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2.1 a) The honeycomb lattice structure of graphene, composed of two in-
equivalent triangular sublattices, A and B, related by spatial inversion.
Each hexagonal unit cell contains one atom from each sublattice, and
the dotted and dashed lines show three of the high-symmetry zigzag
and armchair axes, respectively. b) The hexagonal Brillouin zone (BZ)
of the reciprocal lattice, whose centre is the Γ point and whose corners
are the KKK± points at the centre of the corresponding valleys. c) The dis-
persion of the conduction and valence bands of graphene in the BZ. The
inset shows the Dirac cones at low energy, with the two bands touching
at the Dirac point at each KKK± point at zero energy. . . . . . . . . . . . . 40

2.2 The inversion of the Dirac cone in the KKK+ valley as the sublattice po-
tential asymmetry, ∆AB, changes sign. This asymmetry breaks inversion
symmetry and opens a bandgap, |∆AB|, at the Dirac point, giving a non-
zero Berry curvature, Ω± ∝ ∓∆AB, in each band, ±, with red shading
corresponding to positive Berry curvature and blue to negative. The
net transfer of a unit of valley Chern number, Q±, between each band
as ∆AB changes sign is associated with the Berry phase of the gapless
Dirac cone, γ± =−π, as inversion symmetry is restored at ∆AB = 0. . . 44
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2.3 The fan diagram of the energies, ε, of the quantised cyclotron orbits
(Landau levels) of electrons against magnetic field, B, in a) a two-
dimensional electron gas, b) monolayer graphene and c) a minimal
model for bilayer graphene. The filling factor, ν, is shown for various
gaps, and the corresponding quantum Hall conductivity is σxy = νe2/h.
The complex momentum operator, κ̂, and its Hermitian conjugate, κ̂†,
act as a lowering and raising operator, respectively, in the ladder of
states of the 2D electron gas. . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 a) The lattice structure of Bernal (AB) bilayer graphene, composed
of two stacked graphene layers, with the top layer offset in-plane by
τττB = (a/

√
3,0). b) The dispersion of each of the four bands in the

hexagonal Brillouin zone, with the inset highlighting the separation, γ̃1,
of the two high-energy bands from the two low-energy bands at each
KKK± point. c) The low-energy dispersion in the KKK+ valley, with the two
bands touching at each of the four Dirac points. . . . . . . . . . . . . . 49

2.5 The low-energy dispersion of bilayer graphene along a wavevector slice,
(kx,0), in the KKK+ valley for various combinations of the terms in its two-
band effective Hamiltonian in Eq. (2.30). We consider a large interlayer
potential asymmetry, ∆ = 100meV, in b) and f). The dotted line in each
case is the dispersion of the minimal effective model, Ĥm only. . . . . . 52

2.6 The lattice structure of Bernal (AB) bilayer graphene under small uni-
axial strain, of magnitude δ and along a principal axis at an angle, θ, to
the x-axis, and interlayer offsets, τττ. a) Neither strain nor offset, with a
three-fold rotational symmetry, D3d. Either breaks the rotational sym-
metry, which preserves one of the zigzag axes if the offset and one of the
strain axes are along it, C′

2h for δ = 30%, θ = 0◦ and τττ = (0,0.2)nm in
b), and not otherwise, Ci for δ = 30%, θ = 70◦ and τττ = (0.2,−0.1)nm
in c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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2.7 Dielectric screening of the bandgap in bilayer graphene. Left. The
bandgap, ∆g, and magnitude of the interlayer potential asymmetry, ∆,
and its theoretical maximum, ∆0, against the vertical displacement field,
D, they are induced by. Centre and right. The difference, nt − nb, be-
tween the electron densities, nb/t , in the bottom and top layers, respec-
tively, and the bandgap, ∆g, against the displacement field, D, and total
electron density, n = nb +nt . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 a) The moiré superlattice (mSL) at the interface between a graphene
and an hBN layer, resulting from the longer lattice period, of mismatch
δ = 0.018, and counter-clockwise twist, θ, of the latter. The mSL period
is λ ≈ a/

√
δ2 +θ2, and its hexagonal unit cell has area A =

√
3λ2/2. b)

The interlayer offset, τττ, between the centre of the unit cells in each layer,
given by Eq. (2.44) (we choose the shortest value of τττ). c) The moiré
Brillouin zone (mBZ) of the mSL centred on the KKK+ valley, with the first
star mSL Bragg vectors, GGGm (m = 0,1, · · · ,5), given by Eq. (2.43). d)
The mSL-reconstructed minibands of monolayer graphene in this mBZ
in the KKK+ valley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9 The local energy shift, E , sublattice potential asymmetry, M , and
pseudo-magnetic gauge field, B , induced by the moiré superlat-
tice (mSL) perturbation, alongside the dispersion of the recon-
structed minibands in the mSL Brillouin zone in the KKK+ valley of
an aligned graphene/hBN heterostructure. The even parity potential is
V+ = 17meV. a) Preserving inversion symmetry with a vanishing odd
parity potential, V− = 0meV, gives a C6v symmetric perturbation and a
gapless dispersion. b) Breaking inversion symmetry with V− = 5meV
gives a perturbation of reduced C3v symmetry and a dispersion featuring
minigaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8



2.10 Umklapp scattering and excess resistivity in graphene superlattices.
a, Normal e-e scattering for, e.g., holes in graphene does not lead to
resistivity (left), in contrast to the umklapp scattering for holes in a
graphene superlattice (right). Here we also illustrate the mSL Bril-
louin zone (purple hexagon) and mSL minibands in the valence band of
graphene. b, Longitudinal resistivity, ρxx, for nonaligned (orange) and
aligned (green) graphene/hBN devices. Solid curves: low temperature,
T = 10 K. Dashed: 200 K. Inset: Optical image of the mSL device (from
[103]) in b. c, T -dependent resistivity, ∆ρ(T ) = ρxx(T )−ρxx(10K), at
a fixed n = −1× 1012 cm−2 for four mSL devices and the nonaligned
device (orange symbols). Error bars are smaller than the data points. In-
set: Device schematic and measurement scheme. The top illustration is
a moiré pattern arising from 1.8% lattice mismatch in aligned graphene
(blue) and hBN (grey) crystals. Figure and caption adapted from [103]. 65

2.11 Electron-electron scattering and its electron-hole asymmetry in
graphene superlattices. a, Resistivity for different mSL periods,
λ (color coded), as a function of n. Their n0 were between 2 and
3.7 × 1012 cm−2. Solid curves: 10 K. Dashed: 100 K. The curves
for λ = 13.6 and 15.1 nm are offset for clarity by 200 and 400Ω,
respectively. The color shaded areas emphasize the T -dependent parts
of ρxx for different λ. b, Open circles show experimental ∆ρ(T ) (same
color coding as in a). The error bars are smaller than the symbols.
Solid curves: calculated Uee contribution (no fitting parameters). Note
that a small density-independent offset, ρBG = 10Ω, has been added
to the theoretical curves. The inset depicts an umklapp process for the
threshold density, n∗, such that |kkk1,2,3,4| = g/4, where the momentum
transferred to the mSL corresponds to the exact backscattering of a pair
of electrons (orange and green balls). Figure and caption adapted
from [103]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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3.1 Top. Unstrained (left) and strained (right) bilayer graphene (BLG) with
the intra- and interlayer couplings γ0,3,4 (modified by the strain) marked
along the relevant hopping directions. Bottom. The magnitude of the
valley g-factor at the conduction band edge of BLG, |g∗v |, as a function
of the interlayer asymmetry gap, ∆, for uniaxial strains of magnitude
δ = 0% and 2% applied along the zigzag (ZZ) and armchair (AC) di-
rections. A jump in |g∗v | at ∆ ∼ 55meV for δ = 0% is due to the disap-
pearance of a central minivalley in the unstrained BLG spectrum upon
the increase of the gap [5]. Inset shows |g∗v | against uniaxial strain
(up to δ = 4%) for various orientations of the strain tensor axes and
∆ = 20meV (strain values used in the plot are marked by shapes). These
images can also be used to characterize the effect of shear deformations
described by Eq. (3.2) later in the text. . . . . . . . . . . . . . . . . . . 81

3.2 Top row. The dispersion ε(kkk) of bilayer graphene in the KKK− valley for
∆ = 20meV and a) unstrained; b) 2% uniaxial strain along the zigzag
axis and c) 2% uniaxial strain along the armchair axis (shear with pa-
rameters set by the relation in Eq. (3.2)). Black lines indicate an energy
cut at the van Hove singularity. Bottom row. Contour plots of the corre-
sponding valley g-factor gv. . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 The zero magnetic field density of states (DoS) and numerically calcu-
lated Landau levels of bilayer graphene for B > 0.1T in the KKK+ (orange)
and KKK− (blue) valleys of bilayer graphene with an interlayer asymme-
try ∆ = 20meV and a) 2% uniaxial zigzag strain and b) 2% uniaxial
armchair strain (or related shear with parameters set by the relation in
Eq. (3.2)). The van Hove singularities are highlighted as black dot-
dashed lines. A semiclassical approximation [6] for Landau levels near
the band edges in Fig. 3.2b) and c) (black lines) is used to extrapolate
to B = 0. Note that the two-fold degeneracy of LLs at lower energies in
b) is unique to the armchair direction of strain for which the spectrum
in Fig. 3.2c) features two degenerate minivalleys. This is lifted in the
vicinity of the van Hove singularities. For an arbitrary orientation of the
strain axes, the minivalleys are not degenerate even at B = 0. . . . . . . 91
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3.4 The density of states and numerically calculated Landau levels in both
valleys for B > 0.25T of bilayer graphene with an interlayer asymmetry
∆ = 100meV and 2% uniaxial armchair strain, with equivalent shear
given by Eq. (3.2). The line convention is shared with Fig. 3.3. Similarly
to Fig. 3.3b), Landau levels with energies below the saddle point are 2-
fold degenerate in each valley. . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Top to bottom. The anomalous Hall conductivity σA
xy and total Hall

conductivity σxy of bilayer graphene for a small interlayer asymmetry
∆ = 20meV (blue) and a large asymmetry 100meV (orange) against
carrier density ne. Left to right. No strain, 2% uniaxial zigzag strain and
2% uniaxial armchair strain. . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 A typical miniband spectrum of graphene encapsulated into mutually
aligned hBN crytals. Top inset. Map of locally-defined v-miniband
Chern number, Q . Bottom inset. Dispersion and Berry curvature at the
v/v′ miniband edge in the gaped regions and chiral 1D modes counter-
propagating in K± valleys along a Kagomé network of locally gapless
v/v′ miniband edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Right. Graphene encapsulated between bottom and top hBN layers with
twists θ± 1

2 θ̃ , respectively (|θ̃| ≪ δ). The interference of the layers
results in a mSL of period λ, featuring a long-period variation of period
Λ, whose unit cells are shown. Inset. The offset vector τττ between the
unit cells of the top and bottom hBN layers has components (τx,τy)

along the zigzag and armchair axes, respectively. Inset. The valley
Chern number Q of miniband v, the gap ∆cv and the minigap ∆vv′ against
offset for aligned hBN layers (θ̃ = 0). . . . . . . . . . . . . . . . . . . 98

4.3 Top left. The hexagonal structural element of the Kagomé network of
chiral channels of area A =

√
3Λ2/2 and containing one Q = 0 bowtie

and one Q = 1 hexagon. The chiral propagation of electrons in the
KKK+ valley is shown, scattering at the three nodes. Clockwise from top

right. The five shortest paths for an electron wave packet to propagate
from an injection position “i” to “f” (double arrows indicate a channel
is traversed twice). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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4.4 Miniband dispersions for parallel and antiparallel alignment of the unit
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4.5 The density of states against electron density n for various twists with
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√
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4.6 Top row. Valley Chern numbers of minibands v′ to c against offset τττ.
Bottom row. The minigaps ∆v′v′′ , ∆vv′ , ∆cv and ∆c′c of the miniband
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4.7 The valley Chern number Q of the first valence miniband v against off-
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4.8 Left. Scattering of channel states in the KKK+ valley at a node of the net-
work. The amplitudes of the incoming (a▷/◁) (a/a′ in the main text,
respectively) and outgoing (b▷/◁) (b/b′ in the main text, respectively)
modes along the Q = 0 triangles ▷ and ◁, respectively, are highlighted.
Right. The five shortest paths for an electron wave packet in the KKK+ val-
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rows respectively.). Double arrows indicate a channel is traversed twice. 112
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5.1 Band gap opening in BLG/CrX3 interfaces. (a) Optical micrograph
and (b) schematics of a representative device (the scale bar in (a) is
20 µm), based on a BLG/CrX3 heterostructure encapsulated in hBN.
A metallic gate electrode is deposited onto the top hBN layer, and is
coupled to two distinct regions: a central part formed by the BLG/CrX3

interface (region 1) and two adjacent parts where BLG is in contact only
with hBN (region 2). Transport is measured using metallic source (S)
and drain contacts (D) and probes the two regions connected in series.
(c) Square conductance G□ as a function of gate voltage VG measured in
a heterostructure of BLG-on-CrCl3 at 250 mK (green curve, top). Two
characteristic features are visible in the transfer curve: a small conduc-
tance dip close to VG = 0 V corresponding to the CNP of graphene in
region 2 (V (2)

CNP) and a pronounced suppression at large VG (V (1)
CNP) that

originates from gating BLG-on-CrCl3 (i.e., region 1) to charge neutral-
ity. The black dashed lines represent linear extrapolations to extract the
threshold voltages for holes V h

th and electrons V e
th. Virtually identical be-

haviour is observed in heterostructures of BLG and CrBr3 (light-blue,
bottom) and BLG-on-CrI3 (red, bottom). (d) Schematics of the BLG
band structure in the absence (left) and presence (right) of a perpendic-
ular displacement field D⃗, showing that at finite field a gap Eg is present
at charge neutrality. As visible on the right side of the panel, the dis-
placement field is generated by the large transfer of electrons from BLG
to CrX3 occurring at the vdW interface. . . . . . . . . . . . . . . . . . 124
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5.2 Temperature evolution of the square conductance in BLG/CrX3

heterostructures. Square conductance G□ as function of charge den-
sity n measured at different temperatures between 250 mK (blue) and
250 K (red) for (a) BLG-on-CrCl3,(b) CrBr3 and (c) CrI3. (d) Arrhe-
nius plot of the minimum square conductance measured for the three
different heterostructures (CrCl3 green hexagons, CrI3 red squares,
CrBr3 light-blue circles). Activation energies are obtained by fitting the
linear part in the high-temperature range (grey lines). (e) Temperature
dependence of the charge ∆n transferred from BLG to CrX3 for the
investigated interfaces (the different colors and symbols represent data
measured on different interfaces, as indicated in (d)). . . . . . . . . . . 126

5.3 Electric field dependence of the band gap in BLG/CrX3 interfaces.
The continuous lines represent the band gap as a function of displace-
ment field D predicted by ab initio calculations, considering or ignor-
ing the contribution to the dielectric susceptibility εz due to the elec-
trons that occupy the σ band of BLG [47]. The empty symbols repre-
sent the experimental data obtained from the temperature dependence
of the conductance measured in our devices. It is apparent that the ex-
perimental data are in excellent agreement with theoretical prediction
for εz = 2.6. The error bars for the displacement field (D = e∆n, see
main text) correspond to the variation of charge transferred from BLG
to CrX3 (and consequently of D) as temperature is varied. Filled sym-
bols indicate the experimental values of Eg extracted from the threshold
voltages of low-temperature transfer curves using Equation (1). For
CrCl3 and CrBr3 the agreement with the gap values obtained from the
temperature-dependent measurements is excellent. . . . . . . . . . . . 128
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5.4 Magnetic field dependence of the BLG band gap. (a), Square con-
ductance G□ as a function of gate voltage VG shifted with respect to the
value of CNP V (1)

CNP, measured in a BLG/CrCl3 heterostructure at 0 T
and with an applied magnetic field of 13 T. The left and the right panels
zoom in on the onset of conduction for holes and electrons: the corre-
sponding threshold voltages V h

th and V e
th shift upon increasing the mag-

netic field, resulting in a decrease in (V e
th-V h

th) and therefore in a decrease
in the band gap extracted using Eq. (1). (b), Magnetic field dependence
of the energy gap for BLG-on-CrCl3 (green empty hexagons) and for
BLG-on-CrBr3 (light-blue empty circles); the size of the symbols cor-
responds to the experimental uncertainty associated with the error in the
determination of the threshold voltages. The continuous orange lines
represent the calculated band gap considering appropriate screened in-
terlayer asymmetry potentials and including a screening potential for
non-zero magnetic fields, as predicted by theory to calculate the Landau
level spectrum. The experimental data are in excellent agreement with
the theoretical predictions. (c), Landau levels calculated for a screened
interlayer asymmetry potential of |∆|= 215 meV resulting in an experi-
mentally observed gap of Eg = 170 meV at zero applied magnetic field.
The dependence of the gap on the magnetic field is determined by the
difference in the energies of the lowest Landau level in the conduction
and valence bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Transfer curves G□-vs-VG measured at T = 250 mK in the full gate
voltage range for BLG-on-CrBr3 (a) and BLG-on-CrI3 (b) devices. The
dashed lines indicate the positions of CNP of BLG-on-CrX3 (V (1)

CNP) and
of BLG-on-hBN (V (2)

CNP). . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Magnetic field dependence of charge neutrality point V (1)
CNP for BLG-on-

CrCl3 (a) and BLG-on-CrBr3 (b) devices. . . . . . . . . . . . . . . . . 136
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6.1 3D crystals of graphene and hBN monolayers periodically stacked in the
z-direction. Subsequent hBN layers are oriented either in parallel (left,
all hBN layers translated copies with the same orientation) or antiparal-
lel to each other (right, adjacent hBNs in every second layer rotated with
respect to each other). Depending on the unknown hopping parameters
γ5,γ2, and γ′2 between graphene sheets separated by the hBN layers,
these artificial materials exhibit Weyl semimetal phases. The dashed or-
ange boxes illustrate that the unit cell in the z-direction is twice as large
for antiparallel stacking as for parallel arrangements. . . . . . . . . . . 146

6.2 Phase diagram and possible dispersions of a 3D graphene/hBN
stack with parallel hBN layers (left crystal stucture in Fig. 6.1).
We find a gapped phase (magenta), and type I/II semimetal phases
(blue/gray).Parameters for the dispersions: γ2 = −0.5γ2/VB, γ5 =

−γ2/VB (gray); γ2 = γ2/VB, γ5 = 0 (blue); γ2 = −γ2/VB, γ5 = 0 (ma-
genta). At charge neutrality, the Fermi energy corresponds to zero
energy, EF = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 For a graphene/hBN stack where adjecent hBN layers are antiparallel
to each other (right crystal stucture in Fig. 6.1), we identify the regimes
with clearly distinguishable type I Weyl cones near the Fermi energy
EF = 0. Top row: γ2 = γ2/VB, γ5 = 0 (similar to the blue phase in
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by overlapping bands near the Fermi energy. Other choices of γ′2 yield
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7.1 Left: Umklapp electron-electron (Uee) scattering by a moiré superlat-
tice in BLG. εF and εL are the Fermi energy and saddle point energy in
the first mSL miniband on the valence side, respectively, counted from
the conduction-valence band edge. Right: The non-monotonic evolu-
tion of the contribution, ρUee = T 2 f (n), of Uee scattering to the elec-
trical resistivity against electron density, n, for various twists angles,
θ, between graphene and hBN, at T = 100K (Uee processes dominate
when T ≪ |εF |/kB, |εF − εL|/kB). Inset: Peak value of the Uee resistiv-
ity, whose magnitude, ρmax

Uee , is shown as a function of the mSL period,
λ (and θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Left: The lattice mismatch (δ ≈ 1.8%) and twist, θ, between BLG and
hBN gives rise to a moiré superlattice with period, λ ≈ a/

√
δ2 +θ2, and

unit cell of area, A =
√

3λ2/2. Right: The mSL-normalised magnitude,
|n∗|/n0 (n0 = 4/A) of the threshold density of holes, n∗ < 0, or elec-
trons, n∗ > 0, at which Uee scattering becomes possible due to a suffi-
ciently large Fermi line. The threshold density, n∗, was calculated as a
function of twist angle θ taking into account the particle-hole asymme-
try in the BLG Hamiltonian (α = 0.15), and compared to the symmetric
cases of α = 0 and the monolayer graphene superlattice (|n∗| ≈ 0.23n0). 162
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7.3 a) Umklapp electron-election (Uee) scattering with momentum kick,
ℏggg, between the three minivalleys in the valence miniband for non-
zero interlayer potential asymmetry, ∆, opening a gap between the mini-
bands. The minivalley edges are connected by ggg/2 when this system is
aligned (zero twist, θ = 0) and |∆| = ∆r (inset). b) The non-monotonic
evolution of the valence miniband threshold density, n∗, with ∆ for var-
ious twists, θ = 0◦ to 0.9◦ from top to bottom, and α = 0.15 (n∗ = 0
when θ = 0 and |∆| = ∆r ≈ 75meV). c) The temperature-independent
component, f , of the dominant contribution, ρUee ≈ T 2 f , of Uee pro-
cesses to the electrical resistivity against electron density, n, and ∆, with
(α = 0) and without (α = 0.15) particle-hole symmetry, respectively.
We exclude a (grey, dotted) butterfly-shaped region in each panel where
the contribution of other processes are significant, whose wings are mir-
rored by zero layer polarisation (∆ = 0), and charge neutrality (n = 0)
when α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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Abstract
In this thesis, we study the quantum properties of semimetallic few-layer graphene,
and its van der Waals (vdW) heterostructures with insulating hexagonal boron nitride
(hBN) and the ferromagnetic semiconducting chromium trihalides (CrX3, X=Cl,Br,I).
Monolayer graphene is an atomically thin two-dimensional (2D) material, which was
first isolated from bulk graphite at the University of Manchester 2004. It is famed for
its physical properties, including its large tensile strength and electrical and thermal
conductivities. Constructing van der Waals (vdW) heterostructures of graphene and
different materials allows for novel two-dimensional materials synergising their proper-
ties, and the interference of the incommensurate lattices of each layer gives a long-range
moiré superlattice (mSL). This reduces the density scale of effects such as the umklapp
scattering of electrons off a periodic lattice potential.

We start with a study into engineering the topological properties of bilayer graphene
using strain and a vertical bias, predicting that the topological magnetic moment is en-
hanced by two orders of magnitude with modest variation of the parameters. We also
show how this manifests in the Landau level spectrum and the anomalous contribution
to the Hall conductivity. Then, we consider a highly-aligned hBN/graphene/hBN het-
erostructure, which features a Kagomé network of chiral channels between regions of
different topology. We derive the Aharonov-Bohm oscillations in the electrical conduc-
tivity of coherent electron wave packets propagating through this network, which is a
signature of structural inversion symmetry breaking. We continue with an experimental
study into the opening of a bandgap in bilayer graphene resulting from the charge trans-
fer to a CrX3 substrate. We demonstrate excellent agreement with our theoretical pre-
dictions, and show that electrons in the conduction band of the CrX3 layer are strongly
correlated. After this, we discuss the electrical properties of a 3D material composed
of alternating stacks of commensurate graphene and hBN. This exhibits semimetallic
and semiconducting behaviour, depending on the coupling between the graphene lay-
ers and the relative stacking of the hBN layers. We conclude with a study into the
contribution of umklapp electron-electron scattering to the p-doped resistivity of a bi-
layer graphene/hBN heterostructure. This has distinct features from the corresponding
monolayer graphene/hBN heterostructure, with the resistivity rapidly growing with hole
density above a threshold before reaching a peak value, both of which are determined
by the size of the mSL.
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Chapter 1

Introduction

1.1 Graphene

Graphene is the quintessential two-dimensional (2D) material, first isolated from its bulk
three-dimensional (3D) form, graphite, at the University of Manchester in 2004 [1, 2, 3].
Graphene features an atomically thin honeycomb lattice of carbon atoms, whose robust
structural bonds give its contrasting flexibility and famously high tensile strength [4]. It
is a semimetal with large electrical and thermal conductivities from diffuse bonds which
are reminiscent of the cloud of delocalised electrons in a metal [5]. The low-energy ex-
citations are massless chiral Dirac fermions, making graphene a low-energy analogue
to quantum electrodynamics, featuring a half-integer quantum Hall effect [6, 7] along-
side suppressed backscattering and the resulting Klein paradox of perfect transmittance
through a square barrier [8, 9, 10]. The large mean free paths of electrically neutral spin
currents in graphene [11, 12] make it an ideal candidate for spintronic devices, manip-
ulating the spin degree of freedom for information storage and logic devices [13, 14].
Graphene is also an ideal material for valleytronics [15, 16]: manipulating a pseudo-spin
degree of freedom whose up and down projections are the wavefunction components in
the two valleys at the band edges in its dispersion, with an approximate symmetry under
rotations of this pseudo-spin vector due to the weak inter-valley scattering [17, 18, 19].

This has inspired an exploration into other multivalley 2D materials such as few-
layer graphene, whose electronic properties depend strongly upon the number of
layers [20]. In particular, we consider semimetallic Bernal-stacked bilayer graphene,
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whose low-energy excitations are massive chiral Dirac fermions [21, 22]. The distinct
chirality from the monolayer allows backscattering and gives the alternative Klein
paradox of perfect reflectance from a sufficiently wide square barrier [9]. Unlike the
monolayer, a tunable bandgap may be opened by biasing each layer with electrostatic
gating [23, 24, 25, 26], allowing for tunable confinement into quantum dots [27, 28, 29].
Another bulk material which can be decomposed into atomically thin honeycomb layers
is hexagonal boron nitride (hBN), an insulator with a large intrinsic bandgap resulting
from the inequivalent boron and nitrogen atoms [30, 31, 32, 33]. Finally, we consider
the chromium trihalides (CrX3, X=Cl,Br,I), a family of ferromagnetic semiconductors
whose layers feature a honeycomb lattice of Cr atoms [34].

In turn, this has inspired the stacking of different 2D materials into van der Waals
heterostructures (vdW), with the aim of synergising their properties [35, 36, 37]. A
recurring theme in vdW heterostructures is the formation of a long-range moiré super-
lattice (mSL), due to the interference of the incommensurate lattices at the interface
between different layers. The large mSL period gives a reduced density scale for ef-
fects such as umklapp scattering off [38, 39, 40, 41] and Landau level broadening by a
periodic lattice potential [42, 43, 44, 45]. Twisted bilayer graphene is not a vdW het-
erostructure, but its mSL induces zero Fermi velocity and strong correlation at several
magic twist angles [46, 47], the first of which famously exhibits unconventional super-
conductivity [48]. An atomically smooth hBN substrate suppresses ripples in graphene
and enhances its mobility [49], enhances the on-off ratio of a graphene field-effect tran-
sistor [50], and makes it an ideal choice for a gate dielectric [49, 51, 52].

This thesis contains a collection of works studying the quantum properties of
few-layer graphene and vdW heterostructures combining few-layer graphene, hBN
and CrX3. In Chapter 3, we study the enhancement of topological effects in bilayer
graphene using strain and a vertical bias. In Chapter 4, we derive the form of a chiral
Kagomé network between regions of distinct topology in a highly-aligned hBN/-
graphene/hBN heterostructure. In Chapter 5, we present an experimental study into
the opening of a bandgap in bilayer graphene by a CrX3 substrate. In Chapter 6,
we explore the electronic properties of 3D stacks of alternating graphene and hBN
layers with matching lattices. In Chapter 7, we investigate the contribution of umklapp
electron-electron scattering to the resistivity of a bilayer graphene/hBN heterostructure.

A common theme throughout this thesis, and Physics in general, is the study of the
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symmetries of systems and their consequences. By Noether’s theorem, each continu-
ous symmetry of a system implies a corresponding conserved quantity [53, 54]. For
example, continuous symmetries with respect to time translations, (space) translations
and rotations result in the well-known conservation laws for energy, momentum and
angular momentum, respectively. There are also discrete symmetries, which constrain
the form of the electron bands [55, 56, 57, 58]. For example, specific allotropes of few-
layer graphene featuring both time reversal and (spatial) inversion symmetry1 have a
corresponding gapless spectrum at low energies. A more esoteric example is the chiral
symmetry [59], protecting the chirality, and the combination of time reversal and chiral
symmetries in monolayer graphene gives a particle-hole (eh) symmetry, with respect to
exchange of electrons in the conduction (particle) and valence (hole) bands.

A lattice breaks the continuous translational and rotational symmetries, although a
periodic lattice features corresponding discrete symmetries, including translation with
respect to its lattice vectors. The momentum is conserved up to a (Bragg) lattice vector
in the reciprocal space, which leads to umklapp electron-electron scattering, considered
in Chapter 7, where two interacting electrons receive a momentum kick Bragg scattering
off the lattice [38, 60, 61, 62, 63]. The mSL further breaks the translational symmetry,
with the mSL-reconstructed minibands of monolayer and bilayer graphene featuring in
Chapters 4 and 7, respectively [46, 64, 65, 66]. Monolayer graphene features a six-fold
discrete rotational symmetry, which is broken to three-fold by the interface with hBN in
Chapters 4 and 6, while the three-fold symmetry of bilayer graphene is totally broken
by strain in Chapter 3.

The neighbouring hBN layers induce a sublattice bias in monolayer graphene in
Chapters 4 and 6, breaking inversion symmetry and opening a bandgap. In bilayer
graphene in Chapters 3, 5 and 7, this is achieved by a vertical bias, which is induced by
external gating [23, 25, 26] or charge transfer to a magnetic substrate [67, 68, 69, 70],
as discussed in Chapter 5. Breaking time reversal symmetry with an external magnetic
field gives the dispersionless Landau levels seen in Chapters 3 and 5, corresponding to
quantised cyclotron orbits [71, 72, 73]. The intrinsic eh symmetry breaking of bilayer
graphene can be seen in Chapters 3, 5 and 7 [22], while hBN-induced eh symmetry
breaking can be seen in Chapters 4, 6 and 7 [64, 66, 65].

Finally, we consider the topology of the electron states. This coincides with the
1E.g., monolayer graphene in Section 2.1 and Bernal-stacked bilayer graphene in Section 2.6.
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chirality in the gapless case, which is protected by the chiral symmetry and quantified
by the non-kinematic Berry phase incurred on trajectories enclosing each of the Dirac
points [74]. The distinct chiralities of monolayer and bilayer graphene [9] is reflected
in their Berry phases, π [7, 75] and 2π [76], respectively. The Berry phase of a trajec-
tory is expressed as the flux of the Berry curvature through the surface enclosed by the
trajectory in Chapters 3 and 4 and 6 [77, 78]. The Berry curvature induces an anoma-
lous velocity in an external electric field [43, 77, 79] responsible for the anomalous
quantum Hall effect in the absence of a magnetic field [80, 81, 78], and an anomalous
contribution to the classical effect at small fields [81, 82] in Chapter 3. The flux of the
Berry curvature through the unit cell of the reciprocal lattice gives the Chern number,
a topological invariant protected in the absence of gap closures. In Chapters 4 and 6,
we consider the flux through a large region surrounding each valley, giving the corre-
sponding valley Chern number which is protected by the weak inter-valley scattering in
graphene [17, 18, 19]. By the bulk-boundary correspondence [83, 84], we derive the
network of valley-polarised chiral channels along the zero-gap lines between regions of
different topology (valley Chern number) in Chapter 4.

1.2 Thesis structure

In light of Christian Moulsdale’s publications2, this thesis is presented in the journal
format of the University of Manchester. Chapter 2 serves as an armamentarium, intro-
ducing the various systems and analytical techniques used in this thesis. Chapters 3-7
represent manuscripts presented in chronological order of their publication, or submis-
sion to journals where they are being peer-reviewed at the time of submission of this
thesis. Each chapter starts with a preface, where we discuss the context of the corre-
sponding manuscript, including its authors, how electronic copies of the manuscript and
any supplementary material may be accessed, and the contributions of Christian Mouls-
dale. The rest of the chapter represents the main text of the manuscript, corresponding
to its most recent preprint on an open-access repository, arxiv, at the time of submission
of this thesis. Any changes to this are strictly to match the format of this thesis or mi-
nor corrections in response to examiner comments, and any supplementary material is

2See Section 1.3



1.2. THESIS STRUCTURE 27

included as appendices to the chapter. Chapter 8 provides a short conclusion of the find-
ings of each paper and their wider context, including more recent publications, before
we conclude the thesis. Abstracts summarising the findings of each chapter are given in
the following paragraphs.

Chapter 3: Engineering of the topological magnetic moment of electrons in
bilayer graphene using strain and electrical bias. We study the tunability of the
topological properties of bilayer graphene with moderate uniaxial strain and interlayer
offset, which equivalently break the rotational symmetry, and interlayer bias, which
breaks inversion symmetry and opens a bandgap. The topological magnetic moment of
the electron states, a consequence of their finite Berry curvature, is enhanced at the band
edge up to two orders of magnitude compared to the intrinsic value, with an anisotropic
dependence on the strain direction. This gives a valley splitting in an external magnetic
field, which is seen in the Landau level dispersion and the anomalous contribution to
the Hall conductivity. The strain causes a Lifshitz transition as the Dirac cones in each
valley coalesce, enhancing the density of states at the van Hove singularity.

Chapter 4: Kagomé network of miniband-edge states in double-aligned
graphene-hexagonal boron nitride structures. We study a Kagomé network of
channels appearing between regions of different local stacking configurations in an
hBN/graphene/hBN heterostructure. The broken inversion symmetry is represented
by an oscillating electron mass for electrons near the secondary Dirac point, whose
different signs in the alternating triangular and hexagonal regions of the Kagomé
structure gives distinct topology, represented by the valley Chern number. We predict
chiral states propagating along these channels by the bulk-boundary correspondence,
which are separated from the bulk states in either region by the minigap. We derive the
form of Aharonov-Bohm oscillations in the electrical conductivity of the states with
respect to an external magnetic field, with a period less than 1 Tesla as a result of the
large super cell. These oscillations are the signature of the inversion symmetry breaking
from parallel hBN layers, not appearing when one of the layers is inverted.

Chapter 5: Band Gap Opening in Bilayer Graphene-CrCl3/CrBr3/CrI3 van der
Waals Interfaces. We present an experimental study into how the charge transfer from
bilayer graphene to a CrX3 substrate induces the vertical bias discussed in Chapter 3,
opening a bandgap. The zero-magnetic field bandgap is determined from the activation
energy of the electrical conductivity, with magnitudes up to 170meV, for CrCl3. The
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magnitude of the bandgap decreases with increasing magnetic field, determined from
the dependence of the low-temperature conductivity on the gate voltages. Using a mod-
ified Hartree approach for the screening of the bandgap, accounting for the out-of-plane
polarisation of the π and σ bands of bilayer graphene, we find excellent agreement with
the ab initio and experimental results. We demonstrate that the CrX3 layer features flat
bands consistent with strong correlation, as electrons transferred to its conduction band
are virtually localised to the Cr atoms.

Chapter 6: Semimetallic and semiconducting graphene-hBN multilayers with
parallel or reverse stacking. We discuss how the electronic properties of a commensu-
rate three-dimensional stack of alternating graphene and hBN layers depends upon the
stacking configuration. Recent ab initio calculations have predicted that such a system
is possible, as the graphene and hBN layers expand and contract, respectively, to match
their lattice periods. As in Chapter 4, there are two distinct configurations, featuring
inversion symmetry if neighbouring hBN layers are parallel, which is broken in the an-
tiparallel configuration where every other hBN layer is rotated by 180◦. Depending on
the couplings between the graphene layers, the system features semimetallic phases,
both trivial and Weyl in nature. We produce a phase diagram for the parallel configura-
tion, which also includes semiconducting gapped phases.

Chapter 7: Umklapp electron-electron scattering in bilayer graphene moiré
superlattice. We study the contribution of umklapp electron-electron (Uee) scattering
to the electrical resistivity of a p-doped heterostructure of bilayer graphene and hBN,
which features a T 2 dependent on the temperature. Uee scattering is distinguished from
normal Coulomb electron-electron scattering by one of the electrons Bragg scattering
off the superlattice, imparting a momentum “kick” which violates the conservation of
momentum. The Uee resistivity grows rapidly with hole density above a threshold,
before reaching a peak value, both of whose values depend upon the size of the super-
lattice. The strong eh symmetry breaking results in a negligible Uee contribution to the
e-doped resistivity. The vertical bias splits the hole dispersion into minivalleys at low
densities, with electrons undergoing Uee scattering between the minivalleys, enhancing
the Uee contribution to the resistivity in both bands.
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graphene moiré superlattice”, arXiv:2211.01005 (2022). [Submitted to Physi-
cal Review Letters]

Bibliography

[1] R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon

Nanotubes. Imperial College Press, 1998.

3This publication was the result of work began during my masters project with my then supervisor,
Yang Xian, and submitted during my PhD. Its contents are outside of the scope of this thesis, and are not
included.



30 CHAPTER 1. INTRODUCTION

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon
Films Science, vol. 306, no. 5696, pp. 666–669, 2004.

[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
The electronic properties of graphene Rev. Mod. Phys., vol. 81, pp. 109–162, Jan
2009.

[4] D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Mechanical properties of
graphene and graphene-based nanocomposites Progress in Materials Science,
vol. 90, pp. 75–127, 2017.

[5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and
C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene Nano Let-

ters, vol. 8, no. 3, pp. 902–907, 2008. PMID: 18284217.

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless
Dirac fermions in graphene Nature, vol. 438, pp. 197–200, Nov 2005.

[7] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the
quantum Hall effect and Berry’s phase in graphene Nature, vol. 438, pp. 201–204,
Nov 2005.

[8] A. C. Neto, F. Guinea, and N. M. Peres, Drawing conclusions from graphene
Physics World, vol. 19, p. 33, nov 2006.

[9] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the
Klein paradox in graphene Nature Physics, vol. 2, pp. 620–625, Sep 2006.

[10] M. Katsnelson and K. Novoselov, Graphene: New bridge between condensed mat-
ter physics and quantum electrodynamics Solid State Communications, vol. 143,
no. 1, pp. 3–13, 2007. Exploring graphene.

[11] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Elec-
tronic spin transport and spin precession in single graphene layers at room temper-
ature Nature, vol. 448, pp. 571–574, Aug 2007.



1.3. PUBLICATIONS 31

[12] W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K.
Kawakami, Tunneling Spin Injection into Single Layer Graphene Phys. Rev. Lett.,
vol. 105, p. 167202, Oct 2010.
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Chapter 2

Theory armamentarium

2.1 Monolayer graphene

A monolayer of graphene features a honeycomb lattice of carbon atoms, shown in
Fig. 2.1 a), composed of two inequivalent triangular sublattices, A and B [1, 2]. This
structure results from the sp2 hybridisation of the 2s, 2px and 2py orbitals in the outer
shell of neighbouring carbon atoms into three robust σ bonds per atom, giving graphene
its flexibility and large tensile strength [3]. The remaining orbital in the outer shell of
each atom, the out-of-plane 2pz orbital, forms two diffuse π bonds that dominate the
electronic transport and give the large electrical and thermal conductivities [4].

The space symmetry group of the lattice is P6/mmm [5], featuring a translational
symmetry with respect to the lattice vectors, which are an integer linear combination of
the primitive lattice vectors shown in Fig. 2.1 a),

aaa1 = a
(

1
2
,

√
3

2

)
, aaa2 = a

(
− 1

2
,

√
3

2

)
, (2.1)

where the lattice constant is a = 0.246nm. Each hexagonal (primitive) unit cell contains
one atom from each sublattice, with the B atoms offset by τττB = rAB(0,1) (rAB = a/

√
3).

Each atom in sublattice A has three nearest neighbours in sublattice B, translated by

σσσ0 = rAB(0,1), σσσ1 = rAB

(
−

√
3

2
,−1

2

)
, σσσ2 = rAB

(√
3

2
,−1

2

)
, (2.2)
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Figure 2.1: a) The honeycomb lattice structure of graphene, composed of two inequiv-
alent triangular sublattices, A and B, related by spatial inversion. Each hexagonal unit
cell contains one atom from each sublattice, and the dotted and dashed lines show three
of the high-symmetry zigzag and armchair axes, respectively. b) The hexagonal Bril-
louin zone (BZ) of the reciprocal lattice, whose centre is the Γ point and whose corners
are the KKK± points at the centre of the corresponding valleys. c) The dispersion of the
conduction and valence bands of graphene in the BZ. The inset shows the Dirac cones
at low energy, with the two bands touching at the Dirac point at each KKK± point at zero
energy.

respectively. In the reciprocal space, the primitive lattice (Bragg) vectors, ggg1 and ggg2, are
orthogonal to their real space counterparts, ggg1 · aaa1 ≡ 0 and ggg2 · aaa2 ≡ 0, and are part of
the first star of Bragg vectors,

gggm =
4π√
3a

(
− sin

mπ

3
,cos

mπ

3

)
. (m = 0,1, · · · ,5) (2.3)

These define the hexagonal primitive cell in b), called the Brillouin zone (BZ), whose
centre is the Γ point and whose corners are the KKK± points (valleys), appearing at

±KKK j =±K
(

cos
j2π

3
,sin

j2π

3

)
, ( j = 0,1,2) (2.4)

respectively, where K = 4π/(3a).

The lattice features a six-fold rotational symmetry about the centre of each hexagon,
represented by a point symmetry group, D6h [6], whose elements are:

• E: Identity.
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• 2C6,2C3,C2: ±60◦, ±120◦ and 180◦ counter-clockwise rotations about the z-
axis, respectively.

• 3C′
2,3C′′

2: 180◦ counter-clockwise rotations about each of the three (dotted)
zigzag and three (dashed) armchair axes, respectively

• i: (Spatial) inversion.

• 2S3,2S6: ±120◦ and ±60◦ counter-clockwise improper rotations about the z-axis,
respectively.

• σh: Reflection in the horizontal plane.

• 3σd,3σv: Reflections in the three vertical planes bisecting and three intersecting
the C′

2 axes, respectively.

This reduces to one of its subgroups, C6v = {E,2C6,2C3,C2,3σd,3σv}, in a strictly
two-dimensional sense.

2.2 The tight-binding model

We derive the electronic properties of monolayer graphene in the tight-binding approx-
imation for the π bands [7, 1], with the dispersion of the conduction and valence bands
in the BZ shown in Fig. 2.1 c)1. In this approximation, the π electron wave function at a
position, (rrr,z), is a superposition of the 2pz electronic wavefunction, Φλ(rrr−RRR−τττλ,z),
of each atom, at (RRR+τττλ,0) in sublattice λ = A,B. This gives a Hamiltonian in the basis
of atoms (sites), ĤG, whose dimensionality is proportional to the number of unit cells,
N. Its diagonal elements are the on-site potentials, ελ (εA = εB by inversion symmetry),
of each sublattice, λ, which we set to zero energy for simplicity, and its off-diagonal
elements quantify the amplitude of electrons hopping between atoms.

We consider a basis of Bloch states,

Ψλ(kkk;rrr,z) =
1√
N ∑

RRR
eikkk·(RRR+τττλ)Φλ(rrr−RRR− τττλ,z), (2.5)

1There will be higher energy bands, including the σ bands, although these are largely irrelevant to
electronic transport.
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in each sublattice, λ, corresponding to a plane wave state which satisfies the trans-
lational symmetry. Bloch states of each wavevector, kkk, are decoupled from those
with different wavevector, and are described by a 2 × 2 Hamiltonian, [HG(kkk)]λλ′ =

⟨Ψλ(kkk)|ĤG|Ψλ′(kkk)⟩. The electron dispersion results from electrons hopping between
atoms and the non-orthogonality of the atomic wavefunctions, described by the overlap
matrix, [SG(kkk)]λλ′ = ⟨Ψλ(kkk)|Ψλ′(kkk)⟩ ([SG]λλ ≈ 1). We neglect coupling between spins,
and treat each spin projection, up and down, separately. The crystal momentum, ppp= ℏkkk,
is only conserved up to a Bragg vector.

The dispersion of the conduction (s =+) and valence (−) bands,

ε±(kkk) =
±γ0|g(kkk)|

1∓ s0|g(kkk)|
, g(kkk) =

2

∑
j=0

eikkk·σσσ j , (2.6)

is shown in Fig. 2.1 c), with the identical low-energy linear dispersion in each valley
highlighted in the inset, corresponding to a pseudo-relativistic Dirac cone2. These bands
are obtained with a minimal model, where we consider only nearest neighbours with
respective hopping amplitude and overlap,

−γ0 = ⟨ΦB(rrr−RRR−σσσ j,z)|ĤG|ΦA(rrr−RRRn,z)⟩ ≈ −3eV,

s0 = ⟨ΦB(rrr−RRR−σσσ j,z)|ΦA(rrr−RRRn,z)⟩ ≈ 0.13,
( j = 0,1,2) (2.7)

valid for |ε| < γ0 [1]. They have corresponding anti-bonding and bonding wavefunc-
tions,

|ψ±(kkk)⟩=
1√
2

eikkk·rrr
(

1
∓g(kkk)∗/|g(kkk)|

)
, (2.8)

respectively, and are the solutions to the generalised time-independent Schrödinger
equation (TISE),

HG(kkk) |ψ(kkk)⟩= ε(kkk)SG(kkk) |ψ(kkk)⟩ , (2.9)

where

HG(kkk) =−γ0

(
0 g(kkk)

g(kkk)∗ 0

)
, SG(kkk) = I + s0

(
0 g(kkk)

g(kkk)∗ 0

)
, (2.10)

2See Section 2.4.
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in terms of the identity matrix, I. In fact, the effects of the non-orthogonality are min-
imal in this energy range and are accounted for by an additional term in the graphene
Hamiltonian, s0γ0|g(kkk)|2I to first order in s0

3, which then satisfies the (simplified) TISE,
HG(kkk) |ψ(kkk)⟩= ε(kkk) |ψ(kkk)⟩4.

2.3 Discrete symmetries of monolayer graphene

The symmetry of the dispersion of monolayer graphene about the Γ point reflects the
rotational symmetry of its lattice, C6v in 2D, and is further constrained by the discrete
symmetries of the Hamiltonian, HG(kkk) in Eq. (2.10) [8, 9, 10, 11]. The first is inversion
(i) symmetry,

HG(kkk) = σxHG(−kkk)σx, (2.11)

where σi (i = x,y,z) is a Pauli matrix, which is broken with a sublattice potential asym-
metry (bias), ∆ABσz/2 (∆AB = εA − εB), reducing the rotational symmetry of the lattice
to three-fold, D3h = {E,2C3,3C′

2,σh,2S3,3σv}5 (C3v = {E,2C3,3σv} in 2D). Another
is (spinless) time reversal symmetry,

HG(kkk) = H∗
G(−kkk), (2.12)

in the absence of spin-orbit coupling [12]6 or an external magnetic field. Either sym-
metry ensures a valley degeneracy in the dispersion, ε±(KKK j + kkk) = ε±(−KKK j − kkk) ( j =

0,1,2), and their combination ensures that the dispersion is gapless.

The Hamiltonian features a (sublattice) chiral symmetry [13],

HG(kkk) =−σzHG(kkk)σz, (2.13)

which protects the chirality discussed in the next section, and ensures the dispersion
is reflected by zero energy, ε+(kkk) = −ε−(kkk). Chiral symmetry is broken by on-site

3An equivalent term, (3−|g(kkk)|2)γnI, is found if we consider next-nearest neighbours, whose hopping
amplitude is γn ≪ γ0.

4See Section 7.A
5The C′

2 axes now correspond to the armchair axes.
6Strict time reversal symmetry is not broken by the spin-orbit coupling as reversing time exchanges

the spin projections.
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Figure 2.2: The inversion of the Dirac cone in the KKK+ valley as the sublattice potential
asymmetry, ∆AB, changes sign. This asymmetry breaks inversion symmetry and opens
a bandgap, |∆AB|, at the Dirac point, giving a non-zero Berry curvature, Ω± ∝ ∓∆AB, in
each band, ±, with red shading corresponding to positive Berry curvature and blue to
negative. The net transfer of a unit of valley Chern number, Q±, between each band as
∆AB changes sign is associated with the Berry phase of the gapless Dirac cone, γ± =−π,
as inversion symmetry is restored at ∆AB = 0.

potentials which cannot be offset to zero, e.g. the dispersive energy shift from the non-
orthogonality of atomic wavefunctions and next-nearest-neighbour couplings, or the
sublattice potential asymmetry, ∆AB. Combining the chiral and time reversal symmetries
gives the particle-hole symmetry,

HG(kkk) =−σzH∗
G(−kkk)σz, (2.14)

ensuring an equivalence of the conduction (particle) and valence (hole) bands, ε+(kkk) =

−ε−(−kkk).

2.4 Dirac fermions in monolayer graphene

The low-energy (|ε| < 1eV) excitations of monolayer graphene shown in Fig. 2.2 are
massless chiral Dirac fermions, whose (Fermi) velocity, v0 =

√
3aγ0/(2ℏ), is two orders

of magnitude smaller than the speed of light in a vacuum. They are described by the
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continuum (Dirac) Hamiltonian for an isotropic Dirac cone,7

ĤG = v0

(
0 π̂†

π̂ 0

)
, π̂ = ℏ(−iξ∂x +∂y), (2.15)

in each valley, KKKξ (ξ = ±) [14]. This is derived from Eq. (2.10) by expanding the
momentum, ppp = ℏ(ξKKK j + kkk), to first order in the wavevector, kkk, then upgrading to an
operator, ℏkkk → p̂pp ≡ −iℏ∇, whose components mutually commute, [p̂x, p̂y] ≡ p̂x p̂y −
p̂y p̂x = 08. The chirality gives vanishing intraband and perfect interband backscattering,

⟨ψs(−kkk)|e−i2kkk·rrr|ψs′(kkk)⟩= 1−δss′, (s,s′ =±) (2.16)

of the conduction and valence bands,

ε±(kkk) =±ℏv0k, |ψ±(kkk)⟩=
1√
2

eikkk·rrr
(

1
±ξeiξθkkk

)
,

k = |kkk|, θkkk = arctan(ky/kx),

(2.17)

respectively. This is reflected in the large electrical and thermal conductivities [2, 4] and
the Klein paradox, where electrons tunnel through a square barrier with perfect trans-
mittance, in contrast to a non-chiral semiconductor where the transmittance oscillates
with the barrier width [16].

The chirality is quantified by the Berry phase, −ξπ, of the Dirac point in each valley,
KKKξ (ξ =±), which is generic to Dirac cones in a multiband system [17, 18, 19, 20]. This
is a non-kinematic phase incurred as an electron undergoes an adiabatic evolution along
a trajectory in the reciprocal space, C , winding counterclockwise around this Dirac point
once, and only this Dirac point9. The Berry phase of each band, n, is given by the gauge
invariant expression,

γs =
∫

C
dkkk ·As(kkk), As(kkk) = i⟨ψs(kkk)|∇kkk|ψs(kkk)⟩ , (2.18)

7A general expression, featuring anisotropy and tilting, is given in Eq. (4.3).
8This can also be derived using kkk · ppp theory, where the basis is the sublattice components of a slowly

varying envelope function for a Bloch state at each KKK± point [14], and a recent study which combines
kkk · ppp theory with the tight-binding model [15].

9Otherwise, the details of this trajectory do not matter.
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where the Berry connection, As(kkk), is an irrotational vortex centred on the Dirac point
in graphene, Ak

s = 0 and Aθkkk
s =−ξ/(2k). Stoke’s theorem gives

γs =
∫

S
dS ·ΩΩΩs(kkk), ΩΩΩs(kkk) = ∇kkk ×As(kkk), (2.19)

and the Berry phase is the flux of the Berry curvature, ΩΩΩs(kkk), through a surface, S ,
bounded by C [21, 18]. The Berry curvature is a momentum space analogue to the
magnetic field, giving an anomalous velocity in an external electric field [22, 21, 23]
responsible for the anomalous quantum Hall effect [24, 25, 18]. In a 2D material such
as graphene, its in-plane components are vanishing due to the lack of out-of-plane dis-
persion, Ωx

s = Ω
y
s = 0, while its out-of-plane component, Ωz

s, is singular at the Dirac
point unless a gap is opened10.

We show the gapped Dirac cones of monolayer graphene with a sublattice potential
asymmetry, ∆AB, in Fig. 2.2. The magnitude of each band’s Berry curvature, Ω

z
± =

∓ξℏ2v2
0∆AB/ε3, falls off with increasing bandgap, |∆AB|, in the dispersion, ε± = ±ε =

±
√

(∆AB/2)2 +(ℏv0k)2. The chiral symmetry is broken, and the Berry phase depends
upon the surface, S . The flux of the Berry curvature through the BZ gives the Chern
number,

Cs =
1

2π

∫
BZ

dS ·ΩΩΩs(kkk), (2.20)

an integer-valued topological invariant whose value is protected in the absence of gap
closures [26, 27], and associated with the winding number of topologically protected
edge states propagating around the finite system [28, 29]. This minimal model is topo-
logically trivial, with vanishing Chern number, C± = 0. However, there are non-trivial
edge states in each valley for ∆AB ̸= 0, as indicated by non-zero values of the valley
Chern number,

Qs =
1

2π

∫
ξ

dS ·ΩΩΩs(kkk), (2.21)

which is the flux through a large surface surrounding each valley11, ξ = ±, with half-
integer Q± ≈ ∓ξ∆AB/(2|∆AB|) in monolayer graphene [30]. This is weakly topolog-
ically protected by the absence of significant inter-valley scattering [31, 32, 33]. The

10An alternative expression is given in Eq. (4.9), which avoids derivatives of the wavefunctions and is
more appropriate for numerical diagonalisation.

11We neglect the other valley, considering the continuum Hamiltonian in each valley, ξ =±, for all kkk.
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Figure 2.3: The fan diagram of the energies, ε, of the quantised cyclotron orbits (Landau
levels) of electrons against magnetic field, B, in a) a two-dimensional electron gas, b)
monolayer graphene and c) a minimal model for bilayer graphene. The filling factor, ν,
is shown for various gaps, and the corresponding quantum Hall conductivity is σxy =
νe2/h. The complex momentum operator, κ̂, and its Hermitian conjugate, κ̂†, act as a
lowering and raising operator, respectively, in the ladder of states of the 2D electron gas.

Dirac cones invert as ∆AB changes sign, with the π Berry phase of the Dirac cone at
∆AB = 0 transferring a unit of valley Chern number between the bands. Hence, we find
a one-dimensional state12 propagating with opposite directions in each valley along the
zero-gap boundary between regions with opposite signs of ∆AB [34, 35]13. Summing
over both valleys gives the total Chern number, which is always an integer and vanish-
ing in systems with time reversal symmetry.

2.5 Landau quantisation of cyclotron orbits

In a 2D electron gas with a transverse magnetic field, BBB = (0,0,−B), electrons move
in cyclotron orbits, which are quantified into the Landau levels for sufficiently strong
fields [36, 37, 38], whose fan diagram is shown in Fig. 2.3 a). There are an infinite
number of these levels, n= 0,1, · · · , forming a ladder of energies, εn = ℏωB(n+1/2)> 0
(n ≥ 0), evenly separated by ℏωB, where the cyclotron frequency, ωB = |eB|/me, is
inversely proportional to the electron mass, me. Each level has an approximate radius,
√

nλB, proportional to the magnetic length, λB =
√

ℏ/|eB| (e< 0 is the electron charge),

12This features a two-fold spin multiplicity.
13See Chapter 4.
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and contributes a quantum, 1/(2πλ2
B), to the electron density when filled. The Landau

levels appear when the magnetic length is smaller than the electron mean free path,
giving the minimum field condition. The integer quantum Hall effect is observed at
much higher fields, with the Landau levels distinguishable as plateaus in the transverse
electrical conductivity, σxy = νe2/h, corresponding to the total number of filled levels
(filling factor), ν.

These Landau levels are the solutions to the 2D electron gas Hamiltonian, p̂pp2/(2m∗),
with the (minimal coupling) Peierls substitution in the momentum operator, p̂pp → p̂pp−
eAAA, where the magnetic vector potential, AAA, satisfies BBB = ∇×AAA14. This breaks time
reversal symmetry, and the components of the momentum operator no longer commute,
[p̂x, p̂y] = iℏ2/λ2

B. We choose the Landau gauge, AAA = (0,−Bx,0), and the Hamiltonian
corresponds to a quantum harmonic oscillator with cyclotron frequency, ωB, along the
x-axis with broken translational symmetry15. The corresponding wavefunctions,

φn,ky(x,y)=Aneikyye−z2/2Hn(z), z=
x

λB
−kyλB, An =

1√
n!2n

√
πλB

, (n= 0,1, · · ·)
(2.22)

are decomposed into a plane-wave state along the y-axis, of wavevector ky, and an oscil-
lator state along the x-axis, where Hn(z) is the Hermite polynomial of the corresponding
order, n. On the ladder of states, the complex momentum operator, κ̂ = ℏ(−i∂x+∂y)→
(−iℏ/λB)(∂z + z), is a lowering operator,

κ̂φn,ky =

{
0, n = 0,
−i

√
2n ℏ

λB
φn−1,ky, n ≥ 1,

(2.23)

while its Hermitian conjugate, κ̂† = ℏ(−i∂x −∂y)→ (−iℏ/λB)(∂z − z), is a raising op-
erator,

κ̂
†
φn,ky = i

√
2(n+1)

ℏ
λB

φn+1,ky , (2.24)

with p̂pp2/(2m∗) = (κ̂†κ̂+ κ̂κ̂†)/(4m∗) and [κ̂, κ̂†] = 2ℏ2/λ2
B.

14This is the continuum limit of the Peierls substitution for a lattice, which gives an additional field-
dependent phase factor, (ie/ℏ)

∫ RRR+ddd
RRR drrr ·AAA(rrr), in the hopping amplitude between atoms at RRR and RRR+ ddd.

Such a substitution is appropriate since there is little variation of this phase factor over atomic distances,
λB ≫ a, at reasonable fields, B ≪ 10000T.

15This is a consequence of our specific gauge choice.
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Figure 2.4: a) The lattice structure of Bernal (AB) bilayer graphene, composed of two
stacked graphene layers, with the top layer offset in-plane by τττB = (a/

√
3,0). b) The

dispersion of each of the four bands in the hexagonal Brillouin zone, with the inset
highlighting the separation, γ̃1, of the two high-energy bands from the two low-energy
bands at each KKK± point. c) The low-energy dispersion in the KKK+ valley, with the two
bands touching at each of the four Dirac points.

We now discuss monolayer graphene, considering a basis of Landau level states,
φλ,n

16, in each sublattice, λ=A,B, which gives the fan diagram shown in Fig. 2.3 b) [39,
40, 41, 42]. The below-diagonal operator, π̂, acts as a lowering operator in the KKK+ valley
(π̂ = κ̂), coupling φA,n to φB,n−1 (n > 0), and conversely raising in the KKK− valley (π̂ =

−κ̂†). The π Berry phase gives a chiral symmetry protected zero-energy level in each
valley, ε0 = 0, corresponding to a sublattice-polarised wavefunction in the KKK+ valley,
ψ0 = (φ0,0)T , which is inverted in the KKK− valley, (0,φ0)

T . There are also an infinite
number of levels, n = 1,2, · · · , of increasing energy, ε±n = ±ℏv0

√
n/ℓB, on the particle

(+) and hole (−) sides, whose wavefunctions are ψ±
n = 1√

2
(φn,∓iφn−1)

T and ±σxψ±
n

in the KKK+ and KKK− valleys, respectively. Each level features a four-fold spin/valley
degeneracy, and the filling factor is a half-integer multiple of four, increasing directly
from ν = −2 to ν = 2 as the zero-energy level is crossed, where ν = 0 corresponds to
charge neutrality [43, 19].

2.6 Bilayer graphene

We show the lattice structure of Bernal (AB) bilayer graphene in Fig. 2.4 a), which is
composed of two parallel layers of graphene, with the top layer (′) offset out-of-plane

16We suppress the momentum index, ky.
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by c0 ≈ 0.33nm [44] and in-plane by τττ0 = τττB [45]. There are vertical dimers of A′

atoms above B atoms, with a reduced three-fold rotational symmetry (including inver-
sion) about their centres, D3d = {E,2C3,3C′

2, i,2S6,3σd}. Another configuration is AA

stacking, τττ0 = 0, which features the full six-fold rotational symmetry of the monolayer,
D6h, and is not considered in this thesis.

We construct a tight-binding Hamiltonian for Bernal bilayer graphene, ĤGG, in the
format of the Slonczewski-Weiss-McClure model (SWM) for bulk graphite [46, 47,
48, 49]17, with parameters determined by infrared spectroscopy [50]. This features in-
tralayer hopping amplitudes analogous to monolayer graphene, γ0 = 3.16eV, alongside
three distinct interlayer couplings:

• A vertical coupling between dimer sites:

γ1 = ⟨ΦB(rrr−RRR,z− c0)|ĤGG|ΦA′(rrr−RRR,z)⟩= 0.381eV. (2.25)

• A skew coupling between non-dimer sites:

−γ3 = ⟨ΦB′(rrr−RRR+σσσ j,z− c0)|ĤGG|ΦA(rrr−RRR,z)⟩=−0.38eV18. ( j = 0,1,2)
(2.26)

• A second skew coupling between sites in the same monolayer sublattice:

γ4 = ⟨Φλ′(rrr−RRR−σσσ j,z− c0)|ĤGG|Φλ(rrr−RRR,z)⟩= 0.14eV.

(
λ = A,B

j = 0,1,2

)
(2.27)

The different environments of the dimer atoms increases their on-site potential by the
dimer asymmetry, ∆′ = 0.022eV. We introduce an interlayer potential asymmetry (ver-
tical bias), ∆, via electrostatic gating or by the intrinsic properties of a substrate, which

17This also includes vertical couplings between next-nearest-neighbouring layers, γ2 and γ5, discussed
in Chapter 6.

18There is an ongoing discussion as to the sign of γ3 [51, 52, 53, 54, 45, 55, 56], although the choice
bears little effect on the low-energy electronic properties, by itself. In this thesis, we follow the positive
sign convention of the SWM model, γ3 > 0 [46, 47, 48, 49]. However, recent investigations into the
trigonal warping at low energies, including a theoretical study from density functional theory [55] and an
experimental study using angle-resolved photoemission spectroscopy (ARPES) [56], suggest a negative
sign, γ3 < 0.
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breaks inversion symmetry and reduces the point symmetry group to C3v
19.

We derive the dispersion of the four bands shown in Fig. 2.4 b) by considering Bloch
states, of wavevector kkk, in the sublattice basis, (A,B,A′,B′), whose Hamiltonian is

HGG(kkk) =


−∆/2 −γ0g(kkk) γ4g(kkk) −γ3g(kkk)∗

−γ0g(kkk)∗ −∆/2+∆′ γ1 γ4g(kkk)

γ4g(kkk)∗ γ1 ∆/2+∆′ −γ0g(kkk)

−γ3g(kkk) γ4g(kkk)∗ −γ0g(kkk)∗ ∆/2

 . (2.28)

These bands are the solutions to the TISE from Eq. (2.9), and we neglect the non-
orthogonality (SGG ≈ I) since its effects are small at low energies, |ε| < γ1 [45]. There
are a low-energy conduction and valence band, ε1

±, respectively, which are predomi-
nantly located on the non-dimer atoms, A and B′. There are also two high-energy bands,
ε2
±, predominantly located on the dimer atoms, A′ and B, and separated from the low-

energy bands at each KKK± point by an energy gap, ∼ γ1. Expanding about each point
gives the continuum Hamiltonian,8

ĤGG =


−∆/2 v0π̂† −v4π̂† v3π̂

v0π̂ −∆/2+∆′ γ1 −v4π̂†

−v4π̂ γ1 ∆/2+∆′ v0π̂†

v3π̂† −v4π̂ v0π̂ ∆/2

 , (2.29)

where v j =
√

3aγ j/(2ℏ) ( j = 0,1,3). There is no general analytical solution to either
Hamiltonian, requiring numerical diagonalisation which is of particularly high compu-
tational complexity for the Landau levels20.



52 CHAPTER 2. THEORY ARMAMENTARIUM

Figure 2.5: The low-energy dispersion of bilayer graphene along a wavevector slice,
(kx,0), in the KKK+ valley for various combinations of the terms in its two-band effective
Hamiltonian in Eq. (2.30). We consider a large interlayer potential asymmetry, ∆ =
100meV, in b) and f). The dotted line in each case is the dispersion of the minimal
effective model, Ĥm only.
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2.7 Effective model for bilayer graphene

Fortunately, we can describe the low-energy states of bilayer graphene near each KKK±

point, whose dispersion is shown in Fig. 2.4 c), by a 2×2 effective continuum Hamil-
tonian, [45]

Ĥ(2)
GG = Ĥm + Ĥ3 + Ĥα + Ĥ∆,

Ĥm =
−1
2m∗

(
0 π̂†2

π̂2 0

)
, Ĥ3 = v3

(
0 π̂

π̂† 0

)
, Ĥα =

α

2m∗

(
π̂†π̂ 0

0 π̂π̂†

)
,

Ĥ∆ =−∆

2

[(
1 0
0 −1

)
− 1

m∗γ1

(
π̂†π̂ 0

0 −π̂π̂†

)]
,

m∗ =
γ1

2v2
0
≈ 0.032me, α =

2v4

v0
+

∆′

γ1
≈ 0.15,

(2.30)

valid for energies away from the high-energy bands, |ε| ≪ γ1. This is obtained by
Löwdin partitioning,

Ĥ(2)
GG ≈ Ĥ1 + T̂ †(−Ĥ2)

−1T̂ ,

Ĥ1 =

(
−∆/2 v3π̂

v3π̂† ∆/2

)
, Ĥ2 =

(
−∆/2+∆′ γ1

γ1 ∆/2+∆′

)
, T̂ =

(
−v4π̂ v0π̂†

v0π̂ −v4π̂†

)
,

(2.31)
which projects the high-energy components on the dimer sublattices, A′ and B, onto the
low-energy non-dimer sublattices, A and B′, before expanding to first order in γ

−1
1 [57,

58, 59, 51, 60, 45].

The first term, Ĥm, represents a minimal effective model for massive chiral Dirac
fermions in bilayer graphene, whose dispersion, ε±(kkk) = ±ℏ2k2/(2m∗), is shown in
Fig. 2.5. The effective electron mass, m∗, is much smaller than the free electron mass,
me, and the bands touch at the KKKξ points. This Hamiltonian satisfies all the discrete

19A theory background to electrostatic gap opening is given in Section 2.9. An experimental study into
gap opening by a magnetic substrate is presented in Chapter 5.

20We consider a finite cut-off, Nλ, for the Landau levels in each sublattice, λ, which is chosen to
limit erroneous annihilation as the raising operator, κ̂†, increases the order above the cut-off. For
bilayer graphene, we prevent such errors in the most relevant couplings, γ0 and γ1, with cut-offs
(N,N −1,N −1,N −2) and (N −2,N −1,N −1,N), for some N > 2 (we use N > 100), in the sublattice
basis, (A,B,A′,B′), and each valley, KKK±, respectively.
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symmetries from Section 2.3, including the chiral symmetry, and the 2π Berry phase of
the corresponding wavefunctions,

|ψ±(kkk)⟩=
1√
2

eikkk·rrr
(

1
∓eiξ2θkkk

)
, (2.32)

gives a distinct chirality from the monolayer. Correspondingly, bilayer graphene fea-
tures near-perfect intraband and near-vanishing interband backscattering21,

⟨ψs(−kkk)|e−i2kkk·rrr|ψs′(kkk)⟩ ≈ δss′, (s,s′ =±) (2.33)

and there is an alternative Klein paradox, where electrons have perfect reflectance from
a sufficiently wide square barrier [16].

This chirality is reflected in its Landau level spectrum, shown in Fig. 2.3 c), which
features an eight-fold degenerate zero-energy level, εn = 0, where each spin/valley fea-
tures two levels, n = 0,1, with a sublattice-polarised wavefunction, ψn = (φn,0)T and
(0,φn)

T in the KKK± valley, respectively. Then, there are an infinite number of four-fold
degenerate levels, n = 2,3, · · · , of increasing energy, ε±n = ±ℏω∗

B

√
n(n−1), on the

particle and hole sides, with increased cyclotron frequency, ω∗
B = |e|B/m∗. The cor-

responding wavefunctions are ψ±
n = 1√

2
(φn,±φn−2)

T and ±σxψ±
n in the KKK+ and KKK−

valleys, respectively. Otherwise, the fan diagram is qualitatively similar to the free elec-
tron gas.

We now discuss the effects of each remaining term in Eq. (2.30) on the minimal
effective model22. The skew interlayer coupling, γ3, gives the second term, Ĥ3, in-
ducing trigonal warping of the dispersion, which is most relevant at small densities,
|n| < π(2mv3/ℏ)2 [51]. The ultra-low-energy dispersion, below a Lifshitz transition
at |ε| ≈ γ1v2

3/(4v2
0) ≈ 1meV [61], comprises three Dirac cones of Berry phase π, sur-

rounding a central Dirac cone of Berry phase −π, and the 2π total Berry phase is con-
served [62]. The second skew interlayer coupling, γ4, and the dimer potential asymme-
try, ∆′, give the third term, Ĥα, which induces a parabolic energy shift, αk2/(2m∗), in
each band23. This breaks the particle-hole symmetry in Eq. (2.14), and is relevant at

21Not strictly perfect due to the trigonal warping term in Eq. (2.30), Ĥ3.
22See Chapter 7 for a discussion of the synergy between terms.
23This is an order of magnitude larger than the contribution from the non-orthogonality of atomic
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Figure 2.6: The lattice structure of Bernal (AB) bilayer graphene under small uniaxial
strain, of magnitude δ and along a principal axis at an angle, θ, to the x-axis, and inter-
layer offsets, τττ. a) Neither strain nor offset, with a three-fold rotational symmetry, D3d.
Either breaks the rotational symmetry, which preserves one of the zigzag axes if the off-
set and one of the strain axes are along it, C′

2h for δ = 30%, θ = 0◦ and τττ = (0,0.2)nm
in b), and not otherwise, Ci for δ = 30%, θ = 70◦ and τττ = (0.2,−0.1)nm in c).

all densities. The interlayer asymmetry, ∆, gives the final term, Ĥ∆, inducing a Mexi-
can hat-shaped dispersion, whose band edge appears as a circle of non-zero k, with a
bandgap whose magnitude is reduced from |∆| [63]. This is most relevant in the density
range |n|< 2πm∗|∆|/ℏ2.

2.8 Strain in few-layer graphene

The lattice structure of bilayer graphene is substantially altered by the rotational sym-
metry breaking effects of the in-plane strain and interlayer offset shown in Fig. 2.6 [64,
65, 66]24. The strain field, uuu(rrr), modifies the atomic positions, RRR → RRR+uuu(RRR), and we
consider the continuum approximation, RRR → (I +U(RRR))RRR, to first order in the strain
tensor, Ui j = (∂iu j +∂ jui)/2 (|Ui j| ≪ 1) [67, 68, 69]. We consider uniaxial strain, [70]

U =

(
δcos2 θ+δ′ sin2

θ (δ−δ′)cosθsinθ

(δ−δ′)cosθsinθ δsin2
θ+δ′ cos2 θ

)
. (2.34)

wavefunctions and the next-nearest-neighbour couplings, see Section 7.A.
24See Chapter 3
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with an expansion, δ ≪ 1, along a principal axis, eeeδ = (cosθ,sinθ), and perpendicular
contraction by the Poisson effect, −δ′ = −ρδ (ρ = −0.165) along eeez × eeeδ [71]. The
latter corresponds to a small constant offset, τττ (|τττ| ≪ rAB), relative to Bernal stacking,
τττ0 = τττB +τττ. The point symmetry group is C′

2h = {E,C′
2, i,σ

′
h}25 if the offset and one of

the strain axes are parallel to and hence preserve one of the C′
2 zigzag axes, otherwise it

is Ci = {E, i}. Breaking inversion symmetry (i) with an interlayer potential asymmetry,
∆, reduces the symmetry to C′

s = {E,σ′
h} or (trivial) C1 = {E}, respectively.

The low-energy Physics of monolayer graphene is unchanged by small, homoge-
neous strain, where it simply induces a shift in the Dirac point [68, 70]. To first order
in the strain tensor, the anisotropic amplitude of the intralayer coupling, γ0, for each
vector, σσσn, is

γ
(n)
0 ≈

(
1+

3η0

a2 σσσ
T
n Uσσσn

)
γ0, (n = 0,1,2), (2.35)

respectively, quantified by the Grüneisen parameter, η0 = ∂ lnγ0/∂ lnrAB (−3 ≤ η0 ≤
−2) [72, 73]. This corresponds to a substitution in Hamiltonian (2.10),

v0π̂ → v0π̂+A0, A0 =−3
4

η0γ0(Uyy −Uxx + iξ2Uxy), (2.36)

where the gauge field, A0, corresponds to a pseudo-magnetic field,

B =− 1
ev0

(∂xImA0 −ξ∂yReA0). (2.37)

This is only non-zero for inhomogeneous strain, where it can easily reach the tens of
Teslas regime [69], and does not break time reversal symmetry as it has opposite signs
in each valley, KKKξ (ξ =±). The shifts in the Dirac points are ξ

√
3

2 η0(Uyy −Uxx,2Uxy),
which are removed by a gauge transformation,

ĤG → e−iξφĤGeiξφ, φ(x,y) =

√
3

2
η0

a
[(Uyy −Uxx)x+2Uxyy]. (2.38)

Strain and interlayer offset strongly affect the low-energy Physics of bilayer
graphene, where their effects on the skew interlayer couplings, γ3 and γ4, cannot be
gauged away [64, 65, 66]. There are shifts in the four Dirac points in each valley,

25The “vertical” axis is oriented along the C′
2 axis.
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with Berry phase-conserving collisions reducing the number of Dirac cones to two,
which become increasingly broad and deep. Sufficiently large strain/offset effectively
decouples each layer at low energy, with each Dirac cone exhibiting a monolayer-style
Klein paradox with perfect transmittance through a square barrier [74]. The anisotropic
couplings for each vector, (−1) jσσσn, are

γ
(n)
j ≈

[
1+

3η j

a2 (σσσT
n Uσσσn +(−1) j

τττ ·σσσn)

]
γ j,

(
j = 3,4

n = 0,1,2

)
(2.39)

and we use a geometric estimate26, η3/4 ∼ −1, for their unknown Grüneisen parame-
ters [75]. The substitutions in Hamiltonian (2.28) are Eq. (2.36) and 27

v jπ̂ → v jπ̂+A j,

A j =−3
4η jγ j[Uyy −Uxx + iξ2Uxy − (−1) j2

√
3(−τy + iξτx)/a].

( j = 3,4) (2.40)

2.9 Screened bandgap in bilayer graphene

A tunable bandgap, ∆g, is opened with a vertical displacement field, D [63, 76, 77,
2, 45], with an approximately linear relationship (∆g ≪ γ1) shown in the first panel
of Fig. 2.7 for an electrically neutral bilayer. The displacement field can also be in-
duced by charge transfer to a magnetic substrate [78, 79, 80, 81]28. The field induces
an interlayer potential asymmetry, ∆ (∆g < |∆|), whose theoretical maximum value,
∆0 = eDc0/(εzε0), depends on the out-of-plane dielectric susceptibility, εz ≈ 2.6 [77].
This asymmetry induces an out-of-plane dipole, nt − nb, in the electron density of the
bottom/top electron layer, nb/t , as the electron wave functions are biased towards the
layer at higher electrostatic potential (nt > nb for D > 0). This dipole in turn induces a
(screening) field opposing the external field, and so on, leading to a self-consistent value
of the asymmetry, ∆, and gap, ∆g [63, 77, 45]. Charging the bilayer, n = nb + nt ̸= 0,

26We assume an isotropic form of the carbon-coupling hopping amplitude, γ(d) ≈ γ0eη0d/rAB , which
depends only on their separation, d. For the skew interlayer couplings, γ3/4, this gives η3/4 =

∂ lnγ3/4/∂ lnrAB ∼ ∂γ(
√

r2
AB + c2

0)/∂rAB ≈ η0rAB/
√

r2
AB + c2

0 with respect to in-plane displacements
(changes in rAB).

27Removing the interlayer gauge field, A0, with the gauge transformation from Eq. (2.38), then we
have A j → w j = A j − γ jA0/γ0 ( j = 3,4). Inserting the expression for uniaxial strain in Eq. (2.34) gives
the modified gauge fields, w3 and w4, in Eq. (3.1.a) and used throughout Chapter 3.

28See Chapter 5.
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Figure 2.7: Dielectric screening of the bandgap in bilayer graphene. Left. The bandgap,
∆g, and magnitude of the interlayer potential asymmetry, ∆, and its theoretical maxi-
mum, ∆0, against the vertical displacement field, D, they are induced by. Centre and
right. The difference, nt −nb, between the electron densities, nb/t , in the bottom and top
layers, respectively, and the bandgap, ∆g, against the displacement field, D, and total
electron density, n = nb +nt .

has little effect beyond slightly suppressing the screening, which we attribute to the re-
duced dependence of the higher energy wavefunctions on the asymmetry. The bandgap
decreases with the formation of Landau levels in a transverse magnetic field [82]28.

The interlayer asymmetry, ∆, is calculated self-consistently via an expression, [77]

∆ =
eDc0

εzε0
+

e2(nt −nb)c0

4ε̄zε0
, (2.41)

with the ∆-dependence of the right-hand-side contained in the electron densities of each
layer. The first term is the theoretical maximum, ∆0, which is screened by the second
term, representing a semiclassical calculation of the electric field induced by the charge
density of each layer, enb/t

29. The screening term features an effective susceptibility,
ε̄z = (1+ 1/εz)

−1 ∼ 1, since the charge induced on each layer produces no net polari-
sation of that layer due to the even and odd parity of the σ- and π-bonds with respect to
reflections in the horizontal plane (σh).

Including the four-fold spin/valley multiplicity at zero magnetic field, the layer den-
sities are given by

nL = 4∑
n

∫ d2kkk
(2π)2 f0(εn(kkk))

(
|ψn,L(kkk)|2 −

1
4

)
, (L = b, t) (2.42)

29This is frequently referred to as a Hartree approach in the literature [63, 83, 84, 45, 77, 85], although
it is not strictly a local approach.
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where ψn,L is the wavefunction of each of the four bands, n, projected onto the corre-
sponding layer, L. The dependence on the temperature, T , is contained in the Fermi-
Dirac distribution function, f0(ε) = 1/(e(ε−εF )/(kBT )+ 1), where the Fermi energy, εF ,
is determined by the total density, n = nb +nt [86, 87]. We simplify by considering low
temperatures, T → 0, in which case the distribution is a step function, f0(ε)≈ θ(εF −ε),
and electron states below and above the Fermi energy are occupied and vacant, respec-
tively30. For non-zero magnetic field, we determine the layer densities by the compo-
nents of each non-dispersive Landau level, each of which contributes a density quantum
when filled28,31.

2.10 van der Waals heterostructures of graphene and
hexagonal boron nitride (hBN)

Hexagonal boron nitride (hBN) features layers with a similar honeycomb lattice to
graphene, albeit with a longer lattice period, (1+δ)a (δ = 0.018) [88, 89, 90, 91], and
the interference of the incommensurate lattices at a graphene/hBN interface results in a
long-range moiré superlattice (mSL) [92, 93, 94, 95]. The inequivalent boron and nitro-
gen atoms in the hBN layer break inversion symmetry, reducing the rotational symmetry
to three-fold, C3v. Including a counter-clockwise twist, θ, of the hBN layer removes the
high symmetry planes, C3 = {E,2C3}, and reduces the mSL period, λ ≈ a/

√
δ2 +θ2,

where we assume that the mSL is much larger than either lattice, λ ≫ a (δ,θ ≪ 1). The
first star mSL Bragg vectors,

GGGm ≡ gggm −ggg′m ≈ δ ·gggm −θeeez ×gggm, (m = 0,1, · · · ,5) (2.43)

are the difference between the corresponding vectors for graphene, gggm from Eq. (2.3),
and hBN, ggg′m = (1+ δ)−1 ( cosθ −sinθ

sinθ cosθ

)
gggm. In the continuum approximation [96, 97],

appropriate for λ ≫ a, we relate the electronic properties in the vicinity of a point, rrr, to
an equivalent commensurate graphene/hBN bilayer, δ = θ = 0, with an interlayer offset

30See Section 7.C.
31See Section 2.5.



60 CHAPTER 2. THEORY ARMAMENTARIUM

Figure 2.8: a) The moiré superlattice (mSL) at the interface between a graphene and an
hBN layer, resulting from the longer lattice period, of mismatch δ = 0.018, and counter-
clockwise twist, θ, of the latter. The mSL period is λ ≈ a/

√
δ2 +θ2, and its hexagonal

unit cell has area A =
√

3λ2/2. b) The interlayer offset, τττ, between the centre of the unit
cells in each layer, given by Eq. (2.44) (we choose the shortest value of τττ). c) The moiré
Brillouin zone (mBZ) of the mSL centred on the KKK+ valley, with the first star mSL
Bragg vectors, GGGm (m = 0,1, · · · ,5), given by Eq. (2.43). d) The mSL-reconstructed
minibands of monolayer graphene in this mBZ in the KKK+ valley.
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shown in b),
τττ(rrr) = τττ0 +δ · rrr+θeeez × rrr, (2.44)

which varies slowly over each graphene unit cell, with τττ(0) = τττ0.
The effective Hamiltonian of this bilayer in each valley, KKKξ (ξ =±), is32

Ĥ =

(
ĤG T̂ †

T̂ ĤhBN

)
,

ĤhBN ≈
(

VN 0
0 VB

)
, T̂ =

1
3

2

∑
j=0

eiξ(KKK j−KKK0)·τττ
(

γN γNe−iξ2π j/3

γBeiξ2π j/3 γB

)
.

(2.45)

This is a block Hamiltonian, whose upper diagonal block, ĤG from Eq. (2.15), cor-
responds to the graphene layer, while the lower block, ĤhBN, is hBN. The nitrogen
and boron atoms appear at sublattices A and B of the hBN layer with on-site poten-
tials33, VN ≈ −1.4eV and VB ≈ 3.3eV, respectively, which gives a large bandgap,
|∆AB| ∼ 5eV [98]. The interlayer block, T̂ , is derived using kkk · ppp theory [99, 97], and
includes couplings, γN and γB, to each of the nitrogen and boron atoms, respectively,
analogous to γ1 in Eq. (2.25). Then, we perform a Schrieffer-Wolff transformation, see
Eq. (2.31), giving a perturbation in the graphene Hamiltonian, M̂ = T̂ †(−ĤhBN)

−1T̂ ,
which we expand to first order in V−1

N and V−1
B

34.
The hBN layer induces a mSL-periodic local energy shift, E , sublattice potential

asymmetry, M , and pseudo-magnetic field, B , in the graphene layer [92], which we
show in Fig. 2.9. These are derived from the local mSL perturbation,

M̂ ≡
(

E +M /2 A∗
0

A0 E −M /2

)
= ∑

P=±

5

∑
m=0

M̂P
GGGm

,

M̂+
GGGm

=

(
u+0 + i(−1)mu+3 e−iξm2π/3(−1)mu+1

eiξm2π/3(−1)mu+1 u+0 − i(−1)mu+3

)
eigggm·τττ0eiGGGm·rrr,

M̂−
GGGm

=

(
i(−1)mu−0 +u−3 −ie−iξm2π/3u−1
−ieiξm2π/3u−1 i(−1)mu−0 −u−3

)
eigggm·τττ0eiGGGm·rrr,

(2.46)

32We neglect an intralayer coupling in the hBN layer, analogous to γ0, alongside skew interlayer cou-
plings, analogous to γ3 and γ4, since their effects on the low-energy bands in the graphene layer are
minimal.

33Relative to graphene.
34See Chapter 6.
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Figure 2.9: The local energy shift, E , sublattice potential asymmetry, M , and pseudo-
magnetic gauge field, B , induced by the moiré superlattice (mSL) perturbation, along-
side the dispersion of the reconstructed minibands in the mSL Brillouin zone in the
KKK+ valley of an aligned graphene/hBN heterostructure. The even parity potential is
V+ = 17meV. a) Preserving inversion symmetry with a vanishing odd parity potential,
V− = 0meV, gives a C6v symmetric perturbation and a gapless dispersion. b) Breaking
inversion symmetry with V− = 5meV gives a perturbation of reduced C3v symmetry
and a dispersion featuring minigaps.
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obtained by inserting the offset, τττ(rrr) in Eq. (2.44), into the commensurate perturbation
from the previous paragraph8, with the pseudo-magnetic field given by Eq. (2.37). This
perturbation features twelve harmonics, M̂P

GGGm
, for each of the first star Bragg vectors,

GGGm (m = 0,1, · · · ,5), and of even (P =+) and odd (P =−) parity under inversion, the
latter of which break inversion symmetry. The six parameters,

(u±0 ,u
±
1 ,u

±
3 ) =

(
± 1

2
,−1,−

√
3

2

)
V±,

V+ =
1

18

(
γ2

N
VN

+
γ2

B
VB

)
, V− =

√
3

18

(
γ2

N
VN

− γ2
B

VB

)
,

(2.47)

are related to two potentials, V P , of corresponding parity, P =±, and magnetic focusing
measurements reveal weak inversion symmetry breaking, V+ = 17meV and |V−| <
5meV [100]35. The plots in Fig. 2.9 correspond to an aligned heterostructure (θ = 0),
featuring the expected C6v symmetry for preserved in-plane inversion symmetry in a)
(V− = 0meV), and C3v when it is broken in b) (V− = 5meV).

This perturbation reconstructs the Dirac cones of monolayer graphene into a collec-
tion of minibands, shown in Fig. 2.8 d) and 2.9, in the two smaller mSL Brillouin zones
(mBZ) whose centres are the the KKK± points [102, 92, 94], with the KKK+ mBZ shown in
Fig. 2.8 c). The first conduction and valence minibands, c (s = +) and v (s = −), re-
spectively, are largely unchanged from their isolated counterparts, except for significant
reconstruction near the mBZ sides, and there are also minibands of increasing energy
above (c′,c′′, · · · ) and below (v′,v′′, · · · ) these minibands. Each harmonic, M̂GGGm , couples
graphene states whose wavevectors, kkk and kkk′, are separated by the corresponding mSL
Bragg vector, GGGm:

⟨ψs(kkk)|M̂|ψs′(kkk
′)⟩=

5

∑
m=0

⟨ψs(kkk)|M̂GGGm|ψs′(kkk−GGGm)⟩δkkk,kkk′′′+GGGm
, (2.48)

Hence, we consider a basis of graphene states36, |ψs(kkk+GGG)⟩ from Eq. (2.17), for each

35This includes other contributions, such as the electrostatic interaction between the π electrons in each
layer [92, 101].

36Alternatively, if analytical expressions for the isolated wavefunctions, |ψs(kkk)⟩, are unknown or oth-
erwise unsuitable, we consider a basis of plane wave states in each sublattice, λ.
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band, s, and mSL Bragg vector, GGG37, whose wavevectors, kkk+GGG, are folded into a sin-
gle wavevector in the mBZ, kkk, with translation by −GGG [92, 94]. The diagonal ele-
ments of the reconstructed Hamiltonian are approximately the eigenvalues of graphene,
[H(kkk)]sGGG,sGGG ≈ εs(kkk+GGG), while each off-diagonal element, [H(kkk)]sGGG,s′GGG′ , gives the ampli-
tude of a momentum-violating “kick”, ℏ(GGG−GGG′), from the mSL perturbation38. Break-
ing inversion symmetry (V− ̸= 0) opens minigaps between the minibands, as seen in
Fig. 2.9 b) for V− = 5meV, and each miniband has a well-defined valley Chern num-
ber39.

2.11 Umklapp electron-electron scattering in graphene/hBN
superlattices heterostructures

Umklapp electron-electron (Uee) scattering substantially limits the electrical conductiv-
ity of monolayer graphene/hBN van der Waals heterostructures and hence their utility
in nanoscale electronics [103, 104], especially those formed by epitaxial growth with
a typically close alignment [105, 106, 107]. During normal electron-electron scatter-
ing via the Coulomb interaction, shown in Fig. 2.10 a, the total (crystal) momentum
is preserved and there is a negligible contribution to the resistivity, ρxx. However, the
scattering of electrons with thermally-excited holes for densities close to the miniband
edges provides a substantial resistivity contribution in Fig. 2.10 b. By comparison, dur-
ing Uee scattering from a periodic lattice, the total momentum is only conserved up to
one of its Bragg vectors, ggg:

kkk3 + kkk4 = kkk1 + kkk2 +ggg, (2.49)

where kkk1,2 and kkk3,4 are the wavevectors of the incoming and outgoing electrons, re-
spectively. Unlike a typical metal whose long Bragg vectors, |ggg| ∼ 10nm−1, only allow
experimental Uee observation for ultraclean samples at low temperatures [108, 109, 110,
111, 112], the arbitrarily large mSL Bragg vectors allow Uee scattering to dominate the
resistivity, ρxx of a graphene/hBN heterostructure across a large parameter space and at

37We consider mSL Bragg vectors which are the sum of at most two of the first star vectors, GGGm,
guaranteeing milli-electronvolt convergence of the first valence and conduction minibands. Otherwise,
we sum up to three first star mSL Bragg vectors.

38See Chapter 7.
39See Chapter 4.
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Figure 2.10: Umklapp scattering and excess resistivity in graphene superlattices.
a, Normal e-e scattering for, e.g., holes in graphene does not lead to resistivity (left),
in contrast to the umklapp scattering for holes in a graphene superlattice (right). Here
we also illustrate the mSL Brillouin zone (purple hexagon) and mSL minibands in the
valence band of graphene. b, Longitudinal resistivity, ρxx, for nonaligned (orange)
and aligned (green) graphene/hBN devices. Solid curves: low temperature, T = 10
K. Dashed: 200 K. Inset: Optical image of the mSL device (from [103]) in b. c, T -
dependent resistivity, ∆ρ(T ) = ρxx(T )−ρxx(10K), at a fixed n = −1× 1012 cm−2 for
four mSL devices and the nonaligned device (orange symbols). Error bars are smaller
than the data points. Inset: Device schematic and measurement scheme. The top illus-
tration is a moiré pattern arising from 1.8% lattice mismatch in aligned graphene (blue)
and hBN (grey) crystals. Figure and caption adapted from [103].
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Figure 2.11: Electron-electron scattering and its electron-hole asymmetry in
graphene superlattices. a, Resistivity for different mSL periods, λ (color coded), as
a function of n. Their n0 were between 2 and 3.7× 1012 cm−2. Solid curves: 10 K.
Dashed: 100 K. The curves for λ = 13.6 and 15.1 nm are offset for clarity by 200 and
400Ω, respectively. The color shaded areas emphasize the T -dependent parts of ρxx for
different λ. b, Open circles show experimental ∆ρ(T ) (same color coding as in a). The
error bars are smaller than the symbols. Solid curves: calculated Uee contribution (no
fitting parameters). Note that a small density-independent offset, ρBG = 10Ω, has been
added to the theoretical curves. The inset depicts an umklapp process for the thresh-
old density, n∗, such that |kkk1,2,3,4| = g/4, where the momentum transferred to the mSL
corresponds to the exact backscattering of a pair of electrons (orange and green balls).
Figure and caption adapted from [103].

large temperatures in Fig. 2.10 c.

Theoretical predictions of the excess resistivity due to Uee scattering versus the
experimental observations are shown in Fig. 2.11. The Uee contribution, ρUee, is esti-
mated using semiclassical linear transport theory [113, 114, 103]40 in the density range,
0.2n0 ≤ |n| ≤ 0.7n0 (n0 = 8/(

√
3λ2) gives four electrons per supercell), where the re-

construction of the dispersion can be neglected and the mSL interaction is treated pertur-
batively. The most significant Uee processes involve one of the incoming or outgoing
electrons Bragg scattering off the mSL41, giving the conservation-violating momen-
tum kick in Eq. (2.49). The Uee contribution is suppressed below a threshold density,

40See Section 7.E.
41See Eq. (7.4)
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n∗ = n0π/(8
√

3) ≈ 0.23n0, at which point Eq. (2.49) is first satisfied by electrons on
the Fermi line, subsequently increasing monotonically with density, n, and tempera-
ture, T , according to ρUee ∝ |n− n∗|3/2T 2. This gradual rise with respect to density
is a consequence of the chirality-suppressed backscattering of monolayer graphene in
Eq. (2.16)42. The Uee contribution features substantial particle-hole symmetry break-
ing from Eq. (2.46), being two orders of magnitude larger for holes then electrons, and
dominates over other contributions, including electron-phonon scattering.
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[85] E. Icking, L. Banszerus, F. Wörtche, F. Volmer, P. Schmidt, C. Steiner, S. Engels,
J. Hesselmann, M. Goldsche, K. Watanabe, T. Taniguchi, C. Volk, B. Beschoten,
and C. Stampfer, Transport Spectroscopy of Ultraclean Tunable Band Gaps in
Bilayer Graphene Advanced Electronic Materials, vol. 8, no. 11, p. 2200510,
2022.

[86] E. Fermi, Sulla quantizzazione del gas perfetto monoatomico. (Italian) [On the
Quantization of the Ideal Monatomic Gas] vol. 3, no. 6, pp. 145–149, 1926.

[87] P. A. M. Dirac, On the theory of quantum mechanics Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical

Character, vol. 112, pp. 661–677, Oct. 1926.

[88] Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu,
K. Zhang, H. Li, Z.-Y. Juang, M. S. Dresselhaus, L.-J. Li, and J. Kong, Synthesis
of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition
Nano Letters, vol. 10, no. 10, pp. 4134–4139, 2010. PMID: 20812716.

[89] S. K. Jang, J. Youn, Y. J. Song, and S. Lee, Synthesis and Characterization of
Hexagonal Boron Nitride as a Gate Dielectric Scientific Reports, vol. 6, p. 30449,
Jul 2016.



76 CHAPTER 2. THEORY ARMAMENTARIUM

[90] D. Wickramaratne, L. Weston, and C. G. Van de Walle, Monolayer to Bulk Prop-
erties of Hexagonal Boron Nitride The Journal of Physical Chemistry C, vol. 122,
no. 44, pp. 25524–25529, 2018.

[91] M. J. Molaei, M. Younas, and M. Rezakazemi, A Comprehensive Review on Re-
cent Advances in Two-Dimensional (2D) Hexagonal Boron Nitride ACS Applied

Electronic Materials, vol. 3, no. 12, pp. 5165–5187, 2021.

[92] J. R. Wallbank, A. A. Patel, M. Mucha-Kruczyński, A. K. Geim, and V. I. Fal’ko,
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Zero-energy modes and valley asymmetry in the Hofstadter spectrum of bi-
layer graphene van der Waals heterostructures with hBN Phys. Rev. B, vol. 94,
p. 045442, Jul 2016.

[95] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bi-
layer graphene Science, vol. 363, pp. 1059–1064, 2019.

[96] P. Moon and M. Koshino, Optical absorption in twisted bilayer graphene Phys.

Rev. B, vol. 87, p. 205404, May 2013.

[97] P. Moon and M. Koshino, Electronic properties of graphene/hexagonal-boron-
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Abstract

Topological properties of electronic states in multivalley two-dimensional
materials, such as mono- and bilayer graphene, or thin films of rhombohe-
dral graphite, give rise to various unusual magneto-transport regimes. Here,
we investigate the tunability of the topological magnetic moment (related
to the Berry curvature) of electronic states in bilayer graphene using strain
and vertical bias. We show how one can controllably vary the valley g-
factor of the band-edge electrons, g∗v , across the range 10 < |g∗v |< 200, and
we discuss the manifestations of the topological magnetic moment in the
anomalous contribution towards the Hall conductivity and in the Landau
level spectrum.

Strain in bilayer graphene (BLG), sketched in Fig. 3.1, affects its low-energy elec-
tronic properties far greater than in its monolayer allotrope [7, 8, 9, 10, 11], generating
qualitative changes in its low-energy spectrum close to the neutrality point. The earlier-
discussed effects [7, 8, 9] of unilateral strain and shear deformations in Bernal (A′B)

stacked bilayers include the Lifshitz transition [12] for weakly n-doped and p-doped
structures, accompanied by a redistribution (even a coalescence) of the Berry phase ±π

singularities in the bilayer’s electronic bands [5, 7]. These changes are caused by the
interplay between the intralayer and skew (AB′) interlayer hopping parameters of elec-
trons, modified by the deformations.

A transverse displacement field, induced by electrostatic gating of bilayers, is an-
other factor that qualitatively changes their electronic properties. The displacement
field generates an asymmetry between the layers, opening up a gap in the energy spec-
trum [5, 13] and smearing the Berry phase singularities into “hot spots” of Berry curva-
ture, ΩΩΩ±(ppp), located near the valley centers KKK± (sign-inverted distributions are found
in opposite valleys, ΩΩΩ+(ppp) = ΩΩΩ−(−ppp)). According to the fundamental properties
of Bloch-Wannier functions [14, 15], a finite Berry curvature of the electronic bands
is associated with a finite intrinsic angular momentum, therefore, a resulting mag-
netic moment of the plane-wave states of the electrons in the corresponding parts of
the Brillouin zone (BZ) of the material [14, 15, 16]. The experimental signatures of
such topological magnetic moments (TMM), with anomalously large effective g-factors
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Figure 3.1: Top. Unstrained (left) and strained (right) bilayer graphene (BLG) with the
intra- and interlayer couplings γ0,3,4 (modified by the strain) marked along the relevant
hopping directions. Bottom. The magnitude of the valley g-factor at the conduction
band edge of BLG, |g∗v |, as a function of the interlayer asymmetry gap, ∆, for uniaxial
strains of magnitude δ = 0% and 2% applied along the zigzag (ZZ) and armchair (AC)
directions. A jump in |g∗v | at ∆ ∼ 55meV for δ = 0% is due to the disappearance of
a central minivalley in the unstrained BLG spectrum upon the increase of the gap [5].
Inset shows |g∗v | against uniaxial strain (up to δ = 4%) for various orientations of the
strain tensor axes and ∆ = 20meV (strain values used in the plot are marked by shapes).
These images can also be used to characterize the effect of shear deformations described
by Eq. (3.2) later in the text.

(gv ∼ 10−100), have recently been predicted [16] and, consequently, observed exper-
imentally [17, 18, 19, 20] in the studies of magnetotransport characteristics of electro-
statically controlled wires in bilayer graphene. The Berry curvature and related intrinsic
angular momentum are also associated with a “Hall-like” drift of electrons in a direction
perpendicular to an external electric field, which causes topological valley currents [21]
at B = 0 and an anomalous contribution toward the Hall conductivity of a 2D material
subjected to an external magnetic field [22].
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Figure 3.2: Top row. The dispersion ε(kkk) of bilayer graphene in the KKK− valley for
∆ = 20meV and a) unstrained; b) 2% uniaxial strain along the zigzag axis and c) 2%
uniaxial strain along the armchair axis (shear with parameters set by the relation in
Eq. (3.2)). Black lines indicate an energy cut at the van Hove singularity. Bottom row.
Contour plots of the corresponding valley g-factor gv.

In this paper, we study the interplay between strain and the interlayer asymmetry
gap [5] in BLG in determining topological properties of electronic states, such as the
Berry curvature, recently analyzed in [23], and the topological magnetic moment, and
their manifestations in the magnetotransport characteristics and Landau level spectra of
bilayers. The outcome of this analysis is summarized in Fig. 3.1, where we show how
strain and shear increase the size of the effective valley g-factor for electrons and holes
near the respective band edges of the gapped BLG, g∗v , giving rise to its tunability by
two orders of magnitude.

To describe electrons in the KKKξ (ξ = ±) valley of bilayers, we use the low-energy
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Hamiltonian written in the (A,B′,A′,B) sublattice basis (marked in Fig. 3.1),

Hξ =


−1

2∆ v3π+w3 −v4π† −w∗
4 v0π†

v3π† +w∗
3

1
2∆ v0π −v4π−w4

−v4π−w4 v0π† 1
2∆+δε γ1

v0π −v4π† −w∗
4 γ1 −1

2∆+δε

 ; (3.1.a)

w j=3,4 =
3
4
[e−i2ξθ(δ−δ

′)(η j −η0)+2
√

3(−1) jeiξϕ
ρη j]γ j. (3.1.b)

Here, π = ξpx + ipy and v0,3,4 =
√

3aγ0,3,4/2ℏ are determined by the intra- (γ0) and
interlayer (γ1,3,4) Slonczewski-Weiss hopping parameters [24], marked on the bilayer
lattice in Fig. 3.1, and a is the lattice constant. For completeness, we take into account
the dimer asymmetry δε which, together with γ4, breaks the particle-hole symmetry
of the spectrum. The interlayer asymmetry, ∆ = −eEzd, is induced by a transverse
electric field Ez, where d is the interlayer distance and e < 0 is the electron charge.
The effect of strain is incorporated in Eq. (3.1.a) in the form of gauge fields, w3,4 in
Eq. (3.1.b), with the magnitude of w3 partly enhanced by the Coulomb interaction [7, 9].
These come from the directional dependence of the γ0,3,4 couplings [7, 8, 25], generated
by strain and shear (relative shift of the layers). Note that the vertical γ1 coupling is
unaffected to first order in the strain amplitude. Here, θ is the angle between the zigzag
crystallographic direction in graphene and the principal axis of the the strain tensor with
components δ and δ′=−0.165δ [26]; shear deformations are described by ρ= δr/a, the
interlayer lattice shift normalized by the lattice constant, where ϕ is the angle between
the shear direction and the armchair axis. Their effect is quantified using the Grüneisen
parameters η j =

rAB
γ j

∂γ j
∂rAB

, with the values η0 ∼−3 [27, 28] and η3,4 ∼−1 taken from the
literature [29]. Note that an uniaxial strain of magnitude δ at an angle θ is approximately
equivalent to the shear deformation of magnitude ρ and direction ϕ,

ρ = 0.336δ
η0 −η3

η0
; ϕ = 180◦−2θ, (3.2)

with an equal value of the more relevant gauge field, w3, while the different value of w4

has negligible effect since |w4|< |w3| ≪ γ1.

Without any strain and for ∆ = 0, the BLG spectrum in the KKK± valley [30] features a
central Dirac cone with a Berry phase ∓π, surrounded by three Dirac points with Berry
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phase ±π (giving a total topological charge of ±2π). Strain causes the displacement in
the momentum plane and a coalescence of ±π singularities, whereas opening up a gap
spreads them into hot spots of Berry curvature [15, 31, 23],

Ω
z
n =−2ℏ2 Im ∑

m̸=n

⟨n|∂pxH|m⟩⟨m|∂pyH|n⟩
(εn − εm)2 . (3.3)

In Fig. 3.2, we illustrate the cumulative effect of the strain (δ = 2%, corresponding to
|w3|= 19meV and |w4|= 5meV) and a gap (∆ = 20meV) on the BLG spectrum in the
KKK− valley, where the role of strain is to deform the three minivalleys at the BLG band
edge [5, 32] into two [7, 8, 31]. Moreover, the particle-hole symmetry breaking caused
by the hopping γ4 and energy shift δε of the dimer orbitals makes the bilayer band gap
indirect for strain applied along the zigzag direction, as marked on Fig. 3.2b). For strain
applied along the armchair axis, the band edges remain degenerate in Fig. 3.2c). In the
bottom panels of Fig. 3.2, we show the variation of the topological magnetic moment of
the plane wave states of electrons across the Brillouin zone, computed using the relation
derived in Ref. [15],

µz
n =−eℏ Im ∑

m̸=n

⟨n|∂pxH|m⟩⟨m|∂pyH|n⟩
εn − εm

≡ ξµBgv, (3.4)

where, for a band n, we sum across all three other bands m ̸= n. This parameter reflects
the valley splitting induced by simultaneous inversion (by Ez) and time-inversion (by B)
symmetry breaking. We express µz in units of the Bohr magneton µB, hence, present its
values in terms of the valley g-factor, gv. The dependence of gv at the conduction band
edge, g∗v , on the gap size, for BLG with 2% strain applied along the zigzag and armchair
axis of graphene is shown in Fig. 3.1, together with a map describing the variation of
g∗v with the change of the strain magnitude and orientation of its axes. Using a 2-band
model [33, 7], which can be solved analytically, we estimate [34] that for |w3| ≳ ∆,
g∗v ∼−102ξ|w3|/∆, in a good agreement with the numerical result.

We also use the Hamiltonian in Eq. (3.1.a) to compute [35] the Landau level (LL)
spectra in a simultaneously strained and vertically biased bilayer, in particular in the case
of ∆ ∼ |w3|. In Fig. 3.3, we show the LL spectra for a bilayer with ∆ = 20meV and,
due to 2% uniaxial strain applied along the zigzag (ZZ) and armchair (AC) directions
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(or a ρ = 0.4% shear anti-parallel and parallel to the AC axis according to Eq. (3.2)),
|w3|= 19meV and |w4|= 5meV. Alongside this, we show the density of states (DoS)
of the spectra at B = 0, marking van Hove singularities, and we extrapolate the LL
spectra to the zero-field limit using semiclassical quantization [6] in the two minival-
leys shown in Fig. 3.2b) and c). While for an arbitrary orientation of the strain tensor
axes these minivalleys are not degenerate, for strain applied along an armchair direc-
tion, the mirror symmetry of the crystal, retained despite the deformations, provides the
degeneracy of the minivalleys. This also results in a double degeneracy of LLs at low
energies which is lifted by magnetic breakdown that takes place at the saddle points in
the spectra shown in Fig. 3.2c). For the larger gap ∆ = 100meV ≫ |w3|, the effects of
lattice deformations are diminished, so that the LL spectra in Fig. 3.4 roughly coincide
with what has been found earlier in gapped bilayers [32].

The formation of the topological magnetic moment may also manifest itself in the
anomalous contribution towards the classical Hall effect in the bilayer. The latter is the
result of a drift experienced by electrons in the bands with a finite ΩΩΩ, in the direction
perpendicular to the external electric field. Due to time-inversion symmetry, the result-
ing drift currents have the opposite signs in the opposite valleys (KKK±), compensating
each other at B = 0. However, a topological magnetic moment ±µz leads to the split-
ting of BLG band edges between the KKK± valleys, ±gvµBBz, and a valley contribution to
the imbalance in the filling of the band edge state, leading to a finite anomalous Hall
conductivity [21, 22],

σ
A
xy =− e2B

π2ℏ3 ∑
n

∮
εn(ppp)=εF

Ωz
nµz

n
|∇∇∇pppεn|

d p. (3.5)

The former should be added to the classical Hall contribution [22],

σ
H
xy =− e3τ2

π2ℏ2 ∑
n,γ

∮
εn(ppp)=εF

∂pxεn

|∇∇∇pppεn|
(∇∇∇pppεn ×BBB)γ

d p
mn,γy

, (3.6)

where m−1
n,αβ

= ∂2εn/∂pα
∂pβ

and τ is the elastic scattering rate. The anomalous Hall
conductivity originates from the TMM and is not suppressed by scattering, so its effect
should be most pronounced in disordered bilayers. In Fig. 3.5, we show both σA

xy and
the total Hall conductivity σxy = σH

xy +σA
xy against carrier density, ne, for a strained and
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unstrained BLG with τ ∼ 10−13 s [36], and ∆ = 20meV or 100meV.

Overall, the results presented above demonstrate that the topological characteristics
of electron states in gapped bilayer graphene can be substantially enhanced by strain.
This results in an anomalously large topological magnetic moment, leading to a valley
splitting of band-edge states by magnetic field in a bias-gapped bilayer that leads to an
anomalous correction to the Hall conductivity. The enhancement of topological effects
may also be detected by measuring photocurrents induced by optically pumping bilayers
using circularly polarized light similarly to that studied earlier in unstrained topological
materials [22, 37].
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Figure 3.3: The zero magnetic field density of states (DoS) and numerically calculated
Landau levels of bilayer graphene for B > 0.1T in the KKK+ (orange) and KKK− (blue) val-
leys of bilayer graphene with an interlayer asymmetry ∆ = 20meV and a) 2% uniaxial
zigzag strain and b) 2% uniaxial armchair strain (or related shear with parameters set
by the relation in Eq. (3.2)). The van Hove singularities are highlighted as black dot-
dashed lines. A semiclassical approximation [6] for Landau levels near the band edges
in Fig. 3.2b) and c) (black lines) is used to extrapolate to B = 0. Note that the two-fold
degeneracy of LLs at lower energies in b) is unique to the armchair direction of strain
for which the spectrum in Fig. 3.2c) features two degenerate minivalleys. This is lifted
in the vicinity of the van Hove singularities. For an arbitrary orientation of the strain
axes, the minivalleys are not degenerate even at B = 0.
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Figure 3.4: The density of states and numerically calculated Landau levels in both val-
leys for B > 0.25T of bilayer graphene with an interlayer asymmetry ∆ = 100meV and
2% uniaxial armchair strain, with equivalent shear given by Eq. (3.2). The line conven-
tion is shared with Fig. 3.3. Similarly to Fig. 3.3b), Landau levels with energies below
the saddle point are 2-fold degenerate in each valley.
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Figure 3.5: Top to bottom. The anomalous Hall conductivity σA
xy and total Hall conduc-

tivity σxy of bilayer graphene for a small interlayer asymmetry ∆ = 20meV (blue) and
a large asymmetry 100meV (orange) against carrier density ne. Left to right. No strain,
2% uniaxial zigzag strain and 2% uniaxial armchair strain.
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Abstract

Twistronic heterostructures have recently emerged as a new class of quan-
tum electronic materials with properties determined by the twist angle be-
tween the adjacent two-dimensional materials. Here we study moiré su-
perlattice minibands in graphene (G) encapsulated in hexagonal boron ni-
tride (hBN) with an almost perfect alignment with both the top and bottom
hBN crystals. We show that, for such an orientation of the unit cells of the
hBN layers that locally breaks inversion symmetry of the graphene lattice,
the hBN/G/hBN structure features a Kagomé network of topologically pro-
tected chiral states with energies near the miniband edge, propagating along
the lines separating the areas with different miniband Chern numbers.

Recently, graphene-based systems have been shown to host various “weak topo-
logical” effects [2] among their electronic properties [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22], which stem from the Berry phase/curvature
in the electronic band structure of mononolayer graphene [23, 24] or its Bernal bilay-
ers [25, 4, 26, 27, 12, 17, 19, 28, 22, 29]. The topological effects manifest themselves
in chiral states forming at the edges of the system or around internal structural defects,
and propagating in opposite directions in the two valleys of graphene. These chiral
states have been studied in detail in gapped bilayer graphene with either AB/BA domain
boundaries [30, 8, 9], or an electrostatically inverted interlayer asymmetry gap [31, 10].

Weak topological states have also emerged in the context of twistronic graphene
systems [7, 32, 33, 34, 32, 35, 33, 14, 16] and in heterostructures of graphene (G) and
hexagonal boron (hBN). The electronic properties of the latter system are qualitatively
modified by the moiré superlattice [36, 37, 38, 39] (mSL) with a period λ ≈ a/

√
δ2 +θ2

(reaching 14nm for small misalignment angles θ → 0, determined by the G-hBN lattice
mismatch, δ ≈ 0.018). The system features a well-defined first miniband edge on the
valence side of the graphene layer’s dispersion [37, 38], as illustrated in Fig. 4.1.

The encapsulation of graphene between two hBN crystals with a high-precision
alignment [40] leads to a further refinement of the superlattice effects, caused by the
interference of Dirac electrons Bragg-scattered off the moiré superlattice (mSL) deter-
mined by the top and bottom G/hBN interfaces. Here, we study the influence of the
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Figure 4.1: A typical miniband spectrum of graphene encapsulated into mutually
aligned hBN crytals. Top inset. Map of locally-defined v-miniband Chern number,
Q . Bottom inset. Dispersion and Berry curvature at the v/v′ miniband edge in the gaped
regions and chiral 1D modes counter-propagating in K± valleys along a Kagomé net-
work of locally gapless v/v′ miniband edges.

relative lateral offset τττ between the top and bottom hBN crystals on moiré minibands
in double-aligned hBN/G/hBN structures, considering the orientation (parallel versus
antiparallel) of the unit cells in the hBN lattices. For graphene’s minibands, the unit cell
orientation matters due to the lack of inversion symmetry in the hBN monolayer, which
is maximally passed onto graphene encapsulated between two hBN layers with parallel
unit cell orientations but mutually cancels in the antiparallel case.

The inversion asymmetry, induced by hBN in graphene, leads to minigaps at the
moiré miniband edges [37] (in particular, at the bottom edge of the first miniband on the
valence band side, v, corresponding to graphene doping of 4 holes per moiré supercell),
of graphene’s dispersion in Fig. 4.1, whose size, together with the Chern numbers of
the minibands [41, 42], depends on the lateral offset between the top and bottom hBN
crystals. For hBN/G/hBN structures with a small misalignment angle, θ̃ ≪ δ, between
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the top and bottom hBN layers, this offset varies across the coordinate space, as

τττ(rrr) = θ̃eeez × rrr, (4.1)

which leads to a long-period, Λ ≈ a/|θ̃|, variation of the mSL properties (see Fig. 4.2).
A peculiar feature of this modulation is the closing and reopening of a minigap at the
v/v′ miniband edge, which occurs along the lines forming a Kagomé structure in the
real space, sketched in Fig. 4.1. Below, we study electron states at the v/v′ miniband
edge, confined to this Kagomé network and discuss how chiral one-dimensional states
(propagating in opposite directions in the KKK± valleys) provide this system with a finite
conductivity even when its Fermi level would be set between the v and v′ miniband
edges in the gapped areas of the structure, with a characteristic pattern of Aharanov-
Bohm oscillations.

The above statement is based on the analysis of local miniband characteristics of the
trilayer structure depicted in Fig. 4.2. Here, the bottom/top hBN monolayers with par-
allel orientation of their non-symmetric unit cells are twisted with respect to graphene
by θ± 1

2 θ̃, respectively, with small mutual misalignment |θ̃| ≪ δ, which determines the
spatial variation of their local offset in Eq. 4.1. For each fixed offset τττ, the Hamiltonian
[43, 37, 44, 45] of electrons in the KKKξ valley (ξ =±) of graphene is

Ĥ =−iℏvσσσ ·∇+2 ∑
P=±

5

∑
m=0

CmeiGGGm·rrrUP ,m +
1
2

∆cvσz,

UP ,m = uP
0 P m+ 1

2 +(−P )m+ 1
2 (uP

3 σz − iξuP
1 eeem ·σσσ)

σσσ = (ξσx,σy), ∆cv ≈
2
3

5

∑
m=0

(C2
m∆u −S2

m∆h),

Cm = cos(1
2gggm · τττ), Sm = sin(1

2gggm · τττ). (4.2)

The values of the parameters used are given in Table S1 in the Supplemental Material
(SM), and the expression for graphene encapsulated between hBN monolayers with
antiparallel orientation of their unit cells is given in SM S2.

The first term in Eq. (4.2) is the Dirac Hamiltonian for electrons in monolayer
graphene [43]. The second term describes the mSL produced by the layers, with the
reciprocal mSL vectors, GGGm ≈ δgggm − θeeez × gggm, expressed in terms of the reciprocal
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Figure 4.2: Right. Graphene encapsulated between bottom and top hBN layers with
twists θ± 1

2 θ̃ , respectively (|θ̃| ≪ δ). The interference of the layers results in a mSL
of period λ, featuring a long-period variation of period Λ, whose unit cells are shown.
Inset. The offset vector τττ between the unit cells of the top and bottom hBN layers has
components (τx,τy) along the zigzag and armchair axes, respectively. Inset. The valley
Chern number Q of miniband v, the gap ∆cv and the minigap ∆vv′ against offset for
aligned hBN layers (θ̃ = 0).

lattice vectors of graphene, gggm = 4π√
3a

eeez × eeem, eeem = (cos mπ

3 ,sin mπ

3 ), m = 0,1, ...,5.
This term includes mSL potentials, sublattice asymmetry gaps and gauge fields of par-
ity P = ± (under spatial inversion), quantified using the parameters uP

0 , uP
3 and uP

1 ,
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respectively.

The orientation and offset τττ of the unit cells in each hBN layer determine the mag-
nitude of the odd-parity terms in Eq. (4.2), which are responsible for the inversion sym-
metry breaking features in the dispersion, such as the opening of a minigap between
minibands v and v′. This corresponds to graphene doping of 4 holes per moiré super-
cell, with electron density −4n0 (n0 = 2/

√
3λ2). In the parametrisation of Hamilto-

nian (4.2), we take into account that the positions of the graphene atoms rearrange to
minimise graphene’s adhesion energy with the hBN layers while maintaining the mSL
period [46, 47, 48, 45]. The in-plane and out-of-plane rearrangements combine with the
second term to give the respective contributions, ∆u and ∆h, to the sublattice asymmetry
gap ∆cv. This gap appears in the odd parity, non-oscillatory third term, which breaks
the sublattice symmetry of graphene. In antiparallel alignment, the contributions to the
odd parity terms from each layer cancel, and inversion symmetry is preserved. Instead,
we focus on parallel alignment where the inversion symmetry breaking is enhanced,
depending strongly on the offset τττ.

To study minibands of Dirac electrons in this system, we diagonalise Hamiltonian
(4.2) using the basis of plane-wave Dirac states, folded onto the mSL Brillouin zone
shown in Fig. 4.1. An example of a typical miniband dispersion is shown in Fig. 4.1,
with other examples displayed in SM S3. Similarly to single-interface G/hBN het-
erostructures [37, 36, 49, 50, 51, 52, 38], this system features a well-defined first valence
miniband, v for twists |θ| ≤ 1◦, whereas on the conduction band side the minibands
strongly overlap on the energy axis. The inversion symmetry breaking produces a mini-
gap, ∆vv′ , at the edge between minibands v and v′, whose magnitude, together with the
v/v′ edge position in the Brillouin minizone, depends on the offset τττ. The dependence
of the minigap ∆vv′ on the offset τττ is shown in the bottom inset of Fig. 4.2. This panel
shows that ∆vv′ (which is formally defined below) takes zero value and also changes
sign on the lines which approximately correspond to the condition Cm = 0. This vari-
ation should be contrasted with the τττ-dependence of the gap ∆cv across the main Dirac
point at the c/v miniband edge shown on the top inset, where one can see that ∆cv never
changes sign.

Along the lines on the τττ maps, where the minigap at the v/v′ miniband edge closes
and reopens as a function of τττ, the Chern number ξQ [41, 42] of miniband v also
changes (note that the miniband’s Chern number has opposite sign in the KKKξ valleys,
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ξ =±). Here, Q is found by computing the integral of the miniband’s Berry curvature
over the mSL Brillouin minizone (see SM S4 for details). The resulting map of Q (τττ)

dependence is displayed as the middle inset in Fig. 4.2. The correlation between the be-
havior of the inversion-asymmetry gap ∆vv′ at its edge with miniband v′ and of its Chern
number suggests a simultaneous change of quantum topological properties of states in
both v and v′, captured by the effective Hamiltonian [53] applicable to the part of the
Brillouin minizone in the vicinity of this edge,

Hvv′
qqq =εvv′ +

1
2∆vv′σz

+ℏ(ξvx
sqxσx + vy

sqyσy)+ξℏvvva ·qqq, (4.3)

whose basis is minibands v and v′. Here, qqq is the wave vector relative to the position
of the band edge, vvvs and vvva are the symmetric and antisymmetric velocity, respectively,
(the latter of which tilts the dispersion along the axis parallel to vvva [53]) and εvv′ is a
constant energy shift. The parameters in Eq. (4.3) are fitted numerically to the minibands
computed using Eq. (4.2) SM S5. The sign of ∆vv′ is determined by the sign of the Berry
curvature at the miniband edge, which changes simultaneously with the change of the
Chern number.

The variation of the offset τττ over the plane of a hBN/G/hBN structure, given by
Eq. (4.1), enables us to map the the computed dependence of miniband characteristics
displayed on the insets in Fig. 4.2 onto the real space: for this, we only need to rotate
those plots by 90◦ and rescale then by a factor 1/θ̃. This produces a Kagomé network
of lines where the secondary minigap, ∆vv′ , closes and then inverts its sign, and where
the Chern number of miniband v changes (from 0 to 1). We show in SM S6 that the
shape of this network is independent of the model parameters. Topologically protected
chiral channels form along these lines, supporting spin-degenerate, one-dimensional
states which propagate in opposite directions in the time-reversed valleys.

The form and dispersion of these states can be found (in SM S7) by analyzing Hamil-
tonian (4.3) with qqq ≈ (q∥,−i∂x⊥) and ∆vv′ ≈ x⊥∂x⊥∆vv′|x⊥=0 (∂x⊥∆vv′ |x⊥=0 ∼ |u−3 |/Λ >

0) where x∥ and x⊥ are local coordinates along and perpendicular to the Kagomé net-
work line. These states have a Jackiw-Rebbi [54] form ϕq∥ ≈ eiq∥x∥e−x2

⊥/2ℵ2
ζq∥ (ζq∥ is a

two-component vector), with Gaussian confinement within a length ℵ ∼
√

2ℏvx
sΛ/|u−3 |



101

perpendicular to the interface, and disperse linearly, ε(q∥) = ξℏV q∥, with a 1D veloc-
ity V ∼ vx

s . To consider these states independently for each segment of the Kagomé
network, we should require λ < ℵ ≪ Λ, which is satisfied for mismatches |θ̃|< 0.1◦.

Figure 4.3: Top left. The hexagonal structural element of the Kagomé network of chi-
ral channels of area A =

√
3Λ2/2 and containing one Q = 0 bowtie and one Q = 1

hexagon. The chiral propagation of electrons in the KKK+ valley is shown, scattering at
the three nodes. Clockwise from top right. The five shortest paths for an electron wave
packet to propagate from an injection position “i” to “f” (double arrows indicate a chan-
nel is traversed twice).

For a gapped moiré miniband spectrum, one could expect insulating behavior of a
perfectly aligned hBN/G/hBN doped to the v/v′ miniband edge. For slightly (|θ̃| ≪ δ)
misaligned hBN crystals, the long-range variation of the local hBN-hBN offset and a
network of chiral states, which it generates inside the minigap ∆vv′ , quenches the resis-
tivity of the hBN/G/hBN structure. While the exact calculations of the limiting resistiv-
ity would require a more rigorous consideration, based on the previous experiences of
two-dimensional models for the network of 1D states [32, 33, 55], we expect its value
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to correspond to a conductivity σxx ∼ e2/h and to exhibit Aharonov-Bohm oscillations
as a function of an out-of-plane magnetic field B. To describe the latter, we consider co-
herent electron waves (separately in the KKK± valleys) on a network sketched in Fig. 4.3,
where the structural element includes three nodes connected by chiral channels. At each
node, an incoming wave packet scatters left or right according to the scattering matrix(

b

b′

)
= S

(
a

a′

)
, S = eiη/3

(√
PR i

√
PL

i
√

PL
√

PR

)
(4.4)

whose factor of i takes into account the Maslov’s phase, and whose scattering proba-
bilities, PR and PL (PR +PL = 1), can be considered as energy-independent within the
narrow energy window of ∆vv′ (see SM S8 for details).

As a monochromatic wave of energy ε propagates across the network, its amplitude
evolves according to the scattering matrix at the nodes and acquiring phase factors,
eiεΛ/2V , after passing each ballistic segment of the network. At longer distances, partial
waves, e.g., split from an incoming wave at “i” (see the side panels in Fig. 4.3), rejoin
and interfere in another ballistic segment “f”. An important feature of a periodic and
C3 rotationally symmetric network, such as in Figs. 4.1 and 4.3, is that the effect of the
interference, constructive or destructive, of chiral edge states that travel from “i” to “f”
along paths containing the same number, N, of segments does not depend on the exact
energy (or wavelength) of the electron. This is because their ballistic phases, eiNεΛ/2V ,
are the same, producing the interference contribution determined only by their shapes
through the energy-independent scattering amplitudes in Eq. (4.4). On the contrary, the
interference of waves brought together by paths with a different number of segments,
such as I and IV in Fig. 4.3), oscillates from constructive to destructive (and back) upon
energy variation at the scale of ℏV /Λ.

Therefore, in the high-temperature regime, where kBT ≫ ℏV /Λ, the interference
effects between waves arriving from “i” to “f” along paths of different lengths would
be wiped out by the smearing of the Fermi step for electrons. The interference between
waves brought from “i” to “f” by same-length paths (such as IIa, IIb, III and IV in Fig.
4.3) would survive thermal averaging, without suppression, though this contribution
would be sensitive to the external magnetic field, due to the Aharonov-Bohm phases
from magnetic field fluxes encircled by the pairs of same-length paths.
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When discussing the interference effects in electronic transport at high temperatures,
we are also conscious of the inelastic decoherence of electron waves, which efficiently
destroys interference effects for the longer paths. For a system with decoherence length
ℓ, this can be accounted by a suppression factor e−Λ/4ℓ applied to each ballistic segment
of the Kagomé network. Therefore, to discuss the high-temperature limit, we consider
the shortest paths that can contribute to the interference effect in transport, shown in the
side panels of Fig. 4.3. These paths are related to the ‘forward’ electron propagation
from a segment in one network unit cell to the equivalent segment in the next one,
counted in the direction of the propagation of the chiral edge state (for valley K). These
shortest paths contain three (I) and six (IIa, IIb, III, IV) ballistic segments of length
Λ/2, and the interfering amplitude at the point “f” for a wave starting at “i” with unit
amplitude would be

ψ ≈− eiπφ/4φ0

√
P2

LPRz3 + z6eiπφ/2φ0×
(−2PLP2

R +P2
LPR + e−i2πφ/φ0P2

LPR),

where z = eiη/3eiεΛ/2ℏV e−Λ/4ℓ. We also account for additional phases, induced by
the out-of-plane magnetic field and described in terms of magnetic field flux, φ = BA
through the unit cell area, A =

√
3λ2/2, of the Kagomé network (φ0 = h/e is the flux

quantum).

Then, we express the probability ⟨W ⟩T for the electron to get from the segment “i”
to “f”, averaged over the kBT energy interval near the Fermi level, as

⟨W ⟩T ≈P2
LPR|z|6 +[4P2

LP4
R +2P4

LP2
R]|z|12

+2[P4
LP2

R −2P3
LP3

R]|z|12 cos
(

2πφ

φ0

)
, (4.5)

whose second line originates from the encircled Aharonov-Bohm phases, which, for
the pairs of shortest paths, are all determined by the magnetic field flux through the
unit cell area of the Kagomé network. As the probability, described by Eq. (4.5), is
a characteristic of the forward propagation of electrons, its oscillations also determine
the Aharonov-Bohm oscillations in the network conductivity (see SM S9 for backwards
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propagation),

σxx(φ)≈
e2

h

[
α+βe−5Λ/2ℓ cos

(
2πφ

φ0

)]
, (4.6)

where α,β ∼ 1.

Overall, we have demonstrated the existence of a Kagomé network of chiral states
lying in the minigap at the edge of the first moiré miniband on the valence band side of
graphene encapsulated between hBN with parallel unit cells. This edge state network
gives rise to quenched resistivity, ∼ h/e2, of graphene even when its Fermi level doping
reaches that minigap. This conductivity, in Eq. (4.6), exhibits Aharonov-Bohm oscil-
lations, whose period is determined by the area of the unit cell of the Kagomé network
and, consequently, the misalignment. For the networks with a longer decay length ℓ (or
a shorter period), the magnitude of the Aharonov-Bohm oscillations should increase,
accompanied by the emergence of a finer structure, composed of higher frequency har-
monics corresponding to rational factor between the magnetic field flux through the
Kagomé network cell and flux quantum, φ0. Such edge state networks emphasize the
role of twistronic heterostructures as hosts of topological phenomena and deserve fur-
ther theoretical studies, e.g., taking into account electron-electron interactions in the
chiral channels [56].

4.A Parameters used in hBN/G/hBN Hamiltonian in
Eq. (2)

The table of parameters used in Eq. (2) of the main text is shown in Tab. 4.1. An alter-
native parameterisation of the superlattice interaction is found in [37]. The alternative
superlattice potentials u0,1,2,3 and ũ0,1,2,3 are related to the potentials u±0,1,3 in this paper
by

u0 = u+0 , u1 =
δ√

δ2 +θ2
u+1 , u2 =

−θ√
δ2 +θ2

u+1 , u3 = u+3 ,

ũ0 = u−0 , ũ1 =
δ√

δ2 +θ2
u−1 , ũ2 =

−θ√
δ2 +θ2

u−1 , ũ3 = u−3 . (4.7)
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Parameter Value Reference
a 0.246nm [57]
v 106 m/s [57]
δ 0.018 [37]

u±0 ±V±/2 [37]
u±1 −V± [37]
u±3 −

√
3V±/2 [37]

V+ 17meV [38]
V− 3meV [38]
∆u 8meV [45]
∆h 2meV [45]

Table 4.1: Table of parameters used in Eq. (2) of the main text.

4.B Hamiltonian for antiparallel orientation of the hBN
unit cells

The Hamiltonian of graphene encapsulated between two aligned layers of hBN depends
on the alignment of the unit cells in the hBN layers. The Hamiltonian for parallel unit
cells is given in Eq. (2) of the main text, featuring odd parity terms that break inversion
symmetry. The Hamiltonian for antiparallel unit cells is,

Ĥ =−iℏvσσσ ·∇+2∑
5
m=0 eiGGGm·rrr×

{[Cmu+0 − (−1)mSmu−0 ]+ i[(−1)mCmu+1 +Smu−1 ]σz+

ξ[(−1)mCmu+3 +Smu−3 ]eeem ·σσσ)},
σσσ = (ξσx,σy), Cm = cos(gggm · τττ/2), Sm = sin(gggm · τττ/2)

GGGm ≈ δgggm −θeeez ×gggm, gggm = 4π√
3a

eeez × eeem, eeem = (cos mπ

3 ,sin mπ

3 ), m = 0,1, ...,5,

(4.8)

where τττ is the lateral offset between the unit cell centres in each hBN layer. Note that the
odd parity superlattice potentials u−0,1,3 result in a contribution to the Hamiltonian which
has even parity under inversion and inversion symmetry is preserved in this system.



106 CHAPTER 4. KAGOMÉ NETWORK IN HBN/MLG/HBN

4.C Examples of calculated miniband structures

Figure 4.4: Miniband dispersions for parallel and antiparallel alignment of the unit cells
in the hBN layers with various lateral offsets τττ between the hBN layers.

The first term of the Hamiltonians in Eq. (2) of the main text and (4.8) is the Dirac
Hamiltonian of electrons in graphene. This has plane wave solutions ψ

c0/v0
kkk (rrr) =

1√
2
(1,±eiξarctan(ky/kx)), corresponding to the conduction (c0) and valence (v0) bands

of energy ±ℏv|kkk|, respectively. We diagonalise the full Hamiltonians using the zone-
folded wavefunction Ψkkk(rrr) = ∑α=c0,v0 ∑GGG cα

kkk+GGGψα

kkk+GGG(rrr) of wave vector kkk in the moiré
superlattice (mSL) Brillouin minizone (sBZ). In the space spanned by the coefficients
{cα

kkk+GGG}, the Hamiltonian is represented by a 2M × 2M matrix Hkkk. Terms in Eq. (2)
of the main text and (4.8) containing eiGGGm·rrr give off-diagonal elements in Hkkk between
coefficients with momenta separated by GGGm. We sum over the shortest M reciprocal
mSL vectors GGG required for the lowest four energy eigenvalues of Hkkk to converge. In
this case, convergence is reached with the M = 19 vectors which are the sum of at most
two of the six shortest non-zero reciprocal mSL vectors GGGm (m = 0,1, ...,5).

The conduction and valence band reconstruct into 2M minibands of energy εnkkk and
wavefunction χnkkk in the coefficient basis. We show the dispersion of the first four va-
lence (v,v′,v′′,v′′′) and conduction (c,c′,c′′,c′′′) minibands for zero offset (τττ = 0) in
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Fig. 4.4. The minibands are similar for each alignment, except antiparallel alignment of
the hBN unit cells, which preserves inversion symmetry, gives a gapless spectrum and
parallel alignment, which breaks inversion symmetry, gives a gapful spectrum. We also
show the dispersions for an offset τττ = (0,

√
3a/4) satisfying C0 = 0. In this case, despite

the inversion symmetry breaking, there are band closures in the dispersion for parallel
alignment, including the secondary minigap on the valence side between minibands v

and v′ (as discussed in the main text).

Figure 4.5: The density of states against electron density n for various twists with offset
τττ = (0,

√
3a/4).

We show the density of states for parallel hBN unit cells against the electron density
n (including the four-fold spin and valley degeneracy) for the offset τττ = (0,

√
3a/4)

which closes the secondary minigap in Fig. 4.5. A filled miniband contributes a value
n0 = 2/(

√
3λ2) to the electron density, so the edge between the minibands v and v′

corresponds to electron density n = −4n0. For small twists, |θ| < 1◦, the density of
states is zero at n = −4n0, and there is no overlap between these bands on the energy
axis. There is overlap on the conduction side between minibands c and c′ since the
density of states is non-zero at n = 4n0. For larger twists, |θ| ≥ 1◦, minibands v and v′

overlap with non-zero density of states at n =−4n0.

4.D Topological characteristics of the minibands

When inversion symmetry is broken, the topology of miniband n is represented by its
valley Chern number ξQn [58, 59, 60, 41, 5, 61, 42], which is given by the integral of
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Figure 4.6: Top row. Valley Chern numbers of minibands v′ to c against offset τττ. Bottom
row. The minigaps ∆v′v′′ , ∆vv′ , ∆cv and ∆c′c of the miniband edges v′/v′′, v/v′, c/v and
c′/c.

the miniband’s Berry curvature Ωnkkk over the mSL Brillouin minizone,

Qn =
1

2π

∫
sBZ

d2k Ωnkkk,

Ωnkkk =−2Im ∑
m ̸=n

[χ†
nkkk(∂kxHkkk)χmkkk][χ

†
mkkk(∂kyHkkk)χnkkk]

(εnkkk − εmkkk)2 . (4.9)

In the expression for the Berry curvature, we sum across the other minibands m. The
valley Chern number has opposite signs in each valley since the Berry curvature has odd
parity under inversion as a result of time reversal symmetry. In the main text, we define
the valley Chern number of the first valence miniband as Q ≡ Qv. We plot the valley
Chern numbers of the second valence miniband v′ to the first conduction miniband c

against offset τττ in Fig. 4.6. The valley Chern numbers of minibands v and c change as
the Cm = 0 lines are crossed in offset space and the secondary minigaps close.

4.E Effective Hamiltonian at the v/v′ miniband edge

The secondary minigap on the valence side, ∆vv′ , closes for offsets along the Cm = 0
lines. For offsets near these lines (Cm ∼ 0), the minigap is non-zero at a miniband edge
appearing at wavenumber kkke. Expanding about the miniband edge, qqq = kkk− kkke, the first
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and second valence minibands have dispersions [53],

εv/v′ ≈ εvv′ +ξℏvvva ·qqq±
√

(ℏvx
sqx)2 +(ℏvy

sqy)2 +(∆vv′/2)2. (4.10)

This is parameterised by a constant energy shift εvv′ , symmetric velocity vvvs, anti-
symmetric velocity vvva and the secondary minigap ∆vv′ , whose sign is determined by the
Berry curvature,

Ωv/v′ ≈∓1
4

ξ∆vv′v
x
svy

s[(∆vv′/2)2 +(vvvs ·qqq)2]−3/2. (4.11)

The miniband edge does not appear at a high symmetry point of the mSL Brillouin
minizone since the offset is non-zero. Hence, the anti-symmetric velocity is non-zero
(vvva ̸= 0), and the dispersion is tilted [53]. The dispersion and Berry curvature are de-
scribed by the effective Hamiltonian in Eq. (3) of the main text and are plotted in Fig. 1
of the main text. We plot the secondary minigap ∆vv′ against offset τττ in Fig. 4.6. As
described in the main text, the sign of the secondary minigap ∆vv′ changes sign as the
Cm = 0 lines are crossed, inverting the Berry curvature of the minibands. This trans-
fers a unit of valley Chern number between the minibands, giving the transition in Q in
Fig. 4.6.

We can derive a similar effective Hamiltonian at the edge between the first conduc-
tion miniband c and the second conduction miniband c′. This allows us to define the sec-
ondary minigap on the conduction side, ∆c′c, which we plot in Fig. 4.6. The minibands
undergo a similar inversion at this band edge as the Cm = 0 lines are crossed, transfer-
ring a unit of valley Chern number between them. Finally, we repeat this process for the
edge between the second and third valence minibands, v′ and v′′ respectively, with the
corresponding minigap ∆v′v′′ also changing sign as the Cm = 0 lines are crossed. The
inversion of the miniband structure at the edges of the second valence miniband with the
first and third valence minibands cancels out pairwise and Qv′ ≡ 0. The principal gap
∆cv between the first valence miniband and the first conduction miniband never closes.
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Figure 4.7: The valley Chern number Q of the first valence miniband v against offset
(τx,τy) for various modifications to the parameters in Tab. 4.1.

4.F Robustness of the Kagomé network of chiral states

In Fig. 4.7., we demonstrate that our main finding of a Kagomé network of topologi-
cally protected one-dimensional chiral channels is robust against the choice of model
parameters within a reasonable range. The phase transitions of the valley Chern number
Q of the first valence miniband v are associated with the change in sign of the secondary
minigap ∆vv′ at its edge with the second valence miniband v′. Hence, flipping the sign
of the odd parity superlattice potential V− swaps the phases and reverses the direction of
the chiral channels while preserving the network. Turning off the inversion symmetry
breaking in the interaction with the hBN layers by setting V− = 0 prevents the transi-
tions entirely as seen when comparing Fig. 2 of the main text to Fig. 4.7, and there is no
network of channels.

If ∆h/∆u > 1
3 , then the principal gap ∆cv in Eq. (2) of the main text closes near

the offset unit cell corners, giving the second phase transition to Q = −1 observed in
Fig. 4.7 for ∆h = 3meV. This would produce a disconnected network of channels in
the principal gap, which would not affect the network at the secondary minigap. A full
treatment of the relaxation of the graphene layer onto the hBN layers results in terms
other than ∆cv [45]. The most significant of these mixes the superlattice potentials us

j,
suppressing the odd potentials u−j . With an increased V− = 6meV to compensate, we
find the phase diagram in Fig. 4.7. This forms a Kagomé network which is qualitatively
similar to Fig. 2 of the main text.
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4.G Chiral states at the v/v′ miniband edge

We consider interfaces along the y-axis in Fig. 1 of the main text, corresponding to the
C0 = 0 lines in offset space. The other interfaces are related by the six-fold symmetry
of the network. At the edge between the first and second valence minibands, the fitted
parameters in Eq. (3) are vx

s ≈ 0.2v, vy
s ≈ 0.9v, vx

a ≈ ±0.1v (for interfaces along the
Q = 0 triangles of shape ▷ and ◁, respectively) and vy

a = 0. We choose the basis with
components perpendicular and parallel to the interface with unit vectors eee⊥ =±eeex and
eee∥ = ±eeey, respectively, such that the gradient of the secondary minigap perpendicular
to the interface is ∂x⊥∆vv′ ≈ 0.7|θ̃|eV/nm > 0.

After performing the substitution qqq → (q∥,−i∂x⊥) discussed in the main text, we
solve with the Jackiw-Rebbi ansatz ϕq∥ = eiq∥x∥Jq∥(x⊥) for the wavefunction of the
channel state which propagates with wavenumber q∥ along the interface [54]. We use
the finite difference method to find the two-component vector function Jq∥(x⊥) which
confines the state perpendicular to the interface, subject to the boundary conditions
limx⊥→±∞ Jq∥(x⊥) = 0. This takes the Gaussian form Jq∥(x⊥) ≈ e−x⊥/2ℵ2

ζq∥ , where
ℵ ≈ 2θ̃−1/2a and ζq∥ is a two-component vector which is independent of position. The
state has linear dispersion ξℏV q∥, with velocity V ≈ 0.3v. The direction of propaga-
tion is opposite for states along the triangles ▷ and ◁ and for each valley. The channel
states and their confinement are shown in Fig. 1 of the main text. We require that the
lateral confinement of the channel state is longer than the mSL period (ℵ> λ) and much
shorter than the period of the long-range variation (ℵ ≪ Λ). These give the constraints
|θ̃| < 4δ2 and |θ̃| ≪ 1/4, respectively. We assume that the mismatch is small, |θ̃| ≪ δ,
when we construct the system, and the latter constraint is automatically met. Hence, the
only constraint is that |θ̃|< 0.1◦.

4.H Kagomé network sites and scattering amplitudes
for chiral states

We show scattering of channel states in the KKK+ valley at a node of the network in Fig. 4.8
(we neglect scattering with states in the KKK− valley). The amplitudes of the incoming
(a▷/◁) (a/a′ in the main text, respectively) and outgoing (b▷/◁) (b/b′ in the main text,
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Figure 4.8: Left. Scattering of channel states in the KKK+ valley at a node of the network.
The amplitudes of the incoming (a▷/◁) (a/a′ in the main text, respectively) and outgoing
(b▷/◁) (b/b′ in the main text, respectively) modes along the Q = 0 triangles ▷ and ◁,
respectively, are highlighted. Right. The five shortest paths for an electron wave packet
in the KKK+ valley to propagate from an injection position “in” to “b∓” (Top and bottom
rows respectively.). Double arrows indicate a channel is traversed twice.

respectively) states on channels along the Q = 0 triangles ▷ and ◁, respectively, are
related by the scattering matrix S of the node:(

b▷
b◁

)
= S

(
a▷
a◁

)
, S =

(
S▷,▷ S▷,◁
S◁,▷ S◁,◁

)
. (4.12)

We constrain the scattering amplitudes using the symmetries of the system:

• Unitarity: (S−1 = S†)

• Time reversal symmetry: (ST = S)

• Six-fold rotational symmetry:

– 120◦ rotation: S is the same at each node

– 180◦ rotation: S▷,▷ = S◁,◁ and S▷,◁ = S◁,▷

This gives the scattering amplitudes S▷,▷ = S◁,◁ = eiη/3√PR and S▷,◁ = S◁,▷ = ieiη/3√PL

described in the main text, with real parameters η, PL and PR = 1−PL (the latter of
which are the left-and right-hand turn probabilities, respectively).
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4.I Aharonov-Bohm oscillations of transport character-
istics of the Kagomé network

In Fig. 3 of the main text, we show the five shortest paths contributing to an electron
wave packet propagating from a position “i” to “f”. The wave packet starts and ends
on channels propagating in the same direction, and advances along this direction by a
period of the long-range variation during the propagation. These paths are the dominant
paths contributing to the Aharonov-Bohm oscillations of the electronic transport against
an external magnetic field −Beeez when the decoherence length ℓ is comparable to the
period of the long-range variation (ℓ∼ Λ).

We show in Fig. 4.8 two more sets of paths contributing to the Aharonov-Bohm os-
cillations where the propagation direction of the electron wave packet is flipped. The
wave packet propagates forwards along the initial direction by half a long-range varia-
tion period to “b+” or backwards by half a long-range variation period to “b−”. Sum-
ming over the paths shown in Fig. 4.8, both of these sets of paths have the same total
amplitude,

ψ ≈ ieiφ/4φ0

√
PLP2

Rz3 + ieiφ/2φ0

√
PLP5

Rz6 −2ieiφ/2φ0

√
P3

LP3
Rz6 + ie−i3φ/2φ0

√
P5

LPRz6,

(4.13)
for ℓ ∼ Λ, where z = eiη/3eiεΛ/2ℏV e−Λ/4ℓ in terms of the energy ε. The magnetic flux
through a unit cell of the long-range variation is φ = BA (the area of the unit cell is
A =

√
3Λ2/2) and the magnetic flux quantum is φ0 = h/|e|. The terms in the ampli-

tude ψ correspond to the amplitudes of paths I, II, IIIa/b (with equal contributions) and
IV, respectively. The amplitude ψ exhibits Shubnikov-de Haas style oscillations in the
energy ε and Aharonov-Bohm oscillations in the flux φ. As for “i” to “f”, the thermal
averaging at high temperatures (kBT ≫ ℏV /Λ in the main text) suppresses the interfer-
ence of paths of different length, and only the Aharonov-Bohm oscillations of period φ0

commensurate with the long-range variation remain.

At high temperatures, the Aharonov-Bohm oscillations will only feature harmonics
in the flux φ of period an integer multiple of φ0 and commensurate with the long-range
variation, which we now prove. At such temperatures, only paths of the same length
will interfere in the amplitude between two points. The chirality of the channels ensures
that the shortest path between the points is unique. We can lengthen the path at each



114 CHAPTER 4. KAGOMÉ NETWORK IN HBN/MLG/HBN

node in one of two ways:

1. Add a clockwise loop around a Q = 0 triangle, increasing the length by 3Λ/2 and
the Peierls phase by πφ/4φ0, converting path I to paths II or III.

2. Add a counter-clockwise loop around a Q = 1 hexagon, increasing the length by
3Λ and the Peierls phase by −3πφ/2φ0.

If the intermediate paths remain connected, then we can add loops and then remove
others to create new paths. For example, we convert path I to path IV in Fig. 4.8 by
adding a hexagon and removing a triangle, increasing the length by 3Λ/2 and the Peierls
phase by −7πφ/4φ0. Hence, each time the paths grow 3Λ/2 longer, their Peierls phases
increase by πφ/4φ0 or −7πφ/4φ0 and the Peierls phase difference is always an integer
multiple of 2πφ/φ0.

The paths shown, from “i” to “f” and “b±”, are the leading contributions to the
Aharonov-Bohm oscillations at high temperatures. This is because they feature the
shortest paths (I) where it is possible to add a hexagon then remove a triangle, increasing
the Peierls phase by −7πφ/4φ0. This gives the Peierls phase difference of 2πφ/φ0 with
the paths where a triangle was added, which give the harmonic of period φ0 which
dominates the Aharonov-Bohm oscillations.
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Dirac cones in quinoid-type graphene and α−(BEDT-TTF)2I3 Phys. Rev. B,
vol. 78, p. 045415, Jul 2008.

[54] R. Jackiw and C. Rebbi, Solitons with fermion number ½ Phys. Rev. D, vol. 13,
pp. 3398–3409, Jun 1976.

[55] J. M. Lee, M. Oshikawa, and G. Y. Cho, Non-Fermi Liquids in Conducting Two-
Dimensional Networks Phys. Rev. Lett., vol. 126, p. 186601, May 2021.

[56] M. Killi, T.-C. Wei, I. Affleck, and A. Paramekanti, Tunable Luttinger Liquid
Physics in Biased Bilayer Graphene Phys. Rev. Lett., vol. 104, p. 216406, May
2010.

[57] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
The electronic properties of graphene Rev. Mod. Phys., vol. 81, pp. 109–162, Jan
2009.

[58] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall
Conductance in a Two-Dimensional Periodic Potential Phys. Rev. Lett., vol. 49,
pp. 405–408, Aug 1982.

[59] Quantal phase factors accompanying adiabatic changes Proceedings of the Royal

Society of London. A. Mathematical and Physical Sciences, vol. 392, pp. 45–57,
Mar. 1984.

[60] M. Kohmoto, Topological invariant and the quantization of the Hall conductance
Annals of Physics, vol. 160, no. 2, pp. 343–354, 1985.

[61] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties
Rev. Mod. Phys., vol. 82, pp. 1959–2007, Jul 2010.



Chapter 5

Band Gap Opening in Bilayer
Graphene-CrCl3/CrBr3/CrI3 van der
Waals Interfaces
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Figure 5.4 b and c.

Abstract

We report experimental investigations of transport through bilayer graphene
(BLG)/chromium trihalide (CrX3; X=Cl, Br, I) van der Waals interfaces. In
all cases, a large charge transfer from BLG to CrX3 takes place (reaching
densities in excess of 1013 cm−2), and generates an electric field perpen-
dicular to the interface that opens a band gap in BLG. We determine the
gap from the activation energy of the conductivity and find excellent agree-
ment with the latest theory accounting for the contribution of the σ bands
to the BLG dielectric susceptibility. We further show that for BLG/CrCl3
and BLG/CrBr3 the band gap can be extracted from the gate voltage depen-
dence of the low-temperature conductivity, and use this finding to refine the
gap dependence on the magnetic field. Our results allow a quantitative com-
parison of the electronic properties of BLG with theoretical predictions and
indicate that electrons occupying the CrX3 conduction band are correlated.

Van der Waals (vdW) interfaces provide a vast playground for creating new sys-
tems with engineered electronic properties, by stacking suitably chosen atomically
thin crystals (or 2D materials) on top of each other. Examples include hexagonal
Boron Nitride (hBN) encapsulation of graphene [2, 3, 4], proximity induced spin-orbit
coupling in graphene on semiconducting transition metal dichalcogenide substrates



123

[5, 6, 7, 8, 9, 10, 11], or the creation of so-called Γ−Γ interfaces [12, 13]. Recently, the
discovery of 2D magnets and their use in vdW heterostructures has further broadened
the scope of phenomena that can be explored [14, 15, 16, 17, 18, 19]. In these systems,
the wave functions of electrons in the non-magnetic material extend into the magnetic
one and experience some of the magnetic interaction, enabling magnetism to be proxim-
ity induced in graphene or other 2D materials [20, 21, 14, 22, 23, 24, 25, 26, 27, 28, 29].
However, deterministically controlling magnetism by proximity and predicting what
aspect of magnetism can be induced into non-magnetic materials are challenges that
remain to be solved because many different phenomena – such as strain, hybridiza-
tion, charge transfer, and more – occur simultaneously at van der Waals interfaces
[30, 16, 31, 32], influencing the interfacial electronic properties. In particular, electro-
static effects often dominate the behavior of heterostructures formed by low-charge-
density systems, such as 2D semiconductors and semimetals. As a result, significant
charge transfer can occur and lead to new phenomena mediated by changes in electron
concentration or orbital occupation [33]. Indeed, recent work reported spin-dependent
interlayer charge transfer in magnetic vdW heterostructures [34, 35, 36] and concluded
that its detailed analysis is of key importance for improving the control of interfacial
properties.

Here, we report the systematic behavior of vdW interfaces formed by bilayer
graphene (BLG) [37, 38] and chromium trihalide crystals (CrX3; X=Cl, Br, I)
[39, 40, 41, 42, 43, 44, 45, 46]. All systems exhibit a large transfer of electrons
from graphene to the magnetic material, reaching values in excess of 1013 cm−2,
producing a large electric field perpendicular to the interface and a gap in BLG. When
gating the BLG at the charge neutrality point (CNP), the gap induces a low-temperature
suppression of the conductance of four orders of magnitude or more, exhibiting a sharp
onset as a function of gate voltage. We determine the size of the band gap by analyzing
the temperature dependence of the transfer curves (i.e., conductance-vs-gate voltage),
and find excellent agreement with the results of the latest ab initio calculations of the
electrostatically induced gap in BLG, which include dielectric screening due to the
polarizability of the σ bonds in the graphene lattice [47]. We also find that the gap
in BLG can be determined by looking exclusively at the low-temperature gate voltage
dependence of the conductance, a result that provides information about the nature of
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Figure 5.1: Band gap opening in BLG/CrX3 interfaces. (a) Optical micrograph and
(b) schematics of a representative device (the scale bar in (a) is 20 µm), based on a
BLG/CrX3 heterostructure encapsulated in hBN. A metallic gate electrode is deposited
onto the top hBN layer, and is coupled to two distinct regions: a central part formed
by the BLG/CrX3 interface (region 1) and two adjacent parts where BLG is in contact
only with hBN (region 2). Transport is measured using metallic source (S) and drain
contacts (D) and probes the two regions connected in series. (c) Square conductance
G□ as a function of gate voltage VG measured in a heterostructure of BLG-on-CrCl3 at
250 mK (green curve, top). Two characteristic features are visible in the transfer curve:
a small conductance dip close to VG = 0 V corresponding to the CNP of graphene in
region 2 (V (2)

CNP) and a pronounced suppression at large VG (V (1)
CNP) that originates from

gating BLG-on-CrCl3 (i.e., region 1) to charge neutrality. The black dashed lines rep-
resent linear extrapolations to extract the threshold voltages for holes V h

th and electrons
V e

th. Virtually identical behaviour is observed in heterostructures of BLG and CrBr3
(light-blue, bottom) and BLG-on-CrI3 (red, bottom). (d) Schematics of the BLG band
structure in the absence (left) and presence (right) of a perpendicular displacement field
D⃗, showing that at finite field a gap Eg is present at charge neutrality. As visible on
the right side of the panel, the displacement field is generated by the large transfer of
electrons from BLG to CrX3 occurring at the vdW interface.

the electronic states in the CrX3, and that enables the quantitative determination of the
dependence of the BLG band gap on the applied magnetic field.

Figure 5.1a shows an optical microscope image of a representative device employed
for our transport studies. A BLG with an elongated rectangular shape is placed on top
of an exfoliated CrX3 thin crystal, using a by-now conventional dry transfer method



125

[48]. The process is carried out in the controlled environment of a glove box and the
interface is encapsulated in hBN to prevent degradation upon exposure to air. Metal
contacts to BLG are patterned using standard micro-fabrication techniques, and a gate
electrode is deposited onto the top hBN, enabling the charge density in the BLG layer
to be tuned. The device schematics in Figure 5.1b highlights how the gate is coupled
to two distinct regions: a central part formed by the BLG/CrX3 interface (which we
refer to as region 1) and two parts on the sides, where BLG is in contact only with
hBN (which we refer to as region 2) that effectively act as contacts to the gapped part
of the structure. This device feature is important to understand some aspects of the
measurements that we present later.

The gate voltage dependence of the square conductance G□ of a device with BLG-
on-CrCl3, shown in Figure 5.1c (green curve), reveals two characteristic features that
originate from regions 1 and 2. The small conductance dip close to VG = 0 V is the
manifestation of the charge neutrality point (CNP) of BLG-on-hBN (region 2), and the
pronounced suppression (four orders of magnitude) at large VG originates from having
gated BLG-on-CrCl3 (region 1) to charge neutrality. The shift of the BLG CNP toward
high, positive gate voltages indicates that a large number of electrons are transferred
from BLG to the CrCl3 crystal (1013 cm−2). Analogous behavior and a large hole
doping in BLG (see Section S1 of the Supporting Information for transfer curves in a
broader range of gate voltages) are also observed in heterostructures formed by BLG
and CrBr3 (light-blue curve) and in BLG-on-CrI3 (red curve; in agreement with the
earlier observations [33, 49]).

The observed charge transfer generates a strong electric field perpendicular to the
interface that causes the opening of a band gap in BLG [50, 38, 51, 52, 53, 54, 55] (see
the schematic band diagrams in Figure 5.1d). As a result, when the chemical potential
in BLG is shifted to charge neutrality by applying a suitable gate voltage, this leads
to a robust insulating state. The sharp onset of this insulating state as a function of
VG implies the absence of large electrostatic potential fluctuations at the BLG/CrX3

interfaces, indicating that charge transfer from CrX3 to BLG is rather homogeneous. To
compare quantitatively the experimental observations made in heterostructures based
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a b d e

Figure 5.2: Temperature evolution of the square conductance in BLG/CrX3 het-
erostructures. Square conductance G□ as function of charge density n measured at dif-
ferent temperatures between 250 mK (blue) and 250 K (red) for (a) BLG-on-CrCl3,(b)
CrBr3 and (c) CrI3. (d) Arrhenius plot of the minimum square conductance measured
for the three different heterostructures (CrCl3 green hexagons, CrI3 red squares, CrBr3
light-blue circles). Activation energies are obtained by fitting the linear part in the high-
temperature range (grey lines). (e) Temperature dependence of the charge ∆n transferred
from BLG to CrX3 for the investigated interfaces (the different colors and symbols rep-
resent data measured on different interfaces, as indicated in (d)).

on the different CrX3, we convert the applied gate voltage to the corresponding accu-

mulated charge density n, as n = εε0
t

VG−V (2)
CNP

e (ε and t are the relative dielectric constant
and thickness of the hBN layer, and V (2)

CNP is the gate voltage corresponding to the CNP
in region 2, see Figure 5.1c). The concentration of electrons transferred from BLG in

CrX3 is then given by ∆n = εε0
t

V (1)
CNP−V (2)

CNP
e (where V (1)

CNP is the gate voltage corresponding
to the CNP of BLG-on-CrX3, i.e. in region 1; see Figure 5.1c again), and is directly
proportional to the displacement field present at the BLG/CrX3 interfaces, D = e∆n (we
use this relation to calculate the values of the displacement field in Figure 5.3).

We determine the size of the band gap from the temperature (T ) evolution of the
transfer curves, plotted in Figure 5.2a-c for CrCl3, CrBr3, and CrI3, respectively. Data
are shown for selected values of T between 250 mK (blue curve) and 250 K (red).
The activation energies for the three heterostructures are extracted by looking at the
minimum square conductance Gmin

□ (corresponding to G□ at the CNP of BLG/CrX3),
by fitting the linear part of the Arrhenius plot in the high-temperature range, where the
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charge carriers are dominated by a thermally activated behavior (see Figure 5.2d). The
larger activation energy Ea is observed in BLG-on-CrCl3 (green hexagons) where the
gap (Eg = 2Ea) is estimated to be 162 meV; band gaps of 124 meV and 108 meV are
found for BLG-on-CrI3 (red squares) and on CrBr3 (light-blue circles), respectively.

The same measurements show that the position of the CNP, i.e., the density of
charge transferred from BLG to CrX3, is temperature-dependent (as summarized in
Figure 5.2e), implying that the perpendicular electric field responsible for the opening
of the band is not constant as T is varied. For BLG-on-CrCl3 (green) and on CrBr3

(light-blue) the position of CNP changes by less than 10% throughout the full range
investigated, and by significantly less over the range used to determine the size of the
band gap, so that the effect can be disregarded. For CrI3 (red) the change is larger,
corresponding to a more sizable indetermination for the electric field value responsible
for the opening of the gap in BLG. The precise microscopic origin of the T dependence
of CNP in BLG-on-CrI3 is currently not understood, and is likely determined by the
electronic properties of CrX3, which are materials with very narrow bands, whose be-
havior deviates from that of conventional semiconductors (see also the below discussion
on the determination of the gap from the gate voltage dependence of the transfer curves).

The band gap dependence on the electric field for the three different BLG/CrX3

interfaces is compared to the calculated gap in Figure 5.3. The electric field dependence
of the gap predicted for εz = 2.6 –corresponding to the theoretically expected dielectric
susceptibility when accounting for the polarizability of the σ bands– is represented by
the blue line. For comparison we also show calculations with εz = 1 (grey line) as in
[38]. The empty symbols of different colors (CrCl3, green hexagon; CrI3, red square;
CrBr3, light-blue circle) represent our experimental data, and the error bar denotes the
indetermination on the electric field due to the temperature dependence of the charge
transferred from BLG to CrX3, as just discussed above. These data agree perfectly
with theory that considers εz = 2.6 using the method proposed in [47], and deviate
very significantly from the εz = 1 curve. This result should be underscored, because
experimental values for the band gap reported in the early days of research on graphene
were larger, and it was argued that quantitative agreement was obtained for εz = 1 (the
deviation likely originated from a insufficiently sharp dependence of the conductance
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Figure 5.3: Electric field dependence of the band gap in BLG/CrX3 interfaces. The
continuous lines represent the band gap as a function of displacement field D predicted
by ab initio calculations, considering or ignoring the contribution to the dielectric sus-
ceptibility εz due to the electrons that occupy the σ band of BLG [47]. The empty
symbols represent the experimental data obtained from the temperature dependence of
the conductance measured in our devices. It is apparent that the experimental data are
in excellent agreement with theoretical prediction for εz = 2.6. The error bars for the
displacement field (D = e∆n, see main text) correspond to the variation of charge trans-
ferred from BLG to CrX3 (and consequently of D) as temperature is varied. Filled
symbols indicate the experimental values of Eg extracted from the threshold voltages of
low-temperature transfer curves using Equation (1). For CrCl3 and CrBr3 the agreement
with the gap values obtained from the temperature-dependent measurements is excel-
lent.
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on VG due to the lower quality of the BLG-on-SiO2 devices used in earlier experiments
[55]).

Having determined the band gap from the analysis of the temperature dependence
of the square conductance, we now present an alternative way that relies exclusively on
the analysis of the low-temperature G□-vs-VG curves. From analyzing our data, we find
that for BLG on both CrCl3 and CrBr3, the gap is quantitatively given by

Eg =
C
(
V e

th −V h
th

)
e ρBLG

(5.1)

Here, V e
th and V h

th are the threshold voltages for electron and hole conductance (obtained
by extrapolating to zero the conductance measured as a function of gate voltage, as
illustrated by the dashed lines in Figure 5.1c) and ρBLG = 2m∗/πh2 is the density
of states in gapless BLG contacts (i.e., region 2 in Figure 5.1b), next to the gapped
region where BLG is on the CrX3 layer (region 1). Equation (1) gives the gap values
represented with filled symbols in Figure 5.3, in perfect agreement with the values
obtained from the T dependence of the minimum conductance for both BLG-on-CrCl3
and BLG-on-CrBr3; for BLG-on-CrI3, instead, Eq. (1) gives a value that deviates
by nearly a factor of 2 from the correct one. We discuss below the origin of Eq. (1),
the condition for its validity, and why it fails to give the correct value of the gap for CrI3.

The possibility to use Eq. (1) to extract the band gap of BLG enables the detailed
dependence of the gap on the magnetic field, not yet addressed in previous studies, to
be probed in an experimentally straightforward way. To this end, it suffices to measure
the conductance as a function of gate voltage for different values of the magnetic field,
as shown in Figure 5.4a for a BLG-on-CrCl3 device. The left and right panels zoom
in on the onset of threshold for both electron and hole conduction, which shift upon
increasing the applied magnetic field, resulting in a decrease in (V e

th-V h
th), and therefore a

decrease in the BLG band gap. The full dependence of the gap on B for BLG-on-CrCl3
and for BLG-on-CrBr3 (represented by the green hexagons and light-blue circles,
respectively) is compared to the theoretically calculated dependence (orange line) in
Figure 5.4b. Theory predicts that the gap decreases as a result of the formation of
Landau levels [2], which causes the top of the valence band to increase in energy and
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Figure 5.4: Magnetic field dependence of the BLG band gap. (a), Square conduc-
tance G□ as a function of gate voltage VG shifted with respect to the value of CNP
V (1)

CNP, measured in a BLG/CrCl3 heterostructure at 0 T and with an applied magnetic
field of 13 T. The left and the right panels zoom in on the onset of conduction for holes
and electrons: the corresponding threshold voltages V h

th and V e
th shift upon increasing the

magnetic field, resulting in a decrease in (V e
th-V h

th) and therefore in a decrease in the band
gap extracted using Eq. (1). (b), Magnetic field dependence of the energy gap for BLG-
on-CrCl3 (green empty hexagons) and for BLG-on-CrBr3 (light-blue empty circles);
the size of the symbols corresponds to the experimental uncertainty associated with the
error in the determination of the threshold voltages. The continuous orange lines rep-
resent the calculated band gap considering appropriate screened interlayer asymmetry
potentials and including a screening potential for non-zero magnetic fields, as predicted
by theory to calculate the Landau level spectrum. The experimental data are in excellent
agreement with the theoretical predictions. (c), Landau levels calculated for a screened
interlayer asymmetry potential of |∆| = 215 meV resulting in an experimentally ob-
served gap of Eg = 170 meV at zero applied magnetic field. The dependence of the
gap on the magnetic field is determined by the difference in the energies of the lowest
Landau level in the conduction and valence bands.
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the bottom of the conduction band to decrease (see Figure 5.4c). This is a counter-
intuitive behavior that contrasts what would be expected for electrons in a conventional
two-dimensional electron gas (i.e., electrons described by a scalar wave function, for
which the formation of Landau levels would lead to an increase in the gap at finite B).
At a quantitative level, a change in the gap between 10% and 15% is expected as B

increases up to 13 T, which results in perfect agreement with experiments without the
need to introduce any free fitting parameters. To confirm the soundness of this result
and exclude significant contributions of other mechanisms to the observed magnetic
field dependence of the band gap, we also considered whether the charge transferred
from BLG to CrX3 depends on the magnetic field. This is important because a change
in charge transfer would lead to a corresponding change in the perpendicular electric
field and thus in the size of the band gap. Nevertheless, the analysis of the magnetic
field dependence of the CNP (Section S2 of the Supporting Information) shows that,
even if charge transfer slightly decreases at high magnetic fields, the quantitative effect
on the gap is very small, close to the sensitivity of the experiment, and negligible in a
first approximation.

Such excellent quantitative agreement shows the usefulness of Eq. (1) and con-
firms its validity. To understand heuristically the origin of Eq. (1) we look at how
the electrostatic and electrochemical potentials vary in the different regions of our
devices (see Figure 5.1b), i.e., in region 1 where BLG is in contact with the CrX3

layer and in region 2 where BLG is on hBN. A change ∆VG in applied gate voltage
causes a variation in the electrochemical and electrostatic potentials ∆µ and ∆φ in
both regions, with the two quantities related by ∆µ = e∆φ+∆EF (∆EF is the change
in Fermi energy induced by the variation in the density of accumulated electrons
in BLG, i.e., ∆EF = C∆VG/eρBLG). Since the entire structure is at equilibrium
for all gate voltages, the change in electrochemical potential is uniform, such that
∆µ(1) = ∆µ(2), or e∆φ(1) + ∆E(1)

F = e∆φ(2) + ∆E(2)
F . Whenever the electrochemical

potential in region 1 is inside the gap of BLG –and at sufficiently low temperature-
∆EF

(1) = 0, because no states are available to add charge. Under these conditions,
therefore, a variation in gate voltage only changes the electrostatic potential in region
1, so that we have e∆φ(2) + ∆E(2)

F = e∆φ(1). As ∆E(2)
F = C∆VG/eρBLG, we obtain

e∆φ(1)− e∆φ(2) =C∆VG/eρBLG, a relation that determines the relative band alignment
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between region 1 and 2. While we sweep the gate voltage from VG = V h
th to VG = V e

th,
this relation always holds, because throughout this VG interval the electrochemical
potential in region 1 is inside the gap. Since at VG = V h

th the electrochemical potential
in region 2 is aligned with the valence band edge in region 1 and at VG = V e

th the
electrochemical potential in region 2 is aligned with the conduction band edge in
region 1, we obtain Eg = e∆φ(1)− e∆φ(2), and Eq. (1) then follows directly using that
e∆φ(1) − e∆φ(2) = C∆VG/eρBLG. We interpret this result by saying that a change in
VG lowers the bands of BLG in region 1 and in region 2 (which effectively forms the
source and drain contacts to the transistor channel), but changes EF only in region 2
(because only region 2 is gapless), and it is this change in Fermi energy that shifts the
electrochemical potential from the valence to the conduction band edge.

The argument above relies on the assumption that charge transferred from BLG
to the underlying CrX3 layer is fixed: at low temperature, a change in VG does not
change the charge accumulated in the CrX3 layer. This is not what would happen
if electrons in CrX3 behaved as independent, non-interacting particles, i.e., if CrX3

could be described as a conventional semiconductor. We attribute this behavior to the
very narrow bands of CrX3 –electrons added to CrX3 are virtually localized on the Cr
orbitals– which make electrons hosted in these materials strongly correlated, because
the strength of their Coulomb interaction is larger than the bandwidth. As a result,
at low temperature, the electrons transferred from BLG to the surface of CrX3 create
an energetically stable correlated state (we imagine a spatially ordered distribution of
electrons localized on Cr atoms that minimizes energy), which has an energy gap for
adding or removing electrons. This assumption appears to be fully consistent with the
behavior observed in BLG interfaces with CrCl3 and CrBr3, for which Eq. (1) works
perfectly, but not for BLG-on-CrI3, for which Eq. (1) gives a factor of 2 deviation
as compared to the actual gap. The reason for this difference between the different
CrX3 compounds likely originates from the fact that the charge transferred from BLG
to CrI3 does vary as VG is varied (possibly because the width of the conduction band
of CrI3 is somewhat larger than that of CrCl3 and CrBr3), an observation that seems
consistent with the pronounced temperature dependence of charge transfer from BLG
to CrI3 (see Figure 5.2e). This conclusion underscores the unconventional nature of the
semiconducting properties of chromium trihalides, which calls for more detailed future
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investigations, and the fact that the study of transport through BLG/CrX3 interfaces
allows differences in the electronic properties of the different members of this family to
be evidenced.

In summary, we have performed a systematic analysis of different phenomena de-
termining the transport properties of vdW interfaces based on BLG and chromium tri-
halide crystals (CrCl3, CrBr3 and CrI3). In all cases, a very large charge transfer from
graphene to CrX3 is found to occur, which causes the opening of a band gap in BLG. A
detailed comparison shows that the values of the gap determined experimentally are in
excellent agreement with the latest ab initio calculations, which include the effect of the
polarizability of the σ bands in the graphene honeycomb lattice. We furthermore show
that it is possible to determine the band gap quantitatively by looking exclusively at the
low-temperature gate voltage dependence of the conductivity, a finding that we exploit
to determine how the band gap depends on the applied magnetic field. Besides provid-
ing indications as to the correlated nature of electrons transferred onto the very narrow
conduction band of CrX3, our work establishes a remarkable quantitative agreement be-
tween different electronic properties of BLG and corresponding theoretical predictions.
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5.A Transfer curves for BLG-on-CrBr3 and BLG-on-
CrI3 devices

In the main text we show that the gate dependence of the square conductance of
BLG-on-CrCl3 devices exhibits two characteristic features, which originate from the
two different regions forming our samples. Specifically, we observe a pronounced
suppression of the square conductance at large gate voltages, around the charge neu-
trality point (CNP) of BLG-on-CrX3 (V (1)

CNP), as well as a smaller conductance dip in
correspondence of the CNP of BLG-on-hBN (V (2)

CNP).

For BLG-on-CrBr3 and BLG-on-CrI3 the data in the main text only focus on the
part at high gate voltages and do not show the suppression of the square conductance
close to VG = 0 V, in correspondence of the CNP of BLG-on-hBN. For completeness,
in Figure 5.5 we show the transfer curves in the full data range also for the CrBr3 and
CrI3 samples, to confirm that the behavior of these devices is analogous to that of BLG-
on-CrCl3 devices. Remarkably, the suppression of square conductance around V (2)

CNP is
very pronounced for BLG-on-CrBr3 as compared to the other samples, suggesting that
for this device a gap is formed also close to the CNP of BLG-on-hBN, probably due to
the close relative alignment of BLG and hBN. Albeit unrelated to the main subject of
the present work, this observation is interesting in its own right, because the opening of
a gap in aligned monolayer graphene on hBN is known to occur ([56, 57, 58]), but to
the best of our knowledge the same phenomenon has not yet been reported for BLG on
hBN.
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Figure 5.5: Transfer curves G□-vs-VG measured at T = 250 mK in the full gate voltage
range for BLG-on-CrBr3 (a) and BLG-on-CrI3 (b) devices. The dashed lines indicate
the positions of CNP of BLG-on-CrX3 (V (1)

CNP) and of BLG-on-hBN (V (2)
CNP).

5.B Magnetic field dependence of charge neutrality
point

In the main text we discuss the dependence of the band gap in BLG-on-CrCl3 and
BLG-on-CrBr3 devices on magnetic field and find (see Figure 4b) a sizable decrease
as the field is increased from 0 T to 13 T (the gap decreases by more than 10% in
BLG-on-CrCl3 and by nearly 20% in BLG-on-CrBr3). The effect is in quantitative
agreement with predictions that take into account the formation of Landau levels in
BLG, without the need to introduce any fitting parameters. For completeness, here we
analyze the evolution of the position of charge neutrality point V (1)

CNP with magnetic
field to investigate whether the charge transferred from BLG to the magnetic materials
does depend on magnetic field. This is important, because a strong dependence of the
transferred charge on field would imply that another mechanism needs to be considered
when analysing how the band gap depends on magnetic field.

As visible in Figure 5.6, for both CrBr3 and CrCl3 we observe that V (1)
CNP shifts to

lower gate voltages upon increasing magnetic field from 0 T to 13 T, indicating that
the charge transferred from BLG to the magnetic materials slightly decreases at higher
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field. At a quantitative level, V (1)
CNP changes by approximately 1% for CrCl3 and by

nearly 2% for CrBr3, which implies a correspondingly small decrease in perpendicular
electric field and in the size of the band gap Eg. The change in gap due to this effect is
approximately one order of magnitude smaller than the change in band gap observed in
the experiments. This observation shows that the change in gap caused by the change
in charge transfer is at most 10% of the variation in band gap actually observed in the
experiments, and confirms the validity of the analysis reported in the main text. In
summary, the change in gap due to the magnetic field dependence of the transferred
charge is small, close to the sensitivity of the experiments, and negligible in a first
approximation.

a b

(1
)

(1
)

Figure 5.6: Magnetic field dependence of charge neutrality point V (1)
CNP for BLG-on-

CrCl3 (a) and BLG-on-CrBr3 (b) devices.
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Abstract

We theoretically investigate 3D layered crystals of alternating graphene and
hBN layers with different symmetries. Depending on the hopping parame-
ters between the graphene layers, we find that these synthetic 3D materials
can feature semimetallic, gapped, or Weyl semimetal phases. Our results
demonstrate that 3D crystals stacked from individual 2D materials repre-
sent a new materials class with emergent properties different from their
constituents.

6.1 Introduction

Thanks to the recent progress in the layer-to-layer assembly of two-dimensional atomic
lattices, it is now possible to combine individual atomic layers to create new, synthetic
crystals that would be difficult to achieve with any other bottom-up technique. Such
layered three-dimensional (3D) materials with engineered stacking series can exhibit
emergent characteristics different from the properties of their individual constituent lay-
ers. Moreover, such assembly of layers allows for multiple stacking orders of consec-
utive layers with different symmetries. Therefore, 3D crystals obtained from stacking
individual atomic layers one by one represent yet a new materials class compared to the
individual 2D sheets and their few-layer counterparts.

One widespread choice is to combine graphene with hexagonal boron nitride (hBN).
Heterostructures of various numbers and stacking arrangements of graphene and hBN
layers feature, e.g., diverse super-lattice moiré effects [2, 3, 4, 5, 6, 7, 8, 9], topological
states [10, 11], correlated states and superconductivity [12, 13], dielectric and ferroelec-
tric properties [14, 15, 16], and exotic Hofstadter butterflies [17, 18].

Here, we describe the hybrid tight-binding and k.p-theory for the low-energy states
of 3D synthetic crystals constructed from alternately stacked graphene and hBN mono-
layers. At a single interface between graphene and hBN monolayers, the two lattices
have slightly different lattice constants, and straining one lattice to fit the lattice con-
stant of the other is energetically very costly [19]. However, in a 3D bulk system with
hBN layers alternating on either side of each monolayer graphene, the adhesion energy
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Figure 6.1: 3D crystals of graphene and hBN monolayers periodically stacked in the
z-direction. Subsequent hBN layers are oriented either in parallel (left, all hBN layers
translated copies with the same orientation) or antiparallel to each other (right, adja-
cent hBNs in every second layer rotated with respect to each other). Depending on the
unknown hopping parameters γ5,γ2, and γ′2 between graphene sheets separated by the
hBN layers, these artificial materials exhibit Weyl semimetal phases. The dashed or-
ange boxes illustrate that the unit cell in the z-direction is twice as large for antiparallel
stacking as for parallel arrangements.

would promote the favourable atomic stacking of carbon and boron/nitrogen atoms. Re-
cent ab initio density functional theory [20] and diffusion Monte Carlo calculations [19]
consistently revealed that the interplay of adhesion and strain favours carbon atoms to
align with boron atoms to minimize the total potential energy[4].

We study the two extreme cases of periodic 3D stacking obtained by i) translat-
ing the hBN layers in the stacking process (hence all hBN layers are parallel to each
other) or ii) alternatingly rotating the hBNs before placing them onto the graphene, re-
sulting in adjacent hBN crystals in every second layer being antiparallel to each other
(c.f. Fig. 6.1). For these two types of perfectly z-periodic sequencing, graphene/hBN
stacks with parallel (translated) and antiparallel (alternatingly rotated) hBN layers, we
study the resulting stacks’ 3D band structures. We find that, depending on the inter-
layer graphene hopping parameters, such a 3D crystal can feature different types of
semimetallic spectra, including overlapping electron and hole pockets and, in partic-
ular, type I and type II Weyl cones. Such Weyl semimetals are 3D phases of matter
whose electronic properties and topology entail protected surface states and anomalous
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responses to external electric and magnetic fields [21, 22, 23, 24, 25, 26].

Hence, in this work, we propose a novel candidate for a Weyl material in which the
3D structure is obtained by successively stacking 2D atomic sheets [27]. Conversely,
probing such widely different material characteristics may allow conclusions about the
sign and the relative magnitude of the inter-layer hoppings in graphene/hBN stacks,
which are notoriously difficult to determine theoretically and experimentally.

This manuscript is structured as follows: In section 6.2, we give the low-energy
effective Hamiltonians for 3D graphene/hBN stacks with the two types of z-periodic
stacking shown in Fig. 6.1, featuring parallel hBN layers or antiparallel hBN layers.
Subsequently, in section 6.3, we discuss the possible 3D band structures which emerge
for both cases as a function of different hopping parameters. We discuss our results in
section 6.4 and give details of the derivations in the appendix.

6.2 Low-energy effective Hamiltonians

Starting from a hybrid k.p theory-tight binding approach[28] for the differently stacked
3D graphene/hBN crystals in Fig. 6.1 we derive the low-energy effective Hamiltonians
for the electrons on the graphene layers subject to perturbations from the adjacent hBNs
[3, 29, 30]. Hybridization between graphene and hBN orbitals has been studied pre-
viously and used in earlier studies of, e.g., moiré superlattices of single graphene/hBN
interfaces [8]. Here, we use second order perturbation theory in the interlayer hoppings
to exclude the boron and nitrogen bands (see Appendix A for details of the calculation).
For the 3D graphene/hBN stacks with translated (parallel, p) hBN layers the resulting
low-energy Hamiltonian for the electrons in graphene read,

Hp =

(
−2γ2

VB
(1+ coskzd)+2γ5 coskzd vπ†

vπ 2γ2 coskzd

)
, (6.1)

operating in the space spanned the two-component wave function Ψ = (ψCA ,ψCB) de-
scribing electronic amplitudes on the CA and CB sites of the graphene lattice. For the
stacking sequence where the adjacent hBN layers are rotated by 180◦ with respect to
each other (antiparallel, ap), the size of the unit cell doubles compared to the parallel
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stacking case and we find the low-energy Hamiltonian,

Hap =


−2γ2

VB
vπ† (1+ e2idkz)(γ5 − γ2

VB
) 0

vπ 0 0 γ2 + γ′2e2idkz

(1+ e−2idkz)(γ5 − γ2

VB
) 0 −2γ2

VB
vπ†

0 γ2 + γ′2e−2idkz vπ −2γ2

VB
(1+ coskzd)

 ,

(6.2)

written in the basis of CA and CB sites of two subsequent graphene layers. In the Hamil-
tonians above, π = px + ipy (p = −iℏ∇), VB ≈ 3.34 eV is the onsite potential of boron
(measured with respect to the on-site potential of carbon), v ≈ 106 m/s, and d ≈ 0.64
nm is the distance between the graphene layers as indicated in Fig. 6.1. For a faithful
description of low-energy features in the electronic structure it is crucial to retain all the
relevant couplings between different atomic sites [29]. Here, we take into account γ (be-
tween carbon and boron atoms), as well as the inter-layer coupling parameters between
graphene layers, γ5, γ2, and γ′2 between the in-equivalent carbon atoms CA (separated by
a boron atom) and CB (separated by a void or a nitrogen atom). The precise values of
these hoppings are a priori unknown. To explore the full parameter space, we we treat
γ5,γ2, and γ′2 as free parameters in relation to γ ≈ 0.38 eV in the following discussion.
In the conclusion section of this manuscript, Sec. 6.4, we discuss how one may estimate
the coupling parameters and how they may be manipulated in an experiment.

6.3 Semimetal band structures

The relative magnitude and sign of the hopping parameters between different atomic
lattice sites determines the electronic properties of the 3D graphene/hBN crystals in
Fig. 6.1. We separately discuss stacks with translated (parallel) and rotated (antiparallel)
adjacent hBN layers.

6.3.1 Parallel stacking

We find that a 3D graphene/hBN crystal with parallely oriented hBN layers either fea-
tures overlapping electron and hole pockets, or type I, or type II Weyl points depending
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Figure 6.2: Phase diagram and possible dispersions of a 3D graphene/hBN stack
with parallel hBN layers (left crystal stucture in Fig. 6.1). We find a gapped phase
(magenta), and type I/II semimetal phases (blue/gray).Parameters for the dispersions:
γ2 = −0.5γ2/VB, γ5 = −γ2/VB (gray); γ2 = γ2/VB, γ5 = 0 (blue); γ2 = −γ2/VB, γ5 = 0
(magenta). At charge neutrality, the Fermi energy corresponds to zero energy, EF = 0.

on the hopping parameters γ2 and γ5. Figure 6.2 demonstrates this parametric depen-
dence of the electronic properties, showing the phase diagram in the plane spanned by
the inter-layer hoppings and examples for the distinct possible 3D band structure types
that we obtain from diagonalising Hp in Eq. 6.1. In the gapless phases, linear Weyl
nodes[31, 23, 32, 27, 21, 33] form at momentum points k0 = (0,0,kz0) with

kz0 =±1
d

arccos
[
− γ2

γ2 +VB(γ2 − γ5)

]
. (6.3)

These touchings can be type I Weyl nodes (closed or point-like Fermi surfaces, blue
phase in Fig. 6.2) or type II Weyl nodes (overlap between electron and hole bands lead-
ing to open Fermi surfaces, gray phase in Fig. 6.2) [21, 26, 33], and we find them to be
Chern-nontrivial with Chern numbers C =±1.
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Figure 6.3: For a graphene/hBN stack where adjecent hBN layers are antiparallel to
each other (right crystal stucture in Fig. 6.1), we identify the regimes with clearly dis-
tinguishable type I Weyl cones near the Fermi energy EF = 0. Top row: γ2 = γ2/VB,
γ5 = 0 (similar to the blue phase in Fig. 6.2). For most values of γ′2 the cones are well-
isolated on the energy axes. Only in the case of a sign change, γ2 = −γ′2, the cones
are obscured by overlapping bands. Bottom row: γ2 = −γ2/VB, γ5 = 0 (magenta) or
γ2 =−0.5γ2/VB, γ5 =−γ2/VB (gray). Most of the features are obscured by overlapping
bands near the Fermi energy. Other choices of γ′2 yield similar pictures.

6.3.2 Antiparallel stacking

We diagonalize Hap in Eq. 6.2 to obtain the 3D band structures of graphene/hBN stacks
with antiparallel arrangement of adjacent hBN layers. We demonstrate in Fig. 6.3 that
similarly to the stacks with parallel hBN layers, we find parametric regimes in which the
bands feature well-separated Weyl nodes (blue dispersions, top row). For other choices
of parameters the features of the bands (type II Weyl cones in the gray dispersion, band
gaps in the magenta dispersions, bottom row) are occluded by overlapping or near-
overlapping of the bands near the Fermi energy. Especially if the hoppings between CB

carbon atoms via a void and via a nitrogen atom are unequal, γ′2 ̸= γ2, we find substantial
asymmetry between electron and hole bands. Note that the periodicity of the unit cell
in the case of antiparallely stacked hBN layers is twice as large compared to the case of
parallel stacking, c.f. Fig. 6.1, doubling the lattice constant along the z-axis.
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6.4 Conclusion

We presented the possible electronic structure of 3D stacks of alternating graphene and
hBN layers with different symmetries. The atomic arrangements we consider represent
the most stable configurations for carbon and boron/nitrogen atoms in single adjacent
layers[20, 19]. However, the hopping parameters between graphene atoms in different
layers are currently unknown. We identify regimes with different electronic proper-
ties (semimetallic, gapped, Weyl semimetals) upon varying these hopping parameters.
These regimes with different electronic band structures would make for distinctively
different experimental signatures. Therefore, identifying signatures of the band struc-
ture in both transport and spectroscopy experiments may help to identify the relative
sign and magnitude of these unknown material parameters and set boundaries for their
values which are hard to determine microscopically otherwise. Moreover, we antici-
pate that these out-of-plane hopping parameters could be manipulated, e.g., by applying
perpendicular pressure to the 3D stacks [34, 35, 36]. Depending on the relative scal-
ing of the hopping between adjacent layers (γ) or graphene-graphene hopping over the
next layer (γ2,γ

′
2,γ5), pressure may increase the chance of reaching the Weyl-semimetal

phase in the phase diagramm, Fig. 6.2.
Individual layers of graphene and hBN are very commonly combined in heterostruc-

tures with increasing precision and control, making the proposed crystals of alternating
monolayers achievable in experiment. Using these 3D stacks of graphene and hBN as
examples, we have demonstrated that artificial 3D crystals of individual atomic layers
represent a new 3D materials class with intriguing, potentially topologically non-trivial
electronic properties only now achievable in experiments. Besides the cases of alternat-
ing sequencing studied in this work, one may consider other stacking sequences with
longer periods[37, 38], stacking faults, interlayer twisting, and the combination of mul-
tiple different 2D materials. Such considerations are left for further studies.
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6.A Derivation of the low-energy Hamiltonians

For the parallel stacking we start from the 4×4 Hamiltonian,

H =

(
HG T †

T HhBN

)
, (6.4)

in the basis of the graphene and hBN atomic sites (CA,CB,N,B), where,

HG =

(
2γ5 coskzd vπ†

vπ 2γ2 coskzd

)
, HhBN =

(
VN 0
0 VB

)
,

T † =
1
3
(1+ eikzd)∑

j

(
γ1N γ1Bei 2π j

3

γ1Ne−i 2π j
3 γ1B

)
ei(K j−K0)·r0 ,

K j =±4π

3a
(cos

2π j
3

,−sin
2π j

3
), (6.5)

and for the relaxed equilibrium stacking considered in the main text the interlayer offset
is r0 = (0, a√

3
). Eliminating the hBN sites,

Hp = HG +T †(−HhBN)
−1T, (6.6)

we arrive at the expression in Eq. 6.1 in the main text.

Similarly, for alternate stacking, we start from the Hamiltonian,

H̃ =

(
HGG T̃ †

T̃ HhBNhBN

)
, (6.7)
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in the basis (CA,CB,C̃A,C̃B,N,B, Ñ, B̃), and,

HGG =


0 vπ† γ5(1+ e2ikzd) 0
vπ 0 0 γ2 + γ′2e2ikzd

γ5(1+ e−2ikzd) 0 0 vπ†

0 γ2 + γ′2e−2ikzd vπ 0

 , (6.8)

HhBNhBN =


VN 0 0 0
0 VB 0 0
0 0 VN 0
0 0 0 VB

 , T̃ † =


0 γ1 0 γ1ei2kzd

0 0 0 0
0 γ1 0 γ1

0 0 0 0

 , (6.9)

and we obtain Hap in Eq. 6.2 via,

Hap = HGG + T̃ †(−HhBNhBN)
−1T̃ . (6.10)
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Chapter 7

Umklapp electron-electron scattering
in bilayer graphene moiré superlattice

Preface

The contents of this chapter represent the main body of a manuscript submitted to Physi-
cal Review Letters. The accompanying supplemental material is presented in the appen-
dices. A preprint is available on arXiv [1]. The manuscript was authored by Christian
Moulsdale1,2 and Vladimir Fal’ko1,2,3.

Christian Moulsdale performed all the analytical and numerical calculations and
produced the figures for the manuscript, under the guidance and supervision of Vladimir
Fal’ko. The writing of the manuscript was primarily done by Christian Moulsdale, with
assistance from Vladimir Fal’ko.

Abstract

Recent experimental advances have been marked by the observations of bal-
listic electron transport in moiré superlattices in highly aligned heterostruc-
tures of graphene and hexagonal boron nitride (hBN). Here, we predict that

1Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
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3Henry Royce Institute, Institute for Advanced Materials, Manchester M13 9PL, UK

158



159

a high-quality graphene bilayer aligned with an hBN substrate features T 2-
dependent resistivity caused by umklapp electron-electron (Uee) scattering
from the moiré superlattice, that is, a momentum kick by Bragg scatter-
ing experienced by a pair of electrons. Substantial Uee scattering appears
upon p-doping of the bilayer above a threshold density, which depends on
the twist angle between graphene and hBN, and its contribution towards
the resistivity grows rapidly with hole density until it reaches a peak value,
whose amplitude changes non-monotonically with the superlattice period.
We also analyse the influence of an electrostatically induced bandgap in the
bilayer and trigonal warping it enhances in the electron dispersion on the
electron-electron umklapp scattering.

Umklapp electron-electron (Uee) scattering is a fundamental process contributing
towards the electrical resistivity of ultraclean metals. In this process, a pair of electrons
interact via Coulomb repulsion and simultaneously transfer momentum, ℏggg, to the crys-
talline lattice, where ggg is a reciprocal lattice vector (Bragg vector) of this lattice. Taking
into account this momentum kick, the wavevectors of the incoming (kkk1/2) and outgoing
(kkk3/4) electron states satisfy the following condition:

kkk3 + kkk4 = kkk1 + kkk2 +ggg. (7.1)

When such a process relocates a pair of electrons across the Fermi surfaces, as illus-
trated in Fig. 7.1 (left-hand-side panel), the resulting two-electron back-scattering gen-
erates resistivity, in contrast to “normal” Coulomb scattering, which conserves the total
momentum of the pair. The Uee contribution towards the resistivity typically has a T 2

temperature dependence [2], but it is difficult to otherwise vary its strength in metals,
where the electron density and a size of the Fermi surface are set by the material’s
chemistry, and the latter may not contain states that satisfy the condition in Eq. (7.1).

With the availability of long-period superlattices, such as moiré superlattices (mSL)
in incommensurate heterostructures of graphene [3, 4, 5, 6, 7, 8, 9, 10, 11] or twisted
graphene bilayers [12, 13, 14, 15], it becomes feasible to vary the electron density across
the range where Uee processes can be switched on/off and, then, its strength substan-
tially varied. In a monolayer graphene/hexagonal boron nitride (hBN) heterostructure,
it has been observed that, above a well-defined threshold density (which depends on the
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mSL period and, therefore, on the twist angle between graphene and hBN crystals), the
rate of mSL-Uee gradually increases, becoming a dominant factor in the resistivity at
room temperature [11, 16].

Figure 7.1: Left: Umklapp electron-electron (Uee) scattering by a moiré superlattice
in BLG. εF and εL are the Fermi energy and saddle point energy in the first mSL
miniband on the valence side, respectively, counted from the conduction-valence band
edge. Right: The non-monotonic evolution of the contribution, ρUee = T 2 f (n), of
Uee scattering to the electrical resistivity against electron density, n, for various twists
angles, θ, between graphene and hBN, at T = 100K (Uee processes dominate when
T ≪ |εF |/kB, |εF − εL|/kB). Inset: Peak value of the Uee resistivity, whose magnitude,
ρmax

Uee , is shown as a function of the mSL period, λ (and θ).

Here, we claim that mSL-Uee processes are important for understanding electronic
transport in highly aligned bilayer graphene (BLG)/hBN heterostructures, where they
make a substantial contribution,

ρUee ∝ T 2|n−n∗|1/2, (7.2)

towards the resistivity, Fig. 7.1. As for the mSL in monolayer graphene, this contribu-
tion appears only above a threshold density, n∗, growing rapidly just above the threshold.
However, at higher densities and specifically for bilayer graphene, the resistivity falls
off with the density of states, which results in a prominent peak, ρmax

Uee , in the density-
dependent resistivity. The size of this peak increases non-monotonically with the mSL
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period, λ, (maximum value for λ ≈ 13nm) as a result of the interplay between the trig-
onal warping of the dispersion of electrons in BLG [17, 18] and the mSL periodicity.
This contrasts with the mSL in monolayer graphene, where the Uee resistivity increases
monotonically with both density and mSL period [11, 16], ρUee ∝ T 2|n−n∗|3/2, due to
the suppressed backscattering of Dirac electrons.

The above predictions are derived by considering Uee scattering in the BLG/hBN
heterostructure sketched in Fig. 7.2, enabled by the mSL at the graphene/hBN interface,
which period is determined by a δ = 1.8% lattice mismatch between graphene and hBN
and a misalignment angle, θ. Projecting onto the low-energy bands of bilayer graphene
in its KKKξ valley (ξ = ±), the electronic properties of this system can be described by a
2×2 effective Hamiltonian, [19, 20, 21, 3, 5]

Ĥ =
−1
2m∗

(
0 π̂†2

π̂2 0

)
+ v3

(
0 π̂

π̂† 0

)
+

α p̂pp2

2m∗

(
1 0
0 1

)
− ∆

2

(
1− p̂pp2

m∗γ1

)(
1 0
0 −1

)
+

5

∑
m=0

M̂gggm,

M̂gggm =

(
[u0 + i(−1)mu3]eigggm·rrr 1√

2m∗γ1
u1(−1)m+1e−iξmπ/3eigggm·rrrπ̂†

1√
2m∗γ1

u1(−1)m+1eiξmπ/3π̂eigggm·rrr 1
2m∗γ1

[u0 − i(−1)mu3]π̂eigggm·rrrπ̂†

)
,

(7.3)
where π̂ = ℏ(−iξ∂x + ∂y) and p̂pp2 = −ℏ2(∂2

x + ∂2
y). The first three terms are intrinsic

to BLG, representing the effective electron mass, m∗ = γ1/(2v2) ≈ 0.032me, from the
intralayer (v) and vertical interlayer (γ1) couplings, trigonal warping from the skew in-
terlayer (v3) couplings [23] and a parabolic shift which lifts the particle-hole (eh) sym-
metry (α) [24], respectively. The fourth term represents an electrostatically controlled
interlayer potential asymmetry, ∆.

The final term in Eq. (7.3) represents the effects of the mSL sketched in Fig. 7.2, with
harmonics corresponding to the first star of mSL Bragg vectors, gggm ≈ δ ·GGGm − θ(eeez ×
GGGm) (m = 0,1, · · · ,5), where GGGm = 4π√

3a
(−sin mπ

3 ,cos mπ

3 ) is a graphene Bragg vector.
This is parameterised by u0/1/3, corresponding to an energy shift, gauge field and mass
term in the graphene layer closest to the hBN layer, respectively [25]. Each harmonic,
M̂gggm , couples plane wave states separated by gggm, which reconstructs the conduction and
valence bands of isolated BLG into minibands (see Fig. 7.1).

For electrons on a superlattice, Coulomb interaction leads to mSL-Uee processes
(see Fig. 7.1): two electrons from one side of the Fermi line backscatter together to
the other side, receiving a momentum kick (ggg = gggm) from the mSL. Such processes
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Figure 7.2: Left: The lattice mismatch (δ ≈ 1.8%) and twist, θ, between BLG and
hBN gives rise to a moiré superlattice with period, λ ≈ a/

√
δ2 +θ2, and unit cell of

area, A =
√

3λ2/2. Right: The mSL-normalised magnitude, |n∗|/n0 (n0 = 4/A) of the
threshold density of holes, n∗ < 0, or electrons, n∗ > 0, at which Uee scattering becomes
possible due to a sufficiently large Fermi line. The threshold density, n∗, was calculated
as a function of twist angle θ taking into account the particle-hole asymmetry in the
BLG Hamiltonian (α = 0.15), and compared to the symmetric cases of α = 0 and the
monolayer graphene superlattice (|n∗| ≈ 0.23n0).

only occur when the size of the Fermi contour is sufficiently large compared to |ggg|,
giving a threshold electron density, n∗, which decreases with the size of the mSL unit
cell as seen in Fig. 7.2 for the gapless spectrum with ∆ = 0. The mSL-normalised
threshold, n∗/n0, (due to spin-valley degeneracy, n0 = 4/A corresponds to one filled
miniband) increases non-monotonically with θ as the isoenergy lines become decreas-
ingly concave with density, a consequence of the trigonal warping and most significant
when |n| < 2m2v2

3/π. This distinguishes the threshold behaviour in bilayer graphene,
pulling down from the value |n∗|/n0 = π/(8

√
3)≈ 0.23 established for the the isotropic

Dirac spectrum of monolayer graphene. Also, it is important to consider the effects of
a conduction-valence band asymmetry in the bilayer dispersion, accounted for by the
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third term in Eq. (7.3) with α = 0.15 [23]. The latter affects the concavity of the isoen-
ergy lines, especially in the first valence miniband, making the threshold density, |n∗|,
slightly different for n- and p-doping of BLG mSL - see Fig. 7.2.

In the following, we derive the amplitudes for mSL-Uee processes, treating the mSL
and electron-electron interactions in the lowest-order perturbation scheme. This is im-
plemented for densities just above the threshold, n∗, where the resonant mixing of plane
wave states is negligible, and we neglect the reconstruction of the electron dispersion
into minibands. We account for the four leading Feynman diagrams involving Coulomb
and mSL scattering of electrons off and back on to the Fermi level via an intermediate
virtual state,

Wg =

k1 + g

k2 − k4

k1 k3

k2 k4

+

k2 + g

k3 − k1

k1 k3

k2 k4

+

k3 − g

k4 − k2

k1 k3

k2 k4

+ k1 − k3

k4 − g

k1 k3

k2 k4

.

(7.4)

In each diagram, the initial and final momenta are related by Eq. (7.1);
q
≡ Ṽ (qqq) ≈W

is the screened Coulomb interaction; ■ ≡ M̂ggg is an mSL interaction harmonic which
imparts momentum kick ℏggg; and

p
is a propagator of an electron in the virtual

state [26, 27, 28, 29, 30]. To mention, the mSL scattering amplitudes feature a particle-
hole asymmetry, generic for graphene/hBN heterostructures, with values typically an
order of magnitude larger in the valence miniband as compared to the conduction mini-
band [3, 4, 5, 6].

Equipped with the amplitudes in Eq. (7.4), we use linear transport theory [31, 32, 11]
(see SM) to calculate the contribution of Uee processes to the resistivity,

ρUee =
h

6e2 (kBT )2
5

∑
m=0

∫ dθ1dθ2

|kkk3 × kkk4|
k1k2k3k4

|vk1vk2vk3vk4|
|Wgggm |2

vx1(vx1 + vx2 − vx3 − vx4)

(
∫

dθkv2
x/|vk|)2 .

(7.5)
In this expression, kkki = ki(cosθi,sinθi) is the wavevector of each electron (i = 1,2,3,4)
on the Fermi line, and vvvi its group velocity. In Fig. 7.1, the results of this analysis are
summarised for the vertically unbiased heterostructure, ∆ = 0. The Uee contribution
is isotropic (ρUee

αβ
≡ ρUeeδαβ) due to the C3 symmetry of the mSL. Also, note that the

“normal” (momentum-conserving) electron-electron scattering suppresses higher order
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harmonics in the non-equilibrium distribution of electrons, so that accounting for Uee
becomes the same as accounting for an additional momentum transfer from the accel-
erated electrons (by the electric field) in the scattering time approximation (see SM).
Here, we limit the analysis of Uee to the density range of 0.1n0 < |n| < 0.4n0, exclud-
ing from the analysis electron-hole scattering at the principal miniband edge and staying
away from the mSL-induced van Hove singularity, where the perturbative treatment of
the mSL interaction becomes inaccurate [33, 34].

Typically, the Uee contribution in Eq. (7.5), ρUee ≈ T 2 f (n), rises rapidly above
the threshold, f (n) ∝ |n − n∗|1/2. This singular behaviour originates from the rapid
expansion of the phase space around the incoming/outgoing points in Fig. 7.2, with
kkk3×kkk4 = 0 at the threshold. The exception is an initial interval of linear scaling, f (n) ∝

|n−n∗|, found for the mSL with a twist angle in the range of 0.3◦ < θ < 0.8◦.

We also find that the interlayer potential asymmetry, ∆, which opens a homogeneous
bandgap in BLG [35, 36, 37, 38], has a pronounced effect on the Uee processes. The gap
promotes formation of three well-separated minivalleys at the BLG band edges, which
persist up to the density |n| ∼ 2m|∆|2/(πγ1). The separation of the minivalleys increases
with |∆|, thus, decreasing the threshold doping density, |n∗|, at which the Uee channel
opens. For example, in the aligned BLG/hBN heterostructure (θ = 0) with |∆| = ∆r ≈
75meV, the minivalleys are separated by the 1

2gggm, so that Uee scattering transfers pairs
of electrons between these minivalleys even at small doping (corresponding to n∗ = 0,
as shown in Fig. 3.b)).

The results of numerical computations of the Uee resistivity contribution, ρUee,
across a broad range of parameters are summarised in Fig. 7.3 c). We highlight the re-
gions where the resistivity is dominated by Uee processes, excluding a butterfly-shaped
region where thermally-activated electron-hole scattering processes may dominate. The
wings of this butterfly, shown in the bottom panel, differ for n- and p-doping, which re-
flects the particle-hole asymmetry of the BLG dispersion (here, we use α = 0.15 [24]),
conversely being mirrored by charge neutrality (n = 0) for α = 0 in the top panel. Re-
gardless of α, the wings are mirrored by ∆ = 0, where the wavefunctions feature zero
layer polarisation. In contrast, the Uee contribution differs for positive and negative
∆. This is because the interlayer asymmetry gap (vertical bias) shifts the weight of the
low-energy electron states towards/away from the bottom graphene layer, hence, in-
creasing/reducing the mSL scattering strength determined by the hBN crystal aligned
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Figure 7.3: a) Umklapp electron-election (Uee) scattering with momentum kick, ℏggg,
between the three minivalleys in the valence miniband for non-zero interlayer poten-
tial asymmetry, ∆, opening a gap between the minibands. The minivalley edges are
connected by ggg/2 when this system is aligned (zero twist, θ = 0) and |∆| = ∆r (inset).
b) The non-monotonic evolution of the valence miniband threshold density, n∗, with
∆ for various twists, θ = 0◦ to 0.9◦ from top to bottom, and α = 0.15 (n∗ = 0 when
θ = 0 and |∆| = ∆r ≈ 75meV). c) The temperature-independent component, f , of the
dominant contribution, ρUee ≈ T 2 f , of Uee processes to the electrical resistivity against
electron density, n, and ∆, with (α = 0) and without (α = 0.15) particle-hole symmetry,
respectively. We exclude a (grey, dotted) butterfly-shaped region in each panel where
the contribution of other processes are significant, whose wings are mirrored by zero
layer polarisation (∆ = 0), and charge neutrality (n = 0) when α = 0.
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with the BLG flake. Also, as in monolayer graphene mSL, Uee processes are much
stronger for p-doping (first miniband of holes) than for n-doping, due to the particle-
hole symmetry breaking by the mSL potential [3, 11]

Overall, we predict a strong contribution of umklapp electron-electron scattering of
moiré superlattice towards the resistivity of highly-aligned BLG/hBN heterostrucutres,
with a non-monotonic density dependence near the Uee threshold. While the Uee
role would increase at higher temperatures, at low densities (near the threshold) it will
compete with electron-hole scattering processes, promoted by electron-hole activation
across the conduction-valence band edge [39]. Hence, for a more accurate descrip-
tion of the Coulomb scattering effect in the resistivity of mSL in bilayer graphene, one
would need to account for both Uee and electron-hole scattering on equal footing. Also,
one may want to extend the Uee analysis onto a broader range of miniband fillings, by
calculating Uee rates using the full details of the mSL minibads spectra and Wannier
functions, as attempted for a model graphene superlattice [40]. Such a calculation may
offer additional features in ρUee(n) when approaching the opposite (high-density) mini-
band edge or for deeper minibands, though, for quantititative validity, that has to be
performed using a mSL model with the experimentally verified parameters [41].

We thank A. Knothe, S. Slizovskiy, K. Novoselov and R. K. Kumar for useful
discussions. We acknowledge support from EU Graphene Flagship Project, EPSRC
Grants No. EPSRC CDT Graphene-NOWNANO EP/L01548X/1, EP/S019367/1,
EP/P026850/1 and EP/N010345/1. All the research data supporting this publication is
directly available within this publication and supplemental material accompanying this
publication.

7.A Non-orthogonality of monolayer graphene Hamil-
tonian

The generic 2×2 Hamiltonian for the two sublattices of monolayer graphene, A and B,
in the (A,B) basis is

Ĥ =

(
εA −γ0g(kkk)

−γ0 f ∗(kkk) εB

)
, (7.6)
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where εA/B are the on-site energy of the 2pz graphene orbitals in each sublattice, A/B,
γ0 is the nearest-neighbour hopping parameter, and

g(kkk) = eikya/
√

3 +2e−ikya/(2
√

3) cos
(

kxa
2

)
, (7.7)

for plane wave states of momentum ℏkkk [42]. The 2pz orbitals on each sublattice are
non-orthogonal, so that we derive the energy eigenvalues, ε, and corresponding wave-
function, ψ, by solving the generalised eigenvalue equation,

Ĥ |ψ(kkk)⟩= εS |ψ(kkk)⟩ , (7.8)

where the overlap matrix is

S =

(
1 sg(kkk)

sg∗(kkk) 1

)
, (7.9)

with s ≈ 0.13 quantifying this overlap. We can orthogonalize this Hamiltonian using
the transformation

Ĥ → S−1/2ĤS−1/2 ≈ Ĥ − 1
2
{Ĥ,S− I}, (7.10)

to first order in S, where I is the 2×2 identity matrix, and {A,B} ≡ AB+BA is an anti-
commutator. This results in an extra term in the Hamiltonian, sγ0|g(kkk)|2I, which breaks
particle-hole symmetry.

7.B Effective two-band model of bilayer graphene

The full 4×4 Hamiltonian of bilayer graphene accounts for each of the two sublattices,
A and B, in each layer [19, 20, 22]. However, in Bernal stacking, the A atoms of the top
layer are directly above the B atoms of the bottom layer (see Fig. 2 of the main text)
and have a large interlayer coupling, γ1. This results in two high-energy bands (|ε| >
γ1) primarily located on these dimer atoms, alongside the low-energy bands primarily
located on the non-dimer atoms which dominate the contribution of Umklapp electron-
electron (Uee) processes to the resistivity.

We use a Schrieffer-Wolff transformation to project the high-energy bands onto the
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low-energy bands, giving an effective 2×2 Hamiltonian at the KKK± points:

Ĥ0 =
−1
2m∗

(
0 π̂†2

π̂2 0

)
+ v3

(
0 π̂

π̂† 0

)
+

α1

2m∗

(
π̂†π̂ 0

0 π̂π̂†

)

− ∆

2

[(
1 0
0 −1

)
− 1

m∗γ1

(
π̂†π̂ 0

0 −π̂π̂†

)]
. (7.11)

Note that we neglect a constant energy term corresponding to the mean on-site po-
tential. Particle-hole symmetry breaking is achieved by the third term (α1 ≈ 0.15),
alongside a small, additional parabolic shift, α2 p̂pp2

2m∗
I (α2 ∼ 0.01), which accounts for

the the next-nearest-neighbour intralayer couplings and non-orthogonality of graphene
orbitals in Sec. 7.A, expanded at the KKK± points. The momentum operators commute
in the absence of an external magnetic field, and Eq. (7.11) simplifies to give the first
four terms in Eq. (3) of the main text, with α = α1 +α2 ≈ 0.15 [23, 24]. Considering
plane wave states of wavevector, (KKK±+)kkk, in the Brillouin zone, this Hamiltonian fea-
tures a conduction and valence band of energies, ε±(kkk) (ε+ > ε−), and wavefunctions,
|ψ±(kkk)⟩ = eikkk·rrru±(kkk), respectively, satisfying the eigenvalue equation, Ĥ0 |ψ±(kkk)⟩ =
ε±(kkk) |ψ±(kkk)⟩.

The final term in the Hamiltonian in Eq. (3) of the main text represents the moiré
superlattice (mSL) interaction with the hBN layer, featuring harmonics, M̂gggm , for each of
the first star of mSL Bragg vectors, gggm (m= 0,1, · · ·5) [3, 4, 5, 6, 41]. The harmonic M̂gggm

couples plane wave states of wavevector kkk and kkk+ gggm: ⟨ψs′(kkk+gggm)|M̂gggm|ψs(kkk)⟩ ̸= 0
(s,s′ =±). Hence, we derive the reconstructed dispersion from the eigenvalue equation
with the zone-folded wavefunction,

|Ψ(kkk)⟩= ∑
ggg

∑
s=±

cs
kkk+ggg |ψs(kkk+ggg)⟩ , (7.12)

where cs
kkk+ggg are complex coefficients and we sum over the mSL Bragg vectors, ggg [3, 5].

This gives a collection of minibands (see Fig. 1) in the moiré Brillouin zone (mBZ), and
the conduction and valence minibands are converged when we sum over mSL Bragg
vectors, ggg, which are the sum of at most two of the first star vectors, gggm. As discussed
in the main text, we can neglect the mSL-induced reconstruction of the bands in the
relevant density ranges, n/n∗ ≪ 4.
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Depending upon the interlayer potentially asymmetry, ∆, and density, n, the Fermi
line will have one of three forms:

1. A single contour centred on the origin.

2. Two non-touching contours, each centred on the origin. We neglect this regime,
since it is narrow on the energy axis, and the resistivity will be dominated by
impurity scattering at the van Hove singularities [33, 34].

3. Three non-touching contours (minivalleys), p = 0,1,2, centred on the three band
edges, kkk(p)

c = kc(cos p2π

3 ,sin p2π

3 ) (kc > 0), respectively [18]. The contours do
not enclose the origin, and are related by the three-fold rotational symmetry. We
expand about the centre of the minivalley, kkk → kkk(p)

c + kkk:

kkk = k
(

cos
(

θ+
p2π

3

)
,sin

(
θ+

p2π

3

))
, (7.13)

such that k(θ) is the same for each minivalley. We suppress the contour index for
simplicity in the following sections, implicitly summing over the valid contours.

7.C Screened Coulomb interaction

The unscreened Coulomb potential in real space is

V0(rrr)≡V0(r) =
e2

4πκε0r
, (7.14)

where κ ≈ 2.6 is the dielectric constant of bilayer graphene in hBN [28]. Performing
the in-plane Fourier transformation on this potential gives

Ṽ0(QQQ)≡ Ṽ0(Q) =
e2

2κε0Q
, (7.15)

for the momentum transfer, ℏQQQ. Electron states screen this potential and, in the random
phase approximation [26, 27, 28, 29], the screened potential is given by

Ṽ (QQQ) =
Ṽ0(Q)

1+Ṽ0(Q)Π0(QQQ)
, (7.16)
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where the static polarisation, including the two-fold spin degeneracy, is given by

Π0(QQQ) =−2 ∑
s,s′=±

∑
ξ=±

∫ d2k
(2π)2

f0(εs(kkk))− f0(εs′(kkk+QQQ))

εs(kkk)− εs′(kkk+QQQ)
| ⟨ψs(kkk)|ψs′(kkk+QQQ)⟩ |2,

(7.17)
in terms of the equilibrium distribution function for Fermi energy, εF ,

f0(ε) =
1

e(ε−εF )/(kBT )+1
. (7.18)

In the low-temperature regime discussed in the main text, we approximate the distri-
bution function as a step, ∂ f0/∂ε ≈ −δ(ε− εF), and the polarisation is dominated by
intra-band overlaps and small momentum transfers, QQQ ≈ 0:

Π0(QQQ)≈ Π0(0) =
1
π2

∫
dθ

k
|vk|

, (7.19)

where we integrate over the Fermi surface, and the electron group velocity is vvv(kkk) =

ℏ−1∇kkkε(kkk). Since the screening is strong (Ṽ0(Q)Π0(QQQ)≫ 1) in the region of interest,
we approximate the screened potential as a contact potential, V (rrr)≈Wδ(rrr), where

W = Π0(0)−1. (7.20)

7.D Matrix elements

The matrix element, Wggg, for Uee scattering by the mSL Bragg vector, ggg = gggm, is the
sum of four diagrams where electrons 1, 2, 3 and 4 scatter off the mSL, respectively,
shown as Feynman diagrams in Eq. (4) of the main text. These give the respective terms
in the explicit expression,

Wggg = Xggg(1,2,3,4)+Xggg(2,1,4,3)+X∗
−ggg(3,4,1,2)+X∗

−ggg(4,3,2,1), (7.21)
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where

Xggg(a,b,c,d) = ∑
s′=±

⟨ψs′(kkka +ggg)|M̂ggg|ψs(kkka)⟩
εs(kkka)− εs′(kkka +ggg)

Ṽ (kkkb − kkkd)

×⟨ψs(kkkc)|ψs′(kkka +ggg)⟩⟨ψs(kkkd)|ψs(kkkb)⟩ , (7.22)

summing over both bands for the intermediate virtual electron [11, 16]. Spatial inversion
is equivalent to taking the complex conjugate of the matrix elements, which leaves the
magnitude of Eq. (7.22) unchanged. In the main text, we restrict the integral to the
Fermi surface, ε1/2/3/4 = εF .

7.E Linear response theory

The Boltzmann equation for the electron distribution function, f (kkk), of an electron with
wavevector, kkk, in the presence of an external electric field, EEE, is given by

eEEE ·∇kkk f (kkk) = I{ f (kkk)}, (7.23)

where the collision integral, I{ f (kkk)}, is determined by electron scattering [31, 32, 11].
Note that the electron charge is negative, e < 0. The equilibrium distribution (7.18),
appropriate for EEE = 0, satisfies the detailed balance condition, I{ f0(ε)}= 0. We expand
about this equilibrium distribution to first order in the chemical potential shift, φ(kkk):

f (kkk) = f0(ε(kkk))−
∂ f0

∂ε

∣∣∣∣
ε=ε(kkk)

φ(kkk). (7.24)

Expanding Eq. (7.23) to first order in φ(kkk) gives the linearised Boltzmann equation,

eEvE(kkk)
∂ f0

∂ε

∣∣∣∣
ε=ε(kkk)

= I{φ(kkk)}, (7.25)

which relates the kinetic function, vE(kkk) = vvv(kkk) ·EEE/E, to φ(kkk). This equation is inverted
to give the corresponding shift, φ(kkk), for the known kinetic function, vE(kkk), from which
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we calculate the scattering-limited longitudinal electrical conductivity as

σ =
4e
E

∫ d2kkk
(2π)2 vE

∂ f0

∂ε
φ, (7.26)

with corresponding resistivity, ρ ≡ σ−1. As a result of the C3 symmetry, the resistivity
is isotropic and independent of the field direction, so we set EEE = (E,0,0) for simplicity.

The collision integral for Uee scattering is given by [31, 32, 11, 16]

IUee{φ(kkk1)}=
4

kBT

5

∑
m=0

∫ d2kkk2d2kkk3d2kkk4

(2π)6 2πδ(∆ε)(2π)2
δ
(2)(∆kkk−gggm)|Wgggm |2∆φ

× 1
16

4

∏
i=1

sech
(

εi − εF

2kBT

)
, (7.27)

in terms of the change,

∆ f = f (kkk3)+ f (kkk4)− f (kkk1)− f (kkk2), (7.28)

of the total f = φ,ε,kkk during the process. The Dirac delta functions ensure energy and
momentum (including kick ℏggg) conservation of the incoming and outgoing electrons.
At low temperatures, we restrict this to an integral over the Fermi surface since

δ(ε3 + ε4 − ε1 − ε2)
4

∏
i=1

sech
(

εi − εF

2kBT

)
≈ 32π2(kBT )3

3

4

∏
i=1

δ(εi − εF). (7.29)

We simplify using the constant relaxation time approximation, where the collision
integral, I{ f (kkk)}, of a scattering process is approximated by

I{ f (kkk)}=−ℏ
f (kkk)− f0(ε(kkk))

τ
, (7.30)

in terms of a constant scattering time, τ [11, 16]. Expanding to first order in the chemical
potential shift, φ(kkk), the collision integral simplifies to

I{φ(kkk)}= ℏ
τ

∂ f0

∂ε

∣∣∣∣
ε=ε(kkk)

φ(kkk). (7.31)
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Inserting this into the linearised Boltzmann equation in Eq. (7.25), we easily find the
solution,

φ(kkk) =−eEτvx(kkk)/ℏ, (7.32)

with scattering time,

ℏ
τ
=

∫
d2k I{vx}vx

/(∫
d2k

∂ f0

∂ε
v2

x

)
, (7.33)

found self-consistently for a collision integral linear in φ. Then, the Uee contribution to
the resistivity, ρUee, in the low-temperature regime is given by Eq. (5) of the main text.

7.F Low-density resistivity

At density, n, just above the threshold, n∗, Uee scattering will be restricted to the im-
mediate vicinity of the points shown in Fig. 2 of the main text. The wavevector, kkk,
velocity, vvv, and scattering amplitudes, Wggg, are approximately constant in this range, so
the resistivity has the approximate form,

ρUee ∝ T 2
5

∑
m=0

∫ dθ1dθ2

|sin(θ3 −θ4)|
. (7.34)

The size of the phase space in the integral scales according to |n − n∗|, so we have
ρUee ∝ T 2|n− n∗|1/2, except for ρUee ∝ T 2|n− n∗| in the region discussed in the main
text corresponding to split Uee scattering, where sin(θ3 − θ4) is also approximately
constant.
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Chapter 8

Conclusion

Chapter 3: Engineering of the topological magnetic moment of electrons in bilayer
graphene using strain and electrical bias. We predicted that the topological properties
of electrons in bilayer graphene can be enhanced using strain and vertical bias. This was
realised by a two orders of magnitude enhancement in the topological magnetic moment
of electrons at the band edge, giving a large valley splitting in an external magnetic
field, which is of great utility in valleytronics. In the original manuscript, we proposed
that this valley splitting could be observed experimentally by pumping strained bilayer
graphene with circularly polarised light and measuring the induced photocurrent [1, 2].
This has been corroborated by a recent theoretical study into the stacking-dependence
of these photocurrents in van der Waals homostructures, including bilayer graphene,
predicting that they can be directed with modest strain [3]. In light of recent surveys into
bilayer graphene quantum dots, we also propose that the strain-enhanced valley splitting
can be measured experimentally by comparing a strained quantum dot to its unstrained
counterpart, either by direct measurement [4] or by the tunnelling amplitudes [5].

Chapter 4: Kagomé network of miniband-edge states in double-aligned
graphene-hexagonal boron nitride structures. We predicted that a Kagomé network
of chiral channels forms between regions of different topology in a highly-aligned
hBN/graphene/hBN heterostructure. States in each valley propagate in opposite direc-
tions along these channels, providing another avenue for valleytronics, like Chapter 3.
Considering the propagation of coherent electron wave packets through this network,
we derived the form of the Aharonov-Bohm (AB) oscillations in the quenched electrical
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conductivity with respect to the external magnetic field. This provides the possibility of
sub-Tesla electron AB periods without the need for complicated fabrication [6, 7], since
the period is inversely proportional to the area of the network unit cell, and hence can be
made arbitrarily small by reducing the misalignment. Further, the AB oscillations are
an experimentally observable signature of inversion symmetry breaking with parallel
hBN layers, as compared to the inversion symmetric heterostructure where one of the
hBN layers is inverted. Our work has been expanded on by a study into the dispersion
and topological properties of the network bands in an analogous Kagomé network
in periodically strained graphene [8], while a study in twisted trilayer graphene has
revealed a similar local dependence of the effective model parameters [9].

Chapter 5: Band Gap Opening in Bilayer Graphene-CrCl3/CrBr3/CrI3 van
der Waals Interfaces. We investigated the bandgap opening in bilayer graphene due
to the charge transfer from its bottom layer to a magnetic chromium trihalide (CrX3,
X=Cl,Br,I) substrate. This presents another means to generate the vertical bias utilised
in Chapters 3 and 7, in addition to electrostatic gating. The bandgap was determined to
be large, up to 170meV for CrCl3, through a combination of the activation energy and
gating dependence of the electrical connectivity. Performing a self-consistent calcula-
tion of the screening of the bandgap at finite magnetic fields, we demonstrated excellent
agreement between the effective continuum and ab initio models of bilayer graphene,
and experiment. This demonstrates the applicability of the modified Hartree screening
method used, which accounts for the out-of-plane polarisation of the orbitals in each
layer [10], to the substrate-induced bandgap. We demonstrated that the electrons in the
CrX3 layer feature strong correlation consistent with a narrow conduction band, as the
transferred electrons are localised to the Cr atoms. Future improvements could be made
for CrI3, where the charge transfer depends on temperature, accounting for the less nar-
row bands and reduced correlation. The correlation has been observed in a recent study
into the giant gate-tunable renormalization of the spin-correlated narrow-band states and
bandgap of CrB3 grown on graphene [11].

Chapter 6: Semimetallic and semiconducting graphene-hBN multilayers with
parallel or reverse stacking. We considered commensurate 3D heterostructures com-
posed of stacks of alternating graphene and hBN layers with matching periods. We con-
sidered two distinct configurations with parallel and antiparallel orientation of neigh-
bouring hBN layers, as in Chapter 4, breaking and preserving inversion symmetry,
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respectively. The electronic properties depends on the hopping amplitudes between
graphene layers, being either a trivial or Weyl semimetal, or a semiconductor when
a gap is opened for the parallel configuration. This survey was limited by a lack of
knowledge of these hopping amplitudes, which are being explored via ab initio calcula-
tions [12], whose results will be included in the revised manuscript. We were motivated
by another ab initio study, suggesting that the adhesion energy between the layers is
sufficiently strong for mutual relaxation and lattice period matching to occur [13]. We
hope that our findings will in turn motivate experimentalists to explore the practicality
of such a stacking method.

Chapter 7: Umklapp electron-electron scattering in bilayer graphene moiré su-
perlattice. We predicted that umklapp electron-electron (Uee) scattering off the moiré
superlattice in a p-doped bilayer graphene/hBN heterostructure provides a strong con-
tribution to its electrical resistivity. Like the equivalent monolayer graphene/hBN het-
erostructure [14, 15], this features a T 2 depends on the temperature and a threshold
hole density, below which Uee scattering is suppressed. However, the different chirality
of bilayer graphene allows backscattering, and the resistivity rapidly grows above this
threshold, before reaching a peak value which depends, alongside the threshold density,
on the twist. We demonstrated that the Uee contribution can be substantially enhanced
with a vertical bias, and the particle-hole symmetry breaking is strong enough that the
contribution to the e-doped resistivity is negligible. The calculations in this publication
were limited by practicality far more than any other included in this thesis. The incom-
ing/outgoing electrons states were restricted to the Fermi line with a low-temperature
approximation, avoiding a complex six-dimensional integral for a broadened Fermi sur-
face, which was demonstrated to be valid in monolayer graphene [14, 15]. Further, the
density range was restricted to avoid contributions from impurity scattering at the van
Hove singularity [16, 17], which were beyond the scope of the perturbative approach
used. We are not aware of a satisfactory resolution to both problems, although the first
could be resolved using Monte Carlo integration, while the second by an effective model
at the saddle point [16, 17].

All these results have been obtained in a low-energy scheme, using a Bloch state de-
composition in the tight-binding model or an effective continuum model. The modified
Hartree screening method [10] used in Chapters 5 and 7 has demonstrated that the effects
of the higher-energy bands, including the structural σ bands, can have significant effects
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at low energies. In particular, the treatment of the mSL interaction in the graphene/hBN
heterostructures in Chapters 4 and 7 relies upon an effective model [18, 19], although its
validity has been demonstrated experimentally [20]. An alternative approach [21] uses
the Slater-Kostner parameterisation of the tight-binding model, which accounts for both
the π and σ bands [22, 23, 24, 25]. The limitations of this method include its reliance
on a “commensurate” mSL, whose supercell features a finite number of graphene and
hBN unit cells, and the rapidly increasing computational complexity with the size of
the supercell. By comparison, the effective method allows for an incommensurate mSL
and features a much smaller fixed complexity. A new method has been claimed to com-
bine the advantages of both methods by considering the full tight-binding Hamiltonian
projected onto a truncated basis of select Bloch states [26], which we will evaluate in
future.

Except for the Uee scattering in Chapter 7 and the modified Hartree screening in
Chapters 5 and 7, all calculations have been performed in a single-particle picture.
We believe this is justified, since all the bands/minibands calculated are sufficiently
dispersive to avoid many-body effects and the resulting electron correlation [27, 28,
29]. However, recent surveys suggest that strongly gapped bilayer graphene [30, 31]
and hBN/graphene/hBN heterostructures with a gating-induced structural phase tran-
sition [32] feature sufficiently flat bands for these effects to become relevant. Further
study into these effects is warranted, potentially accounting for the compact Wannier or-
bitals which have recently been proposed as a factor in Uee scattering in twisted bilayer
graphene [33].

In this thesis, we have presented a collection of works describing the quantum prop-
erties of few-layer graphene and its van der Waals heterostructures. We have proposed
many ways these can be modified, such as the strain-enhanced topological magnetic
moment in bilayer graphene Chapter 3, alongside the vertical bias considered in this
chapter and 7, whose potential substrate-induced origins are discussed in Chapter 5.
We have demonstrated the importance of moiré superlattice effects in van der Waals
heterostructures combining graphene and hexagonal boron nitride, such as the chiral
Kagomé network in Chapter 4 and umklapp electron-electron scattering in Chapter 7.
Finally, we have demonstrated the distinct electronic properties of three-dimensional
commensurate stacks of alternating graphene and hexagonal boron nitride in Chapter 6.
All these results are of theoretical and experimental significance, and we believe that
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they will inspire further study, especially by this author.
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