% 97% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S21 97% 96% 93% 95% 
LR-S23 96% 96% 97% 96% 

The best model In S1 (LR-S231) 
After update the model 

LR-S23 97% 
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Table C. 194. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 

 

Table C. 195. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 196. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 197. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
  

Table C. 198. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 199. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 200. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 201. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 202. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 99% 99% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 99% 94% 69% 90% 
RF-S23 86% 86% 99% 89% 

The best model In S3 (RF-S213) 
After update the model 

RF-S21 94% 

The best model In S1 (NB-S21) In S3 (NB-S23) 
After update the model After update the model 

NB-S2 97% 97% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S21 97% 95% 96% 96% 
NB-S23 92% 95% 97% 94% 

The best model In S3 (NB-S213) 
After update the model 

NB-S21 97% 

The best model In S2 (SVM (nonlinear)-S12) In S3 (SVM nonlinear-S13) 
After update the model After update the model 

SVM nonlinear -S1 95% 98% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S12 94% 95% 94% 95% 
SVM nonlinear-S13 96% 96% 98% 96% 

The best model In S2 (SVM nonlinear-S132) 
After update the model 

SVM nonlinear-S13 97% 
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Table C. 203. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 204. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 205. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 206. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 207. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 208. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 209. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 210. Neural Network (NN) Updated Model Evaluation Results  
 

 

Table C. 211. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 95% 99% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 94% 95% 98% 95% 
SVM linear-S13 93% 95% 99% 94% 

The best model In S3 (SVM linear-S123) 
After update the model 

SVM linear-S12 99% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 76% 98% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 74% 76% 87% 78% 
NN-S13 56% 60% 98% 66% 

The best model In S3 (NN-S123) 
After update the model 

NN-S12 88% 

The best model In S1 (NN-S21) In S3 (NN-S23) 
After update the model After update the model 

NN-S2 97% 94% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S21 97% 95% 99% 96% 
NN-S23 75% 78% 94% 80% 

The best model In S3 (NN-S213) 
After update the model 

NN-S21 95% 
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Table C. 212. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
  

Table C. 213. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 214. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 215. Updated Models Evaluation Results in All sites  
 

 

 

 

 

8. Cardiovascular Disease: 

Table C. 216. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 217. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

The best model In S2 (DT-S12) In S3 (DT-S13) 
After update the model After update the model 

DT-S1 99% 99% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S12 94% 99% 97% 97% 
DT-S13 85% 77% 99% 84% 

The best model In S3 (DT-S123) 
After update the model 

DT-S12 99% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S132 79% 88% 90% 86% 
LR-S231 97% 96% 93% 96% 
RF-S213 86% 84% 94% 87% 
NB-S213 92% 95% 97% 94% 
SVM nonlinear-S132 95% 97% 89% 95% 
SVM linear-S123 93% 93% 99% 94% 
NN-S123 57% 62% 75% 63% 
NN-S213 95% 94% 95% 95% 
DT-S123 85% 77% 99% 84% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 71% 72% 71% 71% 
RF 68% 69% 68% 68% 
NB 71% 71% 73% 72% 
SVM (nonlinear) 72% 72% 71% 71% 
SVM (linear) 72% 72% 72% 72% 
NN 73% 73% 73% 73% 
DT (GD) 72% 73% 72% 72% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 72% 72% 72% 72% 
RF 70% 69% 68% 69% 
NB 71% 71% 71% 71% 
SVM (nonlinear) 72% 72% 72% 72% 
SVM (linear) 72% 72% 71% 71% 
NN 73% 72% 73% 72% 
DT (GD) 73% 73% 73% 73% 
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Table C. 218. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 

 

Table C. 219. Local Models Average Accuracy for All sites  
 

 

 

 

  

Table C. 220. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 221. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 222. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 

  

Table C. 223. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
  

Table C. 224. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 72% 71% 71% 71% 
RF 69% 69% 69% 69% 
NB 71% 71% 71% 71% 
SVM (nonlinear) 72% 69% 69% 69% 
SVM (linear) 71% 71% 72% 71% 
NN 73% 72% 73% 72% 
DT (GD) 72% 72% 72% 72% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 71% 72% 71% LR-S2 
RF 68% 69% 69% RF-S2 - RF-S3 
NB 72% 71% 71% NB-S1 
SVM (nonlinear) 71% 72% 69% SVM (nonlinear)-S2 
SVM (linear) 72% 71% 71% SVM (linear)-S1  
NN 73% 72% 72% NN-S1 
DT 72% 73% 72% DT-S2 

The best model In S1 (LR-S21) In S3 (LR-S23) 
After update the model After update the model 

LR-S2 70% 69% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S21 70% 66% 66% 67% 
LR-S23 65% 65% 69% 66% 

The best model In S3 (LR-S213) 
After update the model 

LR-S21 69% 

The best model In S1 (RF-S21) In S3 (RF-S23) 
After update the model After update the model 

RF-S2 81% 79% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S21 81% 69% 69% 73% 
RF-S23 69% 69% 79% 72% 
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Table C. 225. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 226. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
  

Table C. 227. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 228. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 229. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
  

Table C. 230. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 

  

Table C. 231. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 232. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 233. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

The best model In S3 (RF-S231) 
After update the model 

RF-S21 81% 

The best model In S1 (RF-S31) In S2 (RF-S32) 
After update the model After update the model 

RF-S3 81% 81% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S31 81% 69% 69% 73% 
RF-S32 69% 81% 69% 74% 

The best model In S1 (RF-S321) 
After update the model 

RF-S32 80% 

The best model In S2 (NB-S12) In S3 (NB-S13) 
After update the model After update the model 

NB-S1 71% 71% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S12 71% 71% 73% 72% 
NB-S13 71% 71% 71% 71% 

The best model In S3 (NB-S123) 
After update the model 

NB-S12 71% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 66% 70% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 66% 66% 66% 66% 
SVM nonlinear-S23 67% 68% 70% 68% 
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Table C. 234. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 235. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 236. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 237. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 238. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 

Table C. 239. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 240. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 241. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
  

Table C. 242. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

The best model In S1 (SVM nonlinear-S231) 
After update the model 

SVM nonlinear-S23 70% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 69% 70% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 68% 69% 68% 68% 
SVM linear-S13 70% 70% 70% 70% 

The best model In S2 (SVM linear-S132) 
After update the model 

SVM linear-S13 69% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 72% 70% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 72% 72% 73% 72% 
NN-S13 70% 70% 70% 70% 

The best model In S3 (NN-S123) 
After update the model 

NN-S12 73% 

The best model In S1 (DT-S21) In S3 (DT-S21) 
After update the model After update the model 

DT-S2 74% 74% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S21 74% 74% 73% 74% 
DT-S23 73% 73% 74% 73% 
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Table C. 243. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 244. Updated Models Evaluation Results in All sites  
 

 

 

 

 

II. Non-Randomly Partitioned Data: 

1. Diabetes 

Table C. 245. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 246. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 247. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

  

The best model In S3 (DT-S213) 
After update the model 

DT-S213 74% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S213 69% 69% 69% 69% 
RF-S213 69% 69% 81% 73% 
RF-S321 80% 69% 69% 72% 
NB-S123 71% 71% 71% 71% 
SVM nonlinear-S231 70% 70% 70% 70% 
SVM linear-S132 69% 69% 68% 69% 
NN-S123 70% 72% 73% 71% 
DT-S213 73% 73% 74% 73% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 83% 58% 48% 68% 
RF 83% 60% 53% 70% 
NB 84% 62% 60% 73% 
SVM (nonlinear) 82% 66% 60% 73% 
SVM (linear) 78% 59% 47% 66% 
NN 84% 62% 53% 71% 
DT (GD) 84% 62% 55% 72% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 64% 70% 72% 69% 
RF 66% 73% 60% 68% 
NB 65% 73% 69% 70% 
SVM (nonlinear) 59% 53% 61% 56% 
SVM (linear) 61% 65% 69% 65% 
NN 65% 70% 74% 69% 
DT (GD) 67% 72% 72% 70% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 52% 42% 59% 49% 
RF 65% 61% 61% 62% 
NB 65% 61% 63% 62% 
SVM (nonlinear) 68% 50% 56% 55% 
SVM (linear) 57% 60% 64% 61% 
NN 64% 61% 65% 63% 
DT (GD) 62% 56% 64% 60% 
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Table C. 248. Local Models Average Accuracy for All sites  
 

 

 

 

  

Table C. 249. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 250. Logistic Regression (LR) Updated Model Evaluation Results  
 

 

  

Table C. 251. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 252. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
  

Table C. 253. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 254. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 255. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
  

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 68% 69% 49% LR-S2 
RF 70% 68% 62% RF-S1 
NB 73% 70% 62% NB-S1 
SVM (nonlinear) 73% 56% 55% SVM (nonlinear)-S1 
SVM (linear) 66% 65% 61% SVM (linear)-S1  
NN 71% 69% 63% NN-S1 
DT 72% 70% 60% DT-S1 

The best model In S1 (LR-S21) In S3 (LR-S23) 
After update the model After update the model 

LR-S2 86% 62% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S21 86% 64% 59% 74% 
LR-S23 52% 57% 62% 55% 

The best model In S3 (LR-S213) 
After update the model 

LR-S21 60% 

The best model In S2 (RF-S12) In S3 (RF-S13) 
After update the model After update the model 

RF-S1 80% 68% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S12 70% 80% 66% 72% 
RF-S13 60% 59% 68% 61% 

The best model In S3 (RF-S123) 
After update the model 

RF-S12 74% 

The best model In S2 (NB-S12) In S3 (NB-S13) 
After update the model After update the model 

NB-S1 70% 68% 
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Table C. 256. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 257. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 258. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 

  

Table C. 259. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 260. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 261. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 262. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 263. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 264. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 

The best model In S1 In S2 In S3 Average accuracy 
NB-S12 73% 70% 69% 71% 
NB-S13 61% 63% 68% 63% 

The best model In S3 (NB-S123) 
After update the model 

NB-S12 68% 

The best model In S2 (SVM (nonlinear)-S12) In S3 (SVM nonlinear-S13) 
After update the model After update the model 

SVM nonlinear -S1 66% 53% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S12 51% 66% 75% 60% 
SVM nonlinear-S13 58% 55% 53% 56% 

The best model In S3 (SVM nonlinear-S123) 
After update the model 

SVM nonlinear-S12 71% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 66% 69% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 67% 66% 76% 68% 
SVM linear-S13 54% 63% 69% 60% 

The best model In S3 (SVM linear-S123) 
After update the model 

SVM linear-S12 67% 

The best model In S2 (NN-S12) In S3 (NN-S13) 
After update the model After update the model 

NN-S1 65% 59% 
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Table C. 265. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 266. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 267. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 
  

Table C. 268. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 269. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 270. Updated Models Evaluation Results in All sites  
 

 

 

 

2. Heart Disease:  

Table C. 271. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The best model In S1 In S2 In S3 Average accuracy 
NN-S12 74% 65% 59% 68% 
NN-S13 52% 64% 59% 57% 

The best model In S3 (NN-S123) 
After update the model 

NN-S12 59% 

The best model In S2 (DT-S12) In S3 (DT-S13) 
After update the model After update the model 

DT-S1 82% 68% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S12 66% 82% 64% 70% 
DT-S13 56% 64% 68% 61% 

The best model In S3 (DT-S123) 
After update the model 

DT-S12 74% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S213 50% 54% 60% 53% 
RF-S123 57% 60% 74% 61% 
NB-S123 61% 63% 68% 63% 
SVM nonlinear-S123 55% 65% 71% 61% 
SVM linear-S123 53% 66% 67% 60% 
NN-S123 74% 65% 59% 68% 
DT-S123 57% 64% 74% 62% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 90% 67% 62% 70% 
RF 83% 78% 72% 77% 
NB 76% 51% 44% 54% 
SVM (nonlinear) 83% 72% 66% 72% 
SVM (linear) 90% 66% 66% 71% 
NN 85% 72% 65% 72% 
DT (GD) 86% 72% 57% 70% 
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Table C. 272. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 273. Site 3 Local Models Evaluation 
 
 
 
 
 

 

 

 

 

Table C. 274. Local Models Average Accuracy for All sites  
 

 

 

 
 

Table C. 275. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 276. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 277. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 278. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 72% 70% 76% 73% 
RF 73% 80% 79% 76% 
NB 76% 80% 84% 79% 
SVM (nonlinear) 71% 75% 81% 75% 
SVM (linear) 77% 68% 75% 75% 
NN 83% 73% 81% 80% 
DT (GD) 78% 89% 84% 82% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 74% 61% 72% 70% 
RF 77% 73% 71% 73% 
NB 81% 73% 78% 78% 
SVM (nonlinear) 78% 66% 71% 72% 
SVM (linear) 77% 73% 75% 75% 
NN 77% 68% 75% 74% 
DT (GD) 78% 80% 77% 78% 

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 70% 73% 70% LR-S2 
RF 77% 76% 73% RF-S1 
NB 54% 79% 78% NB-S2 
SVM (nonlinear) 72% 75% 72% SVM (nonlinear)-S2 
SVM (linear) 71% 75% 75% SVM (linear)-S2 and S3 
NN 72% 80% 74% NN-S2 
DT 70% 82% 78% DT-S2 

The best model In S1 (LR-S21) In S3 (LR-S23) 
After update the model After update the model 

LR-S2 91% 81% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S21 91% 71% 79% 77% 
LR-S23 64% 75% 81% 75% 

The best model In S3 (LR-S213) 
After update the model 

LR-S21 81% 

The best model In S2 (RF-S12) In S3 (RF-S13) 
After update the model After update the model 

RF-S1 92% 91% 
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Table C. 279. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 280. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 281. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 
  

Table C. 282. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 283. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 284. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 285. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 286. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 287. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

The best model In S1 In S2 In S3 Average accuracy 
RF-S12 70% 92% 69% 81% 
RF-S13 68% 78% 91% 80% 

The best model In S3 (RF-S123) 
After update the model 

RF-S12 64% 

The best model In S1 (NB-S21) In S3 (NB-S23) 
After update the model After update the model 

NB-S2 86% 87% 

The best model In S1 In S2 In S3 Average accuracy 
NB-S21 86% 51% 44% 56% 
NB-S23 73% 78% 87% 80% 

The best model In S1 (NB-S231) 
After update the model 

NB-S23 86% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 91% 84% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 91% 72% 68% 75% 
SVM nonlinear-S23 68% 79% 84% 78% 

The best model In S1 (SVM nonlinear-S231) 
After update the model 

SVM nonlinear-S23 70% 

The best model In S1 (SVM linear)-S21) In S3 (SVM linear)-S23) 
After update the model After update the model 

SVM (linear)-S2 85% 72% 
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Table C. 288. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 

Table C. 289. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 290. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 291. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 292. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 293. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 294. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 295. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 296. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S21 85% 74% 63% 73% 
SVM linear-S23 64% 71% 72% 70% 

The best model In S3 (SVM linear-S213) 
After update the model 

SVM linear-S21 72% 

The best model In S1(SVM linear-S31) In S2 (SVM linear-S32) 
After update the model After update the model 

SVM linear-S3 91% 77% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S31 91% 73% 75% 77% 
SVM linear-S32 91% 77% 75% 79% 

The best model In S1 (SVM linear-S321) 
After update the model 

SVM linear-S32 86% 

The best model In S1 (NN-S21) In S3 (NN-S23) 
After update the model After update the model 

NN-S2 73% 72% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S21 73% 90% 81% 84% 
NN-S23 61% 68% 72% 68% 

The best model In S3 (NN-S213) 
After update the model 

NN-S21 81% 

The best model In S1 (DT-S21) In S3 (DT-S23) 
After update the model After update the model 

DT-S2 97% 94% 
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Table C. 297. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 298. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 299. Updated Models Evaluation Results in All sites  
 

 

 

 

3. Liver Disease: 

Table C. 300. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 

Table C. 301. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 302. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 

 

 

 

The best model In S1 In S2 In S3 Average accuracy 
DT-S21 97% 71% 59% 73% 
DT-S23 64% 68% 94% 75% 

The best model In S1 (DT-S231) 
After update the model 

DT-S23 73% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S213 64% 75% 81% 75% 
RF-S123 64% 58% 64% 61% 
NB-S231 86% 51% 44% 56% 
SVM nonlinear-S231 70% 59% 53% 59% 
SVM linear-S213 64% 71% 72% 70% 
SVM linear-S321 86% 70% 75% 75% 
NN-S213 73% 90% 81% 84% 
DT-S231 73% 71% 59% 68% 

S1 In S2 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 64% 58% 57% 59% 
RF 66% 59% 66% 62% 
NB 57% 50% 56% 53% 
SVM (nonlinear) 59% 59% 59% 59% 
SVM (linear) 65% 68% 71% 68% 
NN 52% 62% 62% 60% 
DT (GD) 63% 55% 64% 58% 

S2 In S1 In S3 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 65% 54% 73% 64% 
RF 67% 56% 66% 65% 
NB 51% 65% 52% 54% 
SVM (nonlinear) 68% 57% 75% 67% 
SVM (linear) 66% 54% 71% 65% 
NN 76% 54% 74% 71% 
DT (GD) 75% 54% 74% 71% 

S3 In S1 In S2 Weighted 
average Models Accuracy Accuracy Accuracy 

LR 71% 56% 68% 66% 
RF 69% 67% 68% 68% 
NB 62% 57% 62% 61% 
SVM (nonlinear) 69% 55% 69% 66% 
SVM (linear) 66% 53% 69% 65% 
NN 73% 54% 76% 71% 
DT (GD) 73% 69% 61% 65% 
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Table C. 303. Local Models Average Accuracy for All sites  
 

 

 

 
  

Table C. 304. Logistic Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 305. Logistic Regression (LR) Updated Model Evaluation Results  
 

 
  

Table C. 306. Logistic Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 307. Random Forest (RF) Model Evaluation Results After Updating Method 
 

 
  

Table C. 308. Random Forest (RF) Updated Model Evaluation Results  
 

 
  

Table C. 309. Random Forest (RF) Updated Model Evaluation Results After Updating Method 
 

  

Table C. 310. Naïve Bayes (NB) Model Evaluation Results After Updating Method 
 

 

 
  

Models S1 model 
accuracy 

S2 model 
accuracy 

S3 model 
accuracy 

The best model 

LR 59% 64% 66% LR-S3 
RF 62% 65% 68% RF-S3 
NB 53% 54% 61% NB-S3 
SVM (nonlinear) 59% 67% 66% SVM (nonlinear)-S2 
SVM (linear) 68% 65% 65% SVM (linear)-S1  
NN 60% 71% 71% NN-S2 - NN-S3 
DT 58% 71% 65% DT-S2 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 63% 73% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S31 63% 65% 68% 65% 
LR-S32 56% 73% 75% 70% 

The best model In S1 (LR-S321) 
After update the model 

LR-S32 63% 

The best model In S1 (RF-S31) In S2 (RF-S32) 
After update the model After update the model 

RF-S3 75% 72% 

The best model In S1 In S2 In S3 Average accuracy 
RF-S31 75% 59% 62% 63% 
RF-S32 55% 72% 74% 69% 

The best model In S1 (RF-S321) 
After update the model 

RF-S32 69% 

The best model In S1 (NB-S31) In S2 (NB-S32) 
After update the model After update the model 

NB-S3 59% 52% 



 307 

Table C. 311. Naïve Bayes (NB) Updated Model Evaluation Results  
 

 
  

Table C. 312. Naïve Bayes (NB) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 313. Nonlinear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 
  

Table C. 314. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results  
 

 
  

Table C. 315. Nonlinear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 316. Linear Support Vector Machine (SVM) Model Evaluation Results After Updating Method 
 

 

 
Table C. 317. Linear Support Vector Machine (SVM) Updated Model Evaluation Results  

 

 
 

Table C. 318. Linear Support Vector Machine (SVM) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 319. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

The best model In S1 In S2 In S3 Average accuracy 
NB-S31 59% 50% 56% 53% 
NB-S32 65% 52% 52% 55% 

The best model In S1(NB-S321) 
After update the model 

NB-S32 59% 

The best model In S1(SVM (nonlinear)-S21) In S3 (SVM nonlinear-S23) 
After update the model After update the model 

SVM nonlinear -S2 63% 75% 

The best model In S1 In S2 In S3 Average accuracy 
SVM nonlinear-S21 63% 59% 56% 59% 
SVM nonlinear-S23 57% 66% 75% 66% 

The best model In S1 (SVM nonlinear-S231) 
After update the model 

SVM nonlinear-S23 62% 

The best model In S2 (SVM linear)-S12) In S3 (SVM linear)-S13) 
After update the model After update the model 

SVM (linear)-S1 54% 72% 

The best model In S1 In S2 In S3 Average accuracy 
SVM linear-S12 55% 54% 53% 54% 
SVM linear-S13 59% 71% 72% 69% 

The best model In S2 (SVM linear-S132) 
After update the model 

SVM linear-S13 71% 

The best model In S1 (NN-S21) In S3 (NN-S13) 
After update the model After update the model 

NN-S2 55% 74% 



 308 

Table C. 320. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 321. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 322. Neural Network (NN) Model Evaluation Results After Updating Method 
 

 
  

Table C. 323. Neural Network (NN) Updated Model Evaluation Results  
 

 
  

Table C. 324. Neural Network (NN) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 325. Decision Tree (DT) Model Evaluation Results After Updating Method 
 

 

Table C. 326. Decision Tree (DT) Updated Model Evaluation Results  
 

 
  

Table C. 327. Decision Tree (DT) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 328. Updated Models Evaluation Results in All sites  

The best model In S1 In S2 In S3 Average accuracy 
NN-S21 55% 67% 73% 66% 
NN-S23 57% 76% 74% 72% 

The best model In S1 (NN-S231) 
After update the model 

NN-S23 57% 

The best model In S1 (NN-S31) In S2 (NN-S32) 
After update the model After update the model 

NN-S3 54% 71% 

The best model In S1 In S2 In S3 Average accuracy 
NN-S31 54% 67% 63% 64% 
NN-S32 53% 71% 51% 63% 

The best model In S2 (NN-S312) 
After update the model 

NN-S31 76% 

The best model In S1 (DT-S21) In S3 (DT-S23) 
After update the model After update the model 

DT-S2 71% 79% 

The best model In S1 In S2 In S3 Average accuracy 
DT-S21 71% 55% 62% 60% 
DT-S23 62% 64% 79% 67% 

The best model In S1 (DT-S231) 
After update the model 

DT-S23 72% 

The best model In S1 In S2 In S3 Average accuracy 
LR-S321 63% 65% 68% 65% 
RF-S321 69% 59% 62% 62% 
NB-S321 59% 50% 56% 53% 
SVM nonlinear-S231 62% 59% 56% 59% 
SVM linear-S132 59% 71% 72% 69% 
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b) Regression: 
I. Randomly Partitioned Data: 
 

1. Abalone: 
 

The following tables show the detailed steps results for Abalone dataset that 

partitioned randomly. Tables C.329 – C.331 show the site1, site2, and site3 local models 

RMSE and MAPE, the models evaluation results in other sites, and the weighted average 

RMSE and MAPE based on the data size that used for evaluation. 
 

Table C. 329. Site 1 Local Models Evaluation Results for Abalone dataset 
 
 
 
 
 
 

 

 
 
 
 
 
 

Table C. 330. Site 2 Local Models Evaluation Results for Abalone dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 331. Site 3 Local Models Evaluation Results for Abalone dataset 
 

 

 

 

 

NN-S231 57% 76% 74% 72% 
NN-S312 54% 76% 74% 71% 
DT-S231 72% 55% 62% 60% 

S1 In S2 In S3 Weighted average 
RMSE (MAPE) Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 2.23 (14.37) 1.99 (13.39) 2.40 (13.08) 2.16 (13.66) 
SVR 2.31 (12.99) 1.91 (12.25) 2.61 (13.28) 2.19 (12.72) 
DTR 2.20 (13.44) 1.94 (13.14) 2.59 (13.64) 2.16 (13.35) 
NNR 2.03 (12.59) 1.82 (12.53) 2.49 (13.37) 2.03 (12.73) 
RFR 2.19 (14.02) 2.05 (14.01) 2.64 (14.72) 2.22 (14.16) 
Lasso 2.23 (14.53) 2.09 (13.92) 2.38 (13.02) 2.19 (13.94) 
Ridge 2.21 (14.31) 2.16 (14.61) 2.38 (13.23) 2.22 (14.22) 
ElasticNet 2.25 (14.64) 2.09 (15.56) 2.71 (16.69) 2.27 (15.48) 

S2 In S1 In S3 Weighted average 
RMSE (MAPE) Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 1.91 (12.25) 2.30 (13.12) 2.56 (13.01) 2.18 (12.70) 
SVR 1.96 (11.64) 2.47 (13.25) 2.72 (12.87) 2.29 (12.44) 
DTR 1.81 (11.77) 2.26 (13.20) 2.66 (13.05) 2.14 (12.52) 
NNR 1.74 (11.41) 2.10 (12.31) 2.49 (12.66) 2.02 (11.98) 
RFR 1.88 (12.35) 2.39 (14.45) 2.70 (13.67) 2.22 (13.34) 
Lasso 1.87 (12.38) 2.35 (13.36) 2.47 (12.44) 2.16 (12.72) 
Ridge 1.90 (12.37) 2.27 (13.55) 2.46 (12.86) 2.14 (12.87) 
ElasticNet 1.89 (12.67) 2.35 (13.36) 2.47 (12.44) 2.17 (12.86) 

S3 In S1 In S2 Weighted average 
RMSE (MAPE) Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 2.28 (13.60) 2.45 (16.19) 2.19 (15.35) 2.29 (15.27) 
SVR 2.34 (12.77) 2.48 (15.58) 2.15 (14.48) 2.30 (14.49) 
DTR 2.49 (14.25) 2.61 (17.01) 2.30 (15.78) 2.44 (15.88) 
NNR 2.26 (13.40) 2.31 (15.64) 2.07 (14.82) 2.19 (14.80) 
RFR 2.54 (14.97) 2.67 (17.52) 2.35 (16.02) 2.49 (16.31) 
Lasso 2.32 (14.09) 2.38 (16.07) 2.11 (15.25) 2.24 (15.28) 
Ridge 2.30 (13.79) 2.37 (16.62) 2.14 (15.96) 2.25 (15.73) 
ElasticNet 2.29 (13.91) 2.42 (15.74) 2.14 (14.87) 2.27 (14.96) 
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For each algorithm, we selected the best average RMSE model. Table C.332 shows 

that most of the selected models are from site 2. 
 

Table C. 332. Local Models Average RMSE and MAPE for All Sites  
 

 

 

 

 

 

 

Then, we sent the selected models to other sites and applied mini-batch stochastic 

gradient descent to update these models. Table C.333 shows the selected LR model of site 

1 after sending it to site 2 and site 3 for the updating process.  
 

Table C. 333. Linear Regression (LR) Model Evaluation Results Before and After Updating Method 
 

 

 

 
Table C.334 shows the updated LR models evaluation results after sending them 

to all sites and the weighted average RMSE and MAPE. LR model of site 1 that updated 

in site 2 is the best. So, we sent this model to site 3 to update it using site 3 local data. 
 

Table C. 334. Linear Regression (LR) Updated Model Evaluation Results 
 

 

 

As shown in Table C.335, the model performance (RMSE) is improved after 

updating process. 
 

Table C. 335. Linear Regression (LR) Updated Model Evaluation Results Before and After Updating 
Method 

 

 

 

Tables C.336- C.359 show the model selection and updating methods that applied 

for the models SVR, DTR, NNR, RFR, Lasso, Ridge, and ElasticNet. 

Models S1 model 
RMSE 

(MAPE) 

S2 model 
RMSE 

(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 2.16 (13.66) 2.18 (12.70) 2.29 (15.27) LR-S1 
SVR 2.19 (12.72) 2.29 (12.44) 2.30 (14.49) SVR-S1 
DTR 2.16 (13.35) 2.14 (12.52) 2.44 (15.88) DTR-S2 
NNR 2.03 (12.73) 2.02 (11.98) 2.19 (14.80) NNR-S2 
RFR 2.22 (14.16) 2.22 (13.34) 2.49 (16.31) RFR-S1 – RFR-S2 
Lasso 2.19 (13.94) 2.16 (12.72) 2.24 (15.28) LASSO-S2 
Ridge 2.22 (14.22) 2.14 (12.87) 2.25 (15.73) RIDGE-S2 
ElasticNet 2.27 (15.48) 2.17 (12.86) 2.27 (14.96) ElasticNet-S2 

The best 
model 

In S2 (LR-S12) In S3 (LR-S13) 
Before update 

RMSE (MAPE) 
After update 

RMSE (MAPE) 
Before update 

RMSE (MAPE) 
After update 

RMSE (MAPE) 
LR-S1 1.99 (13.39) 2.08 (11.36) 2.40 (13.08) 2.49 (15.07) 

The best 
model 

In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S12 2.07 (13.54) 2.08 (11.36) 2.97 (13.51) 2.26 (12.55) 
LR-S13 2.43 (17.41) 2.06 (16.11) 2.49 (15.07) 2.28 (16.33) 

The best model In S3 (LR-S123) 
Before update the model After update the model 

LR-S12 2.97 (13.51) 2.49 (15.07) 
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Table C. 336. Support Vector Regressor (SVR) Model Evaluation Results Before and After Updating 
Method 

 

 
 

Table C. 337. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 

 

Table C. 338. Support Vector Regressor (SVR) Updated Model Evaluation Results Before and After 
Updating Method 

 

 

 

Table C. 339. Decision Tree Regressor (DTR) Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 340. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 

 

Table C. 341. Decision Tree Regressor (DTR) Updated Model Evaluation Results Before and After Updating 
Method 

 

 

 
 

Table C. 342. Neural Network Regressor (NNR) Model Evaluation Results Before and After Updating 
Method 

 

 

 

Table C. 343. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 

 

The best 
model 

In S2 (SVR -S12) In S3 (SVR -S13) 
Before update After update Before update After update 

SVR-S1 1.91 (12.25) 2.08 (11.42) 2.61 (13.28) 2.34 (12.49) 

The best 
model 

In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S12 2.70 (13.61) 2.08 (11.42) 3.01 (13.69) 2.49 (12.64) 
SVR -S13 2.39 (14.79) 2.04 (13.67) 2.34 (12.49) 2.22 (13.80) 

The best model In S2 (SVR -S132) 
Before update After update 

SVR -S13 2.04 (13.67) 2.15 (11.52) 

The best 
model 

In S1 (DTR-S21) In S3 (DTR -S23) 
Before update After update Before update After update 

DTR -S2 2.26 (13.20) 1.51 (9.85) 2.66 (13.05) 1.48 (9.34) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S21 1.51 (9.85) 1.94 (13.17) 2.58 (13.65) 1.93 (12.14) 
DTR -S23 2.63 (16.99) 2.30 (15.72) 1.48 (9.34) 2.24 (14.81) 

The best model In S3 (DTR -S213) 
Before update After update 

DTR -S21 2.58 (13.65) 1.48 (9.34) 

The best model In S1 (NNR -S21) In S3 (NNR-S23) 
Before update After update Before update After update 

NNR-S2 2.10 (12.31) 1.95 (12.09) 2.49 (12.66) 2.18 (12.84) 

The best 
model 

In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S21 1.95 (12.09) 1.83 (12.45) 2.47 (13.18) 2.01 (12.48) 
NNR -S23 2.33 (15.73) 2.08 (14.90) 2.18 (12.84) 2.19 (14.75) 
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Table C. 344. Neural Network Regressor (NNR) Updated Model Evaluation Results Before and After 
Updating Method 

 

 

 

Table C. 345. Random Forest Regressor (RFR) Model (1) Evaluation Results Before and After Updating 
Method 

 

 

 

Table C. 346. Random Forest Regressor (RFR) Updated Model (1) Evaluation Results 
 

 

 

Table C. 347. Random Forest Regressor (RFR) Updated Model (1) Evaluation Results Before and After 
Updating Method 

 

 

 

Table C. 348. Random Forest Regressor (RFR) Model (2) Evaluation Results Before and After Updating 
Method 

 

 

 

Table C. 349. Random Forest Regressor (RFR) Updated Model (2) Evaluation Results  
 

 

 

Table C. 350. Random Forest Regressor (RFR) Updated Model (2) Evaluation Results Before and After 
Updating Method 

 

 

 

Table C. 351. LASSO Model Evaluation Results Before and After Updating Method 
 

 

The best model In S3 (NNR -S213) 
Before update After update 

NNR -S21 2.47 (13.18) 2.17 (12.78) 

The best model In S2 (RFR-S12) In S3 (RFR-S13) 
Before update After update Before update After update 

RFR-S1 2.05 (14.01) 0.80 (4.98) 2.64 (14.72) 1.06 (5.88) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S12 2.32 (13.73) 0.80 (4.98) 2.65 (13.75) 1.70 (9.80) 
RFR-S13 2.78 (17.62) 2.47 (16.32) 1.06 (5.88) 2.28 (14.57) 

The best model In S3 (RFR-S123) 
Before update After update 

RFR-S12 2.65 (13.75) 1.08 (5.72) 

The best model In S1 (RFR-S21) In S3 (RFR-S23) 
Before update After update Before update After update 

RFR-S2 2.39 (14.45) 0.94 (5.62) 2.70 (13.67) 1.08 (5.88) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S21 0.94 (5.62) 2.07 (13.99) 2.69 (14.67) 1.81 (11.29) 
RFR-S23 2.76 (17.88) 2.47 (16.63) 1.08 (5.88) 2.28 (14.79) 

The best model In S3 (RFR-S213) 
Before update After update 

RFR-S21 2.69 (14.67) 1.08 (5.88) 

The best model In S1(Lasso-S21) In S3 (Lasso-S23) 
Before update After update Before update After update 

Lasso-S2 2.35 (13.36) 2.71 (13.34) 2.47 (12.44) 2.50 (14.39) 
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Table C. 352. LASSO Updated Model Evaluation Results 
 

 

 

Table C. 353. LASSO Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 354. Ridge Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 355. Ridge Updated Model Evaluation Results 
 

 

 

Table C. 356. Ridge Updated Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 357. ElasticNet Model Evaluation Results Before and After Updating Method 
 

 

 

Table C. 358. ElasticNet Updated Model Evaluation Results 
 

 

 

Table C. 359. ElasticNet Updated Model Evaluation Results Before and After Updating Method 
 

 

 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S21 2.71 (13.34) 2.11 (11.44) 3.05 (13.86) 2.51 (12.59) 
Lasso-S23 2.38 (16.26) 1.99 (15.02) 2.50 (14.39) 2.22 (15.31) 

The best model In S1 (Lasso-S231) 
Before update After update 

Lasso-S23 2.38 (16.26) 2.30 (14.16) 

The best model In S1 (Ridge-S21) In S3 (Ridge-S23) 
Before update After update Before update After update 

Ridge-S2 2.27 (13.55) 2.72 (13.64) 2.46 (12.86) 2.50 (15.01) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S21 2.72 (13.64) 2.12 (11.60) 3.08 (14.12) 2.52 (12.82) 
Ridge -S23 2.44 (17.39) 2.06 (16.01) 2.50 (15.01) 2.28 (16.27) 

The best model In S1 (Ridge -S231) 
Before update After update 

Ridge -S23 2.44 (17.39) 2.31 (13.30) 

The best model In S1 (ElasticNet -S21) In S3 (ElasticNet-S23) 
Before update After update Before update After update 

ElasticNet-S2 2.35 (13.36) 2.68 (13.18) 2.47 (12.44) 2.48 (14.06) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S21 2.68 (13.18) 2.12 (11.53) 3.08 (14.03) 2.51 (12.62) 
ElasticNet-S23 2.41 (16.29) 1.98 (14.74) 2.48 (14.06) 2.23 (15.12) 

The best model In S1 (ElasticNet-S231) 
Before update After update 

ElasticNet -S23 2.41 (16.29) 2.28 (15.23) 



 314 

Finally, we evaluated the final updated models in all sites, then sent the models 

with the evaluation results and the data size that used for evaluation to the sever. The 

server calculates the average RMSE for each model and then selects the best average 

RMSE models for the linear combination method. As shown in Table C.360, we 

selected the best three models and combined these models using linear combination 

methods, Simple weight average, Error-based (RMSE), and Performance-based 

(Accuracy) methods. 
Table C. 360. Updated Model Evaluation Results in All Sites 

 

 

 
 
 
 
 
 
 
 

We applied the same methodology on the rest of regression datasets. 

 
2. Parkinson Disease (Total UPDRS): 

 
Table C. 361. Site 1 Local Models Evaluation 

 
 
 

 

 

 

 

 

 

 

 

 

Table C. 362. Site 2 Local Models Evaluation 
 
 

 

 
 
 
 
 

 
 
 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S123 2.43 (17.41) 2.05 (16.11) 2.49 (15.07) 2.27 (16.33) 
SVR-S132 2.81 (14.04) 2.15 (11.52) 3.09 (13.99) 2.57 (12.89) 
DTR-S213 2.61 (16.98) 2.29 (15.72) 1.48 (9.34) 2.23 (14.81) 
NNR-S213 2.31 (15.60) 2.07 (14.82) 2.17 (12.78) 2.17 (14.66) 
RFR-S123 2.78 (17.62) 2.47 (16.32) 1.08 (5.72) 2.28 (14.54) 
RFR-S213 2.76 (17.88) 2.47 (16.63) 1.08 (5.88) 2.28 (14.79) 
Lasso-S231 2.30 (14.16) 1.95 (13.35) 2.46 (12.87) 2.18 (13.52) 
Ridge-S231 2.31 (13.30) 1.91 (12.51) 2.64 (13.41) 2.19 (12.97) 
ElasticNet-S231 2.28 (15.23) 1.98 (14.75) 2.64 (14.65) 2.22 (14.89) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 11.02 (30.4) 13.58 (56.17) 12.61 (42.68) 12.32 (41.86) 
SVR 10.82 (25.93) 12.29 (50.25) 11.26 (37.91) 11.36 (36.92) 
DTR 8.92 (24.06) 12.50 (51.31) 11.99 (41.56) 11.10 (38.12) 
NNR 7.66 (20.01) 12.18 (48.94) 11.64 (39.89) 10.46 (35.50) 
RFR 9.1 (23.7) 13.12 (52.75) 12.16 (41.16) 11.38 (38.18) 
Lasso 11.17 (30.27) 13.21 (55.43) 11.81 (40.68) 11.93 (40.78) 
Ridge 11.15 (30.53) 12.98 (52.24) 11.50 (38.90) 11.74 (39.34) 
ElasticNet 10.74 (28.73) 13.87 (57.34) 12.79 (42.82) 12.37 (41.65) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 11.65 (32.59) 11.14 (32.23) 12.61 (42.68) 11.89 (36.81) 
SVR 6.83 (20.80) 16.84 (36.61) 10.31 (25.93) 11.63 (28.22) 
DTR 5.15 (16.88) 17.06 (39.79) 8.96 (23.14) 10.72 (27.13) 
NNR 5.06 (16.66) 17.66 (45.19) 9.64 (25.91) 11.19 (30.05) 
RFR 5.39 (16.74) 16.39 (36.73) 9.25 (24.27) 10.68 (26.57) 
Lasso 15.74 (51.63) 36.34 (88.59) 35.32 (76.54) 30.96 (74.54) 
Ridge 28.34 (83.33) 56.64 (98.94) 47.39 (84.63) 45.87 (89.04) 
ElasticNet 16.63 (52.09) 16.37 (35.40) 10.15 (26.61) 13.76 (35.62) 
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Table C. 363. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 

 

 

Table C. 364. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 

 
 

Table C. 365. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 366. Linear Regression (LR) Updated Model Evaluation Results 
 

 
  

Table C. 367. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 
 
 
  

Table C. 368. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 

Table C. 369. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 8.99 (27.33) 13.67 (32.54) 10.07 (38.97) 10.79 (31.84) 
SVR 8.20 (24.86) 14.03 (33.04) 8.96 (35.20) 10.31 (30.04) 
DTR 6.37 (18.06) 15.66 (38.91) 9.35 (37.69) 10.15 (29.65) 
NNR 5.85 (16.49) 16.38 (43.56) 8.51 (32.19) 9.96 (29.19) 
RFR 6.33 (16.79) 16.27 (37.55) 8.96 (34.44) 10.24 (27.88) 
Lasso 9.48 (28.36) 14.05 (32.34) 8.81 (34.43) 10.83 (31.13) 
Ridge 8.85 (27.37) 14.61 (35.14) 8.77 (34.77) 10.73 (31.71) 
ElasticNet 9.66 (28.37) 14.74 (37.85) 10.78 (38.98) 11.60 (34.04) 

Models S1 model 
RMSE 

(MAPE) 

S2 model 
RMSE 

(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 12.32 (41.86) 11.89 (36.81) 10.79 (31.84) LR-S3 
SVR 11.36 (36.92) 11.63 (28.22) 10.31 (30.04) SVR-S3 
DTR 11.10 (38.12) 10.72 (27.13) 10.15 (29.65) DTR-S3 
NNR 10.46 (35.50) 11.19 (30.05) 9.96 (29.19) NNR-S3 
RFR 11.38 (38.18) 10.68 (26.57) 10.24 (27.88) RFR-S3 
Lasso 11.93 (40.78) 30.96 (74.54) 10.83 (31.13) LASSO-S3 
Ridge 11.74 (39.34) 45.87 (89.04) 10.73 (31.71) RIDGE-S33 
ElasticNet 12.37 (41.65) 13.76 (35.62) 11.60 (34.04) ElasticNet-S3 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 10.84 (29.11) 7.16 (20.54) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S31 10.84 (29.11) 11.43 (48.28) 10.21 (36.16) 10.71 (36.74) 
LR-S32 17.14 (35.57) 7.16 (20.54) 11.04 (26.88) 12.12 (28.23) 

The best model In S2 (LR-S312) 
After update the model 

LR-S31 6.71 (21.50) 

The best model In S1 (SVR -S31) In S2 (SVR -S32) 
After update the model After update the model 

SVR-S3 10.83 (29.22) 7.18 (20.53) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S31 10.83 (29.22) 11.64 (49.20) 10.50 (37.04) 10.88 (37.38) 
SVR -S32 17.03 (35.27) 7.18 (20.53) 10.95 (26.54) 12.05 (27.98) 



 316 

Table C. 370. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 371. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 372. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 
  

Table C. 373. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 374. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 375. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 376. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 377. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 378. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 
  

The best model In S2 (SVR -S312) 
After update the model 

SVR -S31 18.70 (57.32) 

The best model In S1 (DTR-S31) In S2 (DTR -S32) 
After update the model After update the model 

DTR -S3 6.94 (18.63) 3.59 (11.77) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S31 6.94 (18.63) 12.50 (51.33) 11.98 (41.47) 10.44 (36.29) 
DTR -S32 17.06 (39.77) 3.59 (11.77) 8.95 (23.13) 10.34 (25.89) 

The best model In S1 (DTR -S321) 
After update the model 

DTR -S32 6.94 (18.63) 

The best model In S1(NNR -S31) In S2 (NNR-S32) 
After update the model After update the model 

NNR-S3 27.43 (66.38) 26.95 (96.49) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S31 27.43 (66.38) 19.73 (60.35) 23.17 (64.27) 23.75 (64.02) 
NNR -S32 35.54 (97.30) 26.95 (96.49) 31.13 (97.14) 31.58 (97.04) 

The best model In S2 (NNR -S312) 
After update the model 

NNR -S31 23.83 (81.91) 

The best model In S1 (RFR-S31) In S2 (RFR-S32) 
After update the model After update the model 

RFR-S3 3.84 (9.13) 2.19 (6.25) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S31 3.84 (9.13) 12.94 (52.10) 12.63 (42.50) 9.80 (33.79) 
RFR-S32 16.39 (36.72) 2.19 (6.25) 9.21 (24.72) 9.89 (24.25) 
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Table C. 379. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 380. LASSO Model Evaluation Results Before and After Updating Method 
 

 
 

Table C. 381. LASSO Updated Model Evaluation Results 
 

 
  

Table C. 382. LASSO Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 383. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 384. Ridge Updated Model Evaluation Results 
 

 

  

Table C. 385. Ridge Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 386. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 387. ElasticNet Updated Model Evaluation Results 
 

 

The best model In S2 (RFR-S312) 
After update the model 

RFR-S31 2.30 (6.54) 

The best model In S1(Lasso-S31) In S2 (Lasso-S32) 
After update the model After update the model 

Lasso-S3 10.80 (28.83) 7.14 (20.56) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S31 10.80 (28.83) 11.61 (48.85) 10.41 (36.75) 10.83 (37.04) 
Lasso-S32 17.24 (35.89) 7.14 (20.56) 10.99 (26.70) 12.13 (28.26) 

The best model In S2 (Lasso-S312) 
After update the model 

Lasso-S31 9.95 (27.75) 

The best model In S1 (Ridge-S31) In S2 (Ridge-S32) 
After update the model After update the model 

Ridge-S3 10.95 (28.40) 7.17 (20.36) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge-S31 10.95 (28.40) 11.35 (46.80) 10.32 (36.06) 10.77 (36.11) 
Ridge-S32 17.12 (35.43) 7.17 (20.36) 10.95 (26.54) 12.08 (27.99) 

The best model In S2 (Ridge -S312) 
After update the model 

Ridge -S31 6.85 (22.73) 

The best 
model 

In S1 (ElasticNet-S31) In S2 (ElasticNet-S32) 
After update the model After update the model 

ElasticNet-S3 10.96 (29.30) 7.29 (20.54) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet-S31 10.96 (29.30) 11.89 (49.96) 10.80 (37.79) 11.11 (37.91) 
ElasticNet-S32 17.14 (35.53) 7.29 (20.54) 10.97 (26.67) 12.12 (28.12) 
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Table C. 388. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 389. Updated Model Evaluation Results in All Sites 
 

 

 
 
 
 
 
 

3. Parkinson Disease (Motor UPDRS): 
 
 

Table C. 390. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 391. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 392. Site 3 Local Models Evaluation 
 

The best model In S2 (ElasticNet-S312) 
After update the model 

ElasticNet -S31 8.69 (27.50) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR312 16.58 (36.71) 6.71 (21.50) 9.90 (25.68) 11.34 (28.32) 
SVR312 27.07 (66.95) 18.70 (57.32) 22.69 (62.91) 23.18 (62.91) 
DTR321 6.94 (18.63) 12.50 (51.31) 11.99 (41.48) 10.44 (36.30) 
NNR312 32.32 (85.03) 23.83 (81.91) 27.97 (84.99) 28.41 (84.26) 
RFR312 16.42 (37.19) 2.30 (6.54) 9.25 (24.34) 9.95 (24.31) 
Lasso312 18.89 (43.48) 9.95 (27.75) 12.10 (28.64) 13.82 (33.32) 
Ridge312 16.18 (36.67) 6.85 (22.73) 9.82 (26.28) 11.21 (28.86) 
ElasticNet312 19.43 (44.68) 8.69 (27.50) 11.68 (31.44) 13.52 (34.86) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 7.31 (29.77) 9.17 (49.91) 8.76 (41.98) 8.38 (39.85) 
SVR 7.06 (27.67) 9.35 (48.48) 8.70 (40.19) 8.31 (38.05) 
DTR 5.97 (23.65) 8.57 (44.07) 8.68 (41.50) 7.76 (36.23) 
NNR 5.28 (19.98) 9.06 (45.42) 8.36 (40.02) 7.51 (34.70) 
RFR 6.01 (22.88) 9.02 (45.19) 9.09 (43.04) 8.06 (36.90) 
Lasso 7.39 (30.40) 8.65 (45.56) 8.45 (40.46) 8.15 (38.36) 
Ridge 7.09 (28.87) 8.68 (46.05) 8.26 (39.86) 7.97 (37.72) 
ElasticNet 7.16 (29.80) 8.07 (39.74) 8.05 (37.48) 7.76 (35.49) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 8.25 (31.37) 13.92 (50.51) 9.50 (33.28) 10.66 (38.51) 
SVR 5.08 (21.66) 11.50 (41.31) 7.84 (29.42) 8.38 (31.48) 
DTR 3.89 (17.51) 12.22 (45.90) 6.99 (27.10) 7.97 (31.01) 
NNR 3.86 (17.25) 12.65 (49.80) 7.56 (28.79) 8.35 (32.95) 
RFR 4.13 (17.80) 11.33 (41.11) 7.22 (28.99) 7.83 (30.30) 
Lasso 10.81 (39.09) 12.64 (46.53) 8.11 (30.66) 10.25 (37.92) 
Ridge 15.91 (65.14) 18.20 (67.06) 15.79 (45.27) 16.61 (57.23) 
ElasticNet 10.64 (44.33) 12.76 (47.08) 8.16 (30.73) 10.27 (39.39) 

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 7.37 (30.09) 9.88 (38.37) 7.12 (36.44) 8.21 (34.71) 
SVR 6.55 (27.42) 9.78 (36.79) 6.99 (34.72) 7.79 (32.61) 
DTR 5.15 (20.43) 11.49 (43.73) 7.05 (36.23) 7.77 (32.27) 
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Table C. 393. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 
 

 

Table C. 394. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 395. Linear Regression (LR) Updated Model Evaluation Results 
 

 

  

Table C. 396. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 397. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 398. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

Table C. 399. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 

NNR 4.71 (18.39) 11.44 (45.73) 6.71 (32.40) 7.48 (31.10) 
RFR 4.96 (18.32) 11.14 (41.19) 7.24 (36.13) 7.62 (30.50) 
Lasso 7.60 (30.48) 9.72 (36.84) 7.65 (38.40) 8.39 (34.86) 
Ridge 9.01 (34.50) 9.94 (38.99) 6.79 (35.08) 8.85 (36.47) 
ElasticNet 6.75 (28.95) 9.42 (37.70) 7.89 (40.08) 7.98 (34.91) 

Models S1 model RMSE 
(MAPE) 

S2 model RMSE 
(MAPE) 

S3 model RMSE 
(MAPE) 

The best model 

LR 8.38 (39.85) 10.66 (38.51) 8.21 (34.71) LR-S3 
SVR 8.31 (38.05) 8.38 (31.48) 7.79 (32.61) SVR-S3 
DTR 7.76 (36.23) 7.97 (31.01) 7.77 (32.27) DTR-S1 
NNR 7.51 (34.70) 8.35 (32.95) 7.48 (31.10) NNR-S3 
RFR 8.06 (36.90) 7.83 (30.30) 7.62 (30.50) RFR-S3 
Lasso 8.15 (38.36) 10.25 (37.92) 8.39 (34.86) LASSO-S1 
Ridge 7.97 (37.72) 16.61 (57.23) 8.85 (36.47) RIDGE-S1 
ElasticNet 7.76 (35.49) 10.27 (39.39) 7.98 (34.91) ElasticNet-S1 

The best model In S1 (LR-S31) In S2 (LR-S32) 
After update the model After update the model 

LR-S3 7.30 (29.94) 5.40 (21.47) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S31 7.30 (29.94) 7.84 (40.63) 8.08 (38.58) 7.76 (36.22) 
LR-S32 11.27 (36.67) 5.40 (21.47) 8.07 (28.44) 8.48 (29.48) 

The best model In S2 (LR-S312) 
After update the model 

LR-S31 6.11 (27.11) 

The best model In S1 (SVR -S31) In S2 (SVR -S32) 
After update the model After update the model 

SVR-S3 7.35 (30.26) 5.42 (21.55) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S31 7.35 (30.26) 8.30 (43.58) 8.49 (40.56) 8.07 (37.88) 
SVR -S32 11.14 (36.29) 5.42 (21.55) 7.99 (28.22) 8.41 (29.28) 

The best model In S2 (SVR -S312) 
After update the model 

SVR -S31 12.34 (48.01) 
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Table C. 400. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 401. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 
  

Table C. 402. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 403. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 

Table C. 404. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 405. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 406. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 407. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 
  

Table C. 408. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

The best model In S2 (DTR-S12) In S3 (DTR -S13) 
After update the model After update the model 

DTR -S1 2.74 (12.28) 4.16 (16.35) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S12 12.24 (46.01) 2.74 (12.28) 6.99 (27.09) 7.70 (29.78) 
DTR -S13 11.50 (43.73) 7.08 (36.38) 4.16 (16.35) 7.28 (30.19) 

The best model In S2 (DTR -S132) 
After update the model 

DTR -S13 2.74 (12.28) 

The best model In S1 (NNR -S31) In S2 (NNR-S32) 
After update the model After update the model 

NNR -S3 20.36 (74.43) 20.68 (95.39) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S31 20.36 (74.43) 16.61 (69.51) 18.58 (71.75) 18.69 (72.09) 
NNR -S32 24.56 (96.10) 20.68 (95.39) 22.88 (96.07) 22.90 (95.92) 

The best model In S2 (NNR -S312) 
After update the model 

NNR -S31 18.58 (83.19) 

The best model In S1 (RFR-S31) In S2 (RFR-S32) 
After update the model After update the model 

RFR-S3 2.63 (9.16) 1.65 (6.33) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S31 2.63 (9.16) 8.86 (44.40) 9.08 (42.92) 6.89 (32.13) 
RFR-S32 11.45 (40.98) 1.65 (6.33) 7.33 (29.29) 7.32 (27.64) 

The best model In S2 (RFR-S312) 
After update the model 

RFR-S31 1.74 (6.82) 
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Table C. 409. LASSO Model Evaluation Results Before and After Updating Method 
 

 
  

Table C. 410. LASSO Updated Model Evaluation Results 
 

 
  

Table C. 411. LASSO Updated Model Evaluation Results After Updating Method 
 

 

  

Table C. 412. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 413. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 414. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 415. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 416. ElasticNet Updated Model Evaluation Results 
 

 
  

Table C. 417. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 

The best model In S2 (Lasso-S12) In S3 (Lasso-S13) 
After update the model After update the model 

Lasso-S1 5.40 (21.60) 6.51 (28.61) 

The best model In S1 In S2 In S3 Average RMSE (MAPE) 
Lasso-S12 11.39 (37.36) 5.40 (21.60) 8.08 (28.54) 8.53 (29.78) 
Lasso-S13 9.25 (35.83) 6.34 (32.13) 6.51 (28.61) 7.37 (31.84) 

The best model In S2 (Lasso-S132) 
After update the model 

Lasso-S13 5.35 (24.48) 

The best model In S2 (Ridge-S12) In S3 (Ridge-S13) 
After update the model After update the model 

Ridge-S1 5.41 (21.43) 6.76 (28.91) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S12 11.22 (36.59) 5.41 (21.43) 7.99 (28.12) 8.44 (29.31) 
Ridge -S13 9.59 (36.10) 6.53 (30.97) 6.76 (28.91) 7.64 (31.77) 

The best model In S2 (Ridge -S132) 
After update the model 

Ridge -S13 5.19 (23.21) 

The best model In S2 (ElasticNet -S12) In S3 (ElasticNet-S13) 
After update the model After update the model 

ElasticNet-S1 5.49 (21.72) 6.41 (27.74) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S12 11.19 (36.83) 5.49 (21.72) 8.01 (28.43) 8.45 (29.59) 
ElasticNet-S13 9.25 (35.29) 6.52 (32.98) 6.41 (27.74) 7.37 (31.49) 

The best model In S2 (ElasticNet-S132) 
After update the model 

ElasticNet -S13 5.33 (23.27) 
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Table C. 418. Updated Model Evaluation Results in All Sites 
 

 

 

 
 
 
 

4. Boston Housing: 
 

Table C. 419. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 420. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 421. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S312 11.74 (44.67) 6.11 (27.11) 8.10 (34.14) 8.82 (35.93) 
SVR-S312 16.33 (53.25) 12.34 (48.01) 14.66 (50.60) 14.65 (50.85) 
DTR-S132 12.24 (45.99) 2.74 (12.28) 6.99 (27.11) 7.70 (29.78) 
NNR-S312 22.46 (84.88) 18.58 (83.19) 20.82 (85.10) 20.82 (84.57) 
RFR-S312 11.52 (42.33) 1.74 (6.82) 7.27 (29.16) 7.34 (28.14) 
Lasso-S132 11.39 (41.69) 5.35 (24.48) 7.46 (30.10) 8.25 (32.57) 
Ridge-S132 11.19 (39.68) 5.19 (23.21) 7.77 (30.30) 8.28 (31.69) 
ElasticNet-S132 11.43 (40.45) 5.33 (23.27) 7.63 (29.30) 8.33 (31.53) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 4.66 (17.52) 9.37 (21.04) 5.10 (19.97) 5.78 (19.20) 
SVR 4.91 (16.08) 10.27 (21.64) 6.17 (21.54) 6.49 (19.38) 
DTR 3.46 (12.12) 8.57 (17.76) 4.01 (18.33) 4.70 (15.73) 
NNR 3.65 (12.73) 7.74 (20.24) 4.25 (18.86) 4.71 (16.68) 
RFR 4.20 (14.44) 8.19 (16.80) 3.98 (17.77) 4.91 (16.24) 
Lasso 4.63 (18.12) 9.36 (21.45) 5.37 (21.05) 5.87 (19.96) 
Ridge 4.85 (18.68) 9.05 (20.90) 5.25 (21.75) 5.85 (20.35) 
ElasticNet 4.76 (17.49) 8.67 (19.72) 5.74 (24.89) 5.93 (20.90) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 4.62 (15.33) 9.46 (41.93) 9.46 (53.27) 8.49 (41.15) 
SVR 5.50 (17.51) 9.52 (42.42) 9.91 (57.56) 8.87 (43.49) 
DTR 4.23 (13.18) 7.49 (31.72) 6.46 (34.76) 6.43 (29.23) 
NNR 4.18 (12.22) 7.39 (30.99) 6.50 (35.69) 6.39 (29.12) 
RFR 5.49 (14.79) 7.99 (36.20) 7.53 (41.30) 7.31 (33.96) 
Lasso 4.76 (16.26) 9.63 (42.11) 9.90 (55.37) 8.76 (42.24) 
Ridge 5.08 (16.68) 10.47 (45.88) 10.66 (59.81) 9.47 (45.61) 
ElasticNet 4.96 (16.47) 9.63 (42.11) 9.89 (55.37) 8.8 (42.29) 

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 4.45 (20.62) 5.71 (21.99) 9.41 (21.50) 5.95 (21.34) 
SVR 4.50 (19.71) 5.22 (19.18) 9.47 (21.77) 5.78 (19.91) 
DTR 3.22 (13.32) 4.15 (15.14) 8.45 (15.92) 4.64 (14.57) 
NNR 2.71 (11.80) 4.81 (15.20) 7.44 (19.01) 4.49 (14.60) 
RFR 3.22 (14.71) 4.12 (14.65) 7.89 (16.15) 4.51 (14.97) 
Lasso 4.34 (20.24) 5.56 (21.32) 9.77 (21.44) 5.91 (20.91) 
Ridge 4.32 (20.42) 5.83 (22.45) 9.98 (22.12) 6.06 (21.57) 
ElasticNet 4.29 (20.47) 5.73 (21.90) 9.68 (21.76) 5.94 (21.30) 
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Table C. 422. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 

 

Table C. 423. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 424. Linear Regression (LR) Updated Model Evaluation Results 
 

 
  

Table C. 425. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 426. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 427. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

Table C. 428. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 429. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 
  

Models S1 model 
RMSE 

(MAPE) 

S2 model 
RMSE 

(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 5.78 (19.20) 8.49 (41.15) 5.95 (21.34) LR-S1 
SVR 6.49 (19.38) 8.87 (43.49) 5.78 (19.91) SVR-S3 
DTR 4.70 (15.73) 6.43 (29.23) 4.64 (14.57) DTR-S3 
NNR 4.71 (16.68) 6.39 (29.12) 4.49 (14.60) NNR-S3 
RFR 4.91 (16.24) 7.31 (33.96) 4.51 (14.97) RFR-S3 
Lasso 5.87 (19.96) 8.76 (42.24) 5.91 (20.91) LASSO-S1 
Ridge 5.85 (20.35) 9.47 (45.61) 6.06 (21.57) RIDGE-S1 
ElasticNet 5.93 (20.90) 8.8 (42.29) 5.94 (21.30) ElasticNet-S1 

The best 
model 

In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 11.01 (36.87) 6.56 (24.94) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S12 7.96 (32.99) 11.01 (36.87) 8.35 (37.23) 8.73 (35.46) 
LR-S13 7.04 (25.02) 12.94 (37.05) 6.56 (24.94) 8.03 (27.39) 

The best model In S2 (LR-S132) 
After update the model 

LR-S13 11.29 (37.63) 

The best 
model 

In S1 (SVR -S31) In S2 (SVR -S32) 
After update the model After update the model 

SVR-S3 12.63 (55.14) 27.87 (95.99) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S31 12.63 (55.14) 19.09 (63.57) 13.09 (55.58) 14.11 (57.01) 
SVR -S32 21.81 (95.04) 27.87 (95.99) 22.79 (94.41) 23.41 (94.98) 

The best model In S2 (SVR -S312) 
After update the model 

SVR -S31 27.87 (95.99) 

The best model In S1 (DTR-S31) In S2 (DTR -S32) 
After update the model After update the model 

DTR -S3 0.63 (2.62) 0.43 (1.55) 
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Table C. 430. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 

  

Table C. 431. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 432. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 433. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 434. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 435. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 436. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 
  

Table C. 437. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 438. LASSO Model Evaluation Results Before and After Updating Method 
 

 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S31 0.63 (2.62) 8.49 (17.65) 3.99 (18.39) 3.55 (11.93) 
DTR -S32 7.17 (30.53) 0.43 (1.55) 6.46 (34.96) 5.54 (26.51) 

The best model In S2 (DTR -S312) 
After update the model 

DTR -S31 0.44 (1.55) 

The best model In S1 (NNR -S31) In S2 (NNR-S32) 
After update the model After update the model 

NNR -S3 22.43 (98.42) 28.60 (99.61) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S31 22.43 (98.42) 28.48 (98.84) 23.41 (98.10) 24.03 (98.38) 
NNR -S32 22.46 (99.36) 28.60 (99.61) 23.39 (98.03) 24.06 (98.88) 

The best model In S2 (NNR -S312) 
After update the model 

NNR-S31 28.19 (97.03) 

The best model In S1 (RFR-S31) In S2 (RFR-S32) 
After update the model After update the model 

RFR-S3 2.21 (5.35) 2.08 (5.09) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S31 2.21 (5.35) 7.45 (15.65) 3.75 (18.43) 3.87 (12.64) 
RFR-S32 7.59 (34.04) 2.08 (5.09) 7.09 (40.73) 6.29 (30.93) 

The best model In S2 (RFR-S312) 
After update the model 

RFR-S31 2.49 (6.67) 

The best model In S2 (Lasso-S12) In S3 (Lasso-S13) 
After update the model After update the model 

Lasso-S1 11.31 (36.59) 6.67 (26.58) 
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Table C. 439. LASSO Updated Model Evaluation Results 

 

 
  

Table C. 440. LASSO Updated Model Evaluation Results After Updating Method 
 

 
 

Table C. 441. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 442. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 443. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 444. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 445. ElasticNet Updated Model Evaluation Results 
 

 
  

Table C. 446. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 447. Updated Model Evaluation Results in All Sites 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S12 8.48 (36.34) 11.31 (36.59) 9.23 (41.87) 9.35 (38.60) 
Lasso-S13 7.25 (25.89) 13.36 (38.55) 6.67 (26.58) 8.24 (28.70) 

The best model In S2 (Lasso-S132) 
After update the model 

Lasso-S13 11.65 (38.32) 

The best model In S2 (Ridge-S12) In S3 (Ridge-S13) 
After update the model After update the model 

Ridge-S1 11.13 (37.44) 6.64 (27.15) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S12 7.29 (28.84) 11.13 (37.44) 7.47 (31.07) 8.13 (31.45) 
Ridge -S13 7.29 (26.38) 13.37 (38.75) 6.64 (27.15) 8.24 (29.16) 

The best model In S3 (Ridge -S132) 
After update the model 

Ridge -S12 6.56 (24.94) 

The best model In S2 (ElasticNet -S12) In S3 (ElasticNet-S13) 
After update the model After update the model 

ElasticNet-S1 11.53 (39.46) 6.32 (26.97) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S12 7.64 (30.36) 11.53 (39.46) 7.58 (31.70) 8.39 (32.72) 
ElasticNet-S13 7.29 (26.63) 13.19 (38.24) 6.32 (26.97) 8.08 (29.09) 

The best model In S2 (ElasticNet-S132) 
After update the model 

ElasticNet -S13 11.13 (39.13) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S132 8.96 (39.02) 11.29 (37.63) 10.03 (48.77) 9.85 (42.64) 
SVR-S312 21.81 (95.04) 27.87 (95.99) 22.79 (94.41) 23.41 (94.97) 
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5. Abalone: 

 
Table C. 448. Site 1 Local Models Evaluation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 449. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 450. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 451. Local Models Average RMSE (MAPE) for All sites  

DTR-S312 7.04 (29.92) 0.44 (1.55) 6.36 (34.35) 5.45 (26.02) 
NNR-S312 22.06 (96.66) 28.19 (97.03) 22.98 (96.34) 23.65 (96.61) 
RFR-S312 7.49 (34.77) 2.49 (6.67) 7.65 (45.86) 6.55 (33.59) 
Lasso-S132 9.29 (40.29) 11.65 (38.32) 10.44 (49.11) 10.22 (43.42) 
Ridge-S123 7.04 (25.03) 12.94 (37.05) 6.56 (24.94) 8.03 (27.39) 
ElasticNet-S132 8.84 (38.37) 11.13 (39.13) 9.45 (44.79) 9.54 (41.09) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 2.23 (14.37) 1.99 (13.39) 2.40 (13.08) 2.16 (13.66) 
SVR 2.31 (12.99) 1.91 (12.25) 2.61 (13.28) 2.19 (12.72) 
DTR 2.20 (13.44) 1.94 (13.14) 2.59 (13.64) 2.16 (13.35) 
NNR 2.03 (12.59) 1.82 (12.53) 2.49 (13.37) 2.03 (12.73) 
RFR 2.19 (14.02) 2.05 (14.01) 2.64 (14.72) 2.22 (14.16) 
Lasso 2.23 (14.53) 2.09 (13.92) 2.38 (13.02) 2.19 (13.94) 
Ridge 2.21 (14.31) 2.16 (14.61) 2.38 (13.23) 2.22 (14.22) 
ElasticNet 2.25 (14.64) 2.09 (15.56) 2.71 (16.69) 2.27 (15.48) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 1.91 (12.25) 2.30 (13.12) 2.56 (13.01) 2.18 (12.70) 
SVR 1.96 (11.64) 2.47 (13.25) 2.72 (12.87) 2.29 (12.44) 
DTR 1.81 (11.77) 2.26 (13.20) 2.66 (13.05) 2.14 (12.52) 
NNR 1.74 (11.41) 2.10 (12.31) 2.49 (12.66) 2.02 (11.98) 
RFR 1.88 (12.35) 2.39 (14.45) 2.70 (13.67) 2.22 (13.34) 
Lasso 1.87 (12.38) 2.35 (13.36) 2.47 (12.44) 2.16 (12.72) 
Ridge 1.90 (12.37) 2.27 (13.55) 2.46 (12.86) 2.14 (12.87) 
ElasticNet 1.89 (12.67) 2.35 (13.36) 2.47 (12.44) 2.17 (12.86) 

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 2.28 (13.60) 2.45 (16.19) 2.19 (15.35) 2.29 (15.27) 
SVR 2.34 (12.77) 2.48 (15.58) 2.15 (14.48) 2.30 (14.49) 
DTR 2.49 (14.25) 2.61 (17.01) 2.30 (15.78) 2.44 (15.88) 
NNR 2.26 (13.40) 2.31 (15.64) 2.07 (14.82) 2.19 (14.80) 
RFR 2.54 (14.97) 2.67 (17.52) 2.35 (16.02) 2.49 (16.31) 
Lasso 2.32 (14.09) 2.38 (16.07) 2.11 (15.25) 2.24 (15.28) 
Ridge 2.30 (13.79) 2.37 (16.62) 2.14 (15.96) 2.25 (15.73) 
ElasticNet 2.29 (13.91) 2.42 (15.74) 2.14 (14.87) 2.27 (14.96) 

Models S1 model RMSE 
(MAPE) 

S2 model RMSE 
(MAPE) 

S3 model RMSE 
(MAPE) 

The best model 

LR 2.16 (13.66) 2.18 (12.70) 2.29 (15.27) LR-S1 
SVR 2.19 (12.72) 2.29 (12.44) 2.30 (14.49) SVR-S1 
DTR 2.16 (13.35) 2.14 (12.52) 2.44 (15.88) DTR-S2 
NNR 2.03 (12.73) 2.02 (11.98) 2.19 (14.80) NNR-S2 
RFR 2.22 (14.16) 2.22 (13.34) 2.49 (16.31) RFR-S1 – RFR-S2 
Lasso 2.19 (13.94) 2.16 (12.72) 2.24 (15.28) LASSO-S2 
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Table C. 452. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 453. Linear Regression (LR) Updated Model Evaluation Results 
 

 
  

Table C. 454. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 455. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 457. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

Table C. 458. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 459. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 

 

Table C. 460. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 
  

Ridge 2.22 (14.22) 2.14 (12.87) 2.25 (15.73) RIDGE-S2 
ElasticNet 2.27 (15.48) 2.17 (12.86) 2.27 (14.96) ElasticNet-S2 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 2.08 (11.36) 2.49 (15.07) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S12 2.07 (13.54) 2.08 (11.36) 2.97 (13.51) 2.26 (12.55) 
LR-S13 2.43 (17.41) 2.06 (16.11) 2.49 (15.07) 2.28 (16.33) 

The best model In S3 (LR-S123) 
After update the model 

LR-S12 2.49 (15.07) 

The best model In S2 (SVR -S12) Table C. 456. In S3 (SVR -
S13) 

After update the model After update the model 
SVR-S1 2.08 (11.42) 2.34 (12.49) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S12 2.70 (13.61) 2.08 (11.42) 3.01 (13.69) 2.49 (12.64) 
SVR -S13 2.39 (14.79) 2.04 (13.67) 2.34 (12.49) 2.22 (13.80) 

The best model In S2 (SVR -S132) 
After update the model 

SVR -S13 2.15 (11.52) 

The best model In S1 (DTR-S21) In S3 (DTR -S23) 
After update the model After update the model 

DTR -S2 1.51 (9.85) 1.48 (9.34) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S21 1.51 (9.85) 1.94 (13.17) 2.58 (13.65) 1.93 (12.14) 
DTR -S23 2.63 (16.99) 2.30 (15.72) 1.48 (9.34) 2.24 (14.81) 
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Table C. 461. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 462. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 463. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 464. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 465. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 466. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 

  

Table C. 467. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 468. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 469. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 

The best model In S3 (DTR -S213) 
After update the model 

DTR -S21 1.48 (9.34) 

The best model In S1 (NNR -S21) In S3 (NNR-S23) 
After update the model After update the model 

NNR-S2 1.95 (12.09) 2.18 (12.84) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S21 1.95 (12.09) 1.83 (12.45) 2.47 (13.18) 2.01 (12.48) 
NNR -S23 2.33 (15.73) 2.08 (14.90) 2.18 (12.84) 2.19 (14.75) 

The best model In S3 ( NNR -S213) 
After update the model 

NNR -S21 2.17 (12.78) 

The best model In S2 (RFR-S12) In S3 (RFR-S13) 
After update the model After update the model 

RFR-S1 0.80 (4.98) 1.06 (5.88) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S12 2.32 (13.73) 0.80 (4.98) 2.65 (13.75) 1.70 (9.80) 
RFR-S13 2.78 (17.62) 2.47 (16.32) 1.06 (5.88) 2.28 (14.57) 

The best model In S3 (RFR-S123) 
After update the model 

RFR-S12 1.08 (5.72) 

The best model In S1 (RFR-S21) In S3 (RFR-S23) 
After update the model After update the model 

RFR-S2 0.94 (5.62) 1.08 (5.88) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S21 0.94 (5.62) 2.07 (13.99) 2.69 (14.67) 1.81 (11.29) 
RFR-S23 2.76 (17.88) 2.47 (16.63) 1.08 (5.88) 2.28 (14.79) 
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Table C. 470. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 471. LASSO Model Evaluation Results Before and After Updating Method 
 

 
  

Table C. 472. LASSO Updated Model Evaluation Results 
 

 
  

Table C. 473. LASSO Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 474. Ridge Model Evaluation Results After Updating Method 
 

 

Table C. 475. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 476. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 477. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 478. ElasticNet Updated Model Evaluation Results 
 

 
  

The best model In S3 (RFR-S213) 
After update the model 

RFR-S21 1.08 (5.88) 

The best model In S1(Lasso-S21) In S3 (Lasso-S23) 
After update the model After update the model 

Lasso-S2 2.71 (13.34) 2.50 (14.39) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S21 2.71 (13.34) 2.11 (11.44) 3.05 (13.86) 2.51 (12.59) 
Lasso-S23 2.38 (16.26) 1.99 (15.02) 2.50 (14.39) 2.22 (15.31) 

The best model In S1 (Lasso-S231) 
After update the model 

Lasso-S23 2.30 (14.16) 

The best model In S1 (Ridge-S21) In S3 (Ridge-S23) 
After update the model After update the model 

Ridge-S2 2.72 (13.64) 2.50 (15.01) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S21 2.72 (13.64) 2.12 (11.60) 3.08 (14.12) 2.52 (12.82) 
Ridge -S23 2.44 (17.39) 2.06 (16.01) 2.50 (15.01) 2.28 (16.27) 

The best model In S1 (Ridge -S231) 
After update the model 

Ridge -S23 2.31 (13.30) 

The best model In S1 (ElasticNet -S21) In S3 (ElasticNet-S23) 
After update the model After update the model 

ElasticNet-S2 2.68 (13.18) 2.48 (14.06) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S21 2.68 (13.18) 2.12 (11.53) 3.08 (14.03) 2.51 (12.62) 
ElasticNet-S23 2.41 (16.29) 1.98 (14.74) 2.48 (14.06) 2.23 (15.12) 



 330 

Table C. 479. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 480. Updated Model Evaluation Results in All Sites 
 

 

 

 

 

 
II. Non-randomly Partitioned Data: 

 
1. Parkinson Disease (Total UPDRS): 

 
Table C. 481. Site 1 Local Models Evaluation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 482. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 483. Site 3 Local Models Evaluation 
 

The best model In S1 (ElasticNet-S231) 
After update the model 

ElasticNet -S23 2.28 (15.23) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S123 2.43 (17.41) 2.05 (16.11) 2.49 (15.07) 2.27 (16.33) 
SVR-S132 2.81 (14.04) 2.15 (11.52) 3.09 (13.99) 2.57 (12.89) 
DTR-S213 2.61 (16.98) 2.29 (15.72) 1.48 (9.34) 2.23 (14.81) 
NNR-S213 2.31 (15.60) 2.07 (14.82) 2.17 (12.78) 2.17 (14.66) 
RFR-S123 2.78 (17.62) 2.47 (16.32) 1.08 (5.72) 2.28 (14.54) 
RFR-S213 2.76 (17.88) 2.47 (16.63) 1.08 (5.88) 2.28 (14.79) 
Lasso-S231 2.30 (14.16) 1.95 (13.35) 2.46 (12.87) 2.18 (13.52) 
Ridge-S231 2.31 (13.30) 1.91 (12.51) 2.64 (13.41) 2.19 (12.97) 
ElasticNet-S231 2.28 (15.23) 1.98 (14.75) 2.64 (14.65) 2.22 (14.89) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 9.80 (24.61) 14.28 (66.59) 9.52 (23.37) 11.23 (38.49) 
SVR 10.52 (21.29) 12.47 (58.63) 10.74 (21.44) 11.25 (34.03) 
DTR 7.91 (19.34) 14.24 (65.68) 6.90 (16.58) 9.74 (34.21) 
NNR 6.85 (16.72) 12.84 (59.61) 6.44 (14.93) 8.75 (30.72) 
RFR 7.68 (17.83) 14.09 (64.12) 5.11 (10.90) 9.04 (31.35) 
Lasso 10.12 (25.05) 14.35 (65.41) 10.16 (22.65) 11.57 (38.01) 
Ridge 12.18 (29.83) 15.08 (68.88) 10.15 (24.09) 12.52 (41.27) 
ElasticNet 10.44 (26.43) 14.45 (67.15) 9.58 (23.57) 11.53 (39.36) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 10.32 (42.88) 13.68 (26.85) 13.92 (28.04) 12.61 (32.68) 
SVR 9.71 (42.28) 13.69 (29.93) 13.77 (30.41) 12.36 (34.28) 
DTR 8.04 (32.45) 13.01 (30.98) 12.89 (30.42) 11.28 (31.30) 
NNR 8.02 (33.06) 13.27 (32.75) 13.60 (33.49) 11.59 (33.09) 
RFR 8.36 (32.59) 12.96 (28.80) 13.08 (29.08) 11.43 (30.18) 
Lasso 9.92 (42.67) 14.09 (29.30) 14.26 (30.20) 12.73 (34.13) 
Ridge 10.58 (42.15) 14.69 (32.49) 14.87 (33.18) 13.35 (35.99) 
ElasticNet 9.87 (42.43) 14.09 (29.31) 14.26 (30.21) 12.71 (34.06) 

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 9.85 (24.99) 10.82 (25.16) 13.83 (64.79) 11.53 (38.58) 
SVR 9.80 (23.03) 9.81 (23.49) 15.16 (68.56) 11.62 (38.67) 
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Table C. 484. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 

 

 

Table C. 485. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 

 

Table C. 486. Linear Regression (LR) Updated Model Evaluation Results 
 

 

 
  

Table C. 487. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 488. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 489. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 

  

DTR 7.85 (19.97) 6.78 (17.52) 14.31 (66.70) 9.68 (35.02) 
NNR 6.93 (17.33) 5.39 (13.83) 14.82 (68.83) 9.09 (33.65) 
RFR 7.79 (18.90) 4.48 (10.41) 14.10 (64.50) 8.81 (31.51) 
Lasso 11.73 (29.65) 9.89 (25.19) 14.25 (66.78) 11.96 (40.75) 
Ridge 10.39 (25.78) 10.44 (26.22) 14.28 (66.79) 11.73 (39.87) 
ElasticNet 9.99 (24.97) 10.51 (27.36) 15.64 (70.62) 12.08 (41.30) 

Models S1 model 
RMSE 

(MAPE) 

S2 model 
RMSE 

(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 11.23 (38.49) 12.61 (32.68) 11.53 (38.58) LR-S1 
SVR 11.25 (34.03) 12.36 (34.28) 11.62 (38.67) SVR-S1 
DTR 9.74 (34.21) 11.28 (31.30) 9.68 (35.02) DTR-S3 
NNR 8.75 (30.72) 11.59 (33.09) 9.09 (33.65) NNR-S1 
RFR 9.04 (31.35) 11.43 (30.18) 8.81 (31.51) RFR-S3 
Lasso 11.57 (38.01) 12.73 (34.13) 11.96 (40.75) LASSO-S1 
Ridge 12.52 (41.27) 13.35 (35.99) 11.73 (39.87) RIDGE-S3 
ElasticNet 11.53 (39.36) 12.71 (34.06) 12.08 (41.30) ElasticNet-S1 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 9.75 (41.06) 11.05 (29.53) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S12 13.60 (28.19) 9.75 (41.06) 13.67 (28.70) 12.31 (32.72) 
LR-S13 11.35 (31.35) 11.54 (32.24) 11.05 (29.53) 11.32 (31.07) 

The best model In S2 (LR-S132) 
After update the model 

LR-S13 9.85 (42.12) 

The best model In S2 (SVR -S12) In S3 (SVR -S13) 
After update the model After update the model 

SVR-S1 9.75 (40.70) 9.73 (22.61) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S12 13.51 (27.17) 9.75 (40.70) 13.61 (27.86) 12.26 (31.99) 
SVR -S13 9.88 (23.45) 14.98 (68.06) 9.73 (22.61) 11.57 (38.35) 
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Table C. 490. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 491. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 492. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 
  

Table C. 493. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 

Table C. 494. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 495. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 496. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 497. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 498. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 
  

The best model In S2 (SVR -S132) 
After update the model 

SVR -S13 18.11 (46.75) 

The best model In S1 (DTR-S31) In S2 (DTR -S32) 
After update the model After update the model 

DTR -S3 5.95 (14.82) 6.25 (24.65) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S31 5.94 (14.82) 14.24 (65.68) 6.89 (16.58) 9.07 (32.67) 
DTR -S32 13.03 (31.11) 6.25 (24.65) 12.92 (30.52) 10.69 (28.72) 

The best model In S2 (DTR -S312) 
After update the model 

DTR -S31 6.25 (24.65) 

The best model In S2 (NNR -S12) In S3 (NNR-S13) 
After update the model After update the model 

NNR -S1 9.09 (38.82) 5.50 (13.62) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S12 12.79 (27.68) 9.09 (38.82) 12.95 (28.32) 11.58 (31.67) 
NNR -S13 5.57 (14.21) 14.28 (66.43) 5.50 (13.62) 8.51 (31.78) 

The best model In S2 (NNR -S132) 
After update the model 

NNR -S13 22.36 (65.89) 

The best model In S1 (RFR-S31) In S2 (RFR-S32) 
After update the model After update the model 

RFR-S3 3.31 (6.94) 3.61 (13.15) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S31 3.31 (6.94) 14.07 (63.73) 5.22 (10.68) 7.58 (27.44) 
RFR-S32 13.17 (29.72) 3.61 (13.15) 13.44 (29.95) 10.01 (24.16) 
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Table C. 499. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 500. LASSO Model Evaluation Results Before and After Updating Method 
 

 
  

Table C. 501. LASSO Updated Model Evaluation Results 
 

 

Table C. 502. LASSO Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 503. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 504. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 505. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 506. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 507. ElasticNet Updated Model Evaluation Results 
 

 
  

The best model In S2 (RFR-S312) 
After update the model 

RFR-S31 3.55 (12.03) 

The best model In S2 (Lasso-S12) In S3 (Lasso-S13) 
After update the model After update the model 

Lasso-S1 9.76 (41.10) 9.83 (25.40) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S12 13.49 (27.26) 9.76 (41.10) 13.60 (27.99) 12.26 (32.20) 
Lasso-S13 10.07 (26.57) 13.84 (65.95) 9.83 (25.40) 11.27 (39.58) 

The best model In S2 (Lasso-S132) 
After update the model 

Lasso-S13 11.13 (48.08) 

The best model In S1 (Ridge-S31) In S2 (Ridge-S32) 
After update the model After update the model 

Ridge-S3 10.46 (24.71) 9.77 (40.32) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S31 10.46 (24.71) 12.74 (62.24) 10.36 (24.31) 11.20 (37.34) 
Ridge -S32 13.77 (28.08) 9.77 (40.32) 13.86 (28.70) 12.44 (32.44) 

The best model In S2 (Ridge -S312) 
After update the model 

Ridge -S31 9.55 (40.98) 

The best model In S2 (ElasticNet -S12) In S3 (ElasticNet-S13) 
After update the model After update the model 

ElasticNet-S1 9.79 (41.01) 9.92 (26.51) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S12 13.47 (26.99) 9.79 (41.01) 13.57 (27.68) 12.25 (31.98) 
ElasticNet-S13 10.27 (28.24) 13.65 (66.48) 9.92 (26.51) 11.31 (40.69) 
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Table C. 508. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 509. Updated Model Evaluation Results in All Sites 
 

 

 

 

 
 

2. Parkinson Disease (Motor UPDRS): 
 

Table C. 510. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 511. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 512. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 

The best model In S2 (ElasticNet-S132) 
After update the model 

ElasticNet -S132 9.53 (39.91) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S132 13.38 (31.91) 9.85 (42.12) 14.37 (31.85) 12.49 (35.36) 
SVR-S132 22.45 (52.73) 18.11 (46.75) 22.98 (53.88) 21.14 (51.06) 
DTR-S312 12.99 (31.22) 6.25 (24.65) 12.88 (30.62) 10.66 (28.79) 
NNR-S132 27.18 (67.81) 22.36 (65.89) 27.77 (68.65) 25.73 (67.43) 
RFR-S312 12.31 (28.58) 3.55 (12.03) 12.54 (28.67) 9.40 (22.98) 
Lasso-S132 13.67 (31.30) 11.13 (48.08) 13.66 (31.02) 12.80 (36.91) 
Ridge-S312 13.46 (28.50) 9.55 (40.98) 13.54 (28.97) 12.16 (32.89) 
ElasticNet-132 13.95 (29.36) 9.53 (39.91) 14.01 (29.71) 12.47 (33.06) 

S1 In S2 In S3 Weighted average 
Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 6.04 (22.33) 11.17 (72.17) 6.54 (23.33) 7.94 (39.59) 
SVR 6.09 (21.20) 11.26 (72.66) 6.49 (21.63) 7.97 (38.83) 
DTR 5.02 (18.44) 11.06 (71.39) 4.96 (16.73) 7.05 (35.89) 
NNR 4.49 (15.69) 11.07 (71.23) 4.72 (14.95) 6.80 (34.34) 
RFR 5.06 (17.82) 11.12 (70.86) 3.99 (11.40) 6.78 (33.80) 
Lasso 6.19 (22.91) 10.84 (71.48) 6.31 (23.35) 7.81 (39.56) 
Ridge 6.05 (22.68) 10.61 (69.25) 6.25 (21.85) 7.66 (38.25) 
ElasticNet 6.15 (23.09) 10.58 (69.16) 6.44 (23.34) 7.75 (38.83) 

S2 In S1 In S3 Weighted average 
Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 9.25 (50.90) 10.45 (36.98) 10.71 (37.33) 10.12 (41.82) 
SVR 7.73 (46.84) 9.23 (31.75) 9.52 (32.38) 8.81 (37.08) 
DTR 6.17 (33.83) 8.84 (33.87) 9.07 (33.86) 8.01 (33.85) 
NNR 5.95 (32.14) 11.27 (39.72) 12.05 (41.15) 9.71 (37.60) 
RFR 6.40 (33.45) 8.87 (33.97) 8.99 (33.28) 8.07 (33.57) 
Lasso 7.88 (47.01) 10.45 (34.82) 10.81 (35.76) 9.69 (39.26) 
Ridge 7.81 (46.12) 10.51 (36.13) 10.89 (36.98) 9.71 (39.80) 
ElasticNet 7.99 (47.05) 10.45 (34.82) 10.81 (35.76) 9.73 (39.28) 

S3 In S1 In S2 Weighted average 
Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 6.38 (23.61) 6.39 (24.59) 11.58 (74.66) 8.15 (41.30) 
SVR 6.23 (22.93) 6.05 (23.12) 12.11 (78.09) 8.17 (41.75) 
DTR 5.36 (19.95) 4.39 (16.86) 11.43 (74.82) 7.09 (37.55) 
NNR 5.04 (17.72) 3.93 (14.44) 11.82 (76.64) 6.97 (36.64) 
RFR 5.42 (19.26) 2.86 (9.94) 11.48 (74.21) 6.61 (34.77) 
Lasso 7.33 (26.97) 5.97 (23.14) 11.19 (74.02) 8.18 (41.66) 
Ridge 6.52 (24.99) 6.76 (27.14) 12.92 (83.43) 8.78 (45.59) 
ElasticNet 6.60 (24.76) 6.09 (24.09) 11.76 (77.46) 8.18 (42.45) 
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Table C. 513. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 

 

Table C. 514. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 515. Linear Regression (LR) Updated Model Evaluation Results 
 

 
  

Table C. 516. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 517. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 518. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

Table C. 519. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 520. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 
  

Models S1 model 
RMSE 

(MAPE) 

S2 model RMSE 
(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 7.94 (39.59) 10.12 (41.82) 8.15 (41.30) LR-S1 
SVR 7.97 (38.83) 8.81 (37.08) 8.17 (41.75) SVR-S1 
DTR 7.05 (35.89) 8.01 (33.85) 7.09 (37.55) DTR-S1 
NNR 6.80 (34.34) 9.71 (37.60) 6.97 (36.64) NNR-S1 
RFR 6.78 (33.80) 8.07 (33.57) 6.61 (34.77) RFR-S3 
Lasso 7.81 (39.56) 9.69 (39.26) 8.18 (41.66) LASSO-S1 
Ridge 7.66 (38.25) 9.71 (39.80) 8.78 (45.59) RIDGE-S1 
ElasticNet 7.75 (38.83) 9.73 (39.28) 8.18 (42.45) ElasticNet-S1 

The best model In S2 (LR-S12) In S3 (LR-S13) 
After update the model After update the model 

LR-S1 7.87 (44.44) 6.92 (26.76) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S12 9.41 (31.77) 7.87 (44.44) 9.69 (32.35) 8.98 (36.26) 
LR-S13 6.83 (27.27) 11.67 (77.61) 6.92 (26.76) 8.50 (44.22) 

The best model In S2 (LR-S132) 
After update the model 

LR-S13 7.87 (46.82) 

The best model In S2 (SVR -S12) In S3 (SVR -S13) 
After update the model After update the model 

SVR-S1 7.43 (44.84) 6.19 (22.59) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S12 9.68 (32.87) 7.43 (44.84) 9.99 (33.56) 9.01 (37.16) 
SVR -S13 6.11 (23.12) 12.81 (80.79) 6.19 (22.59) 8.41 (42.56) 

The best model In S2 (SVR -S132) 
After update the model 

SVR -S13 7.64 (46.31) 

The best model In S2 (DTR-S12) In S3 (DTR -S13) 
After update the model After update the model 

DTR -S1 4.76 (25.82) 4.26 (15.78) 
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Table C. 521. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 

 

Table C. 522. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 523. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 524. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 
  

Table C. 525. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 526. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 527. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 
  

Table C. 528. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 529. LASSO Model Evaluation Results Before and After Updating Method 
 

 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S12 8.84 (33.87) 4.76 (25.82) 9.07 (33.85) 7.53 (31.13) 
DTR -S13 4.39 (16.87) 11.42 (74.81) 4.26 (15.78) 6.74 (36.22) 

The best model In S2 ( DTR -S132) 
After update the model 

DTR -S13 4.76 (25.82) 

The best model In S2 (NNR -S12) In S3 (NNR-S13) 
After update the model After update the model 

NNR -S1 6.84 (39.92) 3.82 (13.38) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S12 8.98 (31.18) 6.84 (39.92) 9.55 (32.35) 8.43 (34.53) 
NNR -S13 3.76 (13.79) 12.09 (78.49) 3.82 (13.38) 6.61 (35.66) 

The best model In S2 (NNR -S132) 
After update the model 

NNR -S13 5.63 (31.13) 

The best model In S1 (RFR-S31) In S2 (RFR-S32) 
After update the model After update the model 

RFR-S3 2.19 (6.94) 2.72 (13.24) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S31 2.19 (6.94) 11.39 (72.32) 4.08 (11.37) 5.92 (30.59) 
RFR-S32 8.49 (32.70) 2.72 (13.24) 8.74 (32.69) 6.61 (26.08) 

The best model In S2 (RFR-S312) 
After update the model 

RFR-S31 2.62 (12.35) 

The best model In S2 (Lasso-S12) In S3 (Lasso-S13) 
After update the model After update the model 

Lasso-S1 7.86 (44.22) 6.26 (23.97) 
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Table C. 530. LASSO Updated Model Evaluation Results 
 

 
  

Table C. 531. LASSO Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 532. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 533. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 534. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 535. ElasticNet Model Evaluation Results After Updating Method 
 

 
  

Table C. 536. ElasticNet Updated Model Evaluation Results 
 

 
  

Table C. 537. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 538. Updated Model Evaluation Results in All Sites 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S12 9.66 (32.57) 7.86 (44.22) 9.92 (33.09) 9.13 (36.69) 
Lasso-S13 6.08 (24.02) 10.19 (68.92) 6.26 (23.97) 7.53 (39.27) 

The best model In S2 (Lasso-S132) 
After update the model 

Lasso-S13 8.01 (46.65) 

The best model In S2 (Ridge-S12) In S3 (Ridge-S13) 
After update the model After update the model 

Ridge-S1 7.97 (46.66) 7.85 (29.35) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S12 9.60 (32.69) 7.97 (46.66) 9.82 (33.05) 9.11 (37.55) 
Ridge -S13 7.82 (30.27) 12.59 (79.71) 7.85 (29.35) 9.45 (46.78) 

The best model In S3 (Ridge -S123) 
After update the model 

Ridge -S12 6.92 (26.76) 

The best model In S2 (ElasticNet -S12) In S3 (ElasticNet-S13) 
After update the model After update the model 

ElasticNet-S1 7.88 (45.15) 7.25 (26.53) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S12 9.55 (32.46) 7.88 (45.15) 9.78 (32.85) 9.05 (36.89) 
ElasticNet-S13 7.04 (26.52) 11.16 (72.31) 7.25 (26.53) 8.51 (42.09) 

The best model In S2 (ElasticNet-S132) 
After update the model 

ElasticNet -S13 7.62 (45.95) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S132 10.43 (36.11) 7.87 (46.82) 10.57 (36.01) 9.60 (39.72) 
SVR-S132 9.23 (32.23) 7.64 (46.31) 9.49 (32.69) 8.77 (37.16) 
DTR-S132 8.84 (33.89) 4.76 (25.82) 9.08 (33.88) 7.53 (31.14) 
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3. Boston Housing: 
 

Table C. 539. Site 1 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 540. Site 2 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 541. Site 3 Local Models Evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table C. 542. Local Models Average RMSE (MAPE) for All sites  
 

 

 

 

 

NNR-S132 11.68 (41.46) 5.63 (31.13) 12.46 (42.89) 9.87 (38.40) 
RFR-S312 8.85 (34.74) 2.62 (12.35) 8.98 (34.22) 6.77 (26.96) 
Lasso-S132 9.30 (31.55) 8.01 (46.65) 9.64 (32.43) 8.97 (36.96) 
Ridge-S123 6.83 (27.27) 11.67 (77.61) 6.92 (26.76) 8.50 (44.22) 
ElasticNet-S132 9.79 (33.51) 7.62 (45.95) 10.06 (34.04) 9.14 (37.91) 

S1 In S2 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 3.22 (10.38) 3.98 (15.84) 12.82 (81.04) 7.29 (40.28) 
SVR 3.35 (10.51) 3.86 (15.07) 12.36 (78.24) 7.11 (38.97) 
DTR 2.95 (8.49) 4.12 (15.25) 12.07 (78.33) 6.95 (38.45) 
NNR 2.76 (9.04) 5.57 (18.60) 13.27 (72.93) 7.81 (37.46) 
RFR 3.15 (9.53) 3.90 (14.52) 12.15 (77.16) 6.97 (38.08) 
Lasso 3.18 (10.65) 4.01 (16.03) 12.89 (81.50) 7.31 (40.60) 
Ridge 3.25 (10.59) 3.94 (15.67) 12.82 (80.89) 7.28 (40.23) 
ElasticNet 3.35 (11.02) 4.03 (16.23) 12.86 (81.43) 7.36 (40.75) 

S2 In S1 In S3 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 3.01 (10.46) 4.10 (11.89) 11.18 (65.99) 6.60 (33.10) 
SVR 3.16 (10.76) 4.62 (13.58) 10.77 (62.58) 6.64 (32.33) 
DTR 2.69 (8.84) 4.35 (12.22) 10.19 (59.45) 6.19 (30.09) 
NNR 3.32 (11.17) 4.13 (11.82) 9.51 (56.46) 6.04 (29.48) 
RFR 2.80 (8.97) 4.56 (11.91) 10.63 (61.87) 6.46 (31.01) 
Lasso 2.85 (9.78) 4.22 (12.26) 11.10 (65.03) 6.56 (32.62) 
Ridge 2.95 (10.18) 4.20 (12.48) 10.99 (64.55) 6.54 (32.62) 
ElasticNet 2.98 (10.26) 4.22 (12.26) 11.10 (65.03) 6.6 (32.77) 

S3 In S1 In S2 Weighted 
average Models RMSE 

(MAPE) 
RMSE 

(MAPE) 
RMSE 

(MAPE) 
LR 6.29 (27.94) 10.70 (34.16) 9.37 (27.55) 8.54 (29.69) 
SVR 6.36 (20.10) 12.14 (38.39) 10.44 (30.39) 9.32 (28.67) 
DTR 3.93 (16.89) 10.47 (32.66) 8.86 (27.78) 7.37 (24.89) 
NNR 4.17 (18.15) 11.43 (38.85) 9.83 (36.59) 8.05 (29.89) 
RFR 4.22 (17.75) 10.14 (32.20) 8.68 (27.26) 7.33 (24.94) 
Lasso 6.33 (27.99) 10.65 (33.79) 9.28 (26.17) 8.51 (29.18) 
Ridge 6.30 (27.72) 10.61 (35.01) 9.08 (28.19) 8.43 (30.05) 
ElasticNet 5.92 (26.81) 10.74 (34.60) 9.26 (27.12) 8.37 (29.24) 

Models S1 model 
RMSE 

(MAPE) 

S2 model 
RMSE 

(MAPE) 

S3 model 
RMSE 

(MAPE) 

The best model 

LR 7.29 (40.28) 6.60 (33.10) 8.54 (29.69) LR-S2 
SVR 7.11 (38.97) 6.64 (32.33) 9.32 (28.67) SVR-S2 
DTR 6.95 (38.45) 6.19 (30.09) 7.37 (24.89) DTR-S2 
NNR 7.81 (37.46) 6.04 (29.48) 8.05 (29.89) NNR-S2 
RFR 6.97 (38.08) 6.46 (31.01) 7.33 (24.94) RFR-S2 
Lasso 7.31 (40.60) 6.56 (32.62) 8.51 (29.18) LASSO-S2 
Ridge 7.28 (40.23) 6.54 (32.62) 8.43 (30.05) RIDGE-S2 
ElasticNet 7.36 (40.75) 6.6 (32.77) 8.37 (29.24) ElasticNet-S2 
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Table C. 543. Linear Regression (LR) Model Evaluation Results After Updating Method 
 

 
 

Table C. 544. Linear Regression (LR) Updated Model Evaluation Results 
 

 
  

Table C. 545. Linear Regression (LR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 546. Support Vector Regressor (SVR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 547. Support Vector Regressor (SVR) Updated Model Evaluation Results 
 

 
  

Table C. 548. Support Vector Regressor (SVR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 549. Decision Tree Regressor (DTR) Model Evaluation Results After Updating Method 
 

 

Table C. 550. Decision Tree Regressor (DTR) Updated Model Evaluation Results 
 

 
  

Table C. 551. Decision Tree Regressor (DTR) Updated Model Evaluation Results After Updating Method 
 

 
  

The best model In S1 (LR-S21) In S3 (LR-S23) 
After update the model After update the model 

LR-S2 17.60 (63.94) 7.35 (26.78) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S21 17.60 (63.94) 15.23 (60.11) 11.03 (40.22) 14.26 (53.30) 
LR-S23 14.34 (50.33) 12.23 (44.43) 7.35 (26.78) 10.91 (39.14) 

The best model In S1 (LR-S231) 
After update the model 

LR-S23 9.17 (31.91) 

The best model In S1 (SVR -S21) In S3 (SVR -S23) 
After update the model After update the model 

SVR-S2 17.78 (65.22) 6.62 (17.87) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

SVR -S21 17.78 (65.22) 15.23 (61.68) 11.16 (41.16) 14.36 (54.53) 
SVR -S23 12.08 (38.30) 10.37 (30.28) 6.62 (17.87) 9.38 (27.72) 

The best model In S1 (SVR -S231) 
After update the model 

SVR -S23 3.16 (8.79) 

The best model In S1 (DTR-S21) In S3 (DTR -S23) 
After update the model After update the model 

DTR -S2 0.31 (1.01) 0.71 (3.78) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

DTR -S21 0.31 (1.01) 4.16 (15.50) 12.08 (78.40) 6.17 (36.31) 
DTR -S23 10.46 (32.63) 8.85 (27.78) 0.71 (3.78) 6.08 (19.63) 

The best model In S1 (DTR -S231) 
After update the model 

DTR -S23 0.31 (1.01) 
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Table C. 552. Neural Network Regressor (NNR) Model Evaluation Results After Updating Method 
 

 
  

Table C. 553. Neural Network Regressor (NNR) Updated Model Evaluation Results 
 

 

 

Table C. 554. Neural Network Regressor (NNR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 555. Random Forest Regressor (RFR) Model Evaluation Results After Updating Method 
 
 

 

Table C. 556. Random Forest Regressor (RFR) Updated Model Evaluation Results 
 

 

  

Table C. 557. Random Forest Regressor (RFR) Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 558. LASSO Model Evaluation Results Before and After Updating Method 
 

 
  

Table C. 559. LASSO Updated Model Evaluation Results 
 

 

  

 
 

The best model In S1(NNR -S21) In S3 (NNR-S23) 
After update the model After update the model 

NNR -S2 27.69 (97.40) 2.20 (9.93) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

NNR -S21 27.69 (97.40) 25.35 (96.90) 20.01 (96.20) 23.92 (96.77) 
NNR -S23 10.64 (34.95) 9.58 (33.76) 2.20 (9.93) 6.95 (24.58) 

The best model In S1 (NNR -S231) 
After update the model 

NNR -S23 1.05 (2.82) 

The best model In S1 (RFR-S21) In S3 (RFR-S23) 
After update the model After update the model 

RFR-S2 1.28 (3.47) 1.85 (7.55) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

RFR-S21 1.28 (3.47) 4.10 (15.48) 12.31 (79.01) 6.53 (37.29) 
RFR-S23 10.27 (32.74) 8.43 (26.66) 1.85 (7.55) 6.35 (20.84) 

The best model In S1 (RFR-S231) 
After update the model 

RFR-S23 1.51 (3.56) 

The best model In S1(Lasso-S21) In S3 (Lasso-S23) 
After update the model After update the model 

Lasso-S2 17.58 (63.70) 7.64 (27.82) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Lasso-S21 17.58 (63.70) 15.10 (59.90) 11.01 (39.32) 14.21 (52.81) 
Lasso-S23 14.52 (51.46) 12.55 (45.68) 7.64 (27.82) 11.18 (40.27) 
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Table C. 560. LASSO Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 561. Ridge Model Evaluation Results After Updating Method 
 

 
  

Table C. 562. Ridge Updated Model Evaluation Results 
 

 
  

Table C. 563. Ridge Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 564. ElasticNet Model Evaluation Results After Updating Method 
 

 

Table C. 565. ElasticNet Updated Model Evaluation Results 
 

 
  

Table C. 566. ElasticNet Updated Model Evaluation Results After Updating Method 
 

 
  

Table C. 567. Updated Model Evaluation Results in All Sites 
 

 

 

 

 
 
 

The best model In S1 (Lasso-S231) 
After update the model 

Lasso-S23 8.93 (30.77) 

The best model In S1 (Ridge-S21) In S3 (Ridge-S23) 
After update the model After update the model 

Ridge-S2 17.62 (63.89) 7.52 (26.11) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

Ridge -S21 17.62 (63.89) 15.18 (60.01) 11.09 (39.49) 14.28 (52.97) 
Ridge -S23 14.48 (50.75) 12.51 (44.90) 7.52 (26.11) 11.10 (39.14) 

The best model In S1 (Ridge -S132) 
After update the model 

Ridge -S23 9.16 (31.46) 

The best model In S1 (ElasticNet -S21) In S3 (ElasticNet-S23 
After update the model After update the model 

ElasticNet-S2 17.51 (64.17) 7.48 (29.02) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

ElasticNet -S21 17.51 (64.17) 15.11 (60.40) 11.13 (39.78) 14.24 (53.28) 
ElasticNet-S23 14.28 (50.94) 12.25 (45.23) 7.48 (29.02) 10.95 (40.46) 

The best model In S1 (ElasticNet-S231) 
After update the model 

ElasticNet -S23 9.39 (32.83) 

The best model In S1 In S2 In S3 Average RMSE 
(MAPE) 

LR-S231 9.17 (31.91) 6.96 (25.20) 7.56 (33.17) 7.86 (30.40) 
SVR-S231 3.16 (8.79) 9.76 (34.65) 19.32 (92.51) 11.60 (50.03) 
DTR-S231 0.31 (1.01) 4.10 (15.12) 12.09 (78.48) 6.16 (36.23) 
NNR-S231 1.05 (2.82) 6.62 (28.46) 19.63 (96.86) 10.15 (48.13) 
RFR-S231 1.51 (3.56) 3.99 (15.55) 12.28 (77.52) 6.56 (36.74) 
Lasso-S231 8.93 (30.77) 6.68 (23.77) 7.80 (35.13) 7.80 (30.41) 
Ridge-S231 9.16 (31.46) 6.90 (23.57) 7.84 (36.25) 7.95 (31.01) 
ElasticNet-S231 9.39 (32.83) 7.39 (26.88) 7.49 (31.73) 8.03 (30.60) 
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Local-level Modelling: 
 
a) Classification 
 

I. Randomly Partitioned Data: 
 

1. Blood Transfusion: 
 

Tables C.568-C.570 show the local-level modelling steps results in each site for 

blood transfusion dataset. It shows the accuracy of the selected models from other sites, 

the models accuracy after updating process using mini-batch SGD, and the selected best 

updated models. Finally, the selected models are combined with the best local model 

using linear combination methods. 
 

Table C. 568. Site 1 Local-level Modelling Evaluation Results for Blood Transfusion Dataset 
 

Selected models in S1 Accuracy Updated Model 
Accuracy 

Final models in S1 

NN1 (Best Local Model) 74%  NN1 (Best Local Model) 
SVM2 (linear) 76% 73% SVM2 (linear) 

NN2 74% 73% NN2 
RF3 76% 92% RF3 
NN3 74% 74% NN3 
DT3 74% 88% DT3 

 
Table C. 569. Site 2 Local-level Modelling Evaluation Results for Blood Transfusion Dataset 

 
Selected models in S2 Accuracy Updated Model 

Accuracy 
Final models in S2 

LR2 (Best Local Model) 87%  LR2 (Best Local Model) 
SVM1 (linear) 87% 85% SVM1 (linear) 

NN1 89% 77% NN1 
DT1 89% 93% DT1 
RF3 87% 96% RF3 
NN3 89% 89% NN3 
DT3 88% 95% DT3 

 
Table C. 570. Site 3 Local-level Modelling Evaluation Results for Blood Transfusion Dataset 

 
Selected models in S3 Accuracy Updated Model 

Accuracy 
Final models in S3 

NN3 (Best Local Model) 76%  NN3 (Best Local Model) 
NB1 78% 77% NB1 

SVM1 linear 77% 75% SVM1 linear 
NN1 77% 76% NN1 
DT1 78% 92% DT1 
RF2 77% 93% RF2 

SVM2 non 78% 76% SVM2 non 
SVM2 linear 80% 68%  

NN2 77% 65%  
 

We applied the local level modelling approach on the rest of regression datasets. 
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2. Breast Cancer Wisconsin (Diagnostic):  
 

Table C. 571. Local-level Modelling in site 1 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

NN1 96%  NN1 
LR2 88% 96% LR2 
LR3 92% 95% LR3 

 
Table C. 572. Local-level Modelling in site 2 

Selected models in S2 Accuracy Accuracy after update the 
models 

Final models in S2 

NN2 97%  NN2 
NN1 87% 74% NN1 

SVM linear 3 97% 95% SVM linear 3 
 

Table C. 573. Local-level Modelling in site 3 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

LR3 99%  LR3 
RF1 97% 99% RF1 
NB2 97% 98% NB2 

 
 

3. Diabetes: 
Table C. 574. Local-level Modelling in site 1 

Selected models in S1 Accuracy Accuracy after update the 
models 

Final models in S1 

NN1 73%  NN1 
NB2 73% 73% NB2 
NN3 73% 64%  

 
Table C. 575. Local-level Modelling in site 2 

 
Selected models in S2 Accuracy Accuracy after update the 

models 
Final models in S2 

NN2 75%  NN2 
NB1 75% 73% NB1 
NN1 76% 63%  
LR3 75% 75% LR3 
NN3 75% 75% NN3 

 
Table C. 576. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

NN3 81%  NN3 
NN1 82% 72% NN1 
DT1 81% 99% DT1 
NB2 80% 82% NB2 

 
4. Heart Disease: 

 
Table C. 577. Local-level Modelling in site 1 

 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

NB1 85%  NB1 
NB2 84% 83% NB2 
RF3 87% 99% RF3 
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Table C. 578. Local-level Modelling in site 2 
 

Selected models in S2 Accuracy Accuracy after update the 
models 

Final models in S2 

NB2 75%  NB2 
NB1 73% 81% NB1 
RF3 75% 99% RF3 
NB3 75% 81% NB3 

 
Table C. 579. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

RF3 82%  RF3 
DT1 87% 96% DT1 
NB2 82% 85% NB2 
DT2 85% 96% DT2 

 
 

5. Spine Disease: 

 
Table C. 580. Local-level Modelling in site 1 

Selected models in S1 Accuracy Accuracy after update the 
models 

Final models in S1 

RF1 97%  RF1 
RF2 90% 98% RF2 
LR3 87% 84% LR3 

 
Table C. 581. Local-level Modelling in site 2 

 
Selected models in S2 Accuracy Accuracy after update the 

models 
Final models in S2 

NB2 87%  NB2 
LR1 90% 84% LR1 
RF1 90% 97% RF1 

SVM1 (nonlinear) 94% 78% SVM1 (nonlinear) 
SVM1 (linear) 90% 86% SVM1 (linear) 

RF3 92% 98% RF3 
SVM3 (nonlinear) 92% 86% SVM3 (nonlinear) 

SVM3 (linear) 90% 78% SVM3 (linear) 
DT3 92% 76% DT3 

 
Table C. 582. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

DT3 80%  DT3 
LR1 72% 75% LR1 
NB2 78% 77% NB2 

 
6. Breast Cancer Wisconsin (Original):  

 
Table C. 583. Local-level Modelling in site 1 

 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

LR1 96%  LR1 
LR2 97% 95% LR2 

SVM2 (nonlinear) 97% 97% SVM2 (nonlinear) 
NN2 97% 81% NN2 
NB3 92% 97% NB3 

 



 345 

Table C. 584. Local-level Modelling in site 2 
 

Selected models in S2 Accuracy Accuracy after update the 
models 

Final models in S2 

RF2 96%  RF2 
SVM1 (nonlinear) 96% 97% SVM1 (nonlinear) 
SVM3 (nonlinear) 96% 96% SVM3 (nonlinear) 

 
Table C. 585. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

LR3 99%  LR3 
NN1 98% 97% NN1 
NN2 99% 93% NN2 

 
7. Liver Disease: 

 
Table C. 586. Local-level Modelling in site 1 

 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

DT1 74%  DT1 
SVM2 (nonlinear) 73% 74% SVM2 (nonlinear) 

DT3 74% 95% DT3 
 

Table C. 587. Local-level Modelling in site 2 
 

Selected models in S2 Accuracy Accuracy after update the 
models 

Final models in S2 

NN2 67%  NN2 
LR1 68% 64%  

SVM1 (nonlinear) 70% 71% SVM1 (nonlinear) 
DT3 66% 94% DT3 

 
Table C. 588. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

SVM 3 (nonlinear) 68%  SVM 3 (nonlinear) 
SVM1 (nonlinear) 67% 68% SVM1 (nonlinear) 

NN2 69% 66% NN2 
 
 

8. Cardiovascular Disease: 
 

Table C. 589. Local-level Modelling in site 1 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

NN1 73%  NN1 
DT2 73% 74% DT2 
NN3 72% 61%  

 
Table C. 590. Local-level Modelling in site 2 

 
Selected models in S2 Accuracy Accuracy after update the 

models 
Final models in S2 

NN2 73%  NN2 
NN1 73% 67%  
DT1 73% 74% DT1 
NN3 73% 73% NN3 
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Table C. 591. Local-level Modelling in site 3 

 
Selected models in S3 Accuracy Accuracy after update the 

models 
Final models in S3 

NN3 73%  NN3 
NB1 73% 71% NB1 
NN1 73% 61%  
NN2 73% 66%  
DT2 73% 74% DT2 

 
 

II. Non-Randomly Partitioned Data: 
 

1. Diabetes: 
 

Table C. 592. Local-level Modelling in site 1 
 

Selected models in S1 Accuracy Accuracy after update the 
models 

Final models in S1 

NB1 84%  NB1 
RF2 73% 92% RF2 
RF3 61% 91% RF3 

 
Table C. 593. Local-level Modelling in site 2 

 
Selected models in S2 Accuracy Accuracy after update the 

models 
Final models in S2 

DT2 67%  DT2 
SVM1 (nonlinear) 66% 69% SVM1 (nonlinear) 

NN3 65% 62% NN3 
 
 
 

Table C. 594. Local-level Modelling in site 3 
 

Selected models in S3 Accuracy Accuracy after update the 
models 

Final models in S3 

SVM3 (nonlinear) 68%  SVM3 (nonlinear) 
NB1 60% 68%  
LR2 72% 60%  
NB2 69% 70% NB2 

SVM2 linear 69% 71% SVM2 linear 
NN2 74% 63%  
DT2 72% 97% DT2 

 
 

2. Heart Disease: 
 

Table C. 595. Local-level Modelling in site 1 
 

Selected models in S1 Accuracy Accuracy after update the 
models 

Final models in S1 

LR1 90%  LR1 
DT2 89% 96% DT2 
DT3 80% 96% DT3 
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Table C. 596. Local-level Modelling in site 2 
 

Selected models in S2 Accuracy Accuracy after update the 
models 

Final models in S2 

NN2 83%  NN2 
RF1 78% 95% RF1 
NB3 78% 78% NB3 

 
 

Table C. 597. Local-level Modelling in site 3 
 

Selected models in S3 Accuracy Accuracy after update the 
models 

Final models in S3 

NB3 81%  NB3 
RF1 72% 95% RF1 
NB2 84% 85% NB2 

SVM 2 (nonlinear) 81% 75% SVM 2 (nonlinear) 
NN2 81% 71% NN2 
DT2 84% 98% DT2 

 
3. Liver Disease: 

 
Table C. 598. Local-level Modelling in site 1 

 
Selected models in S1 Accuracy Accuracy after update the 

models 
Final models in S1 

RF1 66%  RF1 
NB2 65% 65%  
RF3 67% 95% RF3 
DT3 69% 95% DT3 

 
Table C. 599. Local-level Modelling in site 2 

 
Selected models in S2 Accuracy Accuracy after update the 

models 
Final models in S2 

NN2 76%  NN2 
SVM1 linear 68% 71% SVM1 linear 

NN3 76% 70% NN3 
 
 

Table C. 600. Local-level Modelling in site 3 
 

Selected models in S3 Accuracy Accuracy after update the 
models 

Final models in S3 

NN3 73%  NN3 
SVM1 linear 71% 72% SVM1 linear 

LR2 73% 73% LR2 
SVM 2 (nonlinear) 75% 75% SVM 2 (nonlinear) 

NN2 74% 70% NN2 
DT2 74% 94% DT2 
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b) Regression 
 

I. Randomly Partitioned Data: 
 

1. Parkinson Disease (Total UPDRS): 
 

Table C. 601. Local-level Modelling in site 1 
 

Selected models in S1 RMSE RMSE (MAPE) after 
update the models 

Final models in S1 

NNR1 7.66  NNR1 
LR2 11.14 10.84 (29.10) LR2 
LR3 13.67 10.83 (29.22) LR3 

 
Table C. 602. Local-level Modelling in site 2 

 
Selected models in S2 RMSE RMSE (MAPE) after 

update the models 
Final models in S2 

NNR2 5.06  NNR2 
NNR1 12.18 8.22 (25.95) NNR1 
NNR3 8.51 6.76 (21.33) NNR3 

 
Table C. 603. Local-level Modelling in site 3 

 
Selected models in S3 RMSE RMSE (MAPE) after 

update the models 
Final models in S3 

NNR3 5.85  NNR3 
SVR1 11.26 8.75 (27.90) SVR1 
DTR2 8.96 10.19 (33.19)  

 
2. Parkinson Disease (Motor UPDRS): 

 
Table C. 604. Local-level Modelling in site 1 

 
Selected models in S1 RMSE RMSE (MAPE) after 

update the models 
Final models in S1 

NNR1 5.28  NNR1 
RFR2 11.33 2.48 (8.52) RFR2 

ElasticNet3 9.42 7.37 (29.67) ElasticNet3 
 

Table C. 605. Local-level Modelling in site 2 
 

Selected models in S2 RMSE RMSE (MAPE) after 
update the models 

Final models in S2 

NNR2 3.86  NNR2 
ElasticNet1 8.07 5.47 (21.73) ElasticNet1 

NNR3 6.71 18.82 (84.64)  
 

Table C. 606. Local-level Modelling in site 3 
 

Selected models in S3 RMSE RMSE (MAPE) after 
update the models 

Final models in S3 

NNR3 4.71  NNR3 
ElasticNet1 8.05 6.91 (31.87)  

RFR2 7.22 6.53 (15.68) RFR2 
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3. Boston Housing: 
 

Table C. 607. Local-level Modelling in site 1 
 

Selected models in S1 RMSE RMSE (MAPE) after 
update the models 

Final models in S1 

DTR1 3.46  DTR1 
NNR2 7.39 4.79 (13.52) NNR2 
RFR3 4.12 4.32 (15.21) RFR3 

 
Table C. 608. Local-level Modelling in site 2 

 
Selected models in S2 RMSE RMSE (MAPE) after 

update the models 
Final models in S2 

NNR2 4.18  NNR2 
RFR1 8.19 8.55 (12.85) RFR1 
NNR3 7.44 4.01 (12.15) NNR3 

 
Table C. 609. Local-level Modelling in site 3 

 
Selected models in S3 RMSE RMSE (MAPE) after 

update the models 
Final models in S3 

NNR3 2.71  NNR3 
RFR1 3.98 6.42 (11.63) RFR1 
DTR2 6.46 3.63 (19.90) DTR2 

 
4. Abalone: 

 
Table C. 610. Local-level Modelling in site 1 

 
Selected models in S1 RMSE RMSE (MAPE) after 

update the models 
Final models in S1 

RFR1 2.19  RFR1 
NNR2 2.10 2.07 (14.33) NNR2 
NNR3 2.31 2.08 (14.37) NNR3 

 
Table C. 611. Local-level Modelling in site 2 

 
Selected models in S2 RMSE RMSE (MAPE) after 

update the models 
Final models in S2 

NNR2 1.74  NNR2 
NNR1 1.82 1.69 (11.11) NNR1 
NNR3 2.07 1.69 (11.06) NNR3 

 
Table C. 612. Local-level Modelling in site 3 

 
Selected models in S3 RMSE RMSE (MAPE) after 

update the models 
Final models in S3 

NNR3 2.26  NNR3 
Lasso1 2.38 3.50 (18.90) Lasso1 
Ridge2 2.46 3.45 (18.90) Ridge2 
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II. Non-randomly Partitioned Data: 

 
1. Parkinson Disease (Total UPDRS): 

 
Table C. 613. Local-level Modelling in site 1 

 
Selected models in S1 RMSE RMSE (MAPE) after 

update the models 
Final models in S1 

NNR1 6.85  NNR1 
RFR2 12.96 10.27 (18.53) RFR2 
DTR3 6.78 10.38 (19.69) DTR3 
NNR3 5.39 12.20 (23.93) NNR3 
RFR3 4.48 11.36 (23.23) RFR3 

 
Table C. 614. Local-level Modelling in site 2 

 
Selected models in S2 RMSE RMSE (MAPE) after 

update the models 
Final models in S2 

NNR2 8.02  NNR2 
SVR1 12.47 12.92 (45.68)  
LR3 13.83 13.53 (45.24)  

 
Table C. 615. Local-level Modelling in site 3 

 
Selected models in S3 RMSE RMSE (MAPE) after 

update the models 
Final models in S3 

NNR3 6.93  NNR3 
DTR1 6.90 6.15 (15.65) DTR1 
NNR1 6.44 5.30 (13.01) NNR1 
RFR1 5.11 3.30 (7.34) RFR1 
DTR2 12.89 6.15 (15.65) DTR2 

 
2. Parkinson Disease (Motor UPDRS): 

 
Table C. 616. Local-level Modelling in site 1 

 
Selected models in S1 RMSE RMSE (MAPE) after 

update the models 
Final models in S1 

NNR1 4.49  NNR1 
DTR2 8.84 3.88 (14.22) DTR2 
DTR3 4.39 3.88 (14.22) DTR3 
NNR3 3.93 19.96 (72.32)  
RFR3 2.86 2.19 (7.08) RFR3 

 
 

Table C. 617. Local-level Modelling in site 2 
 

Selected models in S2 RMSE RMSE (MAPE) after 
update the models 

Final models in S2 

NNR2 5.95  NNR2 
ElasticNet1 10.58 11.30 (47.92)  

Lasso3 11.19 11.43 (48.14)  
 
 

Table C. 618. Local-level Modelling in site 3 
 

Selected models in S3 RMSE RMSE (MAPE) after 
update the models 

Final models in S3 

NNR3 5.04  NNR3 
DTR1 4.96 6.32 (23.28) DTR1 
NNR1 4.72 23.28 (89.48)  
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RFR1 3.99 6.11 (21.11) RFR1 
RFR2 8.99 5.94 (16.09) RFR2 

 
 

3. Boston Housing: 
 

Table C. 619. Local-level Modelling in site 1 
 

Selected models in S1 RMSE RMSE (MAPE) after 
update the models 

Final models in S1 

NNR1 2.76  NNR1 
LR2 4.10 17.47 (63.96)  

RFR3 10.14 1.37 (3.69) RFR3 
 
 

Table C. 620. Local-level Modelling in site 2 
 

Selected models in S2 RMSE RMSE (MAPE) after 
update the models 

Final models in S2 

DTR2 2.69  DTR2 
SVR1 3.86 15.16 (61.37)  
RFR3 8.68 1.33 (3.81) RFR3 

 
 

Table C. 621. Local-level Modelling in site 3 
 

Selected models in S3 RMSE RMSE (MAPE) after 
update the models 

Final models in S3 

DTR3 3.93  DTR3 
DTR1 12.07 0.70 (3.77) DTR1 
NNR2 9.51 19.95 (97.78)  
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Appendix D 
 
 
Detailed Results for the Proposed Method in Chapter 6 
 

In this appendix we present the proposed method detailed results using all possible 

sites sequence combinations approach for classification and regression datasets. 

 
 

a) Classification 
 

Table D.1 shows the models evaluation results for the first sequence (site 1 – site 2 – 

site 3) for the randomly partitioned blood transfusion dataset. It shows the evaluation of the 

local models in site1 and the updated models in sites 2 and 3. In site 1, LR and RF models got 

lower performance, so we discarded these models and sent the rest to the following site in the 

sequence (site 2), then to site 3. NB and DT models are the best updated models, so we selected 

and sent these models to all sites for evaluation. 
 

Table D. 1. Models Evaluation in site 1, site2, and site 3 
Models Accuracy 

(in site 1) 
Accuracy 
(in site 2) 

Accuracy 
(in site 3) 

LR 68%   
RF 62%   
NB 73% 85% 76% 
SVM (nonlinear) 70% 88% 68% 
SVM (linear) 70% 87% 62% 
NN 74% 83% 44% 
DT 73% 98% 92% 

 
Table D.2 presents the updated models evaluation results in all sites. These results are 

sent to the server with the models and the data size to calculate the average accuracy. The 

server calculated the average accuracy and then combined the models using the linear 

combination method to develop the global combined model by assigning a weight for each 

model based on its average accuracy.  
Table D. 2. Best Updated Models Average Accuracy 

 
 
 
 

Table D.3 shows the global combined model result compared with the model combining 

approach using average accuracy. Our proposed method is slightly better than the other combined 

model. 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

NB 73% 86% 76% 77 % 
DT 64% 78% 92% 79 % 
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Table D. 3.   Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 61% 
Using average accuracy combination method 59% 

 
Tables D.4 – D.18 show the proposed method for the rest of the sites sequences to 

build the global combined model. The tables show that the NB, SVM (nonlinear), NN, DT, 

and FR models are the best updated models in the sequences that got the best average accuracy 

and used to build the global combined model. 

 
Table D. 4.  Models Evaluation in site 1, site3, and site 2 
Models Accuracy 

(in site 1) 
Accuracy 
(in site 3) 

Accuracy 
(in site 2) 

LR 68%   
RF 62%   
NB 73% 76% 87% 
SVM (nonlinear) 70% 79% 83% 
SVM (linear) 70% 77% 69% 
NN 74% 78% 68% 
DT 73% 92% 89% 

 
 

Table D. 5. Best Updated Models Average Accuracy 
 
 
 
 
 
 
 

Table D. 6. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 55% 
Using average accuracy combination method 54% 

 
 

Table D. 7. Models Evaluation in site 2, site1, and site 3 
Models Accuracy 

(in site 2) 
Accuracy 
(in site 1) 

Accuracy 
(in site 3) 

LR 83% 68%  
RF 76% 90% 94% 
NB 85% 73% 76% 
SVM (nonlinear) 88% 74% 68% 
SVM (linear) 84% 73% 69% 
NN 89% 69%  
DT 87% 88% 92% 

 
 

Table D. 8. Best Updated Models Average Accuracy 
 
 

 

 

 

 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3  

Average 
accuracy 

NB 74% 87% 77% 78% 
SVM (nonlinear) 68% 83% 76% 75% 
DT 72% 89% 73% 76% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 74% 83% 94% 85%  
NB 73% 86% 76% 77% 
DT 64% 78% 92% 79% 
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Table D. 9. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 52% 
Using average accuracy combination method 53% 

 
 

Table D. 10. Models Evaluation in site 2, site3, and site 1 
Models Accuracy 

(in site 2) 
Accuracy 
(in site 3) 

Accuracy 
(in site 1) 

LR 83% 62%  
RF 76% 94% 90% 
NB 85% 71% 69% 
SVM (nonlinear) 88% 62%  
SVM (linear) 84% 65%  
NN 89% 77% 72% 
DT 87% 92% 68% 

 
 

Table D. 11. Best Updated Models Average Accuracy 
 
 

 

 

 
Table D. 12. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 52% 
Using average accuracy combination method 53% 

 
 

Table D. 13. Models Evaluation in site 3, site1, and site 2 
Models Accuracy 

(in site 3) 
Accuracy 
(in site 1) 

Accuracy 
(in site 2) 

LR 75% 72% 62% 
RF 65%   
NB 74% 73% 87% 
SVM (nonlinear) 73% 65%  
SVM (linear) 67%   
NN 76% 74% 70% 
DT 65%   

 
 

Table D. 14. Best Updated Models Average Accuracy 
 

 

 

 
Table D. 15. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 52% 
Using average accuracy combination method 50% 

 
 
 
 
 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 90% 77% 78% 82% 
NN 72% 83% 75% 76% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3  

Average 
accuracy 

NB 72% 87% 77% 77% 
NN 66% 70% 66% 67% 



 355 

Table D. 16. Models Evaluation in site 3, site2 and site 1 
Models Accuracy 

(in site 3) 
Accuracy 
(in site 2) 

Accuracy 
(in site 1) 

LR 75% 68%  
RF 65%   
NB 74% 87% 73% 
SVM (nonlinear) 73% 85% 63% 
SVM (linear) 67%   
NN 76% 86% 68% 
DT 65%   

 
Table D. 17. Best Updated Models Average Accuracy 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3  

Average 
accuracy 

NB 73% 86% 76% 77% 
 

Table D. 18. Global Combined Model Evaluation 
Global Combined Model Model accuracy  

NB Model 53% 
 

Table D.19 shows the models evaluation results for the first sequence (site 1 – site 2 

– site 3) for diabetes dataset that non-randomly partitioned. In site 1, all models got high 

performance, so we sent all models to the next site in the sequence (site 2) and then to site 3. 

RF and DT models are the best updated models, so we selected and sent these models to all 

sites for evaluation. 
Table D. 19. Models Evaluation in site 1, site2, and site 3 

Models Accuracy 
(in site 1) 

Accuracy 
(in site 2) 

Accuracy 
(in site 3) 

LR 83% 68%  
RF 83% 80% 84% 
NB 84% 70% 68% 
SVM (nonlinear) 82% 66%  
SVM (linear) 78% 66%  
NN 84% 65%  
DT 84% 82% 87% 

 
 

Table D.20 presents the updated models evaluation results in all sites. These results 

are sent to the server with the models and the data size to calculate the average accuracy. The 

server calculated the average accuracy and then combined the models using the linear 

combination method to develop the global combined model.  

 
Table D. 20. Best Updated Models Average Accuracy 

 
 

 

 

Table D.21 shows the global combined model result compared with the average 

accuracy model combining approach. Our method is slightly better than the other combined 

model. 

 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 62% 63% 84% 65% 
DT 56% 64% 87% 63% 
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Table D. 21. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 62% 
Using average accuracy combination method 60% 

 
 

Tables D.22 - D.36 show the proposed method for the rest of the sequences to build 

the global combined model. The tables show that the LR, NB, DT, and FR models are the best 

updated models that got the best average accuracy and used to build the global combined 

model. However, for the sequences in Tables D.25, D.28, D.31, and D.34, the local models 

results got lower accuracy than 70% (a predefined selection metric), so we decreased the 

accuracy selection threshold to 60%. 
Table D. 22. Models Evaluation in site 1, site3, and site 2 

 
 
 
 

 

 
 
 
 

Table D. 23. Best Updated Models Average Accuracy 
 
 
 

 

 
Table D. 24. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 68% 
Using average accuracy combination method 67% 

 
 

Table D. 25. Models Evaluation in site 2, site1 and site 3 
Models Accuracy (in 

site 2) 
Accuracy 
(in site 1) 

Accuracy 
(in site 3) 

LR 64% 86% 60% 
RF 66% 89% 81% 
NB 65% 86% 70% 
SVM (nonlinear) 59%   
SVM (linear) 61% 77% 58% 
NN 65% 83% 54% 
DT 67% 87% 87% 

 
 

Table D. 26. Best Updated Models Average Accuracy 
 
 
 

 

 

Models Accuracy (in 
site 1) 

Accuracy 
(in site 3) 

Accuracy 
(in site 2) 

LR 83% 70% 61% 
RF 83% 76% 87% 
NB 84% 68%  
SVM (nonlinear) 82% 53%  
SVM (linear) 78% 69%  
NN 84% 59%  
DT 84% 78% 89% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 72% 87% 66% 77% 
DT 66% 89% 64% 73% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 70% 89% 81% 78% 
NB 73% 70% 70% 71% 
DT 66% 91% 87% 80% 



 357 

 
Table D. 27. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 52% 
Using average accuracy combination method 61% 

 
Table D. 28. Models Evaluation in site 2, site3, and site 1 

 

 
 

 

 

 

Table D. 29. Best Updated Models Average Accuracy 
Final Model Accuracy 

in S1 
Accuracy 

in S2 
Accuracy 

in S3 
Average 
accuracy 

RF 86% 61% 60% 74% 
DT 87% 60% 60% 74% 

 

Table D. 30. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 71% 
Using average accuracy combination method 62% 

 

Table D. 31. Models Evaluation in site 3, site1, and site 2 
Models Accuracy (in 

site 3) 
Accuracy (in 

site 1) 
Accuracy 
(in site 2) 

LR 62% 72% 63% 
RF 65% 83% 82% 
NB 65% 86% 70% 
SVM (nonlinear) 68% 82% 65% 
SVM (linear) 57%   
NN 64% 69%  
DT 62% 81% 82% 

 
Table D. 32. Best Updated Models Average Accuracy 

 
Final 

Model 
Accuracy 

in S1 
Accuracy 

in S2 
Accuracy 

in S3 
Average 
accuracy 

RF 70% 82% 70% 74% 
NB 73% 70% 69% 71% 
DT 66% 82% 66% 71% 

 
Table D. 33. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 67% 
Using average accuracy combination method 63% 

 
Table D. 34. Models Evaluation in site 3, site2, and site 1 

Models Accuracy (in 
site 2) 

Accuracy (in 
site 3) 

Accuracy (in 
site 1) 

LR 64% 62%  
RF 66% 83% 86% 
NB 65% 68%  
SVM (nonlinear) 59%   
SVM (linear) 61% 61%  
NN 65% 67%  
DT 67% 87% 87% 

Models Accuracy (in 
site 3) 

Accuracy (in 
site 2) 

Accuracy (in 
site 1) 

LR 52%   
RF 65% 75% 87% 
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Table D. 35. Best Updated Models Average Accuracy 

 
 

 

 
 
 

Table D. 36. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 71% 
Using average accuracy combination method 66% 

 

 

Table D.37 shows the models evaluation results for the first sequence site 1 – site 2 – 

site 3 for heart disease dataset that randomly partitioned. RF, NB, and DT models are the best 

three updated models, so we sent these models to all sites for evaluation. 
 

Table D. 37. Models Evaluation in site 1, site2, and site 3 
 
 
 
 
 
 
 
 
 
 
 
 

Table D.38 presents the updated models evaluation results in all sites and the calculated 

average accuracy that used to develop the global combined model using the linear combination 

method by assigning a weight for each model based on its average accuracy.  

 
Table D. 38. Best Updated Models Average Accuracy 

 
 
 
 
 

 

Table D.39 shows the global combined model got lower performance than the other 

combination method. 
Table D. 39. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 72% 
Using average accuracy combination method 83% 

NB 65% 70% 86% 
SVM (nonlinear) 68% 64%  
SVM (linear) 57%   
NN 64% 54%  
DT 62% 87% 89% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 87% 60% 54% 74% 
NB 86% 62% 60% 75% 
DT 89% 60% 53% 75% 

Models Accuracy (in 
site 1) 

Accuracy (in 
site 2) 

Accuracy 
(in site 3) 

LR 75% 71% 85% 
RF 79% 85% 95% 
NB 85% 81% 87% 
SVM (nonlinear) 78% 70% 77% 
SVM (linear) 80% 73% 83% 
NN 81% 69%  
DT 82% 92% 97% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 84% 76% 95% 83% 
NB 81% 75% 87% 80% 
DT 80% 71% 97% 80% 
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Tables D.40 – D.54 show the proposed method for the other sites sequences to build 

the global combined model. The tables show that the NB, DT, SVM (nonlinear), and FR models 

are the best updated models that used to build the global combined model. 
Table D. 40. Models Evaluation in site 1, site3, and site 2 

Models Accuracy (in 
site 1) 

Accuracy 
(in site 3) 

Accuracy 
(in site 2) 

LR 75% 78% 72% 
RF 79% 87% 85% 
NB 85% 82% 81% 
SVM (nonlinear) 78% 80% 78% 
SVM (linear) 80% 73% 73% 
NN 81% 69%  
DT 82% 90% 85% 

 
Table D. 41. Best Updated Models Average Accuracy 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 76% 85% 77% 80% 
NB 84% 81% 82% 83% 
DT 73% 85% 78% 79% 

 
 

Table D. 42. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 80% 
Using average accuracy combination method 79% 

 
 

Table D. 43. Models Evaluation in site 2, site1, and site 3 
Models Accuracy (in 

site 2) 
Accuracy (in 

site 1) 
Accuracy (in 

site 3) 
LR 69%   
RF 70% 89% 94% 
NB 75% 83% 82% 
SVM (nonlinear) 66%   
SVM (linear) 67%   
NN 74% 83% 65% 
DT 72% 96% 94% 

 
Table D. 44. Best Updated Models Average Accuracy 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 76% 71% 94% 78% 
NB 79% 72% 82% 77% 
DT 82% 71% 94% 80% 

 
Table D. 45. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 80% 
Using average accuracy combination method 81% 

 

Table D. 46. Models Evaluation in site 2, site3, and site 1 
Models Accuracy (in 

site 2) 
Accuracy (in 

site 3) 
Accuracy (in 

site 1) 
LR 69%   
RF 70% 93% 98% 
NB 75% 87% 83% 
SVM (nonlinear) 66%   
SVM (linear) 67%   
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NN 74% 68%  
DT 72% 94% 98% 

 
 

Table D. 47. Best Updated Models Average Accuracy 
Final Model Accuracy 

in S1 
Accuracy 

in S2 
Accuracy 

in S3 
Average 
accuracy 

RF 98% 75% 77% 85% 
NB 83% 73% 73% 77% 
DT 98% 68% 77% 82% 

 
 

Table D. 48. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 83% 
Using average accuracy combination method 83% 

 
 

Table D. 49. Models Evaluation in site 3, site1, and site 2 
Models Accuracy 

(in site 3) 
Accuracy 
(in site 1) 

Accuracy (in 
site 2) 

LR 75% 84% 67% 
RF 82% 90% 98% 
NB 77% 83% 81% 
SVM (nonlinear) 73% 85% 71% 
SVM (linear) 79% 83% 76% 
NN 82% 72% 67% 
DT 80% 97% 77% 

 
 

Table D. 50. Best Updated Models Average Accuracy 
 
 
 

 

 

Table D. 51. Global Combined Model Evaluation 
Global Combined Model Model accuracy  
Our proposed method 90% 
Using average accuracy combination method 86% 

 

Table D. 52. Models Evaluation in site 3, site2, and site 1 
Models Accuracy 

(in site 3) 
Accuracy 
(in site 2) 

Accuracy 
(in site 1) 

LR 75% 72% 79% 
RF 82% 89% 86% 
NB 77% 81% 83% 
SVM (nonlinear) 73% 73% 88% 
SVM (linear) 79% 72% 83% 
NN 82% 68%  
DT 80% 94% 94% 

 
 

Table D. 53. Best Updated Models Average Accuracy 
Final Model Accuracy 

in S1 
Accuracy 

in S2 
Accuracy 

in S3 
Average 
accuracy 

RF 86% 72% 78% 79% 
SVM (nonlinear) 88% 67% 80% 78% 
DT 94% 68% 77% 80% 

Final Model Accuracy 
in S1 

Accuracy 
in S2 

Accuracy 
in S3 

Average 
accuracy 

RF 69% 98% 82% 83% 
NB 84% 81% 82% 82% 
DT 74% 77% 80% 76% 



 361 

 
Table D. 54. Global Combined Model Evaluation 

Global Combined Model Model accuracy  
Our proposed method 90% 
Using average accuracy combination method 81% 

 

b) Regression: 
Table D.55 shows the models evaluation results for the first sequence (site 

1 – site 2 – site 3) for Abalone dataset. It shows the evaluation of the local models 

in site1 and the updated models in site 2 and 3. In site 1, all models got high 

performance, so we sent the models to the next site in the sequence (site 2) and 

then to site 3. DTR, NNR, and RFR models are the best three updated models 

using RMSE metric, so we selected and sent these models to all sites for 

evaluation. 
 

Table D. 55. Models Evaluation in site 1, site 2, and site 3 
 
 
 
 
 
 
 
 
 

 

 

Table D.56 presents the updated models evaluation results in all sites and 

the calculated average accuracy for each model. The server combined the models 

using the linear combination methods to develop the global combined model by 

assigning a model weight using simple weight average, error-based (RMSE), and 

performance-based (Accuracy) approaches. 

 
Table D. 56. Best Updated Models Average RMSE (MAPE) 

 
 

 

Table D.57 shows that all the linear models combination RMSE results 

are similar. 
 

Table D. 57. Global Combined Model Evaluation (RMSE) 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 3) 

LR 2.23 (14.37) 2.08 (11.36) 2.49 (15.07) 
SVR 2.31 (12.99) 2.08 (11.42) 6.57 (45.09) 
DTR 2.20 (13.44) 1.38 (9.39) 1.48 (9.34) 
NNR 2.03 (12.59) 1.81 (11.91) 2.18 (12.83) 
RFR 2.19 (14.02) 0.80 (4.98) 1.08 (5.72) 
Lasso 2.23 (14.53) 2.09 (11.33) 2.41 (14.35) 
Ridge 2.21 (14.31) 2.08 (11.30) 2.42 (14.57) 
ElasticNet 2.25 (14.64) 2.08 (11.26) 2.61 (16.27) 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average    RMSE 
(MAPE) 

DTR 2.62 (16.99) 2.30 (15.72) 1.48 (9.34) 2.24 (14.81) 
NNR 2.33 (15.73) 2.08 (14.90) 2.18 (12.83) 2.19 (14.75) 
RFR 2.78 (17.62) 2.47 (16.32) 1.08 (5.72) 2.28 (14.54) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
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Tables D.58 – D.72 show the proposed method for the rest of the sites 

sequences to build the global combined model. The tables show that the NNR, 

DTR, and FRR models are the best three updated models that got the best average 

RMSE and used to build the global combined model.  

 
Table D. 58. Models Evaluation in site 1, site 3, and site 2 

 
 
 
 
 
 
 
 
 
 
 
 

Table D. 59. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 

Table D. 60. Global Combined Model Evaluation (RMSE) 
 
 
 
 
 
 
 

Table D. 61. Models Evaluation in site 2, site 1, and site 3 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 62. Best Updated Models Average RMSE (MAPE) 
Final 

Model 
RMSE (MAPE) in 

S1 
RMSE (MAPE) in 

S2 
RMSE (MAPE) in 

S3  
Average RMSE 

(MAPE) 
DTR 2.63 (16.99) 2.30 (15.72) 1.48 (9.34) 2.24 (14.81) 
NNR 2.32 (15.73) 2.08 (14.90) 2.18 (12.84) 2.18 (14.74) 
RFR 2.78 (17.62) 2.47 (16.32) 1.08 (5.72) 2.28 (14.54) 

 
Table D. 63. Global Combined Model Evaluation (RMSE) 

 
 
 
 
 

The Global Combined 
Model 2.52 2.52 2.52 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 2) 

LR 2.23 (14.37) 2.49 (15.07) 1.91 (12.29) 
SVR 2.31 (12.99) 2.34 (12.49) 2.14 (12.09) 
DTR 2.20 (13.44) 1.46 (9.33) 1.38 (9.39) 
NNR 2.03 (12.59) 2.56 (15.14) 1.68 (10.99) 
RFR 2.19 (14.02) 1.06 (5.88) 0.82 (5.08) 
Lasso 2.23 (14.53) 3.48 (19.78) 1.94 (12.55) 
Ridge 2.21 (14.31) 3.47 (18.72) 1.91 (12.55) 
ElasticNet 2.25 (14.64) 3.50 (18.19) 1.96 (11.82) 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average    RMSE 
(MAPE) 

DTR 2.25 (13.18) 1.38 (9.39) 2.66 (13.04) 1.94 (11.44) 
NNR 2.11 (12.38) 1.68 (10.99) 2.50 (12.72) 2.00 (11.82) 
RFR 2.34 (14.20) 0.82 (5.08) 2.69 (13.95) 1.73 (10.04) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 2.85 2.79 2.85 

Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) 
(in site 3) 

LR 1.91 (12.25) 2.73 (13.65) 2.49 (15.07) 
SVR 1.96 (11.64) 2.71 (13.33) 6.57 (45.09) 
DTR 1.81 (11.77) 1.51 (9.85) 1.48 (9.34) 
NNR 1.74 (11.41) 1.95 (12.09) 2.18 (12.84) 
RFR 1.88 (12.35) 0.94 (5.62) 1.08 (5.72) 
Lasso 1.87 (12.38) 2.71 (13.34) 2.41 (14.35) 
Ridge 1.90 (12.37) 2.72 (13.64) 2.42 (14.57) 
ElasticNet 1.89 (12.67) 2.68 (13.18) 2.61 (16.28) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 2.53 2.51 2.53 
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Table D. 64. Models Evaluation in site 2, site 3, and site 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 65. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 
 

Table D. 66. Global Combined Model Evaluation (RMSE) 
 

 

 

 
Table D. 67. Models Evaluation in site 3, site 1, and site 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 68. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 
 

Table D. 69. Global Combined Model Evaluation (RMSE) 
 
 
 
 
 
 
 
 

Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) 
(in site 1) 

LR 1.91 (12.25) 3.48 (18.95) 2.30 (14.16) 
SVR 1.96 (11.64) 3.49 (18.33) 3.22 (16.01) 
DTR 1.81 (11.77) 1.48 (9.34) 1.51 (9.85) 
NNR 1.74 (11.41) 2.18 (12.84) 1.95 (12.09) 
RFR 1.88 (12.35) 1.08 (5.88) 0.98 (5.60) 
Lasso 1.87 (12.38) 2.50 (14.39) 2.42 (16.47) 
Ridge 1.90 (12.37) 2.50 (15.01) 2.29 (14.34) 
ElasticNet 1.89 (12.67) 2.48 (14.06) 2.30 (14.27) 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

DTR 1.51 (9.85) 1.95 (13.16) 2.59 (13.64) 1.93 (12.13) 
NNR 1.95 (12.09) 1.83 (12.50) 2.48 (13.26) 2.01 (12.52) 
RFR 0.98 (5.60) 2.06 (13.91) 2.68 (14.97) 1.82 (11.31) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 2.68 2.64 2.64 

Models RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site2) 

LR 2.28 (13.60) 2.73 (13.65) 1.91 (12.29) 
SVR 2.34 (12.77) 2.71 (13.33) 2.14 (12.09) 
DTR 2.49 (14.25) 1.51 (9.85) 1.38 (9.39) 
NNR 2.26 (13.40) 2.15 (13.67) 1.68 (10.99) 
RFR 2.54 (14.97) 0.93 (5.55) 0.82 (5.08) 
Lasso 2.32 (14.09) 2.71 (13.36) 1.94 (12.55) 
Ridge 2.30 (13.79) 2.73 (13.41) 1.91 (12.55) 
ElasticNet 2.29 (13.91) 2.71 (13.36) 1.96 (11.82) 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

DTR 2.25 (13.18) 1.38 (9.39) 2.66 (13.04) 1.94 (11.44) 
NNR 2.11 (12.38) 1.68 (10.99) 2.50 (12.72) 1.99 (11.82) 
RFR 2.34 (14.19) 0.82 (5.08) 2.69 (13.95) 1.73 (10.04) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 2.85 2.80 2.79 
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Table D. 70. Models Evaluation in site 3, site 2, and site 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 71. Best Updated Models Average RMSE (MAPE) 
 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average    RMSE 
(MAPE) 

DTR 1.51 (9.85) 1.95 (13.16) 2.59 (13.64) 1.93 (12.13) 
NNR 1.95 (12.09) 1.83 (12.50) 2.48 (13.26) 2.01 (12.52) 
RFR 0.98 (5.60) 2.06 (13.91) 2.68 (14.97) 1.82 (11.31) 

 
Table D. 72. Global Combined Model Evaluation (RMSE) 

 
 
 
 

 

 

Table D.73 shows the models evaluation results for the first sequence (site 

1 – site 2 – site 3) for Parkinson disease (Total UPDRS) dataset that randomly 

partitioned. In site 1, SVR, DTR, NNR, RFR, and ElasticNet models got high 

performance, so we sent the models to the next site in the sequence (site 2) and 

then to site 3. DTR, RFR, and ElasticNet models are the best updated models 

using RMSE metric, and we sent these models to all sites for evaluation. 

 
Table D. 73. Models Evaluation in site 1, site 2, and site 3 

 
 
 
 
 
 
 
 
 
 
 
 

Table D.74 presents the updated models evaluation results in all sites. 

These results are sent to the server with the models and the data size to calculate 

the average RMSE and MAPE and then combined the models using the linear 

Models RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 1) 

LR 2.28 (13.60) 2.08 (11.36) 2.30 (14.16) 
SVR 2.34 (12.77) 2.08 (11.42) 3.23 (16.01) 
DTR 2.49 (14.25) 1.38 (9.39) 1.51 (9.85) 
NNR 2.26 (13.40) 1.81 (11.91) 1.95 (12.09) 
RFR 2.54 (14.97) 0.79 (4.95) 0.98 (5.60) 
Lasso 2.32 (14.09) 2.09 (11.33) 2.42 (16.47) 
Ridge 2.30 (13.79) 2.08 (11.30) 2.29 (14.34) 
ElasticNet 2.29 (13.91) 2.08 (11.27) 2.30 (14.27) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 2.68 2.64 2.68 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 3) 

LR 11.02 (30.4)   
SVR 10.82 (25.93) 7.18 (20.53) 23.93 (70.16) 
DTR 8.92 (24.06) 3.58 (11.77) 8.20 (17.75) 
NNR 7.66 (20.01) 12.20 (50.65)  
RFR 9.1 (23.7) 2.19 (6.24) 7.91 (15.45) 
Lasso 11.17 (30.27)   
Ridge 11.15 (30.53)   
ElasticNet 10.74 (28.73) 7.29 (20.54) 10.17 (25.46) 
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combination method to develop the global combined model. 

 
Table D. 74. Best Updated Models Average RMSE (MAPE) 

 
 
 

 

 
Table D.75 shows the global combined model RMSE results for all 

combination methods, and the model combination result using the error-based 

approach is the best. 

 
Table D. 75. Global Combined Model Evaluation (RMSE) 

 
 
 

 

 

The following Tables, D.76 – D.90, show the proposed method for the 

other sites sequences to build the global combined model. The tables show that 

LR, DTR, RFR, and ElasticNet are the best updated models that got the best 

average RMSE and used to build the global combined model. 

 
Table D. 76. Models Evaluation in site 1, site 3, and site 2 

 
 
 
 
 

 

 

 
 
 

Table D. 77. Best Updated Models Average RMSE (MAPE) 
Final 

Model 
RMSE (MAPE) in 

S1 
RMSE (MAPE) in 

S2 
RMSE (MAPE) in 

S3  
Average RMSE 

(MAPE) 
DTR 14.94 (29.64) 8.07 (23.28) 10.37 (30.56) 11.33 (28.51) 
RFR 15.39 (30.63) 8.12 (22.89) 10.39 (30.59) 11.49 (28.75) 

 
 

Table D. 78. Global Combined Model Evaluation (RMSE) 
 Linear Model Combination Method 

Simple average 
(RMSE) 

Error-based 
(RMSE) 

Performance-based 
(Accuracy) 

The Global Combined 
Model 9.9 9.9 9.9 

 
 

Table D. 79. Models Evaluation in site 2, site 1, and site 3 

Final Model RMSE (MAPE) 
in S1 

RMSE (MAPE) 
in S2 

RMSE (MAPE) 
in S3  

Average    
RMSE (MAPE) 

DTR 17.26 (37.36) 8.82 (33.09) 8.20 (17.75) 11.34 (27.90) 
RFR 16.50 (34.69) 8.61 (31.09) 7.91 (15.45) 10.91 (25.55) 
ElasticNet 13.12 (37.88) 11.38 (47.94) 10.17 (25.46) 11.43 (34.95) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global 

Combined Model 8.79 7.46 9.48 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 2) 

LR 11.02 (30.4)   
SVR 10.82 (25.93) 15.18 (35.54)  
DTR 8.92 (24.06) 10.17 (29.12) 8.07 (23.28) 
NNR 7.66 (20.01) 31.43 (87.65)  
RFR 9.1 (23.7) 8.27 (15.92) 8.12 (22.89) 
Lasso 11.17 (30.27)   
Ridge 11.15 (30.53)   
ElasticNet 10.74 (28.73) 15.44 (36.01)  
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Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 3) 

LR 11.65 (32.59)   
SVR 6.83 (20.80) 10.79 (29.17) 15.50 (37.44) 
DTR 5.15 (16.88) 6.94 (18.63) 5.10 (14.38) 
NNR 5.06 (16.66) 17.06 (39.66)  
RFR 5.39 (16.74) 3.85 (8.98) 2.69 (6.70) 
Lasso 15.74 (51.63)   
Ridge 28.34 (83.33)   
ElasticNet 16.63 (52.09)   

 
 

Table D. 80. Best Updated Models Average RMSE (MAPE) 
 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

DTR 15.68 (39.02) 9.33 (37.59) 5.10 (14.38) 9.61 (28.08) 
RFR 15.73 (37.21) 9.01 (34.69) 2.69 (6.70) 8.51 (23.48) 

 
 

Table D. 81. Global Combined Model Evaluation (RMSE) 
 
 
 

 
 
 

 
 

Table D. 82. Models Evaluation in site 2, site 3, and site 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 83. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 

Table D. 84. Global Combined Model Evaluation (RMSE) 
 
 
 
 

 

Table D. 85. Models Evaluation in site 3, site 1, and site 2 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 9.6 9.6 9.6 

Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 1) 

LR 11.65 (32.59)   
SVR 6.83 (20.80) 8.31 (25.91) 23.52 (53.80) 
DTR 5.15 (16.88) 5.10 (14.38) 6.94 (18.63) 
NNR 5.06 (16.66) 9.20 (24.16) 26.58 (63.26) 
RFR 5.39 (16.74) 2.59 (6.48) 3.86 (8.94) 
Lasso 15.74 (51.63)   
Ridge 28.34 (83.33)   
ElasticNet 16.63 (52.09)   

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average    RMSE 
(MAPE) 

DTR 6.94 (18.63) 12.50 (51.34) 11.99 (41.57) 10.44 (36.34) 
RFR 3.86 (8.94) 13.05 (51.53) 12.09 (40.99) 9.60 (32.94) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 11.9 11.9 11.9 

Models RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 2) 

LR 8.99 (27.33) 10.84 (29.11) 8.60 (24.87) 
SVR 8.20 (24.86) 10.83 (29.22) 18.39 (57.41) 
DTR 6.37 (18.06) 6.94 (18.63) 3.58 (11.77) 
NNR 5.85 (16.49) 16.38 (43.56)  
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Table D. 86. Best Updated Models Average RMSE (MAPE) 
 
 
 

 

 
Table D. 87. Global Combined Model Evaluation (RMSE) 

 
 

 

 

Table D. 88. Models Evaluation in site 3, site 2, and site 1 
Models RMSE (MAPE) (in 

site 3) 
RMSE (MAPE) (in 

site 2) 
RMSE (MAPE) (in 

site 1) 
LR 8.99 (27.33) 7.16 (20.54) 10.49 (27.06) 
SVR 8.20 (24.86) 7.18 (20.53) 23.47 (53.75) 
DTR 6.37 (18.06) 3.59 (11.77) 6.94 (18.63) 
NNR 5.85 (16.49) 8.51 (32.19)  
RFR 6.33 (16.79) 2.19 (6.25) 3.76 (8.73) 
Lasso 9.48 (28.36) 7.14 (20.56) 11.30 (32.58) 
Ridge 8.85 (27.37) 7.17 (20.36) 10.99 (29.70) 
ElasticNet 9.66 (28.37) 7.29 (20.54) 10.74 (27.65) 

 
 

Table D. 89. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 

Table D. 90. Global Combined Model Evaluation (RMSE) 
 

 

 

Table D.91 shows the models evaluation results for the first sequence (site 

1 – site 2 – site 3) for Parkinson disease (Motor UPDRS) dataset that partitioned 

non-randomly. DTR and RFR models are the best updated models using RMSE 

metric, so we sent these models to all sites for evaluation. 

 

RFR 6.33 (16.79) 3.84 (9.13) 2.16 (6.18) 
Lasso 9.48 (28.36) 10.80 (28.83) 7.15 (23.54) 
Ridge 8.85 (27.37) 10.95 (28.40) 10.36 (29.99) 
ElasticNet 9.66 (28.37) 10.96 (29.30) 6.77 (21.57) 

Final Model RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

DTR 17.02 (39.63) 3.58 (11.77) 8.95 (23.12) 10.32 (25.84) 
RFR 16.69 (37.85) 2.16 (6.18) 9.19 (23.95) 9.98 (24.27) 
ElasticNet 16.97 (37.25) 6.77 (21.57) 10.22 (26.29) 11.62 (28.77) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 10.30 10.38 10.31 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

LR 10.49 (27.06) 12.19 (52.06) 10.54 (37.52) 10.92 (37.56) 
DTR 6.94 (18.63) 12.50 (51.35) 11.99 (41.57) 10.44 (36.35) 
RFR 3.76 (8.73) 13.83 (56.44) 12.86 (44.02) 10.09 (35.35) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 11.63 11.56 11.76 
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Table D. 91. Models Evaluation in site 1, site 2, and site 3 
 
 
 
 

 

Table D.92 presents the updated models evaluation results in all sites. 

These results are sent to the server with the models and the data size to calculate 

the average RMSE and MAPE, then combined the models using linear 

combination methods to develop the global combined model. 

 
Table D. 92. Best Updated Models Average RMSE (MAPE) 

 
 

 

Table D.93 shows that the global combined model results using all linear 

model combination methods got the same RMSE results. 
 

Table D. 93. Global Combined Model Evaluation (RMSE) 
 
 
 
 
 

Tables D.94 – D.108 show the proposed method for the other sites 

sequences to build the global combined model. The tables show that NNR, DTR, 

and RFR models are the best updated models that got the best average RMSE and 

used to build the global combined model. For the sequences site2 - site 1 - site 3 

and site 2 - site 3 - site 1, we lowered the model selection RMSE threshold to 

lower than or equal to 7.00 (MAPE is lower than or equal to 40%). 

 
Table D. 94. Models Evaluation in site 1, site 3, and site 2 

 
 
 
 
 
 
 
 
 
 
 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 3) 

LR 6.04 (22.33) 7.87 (44.44)  
SVR 6.09 (21.20) 7.43 (44.84)  
DTR 5.02 (18.44) 4.76 (25.82) 4.27 (15.78) 
NNR 4.49 (15.69) 6.84 (39.92)  
RFR 5.06 (17.82) 2.61 (12.55) 2.30 (7.66) 
Lasso 6.19 (22.91) 7.86 (44.22)  
Ridge 6.05 (22.68) 7.97 (46.66)  
ElasticNet 6.15 (23.09) 7.88 (45.15)  

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average    RMSE 
(MAPE) 

DTR 4.39 (16.87) 11.42 (74.81) 4.27 (15.78) 6.02 (32.24) 
RFR 2.96 (10.53) 11.48 (74.69) 2.30 (7.66) 5.02 (27.86) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 10.79 10.79 10.79 

Models RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 2) 

LR 6.04 (22.33) 6.92 (26.76) 7.68 (45.36) 
SVR 6.09 (21.20) 6.19 (22.59) 11.81 (45.61) 
DTR 5.02 (18.44) 4.26 (15.78) 4.76 (25.82) 
NNR 4.49 (15.69) 3.82 (13.38) 18.45 (70.56) 
RFR 5.06 (17.82) 2.25 (7.23) 2.65 (12.70) 
Lasso 6.19 (22.91) 6.26 (23.97) 7.69 (48.94) 
Ridge 6.05 (22.68) 7.85 (29.35) 7.78 (46.29) 
ElasticNet 6.15 (23.09) 7.25 (26.53) 7.99 (45.72) 
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Table D. 95. Best Updated Models Average RMSE (MAPE) 

 

 
 
 
 
 
 
 
 

Table D. 96. Global Combined Model Evaluation (RMSE) 
 
 
 

 

 
Table D. 97. Models Evaluation in site 2, site 1, and site 3 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 98. Best Updated Models Average RMSE (MAPE) 
 

Final 
Model 

RMSE (MAPE) in 
S1 

RMSE (MAPE) in 
S2 

RMSE (MAPE) in 
S3  

Average RMSE 
(MAPE) 

DTR 4.39 (16.87) 11.42 (74.76) 4.27 (15.77) 6.02 (32.22) 
RFR 2.94 (10.13) 11.78 (75.72) 2.22 (7.21) 5.08 (27.92) 

 
 
 

Table D. 99. Global Combined Model Evaluation (RMSE) 
 

 
 
 
 
 

Table D. 100. Models Evaluation in site 2, site 3, and site 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final 
Model 

RMSE (MAPE) 
in S1 

RMSE (MAPE) 
in S2 

RMSE (MAPE) 
in S3  

Average RMSE 
(MAPE) 

DTR 8.87 (34.04) 4.76 (25.82) 9.09 (34.02) 6.82 (28.16) 
RFR 8.67 (33.36) 2.65 (12.70) 8.88 (33.11) 6.06 (23.75) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global 

Combined Model 7.23 7.05 7.22 

Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 3) 

LR 9.25 (50.90)   
SVR 7.73 (46.84)   
DTR 6.17 (33.83) 3.88 (14.22) 4.27 (15.77) 
NNR 5.95 (32.14) 5.22 (19.33) 19.98 (71.47) 
RFR 6.40 (33.45) 2.14 (7.08) 2.22 (7.21) 
Lasso 7.88 (47.01)   
Ridge 7.81 (46.12)   
ElasticNet 7.99 (47.05)   

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 12.01 11.98 11.99 

Models RMSE (MAPE) (in 
site 2) 

RMSE (MAPE) 
(in site 3) 

RMSE (MAPE) (in 
site 1) 

LR 9.25 (50.90)   
SVR 7.73 (46.84)   
DTR 6.17 (33.83) 4.26 (15.78) 3.88 (14.22) 
NNR 5.95 (32.14) 5.49 (20.59) 3.92 (13.98) 
RFR 6.40 (33.45) 2.30 (7.34) 2.17 (6.75) 
Lasso 7.88 (47.01)   
Ridge 7.81 (46.12)   
ElasticNet 7.99 (47.05)   
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Table D. 101. Best Updated Models Average RMSE (MAPE) 
 
 
 
 
 
 
 
 
 
 
 
 

Table D. 102. Global Combined Model Evaluation (RMSE) 
 

 

 

 
Table D. 103. Models Evaluation in site 3, site 1, and site 2 

 
 
 

 

 
 
 
 
 
 
 

Table D. 104. Best Updated Models Average RMSE (MAPE) 
Final Model RMSE (MAPE) 

in S1 
RMSE (MAPE) 

in S2 
RMSE (MAPE) 

in S3  
Average RMSE 

(MAPE) 
DTR 8.83 (33.84) 4.76 (25.82) 9.07 (33.83) 6.80 (28.04) 
RFR 8.70 (34.28) 2.57 (12.04) 8.99 (34.17)    6.08 (24.15) 

 
 

Table D. 105. Global Combined Model Evaluation (RMSE) 
 

 

 
 

Table D. 106. Models Evaluation in site 3, site 2, and site 1 
Models RMSE (MAPE) (in 

site 3) 
RMSE (MAPE) 

(in site 2) 
RMSE (MAPE) (in 

site 1) 
LR 6.38 (23.61) 7.86 (45.08)  
SVR 6.23 (22.93) 7.87 (44.68)  
DTR 5.36 (19.95) 4.76 (25.82) 3.88 (14.22) 
NNR 5.04 (17.72) 6.93 (40.97)  
RFR 5.42 (19.26) 2.72 (13.24) 2.11 (6.88) 
Lasso 7.33 (26.97) 7.84 (44.80)  
Ridge 6.52 (24.99) 7.86 (44.37)  
ElasticNet 6.60 (24.76) 7.92 (45.21)  

 
 

Table D. 107. Best Updated Models Average RMSE (MAPE) 
Final Model RMSE (MAPE) 

in S1 
RMSE (MAPE) 

in S2 
RMSE (MAPE) 

in S3  
Average RMSE 

(MAPE) 

Final Model RMSE (MAPE) 
in S1 

RMSE (MAPE) 
in S2 

RMSE (MAPE) 
in S3  

Average RMSE 
(MAPE) 

DTR 3.88 (14.22) 11.06 (71.39) 4.96 (16.73) 5.97 (30.70) 
NNR 3.92 (13.98) 10.92 (70.48) 4.79 (15.49) 5.89 (29.98) 
RFR 2.17 (6.75) 11.24 (71.16) 4.09 (11.52) 5.25 (26.83) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 10.51 10.60 10.61 

Models RMSE (MAPE) (in 
site 3) 

RMSE (MAPE) (in 
site 1) 

RMSE (MAPE) (in 
site 2) 

LR 6.38 (23.61) 6.19 (21.78) 8.68 (49.75) 
SVR 6.23 (22.93) 6.11 (22.16) 11.99 (45.13) 
DTR 5.36 (19.95) 3.88 (14.22) 4.76 (25.82) 
NNR 5.04 (17.72) 5.23 (19.34) 5.99 (35.30) 
RFR 5.42 (19.26) 2.19 (6.94) 2.57 (12.04) 
Lasso 7.33 (26.97) 6.18 (22.24) 8.09 (45.92) 
Ridge 6.52 (24.99) 6.14 (21.82) 8.04 (46.45) 
ElasticNet 6.60 (24.76) 6.13 (22.15) 7.64 (44.51) 

 Linear Model Combination Method 
Simple average 

(RMSE) 
Error-based 

(RMSE) 
Performance-based 

(Accuracy) 
The Global Combined 

Model 7.98 7.93 7.97 
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DTR 3.88 (14.22) 11.06 (71.37) 4.97 (16.74) 5.97 (30.70) 
RFR 2.11 (6.88) 11.12 (70.12) 3.93 (11.29) 5.14 (26.49) 

 

Table D. 108. Global Combined Model Evaluation (RMSE) 
 Linear Model Combination Method 

Simple average 
(RMSE) 

Error-based 
(RMSE) 

Performance-based 
(Accuracy) 

The Global Combined 
Model 10.47 10.47 10.47 

 


