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Abstract 
Web survey respondents quit survey partway through more frequently than in other survey 

modes. This pre-mature quitting event is called survey breakoff. It causes missing data, 

reduces sample size, lowers statistical power, and sometimes biases survey estimates. Using a 

number of experiments, statistical models and simulations, this thesis contributes to the 

understanding, prediction and mitigation of web survey breakoffs. It tackles breakoffs from 

three stages of the survey data collection: before, during and after the survey.  

 

Chapter 4 focuses on the survey design stage by randomly allocating survey respondents to 

one of the filter question formats and one of the six orders of the question topics. It shows 

that presenting all filter questions before showing any follow-ups (i.e. grouped filter question 

format) postpones the breakoff, compared to presenting them by pairs (interleafed format). 

However, as respondents answer more questions, the breakoff rate in the grouped format 

quickly catches up with that in the interleafed format. Additionally, when introducing 

upcoming new topics, more breakoffs are expected. Meanwhile, the insurance-related topic 

has more breakoffs than the topics about clothing purchase and utilities payment. 

 

Chapter 5 predicts breakoff during the survey using seven statistical models (traditional and 

LASSO Cox, traditional and LASSO logistic regression, Support Vector Machine, Random 

forest, and Gradient boosting) and four types of predictors: (1) respondents’ demographics, 

(2) time-varying variables (whose values change by questions) coded concurrently, (3) time-

varying variables coded cumulatively, and (4) the three previous predictors together. The 

gradient boosting produces the best performance for breakoff prediction while the Cox 

survival model does not improve the prediction further although it accounts for the clustered 

structure in the breakoff data (questions clustered within respondents). Also, time-varying 

variables are best used concurrently to improve the prediction of breakoff.  

 

Chapter 6 investigates different strategies for adjusting for breakoff after the survey. Four 

methods are applied to the simulated data where four breakoff rates and three breakoff 

mechanisms are manipulated, and their ability to mitigate the breakoff bias is compared. It is 

found that multiple imputation outperforms the other three methods employed in the study 

and the cause of breakoff is more influential on the effectiveness of compensation methods 

compared to the breakoff rate.  
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Chapter 1 Introduction  
Surveys are widely used in society. Governments use surveys to gather the public’s opinions 

and to inform and evaluate their policies (Department for Digital, Culture, Media & Sport, 

2022). Companies rely on surveys to understand customers’ perceptions about their products 

(Muggah and McSweeney, 2017). Researchers collect data via surveys to generalise findings 

to the target population (Bekova, 2021). Since the turn of the century, web surveys have 

increasingly been conducted to achieve all these goals. This is mainly because this specific 

survey mode has a lower cost and a shorter turnaround time compared to interviewer-

administered modes such as face-to-face surveys (Groves, 2011). 

 

1.1 The representativeness of web surveys 
However, web surveys also come with some disadvantages. Its main challenge is related to 

the representativeness of the collected sample. As some individuals do not have the Internet 

access, conducting surveys online will exclude these individuals from the sample and 

potentially result in the coverage bias (Couper, 2000). Another related issue is self-selection. 

There are two types of web surveys (probability and non-probability), and many current web 

surveys are non-probability and opt-in based. Participating in the opt-in survey will require 

respondents to see the online survey invitation and self-select to cooperate with the invitation 

(Callegaro, Lozar Manfreda and Vehovar, 2015). In this case, some individuals who are not 

online during the survey period or who are online but do not see the survey invitation will 

have a zero probability of being recruited into the survey. Both under-coverage and self-

selection violate one of the prerequisites for producing unbiased survey estimates. That is, 

every individual in the population must have a known and non-zero probability of selection 

(Bethlehem, 2010). As a result, the findings from the non-probability web surveys become 

less applicable to the general population. To make inference to the general population, the 

probability-based web survey is usually recommended (Cornesse et al., 2020), and the push-

to-web approach is commonly adopted when recruiting the sample in this type of survey. In 

such an approach, sample members are randomly drawn from the sampling frame with 

known and non-zero probabilities and then invited to respond to the web survey using means 

other than the Internet (e.g., letters, telephone calls, personal visits) (Scherpenzeel, 2011; 

Bosnjak et al., 2018).  
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Even though no bias exists in the sample recruitment stage, the representativeness issue can 

still be present in the probability-based web surveys, especially when the survey nonresponse 

occurs. Compared to other survey modes, web surveys tend to have a lower response rate 

(Daikeler, Bosnjak and Manfreda, 2020). A low response rate reduces the available sample 

size and risks introducing biases to survey estimates when respondents differ from 

nonrespondents (Bodor, 2012).  

 

The representativeness issue related to survey nonresponse has been studied extensively, and 

many efforts have been made to increase the response rate, such as increasing the response 

rate by offering incentives (Noel and Huang, 2019) or allowing the sample members to 

choose their preferred survey modes (Olson, Smyth and Wood, 2012). Other studies have 

also been conducted to use statistical methods to compensate for the nonresponse bias 

(Biemer and Christ, 2008; Bonander et al., 2019). All these measures aim to ensure the 

representativeness of the final collected survey data.  

 

1.2 The problem of survey breakoffs 
No matter how effective those measures are, researchers still cannot rest assured that their 

collected data are well representative of the target population. In fact, survey response can be 

viewed as a sequence of decisions (Mittereder, 2022): the invited sample member first 

decides to visit the website of the questionnaire, glances through the study introduction page 

and then determines whether to answer the survey questions. At each survey question, 

respondents repeatedly go through the process, deciding whether they should continue or 

quit. Given that there are usually multiple questions in the survey, the response burden can 

overwhelm the respondents and ultimately discourage them from completing the entire 

survey questionnaire. When people access the survey but do not complete it, survey breakoff 

happens (Lavrakas, 2008). This event is sometimes referred to as survey dropout, 

incompletion or partial response (Mittereder, 2022).  

 

Survey breakoff can bias the final collected data. This is true no matter the sampling is 

probablity or non-probability based. For the probability surveys, if the respondents who break 

off from the survey differ from those who complete the survey, the analysis result has a risk 

of being biased (Steinbrecher, Roßmann and Blumenstiel, 2015). When the survey sampling 

is non-probability such as the quota sampling commonly used in the randomised clinical trial, 
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participants with certain characteristics might break off more often in the trial (Leon et al., 

2006). This can damage the causal inference from the trial. Therefore, tackling breakoffs is 

equally important for probability as well as non-probability surveys, and this thesis is devoted 

to tackling the issue of survey breakoff in both types of surveys. 

 

Currently, the survey breakoff rate is not commonly reported by survey agencies, but some 

researchers have collated the breakoff rates of different surveys. For example, after analysing 

the breakoff rate across 186 non-probability web surveys, Revilla (2017) noted that the 

breakoff rate is wide-ranging (1.1% to 62.1%) with an avarage of 12%-13%). Considering 

that many existing well-known surveys have a large number of sample members, a 10% 

dropout can easily amount to hundreds of cases lost. Not being able to collect all the desired 

information from hundreds of breakoff cases means that part of the money and efforts spent 

on recruiting is wasted. Furthermore, survey breakoffs will lead to missing data in the 

collected data, which means that users have a smaller number of cases and lower statistical 

power in their analysis.  

 

1.3 Existing research gaps 
Given the negative influence of survey breakoff, the topic has received considerable 

attention. All existing literature focused on three aspects of breakoff, each of which 

corresponds to one stage of survey data collection. The first stage is before the survey starts. 

The research focusing on this stage investigates what survey design factors are related to the 

survey breakoff event. Some of the examples are the use of the progress bar (Matzat, Snijders 

and van der Horst, 2009) and the length of the question (Tijdens, 2014). The second type of 

literature concentrates on tackling breakoff during the survey. To be specific, researchers 

create statistical models to predict respondents’ breakoff likelihood while they are responding 

to the survey. For respondents who are predicted to break off soon, the model will trigger 

interventions to keep them engaged (Mittereder and West, 2021). The third way of tackling 

the negative effect of breakoff happens after the survey data collection. At this stage, 

statistical methods are used to compensate for the missing data caused by breakoff. An 

example of this is breakoff weighting, which increases/decreases the impact of certain 

observations on the survey estimates if they are under/over-represented in the final survey 

data (Steinbrecher, Roßmann and Blumenstiel, 2015). 
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Thus, the existing literature tackles the breakoff issue from three different perspectives: (1) 

understanding the impacting factors of breakoff and optimising the design before the survey 

starts, (2) predicting the imminent breakoff event and intervening during the survey, and (3) 

mitigating the impact of breakoff after the survey data collection. This thesis follows the 

past literature and further develops the research in these three aspects.  

 

Regarding the first stage (i.e. the design of the survey), the design of filter questions and the 

topic of the questions receive little attention so far. Many surveys have filter questions, which 

can trigger follow-ups when respondents choose “yes” as the answer. When seeing this type 

of questions, respondents can easily learn about the extra response burden and decide to quit 

the survey. Different ways of presenting the filter question and its follow-ups are available, 

but few researchers investigated how those designs can influence breakoff. Meanwhile, 

question topics are also influential on respondents’ breakoff tendency. This is particularly 

true when the topics are uninteresting to the respondents (Shropshire, Hawdon and Witte, 

2009). Currently, the knowledge about the impact of question topics on breakoffs is limited 

because prior published research has not randomised the order of the topics. Previous 

research has shown that the amount of time spent in the survey and the order of the topic can 

influence respondents’ tendency to respond to the next question (Teclaw, Price and Osatuke, 

2012; McGonagle, 2013). Therefore, the lack of random allocation of topic orders can lead to 

biased results in past literature. This is because it is unclear whether the question order, the 

topic itself, or the response burden accumulated from the beginning of the questionnaire is 

affecting the breakoff event.  

 

In addition to studying the impact of the filter questions and question topics using a 

randomised design, it is also important to consider the breakoff timing (how many questions 

respondents have seen/answered prior to breakoff). The breakoff timing can give valuable 

information regarding the design of the study as even with the same amount of breakoff 

survey designers will prefer respondents to answer more questions. 

 

During survey data collection (the second stage discussed above), the effectiveness of real-

time interventions depends partially on good prediction models. Ideally, the model should 

generate an accurate prediction of breakoff propensity so that the intervention can be 

triggered at the most relevant time. However, only the traditional Cox survival model is used 

as the predictive model in the existing literature. Meanwhile, machine learning models are 
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increasingly popular in the research community but have not been applied in the context of 

breakoff prediction. It is, therefore, unclear what statistical models are more predictive of the 

survey breakoff. Also, given that survey response consists of a sequence of respondents’ 

actions at each question, researchers have repeated measurements of these information (i.e. 

time-varying predictors). It is unknown from the current literature how to best code these 

kinds of variables to maximise prediction performance. 

 

The final stage (i.e. after survey data collection) currently receives the least attention among 

all three stages. Considering that breakoff is a special type of survey nonresponse, the 

techniques to correct for the missing data caused by the survey nonresponse (weighting, 

imputation, etc.) can be applied to the breakoff problem. Nonetheless, it is unknown from 

past studies whether those techniques will perform as expected in the context of breakoff, 

especially considering that breakoff happens at the question level while some of those 

techniques work at the unit/respondent level (e.g., weighting). Another related question is 

how the breakoff should be treated when adjusting for it. Researchers could choose to 

combine it with unit nonresponse or treat it as a separate nonresponse process. By definition, 

breakoff can be considered as a survey (non)response, so there may be no need for a separate 

compensation for it. On the other hand, even though breakoff and unit nonresponse have 

some impacting factors in common, previous research noted that breakoff has its own 

impacting factors as well (Peytchev, 2009). Therefore, it might be best to treat breakoff as a 

unique survey outcome and correct for it separately. A limited amount of literature has 

empirically investigated the implication of accounting for breakoff separately. 

 

1.4 Rationale for the alternative format  
The present thesis will contribute to all three research stages highlighted above using the 

alternative/journal format. This format is chosen mainly because of the workflow in this PhD. 

To be specific, the research of every year is focused only on one of the three stages of survey 

breakoffs (i.e. before, during, and after survey data collection). At the end of each year, the 

research result is submitted to the peer-reviewed journal. The alternative format fits well with 

this workflow as it allows me to incorporate chapters that are already or will be submitted to 

peer-reviewed journals. 
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Another reason for choosing the alternative format is that the present work constitutes a body 

of publication tending towards a coherent and continuous thesis. To be specific, although 

Chapter 4, 5 and 6 in this thesis are three standalone research papers that approach the survey 

breakoffs from different aspects, they focus on the same overarching research topic: tackling 

web survey breakoffs. 

 

1.5 The structure of this thesis 
The three substantive chapters described above and other chapters are organised in this thesis 

as follows. A literature review is first presented in Chapter 2 to give an overview of the 

current state of art in the study of survey breakoff. It will also provide a more detailed 

account of the existing research gaps and justify the necessity of filling them. Following this, 

the data and analysis methods used in this thesis will be discussed in Chapter 3. Then, three 

substantive chapters (Chapter 4 to 6) are presented, which focus on understanding, predicting 

and mitigating breakoffs, respectively.  

 

Chapter 4 concentrates on the survey design stage and investigates how the filter question 

formats and question topics affect the breakoff event and its timing. This chapter uses 

experimental survey data where respondents were randomly allocated to one of the two filter 

question formats and one of the six question topic orders. Variables about the two experiment 

designs and their interaction with time (represented by the number of questions respondents 

saw) will be included in a series of Cox survival models along with other control variables. 

This model specification and experimental design will contribute to the understanding of how 

these two design decisions impact breakoffs. 

 

Chapter 5 tackles the breakoff issue during the survey response by comparing different 

statistical models and predictors. In total, seven statistical models (including machine 

learning techniques) are fitted along with four different types of predictors. These seven 

models are: traditional and LASSO Cox survival model, traditional and LASSO logistic 

regression, Random forest, Gradient boosting, and Support Vector Machine. The four types 

of predictors are (1) respondents’ demographic information only, (2) time-varying predictors 

only (coded concurrently), (3) time-varying predictors only (coded cumulatively), and (4) the 

three previous predictors together. In the end, 28 models (7 model types × 4 predictor types) 

are compared based on their performance in breakoff prediction. Their prediction 
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performance is measured by six metrics: C-index, Accuracy, Sensitivity, Specificity, 

Precision and AUC. By comparing these metrics across both models and predictor types, 

Chapter 5 will contribute to the real-time breakoff interventions by proposing the best 

combination of predictive model and the coding of predictors. 

 

Chapter 6 shifts the focus to the post-survey adjustment and investigates the methods for 

mitigating the impact of breakoff. It is a simulation study where the response data from a 

cross-national probability web survey is used as the base to create the simulated population. 

Based on this population, survey nonresponse and breakoff are separately simulated. When 

simulating breakoff, its rate and cause are manipulated. Its rate changes from 5% to 20% at 

an increment of 5%. Three causes of the breakoff are tested as well: (1) being completely 

random (i.e. Missing Completely At Random), (2) being impacted by only observed variables 

(Missing At Random), and (3) being influenced by both observed as well as unobserved 

variables (Missing Not At Random). In total, 12 breakoff scenarios are created (4 breakoff 

rates × 3 missing data mechanisms). To deal with the breakoff and its resultant missing data, 

four different methods are tested: (1) completely ignoring breakoff, (2) classifying breakoff 

as survey nonresponse and using only the nonresponse weighting in the data analysis, (3) 

treating breakoff as a separate outcome of survey nonresponse and weighting the data by a 

combined nonresponse and breakoff propensity, and (4) multiple imputation. While the first 

two methods do not distinguish breakoff from survey nonresponse, the latter two do. These 

four methods are applied to the 12 breakoff scenarios to estimate two statistics of interest: 

univariate means, and model coefficients in multivariate analysis. The estimates from these 

four methods are compared with the benchmark values obtained from the simulated 

population. By empirically investigating the effectiveness of different breakoff compensation 

methods under different breakoff rates and patterns, Chapter 6 will contribute to the 

discussion regarding the most appropriate method to correct for breakoff.  

 

This thesis will end with Chapter 7 where the findings across the three substantive chapters 

will be tied together to give recommendations for designing the survey to be considerate of 

breakoffs from its beginning to the end. The contributions of this thesis will also be 

highlighted along with the limitations and future research opportunities. 
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The three substantive chapters described above have been co-authored, and two of them have 

been published in peer-review journals. Here I present the publications and contributions of 

different authors. 

 

Chapter 4 was co-authored with Alexandru Cernat, Natalie Shlomo and Stephanie Eckman. I 

have designed all the research stages, carried out the data cleaning, data manipulation and 

data analysis as well as written the draft for all the sections of the paper. Stephanie provided 

access to the data. Alexandru gave guidance on how to clean the data. All three co-authors 

gave feedback on the draft paper, and we worked together when revising the paper. This 

chapter has been published as: 

 

• Chen, Z. et al. (2022) ‘Impact of question topics and filter question formats on web 

survey breakoffs’, International Journal of Market Research. doi: 

10.1177/14707853211068008. 

 

Chapter 5 was co-authored with Alexandru Cernat and Natalie Shlomo. I was responsible for 

designing all the research stages, cleaning, manipulating and analysing the data. In addition, I 

wrote all the sections of this paper. Alexandru, Natalie and I worked together in revising the 

paper. This chapter has been published as: 

 

• Chen, Z., Cernat, A. and Shlomo, N. (2022) ‘Predicting web survey breakoffs using 

machine learning models’, Social Science Computer Review. doi: 

10.1177/08944393221112000. 

 

Chapter 6 was a joint work between Alexandru Cernat, Natalie Shlomo and me. I designed all 

the research stages, simulated and analysed the data as well as wrote the draft for all the 

sections. Alexandru and Natalie guided me through the data simulation process, and we 

worked together in revising this chapter. This chapter will be submitted to the peer-reviewed 

Journal of Survey Statistics and Methodology. 
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Chapter 2 Literature Review 

2.1 Prevalence and consequence of survey breakoffs 
Survey breakoff is prevalent, and its extent varies dramatically according to Revilla (2017) 

who reviewed 185 non-probability surveys. While some surveys barely had any breakoff 

events (1.1% breakoff rate) others suffered greatly from it (with a breakoff rate of 62.1%). 

After aggregating the data, Revilla (2017) reported an average breakoff rate of 11.8%. A 

different meta-analysis, which was conducted by Liu and Wronski (2018), documented a 

similar average breakoff rate. Across 25,000 non-probability web surveys in their study, they 

found an average breakoff rate of 13% with a standard deviation of 10%. Hoerger (2010) not 

only reported the wide-ranging breakoff rate across six student surveys in his study (6% to 

30% breakoff rate) but also quantified the relationship between breakoff rate and survey 

length (measured by the number of survey questions) using a linear regression. The model 

result showed that approximately 10% of participants would break off immediately after the 

survey began and additional 2% of participations were expected to break off after every 100 

questions.  

 

The prevalence of breakoff means that missing data are common in web surveys. As a result, 

users of survey data will have fewer observations in their analysis, which leads to smaller 

statistical power and larger variations in survey estimates. This can also be problematic for 

the comparison of nested models. As the model might include independent variables that 

suffer from different missing data patterns due to breakoff, models can be based on different 

samples. This makes it difficult to compare models unless some solutions are adopted 

(complete case analysis, imputation, etc). 

 

The worst consequence of breakoff appears when survey estimates are biased because 

respondents who do not complete the survey are different from those that do. Indeed, the 

presence of breakoff bias is documented in the McCoy et al. (2009) study. They conducted a 

web-based probability survey among students of 10 U.S. colleges and asked about their 

drinking and smoking behaviours. The comparison between the complete respondents and the 

breakoff cases showed that students who engaged in high-risk drinking behaviours were more 

likely to quit the survey. As a consequence, the survey estimates about drinking (e.g., number 

of days being drunk in a typical week) were biased downwardly.  
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2.2 Factors impacting survey breakoffs 
Considering the negative influence of breakoff, many studies have been conducted to 

investigate factors that impact breakoffs. All those factors can be classified into four 

categories (Peytchev, 2009; Mittereder and West, 2021). The first category refers to the 

survey design, and it mainly concerns design decisions that impact the entire survey. Some 

examples are the use of incentives (Silber, Lischewski and Leibold, 2013), the number of 

questions in the survey (Hoerger, 2010), and modularisation of the survey (i.e. surveys are 

split into parts and participants respond to the parts consecutively according to a fixed 

interval over a period of time) (Toepoel and Lugtig, 2018).  

 

The second category of factors related to breakoff refers to the characteristics of survey pages 

and questions. These features can be seen by survey participants only after they start the 

questionnaire. Some examples of question characteristics that have been found to be 

associated with breakoffs are open-ended question and the number of characters in the 

questions (Peytchev, 2009; Tijdens, 2014). The way these factors affect breakoff can be 

explained by the survey response theory. According to Tourangeau (2018), when responding 

to a survey question, respondents have to go through a series of steps, ranging from 

understanding the questions, retrieving the required information from the memory to 

mapping the information to the provided answers. Questions that are cognitively demanding 

will likely cause burden in any of the steps, which can subsequently discourage respondents 

from continuing the survey. An empirical study that highlights the effect of survey burden on 

breakoff can be found in Galesic (2006). In her study, breakoff cases self-reported a higher 

level of burden before they quit the survey. 

 

Respondents’ socio-demographic information is the third category of factors influencing 

breakoffs. They are usually used as a proxy for respondents’ ability to deal with the response 

burden or their general tendency to cooperate with the survey request. The findings in this 

research area are mixed. However, the overall conclusion is that respondents who have the 

following characteristics are more likely to break off: older, less educated, male, non-white, 

student and affluent (Galesic, 2006; Peytchev, 2009; Klein et al., 2011; Mittereder and West, 

2021). 
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Paradata, the final category of factors affecting breakoff, refer to the by-product information 

collected during the response process (McClain et al., 2018). Some examples are question 

response time (Zhang and Conrad, 2014), mouse movement (Fernández-Fontelo et al., 2021) 

and answer changes (Stern, 2008). Paradata are believed to reflect the respondents’ changing 

motivation and response burden (Mittereder and West, 2021). For instance, Horwitz, Kreuter 

and Conrad (2017) set up a lab experiment where questions with easy-to-understand and 

complex wordings were randomly presented to participants. After answering each question, 

participants were asked about their perceived difficulty of the question on a five-point scale. 

Whilst participants were responding to the survey questions, their mouse movements were 

also recorded. In the end, Horwitz and her colleagues found that there were more mouse 

movements in the question whose wordings were perceived to be complex. 

 

2.3 Three ways of tackling survey breakoffs 
Based on the factors identified in the four categories above, survey researchers have proposed 

different methods to tackle survey breakoffs. All those studies can be classified into three 

strands based on the timing when the breakoff issue is tackled: before, during and after the 

survey. 

 

Studies in the first strand focus on the survey design stage (i.e. before the survey starts) by 

proposing user-friendly designs. The literature of this research strand usually uses 

experiments where a specific design element is manipulated and the resultant breakoff rate is 

compared between the control and experimental groups. Once the manipulated element is 

found to be associated with differential breakoff rates between the groups, relevant design 

recommendations are made. For instance, in an experiment conducted by Conrad et 

al.(2010), there were four designs of progress bars (which visualised the progress 

respondents had made in the questionnaire) and respondents were assigned to one of them at 

random. The four conditions were (1) no progress bar (i.e. control group), (2) linear progress 

bar (the bar moved linearly), (3) fast-to-slow progress bar and (4) slow-to-fast progress bar. 

The result showed that participants seeing the slow-to-fast progress bar broke off more often 

compared to other three groups. Based on these findings, Conrad and his colleagues 

discouraged the use of slow-to-fast progress bar. Sischka et al. (2022) also carried out an 

experiment but about the force-answering (i.e. respondents could not proceed to the next 

question unless answering the current one). Participants of their experiment were assigned to 
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one of the groups at random: forced-answering vs. non-forced-answering. The fact that the 

former group suffered from more breakoffs led to their recommendation against the forced-

answering design. 

 

In addition to implementing experiments to justify survey designs, researchers also developed 

statistical models to examine whether the relationship between the design of interest and 

breakoffs is statistically significant and then make suggestions accordingly. For instance, by 

including the number of characters in the question as an explanatory variable in the model for 

survey breakoff, Tijdens (2014) found a statistically significant relationship between this 

variable and breakoff. As a result, she advocated for shorter questions in the survey. In 

another example, Peytchev (2009) included many variables about different characteristics of 

questions in a model to explain breakoffs and found that cognitively demanding questions 

(e.g., open-ended questions) and technically complicated questions (e.g., questions with a 

slider bar) were associated with more breakoffs. Based on the findings, he called for a careful 

consideration on the use of these types of questions. 

 

As can be seen, studies in the first strand of research on breakoff followed the path of 

identifying the design associated with breakoff (via experiment or modelling) and then 

proposing some optimised survey designs to facilitate the survey completion. However, no 

matter how optimised the designs are, they cannot eliminate all the response burden. As 

discussed previously, answering a survey question can involve considerable mental 

processing, so the more questions answered will inevitably lead to a growth in survey burden, 

which can subsequently increase respondents’ breakoff likelihood. As reviewed earlier, the 

response burden can be reflected in paradata. In this case, a question naturally arises: can we 

use paradata captured during the survey to predict respondents’ breakoff likelihood and then 

intervene in real time (instead of relying on the reactive approach to optimising survey 

designs)?  

 

The second way to tackle the breakoff is through proactive interventions during the survey 

response process. More specifically, survey designers can use paradata (along with the three 

categories of factors mentioned above) in a statistical model to continuously predict the 

breakoff propensity for each respondent at each question. When the predicted breakoff 

propensity exceeds a pre-defined threshold, the model can trigger interventions to encourage 

respondents to remain motivated.  
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Mittereder and West (2021) present an implementation of such a real-time intervention 

system. They included many variables (including paradata such as item nonresponse rate, and 

change in the question response time) in a logistic regression model to predict respondents’ 

breakoff propensity. After implementing this model in their survey, they randomly assigned 

survey participants to one of the three groups in the experiment about the intervention. The 

intervention in their experiment was a pop-up message that praised the efforts respondents 

had put into the response and encouraged them to continue. While the control group never 

experienced a pop-up message (i.e. no intervention), respondents in another group (called 

generic group in their study) saw the message at the first question (i.e. intervening regardless 

of the predicted breakoff risk). In the third group (called tailored group in their study), the 

message was triggered when the model predicted that the respondents would break off at the 

next question (i.e. intervening at the highest breakoff risk). In the end, Mittereder and West 

(2021) noted that intervening in real time, compared to no intervention at all, could reduce 

the breakoff rate among respondents with certain characteristics such as students and females. 

 

The review so far proves that it is helpful to tackle the breakoff issue before the survey starts 

or while the survey response is still ongoing. However, no matter how effective both 

approaches are, they can hardly guarantee that all respondents will complete the 

questionnaire. Therefore, at the final stage (i.e. after the survey), methods to compensate for 

the breakoff are investigated. In the literature focusing on this stage, breakoff is considered as 

a special case of survey nonresponse. The techniques for addressing the survey nonresponse 

problem can therefore be applied to the context of breakoff.  

 

One of those techniques is weighting. Weights have been commonly used to correct for 

survey nonresponse bias, and they are essentially a set of numeric values that 

increase/decrease the impact of under/over-represented respondents on the analysis (Toepoel, 

2015). To derive such weighting, a statistical model (e.g., logistic regression, classification 

tree) is used where the survey response status is explained by some variables (e.g., age, 

gender) that are available for both respondents and nonrespondents. Following this, for every 

respondent in the data, the model generates the response propensity whose reciprocal 

becomes the weights (Buskirk and Kolenikov, 2015). 

 

Although applying weighting to account for breakoff seems to be straightforward, there is 

surprisingly a lack of papers about such applications. Steinbrecher et al. (2015) study is one 
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of the few relevant publications. In their paper, they followed up with those who broke off 

from the German Longitudinal Election Study and compared the proportion of undecided 

voters in three analysis scenarios. In the first scenario, only the respondents to the initial 

surveys were analysed (i.e. they pretended that no follow-up was conducted). In the second 

scenario, both initially complete respondents as well as follow-up complete respondents were 

used in the analysis. To account for breakoffs in the follow-up study, frequency weighting 

was applied to those follow-up complete respondents. In the third scenario, only initially 

complete respondents were included in the analysis but weighted by their breakoff 

propensities. A logistic regression was employed to estimate the breakoff propensity using 

survey participants’ demographic information (e.g., gender, age), interest in politics and 

responding device. In the end, they concluded that the estimated proportion of people who 

were still undecided about their preferred party in the 2009 German federal election would 

increase if the data of the breakoff cases were to be accounted for in the analysis.  

 

2.4 Research gaps 
As discussed so far, researchers approached the breakoff issue by focusing on one of the 

three stages of the survey data collection: before, during and after the survey. Following this 

categorisation, this thesis will present three substantive chapters, each of which addresses the 

breakoff issue from those three stages respectively. 

 

2.4.1 Before survey data collection 

Chapter 4 focuses on understanding how design decisions made before the data collection can 

impact breakoffs. More specifically, this chapter investigates how question topics and filter 

question formats impact breakoff. As will be discussed below, existing studies either 

confounded the impacts of these two designs on breakoff with the effect of other factors or 

did not take into account the breakoff timing. 

 

How question topics impact nonresponse has received considerable attention in the past 

(Groves, Presser and Dipko, 2004; Roster, Albaum and Smith, 2017). According to 

Shropshire, Hawdon and Witte (2009), topics that were uninteresting to the respondents 

suffered from more breakoffs. However, they did not use an experimental design, so the order 

of the topic was always fixed. Past research already noted that the order of the topic can 

influence respondents’ tendency to respond to the next question (Teclaw, Price and Osatuke, 
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2012). Meanwhile, a sizeable number of breakoff events have been reported to happen early 

in the survey (Peytchev, 2009). Without randomising the order of question topics, past 

research confounded the influence of three elements: the question order, the question topic 

and the response burden that accumulates from the beginning of the questionnaire. As a 

consequence, existing literature may misrepresent the real impact of question topics on 

breakoff.  

 

In addition to the question topic, there is also a gap in the existing literature about how the 

design of filter questions affects the breakoff timing. Filter questions trigger follow-ups if 

answered positively. For instance, if the respondent answers “yes” to the question “Did you 

buy a T-shirt over the past 12 months?”, they will see some follow-ups such as “How much 

was this T-shirt?” and “Where did you buy it?”. There are two main ways to present the filter 

questions and follow-ups. In the grouped format, all filter questions are asked first before any 

follow-up is displayed. In the interleafed format, follow-up questions appear immediately 

after its corresponding filter question. According to the past literature, both formats can 

trigger extra questions and cause response burden, so respondents answering the two formats 

are equally likely to quit the survey (Kreuter et al., 2011; Eckman and Kreuter, 2018).  

 

However, what is currently unclear in the literature is the difference in the breakoff timing. 

Researching the breakoff timing is as important as studying the binary breakoff event. This is 

because survey designers will ideally prefer respondents to answer more questions even if the 

final breakoff rate would be the same. In the grouped format, respondents can only learn 

about the extra burden after going through all filter questions whereas those answering the 

interleafed format learn about the extra burden after one or two pairs of the filter questions 

and follow-ups. Nonetheless, the impact of grouped and interleafed formats on breakoff 

timing has not been empirically investigated. 

 

Chapter 4 will fill the two research gaps using an experiment. In this study, respondents were 

randomly assigned to one of the two filter question formats and one of the six question topic 

orders. Both assignments were crossed, so it is possible to separately examine how each of 

them affects the breakoff and its timing. Chapter 4 will answer four research questions. The 

first two questions concern the breakoff timing and its impacting factors, and the last two 

focus on the filter questions and question topics. 
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1) When is the breakoff more likely to happen in the web survey?  

2) What are the timing-varying predictors of the web survey breakoff? 

3) Does the topic of the questions impact the breakoff and its timing?  

4) Does the filter question format affect the timing of the survey breakoff? 

 

2.4.2 During survey data collection 

While most of the literature about breakoffs concentrate on factors impacting breakoffs, there 

is only one publication (Mittereder and West, 2021) researching the effects of intervening 

during the survey to minimise breakoffs. To develop an efficient real-time intervention 

system to prevent breakoff, three aspects must be well designed. These are: (1) the models for 

predicting the breakoff should be capable of generating accurate prediction at the question 

level, (2) the predictors included in the model should be coded in a way that maximises its 

predictive performance, and (3) the interventions should be effective in discouraging the 

breakoff. Given the scarcity of existing research in this area, all these three aspects need 

further investigation. Chapter 5 of this thesis focuses on the first two aspects: the choice of 

the predictive models and the coding of the predictors. 

 

Currently, the most widely used model when studying breakoffs is the Cox survival model 

(Peytchev, 2009; Hochheimer et al., 2016; Mittereder and West, 2021). This model estimates 

the probability of a respondent quitting the survey at a specific question given that the event 

has not happened yet (Singer and Willett, 2003). However, its proportionate hazard 

assumption, which states that the influence of a variable on the breakoff likelihood remains 

the same across different questions, is likely to be problematic, especially when this model is 

applied to the task of prediction. This is because the proportionate hazard assumption is often 

violated (see Mittereder and West, 2021 for an example), and using a model with a wrong 

assumption is unlikely to fit the data well and produce accurate prediction. Furthermore, the 

Cox survival model will use all the input variables as predictors even though some of them 

contribute little to the prediction. This might be problematic when multiple predictors, 

interaction terms, and non-linear effects are included in the model. As a result, the model is 

likely to suffer from the overfitting issue (i.e. the model fits the observed dataset too well to 

give a good prediction performance in future unseen datasets) (James et al., 2013). 
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Machine learning models offer an alternative to the Cox survival model. Those models are 

non-parametric, meaning that there are few model assumptions (Buskirk et al., 2018). Also, 

some machine learning models can automatically exclude variables that do not contribute to 

the prediction of the outcome (Signorino and Kirchner, 2018) and can implicitly take into 

account the interaction effect among predictors (Kern, Klausch and Kreuter, 2019). All of 

these characteristics mean that learning might be superior to the Cox survival model in the 

task of prediction.  

 

However, it is unknown from the existing literature whether the machine learning models can 

lead to a superior prediction performance when being applied to the dataset with a clustered 

structure. To be more specific, because the breakoff is a question-level event, some of its 

predictors are time-varying, meaning that their values can change from question to question 

(e.g., the number of words in the question and the question response time). As a result, the 

breakoff data will have a clustered structure (questions are clustered within respondents). 

Many machine learning models assume a wide data setting (i.e. each row in the data 

represents an independent observation). Indeed, many studies that reported the superior 

performance of the machine learning models over the traditional logistic regression were 

conducted in the wide data setting (e.g., Buskirk et al., 2018; Signorino and Kirchner, 2018; 

Liu, 2020). Currently, there is a limited amount of research that applies the machine learning 

models to predict question-level breakoffs in clustered data and compares their prediction 

performance with that of the Cox survival model. 

 

Not only is there a need for better statistical models to predict breakoffs, the coding of the 

predictors also needs further research. This is especially true for those time-varying variables. 

While some researchers accumulated the value of the time-varying predictors from the 

beginning of the survey and used this coding in the model (Peytchev, 2009), others treated 

them concurrently (Vehovar and Cehovin, 2014). Each of these coding schemes is based on 

researchers’ belief of how time-varying variables affect the breakoff. For instance, 

researchers adopting the accumulative coding assume that breakoffs happen due to the 

gradual accumulation of the response burden since the survey begins. On the other hand, the 

assumption behind the concurrent coding is that the breakoff event is more related to the 

response burden participants experience in the moment. Different coding schemes and the 

underlying assumptions are likely to affect the breakoff prediction performance, but few 

papers have compared the impact of different coding of time-varying variables.  
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Chapter 5 of this thesis will fill the above two research gaps by building seven predictive 

models along with four different ways of coding the predictors. By evaluating and comparing 

their prediction performance using multiple metrics, Chapter 5 will answer the following four 

questions: 

 

1) Do survival machine learning models predict web survey breakoffs more accurately 

than the traditional Cox survival model? 

2) What is the best classification model for predicting web breakoffs in clustered data? 

3) Does the best performing survival model predict web survey breakoffs more 

accurately than the best performing classification model? 

4) What is the best way to treat time-varying predictors of breakoffs in order to 

maximise the prediction performance? 

 

2.4.3 After survey data collection 

Apart from tackling the breakoff issue by design optimisation and real-time intervention, 

post-survey adjustment is another alternative. Given that survey breakoff can be viewed as a 

special case of survey nonresponse, methods to correct for the survey nonresponse bias can 

be applied in the context of breakoff bias adjustment. However, such an application received 

little research attention in the current literature, and there are two main gaps in this area. 

 

To begin with, it is worth discussing whether breakoff should be corrected for in a step 

separate from the unit nonresponse adjustment. In practice, some survey organisations do not 

treat both survey outcomes differently (Bailey et al., 2017; CRONOS team, 2018). However, 

after examining the relationship between breakoff and unit nonresponse, Peytchev (2011) 

concluded that both outcomes shared some impacting factors but breakoff had its own 

impacting factors as well. Such a finding implies that a separate nonresponse model should 

be built to compensate for breakoffs. The misalignment between the theory and practice 

warrants further research, which is surprisingly lacking in the literature.  

 

The second existing gap refers to the statistical methods used in the breakoff compensation. 

As reviewed earlier, existing literature borrowed the idea of weighting from survey 

nonresponse bias correction to tackle the breakoff bias. Nevertheless, weights are a unit-level 

statistic whereas breakoff is a question-level event. It is unclear if weighting is effective in 
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this context. Meanwhile, multiple imputation operates at the question level but has not been 

applied in the context of breakoff compensation. It is unknown whether the imputation 

method has a superior performance compared to the weighting approach in terms of reducing 

the breakoff bias. 

 

To address both gaps, Chapter 6 of this thesis will develop a simulation. Different rates of 

breakoff and causes are simulated, after which four methods of dealing with the survey 

breakoff are applied. Two of the methods do not compensate for breakoff specifically while 

the other two do. All four methods will be applied to the simulated breakoff data to estimate 

the statistics of interest in the study. By comparing their deviation from the benchmark value 

across different breakoff rates and causes, Chapter 6 will answer the following two questions:  

 

1) Does compensating for breakoffs separately in the post-collection adjustment help 

reduce the bias in survey estimates? 

2) How is the effectiveness of the different breakoff compensation methods affected by 

different breakoff rates and mechanisms? 
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Chapter 3 Data and Methods 

3.1 Data 

3.1.1 Lightspeed web survey 

Two surveys are analysed in this thesis. The first one is a cross-sectional, non-probability, 

web survey administered in the Lightspeed opt-in panel. This panel is managed by Kantar (a 

global commercial market research company) in the United States. According to the 

company, the recruitment of the panellists was conducted via traditional advertising as well 

as both internal and external affiliate networks. Once joining the panel, members can see 

different surveys distributed in the platform and decide what surveys to answer. Upon 

completing the survey, the respondents will receive reward points which can be accrued and 

redeemed later.  

 

The web survey analysed in this thesis is secondary data and has two waves. The first wave 

was collected between September and October 2019 while the second one was carried out in 

October 2020. Both waves covered the same topics (described later in this section), but the 

first wave had more questions than the second one (196 vs. 126 questions). However, the 

respondents spent, on average, a similar amount of time (11 minutes) in both waves, mainly 

because there were many filter questions in the first wave and many of them did not apply to 

most respondents.  

 

Both waves of the data were collected for a research topic that is irrelevant to the research 

questions in this thesis (For details about the study, see Eckman, 2021). In brief, the initial 

aim of the web survey was to investigate how an alternative design for the filter questions in 

the Consumer Expenditure Survey can impact respondents’ answers. Consumer Expenditure 

Survey (CE) is conducted by U.S. Census Bureau every month to estimate U.S. consumers’ 

expenditures and income. It relies on many filter questions (to cover many items that 

consumers might purchase in reality), but only the interleafed format is currently being used 

to present those questions. Meanwhile, it is difficult to set up an experiment in CE to estimate 

how respondents would have answered the filter questions about their purchases if the 

grouped format was used. Against this backdrop, the Lightspeed web survey was conducted 

to mimic the CE while embedding experiments about different question designs (described 

later in this section).  
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The web survey had questions about six of the many topics covered in CE: (1) respondents’ 

demographic information, (2) characteristics of their housing units, (3) household income, (4) 

clothing purchase, (5) utilities payment, and (6) non-health insurance (e.g., vehicle and home 

insurance). Because the Lightspeed web survey analysed in this thesis is an opt-in survey (a 

type of non-probability surveys), the number of individuals invited to the survey is unknown 

and it is impossible to calculate the response rate. Additionally, the opt-in nature of the 

survey means that the respondent profile is likely to deviate from the general population. 

Indeed, the survey is dominated by white respondents (74%) and females (66%). According 

to the U.S. Census Bureau (2022), 59% of population are white and 50% are female in 2022. 

The biases in the Lightspeed sample might make the findings less generalisable. 

 

However, this web survey is still considered suitable for the present research for two main 

reasons. Firstly, it has a substantial number of breakoff cases. Out of 3128 and 2370 

respondents in the first and the second waves, 520 and 403 broke off, respectively. This leads 

to a breakoff rate of approximately 17%. This amount of breakoff helps the development of 

robust models for explaining and predicting breakoff in this thesis. 

 

Another reason why this web survey is chosen is that the experiments embedded in the 

survey have not been analysed in terms of its impact on breakoff. This is the research gap the 

present thesis will bridge. In total, there were three experiments in the web survey. Stephanie 

Eckman (one of the co-authors of Chapter 4) designed all three experiments and 

commissioned Kantar to implement them in the Lightspeed Panel. Other two co-authors and I 

did not participate in the design of the experiments and were not aware of this dataset until its 

fieldwork was complete. After this, we applied for the access to the data, which was then 

granted by Stephanie.  

 

Two of the three experiments were implemented in both waves: the first one was concerned 

with the order of question topics while the other was related to the format of filter questions. 

The third experiment was only carried out in the second wave and focused on manipulating 

the order of questions within the same topic. 

 

The first experiment is related to the order of the question topics. As mentioned earlier, the 

web survey had six topics. Questions of the same topic were organised in the same block, 

resulting in six question blocks. Respondents went through the questionnaire from the first 
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block to the sixth block. The topics of the first, second, and sixth question blocks always 

remained the same (they are: respondents’ demographic information, the characteristics of 

their housing unit, and household income, respectively). In contrast, the topics in the third, 

fourth, and fifth question blocks were randomised between respondents’ clothing purchase, 

utility payment and non-health insurance. This led to six possible orders of the question 

blocks (See Table 3.1). Participants were randomly allocated to one of the six orders upon 

reaching the first randomised question block (i.e. Block 3). There were 317 respondents (10% 

of the sample) who quit the survey prior to Block 3, so each of the six orders had 

approximately 15% of the sample.  

 

Table 3.1. All possible orders of the question blocks in the Lightspeed web survey. 

Group Block 1 Block 2 Block 3 ab Block 4 ab Block 5 ab Block 6 

1 Demographics Housing  Clothing Utilities Insurance Income 

2 Demographics Housing  Clothing Insurance Utilities Income 

3 Demographics Housing  Utilities Clothing Insurance Income 

4 Demographics Housing  Utilities Insurance Clothing Income 

5 Demographics Housing  Insurance Clothing Utilities Income 

6 Demographics Housing  Insurance Utilities Clothing Income 

7 Demographics Housing Unknown Unknown Unknown Income 
a The experiment about the format of filter questions was implemented in this block in both waves 

of the survey. 
b The experiment about the order of questions was implemented in this block. Additionally, this 

experiment was only present in the second wave of the survey. 

 

The second experiment was about the filter question format and implemented only in the 

three randomised question blocks (i.e. Block 3, 4 and 5). Respondents were randomly 

assigned to either the grouped (49% of the sample) or interleafed format (51% of the sample). 

Depending on the question block, there were five to six filter questions, each of which could 

lead to five follow-ups.  

 

The third experiment manipulated the order of questions within the three randomised 

question blocks (Block 3, 4 and 5), but it was only present in the second wave. To be 

specific, the questions in the three randomised question blocks were ordered in one of the two 

ways: (1) high-frequency to low-frequency and (2) low-frequency to high-frequency. The 
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frequency is determined by how often the respondents answered “yes” to the filter questions 

in these three question blocks during the first survey wave. The order of the questions within 

Block 1, 2 and 6 remained fixed. Again, respondents were randomly assigned to one of the 

two frequency groups. In the end, 49% of sample were allocated to the high-low frequency 

group while the remaining participants were in the low-high frequency group. 

 

All experiments were crossed, so respondents could only be allocated to one of the 12 groups 

in the first wave (2 filter question formats × 6 block orders) and one of the 24 groups in the 

second wave (2 filter question formats × 6 block orders × 2 question orders). As the 

respondents could only see one of the designs, they were not aware of the experimental 

manipulation. Stephanie Eckman, the designer of the experiments and one of the co-authors 

of Chapter 4, has obtained the approval from the Institutional Review Boards of her research 

institute, which makes sure that study is designed and conducted in a way that protects the 

rights, welfare, and privacy of the participants. 

 

The first wave of the web survey will be analysed in Chapter 4 of this thesis to answer the 

research questions about how filter question formats and question topics impact breakoffs. 

The second wave is not analysed in Chapter 4 because the data of this wave were not 

available yet during the writing of this chapter.  

 

However, both waves of the web survey will be combined in Chapter 5 to develop models 

(including machine learning models) for predicting breakoffs. Combining surveys of the 

same topic and structure allows us to maximise the number of breakoff events in the data. 

This is especially helpful for the development of machine learning models because fitting 

those models will require the entire data to be split into multiple subsets and maximising the 

available breakoff events ensures that all subsets have a sufficient number of breakoffs.  

 

However, there is an issue when combining two waves of data in Chapter 5. That is, there 

will be repeated measures for some observations in the combined data. This is because some 

Lightspeed panellists might answer both survey waves. Having repeated measures of the 

same observation violates one of the common assumptions in many statistical models (i.e. 

independence among observations) and can potentially damage the model fit. It is unknown 

how many panellists participated in both waves. However, some models fitted in Chapter 5 

(e.g., survival model) are specialised in handling such a clustered data structure. Even though 
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some models in Chapter 5 do not have this feature (e.g., gradient boosting), one of the 

research questions in Chapter 5 is focused on testing how those models perform in the 

clustered data (where questions are clustered within respondents). Therefore, the issue of 

repeated measures should not be of great concern in this thesis. 

 

3.1.2 CROss-National Online Survey  

The second survey analysed in this thesis comes from the sixth wave of the CROss-National 

Online Survey (CRONOS) panel. Like the Lightspeed panel, CRONOS is also an online 

panel but probability based. It was created to test the feasibility and efficiency of conducting 

a survey that is online, probability-based and cross-national (CRONOS team, 2018). Given 

that it was a pilot, this panel was set up only in three countries: Estonia, Slovenia and Great 

Britain. The target population of CRONOS is individuals who live in private households in 

the three countries and are at least 18 years old.  

 

The sample of CRONOS was recruited from the eighth wave of the European Social Survey 

(ESS), which is an ongoing, face-to-face, probability-based and cross-national survey in 

Europe. To be more specific, after completing the survey in the eighth wave of ESS in 2016, 

respondents in Estonia, Slovenia and Great Britain were invited to join the CRONOS. If the 

participants did not have access to the internet, a tablet and an internet connection were 

offered to them for the duration of the project. The participants were informed about different 

aspects of the study (e.g., purpose, organisations involved, research teams’ contact details) 

and their rights (e.g., voluntariness, withdrawals). Their consent was obtained prior to the 

data collection (Villar and Sommer, 2017) . 

 

Due to the difference in the availability of the sampling frame and the implementation of the 

survey fieldwork, different sampling frames and strategies were used in the three 

participating countries. For Estonia and Slovenia, the population registry was used as the 

sampling frame. Stratified sampling was applied to this frame, and sample members were 

selected from different strata. Because Great Britain did not have a population registry 

suitable for sampling purpose, the postal address file of households was used. To select 

individuals from households, a three-stage sampling strategy was adopted. At the first two 

stages, systematic sampling was used to select the households. Then, the interviewers used a 
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Kish selection grid at the final stage to randomly select an eligible person from the chosen 

household (Villar and Sommer, 2017). 

 

The data collection of CRONOS panel took place between December 2016 and February 

2018. Over this period, a 10-minute welcome survey and six 20-minute surveys were issued 

to the panellists at an interval of approximately two months. As a result, there are six waves 

in the collected data (in addition to the welcome survey). An unconditional incentive of £5/ 

€5 in the form of a voucher was offered to the panellists of CRONOS along with the survey 

invitation (Villar and Sommer, 2017). 

 

Each wave has different topics, and the topics in the sixth wave (i.e. the survey wave used in 

this thesis) included but were not limited to attitudes towards income equality, society 

fairness and political efficacy. This wave was conducted between January and February in 

2018. There were approximately 98 questions in this survey wave, and respondents spent, on 

average, 26 minutes prior to survey breakoff or completion. In the end, 1812 people across 

the three countries responded to the survey in the sixth wave, resulting in a response rate of 

approximately 80%. The breakoff rate is 6%, meaning that 110 of the respondents broke off 

(CRONOS team, 2018).  

 

The sixth wave of the CRONOS will be used in Chapter 6 to simulate breakoffs. It is chosen 

for two reasons. To begin with, the sample was recruited from ESS, from which multiple 

background information about the sample can be obtained (e.g., their demographics and 

voting history). A rick set of background information will allow us to fine-tune the 

simulation. For instance, we can choose how many and what variables are influential on the 

survey nonresponse but not breakoff (or vice versa). Secondly, by basing the simulation on a 

real-world dataset (as opposed to creating the simulation using pre-specified distributions), 

the resultant simulated data will mimic the data collected in the fieldwork to a large extent, 

which helps the ultimate application. 

 

3.2 Methods 
Different statistical models are applied to the two surveys described above to answer the 

research questions in this thesis. All of them can be classified into two classes of models, 

namely traditional statistical models and machine learning models. The former in this thesis 
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includes the traditional Cox survival model and logistic regression while the machine 

learning models fitted in this thesis are LASSO Cox, LASSO logistic regression, Support 

vector machine, Random forest, and Gradient boosting.  

 

Both classes of models have pros and cons. For the traditional statistical models, they are 

easy to understand. The coefficients routinely generated by the models (e.g., odds ratios in 

logistic regression or hazard ratios in the Cox survival model) make it easy to interpret the 

impact of the explanatory variables on the outcome of interest. Additionally, whether the 

association between the outcome and explanatory variables is genuine (as opposed to random 

chance) can be easily answered by the statistical significance tests and the resultant p-values. 

All of this facilitates the interpretability.  

 

However, the advantages of traditional statistical models come at the expense of prediction 

performance. The traditional statistical models are usually based on some assumptions, such 

as the linear relationship between the logit transformed outcome and the covariates in logistic 

regression (Stoltzfus, 2011) and proportionate hazards in the traditional Cox survival model 

(Mills, 2011). They are not always met in reality (see Mittereder and West, 2021 for an 

example). Building models on assumptions that do not align with the data generating process 

will likely damage the goodness-of-fit of the model and prediction performance. Another 

related weakness is that the traditional statistical models cannot automatically handle the 

complex relationship between variables (e.g., non-linear effect, interaction). This issue can be 

solved by explicitly including the relevant terms in the model (polynomials, interaction, etc.), 

but this will require some expert knowledge on the research topic, which not all users have.  

 

Unlike the traditional statistical models, machine learning models are non-parametric, so they 

make nearly no assumption about the relationship between the outcome and explanatory 

variables. Instead, they focus on learning the patterns in the data, including but not limited to 

the main effect, interaction, and non-linear effect. This flexibility therefore maximises the 

chance that the estimated model captures the true underlying outcome-predictor relationship, 

ultimately giving the machine learning model a good prediction performance. Another 

advantage of the machine learning model is that some of them (e.g., LASSO Cox and 

LASSO logistic regression) have a built-in feature to exclude variables that contribute little to 

the prediction from the model (Signorino and Kirchner, 2018). This feature helps the model 

parsimony, and more importantly, reduces the risk of overfitting (i.e. the model fits the 
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observed dataset too well to produce a good prediction in future unseen datasets) (James et 

al., 2013).  

 

The machine learning model also has some limitations. Firstly, being non-parametric means 

that most machine learning models do not generate model coefficients. It is therefore difficult 

to interpret how the explanatory variables relate to the outcome. Secondly, the data-driven 

nature of the algorithm means that the machine learning models can easily overfit the data. 

Solving this issue will require a combination of multiple techniques, such as training/testing 

data split, cross-validation, and hyperparameter tuning (details about these techniques are 

discussed in the Method section of Chapter 5). For instance, the data-driven nature of the 

machine learning models means that it needs some hyperparameters to control the extent to 

which the data impact the model fit. These hyperparameters need to be tuned such that the 

final model not only fits the current data to a satisfactory degree but also predicts the future 

unseen data well. To identify such hyperparameter values, multiple candidate values must be 

trialled. Applying all these techniques together makes the model building process 

complicated.  

 

As reviewed above, there are benefits and drawbacks in the traditional statistical models and 

the machine learning models. Therefore, both classes of models are fitted in this thesis to 

investigate which can give better breakoff prediction performance. The remainder of this 

section will give an in-depth overview of each model used in this thesis. 

 

3.2.1 Traditional Cox survival model 

The traditional Cox survival model is specialised in explaining whether (and if so when) the 

event of interest happens and what are its impacting factors (Singer and Willett, 2003). To 

build the Cox survival model, three elements need to be specified: the event of interest, time 

measurement and the starting point of the time. The binary survey breakoff (1 = survey 

breakoff; otherwise, 0) is the event of interest. Time is measured by the cumulative number 

of questions respondents have seen and treated as a discrete variable, which is an approach 

widely adopted in the past literature on survey breakoff (Peytchev, 2009; Mittereder and 

West, 2021). As every respondent starts the survey with the same question, the beginning of 

the time is the same for everyone (i.e. the first question in the survey).  
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According to Willett and Singer (1993), when the time in the survival data is measured as a 

discrete unit, the likelihood function for estimating the Cox survival model and the standard 

logistic regression is algebraically equivalent, so both models should generate the same 

coefficients. Also, they take the same model form shown below (so the logistic regression is 

not separately reviewed for brevity). 

 

ln�
𝑃𝑃𝑖𝑖𝑖𝑖

1 − 𝑃𝑃𝑖𝑖𝑖𝑖
� = 𝛼𝛼𝑖𝑖 + 𝛽𝛽1𝑿𝑿𝑖𝑖1 + 𝛽𝛽2𝑿𝑿𝑖𝑖2(𝑞𝑞) 

 

The dependent variable in the traditional Cox survival model is the logit of the breakoff 

hazard. Essentially, it is a conditional probability of person i breaking off at question q given 

that this person has not broken off at any question prior to q (Singer and Willett, 2003). The 

logit breakoff hazard is explained by the baseline hazard 𝛼𝛼𝑖𝑖 as well as the user-supplied 

covariates 𝑋𝑋. The former is a constant and represents the breakoff hazard at question q when 

all covariates in the model are zero or at the reference level. The coefficients associated with 

the user-supplied covariates 𝑋𝑋 quantify the impact of those covariates on the logit breakoff 

hazard. Both the time-constant covariates 𝑿𝑿𝑖𝑖1 (e.g., ethnicity) and the time-varying 

counterparts 𝑿𝑿𝑖𝑖2(𝑞𝑞) (e.g., question word count) can be included in the model. 

 

Once fitting the model, the hazard ratio will be used to interpret the model. It is the ratio 

between two hazards and obtained by exponentiating the model coefficients 𝛽𝛽. It quantifies 

the change in the breakoff hazard per unit difference in a specific covariate while controlling 

for others. A greater-than-one (less-than-one) hazard ratio means that the covariate is 

associated with an increased (decreased) chance of the breakoff occurrence. When the hazard 

ratio is equal to 1, there is no association between the covariate and the breakoff hazard 

(Mills, 2011). 

 

The traditional Cox survival model is chosen for two reasons. To begin with, it can handle 

two unique features commonly seen in the breakoff data. One of them is the clustered data 

structure (i.e. questions clustered by respondents). Another feature is censoring, which takes 

place when the observations have not experienced the event of interest when the data 

collection ends (Schober and Vetter, 2018). As mentioned earlier, approximately 17% and 

6% of the respondents broke off in the Lightspeed and CRONOS surveys, respectively. It 
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means that the majority of respondents did not break off at all, making them censored cases. 

Without the breakoff timing, these cases will be treated as if they have missing event timing 

and excluded by most statistical models, so the sample size for the model development will 

be drastically reduced. The traditional Cox survival model, nonetheless, uses every case until 

the point where it is censored, thereby maximising the information in the model fitting 

process (Singer and Willett, 2003). 

 

The second reason for using the traditional Cox survival model is that it not only considers 

the time but also allows the effect of covariates on the breakoff to vary across time. This is a 

good fit to the main research question in Chapter 4 (i.e. how filter question formats and 

question topics impact breakoff and its timing).  

 

3.2.2 LASSO Cox 

LASSO Cox is a machine learning model fitted in this study. The major difference between 

this model and the traditional Cox survival model is that this model uses a penalty term 

during the fitting process. This term is referred to as 𝜆𝜆, and it penalises the model that has 

many covariates (Tibshirani, 1997). The penalty term 𝜆𝜆 is a non-negative hyperparameter, 

and a larger 𝜆𝜆 will lead to more penalisation, which further results in some model coefficients 

shrinking towards zero. When the 𝜆𝜆 is large enough, some coefficients will become zero, and 

covariates with the zero coefficient will be automatically excluded from the model. As a 

result, the model becomes simpler. On the contrary, when 𝜆𝜆 is zero (i.e. its minimum value), 

no penalisation is applied, and the fitted LASSO Cox model is the same as the traditional Cox 

survival model. In the same vein, the LASSO logistic regression differs from the standard 

logistic regression due to the penalty term, so it is not reviewed here for brevity. 

 

The LASSO Cox is fitted in this study for two reasons. The traditional Cox survival model is 

known to include all covariates in the model even though some of them might contribute little 

to the prediction of breakoffs. This will damage the interpretability of the result and increase 

the risk of overfitting. LASSO Cox is used mainly to investigate whether the simpler model 

can predict the breakoff more accurately than the full-size Cox survival model (one of the 

research questions in Chapter 5). Another reason for developing the LASSO Cox is that there 

are a large number of predictors available in the data, and the penalisation feature of this 

model can shed light on what predictors are more predictive of the breakoffs. 
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3.2.3 Support vector machine 

Support vector machine (SVM) is a machine learning model. This model splits the breakoff 

cases from the complete respondents using a hyperplane in the high-dimensional space 

defined by the number of predictors (Kirchner and Signorino, 2018). Given that breakoff 

cases and complete respondents usually cannot be separated linearly or perfectly, two 

solutions are used in SVM, and they are the two main hyperparameters to tune in SVM 

(Rhys, 2020).  

 

The first solution is to apply some transformations to the predictors. As such, the space in 

which SVM operates is enlarged, and a linear separation between breakoff cases and 

complete respondents becomes possible in this new space. The function for the 

transformation is called the kernel 𝜑𝜑(∙), and it is one of the hyperparameters in SVM. There 

are three commonly used kernels: linear kernel (i.e. no transformation), polynomial kernel 

(e.g., quadratic, cubed which is controlled by the degree of the polynomial term d), and radial 

kernel (which has its own hyperparameter 𝜎𝜎 to control the influence of each observation on 

the position of the hyperplane). Increasing d and 𝜎𝜎 will make the model more flexible and fit 

the observed data better, but the risk of overfitting rises as well. Therefore, they need to be 

tuned such that the model not only fits the present data reasonably well but also gives a good 

prediction performance in the future unseen data. 

 

Another solution to the problem of imperfect separation in SVM is to allow misclassification. 

That is, some observations are allowed to be incorrectly predicted by SVM as (non-)breakoff 

cases. Th hyperparameter 𝐶𝐶 will control the extent to which the misclassification is allowed. 

It is a non-negative term, and a larger value will impose more penalty on the misclassified 

cases. As a result, the model algorithm will focus more on making the prediction of those 

cases correct. However, if the 𝐶𝐶 value is too large, the risk of overfitting will increase. 

Therefore, researchers have to tune this hyperparameter to achieve a good balance between 

the amount of allowed misclassification and correct prediction.  

 

3.2.4 Random forest 

Random forest is another machine learning model fitted in this study. It requires the 

development of multiple decision trees, each of which recursively splits the respondents into 

two child nodes using one of the input predictors (Lantz, 2019). As the aim of the split is to 
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make the cases within the same child node become less heterogeneous (or more 

homogeneous), the predictor that leads to the largest reduction in the heterogeneity from the 

parent node will be chosen by the algorithm (Buskirk, 2018). The heterogeneity is measured 

by the Gini index. This index is calculated based on the proportion of breakoff and non-

breakoff cases in the node, and a smaller value is preferred as it means that the node contains 

many cases of the same breakoff status (James et al., 2013). 

 

There are three main hyperparameters to tune in random forest (Rhys, 2020). The first 

hyperparameter is the minimum number of cases in a node for a split to continue (commonly 

denoted as min_n). It is a positive number. The smaller this number is the higher the risk of 

overfitting will be. This is because the decision tree will focus too much on some specific 

individual cases. Meanwhile, if min_n is set too high, the goodness-of-fit of model will be 

adversely affected as the tree is prevented from conducting further necessary splits to make 

the cases in the node more homogenous.  

 

The number of trees in the random forest is the second tuning hyperparameter (denoted as 

trees). When fitting the random forest, 𝐵𝐵 bootstrapped samples will first be randomly drawn 

from the original data. This procedure is to add variations to the data and reduce the risk of 

overfitting. Each bootstrapped dataset will have as many observations as the original data, 

and the decision tree will be developed independently in those 𝐵𝐵 bootstrapped datasets, 

leading to 𝐵𝐵 trees in the forest. Once the random forest is developed, each tree will generate 

its own prediction for respondent’s breakoff status, and the most frequently predicted status 

will be the final prediction. If too few bootstrapped samples are drawn, a small number of 

trees will be in the forest. As a consequence, there will be large variations in the predicted 

outcome, meaning that the prediction becomes less consistent and reliable. In contrast, if a 

large value is chosen for the trees, the model development will be less efficient because of the 

diminishing return (i.e. fitting more trees will consume more time but the resultant gain in the 

prediction performance is diminishing). 

 

The third hyperparameter in random forest is the number of predictors to consider when 

conducting a split (denoted as mtry). Considering all predictors in the split will likely see 

some specific predictors always being chosen to make the split. This makes the trees similar 

to each other and the final random forest model less robust to different datasets. To diversify 
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the trees in the forest, only a random subset of the input predictors will be considered at each 

split, thereby forcing the tree to be different. The value of this hyperparameter ranges from 

one to the number of input predictors. A large value for mtry will make the trees similar and 

lead to the issue discussed earlier. On the other hand, when a low value is used for mtry and 

some input predictors are not associated with the outcome variable, the tree might have to use 

those uninformative predictors, meaning that the model will have some splits which do not 

contribute to the prediction. 

 

3.2.5 Gradient boosting 

Like the random forest, gradient boosting is also based on multiple decision trees. The main 

difference between them is how the decision trees are developed. While the decision trees in 

random forest are fitted independently from each other, gradient boosting develops the trees 

in a sequential and iterative manner (Hastie, Tibshirani and Friedman, 2009). Therefore, the 

trees in previous iterations affect the subsequent one. The overall idea is to build a weak 

decision tree model (which outperforms the random chance only slightly) to predict the 

breakoff at each iteration and then develop trees in the subsequent iterations to gradually 

correct the prediction errors made by the previous trees. In the end, although the model in 

each iteration is weak, combining them together will lead to a strong predictive model (Mayr 

et al., 2014). The sum of the predictions made by each tree will be the predicted breakoff 

hazard for the respondent. 

 

To develop the gradient boosting, the algorithm begins by assigning each respondent the 

same constant (e.g., the average breakoff hazard from the collected sample). It then subtracts 

this constant from each respondent’s true breakoff status (i.e. 0/1) to obtain the prediction 

errors. These errors are used as the dependent variable in the first decision tree. After this, the 

first decision tree will generate its prediction, which is then added together with the initially 

assigned constant to form a new set of predicted breakoff hazard. The difference between the 

new prediction and the true breakoff status will update the prediction errors. The algorithm 

will proceed to fit the second decision tree using the updated prediction errors. This process 

(i.e. fitting new decision trees on prediction errors, combining the initially assigned constant 

and predictions from all the trees fitted so far, making new predictions, updating prediction 

errors) will continue until some pre-specified conditions are reached. Those conditions are 

controlled by the hyperparameters in gradient boosting.  
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Both gradient boosting and random forest are the tree-based model, so they have some 

hyperparameters in common. They are the minimum number of cases in a node for a split to 

continue (min_n), the number of trees in the model (trees), and the number of predictors to 

consider when making a split (mtry).  

 

In addition to the three hyperparameters above, the gradient boosting has two special 

hyperparameters. The first one is how many splits a tree can have (tree_depth). Unlike 

random forest where each decision tree is fully developed, trees in gradient boosting are only 

developed to a certain depth. This is because a fully developed tree (i.e. a large value in 

tree_depth) can easily lead to the overfitting issue, and the dependency between trees in 

gradient boosting means that those individual overfitted trees will have an adverse impact on 

the final model. On the other hand, a small value in tree_depth can be computationally 

demanding as it will require many decision trees to be fitted (i.e. a large value in the trees 

hyperparameter). Also, if not enough number of trees is specified, the final model might 

become suboptimal as it underfits the data. 

 

The second hyperparameter in gradient boosting is called the learning rate (learn_rate), 

which controls how quickly the subsequent tree learns from the prediction errors made by the 

previous trees. Its value ranges from zero to one. A small value is usually preferred because 

the algorithm that learns slowly from the errors tends to perform better when predicting 

unseen data (Natekin and Knoll, 2013). However, a smaller value will require more trees and 

therefore more computation time. When the number of trees to be fitted is set too low, a slow 

learning rate might also lead to a suboptimal model.  

 

Logistic regression, LASSO logistic regression, Support vector machine, Random forest and 

Gradient boosting are five models that cannot handle the clustering structure in the breakoff 

data. The logistic regression is traditionally used in the study of survey breakoff (e.g., 

Tijdens, 2014; Blumenberg et al., 2018) and can be used as a benchmark for the other four 

models. The other four models are chosen because they were found to have a superior 

performance in predicting survey nonresponse over the logistic regression in many existing 

studies (e.g., Buskirk, 2018; Kirchner and Signorino, 2018; Signorino and Kirchner, 2018; 

Liu, 2020; Kern, Weiß and Kolb, 2021). Meanwhile, given the lack of study on what models 

are more predictive of the imminent breakoffs during the survey process, it is necessary to 

test multiple models. Indeed, applying these five models to the breakoff data fits into one the 
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focuses of Chapter 5 (i.e. understanding how those models perform when the clustering of the 

data is ignored and identifying what model among them is most predictive of the breakoff). 

Moreover, the best performing machine learning model can be compared to the best 

performing survival model to answer another research question in Chapter 5 (i.e. whether or 

not taking into account the special data structure in the breakoff data by the survival model 

helps improve the breakoff prediction). 
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Chapter 4 Impact of Question Topics and Filter Question Formats on 

Web-survey Breakoffs 
 

Abstract 

Web surveys have become increasingly popular over the last decade, but they tend to suffer 

from breakoffs, which take place when respondents start the survey but do not complete it. 

Many studies have investigated the factors impacting breakoffs, but they often ignored the 

breakoff timing and gave scant attention to two factors: question topics and filter question 

formats (grouped vs. interleafed as defined by whether filter questions are presented upfront 

or not). Using survival analysis, this study first identifies when breakoffs are more likely to 

happen and what are the time-varying predictors of breakoffs. Then, by using a web survey 

that experimentally manipulates the filter question format and randomly orders the question 

topic, this study investigates the effect of question topics and filter question formats on the 

breakoff event and its timing. We find that most breakoffs tend to happen at the beginning of 

the questionnaire and at the place where a new question topic is introduced. While item 

nonresponse is associated with more breakoffs, it is surprising to see that open-ended and 

long questions are associated with a lower breakoff risk. Additionally, we discover that 

grouping the filter questions leads to fewer breakoffs at the beginning compared to the 

interleafed counterpart, but the breakoff risk in the grouped format catches up quickly when 

respondents realise their previous answers will trigger more questions. This study also shows 

that questions about insurance have more breakoffs while questions on demographics and 

income have fewer breakoffs despite their sensitivity level.  

 

Keywords 

Web surveys, breakoff timing, survival model, questionnaire design, experimental design 
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4.1 Introduction 
Surveys have been widely used in different fields, such as market research and political 

polling. Due to the cost concern and tight schedule, an increasingly number of surveys have 

been conducted online. However, running surveys on the web has some limitations, one of 

which is survey breakoff. Survey breakoffs happen when the respondent starts the survey but 

fails to complete it (Tourangeau, Conrad and Couper, 2013). As a result, missing data are 

produced, causing subsequent analysis to have lower statistical power as well as potentially 

biasing results (Steinbrecher, Roßmann and Blumenstiel, 2015).  

 

To address the breakoff, it is important to understand its determinants. Past studies (see 

Peytchev, 2009 for an example) have identified many factors impacting breakoffs, but most 

of them studied breakoffs only as a binary outcome and ignored the breakoff timing. 

Investigating breakoff timing is important as survey practitioners want respondents not only 

to complete the survey but also to complete as many questions as possible before they break 

off (Sakshaug and Crawford, 2010).  

 

The present study will apply survival analysis to an opt-in web survey to investigate when 

breakoffs are more likely to happen and what are the time-varying factors (factors whose 

value varies throughout the questionnaire) that explain breakoffs. Additionally, the study will 

investigate two other important factors that have received scant attention: question topic and 

the format of filter questions.  

 

The content, sensitivity and placement of question topics can impact the breakoff and its 

timing. Topics that are relevant to the respondents can decrease or postpone breakoffs 

(Shropshire, Hawdon and Witte, 2009) while sensitive topics might have the opposite effect. 

When studying the effect of question topics on breakoff, randomising the topic order is 

important; otherwise, ignoring the ordering effect could confound the topic effect and cause 

spurious correlations with breakoffs. Nevertheless, this has not been done in prior research.  

 

The format of filter questions is another factor that has received limited attention in the 

breakoff literature. Filter questions can produce a high degree of response burden as the 

positive answer to a filter question can lead to more questions. There are two main ways of 

presenting filter questions and their follow-ups. In the grouped format, all filter questions 
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are asked before the follow-ups are displayed whereas in the interleafed format every filter 

question immediately triggers its follow-ups (Kreuter, Eckman and Tourangeau, 2020). 

Although both filter formats can cause response burden and are prone to breakoffs, there is a 

difference between them in the timing when respondents learn about the burden. Respondents 

answering the interleafed format will quickly understand the response burden after giving 

affirmative answers to one or two filter questions. They could break off as early as the first 

pair of filter and follow-up questions. In the grouped format, respondents can only learn 

about the extra burden when they reach the follow-ups. They are therefore expected to break 

off later. However, no previous research has tested the relationship between breakoff timing 

and filter question formats. 

 

This study uses a web survey that experimentally manipulated the filter question format and 

randomly ordered the question topic. Thus, we are able to causally investigate the impact of 

these two factors on the breakoff and its timing. 

 

4.2 Background 

4.2.1 Framework for studying breakoffs 

Breakoffs are prevalent in web surveys. For example, Revilla (2017) reviewed 185 opt-in 

web surveys distributed through a Spanish survey company and found that the mean breakoff 

rate was 11.8%. In an online probability survey about University of Michigan staff and 

students’ attitudes towards environmental issues, the breakoff rate was 13%, 14% and 17% in 

the year of 2014, 2015 and 2018, respectively (Mittereder, 2019).  

 

Given the prevalence of survey breakoff, many researchers have been studying its impacting 

factors. As a result, a framework has been developed to summarise different factors. 

According to Peytchev (2009) and Mittereder and West (2021), these factors can be grouped 

into four categories: (1) page/question characteristics, (2) survey design, (3) respondent 

factors and (4) paradata. 

 

Page/question characteristics refer to the design features of survey pages and questions. 

Cognitively demanding questions such as matrix, open-ended questions and questions with 

more characters are associated with more breakoffs (Peytchev, 2009; Hoerger, 2010; Tijdens, 

2014; Steinbrecher, Roßmann and Blumenstiel, 2015). These types of questions can impose 
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extra burden on respondents when they engage in a series of actions required to answer the 

question such as comprehending the question and retrieving the relevant information 

(Tourangeau, 2018). To avoid the burden, respondents might choose to break off. 

 

The second factor that is related to breakoff is the survey design. Examples of this are 

providing incentives unconditional on survey completion (Silber, Lischewski and Leibold, 

2013), using a lengthy questionnaire (Hoerger, 2010) and displaying the progress bar 

alongside the questionnaire (Villar, Callegaro and Yang, 2013).  

 

The third group of factors - respondent factors - refers to the characteristics of the 

respondents. They are used in the existing literature as proxies for sample members’ tendency 

to cooperate with the request to survey response (Durrant and Steele, 2009) or their cognitive 

ability to handle the burden from the survey response (Roßmann, Gummer and Silber, 2018). 

Survey breakoff is conditional upon survey response, so both are similar in nature and likely 

to be correlated. Therefore, respondent factors that are associated with the survey response 

are often used to explain survey breakoff. For example, age and education are two respondent 

factors that are commonly used to represent individuals’ ability to cope with the survey 

burden. In fact, respondents who are older and have a lower education degree were found to 

be more likely to break off (Peytchev, 2009; Blumenberg et al., 2018). Another example is 

related to factors that reflect respondents’ general level of cooperation with the survey 

request. The findings regarding the relationship between these factors and breakoffs are often 

mixed, including gender, race, marital status, student and income (Galesic, 2006; Peytchev, 

2009, 2011; Klein et al., 2011; Mittereder and West, 2021), but the general trend is that male, 

non-white, student and more affluent respondents are more likely to break off.  

 

Paradata, the final category in the framework, refer to the information collected during the 

response process (Kreuter, 2013). This type of data is believed to reflect the change in the 

response burden and respondents’ motivation throughout the questionnaire (Mittereder and 

West, 2021), thereby being useful for predicting the imminent breakoff. Some paradata that 

have been associated with breakoffs are the proportion of questions that are not answered 

(Mittereder and West, 2021) and using mobile devices to answer the survey (Wenz, 2017). 

 

The above four categories form a comprehensive framework. However, previous research has 

found that web survey breakoffs were preceded by an accumulated respondent burden 
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(Galesic, 2006). This means that the burden caused by the factors in the framework takes 

some time before it can actually exert its influence on breakoffs. An example of this can be 

seen in the study conducted by Mittereder and West (2021). By allowing the effects of the 

responding device to vary in time (measured as the cumulative number of questions 

answered), they found that there was no difference in the breakoff between the non-mobile 

and mobile devices at the beginning of the survey. However, when mobile device 

respondents answered more questions, they were more likely to break off.  

 

Based on the review so far, we argue that the timing dimension is a necessary factor to 

consider in the study of breakoffs and the effect of time-varying factors on the breakoff needs 

further research. In the present study, we derive the time-varying factors from question 

characteristics (e.g., question word count) and paradata (e.g., item nonresponse rate) and 

investigate how they impact breakoffs, after controlling for the difference in respondents’ 

cognitive ability and survey cooperation using their demographic information such as gender, 

age, ethnicity and education. The first two research questions are: 

 

RQ1. When is the breakoff more likely to happen in the web survey?  

RQ2. What are the timing-varying predictors of the web survey breakoff? 

 

In addition to examining breakoff timing, this study will contribute to the literature by 

focusing on two specific factors: question topic and the filter question format.  

 

4.2.2 Question topics and breakoffs 

Many studies have identified the survey topic as an important factor for unit nonresponse (not 

answering the survey at all) (Groves, Singer and Corning, 2000) and item nonresponse (not 

answering some of the questions) (Tourangeau and Yan, 2007). Survey breakoff, as a special 

type of nonresponse, is also impacted by respondents’ topic interest. For instance, when 

analysing the data from a web survey that covered the topic of conservation, Shropshire, 

Hawdon and Witte (2009) documented that respondents who scored higher in their 

conservation support were less likely to break off. 

 

In addition to the interest in the topic, the perceived sensitivity of the topic can also impact 

survey nonresponse. When facing a sensitive topic such as income or sexual orientation, 
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respondents might feel uncomfortable with its intrusiveness or worried about the potential 

threat of disclosing personal information (Tourangeau and Yan, 2007). As a result, 

respondents will skip those sensitive questions, leading to item nonresponse. In fact, the 

behaviour of skipping sensitive questions was found to be more frequent in the interviewer-

administered survey mode compared to a self-completion mode (Kreuter, Presser and 

Tourangeau, 2008). 

 

As an alternative to not answering the sensitive question, respondents might terminate their 

survey participation. However, among those papers that investigated the relationship between 

question topics and breakoffs (see McGonagle, 2013; Mittereder and West, 2021), the order 

of the topics was not randomised. For example, McGonagle (2013) analysed a telephone 

survey about the U.S. families’ economic status, but the topic about respondents’ housing 

was always followed by their employment history, income and so on. Previous research has 

noted that the order of the topic could affect the rates of item nonresponse (Teclaw, Price and 

Osatuke, 2012).  

 

Without the order randomisation, prior work failed to separate the impact of the topic content 

from that of the topic order. An ideal design to investigate the impact of question topic on 

breakoff is to randomise the order of questions and include questions with different levels of 

sensitivity. We used such a design to answer our third research question: 

 

RQ3. Does the topic of the questions impact the breakoff and its timing?  

 

4.2.3 Filter question formats and breakoffs 

The use of filter questions can also impact web survey breakoff and its timing. Many surveys 

use filter questions which trigger some follow-up questions when answered positively. For 

example, if the respondent chooses “yes” to the filter question “Have you held a full-time job 

during the past 12 months”, then more questions will follow (e.g., “From when and until 

when did you hold this job”). The grouped and interleafed formats are two main ways to 

present filter and follow-up questions. A visual example of both formats is shown in Figure 

4.1.  
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Figure 4.1. Example of grouped and interleafed formats in the web survey analysed in this 

study (filter questions are highlighted). 

 

One advantage of the grouped format is that the connection between a “yes” answer to the 

filter questions and the activation of follow-ups is not immediately apparent, so respondents 

facing the grouped filter questions would choose more “yes” answers compared to the 

interleafed format. This was found in Eckman et al. (2014) after randomly assigning the 

respondents of a probability-based telephone survey to either grouped or interleafed formats 

and comparing the number of “yes” in filter questions between the two formats.  

 

However, in the grouped version, the follow-up questions are far away from the 

corresponding filter questions, so respondents have to recall the relevant information from 

their memory again, which causes recall difficulties and hampers the cognitive processing 

(Clark-Fobia, Kephart and Nelson, 2018). Kreuter et al. (2011) also randomly allocated 

sample members of a different telephone survey to the grouped or interleafed format and 

noted that respondents in the grouped format chose more non-substantive answers (e.g., 

“Don’t know”) for the follow-up questions.  
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Unlike the grouped format, the interleafed version puts together questions that are of the 

same topic, serving as a recall aid (Kreuter, Eckman and Tourangeau, 2020). Yet, in the 

interleafed version, respondents can quickly learn that a positive answer to the filter question 

will trigger more questions. They then are more likely to deliberately choose a “no” to 

shorten the questionnaire, which was documented in the Eckman et al. (2014) and Kreuter et 

al. (2011) studies mentioned above.  

 

The review of the grouped and interleafed formats highlights that both formats impose 

burden on the response process and respondents who do not want to or cannot handle this 

burden will provide lower data quality. Rather than giving incorrect answers to reduce the 

length of the survey, respondents could break off. In addition to comparing the effect of 

grouped and interleafed formats on measurement error, Kreuter et.al (2011) and Eckman and 

Kreuter (2018) also looked at the influence of the filter question format on breakoffs. Both 

studies found that the format was not associated with breakoffs. 

 

However, previous studies did not investigate whether there is a difference in the breakoff 

timing between filter question formats. As we argued previously, it is important to consider 

the timing in breakoff studies as it might produce new insights regarding mitigating 

breakoffs. Thus, the final research question in this study is: 

 

RQ4. Does the filter question format affect the timing of the survey breakoff? 

 

4.3 Data 
The data used in this study come from a web survey conducted between September and 

October 2019. The web survey was administered to members of the Lightspeed Panel, an opt-

in web panel in the United States. Upon completing the survey, the respondents received 

reward points which could be accrued and redeemed later. Given the opt-in nature, it is 

impossible to calculate the response rate. The survey analysed here is dominated by white 

respondents (74%) and females (66%). These deviations from the US population make the 

subsequent findings less generalisable. 

 

Nevertheless, we consider that this web survey is appropriate to be analysed for three 

reasons. First, it records the outcome of interest - breakoffs. After removing two individuals 
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with an unknown response status, the final sample size for analysis is 3,128. Out of these, 

520 respondents accessed but did not complete the survey, resulting in a breakoff rate of 

approximately 17%. This breakoff rate is slightly higher than other surveys reviewed in the 

previous section even though individuals voluntarily participated in this survey and could 

only receive the reward upon survey completion. Meanwhile, the survey recorded the last 

question respondents saw, enabling the investigation of breakoff timing.  

 
Secondly, the web survey includes six different topics with varying levels of sensitivity. 

Questions of the same topic are organised into a single block, resulting in six blocks in the 

survey. As shown in Table 4.1, the topic of Block 1, 2 and 6 always remains the same, 

namely respondents’ demographic information, housing unit and household income. In 

contrast, the topics of the three remaining blocks (Block 3, 4 and 5) are randomised among 

respondents’ clothing purchase, utilities payment and non-health insurance (e.g., vehicle and 

home insurance). This randomisation leads to six possible orders among the blocks (See 

Table 4.1). Respondents were randomly assigned to one of the six orders upon seeing the first 

randomised block (i.e. Block 3). For 317 respondents who broke off at Block 1 or 2, their 

assigned order is unknown. Within each block, the order of the questions is fixed.  

 

Table 4.1. All possible orders of the question blocks in the web survey analysed in this study.   

Order Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Breakoff/

Total 

1 Demographics Housing  Clothing Utilities Insurance Income 21/461 

2 Demographics Housing  Clothing Insurance Utilities Income 32/470 

3 Demographics Housing  Utilities Clothing Insurance Income 27/476 

4 Demographics Housing  Utilities Insurance Clothing Income 36/454 

5 Demographics Housing  Insurance Clothing Utilities Income 48/478 

6 Demographics Housing  Insurance Utilities Clothing Income 39/472 

7 Demographics Housing Unknown Unknown Unknown Income 317/317 

Total       520/3128 

 

Different topics in the survey help answer the research question regarding how question 

topics affect breakoffs, especially for the three topics whose order is randomised. Also, 

Demographics and Income (Block 1 and 6) are considered sensitive as they are either found 

to suffer from more item nonresponse (Tourangeau and Yan, 2007) or recommended by 
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survey practitioners to be placed towards the end of the questionnaire so respondents feel 

more comfortable to share such information (Allen, 2017). This varying sensitivity allows us 

to study the relationship between topic sensitivity and the survey breakoff. 

 

Lastly, the survey embedded an experiment about filter question formats in the three 

randomly ordered blocks (i.e. Block 3, 4 and 5). The respondents were randomly assigned to 

either the grouped (49% of the sample) or the interleafed format (51% of the sample). 

Depending on the block, there are five to six filter questions, each of which can trigger five 

follow-ups. 

 

In total, the survey analysed here has 196 question items, and approximately 80% of them are 

in the three randomised blocks (See Table A.1 in Appendix A for the number of questions in 

each block). At the beginning of nearly every question block, there is an introduction 

statement which informs respondents of the upcoming block’s topic and encourages 

respondents to give accurate answers. Respondents can either click a radio button to show 

their acknowledgement or skip to the next question. Among the 196 total items in the 

questionnaire, six items are introduction statements, which we code as the reference category 

for the question topic. On average, the respondent who broke off saw 16 questions (standard 

deviation = 19), much lower compared to those completed the survey (85 questions, standard 

deviation = 21). The descriptive summary for all variables used in this study along with how 

they are coded are provided in Table A.1 and Table A.2 of Appendix A. 

 

4.4 Method 
We use the survival model to answer the research questions. The survival model is useful in 

explaining whether, and if so when, the event of interest happens (Singer and Willett, 2003). 

Following previous studies on survey breakoffs (Peytchev, 2009; Mittereder and West, 

2021), time is measured by the cumulative number of questions respondents saw and treated 

as discrete. As Willett and Singer (1993) emphasised, when the time metric is discrete, the 

likelihood function for estimating the discrete-time survival model and the standard logistic 

regression is algebraically equivalent. We therefore use the standard logistic regression to fit 

the discrete-time survival model in this study. The model is estimated using the glm 

command in R 4.0.2 (R Core Team, 2020) and takes the following form: 
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ln�
𝑃𝑃𝑖𝑖𝑖𝑖

1 − 𝑃𝑃𝑖𝑖𝑖𝑖
� = 𝛼𝛼𝑖𝑖 + 𝛽𝛽1𝑿𝑿𝑖𝑖1 + 𝛽𝛽2𝑿𝑿𝑖𝑖2(𝑞𝑞) 

 

𝑃𝑃𝑖𝑖𝑖𝑖 represents the probability of person i breaking off at question q given that this person has 

not broken off at any question prior to q. This conditional probability is called hazard in the 

survival literature (Singer and Willett, 2003). The equation shows that the logit transformed 

hazard is a linear function of three terms. The first term, 𝛼𝛼𝑖𝑖, is the baseline hazard, which 

quantifies the hazard of breaking off at question q when all covariates in the model are zero. 

The other two terms, 𝛽𝛽1𝑿𝑿𝑖𝑖1 and 𝛽𝛽2𝑿𝑿𝑖𝑖2(𝑞𝑞) represent a set of different covariates X and their 

impact 𝛽𝛽 on the logit hazard. The difference between them is that 𝑿𝑿𝑖𝑖1 represents the time-

constant covariates (e.g., ethnicity) and 𝑿𝑿𝑖𝑖2(𝑞𝑞) represents the time-varying counterparts (e.g., 

question word count). 

 

Four logistic models are developed to answer the research questions in this study.1 Model 1 

involves only time represented as the number of questions seen and the respondents’ 

demographic characteristics while Model 2 adds in the time-varying factors. These two 

models will together address RQ 1 and 2 (i.e. when breakoffs are likely to happen and what 

are the time-varying predictors).  

 

To answer RQ 3 and 4 (i.e. how question topics and filter question formats affect breakoff 

and its timing), the analysis sample is restricted to only Blocks 3, 4 and 5. As mentioned 

earlier, the experiment of topic orders and filter question formats only exists in these three 

blocks. The sample restriction enables us to only investigate the breakoffs happening under 

the experimental design and measure the effect of both factors on breakoffs more directly.  

Model 3 is derived by applying Model 2 to the restricted sample but with two changes. 

Firstly, given that some topics are discarded in the restricted sample, the variable about 

question topics now includes only four categories, namely Clothing (the reference category), 

Utilities, Insurance and Introduction Statement. Using Clothing as the reference category 

(rather than the Introduction Statement as in Model 1 and 2) helps investigate how the topics 

of other two randomised blocks (Utilities and Insurance) impact breakoffs in comparison to 

                                                 
1 We also fitted the continuous-time survival model using R’s survival package (Therneau, 2021), but 
both survival and logistic models gave the same result (not shown). We report the logistic regression 
in this study as it is the model used in many fields for discrete time events. 
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Clothing. Secondly, the variable representing the matrix questions is excluded as these 

questions only exist in Block 2, which is eliminated from the restricted sample. In Model 4 

we add in two interaction terms between time (i.e. number of questions seen) and the 

grouped/interleafed format as well as the question topics. Model 3 will investigate whether 

the question topics and filter question formats impact the breakoff risk, and Model 4 will 

answer whether their impact on breakoffs changes throughout time.  

 

Due to a sizable number of breakoffs prior to the demographic-related questions, 

demographic variables suffer from missing data (ranging from 2% to 8% as shown in Table 

A.1 in Appendix A). To fill in the breakoff cases’ missing demographic information, we used 

multiple imputation. Following Enders (2010), we included all variables in the substantive 

model in the imputation (i.e. breakoff status, time, demographics, question characteristics and 

paradata) as well as the order of question blocks respondents were assigned to (as shown in 

Table 4.1). We created 10 imputed datasets, each of which was obtained after 50 iterations. 

Parameters of all substantive models were separately estimated on these 10 datasets and then 

pooled together by the combining rule of Rubin (1987).  

 

By including the breakoff status in the imputation for the missing demographics, the 

association between them might be artificially increased. As a result, the influence of some 

demographic variables might be inflated in the substantive models that are developed later for 

explaining breakoffs. However, this approach was recommended in the literature on multiple 

imputation (Sterne et al., 2009). Not including the breakoff status in the imputation of 

demographics will assume that there is no relationship between them. This assumption is 

wrong as many past studies have already documented that individuals with certain 

characteristics are more likely to break off, such as those who are older and have a lower 

education degree (Peytchev, 2009; Blumenberg et al., 2018). Therefore, using the breakoff 

status during the imputation helps preserve the relationship between breakoff and 

demographics. Secondly, the present study is focused on investigating the impact of filter 

question formats and question topics on breakoff, so the potential bias in the model 

coefficients related to the demographics is tolerated.  

 

To understand how different methods for handling the missing demographics can impact the 

model result, we also coded the missingness in demographics variables explicitly as a 

category in the model in a sensitivity analysis, but the conclusion regarding our research 
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questions does not change (See these results in Table A.3 and Table A.4 of Appendix A). 

Therefore, models built upon the imputed datasets are reported here. The imputation was 

performed in R 4.0.2 using the mice package (van Buuren and Groothuis-Oudshoorn, 2011). 

For the univariate description of the variables before and after imputation see Table A.1 in 

Appendix A. 

 

4.5 Results 

4.5.1 Change in breakoff hazard over time  

Figure 4.2 plots time (i.e. the number of questions seen) on the x axis and the breakoff hazard 

on the y axis. A larger hazard indicates a higher breakoff risk. Figure 4.2 illustrates that the 

largest breakoff hazard is at the beginning of the survey. The second peak lies between the 

15th and 20th questions. Because questions in the range of the second peak either involve 

sensitive topics (i.e. rent/mortgage for the dwelling), belong to matrix questions or introduce 

a new series of topics, we speculate that the second peak is more likely attributed to the 

question characteristics rather than time. After the second peak, the breakoff hazard tapers 

off. All peaks after 100 questions are mainly due to the rare breakoff event and decreasing 

number of respondents included in the denominator for calculating the breakoff hazard (For 

instance, at the 115th question, only 206 respondents remained in the survey, and a single 

breakoff event among this small denominator is causing large peaks in the tail of the 

distribution). 

 

 
Figure 4.2. Change in the hazard of breakoffs by the number of questions seen. 
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As shown in Figure 4.2, the breakoff hazard is non-linearly associated with time, and there is 

only one change in the direction of breakoff hazard that is genuinely related to time. We 

therefore decided to fit all our survival models using linear and quadratic forms of time. We 

also conducted a sensitivity analysis by coding the time differently (See Table A.5 in 

Appendix A), but the quadratic time model conforms to the trend in Figure 4.2 and strikes a 

good balance between model interpretation, goodness-of-fit and parsimony. Thus, the 

quadratic time model will be reported in the following section.  

 

4.5.2 Factors impacting breakoff and its timing 

Model 1 and 2 investigate what factors impact the breakoff on the full sample. As can be seen 

in Table 4.2, the odds ratio of linear time (i.e. number of questions seen) of Model 1 is 

smaller than one, indicating that the more questions a respondent answers, the less likely she 

is to break off. This trend does not remain constant. The odds ratio corresponding to the 

quadratic time is greater than 1, so the downward breakoff likelihood flattens out to some 

extent as time passes by. 

 

Model 1 also estimates the impact of different respondent demographics on survey breakoffs. 

Non-white respondents are 19% less likely to break off than the white peers. Students have a 

five-fold increase in the breakoff risk. Meanwhile, compared to respondents with a degree at 

the high school level or below, holders of a degree at the college level or above are about 

80% less likely to break off. 

 
Adding question characteristics and paradata to the model (i.e. Model 2) improves the overall 

model fit given the large AIC decrease. Compared to Model 1, the impact of student status 

and education are attenuated but still significant. While the odds associated with ethnicity 

become insignificant, age and household income become positively related to breakoffs. The 

odds of breakoffs for an individual who is ten years older are 10% higher. The odds of 

breakoff for respondents from the high household income group are 64% higher than that of 

peers from the low-income household. 
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Table 4.2. Odds ratio of logistic regression predicting breakoff (based on the full sample). 

Variable  Model 1  Model 2  
Intercept  0.01***  0.28***  
Number of questions seen (linear) 0.92***  0.91***  
Number of questions seen (quadratic) 1.0004***  1.0005***  
Married (ref: no)  0.72  0.92  
Male (ref: female)  1.10  1.14  
Age  1.01  1.01***  
Non-white (ref: white)  0.81*  0.93  
Current Student (ref: no)  5.41***  2.27***  
Education (ref: high school or below) 

College  0.24***  0.46***  
Bachelor or above  0.20***  0.44***  

Household income (ref: low) 
Middle  0.93  1.12  
High  1.56  1.64**  

Topic (ref: Introduction Statement) 
Demographics   0.05***  
Housing   0.27***  
Clothing   0.35***  
Utilities   0.34***  
Insurance   0.54***  
Income   0.07***  

Matrix question (ref: no)   1.33  
Open-ended question (ref: no)   0.87  
Question stem word count   0.98***  
Item nonresponse rate   1.03***  
Grouped (ref: Interleafed)   1.15  
Mobile device (ref: non-mobile)   1.26**  
Multiple sessions (ref: one session)   1.08  
Survey duration (min)   0.76***  
N of Respondents  3,125  3,125  
N of Observations  229,816  229,816  
Log Likelihood  -3,042.74  -2,380.26  
AIC  6,109.48  4,812.53  
* p < 0.1, ** p < 0.05, *** p < 0.01   

 

Some of the estimates in Model 2 conform to expectations. The introduction statement gives 

the respondent a chance to re-evaluate whether they want to continue the survey and thus is 
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expected to associate with more breakoffs. Indeed, compared to the introduction statement, 

the odds of breakoffs in other topics are lower. More interestingly, when facing sensitive 

topics about demographics and income, respondents are approximately 95% less likely to 

break off compared to the introduction statement. Additionally, item nonresponse rate and 

mobile device are positively associated with breakoffs as expected. For every unit increase in 

the item nonresponse rate, the breakoff odds increase by 3%, and mobile device users would 

have 26% higher odds of breakoffs. Also, the more time respondents spend in the 

questionnaire, the less likely they will break off.  

 

In contrast to prior studies, questions with more words are found to be associated with fewer 

breakoffs. More specifically, each additional word in the question stem leads to a decrease of 

2% in the breakoff risk.  

 
4.5.3 Impact of question topic and filter question format on breakoff timing 

Model 3 in Table 4.3 is the result of fitting Model 2 to the restricted sample. After the 

restriction, the number of remaining respondents reduces from 3,128 to 2,797, of whom 188 

break off. As a result, the breakoff rate declines to 6.7%. 

 

As before, the Introduction Statement is still associated with higher breakoff odds. However, 

when comparing to Clothing, Insurance has a higher breakoff risk.2 In total, there are 73 

questions in the clothing block and 55 in the insurance block. The fewer questions in the 

insurance block and randomisation of question blocks together demonstrate that the insurance 

topic is genuinely associated with more breakoffs. The utilities block does not differ from the 

clothing block in terms of breakoff. The less-than-one odds ratio of open-ended questions in 

Model 4 is a surprising finding because nearly all prior studies documented that open-ended 

question is positively linked with survey breakoffs. 

  

                                                 
2 We also ran a model using Insurance as the reference level for the question topic and found that both 
Clothing and Utilities have a lower breakoff risk compared to Insurance (See Table A.7 in Appendix 
A).  
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Table 4.3. Odds ratio of logistic regression predicting breakoff (based on the restricted 
sample). 

Variable  Model 3  Model 4  
Intercept  0.12***  0.19*  
Number of questions seen (linear) 0.91***  0.89***  
Number of questions seen (quadratic) 1.0006***  1.0007**  
Married (ref: no)  1.10  1.10  
Male (ref: female)  0.97  0.97  
Age  0.998  0.998  
Non-white (ref: white)  0.96  0.97  
Current Student (ref: no)  0.94  0.94  
Education (ref: high school or below) 

College  0.96  0.96  
Bachelor or above  0.76  0.77  

Household income (ref: low) 
Middle  0.96  0.96  
High  1.63**  1.63**  

Topic (ref: Clothing) 
Utilities  1.07  0.88  
Insurance  1.74***  4.39*  
Introduction Statement  2.99***  4.34  

Open-ended question (ref: no)  0.42***  0.42***  
Question stem word count  0.98**  0.98**  
Item nonresponse rate  1.0008  1.0007  
Grouped (ref: Interleafed)  1.19  0.19***  
Mobile device (ref: non-mobile)  1.38**  1.39**  
Multiple sessions (ref: one session)  0.95  0.95  
Survey duration (min)  0.84***  0.85***  
Grouped x Questions seen (linear)   1.08***  
Grouped x Questions seen (quadratic)   0.999**  
Utilities x Questions seen (linear)  1.01 
Utilities x Questions seen (quadratic)  0.99994  
Insurance x Questions seen (linear)  0.96  
Insurance x Questions seen (quadratic)  1.0003  
Introduction Statement x Questions seen (linear)   0.98  
Introduction Statement x Questions seen (quadratic)   1.0002  
N of Respondents  2,797  2,797  
N of Observations  149,154  149,154  
Log Likelihood  -1,269.67  -1,262.49  
AIC  2,583.35  2,584.98  
* p < 0.1, ** p < 0.05, *** p < 0.01 
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To investigate the change in time of the breakoff by question topics and filter formats, their 

interaction with time is included in Model 4. None of the interaction terms involving topics is 

significant. In contrast to Model 3, the model estimate of the grouped format on breakoffs in 

Model 4 becomes significant. The odds of breakoffs for respondents seeing the grouped 

format are only 19% of that of those answering the interleafed version. Yet, this difference 

varies by the number of questions respondents see. A more intuitive interpretation of the 

interaction effect of the grouped format and time (number of questions seen) is presented in 

Figure 4.3 where the fitted hazard of breakoffs generated by Model 4 is plotted against time 

for both grouped and interleafed formats.  

 

As shown in Figure 4.3, when respondents see only a few questions, those receiving the 

interleafed format are more likely to break off. However, after approximately the 26th 

question, this trend is reversed; the grouped format starts to experience a higher breakoff risk. 

As respondents see more questions, the breakoff hazard between the two formats eventually 

converges (the fluctuation in both curves after the 120th question is mainly due to the small 

denominator in the hazard calculation). In conclusion, the grouped format can postpone the 

breakoff, compared to the interleafed format. However, as respondents answer more 

questions, the breakoff rate in the grouped format quickly catches up with that in the 

interleafed format. 

 
Figure 4.3. Change of the fitted breakoff hazard across time by filter question formats. 
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4.6 Discussion 
The prevalence of the survey breakoff and the damage it can cause has led to a growing body 

of research into the factors causing it. This study extends this line of research by investigating 

two aspects of questions in particular: question topic and filter question format. 

 

Our analysis finds two specific time points when breakoffs are more likely to happen (RQ 1). 

The first one is at the beginning of the survey. This finding is in accordance with previous 

research (Peytchev, 2009; Vehovar and Cehovin, 2014; Mittereder and West, 2021). The 

second timing is at the beginning of each question block where an introduction statement 

indicates a new set of questions. To further investigate when breakoffs are more likely to 

happen, two additional time-related variables are used in the analysis, namely the number of 

questions respondents see and survey duration. We find that the more questions respondents 

see the less likely they will break off. However, we remain cautious about this finding 

because of the possible confounding with breakoffs. 

 

In terms of the impact of different time-varying factors on breakoffs (RQ 2), some factors are 

in line with prior studies. Respondents who use a mobile device to answer the survey and 

have a higher item nonresponse rate are more likely to break off (Wenz, 2017; Mittereder and 

West, 2021).  

 

However, some predictors affect the breakoff risk in an unexpected direction. The first one is 

the negative relationship between word count in the question stem and breakoffs. We notice 

that the questions in our survey that have more words tend to be filter and follow-up 

questions. Most of the words in those questions are in fact repetitive. For example, every 

question about the price of different clothing items has the same instruction: “Round to the 

nearest dollar. Please include any shipping and handling charges with the cost of any item 

that was shipped”. When facing the repetitive content, respondents might ignore them and 

only read the changing parts in the question. In comparison, for questions that are shorter but 

not repetitive, respondents might need to read every word to understand it. This in fact makes 

questions with more words “shorter” while questions with fewer words “longer”. Another 

surprising finding is that the breakoff risk for open-ended questions is lower than that of 

closed ones. We suspect that this is perhaps because our survey has a large number of open-
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ended questions (36% of the total questions are open-ended). The extensive use of open-

ended questions might make respondents accustomed to this challenging question type. 

 

The third research question (RQ 3) investigated whether the topic of the question impacts the 

breakoff and its timing. Compared to the topic of clothing, the insurance-related topic suffers 

from a higher breakoff risk while there is no difference in the breakoff risk between clothing 

and utilities. Meanwhile, in comparison to the introduction statement, topics on income and 

demographics are relatively more sensitive but have a lower breakoff risk. Yet, the position 

of both blocks was not randomised, so the finding could be confounded by question order. 

Although some topics are associated with a higher/lower breakoff risk, we find that the 

relative difference between topics’ effects on breakoffs remains constant regardless of how 

many questions respondents have seen.  

 

The final question (RQ 4) was whether the filter question format impacts the breakoff timing. 

We find that the grouped format can delay the breakoff but only until respondents realise the 

relationship between filter question and follow-ups and gain a sense of the extra burden. 

 

The present study also has some limitations. Firstly, the web survey analysed here has a 

limited amount of paradata about response behaviours (e.g., question response time). Lacking 

such information prohibits a more detailed analysis on the process leading to breakoffs. Also, 

given that some respondents broke off at Block 1 and 2, there is a possibility that these early 

breakoff cases might differ from those reaching Block 3 (i.e. the first of the three randomised 

blocks). However, our analysis includes respondents’ demographic background, so we expect 

that this issue could be resolved to some extent. Another limitation is that the survey analysed 

here is a non-probability survey and skewed towards female and white individuals, making 

the findings less applicable to the general population. Furthermore, the topics in the survey 

are not fully randomly ordered, so we can only test the effect of those randomised topics on 

breakoffs. Moreover, respondents answering the interleafed format might learn to reduce 

burden by deliberately under-reporting in the filter questions. In this case, they are not shown 

the follow-up questions and consequently break off less often at the later stage compared to 

the grouped counterpart. Future research is needed to answer whether under-reporting could 

explain the difference in the breakoff timing between grouped and interleafed formats. 

Lastly, researchers can also investigate whether our finding about filter questions still hold 
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when all filter questions are presented in a matrix format (as opposed to showing them on 

separate pages). 

 

In spite of these limitations, we believe findings in this paper will be useful to survey 

practitioners. For example, given the fact that a large number of breakoffs happen at the 

introduction statement, questionnaire designers should think about ways to keep respondents 

engaged (e.g., placing this type of statement on the page with a substantive question or 

replacing this long statement with a short title about the topic). Meanwhile, findings about the 

insurance topic demonstrates that some question topics can impact breakoffs. Survey 

designers should place those topics towards the end of the questionnaire or give some 

motivations to the respondents in those topic blocks (e.g., emphasising the anonymity of the 

response). Additionally, the finding about the effect of filter question formats on breakoff 

timing is helpful for surveys that use filter questions extensively. For example, if the interest 

is in the prevalence of instances (e.g., purchase of different clothing items), the survey 

designer might prefer the grouped format as the postponing effect of this format would 

expose respondents to more filter questions. On the other hand, if the researcher cares more 

about the detail of the reported instance, it would be helpful to put the most important pair of 

filter and follow-up questions at the beginning of the interleafed format.  
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Chapter 5 Predicting Web Survey Breakoffs Using Machine 

Learning Models 
 

Abstract 

Web surveys are becoming increasingly popular but tend to have more breakoffs compared to 

the interviewer-administered surveys. Survey breakoffs occur when respondents quit the 

survey partway through. The Cox survival model is commonly used to understand patterns of 

breakoffs. Nevertheless, there is a trend to using more data-driven models when the purpose 

is prediction, such as classification machine learning models. It is unclear in the literature 

what are the best statistical models for predicting question-level breakoffs. Additionally, 

there is no consensus about the treatment of time-varying question-level predictors, such as 

question response time and question word count. While some researchers use the current 

values, others aggregate the value from the beginning of the survey. This study develops and 

compares both survival models and classification models along with different treatments of 

time-varying variables. Based on the level of agreement between the predicted and actual 

breakoff, we find that the Cox model and gradient boosting outperform other survival models 

and classification models respectively. We also find that using the values of time-varying 

predictors concurrent to the breakoff status is more predictive of breakoff, compared to 

aggregating their values from the beginning of the survey, implying that respondents’ 

breakoff behaviour is more driven by the current response burden. 

 

 

Keywords 

Breakoff timing, time-varying variables, Cox model, LASSO Cox model, logistic regression, 

random forest, gradient boosting, support vector machine 
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5.1 Introduction  
Web surveys have become one of the most important tools for social scientists, a trend that 

has been accelerated by the Covid-19 pandemic. However, running surveys on the web has 

some limitations, one of which is the high survey breakoff (Tourangeau, Conrad and Couper, 

2013). Survey breakoff happens when the respondent starts the survey but does not complete 

it (Lavrakas, 2008). Consequently, the sample size available is reduced, and survey estimates 

can be biased when those that break off differ from those that complete the survey.  

 

There are two main approaches to mitigating the damage of breakoffs. The first one is 

reactive. The differential breakoff propensity can be corrected via weighting after the data 

collection (Steinbrecher, Roßmann and Blumenstiel, 2015). The other is minimising the 

breakoff during data collection. For example, a model can continuously monitor the breakoff 

risk during the response process and triggers some interventions (e.g., displaying motivation 

messages) when the respondent is predicted to break off soon (Mittereder, 2019).  

 

For both post-hoc correction and real-time intervention, a good prediction model of the 

breakoff is essential. Such a model would identify the factors strongly associated with the 

breakoff propensity and make weighting more effective. Also, a good prediction of the 

breakoff risk would help activate the intervention at the most relevant timing and potentially 

increase its efficiency.  

 

The Cox survival model is widely used when studying survey breakoffs (Peytchev, 2009; 

Hochheimer et al., 2016; Mittereder, 2019) as not breaking off implies “surviving” the 

response process. Previous research has shown that this traditional model can achieve a 

relatively satisfactory prediction accuracy (e.g., 78% for Mittereder, 2019). 

 

However, there is a growing interest to go beyond traditional statistical models and use 

machine learning to improve the prediction performance even further (e.g., Lee and Lim, 

2019; Spooner et al., 2020). Currently, there is scant application of survival machine learning 

in predicting survey breakoffs. Against this backdrop, the present study will first compare the 

survival machine learning models with the traditional Cox model to investigate whether the 

former improves the performance of breakoff prediction.  
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Meanwhile, classification models, another class of machine learning, are widely used in 

survey nonresponse prediction (e.g., Kern, Klausch and Kreuter, 2019; Liu, 2020) but never 

applied to breakoff prediction. Models of this class usually treat each row in the data as 

independent. We will compare five classification models to see how they perform with 

regards to predicting breakoffs in the data where the rows are not independent from each 

other (i.e. questions in the row are clustered by respondents). These five models are: 

traditional and LASSO logistic regression, Random forest, Gradient boosting, and Support 

Vector Machine. Finally, we will compare the best performing survival model with the best 

performing classification model to investigate whether considering the clustered data 

structure by the survival model improves the breakoff prediction performance. 

 

In addition to the statistical model used, what predictors are included and the way they are 

coded also play a crucial role in the model prediction performance (Kuhn and Johnson, 

2013). Unlike time-constant predictors (e.g., socio-demographic variables), there is no 

consensus in the existing literature regarding how to treat the time-varying variables (e.g., 

question response time and question word count). In fact, three different treatments were used 

in prior studies of survey breakoffs: using the variable as it was originally coded (i.e., 

concurrent with the outcome) (Vehovar and Cehovin, 2014), lagged (Galesic, 2006) or 

accumulated (Peytchev, 2009). All these treatments are based on different assumptions 

regarding how the time-varying variable affects breakoffs. For example, a cumulative view of 

the predictors would emphasise the importance of accumulated burden in a survey while a 

concurrent coding would emphasise the importance of the variable where breakoff happens. 

While the treatment of the time-varying variables is essential for the understanding of the 

causal mechanisms leading to breakoffs as well as the quality of the prediction models, few 

researchers have explicitly tested which treatment (and the associated assumption) is better, 

particularly in terms of the model prediction performance. The present study will investigate 

this by fitting all above models with different coding of time-varying predictors.  

 

The present study will contribute to the existing literature in two ways. First, we will help 

identify the model that is most predictive of breakoffs and can therefore be used both for real-

time interventions and to generate weights for breakoff adjustments. Second, by investigating 

different ways of using time-varying predictors, this study will contribute to the theoretical 

debate regarding the process leading to breakoffs. 
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5.2 Literature review 

5.2.1 Real-time intervention in web surveys 

Breakoffs are common in web surveys. For example, Revilla (2017) reviewed 185 opt-in web 

surveys distributed through a Spanish survey company and documented a mean breakoff rate 

of 11.8%. In another meta-review, Liu and Wronski (2018) documented an average breakoff 

rate of 13% across the 25,000 non-probability web surveys implemented in SurveyMonkey.  

 

Given the prevalence of breakoffs, survey researchers have devoted attention to studying the 

breakoff as a specific outcome of interest and found a number of important predictors. Some 

examples are using the small-screen device to answer the survey (Lugtig and Luiten, 2021) or 

implementing technically complicated features in the survey (Funke, Reips and Thomas, 

2011). Based on the identified factors, researchers usually propose changes in designs that are 

prone to breakoffs, such as optimising the survey for mobile devices (Mavletova and Couper, 

2015). However, most proposed solutions are reactive, meaning that survey practitioners can 

only make changes after data collection. In this case, proactive solutions may offer a better 

alternative to mitigate the damage of breakoffs. One example of proactive solutions is the 

real-time intervention in web surveys (Kreuter, 2017). Such systems have been implemented 

in surveys and proved to be useful, for example by discouraging respondents from speeding 

through the questionnaire (Conrad et al., 2017).  

 

The study of Mittereder (2019) is one of the few that used a proactive approach in the context 

of discouraging survey breakoffs. She implemented a model in a survey that continuously 

calculated the breakoff risk at the page level for each respondent. When the model predicted 

a breakoff risk that was higher than a pre-set threshold, a message appeared and highlighted 

the importance of completing the entire questionnaire. Prior to the survey, the sampled 

members were randomly assigned to three groups where the timing of displaying the message 

varied. The control group never had a pop-up message (i.e. no intervention) while the generic 

group saw the intervention message immediately at the first question (i.e. intervening 

irrespective of the breakoff risk). Respondents of the tailored group only received the pop-up 

message when the model predicted a high likelihood of quitting in the next question (i.e. 

intervening at the highest breakoff risk). When comparing the control group with the other 

two, the study found that the message was effective in lowering the breakoff rate among 

some specific respondents, such as students and females.  
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The review so far highlights the potential of the real-time intervention system in web surveys. 

Using such a system to effectively combat breakoffs has three pre-requisites: (1) the model 

can accurately predict the breakoff risk at the question level, (2) variables in the model are 

predictive of the imminent breakoff and (3) the interventions are effective in discouraging 

breakoff. Nevertheless, there is limited research in all three areas currently. The present study 

will explicitly tackle the first two aspects. 

 

5.2.2 Models of web survey breakoffs 

The Cox survival model is commonly used in the study of survey breakoffs (Peytchev, 2009; 

Hochheimer et al., 2016; Mittereder and West, 2021). This model estimates the breakoff 

hazard which is defined as the probability of a person breaking off at a specific question 

given that this person has not experienced this event before (Mills, 2011). Previous research 

has shown that the Cox model can give a relatively satisfactory prediction performance. For 

instance, the study of Mittereder (2019) reviewed above reported that 78% of survey pages 

were correctly predicted to be (non-)break pages. 

 

Despite the achievement of traditional statistical models, data-driven machine learning 

models are increasingly being used. One explanation for this change is that the traditional 

statistical models always include all input predictors even though some predictors are not 

associated with the breakoff hazard. Including many irrelevant predictors in the model can 

lead to overfitting and poor model interpretability (Tibshirani, 1997). In contrast, some 

machine learning models have a built-in feature of automatic predictor selection, which helps 

exclude predictors that contribute little or none to the outcome prediction (Wang, Li and 

Reddy, 2019). Another reason for the movement to the machine learning models is that those 

models are usually non-parametric, meaning that users do not need to make prior 

specification about the relationship between the outcome and the input predictors as the 

traditional statistical models require (Buskirk et al., 2018). Such flexibility in the model form 

can reduce the chance of the model misspecification and thus has potential for improving the 

model prediction performance. 

 

However, there is currently little research regarding the potential of survival machine 

learning models in survey research (including breakoff prediction). Against this backdrop, the 

first research question of this study is: 
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RQ1. Do survival machine learning models predict web survey breakoffs more accurately 

than the traditional Cox survival model? 

 

In contrast to the scant application of survival machine learning models in survey research, 

classification models, another class of machine learning, are increasingly used in modelling 

survey nonresponse. Indeed, many survey researchers have documented that classification 

machine learning models could predict survey nonresponse more accurately, compared to the 

traditional logistic regression. Some examples of the classification models fitted in those 

studies are LASSO logistic regression (Signorino and Kirchner, 2018; Liu, 2020), support 

vector machine (Kirchner and Signorino, 2018), random forest (Buskirk, 2018) and gradient 

boosting (Kern, Weiß and Kolb, 2021).  

 

However, unlike survival models, most classification models cannot handle the clustered 

structure in the survival data. To be more specific, many predictors of survey breakoffs 

(especially those question-level predictors) are time-varying, such as the question word count 

and question response time. To accommodate such predictors in the breakoff study, the long 

data format (where a row is a combination of respondents and questions) has to be used. This 

clustered structure (questions are clustered within respondents) means that some rows are 

dependent. This is different from the wide format (a row represents a unique respondent) 

where the classification models can easily treat each row as independent observations. 

Studies mentioned earlier already demonstrate that classification models can produce good 

prediction in the wide data, but it is unclear whether those models can still perform well when 

there is clustering in the data (and if so what is the best model among them). Thus, the second 

research question of this study is: 

 

RQ2. What is the best classification model for predicting web breakoffs in clustered data? 
 

If the ultimate goal of the researchers is to have a good prediction model for better survey 

weighting or breakoff intervention, survival models and classification models are two 

available options. Both classes of models approach the task of prediction differently and have 

its own merits, but one question remains unanswered is which of them can predict breakoff 

more accurately. On the one hand, accounting for the clustered structure in the data makes 

survival models more in line with the data generating process (Singer and Willett, 2003), 

which is expected to produce more accurate breakoff prediction. On the other hand, 
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classification models focus primarily on finding the pattern between predictor values and the 

breakoff event and then use such a pattern to make predictions on new data. Currently, no 

researcher has compared survival models and classification models in the context of survival 

data to investigate whether respecting the clustered data structure is useful for breakoff 

prediction. The third research question will bridge this gap: 

 
RQ3. Does the best performing survival model predict web survey breakoffs more accurately 

than the best performing classification model? 

 

5.2.3 Predictors of web survey breakoffs 

In addition to comparing different models for breakoff prediction, this study will also 

investigate how different types of variables affect breakoff, with a specific focus on the time-

varying predictors. In the literature about breakoffs, a wide range of predictors are usually 

explored, but all of them can be grouped into time-constant and time-varying predictors. The 

former includes predictors whose values do not change throughout the questionnaire. 

Examples are features implemented at the survey level (e.g., the survey displays the progress 

bar or not) (Villar, Callegaro and Yang, 2013) and respondent characteristics, such as gender 

(Peytchev, 2011) and education (Blumenberg et al., 2018). On the other hand, values of 

predictors in the time-varying group change from question to question, such as the number of 

characters in the question (Tijdens, 2014). 

 

As the value of the time-constant variables always remains the same, researchers can directly 

include this type of variable in the model. However, for the time-varying variables, there are 

different approaches to include them in the modelling. Each approach is based on different 

assumptions about how the time-varying variable affects breakoffs.  

 

At one extreme, some researchers accumulate the values of the time-varying variables from 

the start of the survey until the respondent breaks off. Supporters of this approach assume 

that breakoffs are caused by the gradual accumulation of burden from the beginning of the 

survey. An example of the variable coded in this approach is the cumulative number of 

questions the respondent has seen since the start of the survey (Peytchev, 2009). 

 

Another approach of treating the time-varying variable involves no processing at all but using 

the original coding of the variable. In this case, researchers implicitly assume a concurrent 
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effect of the variable: some factors are so burdensome that their presence is likely to result in 

a breakoff event. When including time-varying variables in the model of breakoffs, 

researchers use the predictor value that is concurrent with the outcome. An example is the use 

of a binary variable which indicates whether or not the survey page signifies more incoming 

questions (Vehovar and Cehovin, 2014). 

 

Other strategies that have also been used in the past are in between the two treatments we 

discussed so far. One example is using the lags of the time-varying predictors. Like the 

accumulation approach, lagging assumes that the past event influences the breakoff 

likelihood. However, this approach further assumes that the recent event (as opposed to all 

events in the past) matters the most in breakoff prediction. For instance, Galesic (2006) used 

respondent’s self-reported interest and burden of the previous question block (a block 

consists of multiple questions of the same topic) to explain their breakoffs at the next block. 

In this case, the lagged-one value of the time-varying variable was used. 

 

In summary, researchers have different assumptions regarding how the time-varying 

variables impact breakoffs, which in turn determines the way they treat the time-varying 

variable in statistical models. However, little research has been conducted to explicitly 

compare these different treatments of the time-varying variables (and the associated 

underlying assumptions), especially in the context of breakoff prediction. As a result, this 

study will compare three different treatments of the time-varying predictors: using either only 

cumulative or concurrent coding and using both simultaneously. By comparing the prediction 

performance resulted from these different treatments, the study will answer the fourth 

research question: 

 

RQ4. What is the best way to treat time-varying predictors of breakoffs in order to maximise 

the prediction performance? 

 

5.3 Data 
The data used in this study comes from a repeated, cross-sectional and non-probability web 

survey about respondents’ spending on clothing, utilities bills and non-health insurance (e.g., 

vehicle and home insurance) (Eckman, 2021). The survey was administered to the members 

of the Lightspeed Panel, an opt-in web panel in the United States. Upon completing the 
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survey, the respondents received points which can be accrued and redeemed later. Two waves 

were collected. The first wave was conducted between September and October 2019 while 

the second was collected in October 2020. The majority of the respondents in both waves are 

not students (around 70%), have a degree at the college level or above (70 %) and belong to 

the white ethnicity group (74%). The proportion of married respondents is roughly the same 

as the unmarried ones. Respondents in the first wave tend to be younger than those from the 

second wave (an average of 43 vs. 48). Although the first wave survey has more questions 

than the second one (196 vs. 126), the respondents of both waves spent, on average, 

approximately 11 minutes in the questionnaire before survey breakoff or completion.  

 

The survey is considered appropriate to analyse for three reasons. First, it recorded the 

outcome of interest, namely breakoffs. Out of the 3,128 and 2,370 respondents in the first and 

the second waves, 520 and 403 quit the survey without completing it, resulting in a breakoff 

rate of around 17% for both waves. Furthermore, the survey recorded the last question 

respondents completed, meaning that the breakoff position is known. More importantly, the 

breakoff pattern of both waves is very similar. As can be seen in Figure 5.1, the highest 

breakoff hazard happened at the beginning of the survey for both waves. The second peak 

occurred after 10 to 15 questions, and questions within this range either involve sensitive 

topics (i.e. rent/mortgage for the dwelling), belong to matrix questions or introduce a new 

series of topics. The second peak occurred few questions earlier in Wave 2 simply because 

some questions were not asked in this wave, bringing forward those sensitive and matrix 

questions and the associated second peak. After the second peak, the breakoff hazard in both 

waves tapered off. All peaks after the 100th questions in Wave 1 were mainly due to the 

continually decreasing sample size involved in the breakoff hazard calculation (206 

respondents remained in the survey at the 115th question compared to over 3,000 respondents 

when the survey started). The similar breakoff pattern across waves means that we can mix 

data of both waves when training and testing models. 
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Figure 5.1. Change in the breakoff hazard by the number of questions seen for each wave. 

As the survey was initially conducted to answer questions about specific survey designs, 

three experiments were embedded in it. The first two experiments described below were 

implemented in both waves, but the third experiment was only carried out in Wave 2. 

 

The first experiment is about the filter question format. The filter question is a type of 

question that can trigger some follow-ups when answered positively. For example, answering 

“yes” to the filter question “Have you bought any jacket in the past 12 months” will activate a 

set of questions such as “Where did you buy it” and “How much did it cost”. There are two 

formats for asking filter and follow-up questions, namely the grouped and interleafed format. 

In the grouped format, respondents see all filter questions of one particular topic (e.g., cloth 

items) together before moving to the follow-ups. On the other hand, individuals responding to 

the interleafed format are immediately exposed to the follow-ups if they answer “yes” to the 

filter questions. Depending on the question block, there were five to six filter questions, each 

of which could trigger five follow-up questions. Respondents were randomly assigned to one 

of the two formats. 

 

The second experiment is related to the order of the question topic. In each wave, there were 

six question blocks: demographics, housing, clothing, utilities, non-health insurance and 

income. The first question block (Block 1) always asked respondent’s demographics 
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followed by the characteristics of their housing unit (Block 2). Questions about respondent’s 

household income were always shown in the last question block (Block 6). Respondents’ 

clothing purchase, utility payment and non-health insurance were randomly assigned to one 

of the remaining blocks (Block 3, 4 and 5). This randomisation created six possible block 

orderings, and respondents were randomly allocated to one of the orderings. 

 

The third experiment (present only in Wave 2) is concerned with the order of the questions 

within the randomised blocks (Block 3, 4 and 5). In the first wave, the position of questions 

in all six blocks was fixed. In the second wave, while the order of the questions within Block 

1, 2 and 6 still remained the same, the questions within Block 3, 4 and 5 were ordered in one 

of the two ways: (1) high-frequency to low-frequency and (2) low-frequency to high-

frequency. The frequency is determined by how often the respondents selected a “yes” for the 

filter questions in Block 3, 4 and 6 in the first survey wave. Again, respondents were 

randomly assigned to one of the two groups. 

 

All three experiment designs were crossed, so the respondents could only be in one of the 12 

experimental groups in the first wave (2 filter question formats × 6 block orders) and one of 

the 24 experimental groups in the second wave (2 filter question formats × 6 block orders × 

2 question orders).  

 

5.4 Method 
Two classes of models are fitted in this study (See Table 5.1), and both are applied to the 

long data (where questions are clustered by respondents) in this study to predict breakoff at 

the question level. The first class is the survival model, which can predict the probability of a 

respondent breaking off conditional upon no prior breakoff event for this respondent. The 

traditional Cox model and LASSO Cox belong to this class of model and are fitted in this 

study. Differently, models of the second class ignore the clustering of questions per 

respondent in the data, so they will consider each record in the data as a separate respondent 

and predict the probability of that record in the data having a breakoff event independently 

from all other records. We denote such a model class as the classification model, and five of 

them are fitted in this study: traditional and LASSO logistic regression, support vector 

machine, random forest and gradient boosting. 
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Table 5.1. Models fitted in this study and their tuning hyperparameters. 

Model type Hyperparameter Description 

Survival model 

Cox - Not applicable  

LASSO Cox - 𝜆𝜆 - Penalty term 

   

Classification model 

Logistic - Not applicable  

LASSO logistic - 𝜆𝜆 - Penalty term 

SVM - 𝜑𝜑(∙) 

- 𝐶𝐶 

- Sigma 

 

- d 

- Kernel function 

- Penalty term 

- Influence of each observation has on the 

decision boundary (only used in radial kernel) 

- Polynomial degree (only used in polynomial 

kernel) 

Random forest - trees 

- mtry 

- min_n 

- Number of trees 

- Number of predictors to consider for a split 

- Minimum number of cases in a node for a split 

to continue 

Gradient boosting - trees 

- mtry 

- tree_depth 

- learn_rate 

- min_n 

 

- Number of trees 

- Number of predictors to consider for a split 

- How many splits a tree can have 

- Learning rate 

- Minimum number of cases in a node for a split 

to continue 

 

5.4.1 Traditional Cox model 

As mentioned earlier, predicting survey breakoffs is essentially a survival problem, and the 

traditional Cox model is designed to handle the survival data. It can explain whether breakoff 

will happen and if so its timing (Singer and Willett, 2003). We code the timing as the number 

of questions seen by respondents up to the point where they broke off or completed the 

survey, which is an approach commonly used in the prior literature (Peytchev, 2009; 

Mittereder and West, 2021). 
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As shown in its equation below, the breakoff hazard at a specific time t is modelled as the 

product of the baseline hazard ℎ0(𝑡𝑡) (i.e. the breakoff risk when all predictor values are zero 

or at the reference level) and the predictor’s multiplicative effect 𝛽𝛽 on the breakoff hazard. 

 

ℎ(𝑡𝑡) = ℎ0(𝑡𝑡) ∙ 𝑒𝑒𝛽𝛽𝛽𝛽 

 

To estimate the coefficients 𝛽𝛽, the partial likelihood is used. For computational efficiency, 

the negative log transformation of the partial likelihood is actually estimated, and the 

algorithm will identify the combination of parameters that minimises the negative log 

likelihood. Given the popularity of the Cox survival model in estimating breakoff risks, it is 

used as a benchmark for other survival models fitted in this study. 

 

5.4.2 LASSO Cox 

LASSO Cox builds on the traditional Cox survival model by adding a penalty term to the 

negative log likelihood estimate to penalise those models that have many parameters 

(Tibshirani, 1997). The penalty term 𝜆𝜆 is a non-negative hyperparameter and controls the 

degree of penalisation. When 𝜆𝜆 is zero, no penalisation is imposed, and the fitted model is the 

same as the traditional Cox model. The larger the 𝜆𝜆 the more estimated model coefficients are 

shrunk towards zero. Some of the coefficients will be equal to zero when 𝜆𝜆 is large enough 

and they will be excluded from the final model. This automatic predictor selection is 

especially useful for complex models where there are a large number of predictors. The 

LASSO Cox model is used in this study to see whether a simpler model would outperform 

the full-size Cox survival model. 

 

5.4.3 Support vector machine 

Like LASSO Cox model, the support vector machine (SVM) also uses a penalty term and 

aims to minimise a defined function. Despite this similarity, SVM operates very differently. 

It tries to find a hyperplane in the high-dimensional space defined by the number of 

predictors such that the breakoff and non-breakoff respondents, represented as points in the 

space, can be linearly separated (Rhys, 2020). Given that there might be many hyperplanes 

that could perfectly separate the two classes, the best one must satisfy two criteria. It should 

be farthest from the points of both classes, and points of one class (y = 1) lie above this 

hyperplane while points of the other class (y = -1) fall below it.  



 78 

However, two classes (in this case respondents who complete and break off the survey) are 

rarely perfectly separable by a linear plane in practice. SVM addresses this issue in two ways. 

Firstly, users can extend the space by transforming the predictors. The transformation is 

equivalent to adding more dimensions to the data, which makes the data linearly separable in 

the enlarged dimensions. The function for the transformation is called the kernel 𝜑𝜑(∙). Some 

commonly used kernels are linear kernel (i.e. no transformation), polynomial kernel (e.g., 

quadratic) and radial kernel. The second approach for finding a linear separating hyperplane 

is allowing some misclassification (i.e. the respondent is predicted by the model to be a 

breakoff case though the reverse is true). The extent of allowed misclassification is controlled 

by a non-negative penalty term 𝐶𝐶. Larger 𝐶𝐶 will impose more penalty on the misclassification 

and push the fitting algorithm to work harder to produce more correct classification.  

 

The kernel function 𝜑𝜑(∙) and the penalty value 𝐶𝐶 are two of the hyperparameters in SVM. 

Using the hyperplane with the tuned hyperparameters, the respondents can be classified as 

breakoff or non-breakoff cases depending on which side of the hyperplane they are predicted 

to fall into. 

 

5.4.4 Random forest 

Both random forest and the boosting require fitting multiple decision trees. Based on the 

breakoff status, the decision tree recursively partitions the respondents into two child nodes 

using one of the input predictors. As such, respondents within the same node become more 

homogeneous in terms of their breakoff status while respondents between nodes are more 

dissimilar (Buskirk et al., 2018). Gini index quantifies the heterogeneity of a node based on 

the proportion of breakoff and non-breakoff respondents in the node. The higher the Gini 

index the less homogeneous (or more heterogeneous) the cases in the node are. By comparing 

the Gini index of a parent node with that of the child nodes resulted from using different 

predictors to split the tree, the decision tree will choose the predictor which can make the 

largest reduction in the Gini index compared to the parent node. The splitting process will 

stop according to some user-defined criteria such as the minimum number of respondents 

required in a node for making a further split (Rhys, 2020). 

 

Although the random forest and boosting are based on the decision tree, the way they develop 

a single tree slightly deviates from the fitting process described above. The random forest 
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incorporates two randomised elements into the tree growth. Both randomisations reduce the 

chance of overfitting and are the two main tuning hyperparameters in random forest. Firstly, 

rather than using the same data to train the tree model, the random forest will randomly draw 

B bootstrapped samples from the original data where each of the bootstrapped sample is as 

large as the original dataset (James et al., 2013). Then, the decision tree is independently 

developed on each of the B bootstrapped samples. The second randomisation happens when 

selecting predictors to make a split. Instead of considering all input predictors as the 

candidate for making a split, only a random subset of the predictors is considered in the 

random forest (James et al., 2013).  

 

When using random forest to predict the breakoff status, each tree in the forest produces its 

own prediction (i.e. breakoff or non-breakoff), then the model makes the final prediction by 

choosing the most frequent predicted breakoff status across all the trees. 

 

Random forest is used in this study for two reasons. First, this model requires little data pre-

processing in contrast to others machine learning models, and it can automatically handle 

some complex model structures (e.g., interactions). Also, most users are familiar with the tree 

structure, thereby facilitating the interpretability to a degree. All in all, we expect the random 

forest to strike a good balance between model prediction performance and interpretability. 

 

5.4.5 Gradient boosting 

Like the random forest, gradient boosting also involves fitting multiple trees. However, the 

two models differ in three main aspects, namely (1) how the fitting algorithm starts, (2) 

whether the growth of the subsequent tree depends on the preceding trees, and (3) what is the 

dependent variable.  

 

Specifically, gradient boosting begins by assigning every respondent the same constant (e.g., 

the average breakoff hazard calculated from the data). The prediction error for each 

respondent is then simply calculated as the difference between this assigned breakoff hazard 

and the observed breakoff status (i.e. 0/1). A decision tree is then fitted using the prediction 

error as the dependent variable. Once this tree is developed, it is combined with the initial 

average breakoff hazard to make new predictions about the breakoff hazard for all 

respondents. Taking the difference between the new prediction and the observed breakoff 
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status will lead to a new set of prediction errors, which another tree will proceed to model. 

This three-step cycle (i.e. fitting trees on the prediction errors, making new predictions by 

combining the initial average value and all trees fitted so far, and calculating prediction 

errors) will continue until some user-defined conditions are reached, such as the maximum 

number of tress allowed. 

 

In gradient boosting, every subsequent tree gradually learns the prediction mistake made by 

previous ones and improves upon it. Existing literature has shown that the final model from 

this gradual model development tends to perform better (James et al., 2013). There are many 

hyperparameters to be tuned in gradient boosting, such as the tree depth (how many splits are 

performed in a tree) and the learning rate (how quickly the tree learns from the previous 

mistake). Gradient boosting, SVM and random forest ignore the clustering of the data and it 

is unclear whether they can improve the breakoff prediction than the two survival models 

described earlier. 

 

5.5 Analysis plan 
To develop and evaluate all the models, we combine both waves of the Lightspeed Panel data 

and draw a stratified random sample (stratified by wave and breakoff status) with a 

proportion of 75% of the total rows in the data. These 75% selected rows are used as the 

training data, and the remaining data are the testing data.3 All models are built and tuned 

using the training data, after which the models are applied to the unseen testing data to 

predict breakoffs at the question level. The level of agreement between the predicted breakoff 

from the model and the true breakoff status from the testing data forms the basis for 

evaluating the model performance.  

 

Because the training data are in the long format and many questions do not have a breakoff 

event (99.75% vs. 0.25%), a class imbalance problem exists. To solve its negative impact on 

the utility of classification models, we down sample the training data when building the 

classification models so that the ratio between breakoff and non-breakoff questions is 1:1 

(Kuhn and Johnson, 2013). Given that the survival models can handle the clustered data 

structure, no class balancing is applied to the training data when fitting such models. For 

                                                 
3 The sampling was conducted at the respondent level, meaning that once a respondent was selected to 
be in the training data all question-level data of the selected person were included in the training data.  
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survival and classification models, they are evaluated on the same testing data (where no 

class balancing is carried out). In total, the original training data for developing the survival 

models have 274,658 rows compared to 1,390 rows in the down-sampled training data for 

developing the classification models. The testing data have 92,952 rows. 

 

The data suffer from some levels of missing demographics because some respondents quit the 

survey before answering those questions. The level of missing demographics varies by the 

variables but ranges from 1% to 12% (See Table B.1 and Table B.2 in Appendix B). To 

include those respondents in the model development, we decided to code the missingness as 

an explicit category in the demographic variables. This decision is likely to artificially 

increase the prediction performance of demographic predictors. This is because respondents 

who broke off prior to the demographic questions will always have the missingness category 

in those variables. However, it is still necessary to code the missingness explicitly because it 

minimises the sample loss during the model development. The sample size plays an 

important role in the development and tuning of machine learning models, which partitions 

the data into multiple small subsets. An insufficient number of breakoff cases in the 

partitioned data might prevent the data-driven machine learning algorithm from reaching its 

optimum performance. Additionally, in most surveys, demographic information is usually 

unknown a priori and can be only collected from the questions in the survey. Thus, when 

respondents do not answer questions on their demographic background, it leads to missing 

demographics, and coding the missingness explicitly is one of the solutions that researchers 

can adopt in practice. Overall, the benefits of allowing the model fitting algorithm to function 

properly and developing predictive models for the real-world situation outweigh the risks 

associated with coding the missing demographics explicitly. 

 

To evaluate the performance of the survival models, the concordance index (C-index) is used. 

This metric quantifies the proportion of respondent pairs in which the breakoff case has a 

higher predicted breakoff risk (Harrell, Lee and Mark, 1996). The C-index with a value of 0.5 

indicates that the model is just as good as the random guess while a value of one means that 

the model can perfectly distinguish breakoff respondents from those who complete the 

survey. Because the C-index is specifically designed to work with clustered and imbalanced 

data (which is the case for the testing data in this study), it will be used primarily to quantify 

the prediction performance of survival models in this study.  
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In contrast, there is no guidance on how to evaluate the prediction performance of the 

classification model when it is applied to clustered and imbalanced data. Therefore, five 

metrics (Accuracy, Sensitivity, Specificity, Precision and AUC) are used to evaluate the 

performance of the classification models from different aspects (Kuhn and Johnson, 2013). 

Accuracy measures the proportion of correctly predicted breakoff and non-breakoff cases out 

of all available records. Sensitivity and Specificity quantify the proportion of correctly 

predicted breakoff/non-breakoff cases out of all actual breakoffs/non-breakoff records 

respectively. Precision is a metric about the proportion of actual breakoff cases out of all the 

predicted breakoff cases. Differently, AUC (area under the receiving operator curve) is an 

aggregate metric, which summarises the model performance across different combinations of 

the true positive rate (also called Sensitivity) and false positive rate (1 - Specificity). All five 

metrics range between zero and one, and the larger the value the better the model prediction 

performance is. 

 

As with the development of machine learning models in other studies, we also tune some 

model hyperparameters. All these hyperparameters are listed in Table 5.1. We use a random 

grid search in the tuning where 100 combinations of the hyperparameter values were 

randomly tried for each model (Kuhn and Johnson, 2013). Tuning is performed using the 

five-fold cross-validation in the training data. The best hyperparameter value identified via 

the cross-validation is used when re-fitting the corresponding model on the entire training 

data. In the end, there are 28 models (7 model types × 4 predictor groups). These 28 models 

will be evaluated using the testing data.  

 

To answer RQ 1 about whether LASSO Cox is better than the traditional Cox model, their C-

index values are compared. For RQ2 (what is the best classification models for predicting 

web survey breakoffs), Accuracy, Sensitivity, Specificity, Precision and AUC are compared 

among classification models. These five metrics will be used again when answering RQ3 

where the outperforming survival model from RQ1 and the outperforming classification 

model from RQ2 are compared. This is because both classes of the model can generate these 

five metrics, which ensures that the comparison is on an equal footing.  

 

Unlike the between-model comparison in the first three research questions, answering RQ4 

(how different predictor groups affect the prediction performance) will involve within-model 

comparison. More specifically, the comparison of evaluation metrics is performed across four 
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predictor groups (See Table 5.2), which is repeated for each of the seven model types 

mentioned earlier. The prediction performance of the models that only have respondents’ 

demographic background is treated as the baseline. Time-varying question-level predictors 

are coded in two ways, namely concurrent and cumulative. Predictors coded in the former 

way need no pre-processing and are used in the model directly. In contrast, the cumulative 

coding will aggregate the values of the predictors question by question. For instance, the 

predictor about the open-ended question will be binary (i.e. whether or not a specific question 

is open-ended) in the concurrent coding, but the cumulative coding will record how many 

open-ended questions the respondents have seen so far. Comparing the baseline prediction 

performance with that of the two models that respectively include the concurrent and 

cumulative time-varying predictors, we can investigate whether the time-varying predictor 

groups are more predictive of breakoff and which coding is better. Finally, respondents’ 

demographic information and both time-varying treatments are simultaneously put into the 

model to see whether using all available predictors improves prediction performance.  

 

Table 5.2. Predictors used in this study. 

Predictor group Predictors 

Demographics Age, education*, ethnicity, student status*, marital status*, filter question 

format, and question order* 

  

Concurrent Responding device, item missing*, matrix question, open-ended question, 

question topic, and question word count, filter question format, and question 

order* 

  

Cumulative Item missing (cumulative)*, matrix question (cumulative), open-ended 

question (cumulative), question topic (cumulative), and question word count 

(cumulative), and number of times respondents logged into the web survey 

(cumulative), filter question format, and question order* 

  

All combined All predictors above 

* Its main effect and interaction with time are both included in the model. 
 

Regardless of which predictor group is used, variables about the two experiments (i.e. filter 

question formats and question orders of the high-low frequency) are always included in the 
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models as control variables. The variable about the block orders is not included because its 

information is already represented by the time-varying variable about the question topic. 

Given that some predictors violate the proportionate hazard assumption of the traditional Cox 

model, we interact those violating variables with time (i.e. number of questions seen) in all 

models fitted in this study. Those variables are marked with an asterisk in Table 5.2. The 

descriptive summary for all predictors in this study and their coding are provided in Table 

B.1 and Table B.2 of Appendix B. 

 

5.6 Results 

5.6.1 Comparing survival models 

The C-index in Table 5.3 shows that the traditional Cox model tends to perform better than 

the LASSO Cox in predicting breakoffs. Indeed, the traditional Cox survival model can 

achieve a C-index between 0.68 and 0.85, compared to 0.5 to 0.78 in LASSO Cox.  

 

Table 5.3. Prediction performance of survival models applied to testing data. 

Model type Predictor group Hyperparameter C-index 

Cox Demographics - 0.78 

 Concurrent - 0.74 

 Cumulative - 0.68 

 All combined - 0.85 

    

LASSO Cox Demographics 𝜆𝜆 = 0.00988 0.78 

 Concurrent 𝜆𝜆 = 0.00040 0.69 

 Cumulative 𝜆𝜆 = 2.72 0.50 

 All combined 𝜆𝜆 = 0.00988 0.78 

 

Looking at the predictor groups, the traditional Cox survival model also generates a higher C-

index than the LASSO Cox in three predictor groups. The only exception is when the 

respondents’ demographic information is used as the predictors alone in the model where 

both traditional and LASSO Cox models produce the same C-index. This finding can be 

explained by the way demographics are coded in this study. As mentioned earlier, explicitly 

coded missingness in the demographic variables can artificially increase the correlation 

between this particular category and the breakoff outcome. As a result, even though both 
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models include different numbers of demographic predictors (the traditional Cox survival 

model uses all input demographic predictors while the LASSO Cox has only a subset of them 

due to the penalisation), they can simply predict breakoff using the missingness (rather than 

other categories in the demographic variables). Indeed, a close examination of the model 

result shows that the missingness in demographics makes a dominant influence on the 

prediction of breakoff in both models. Because of this, both models fitted using only 

demographics make the same prediction and produce the same C-index.  

 

From the perspective of the penalty term, it can also be concluded that the traditional Cox 

model is preferred over the LASSO Cox for predicting breakoffs. To be more specific, the 

best penalty values in LASSO Cox are very close to zero (except for the LASSO Cox fitted 

using only cumulative time-varying predictors), which implies that that there is little need for 

penalisation. The large 𝜆𝜆 value in the LASSO Cox using the cumulative coding is related to 

the non-convergence issue during the model development. To be specific, some 𝜆𝜆 values led 

to non-converged models in some folds during the cross validation. The reported 𝜆𝜆 value of 

2.72 was the smallest one among those that were trialled and led to a converged LASSO 

model in all five folds of the cross-validated data. However, using this 𝜆𝜆 value, none of the 

input cumulative time-varying variables is retained in final LASSO Cox. This implies that it 

might be ineffective to use only the cumulative time-varying variables when predicting 

breakoffs. 

 

5.6.2 Comparing classification models 

The next between-model comparison is conducted among classification models. Different 

metrics to evaluate the prediction performance of those models are presented in Table 5.4. 

Looking at the range of all metrics, most of them (except for Precision) are above 0.75, 

indicating that all the classification models achieve a good prediction performance. However, 

the precision is very low (0.01 for the majority of the models), meaning that very few 

breakoffs predicted by the models are in fact breakoffs and the models raise too many false 

alarms about breakoff.  
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Table 5.4. Prediction performance of classification models applied to testing data. 

Model type Predictor group Accuracy Sensitivity Specificity Precision AUC 
 

Logistic Demographic 0.85 0.62 0.85 0.01 0.85 

 Concurrent 0.81 0.73 0.81 0.01 0.87 

 Cumulative 0.80 0.70 0.80 0.01 0.84 

 All combined 0.84 0.78 0.84 0.01 0.91 

 Average 0.83 0.71 0.83 0.01 0.87 
 

LASSO logistic Demographic 0.85 0.59 0.85 0.01 0.85 

 Concurrent 0.81 0.73 0.81 0.01 0.87 

 Cumulative 0.77 0.73 0.77 0.01 0.85 

 All combined 0.86 0.76 0.86 0.01 0.91 

 Average 0.82 0.70 0.82 0.01 0.87 
 

Random forest Demographic 0.85 0.75 0.85 0.01 0.89 

 Concurrent 0.82 0.76 0.82 0.01 0.87 

 Cumulative 0.83 0.72 0.83 0.01 0.87 

 All combined 0.86 0.76 0.86 0.01 0.91 

 Average 0.84 0.75 0.84 0.01 0.89 
 

Gradient boosting Demographic 0.82 0.79 0.82 0.01 0.90 

 Concurrent 0.82 0.77 0.82 0.01 0.88 

 Cumulative 0.81 0.72 0.82 0.01 0.86 

 All combined 0.85 0.77 0.85 0.01 0.91 

 Average 0.83 0.77 0.83 0.01 0.89 
 

SVM Demographic 0.99 0.55 0.99 0.14 0.84 

 Concurrent 0.83 0.69 0.83 0.01 0.86 

 Cumulative 0.79 0.69 0.79 0.01 0.84 

 All combined 0.83 0.80 0.83 0.01 0.91 

 Average 0.86 0.68 0.86 0.04 0.86 
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To facilitate the model comparison, the average of different metrics across the four predictor 

groups is calculated for each model (highlighted in grey). The highest average metric value 

across different models is in bold. As can be seen, gradient boosting gives the best prediction 

performance from the perspective of Sensitivity and AUC. In terms of Accuracy, Specificity 

and Precision, SVM outperforms the other models.   

 

However, SVM excels in those three metrics mainly because of its performance in the 

predictor group of demographics alone. More specifically, fitting SVM with only 

demographics leads to 0.99 in both Accuracy and Specificity, which greatly increases the 

average value of these two metrics for SVM. However, the Sensitivity of SVM 

(demographics only) is 0.55, meaning that only 55% of actual breakoffs are captured in the 

model prediction. Thus, it can be concluded that SVM achieves an overall good prediction 

performance by simply predicting cases to be non-breakoff most of the time, which comes at 

the expense of missing many actual breakoffs. Given that the models in this study are 

developed to predict breakoffs and subsequently trigger real-time interventions, it is 

important to capture actual breakoffs to a large extent. The fact that SVM has a very low 

Sensitivity among the five models means that this model might not be suitable for the 

prediction task. 

 

Looking at the traditional logistic regression, its prediction performance is close to that of 

some machine learning models. Indeed, both the traditional and LASSO logistic regression 

models give a similar performance across the five metrics for model evaluation. This 

corroborates one of the findings when comparing traditional and LASSO Cox models (i.e. 

there is perhaps no need for penalisation). Nonetheless, the traditional logistic regression 

performs less well in Sensitivity and AUC, in comparison to the random forest and gradient 

boosting. This means that the flexibility of the ensemble models can improve upon the 

parametric logistic regression and therefore should be used as the predictive model.  

 

The performance difference between the random forest and gradient boosting is less 

noticeable because both models generate the highest AUC and similar Accuracy, Specificity 

and Precision. However, compared to the random forest, gradient boosting produces a higher 

Sensitivity. Also, given that each tree in gradient boosting focuses on correcting the mistakes 

made by the previous trees, this model has the potential of capturing more complex patterns 

in the data. Overall, we conclude that gradient boosting outperforms the other classification 
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models fitted in this study. The best hyperparameter values for all models are presented in 

Table B.3 in Appendix B.  

 

5.6.3 Comparing the best performing survival and classification models 

Table 5.5 shows the comparison between the traditional Cox survival model and the gradient 

boosting classification model (both outperformed other models among their own class). As 

shown in the table, both models perform equally well as they have similar values in different 

evaluation metrics. Looking at the AUC, a metric that takes into account both the true 

positive rate and false positive rate, gradient boosting is slightly better. Given that gradient 

boosting has fewer model assumptions (in contrast to the proportional hazard assumption in 

the traditional Cox survival model), we therefore conclude that extra consideration of the 

clustering data structure by the survival model might be unnecessary as it does not translate 

into a significant improvement in the performance of breakoff prediction. 

 

Table 5.5. Prediction performance of the best survival model and the best classification 

model applied to testing data. 

Model type Predictor group Accuracy Sensitivity Specificity Precision AUC 

Cox Demographic 0.82 0.79 0.82 0.01 0.88 

 Concurrent 0.82 0.75 0.82 0.01 0.86 

 Cumulative 0.79 0.77 0.79 0.01 0.85 

 All combined 0.87 0.78 0.87 0.01 0.89 

       

Gradient boosting Demographic 0.82 0.79 0.82 0.01 0.90 

 Concurrent 0.82 0.77 0.82 0.01 0.88 

 Cumulative 0.81 0.72 0.82 0.01 0.86 

 All combined 0.85 0.77 0.85 0.01 0.91 

 

5.6.4 Comparing predictor groups 

When comparing the prediction performance between different groups of predictors (i.e. 

within-model comparison), Table 5.3 (for survival models) and Table 5.4 (for classification 

models) together show that using all available predictors frequently results in the highest 



 89 

value in different evaluation metrics. Meanwhile, using only the cumulative predictors leads 

to the worst prediction performance most of the time. Therefore, the concurrent coding seems 

to be more predictive of breakoff than the cumulative coding. However, the performance 

ranking for demographic and concurrent predictors is less clear as it varies by both the 

models and the evaluation metrics. Overall, using demographics seems to be more predictive 

of breakoff than using concurrent predictors. 

 

To understand what variables in the best performing model (i.e. gradient boosting fitted with 

all the variables) contribute the most to the prediction of breakoff, the variable importance 

plot is presented in Figure 5.2. The x-axis shows the importance score, which quantifies the 

extent to which the model replies on the variable when making predictions. A larger 

importance score indicates that the variable is more important for breakoff prediction. For 

each variable, its importance score is calculated by summing up the change in the Gini index 

across all the trees where that variable is used to make a split and then taking the average 

(Hastie, Tibshirani and Friedman, 2009). The 10 most important variables are presented on 

the y-axis.  

 

 
Figure 5.2. Variable importance plot for the gradient boosting (only the top 10 most 

important variables are shown). 
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As shown in Figure 5.2, variables of different predictor groups are in this top 10 list, meaning 

that all types of variables can contribute to the breakoff prediction. Meanwhile, three of the 

four demographic variables in this top 10 list are related to the category of coded 

missingness. This finding is not surprising because, as explained earlier, coding the 

missingness in the demographics as an explicit category artificially increases the association 

between this category and the breakoff status. Another unsurprising predictor in this top 10 

list is the time (represented by the number questions seen). It has been found to be associated 

with breakoffs by many researchers such as Hoerger (2010).  

 

It might be surprising to see that some cumulative time-varying variables not only exist in 

this top 10 list but also rank higher than the concurrent counterparts, especially considering 

the earlier finding that using only cumulative time-varying variables often produces the worst 

prediction performance. However, readers should be reminded of the concept of ecological 

fallacy. It happens when researchers draw wrong conclusions about individuals using 

findings from the groups to which the individuals belong (Brewer and Venaik, 2014). In this 

study, it means researchers are making conclusion about the importance of individual 

variables using findings from the predictor groups to which the individual variables belong. 

To be more specific, the earlier comparison was conducted at the level of predictor groups, 

and the conclusion was that in general the current burden is more influential on the breakoff 

event than the cumulative burden. This group-level finding does not conflict with the finding 

that some specific cumulative time-varying variables can be more important than the 

concurrent time-varying counterparts in the breakoff prediction, which is the conclusion from 

the present predictor-level comparison.  

 

There are three cumulative time-varying variables that are important for the breakoff 

prediction, namely the cumulative number of the question word count, question topic, and 

open-ended question. Meanwhile, the concurrent coding of the question word count and the 

question topic is also found to be important for the breakoff prediction. Given that both 

cumulative and concurrent coding schemes of these variables are present in the top 10 list, 

the predictive model should include these two variables coded in both ways. 
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5.7 Discussion  
Researchers have discovered that post-collection weighting and real-time intervention are 

two promising methods to mitigate the impact of breakoffs. The present study extends this 

line of research by comparing what models are more predictive of breakoffs and thus help 

derive better weighting and trigger the intervention at the most relevant timing. Also, this 

study bridges a previous research gap by investigating what variables and how they should be 

used to maximise the performance of question-level breakoff prediction. 

 

By comparing the C-index of traditional and LASSO Cox models for the survival models, we 

find that the LASSO Cox does not outperform the traditional Cox (RQ1). This finding is in 

line with the result from the same comparison but in the medical field (e.g., Lee and Lim, 

2019; Spooner et al., 2020). Altogether, it implies that the Cox model is perhaps already 

flexible enough to create good prediction in the survival context. This can partly be explained 

by the semi-parametric nature of the traditional Cox model where users do not need to 

specify the baseline hazard, which reduces the chance of model misspecification. Another 

possible explanation is that there might not be a large number of predictors in our study to 

allow the automatic feature selection of LASSO Cox to function properly.  

  

Among the five classification models fitted for the binary classification of breakoffs, we 

found that gradient boosting gives the best prediction performance overall (RQ2). This model 

has been found to be the ‘winner’ in many machine learning comparisons (Bojer and 

Meldgaard, 2021). The commonly cited reason is that this model focuses on correcting for 

the prediction errors made by the models in previous iterations (James et al., 2013). Over 

time, the model will make fewer prediction errors and thus result in better prediction 

performance.  

 

The most interesting between-model comparison is between the outperforming survival and 

classification models (RQ3). In our study, it is between the traditional Cox survival model 

and gradient boosting. We found that gradient boosting outperforms the traditional Cox 

model in terms of AUC. This is interesting because researchers who choose to fit the 

traditional Cox survival model to the survival data assume that taking account of the 

clustered data structure will provide more validity to the model.  However, our study reveals 

that gradient boosting, while ignoring the clustered data structure, can still correctly predict 
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many survey questions as (non-)breakoff questions. Equally importantly, gradient boosting 

can achieve such a good prediction performance but not at the expense of model 

interpretability. Users of the gradient boosting model can still learn what predictors are most 

importance for predicting breakoffs using the variable importance plot or investigate how a 

specific predictor impacts the breakoff risk using the partial dependence plot (Christoph, 

2019). We therefore recommend practitioners to deploy the gradient boosting model if their 

goal is to use real-time interventions to combat web survey breakoffs.  

 

When comparing the prediction performance between predictor types (RQ4), we found that 

using all available predictors always gives the best prediction performance across different 

metrics. Given that both concurrent and cumulative predictors contribute to the prediction, 

we can conclude that both current burden and the burden accumulated since the start of the 

survey can cause survey breakoffs. However, when only using time-varying predictors, the 

concurrent coding is better than the cumulative counterpart. This implies that respondents’ 

decision to continue or quit the survey is more driven by the question they are seeing in the 

moment. We remain cautious about the finding that demographics alone is more predictive of 

breakoffs than concurrent predictors. This is because we coded the missing demographic 

information explicitly as a category in the predictor, so respondents who broke off before 

seeing the demographic questions will always have missing data in demographic-related 

predictors. Our coding could therefore artificially increase the predictive performance of 

demographic predictors. Future research can easily solve this issue by using demographics 

from the sampling frame. 

 

Our study has limitations as well. To begin with, we can only fit one survival machine 

learning model (i.e. LASSO Cox). This is mainly because existing software packages for 

fitting survival machine learning models are not mature enough to handle the long data 

format. Even though the fitting algorithm for LASSO Cox is designed to work with the long 

data, estimating the LASSO Cox with a lambda value of zero (which in theory is equivalent 

to fitting a traditional Cox model) led to a non-convergence result while the traditional Cox 

model converged successfully on the same data. Secondly, we derived most time-varying 

predictors from the question characteristics (e.g., open-ended, number of words), and there is 

a limited number of time-varying predictors about respondents’ behaviours (e.g., the number 

of survey logins). Prior research has demonstrated that response behaviours can shed more 

light on the process leading to breakoffs (Mittereder and West, 2021). Future research can 
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explore how different coding of the behaviour-related predictors affects the prediction 

performance. Lastly, this study cannot investigate whether the lagged version of the time-

varying predictors is more predictive of breakoff compared to other coding approaches. This 

is because creating lags will result in the first few rows of each respondent having missing 

data in the time-varying predictors. Because some breakoffs happened at the first question, 

breakoff cases with missing time-varying predictors will be removed and the sample size for 

model building will be noticeably reduced.  

 

Despite the limitations, our findings can still provide some practical implications. When 

predicting breakoffs, gradient boosting might be the best candidate model, and concurrent 

and cumulative coding of the time-varying variables should be simultaneously included as 

predictors in the model. Future research can extend our study by looking at whether the 

improved prediction performance leads to better survey weighting and more efficient 

breakoff interventions.  

  



 94 

Chapter 6 Comparing Different Methods of Compensating for 

Survey Breakoffs 
 

Abstract 

Web surveys are popular given their low cost and short turnaround time but tend to have 

more breakoffs compared to interviewer-administered surveys. Survey breakoffs occur when 

respondents quit the survey partway through. It causes missing data, which further results in 

reduced sample size for analysis, lower statistical power and may lead to biased survey 

estimates. Few prior studies investigated how to mitigate the breakoff bias in survey 

estimates. This study develops a simulation where the breakoff rate and the cause of 

breakoffs are manipulated. Four methods are then applied to compensate for the breakoff: (1) 

ignoring breakoff completely in the data analysis, (2) classifying breakoff as survey 

nonresponse and then weighting the data using nonresponse propensity, (3) treating breakoff 

as a special survey outcome and weighting the data by nonresponse and breakoff propensity 

combined, and (4) multiple imputation. We find that multiple imputation compensates for the 

breakoff bias slightly better than other methods and using breakoff weighting is the least 

preferred option. Also, the breakoff mechanism is more influential on the effectiveness of the 

method for breakoff compensation than the breakoff rate. Additionally, none of the methods 

employed here can correct for the breakoff bias when the data are Missing Not At Random. 

Based on the findings, we suggest that the breakoff event should be accounted for using 

multiple imputation when the data are Missing Completely At Random or Missing At 

Random. 
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6.1 Introduction 
Online probability surveys have been used widely to support policy making, such as 

investigating the impact of Covid-19 on different ethnicity groups (Morales, Morales and 

Beltran, 2021) or understanding citizens’ concerns about country’s energy security (Caferra, 

Colasante and Morone, 2021). Having a representative survey sample is key to providing 

high-quality evidence for decision-making. However, many factors can affect survey 

representativeness. One of these factors is survey breakoff, which occurs when respondents 

start the survey but do not complete it (Tourangeau, Conrad and Couper, 2013).  

 

The occurrence of breakoff leads to a smaller sample size, lower statistical power and may 

result in biased survey estimates (Steinbrecher, Roßmann and Blumenstiel, 2015). Even when 

the goal of data collection is to make causal inference among the participants in a randomised 

control trial (i.e. rather than generalising findings to the population), participants with certain 

characteristics might break off more often in the trial, which can bias the finding in the trial 

(Leon et al., 2006).  

 

Given the negative effects of breakoffs, many researchers have studied this survey outcome. 

The majority of them focused on exploring what factors impact breakoffs and proposed some 

solutions, such as embracing mobile-friendly designs (Mavletova and Couper, 2015). 

Nonetheless, no matter how successful those solutions are, breakoff is unlikely to be 

eliminated. It is therefore important to use post-collection methods to compensate for this 

type of nonresponse. Surprisingly, few researchers investigated such methods in the context 

of survey breakoff. Instead, it is common to see the adoption of complete case analysis in the 

past literature (Nissen, Donatello and Van Dusen, 2019). This practice assumes that missing 

data happens completely at random (Enders, 2010), which is hardly true in reality. 

Conducting analysis based on a wrong assumption about missing data is likely to result in 

biased estimates (Enders, 2010). 

 

Given that breakoff is a special type of survey nonresponse, two common methods for 

mitigating the impact of survey nonresponse could offer fruitful avenues. These two methods 

are weighting and imputation. While the former weighs up/down the impact of under-/over-

represented respondents, the latter uses answers from other respondents and questions to 

predict the missing data. Both methods have pros and cons. 
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Weighting is easy to calculate as it only requires users to build a statistical model to predict 

respondents’ response propensity and then take its reciprocal. One problem with applying 

weighting to breakoff is that weighting is a unit-level statistic and its value remains constant 

for a given respondent, but breakoff happens at the item level and its propensity varies by 

questions. Also, breakoff weighting can only be given to complete respondents, which means 

breakoff cases are never included in the analysis even though they do provide answers to 

some of the questions.  

 

In contrast to the weighting approach, where information from the breakoff cases (no matter 

whether they break off early or at a later stage) is never utilised in the analysis, imputation 

uses all valid answers from breakoff cases. This is because imputation is conducted at the 

question level. By including more data in the analysis, higher statistical power and, 

potentially, less biased survey estimates can be achieved. However, imputation also has its 

limitations, and one of the them is related to its complexity. For example, unlike the 

weighting approach where users build one model that explains the breakoff status, users of 

the multiple imputation might have to fit multiple models, each of which accommodates the 

types of missing variables (e.g., categorical, numeric). Also, if the variables in the data are 

related (e.g., the imputed number of open-ended questions should not exceed the number of 

total questions respondents saw in the survey), such a relationship should be included in the 

imputation algorithm. Moreover, before answering the substantive questions, users of the 

multiple imputation have to first create multiple imputed datasets, build the substantive 

models on them separately and then pool together the model coefficients (Enders, 2010). All 

these steps add complexity to the application of multiple imputation.  

 

Both weighting and imputation have strengths and weaknesses when compensating for 

breakoff, but there is limited amount of current research that investigates which of them is 

more suitable for dealing with the breakoff bias and, more importantly, under what 

circumstances. Currently, instead of using any of these two methods to treat breakoff as an 

outcome separate from unit nonresponse, most surveys combine breakoff with unit 

nonresponse (e.g., Bailey et al., 2017; CRONOS team, 2018). How such decisions may 

impact survey estimates is not documented. This paper fills this gap by comparing the 

effectiveness of different breakoff treatments in a simulation where the breakoff rates and 

causes are manipulated.  
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6.2 Background 

6.2.1 Breakoff and missing data mechanisms 

Breakoff is common in surveys. For example, Liu and Wronski (2018) reviewed 25,000 non-

probability web surveys distributed among panellists of a commercial survey platform. They 

found an average breakoff rate of 13%. In another example, Revilla (2017) analysed 186 non-

probability surveys conducted in another commercial web panel and reported a mean 

breakoff rate of 11.8%.  

 

Breakoff leads to missing data, which reduces the available sample size and statistical power. 

In the worst situation, the survey estimates become biased if there are systematic breakoff 

patterns behind the missing data. For instance, in the study conducted by Steinbrecher, 

Roßmann and Blumenstiel (2015), voters who had not decided their favourite political 

candidate quit the survey more often, resulting in an underestimated proportion of undecided 

voters in the study.  

 

Previous research on missing data has classified missing data based on three distinct 

mechanisms (Rubin, 1976; Enders, 2010). This classification can also be applied to 

breakoffs. The first type is Missing Completely At Random (MCAR). In this scenario, the 

occurrence of breakoff happens completely randomly, so the resultant data missingness is not 

related to any variable in the data (i.e. neither the outcome of interest nor other variables). 

The second mechanism is Missing At Random (MAR). In this case, breakoff happens 

because of some measured and observed variables in the data. For example, respondents who 

answer the survey on their mobile phones have a higher chance of breakoff (Chen et al., 

2022). As the information about the responding device is commonly recorded in web surveys, 

the breakoff event is now related to this measured variable. Finally, breakoff can happen due 

to a mechanism that is Missing Not At Random (MNAR). In this case, the occurrence of 

breakoff and missing data are directly related to the outcome of interest, and such information 

is not available to the researchers. The underestimated number of undecided voters in 

Steinbrecher et. al (2015) study previously reviewed is a real-world example of MNAR.  

 

The review so far shows that different breakoff mechanisms lead to different missing data 

patterns. When dealing with such missing data, an appropriate method should be used to 

compensate for these different breakoff mechanisms. 
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6.2.2 Methods for breakoff compensation 

Compensating for the missing data can be complex. As a result, researchers may simply 

discard cases that have missing data in any of the variables (i.e. listwise deletion) or in the 

variables of interest (pairwise deletion). For instance, Nissen, Donatello and Van Dusen 

(2019) reviewed 28 studies about physical education and reported 23 of them used complete 

case analysis. Simply removing any cases with missing data ignores the survey weights to 

compensate for the unit nonresponse. A more serious issue is that this approach assumes that 

the data are MCAR, thereby ignoring the possible mechanisms of MAR and MNAR. 

However, the occurrence of missing data due to a MCAR process is rare, and many past 

studies have documented that people with certain characteristics have higher chances of 

breaking off. Examples of such characteristics are age (those who are older are more likely to 

breakoff) and education (those with lower education are more likely to break off) (Peytchev, 

2009; Blumenberg et al., 2018). Therefore, MAR and MNAR are more plausible in practice.  

 

Considering that breakoff is a special type of nonresponse, two post-collection techniques 

used to correct for the survey nonresponse can also be used for breakoff compensation. One 

is weighting, which is essentially a set of numeric values that weigh up/down certain 

respondents if they are under- or over-represented in the sample (Toepoel, 2015). One way to 

obtain the weighting is by taking the reciprocal of the survey response propensity scores 

generated by a statistical model that uses the binary response status as the dependent variable. 

Weighting has been implemented in many probability surveys not only because of the ease in 

its calculation but also due to its ability to reduce bias caused by survey nonresponse. For 

example, by comparing the prevalence of different diseases estimated from a probability 

survey in Sweden with the values from a national register database, Bonander et al. (2019) 

found most diseases were underestimated due to survey nonrespondents. However, the bias 

was reduced after nonresponse weighting was applied during the estimation. 

 

The concept of weighting can be easily extended to breakoff using a two-step propensity 

model. In the first step, sample members’ propensity to respond to the survey is estimated by 

a model, and the survey response weight is obtained by taking the reciprocal of the estimated 

response propensity. In the second step, a separate model is built to estimate the respondents’ 

survey breakoff propensity, whose reciprocal becomes the breakoff weight. In the end, both 

weights are multiplied to form the combined weight. Theoretically, this combined weighting 

should account for not only the factors impacting both unit nonresponse and breakoff (e.g., 
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gender found in Peytchev, 2011) but also those factors that are uniquely associated with 

breakoff (e.g., responding device found in Chen et al., 2022). Therefore, both unit 

nonresponse and breakoff bias should be mitigated by this combined weighting approach.  

 

Despite the ease of calculation, the weighting approach tends to lead to larger variations (i.e. 

less precision) in the analysis result (Biemer and Christ, 2008). This is due to large weights 

which can significantly increase the uncertainty of statistical estimates. This issue could be a 

concern for the combined weighting approach where two weights are multiplied, which has 

the risk of inflating the variation even further. Moreover, weighting is created at the unit 

level, so its value remains constant for a given respondent. In contrast, breakoff is an item-

level event, and its propensity varies across questions even for the same respondent. It is 

unclear from the past literature whether breakoff propensity can be approximated well as a 

unit-level estimate.  

 

Apart from weighting, multiple imputation is another popular approach that is used for 

compensating for missing data and can also be adapted to deal with breakoffs. According to 

Rubin (1987) and Curley et al. (2019), the first stage of the multiple imputation is to develop 

statistical models to explain the distribution of the missing variable given other variables in 

the dataset. Based on the developed model, imputed values are randomly drawn from the 

posterior distribution. This random drawing happens multiple times (typically five to ten) and 

results in multiple imputed datasets. At the second stage, users conduct their analysis 

separately on each of the imputed datasets. The results of the analysis are pooled in the third 

stage. 

 

The multiple imputation approach makes use of answers not only from the complete 

respondents but also from those late breakoff cases (i.e. those who provide answers to some 

questions prior to their breakoff). Using all available information in the data can improve 

power and potentially minimise bias. Additionally, drawing imputed values multiple times 

from a distribution accounts for the uncertainty in the predicted values. This uncertainty is 

also propagated into the analysis stage, making the entire analysis more realistic (Enders, 

2010).  

 

However, the multiple imputation also comes with challenges. For example, given multiple 

imputed datasets, the data analysis becomes more complex. This is because researchers have 
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to develop a model to impute the missing data before they can build the substantive model for 

their research questions. However, developing the imputation model is not easy because 

many decisions are involved (e.g., what imputation model should be used for each missing 

variable, what variables should be included in the imputation model).  

 

Although weighting and imputation differ in how they compensate for breakoff bias, both of 

them require breakoff to be treated separately from survey nonresponse. However, many 

surveys in practice simply classify breakoffs as survey (non)response. For example, all 

breakoff cases were considered as survey respondents and given nonresponse weights in 

CRONOS, a probability web panel which will be described in more depth later in the Data 

Section of this study (CRONOS team, 2018). Meanwhile, designers of Next Steps Age 25 

Survey, a longitudinal probability cohort study in England, adopt a slightly different 

definition of breakoffs. They selected a question block (which consists of questions of the 

same topic) and assigned breakoff cases to be nonrespondents if they broke off prior to the 

selected block (Bailey et al., 2017). Despite the varying definitions of breakoff, none of the 

surveys treats breakoff as a separate survey outcome and specifically compensates for it. 

 

It is unclear from the literature whether breakoffs should be treated separately. On the one 

hand, breakoff cases do respond to the survey request, so they are respondents by definition. 

Many previous studies documented that the majority of breakoffs happen at the beginning of 

the survey (Peytchev, 2009; Vehovar and Cehovin, 2014; Mittereder and West, 2021; Chen et 

al., 2022). Some early breakoff cases might answer only a small number of questions at the 

beginning of the survey and then quit the survey, but those questions are usually not the key 

variables to the survey topic. Meanwhile, the others might simply log into the survey page, 

skim through the questionnaire and leave the survey website without answering any question. 

All those cases can therefore be classified as nonrespondents. On the other hand, although 

some factors simultaneously affect both nonresponse and breakoff (e.g., gender) (Peytchev, 

2011), there are additional impacting factors for breakoff. According to previous research, 

some of these factors are question characteristics (e.g., matrix question) (Steinbrecher, 

Roßmann and Blumenstiel, 2015) and paradata (defined as data about the response process, 

e.g., question response time) (Mittereder and West, 2021). Treating breakoff the same as 

survey (non)response fails to consider those factors and thus risks breakoff bias. Therefore, 

the specific causes of breakoff-induced missing data should be included separately in the 
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post-collection adjustment. The present study investigates these two opposing treatments of 

breakoff and answers the first research question: 

 

RQ1. Does compensating for breakoffs separately in the post-collection adjustment help 

reduce the bias in survey estimates? 

 

To answer this question, we will develop a simulation where the population benchmark is 

known. We then simulate the breakoff in the data and apply four different treatments of 

breakoff in the data analysis. While two treatments do not account for breakoff directly, the 

other two do. The survey estimates derived from these four treatments will be compared with 

the population benchmark to answer RQ1.  

 

As no method is perfect, certain methods are likely to be effective in compensating for the 

breakoff in some scenarios but less useful in others. The scenarios can be defined by two 

varying elements: breakoff rate and missing data mechanism. As reviewed earlier, the 

breakoff rate can vary dramatically from survey to survey. This might have an influence on 

the effectiveness of the proposed compensation methods. For example, when filling in the 

missing data in a specific variable, multiple imputation uses other variables in the data as 

covariates in the model. A higher breakoff rate might cause more missing data in the 

covariates, and this can adversely impact the fit of the imputation model and subsequently 

damage the effectiveness of this compensation method.  

 

Additionally, similar to survey nonresponse, breakoff can happen because of three missing 

data mechanisms, and different mechanisms might require different compensation strategies. 

Under the first mechanism, breakoffs happen completely at random (MCAR), so the breakoff 

bias is unlikely to be present and there might be no significant difference between the 

compensation methods in terms of bias reduction. Alternatively, the breakoff event can be 

associated with certain factors (e.g., age, responding device) and therefore can lead to some 

breakoff bias (MAR).  To mitigate the bias under this mechanism, the compensation method 

should account for those factors in the data analysis. The final breakoff mechanism is related 

with the outcome of interest (MNAR). For example, people with past unpleasant experience 

(e.g., domestic violence) might consider the questions of those topics too disturbing and 

choose to quit the survey. Given that this cause of breakoff is not known or measured, the 
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compensation method might need to incorporate the different missing data patterns directly in 

the analysis. Thus, the second research question is:  

 

RQ2. How is the effectiveness of breakoff compensation affected by different breakoff rates 

and missing data mechanisms? 

 

6.3 Data  
Data used in this study comes from Wave 6 of the CROss-National Online Survey 

(CRONOS) panel. CRONOS is an online probability panel in Estonia, Slovenia and Great 

Britain. It was set up to test the feasibility of conducting an online, cross-national and 

probability survey (CRONOS team, 2018). The target population of CRONOS is individuals 

who live in private households in the three countries and are at least 18 years old. The sample 

members of CRONOS were recruited from the eighth wave of the European Social Survey, a 

face-to-face probability surveys in Europe. Each wave of CRONOS has different topics. In 

Wave 6, topics covered include attitudes towards income equality, society fairness and 

political efficacy. Wave 6 of CRONOS was conducted between January and February in 

2018. In total, 1,812 people in the three countries responded to the survey in this wave, and 

the response rate is approximately 80%. Among those respondents, 110 broke off, resulting 

in a breakoff rate of 6% (CRONOS team, 2018). The data records the response status as well 

as the breakoff status of every sample member and will be referred to as original data 

throughout this study. 

 

The first three columns under the original data in Table 6.1 provide a descriptive summary of 

the categorical variables used in this study. As can be seen, the proportion of sample units 

from the three countries is roughly evenly distributed while Great Britain has a slightly 

higher share in the sample composition. The majority of people voted in the last election and 

were born in the respective country where the survey was conducted. Additionally, most of 

them were above 34 years old, received education at the level of medium or above, lived in 

the urban area, worked in a paid job over the past seven days. Overall, respondents are 

pessimistic by stating that their influence on the politics is medium or low (93% of people). 

Also, as shown in Table 6.2, respondents reported a low level of satisfaction with their 

country’s economy performance and trust in the parliament (both measures range from 0 to 

10, and a higher score indicates more trust/satisfaction). 
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Table 6.1. Descriptive summary of categorical variables used in this study, separated by 

original, complete and synthetic data. 

Variable Original   Complete   Synthetic 
N % (incl. 

missing) 
% (excl. 
missing) 

 N %  N % 

TOTAL 2260 1568 5000 
    
Country 

Estonia 724 32 32  509 32  1623 32 
Great Britain 860 38 38  558 36  1779 36 
Slovenia 676 30 30  501 32  1599 32 

Vote in the last election 
No 434 19 20  279 18  889 18 
Yes 1693 75 80  1289 82  4111 82 
Missing 133 6 -  - -  - - 

Born in the country 
No 256 11 11  134 9  427 9 
Yes 2004 89 89  1434 91  4573 91 

Gender 
Male 983 44 44  667 43  2129 43 
Female 1277 56 56  901 57  2871 57 

Age 
15-24 193 9 9  87 6  266 5 
25-34 426 19 19  253 16  811 16 
35-54 860 38 38  618 39  1965 39 
55-74 669 30 30  529 34  1698 34 
75+ 107 5 5  81 5  261 5 
Missing 5 0 -  - -  - - 

Married 
No 804 36 36  493 31  1566 31 
Yes 1447 64 64  1075 69  3434 69 
Missing 9 0 -  - -  - - 

Urban 
No 788 35 35  564 36  1803 36 
Yes 1472 65 65  1004 64  3197 64 

Education 
Low 321 14 14  180 11  564 11 
Medium 1165 52 52  817 52  2605 52 
High 769 34 34  571 36  1831 37 
Missing 5 0 -  - -  - - 
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Work in a paid job in the past 7 days 
No 807 36 36  561 36  1796 36 
Yes 1453 64 64  1007 64  3204 64 

Response at wave 6 
Nonresponse 421 19 19  0 0  - - 
Response 1812 80 81  1568 100  - - 
Missing 27 1 -  - -  - - 

Breakoff at wave 6 
Breakoff 110 5 6  0 0  - - 
Complete 1702 75 94  1568 100  - - 
Missing 448 20 -  - -  - - 

Device 
Computer 1075 48 59  964 61  3052 61 
Phone 587 26 32  475 30  1532 31 
Tablet 146 6 8  129 8  416 8 
Missing 452 20 -  - -  - - 

People can influence politics 
Low 1449 64 65  1015 65  3229 65 
Medium 651 29 29  455 29  1451 29 
High 146 6 6  98 6  320 6 
Missing 14 1 -  - -  - - 

 

Due to survey nonresponse and breakoff, two categorical variables in Table 6.1 suffer from a 

noticeable amount of the missing data. They are respondents’ voting in the last election (6% 

of cases have missing voting outcome) and responding device (20%).  

 

Among the numeric variables shown in Table 6.2, only the average response time in the 

original data has many missing data (20% of its data are missing). On average, participants 

took approximately 18 seconds to answer a survey question. 
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Table 6.2. Descriptive summary of continuous variables used in this study, separated by 

original, complete and synthetic data. 

Variable Data Min Max Median Mean SD N Missing % 
Average response time (second) Original 2 273 16 18.16 12.85 2260 20 
 Complete 3 102 16 17.63 8.60 1568 0 
 Synthetic 3 101 16 17.76 8.72 5000 0 
Satisfaction with the economy Original 0 10 5 4.88 2.11 2260 1 
 Complete 0 10 5 4.91 2.10 1568 0 
 Synthetic 0 10 5 4.93 2.10 5000 0 
Trust in parliament Original 0 10 5 4.51 2.38 2260 1 
 Complete 0 10 5 4.56 2.39 1568 0 
 Synthetic 0 10 5 4.57 2.39 5000 0 

 

6.4 Simulation 
Respondents who have complete information in the sampling frame, paradata and three 

substantive questions in the survey are used as the base for the simulation. There are 1,568 of 

such respondents, and their descriptive summary can be found in Table 6.1 and Table 6.2 

under the complete data. This dataset pools together the data from all three participating 

countries and is the base for the simulation in this study. One alternative is to conduct the 

simulation separately for each participating country and then combine the simulated datasets. 

However, countries are found to be unrelated to the breakoff outcome. Also, because the 

original data have only 110 breakoff cases across the three participating countries, splitting 

this data into three subsets will greatly reduce the breakoff size in each subset and damage 

the effectiveness of the simulation. Therefore, the original data where three participating 

countries’ records are pooled together will be used in the simulation in this study. 

 

In total, the simulation has three stages (described below). All variables involved in the 

simulation are listed in Table 6.3 where a checked mark indicates the specific stage of the 

simulation at which these variables are used. 
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Table 6.3. Variables used in the simulation and their usage at different stages (Stage 1: create 

synthetic population; Stage 2: simulate survey nonresponse; Stage 3.1: simulate MCAR; 

Stage 3.2 simulate MAR; Stage 3.3 simulate MNAR). 

  Usage in Simulation 

Stage 

Group Variable  1 2 3.2 3.3 

Sampling 

frame 

information 

Vote in last election, Native citizen, Gender, 

Age, Marital status, Living in urban areas, 

Education, Work in a paid job in the past 

seven days, Survey participation country 

    

      

Paradata Device, Average question response time     

      

Substantive Trust in parliament, Perceived political 

influence, Satisfaction towards economy 

performance 

    

 

Stage 1. Create synthetic population and obtain benchmark values 

The first stage is to increase the size of complete cases of the variables used in this study 

from 1,568 to 5,000 by creating a synthetic dataset. This is necessary because the number of 

complete respondents in the original survey data is too small for simulating survey 

nonresponse and breakoffs as well as deriving reliable survey estimates at the later stage. The 

R package synthpop is used, which looks at the patterns in the complete data and synthesises 

new cases based on the pattern (Nowok, Raab and Dibben, 2016).  

 

Using only the complete cases might make the resultant synthetic population differ from the 

true general population. However, this decision is still considered appropriate because the 

main aim of this study is to test whether the breakoff compensation methods can mitigate the 

bias caused by breakoffs. Generalising conclusions to the true general population will require 

the other post-survey adjustments (e.g., compensation for coverage bias, weight trimming), 

which are additional steps beyond the focus of this study. To avoid confusion between the 

simulated population in this study and the true general population, the population created in 

this study will be referred to as synthetic population, and its population parameter will be 
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called the benchmark value. Therefore, the 5,000 cases are the synthetic population. The 

distribution of all the variables before and after the synthesis can be found in Table 6.1 and 

Table 6.2 under the complete and synthetic data.  

 

Using the synthetic population dataset, we can calculate the benchmark value for the outcome 

of interest in this study. That is, people’s stated trust in the parliament of their country. This 

variable is chosen because it is an important measure of government’s ability to perform its 

duties and is often used by researchers (e.g., van der Meer, 2010; Torcal and Christmann, 

2021).  

 

We calculate two statistics of interest for the stated trust in the parliament. The first one is its 

mean value. The second one refers to the coefficients of two explanatory variables of a linear 

regression model on people’s trust in parliament: people’s perceived influence on the 

country’s politics and their satisfaction towards country’s economy performance (sampling 

frame variables are used as control variables in the model). The benchmark values for these 

two sets of statistics will be calculated using the synthetic population dataset as survey 

nonrespondents and breakoff cases do not exist in this dataset at this stage. 

 

Stage 2. Simulate survey nonrespondents 

A logistic regression model using the survey response status as the dependent variable (1 = 

survey response, otherwise 0) is built using the original data (i.e. the data before the 

synthetic data is generated) to estimate the regression coefficients for the explanatory 

variables of survey response. The explanatory variables in this model are the sampling frame 

information such as their age, gender, voted or not in the last election (See Table 6.3). These 

variables are chosen because the CRONOS team used them to compensate for survey 

nonresponse (CRONOS team, 2018).  

 

To obtain the target total of nonrespondents to be drawn later, we multiply the nonresponse 

rate in the original survey (i.e. 20%) with the size of the synthetic population dataset (i.e. 

5,000), which results in 1,000. To simulate this number of survey nonrespondents, we first 

apply the above logistic model to the synthetic population data to predict the survey response 

propensity for every person. Following this, we define strata based on deciles of the predicted 

response propensities. Next, we calculate the mean of the response propensities in each 

stratum. We then randomly draw cases from each of the ten strata with probabilities 
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proportionate to the mean response propensities. As such, people in the first quantile have the 

highest chance to be nonrespondents while those in the tenth quantile have the lowest chance. 

The simulated nonrespondents’ answers to the three substantive questions and paradata in the 

simulated data are deleted, but their sampling frame information is kept in the data.  

 

By artificially relating the survey (non)response with only the observed variables (i.e. 

sampling frame information), the survey nonresponse is simulated under the Missing At 

Random mechanism. Making this assumption has implications for the breakoff 

compensation. As will be described later, when simulating breakoffs, apart from using some 

variables that uniquely affect breakoff, the sampling frame information is also used. In this 

case, survey nonresponse and breakoff share some impacting factors, and compensating for 

the survey nonresponse bias will also compensate for the breakoff bias to some extent. This is 

likely to confound the performance of some breakoff compensation methods investigated in 

this study. However, because of the following reasons, we still conduct the simulation of 

survey nonresponse using the Missing At Random assumption (rather than other two missing 

mechanisms). Firstly, previous studies have noted that Missing Completely At Random rarely 

happens, so using an unlikely scenario for survey nonresponse will damage the application of 

our simulation. Alternatively, using the Missing Not At Random assumption for survey 

nonresponse will mean that we cannot fully accounted for the influence of some of its 

impacting factors on the survey estimates. Consequently, the nonresponse bias that is not 

compensated for will be mixed with the breakoff bias, making it difficult to evaluate the true 

effectiveness of the breakoff compensation methods. Secondly, past studies have already 

documented that some factors can impact survey nonresponse and breakoff simultaneously, 

such as gender (Peytchev, 2011). Therefore, to allow the simulation to be grounded in a real-

world situation and to measure the true effectiveness of the breakoff methods, we decide to 

simulate the survey nonresponse using the MAR assumption. 

 

Stage 3. Simulate breakoff cases 

We simulate breakoff cases while varying two elements: the breakoff rate and breakoff 

mechanism. More specifically, we simulate four different breakoff rates, ranging from 5% to 

20% at an increment of 5%.4 The three breakoff mechanisms are MCAR, MAR and MNAR. 

                                                 
4 We restrict the maximum of the breakoff rate in this simulation study to be no more than 20%. This 
is because any breakoff rate above 20% is uncommon according to the literature reviewed earlier. 
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These three mechanisms are independently simulated, and all of them are conducted only 

among respondents in the simulated data from Stage 2. 

 

Stage 3.1. Missing completely at random 

A proportion (as specified by the breakoff rate) of respondents in the data from Stage 2 are 

randomly assigned to be breakoff cases. Under this mechanism, no variable is used in the 

breakoff simulation, so the occurrence of breakoff does not depend on any variables in the 

data.  

 

Stage 3.2. Missing at random 

To simulate breakoff under the MAR situation, the original data is used to develop a logistic 

regression model where the outcome variable is the binary survey completion status and the 

explanatory variables are sampling frame information and paradata (See Table 6.3). This 

model is then applied to the data from Stage 2 to predict the survey completion propensity for 

each respondent there. In this way, we ensure that breakoff event is related to sampling frame 

information and paradata. Based on the predicted survey completion propensities, 

respondents are assigned to one of the three quantiles, representing low/medium/high- 

breakoff-propensity groups, respectively. 

 

We use a disproportionate approach to simulate breakoffs in MAR. To be more specific, we 

adopt a ratio of 1:2:10 when drawing breakoffs from the low, medium and high breakoff-

propensity groups. As such, we ensure that people in the high-breakoff-propensity group 

have the highest chance to break off (i.e. with a probability of 10/13) while the other two 

groups have a much lower chance (2/13 and 1/13). We choose this ratio in order to test the 

extreme situation where the majority of breakoffs happen in the most-likely-survey-breakoff 

group. By multiplying the simulated breakoff rate (5%, 10%, 15% etc.) and the respondent 

size from Stage 2 (approximately 4,000), we can get the target breakoff size. We then 

randomly draw this size of breakoff cases from the three quantile groups respectively.  

 

 

Stage 3.3. Missing not at random 

In MNAR, apart from assigning respondents to one of the low/medium/high-breakoff-

propensity groups as in MAR, they are also assigned to one of other three quantiles. These 
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three new quantiles represent their low/medium/high trust in the parliament (i.e. our outcome 

of interest). The creation of the two quantile groups is independent from each other. 

 

The cross-tabulation between the two quantile groups leads to a 3x3 table (See Table 6.4). 

We keep the 1:2:10 breakoff ratio for the quantile group about the survey breakoff 

propensity. For the quantile group about the parliament trust, we use a breakoff ratio of 5:2:1 

for the low/medium/high level of parliament trust. As such, we can test the extreme situation 

where people who have low trust in their parliament break off more often. Also, we assume 

that, compared to the outcome of interest, the survey breakoff propensity has a larger 

influence on the survey breakoff likelihood, so we choose five (rather than ten) as the value 

for low parliament trust group. 

 

Multiplying the ratios of the two quantile groups leads to the final ratio for simulating 

breakoffs in different quantile groups under the MNAR mechanism. For example, as shown 

in Table 6.4, if respondents score high in the survey breakoff propensity but low in the 

parliament trust, their chance of breaking off is 50 times higher than those who have a low 

propensity to break off but a high level of parliament trust (i.e. a 1/104 breakoff chance).  

 

Table 6.4. Breakoff probabilities of different quantile groups under the MNAR mechanism. 

 Trust in parliament 

 Low Medium High 

Survey breakoff propensity    

Low 5/104 2/104 1/104 

Medium 10/104 4/104 2/104 

High 50/104 20/104 10/104 

 

We calculate the target breakoff total to be drawn as before and then randomly draw the 

breakoff cases from the nine quantiles disproportionately using the probabilities in Table 6.4. 

By including the trust in parliament when simulating breakoffs but deliberately not 

accounting for it when conducting analysis later, we create a Missing Not At Random 

situation. 
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In the end, we create 12 breakoff datasets (4 breakoff rates × 3 breakoff mechanisms). Note 

that in comparison to Stage 2 where the dataset has only nonresponse but no breakoff, these 

12 datasets now have both nonresponse and breakoff. For all breakoff cases, their answers to 

the three substantive questions are discarded, but their sampling frame information and 

paradata are kept in the data. To account for the variation in the simulation, we repeat each of 

the three simulation stages 200 times, so we create 2,400 datasets to be analysed (4 breakoff 

rates × 3 breakoff mechanisms × 200 repetitions). All simulation and data analysis in this 

study are conducted in R 4.1.2 (R Core Team, 2021).  

 

6.5 Analysis plan 
As mentioned earlier, we calculate two statistics of interest (i.e. mean parliament trust and 

regression coefficients) for each of the 12 breakoff scenarios. We conduct the calculation 

with four compensation methods for breakoff.  

 

1. Ignore breakoff (IG): The first method assumes that breakoffs do not happen and 

simply discards them in the analysis. As a result, only the nonresponse weights are 

incorporated into the analysis. To calculate the nonresponse weights, a logistic 

regression is fitted on the simulated data from Stage 2 (i.e. simulated population with 

nonrespondents only). This model uses the binary survey response status as the 

dependent variable (1 = survey response) and sampling frame information as the 

explanatory variables (see Table 6.3). The fitted model then outputs the response 

propensity, and its reciprocal becomes the nonresponse weights. The process of 

deriving the nonresponse weights remains the same in the third and fourth method 

described below, so it is no longer explained later for brevity. Note that no calibration 

is used in this study. Also, although everyone in the data will be assigned a 

nonresponse weight, the data analysis is based only on the survey respondents. The 

first breakoff compensation method helps us investigate whether completely ignoring 

breakoff influences the survey estimates and if so to what extent.  

 

2. Treat breakoff as nonresponse (NR): The second method recognises the occurrence 

of breakoff but does not treat it as a special survey outcome. Instead, it classifies all 

breakoff as survey nonresponse. As now the number of nonrespondents increases, a 

logistic regression specified in the same way as in the first method is fitted again but 
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this time on this new dataset. The response propensities and survey nonresponse 

weights are updated accordingly. Our two types of statistics of interest are calculated 

based only on respondents who have the updated survey nonresponse weights. As 

reviewed earlier, this method is currently being implemented by some surveys. We 

are interested in how this method performs in terms of mitigating the bias caused by 

the breakoff.  

 

3. Combined weighting (CW): Unlike the previous two methods, the combined 

weighting approach not only recognises the presence of breakoff but also 

compensates for it separately. It considers breakoff as a survey outcome conditional 

on the survey response and calculates weights dedicated for breakoff. Calculating 

such weights requires fitting a separate logistic regression model. The dependent 

variable in the model is the breakoff status (1 = survey completion and 0 = survey 

breakoff), and the explanatory variables are sampling frame information and paradata 

listed in Table 6.3. Following this, respondents’ propensity to complete the survey is 

predicted by the newly fitted logistic model, and its reciprocal becomes the breakoff 

weights. The process of deriving the breakoff weights is the same in MCAR, MAR 

and MNAR. Only complete respondents have breakoff weights. Finally, the combined 

weighting is obtained by multiplying the breakoff weights and nonresponse weights 

and then used in the calculation of our statistics of interest. This combined weighting 

approach will shed light on whether using the unit-level breakoff weighting can 

remedy the bias caused by the item-level breakoff event. 

 

4. Multiple imputation (MI): This method fills in the missing data in breakoff 

respondents’ answers to the three substantive questions using values from complete 

respondents who share similar characteristics with them. The predictive mean 

matching algorithm is used in the imputation. According to Vink et al.(2014), this 

algorithm first fits a model with all other variables as independent variables (i.e. 

sampling frame information + paradata + substantive variables + binary survey 

breakoff status). It then generates predicted values for the variable under imputation 

for both the complete respondents and missing cases. Following this, the algorithm 

finds five complete respondents that have the closest prediction to the case with the 

missing data. One of these five respondents is then randomly chosen as the donor, and 
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the missing cases’ predicted value is replaced by the observed value from the donor. 

Imputing missing data with the observed values avoids invalid or extreme imputed 

values. To account for the uncertainty and variability in the predicted values, we 

create 10 imputed datasets for each of the 12 simulated breakoff scenarios. The 

process of replacing missing data operates iteratively in each imputed dataset and the 

first few iterations usually lead to volatile values. To help the convergence of the 

imputed values, for each of the 10 imputed datasets, we allow the algorithm to replace 

the missing values 50 times before finally filling in the missing data with the value. 

Once the imputation is completed, each of the 10 imputed datasets will produce its 

own estimate for our statistics of interest, which is then pooled together using the 

combining rule of Rubin (1987). They are then weighted by the existing nonresponse 

weights, which is calculated in point (1) above, to create the final survey estimates. 

The multiple imputation is conducted in R using the mice package (van Buuren and 

Groothuis-Oudshoorn, 2011). 

 

In the end, we calculate our statistics of interest under 48 different situations (i.e. 12 

simulated breakoff scenarios × 4 breakoff compensation methods). We then compare them 

with the benchmark value obtained at Stage 1 using the relative absolute bias (RAB).  

 

𝑅𝑅𝑅𝑅𝑅𝑅 = ��
|𝑥𝑥𝑖𝑖 − 𝑋𝑋|

|𝑋𝑋| �
200

𝑖𝑖=1

×
1

200
× 100% 

 

The equation above shows the calculation of RAB for our statistics of interest where 𝑥𝑥𝑖𝑖 (i = 

1, …, 200) represents the survey estimates derived by applying the four treatments of 

breakoff to each of the 200 simulated breakoff datasets. The benchmark value (denoted as X) 

is calculated by taking the average of the corresponding statistic of interest from the 200 

synthetic population data.  

 

By comparing the RAB among the four treatments of breakoff, we will know how they 

perform under different breakoff rates and mechanisms in terms of mitigating the breakoff 

bias. This comparison also allows us to investigate how different types of survey estimates 
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(i.e. univariate estimates and model coefficients) are affected by the breakoff rates and 

mechanisms.  

 

6.6 Result 
Figures below display the Relative Absolute Bias for the two statistics of interest in this 

study: (1) the mean of parliament trust, and (2) the model coefficients regarding the impact of 

people’s perceived political influence (a categorical variable with three levels) and 

satisfaction with their country’s economy (a continuous variable) on their parliament trust. 

All figures are separated by breakoff rates (right, row) and breakoff mechanisms (column). 

Each point in the figures represents the RAB value resulted from using a specific method for 

dealing with breakoffs. The exact RAB values are provided next to the corresponding points. 

Due to rounding, some points located differently on the horizontal scale might have the same 

RAB values next to them. 

 

For the detailed distribution of the two statistics of interest in this study, see the boxplots in 

Appendix C. The Root Mean Square Error (another metric commonly used to evaluate the 

simulation) is also calculated but not reported here because it leads to the same conclusion as 

RAB. For details about RMSE, see Appendix D. 

 

6.6.1 Mean of parliament trust 

As can be seen in Figure 6.1, under the MCAR situation, there is no difference between RAB 

of the four methods when estimating the mean parliament trust. In MAR, the RAB is slightly 

different between the four methods, but the difference is so small that all four methods are 

still considered to be equally capable of correcting for the bias in the mean of parliament 

trust.  
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Figure 6.1. Relative Absolute Bias of the mean parliament trust, estimated using four 

breakoff compensation methods (left, rows) under three missing data mechanisms (columns) 

and four breakoff rates (right, rows). 

 

Under the MNAR, all four compensation methods clearly produce a biased estimate of the 

mean parliament trust. Indeed, as the breakoff rate increases, the RAB climbs from 

approximately 1% to 8%. It is noteworthy that the combined weighting approach performs 

similarly to other methods when the breakoff rate is 5% and 10%. Nonetheless, when the 

breakoff rate is 15% and above, this approach starts to exacerbate the bias in the estimate. In 

fact, it becomes the worst performing method in the 20% breakoff rate scenario. Another 

finding is that methods which do not treat breakoff specifically (i.e. ignoring breakoff or 

treating breakoff as nonresponse) perform equally well compared to multiple imputation in 

terms of RAB.  

 

6.6.2 Model coefficients 

Figure 6.2 and Figure 6.3 show the regression coefficient for the medium and high level of 

the perceived political influence (reference: low) on parliament trust, respectively. As before, 

four methods perform almost equally well under MCAR.  

 

Under MAR, for the coefficient of medium political influence, the RAB is still similar across 

the four compensation methods. However, for high political influence, a split in the 
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compensation performance emerges. Indeed, when the breakoff rate is 20%, combining the 

breakoff and nonresponse weighting leads to more biased estimated regression coefficients 

while multiple imputation produces the least biased result. The RAB for the two methods that 

do not correct for breakoff directly falls in between. 

 

For the MNAR mechanism, the findings are mixed. For the medium level of political 

influence, ignoring breakoff generates the lowest RAB value, and the worst performing 

method is the combined weighting approach. However, for the high level of political 

influence, ignoring breakoff produces the worst RAB among the four methods while multiple 

imputation has the smallest RAB. For both medium and high level of people’s perceived 

political influence, treating breakoff as nonresponse (the method currently used by many 

survey agencies for dealing with breakoff) is never the first in the ranking of the best 

performing method. 

 
Figure 6.2. Relative Absolute Bias of the model coefficient corresponding to the perceived 

political influence (medium vs. low), estimated using four breakoff compensation methods 

(left, rows) under three missing data mechanisms (columns) and four breakoff rates (right, 

rows). 
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Figure 6.3. Relative Absolute Bias of the model coefficient corresponding to the perceived 

political influence (high vs. low), estimated using four breakoff compensation methods (left, 

rows) under three missing data mechanisms (columns) and four breakoff rates (right, rows). 

When it comes to the RAB for the regression coefficient of people’s satisfaction with their 

country’s economy performance on parliament trust (See Figure 6.4), there is not much 

difference in the RAB among the four methods. This is true given that the difference in RAB 

is less than 1% among the four compensation methods for any combination of missing data 

mechanisms and breakoff rates. It means all four methods can perform equally well when 

mitigating the bias in the model coefficient of people’s economy satisfaction on parliament 

trust. 
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Figure 6.4. Relative Absolute Bias of the model coefficient corresponding to the satisfaction 

towards country’s economy performance, estimated using four breakoff compensation 

methods (left, rows) under three missing data mechanisms (columns) and four breakoff rates 

(right, rows). 

Overall, looking at the RAB of the four compensation methods across the univariate mean 

and regression coefficients, the multiple imputation is found to give a good and consistent 

performance when compensating for breakoff as it produces either the lowest or the second-

lowest RAB depending on the variables. One possible reason is related to how this method 

imputes the missing data. As multiple imputation operates at the question level, it can learn 

the complex relationship between missing data and observed variables at the question level. 

Taking into account this subtle relationship might improve the compensation. In contrast, the 

combined weighting approach can only consider the same relationship at an aggregate level 

(i.e. respondent level) and therefore fails to capture the subtlety in the relationship and 

becomes the worst-performing method in this study.  

 

For the compensation method that is currently used by many survey agencies (i.e. breakoff is 

considered as unit nonresponse and compensated for via nonresponse weighting), it is rarely 

the best-performing method in this study. This means that not considering the factors that 

uniquely impact the breakoff fails to correct for the breakoff bias. As for the approach that 

ignores the breakoff (i.e. IG), it sometimes surprisingly generates a better or similar 

performance compared to other three methods that acknowledge the existence of breakoffs. 
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One possible explanation for this finding is that some survey variables might not have a large 

amount of breakoff bias to be compensated for. As the impact of breakoff on different 

variables is unlikely to be universal, some variables might suffer from little breakoff bias. 

When the amount of breakoff bias is small (especially when the breakoff rate is low), the 

breakoff cases can be discarded without greatly damaging the estimates. However, in such a 

situation, for the methods that either update the nonresponse weights by treating breakoff 

cases as nonrespondents (i.e. NR) or create weights specifically for breakoff (CW), the 

resultant weights might be too large for a small amount of breakoff bias. As a result, both 

methods overshoot the benchmark values. Given the good performance of multiple 

imputation in such a situation as well as its ability to keep the maximum amount of 

information in the data (as opposed to discarding the answers from the late breakoff cases), 

this method should be recommended for the breakoff compensation. 

 

Moreover, comparing the RAB of the univariate mean and regression coefficients gives an 

insight into how different types of estimates are affected by the breakoff. To be specific, 

comparing the RAB of the mean parliament trust (i.e. Figure 6.1) to that of the three model 

coefficients (i.e. Figure 6.2, Figure 6.3, and Figure 6.4), it can be found that the former is 

smaller than the latter for any given combination of the breakoff rate and missing data 

mechanism. Indeed, the RAB of the mean parliament trust is between 0.7% and 8%, but that 

of the model coefficients ranges from 3% to 16%. All this implies that the breakoff is more 

likely to affect the multivariate model coefficient than the univariate estimate.  

 

Comparing the RAB between the univariate mean and regression coefficients also shows how 

sensitive different types of estimates are to the change in the missing data mechanism. More 

specifically, the RAB of the mean parliament trust is close to 0.7% under the MCAR and 

MAR scenarios, but this value can increase by as much as 7% when MNAR happens. In 

contrast, the same shift in the missing data mechanism only leads to a moderate increase (less 

than 3% most of the time) in the RAB of the model coefficients. An exception is the model 

coefficient corresponding to the perceived medium political influence. When the breakoff 

rate is 20% and the missing data mechanism changes from MCAR/MAR to MNAR, the RAB 

of this coefficient increases by as much as 10%. Nonetheless, for other three breakoff rates 

(5% to 15%), when the missing data mechanism changes, the change in its RAB is relatively 

moderate. Overall, we can conclude that the univariate estimate of the outcome variable (as 
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opposed to the model coefficients of the explanatory variables) is more sensitive to the shift 

from the MCAR/MAR to MNAR.  

 

6.7 Discussion  
Many researchers have proposed different design optimisations or real-time interventions to 

discourage breakoff, but few have investigated the impact of post-survey adjustments on 

survey estimates. This study fills in the gap by comparing four methods that compensate for 

breakoff, with a focus on testing whether methods that treat breakoff as a special survey 

outcome can bring extra benefits in terms of correcting for the bias (RQ 1). The robustness of 

all four methods is also investigated under different breakoff rates and missing data 

mechanisms (RQ 2). 

 

The answer to RQ 1 is mixed and needs further research. To be specific, compared to the two 

methods that do not treat breakoff directly (i.e. ignoring breakoff or treating breakoff as unit 

nonresponse), calculating weights for breakoff and combining it with the nonresponse 

weights does not reduce breakoff bias. In fact, this combined weighting approach can 

exacerbate the bias for some variables. This finding indicates that breakoff should not be 

treated separately from unit nonresponse. However, when comparing multiple imputation to 

the two methods that do not treat breakoff directly, the former helps reduce the breakoff bias 

to some extent. This finding implies that breakoff should be compensated for separately. 

Nonetheless, the statistical model used in the multiple imputation (i.e. predictive mean 

matching) differs from that in the weighting approach (i.e. logistic regression). In this case, it 

is unclear whether the superior performance of multiple imputation is due to either the model 

used or the separate treatment of breakoff.  

 

In terms of the robustness of the four compensations methods (RQ 2), it is found that their 

performance is affected by the breakoff mechanism more than the breakoff rate. To be 

specific, as the breakoff rate increases within the same breakoff mechanism, the performance 

ranking of the four methods does not change (except for the combined weighting approach in 

the univariate mean estimation). When the breakoff rate remains the same but the breakoff 

mechanism changes, the best compensation method varies. Therefore, the discussion on the 

robustness of the four methods employed in this study will be based on the missing data 

mechanisms. 
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When the data are MCAR, no difference is found in survey estimates derived from the four 

compensation methods. This is true for the estimation of the univariate mean as well as for 

the model coefficients in the multivariate analysis. Nonetheless, the finding is less consistent 

under the MAR mechanism. For some variables, all four methods perform equally well, but 

for others multiple imputation gives the smallest relative absolute bias value while the 

combined weighting is the worst performing method. Under the MNAR mechanism, the 

combined weighting approach tends to produce the worst performance, and the performance 

of the remaining three methods varies depending on the statistic of interest.  

 

Overall, the answer to RQ 2 is as follows. For MCAR, there is no dramatic difference in the 

performance among the methods. For MAR, multiple imputation helps mitigate the breakoff 

bias but only slightly better compared to other three methods. Meanwhile, correcting for 

breakoff using the breakoff weights usually leads to more bias. In the context of MNAR, 

none of the four methods in this study solves the breakoff bias. 

 

Based on the findings, there are two practical implications for the survey designers. Firstly, 

more attention should be paid to the cause of breakoff. This study has shown that the 

occurrence of breakoffs can affect the survey estimates in both univariate and multivariate 

analysis, and more importantly, different causes of breakoff impact different types of 

estimates disproportionately. Currently, many survey agencies either do not record the 

breakoff incident or simply combine the breakoff cases with partial interviews or unit 

nonresponse. In this case, it is impossible to investigate whether breakoff bias exists and its 

extent.  

 

Secondly, researchers should use multiple imputation to compensate for the breakoff-induced 

missing data. In the simulation, the multiple imputation shows a good and consistent 

performance (i.e. it is either the best or the second-best performing method in the simulation 

depending on the variables). One might argue against the recommended multiple imputation 

as, for some variables, not directly correcting for breakoff generates similar relative absolute 

bias as the multiple imputation. However, even in this case multiple imputation can include 

the substantive answers from late breakoff cases in the analysis, which should improve the 

statistical power. It should also be highlighted that the missing data pattern in this simulation 

is monotonic (i.e. breakoff cases will always have all their substantive answers removed no 

matter at which substantive questions they break off). When there are more missing data 
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patterns in the variables, the ability to use more information in the analysis is expected to 

make multiple imputation perform better in reducing the bias.  

 

The present study has some limitations that future studies can address. To begin with, there 

are only two factors that uniquely impact breakoff (i.e. responding device, and average 

question response time) in the simulation. Researchers can conduct a simulation where 

breakoff has more of its own impacting factors (e.g., mouse back clicks, the number of 

survey logins) to investigate whether the combined weighting approach becomes effective in 

reducing the bias under such a scenario. Secondly, as no methods in this study can solve the 

breakoff bias under the MNAR mechanism, future research should investigate other solutions 

such as pattern mixture models (Hedeker and Gibbons, 2006). Moreover, once a person is 

chosen in our study to be the breakoff case, all their substantive answers are removed in the 

simulation. However, people can break off at different questions in practice, meaning that for 

some breakoff cases we can have a record of their answers to some substantive questions (as 

opposed to seeing all the answers missing). Having such diverse missing data patterns will 

allow researchers to explore how the effectiveness of breakoff compensation methods is 

affected when the variables suffer from different proportions of missing data. Furthermore, 

we cannot find variables that (1) are available to both complete and breakoff respondents and 

(2) strongly correlate with both the breakoff propensity and the outcome of interest. This 

might limit the effectiveness of the two methods that account for breakoff directly. Future 

research can replicate this study with variables that satisfy the above two criteria to see 

whether the findings here still hold.  

 

Despite the limitations, our study provides empirical evidence on the effectiveness of 

commonly used practice where the breakoff is considered as unit nonresponse and 

compensated for via nonresponse weighting. Neither theoretical nor empirical justification 

for this breakoff treatment was documented until now. Also, our study demonstrates that the 

breakoff, as an item-level event, should be accounted for by the item-level technique such as 

multiple imputation. Using a respondent-level breakoff weighting could exacerbate the 

breakoff bias issue.  
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Chapter 7 Conclusion 
This thesis focuses on tackling the web survey breakoff by understanding, predicting and 

mitigating this event at three stages of the survey: before, during and after the survey data 

collection. Findings in this thesis will contribute to the theoretical development in the field of 

survey breakoff research. Also, this thesis can provide guidance for the survey designers to 

tackle the breakoff issue in practice. 

 

7.1 Theoretical contributions 
Chapter 4 demonstrates the importance of accounting for the breakoff timing when studying 

survey breakoff. Currently, when investigating whether some survey designs lead to more 

breakoffs, most past studies ignored the breakoff timing. When researchers found that the 

different designs under investigation led to the same amount of breakoff, they usually 

concluded that the designs did not affect the survey breakoff (e.g, Healey, 2007; Hohne, 

Schlosser and Krebs, 2017). However, this ignores the fact that some designs might be able 

to postpone the breakoff event, and such designs will be preferred as researchers want the 

respondents to answer more questions prior to the breakoff event. By taking into account the 

breakoff timing, Chapter 4 shows that respondents in the interleafed format quit the survey 

earlier in comparison to the grouped format. This insight is new as the breakoff timing was 

not evaluated in the past relevant studies (Kreuter et al., 2011; Eckman et al., 2014). This 

new insight also implies that respondents’ breakoff decision is likely linked to the moment 

when they learn the extra burden caused by the filter questions. All of this contributes to the 

understanding of the process leading to the breakoff. 

 

Additionally, Chapter 4 is the first published study that uses an experimental design to 

causally investigate the effect of question topic on breakoff. Surveys normally have multiple 

topics arranged in a specific order, and the response burden accumulates during the survey 

answering process. Previous research has shown that both the order of the question topics and 

the duration respondents have spent on the questionnaire are associated with breakoff 

(Hoerger, 2010; Teclaw, Price and Osatuke, 2012). Thus, studying the real impact of question 

topics on breakoff requires the separation of these two confounders. However, previous 

research failed to do this as the ordering of questions in those studies was always fixed. Using 

a randomised experiment and the Cox survival model, Chapter 4 shows that the introduction 

statement (i.e. statement that introduces the upcoming topics but does not ask any question of 
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substantive topics) and the topic about respondents’ non-health insurance (e.g., vehicle and 

home insurance) were associated with more breakoffs, in comparison to respondents’ 

clothing purchase and utilities payment. The experimental design in Chapter 4 allows us to 

conclude that these two topics are genuinely associated with more breakoffs. Researchers can 

proceed to investigate the underlying reason in the future. 

 

Chapter 5 contributes to the idea of intervening in real time to minimise survey breakoffs. 

Firstly, it contributes to the development of the statistical model that can accurately predict 

the question-level breakoff. To be specific, Chapter 5 finds that gradient boosting 

outperformed the traditional Cox survival model in breakoff prediction as it achieved a good 

balance between the true positive and false positive rate. In addition to this, gradient boosting 

has fewer model assumptions than the Cox survival model. It means that researchers need not 

worry about any possible violation to the proportional hazard assumption in the Cox survival 

model. Moreover, the tree structure of gradient boosting can implicitly accommodate the 

interaction effects among predictors. All of this indicates that gradient boosting is preferred 

to the traditional Cox survival model for predicting breakoff in real time. More importantly, 

this finding can contribute to a broader discussion: whether the machine learning models can 

perform well in predicting breakoff when there is a clustered structure in the data (i.e. 

questions are clustered within respondents). As machine learning models are not designed to 

handle the specific challenges of breakoff data (e.g., clustering, censoring), many researchers 

are currently using the Cox survival model to explain the breakoff  (Peytchev, 2009; 

Hochheimer et al., 2016; Mittereder and West, 2021). To the knowledge of the author, 

Chapter 5 is the first publication that compared both survival models and machine learning 

models in the context of breakoff prediction. In the end, it was surprising to see that taking 

extra account of the special structure in the breakoff data did not lead to an improved 

performance in the prediction.  

 

The second contribution from Chapter 5 is the clarification on the way to code time-varying 

predictors to maximise the model performance in predicting breakoff. Some of researchers 

accumulated its value from the beginning of the survey (e.g., Peytchev, 2009) while others 

did not carry out any manipulation, using them concurrently (e.g., Vehovar and Cehovin, 

2014). While the assumption behind the cumulative coding is that the response burden 

accumulated since the start of the survey drives the breakoff event, the concurrent coding 

assumes the burden experienced in the moment matters the most. Chapter 5 is the first study, 
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to our knowledge, that systematically investigates these different coding schemes and the 

associated assumptions, particularly in the context of prediction performance. The concurrent 

coding of time-varying variables was found to be more predictive of the breakoff event than 

the cumulative coding. This demonstrates that the current response burden has more 

influence on respondents’ breakoff decision than past cumulative burden. This fits into one of 

the findings in Chapter 4 (respondents might break off in the moment they realise the 

burden).  

 

Chapter 6 contributes to the literature on post-survey adjustments from two perspectives. To 

begin with, it is one of the few studies that provides empirical evidence on how the statistical 

estimates are affected when breakoff is treated as a survey outcome separate from unit 

nonresponse. Currently, breakoff is commonly classified as unit nonresponse and 

compensated for using nonresponse weighting (e.g., Bailey et al., 2017; CRONOS team, 

2018), but this approach was never the best performing method in our simulation. This 

finding casts doubt on the current practice for breakoff compensation. Not only is this 

practice being used without any justification in the documentation, but also it risks not fully 

accounting for the missing data caused specifically by breakoffs. As a result, the survey 

estimate may be biased. Currently, the discussion on whether breakoff should be treated as a 

unique survey outcome is sparse, and research on post-survey breakoff treatment is still in its 

early stages. Nonetheless, it is believed that Chapter 6 will provide a good starting point for 

such research in the future. 

 

Furthermore, Chapter 6 is the first study, to the knowledge of the author, to compare 

weighting and imputation to correct for breakoff. Previous research only applied weighting to 

adjust for breakoff (Steinbrecher, Roßmann and Blumenstiel, 2015). Unlike weighting which 

is a respondent-level technique, multiple imputation operates at the question level and is 

expected to handle the breakoff well because breakoff is a question-level event. This 

speculation was not tested in the published literature until now. It is found in Chapter 6 that 

multiple imputation produced a lower bias in the estimates than the weighting approach. 

Additionally, imputation has the benefits of keeping more information in the data than 

weighting (where the breakoff cases are excluded even though they provide answers to some 

questions). All of this indicates that breakoff should be dealt with using multiple imputation. 

 



 126 

7.2 Practical recommendations 
In addition to the contribution to the academic literature, this thesis also helps inform 

practical decisions that can be taken to tackle the breakoff throughout the entire cycle of 

survey data collection. Firstly, knowing the introduction statement is a natural break point for 

respondents, when designing surveys, some substantive questions can be placed immediately 

underneath those statements on the same page (rather than presenting the introduction 

statement alone on a separate page). Also, survey designers can replace the long statement 

with a short phrase about the upcoming topic. Given that most questionnaires will have 

multiple topics, all these measures are believed to blur the transition from one topic to 

another and therefore minimise the potential impact of such transitions on breakoffs. 

 

Secondly, based on the findings that the respondents are likely to quit the survey when they 

realise the extra burden, it is recommended to move the burdensome questions (e.g., filter 

questions) towards the end of the questionnaire. This solution is expected to delay the 

moment when respondents experience the burden and thus postpone the breakoff event. As a 

further consequence, the collected data will have fewer missing data. 

 

In addition to optimising the survey design, a real-time intervention system can be 

implemented to keep respondents engaged whilst they are answering the survey. To be more 

specific, a gradient boosting model (or ensemble models in general) should be embedded in 

the back end of the survey platform as the predictive model since it achieves a good balance 

between the true positive and false positive rate in this study. In terms of the predictors, all 

types of predictors (i.e. demographics plus time-varying variables coded both concurrently 

and cumulatively) should be used if possible. However, given that many surveys might not 

have information about respondents’ demographic background prior to the data collection 

(which is especially true for many household surveys), the concurrent coding of the time-

varying variables should at least be used. This is because this specific coding can reflect the 

current response burden survey participants are experiencing and tends to be more predictive 

of the imminent breakoff event than the cumulative coding. Such a system will continuously 

estimate and monitor respondents’ breakoff likelihood as they go through the survey 

questions. When their predicted breakoff likelihood exceeds the user-defined threshold, some 

pre-defined interventions can be triggered to keep respondents engaged (e.g., emphasising the 

importance of complete response, reminding respondents of the incentive conditional upon 
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survey completion). Survey practitioners can also choose to restrict the interventions to only 

those types of questions that are known from prior literature to be prone to breakoffs. This 

restriction helps avoid the potential issue caused by the low precision commonly seen in the 

predictive models for breakoff (i.e. models incorrectly predict many breakoff events and 

trigger an excessive number of interventions throughout the entire survey). Also, when it is 

impossible to relocate those breakoff-prone questions to the end of the questionnaire, 

restricting the interventions to only those questions is a useful way to keep respondents 

engaged and potentially mitigate the impact of those questions on breakoff. 

 

Even when the survey data collection ends, survey practitioners still have options to deal with 

the breakoff issue. The first recommended practice is to investigate whether the breakoff 

cases are associated with certain characteristics (e.g., socio-demographic background, and 

paradata recorded during the sample recruitment stage). This analysis will give an indication 

of the presence of the breakoff bias and its extent. If the breakoff bias is found to be present 

and potentially detrimental to the survey estimates, post-survey methods can be adopted to 

compensate for the breakoff-induced missing data. One of the recommended methods is 

multiple imputation. This method has been demonstrated in this study to be able to produce a 

low bias in the survey estimates. Also, multiple imputation retains the maximum amount of 

information in the data (i.e. breakoff respondents’ answers to the early questions are kept in 

the analysis), thereby leading to higher statistical power in the analysis. 

 

7.3 Limitations and future research 
Despite the contributions of this thesis, limitations should also be pointed out. Firstly, the 

introduction survey breakoff needs further exploration. For the surveys used in this thesis as 

well as in past literature, a sizeable number of breakoffs occurred at the first few questions in 

the survey (referred to as introduction survey breakoff). The present thesis cannot explain the 

introduction survey breakoff due to the lack of frame information about these breakoff cases. 

Given that more paradata can be collected at the survey recruitment stage (e.g., contacts, 

login attempts) and this data type can indicate respondents’ cooperation tendency or 

motivation, researchers could investigate how such data can explain the breakoff happening 

at the start of the survey. In addition, the frame data (and previous information collected in 

the longitudinal survey) can also be useful for understanding such early breakoffs. 
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Apart from the paradata at the survey recruitment stage, only a limited amount of paradata at 

the response stage is used across all three substantive chapters. Previous research has shown 

that the response behaviour paradata (e.g., mouse movements, change in the question 

response time) can help explain and predict the breakoff risk. However, the research on the 

coding of such paradata is still at its early stage, and most studies concentrate only on one 

specific paradata - question response time. Thus, research should test different coding 

schemes of other response behaviour paradata. Lagging should receive special attention as 

some researchers assume the most recent events affect the breakoff risk, but few have tested 

this empirically.  

 

The study on the real-time intervention system can also be further improved. For example, all 

predictive models tested in this thesis have low precision. That is, out of those questions that 

are predicted by the model to have breakoffs, only a few of them actually have the breakoff 

event. Triggering interventions using a model with such a low precision level might raise 

many false alarms. Whether it will result in a counter effect (i.e. excessive alarms irritate 

respondents and cause them to break off) still needs exploration. Another limitation relating 

to the model is that only two survival models are fitted in this thesis because the existing 

software package for the survival machine learning model cannot handle the clustered data 

format mentioned earlier. It will be interesting to see whether the survival version of the 

commonly used machine learning models (e.g., survival gradient boosting, random survival 

forest) can outperform the classification counterparts for binary variables in the future. 

 

In addition to the models in the real-time intervention system, the different interventions also 

need more research. This thesis does not touch upon this element, but a range of options are 

available to be tested. One option could be modularising the questionnaire to only ask those 

soon-to-breakoff cases the key module. This intervention ensures that at least some key 

information is collected, which can then be used in the post-survey adjustment. Another 

option is to test different content/wording of the pop-up message (e.g., emphasising the 

conditional incentive vs. the importance of respondents’ completing the survey). This is 

based on the saliency-leverage theory, which states that people care about different elements 

in the survey request and using designs the respondents care the most about can help induce 

cooperation (Groves, Singer and Corning, 2000). All interventions to be investigated in the 

future should be based on theories regarding what motivates cooperation or reduces the 
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response burden. Apart from this, researchers can also borrow from the existing interventions 

for survey nonresponse to tackle breakoff (e.g., targeting). 

 

At the post-survey adjustment stage, the main limitation is related to the simulation. For 

example, all substantive answers of the breakoff cases are removed in the simulation at the 

same point. Yet, respondents quit the survey at different questions in practice, which leads to 

more diverse and complex missing data patterns among the breakoff cases. Future research 

can introduce an extra layer of randomness when discarding the breakoff cases’ substantive 

answers to account for different timings of breakoff. Such a situation will likely lead to a 

better performance in multiple imputation as this method uses all available information 

during the compensation. 

 

Another possible improvement in the simulation is to create missing data in the paradata used 

for the breakoff compensation. Due to technical issues or website blockers, it is common in 

reality to see this data type suffering from missingness. For example, the paradata about 

respondents’ mouse back clicks and skip forwards in this thesis have so much missing data 

that they were discarded. Future research can also simulate the effects of missing paradata. 

This will provide more insight into how the breakoff compensation methods perform. 

Overall, all these adjustments will make the simulation more similar to real-world surveys, 

thereby increasing the external validity.  

 

Additionally, when simulating breakoff, there were only two factors that uniquely affected 

breakoffs (i.e. responding device and average question response time). For the future studies, 

researchers can simulate breakoffs using more factors that only impact this survey outcome. 

Such setting will help investigate whether using the breakoff weighting genuinely worsens 

the estimates, compared to methods that do not deal with breakoff specifically,  

 

Furthermore, no post-survey adjustment methods investigated in this thesis can solve the 

breakoff bias under the MNAR mechanism. This is unsurprising given that most of those 

methods work on the assumption of either MCAR (completely ignoring breakoff) or MAR 

(weighting and imputation). In the future, researchers can study those methods that are 

dedicated to the MNAR scenario, such as mixture models (Hedeker and Gibbons, 2006). 
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7.4 Final remarks 
The trend of adopting web surveys will continue given their benefits in cost-saving and 

speed. While embracing those benefits, survey designers should devote attention to the 

breakoff issue in the web survey. This thesis tackles the web survey breakoff from three 

perspectives: (1) understanding the impact of filter question formats and question topics on 

breakoff and its timing, (2) predicting breakoff during the survey using the best combination 

of machine learning models and coding of predictors, and (3) mitigating the breakoff bias 

using post-survey adjustment. Applying the findings from this thesis to web survey practice 

will lead to survey data that have fewer missing data and more representative samples. More 

importantly, such data will provide governments and companies with high quality evidence 

for their decision-making. 
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Appendices 

Appendix A 
Table A.1 Descriptive summary of categorical variables used in the analysis, before and after 

multiple imputation. 

 Before imputation After imputation  

Variable Frequency Percent Frequency Percent Sourcea 

Respondent-level b (N = 3128)    

Breakoff   Survey 

No 2608 83.38 2608 83.38  

Yes 520 16.62 520 16.62  

Education   Survey 

High school or below 700 22.38 901 28.81  

College 964 30.82 983 31.42  

Bachelor and above 1219 38.97 1244 39.77  

Missing 245 7.83 - -  

Ethnicity   Recruitment 

Non-white 705 22.54 740 23.67  

White 2301 73.56 2388 76.33  

Missing 122 3.90 - -  

Gender   Recruitment 

Female 2060 65.86 2093 66.92  

Male 1019 32.58 1035 33.08  

Missing 49 1.57 - -  

Household income   Recruitment 

Low 774 24.74 787 25.16  

Middle 1468 46.93 1493 47.73  

High 837 26.76 848 27.11  

Missing 49 1.57 - -  

Current student   Survey 

No 2169 69.34 2192 70.08  

Yes 704 22.51 936 29.92  

Missing 255 8.15 - -  

Marital status   Survey 
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No 1458 46.61 1637 52.32  

Yes 1408 45.01 1491 47.68  

Missing 262 8.38 - -  

Responding device     Survey 

Non-mobile device 1896 60.61 1896 60.61  

Mobile device 1229 39.29 1229 39.29  

Missing 3 0.10 3 0.10  

Number of sessions     Survey 

One session 2961 94.66 2961 94.66  

More than one session 167 5.34 167 5.34  

Filter question format   Survey 

Grouped 1544 49.36 1544 49.36  

Interleafed 1584 50.64 1584 50.64  

    

Question-level c (N = 196)    

Topic   Paradata 

Introduction statement 6 3.06 6 3.06  

Demographic 9 4.59 9 4.59  

Housing 10 5.10 10 5.10  

Clothing 72 36.73 72 36.73  

Utilities 30 15.31 30 15.31  

Insurance 54 27.55 54 27.55  

Income 15 7.65 15 7.65  

Matrix question   Paradata 

No 194 98.98 194 98.98  

Yes 2 1.02 2 1.02  

Open-ended question   Paradata 

No 125 63.78 125 63.78  

Yes 71 36.22 71 36.22  
a Variables come from three sources: (1) from the survey itself; (2) recorded during the 

recruitment stage; (3) paradata 
b All respondent-level variables are time-constant 
c All question-level variables are time-varying 
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Table A.2 Descriptive summary of continuous variables used in the analysis. 

Variable Min Max Median Mean SD N 

Missing 

(%) 

Sourcea 

Respondent-level b 

Agec 18 81.00 35.00 43.80 18.20 3128 1.57 Recruitment 

Survey 

duration (min) 

0 123.88 9.82 12.18 11.09 3128 0 Survey 

         

Question-level d 

Number of 

questions seen 

1 187.00 79.00 73.51 33.09 3128 0 Paradata 

Item 

nonresponse 

rate 

0 100.00 7.69 14.01 18.85 3128 0 Paradata 

Word count of 

question stems 

1 55.00 15.50 15.66 10.19 196 0 Paradata 

a Variables come from three sources: (1) from the survey itself; (2) recorded during the 

recruitment stage; (3) paradata 
b All respondent-level variables are time-constant 
c The descriptive summary for this variable is the same before and after the imputation 
d All question-level variables are time-varying 
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Table A.3 Odds ratio of logistic regression predicting breakoffs where missing data is 

categorised separately - based on the quadratic time specification and the full sample size. 

Variable  Model 1  Model 2  
Intercept  0.004***  0.13***  
Number of questions seen (linear) 0.95***  0.93***  
Number of questions seen (quadratic) 1.0002**  1.0004***  
Married (ref: no) 

Yes  0.76**  0.87  
Missing  3.65***  2.06***  

Male (ref: female)  1.06  1.03  
Age  1.01**  1.01***  
Non-white (ref: white) 

Yes  0.74**  0.92  
Missing  0.44***  0.54**  

Current student (ref: no) 
Yes  1.16  0.95  
Missing  6.19***  3.13***  

Education (ref: high school or below) 
College  1.00  0.98  
Bachelor or above  0.78  0.77*  
Missing  7.22***  4.49***  

Household income (ref: low) 
Middle  1.06  1.10  
High  1.24  1.35*  

Topic (ref: Introduction Statement) 
Demographics   0.05***  
Housing   0.34***  
Clothing   0.35***  
Utilities   0.36***  
Insurance   0.58**  
Income   0.06***  

Matrix question (ref: no)   1.37  
Open-ended question (ref: no)   0.85  
Question stem word count   0.98***  
Item nonresponse rate   1.002  
Grouped (ref: Interleafed)   1.09  
Mobile device (ref: non-mobile)   1.15  
Multiple sessions (ref: one session)   0.72  
Survey duration (min)   0.80***  
N of Respondents  3,078  3,078  
N of Observations  226,213  226,213  
Log Likelihood  -2,516.79  -2,234.43  
AIC  5,065.59  4,528.85  
* p < 0.1, ** p < 0.05, *** p < 0.01   
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Table A.4 Odds ratio of logistic regression predicting breakoffs where missing data is 

categorised separately - based on the quadratic time specification and the restricted sample. 

Variable  Model 3  Model 4  
Intercept  0.10***  0.18*  
Number of questions seen (linear) 0.91***  0.88***  
Number of questions seen (quadratic) 1.0006***  1.0007**  
Married (ref: no) 

Yes  1.08  1.08  
Missing  3.78***  3.64***  

Male (ref: female)  0.92  0.92  
Age  0.998  0.998 
Non-white (ref: white) 

Yes  0.96  0.97  
Missing  1.25  1.30  

Current student (ref: no) 
Yes  0.95  0.95  
Missing  0.84  0.88  

Education (ref: high school or below) 
College  0.97  0.97  
Bachelor or above  0.75  0.76  
Missing  0.000001  0.000001  

Household income (ref: low) 
Middle  0.97  0.97  
High  1.68**  1.68**  

Topic (ref: Clothing) 
Utilities  1.10  0.86  
Insurance  1.90***  3.98  
Introduction Statement  3.00***  3.32  

Open-ended question (ref: no)  0.45***  0.44***  
Question stem word count  0.98*  0.99  
Item nonresponse rate  0.9998  1.0001  
Grouped (ref: Interleafed)  1.17  0.18***  
Mobile device (ref: non-mobile)  1.32  1.32*  
Multiple sessions (ref: one session)  1.00  1.01  
Survey duration (min)  0.85***  0.85***  
Grouped x Questions seen (linear)   1.08***  
Grouped x Questions seen (quadratic)   0.9994**  
Utilities x Questions seen (linear)  1.01  
Utilities x Questions seen (quadratic)  0.99995  
Insurance x Questions seen (linear)  0.97  
Insurance x Questions seen (quadratic)  1.0003  
Introduction Statement x Questions seen (linear)   0.99  
Introduction Statement x Questions seen (quadratic)   1.0001  
N of Respondents  2,754  2,754  
N of Observations  146,731  146,731  
Log Likelihood  -1,227.25  -1,220.43  
AIC  2,506.51  2,508.86  
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* p < 0.1, ** p < 0.05, *** p < 0.01   
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Table A.5 Log odds (standard errors) of logistic regression predicting breakoffs using 

different time specifications. 

Time 

Linear  

Time 

Quadratic 

Time 

Cubic  

Time 

4th 

Power 

5th 

Power 

Number of questions seen -0.54*** -0.61*** -0.99*** -1.15*** -1.68*** 

 (0.006) (0.007) (0.01) (0.02) (0.03) 

Number of questions seen2  0.003*** 0.03*** 0.04*** 0.11*** 

  (0.00004) (0.0006) (0.0009) (0.002) 

Number of questions seen3   -0.0002*** -0.0006*** -0.003*** 

   (0.000006) (0.00001) (0.00008) 

Number of questions seen4    0.000002*** 0.00003*** 

    (0.00000006) (0.000001) 

Number of questions seen5     -0.0000001*** 

     (0.000000004) 

N of Respondents 3,128 3,128 3,128 3,128 3,128 

N of Observations 229,940 229,940 229,940 229,940 229,940 

Log Likelihood -8,024.00 -7,285.63 -5,122.42 -4,729.78 -3,915.69 

AIC 16,049.99 14,575.25 10,250.84 9,467.55 7,841.39 
* p<0.1; ** p<0.05; *** p<0.01 
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Table A.6 Goodness-of-fit of logistic regression predicting breakoffs using different time 

specifications. 

Time  

specification Deviance AIC BIC 

Deviance  

difference 

AIC  

difference 

BIC  

difference 

Linear  16,048 16,050 16,060 - - - 

Quadratic 14,571 14,575 14,596 1,477 1,475 1,464 

Cubic 10,245 10,251 10,282 4,326 4,324 4,314 

4th Power 9,460 9,468 9,509 785 783 773 

5th Power 7,831 7,841 7,893 1,628 1,626 1,616 
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Table A.7 Odds ratio of logistic regression predicting breakoffs where the reference category 

for the question topic is Insurance - based on the quadratic time specification and the restricted 

sample. 

Variable  Model 3  Model 4  

Intercept  0.21***  0.82  

Number of questions seen (linear)  0.91***  0.85***  

Number of questions seen (quadratic)  1.0006***  1.001***  

Married (ref: no)  1.10  1.10  

Male (ref: female)  0.97  0.97  

Age  0.998  0.998 

Non-white (ref: white)  0.96  0.97  

Current Student (ref: no)  0.94  0.94  

Education (ref: high school or below) 

College  0.96  0.96  

Bachelor or above  0.76  0.77  

Household income (ref: low) 

Middle  0.96  0.96  

High  1.63**  1.63**  

Topic (ref: Insurance) 

Clothing  0.58***  0.23*  

Utilities  0.62**  0.20*  

Introduction Statement  1.72**  0.99  

Open-ended question (ref: no)  0.42***  0.42***  

Question stem word count  0.98**  0.98**  

Item nonresponse rate  1.001  1.001  

Grouped (ref: Interleafed)  1.19  0.19***  

Mobile device (ref: non-mobile)  1.38**  1.39**  

Multiple sessions (ref: one session)  0.95  0.95  

Survey duration (min)  0.84***  0.85***  
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Grouped x Questions seen (linear)   1.08***  

Grouped x Questions seen (quadratic)   0.9995**  

Clothing x Questions seen (linear)   1.04  

Clothing x Questions seen (quadratic)   0.9997 

Utilities x Questions seen (linear)   1.05  

Utilities x Questions seen (quadratic)   0.9996 

Introduction Statement x Questions seen (linear)   1.02  

Introduction Statement x Questions seen (quadratic)   0.9998 

N of Respondents  2,798  2,798  

N of Observations  149,154  149,154  

Log Likelihood  -1,269.67  -1,262.49  

AIC  2,583.35  2,584.98  

* p < 0.1, ** p < 0.05, *** p < 0.01   

 

  



 152 

Appendix B 
Table B.1 Descriptive summary of categorical variables used in the analysis, by survey wave. 

 Wave 1  Wave 2 

Variable Frequency Percent  Frequency Percent 

Respondent-level (N = 3128)  Respondent-level (N = 2370) 

Breakoff    

No 2608 83  1967 83 

Yes 520 17  403 17 

Education    

High school or below 700 22  501 21 

College 964 31  725 31 

Bachelor and above 1219 39  879 37 

Missing 245 8  265 11 

Ethnicity    

Non-white 705 23  387 16 

White 2301 74  1746 74 

Missing 122 4  237 10 

Current student    

No 2169 69  1703 72 

Yes 704 23  402 17 

Missing 255 8  265 11 

Marital status    

No 1458 47  1008 43 

Yes 1408 45  1087 46 

Missing 262 8  275 12 

Responding device      

Non-mobile device 1896 61  1663 70 

Mobile device 1229 39  693 29 

Missing 3 0  14 1 

Number of sessions      

One session 2961 95  2308 97 

More than one session 167 5  62 3 

Filter question format    
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Grouped 1544 49  1212 51 

Interleafed 1584 51  1158 49 

Question order (within randomised blocks)    

High-low frequency - -  1161 49 

Low-high frequency - -  1209 51 

    

Question-level (N = 196)  Question-level (N = 126) 

Topic    

Introduction 6 3  6 5 

Demographic 9 5  8 6 

Housing 10 5  4 3 

Clothing 72 37  36 29 

Utilities 30 15  30 24 

Insurance 54 28  30 24 

Income 15 8  12 10 

Introduction statement    

No 190 96.94  120 95.24 

Yes 6 3.06  6 4.76 

Matrix question    

No 194 99  124 98 

Yes 2 1  2 2 

Open-ended question    

No 125 64  91 72 

Yes 71 36  35 28 
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Table B.2 Descriptive summary of continuous variables used in the analysis, by survey wave. 

Variable Wave Min Max Median Mean SD N Missing 

(%) 

Respondent-level 

Age 
1 18 81 35 43.80 18.20 3128 1.57 

2 18 81 49 48.29 17.18 2370 10.42 

 

Question-level 

Number of questions 

seen a 

1 1 187 79 73.50 33.11 3128 0 

2 1 119 64 58.11 26.57 2370 0 

Item nonresponse 

rate (%) a 

1 0 100 7.89 14.03 18.83 3128 0 

2 0 100 5.88 12.41 22.99 2370 0 

Word count of 

question stems 

1 1 55 15.50 15.66 10.19 196 0 

2 1 55 14.00 15.85 10.82 126 0 
a This variable is recorded at the question level but aggregated here to the respondent level 

for the purpose of description only. 
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Table B.3 Best hyperparameter values of classification models. 

Model type Predictor group Hyperparameter 

Logistic Demographics - 

 Concurrent - 

 Cumulative - 

 All combined - 

   

LASSO logistic Demographics 𝜆𝜆 = 0.00901 

 Concurrent 𝜆𝜆 = 0.00077 

 Cumulative 𝜆𝜆 = 0.00301 

 All combined 𝜆𝜆 = 0.00670 

   

SVM Demographics 𝐶𝐶 = 7.37 

𝜑𝜑(∙) = radial 

Sigma = 0.0020 

 Concurrent 𝐶𝐶 = 9.78 

𝜑𝜑(∙) = radial 

Sigma = 0.0057 

 Cumulative 𝐶𝐶 = 17.9 

𝜑𝜑(∙) = radial 

Sigma = 0.0091 

 All combined 𝐶𝐶 = 2.18 

𝜑𝜑(∙) = radial 

Sigma = 0.0102 

   

Random forest Demographics mtry = 5 

trees = 1970 

min_n = 36 

 Concurrent mtry = 4 

trees = 1676 

min_n = 17 

 Cumulative mtry = 2 
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trees = 1072 

min_n = 38 

 All combined mtry = 5 

trees = 1402 

min_n = 15 

   

Boosting Demographics mtry = 10 

trees = 651 

min_n = 5 

tree depth = 6 

learn_rate = 0.00178 

 Concurrent mtry = 3 

trees = 909 

min_n = 15 

tree depth = 15 

learn_rate = 0.0549 

 Cumulative mtry = 5 

trees = 471 

min_n = 8 

tree depth = 5 

learn_rate = 0.00677 

 All combined mtry = 15 

trees = 471 

min_n = 8 

tree depth = 5 

learn_rate = 0.00677 
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Appendix C 
The boxplots below show the distribution of the survey estimates. The plots are separated by 

breakoff rates (right, row) and breakoff mechanisms (column). Each boxplot corresponds to 

applying one of the four treatments of breakoff to the simulated breakoff datasets. Recall the 

four treatments tested in the study are: IG - Ignore breakoff, NR - Treat breakoff as 

nonresponse, CW - Combined weighting, and MI - Multiple imputation.  

 

Given that there are 200 simulated breakoff datasets, each boxplot therefore consists of 200 

survey estimates. The black solid line in the middle of the box represents the median survey 

estimate. The red dashed line is the benchmark value, which is calculated as the mean of the 

corresponding statistic of interest across 200 synthetic population data. 

 

 
Figure C.1 Distribution of the mean parliament trust, estimated using four breakoff 

compensation methods (left, rows) under three missing data mechanisms (columns) and four 

breakoff rates (right, rows). 
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Figure C.2 Distribution of the model coefficient of perceived political influence (medium vs. 

low) on the parliament trust, estimated using four breakoff compensation methods (left, rows) 

under three missing data mechanisms (columns) and four breakoff rates (right, rows). 

 

 
Figure C.3 Distribution of the model coefficient of perceived political influence (high vs. 

low) on the parliament trust, estimated using four breakoff compensation methods (left, rows) 

under three missing data mechanisms (columns) and four breakoff rates (right, rows). 
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Figure C.4 Distribution of the model coefficient of satisfaction with economy performance on 

the parliament trust, estimated using four breakoff compensation methods (left, rows) under 

three missing data mechanisms (columns) and four breakoff rates (right, rows). 
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Appendix D 
This appendix shows the result of Root Mean Squared Error. It is calculated using the 

equation below: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋)2200
𝑖𝑖

200
 

The survey estimate is represented by 𝑥𝑥𝑖𝑖 (i = 1, …, 200), which is derived by applying the 

four treatments of breakoff to each of the 200 simulated breakoff datasets. The benchmark 

value (denoted as X) is calculated by taking the average of the corresponding statistic of 

interest from the 200 synthetic population data.  

 

Figures below display Root Mean Squared Error for the mean of parliament trust as well as 

the model coefficients regarding the impact of people’s perceived political influence and 

satisfaction with country’s economy on their parliament trust. The figures are separated by 

breakoff rates (right, row) and breakoff mechanisms (column). Each point in the figures 

represents the RMSE value resulted from using a specific method for dealing with breakoffs. 

The exact RMSE values are provided next to the corresponding points. Due to rounding, 

some points located differently on the horizontal scale might have the same RMSE values 

next to them. 

 

Recall the acronyms in the plot correspond to the four breakoff compensation methods tested 

in the study. IG: Ignore breakoff, NR: Treat breakoff as nonresponse, CW: Combined 

weighting, and MI: Multiple imputation.
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Figure D.1 Root Mean Squared Error of the mean parliament trust, estimated using four 

breakoff compensation methods (left, rows) under three missing data mechanisms (columns) 

and four breakoff rates (right, rows). 

 

 
Figure D.2 Root Mean Squared Error of the model coefficient corresponding to the perceived 

political influence (medium vs. low), estimated using four breakoff compensation methods 
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(left, rows) under three missing data mechanisms (columns) and four breakoff rates (right, 

rows). 

 

 
Figure D.3 Root Mean Squared Error of the model coefficient corresponding to the perceived 

political influence (high vs. low), estimated using four breakoff compensation methods (left, 

rows) under three missing data mechanisms (columns) and four breakoff rates (right, rows). 
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Figure D.4 Root Mean Squared Error of the model coefficient corresponding to the 

satisfaction towards country’s economy performance, estimated using four breakoff 

compensation methods (left, rows) under three missing data mechanisms (columns) and four 

breakoff rates (right, rows). 
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