
KNOWLEDGE SHARING AMONG
AGENTS VIA UNIFORM

INTERPOLATION

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2023

David Toluhi

Department of Computer Science

Contents

Abstract 12

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 17
1.1 Scope of Research . 19

1.2 Research Questions . 20

1.3 Challenges and Contributions . 23

1.3.1 Published work . 24

1.4 Overview of the Thesis . 25

2 Background on Logic and Knowledge Extraction 26
2.1 Description Logics . 27

2.2 Knowledge Structures in Logic . 31

2.2.1 Definitions and Definability in DL 34

2.2.2 Module Extraction . 38

2.2.3 Forgetting and Uniform Interpolation 43

2.2.4 Craig Interpolation . 49

2.2.5 Strongest Necessary Conditions and Weakest Sufficient Con-
ditions . 53

2.2.6 Prime implicates and Prime implicants 57

2.2.7 Most Specific Concept . 58

2.2.8 Least Common Subsumers 59

2

3 Background On Agents 60
3.1 Agent Oriented Programming Frameworks 63

3.1.1 JASON . 63

3.1.2 JADE . 71

3.1.3 Ontology Based Agent Oriented Programming Frameworks . 73

3.2 Agent Communication . 78

3.2.1 Speech Acts . 78

3.2.2 KQML . 80

3.2.3 FIPA ACL . 81

3.2.4 Agent Communication in JASON 82

3.2.5 Agent Communication in JADE 83

3.3 Related Work . 83

3.3.1 Ontology Negotiation . 83

3.3.2 Ontology Alignment . 86

4 Setting the Scene for the rest of the Thesis 91
4.1 DL of focus (ALC) . 92

4.2 Approach to Conveying Symbols . 93

5 Realising Knowledge Extraction for DL 95
5.1 Defining SNC(s) and WSC(s) . 95

5.1.1 Motivation . 95

5.1.2 Realisation . 97

5.1.3 Complexity . 102

5.1.4 Relation to Prime Implicates and Prime Implicants 102

5.1.5 Relation to Least Common Subsumers 103

5.1.6 Limitations . 104

5.2 Developed Approaches . 106

5.2.1 Compiled Superconcepts and Compiled Subconcepts 106

5.2.2 Conveying Information about Roles 118

5.3 Contribution Summary . 121

6 Conveying Maximally Precise Descriptions 124
6.1 The corpus . 127

6.2 Evaluating Definition Extraction using SNCs 129

3

6.2.1 Results on extracting definitions for explicitly defined concept
names . 129

6.3 Evaluating Definability w.r.t Primitive Signatures 134

6.4 Evaluation of Compiled Super Concept Extraction 150

6.5 Contribution Summary . 156

7 Adoption within Agent Communication 157
7.1 ANEMONE . 159

7.2 Extracting Concept Descriptions in ANEMONE 162

7.2.1 The Ability to extract subsumers of an unshared concept name 163

7.2.2 The Ability to extract subsumees of an unshared concept name 163

7.3 Contextual Completeness for Subumers and Subsumees 168

7.4 Standalone Completeness for Subumers and Subsumees 170

7.4.1 Relationship between CSPs, CSBs, SNCs, WSCs, ANEMONE
subsumers, ANEMONE subsumees and Contextual/Standalone
completeness . 173

7.5 Empirical Evaluation . 174

7.5.1 Evaluating Extraction of Subsumers 175

7.5.2 Evaluating Extraction of Subsumees 182

7.5.3 Discussion . 189

7.6 Contribution Summary . 190

8 Finite Entailment Sets and Ontology Alignment 191
8.1 Entailment Sets . 191

8.2 Developed entailment sets . 193

8.2.1 Ascending Entailment Sets 193

8.2.2 Descending Entailment Sets 195

8.2.3 Relation Entailment Sets . 196

8.2.4 Impact of Defined Concepts and Primitive Signatures 198

8.3 Application to Ontology Alignment 199

8.3.1 A Proposal for extending detection of conservativity violations 199

8.4 Contribution Summary . 209

9 Conclusions and Summary 210
9.1 Limitations of the Thesis . 213

9.1.1 Emphasis on ALC . 213

4

9.1.2 Underexploration of representation limitations 213
9.1.3 Underexploration of alternative methods 214
9.1.4 Emphasis on investigating sharing TBox knowledge 214

9.2 Application to General Aspects of Agent Communication 214
9.2.1 Factors to consider in the Design of Communication Protocols 214

9.3 Further Applications . 221
9.3.1 Ontology Strengthening . 221
9.3.2 Constructing Ontology Alignments 221

Bibliography 222

Word Count: 55,374

5

List of Tables

2.1 Basic description logic language constructs 28

2.2 Expressive description logic constructs 29

2.3 Basic logical axioms. 31

2.4 Basic differences between Craig interpolation and uniform interpolation 52

5.1 Knowledge Structures and Knowledge Extraction Methods in Logic . 122

5.2 Knowledge Structures and Knowledge Extraction Methods in Logic . 123

6.1 Main ontology corpus. The ontologies crossed out in red are ontologies
that contain only unsatisfiable defined concept names. 128

6.2 Success Rate of SNC definition extraction 130

6.3 Quantiles of signature sizes. The column titled ‘Q1‘ denotes the first
quantile, the column titled ‘Q2‘ denotes the second quantile, while the
column titled ‘Q3‘ denotes the third quantile. The column titled ‘SNC’
denotes the quantile of signature size of the SNC for the corresponding
ontology. The column titled ‘DEF’ denotes the quantile of signature
size of the explicitly stated definition for the corresponding ontology. 133

6.4 Entities definable under ΣP. The column titled ‘Expl #‘ stands for
‘number of explicitly defined concepts’. The column titled ‘Impl #’
stands for ‘number of implicitly defined concepts’. The column ti-
tled ‘Def under Prim (ΣP

D) #’ stands for ‘number of defined concept
names definable under primitive signature’. The column titled ‘Def
under Prim (ΣP

D) %’ stands for ‘percentage of defined concept names
definable under primitive signature’. 139

6

6.5 Percentage of definition and SNC signature that is primitive. The Col-
umn titled ‘> 50% prim (def)’ indicates the number of explicitly de-
fined concepts whose explicitly stated definitions had more than 50%
of its signature within the primitive signature. The Column titled ‘50%
prim (SNC)’ indicates the number of explicitly defined concepts whose
strongest necessary conditions extracted using Algorithm 5.1.1 had
more than 50% of its signature within the primitive signature. The
Column titled ‘100% prim (def)’ indicates the number of explicitly
defined concepts whose explicitly stated definitions had an entirely
primitive signature. The Column titled ‘100% prim (def)’ indicates
the number of explicitly defined concepts whose strongest necessary
conditions extracted using Algorithm 5.1.1 had a signature that was
entirely primitive. 144

6.6 Quantiles of signature sizes. The column titled ‘Q1’ denotes the first
quan- tile, the column titled ‘Q2’ denotes the second quantile, while
the column titled ‘Q3’ denotes the third quantile. The column titled
‘SNC’ denotes the quantile of signature size of the SNC extracted with
respect to the primitive signature for the corresponding ontology. The
column titled ‘DEF’ denotes the quantile of signature size of the SNC
of the explicitly stated definition with respect to the primitive signature
for the corresponding ontology. 148

6.7 Interpolation times . 148

6.8 Percentage increase in signature size. The column titled ‘Surface Size’
indicates the average size of the definitions in the ontology with re-
spect to the entire ontology signature. The column titled ‘Extracted
Size’ indicates the average size of the explicit definitions extracted
with respect to the primitive signature. The column titled ‘Increase
%’ indicates the percentage increase. 149

6.9 Quantiles of signature sizes. The column titled ‘Q1’ denotes the first
quan- tile, the column titled ‘Q2’ denotes the second quantile, while
the column titled ‘Q3’ denotes the third quantile. The column titled
‘MOD’ denotes the quantile of signature size of the bottom module
for the corresponding ontology. The column titled ‘CSP’ denotes the
quantile of signature size of the extracted compiled superconcept for
the corresponding ontology. 154

7

6.10 Instances in which the signature of the CSP had symbols outside of the
signature of the bottom module. The Contained column indicates cases
in which the signature size of the CSP was contained in the signature
of the bottom module. The Total column indicates all cases. 155

7.1 ANEMOME description logic language constructs and semantics. . . 159
7.2 Ontologies of the Agents in the ANEMONE paper. The first column

contains the ontology O1 for an agent AG1, and the second column
contains the ontology O2 for an agent AG2 166

7.3 Subsumer extraction Results aggregated over all signature samples . . 177
7.4 Subsumee extraction Results aggregated over all signature samples.

The column titled ‘ANE Standalone Complete’ indicates the percent-
age and number of concept names for which (1) the extracted weakest
sufficient condition could not make the ANEMONE-subsumee more
standalone complete and (2)the ANEMONE subsumee was more stan-
dalone complete than the weakest sufficient condition across all com-
mon signature samples. The column titled ‘WSC Enhanced’ indicates
the percentage and number of concept names for which the extracted
weakest sufficient condition made the ANEMONE-subsumee more
standalone complete. 184

8.1 Ontology alignment Corpus. HUMAN represents the NCI Thesaurus
ontology describing the human anatomy from the anatomy track of
the ontology alignment evaluation initiative. MOUSE represents the
Adult Mouse Anatomy ontology from the anatomy track of the ontol-
ogy alignment evaluation initiative. Upload date represents the upload
date found in the corresponding ontology as an annotation (for the HU-
MAN and MOUSE case) or for the upload date as described on the
BioPortal repository. 208

8.2 Detected general violations . 208

8

List of Figures

1.1 An overlap between agent ontology vocabularies. Σ denotes the overlap. 21

2.1 MAS of food ordering website. 32

2.2 Ontologies of the agents. 33

2.3 RESALC Calculus of LETHE [PK15d] 46

2.4 Rewrite rules to eliminate definers from clause sets [Koo15] 47

3.1 Illustration of the JASON interpreter cycle [BHW07]. ‘BUF’ stands
for ‘Belief Update Function’. ‘BRF’ stands for ‘Belief Revision Func-

tion’. ‘SocAcc’ stands for ‘Social Acceptance Function’. ‘SM’ stands
for ‘Message Selection Function’. ‘SE’ stands for ‘Event Selection

Function’. ‘SO’ stands for ‘Plan Selection Function’. ‘SI’ stands for
‘Intention Selection Function’. 66

5.1 Illustration of (Strongest) Necessary Conditions and (Weakest) Suffi-
cient Conditions. ‘SC’ stands for ‘sufficient condition’. ‘NC’ stands
for ‘necessary condition’. The horizontal axis has a subsumption or-
dering such that the concept A appears to the left of a concept B iff
O |= Av B. 99

5.2 Normalisation for ALC [BCM+03] 115

6.1 Compared signature sizes for ontologies with more than fifty defined
concepts. The purple bar indicates the number of concepts for which
the signature size of the SNC was equal to the signature size of the
explicitly stated definition. The blue bar indicates the number of con-
cepts for which the signature size of the SNC was greater than the
signature size of the explicitly stated definition. The orange bar indi-
cates the number of concepts for which the signature size of the SNC
was greater than the signature size of the explicitly stated definition. . 131

9

6.2 Signature sizes for ontologies with less than fifty defined concepts. . . 132

6.3 Percentage of signature that is primitive. The first column labelled
“(sig(SNC)∩ prim(O))⊆ sig(SNC))% indicates that charts in this col-
umn indicate the percentage of the SNC signature that was primitive.
The second column labelled “(sig(DEF)∩ prim(O)) ⊆ sig(DEF))%
indicates that charts in this column indicate the number of explicitly
defined concepts and the percentage of their explicitly stated defini-
tion signature that was primitive (where ‘DEF’ means ‘explicitly stated
definition’. The horizontal axis (x-axis) indicates the percentage of the
signature of the strongest necessary condition (definition) that is primi-
tive. The vertical axis (y-axis) is the number of concepts. For example,
the second bar in the RXNO ontology for the first column can be read
“for five concepts in the RXNO ontology 43% of their SNC signature
was primitive”. 142

6.4 Percentage of signature that is primitive set 2. 143

6.5 Compared signature sizes of extracted definitions. The purple bar in-
dicates the number of concepts for which the signature size of the ex-
tracted concept name was equal to the signature size of the extracted
definition. The blue bar indicates the number of concepts for which
the signature size of the extracted concept name was greater than the
signature size of the extracted definition. The orange bar indicates the
number of concepts for which the signature size of the extracted defini-
tion name was greater than the signature size of the extracted concept
name. 147

6.6 Signature comparisons of Bottom Module and Compiled supercon-
cepts. The green bar illustrates the number of concepts for which
the signature of the bottom module was smaller than the signature of
the compiled super concept. The blue bar illustrates the number of
concepts for which the signature of the compiled super concepts was
smaller than the signature of the bottom module. The purple bar illus-
trates the number for which the signature of the bottom module was
equal to the signature of the compiled super concept. 152

6.7 Successful Extractions. 153

7.1 ANEMONE protocols. 161

10

7.2 Results for subsumer extraction. The horizontal axis indicates the size
of the sampled common signature as a percentage of the ontology’s
signature. The vertical axis indicates the number of concept names.
The blue bars indicate the number of concepts for which the extracted
strongest necessary condition made 178

7.3 Results for subsumer extraction. See Figure 7.2 caption for details. . . 179
7.4 Results for subsumer extraction. See Figure 7.2 caption for details. . . 180
7.5 Results for subsumer extraction. See Figure 7.2 caption for details. . . 181
7.6 Results for subsumee extraction. The horizontal axis indicates the size

of the sampled common signature as a percentage of the ontology’s
signature. The vertical axis indicates the number of concept names.
The green bars indicate the number of concepts for which the extracted
weakest sufficient condition made the extracted ANEMONE-subsumer
more standalone complete. The orange bars indicate the number of
concepts for which the ANEMONE-subsumee was not made more
standalone complete by the extracted weakest sufficient condition. The
ticks without bars are cases in which either (1) the extracted WSC in-
cluded a definer symbol (2) Algorithm 5.1.2 timed out when extracting
an WSC. 185

7.7 Results for subsumee extraction. See Figure 7.6 caption for details. . . 186
7.8 Results for subsumee extraction. See Figure 7.6 caption for details. . . 187
7.9 Results for subsumee extraction. See Figure 7.6 caption for details. . . 188

9.1 ANEMONE case. 218
9.2 Other cases. 219

11

Abstract

KNOWLEDGE SHARING AMONG AGENTS VIA UNIFORM

INTERPOLATION

David Toluhi
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2023

In our age of big data and the knowledge society, effective processing and sharing
of knowledge is crucial. Agents provide a key abstraction within modern develop-
ment of artificial intelligence systems and software. In current multi-agent platforms
a simplifying assumption is that all agents use the same symbols to represent their
knowledge or expertise. The assumption that agents use the same symbols to repre-
sent their knowledge imposes a constraint on system developers and agent systems:
agents are forced to use the same ontological representation of the world at the cost of
having diverse and unique viewpoints. Furthermore, agents typically exist in dynamic
environments that require update and revision of their knowledge and beliefs.

We focus on agents that make use of description logic ontologies to represent their
knowledge and expertise. Ontologies are knowledge bases consisting of logical state-
ments called axioms. This comes with the advantage that a set of logical axioms can
entail knowledge that is not explicitly stated by the axioms: lots of information can
be implicit. As a consequence, when communicating, agents must take into account
the implicit knowledge contained in their expertise. Assuming a common signature is
established between two communicating agents, the agents still require methods to ex-
tract specific knowledge from their ontologies that go beyond sending a list of axioms.
Agents require methods to extract both explicit and implicit knowledge from their on-
tologies in a way that can be communicated to another agent if the need arises. This
thesis re-uses several existing techniques in the logic literature, mainly uniform inter-
polation, that can be used to extract knowledge from ontologies and can be adapted for
agent communication.

In particular, our aim is to develop and evaluate novel algorithms which provide
support for scenarios where multiple agents are responsible for different knowledge

12

bases (e.g., that capture the agent’s different expertise) and have the ability to restrict
(specifically on the basis of uniform interpolation) and adapt their knowledge with
respect to the signature of their knowledge base that is shared with other agents. This
ensures that knowledge shared is understood by the communication partners.

We have realised and developed a range of knowledge extraction methods and
structures that enable agents to extract knowledge that can sometimes be implicit with
respect to arbitrary subset signatures of their knowledge base. We have analysed and
evaluated these knowledge extraction methods on ALC description logic ontologies.
Our results suggest that the knowledge extraction methods realised are feasible in some
practical settings; unlike the knowledge extraction methods realised, the knowledge
extraction methods developed are rarely feasible and useful in practical settings, and
will require further exploration and research to be useful in practical settings.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.as

px?DocID=24420), in any relevant Thesis restriction declarations deposited in
the University Library, The University Library’s regulations (see http://www.

library.manchester.ac.uk/about/regulations/) and in The University’s
policy on presentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

First of all, I would like to thank my parents and my family for encouraging me to
pursue a PhD who were able to recognise my affinity for research and spotted it before
I did (specifically my mum), and specifically my father for paying my tuition fees, this
thesis would not exist without you all. I would also like to thank my examiners Uli
Sattler and Terry Payne for their valuable suggestions on how to improve my thesis.

I must thank my supervisors Bijan Parsia and Renate Schmidt for their continuous
guidance and support throughout the project; you have both improved my mathemat-
ical skills, my critical thinking skills, my writing skills, and I am eternally grateful to
the both of you.

I would also like to thank Uli and Bijan for their advice, encouragement and support
throughout the PhD. They have truly been a primary source of support and encourage-
ment through all my experiences at the University of Manchester (including during my
masters degree); they are the unsung heroes of postgrad students in the department. I
want to thank Simon Harper for giving me good guidance on how to approach my ca-
reer in research and being sympathetic throughout my experience. I also have to thank
all my colleagues who have supported me all throughout this journey, including Ruba,
Warren, Sen, Mostafa, Hauruo, Ghadah and Martina, with special thanks to Ruba who
helped me to understand uniform interpolation and was very supportive throughout the
journey, she is a friend in the truest sense of the word. Dr Patrick Koopmann must also
be acknowledged for his incredible kindness in making the time to meet with me and
discuss uniform interpolation during a few periods of struggle.

I also have to thank my family members and friends in the UK that have pro-
vided me with support outside academic life and made the isolation of a PhD bearable,
Grandma Rebecca, Hannah, Jemimah, Patience, Comfort, Seun, Kanyinsola, Gbenga,
Khaldon, and Faith.

16

Chapter 1

Introduction

Generally speaking, agents are autonomous entities acting within an environment that
are seeking to achieve a desired goal or state. To accomplish its desired goal or state, an
agent requires some ways to perceive its environment as well as an internal representa-
tion of its environment. There may be several agents in an environment collaborating
together in order to achieve their individual or shared goals or states. We call a set of
multiple agents in an environment a multi-agent system MAS(s).

One of the appealing characteristics of agents and MAS(s) is that each agent can
provide distinct services and likewise have distinct knowledge about the world. This
avoids the need for massive upfront coordination but introduces fundamental commu-
nication challenges including the determination of common knowledge and potentially
increasing amount of knowledge shared between any set of agents (i.e., online data in-
tegration).

We are interested in agents that have expressive and rich representations of their
knowledge. There are several ways agents can represent their knowledge; however,
this thesis is concerned with agents that represent their knowledge using a logical for-
malism. We call any agent that uses a logic formalism to represent its knowledge a
logic-based agent. Intuitively speaking, a logical formalism facilitates a representation
of a set of facts about a domain in such a way that allows for deductions to be made
from those set of facts. A set of facts represented using a logical formalism is usually
referred to as an ontology or a knowledge base. In this thesis, we are interested in
agents that use the description logic ALC to represent their knowledge.

Some of the knowledge agents possess may be implicit due to the rich and expres-
sive nature of the logic formalism used in representing their knowledge. Thus agents
may require a means with which to extract implicit knowledge to reason about their

17

18 CHAPTER 1. INTRODUCTION

environment or convey and communicate effectively with and to other agents. As an
illustrative example, consider that humans can be in some ways analogous to agents.
For example, the staff of a restaurant: waiters, bartenders, chefs, and managers could
be considered agents with the shared goal of preparing food and drink to serve pay-
ing customers. Each category of restaurant staff has their own specialised knowledge:
waiters have people and presentation skills, bartenders have knowledge about drinks
and cocktails, and chefs have knowledge on recipes and preparing food. In order to
achieve their shared goal of preparing and serving food to paying customers, all staff
members must communicate effectively and be able to convey their specialised knowl-
edge using words and language that is understood by staff members if the situation
requires it. The following exchange is an example of a situation that requires staff
members to convey specialised knowledge:

• chef: “Make sure you acidulate the chicken before serving it to the customer”

• waiter:“What does acidulate mean?”

At this point, there are several ways the chef can respond to the waiter to convey

what it means to acidulate. The chef can either:

1. Show the waiter an example of acidulation.

2. Define or describe what it means to acidulate.

3. Give some context about acidulation and its effects on foods so that the waiter
has an intuition on what kind of foods may require acidulation.

This list is not exhaustive, but mainly serves to illustrate that in the last two approaches,
to convey the meaning of ‘acidulate’, the chef must extract some of their implicit

knowledge on the topic of acidulation. Furthermore, it highlights that there are forms
(highlighted in italised font) of representing the knowledge conveyed to the waiter. We
refer to such forms as knowledge structures. In this example, the task that requires
extracting implicit knowledge arises when one of the human agents (the chef) is at-
tempting to convey the meaning of a word that another human agent (the waiter) does
not know. However, there are scenarios which require the extraction of implicit knowl-
edge even if all the words are understood by the communicating participants. Again
consider the following exchange:

• chef: “Make sure you acidulate the chicken before serving it to the customer”

1.1. SCOPE OF RESEARCH 19

• waiter:“Why would we pour acid on the chicken?”

• chef: “I’m not asking you to do that. In the kithcen, acidulate refers to making

something sour by using lemon or lime juice.”

In this exchange, both human agents have internal but different meanings of the word
acidulate, but are required to extract what their individual meanings to resolve a mis-
understanding in communication. Observe that the waiter knows the meaning of the
word acidulate in a general sense; however, the chef has a specialised interpretation of
the word. The knowledge structure (underlined in the exchange) used by the chef to
convey their interpretation of acidulation is a definition.

In logic, there are several knowledge structures and extraction methods exist. This
thesis is concerned with exploring how knowledge structures and extraction meth-
ods in ALC can be used by logic-based agents to extract implicit knowledge that
facilitates communication. We study, realise, and evaluate knowledge structures and
extraction techniques for ALC .

1.1 Scope of Research

There are several topics of interest in this thesis, namely, agent systems, agent com-
munication, and logic-based knowledge extraction. However, in this thesis, we are
concerned with specific subsets of the main topics of interest which we highlight in
this section.

Agent Systems

This research focuses on agents that may represent their knowledge and communicate
using logic-based formalisms, specifically description logics. We call such agent sys-
tems logic-based agent systems and agents that exist within such systems logic-based

agents.

A common assumption in logic-based agent systems that adopt description logics
[LBBH06, KHA06] to represent the knowledge of the agents is that all agents share
the vocabulary used to construct each individual agent’s knowledge. There are a few
agent systems such as ANEMONE [vDBD+06] and Cool-AgentSpeak [VDRA11] that
do not hold this assumption. We investigate how knowledge sharing can be facilitated
with respect to a shared vocabulary when this assumption is relaxed.

20 CHAPTER 1. INTRODUCTION

Knowledge extraction

There are several notable knowledge extraction methods in the context for ALC . In
Chapter 2, we discuss several knowledge extraction methods that have an emphasis
on restricting the knowledge in an ontology with respect to a subset vocabulary of
the ontology. The idea is to highlight why some of these tools may or may not be
appropriate for adoption to knowledge sharing among agents.

Ontology alignment

An ontology alignment is a set of correspondences describing the relationships among
symbols that exists in two distinct ontologies. Ontology alignments are often proposed
as a method for establishing a common vocabulary among communicating agents. In
this thesis, we assume that a common vocabulary for communication between agents
is established prior to communication; however, we also investigate how the knowl-
edge extraction methods investigated and developed in this thesis may be applicable to
evaluating ontology alignments (specifically in Chapter 8).

1.2 Research Questions

The primary research question this thesis explores is:

How can knowledge extraction techniques be applied to facilitate com-
munication among agents that only have a subset of their respective
vocabularies in common?

For a given knowledge structure ε exchanged between communicating agents, there
are three main possibilities of ε:

1. ε only includes the words from the vocabulary that are common to the agents,
thus minimal-to-zero misunderstanding occurs.

2. ε partially includes words from the vocabulary that are common to the agents
and thus a misunderstanding is likely to occur.

3. ε only includes words or expressions that one of the agents knows nothing about
and thus a misunderstanding occurs.

1.2. RESEARCH QUESTIONS 21

In the second and third possibilities, the agent conveying ε must find a way to convey
any uncommon word or expression that occurs in ε with respect to the common words
if it wants the other agent to understand ε.

Formally speaking, given two agents, AG1 with domain expertise encoded in on-
tology O1, and AG2 with domain expertise encoded in O2 where Σ denotes the overlap
of the vocabularies of O1 and O2, we are interested in how agents can describe (using
only words in Σ) words or expressions whose vocabularies fall outside Σ to each other.

We refer to Σ as the common vocabulary Σ between the agents. Let X denote a

Figure 1.1: An overlap between agent ontology vocabularies. Σ denotes the overlap.

symbol not in Σ that an agent wishes to convey, it must find some knowledge structure
Y that describes X such that the vocabulary of Y is a subset of Σ. Desirable properties
that the knowledge structure Y should have include:

1. The vocabulary of Y should be a subset of Σ to ensure no new misunderstandings
are introduced during communication.

2. Y should be a maximally precise description of X with respect to the common
vocabulary. This is to minimise any information loss that may result from con-
veying a description of X as opposed to X itself.

3. Y should be as concise as possible to minimise communication latency among
the agents.

4. Y should be efficient to compute to minimise communication latency among the
agents.

22 CHAPTER 1. INTRODUCTION

There are complexities regarding aspects of the primary research questions which
are research questions in their own right. For example, regarding “knowledge extrac-

tion techniques”, it must be noted there are several knowledge extraction techniques
that exist in DL which begs the question:

RQ1: What are the various knowledge extraction techniques in ALC and
which of them are relevant to the problem of conveying words or expres-
sions with respect to a restricted vocabulary?

Several research questions follow from RQ1:

RQ2: How do the relevant knowledge extraction techniques perform in
practice on real-world ontologies?

RQ3: What are the factors that affect the performance of the relevant
knowledge extraction techniques?

Research questions RQ2 and RQ3 are explored by accounting for the computational
complexities of the various knowledge extraction techniques explored and through em-
pirical evaluation.

The primary research question also talks about “facilitating communication among

agents”. This invites the next research question, which is:

RQ4: How can the relevant knowledge extraction techniques be integrated
into existing MAS frameworks or agent communication protocols?

Without the proper integration of relevant knowledge extraction techniques, communi-
cation can not be facilitated. The last part of the primary research question is concerned
with facilitating communication with respect to the vocabulary of the communicating
agents that is common, specifically conveying uncommon words with respect to the
common words. In order to minimise information loss during such communication
(conveying uncommon words with respect to the common words), a further research
question needs to be answered:

RQ5: What is the most precise way to convey a word or expression with
respect to a subset vocabulary of an ontology?

Furthermore:

RQ6: What are the considerations on the common vocabulary that should
be accounted for when conveying words or expressions?

1.3. CHALLENGES AND CONTRIBUTIONS 23

Establishing a common vocabulary also facilitates communication among agents, as
such, an additional research question is:

RQ7: Can knowledge extraction techniques be applied to establishing a
common vocabulary?

1.3 Challenges and Contributions

This thesis fills in several gaps in the research of knowledge sharing among agents,
knowledge extraction in description logic ontologies, ontology alignment, and defini-
tion extraction in the context of description logics. We study existing logic-based agent
systems, specifically agent systems that incorporate ALC ontologies in some manner,
and highlight the gaps of these agent systems that our research aims to address, specif-
ically, communication under the assumption that agents share their entire, respective
ontology vocabularies, in other words, communication with respect to limited or sub-
set vocabularies. We study and discuss existing knowledge extraction techniques in
logic that can be potentially applied to facilitate communication among agents in the
context of the assumption that they do not share their entire vocabularies. Our study
demonstrates that while there are several existing knowledge extraction tools such as
uniform interpolation and module extraction that have the potential to facilitate com-
munication with respect to a limited vocabulary, there still lies several gaps in the way
of successfully adopting existing knowledge extraction tools to facilitate communica-
tion with respect to a limited vocabulary. Specifically, existing knowledge extraction
tools such as uniform interpolation and module extraction are not designed for extract-
ing descriptions about specific concepts or symbols from ontologies with respect to
limited vocabularies. Our research fills this gap by investigating and developing tools
(specifically strongest necessary conditions and weakest sufficient conditions) for ex-
tracting concept descriptions about symbols in ontologies that are based on uniform
interpolation. We empirically evaluate the developed tools using existing ontologies
to test their feasibility in the real world for agent communication applications: even
in the context of other logic formalisms (such as propositional logic and first order
logic), some of the knowledge extraction tools discussed lack empirical evaluations
for agent communication applications. Furthermore, we investigate applications of
the developed tools in the context of ontology alignments, as ontology alignments are
frequently proposed in the literature as the interface for establishing a common vocab-
ulary among communicating agents.

24 CHAPTER 1. INTRODUCTION

Overall, the primary contributions of the thesis can be summarised as follows:

• A formal description of strongest necessary conditions and weakest sufficient
conditions in description logics, alongside appropriate algorithms and proofs for
extraction of the conditions (for ALC).

• The introduction of compiled superconcepts and compiled subconcepts which
account for potential shortcomings of strongest necessary conditions and weak-
est sufficient conditions.

• A novel algorithm for extracting approximate domains and ranges of roles in
ALC ontologies.

• An empirical analysis of the developed algorithms.

• A theoretical and empirical investigation of definitions and definability in the
context of ALC ontologies.

• An empirical analysis and investigation of the impact of the developed algo-
rithms for extracting strongest necessary conditions and weakest sufficient con-
ditions to agent communication in an existing multi-agent system framework.

• An analysis of the role of uniform interpolation and the developed algorithms to
improving the quality of ontology alignments.

1.3.1 Published work

1. Some of the background exploration on Craig interpolation and definitions dis-
cussed in Chapter 2 were first presented at the Automated Reasoning workshop
in 2019 [TS19].

2. Some of the background exploration on ontology based agent systems discussed
in Chapter 3 were first presented at the Logical Aspects in Multi-Agent Systems
and Strategic Reasoning workshop in 2021 [TS21].

3. Some of the theoretical results on strongest necessary and weakest sufficient
conditions in Chapter 5 were first presented at the International Workshop on
Engineering Multi-Agent Systems in 2021 [TSP22].

1.4. OVERVIEW OF THE THESIS 25

1.4 Overview of the Thesis

Chapter 2 studies and discusses existing knowledge extraction tools with existing im-
plementations including uniform interpolation, module extraction, strongest necessary
conditions, and weakest sufficient conditions. In Chapter 3 we introduce and discuss
existing logic-based multi-agent systems and existing related work about agents com-
municating with respect to overlapping but distinct vocabularies. Chapter 4 provides
additional preliminaries and overview on the thesis that takes into account the discus-
sions in Chapters 3 and 2.

The primary theoretical contributions of this thesis are outlined in Chapter 5 where
we provide adaptations of strongest necessary conditions and weakest sufficient condi-
tions to the description logic ALC . Furthermore, we develop other methods of knowl-
edge extraction based on uniform interpolation. Chapter 6 empirically evaluates most
of the algorithms developed in Chapter 5. In Chapter 7 we discuss how the tools de-
veloped in Chapter 5 may be adopted into an existing multi-agent system. We also
empirically analyse the impact of adopting the knowledge extraction tools developed
in Chapter 5 into an existing multi-agent system. Chapter 8 investigates applications
of the tools developed in Chapter 5 to ontology alignment. Chapter 9 concludes the
thesis and discusses the limitations and further applications of the thesis.

Chapter 2

Background on Logic and Knowledge
Extraction

This chapter introduces relevant definitions on logic and descriptions of existing knowl-
edge extraction and projection techniques in logic, thus exploring RQ1 (“What are the

various knowledge extraction techniques in DL and which of them are relevant to the

problem of conveying terms with respect to a restricted vocabulary?”). However, we
assume that the reader is familiar with the basic definitions and semantics of proposi-
tional logic, first-order logic (FOL), and second-order logic (SOL).

In Section 2.1, we introduce the basic semantics of Description Logic (DL) lan-
guages used to formalise the standardized web ontology language (OWL). Section 2.2
introduces several well-established knowledge extraction and projection techniques for
DL, first order logic, second order logic and propositional logic.

Logical formalisms may be used by agents in order to reason and represent expres-
sive and rich knowledge. In fact, the development of OWL has some history of being
driven by agent based applications. The predecessor to OWL was the combination
of two frameworks: (1) DARPA Agent Markup Language (DAML) and (2) Ontol-
ogy Inference Layer (OIL) commonly referred to as DAML+OIL [MFHS02]. DAML
was intended to enable software agents to consume content on the web [HM+00].
DAML+OIL were part of several projects driven by Defense Advanced Research Projects
Agency (DARPA) Knowledge Sharing Effort. The knowledge sharing effort included
research into how agent’s knowledge could be formulated in a fashion that agents could
parse (these included efforts such as DAML, OIL, and the Knowledge Interchange For-
mat (KIF) [GF+92]), and how agents could communicate (these included efforts such

26

2.1. DESCRIPTION LOGICS 27

as the Knowledge Query Manipulation Language (KQML) [FFMM94]). KIF is a lan-
guage designed for the exchange of knowledge among disparate computer systems
including agents. It provides constructs for the expression of statements or axioms in
first order logic as well as some extensions to support nonmonotonic reasoning and the
representation of entities lists and functions. KIF was proposed as the message format
for the agent communication language KQML [FFMM94]. Given that KIF allows for
the expressions of statements in FOL, there is no guarantee on how messages sent using
KIF can be interpreted, validated, or integrated into an existing agent’s knowledge as
FOL is undecidable. However, note that since DL(s) are decidable fragments of FOL,
they form a less complex subset of KIF that may be used to facilitate communication
among agents.

The high computational complexity of KIF hindered its progress and adoption
[Ram92], and the DARPA knowledge sharing effort eventually converged its efforts
to focus on DAML+OIL which later evolved into the web ontology language OWL
which is based on description logics.

2.1 Description Logics

Description logics are languages that are decidable fragments of first order logic used
to describe knowledge about a domain of interest. OWL [MGH+09] is a World Wide
Web Consortium (W3C) standard that standardises language constructs of description
logics for use in academic and industrial environments and has a programmable imple-
mentation called the OWL API [HB11] (the version of OWL API used throughout the
thesis is 5.1.7).

A description logic is characterised by a set of language constructs that determine
the expressivity of description logic. The constructs of a description logic define the
semantics over any arbitrary set of symbols that are split into three main categories:

• NC: a set of atomic concepts, also called concept names, which correspond to
unary predicates. We usually denote atomic concepts using the symbols A and B

unless otherwise stated.

• NR: a set of atomic roles, also called role names, which correspond to binary
predicates. We usually denote atomic roles using the symbols r and s unless
otherwise stated.

28 CHAPTER 2. BACKGROUND ON LOGIC

• NI: a set of individuals, also called instances, which correspond to constants in
first order logic. In this thesis, we usually denote individuals using the symbols
a and b unless otherwise stated.

For a description logic L , the semantics of L are defined using an interpretation I of
NC,NR, and NI . I is a pair 〈∆I ,.I 〉, where ∆I is a non-empty set representing an inter-
pretation domain, and .I is an interpretation function that maps every atomic concept
A ∈ NC to a subset AI of ∆I ; every r ∈ NR to a binary relation rI over ∆I ; every indi-
vidual a in NI to an element aI ∈ ∆I . Given an interpretation I and a signature Σ, I |Σ
denotes the restriction of I to the symbols in Σ.

An ontology is a knowledge base expressed using a description logic. An ontology
consists of at least one of two components:

1. The TBox: ‘TBox’ is short for “terminological box”. The TBox is a set of
axioms that describe the terminology that defines the vocabulary of the domain
of interests by specifying how concepts are related to each other.

2. The ABox: ‘ABox’ is short for “assertional box”. The ABox is a set of assertions
about named individuals in terms of NC ∪NR. The ABox may be viewed as an
instantiation of the TBox and is composed of concrete data.

Table 2.1 highlights the constructs present in most description logics and the corre-
sponding name of description logic (in the column titled ‘Language’) associated with
specific subsets of the constructs.

Language Construct Syntax Semantics

EL
Top > ∆I

Intersection CuD CI ∩DI

Existential quantifica-
tion

∃r.C {a ∈ ∆I |∃b.(a,b) ∈ rI ∧b ∈CI}

AL

Top > ∆I

Bottom ⊥ /0

Intersection CuD CI ∩DI

Atomic negation ¬A I \AI

Limited existential
quantification

∃r {a ∈ ∆I |∃b.(a,b) ∈ rI

Universal quantifica-
tion

∀r {a ∈ ∆I |∀b.(a,b) ∈ rI → b ∈CI}

Table 2.1: Basic description logic language constructs

2.1. DESCRIPTION LOGICS 29

Most description logics consist of the constructs in Table 2.1. More expressive
description logics may have additional constructs to those described in Table 2.1, most
of which are depicted in Table 2.2.

Symbol Construct Syntax Semantics
U Union CtD CI ∪DI

C Negation ¬C I \CI

E Existential quan-
tification

∃r.C {a ∈ ∆I |∃b.(a,b) ∈ rI ∧b ∈CI}

N
Unqualified num-
ber restriction

≥ nr {a ∈ ∆I |#{b ∈ ∆I |(a,b) ∈ rI} ≥ n}

≤ nr {a ∈ ∆I |#{b ∈ ∆I |(a,b) ∈ rI} ≤ n}
= nr {a ∈ ∆I |#{b ∈ ∆I |(a,b) ∈ rI}= n}

Q
Qualified number
restriction

≥ nr.C {a ∈ ∆I |#{b ∈CI |(a,b) ∈ rI} ≥ n}

≤ nr.C {a ∈ ∆I |#{b ∈CI |(a,b) ∈ rI} ≤ n}
= nr.C {a ∈ ∆I |#{b ∈CI |(a,b) ∈ rI}= n}

O Nominals {a1, ...,aN} {aI
1 , ...,a

I
N}

H Role Hierarchy r v s rI ⊆ sI

(D) Datatypes
I Inverse role r− {(b,a) ∈ ∆I ×∆I |(a,b) ∈ rI} ≥ n}
◦ Composition r ◦ s rI ◦ sI

+ Transitive closure r+
⋃

n≥1(r
I)n

Table 2.2: Expressive description logic constructs

The name of a description more expressive than those depicted in Table 2.1 is usu-
ally denoted by the name of its corresponding basic DL, followed by a list of all other
constructs allowed in the DL. For example, the description logic ALC corresponds
to AL extended by allowing complex concept negation. Some DLs do not follow the
naming scheme described above. For example, the DL ALC+ is often abbreviated as
S .

We shall use the terms complex concept, compound concept, concept description

to refer to concepts that are not atomic. Table 2.3 depicts the logical axioms that
characterise an ontology. We say an interpretation I satisfies:

• A concept assertion axiom C(a) if aI ∈CI ;

• A role assertion axiom r(a,b) if (aI ,bI) ∈ rI ;

• A individual equality axiom a≈ b if aI = bI ;

30 CHAPTER 2. BACKGROUND ON LOGIC

• A individual equality axiom a 6≈ b if aI 6= bI ;

• A concept inclusion axiom C v D if CI ⊆ DI ;

• A concept equivalence axiom C ≡ D if CI = DI ;

• A role inclusion axiom r v s if rI ⊆ sI ;

• A role inclusion axiom r ≡ s if rI = sI ;

• A complex role inclusion axiom r ◦ sv p if rI ◦ sI ⊆ pI ;

• An ontology O if it satisfies each axiom in O.

An interpretation I is said to be a model of O if I satisfies O. An ontology O is said to
entail an axiom α if α is satisfied in all models of O. We write O |= α to indicate that
O entails α.

We write O |= O′ to indicate that for every axiom α ∈ O′, we have that O |= α. We
write |= α to indicate that α follows from the empty ontology.

If a complex concept C occurs on the left-hand side of TBox axiom C v D or
C ≡ D, we refer to this TBox axiom as a general concept inclusion (GCI). A TBox is
said to be general if it contains GCI axioms. Furthermore, given a concept inclusion
axiom of the form C v D, such that C v D is entailed by some ontology O, we shall
refer to C as a subconcept or subsumee of D and D as a superconcept or subsumer of
C. Given a TBox O, we say a subsumer D of a concept C is maximally precise if, for
any other subsumer D′ of C, we have that: O |= D v D′; D may also be referred to as
a maximally precise subsumer of C. Similarly, we say a subsumee C of a concept D

is maximally precise if, for any other subsumee C′ of D, we have that: O |= C′ v C;
C may also be referred to as a maximally precise subsumee of D. The function sig()

returns the set of concept names, roles, and individuals that occur in a given ontology,
concept, or axiom. The function abox() returns the set of ABox axioms in a given
ontology, and similarly, the function tbox() returns the set of TBox axioms in a given
ontology.

We now introduce querying over ontologies following Konev et al. [KLWW09].
An atom is of the form C(x) or r(x,y), where x,y are from a set of individual variables
NV , C is a concept and r is a role name. A conjunctive query is an expression of
the form q(x) = ∃y.ϕ(x,y), where x and y are disjoint sequences of variables and ϕ

is a conjunction of atoms using only variables from x∪ y. The variables in x are the
answer variables of q, and the ones in x are the (existentially) quantified variables.

2.2. KNOWLEDGE STRUCTURES IN LOGIC 31

Ontology Part Axiom Syntax Semantics

TBox
Concept inclusion C v D CI ⊆ DI

Concept equivalence C ≡ D CI = DI

RBox
Role inclusion r v s rI ⊆ sI

Role equivalence r ≡ s rI = sI

Complex role inclusion r ◦ sv p rI ◦ sI ⊆ pI

ABox

Concept assertion C(a) aI ∈CI

Role assertion r(a,b) (aI ,bI) ∈ rI

Individual equality a≈ b aI = bI

Individual inequality a 6≈ b aI 6= bI

Table 2.3: Basic logical axioms.

Let O be an ontology and q(x) = ∃y.ϕ(x,y) a conjunctive query. Then a sequence of
individual names is a certain answer to O and q if for every model I of O, there is a
mapping π : x∪ y→ ∆I such that C(x) ∈ ϕ implies π(x) ∈CI , and r(x,y) ∈ ϕ implies
(π(x),π(y)) ∈ rI .

2.2 Knowledge Structures and Knowledge Extraction
Tools in Logic

Theoretical approaches for extracting and projecting knowledge in the context of com-
municating agents with logic-based knowledge bases have been proposed by Lin and
Doherty and Lukaszewicz [Lin01, DLS01] for projecting knowledge. Here, by project-

ing (or projection), we mean conveying terms, concepts, or propositions with respect
to a subset signature of a given knowledge base. Other well established logic based
approaches include Uniform Interpolation (discussed in Section 2.2.3) module extrac-
tion [SSZ09, GPSK06, GHKS08, LWW07a] and Craig interpolation [TCFS13] are
discussed in this chapter as they are also relevant to projecting knowledge represented
using logic-based formalisms. We also discuss the relevance of these knowledge pro-
jection techniques to agent communication, the shortcomings encountered when adopt-
ing these methods to description logic, and approaches to mitigate such shortcomings
(which forms a portion of our contribution).

As highlighted in Chapter 1, when humans communicate there are several knowl-
edge structures available to convey knowledge to each other. There are a few analogous
structures in logic to the knowledge structures available to humans. For example, def-
initions in human language communication are somewhat analogous to equivalence

32 CHAPTER 2. BACKGROUND ON LOGIC

(≡) axioms with an atomic left hand side in description logics. For example, in natural
language, a definition for student may be “people who are enrolled in a university”; an
analogous axiom in description logic may be:

Student ≡ Personu∃isEnrolledIn.University

Similarly, examples in human language communication are somewhat analogous to
instances, individuals, or assertion axioms in description logics.

We are especially interested in definitions as they are knowledge structures that
convey the exact meaning of a word, expression, or symbol. We are interested in how
knowledge extraction techniques in DL may be used by logic-based agents to extract
and exchange definitions to facilitate communication.

Motivating Example with Logic-based Agents Consider a scenario where there is
a MAS that helps facilitate a food ordering website. The MAS consists of an agent that
represents the website itself and an agent that represents each restaurant whose dishes
can be ordered on the website as depicted in Figure 2.1.

Figure 2.1: MAS of food ordering website.

Each agent’s ontology is a representation of the food menu of its respective restau-
rant as illustrated in Figure 2.2. Each restaurant has its own unique set of dishes;
however, in order to achieve some uniformity in the ordering process, all agents in
the MAS refer to an ingredients ontology managed by the website agent. The website
agent also has its own food menu ontology that also references the ingredients ontology

2.2. KNOWLEDGE STRUCTURES IN LOGIC 33

and aims at roughly capturing most of the unique dishes across all restaurants.

Figure 2.2: Ontologies of the agents.

All agents reference the ingredients ontology and thus share the vocabulary from
that ontology. Below is a list of axioms from the ingredient ontology (the vocabulary
of the ontology is the boldened text):

1. Anchovyv Fish

2. Prawnv ShellFish

3. Shell f ishv Fish

4. Bee f vMeat

5. Jalepenov SpicyVegetable

6. Cheesev DairyProduct

Below is a list of axioms from the website food menu ontology:

1. Sea f oodPizza≡ Pizzau∃hasTopping.Fish

2. ShrimpPizza≡ Pizzau∃hasTopping.Shrimp

34 CHAPTER 2. BACKGROUND ON LOGIC

3. Shrimp≡ Prawn

Below is a list of axioms from the restaurantA’s food menu ontology:

1. PlainCheesePizza≡ Pizzau∀hasTopping.Cheese

2. AnchovyShrimpSpecial≡Pizzau∃hasTopping.Shrimpu∃hasTopping.Anchovy

3. AnchovyShrimpSpecial v Sea f oodPizza

Because restaurantA’s agent is not familiar with the concept name Shrimp, the web-
site agent may run into communication issues with restaurantA’s agent when convey-
ing any statement that includes Shrimp. Similarly, because the website agent is not
familiar with the concept name AnchovyShrimpSpecial restaurantA’s agent may run
into communication issues with the website agent when conveying any statement that
includes AnchovyShrimpSpecial. However, both agents would not run into any is-
sues when conveying any statements that only involves the vocabulary hasTopping,
SeafoodPizza, Anchovy, Prawn, Cheese, and Pizza because both the website agent and
restaurantA’s agent are familiar with those terms. Similarly, any statement involving
Shrimp, AnchovyShrimpSpecial, PlainCheesePizza, and ShrimpPizza is likely to lead
to a misunderstanding between both agents because that vocabulary is not common
to both agents. In fact, to communicate without misunderstandings, both agents may
require reasoning or knowledge extraction techniques that help encapsulate the knowl-
edge in their ontologies with respect to a subset vocabulary, in this case, the subset
vocabularies of the ontologies that are common to both the website agent and restau-
rantA’s agent. For example, if the website agent is attempting to convey ShrimpPizza

to restaurantA’s agent, it may attempt to use the concept “Pizza and hasTopping some
Shrimp” since it is a definition of ShrimpPizza; however, this may still lead to com-
munication issues as restaurantA’s agent is not familiar with Shrimp. However since
Shrimp is a definition of Prawn, the website agent may convey ShrimpPizza as “Pizza

and hasTopping some Prawn” in place of ShrimpPizza.

2.2.1 Definitions and Definability in DL

The DL handbook [BCM+03] describes definitions as equivalence axioms of the form
A ≡ C where A is a defined atomic concept. Baader [BCM+03] makes a distinction
between primitive and non-primitive definitions for concepts: primitive definitions are
of the form of AvC where A is atomic while non-primitive definitions are of the form

2.2. KNOWLEDGE STRUCTURES IN LOGIC 35

of A≡C where A is atomic. The focus is usually on non-primitive definitions as these
are the only types of definitions considered when discussing Beth definability.

Beth Definability

The Beth definability property may be held by a logic and is predicated on two notions
of definability: explicit definability and implicit definability.

Definition 1 (Implicit Definability). Let A be a concept, O a TBox, and Σ ⊆ sig(A)∪
sig(O). A is implicitly definable in O with respect to Σ if for every two models I and J
of O satisfying ∆I = ∆J , and for all C ∈ Σ, CI =CJ , it holds that AI = AJ .

Definition 2 (Explicit Definability). Let A be a concept, O a TBox, and Σ ⊆ sig(A)∪
sig(O). A is explicitly definable in O and a description logic L using only symbols

from Σ if there is some concept C in L such that O |= A ≡ C and sig(C) ⊆ Σ. This

concept C is called an explicit definition of A in O with respect to Σ.

A logic is said to have the Beth definability property if every concept defined im-
plicitly can also be defined explicitly.

Definition 3 (Beth Definability). Let L be a description logic. L has the Beth de-

finability property (BP) if for all C in L , all TBoxes T in L , and all signatures Σ ⊆
sig(C,T), if C is implicitly definable with respect to Σ under T , then C is explicitly

definable with respect to Σ under T .

The DL ALC is shown to have the Beth definability property in [CCMV06].
A useful result of [TCFS13] is a test to determine whether a concept is implicitly

definable over a given signature and ontology.

Definition 4 (Implicit Definability Test). Let C be a concept, O an ontology, O′ a copy

of O, and Σ a subset signature of O such that sig(C)⊆ sig(O), sig(C) 6⊆ Σ, Σ⊆ sig(O),

and O′ is O with every concept name and role symbol A 6∈ Σ replaced by a copy A′, C

is implicitly definable from Σ under O iff O∪O′ |=C ≡C′.

Ten Cate et al. [TCFS13] present an algorithm for extracting explicit definitions
for implicitly defined concepts using Craig interpolation.

The implicit definability test has uses in other application domains. For example,
Geleta et al. [GPT16] apply the results of [TCFS13] to ontology alignment by present-
ing practical methods for computing minimal definition signatures which can be used
to identify seemingly unrelated concepts in ontologies to be aligned.

36 CHAPTER 2. BACKGROUND ON LOGIC

Definitorial TBoxes

At certain points in this thesis, the notion of definitorial ontologies is used. We adapt
the notion definitorial from the description logic handbook [BCM+03]; however, to
define and understand definitorial ontologies, we must first define the notions of termi-

nologies, name symbols, base symbols, base interpretations, and extensions.

Definition 5 (Terminology [BCM+03]). Let O be an ontology, O is said to be a termi-
nology if O only consists of equivalence axioms of the form A≡C where A is atomic,

and for every such A, there is at most one axiom in O whose left hand side is A.

Please note that a terminology may contain cycles, for example A is cyclic in the
terminology {A≡ ∃r.A}. We expand on cycles later on in this section.

Definition 6 (Base and Name Symbol [BCM+03]). Let O be a terminology, a symbol

S is said to be a base symbol if S only appears on the right hand side of axioms in O

and a name symbol otherwise.

Definition 7 (Base Interpretation [BCM+03]). Let O be a terminology. An interpreta-

tion I of O is said to be a base interpretation of O if I only interprets the base symbols

in O.

Definition 8 (Extension [BCM+03]). Let I be a base interpretation for a terminology

O. An interpretation J that interprets the name symbols in O is an extension of I if it

has the same domain as I , i.e., ∆I = ∆J , and J agrees with I for the interpretation of

the base symbols.

A terminology O is said to be definitorial if every base interpretation of O has
exactly one extension that is a model of O, i.e., if every base interpretation uniquely
determines an interpretation of all symbols in a model of the terminology O.

It seems definitorial ontologies are intendend to capture the intuition that a word
should not be its own definition or reference itself in its definition. For example, the
definition of the word ‘cheese’ should not be simply ‘cheese’ or a phrase such as “Any
food that is cheese”. To illustrate an analogous case in description logics, consider the
ontology O = {Av B}. Intuitively speaking, we do not consider A to be defined under
O, even though O |= A≡ A (or similarly O |= A≡ AuB).

In this thesis, we say a concept name A is definable under an ontology O if there
exists some explicit definition C of A such that O |= A≡C and A /∈ sig(C).

2.2. KNOWLEDGE STRUCTURES IN LOGIC 37

Definition 9 (Definable Concept Name). Let O be an ontology, and A a concept name

in sig(O). We say A is definable under O if there exists an explicit definition C of A in

O such that O |= A≡C and sig(C)⊆ sig(O)\{A}. We say A is definable with respect

to a signature Σ under O if Σ⊆ sig(O)\{A}, there exists an explicit definition C′ of A

under O such that O |= A≡C′, and sig(C′)⊆ Σ.

Observe that we may develop a decision procedure for testing whether a concept
name A is definable under an ontology O with respect to a signature Σ by implementing
and using the implicit definability test described in Definition 4.

Sometimes equivalences may falsely appear to make a concept name definable. As
an example, consider the ontology {A ≡ ∃r.A}. Without giving it any proper thought,
it would seem ∃r.A is a definition for A under O; however, ∃r.A references A, and
therefore, following Definition 9 is not a definition for A.

Definition 10 (Cycles and Cyclic Concept names). Let O be a terminology and A a

concept name in sig(O). We say that A directly uses B in O if there is some A≡C ∈ O

and B occurs in C. We call uses the transitive closure of the relation directly uses. Let

O be a terminology and A a concept name in sig(O). We say A is cyclic if A uses itself.

A terminology O is said to be cyclic if it contains a cyclic concept name; otherwise, O

is called acyclic.

In practice we would like to distinguish uninteresting cycles from interesting cy-
cles. Uninteresting cycles involve concept names that use themselves in a TBox O but
whose extension can always be uniquely determined by the corresponding interpreta-
tion of the base symbols in O. For example take O to be {A ≡ ∃p.Bt (Au¬A)}. A

is cyclic in O, and thus O is cyclic. However, every extension of A is uniquely de-
termined by the base interpretation of the (base) symbols {p,B}. Interesting cycles
involve concept names that use themselves in a TBox O but whose extension can not
be uniquely determined by the corresponding interpretation of the base symbols in O.
For example take O to be {A ≡ ∃p.A}, and consider an interpretation I of O to be
pI = {(a,b,(b,b)}. A possible extension J of I can be AJ = /0. Another possible
extension J ′ of I can be AJ ′ = {a,b}. In general, when we talk about cycles we mean
interesting cycles. Unfortunately, to the best of our knowledge, there is no known de-
cision procedure to distinguish interesting cycles from uninteresting cycles [Neb90a].
Definitorial ontologies do not contain interesting cycles but may contain uninteresting

cycles. For example let O to be {A≡ ∃p.Bt (Au¬A)}, A is uses itself in O; however,
since (Au¬A)≡⊥ we have that O is equivalent to {A≡ ∃p.B}.

38 CHAPTER 2. BACKGROUND ON LOGIC

The notion of cyclicity is also related to the notion of unfolding. Let O be a defin-
itorial ontology, and C a concept expressed over sig(O). Unfolding is the process of
replacing the occurrence of any defined concept name A∈ sig(C), such that A≡D∈O,
with D to get a new concept C′ and then recursively repeating the same procedure on
C′ on all defined concept names until no further replacements are possible. In non-
definitorial ontologies, the process is more complex, but the intuition is the same:
replace the occurrence of a concept name with its definition or superclass until no fur-
ther replacements are possible. If an ontology is acyclic, then the unfolding process
terminates, otherwise, we may conclude that the ontology is cyclic, albeit not equiva-
lent to an acyclic ontology. Thus, a naive algorithm for detecting cycles in definitorial
ontologies is as follows: for every defined symbol A in O, unfold A, if A is encountered
again during the unfolding process, then O is cyclic.

Definitorial acyclic ontologies guarantee that the definition of a concept can be
expanded in an iterative fashion that terminates. Let C be the definition of a symbol
A. Then every defined symbol in C can be replaced by its definition and this process
can be repeated until the expansion of C consists only of base symbols (although the
expansion can be exponential in the size of the original ontology [Neb90b]). Observe
that if O is cyclic, this process does not terminate.

2.2.2 Module Extraction

Given a large ontology, a useful task for its users is to be able to extract topic-specific

subsets of the ontologies. For example, given an ontology such as SNOMED CT
[Don06], a medical practitioner may only be interested in knowing about the res-
piratory system, i.e., they only need a subset of SNOMED CT that encapsulates all
knowledge related to the respiratory system. Extracting such topic-specific segments
of an ontology is the motivation behind the research of module extraction in ontolo-
gies. Given an ontology O and a subset Σ of sig(O), in a general sense, a module M
should be a minimal subset of O that has the same entailments as O over Σ. This means
that all the axioms that are entailed by O and can be expressed using only symbols in
Σ are also entailed by M . Intuitively speaking, to extract a module, a user provides
a subset signature Σ of the ontology’s signature that describes their topic of interest,
a set of axioms capturing all knowledge entailed by the ontology relative to Σ is then
extracted as the module.

Konev et al. [KLWW09] and Grau et al. [GPSK06, GHKS08], have formalised
desirable properties that should characterise a module, perhaps the most important

2.2. KNOWLEDGE STRUCTURES IN LOGIC 39

of which is conservative extensibility. There are various notions of conservative ex-
tensions; however, the basic notions are deductive conservative extensions and model

conservative extensions [SSZ09] formalised in Definition 11.

Definition 11 ([SSZ09]). Let L be a description logic, M ⊆ T be L-TBoxes, and Σ a

signature.

1. T is a deductive Σ-conservative extension(Σ− dCE) of M with respect to L if

for all GCI axioms α over L with sig(α)⊆ Σ, it holds that M |= α iff T |= α.

2. T is a model Σ conservative extension(Σ−mCE) of M if {I |Σ | I |= M } =

{I |Σ | I |= T }.

3. M is a dCE-based (mCE-based) module for Σ of T if T is a Σ-dCE(Σ-mCE) of

M with respect to L .

It follows from Definition 11 that if T is a Σ−mCE of M then that T is a Σ−dCE

of M . Deciding conservative extensions has been shown to be computationally expen-
sive: it is double exponential (2-EXPTIME-complete) for ALC and ALCQ I or even
undecidable in cases such as ALCQ OI [LWW07b]. Due to the complexity associ-
ated with deciding conservative extensions, syntactic approximations have been pro-
posed [GLW06]. Syntactic approximations of modules, namely locality-based mod-
ules (LBMs) [GLW06], depend on the notion of locality which comes in two flavours:
(1) syntactic locality (2) semantic locality. Syntactic locality relies on the syntax of an
ontology to determine the axioms that are relevant to a given seed signature Σ for which
we wish to extract a module. Both flavours of locality aim to preserve entailments over
the seed signature Σ. An LBM is a subset of the axioms in a given ontology. The set of
axioms are extracted based on a given seed signature which is a subset of the ontology’s
signature. Del Vescovo et al. [DV13] have noted that practical algorithms [SSZ09] for
extracting approximations of locality based modules that have been shown to have a
polynomial complexity and are included in the OWL API and is thus the preferred
form of module extraction in this thesis.

To further describe LBMs, we must first define the properties that characterise them
which include inseparability, self-containment, depletion, and robustness.

Definition 12 (Inseparability [SSZ09]). For a given logic L , an inseparability relation
is a family S = {≡S

Σ
| Σ is a signature }.

Let O1 and O2 be ontologies and Σ be a signature, we define the following insepa-

rability relations over two TBoxes O1 and O2

40 CHAPTER 2. BACKGROUND ON LOGIC

• O1 and O2 are Σ-concept name inseparable (O1 ≡c
Σ

O2) if for all concept names

A,B such that A,B ∈ Σ, we have that O1 |= Av B iff O2 |= Av B.

• O1 and O2 are Σ-subsumption inseparable (O1 ≡s
Σ

O2) with respect to a logic

L if for all concepts C and D such that sig(C) ⊆ Σ, sig(D) ⊆ Σ we that that

O1 |=C v D iff O2 |=C v D.

• O1 and O2 are Σ-query inseparable (O1≡q
Σ

O2) if for all ABoxes A , queries q(x),

and axioms, concepts, roles, or TBoxes α such that sig(A)⊆ Σ, sig(q)⊆ Σ, and

sig(α)⊆ Σ, we have that (O1,A) |= q(α) iff (O2A) |= q(α).

• O1 and O2 are Σ-model inseparable (O1 ≡m
Σ

O2) if {I |Σ | I |= O1}= {I |Σ | I |=
O2}.

LBMs are model-inseparable. Inseparability relations are not only relevant for
characterising modules, but are fundamental notions used in characterising knowledge
structures that may be extracted from ontologies, including uniform interpolants. In-
separability relations are an important topic in their own right; however, the description
in Definition 12 will serve our descriptive purposes for the rest of the chapter and the-
sis; further information about inseparability may be found in [KLWW09, BLR+19,
SSZ09].

We can now characterise self-containment and depletion.

Definition 13 (Modules, Self-containment and Depletion [SSZ09]). Let S be an in-

eparability relation, O a TBox, M ⊆ O, and Σ a signature. M is:

1. an SΣ-module of O if M ≡S
Σ

O;

2. a self-contained SΣ-module of O if M ≡S
Σ∪sig(M)

O;

3. a depleting SΣ-module of O if /0≡S
Σ∪sig(M)

O\M .

LBMs are self-contained and depleting [SSZ09]. Intuitively speaking, this roughly

means that given a notion of locality, an ontology O and a signature Σ, the locality
based module M of O with respect to Σ represents the same knowledge that O does

over the signature Σ and over sig(M).

Definition 14 (Robustness [SSZ09]). Let L be a DL. An inseparability relation S is

called:

2.2. KNOWLEDGE STRUCTURES IN LOGIC 41

1. robust under vocabulary restrictions if, for all L−T Boxes O1,O2 and all signa-

tures Σ,Σ′ such that Σ⊆ Σ′, we have that: if O1 ≡S
Σ′ O2, then O1 ≡S

Σ
O2.

2. robust under vocabulary extensions if, for all L−T Boxes O1,O2 and all signa-

tures Σ,Σ′ such that Σ′∩ (sig(O1)∪ sig(O2))⊆ Σ: if O1 ≡S
Σ

O2, then O1 ≡S
Σ′ O2.

3. robust under replacement if, for all L − T Boxes O1,O2, all signatures Σ, and

every L−TBox O such that sig(O)∩ (sig(O1)∪ sig(O2)) ⊆ Σ, we have that: if

O1 ≡S
Σ

O2 then O1∪O≡S
Σ

O2∪O.

4. robust under joins if, for all L −T Boxes O1,O2 and all signatures Σ such that

sig(O1)∩ sig(O2)⊆ Σ and i = 1,2, we have that: if O1 ≡S
Σ

O2 then Oi ≡S
Σ

O1∪
O2.

LBMs have all the have all the robustness properties described in Definition 14
[SSZ09]

Syntactic LBMs come in two main flavours (formal definitions have been defined
by Grau et al. [GHKS08]):

• ‘Bottom’(⊥) module: Let O be an ontology, and Σ a seed signature. Intuitively
speaking, a bottom module for Σ under O captures all entailments that preserve

all the subsumers in O of the all symbols in Σ.

Example 2.2.1. Let O consist of the following axioms:

1. Anchovyv Fish

2. Prawnv ShellFish

3. ShellFishv Fish

4. Bee f vMeat

5. Jalepenov SpicyVegetable

6. Cheesev DairyProduct

7. Sea f oodPizza≡ Pizzau∃hasTopping.Fish

8. ShrimpPizza≡ Pizzau∃hasTopping.Shrimp

9. Shrimp≡ Prawn

10. Sushiv ∃hasTopping.Fish

11. NonVeggiePizza≡ Pizzau (∃hasTopping.Meat t∃hasTopping.Fish)

42 CHAPTER 2. BACKGROUND ON LOGIC

12. NonVeggiePizzavWarmFood

13. WarmFood v BakedPotatotPizzat∃hasTopping.Meat

Let a seed signature Σ = {NonVeggiePizza}. A bottom module for Σ extracted
from O consists of the following axioms:

1. NonVeggiePizza≡ Pizzau (∃hasTopping.Meat t∃hasTopping.Fish)

2. NonVeggiePizzavWarmFood

3. WarmFood v BakedPotatotPizzat∃hasTopping.Meat

Observe that all subsumers of NonVeggiePizza (such as WarmFood, and Pizza)
are entailed by this module, but also, all subsumers of WarmFood (i.e., {BakedPotatot
Pizzat∃hasTopping.Meat}) are also preserved by the module.

• ‘Top’(>) module: Intuitively speaking, a top module for Σ captures all entail-
ments that preserve all the subsumees in O of the all symbols in Σ.

Example 2.2.2. Let O be the same ontology from Example 2.2.1. Let a seed
signature Σ = {NonVeggiePizza}. A bottom module for Σ extracted from O may
consist of the following axioms:

1. NonVeggiePizza≡ Pizzau (∃hasTopping.Meat t∃hasTopping.Fish)

2. Sea f oodPizza≡ Pizzau∃hasTopping.Fish

3. ShrimpPizza≡ Pizzau∃hasTopping.Shrimp

4. Shrimp≡ Prawn

5. Anchovyv Fish

6. Prawnv Fish

7. Bee f vMeat

Observe that all subsumees of NonVeggiePizza (such as ShrimpPizza, and
Sea f oodPizza) are entailed by this module, but also, all subsumers of Fish (i.e.,
{Shrimp,Anchovy,Prawn}) are also preserved by the module.

Communication protocols for agents that adopt module extraction would enable
agents to leverage modules to extract and communicate specific portions of their knowl-
edge. Doran et al. [DTPP09] have demonstrated that module extraction can be used

2.2. KNOWLEDGE STRUCTURES IN LOGIC 43

to reduce the number of concepts or axioms that have to be explored for ontology
negotiation in the context of multi-agent systems.

In practice, because modules are self-contained, the signature of modules is usu-
ally larger than the seed signature provided; this is a strength in scenarios where the
constraints on the seed signature are loose and all information relating to the seed sig-
nature. However, when there are strict constraints on the seed signature, this can be a
disadvantage. Consider an agent who desires to extract the exact knowledge entailed
by an exact signature under its given ontology. The agent may compute this knowledge
by extracting a module, but with less signature precision: axioms of the module may
contain symbols that are not in the signature provided by the agent, and as a result, the
agent may find it challenging to use the module.

2.2.3 Forgetting and Uniform Interpolation

Given a knowledge base, or theory T and a set of predicates S such that S ⊆ sig(T),
roughly speaking, the goal of forgetting is to eliminate all symbols in S from T while
preserving entailments over the rest of the signature of T . To our knowledge, Boole
[Boo09] was the first to study forgetting under the description elimination of the middle

terms. Subsequently forgetting was referred to as variable elimination in the context
of classical logic.

We later observe two main forms of forgetting emerging from the literature, namely:
strong forgetting (characterised by Lin and Reiter [LR94]) and weak forgetting (char-
acterised by Zhang and Zhou [ZZ10]).

Definition 15 (Strong forgetting [LR94]). Let F be a first-order logic formula and P a

predicate. Then, F ′ is a result of strongly forgetting P in F if for every interpretation

M, we have M |= F ′ iff there is an interpretation M′ with M′ |= F such that M′ agrees

with M on every predicate except P.

Strong forgetting is sometimes also referred to as semantic forgetting or model

forgetting.

Definition 16 (Weak Forgetting [ZZ10]). Let F be a first-order logic formula and P a

predicate. F ′ is the result of forgetting P iff for every formula G that does not contain

P, we have F ′ |= G iff F |= G.

Weak forgetting is sometimes also referred to as deductive forgetting. We can thus
observe that strong forgetting is concerned with models, as opposed to weak forgetting,

44 CHAPTER 2. BACKGROUND ON LOGIC

which is focused on logical entailments. Furthermore, observe from Definition 16 and
Definition 11 that F is deductive {P}-conservative extension of F ′.

In the context of first-order and second-order logic, forgetting has been studied as
the problem of second-order quantifier elimination [Gab08]. Let F be a first-order
formula and P be a predicate, the result of forgetting P from F is equivalent to the
second-order formulae ∃X .F [P/X], which reduces the problem of forgetting in first-
order logic to the problem of second-order quantifier elimination. In the context of
second-order logic, approaches to quantifier elimination include: (i) hierarchical res-

olution which is adopted by forgetting algorithms such as SCAN [GO92], and (ii)
skolemisation which is used in the DLS system [Sza93].

From Definition 16 and Definition 17, we can see that forgetting is related to uni-
form interpolation in the sense that a uniform interpolant F for {S} is equivalent to the
result of weakly forgetting the symbols in {S} from F . Thus, weak forgetting may be
used to extract uniform interpolants for logics with uniform interpolation. It is worth
noting there are logics that do not have uniform interpolation, an example is the modal
logic S4 [GZ95].

Definition 17 ([Koo15]). A logic L has uniform interpolation if for every L formula

F and every set of symbols S there exists a uniform interpolant of F for S.

Forgetting and Uniform Interpolation in DLs

In the context of DL, uniform interpolation can intuitively be thought of as encapsulat-
ing the knowledge entailed by an ontology with respect to a given subset signature of
the ontology. Given an ontology O and a subset Σ of the signature of O, let V denote a
uniform interpolant relative to O, for every axiom α such that O |= α and sig(α)⊆ Σ,
we have that V |= α and sig(V)⊆ Σ. Another intuitive way of thinking about uniform
interpolation is that given an ontology O and a subset signature Σ of O a uniform inter-
polant is an ontology that describes how all symbols Σ are related in O. Unlike module
extraction, the signature of a uniform interpolant does not exceed the input signature;
thus, uniform interpolation can be seen as a more precise knowledge extraction tool.
However, uniform interpolation also has its downsides; for example, not all uniform
interpolants can be expressed in standard DLs such as ALC [Koo15], additionally, for
expressive DLs such as SH R OI Q (D), no uniform interpolation methods are known.

Definition 18 (Forgetting and Uniform Interpolation). Given an ontology O, a set of

symbols Σ such that Σ ⊂ sig(O), a uniform interpolant for O over Σ is an ontology V

2.2. KNOWLEDGE STRUCTURES IN LOGIC 45

such that sig(V) ⊆ Σ, O |= V , and V is a strongest such entailment for Σ, i.e., for

any other entailment V ′ of O such that O |= V ′ and sig(V ′) ⊆ Σ, then V |= V ′. The

ontology V is called a uniform interpolant of O for the signature Σ. We refer to Σ as

the uniform interpolation signature. We also call V the result of forgetting Σ̄ from O

where Σ̄ denotes sig(O)\Σ.

A consequence of this definition is that if the DL L of O has the uniform interpo-
lation property, then for every axiom ψ such that sig(ψ)⊆ Σ, O |= ψ iff V |= ψ.

Example 2.2.3. Let O be the same ontology from Example 2.2.1.
Let Σ = {NonVeggiePizza}. A uniform interpolant for Σ extracted from O consists of
the axiom NonVeggiePizzav>.

Now let Σ = {NonVeggiePizza,Pizza}. A uniform interpolant for Σ extracted from
O consists of the axiom NonVeggiePizzav Pizza.

This example illustrates a difference between uniform interpolants and modules:
unlike modules the signature of uniform interpolants is always contained within the
input signature.

Most of the recent practical efforts towards uniform interpolation in the context of
DLs are based on the foundations provided by Lutz and Wolter. [LW11], second-order
quantifier elimination [Gab08], and Ackermann-based approaches [Sch12]. Research
on semantic (or strong) forgetting in the context of DLs include the works of Konev et
al. [KWW09] Zhao and Schmidt [YZ15], and Sakr and Schmidt [MS21]. Research on
deductive (or weak) forgetting in the context of DLs includes the works of Konev et al.
[LK13] and Koopmann [Koo15, PK15a, PK15d, PK15c, PK15b].

Although the signature precision element of uniform interpolation is appealing,
the downside to extracting uniform interpolants for ontologies is the computational
complexity associated with extracting uniform interpolants. Lutz et al. [LW11] have
shown that deciding the existence of uniform interpolants is 2-EXPTIME-complete,
and the size of uniform interpolants is at most triple exponential in the size of the
TBox of the original ontology.

Definition 19 (Soundness and Completeness For Uniform Interpolation). Let IntX be a

method for extracting uniform interpolants and let L be description logic. IntX is said

to be interpolation sound if for any L ontology O and signature Σ such that Σ⊆ sig(O),

we have that IntX terminates, and what IntX returns is an L uniform interpolant of O

with respect to Σ when applied to O.

Let V be a uniform interpolant extracted for Σ under O using IntX . IntX is interpolation

46 CHAPTER 2. BACKGROUND ON LOGIC

complete if for any L ontology O′ such that O |= O′ and sig(O′) ⊆ Σ, we have that,

V |= O′.

Resolution

C1tA(t1) C2t¬A(t2)
(C1tC2)σ

Role Propagation

C1t (∀r.D1)(t1) C2t (Q r.D2)(t2)
(C1tC2)σt (Q r.D12)(t1σ)

Existential Role Restriction Elimination

C1t (∃r.D)(t) ¬D(x)
C1

Role Instantiation

C1t (∀r.D1)(t1) r(t2,b)
C1σtD1(b)

where Q ∈ {∀,∃}, σ is the unifier of t1 and t2 if it exists, D12 is a possibly
new definer representing D1uD2 and no clause contains more than one negative
definer literal of the form ¬D(x), and none of the form ¬D(a).

Figure 2.3: RESALC Calculus of LETHE [PK15d]

Definition 20 (Soundness and Refutational Completeness for Calculi). Let Calc be a

calculus. Calc is said to be refutationally complete iff Calc derives ⊥ when applied to

any ontology O that is inconsistent. Calc is said to be sound if for any axiom ψ derived

when Calc is applied to O, we have that O |= ψ.

LETHE’s method for extracting uniform interpolants (Intlethe) is displayed in Al-
gorithm 2.2.1

The implementation of uniform interpolation used in thesis is LETHE [PK15a] 1

for the description logic ALC . LETHE is a saturation-based algorithm that applies a
resolution calculus to eliminate symbols from an ontology. LETHE’s resolution cal-
culus is based on the rules in Figure 2.3. The calculus relies on the structural transfor-
mation of the ontology to a normal form given by a set of clauses of concept literals.

1LETHE can be accessed at https://lat.inf.tu-dresden.de/˜koopmann/LETHE/.

https://lat.inf.tu-dresden.de/~koopmann/LETHE/

2.2. KNOWLEDGE STRUCTURES IN LOGIC 47

Declausification:

O t{¬DtC1, ...,¬DtCn} provided D occurs only positively in O
O t{DvC1, ...,DvCn}

Non-cyclic definer elimination:

O t{DvC}
provided D 6∈C

O[D/C]}

Definer purification:

O provided D occurs only positively in O
O[D/>]}

Cyclic definer elimination:

O t{DvC[D]}
provided D 6∈C

O[D/νX .C[X]]}

where D is a definer symbol.

Figure 2.4: Rewrite rules to eliminate definers from clause sets [Koo15]

Intlethe

Input: 1. An ontology O 2. A signature Σ.
Output: A uniform interpolant V of O for Σ.

1. Structurally transform O′ following [Koo15] to get a set of clauses N .

2. Saturate N by exhaustively applying RESALC calculus to N to derive
N ′.

3. Remove clauses in N ′ containing symbols in sig(O)\Σ.

4. Eliminate definer symbols from N ′ using the rules in Figure 2.4 and undo
the structural transformation to get V .

So-called definer symbols are denoted using D followed by a subscript and are intro-
duced by the calculus during the normal form transformation to represent concepts that
are under the scope of a quantifier. For example, the axiom A v ∀r.(CtB) is struc-
turally transformed to the clause ¬At∀r.(CtB) which is subsequently structurally

48 CHAPTER 2. BACKGROUND ON LOGIC

transformed to ¬At∀r.D1, ¬D1 tCtB where D1 is a definer symbol for the clause
CtB. Resolution is restricted to definer symbols or concepts in the forgetting signa-
ture. Once all possible inferences have been made by the calculus (otherwise known
as saturation), any clauses containing definer symbols or symbols in the forgetting
signature are eliminated, resulting in a uniform interpolant.

Description logics that allow for value restrictions do not have the uniform inter-
polation property. This is because without any additional constructs to a description
logic, uniform interpolants for general TBoxes expressed in DLs that allow value re-
strictions can not always be represented finitely due to the possibility of the existence
of cycles that occur under roles. Consider the ontology O consisting of the axioms:

Humanv ∃hasParent.Human

Human(i)

O entails that the concept name Human also belongs to the concept
∃hasParent.Human∃hasParent.Human∃hasParent.Human..., and so on. A uniform
interpolant V for O with respect to {hasParent} can not capture this implicit chain
under the hasParent role. As such, uniform interpolation methods such as [LPW10,
PK15a, Nik11] employ the use of fixpoint operators to finitely represent such infinite
chains. A description logic extended with fixpoint operators is usually suffixed by
the symbol ν, for example, ALCν refers to ALC extended with least fixpoints. In
this thesis, LETHE [PK15a] is the primary tool used to extract uniform interpolants.
This means that our results on general ontologies (meaning ontologies that are not
definitorial and may contain cycles) may contain fixpoints. Thus we expand on the
fixpoint operators used by LETHE, namely, greatest fixpoint denoted µX .C[X] and
least fixpoint denoted νX .C[X] where C[X] is a concept in which X is a concept variable
disjoint with sig(O) that occurs only positively. X is said to be bound in concepts of
the forms µX .C[X] and νX .C[X]. If every concept variable in a concept is bound, the
concept is closed; otherwise, it is open. Open concepts of the form C[X] may be viewed
as functions that take an arbitrary concept C1 as an argument and return a concept
C[C1] that is the result of replacing every occurrence of X in C[X] by C1. Thus, the
greatest fixpoint µX .C[X] denotes the smallest concept C′ with respect to v for which
C[C′]≡C′ and similarly, the least fixpoint νX .C[X] denotes the largest concept C′ with
respect to v for which C[C′]≡C′. Let I be an interpretation and f (X) a function that
maps concept variables to subsets of a domain ∆I such that .I

f (X) maps open concepts

2.2. KNOWLEDGE STRUCTURES IN LOGIC 49

to subsets of ∆I in the same way as .I but with concept variables interpreted according
to f (X). Furthermore, let f [X/ε] denote f (X) modified by setting f (X) = ε, i.e.,
f [X/ε](X) = ε, then the semantics of µX .C and νX .C are defined as follows:

(νX .C)I
f (X) =

⋃
{ε⊆ ∆

I |CI
f [X/ε] ⊆ ε}

(µX .C)I
f (X) =

⋂
{ε⊆ ∆

I |ε⊆CI
f [X/ε]}

Let L be a description logic, Lµ denotes L with greatest fixpoint semantics and oper-
ators. Now we can understand a uniform interpolant V for the ontology {Human v
∃hasParent.Human,Human(i)} to be ∃hasParent.µX .(∃hasParent.X)(i).

Because fixpoints are not a standard DL construct, the implementation of LETHE
provides an option to use definer symbols in place of cyclic concepts to allow uniform
interpolants to be used by tools designed for DLs with the standard constructs dis-
cussed in Section 2.1. For example, given the ontology {Humanv∃hasParent.Human,
Human(john)}, a uniform interpolant for {hasParent, john} extracted by the imple-
mentation LETHE that uses definer in place of cyclic concepts is {D1v∃hasParent.D1,
∃hasParent.D1(john)} where D1 is a definer symbol. We still suffix the DL of ontolo-
gies that use definer symbols with µ.

In practice we ignore (and discard where possible) concept descriptions that in-
clude fixpoint operators or definer symbols as we have no implemented means to eval-
uate such descriptions, i.e., any axiom α occuring in an ontology O whose signature
includes a fixpoint or definer symbol is not considered in any observation or discussion.

Throughout this thesis, we use an implementation of LETHE that uses module-
extraction as an optimisation step in order to narrow down the axioms for saturation.
RESALC has been shown to be sound and refutationally complete for ALC [Koo15].
Intlethe has been shown to be interpolation sound and complete for ALC [Koo15]

Thus, LETHE and its calculi can be considered sound and complete in all the senses
discussed in Definitions 19 and 20 for ALC [Koo15].

2.2.4 Craig Interpolation

The Craig interpolation property for a logic L states that the for every implication
φ→ ϕ that is true in L , there exists a formula α in L such that sig(α) = sig(φ)∩sig(ϕ)

and both φ→ α and α→ ϕ are true in L ; α is then called an L-interpolant for φ→ ϕ.

50 CHAPTER 2. BACKGROUND ON LOGIC

Craig interpolation has been shown to have various applications, such as formal ver-
ification [vB08, McM03] and query rewriting in databases [Mar07, BLCT16]. The
Craig interpolation property is tightly coupled with the Beth definability property (dis-
cussed in Section 2.2.1). The relationship between both properties is two-fold: (1) The
proof of the Beth definability property can be constructed using the Craig interpola-
tion property [Fit12, TCFS13]. As such, the Beth definability property is sometimes
considered a consequence of the Craig interpolation property [AJM+21] (2) Craig in-
terpolants can be used to extract definitions in logics that have the Beth definability
property [TCFS13, AJM+21].

In the context of DL, the Craig interpolation property is formalised as follows
[TCFS13]:

Definition 21 (Interpolation Property [TCFS13]). A DL L is said to have the interpola-

tion property if for all L-concepts C1, C2 and all L-TBoxes T1, T2, if T1∪T2 |=C1vC2,

then there exists some L-concept I such that

• sig(I)⊆ (sig(C1)∪ sig(T1))∩ (sig(C2)∪ sig(T2)),

• T1∪T2 |=C1 v I, and

• T1∪T2 |= I vC2

Such a concept is called an interpolant of C1 and C2 under 〈T1,T2〉.

Ten Cate et al. [TCFS13] have proposed a tableaux-based algorithm to extract
Craig interpolants for the DL ALCF and have shown that these interpolants can be
extracted in double exponential time.

Craig interpolation and uniform interpolation differ in the sense that uniform in-
terpolants generalise Craig interpolants as follows [AJM+21]: for a logic L , given a
formula (set of formulae) φ and a signature Σ such that Σ ⊆ sig(φ), a uniform inter-
polant ϕ for Σ under φ in L is a formula (set of formulae) ϕ such that φ→ ϕ is true
in L , sig(ϕ)⊆ Σ, and for any formula α such that φ→ α is true in L and sig(α)⊆ Σ,
we have that ϕ→ α is true in L . Intuitively speaking, uniform interpolants are more
concerned with preserving the consequences of a formula with respect to a signature.
Similarly, Craig interpolants can also be extracted for restricted signatures; in the style
of Ten Cate et al. [TCFS13] given a formula (set of formulae) φ we can take advan-
tage of the redundancy φ↔ φ to extract a Craig interpolant for a subset signature Σ of
sig(φ) as follows: create a duplicate φ′ of φ such that for every symbol s ∈ sig(φ)\Σ,

2.2. KNOWLEDGE STRUCTURES IN LOGIC 51

s is renamed to s′ in φ′, now extract the Craig interpolant of φ and φ′ to get a Craig
interpolant of φ with respect to Σ. In fact, this is the property that enables us use Craig
interpolants to extract explicit definitions for concepts. Given a TBox T that defines a
concept C1, such that T |=C1 ≡C2, and sig(C2)⊆ sig(C1). Since we have that T ≡ T ,
an explicit definition for C1 can be extracted using the following steps:

1. Create a duplicate TBox T ′ for the signature Σ = sig(T)\ sig(C1) where every
symbol S ∈ sig(T) \Σ is renamed to S′ in T ′ (note that sig(T) \Σ = sig(C1),
therefore the symbols in C1 are the only symbols renamed in T ′),

2. T ∪T ′ |=C1≡C′1, as such, extract a Craig interpolant of C1 and C′1 under 〈T ,T ′〉
to get a definition of C1.

Craig interpolation is generally considered one of the most significant properties
in logic [AJM+21] and its usefulness can be extended to agent communication: since
Craig interpolants can be used to extract definitions of concepts, an agent may directly
use Craig interpolants to convey the definition of a concept to another agent.

Uniform interpolants are stronger than Craig interpolants in that they capture the
strongest entailments over an input signature.

Since Craig interpolation and uniform interpolation have similar computational
costs (they both have double exponential complexity [TCFS13, Koo15]), we decided to
investigate and evaluate uniform interpolation’s role in agent communication because
we had access to an existing tool that implements uniform interpolation (LETHE 2)
implementation; to the best of our knowledge, there are no tools that implement Craig
interpolation for DL. Furthermore, uniform interpolation is more appropriate due to
its strong entailment properties (i.e., it precisely and maximally preserves entailments
over restricted signatures).

2LETHE can be accessed at: https://lat.inf.tu-dresden.de/˜koopmann/LETHE/.

https://lat.inf.tu-dresden.de/~koopmann/LETHE/

52 CHAPTER 2. BACKGROUND ON LOGIC

Craig Interpolation Uniform Interpolation

Input

1. An ontology O,
2. Two concepts C1, C2,
3. A signature Σ such that
Σ⊆ sig(C1,O)∩ sig(C2,O).

1. An ontology O,
2. A signature Σ such that Σ⊆
sig(O).

Output

A concept I such that
sig(I) ⊆ Σ, O |= C1 v I, and
O |= I v C2 (i.e., I is a Craig
interpolant of C1 and C2) if it
exists.

An ontology V representing a
uniform interpolant of O for Σ

Table 2.4: Basic differences between Craig interpolation and uniform interpolation

Example 2.2.4. Let O consist of the following axioms:

1. NonVeggiePizza≡ Pizzau (∃hasTopping.Meat t∃hasTopping.Fish)

2. NonVeggiePizzavWarmFood

3. WarmFood v BakedPotatotPizzat∃hasTopping.Meat

Let:

• C1 = Pizzau (∃hasTopping.Meat t∃hasTopping.Fish)

• C2 = BakedPotatotPizzat∃hasTopping.Meat

We have that:

• |=C1 vC2

• Σ = sig(C1)∩ sig(C2) = {Pizza,hasTopping,Meat}.

A Craig interpolant I of C1 and C2 is the concept Pizzat∃hasTopping.Meat while an
ALC uniform interpolant V of O for Σ consists of the following axioms:

1. Pizzav>

2. Meat v>

This is because O entails only tautologies over Σ.
Now consider Σ′ = {NonVeggiePizza,hasTopping,Meat}, let C1 and C2 be the same
as before. We still have that Craig interpolant I of C1 and C2 is the concept Pizzat
∃hasTopping.Meat. However, an ALC uniform interpolant V of O for Σ consists of
the axiom NonVeggiePizzav Pizzat∃hasTopping.Meat.

2.2. KNOWLEDGE STRUCTURES IN LOGIC 53

2.2.5 Strongest Necessary Conditions and Weakest Sufficient Con-
ditions

Given a knowledge base, one may be interested in projecting knowledge to a subset
signature of the knowledge base such as with the cases of communicating agents and
summarising ontologies described above. Consider a logical formula X expressed in
some knowledge base or ontology, one may be interested in expressing X is a subset
signature Σ of O that may allow for better understanding [DLS07]. This is captured
using weakest sufficient conditions (SNCs) and strongest necessary conditions (WSCs)
[DLS07]. Let O be an ontology, C a concept, and Σ a subset signature of sig(O), a
strongest necessary condition of C with respect to Σ under O is a concept C′ that is
a closest 3 implicate or subsumer of C under O expressed in Σ. Similarly, a weakest
sufficient condition is a concept D that is a closest implicant or subsumee of C of C

under O expressed in Σ.

Observe that definitions for concepts may not always exist, and even when they
exist, they may not exist with respect to a subset vocabulary of an ontology. Thus, in
communication scenarios where logic-based agents wish to convey concepts that are
not defined, the notions strongest necessary and weakest sufficient conditions may be
used to capture descriptions of concepts in terms of their subsumers and subsumees.

Doherty et al. [DLS07] describe SNCs and WSCs as useful to “Building Com-

munication Interfaces between Agents”. In the context of reasoning about knowledge,
WSCs and SNCs can be used to characterise definability for terms, symbols, or con-
cepts in knowledge bases [Lin01, DLS07]. Furthermore, they may be used to share
concept descriptions using different vocabularies [DLS07].

In the context of reasoning about actions, incorporating WSCs and SNCs into agent
frameworks can enable agents to reason about causality, premises, and consequences
in relation to states or events [Lin01, DLS01, DLS07].

SNCs and WSCs have formal characterisations in propositional, first-order, and
second-order logic but seem to be lacking formal descriptions in DL, as part of our
contribution, we formalise SNCs and WSCs in DL, but first provide an overview of
their characterisations in other logics.

3By ”closest”, we mean with respect to an ordering of implication, subsumption or logical entail-
ment.

54 CHAPTER 2. BACKGROUND ON LOGIC

Formal Definitions

Propositional Logic [Lin01]

Definition 22. Let T be a knowledge base, P a set of propositions in T , and q a

proposition in T but not in P. A formula ϕ of P is said to be a necessary condition
of q on P under T if T |= q→ ϕ. It is said to be a strongest necessary condition if

it is a necessary condition, and for any other necessary condition ϕ′, we have that

T |= ϕ→ ϕ′.

Definition 23. Let T be a knowledge base, P a set of propositions in T , and q a

proposition in T but not in P. A formula ϕ of P is said to be a sufficient condition of

q on P under T if T |= ϕ→ q. It is said to be a weakest sufficient condition if it is a

sufficient condition, and for any other sufficient condition ϕ′, we have that T |= ϕ′→ ϕ.

First Order Logic [DLS01]

Definition 24. By a necessary condition of a formula α on the set of relation sym-

bols P under a knowledge base T we shall understand any formula φ containing only

symbols in P such that T |= α→ φ. It is a strongest necessary condition, denoted by

SNC(α;T ;P) if, additionally, for any necessary condition ϕ of α on P under T , we

have that T |= φ→ ϕ.

Definition 25. By a sufficient condition of a formula α on the set of relation symbols P

under a knowledge base T we shall understand any formula φ containing only symbols

in P such that T |= φ→α. It is a weakest sufficient condition, denoted by WSC(α;T ;P)

if, additionally, for any sufficient condition ϕ of α on P under T , we have that T |= ϕ→
φ.

Second Order Logic [Wer12] In the context of second order logic, we only find a
definition of strongest necessary conditions stated below.

Definition 26 (Definition 26 [Wer12]). A strongest necessary condition of a formula

G on a set of predicate symbols P under formula F is a formula H such that:

1. H contains only predicate symbols from P.

2. F |= G→ H.

3. For all formulas H ′ such that H ′ contains only predicate symbols from P and

F |= G→ H ′ it holds that F |= H→ H ′.

2.2. KNOWLEDGE STRUCTURES IN LOGIC 55

We can observe from the definitions that the properties of strongest necessary con-
ditions and weakest sufficient conditions are similar across propositional, first order,
and second order logic: (1) in all logics, the strongest necessary condition is expressed
be within the provided signature (2) in all logics, the strongest necessary condition is
a closest upper approximation of the input symbol or formula, with respect to logical
implication.

Extracting the conditions

For the discussed logics, extracting strongest necessary and weakest sufficient condi-
tions is usually based on uniform interpolation. We provide the corresponding charac-
terisations below.

Propositional Logic [Lin01] Let φ be a propositional formula, and P a set of propo-
sitions, in the theorem below, the operator f orget(φ;P) denotes the result of forgetting
all propositions in P from φ.

Theorem 1 (Theorem 2 [Lin01]). Let T be a knowledge base, P a set of propositions,

and q a proposition in T but not P. Let P′ be the set of propositions that are in T but

not in P∪{q}. Then we have the following:

1. The strongest necessary condition of q on P is f orget(T (q/true);P′).

2. The weakest sufficient condition of q on P is ¬ f orget(T (q/ f alse);P′).

First Order Logic [Lin01]

Lemma 2 (Lemma 4.1 [DLS01]). For any formula α, any set of relation symbols and

a closed4 knowledge base T :

1. the strongest necessary condition SNC(α;T ;P) is defined by ∃φ.[T ∧α],

2. the weakest sufficient condition WSC(α;T ;P) is defined by ∀φ.[T → α],

where φ consists of all the relation symbols appearing in T and α but not in P.

4In fact, it suffices to assume that the set of free variables of T is disjoint from the set of free variables
of α.

56 CHAPTER 2. BACKGROUND ON LOGIC

Briefly speaking, given a formula F , ∃P.[F] denotes a second-order quantifier over
predicates symbols appearing in P, which can then be eliminated using second-order
quantifier elimination. We can now understand from Lemma 2 an algorithm to extract
SNC(A;T ;P) by using second-order quantifier elimination: SNC(α;T ;P) is equivalent
to ∃P′.[T ∧α] where P′ denotes all predicate symbols appearing in T or α but not in
P Approaches to uniform interpolation such as those proposed by Koopmann [PK15a]
can be interpreted as implementing second-order quantifier elimination as an approach
to uniform interpolation in description logics.

Example 2.2.5. Let the knowledge base T consist of the following formulas:

1. ∀x.[NonVeggiePizza(x)↔ Pizza(x)∧ (∃y.(hasTopping(x,y)∧Meat(y))

∨∃z.(hasTopping(x,z)∧Fish(z)))]

2. ∀x.[NonVeggiePizza(x)→WarmFood(x)]

3. ∀x.[WarmFood(x)→ BakedPotato(x)∨Pizza(x)∨
∃y.(hasTopping(x,y)∧Meat(y))]

Let the set of relation symbols P = {Pizza,hasTopping,Meat}. Let a formula α =

NonVeggiePizza(i), then following Lemma 2,

SNC(NonVeggiePizza(i);T ;P) =

∃NonVeggiePizza[∀x.[(Pizza(x)∨(∃y.(hasTopping(x,y)∧Meat(y))]∧NonVeggiePizza(i)]

Characterising Definitions in terms of SNCs and WSCs

Proposition 3 (Proposition 2 [Lin01]). A propositional knowledge base T defines a

proposition q on a set of propositions P iff T |= ϕ→ φ where ϕ is any strongest neces-

sary condition of q on P and φ any weakest sufficient conditions of q on P, both under

the knowledge base T .

Proposition 3 reduces the problem of extracting a definition of q with respect to P

to extracting the strongest necessary condition or weakest sufficient condition of q: if
T |= ϕ→ φ holds, T |= ϕ↔ φ (because φ is a weakest sufficient condition, T |= φ→ ϕ)
holds and consequently, T |= q↔ ϕ holds. To demonstrate the proof of this, observe
that since φ is a weakest sufficient condition of q, it follows that T |= φ→ q; combined
with the fact that T |= q→ ϕ, and T |= ϕ→ φ, it follows that T |= q≡ ϕ.

2.2. KNOWLEDGE STRUCTURES IN LOGIC 57

Thus an algorithm for testing for the definability of a proposition q with respect to a
set of propositions P under a knowledge base T can be based on extracting the strongest
necessary and weakest sufficient conditions: it suffices to check if T |= ϕ→ φ, where
ϕ denotes the strongest necessary condition of q with respect to P and φ denotes the
weakest sufficient condition of q with respect to P; if T |= ϕ→ φ, then q is definable
with respect to P under T and both φ and ϕ are suitable definitions for q.

2.2.6 Prime implicates and Prime implicants

Prime implicates are the ‘strongest clausal consequences of a formula’ [Bie09] (in DL
terms, ‘strongest subsumers of a concept’) such that removing any literal from a prime
implicate results in the prime implicate no longer being a consequence ensuring that
redundancies are not contained in any prime implicate. Prime implicants are the dual
notion of prime implicates: the weakest terms that imply a formula (in DL terms, the
‘weakest subsumees of a concept’). Bienvenu [Bie08] formalises the notion of prime
implicates in the description logic ALC by first defining a set of literals L, clauses Cl

and cubal concepts Cb as follows:

L ::=>|⊥|A|¬A|∀r.Cl|∃r.Cb

Cl ::= L|CltCl

Cb ::= L|CbuCb

A clause Cl is said to be a prime implicate of a concept C iff:

1. |=C vCl

2. For any Cl′ if |=Cl′ vCl then |=Cl vCl′

Implicates and prime implicates are designed to characterise subsumptions be-
tween concepts and do not factor in background ontology, i.e., subsumption is only
measured with respect to the empty ontology.

Example 2.2.6. This example is adopted from [Bie07]. Let the E = Au (BtC)u
∃r.>u∀r.(Bu (AtC))u∀r.(BtD). The prime implicates of E are the following:

1. A

2. (BtC)

58 CHAPTER 2. BACKGROUND ON LOGIC

3. ∃r.(BuA)t∃r.(BuC)

4. ∀r.B

5. ∀r.(AtC)

An example of a non-prime implicate of E is φ = Au (BtC) because stronger conse-
quences of φ are A and (BtC).

In Chapter 5 we expand on the relationship between prime implicates, prime im-
plicants, strongest necessary conditions, and weakest sufficient conditions.

2.2.7 Most Specific Concept

Let i be an individual occurring in an ABox (or set of assertions) A . A most specific
concept (msc) C of i is a minimal concept that i is an instance of with respect to A .
Here by minimal we mean that C is a subconcept of any other concept that i belongs
to.

Definition 27 (Most Specific Concept [BCM+03]). Let A be an ABox in a given de-

scription logic L and i and individual in A . We say C is a most specific concept of i in

A if for every L-concept D such that A |= D(i), we have that |=C v D.

Most specific concepts have been shown to have applications in bottom-up con-
struction of ontologies (i.e., constructing ontologies from a set of instances of con-
cepts) [BCM+03].

Example 2.2.7. Let A be the set of the following assertions:

1. A(i)

2. B(j)

3. r(i,k)

The most specific concept of i is Au∃r.>.

Most specific concepts are focused on extracting descriptions for individuals and
lack the appeal of a signature restriction element. Our application of communicating
agents is focused on extracting descriptions for concepts and has a signature restriction
element, thus we will not explore most specific concepts furthermore in this thesis.

2.2. KNOWLEDGE STRUCTURES IN LOGIC 59

2.2.8 Least Common Subsumers

Given a set of concepts Σ, the least common subsumer (lcs) is the minimal concept
that subsumes all concepts in Σ. Here by minimal, we mean that any other concept
that subsumes all the concepts in Σ is equivalent to the least common subsumer or a
superconcept of the least common subsumer. Intuitively speaking, the least common
subsumer of all the concepts in Σ encapsulates the commonalities among all concepts
in Σ.

Definition 28 (Least Common Subsumer [BCM+03]). Let L be a description logic.

An L-concept C is the least common subsumer of the L-concepts C1, ...,Cn iff:

1. |=Ci vC for all i = 1, ...,n, and

2. For any other concept C′ that satisfies (1), we have that |=C vC′

It is worth noting that Definition 28 may be also extended to include a background
L ontology O for entailment and would still count as a definition of Least Common
Subsumers.

Observe that for any description logic L that allows for disjunction (t), the lcs of a
set of concepts C1,,Cn is the disjunction of all such concepts: C1t ...tCn, and thus
trivial.

Least common subsumers have been shown to have applications in inductive learn-
ing and bottom-up construction of ontologies (i.e., constructing ontologies from a set
of instances of concepts) [BCM+03].

Example 2.2.8. This example is adapted from [Baa03]. Let Σ be the set of the follow-
ing EL-concepts:

1. ∃r.Au∃r.C

2. ∃r.Bu∃r.C

3. ∃r.C

The least common subsumer of Σ is the EL-concept ∃r.C because:

1. ∃r.Au∃r.C v ∃r.C

2. ∃r.Bu∃r.C v ∃r.C

3. ∃r.C v ∃r.C

In Chapter 5 we expand on the relationship between least common subsumers and
strongest necessary conditions.

Chapter 3

Background On Agents

Where used in the context of this thesis, agent refers to a software entity that can form
a complex symbolic representation of an environment and continuously interact with
this environment in an autonomous or intelligent fashion. We refer to these agents as
logic-based agents or knowledge-based agents following Russell [Stu03] as the central
component of such agents is their knowledge base represented using some logic-based
formalism. The environment mentioned may consist of other processes or other agents.
The semantics of the words autonomy and intelligent are often imprecise; however, we
interpret both words as agents (or more generally, entities) that do not require regular
human guidance or mediation.

This paradigm of agents is referred to as “Agent-oriented programming” (AOP) as
formalised by Shoham [Sho93]. AOP implements concepts from artificial intelligence
in the context of distributed systems, robotics, and software engineering. AOP is mo-
tivated by applications such as personal assistance systems, control systems, manufac-
turing, systems diagnostics, air traffic systems, and computer network management.
Such systems are required to perform management and control tasks in complex and
dynamic environments. Applying conventional software engineering techniques to de-
velop such systems proves to be difficult and expensive to maintain [RG+95]. From
a robotics perspective, an agent-oriented program would consist of descriptions of the
behaviour of the robots in various certain contexts: for example what a cleaning robot
should do (the behaviour) when it observes a piece of garbage (the context). Ide-
ally, an agent programming language consists of an agent-oriented middleware that
relieves programmers of the task of developing an infrastructure for repetitive domain-
independent processes, thereby enabling the programmers to focus on key system logic
of the agents by building multi-agent systems [BPR01].

60

61

In AOP, agents are characterised using states. These states consist of components
such as beliefs, intentions, and desires. AOP paradigms are specified using agent ar-
chitectures and each architecture has strengths, weaknesses, and use-cases. There are
three main architectures: belief-desire-intention (BDI), reactive, and layered architec-
tures. The BDI architecture consists of three main components: beliefs, desires, and
intentions which describe the states or mental attitudes of an agent. These components
are usually modelled using some form of logic formalism, and as a result, the agents
can practically reason about these mental states. Implementations of BDI agents in-
clude procedural reasoning system (PRS)[FMA92], distributed multi-agent reasoning

system (dMARS) [dKLW05], and AgentSpeak [Rao96]. Reactive architectures con-
sist of mappings of situations/observations to actions and implement decision making
this way. Unlike logic-based architectures, the agents do not have any complex repre-
sentation of the world and hence cannot perform any reasoning. Implementations of
reactive architectures include Brooks’s subsumption architecture [Bro86]. Layered ar-
chitectures are composed of both BDI and reactive components. Layered architectures
are also known as hybrid architectures and aim to adopt the advantages of both reactive
and BDI architectures. Implementations of layered architectures include the InteRRaP
architecture [MP94].

The aim of this chapter is to discuss AOP frameworks in the context of their
knowledge/information-management, sharing and retrieval applications. Following re-
search question 4 (RQ4 from Section 1.2: “How can the relevant knowledge extraction

techniques be integrated into existing MAS frameworks or agent communication pro-

tocols?”), we are especially interested in the communication issues that may be faced
by agents in AOP frameworks with ontologies as a central component. The commu-
nication issues that may be faced by such agents are predicated-upon and subject-to
the communication mechanisms that underpin the respective AOP frameworks, and
as such, this chapter also investigates the communication mechanisms of AOP frame-
works.

Overview of Research Methodology We surveyed several proceedings of well -
established publishing venues whose main topic was about agents or included a track
about agents. The venues explored include:

• International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS)

• International Conference on Agents and Artificial Intelligence (ICAART)

62 CHAPTER 3. BACKGROUND ON AGENTS

• International Joint Conference on Artificial Intelligence (IJCAI)

• International Semantic Web Conference (ISWC)

• International Conference on Principles of Knowledge Representation and Rea-
soning (KR)

In addition, several search engines were used, these include:

• Google Scholar

• Semantic Scholar

• Microsoft Academic

• Connected Papers

Lastly, we explored the publications (via DBLP) of several notable contributors in the
domain of logic-based agents, including:

1. Rafael H. Bordini, author of the JASON agent programming language.

2. Michael Woolridge

3. Alison R. Panisson

4. Viviana Mascardi

5. John-Jules Meyer

6. Jurriaan van Diggelen

7. Frank Dignum

8. Alessandro Ricci

When exploring and scanning the resources above, the aim was to focus on any
publications about agent systems that included the use of ontologies or were based on
a logic formalism in order to find existing work related to our motivation and research
questions.

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 63

3.1 Agent Oriented Programming Frameworks

Shoham [Sho93] characterises an AOP framework as having at least the following 3
components:

• A formal language that provides the syntax and semantics necessary to describe
the mental state of an agent [Sho93].

• A programming language that can be used to design and program agents with
respect to the semantics of the mental state [Sho93].

• A compiler that compiles agent programs into executable programs [Sho93].

There are two predominant AOP languages and frameworks that have some of these
components: JASON and JADE.
JASON is an implementation and extension of the langauge AgentSpeak. We charac-
terise and understand AgentSpeak via the discussion of JASON as JASON is a direct
implementation of AgentSpeak. We also use the terms “JASON”, and “AgentSpeak”
interchangeably. JADE is an AOP framework that is an implementation of specifica-
tions written by the foundations for intelligent physical agents (FIPA). The decision to
discuss JADE and JASON is motivated by the fact that, to the best of our knowledge,
most AOP frameworks either implement or extend AgentSpeak or FIPA specifications;
examples include: [VDRA11, KB08, BPR01, LPL+14, RBHC19, SG11]. Further-
more, to the best of our knowledge, JASON is the most extended AgentSpeak AOP
framework, and JADE is the most used implementation of the FIPA specifications.

3.1.1 JASON

JASON [BHW07] is a programming language that implements the BDI architecture
[Rao96] and is one of the dominant implementations of AgentSpeak. It is designed to
be easily extended and experimented with.

JASON has a similar programming style to Prolog: atoms are represented with
any sequence of characters starting with lowercase letters. Atoms are used to repre-
sent particular individuals or objects. Logical predicates start with uppercase letters.
Components of the JASON language include beliefs, goals, events, plans, and inten-

tions. Practically speaking, an agent programmer specifies an agent by writing the
initial set of beliefs, plans, and goals of an agent in a file with the extension .asl.

64 CHAPTER 3. BACKGROUND ON AGENTS

The agent programmer can specify an environment with all the agents of an environ-
ment in a file with the extension .mas2j. In the .mas2j file, the agent programmer
must specify an environment that is implemented in a Java program that extends the
jason.environment.Environment class where the programmer can define the cus-
tom attributes of the environment such as custom actions and percept sources for the
agents. The compiled environment class is added to the classpath before running the
MAS. The JASON interpreter parses and interprets the agent and environment files
into an executable program.

Beliefs form an agents representation of its environment. Beliefs in JASON are
represented by predicates of first order logic, for example: Friend(bob,alice). Archi-
tecturally speaking, beliefs are stored in the belief base of an agent. Beliefs can be
added and updated in three main ways:

• By perception - this occurs when the agent perceives something in its environ-
ment. Beliefs from perception are annotated by [source(percept)], for example,
Friend(bob,alice)[source(percept)] which means that the current agent believes
that bob is a friend of alice and it acquired this belief through perception.

• By communication - this occurs when some new information is conveyed by an-
other agent. Beliefs from communication are annotated by the name of the agent
that conveyed the information, for example, Friend(bob,alice)[source(f red)]

indicates that an agent by the name f red informed the current agent that alice is
bobs friend.

• By intentions - this occurs when beliefs are added as a result of the execution of
a plan. Beliefs from intentions are annotated by source(sel f).

The belief base of an agent can also be instantiated by listing a set of predicates in the
agent program.

Goals represent a desired state of the environment an agent wants to bring about.
They have the same syntax as beliefs but are prefixed with either ‘!’ to indicate an
achievement goal or ‘?’ to indicate a test goal. For example, the achievement goal
!B(t) indicates that the agent wants to achieve a state of its environment where B(t) is
a true belief. A test goal, written as ?B(t) indicates that the agent wants to test if the
predicate B(t) is a true belief or not given the current state of the environment. Goals
can be acquired through communication (an agent can instruct another agent to achieve

a goal) or intention (as a result of the execution of a plan: a plan may include a test

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 65

goal as a prerequisite for actions to be taken). Agent programmers can also specify the
goals for an agent in the .asl file of the agent.

Events represent a change in an agent’s beliefs or goals, for example, the addition
of a belief or a goal. An agent reacts to events by executing plans.
Plans have the following syntax:

triggering event : context <−body

triggering event denotes the event that the plan is meant to handle. context denotes
the state of the environment that must be satisfied for the plan to be used. body denotes
the sequence of actions to be taken given that the context is satisfied and the triggering

event has occurred. An example of a plan is as follows:

+!Has(owner,oranges) : notAvailable(oranges, f ridge)

<−.send(supermarket,achieve,Order(oranges,5)).

This plan illustrates part of an agent that handles grocery shopping for its owner.
The triggering event is the addition of the goal +!Has(owner,oranges), the context
is notAvailable(oranges, f ridge), i.e., whether there are oranges in the fridge, and
the body or sequence of actions is .send(supermarket,achieve,Order(oranges,5)).1.
Here we only have one action: the agent telling another agent called supermarket to
order 5 oranges. Presumably, the supermarket agent has a plan with the triggering
event +!Order(Oranges,) as well. Agent programmers must also specify the list of
plans to handle events in the .asl file of the agent.

Intentions are instantiated plans: plans where some of the variables have been in-
stantiated. Intentions keep track of the goals the agent is committed to and the course
of action it chooses to achieve the corresponding goals Intentions are computed by the
JASON interpreter (illustrated in Figure 3.1) during the execution cycle of an agent 2.

Execution Cycle of an AgentSpeak agent

Since JASON is an implementation of AgentSpeak, we provide a brief overview of
the execution cycle of an AgentSpeak agent to illustrate the general mechanism of
JASON (and other implementations of AgentSpeak) agents. The main components of
an AgentSpeak agent include its belief-base, events, plans and intentions.

1The periods are part of the syntax.
2More details on the JASON programming language and its implementation can be found in

[BHW07].

66 CHAPTER 3. BACKGROUND ON AGENTS

Figure 3.1: Illustration of the JASON interpreter cycle [BHW07]. ‘BUF’ stands for
‘Belief Update Function’. ‘BRF’ stands for ‘Belief Revision Function’. ‘SocAcc’
stands for ‘Social Acceptance Function’. ‘SM’ stands for ‘Message Selection Func-
tion’. ‘SE’ stands for ‘Event Selection Function’. ‘SO’ stands for ‘Plan Selection
Function’. ‘SI’ stands for ‘Intention Selection Function’.

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 67

The execution cycle goes through the following steps:

1. Perceiving the Environment: This is the first stage of the execution cycle, the
agent updates its belief-base with any new states observed from its environment.
The agent architecture must include a component that enables the agent to per-
ceive the environment as a list of literals where each literal is a percept that is a
symbolic representation of the current state of the environment. As an example,
consider a restaurant agent perceiving a customer (identified as p) paying a bill.
It may then acquire the belief:

PayingCustomer(p)[source(percept)]

2. Updating the Belief Base: During this stage, the belief-base is updated to reflect
the perceived changes to the environment. This process is usually customisable
by the agent programmer.

3. Receiving Communication from Other Agents: This stage involves the interpreter
checking for messages that might have been sent by other agents. This is impor-
tant as messages sent by other agents may reflect a change in the environment
that needs to be updated in the agent’s belief base.

4. Selecting ‘Socially Acceptable’ Messages: This stage involves determining mes-
sages that can be processed by the agent. There is a customisable selection
function that evaluates all messages in an agent’s inbox to determine accept-

able messages. The default implementation of the selection function accepts all
messages; however, it can be customised for each individual agent by the agent
programmer depending on the needs of the agent. For example, an agent may
want to limit its communication with another agent depending on how much the
other agent is trusted or depending on whether a goal has been accomplished.

5. Selecting an Event: In AgentSpeak, events correspond to perceived changes in
the environment or goals. There may be various pending events; however, in
each execution cycle, only one pending event is dealt with as various aspects of
the environment may change during the first stage of an execution cycle. For
example, the list of events in the interpreter of the JASON implementation of
AgentSpeak is held in a queue, as such, events are handled and prioritised in
a first-in-first-out FIFO manner, this means that the selected event is the event

68 CHAPTER 3. BACKGROUND ON AGENTS

that is always the event at the top of the queue. The event-selection policy is
customisable.

6. Retrieving all Relevant Plans: Once an event is selected the interpreter proceeds
to find a plan that will enable the agent to handle the event by going through
all relevant plans in the agent’s plan library (the available list of plans is usually
created by the agent programmer). A plan is said to be relevant if there exists
a substitution that allows the triggering event of the plan to be unified under
the substitution of variables with the selected event. Let the list of events be
represented by a set of tuples 〈d, i〉 where d is a triggering event and i is a cor-
responding intention. A plan p is of the form b1∧ b2...∧ bn← h1; ...;hm where
b1∧b2...∧bn is a set of belief literals and h1; ...;hm is set of goals or actions. A
plan denoted p is said to be relevant if there exists a most general unifier σ such
that dσ= pσ , i.e., there exists a substitution θ for σ such that ∀(b1∧b2...∧bn)σθ

is a logical consequence of the set of beliefs (resulting from the update in second
phase of the agents execution cycle).

Example 3.1.1. As an example, consider a restaurant agent with the following
plans:

(a) +!UnhappyCustomer(X) : Customer(X) &
UnhygienicWaiter(Y) & Experiences(X ,Y)<−.o f f erDiscount(X).

(b) +!UnhappyCustomer(X) : Customer(X) &
FoodPoisoning(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

(c) +!UnhappyCustomer(X) : Customer(X) &
ForeignFoodOb ject(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

All of the plans of the agent are relevant for the triggering event +!UnhappyCustomer.

7. Determining the Applicable Plans: Plans have a component called contexts

which often corresponds to a set of boolean expressions that determine whether
a plan can be used. Thus after filtering out all the relevant plans, the interpreter
needs to determine which plans can be implemented given an event: we call
these plans applicable. A relevant plan is applicable if the conjunction of all the
boolean expressions in its context is true, which only occurs if the context is a
logical consequence of the belief base.

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 69

Example 3.1.2. As an example, consider a restaurant agent with the following
beliefs:

(a) Customer(mary)[source(percept)]

(b) Experiences(mary, john)[source(percept)]

(c) UnhygienicWaiter(john)[source(percept)]

and the following plans:

(a) +!UnhappyCustomer(X) : Customer(X) &
UnhygienicWaiter(Y) & Experiences(X ,Y)<−.o f f erDiscount(X).

(b) +!UnhappyCustomer(X) : Customer(X) &
FoodPoisoning(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

(c) +!UnhappyCustomer(X) : Customer(X) &
ForeignFoodOb ject(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

Only the first plan (a) is applicable given the current set of beliefs of the agent.

8. Selecting One Applicable Plan: Intentions are partially instantiated plans (plans
whose variables have been initialised). Therefore, an applicable plan is called
an intended means as the course of action defined by that plan will be the means
through which the agent handles the event. After filtering the list of applicable
plans, the interpreter uses a selection function to choose which applicable plan
the agent will execute. The default selection function chooses an applicable plan
based on the order in which they appear in the plan library but is also customis-
able. The list of plans in the plan library is ordered in the way they appear in the
agent’s program, therefore agent programmers should typically write applicable
plans in descending order of preference or priority for plans with similar trigger-
ing events and contexts. Depending on the agent program or flow, several plans
may be triggered resulting in several intentions, for example, as part of executing
an action for a plan, an agent may add a new goal to its environment.

9. Selecting an Intention for Further Execution: Given that at any point in time
an agent may have a list of intentions, the interpreter prioritises an intention for

70 CHAPTER 3. BACKGROUND ON AGENTS

further execution using a selection function for intentions. The default selec-
tion function depends on the version of AgentSpeak in use. JASON’s selection
function follows a round-robin scheduling nature, i.e., each applicable plan is
selected in turn, and when selected, only one action in the body of the plan gets
executed. The selection function can be customised by the agent programmer.

10. Executing One Step of an Intention: The last step of the execution cycle involves
the interpreter deciding how to execute a step of the selected intention: recall that
an action may involve a belief update or addition of a goal, as such, there is a
myriad of variables that need to be taken into consideration when executing a
step of an intention which is beyond the scope of this chapter.

The execution cycle may be summarised in three main steps: (1) an update of the
agent’s beliefs on its environment and other agents, (2) handling one of the possibly
many generated events and then, (3) following up on one of the generated intentions,
or in other words, executing an action.

The JASON programming language successfully achieves what it is designed for,
i.e., implement a practical framework to write AgentSpeak programs in. In addition,
JASON aims to be an easily customisable framework, to this end, all the components of
the JASON MAS can be easily extended and customised as previously discussed and it
is also open-source. JASON has been successfully applied in domains such as energy-
saving systems [ECMC14] and modelling and simulation [LDGS11]. One of the lim-
itations of JASON is that does not provide any knowledge extraction or projection
techniques that can be used by agents. This can potentially hinder efficient communi-
cation among agents in scenarios where agents do not share all of the symbols in their
respective belief-bases. An agent intending to convey knowledge that is represented in
its belief base using symbols that are not shared by its communication partner(s) is at
risk of being misunderstood. Knowledge extraction or projection mechanisms may be
useful in such scenarios as agents may be able to convey such knowledge by projecting
or extracting the knowledge in terms understood by the agent’s communication part-
ner(s). This means that the application of JASON knowledge management domains
may be limited by the lack of knowledge extraction mechanisms. Our research ad-
dresses this limitation by investigating how existing knowledge extraction techniques
can be adapted to the context of agent communication.

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 71

Incorporation of OWL: JASDL

JASDL (Jason DL) [KB08] is an extension of the JASON agent framework that in-
corporates the web ontology language to make improvements to several aspects of
JASON, such as querying of the belief-base and plan retrieval.

The main idea is to leverage the expressivity of OWL to increase the expressivity
of the belief-base of JASON agents, and in so doing, improve the triggering of plans
associated with a goal or a belief. Because beliefs in JASON are written using ground-
literals and prolog-like rules, a significant amount of plans need to be explicitly stated
in order to capture a variety of belief combinations. The beliefs within JASDL are a
combination of assertional statements and terminological axioms. A more expressive
belief-base, expressed using an OWL ontology, can potentially reduce the number of
belief combinations that may be otherwise needed to be stated explicitly, as beliefs
may be inferred using axioms in the ontology.

3.1.2 JADE

JADE [BPR01] is an implementation of the FIPA specifications. FIPA was established
in 1996 as an international non-profit association to develop a collection of standards
relating to software agent technology. The association is composed of academic and
industry experts whose goal was to specify standard specifications for software agent
technologies. It has been maintained by its members and board of directors who pro-
duce standards and specifications through a series of discussions and debates over the
years. At the core of its principles is the standardization of agent technology, but more
specifically, structure and semantics required for open collaboration among agents
[BPR01]. Agent communication is a core and primary concept of FIPA specifications
amongst others such as agent management and agent architecture.

JADE is fully Java-based. In the JADE architecture, the agent platform can be split
on different hosts. Each host provides a complete runtime environment for execution
lifecycle management of agents and message passing facilities. These hosts are also
referred to as containers. At least one of the hosts (also referred to as the Agent Man-
agement System (AMS)) is responsible for maintaining a registry of all other hosts on
the platform so that agents can discover each other. JADE offers an additional boil-
erplate container called a Directory Facilitator (DF), which maintains a record of the
services provided by all of the agents on the same platform. Agents advertise their
services by contacting the DF.

72 CHAPTER 3. BACKGROUND ON AGENTS

JADE agents themselves are single-threaded Java agents. User-defined agents must
extend the jade.core.Agent class which provides boilerplate methods for an agent.
Each agent is provided with a globally unique name by default. A JADE agent is
always in one of the following states:

1. Initiated, i.e., not yet registered with the AMS.

2. Active, i.e., registered to the AMS.

3. Waiting, i.e., waiting for something to happen.

4. Suspended, i.e., not executing anything.

5. Transit, i.e., has started a migration process.

6. Unknown, i.e., deregistered from the AMS.

The autonomy of JADE agents is specified through behaviours. A behaviour in JADE
can be proactive, i.e., initialised by the agent, or reactive, i.e., performed in response to
an event such as a sent message. The java package jade.core.behaviours is a sub
package of jade.core that contains a hierarchy of the core application-independent
behaviours. Behaviours are added to agents via the addBehaviour method of the core
agent class. Behaviours are implemented by extending the
jade.core.behaviours.Behaviour class which is abstract. The
jade.core.behaviours.Behaviour class provides a onStart and onEnd methods
where the details of the behaviour can be specified by users. The action method in
the jade.core.behaviours.Behaviour is called by the JADE platform to run the
behaviour of an agent.

JADE was developed by and successfully applied to telecommunication systems.
JADE benefits from the fact that it is completely Java-based, thus, can be easily adopted
by people with Java programming skills because it does not require learning additional
syntax or semantics. JADE has been successfully applied in domains such as grid
power management [HCZS14, AP19]and security analysis [SCE15].

Adaptation to OWL: AgentOWL

AgentOWL [LBBH06] is a framework designed to facilitate the use of OWL ontolo-
gies within a JADE multi-agent system. Agent constructs such as the environment
are modelled using a central ontology. The beliefs of the agents are represented using

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 73

assertions/instantiations of concepts from the central ontology. AgentOWL thus en-
sures that agents within the same environment communicate accurately and effectively.
However, if agents are required to communicate with agents from other environments,
a translation, mapping or projection of the signature from the foreign environment is
needed which may require some of the knowledge extraction and knowledge projection
techniques discussed and developed in this thesis.

3.1.3 Ontology Based Agent Oriented Programming Frameworks

Semantic web technologies such as the web ontology language (OWL) have been
shown to have useful advantages and applications in AOP [KB08, MVBH05]. Adopt-
ing ontologies into AOP has consequences on two aspects of AOP: (i) the agent-based
systems themselves and (ii) the knowledge/information applications of AOP. MASs
can harness domain-specific knowledge in the form of ontologies to make more in-
formed decisions in environments and contexts due to the reasoning benefits that come
with ontologies, for example, subsumption checking can help program agents with
more expressive beliefs and more concise plans.

AOP frameworks seeking to be enhanced with ontologies face interoperability is-
sues that arise from the numerous and heterogeneous ontologies available for a given
domain of application. This means that the signature of the ontologies of the agents
may be disjoint or overlapping, which may lead to issues such as miscommunication,
semantic ambiguity, and false interpretations of the concepts in the ontologies. Typi-
cally, standardization of a domain could help alleviate this issue by defining a uniform
vocabulary used in the domain; however, not every domain has standardizations and a
domain may have several standardizations. Even at the scale of nations, humans seem
to have a difficult time coming to a consensus for a universal system of measurement
(e.g., metric vs imperial). This is not necessarily a disadvantage as different systems
have their advantages and disadvantages, as do standardizations and signatures. The
multiplicity of such signatures is not too much of an issue for humans as we have the
ability to translate, transform and adapt knowledge. Therefore, for AOP and MASs
to overcome these interoperability issues, AOP and MASs need to adopt and simulate
techniques that enable agents to translate, transform and adapt knowledge. Ideally,
such techniques would have specifications that can be described in a way that can be
implemented or integrated into AOP frameworks or MASs using speech acts or other
AOP components. The ontology services of CooL-AgentSpeak [VDRA11], for exam-
ple, also include provisions for ontology alignment [ES07] to help mitigate the issues

74 CHAPTER 3. BACKGROUND ON AGENTS

of heterogeneous signatures used in the agent’s ontologies.

Here we discuss the two relevant agent frameworks that have ontologies as the main
component to illustrate the effects of integrating ontologies into a MAS framework.

AgentSpeak DL

AgentSpeak DL [MVBH05] is an AOP language based on description logic (DL)
rather than classical (predicate) logic which is advantageous because the commonly
used DLs are decidable fragments of predicate logic. AgentSpeak DL expands the
belief base of an agent to contain complex concept assertions which yield several ad-
vantages including [MVBH05]:

1. More expressive queries to the belief base.

2. The belief update process of the execution cycle is enhanced as the consistency
of a belief addition can be verified using ontological reasoning.

3. Search for relevant plans given an event is more flexible as relevant plans are not
only dependent on unification but also subsumption relations between concepts.

4. Knowledge sharing may be facilitated among agents by using ontology lan-
guages such as OWL.

A motivation of AgentSpeak-DL is to enhance AgentSpeak programs with belief bases
that have a more sophisticated structure that can perform in complex environments.
The chosen DL for AgentSpeak DL is ALC . Similar to AgentSpeak, in AgentSpeak-
DL, beliefs, events, and contexts, are represented using ABox statements. The actual
details of the system are beyond the scope of this chapter; we, however, provide an
overview of the main benefits of ontological reasoning to the execution cycle of an
AgentSpeak agent.

1. Impact on updating the belief base: In AgentSpeak, the only implication of the
addition of a belief to the belief base is that a possible new event is added to
the set of events for the agent to deal with. In AgentSpeak-DL, the addition of
beliefs (ABox assertions) to the agent’s belief base is only allowed if the result
is consistent with the agent’s background ontology.

2. Impact on retrieving relevant plans: In AgentSpeak, a plan is said to be relevant

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 75

if its specified triggering event can be unified with the selected event. The result-
ing implication for agent programmers is that they have to write plans specifi-
cally for each possible type of event. In AgentSpeak-DL, unification is not the
only criteria for determining if a plan is relevant, subsumption also qualifies
a plan for being relevant, i.e., finding plans whose triggering event subsumes
(with respect to the agent’s background ontology) the selected event and uni-
fying terms for the selected event and the plans triggering event. This reduces
the workload on agent programmers as they can use subsumption relations in on-
tologies to reduce the workload of having to write plans for each type of possible
event.

Example 3.1.3. As an example, consider a restaurant agent with the following
plans:

(a) +!UnhappyCustomer(X) : Customer(X) &
UnhygienicWaiter(Y) & Experiences(X ,Y)<−.o f f erDiscount(X).

(b) +!UnhappyCustomer(X) : Customer(X) &
FoodPoisoning(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

(c) +!UnhappyCustomer(X) : Customer(X) &
ForeignFoodOb ject(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

Given the background ontology O = {ForeignFoodOb ject v FoodIssue,
FoodPoisoning v FoodIssue,RudeWaiter v PoorService,UnhygienicWaiter v
PoorService}. The set of plans can be simplified to:

(a) +!UnhappyCustomer(X) : Customer(X) &
UnhygienicWaiter(Y) & Experiences(X ,Y)<−.o f f erDiscount(X).

(b) +!UnhappyCustomer(X) : Customer(X) &
FoodIssue(Y) & Experiences(X ,Y)<−.o f f erDiscount(X);
.alertManager().

Because O |= ForeignFoodOb ject v FoodIssue,FoodPoisoningv FoodIssue.

3. Impact on determining applicable plans: In AgentSpeak, a plan is applicable if
its context is a logical consequence of the belief base. In AgentSpeak-DL, a plan

76 CHAPTER 3. BACKGROUND ON AGENTS

is applicable if it is relevant and its context is a consequence of the agent’s belief
base and background ontology.

4. Impact on selecting applicable plans: In AgentSpeak-DL the selection function
for applicable plans can be further customised using ontological reasoning. For
example, the selection function may be designed to prioritise applicable plans
according to specificity: the lower an applicable plan is in the subsumption hier-
archy of the agent’s ontology, the more specific it is.

Other stages of the execution cycle are not affected by ontological reasoning.

There are several implementations and extensions of AgentSpeak-DL. Cool -AgentSpeak
[VDRA11] for example, is an extension of the JASON agent platform which extends
AgentSpeak-DL with features such as plan exchange and ontology services that aim to
make AgentSpeak-DL FIPA compliant.

ANEMONE

The ANEMONE system [VDBD+07a] consists of a set of protocols (or layers) to be
used to enable flexible information exchange in agent communication using a minimal
common ontology. An intriguing motivation of the system is that approaches such as
standardisation and ontology matching are not suited for the semantic integration prob-
lems that are faced in certain applications of MASs. Its specification [VDBD+07a] is
motivated by the specific example of an open community of agents that periodically
download news articles in RSS news feeds on different topics.

The system consists of three main layers designed to facilitate flexible communi-
cation. The first layer is the normal communication protocol which guides communi-
cation when there is no disparity between the ontologies of the communicating agents.
If any misunderstanding occurs, the agents switch to the middle layer in the protocol,
the concept definition protocol. In the concept definition protocol layer, agents resolve
misunderstandings of concepts by exchanging concept descriptions. The descriptions
of concepts are expressed using concepts already understood by both agents. If the
concept descriptions exchanged do not adequately describe the original misunderstood
concept, the agents switch to the lowest layer in the protocol the concept explica-

tion protocol. In the concept explication protocol, the agents explain the meanings of
concepts using non-symbolic communication, for example, exchanging instances or
examples of the concept.

3.1. AGENT ORIENTED PROGRAMMING FRAMEWORKS 77

The various protocols specify in-depth information on how agents should send,
interpret, and evaluate messages. Agents also need to be able to detect when there is a
misunderstanding according to the layers.

The protocols in the ANEMONE system can be implemented in AOP frameworks
such as AgentSpeak by programming custom speech-acts, actions into agents or other
aspects of the execution cycle outlined previously.

JADL & JIAC

The JIAC (Java Intelligent Agent Componentware) framework is built upon the JADL
(JIAC Agent Description Language) specifications and is intended to be robust enough
to handle industry applications such as energy management systems [KHA06, LKK15].

JADL specifies a MAS architecture that consists of plan elements, rules, ontolo-

gies, and services. Within a JADL-based MAS, the state of the world is represented us-
ing assertions in ontologies and an AgentBean: a Java program through which an agent
may interact with external entities which may be anything varying from databases to
mechatronic components of a robot.

By means of a situation calculus and a three-valued logic, agents can reason about
their environment. The outcome of such reasoning may be translated and stored into
OWL ontologies. Plan elements include actions that describe the functional capabil-
ities of an agent, which may then be used to automatically construct plans for the
relevant goals of the agent.

The framework incorporates FIPA speech acts to enable communication via ser-
vices which the agents may interact with.

It is not clear whether or not there are assumptions in the JADL framework that
make it so that agents are guaranteed to utilise the same ontology signatures or if all
ontologies in a JADL-based MAS are public and accessible to every agent. However,
the fact that agents interact with external components such as databases makes it likely
that an agent may encounter a symbol that is unique to its experience of the world.
Thus, having the ability to translate such unique symbols into terms that other agents
understand or are familiar with is imperative for effective communication within the
framework.

78 CHAPTER 3. BACKGROUND ON AGENTS

3.2 Agent Communication

Agent programmers typically bear the responsibility of writing agent programs that en-
sure that an agent takes appropriate communication actions. The BDI architecture and
AgentSpeak language are primarily concerned with the internal structure of agents and
do not address the issue of communication interaction among agents [BHW07]. This
is in contrast with the FIPA specifications and architecture which has agent communi-
cation and agent interaction at the center of the issues it aims to address. Extensions
of AgentSpeak such as JASON address such issues carefully with respect to the BDI
architecture.

Some MAS frameworks provide agent communication languages (ACL(s)) that
agent programmers can use to implement communication in agent-based systems.
ACLs are based on speech-act theory [SS69]: a linguistic philosophy on how speech
can convey both information and action. In the context of MASs, agents use speech
acts to attempt to change a state of its world including its beliefs. The various types of
speech acts are typically referred to as performatives in the context of MASs. In this
section, we focus on ACLs and frameworks that implement them. Specifically, we fo-
cus on KQML (Knowledge Query Manipulation Language) and the FIPA Agent Com-
munication Language (FIPA-ACL) which are foundations for ACLs in AgentSpeak
and FIPA-compliant AOPs. We provide a brief overview of each of these languages in
this section, followed by an overview of agent communication as implemented in the
MAS frameworks JASON and JADE.

3.2.1 Speech Acts

The underlying mechanism and theory of all ACLs is speech-act theory [SS69]. Speech
act theory is concerned with the elements of speech and language that result in actions.
Speech act theory was a successful effort at addressing uses of language besides mak-
ing factual assertions. In the context of MAS, this can be seen as another mechanism
an agent can use to bring about a desired change or update in its environment. In ev-
eryday conversation, for example, we bring about changes in our world by perhaps
asking people to do things for us. As an example, you may ask another person to close
a window upon feeling chilly in a room. Under the perspective of speech act theory,
we view the question/request as an action that results in a window being closed. In
the KQML ACL and JASON perspective, an agent requesting another agent to close
a window can be emulated using the achieve performative. As an example, consider

3.2. AGENT COMMUNICATION 79

MAS for a care home which consists of a user agent which monitors patients condi-
tions such as their body temperatures and a smart home agent which controls the room
and environment. The user agent may request for a window to be closed as part of a
plan to handle dropping body temperatures as follows:

.send(smart home agent,achieve,closeWindows)

The environment in question is not limited to the external environment but the internal
environment as well. For example, an agent may ask another agent a question so as to
update its beliefs. This is also analogous to asking questions to improve knowledge or
clarify statements in everyday conversation. This is premised on the assumption that
the other person or agent in question responds as we expect.

Speech acts comprise of three main notions:

1. Locutionary act: Locutionary acts are the actual utterances and their semantics
or apparent meaning. For example, the statement ‘ Are the windows open?’ is a
locutionary act itself. Locutionary acts usually have a corresponding Illocution-

ary act.

2. Illocutionary act: The illocutionary act is the implied meaning or request that is
invoked by a locutionary act. For example, the locutionary act ‘Are the windows

open?’ may imply the illocutionary act ‘Can you please close the windows?’.

3. Perlocutionary act: The percolutionary act is the actual act or effect that is
wished to be brought about by the locutionary act or illocutionary act. For ex-
ample, closing-the-windows or closed-windows is the act or state wished to be
brought about by the locutionary act ‘Are the windows open’ or illocutionary act
‘Please close the windows’.

Agent communication is centered around illocutionary acts, which are usually re-
ferred to as performatives. Following Searle [SS69] there are five main types of illo-
cutionary acts:

1. Directive acts - acts that attempt to get the hearer to perform some action. In
MASs, assertive acts are modelled using performatives such as achieve.

2. Assertive acts - acts that assert facts about the world. In MASs, assertive acts are
modelled using performatives such as to inform.

80 CHAPTER 3. BACKGROUND ON AGENTS

3. Commissive acts - acts which commit the speaker to accomplish a task.

4. Expressive acts - acts that express a speaker’s states.

5. Declarative acts - acts that are performed by virtue of the utterance, for example
declaring war.

As seen, most AOP frameworks come with boilerplate communicative acts; how-
ever, different domains of application may require custom speech acts and protocols.
The format and nature of speech acts dictate the range, expressivity and flexibility of
knowledge/information exchange between agents.

3.2.2 KQML

KQML [FFMM94] is a product of the DARPA Knowledge Sharing Effort which is
aimed at developing techniques and software for sharing and reuse of knowledge in
large-scale knowledge bases. KQML specifies both a message format (i.e., KIF) and
a message-handling protocol to support knowledge sharing among agents. KQML de-
fines an extensible set of performatives which specify an agent’s intentions in sending
a message to another agent.

The KQML performative tell, for example, is used with the intention of updating
the receiving agent’s beliefs. A KQML message consists of a performative and its
associated arguments which consist of the content of the message and other optional
arguments which may describe the message content and identifiers of the sender and
receiver.

KQML message format

(performative

:message-content

:optional-argument-1

:optional-argument-2

...
:optional-argument-N)

For example, the following KQML message:
(ask-one

:content (PRICE TESLA ?price)

:receiver stock-server

3.2. AGENT COMMUNICATION 81

:language LProlog

:ontology NYSE-TICKS)
may be sent by an agent wishing to know the price of TESLA stock. The performative
in this context is ask-one, which is used to ask a question that requires exactly one re-
ply. The content argument specifies the message content while the receiver argument
identifies the intended recipient of the message. The language argument specifies the
language in which the content is expressed and the ontology argument specifies the
terminology and semantics of interpretation for the message content. Other KQML
performatives include tell, ask, ask-all, achieve, generate, subscribe, advertise and

monitor. More complex domains and environments may require different performa-
tives which can be specified by a MAS designer or agent programmer.

KQML has been successfully implemented in MAS experiments including a plan-
ning and scheduling system for military transportation logistics [FFMM94] and an
information MAS called “CoBASE” [FFMM94].

3.2.3 FIPA ACL

The FIPA standard for agent communication is closely related to KQML but differs in
its set of performatives and semantics. FIPA ACL Messages have the same structure
as KQML messages and are extensible as well. Agent communication is broken down
into three different aspects:

1. Communicative Acts.

2. Interaction Protocols.

3. Content Languages.

Communicative acts are analogous to performatives. Like KQML, FIPA specifica-
tions provide a set of communicative acts to satisfy the communication needs of a wide
set of problems. FIPA specifications define a logical and semantic definition for each
communicative act for sender and receiver agents in terms of BDI semantics. Just like
KQML, communicative acts can be extended by MAS designers or agent program-
mers. Examples of FIPA ACL communicative acts include accept-proposal, agree,

cancel, confirm, disconfirm, inform, inform-if.

The interaction protocols of the FIPA ACL aim to model social behaviour among

82 CHAPTER 3. BACKGROUND ON AGENTS

FIPA compliant agents. There are several FIPA ACL interaction protocols 3, exam-
ples include the request interaction protocol, query interaction protocol, request when

interaction protocol to name a few. All interaction protocols specify conditions and
procedures for agents to interact for a specific scenario. For example, the request in-
teraction protocol specifies how one agent can request another agent to perform an
action. Interaction protocols also specify how communicative acts are to be used as
part of message sequences or workflows.

The FIPA ACL specifications include specifications for the content language FIPA

Semantic Language (FIPA-SL). Several content languages may exist within a FIPA
compliant MAS. The FIPA-SL specification includes language syntax and its associ-
ated semantics; however, the lexical and grammar specifications are beyond the scope
of this chapter.

3.2.4 Agent Communication in JASON

JASON agents send messages using the following syntax:

.send(receiver, per f ormative,message content)

In the JASON context .send is an internal action available to every agent in any en-
vironment. Another internal action for communication is .broadcast which is used to
broadcast messages to all of the agents in an environment which has the following
syntax:

.broadcast(per f ormative,message content)

An agent’s execution cycle eventually reaches a point where it checks for messages
that may have been received from other agents. Messages received have the following
structure

〈sender, per f ormative,content〉

This structure is not strict and may have additional arguments depending on the perfor-
mative used4. JASON comes with a set of performatives which are a subset of perfor-
matives specified by the KQML language, they include tell, untell, achieve, unachieve,

askOne, askAll, tellHow, untellHow, askHow. Agent programmers can customise the
interpretation of performatives using AgentSpeak plans with special annotations or by

3They are all accessible at http://www.fipa.org/repository/ips.php3.
4Details of the semantics of how JASON automatically interprets messages can be found in

[VMWB07].

http://www.fipa.org/repository/ips.php3

3.3. RELATED WORK 83

customising the JASON interpreter. Additionally, agent programmers may also specify
other communicative actions by creating custom internal actions for the agents.

3.2.5 Agent Communication in JADE

FIPA ACL messages in JADE are specified by creating an instance of the
jade.lang.acl.ACLMessage class. Using the JADE ACLMessage class, an agent can
specify parameters such as the communicative act associated with the message, the
message recipient, an identifier for a message that is being responded to, and the mes-
sage content. This is not an exhaustive list; however, the intuition is that it is a template
Java class that provides a way to model KQML-style messages using setters and get-
ters. Recall that agents in JADE are java classes extending the jade.core.Agent

class. The Agent class has a built-in send() method which takes in an instance of the
ACLMessage class, that enables agent programmers to specify communicative actions
and behaviours for their agents.

3.3 Related Work

3.3.1 Ontology Negotiation

Ontology negotiation is the process by which communicating agents may try to re-
solve misunderstandings that occur during communication. Ontology negotiation is an
AOP paradigm that involves agents autonomously interacting to solve problems with
respect to ontologies. The term ontology negotiation was originally coined by Bailin
and Truszkowski [BT02] and motivated by trying to solve agent communication issues
involved at the boundaries between scientific disciplines. For example, in an attempt
to achieve a goal, an agent managing a global warming knowledge base may seek to
elicit information from an agent managing an ecology knowledge base. In this section,
we provide an overview of some existing efforts to implement ontology negotiation.

The original proposal for ontology negotiation [BT02] presents two agent scenarios
that are frequently referenced: (i) Agents in Hollywood: The Cocktail Party Metaphor

and (ii) Back at the Office: The Information Retrieval Task. We provide an overview
of the information retrieval task as it is closer to our interest in knowledge and infor-
mation transformation and management.

The information retrieval task metaphor is used to understand various levels of
discourse that may arise when an agent tries to request the help of another agent in

84 CHAPTER 3. BACKGROUND ON AGENTS

a task involving information retrieval. The metaphor is modelled after how humans
embark on similar conversations when they have different specialisations. For example
in an organisation, people in different departments have different specialisations and
thus have access to different repositories of information. Agents (software and human)
may start these conversations by describing what they specialise in and what kind
of information they have access to. The most shallow level of conversation involves
agents interacting as a form of courtesy.

However deeper levels of conversations may stem from this conversation, for ex-
ample, if the agents tried to understand what they do, the services they provide, or the
tasks they engage in. If the agents wanted to make practical use of that information
(what they do, services they provide, etc), a deeper level of conversation is needed.

This scenario highlights one of the central motivations of ontology negotiation:
conversations have varying levels of engagement. This scenario is broken down into 5
levels as the dialogue between the agents progresses:

1. Respond to Query with Minimal Effort. Like humans, agents may behave (due to
their goals and effort) in a way that relieves them of a query request with minimal
effort which may result in a superficial level of returned information. This may
result in a poor understanding of the other agent’s goals or constraints and as a
result, the returned query may not satisfy the needs of the requesting agent.

2. Express Dissatisfaction with Initial Response. Upon realising the inadequacy
of the returned information, the requester may reformulate the query by adding
(being more specific) or removing (being more general) constraints. The agent
may even choose to reformulate the constraints using a different set of terms or
try to explain why the returned information was inadequate all of which may
lead to the helper agent understand better the needs of the requester or request
for further clarification.

3. Enlist Additional Help. An improved understanding may lead to the helper agent
contacting another agent for help: any resulting information returned may be
forwarded to the original requester agent.

4. Negotiate Ontologies to Construct Integrated Story. The first and second helper
agents may then need to construct an integrated response to the original query: in
communicating, they may discover that their ontologies are quite heterogeneous
in the sense that there are differences in concepts in their respective ontologies.

3.3. RELATED WORK 85

5. Evolve Ontologies. The two helper agents may then negotiate and reach a shared
understanding of concepts that were previously understood differently or not
held in common. Agents may explore the history of a concept being negotiated.
Concepts not understood may be defined in more basic terms and stand a better
chance of being shared. The process may be iterated until the agents find fine-
grained concepts in common. Given a common concept name, the second agent
may add it to its ontology, find synonymous a concept name in its ontology, or
respond with a different understanding of the common concept name. Following
[BT02], “The third case represents the greatest potential for ontology evolution.
If the two understandings of the same term are similar but not identical, then the
agents have different interpretations of the world, and not just different foci of
attention.”

Levels four and five highlight another central motivation of ontology negotiation: dif-
ferent levels of conversational engagement require complex communication tools.

Some levels of conversation can be compared to the layers of communication in the
ANEMONE system. Levels 1 and 2 correspond to the normal communication protocol
of the ANEMONE system: here agents communicate normally and understanding is
presumed; however, also within the normal communication protocol, one of the com-
municating agents may detect a misunderstanding and seek to escalate to a deeper level
of conversation which corresponds to level 2 where an agent may express dissatisfac-
tion. Levels 4 and 5 can correspond with either the concept definition protocol or the
concept explication protocol: exchanging definitions can be a form of ontology ne-
gotiation and so can mapping concepts using instances or examples (i.e., the concept
explication protocol).

To the best of our knowledge, besides [VDBD+07b, TS19], there is no work that
addresses definitions in the context of agent communication and DL ontologies. How-
ever, a lot of work has been done in terms of mapping concept names in heterogeneous
ontologies in the field of ontology alignment, also referred to as ontology matching. In
the ANEMONE system ontology alignment techniques fit into the concept explication
protocol.

86 CHAPTER 3. BACKGROUND ON AGENTS

3.3.2 Ontology Alignment

Ontology alignment attempts to establish correspondences (i.e., mappings between
corresponding concepts) in heterogeneous ontologies. Establishing such correspon-
dences is not trivial and can be approached in different ways. Roughly speaking, the
task of constructing an alignment between two ontologies O1 and O2 involves finding
a set of 〈≡,v,⊥5 〉 relations between pairs of symbols 〈S,S′〉 where S ∈ sig(O1) and
S′ ∈ sig(O2). Constructing such alignments is often non-trivial [ES07]. Several strate-
gies may be employed to create correspondences depending on the nature of the on-
tologies in question. An alignment strategy details which alignment techniques should
be used and how they should be used. Techniques can range from comparing instances
of concepts (as proposed in the concept explication protocol of the ANEMONE sys-
tem) to string similarity measures, to using natural-language-processing methods such
as the word embeddings [ZWL+14]. Ontology alignment is a research area in its
own right and has applications that span beyond agent communication. Laera et al.
[LBT+07] address ontology alignment in the context of agent negotiation. The em-
ployed approach involves argumentation: where each agent can decide and propose
correspondences according to its preferences. Depending on the architecture of ne-
gotiation correspondences may or may not be publicly available to the agents. In the
case where correspondences are only partially available, a type of protocol is required
for the agents to share correspondences. This is the issue addressed by Payne et al.
[PT14] where the agents share correspondences through an inquiry dialogue. The in-
quiry dialogue allows agents to assert, reject, and counter correspondences shared by
other agents taking into consideration correspondences that may have been acquired
from previous encounters with other agents.

A similar approach to alignment is learning mappings through examples [VDBD+07b,
ADMF13]. This approach assumes a closed world of the agents and relies on the agents
exchanging positive and negative examples of concepts they wish to align.

Background on Dominant Approaches

Most alignment techniques utilise lexical, structural, or reasoning techniques or a com-
bination of such techniques [SJRG17a]. By lexical techniques, we refer to techniques
that employ the use of language string similarity measures to establish correspondences
among symbols in the ontologies that are to be mapped. Lexical techniques alone are

5Here ⊥ is shorthand for ‘disjoint’.

3.3. RELATED WORK 87

not sufficient as they do not take into account how concepts and symbols in the ontol-
ogy are related. Ignoring such relations of the ontology can lead to mappings that cause
inconsistencies or result in unsatisfiable symbols. Thus, alignments are usually evalu-
ated on whether or not they cause inconsistencies, unsatisfiable symbols, or introduce
potentially erroneous relations among concepts.

An alignment that causes inconsistencies or new unsatisfiable symbols in either
of the mapped ontologies is said to be incoherent, and coherent otherwise. Semantic
changes are captured using the notion of deductive difference. Let O1 and O2 be ontolo-
gies aligned via A . The deductive difference between Oi ∈ {O1,O2} and O1∪O2∪A
is a summary of the semantic changes introduced by the alignment A , thus debugging
of alignments can be narrowed down to axioms in the deductive difference. Let O1 and
O2 be ontologies, the deductive difference between O1 and O2 with respect to O1 is
the set of all axioms α such that sig(α)⊆ sig(O1), O2 |= α, and O1 6|= α. Note that by
this description, the deductive difference is a possibly infinite set. In practice, we are
interested in a finite subset that encapsulates the deductive difference.

Definition 29 (Deductive Difference). Let O and O′ be two ontologies, let Σ= sig(O)∩
sig(O′). We define the deductive difference between O and O′ with respect to O to be

a finite set of axioms (denoted di f f (O,O′)) that entails all axioms of the form C v D

such that O 6|=C v D, O′ |=C v D, sig(C)⊆ Σ and sig(D)⊆ Σ.

We extend the notion of deductive difference to ontologies and mappings as fol-
lows: let O1 and O2 be ontologies aligned via A . For any ontology Oi ∈ {O1,O2}, by
deductive difference, we refer to the set of all axioms α such that sig(α) ⊆ sig(Oi),
O1∪O2∪A |= α, and Oi 6|= α [SJRG17b].

Unfortunately, capturing the deductive difference between ontologies more expres-
sive than EL can be computationally expensive, and is undecidable in DLs as expres-
sive as ALCQ I O [SJRG17b]. In the ontology matching literature, an approximate
version of the deductive difference that focuses on the class hierarchy of the input on-
tologies has thus been adopted as a means of detecting the semantic changes induced
by alignments.

Definition 30 (Approximate Deductive Difference [SJRG17b]). Let A,B be named

concepts (including>,⊥), Σ be a signature, O and O′ be two ontologies. We define the

approximation of the Σ-deductive difference between O and O′ (denoted di f f≈
Σ
(O,O′))

as the set of axioms of the form Av B satisfying: (i) A,B ∈ Σ, (ii) O 6|= Av B, and (iii)

O′ |= Av B.

88 CHAPTER 3. BACKGROUND ON AGENTS

Consistency and Conservativity violations

In general, the notions of conservativity violations and consistency violations [SJRG17b,
JRGHB11] are designed to capture and evaluate mappings within alignments that may
cause inconsistencies or result in potentially erroneous semantic consequences (such
as new relationships among concept names).

Consistency violations in an alignment indicate that the alignment causes one or
both of the input ontologies to be inconsistent or contain unsatisfiable concepts. Con-
servativity violations in an alignment indicate that the alignment introduces new se-
mantic relationships in the vocabulary of one of the input ontologies. There are two
variants of conservativity violations, namely (i) subsumption violations (ii) equiva-
lence violations. Intuitively, subsumption violations indicate that a potentially erro-
neous subsumption between named concepts is induced by an alignment while equiv-
alence violations indicate that an potentially errorneous equivalence between named
concepts is induced by an alignment.

Definition 31 (Conservativity Violation [SJRG17b]). Let O1 and O2 be ontologies

mapped by a coherent alignment A , let Σ = sig(Oi), let Oi ∈ {O1,O2}, and let A and

B be atomic concepts in Σ. We define two sets of violations of O1∪O2∪A with respect

to Oi (the anchor ontology):

• subsumption violations, denoted subViol(Oi,O1∪O2∪A), as the set of A v B

axioms satisfying: (i) A v B ∈ di f f≈
Σ
(Oi,O1 ∪O2 ∪A)6, (ii) Oi 6|= B v A, and

(iii) there is no C in Σ such that Oi |=C v A, and Oi |=C v B

• equivalence violations, denoted as eqViol(Oi,O1∪O2∪A), as the set of A ≡ B

axioms satisfying (i) O1∪O2∪A |= A≡ B, (ii) Av B ∈ di f f≈
Σ
(Oi,O1∪O2∪A)

or Bv A ∈ di f f≈
Σ
(Oi,O1∪O2∪A)

Subsumption violations are intended to capture new subsumption relationships be-
tween concept names that were previously unrelated while equivalence violations are
intended to capture new subsumption relationships between concept names have al-
ready been involved in a subsumption. Subsumption violations are based on the as-
sumption that “all the direct siblings in a well-defined is-a hierarchy should be dis-

joint”, otherwise known as the assumption of disjointness [Sch05]. The assumption of
disjointness is the motivation behind the third condition (‘there is no C in Σ such that
Oi |= C v A, and Oi |= C v B’) of subsumption violations. We assume that if there

6Observe that this means Oi 6|= Av B following the definition of deductive difference.

3.3. RELATED WORK 89

is a concept C that is included in both A and B, then A and B intersect on some inter-
pretation and that C is a witness concept of this intersection. If there is no witness to
support that A and B intersect on some interpretation, then we assume that A and B are
disjoint, per the assumption of disjointness [Sch05].

It is important to note that conservativity violations do not necessarily indicate that
a mapping is wrong, a conservativity violation may indicate that the information in one
of the aligned ontologies is incomplete, and it is usually up to ontology engineers, or
agents to determine whether a conservativity violation indicates an error or additional
information.

Detecting and Minimising Violations In order to minimise conservativity and con-
sistency violations, several alignment techniques employ additional semantic tech-
niques to refine mappings generated by lexical techniques [SJRG17b]. Semantic tech-
niques include the use of structural techniques (i.e., evaluating the syntactic structure
of the ontologies to be aligned), or reasoning techniques (i.e., evaluating the semantic
structure of the ontologies by using standard OWL reasoners such as Hermit). In the
process of employing semantic techniques to refine mappings, alignment techniques
generate repairs to the generated mappings.

Given an alignment A that causes conservativity or consistency violations, a repair
R to A is a set of proposed removals (or alterations) to mappings in A to minimise the
violations caused by A .

LogMap [JRCG11] for example, is an alignment tool that employs the use of both
lexical and semantic techniques to build alignments. LogMap starts by generating
mappings using lexical techniques. It then refines the generated mappings by pro-
jecting the input ontologies and generated mappings into a set of propositional horn
clauses and then implements a satisfiability solver to detect and construct repairs for
both consistency and conservativity violations. As a further refinement, LogMap cre-
ates a semantic index induced by concept hierarchies of the input ontologies to filter out
unreliable mappings. Roughly speaking, the semantic index of an ontology is a graph
that is built using the class hierarchy of each input ontology in which nodes correspond
to concept names and edges correspond to subclass relationships. To refine mappings,
LogMap constructs additional edges (induced by the candidate mappings) between the
vertices in both semantic indices of the inputs ontologies and then uses a traversal
algorithm to detect mappings that cause conservativity or consistency violations.

AgreementMakerLight (AML) [FPS+13] is another alignment tool that employs

90 CHAPTER 3. BACKGROUND ON AGENTS

semantic techniques to minimise conservativity and consistency violations. Similar to
LogMap, AML creates a propositional horn encoding of the input ontologies and the
mappings to detect incoherent concept names and mappings that cause incoherences.
Unlike LogMap, AML employs further heuristics based on the confidence values of the
mappings to create repairs. Other matchers that employ semantic techniques include
Lily [Wan10] which uses a search engine to build semantic index and ContentMap
[JRGHL09] which employs justification-based repairs.

Chapter 4

Setting the Scene for the rest of the
Thesis

In Chapter 3 we discussed agent-based frameworks that include elements of logic
based reasoning or ontologies. Some of the frameworks discussed (including JASON
and JADL & JIAC) assume (sometimes explicitly) that all symbols used in represent-
ing each individual agent’s knowledge are known and accessible to all agents. Other
frameworks such as JADE (and other FIPA-compliant frameworks) may use logic-
based knowledge bases to establish a common vocabulary for agent communication.
A few of the frameworks discussed, such as Cool-AgentSpeak and ANEMONE, do
not assume that all symbols used in representing each individual agent’s knowledge
are known and accessible to all agents and provide mechanisms for agents to con-
vey knowledge to each other using symbols understood by all communicating part-
ners. In Chapter 2 we discussed logic-based approaches for knowledge extraction
from knowledge bases. While some agent frameworks do not assume that all agents
have a common understanding of all the symbols used in knowledge representation,
we observe that knowledge extraction techniques have not been studied in the context
of such agent frameworks (specifically agent frameworks that integrate ontologies),
despite the fact that some of the logic-based knowledge extraction techniques (such as
strongest necessary conditions) are developed for the specific case of agent communi-
cation [Lin01, DLS01, DLS07]. Furthermore, while some of the logic-based knowl-
edge extraction techniques are developed for agent communication, we find the study
of such techniques to be primarily theoretical in nature (i.e., lacking implementations,
evaluations or empirical studies).

91

92 CHAPTER 4. SETTING THE SCENE FOR THE REST OF THE THESIS

Practical implementations are required for the evaluation and analysis of any al-
gorithm. Our research primarily focuses on description logics, and as such, we are
primarily interested in methods and implementations of knowledge extraction tech-
niques that can be implemented or adopted for description logics. Some of the meth-
ods for extracting and projecting knowledge (such as uniform interpolation and mod-
ule extraction) discussed in Chapter 2 have existing formal specifications and practi-
cal implementations in description logics. Other knowledge extraction methods such
as Craig interpolation and strongest necessary conditions lack formal specifications
and practical implementations in description logics. In a later section (Section 9.2)
we address and discuss how knowledge extraction techniques that have practical im-
plementations may be adopted into agent communication. In Chapter 5 we discuss
logic-based extraction methods that either lack implementation for description logics
or are novel. Specifically, we are interested in techniques that can be used to convey
uncommon/inaccessible symbols using only terms that are shared/accessible by agents
and their communication partners. Because we require that all conveyed knowledge
should be represented only using symbols that all communicating agents understand,
uniform interpolation will be an important aspect of our implementation and evalua-
tion, as a uniform interpolant is a restriction of all the knowledge in a knowledge base
with respect to a given signature.

Of the existing and discussed logic-based knowledge extraction techniques, strongest
necessary conditions and weakest sufficient conditions are the most commonly associ-
ated with agent communication [Lin01, DLS01, DLS07, SLZ04]. Strongest necessary
conditions and weakest sufficient conditions have been studied and implemented in
propositional logic [Lin01], first-order logic [DLS01], and second-order logic [DLS07,
Wer12, Wer14]; however, we find that description logic adaptations are lacking. Most
of the existing implementations of strongest necessary conditions and weakest suffi-
cient conditions are based on uniform interpolation [Lin01, DLS01, DLS07] or projec-

tion and circumscription [Wer12, Wer14], thus further highlighting the importance of
uniform interpolation in this research.

4.1 DL of focus (ALC)

Several practical implementations for extracting uniform interpolants exists for de-
scription logics as expressive as ALCOQ H , these include LETHE [PK15a] and FAME
[YZ18]. However, LETHE is the choice of implementation that all the tools developed

4.2. APPROACH TO CONVEYING SYMBOLS 93

in this chapter are based on because its implementation is the only one that supports
general TBoxes and is guaranteed to extract interpolants by extending the language
with fixpoint operators. The completeness of the uniform interpolation method used is
imperative to providing a solid foundation for all empirical evaluations: any empirical
evaluation that is performed using an incomplete interpolation method gives room for
doubt of the validity of any empirical evaluation or analysis. If an incomplete uniform
interpolation method (i.e., a uniform interpolation method that sometimes returns in-
complete uniform interpolants) is used, and a negative result is obtained, it would be
unclear as to whether the negative result is a true negative result or whether it is due
to the incompleteness of the results of the interpolation method used. In this way,
using an incomplete interpolation method undermines empirical evaluation, and anal-
ysis. Because of this constraint on completeness, all points of evaluation and analysis
in this thesis are restricted to input ontologies with constructs that are no more expres-
sive than ALC . It is worth noting that while the theoretical specification of LETHE
is a complete interpolation method for ALC (as opposed to FAME), in practice its
software implementation may contain bugs or other overlooked issues that make the
implementation incomplete.

4.2 Approach to Conveying Symbols

Let O be an ontology and Σ a subset signature of O such that Σ⊆ sig(O). Throughout
this thesis, we are interested in the specific problem of conveying symbols that belong
to sig(O) \ Σ using only symbols in Σ. The term convey or conveying may change
depending on the type of symbol being conveyed. Because we restrict ourselves to the
description logic ALC , we are only interested in conveying concept names and roles.

Let A be a concept name not in Σ. If A has a definition C such that O |= A ≡ C

and sig(C) ⊆ Σ, then C is an exact representation of A in Σ. However, if A has no
such definition C, we are interested in extracting a superconcept C and subconcept
D (depending on the scenario) such that sig(C) ⊆ Σ, sig(D) ⊆ Σ, O |= A v C and
O |=DvA. Furthermore, we would like both for C and D to be as close to A as possible
(in terms of subsumption) to capture the maximally precise subsumer or subsumee of
A with respect to Σ.

Let r be a role not in Σ. We are interested in conveying the closest approximation
of the domain C or range D of r such that sig(C)⊆ Σ, sig(D)⊆ Σ, O |= ∃r.>vC and
O |=>v ∀r.D.

94 CHAPTER 4. SETTING THE SCENE FOR THE REST OF THE THESIS

Thus when we say “conveying a concept C” what we mean is that we convey a
definition, a subsumer, or a subsumee of C. Similarly, when we say “conveying a role
r” what this means is that we are either conveying an approximation of a domain of r

that does not contain r in its signature or similarly, an approximation of a range of r

that does not contain r in its signature.

Chapter 5

Realising Knowledge Extraction for
DL

This chapter is organised as follows: in Section 5.1 we realise and adopt the notions of
strongest necessary conditions and weakest sufficient conditions to description logics.
In Section 5.2 we discuss all the novel logic-based knowledge extraction techniques
developed in the thesis, including compiled superconcepts, compiled subconcepts, do-

main extraction, and range extraction.

5.1 Defining Strongest Necessary and Weakest Suffi-
cient Conditions in DL

5.1.1 Motivation

The knowledge extraction techniques discussed in Chapter 2 include uniform interpo-

lation, module extraction, strongest necessary conditions, and weakest sufficient condi-

tions. However, only uniform interpolation and module extraction have existing prac-
tical implementations in description logics. The communication scenario of interest in
this thesis is conveying concepts using only symbols from a restricted signature (that
reflects the common signature of an agent with a communication partner), thus it may
be tempting to assume that methods such as uniform interpolation or module extrac-
tion will suffice. Uniform interpolation provides the ability to restrict the knowledge
in an ontology to a specific signature, thus we may easily fix the input signature to be
the signature of the communicating agents. Module extraction provides the ability to
extract a subset of an ontology called a module that captures knowledge relating to an

95

96 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

input signature (in a fashion that ensures the original ontology is a conservative exten-
sion), thus to extract knowledge about a specific concept from an ontology, we may
simply extract a module for the signature of the concept. However, given a restricted
signature Σ, the existing implementations for extracting modules are not guaranteed to
return modules whose signatures are within Σ. Given an ontology O, a concept A and a
restricted signature Σ such that A ∈ sig(O), A 6∈ Σ and Σ⊂ sig(O), a simple algorithm
to extract a description of A using only symbols in Σ is simply to extract a module M
for input signature {A} and restrict M to Σ using uniform interpolation (with the goal
of the output being a concept that describes A). We demonstrate (through the use of
examples), that this simple approach does not suffice.

Example 5.1.1. Take O to be:

α1 : A1uA2 v B2tB3 α2 : A3 v B3t¬A1

Let Σ = sig(O)\{A1}.
Suppose an agent is attempting to convey a description of A1 with respect to Σ using
the method described above, i.e., by extracting the bottom module for A1 (in order to
filter axioms in O that are generally relevant to A1) and then restrict the extracted mod-
ule to Σ using uniform interpolation. The bottom module extracted for A1 with respect
to O is O. The uniform interpolant for O with respect to sig(O)\{A1} is the empty set
(/0) which does not contain any information about A1.
However observe that O |= A1 v¬A3tB3 and B3,A3 ∈ Σ. This means that there exists
a description (specifically a subsumer) for A1 that can be expressed only using sym-
bols in Σ; however, this description can not be extracted with the sole use of uniform
interpolation or module extraction.

Example 5.1.1 illustrates why uniform interpolation and module extraction alone
are not sufficient for extracting descriptions of concepts. A possible solution to the
approach used in Example 5.1.1 to ensure that the concept being conveyed is always
within the signature of interest or added to the signature of interest (with the goal of
the output being a set of axioms that describe A): observe that for the ontology O from
Example 5.1.1, a uniform interpolant of O with respect to Σ∪A1 is O.

Even if the concept intended to be conveyed is within the signature of interest,
another issue that arises with only using uniform interpolation and module extraction
is that sometimes the information preserved does not explicitly state information about
the concept to be conveyed.

5.1. DEFINING SNC(S) AND WSC(S) 97

Example 5.1.2. Take O to be:

α1 : A1uA2 v B2uB3 α2 : B2 v A1 α3 : A1 vC1 α4 : C1 vC3

α5 : C3 v A2 α6 : C2 vC4

Let Σ = sig(O)\{C3}.
Suppose an agent is attempting to convey a description of A1 with respect to Σ by
extracting the bottom module for A1 of interest and then restrict the module to Σ using
uniform interpolation. The bottom module extracted for A1 with respect to O is O. The
uniform interpolant for O with respect to Σ is:

α1 : A1uA2 v B2uB3 α2 : B2 v A1 α3 : A1 vC1 α4 : C1 v A2

α5 : C2 vC4

On observing the axiom A1vC1, the agent may naively convey C1 as an approximation
of A1; however, B2 is a more accurate representation of A1 with respect to Σ, as O |=
A1 ≡ B2.

Example 5.1.2 also illustrates why uniform interpolation and module extraction
alone are not sufficient: depending on the common vocabulary, a uniform interpolant
may contain axioms unrelated to the concept an agent wants to share information about,
we consider such axioms irrelevant. For example, the axiom α5 in the uniform inter-
polant from Example 5.1.2, has nothing to do with the concept A1; filtering out relevant
information about A1 in the midst of redundant axioms is critical to maximally convey
a precise description of A1, while uniform interpolation and module extraction may
provide a basis for restricting axioms in an ontology to a signature, SNCs and WSCs
are defined to be more suitable for extracting a superconcept and subconcept of a con-
cept, which form a more precise description as opposed to a uniform interpolant or a
module.

5.1.2 Realisation

SNCs and WSCs have been well defined in propositional logic, first order logic and
second order logic. Our formal adaptations of strongest necessary and weakest suf-
ficient conditions in the context of description logic is specified in Definition 32 and
Definition 33.

Definition 32 ((Strongest) Necessary Conditions). Let L be a description logic, Σ be

a set of concept and role names, X a concept in L , and O an ontology in L such

98 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

that Σ ⊆ sig(O). We define a necessary condition of X over Σ relative to O to be any

concept C in L such that sig(C) ⊆ Σ and O |= X v C. C is a strongest necessary
condition, denoted SNC(X ;O;Σ), if for any other necessary condition C′ in L of X

over Σ relative to O we have that O |= C v C′. C is a minimal strongest necessary

condition, denoted SNCM(X ;O;Σ), if for any strongest necessary condition C′ of X

over Σ relative to O we have that sig(C)⊆ sig(C′).

Definition 33 ((Weakest) Sufficient Conditions). Let L be a description logic Σ be a

set of concept and role names, X a concept in L , and O an ontology in L , such that

Σ⊆ sig(O). We define a sufficient condition of X over Σ relative to O to be any concept

C in L such that sig(C) ⊆ Σ and O |= C v X. C is a weakest sufficient condition,

denoted WSC(X ;O;Σ), if for any other sufficient condition C′ in L of X over Σ relative

to O we have that O |= C′ vC. C is a minimal weakest sufficient condition, denoted

WSCM(X ;O;Σ), if for any strongest necessary condition C′ of X over Σ relative to O

we have that sig(C)⊆ sig(C′).

Observe that an SNC (WSC) forms a maximally precise subsumer (subsumee) of a
concept X with respect to an ontology O and signature Σ for a given description logic
L . Thus SNCs (WSCs) may be used to form a maximally precise knowledge structure
that describes a concept; which is one of the desirable properties of knowledge struc-
tures discussed in Chapter 1. If the description logic L is clear, we do not mention it
explicitly. We lift Lemma 2 by Doherty and Lukaszewicz [DLS01] to construct an al-
gorithm to extract strongest necessary conditions. Lemma 2 suggests that for any first
order formula X , set of relation symbols Σ, and closed theory O, an SNC is a uniform
interpolant for O∧X over Σ. Because description logics are decidable fragments of
first-order logic, one may assume that in DL we can extract the SNC for a concept
name X over a signature Σ, and ontology O by extracting the uniform interpolant for
O∧X over Σ; however, O∧X can not be simply represented in description logic (at
least not without grounding X with an individual constant). To illustrate why we can
not extract an SNC for a concept name X over a signature Σ, and ontology O by ex-
tracting the uniform interpolant for O over Σ (following Lemma 2), take O to be the
following ontology:

α1 : A v B α2 : W v A α3 : C v D α4 : E v F

α5 : F v G α6 : B v ¬ D α7 : B v ¬ G α8 : G v ¬ D

Let Σ = {A,D,E,G,B}, to extract the SNC for W with respect to O and Σ we extract
a uniform interpolant over O,W which is {α1, α4, α5, α6, α7, α8}. As can been

5.1. DEFINING SNC(S) AND WSC(S) 99

Figure 5.1: Illustration of (Strongest) Necessary Conditions and (Weakest) Sufficient
Conditions. ‘SC’ stands for ‘sufficient condition’. ‘NC’ stands for ‘necessary condi-
tion’. The horizontal axis has a subsumption ordering such that the concept A appears
to the left of a concept B iff O |= Av B.

seen, there are axioms in the interpolant not related to W , the TBox axiom E v G, for
example, is not related to W ; we call all such axioms irrelevant.

If we are to use uniform interpolation to extract SNCs and WSCs, we must find a
way to filter concepts relevant to the concept of interest. We achieve this by grounding
the concept of interest using a fresh individual. That is, to leverage Lemma 2 to extract
a strongest necessary condition of a concept X with respect to a signature Σ under an
ontology O, we ground X with some fresh individual a before extracting a uniform
interpolant of O with respect to Σ. The idea is that concepts in the resulting uniform
interpolant with a in their signatures are necessary conditions of X under O expressed
only using symbols in Σ; this is proven in Proposition 4 below. Let O be an ontology, Σ

a subset signature of O, a a fresh individual such that a 6∈ O and X a concept name for
which we wish to extract an SNC for, with respect to O and Σ. We extract a uniform
interpolant V over Σ for O∪{X(a)} and solve the issue of redundancies in the result by
returning a conjunction of concepts of the form C(a) ∈V : it follows from Proposition
4 that all such concepts C are necessary conditions of X , and thus their conjunction
will satisfy Definition 32. This approach is outlined in more detail in Algorithm 5.1.1.

100 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

Proposition 4. Let O be an ALC ontology, X a concept in ALC , Σ ⊆ sig(O), and a

a fresh individual such that a /∈ sig(O) and sig(X) 6⊆ Σ. Suppose O 6|= X(a). Let V be

a uniform interpolant for Σ∪{a} relative to O∪{X(a)}, we have that V |= C(a) iff

O |= X vC where C is an arbitrary ALC -concept such that sig(C)⊆ Σ.

Proof. If V |=C(a), then O |= X vC: Since V is a uniform interpolant for Σ∪{a} of
O∪{X(a)}, O∪{X(a)} |=V . Given that V |=C(a), we have that O∪{X(a)} |=C(a).
This implies O∪{X(a)},¬C(a) is unsatisfiable. Hence O |= X vC since O |= X vC

iff O∪X(a′),¬C(a′) |=⊥ for some fresh individual a′ [BCM+03].
If O |= X vC, then V |=C(a): Because O |= X vC, for every interpretation I such

that I |= O, we have that: x ∈ XI implies x ∈CI for any individual x ∈ ∆I . Therefore,
given a fresh individual a not occuring in sig(O), O∪ {X(a)} |= C(a). Since V is
a uniform interpolant for Σ∪ {a} of O∪ {X(a)}, it follows from Definition 18 that
V |=C(a).

A consequence of Proposition 4 is that axioms in V containing a in their signature
are necessary conditions of X ; thus, because V is a uniform interpolant of O for Σ,
uC(a)∈V C is a strongest necessary of X . IfuC(a)∈V C is a not a strongest necessary
of X , then V is not a uniform interpolant of O for Σ because there will exist some
concept C′ such that sig(C′)⊆ Σ, O |=C′(a), and V 6|=C′(a).

ALGORITHM 5.1.1

Input: An ontology O, a concept X , a signature Σ, an individual a where Σ ⊆
sig(O), X ∈ sig(O), X /∈ Σ, a /∈ sig(O).
Output: An ALC concept C which is an SNC of X .

Step 1: Add X(a) to O to get O′.

Step 2: Add a to Σ to get Σ′ and extract a uniform interpolant denoted V over
O′ with respect to Σ′.

Step 3: ReturnuC(a)∈V C as SNC(X ;O;Σ).

Weakest sufficient conditions are a dual of strongest necessary conditions: let O

be an ontology, X be a concept name. For any concept C such that O |= C v X , we
have that O |= ¬X v ¬C, hence, if we extract a strongest necessary for ¬X the result
obtained will be a negation of a weakest sufficient condition for X , thus in order to
extract a weakest sufficient conditions for a concept X , we extract a strongest necessary
condition of ¬X and negate the result.

5.1. DEFINING SNC(S) AND WSC(S) 101

ALGORITHM 5.1.2

Input: An ontology O, a concept X , a signature Σ, an individual a where Σ ⊆
sig(O), X ∈ sig(O), X /∈ Σ, a /∈ sig(O).
Output: An ALC concept C which is a WSC of X .

Step 1: Add ¬X(a) to O to get O′.

Step 2: Add a to Σ to get Σ′ and extract a uniform interpolant denoted V over
O′ with respect to Σ′.

Step 3: Return ¬uC(a)∈V C as WSC(X ;O;Σ).

When extracting information about a defined concept, it is desirable to capture its
definition if possible as the definition is effectively a synonym for the concept.

Lemma 5. Let O be an ontology, Σ a subset of sig(O) and X a concept such that

sig(X)⊆ sig(O). Then O |=WSC(X ;O;Σ)v SNC(X ;O;Σ).

Proof. This follows trivially from Definitions 32 and 33 because:

1. O |=WSC(X ;O;Σ)v X

2. O |= X v SNC(X ;O;Σ)

Theorem 6. Let O be an ontology, Σ a subset of sig(O) and C a concept such that

sig(C) 6⊆ Σ, a concept D with O |= C ≡ D, and sig(D) ⊆ Σ. Then (i) O |= C ≡
SNC(C;O;Σ), and therefore, (ii) SNC(C;O;Σ) is an explicit definition for C under

O.

Proof. Let O |= C ≡ D. Then it follows that O |= C v D. Since sig(D) ⊆ Σ, it fol-
lows from Definition 32 that O |= SNC(C;O;Σ)v D. It also follows that O |= DvC,
and since O |= SNC(C;O;Σ) v D, it follows that O |= SNC(C;O;Σ) vC. Thus, O |=
SNC(C;O;Σ) v C,C v SNC(C;O;Σ) which means that O |= C ≡ SNC(C;O;Σ) and
(i) holds. If there exists a concept D such that O |= C ≡ D and sig(D) ⊆ Σ then C is
explicitly defined, thus if (i) holds, then (ii) holds.

It follows from Theorem 6 that strongest necessary conditions can be used as a
means to extract definitions for concepts that are explicitly defined with respect to a
restricted signature. In the same way Theorem 7 demonstrates that weakest sufficient
conditions may also be used as a means to extract definitions.

102 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

Theorem 7. Let O be an ontology, Σ a subset of sig(O), C a concept such that sig(C) 6⊆
Σ, If there exists a concept D such that O |=C ≡ D, and sig(D)⊆ Σ, then (i) O |=C ≡
WSC(C;O;Σ), and therefore, (ii) WSC(C;O;Σ) is an explicit definition for C under O.

The proof of Theorem 7 is analogous to the proof of Theorem 6

Strongest necessary conditions and weakest sufficient conditions may be useful in
extracting descriptions of concepts but still maintain logical properties of definitions in
the instance that the concept of interest is defined. Using the implicit definability test
discussed in Section 2.2.1, we may determine if a concept is implicitly definable with
respect to a restricted signature of an ontology, thus given that the Beth definability
property holds for the description logic ALC , we can conclude that if the implicit
definability test passes for a concept, then the concept has an explicit definition.

Example 5.1.3. Take O to be:

α1 : A ≡ B t C α2 : B v ¬ C

C is explicitly definable under O with respect to sig(O) \ {C}. A strongest necessary
condition for C with respect to {A,B} extracted using Algorithm 5.1.1, is Au¬B which
is equivalent to C under O.

5.1.3 Complexity

Algorithm 5.1.1 and Algorithm 5.1.2 call the forgetting algorithm at most once, and
thus bounded by the computational complexity of the forgetting algorithm used. Ex-
tracting a uniform interpolant using LETHE has been shown to have a 2EXPTIME
worst-case space complexity [WDP19, PK15c] in the number of symbols contained in
the ontology; thus our implementations of Algorithm 5.1.1 and Algorithm 5.1.2 have
a 2EXPTIME worst-case space complexity.

In Chapter 6 we empirically evaluate the performance Algorithm 5.1.1 in extracting
definitions from ontologies.

5.1.4 Relation to Prime Implicates and Prime Implicants

Prime implicates and prime implicants specify a notion of primeness among concepts
with respect to an empty ontology. This notion of primeness loosely corresponds with
the property of being a maximally precise subsumer of a given concept of interest with

respect to the empty ontology. However, for our application of interest (i.e., an agent

5.1. DEFINING SNC(S) AND WSC(S) 103

being able to describe a concept in its ontology with respect to a restricted vocabulary),
the ontology of the agent and the restricted vocabulary need to be taken into account.
Prime implicates and implicants do not factor-in a restricted vocabulary. We may ex-
tend the description of prime implicates (see Section 2.2.6) to fit our application needs
as follows:

Let O be an ontology and Σ be a signature such that Σ⊆ sig(O). A clause Cl (as
specified in Section 2.2.6) is said to be a prime implicate of a class expression C iff:

1. sig(Cl)⊆ Σ

2. O |=C vCl

3. For any Cl′ such that sig(Cl′)⊆ Σ, if O |=Cl′ vCl then O |=Cl vCl′.

This description achieves maximal precision for clausal concepts; however, for our
application of communicating agents, it does not matter if the concept to be conveyed
is clausal or not, i.e., we are interested in free-form concepts. Dropping the clausal re-
quirement of the above-extended description of prime implicates results in a definition
analogous to the definition of strongest necessary conditions. The dual case holds for
prime implicants and weakest sufficient conditions. Thus, a notion of prime implicates
and prime implicants adjusted to fit our application of communicating agents will yield
notions analogous to strongest necessary and weakest sufficient conditions.

5.1.5 Relation to Least Common Subsumers

Since by definition an LCS is a subsumer, an algorithm for extracting LCSs may be
used to extract a subsumer for a concept C by providing a singleton set {C} as input
to the algorithm. Restricting the definition of LCS (Definition 28) to a single concept
yields the following description:

Let L be a description logic and O be an L-ontology. An L-concept C is the least

common subsumer of an L-concept C0 iff:

1. O |=C0 vC, and

2. For any other concept C′ that satisfies (1), we have that O |=C vC′

Observe that this description defines the LCS of a concept C to be its maximal sub-
sumer with respect to O; however, in all cases, the LCS of a concept C will always

104 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

be C. Furthermore, this description does not take into account a restricted signature Σ

which is important for our intended application of communicated agents. Adding such
a restriction will result in the following description:

Let L be a description logic, O be an L-ontology, and Σ be a subset of sig(O). An
L-concept C is the least common subsumer of an L-concept C0 iff:

1. O |=C0 vC,

2. sig(C)⊆ Σ, and

3. For any other concept C′ that satisfies (1) and (2), we have that O |=C vC′

Observe that with the added signature restriction constraint, we obtain a description
analogous to strongest necessary conditions.

5.1.6 Limitations

Without restrictions on the destination description logic, strongest necessary conditions
do not always exist within certain description logics without allowing for additional
constructs.

It would seem strongest necessary conditions do not always exist in the description
logic ALC or any extension of ALC that do not allow for role inverses for input ALC
ontologies and concepts. For example, if we fix the description logic to be ALC , and
take O to be:

1. A1 v ∀r.¬A2

Fix Σ to be {r, A1}. A strongest necessary condition of A2 for Σ in ALCI under O is
∀r−.¬A1, and thus would seem inexpressible in ALC . However, there is some work
by De Giacomo [Gia96] suggesting that ALCI ontologies can be rewritten to ALC
ontologies which suggests that ∀r−.¬A1 is expressible without the use of role inverses.

Theorem 8. Strongest necessary conditions do not always exist in the description logic

EL for input EL ontologies and concepts.

Proof. The proof is by example. Fix the description logic to be EL , and take O to be:

1. A1 v B

5.1. DEFINING SNC(S) AND WSC(S) 105

2. A1uA2 v⊥

Fix Σ to be {B, A2, C}. A strongest necessary condition of A for Σ in ALC under O is
Bu¬A2); however, this is not expressible in EL .

Theorem 9. Strongest necessary conditions do not always exist in the description logic

ALC or any extensions of ALC that do not allow for unqualified number restrictions

or similar constructors for input ALC ontologies and concepts.

Proof. The proof is by example. Fix the description logic to be ALC , and take O to
be:

1. Av ∃r.¬B

2. Av ∃r.B

Fix Σ to be {r}. A strongest necessary condition of A over Σ is not expressible in ALC .

Remark: It is worth noting that in a more expressive DL such as ALCN a
strongest necessary condition of A over Σ under O can be expressed as ≥ 2r.>.

Theorem 10. Strongest necessary conditions do not always exist in the description

logic ALC or any extensions of ALC that do not allow for qualified number restric-

tions or similar constructors for input ALC ontologies and concepts.

Proof. The proof is by example. Fix the description logic to be ALC , and take O to
be:

1. Av ∃r.B1

2. Av ∃r.B2

3. B1uB2 v⊥

4. B1 vC

5. B2 vC

Fix Σ to be {r, C}. A strongest necessary condition of A for Σ in ALCQ under O is ≥
2r.C; however, this is not expressible without the use of qualified number restrictions.

106 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

A limitation of Algorithm 5.1.1 and Algorithm 5.1.2 is that the size of their results
are completely dependent on the uniform interpolation algorithm used. As an example,
take LETHE to be the uniform interpolation algorithm used to implement Algorithm
5.1.1 and Algorithm 5.1.2. Because LETHE is saturation based, this means that it is
possible for superfluous information to be included in the result, thus ensuring that it is
very unlikely that Algorithm 5.1.1 and Algorithm 5.1.2 can be used to extract minimal
strongest necessary or weakest sufficient conditions. Let O be {A ≡ B,A v C}. A
strongest necessary of A with respect to sig(O)\{A} is B. However, the result returned
by an implementation of Algorithm 5.1.1 that is based on an implementation of LETHE
returns BuC (observe that O |= BuC ≡ B).

Up to this point we have discussed methods for extracting descriptions of concepts
in an ontology using SNCs and WSCs. In the next section, we discuss methods de-
veloped to extract descriptions of concepts that SNCs and WSCs are not guaranteed to
capture. Furthermore, we discuss methods developed to extract descriptions of roles.

5.2 Developed Approaches

5.2.1 Compiled Superconcepts and Compiled Subconcepts

A caveat that is associated with SNCs and WSCs is that their desirable logical prop-
erties only hold with respect to the ontology of interest. Here by desirable logical

properties associated with SNCs and WSCs, we mean the fact that a strongest nec-
essary condition (or weakest sufficient condition) of a concept X with respect to a
signature Σ under an ontology O, is the strongest (weakest) (in terms of subsumption
as specified in Definition 32 and Definition 33) subsumer (subsumee) of X with re-
spect to O. Intuitively this means a strongest necessary condition (weakest sufficient
condition) of X is the closest upper (lower) approximation of X given the background
ontology O; outside the context of the background ontology, the SNC (WSC) of X

is not necessarily the closest approximation of X . In the context of communicating
agents, the guarantees provided by the logical properties SNCs and WSCs do not nec-
essarily hold because the agents have different ontologies. Given an agent AG1 with
ontology O1 such that AG1 has a common signature Σ with a communication part-
ner AG2, SNC(X ;O1;Σ) for an uncommon concept name X in AG1’s ontology is not
necessarily specific or informative enough for AG2 to understand the meaning of X .

Example 5.2.1. Consider agent AG1 with ontology O1:

5.2. DEVELOPED APPROACHES 107

α1 : A v B α2 : B v ∃r.(C u D) α3 : D v ∃r.E

And agent AG2 with ontology O2:

β1 : B v F β2 : F v ∀r.P β3 : G ≡ ∃r.(C u D)

The common signature is Σ = {B,r,D}. A strongest necessary condition for A with
respect to Σ under O1 is B. If A1 conveys B in place of A, this could lead to com-
munication errors as the interpretation of B in O1 is completely different from the
interpretation of B in O2: O1 |= Bv ∃r.D, and O2 |= Bv ∀r.P.

As another example consider agent AG1 with ontology O1 = {A1vA4,A3≡A1,A4v
∃r.C1,A1 v B1} and AG2 with ontology O2 = {A2 v B1,A2 v ∀r.C1,A5 ≡ ∃r.C1}, the
common signature is {C1, B1, r}, if AG1 wishes to requested for instances of A3 from
AG2, it may extract a strongest necessary condition for A3 as B1 and thus convey B1

in place of A3, and agent AG2 may then proceed to return instances of B1 to AG1;
however, O1 |= A3 v ∃r.C1 and O2 |= A5 ≡ ∃r.C1, thus there may be instances of A5 or
∃r.C1 that may also be instances of A3 that will be excluded from the set of instances
returned by agent AG2. An ideal subsumer for A3 with respect to the common signa-
ture is ∃r.C1uB1, which when conveyed to agent AG2 will ensure that agent AG2 also
contains instances of A5 and ∃r.C1 as possible instances of A3.

The only instance in which the desirable properties of SNCs and WSCs hold is if
the common signature has the same interpretation in the ontologies of the respective
communicating agents. Thus a desirable prerequisite for agents attempting to com-
municate using SNCs/WSCs is for all symbols in their common signature to have the
same interpretation in their respective ontologies. However, such a prerequisite may
be too strong and unattainable in some cases. In cases where such a requirement is too
strong or unattainable, a desirable ability for an agent to have is to extract everything
its ontology says about a concept. We formalise this ability as the ability to extract
Compiled Superconcepts (Definition 34) and Compiled Subconcepts (Definition 35).

Definition 34 (Compiled Superconcept). Let L be a description logic, O be an L-

ontology, A an L-concept name and C an L concept. We call C an L compiled super-
concept of A if O |= A vC and for any other L-concept C′ such that O |= A vC′, we

have that {A vC} |= A vC′. We denote the compiled superconcept CSP(A;O) (CSP

for short) and CSP(A;O;Σ) if it is restricted to a signature Σ (i.e., sig(CSP(A;O;Σ))⊆
Σ).

108 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

Definition 35 (Compiled Subconcept). Let L be a description logic, O be an L-

ontology, A an L-concept name and C an L concept. We call C an L compiled sub-
concept of A if O |=C v A and for any other L-concept C′ such that O |=C′ v A , we

have that {C v A} |=C′ v A. We denote the compiled subconcept CSB(A;O) (CSB for

short) and CSB(A;O;Σ) if it is restricted to a signature Σ (i.e., sig(CSB(A;O;Σ))⊆ Σ).

Remark 1. In Definition 34 we use the condition {AvC} |= AvC′. At a first glance,

it may be tempting to assume that this is unnecessary as it seems that {AvC} |=AvC′

is equivalent to /0 |= C v C′. For example, the compiled superconcept of A w.r.t O =

{A v B,B vC} is AuBuC, and indeed, for every concept D such that O |= A v D,

we have that /0 |= AuBuC v D. However, it is worth noting that if A exists in an

interesting cycle (see Section 2.2.1), /0 |= C v C′ does not capture the essence of a

compiled superconcept. As an example consider the ontology O = {Av ∃r.A,BvC};
A compiled superconcept of A w.r.t to O is ∃r.A, but we have that O |= Av ∃r.∃r.A and
/0 6|= ∃r.Av ∃r.∃r.A. However, observe that {Av ∃r.A} |= Av ∃r.∃r.A.

The dual case holds for compiled subconcepts.

Property 1 (CSPs are Strongest Necessary Conditions). If C is an ALC compiled

superconcept of a concept name A with respect to an ALC ontology O retricted to a

signature Σ, then C is also a strongest necessary condition of A with respect to O .

Proof. It follows from Definition 34 that:

1. O |= AvC.

2. sig(C)⊆ Σ.

As such, for any other ALC -concept C′ such that O |= A v C′ and sig(C′) ⊆ Σ, we
have that {A vC} |= A vC′. Since O |= A vC, we have that O ≡ O∪{A vC}, and
thus it also follows that for any ALC -concept C′ such that O |= A vC′, we have that
O |=C vC′, and thus C is a strongest necessary condition of A with respect to O .

Property 2 (CSBs are Weakest Sufficient Conditions). If C is an ALC compiled sub-

concept of a concept name A with respect to an ALC ontology O retricted to a signa-

ture Σ, then C is also a weakest sufficient condition of A with respect to O.

Proof. It follows from Definition 35 that:

1. O |=C v A.

5.2. DEVELOPED APPROACHES 109

2. sig(C)⊆ Σ.

As such, for any other ALC -concept C′ such that O |= C′ v A and sig(C′) ⊆ Σ, we
have that {C v A} |= C′ v A. Since O |= C v A, we have that O ≡ O∪{C v A}, and
thus it also follows that for any ALC -concept C′ such that O |= C′ v A, we have that
O |=C′ vC, and thus C is a weakest sufficient condition of A with respect to O .

Property 3 (Equisatisfiability of CSPs). If both C and C′ are compiled superconcepts

of a concept X with respect to an ontology O, then O |=C ≡C′.

Proof. Following Definition 34, O |=C vC′ and similarly O |=C′ vC.

Property 4 (Equisatisfiability of CSBs). If both C and C′ are compiled subconcepts of

a concept X with respect to an ontology O, then O |=C ≡C′.

Proof. Following Definition 34, O |=C vC′ and similarly O |=C′ vC.

From Definition 34 and Definition 35, we can observe that compiled subconcepts
are the dual of compiled superconcepts. Similar to the dual nature between strongest
necessary conditions and weakest sufficient conditions, we have that an algorithm for
extracting compiled superconcepts may be easily modified into an algorithm for ex-
tracting compiled subconcepts. Also, it follows from Property 2, Property 1, and
Lemma 5 that for a given ontology O, concept X , and signature Σ such that Σ⊆ sig(O),
O |= CSB(X ;O;Σ) v CSP(X ;O;Σ). Let O be an ontology, X be a concept name, for
any concept C such that O |=C v X , we have that O |= ¬X v ¬C, hence, if we extract
a compiled superconcept for ¬X the result obtained will be a negation of a compiled
subconcept for X

Extracting Compiled Superconcepts and Compiled Subconcepts

Our approach to extracting compiled superconcepts is presented in Algorithm 5.2.1 and
leverages LETHE’s resolution calculus (RESALC) to attempt to extract a compiled su-
perconcept. Let O be an ontology, X a concept for which we wish to extract a CSP, and
a a fresh individual. The intuition here is that we saturate O∪{X(a)} using RESALC to
extract all non-trivial entailments and then conjoin concept expressions C(a) to form a
CSP of X . This is similar to the way LETHE extracts uniform interpolants. To extract
a uniform interpolant, LETHE saturates a structurally transformed ontology to derive
all possible entailments and then eliminates remnant clauses that include the unwanted
signature. By saturating a set of clauses, we mean to exhaustively apply LETHE’s
calculus to a set of clauses to derive a set of inferences.

110 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

ALGORITHM 5.2.1

Input:

1. An ontology O consisting only of TBox axioms.

2. A concept name A

Output: A Compiled Superconcept C of A.

Step 1: Add A(a) to O to get O′.

Step 2: Saturate O′ using RESALC to get ORES.

Step 3: Undo the structural transformation to eliminate all definer symbols in
ORES.

Step 4: ReturnuC(a)∈ORESC as CSP(A;O).

Conjecture 1. Let O be an ALC TBox and X a concept name occuring in O. Let
O′ denote the result of saturating O∪ {X(a)} using the LETHE resolution calculus
RESALC where a is a fresh individual not occuring in O. Let CX denote the conjunction
of all concepts C such that C(a) ∈ O′. Then for any concept C′ such that O |= X vC′,
we have that {X vCX} |= X vC′.

Recall from Remark 1 that the reason we use the notation {X vCX} |= X vC′, as
opposed to /0 |=CX vC′ is to capture cases where X may be involved in an interesting
cycle in O. We show in Lemma 11 that this is not necessary in acyclic terminologies.

Lemma 11. Let CX denote the conjunction of all concepts C such that C(a) ∈ O′ and

X 6∈ sig(C). If O is an acyclic terminology, then we have that {X vCX} |= X vC′ iff
/0 |=CX vC′.

Proof. If /0 |= CX v C′, then {X v CX} |= X v C′: Assume /0 |= CX v C′ and {X v
CX} 6|= X vC′. Hence, there is an interpretation I such that I |= {X vCX} and XI 6⊆
C′I . Also CI

X ⊆C′I since /0 |= CX vC′. However XI ⊆CI
X and XI 6⊆C′I contradicts

CI
X ⊆C′I , thus it must be the case that /0 |=CX vC′ implies {X vCX} |= X vC′.

If {X v CX} |= X v C′, then /0 |= CX v C′: Assume {X v CX} |= X v C′ and
/0 6|=CX vC′. Let I be an interpretation such that CI

X 6⊆C′I . Recall that CX denotes the
conjunction of all concepts C such that C(a) ∈ O′ and X 6∈ sig(C), thus X 6∈ sig(CX),
and we can assume without loss of generality that X 6∈ sig(C′). Thus, we can create
an extension J of I with XJ =CI

X . It then follows that J |= X vCX and (since {X v

5.2. DEVELOPED APPROACHES 111

CX} |= X vC′), J |= X vC′. However, since J is an extension of I , and XJ =CI
X , we

have that XJ =CJ
X , and since CI

X 6⊆C′I , it follows that CJ
X 6⊆C′J which contradicts the

assumption that {X v CX} |= X v C′. Thus, it must be the case that if {X v CX} |=
X vC′, then /0 |=CX vC′.

Let O be a TBox, and A be a concept name, such that A ∈ sig(O). Definition 34
roughly states that for a compiled superconcept C of A w.r.t O, for any other concept C′

such that O |= AvC′, {AvC} |= AvC′. Similarly, Conjecture 1 states that given an
ontology O′ which denotes the result of saturating O∪{A(a)} using the LETHE res-
olution calculus RESALC and a concept CX which denotesuC(a)∈O′C, for any other
concept C′ such that O |= A v C′, we have that {A v CX} |= A v C′; thus, Conjec-
ture 1 may be used to construct an algorithm for extracting compiled superconcepts,
which is what Algorithm 5.2.1 does. Algorithm 5.2.1 leverages Conjecture 1 to ex-
tract a compiled superconcept of A w.r.t O by saturating O∪A(a) using RESALC . The
intuition here is that Algorithm 5.2.1 uses RESALC to derive all relevant clauses of
the form C(a) from O and since O∪{A(a)} |= C′(a) for every concept C′ such that
O |= A v C′, Algorithm 5.2.1 returnsuC(a)∈ORESC ; following Conjecture 1 we be-

lieve thatuC(a)∈ORESC is a compiled superconcept of A, however, this is yet to be
proven.

Example 5.2.2. Consider the ontology O consisting of the following axioms:

1. Av ∀r.(¬BtC)

2. Av ∀r.B

3. A(a)

We have that O |= Av ∀r.C. Since RESALC is interpolation complete, it must be able
to derive ∀r.C(a) if it is to be used to extract a uniform interpolant of O for the signature
{r, C}. Following [Koo15, PK15a], the structural transformation of O is as follows:

1. ¬A(x)t∀r.D1(x)

2. ¬D1(x)t¬B(x)tC(x)

3. ¬A(x)t∀r.D2(x)

4. ¬D2(x)tB(x)

112 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

5. A(a)

The saturation process results in the following clauses:

6. ∀r.D1(a) (Resolution 1, 5 ; σ = [x/a])

7. ¬A(x)t∀r.D12(x) (Role Propagation 1, 3)

8. ¬D12(x)tD1(x)

9. ¬D12(x)tD2(x)

10. ¬D12(x)tB(x) (Resolution 9, 4)

11. ¬D12(x)t¬B(x)tC(x) (Resolution 8, 2)

12. ∀r.D2(a) (Resolution 3, 5 ; σ = [x/a])

13. ¬D12(x)tC(x) (Resolution 10, 11)

14. ∀r.D12(a) (Resolution 7, 5 ; σ = [x/a])

where all symbols Dx (where x ∈N) are introduced definer symbols.
Observe from clauses 6 and 2, we can derive ∀r.(¬BtC)(a). Similarly, from clauses
12, and 4, we can derive ∀r.B(a). From clauses 13, and 14, we can derive ∀r.C(a).

Example 5.2.3. Consider the ontology O consisting of the following axioms:

1. ∃r.Av ∃r.∃r.A

2. X v ∃r.A

3. X(a)

Observe that in the first axiom, we have that sig(∃r.A) ⊆ sig(∃r.∃r.A) and that O |=
∃r.∃r.A(a). It is trivial to see that resolving between axioms 2. and 3. using RESALC

would derive ∃r.A(a). We will now demonstrate that ∃r.∃r.A(a) can be derived by
applying RESALC to O. Following [Koo15, PK15a], the structural transformation of
O is:

1. ∀r.D1(x)t∃r.D2(x)

2. ¬D1(x)t¬A(x)

3. ¬D2(x)t∃r.D3(x)

5.2. DEVELOPED APPROACHES 113

4. ¬D3(x)tA(x)

5. ¬X(x)t∃r.D3(x)

6. X(a)

The saturation process results in the following clauses:

7. ¬X(a)t∃r.D3(a) (Resolution 5, 6 ; σ = [x/a])

8. ∃r.D3(a) (Resolution 7, 6 ; σ = [x/a])

9. ¬D2(x)t∃r.D2(x)t∃r.D13(x) (Role Propagation 1, 3)

10. ¬D13(x)tD1(x)

11. ¬D13(x)tD3(x)

12. ¬X(x)t∃r.D13(x)t∃r.D2(x) (Role Propagation 1, 5)

13. ∃r.D13(a)t∃r.D2(a) (Resolution 12, 6 ; σ = [x/a])

14. ¬D13(x)tA(x) (Resolution 11, 4)

15. ¬D13(x)t¬A(x) (Resolution 10, 2)

16. ¬D13(x) (Resolution 14, 15)

17. ¬X(x)t∃r.D2(x) (Existential Role Restriction Elimination 16, 12)

18. ∃r.D2(a) (Existential Role Restriction Elimination 16, 13 ; σ = [x/a])

Observe from clauses 18, 3, and 4, we can derive ∃r.∃r.A.

Conjecture 1, is the justification for Step 4 of Algorithm 5.2.1 and suggests the that
Algorithm 5.2.1 can extract compiled superconcepts.

Example 5.2.4 highlights the disposition of Algorithm 5.2.1 to also include redun-
dant class expressions in an extracted compiled superconcept. Given a class expression
C =C1uC2uC3u ...uCN representing a compiled superconcept, we deem a class ex-
pression Ci (for i ∈ {1,2,3, ...,N}) redundant if |=Ci v⊥ or |=>vCi.

Example 5.2.4. Consider the ontology

α1 : X v B t∃r.(D1u D2) α2 : D1 v A α3 : B v C α4 : D2 v ¬ A

114 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

A CSP for X with respect to sig(O) extracted using the LETHE saturation algorithm
is:

(∃r.(AuD1)tB) u
(∃r.(D1uD2)tB) u
(∃r.(D1u¬D1)tB) u
(∃r.(D2u¬D2)tB) u
(∃r.(¬AuA)tB) u
(∃r.(¬AuD2)tB) u

BuCuX

However, we have that |= (∃r.⊥tB)≡ (∃r.(D1u¬D1)tB), |= (∃r.⊥tB)≡ (∃r.(D2u
¬D2)tB), |= (∃r.⊥tB) ≡ (∃r.(¬AuA)tB), |= ∃r.⊥ ≡ ⊥ which highlight three re-
dundant class expressions in the result.

A better CSP is as follows:

(∃r.(AuD1)tB) u
(∃r.(D1uD2)tB) u
(∃r.(D1u¬D1)tB) u
(∃r.(¬AuD2)tB) u

BuCuX

In order to get a more precise CSP, first we normalise using the rules in Figure 5.2
adopted from the description logic handbook [BCM+03]. The aim of normalisation is
to reduce redudancies that may occur in concept expressions. For example, the concept
expression Bt¬(Ct¬C) contains the redundancy ¬(Ct¬C) and can be simplified to
B. In practice, saturation often results in such redundancies which further contributes
to redundancies being present in the result of Algorithm 5.2.1. A concept expression
can be normalised by applying a set of rules and transformations such as DeMorgan’s
laws. The normalisation rules in Figure 5.2 consist mainly of two transformations
called norm and simp which are applied recursively to concept expressions to eliminate
redudancies.

Example 5.2.5. Again consider the ontology

α1 : X v B t∃r.(D1u D2) α2 : D1 v A α3 : B v C α4 : D2 v ¬ A

A CSP for X with respect to sig(O) extracted using the LETHE saturation algorithm
with the inclusion of the normalisation rules in Figure 5.2 is:

5.2. DEVELOPED APPROACHES 115

(∃r.(AuD1)tB) u
(∃r.(D1uD2)tB) u
(∃r.(¬AuD2)tB) u

BuCuX

Norm(A) = A for atomic concept name A
Norm(¬C) = Simp(¬Norm(C))

Norm(C1u ...uCn) = Simp(u{Norm(C1)}∪ ...∪{Norm(Cn)})
Norm(C1t ...tCn) = Norm(¬(¬C1u ...u¬Cn))

Norm(∀R.C) = Simp(∀R.Norm(C))

Norm(∃R.C) = Norm(¬∀R.¬C)

Simp(A) = A for atomic concept name A

Simp(¬C) =

⊥ if C =>
> if C =⊥

Simp(D) if C = ¬D
¬C otherwise

Simp(uS) =

⊥ if ⊥ ∈ S
⊥ if {C,¬C} v S
> if S = /0

Simp(S\{>}) if > ∈ S
Simp(uP∪S\{u{P}}) if u{P} ∈ S

uS otherwise

Simp(∀S) =

{
> if C =>
∀R.C otherwise

Where uS denotes C1u ...uCn for all Ci ∈ S.

Figure 5.2: Normalisation for ALC [BCM+03]

To saturate an ontology O, LETHE’s calculus must be applied to all symbols in
sig(O). This is an expensive operation, as such we developed Algorithm 5.2.2 which
is an optimised version of Algorithm 5.2.1. Intuitively Algorithm 5.2.2 restricts the
saturation of the input ontology to symbols that occur in the ABox. Algorithm 5.2.2
can be used to extract CSPs with respect to a restricted signature by providing a uni-
form interpolant as the input O. Let X be a concept name in an ontology O such that

116 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

we wish to extract a CSP for X with respect to a subset signature of sig(O) Σ, first we
extract SNC(X ;O;Σ) and a uniform interpolant V for Σ under O, then we provide V
as the input ontology O and SNC(X ;O;Σ) as the input concept X to Algorithm 5.2.2.

Complexity Algorithm 5.2.2 includes a saturation process that produces a set of
clauses that can be double exponential in size relative to the input ontology [Koo15].
The saturation process is executed at most N times where N is the number of symbols
in the ontology, thus adding a linear complexity to Algorithm 5.2.2. Thus Algorithm
5.2.2 has a worst case double exponential size complexity relative to the size of the
input ontology.

5.2. DEVELOPED APPROACHES 117

ALGORITHM 5.2.2

Input: 1. An ontology O consisting only of TBoxes 2. A concept X .
Output: A Compiled Superconcept C of X .

1. Add X(a) to O to get O′.

2. Structurally transform O′ following [PK15d] to get a set of clauses N .

3. initialise an empty queue Q of symbols to be saturated.

4. initialise an empty set F to keep track of symbols that have been saturated.

5. for every clause C in N with a in its signature do:

for every role or concept symbol S ∈ sig(C) do:

if S 6∈ F do:

· Q ← Q ∪S

endfor

while Q 6= /0 do:

· S′ = dequeue(Q)

· F ← F ∪S′

· Perform all possible inferences on S′ to the set N using

the rules in Figure 2.3 and add all inferences to N .

for every clause C in N with a in its signature do:

for every role or concept symbol S ∈ sig(C) do:

if S 6∈ F do:

· Q ← Q ∪S

· Eliminate all definer symbols from N following [PK15d]

endwhile

endfor

6. Reverse the structural transformation on N to get VS

7. Normalise VS using the rules in Figure 5.2.

8. Return a conjunction of all concepts C for every C(i) ∈ VS to get
CSP(X ;O;Σ).

118 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

5.2.2 Conveying Information about Roles

All the methods discussed so far are designed to convey concept names in an ontology;
however, there are instances in which it may be useful for an agent to have the ability
to convey some information about the roles in its ontology. In description logics that
allow for constructs such as role-hierarchies and role-chaining, roles may be described
using other roles. However, since we restrict our investigation to ALC , we can only
describe roles using concept names. Specifically, in ALC and less expressive descrip-
tion logics such as EL , we may describe a role in terms of approximates of its domain
and range because they give some information about what can be inferred from role as-
sertions. This section studies and develops algorithms based on uniform interpolation
that can be used to extract approximates of the domain and range of a role.

Let r be a role, the domain of r is ∃r.>, and the range of r is ∃r−.>. However,
because we are interested in conveying the domain of r without using r, we rely on
finding concepts C such that r /∈ sig(C) and ∃r.>vC or a strongest necessary condition
of all such concepts C to find the closest approximation of the domain of r. Similarly,
because we are interested in conveying the range of r without using r, we rely on
finding concepts D such that r /∈ sig(D) and > v ∀r.D (because ∃r−.> is not easily
expressible in ALC) or a strongest necessary condition of all such concepts D to find
the closest approximation of the domain of r.

Even if the approximation of domain or range of a role is explicitly stated, there is
no guarantee that the signature used is within the common signature of communicating
agents. Let O be {C ≡ ∃p.A,∃r.> v CtD,D ≡ B} and let Σ = {p,A,B}. Then it
follows that an approximation of domain for r only using symbols in Σ is ∃p.A. In
such a case, the approximate domain (or range) of r must be restricted to the common
vocabulary.

There may be several approximate domains and ranges for r in O. With concept
names, we aim at capturing the maximally precise superconcepts using SNCs and
maximally precise subconcepts using WSCs. Similar to the case with concept names
and SNCs, WSCs, we want to be able to capture maximally all approximate domains
(ranges) of r using a single class expression; to capture this, we have formally defined
notions of strongest domain (Definition 36) and strongest range (Definition 37).

Definition 36 ((Strongest) Domain of a Role). Let Σ be a set of ALC concept names

and role symbols, r a role, and O an ontology, such that Σ ⊆ sig(O) and r /∈ Σ. We

define a domain of r over Σ relative to O to be any ALC concept C such that sig(C)⊆ Σ

and O |= ∃r.> v C. C is a strongest domain, denoted doms(r;O;Σ), if for any other

5.2. DEVELOPED APPROACHES 119

domain C′ of r over Σ relative to O we have that O |=CvC′. C is a minimal strongest

domain, denoted domM
s (r;O;Σ) if for any strongest domain C′ of r over Σ relative to O

we have that sig(C)⊆ sig(C′).

Definition 37 ((Strongest) Range of a Role). Let Σ be a set of ALC concept names

and role symbols, r a role, and O an ontology, such that Σ ⊆ sig(O) and r /∈ Σ. We

define a range of r over Σ relative to O to be any ALC concept C such that sig(C)⊆ Σ

and O |=>v ∀r.C. C is a strongest range, denoted rans(r;O;Σ) if for any other range

C′ of r over Σ relative to O we have that O |=C vC′. C is a minimal strongest range,

denoted ranM
s (r;O;Σ), if for any strongest range C′ of r over Σ relative to O we have

that sig(C)⊆ sig(C′).

Since the domain of a role r is the concept ∃r.>, a strongest domain of r is equiva-
lent to a strongest necessary condition of ∃r.> with respect to a signature that does not
contain r. Thus, Algorithm 5.1.1 may be repurposed to extract a strongest domain of a
role r by adding ∃r.> as the input X to the algorithm.

We use uniform interpolation to extract a strongest range of a role. Proposition
12 enables us to extract ranges using uniform interpolation. Let O be an ontology
and r a role in O, to extract the range for r under O with respect to a signature Σ,
we add the assertion r(a,b) to O where a and b are fresh individuals and extract a
uniform interpolant V for O with respect to Σ\{r}. A consequence of Proposition 12
and Definition 18 is that the conjunction of concepts D of the form D(b) ∈ V form a
strongest range of r for Σ with respect to O.

Proposition 12. Let O be an ALC ontology, r a role in sig(O), Σ a subset of sig(O),

and a, b fresh individuals such that a 6∈ sig(O), b 6∈ sig(O), and r 6∈ Σ. Let V be

a uniform interpolant with respect to O∪ r(a,b) for Σ. We have that V |= D(b) iff

O |=>v ∀r.D for any D such that sig(D)⊆ Σ.

Proof. If V |= D(b), then O |= > v ∀r.D: Since V is a uniform interpolant for Σ∪
{a,b} of O ∪ r(a,b), we have that O ∪ r(a,b) |= V . Given that V |= D(b), and
O∪ r(a,b) |= V , we have that O∪ r(a,b) |= D(b). Therefore, it follows that O∪
r(a,b),¬D(b) is unsatisfiable, and hence O |= > v ∀r.D since O |= > v ∀r.D iff
O∪ r(a′,b′),¬D(b′) |=⊥ for some fresh individuals a′ and b′.

If O |=>v ∀r.D, then V |= D(b). Assume O |=>v ∀r.D. Since V is a uniform
interpolant for Σ∪{a,b} of O∪ r(a,b), we have that O∪ r(a,b) |= V . Since O |=>v
∀r.D, then it follows that O∪ r(a,b) |= D(b). Since sig(D) ⊆ Σ, and V is a uniform

120 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

interpolant for O∪ r(a,b) with respect to Σ∪{a,b}, it follows from Definition 18 that
V |= D(b).

Algorithm 5.2.3 details how a strongest range of a role can be extracted using
uniform interpolation.

ALGORITHM 5.2.3

Input: An ALC ontology O, a role r, a signature Σ, a pair of individuals a and
b where r /∈ Σ, a /∈ sig(O), b /∈ sig(O).
Output: A concept D which is a strongest range of r.

Step 1: Add r(a,b) to O to get O′.

Step 2: Extract a uniform interpolant denoted V with respect to O′ for Σ∪
{a,b}.

Step 3:uDi(b)∈abox(V)Di.

Complexity

Algorithm 5.2.3 calls the forgetting algorithm at most once, and is thus bounded by
the computational complexity of the forgetting algorithm used. Extracting a uniform
interpolant using LETHE has been shown to have a 2EXPTIME worst-case space com-
plexity [WDP19, PK15c] in the number of symbols contained in the ontology; thus our
implementation of Algorithm 5.2.3 has a 2EXPTIME worst-case space complexity.

Remark 2. Although the implementation of LETHE is interpolation complete, in prac-

tice, we find that its ability to forget roles is not robust. This is because role forgetting is

a difficult problem in general. Several of our experiments with the LETHE implemen-

tation on ontologies have demonstrated that forgetting roles using the implementation

is not robust enough to conduct experiments, as it sporadically fails to terminate (for

days sometimes) when attempting to forget a role in some instances. This is taken into

account in the design of all the experiments in this thesis.

Up to this point in the thesis we have discussed and developed several knowledge
structures and extraction methods. Tables 5.1 and 5.2 summarise the key inputs and
outputs of relevant knowledge structures or extraction methods discussed so far.

5.3. CONTRIBUTION SUMMARY 121

5.3 Contribution Summary

The contributions of this chapter are as follows:

• A formal description of strongest necessary conditions and weakest sufficient
conditions in description logic, alongside appropriate algorithms for extraction
of the conditions (for the DL ALC).

• The development and introduction of compiled superconcepts and compiled sub-
concepts which account for potential shortcomings of strongest necessary con-
ditions and weakest sufficient conditions.

• Criteria for where strongest necessary and weakest sufficient conditions exist.

• A novel algorithm for extracting the domains and ranges of roles in ALC on-
tologies.

122 CHAPTER 5. REALISING KNOWLEDGE EXTRACTION FOR DL

Structure
orm

ethod
Input(s)

O
utput

O
utputconstraints

E
xistence

Top
M

odule
1.A

n
ontology

O
,

2.A
signature

Σ
such

that
Σ
⊆

sig(O
).

A
subsetO

′ofO
1.sig(O

′)
m

ay
exceed

Σ.
2.Forall

α
such

thatsig(
α
)⊆

sig
(O
′),O

′|=
α

iffO
|=

α
.

A
lw

ays

B
ottom

M
odule

1.A
n

ontology
O

,
2.A

signature
Σ

such
that

Σ
⊆

sig(O
).

A
subsetO

′ofO
1.sig(O

′)
m

ay
exceed

Σ.
2.Forall

α
such

thatsig(
α
)⊆

sig
(O
′),O

′|=
α

iffO
|=

α
.

A
lw

ays

U
niform

interpolant
1.A

n
ontology

O
,

2.A
signature

Σ
such

that
Σ
⊆

sig(O
).

A
n

ontology
V

1.sig(V
)⊆

Σ,
2.

For
any

α
such

that
sig

(
α
)⊆

Σ,O
|=

α
iffV

|=
α

.

N
otexpressible

in
som

e
D

L
s

C
raig

interpolant
1.A

n
ontology

O
,

2.Tw
o

conceptsC
1 ,C

2 .
A

conceptI

1.
sig(I)

⊆
sig(C

1 ,O
)
∩

sig
(C

2 ,O
),

2.O
|=

C
1 v

I,
3.O

|=
Iv

C
2 .

N
otexpressible

in
som

e
D

L
s

SN
C

1.A
n

ontology
O

,
2.A

signature
Σ

such
that

Σ
⊆

sig(O
).

3.A
conceptC

.

A
conceptC

′

1.O
|=

C
v

C
′

2.sig(C
′)⊆

Σ

3.
For

any
D

such
that

sig
(D

)⊆
Σ

and
O
|=

C
v

D
,

O
|=

C
′v

D

N
otexpressible

in
som

e
D

L
s

W
SC

1.A
n

ontology
O

,
2.A

signature
Σ

such
that

Σ
⊆

sig(O
).

3.A
conceptC

.

A
conceptC

′

1.O
|=

C
′v

C
2.sig(C

′)⊆
Σ

3.
For

any
D

such
that

sig
(D

)⊆
Σ

and
O
|=

D
v

C
,

O
|=

D
v

C
′

N
otexpressible

in
som

e
D

L
s

Table
5.1:K

now
ledge

Structures
and

K
now

ledge
E

xtraction
M

ethods
in

L
ogic

5.3. CONTRIBUTION SUMMARY 123

St
ru

ct
ur

e
or

m
et

ho
d

In
pu

t(
s)

O
ut

pu
t

O
ut

pu
tc

on
st

ra
in

ts
E

xi
st

en
ce

C
SP

1.
A

n
on

to
lo

gy
O

,
2.

A
si

gn
at

ur
e

Σ
su

ch
th

at
Σ
⊆

si
g(

O
).

3.
A

co
nc

ep
tC

.

A
co

nc
ep

tC
′

1.
O
|=

C
v

C
′

2.
si

g(
C
′)
⊆

Σ

3.
Fo

r
an

y
D

su
ch

th
at

si
g(

D
)
⊆

Σ
an

d
O
|=

C
v

D
,

|=
C
′ v

D

N
ot

ex
pr

es
si

bl
e

in
so

m
e

D
L

s

C
SB

1.
A

n
on

to
lo

gy
O

,
2.

A
si

gn
at

ur
e

Σ
su

ch
th

at
Σ
⊆

si
g(

O
).

3.
A

co
nc

ep
tC

.

A
co

nc
ep

tC
′

1.
O
|=

C
′ v

C
2.

si
g(

C
′)
⊆

Σ

3.
Fo

r
an

y
D

su
ch

th
at

si
g(

D
)
⊆

Σ
an

d
O
|=

D
v

C
,

|=
D
v

C
′

N
ot

ex
pr

es
si

bl
e

in
so

m
e

D
L

s

St
ro

ng
es

td
om

ai
n

1.
A

n
on

to
lo

gy
O

,
2.

A
si

gn
at

ur
e

Σ
su

ch
th

at
Σ
⊆

si
g(

O
)
\{

r}
.

3.
A

ro
le

r.

A
co

nc
ep

tC

1.
O
|=
∃r
.>
v

C
2.

si
g(

C
)
⊆

Σ

3.
Fo

r
an

y
C
′

su
ch

th
at

si
g(

C
′)
⊆

Σ
an

d
O
|=
∃r
.>
v

C
′ ,

O
|=

C
v

C
′

N
ot

ex
pr

es
si

bl
e

in
so

m
e

D
L

s

St
ro

ng
es

tr
an

ge

1.
A

n
on

to
lo

gy
O

,
2.

A
si

gn
at

ur
e

Σ
su

ch
th

at
Σ
⊆

si
g(

O
)
\{

r}
.

3.
A

ro
le

r.

A
co

nc
ep

tD

1.
O
|=
>
v
∀r
.D

2.
si

g(
D
)
⊆

Σ

3.
Fo

r
an

y
D
′

su
ch

th
at

si
g(

D
′)
⊆

Σ
an

d
O
|=
>
v

∀r
.D
′ ,

O
|=

D
v

D
′

N
ot

ex
pr

es
si

bl
e

in
so

m
e

D
L

s

Ta
bl

e
5.

2:
K

no
w

le
dg

e
St

ru
ct

ur
es

an
d

K
no

w
le

dg
e

E
xt

ra
ct

io
n

M
et

ho
ds

in
L

og
ic

Chapter 6

Conveying Maximally Precise
Descriptions

In Chapter 5 we discussed and proposed algorithms for extracting knowledge from a
knowledge base with respect to a subset signature of the knowledge base. The methods
discussed and developed were all based on uniform interpolation. We have shown that
existing algorithms for extracting strongest necessary and weakest sufficient conditions
in other logic formalisms (such as first-order logic and propositional logic) can not be
simply adopted in a description logic setting.

A simplifying assumption in this thesis is that the common signature for a pair of
communicating agents is already established. However, as we do not make any as-
sumptions on the interpretation of symbols in the common signature, we have also dis-
cussed and developed other knowledge extraction notions, namely compiled supercon-

cepts, and compiled subconcepts. Compiled superconcepts and compiled subconcepts
are aimed at capturing knowledge about non-common concept names in an ontology
in a fashion that does not rely on the background information in the ontology.

Most of the methods discussed and developed rely on a uniform interpolation
method that can extract uniform interpolants from ontologies that have concept asser-
tions. We aim to practically evaluate the developed methods using existing implemen-
tations of LETHE thus our analysis is restricted to ALC ontologies. This is because,
at the time of writing, the LETHE implementation available could not extract uniform
interpolants from ontologies that had concept assertions or were more expressive than
ALC .

This chapter tries to answer RQ5 “What is the most precise way to convey a term

with respect to a subset vocabulary of an ontology?” (see Section 1.2). Because the

124

125

definition of a concept name is synonymous with the concept name, a concept name’s
definition is its maximally precise description with respect to the ontology of interest:
a definition C of a concept X is a maximal subsumer and maximal subsumee of X . Al-
ternatively, a compiled superconcept may be viewed as a maximally precise subsumer
of a concept name with respect to the ontology of interest and the empty ontology.

For example, given the ontology O = {A ≡ B,D v A,A v C}, and signature Σ =

{B,C,D}, B is a better description of A with respect to Σ than C or D because B is
equivalent to A: in every interpretation that is a model of O, the set of instances of A

will be the be equal to that of B; however, the instances of A will be a subset of the
instances of C and the instances of D will be a subset of the instances of A. Similarly,
the set of instances of BuC, (which is a compiled superconcept of A, and equivalent
to A under O) will be equal to that of A.

The first section of this chapter empirically evaluates definition extraction for con-
cept names using strongest necessary conditions, and thus this chapter also tries to an-
swer RQ2 “How do the relevant knowledge extraction techniques perform in practice

on real-world ontologies?”. We are primarily interested in definitions and definability
in this chapter. Given the computational cost of uniform interpolation, the first point
of inquiry in our evaluation is how successful the Algorithm 5.1.1 is when it comes to
extracting definitions for concept names occurring in general TBoxes. However, the
cost of uniform interpolation is not the only source of concern for extracting strongest
necessary conditions. Least fixpoints operators are needed to represent uniform in-
terpolants of ontologies that have general TBoxes with cycles (see Section 2.2.3). In
such TBoxes, definitions extracted by strongest necessary conditions following Algo-
rithm 5.1.1 may contain greatest fixpoint operators or definer symbols. We do not
consider such definitions to be valid as we have no practical means (such as off-the-
shelf reasoners) to perform reasoning with fixpoints. The last point of concern is the
in terms of signature size of the definitions extracted using strongest necessary condi-
tions. Because the implementation of uniform interpolation has not been optimised for
redundancy elimination, there is a likelihood for superfluous information to be con-
tained in the definitions extracted. Signature size could be an indicator of superfluous
information as the process of saturation (used to implement the uniform interpolation
algorithm) can result in tautologous concepts being included in axioms. Thus, we also
evaluate the signature size of the extracted definitions. Because this may vary depend-
ing on the common signature, we focus the evaluation with respect to the signature of
the entire ontology minus the concept name of interest.

126 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

The second section deals with evaluating the extraction of definitions with respect
to the primitive signature of an ontology. To the best of our knowledge there are
no publicly available datasets of a pair of ontologies (representing the knowledge of
agents) with overlapping vocabularies. Thus, we use the primitive signature of an
ontology to emulate the signature of an ontology that an agent has in common with
its communication partner. Let O be an ontology. Here, we understand the primitive
signature of O to be the set of all symbols S such that there exists no explicit or implicit
definition C for S with respect to sig(O) \ {S}. Let C be an uncommon term that
an agent AG1 wishes to convey to an agent AG2, such that sig(C) 6⊆ Σ and Σ is the
vocabulary AG1 has in common with AG2. If C has a definition D such that sig(D)⊆ Σ

under AG1’s ontology, then AG1 may synonymously convey C to AG2 (again, recall
that this chapter may be viewed as an exploration of RQ5 from Section 1.2). This
chapter explores (empirically) whether all defined concept names have definitions that
can be expressed in the primitive signatures of ontologies. If this proves to be the
case, the agent can focus its efforts on making sure (perhaps via ontology alignment)
that its primitive signature is common with any communication partner. Doing so will
ensure that all defined concept names will have definitions with respect to the primitive
signature and give less likelihood for misunderstanding between the agents.

Definitions may also help agents find hidden correspondences [Gel18]. Let A be
a concept name in AG1’s ontology that has definition C such that sig(C) ⊆ Σ and Σ is
AG1’s primitive signature which it has in common with a communication partner AG2

[Gel18]. If there is a defined concept name Z in AG2’s vocabulary which is equivalent
to C, then AG1 and AG2 may create a correspondence between A and Z stating that
A≡ Z [Gel18]. Furthermore, if there was no corresponding term Z in AG2’s ontology,
then definition extraction will enable AG1 to convey A to AG2. Thus, this chapter
may also be viewed as an exploration of RQ7 “What are the considerations on the

common or subset vocabulary that should be accounted for when conveying terms?”.
As such, we investigate the definability of concept names under the primitive signature
of ontologies, as well as the natural occurrence of primitive symbols in definitions of
explicitly defined concept names.

In the final section of this chapter, we empirically evaluate the extraction of com-
piled superconcepts to understand and report how our algorithm for extracting them
performs in practice.

6.1. THE CORPUS 127

6.1 The corpus

We obtained the code used by Matentzoglu [Mat16] to retrieve ontologies from the
BioPortal ontology repository [WNS+11] and restricted the dataset to ontologies whose
expressivity did not exceed ALCH . The code used by Matentzoglu [Mat16] uses the
API feature of BioPortal 1 to download ontologies. For each ontology on BioPortal,
we downloaded the latest snapshot 2 with a forty-five minute timeout for downloads.
Any ontology that could not be downloaded or parsed using the OWL API [HB11]
(version 5.1.7) was discarded. Of all the ontologies downloaded, 81 were in ALCH .
For ontologies with role hierarchies, we deleted the role hierarchies present. Of the 81
ontologies, twenty had defined concepts (this was detected using an implementation of
implicit definability test described in Section 2.2.1). Our experiments focus on these
twenty ontologies.

Although this may be considered a relatively small dataset, the ontologies vary in
size and expressivity; full details are presented in Table 6.1. The dataset had to be
further reduced to sixteen ontologies because the ontologies ONTOMA, EO, EPIE

and EPIP only had unsatisfiable defined concepts, i.e., all the defined concepts in
ONTOMA, EO, EPIE and EPIP were equivalent to ⊥.

1https://bioportal.bioontology.org/
2The latest snapshot as of 21 March 2021.

https://bioportal.bioontology.org/

128 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Ontology ID DL Class
Count

Role
Count

Defined Expl Defs Impl Defs

MHCRO ALEH 2370 25 1254 1253 0
PDON ALE 632 7 630 630 0
TCO ALE 578 3 558 558 0
CHMO ALCH 2963 25 102 102 0
RXNO ALCH 866 14 71 71 0
ACESO ALC 295 14 67 67 0
HPIO ALCH 275 6 36 13 23
MOP ALCH 3635 10 31 31 0
EPIE ALC 392 0 17 0 17
EPIP ALC 263 0 17 0 17
BNO AL 100 0 14 0 14
ONTOMA ALC 424 0 13 3 10
CCTOO ALC 1133 6 11 8 3
ONTOPARON
SOCIAL

ALEH 1282 6 7 7 0

HP O ALC 199 5 5 5 0
ISSVA ALC 194 1 3 2 1
DLORO ALE 295 5 2 2 0
GECKO ALE 154 3 2 2 0
EO ALC 768 0 1 0 1
MEDEON ALE 66 4 70 0 1
XEO ALE 145 4 243 0 1

Table 6.1: Main ontology corpus. The ontologies crossed out in red are ontologies that
contain only unsatisfiable defined concept names.

6.2. EVALUATING DEFINITION EXTRACTION USING SNCS 129

6.2 Evaluating Definition Extraction using SNCs

Definition 38 (Explicitly defined Concepts, Explicit Definitions and Implicitly Defined
Concepts). Let O be an ontology. For every concept name A ∈ sig(O), we say A is

implicitly defined if there exists an explicit definition C of A such that O |= A ≡ C

and A 6∈ sig(C). For every concept name A ∈ sig(O), we call A explicitly defined if

A is implicitly defined, and there exists an axiom of the form A ≡ C ∈ O such that

A 6∈ sig(C). For an explicitly defined concept A such that an axiom A≡C ∈O, we call

C an explicitly stated definition of A. The set of defined concept names in an ontology

is the set of implicitly defined concept names.

We define a partition of concept names in an ontology into defined concepts and
the primitive signature.

Definition 39 (Defined concepts and Primitive Signature). Let ΣD denote the set of

defined concept names in an ontology O. The primitive signature ΣP is the rest of the

ontology signature, i.e., ΣP = sig(O)\ΣD.

6.2.1 Results on extracting definitions for explicitly defined con-
cept names

The aim of the evaluation in this section is to investigate how successful definition
extraction is, in the context of general TBoxes. Some of the ontologies in the corpus
contain cyclic concept names that are definable. To the best of our knowledge there
is no known decision procedure for detecting interesting cycles (See Section 2.2.1),
and furthermore, Algorithm 5.1.1 can not extract definitions that may involve cyclic
concept names. Therefore, by successful definition extraction, we mean that for an
explicitly defined concept name X , Algorithm 5.1.1 extracted an explicit definition C

of X such that X 6∈ sig(C), sig(C) ⊆ sig(O), O |= X ≡ C, and there were no definer
symbols in sig(C). Another point of inquiry in this evaluation is to investigate the
degree to which superfluous symbols (or expressions) exist in definitions extracted
using strongest necessary conditions when compared to explicitly stated definitions.
This naturally restricts the scope to explicitly defined concepts in the ontologies of
interest.

For a given ontology with explicitly defined concept names, the experiment pipeline
was as follows:

130 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

1. for every satisfiable explicitly defined concept A ∈ O do:

(a) Extract any equivalent class axioms A≡C for A.

(b) Find the definition C with the smallest signature to use as the definition ϕ

of A.

(c) Extract a strongest necessary condition of A with respect to sig(O) \ {A}
under O, i.e., SNC(A;O;sig(O)\{A}) using Algorithm 5.1.1.

(d) Record the signature sizes of ϕ and SNC(A;O;sig(O)\{A}).

The results are displayed in Table 6.2, Table 6.3, Figure 6.1, and Figure 6.2. Table
6.2 displays the success rate of extracting definitions for each explicitly defined con-
cept in each ontology in the corpus using strongest necessary conditions extracted by
Algorithm 5.1.1. Table 6.3 illustrates the magnitude of the difference in signature
size between the definitions extracted using strongest necessary conditions (Algorithm
5.1.1), and the definitions explicitly stated in the ontology. The disparities in signa-
ture sizes for ontologies with more than fifty explicitly defined concepts are shown in
Figures 6.1 and 6.2. The reason for splitting the results into two different figures is to
maintain a scale where results can be distinguished and observed properly.

Ontology Explicitly defined concepts Extracted Definitions Percentage
CHMO 102 102 100%
RXNO 71 71 100%
ACESO 67 67 100%
MHCRO 1254 1251 99%

TCO 558 554 99%
PDON 630 607 96%
MOP 31 31 100%

CCTOO 8 8 100%
ONTOPARON 7 7 100%

HP O 5 5 100%
ISSVA 2 2 100%

DLORO 2 2 100%
GECKO 2 2 100%

Table 6.2: Success Rate of SNC definition extraction

From Table 6.2, we observe that definitions extracted using strongest necessary
conditions are successful: definitions were extracted for more than 90 percent of ex-
plicitly defined concepts in all of the ontologies. In cases with less than a 100 percent

6.2. EVALUATING DEFINITION EXTRACTION USING SNCS 131

success rate such as MHCRO, TCO, PDON, the failure was due to the explicitly de-
fined concepts being cyclic.

Figure 6.1: Compared signature sizes for ontologies with more than fifty defined con-
cepts. The purple bar indicates the number of concepts for which the signature size of
the SNC was equal to the signature size of the explicitly stated definition. The blue bar
indicates the number of concepts for which the signature size of the SNC was greater
than the signature size of the explicitly stated definition. The orange bar indicates
the number of concepts for which the signature size of the SNC was greater than the
signature size of the explicitly stated definition.

The charts in Figure 6.1 and 6.2 illustrate the difference in signature sizes: blue
bars are cases in which the signature size of the extracted necessary condition was
greater than the signature size of the explicitly stated definition, purple bars indicate
cases in which the signature sizes were equal, and orange bars indicate cases in which
the signature size of the explicitly stated definition was greater than that of the ex-
tracted strongest necessary condition. It is clear that in most cases (except from TCO,
PDON, MOP, and ONTOPARON SOCIAL), there is some superfluous information
in the strongest necessary condition. This is partly because there is no constraint on

132 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Figure 6.2: Signature sizes for ontologies with less than fifty defined concepts.

strongest necessary conditions that enforces minimality (in terms of signature). An-
other factor that may contribute to the presence of superfluous information is that the
implementation of LETHE used is not aimed at conciseness. Example 6.2.1 provides
an illustration.

Example 6.2.1. Let O be:

α1 : A ≡ ∃p.B α2 : A v C

The definition of A in O is ∃p.B; however, a strongest necessary condition of A with
respect to sig(O) \ {A} under O (extracted using LETHE) is Cu∃p.B. We have that
O |= A ≡ C u ∃p.B, and thus a strongest necessary condition is a definition for A;
however, a more concise definition is ∃p.B, and C can be considered superfluous in-
formation in the definition.

Table 6.3 illustrates the magnitudes of difference in the signature size of definitions
extracted using strongest necessary conditions and that of explicitly stated definitions.

6.2. EVALUATING DEFINITION EXTRACTION USING SNCS 133

We observe that the signature sizes are equal a signficant number of times; however,
when there is a signature difference, it is mostly as a result of the strongest neces-
sary conditions having more symbols. Interesting cases include ACESO, ISSVA, and
DLORO, in which we observe that there are equivalent atomic concepts for the ex-
plicitly defined concepts; however, the extracted strongest necessary conditions still
contain more symbols. These cases in specific stress the cost (in terms of signature)
of Algorithm 5.1.1. This highlights the fact that using a reasoner to extract equivalent
concept names may be preferable to Algorithm 5.1.1 for definition extraction tasks
in cases where there are equivalent atomic concepts in the common signature for the
concept of interest.

Ontology Q1 Q2 Q3 Q4
SNC DEF SNC DEF SNC DEF SNC DEF

CHMO 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0
RXNO 3.0 3.0 4.0 3.0 5.0 3.0 3.0 2.0
ACESO 2.0 1.0 3.0 1.0 5.0 4.0 1.0 2.0
MHCRO 6.0 5.0 7.0 6.0 10.0 8.0 4.0 3.0

TCO 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
PDON 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
MOP 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0

CCTOO 5.75 2.0 6.0 2.0 7.0 3.0 5.0 2.0
ONTOPARON 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

HP O 2.0 1.0 2.0 1.0 3.5 1.5 2.0 1.0
ISSVA 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0

DLORO 3.25 1.0 4.5 1.0 5.75 1.0 2.5 1.0
GECKO 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0

Table 6.3: Quantiles of signature sizes. The column titled ‘Q1‘ denotes the first quan-
tile, the column titled ‘Q2‘ denotes the second quantile, while the column titled ‘Q3‘
denotes the third quantile. The column titled ‘SNC’ denotes the quantile of signature
size of the SNC for the corresponding ontology. The column titled ‘DEF’ denotes
the quantile of signature size of the explicitly stated definition for the corresponding
ontology.

134 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

6.3 Evaluating Definition Extraction using SNC w.r.t
Primitive Signatures for General TBoxes

As discussed in Section 2.2.1, given a terminology O, we may partition the signature of
O into a set of named concepts, and base symbols. In a terminology, explicitly defined
concepts can be unfolded (see Section 2.2.1) into equivalent concepts whose signature
consist solely of base symbols. This implies that in a terminology, the strongest neces-
sary condition of any explicitly defined concept with respect to the base symbols must
be a definition for the explicitly defined concept. Given an agent with a terminology,
if all base symbols are shared with another agent, all uncommon named symbols can
be conveyed without any loss of information. Thus for an agent with a terminology
that has a large proportion of defined concepts, it may be better to focus on explicating
or aligning the base symbols if it is to be engaged in any long-term conversation with
another agent.

Similar to the partition of name and base symbols in a terminology, we may par-
tition general TBoxes into a set of defined concepts and primitive concepts using the
implicit definability test as stated in Definition 4. Because ALC has the Beth Defin-
ability property (see Section 2.2.1), we can be confident that regardless of whether a
concept is explicitly or implicitly definable under a signature, an explicit definition can
be extracted for the concept, thus evaluating the extraction of definitions with respect
to the primitive signature for general TBoxes is interesting.

Given the partitioning of an ontology’s signature into a primitive signature and
a defined signature, we may further partition the primitive signature into two sets,
namely (i) primitively defined signature (ii) not-primitively defined signature.

Definition 40 (Primitively Defined Signature). Let ΣD be the set of defined concept

names in sig(O) and let ΣP be the set of primitive concept names in sig(O). The

primitively defined signature ΣP
D of O is the subset of ΣD such that for each concept

name A ∈ ΣP
D, there exists a definition C of A under O where sig(C)⊆ ΣP.

Definition 41 (Not-Primitively Defined Signature). Let O be an ontology, let ΣD be the

set of defined concept names in sig(O) and let ΣP be the primitive signature in sig(O).

The not-primitively defined signature ΣN
D of O denotes the set ΣD \ΣP

D.

As a trivial example, consider the ontology {A ≡ B }. We have that A and B both
pass the implicit definability test, thus making the set of defined concepts {A, B},
and the primitive signature /0, hence no defined concept can be defined in terms of the

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 135

primitive signature /0 3. However, both A and B are defined, thus the not-primitively
defined signature here is sig(O) and the primitive signature is the empty set. It is worth
noting that this phenomenon is not unique to atomic equivalences; as an example,
consider the ontology {A ≡ BtC, B v ¬C} which entails that B ≡ Au¬C and C ≡
Au¬B, we have that all concept names are implicitly definable and thus the primitive
signature is the empty set, while the not-primitively defined signature is sig(O). The
partition of the ontology’s signature into a primitively defined signature and a not-
primitively defined signature is relevant when considering extracting definitions with
respect to the primitive signature because it is impossible to extract a definition for any
concept name in the not-primitively defined signature.

However, observe that it is possible to treat some of the not-primitively defined
concepts in the signature as though they were primitive, and in doing so make some
of the not-primitively defined signature definable. Again, consider the ontology {A ≡
BtC, Bv¬C}, if B and C are considered primitive, then A becomes definable. Indeed
this is an approach taken in partitioning terminologies into named and base symbols:
again consider the terminology {A ≡ B}. Here the not-primitively defined signature
is sig(O); however, B is considered a base symbol as it does not occur on the left
hand side of an equivalence. Similarly, in general TBoxes, we may treat some of not-
primitively defined signature as primitive in order to make some of the not-primitively
defined signature definable. As an example, consider the ontology O with the following
axioms:

α1: A1 ≡ B1u B2

α2: B1 ≡ B3

α3: A2 ≡ A1t A3

The primitive signature is ΣP = {B2,A3}; however, A1, B1, B3, and A2 are not definable
under ΣP. However, if we add A1 to ΣP, then A2 becomes definable. If we add B3 to
ΣP, then A1, B1, and A2 become definable under ΣP. Notice that depending on the
choice of which symbol from the not-primitively defined signature we decide to treat
as primitive, the size of the not-primitively defined signature can shrink greatly, in the
example above adding A1 to ΣP only made A2 definable under ΣP; however, adding
B3 to ΣP, makes A1, B1, and A2 definable under ΣP. There are 2n (where n is the

3It is worth noting that in the context of terminologies, B is a base symbol and should not be a named
symbol in the ontology.

136 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

size of the not-primitively defined signature) choices of which symbols from the not-
primitively defined signature to treat as primitive. A significant reason to consider
treating some of the not-primitively defined concepts in the signature as though they
were primitive is to minimise the symbols in the primitive signature, as the symbols
in the primitive signature would need to be common to both communicating agents
or aligned. Recall that the motive to investigate and use definition extraction in the
context of agent communication is to reduce the number of symbols that have to be
shared or aligned between agents. Let O be an ontology belonging to an agent AG1

wishing to communicate with another agent AG2, let ΣP denote the primitive signature
of O and let ΣD denote the defined signature of O such that every symbol S ∈ ΣD has
a definition C under O and sig(C) ⊆ ΣP. With definition extraction techniques, agent
AG1 does not need to worry about aligning symbols in ΣD because all symbols in ΣD

can be conveyed accurately using only symbols in ΣP. Furthermore, as previously
mentioned, definition extraction may help agents find hidden correspondences among
symbols or help agents convey concepts that have no correspondences.

Let ΣP denote the primitive signature and ΣP
N denote a not-primitively defined sig-

nature of an ontology O. We call the problem of finding a minimal subset ΣP
N ′ of ΣP

N

such that all symbols in ΣP
N \ΣP

N ′ are definable under ΣP∪ΣP
N ′ the primitive signa-

ture problem. Alternatively, for this analysis, we simply disregard all concept names in
not-primitively defined signature and only focus on the primitively defined signature
when considering extracting definitions with respect to the primitive signature. This is
additionally motivated by the fact that there is sufficient variability in the dataset to fa-
cilitate an evaluation and also the significant computational cost uniform interpolation
included in all the algorithms developed in Chapter 5.

Related work

Geleta et al. [GPT17] investigate a similar problem, known as the signature coverage

problem which is the problem of finding whether a given task signature S can be cov-

ered by another restricted signature R, such that S and R are both subset signatures
of the same ontology. Here by covered by signature R, we mean “defined only using

symbols in R”. The signature coverage problem is investigated for ontologies of vary-
ing expressivity, and it has been shown (by Ten Cate et al. [TCFS13]) that the Beth
definability property does not hold in DLs that allow for nominals or role hierarchies.
Thus the definition of a primitive signature is subject to the expressivity of the on-
tologies investigated. The task signature is fixed (in the signature coverage problem).

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 137

However, our problem can be reduced by setting the task signature to the primitive
signature of the ontology.

To find an approximate solution to the signature coverage problem, all minimal def-

inition signatures of all the defined concepts in the ontology are used to incrementally
build a cover set that covers all symbols in the task signature. For a defined symbol S in
an ontology O, a minimal definition signature, is a signature denoted MDS(S;O), such
that S 6∈MDS(S;O) and, for any signature Σ such that S 6∈ Σ for which S is definable un-
der O with respect to Σ, we have that |MDS(S;O)|< |Σ|. A symbol may have multiple
minimal definition signatures. Geleta [Gel18] has proposed algorithms and implemen-
tations for extracting approximates of minimal definition signatures from ontologies
written in DLs as expressive as SH R OI Q .

Evaluation objectives

Driven by RQ7, for a given ontology in the dataset, we investigate the following points
of interest:

1. How much of the primitive signature already exists in the naturally occurring
definitions of explicitly defined concepts?

2. How much of the primitive signature already exists in strongest necessary condi-
tions (extracted by Algorithm 5.1.1) of explicitly defined concepts with respect
to the ontology signature?

3. How many defined concepts in an ontology are definable with respect to the
entire signature of the ontology versus the primitive signature as defined in Def-
inition 39?

4. What are the signature sizes associated with extracting a definition for an ex-
plicitly defined concept in terms of the primitive signature? In other words, to
what degree are the signatures of definitions extracted with respect to the prim-
itive signature larger or smaller than the signatures of the naturally occurring
definitions of the explicitly defined concepts?

5. Does the strongest necessary condition (with respect to the primitive signature)
of an explicitly defined concept name contain more superfluous concepts than
the strongest necessary condition (with respect to the primitive signature) of its
explicitly stated definition?

138 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

For Points 1 and 2, we simply reuse the results of Evaluation 1 in conjunction with the
explicitly stated definitions in the ontology. For Point 3, we use the implicit definabil-
ity test from Definition 4. For Points 4 and 5, we extract the SNC of the concept names
with respect to the primitive signature and compare it to the extracted SNC (with re-
spect to the primitive signature) of the corresponding explicitly stated definitions of
the concept names.

Definability Report

Our first point of inquiry is the definability of concepts in ontologies contained in the
corpus, specifically with respect to the primitive signature.

Report aim Investigate the definability of defined concept names with
respect to the primitive signature each respective ontology
in the corpus.

Reported property The size of ΣP
D relative to ΣD for each ontology.

Reported process 1. Determine ΣD: for each concept name A ∈ sig(O)
if A is definable under sig(O) \ {A}, add A to ΣD.
2. For each concept name A ∈ ΣD check if A is definable
under ΣP using the implicit definability test from Definition
4 (implemented using Hermit [GHM+14]).

We run another set of implicit definability tests for each ontology O in the corpus
as follows:

1. ΣD = /0.

2. ΣP = /0.

3. for each concept name in sig(O) do:

(a) if A is implicitly definable w.r.t sig(O)\{A} do:

i. ΣD← ΣD∪{A}.

else:

i. ΣP← ΣP∪{A}.

4. For each concept name A ∈ ΣD we check if A is definable under O with respect
to the primitive signature ΣP.

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 139

Ontology Expl # Impl # Total Def under Prim (ΣP
D) # Def under Prim (ΣP

D) %
MHCRO 1254 0 1254 1253 99%
PDON 630 0 630 630 100%
TCO 558 0 558 558 100%

CHMO 102 0 102 102 100%
RXNO 71 0 71 71 100%
ACESO 67 0 67 21 31%
HPIO 13 23 36 0 0%
MOP 31 0 31 31 100%
BNO 0 14 14 0 0%

CCTOO 8 3 11 4 36%
ONTOPARON 7 0 7 7 100%

HP O 5 0 5 0 0%
ISSVA 2 1 3 3 100%

DLORO 2 0 2 0 0%
GECKO 2 0 2 2 100%

MEDEON 0 1 1 1 100%
XEO 0 1 1 1 100%

Table 6.4: Entities definable under ΣP. The column titled ‘Expl #‘ stands for ‘num-
ber of explicitly defined concepts’. The column titled ‘Impl #’ stands for ‘number of
implicitly defined concepts’. The column titled ‘Def under Prim (ΣP

D) #’ stands for
‘number of defined concept names definable under primitive signature’. The column
titled ‘Def under Prim (ΣP

D) %’ stands for ‘percentage of defined concept names defin-
able under primitive signature’.

The results are shown in Table 6.4. For most cases, we observe that 100% of the
defined entities are also definable under the primitive signature. Notably, four of the
ontologies, HPIO, BNO, HP O, DLORO, do not have any concept names definable
under the primitive signature. In these cases the reason that there are no concept names
definable under the primitive signature is that most definitions only reference other
definable concepts (similar to the ontology with the axioms {A ≡ B,B v ¬C}). This
is also the case with the ACESO ontology which has only thirty-one percent of its
definable concepts definable with respect to the primitive signature, in which there is
a significant number of atomic equivalences of the form A ≡ B that account for this.
However, in some cases, such as that of CCTOO, we observe that the reason some of
the definable concept names are not definable with respect to the primitive signature is
that there are cyclic concept names.

140 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Naturally Occurring Primitive Signature

Our next point of inquiry is to investigate how much of the primitive signature al-
ready exists in naturally occurring definitions and SNCs. The results from Section 6.2
demonstrate the tendency for definitions extracted using SNCs to contain superfluous
information. Depending on whether the signature of the superfluous information is also
defined, this also has an impact on the superfluous information that may be contained
in the definition of a concept with respect to the primitive signature of the ontology.
Example 6.3.1 illustrate this effect.

Report aim Investigate and compare the primitive signature in explicitly
stated definitions versus that in strongest necessary condi-
tions extracted using Algorithm 5.1.1

Observed property The primitive signature that exists in explicitly stated defini-
tions occuring in equivalence class axioms of defined con-
cept names and strongest necessary conditions.

Example 6.3.1. Consider the ontology {A1 ≡∃r.C,A1 v A2,A2 ≡∃p.B}, the primitive
signature is {p,r,B,C}. A valid extraction of A1 with respect to the primitive signature
is ∃r.C; however, when Algorithm 5.1.1 is used to extract a strongest necessary con-
dition, we get the definition ∃p.Bu∃r.C which is also a definition of A1 but with the
superfluous signature {p,B} (because the expression ∃p.B is superfluous).

For a given ontology with explicitly defined concept names, the pipeline was as
follows:

1. for every satisfiable explicitly defined concept A ∈ O do:

(a) Extract any equivalent class axioms A≡C for A

(b) Take the conjunction of every definition C as the definition ϕ of A.

(c) Extract a strongest necessary condition of A with respect to sig(O)\A under
O, i.e., SNC(A;O;sig(O)\{A}) using Algorithm 5.1.1.

(d) Compare the primitive signatures occuring in ϕ and SNC(A;O;sig(O) \
{A}).

In this inquiry, we focus only on concept names that have explicitly stated def-
initions, as we want to use explicitly stated definitions as a point of reference for
evaluating the signatures of the SNCs. We want to compare the percentage of the

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 141

signature of explicitly stated definitions that are primitive with the percentage of the
signature of SNCs that are primitive prior to extracting these definitions to see if there
is a significant difference. For concept names that have more than one explicitly
stated definition, we consider all explicitly stated definitions listed. Note that here,
although the notion of minimal definition signatures may apply, there are strict condi-
tions on the signatures used (i.e., the naive partitioning of the ontology), which make
it difficult to establish a notion of minimality. For example, consider the ontology
{A ≡ BtC,B v ¬C,A ≡ ∃p.(DuE)}. We may consider {B,C} to be a minimal def-
inition signature for A, but we also have that B and C are definable, and thus would
not be considered as part of the primitive signature. Since explicitly stated definitions
are intentionally written by the ontology engineer, we consider these definitions the
ideal definitions. The charts in Figures 6.3 and 6.4 show the percentage of SNC sig-
nature (with respect to the entire ontology signature) and definition signatures that are
primitive for ontologies that contained more than fifty defined concept names. For on-
tologies that contained less than fifty defined concept names, the results are shown in
Table 6.5. As can be observed from Figure 6.3, Table 6.5, most of the definitions of
the explicitly defined concepts do not consist solely of the primitive signature.

From Figures 6.3 and 6.4, we can observe that there is a significant variation be-
tween the ratio of the SNC signature that is primitive and that of the explicitly stated
definitions for some of the ontologies (specifically CHMO, RXNO, and MHCRO).
This variation can be mainly attributed to superfluous information extracted by the
SNC algorithm. Furthermore, it is worth noting that a significant number of concepts
have explicitly stated definitions that are entirely within the primitive signature for on-
tologies such as (CHMO, RXNO, ACESO, MHCRO), which suggests that for these
ontologies, it is more likely for the extracted SNCs to have superfluous information
than the extracted definitions (as illustrated in Example 6.3.1).

Similarly, in Table 6.5, we can see that most ontologies contain explicitly stated
definitions that have very little of their signatures completely within the primitive sig-
nature. Furthermore, for most of the ontologies (with the exception of the MOP on-
tology), less than fifty percent of the signature of the explicitly stated definitions is
primitive for most defined concepts, i.e., most of the explicitly stated definitions refer-
ence defined concepts. The pattern is similar for the extracted SNCs.

142 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Figure 6.3: Percentage of signature that is primitive. The first column labelled
“(sig(SNC)∩ prim(O)) ⊆ sig(SNC))% indicates that charts in this column indicate
the percentage of the SNC signature that was primitive. The second column labelled
“(sig(DEF)∩ prim(O)) ⊆ sig(DEF))% indicates that charts in this column indicate
the number of explicitly defined concepts and the percentage of their explicitly stated
definition signature that was primitive (where ‘DEF’ means ‘explicitly stated defini-
tion’. The horizontal axis (x-axis) indicates the percentage of the signature of the
strongest necessary condition (definition) that is primitive. The vertical axis (y-axis) is
the number of concepts. For example, the second bar in the RXNO ontology for the
first column can be read “for five concepts in the RXNO ontology 43% of their SNC
signature was primitive”.

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 143

Figure 6.4: Percentage of signature that is primitive set 2.

144 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Ontology Defined
#

>50%
prim
(def)

>50%
prim
(SNC)

100%
prim
(def)

100%
prim
(SNC)

MOP 31 31 31 9 9
BNO 14 - - - -

ONTOMA 13 3 3 0 0
CCTOO 11 1 1 0 0

ONTOPARON SOCIAL 7 7 7 7 7
HP O 5 0 0 0 0
ISSVA 3 0 0 0 0

DLORO 2 0 0 0 0
GECKO 2 2 2 2 0

EO 1 - - - -
MEDEON 1 1 1 0 0

XEO 1 1 1 1 1

Table 6.5: Percentage of definition and SNC signature that is primitive. The Column
titled ‘> 50% prim (def)’ indicates the number of explicitly defined concepts whose
explicitly stated definitions had more than 50% of its signature within the primitive
signature. The Column titled ‘50% prim (SNC)’ indicates the number of explicitly
defined concepts whose strongest necessary conditions extracted using Algorithm 5.1.1
had more than 50% of its signature within the primitive signature. The Column titled
‘100% prim (def)’ indicates the number of explicitly defined concepts whose explicitly
stated definitions had an entirely primitive signature. The Column titled ‘100% prim
(def)’ indicates the number of explicitly defined concepts whose strongest necessary
conditions extracted using Algorithm 5.1.1 had a signature that was entirely primitive.

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 145

Extraction Sizes

In our final point of inquiry, we extract an SNC and the explicitly stated definitions of
explicitly defined concepts with respect to the primitive signatures of the ontologies
in the corpus. Let A be an explicitly defined concept name and φ an explicitly stated
definition of A; we investigate the difference in signature sizes between SNC(A;O;ΣP)

and SNC(φ;O;ΣP) where ΣP is the primitive signature of the ontology O of interest.
The motivation is illustrated in Example 6.3.1, which suggests that SNC(φ;O;ΣP) may
contain less superfluous concepts than SNC(A;O;ΣP); the aim of this report is to in-
vestigate how often this occurs in the corpus. We only report results on successful
extractions. An extraction is deemed successful if the resulting concept expression is
equivalent to the defined concept with respect to the ontology and contains no fixpoint
operators or definer symbols in its signature. The experiment pipeline was as follows
(with a three hour timeout 4):

1. for every explicitly defined concept A ∈ sig(O) do:

(a) Extract an explicitly stated definition ϕ of A from O with the smallest sig-
nature size.

(b) Generate a fresh individual i and add ϕ(i) to O.

(c) Generate a fresh individual i′ and add A(i′) to O.

2. Extract the uniform interpolant V of O with respect to the primitive signature.

3. Let C denote the conjunction of every concept D such that D(i) ∈ V , we have
that C is a strongest necessary condition of the definition ϕ of the corresponding
explicitly defined concept.

4. Let C′ denote the conjunction of every concept D′ such that D′(i′) ∈V , we have
that C′ is a strongest necessary condition of the corresponding explicitly defined
concept A with respect to the primitive signature.

5. Compare the signature sizes of C and C′:

(a) Compute the ratio of sig(C′) that intersects with sig(C).

(b) Compute the ratio of sig(C) that intersects with sig(C′).
4This is because we observed that letting LETHE run for any longer yields minimal to no advantages.

146 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Figure 6.5 illustrates the instances in which the signature size of the extracted SNC
is greater than, equal to, or less than the signature size of the extracted definition. As
can be seen, in the majority of the cases, we have either the signature sizes are equal
or that of the extracted SNC was larger. There is a significant number of instances
for which the extracted signature size of the SNC is greater than that of the definition.
Table 6.6 illustrates the actual signature sizes in terms of quartiles; again here we can
observe the magnitude of signature difference between the extracted definitions and the
extracted SNC, the difference is significant in most ontologies apart from a few (such
as ONTOPARON SOCIAL, GECKO, and CHMO). Table 6.8 shows the percentage
increase in signature size for the extracted definitions. The percentage increase for
most cases is quite significant and indicates that extracting definitions with respect to
the primitive signature comes with a significant cost in the expression of the extracted
definition in terms of symbols used. As expected, the results indicate that extracting
the SNC with respect to the primitive signature will contain superfluous information.

Results are shown for successful extractions only both on the concept level and
ontology level.

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 147

Figure 6.5: Compared signature sizes of extracted definitions. The purple bar indicates
the number of concepts for which the signature size of the extracted concept name was
equal to the signature size of the extracted definition. The blue bar indicates the number
of concepts for which the signature size of the extracted concept name was greater than
the signature size of the extracted definition. The orange bar indicates the number of
concepts for which the signature size of the extracted definition name was greater than
the signature size of the extracted concept name.

148 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Ontology Q1 Q2 Q3 Q4
SNC DEF SNC DEF SNC DEF SNC DEF

CHMO 3.0 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0
MHCRO 4.25 3.0 6.0 6.0 11.0 6.0 3.0 3.0
RXNO 28.0 3.0 34.0 3.0 37.0 28.0 3.0 2.0
PDON 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
MOP 4.0 3.0 17.0 4.0 17.0 17.0 3.0 3.0

ONTOPARON 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
CCTOO 5.75 2.0 6.5 2.0 7.25 2.5 5.3 2.0
ACESO 5.0 4.0 7.0 6.0 8.0 7.0 4.8 3.8
GECKO 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Table 6.6: Quantiles of signature sizes. The column titled ‘Q1’ denotes the first quan-
tile, the column titled ‘Q2’ denotes the second quantile, while the column titled ‘Q3’
denotes the third quantile. The column titled ‘SNC’ denotes the quantile of signature
size of the SNC extracted with respect to the primitive signature for the correspond-
ing ontology. The column titled ‘DEF’ denotes the quantile of signature size of the
SNC of the explicitly stated definition with respect to the primitive signature for the
corresponding ontology.

Ontology Time
MHCRO 3 hrs
PDON 3 hrs
CHMO 3 hrs
RXNO 20.5 mins
ACESO 3 hrs

MOP 28.8 secs
ONTOPARON SOCIAL 4 secs

GECKO 1.7 secs

Table 6.7: Interpolation times

6.3. EVALUATING DEFINABILITY W.R.T PRIMITIVE SIGNATURES 149

Ontology Surface Size Extracted Size Increase %
GECKO 2.0 3.0 50.0

MOP 3.1 12.9 321.1
ONTOPARON 3.0 3.0 0.0

PDON 2.0 2.2 11.4
RXNO 2.9 28.7 881.2
CHMO 3.0 3.8 25.9
CCTOO 2.5 6.5 160.0
ACESO 2.9 6.3 117.0
MHCRO 5.9 8.4 42.8

Table 6.8: Percentage increase in signature size. The column titled ‘Surface Size’
indicates the average size of the definitions in the ontology with respect to the entire
ontology signature. The column titled ‘Extracted Size’ indicates the average size of
the explicit definitions extracted with respect to the primitive signature. The column
titled ‘Increase %’ indicates the percentage increase.

150 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

6.4 Evaluation of Compiled Super Concept Extraction

As discussed in Section 5.2.1, assuming all symbols in the common signature are not
interpreted the same way in the respective ontologies of the communicating agents,
strongest necessary conditions and weakest sufficient conditions may not convey enough
information about the concept intended to be shared. We discussed and implemented
an algorithm (Algorithm 5.2.2) for extracting an approximation of compiled super con-
cepts in Section 5.2.1. A shortcoming of Algorithm 5.2.2 is that it only extracts an
approximation of the compiled superconcept. The approximate nature stems from the
fact that there can be scenarios in which superfluous information may be included in
the compiled superconcept (compiled subconcept). This is especially the case because
Algorithm 5.2.2 is saturation-based.

Thus, an imperative point of concern (and focal point of examination in this sec-
tion) is the feasibility of Algorithm 5.2.2 in terms of computation and the succinctness
of its output. We evaluate the information returned by Algorithm 5.2.2 for extracting
compiled superconcepts over some of the ontologies in the corpus. Due to the high
computational cost of Algorithm 5.2.2, and, furthermore, the unavailability of an ef-
ficient role forgetting method, we were unable to perform the experiments on all the
ontologies in the corpus.

As we have no means of validating whether a compiled superconcept has redundan-
cies in its signature, we use syntactic module extraction as a baseline for comparison
and evaluation.

Our motivation to utilise locality-based modules to evaluate the superfluous infor-
mation that may be contained in compiled superconcepts extracted by Algorithm 5.2.2
is that syntactic bottom modules are analogous to compiled superconcepts in that they
preserve axioms that entail all necessary conditions of a concept5. Because bottom
modules are subsumer preserving, self-contained, and subsets of the original ontology,
we expect that the signature of a compiled superconcept to be smaller than or equal to
that of the bottom module for the seed signature corresponding with the signature of
the concept. If the signature of the bottom module is smaller than the signature of the
compiled superconcept, then this is an indication that the compiled superconcept con-
tains some superfluous information. The aim of our evaluation in this section is thus
to observe how frequently we can determine superfluous information in the compiled

5the same analogous nature applies to syntactic top modules and compiled subconcepts.

6.4. EVALUATION OF COMPILED SUPER CONCEPT EXTRACTION 151

superconcepts extracted by Algorithm 5.2.2 when applied to ontologies in the exper-
iment corpus. To simplify things, we extract compiled superconcepts with respect to
the entire signature of the ontology (minus the concept name of interest) and compare
it against the syntactic bottom module for the singleton set consisting of the concept
name of interest. Given an ontology O, our experiment pipeline is as follows:

1. for each concept name A in O, do:

(a) Extract CSP(A;O;sig(O)\{A}).

(b) Extract the bottom module for the seed signature {A} denoted M O
A .

(c) Compare and analyse the resulting signatures of CSP(A;O;sig(O) \ {A})
and M O

A .

The results of the experiment are presented in Figure 6.6, Figure 6.7, Table 6.9,
and Table 6.10.

Figure 6.7 illustrates the successful extractions of both methods. For Algorithm
5.2.2 (which extracts the CSPs in the evaluation) an extraction is deemed success-
ful if there is no timeout or exception thrown. For module extraction, an extraction
is deemed successful if there is no timeout. Both algorithms had a timeout of five
minutes per concept name to maintain feasibility of the process as most ontologies
in the dataset had well over 100 concept names. The ontologies iterated over were
restricted to {EO, EPIE, EPIP, XEO, ISSVA, HP O, ONTOMA, HPIO, MEDEON,
XEO, RXNO} primarily because Algorithm 5.2.2 timed out for most concepts in the
remaining ontologies in the corpus. From Figure 6.7 we observe that Algorithm 5.2.2
failed to extract any CSPs for any concepts in the HPIO ontology, and only three con-
cepts in the EO ontology. With the exception of the HP O and RXNO ontologies, we
observe an equal success rate for the rest of the ontologies.

Figure 6.6 displays the signature comparisons of the modules extracted and com-
piled superconcepts in which both extractions were successful; for each ontology, the
blue bar illustrates the number of concepts for which the signature size of the compiled
superconcept extracted by Algorithm 5.2.2 was smaller than the signature size of the
bottom module of the same concept. Similarly, the green bar illustrates the number of
concepts for which the signature size of the bottom module was smaller than the sig-
nature size of the compiled superconcept of the same concept extracted by Algorithm
5.2.2. The purple bar illustrates cases in which the signature sizes were equal.

Figure 6.6 highlights the fact that there are very few cases in which the compiled
superconcept contains a smaller signature than the bottom module; therefore, it is clear

152 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Figure 6.6: Signature comparisons of Bottom Module and Compiled superconcepts.
The green bar illustrates the number of concepts for which the signature of the bottom
module was smaller than the signature of the compiled super concept. The blue bar
illustrates the number of concepts for which the signature of the compiled super con-
cepts was smaller than the signature of the bottom module. The purple bar illustrates
the number for which the signature of the bottom module was equal to the signature of
the compiled super concept.

that the compiled superconcepts extracted using Algorithm 5.2.2 often contain super-
fluous information. The magnitude of the difference in the signature sizes of the ex-
tracted compiled superconcepts and bottom modules are illustrated in Table 6.9. With
the exception of a few cases such as the RXNO, EPIP, and EO ontologies, we observe
that the difference in signature sizes is almost always smaller than 10 symbols (most
cases were around 2 or 3 symbols).

6.4. EVALUATION OF COMPILED SUPER CONCEPT EXTRACTION 153

Figure 6.7: Successful Extractions.

154 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

Ontology Q1 Q2 Q3 Q4
MOD CSP MOD CSP MOD CSP MOD CSP

EO 7.0 6.0 7.0 11.0 8.0 164.5 10.0 318.0
EPIE 3.0 3.0 4.0 4.0 6.5 7.5 8.0 17.0
EPIP 2.0 2.0 3.0 3.0 4.0 39.0 5.0 41.0
XEO 13.0 14.0 16.0 17.0 18.0 19.0 18.0 19.0

ISSVA 3.0 3.0 9.0 7.0 12.0 10.0 14.0 14.0
HP O 5.0 5.0 6.0 9.0 12.5 17.0 36.0 29.0

ONTOMA 42.75 2.0 43.0 2.0 44.0 3.0 45.0 4.0
HPIO 37.0 - 38.0 - 39.0 - 43.0 -

MEDEON 19.0 2.0 19.0 2.0 20.0 2.0 21.0 8.0
XEO 13.0 14.0 16.0 17.0 18.0 19.0 18.0 19.0

RXNO 3.0 12.0 4.0 12.0 6.0 13.0 15.0 16.0

Table 6.9: Quantiles of signature sizes. The column titled ‘Q1’ denotes the first quan-
tile, the column titled ‘Q2’ denotes the second quantile, while the column titled ‘Q3’
denotes the third quantile. The column titled ‘MOD’ denotes the quantile of signature
size of the bottom module for the corresponding ontology. The column titled ‘CSP’
denotes the quantile of signature size of the extracted compiled superconcept for the
corresponding ontology.

6.4. EVALUATION OF COMPILED SUPER CONCEPT EXTRACTION 155

Lastly, Table 6.10 illustrates the instances in which the signatures of the compiled
superconcepts had symbols beyond the signatures of the bottom module, specifically
for cases where the signature of the compiled superconcepts was smaller than the sig-
nature of the bottom modules i.e., |sig(CSP(A;O;sig(O) \ {A})| ≤ |sig(M O

A))| and
sig(CSP(A;O;sig(O)\{A})) 6⊆ sig(M O

A)). We omit the case where |sig(CSP(A;O;sig(O)\
{A})| > |sig(M O

A))| as in such cases, it follows that sig(CSP(A;O;sig(O) \ {A})) 6⊆
sig(M O

A)).

Contained Total Count
Ontology Count percentage

EO 1 33.3% 3
EPIE 140 76.5% 182
EPIP 70 59.3% 117
XEO 27 18.6% 145

ISSVA 188 96.9% 193
HP O 120 62.5% 192

ONTOMA 20 100.0% 20
MEDEON 66 100.0% 66

RXNO 24 18.6% 129

Table 6.10: Instances in which the signature of the CSP had symbols outside of the
signature of the bottom module. The Contained column indicates cases in which the
signature size of the CSP was contained in the signature of the bottom module. The
Total column indicates all cases.

Table 6.10 thus illustrates that even in cases where the compiled superconcept had
a signature smaller than the extracted bottom module, there was possibly some super-
fluous information contained in the compiled superconcept.

The main source of complexity for Algorithm 5.2.2 is that it is based on saturation.
It is worth noting that in our attempt to construct an algorithm to extract compiled su-
perconcepts, several alternatives to saturation were explored, which include unfolding

[BCM+03], consequence-based reasoning [SKH11], brute force (extracting a strongest
necessary condition of the concept of interest for every subset of the powerset of the
signature of interest). In each case, we found that no advantage in terms of computation
time existed over using saturation or that saturation would have had to be implemented
in some way.

156 CHAPTER 6. CONVEYING MAXIMALLY PRECISE DESCRIPTIONS

6.5 Contribution Summary

The contributions of this chapter are as follows:

• An empirical analysis of Algorithm 5.1.1 for extracting definitions from ontolo-
gies for concept names. Our results demonstrate that Algorithm 5.1.1 is able to
extract definitions for defined concept names in most ontologies. Our results also
demonstrate that there are often superfluous concepts in the definitions extracted
by Algorithm 5.1.1.

• A characterisation of primitive signatures in the context of general TBoxes.

• An empirical analysis of definability and definitions in the context of primitive
signatures. Our results demonstrate that in general TBoxes, it is often not the
case that all implicitly or explicitly definable concept names are definable with
respect to the primitive signature of the TBox.

• An empirical analysis of Algorithm 5.1.1 for extracting definitions in the context
of and with respect to primitive signatures.

• An empirical analysis of Algorithm 5.2.2 for extracting compiled superconcepts
(whilst using module-extraction as a benchmark). The results demonstrate that
Algorithm 5.2.2 performs poorly even in small ontologies. Henceforth, we will
only evaluate compiled superconcepts and compiled subconcepts from a theo-
retical perspective.

Chapter 7

Adoption within Agent
Communication

In Chapter 6 we evaluated the knowledge extraction techniques that were developed in
Chapter 5. All the algorithms developed and discussed in Chapter 5 are based on uni-
form interpolation. The implementation of uniform interpolation used was saturation
based and thus all the algorithms developed in Chapter 5 intrinsically inherit disadvan-
tages that come with saturation based methods such as expensive computation costs
and inclusion of superfluous terms in the results. In Section 6.2 we empirically in-
vestigated the extent to which redundant terms are prevalent in definitions extracted
using strongest necessary conditions extracted by Algorithm 5.1.1. In Section 6.3 we
empirically investigated definability and definition extraction whilst taking primitive
signatures (Definition 39) into consideration. In Section 6.4, we empirically evaluated
the size of compiled superconcepts extracted using Algorithm 5.2.2.

The motivation to investigate the extraction of definitions in the first two sections of
Chapter 6 was to evaluate Theorem 6 based on the assumption that given a restricted
signature Σ possibly representing the common vocabulary between communicating
agents, symbols in Σ had the same interpretation in the respective ontologies of the
agents; in such cases, the definition α of a concept A with respect to Σ, such that
A 6∈ Σ forms an exact representation of A that can be conveyed to a participating com-
municating agent. The evaluation in Section 6.2 demonstrated that Algorithm 5.1.1
was successful in extracting definitions, but a significant amount of the definitions ex-
tracted had a significant amount of superfluous terms. Some of the results in Section
6.2 highlight the fact that using a reasoner such as Hermit [GHM+14] to extract atomic

157

158 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

definitions may be preferable to Algorithm 5.1.1 for definition extraction tasks (specif-
ically in cases where there are equivalent atomic concepts in the common signature for
the concept of interest).

Although the knowledge extraction tools developed in Chapter 5 are specifically
designed for the purposes of agent communication, we have not yet addressed how
these tools can be adopted and implemented in any existing agent framework or even
proposed guidelines on how they can be implemented or adopted; addressing this gap
is the focal point of discussion and investigation of this chapter.

Thus, this chapter tries to answer RQ4 “How can the relevant knowledge extrac-

tion techniques be integrated into existing MAS frameworks or agent communication

protocols?”. Specifically, we discuss and explore how strongest necessary conditions
and weakest sufficient conditions can be adopted in the communication protocols pro-
posed for the ANEMONE framework [vDBD+06] (Section 7.1). In Chapter 3, we
discussed relevant agent communication frameworks that have some ontology-based
components as part of their architecture. Of all the frameworks discussed, we find
that the ANEMONE system is the most appropriate agent framework in which to eval-
uate the knowledge extraction tools developed in this thesis, primarily because the
ANEMONE framework is designed specifically for the agent communication scenario
that this thesis is concerned with: finding how an agent can convey an uncommon term
with respect to its common vocabulary. Compared to other frameworks, ANEMONE
places a high emphasis on communication of knowledge in ontologies, while other
frameworks tend to focus on using ontologies to improve other aspects of agent-based
systems such as planning and scheduling. Furthermore, other agent frameworks such
as JASON and JADL & JIAC make the assumption that all knowledge is understood by
the communicating agents and sometimes include architectural components to ensure
that this assumption holds.

The communication protocols in the ANEMONE system are designed for a propo-
sitional form of description logics that does not allow for more expressive constructs
such as value restrictions and disjunctions. However, the implicit shortcoming here is
that the application of ANEMONE is limited in cases where agents have ontologies
with concept descriptions that include allow for such constructs. We specify, discuss,
and evaluate how the adoption of strongest necessary conditions and weakest sufficient
conditions may enhance the limited application of ANEMONE to agents with ontolo-
gies as expressive as ALC . Our results suggest that in most cases, the expressivity
of the ontology and the existence of more expressive constructs in the ontology do

7.1. ANEMONE 159

not significantly affect the performance of using a reasoner to extract descriptions of
concepts, in fact, in most cases we find that using reasoners is equally as efficient as
strongest necessary conditions and weakest sufficient conditions in conveying uncom-
mon concepts.

7.1 ANEMONE

ANEMONE [vDBD+06] is a framework consisting of dynamic communication proto-
cols that agents may use to convey concepts to each other depending on varying levels
of their common vocabulary. The purpose of communication in ANEMONE is mainly
to share assertional knowledge. Intuitively speaking, an agent AG1 conveys a concept
C to an agent AG2 so that AG2 can share instances of C under its knowledge.

The description logic of ANEMONE (which we denote DLANEMONE) is different
from that of OWL ontologies. First of all, DLANEMONE only defines semantics over a
set of concept names NC and a set of individuals NI (i.e., no role symbols can exist in
ANEMONE ontologies). Concepts only consist of concept names (i.e., no disjunction,
negation, or roles) and relations among concepts are restricted to the constructs in
Table 7.1.

Relation Description Syntax Semantics
Subset transitive,

anti-
symmetric

C @ D CI ⊂ DI

Superset transitive,
anti-
symmetric

C A D DI ⊂CI

Equivalence transitive,
symmetric,
reflexive

C ≡ D CI = DI

Overlap symmetric C⊕D CI 6⊆ DI ,DI 6⊆ CI and
CI ∩DI 6= /0

Disjoint symmetric C⊥D CI ∩DI = /0

Table 7.1: ANEMOME description logic language constructs and semantics.

We find that the closest adaptation of the ontology semantics in ANEMONE to
OWL semantics [AvH04] is AL without concept intersection, negation, universal re-
strictions, and limited existential quantification. We will henceforth assume the ANEMONE

160 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

description logic to be AL without concept intersection, negation, universal restric-
tions, and limited existential quantification.

It is worth noting that the ⊕ operator is inconsequential for retrieving and sharing
instances of individual concept names; for example, adding C⊕D to the ontology
{C(a), C(c), D(b), D(a)} does not affect the query for instances of C.

ANEMONE has three design objectives: (i) Minimal and effective communication,
(ii) Laziness, (iii) Decentralised communication. The minimal and effective objective
is designed to ensure that communicated knowledge can be processed in a timely fash-
ion. The laziness objective is designed to ensure that knowledge sharing only occurs
on a as-need basis, i.e., knowledge should only be exchanged when strictly necessary.
The decentralised objective is designed to ensure that there is no central control or
location of the knowledge.

The laziness objective of ANEMONE is realised through the use of communication
modes illustrated in Figure 7.1. There are three modes of communication: (i) normal
communication protocol (ii) concept definition protocol (iii) concept explication proto-
col. All conversations start by assuming that there are no misunderstandings and occur
in the normal communication protocol which is the uppermost layer. If any misunder-
standing occurs, the agents switch to the concept definition protocol where they may
attempt to resolve the misunderstandings by exchanging descriptions1 of concepts that
may have caused the misunderstanding (ideally in terms of concepts that are shared by
both agents). If misunderstandings persist in the concept definition protocol, the agents
switch to the concept explication protocol where agents convey the meaning of a con-
cept by exchanging positive and negative examples of the misunderstood concept. The
communication protocols help realise the as-need requirement of the laziness objec-
tive: agents only resort to using complex communication mechanisms when needed.

ANEMONE specifies two performatives to be used in communication, the In f orm

and ExactIn f orm performatives. Let X be a concept an agent AG1 is attempting to
convey its communication partner AG2. If X or an equivalent concept C is communi-
cated to AG2, the ExactIn f orm performative is used; however, if some other concept
that is not equivalent to X is conveyed AG2, then the In f orm performative is used.
The use of these performatives dictates whether the conversation should switch from
the normal communication protocol to the concept definition protocol: the use of the
In f orm performative hints at some loss in communication and often suggests that the

1In [vDBD+06], the terms define and definitions are used instead; however, we use describe and
descriptions to avoid confusion with the notion of definitions in ALC ontologies.

7.1. ANEMONE 161

Figure 7.1: ANEMONE protocols.

agents have to switch to the concept definition protocol. In the concept definition pro-
tocol, agents exchange a finite set of axioms (which we refer to in this chapter as a
concept description) that describes2 an uncommon concept. When agents communi-
cate in the concept definition protocol (attempting to resolve the meaning of a concept
X), they switch to the concept explication protocol if the concept description extracted
for X is perceived as inadequate by AG2. A concept description is deemed inadequate
if AG2 can not infer the relation of the described and uncommon concept with every
other concept in their ontology. Let O′ denote a concept description recieved by AG2

for an uncommon concept name A, if there is a concept name A′ in sig(O2) (O2 denotes
AG2’s ontology) such that A can not be related to A′ (under to O′∪O2) via any of the
relations in Table 7.1, then O′ is deemed inadequate. Intuitively speaking, the notion
of adequacy in ANEMONE is motivated by expecting the hearer agent to be able to
place an uncommon concept in an exact point in the class hierarchy of its ontology;
however, the notion of adequacy is too strong for ALC ontologies as ALC is more
expressive.

The concept explication protocol is underpinned by ensuring the ontologies of the
communicating agents are grounded, meaning that the domain of discourse contains
all the objects the agent may wish to speak about, e.g. the set of URLs on the internet.
The use of grounded ontologies enables agents to realise the intended interpretation
of concepts that are used in communication. Grounded knowledge bases may contain
classifiers (intended to be realised using machine learning techniques) in addition to

2In [vDBD+06], the terms define and definitions are used instead; however, we use describe and
concept descriptions to avoid confusion with the notion of definitions in ALC ontologies.

162 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

symbolic descriptions to ensure the agents can classify objects in the domain of dis-
course. In a more traditional sense, these classifiers can be considered as the sensors
of the agent.

Terminological negotiation [SMVM16] and related approaches to concept expli-
cation can be adopted to realise the concept explication protocol, as such we focus
our efforts on the Normal Communication and concept definition protocols which can
benefit from known knowledge extraction techniques in DL.

7.2 Extracting Concept Descriptions in the ANEMONE
system

The ANEMONE mechanism for conveying uncommon concepts aims to minimise loss
during communication. In the normal communication protocol, agents must commu-
nicate only using common concept-names; if an agent wants to convey an uncommon
concept name X , it has to find an equivalent common concept name X ′ and convey
X ′ in place of X (thus ensuring that there is no loss in conveying X). If no such X ′

exists, then the agent must switch to the concept definition protocol where it attempts
to extract a maximally precise description O of X and convey O. ANEMONE speci-
fies that description for a concept X is a set of axioms relating X via subsumption @,
disjointness, and equivalence ≡ to any concept names within the common vocabulary
Σ.

Let X be concept name, Σ a signature and O an AL ontology without concept in-
tersection, negation, universal restrictions, and limited existential quantification, such
that Σ⊆ sig(O), X ∈ sig(O), and X /∈ Σ. A description for X following [vDBD+06] is
defined as {X @ A | O |= X @ A∧A ∈ Σ}∪{A @ X | O |= A @ X ∧A ∈ Σ}∪{A ≡ X |
O |= A≡ X ∧A ∈ Σ}∪{AuX @⊥ |O |= AuX @⊥∧A ∈ Σ}. None of the ontologies
in the corpus contain strict subsumptions (@), as such in practice we use regular sub-
sumptions (v) to emulate the ANEMONE approach. We refer to descriptions extracted
using this method as ANEMONE descriptions. For simplification and understanding,
we streamline ANEMONE descriptions into two perspectives:

1. The Ability to extract subsumers of an unshared concept name.

2. The Ability to extract subsumees of an unshared concept name

7.2. EXTRACTING CONCEPT DESCRIPTIONS IN ANEMONE 163

7.2.1 The Ability to extract subsumers of an unshared concept
name

An ANEMONE description contains information about the subsumers of an unshared
concept name. Following the description above, the subsumers of an unshared concept
name X with respect to a common signature Σ (such that X 6∈ Σ) may be emulated using
the union of the following sets of axioms:

1. {X ≡ A | O |= X ≡ A∧A ∈ Σ}

2. {X v A | O |= X v A∧A ∈ Σ}

3. {X v ¬A | O |= X v ¬A∧A ∈ Σ}.

Let A≡ denote the set of all concept names A in Σ such that O |= A ≡ X (i.e., the set
of As in the set of axioms in (1)). Let Av denote the set of all concept names A in Σ

such that O |= X v A (i.e., the set of As in the set of axioms in (2)). Let A⊥ denote the
set of all concept names A in Σ such that O |= X uA v ⊥ (i.e., the set of As in the set
of axioms in (3)). We call the ANEMONE-subsumer of X with respect to Σ under O

denoted ANEMONE-subsumer(X ;O;Σ):

⊔

A∈A≡

Au ⊔

A′∈Av

A′u ⊔

A′′∈A⊥

¬A′′

7.2.2 The Ability to extract subsumees of an unshared concept
name

In a dual fashion, an ANEMONE description contains information about the sub-
sumees of an unshared concept name. Following the description above, the subsumees
of an unshared concept name X with respect to a common signature Σ (such that X 6∈ Σ)
is the union of the following sets of axioms:

1. {A≡ X | O |= A≡ X ∧A ∈ Σ}

2. {Av X | O |= Av X ∧A ∈ Σ}.

Let A≡ denote the set of all concept names A in Σ such that O |= A≡ X (i.e., the set of
As in the set of axioms in (a)). Let Av denote the set of all concept names A in Σ such

164 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

that O |=AvX (i.e., the set of As in the set of axioms in (b)). We call the ANEMONE-
subsumee of X with respect to Σ under O denoted ANEMONE-subsumee(X ;O;Σ):

⊔
A∈A≡

At
⊔

A′∈Av

A′

.

Let O be an ontology, X a concept name, and Σ a subset signature of sig(O) such
that X ∈ sig(O), and X /∈ Σ. To construct an ANEMONE-description of X with respect
to Σ under O using ANEMONE-subsumers and ANEMONE-subsumees, we use Al-
gorithm 7.2.1. It is worth noting that all the processes in Algorithm 7.2.1 can be simply
implemented using a reasoner such as Hermit [GHM+14].

Proposition 13. Let O be an ontology and C, C′ be two arbitrary concepts in O. If

O |=C vC′, then O |=C ≡CuC′.

Proof. Since O |=C vC′, then (i) O |=CuC′ vC (ii) O |=C vCuC′. From (i) and
(ii), we have O |=C ≡CuC′.

Proposition 14. Let O be an ontology and C, C′ be two arbitrary concepts in O. If

O |=C vC′, then O |=C′ ≡CtC′.

Proof. Since O |=C vC′, then (i) O |=C′ vC′tC (ii) O |=C′tC vC′. From (i) and
(ii), we have O |=C′ ≡CtC′.

From Propositions 13 and 14, it follows that if an uncommon concept name X

has at least one equivalent concept name A ∈ Σ, then both the ANEMONE-subumer
and ANEMONE-subsumee of X are definitions for X . Thus, either an ANEMONE-
subumer or ANEMONE-subsumee can be used in place of an uncommon concept
name X if they are both definitions of X when communicating in the normal com-
munication protocol.

Streamlining ANEMONE descriptions into subsumers and subsumees also enables
us to compare and contrast the ANEMONE approach for extracting descriptions to
an approach using strongest necessary conditions, weakest sufficient conditions, com-
piled superconcepts, and compiled subconcepts. Observe that methods for extract-
ing subsumers of concept names include: ANEMONE-subsumers, strongest necessary
conditions, and compiled superconcepts. Similarly, methods for extracting subsumees

of concept names include: ANEMONE-subsumees, weakest sufficient conditions, and
compiled subconcepts. It is also worth noting that all methods can be potentially used

7.2. EXTRACTING CONCEPT DESCRIPTIONS IN ANEMONE 165

ALGORITHM 7.2.1

Input: An ontology O, a concept name X , a signature Σ, where Σ ⊆ sig(O),
X ∈ sig(O), X /∈ Σ.
Output: An ontology φ which is an ANEMONE description for X .

Step 1: Initialise φ to be /0.
Step 2: Extract ANEMONE-subsumer(X ;O;Σ).
Step 3: Extract ANEMONE-subsumee(X ;O;Σ).
Step 4: if O |= A≡ANEMONE-subsumer(X ;O;Σ) then:

φ← A≡ ANEMONE-subsumer(X ;O;Σ)

else:
φ← Av ANEMONE-subsumer(X ;O;Σ)

Step 5: if O |= A≡ANEMONE-subsumee(X ;O;Σ) then:
φ← A≡ ANEMONE-subsumee(X ;O;Σ)

else:
φ← ANEMONE-subsumee(X ;O;Σ)v A

Step 6: return φ.

to extract definitions for concept names depending on the common signature of interest
or expressivity of the ontology.

The extraction of subsumees is specifically relevant for the application of agents
querying each other for instances of concepts. This is because for uncommon concepts
that are not definable, an extracted subsumee is more suitable than an extracted sub-
sumer as all instances of subsumees are also instances of the concept: if O |= A v B,
then all instances of A are instances of B. Instances of a subsumer may include in-
stances that do not belong to the uncommon concept.

Example 7.2.1. The example is adapted from [vDBD+06]. In it, we have two agents
AG1 and AG2 which are both personal news agents that classify news articles according
to the ontologies provided in Table 7.2.

166 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Ontology O1 of agent AG1 Ontology O2 of agent AG2
LawnTennis v BallAndRacquetGames,
Wimbledon v LawnTennis,
UKNews v RegionalNews,
SoftwareAgents v ComputerScience,
ComputerScience v ScienceNews,
BallAndRacquetGames u RegionalNews
v⊥ ,
BallAndRacquetGames u ScienceNews
v⊥ ,
RegionalNews u ScienceNews v⊥

LawnTennis ≡ Tennis
Tennis v RacquetGames,
RacquetGames v BallAndRac-
quetGames,
BallAndRacquetGames v Sports,
EuropeNews v RegionalNews,
SoftwareAgents v ScienceNews,
Sports u RegionalNews v⊥,
Sports u ScienceNews v⊥,
RegionalNews u ScienceNews v⊥

Table 7.2: Ontologies of the Agents in the ANEMONE paper. The first column con-
tains the ontology O1 for an agent AG1, and the second column contains the ontology
O2 for an agent AG2

We have that:
Σ = sig(O1)∩ sig(O2) =

{LawnTennis,RegionalNews,So f twareAgents,ScienceNews,BallAndRacquetGames}

The ANEMONE-subsumer for Wimbledon with respect to Σ under O1 is:

BallAndRacquetGamesuLawnTennisu

¬RegionalNewsu¬So f twareAgentsu¬ScienceSub jects

There is no ANEMONE-subsumee for Wimbledon with respect to Σ under O1. Fur-
thermore, O1 6|= Wimbledon ≡ ANEMONE-subsumer(Wimbledon;O1;Σ). Thus the
ANEMONE description for Wimbledon with respect to Σ under O1 would be:

Wimbledonv BallAndRacquetGamesuLawnTennisu

¬RegionalNewsu¬So f twareAgentsu¬ScienceSub jects

Note that the ANEMONE-subsumber in this case is also an SNC for Wimbledon with
respect to Σ under O.

In ALC ontologies, concepts may be defined using rich concept descriptions that
may include constructs such as role restrictions and disjunctions (which exceed the
expressivity of DLANEMONE). When communicating in the normal communication

7.2. EXTRACTING CONCEPT DESCRIPTIONS IN ANEMONE 167

protocol, agents must only use concepts in the common vocabulary or concepts equiv-
alent to concepts not in the common vocabulary, provided such equivalent concepts
are expressed in the common vocabulary. ANEMONE-subsumers and ANEMONE-
subsumees are not complete methods for extracting definitions in ALC , as they are
restricted to definitions only involving concept names, and ALC allows for more com-
plex constructs such as value restrictions. The requirements of communication in the
normal communication protocol suggest that only using ANEMONE-subsumers and
ANEMONE-subsumees in a system with agents that have ALC ontologies may unnec-
essarily lead to a loss in communication (because of the incompleteness of ANEMONE-
subsumers and ANEMONE-subsumees for ALC) and cause the agents switch to the
concept definition or explication protocols, thus potentially increasing the cost of com-
munication and possible errors in communication. This problem also extends to the
concept definition protocol and to concepts without any equivalent concepts because
the higher expressivity3 of ALC implies that rich concept descriptions may exist in
the agent’s ontologies, thus ANEMONE descriptions for concepts in such ontologies
may result in some information loss.

Example 7.2.2. Let AG1 denote an agent with the following EL ontology O1:

α1: A≡ ∃r.C

α2: Av D

Let AG2 denote an agent with the following EL ontology O2:

β1: D≡ ∃r.C

Let Σ = sig(O1)∩ sig(O2) = {r,C,D}. Let A be the concept name that AG1 wishes
to convey to AG2 in the normal communication protocol. We have that ANEMONE-

subsumer(A;O1;Σ) =D which is not equivalent to A and thus the agents must switch to
the concept definition protocol where AvD is conveyed as the ANEMONE-description
of A. However, observe that O1 |= A ≡ ∃r.C and thus ∃r.C (which is a strongest nec-
essary and weakest sufficient condition of A) can be conveyed in place of A by AG1 to
AG2, and thus there is no loss in communication that triggers a switch to the concept
definition protocol.

3Higher relative to DLANEMONE .

168 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Example 7.2.2 illustrates that ineffective communication may arise when there is
information that can prevent descent into the lower communication layers but can not
be extracted. To avoid such inefficiencies, we define notions of completeness of sub-

sumers and subsumees of concept names that ensure that subsumers and subsumees

are maximally precise with respect to the ontologies of the agents and do not result in
unnecessary loss in communication.

7.3 Contextual Completeness for Subumers and Sub-
sumees

Let O be an ontology, X a concept name, and Σ a subset of sig(O). We define two
notions of contextual completeness of subsumers and subsumees of X with respect to
Σ under O. Here the word contextual is used to indicate that these notions of complete-
ness are always with respect to the context of the ontology O.

Definition 42 (Contextual Completeness for Subsumers). Let O be a TBox, X a con-

cept name and Σ a subset of sig(O). Let C be a subsumer of X such that O |= X vC.

If X is definable under Σ, we say C is a contextually complete subsumer of X with

respect to Σ if O |= X ≡C and sig(C)⊆ Σ. If X is not definable under Σ, we say C is a

contextually complete subsumer of X with respect to Σ if sig(C)⊆ Σ and for any other

C′ such that sig(C′)⊆ Σ and O |= X vC′, we have that O |=C vC′.

Let C and C′ be two subsumers of X with respect to Σ such that O |= X v C,

O |= X v C′, sig(C) ⊆ Σ, and sig(C′) ⊆ Σ. We say C is more contextually complete
than C′ (C′ is less contextually complete than C) if O |=C vC′ and O 6|=C ≡C′.

Let L be a description logic. A concept Ω is said to be contextually subsumer
complete for L if for any input L-concept X, L-TBox O, and signature Σ such that

Σ⊆ sig(O), Ω returns a contextually complete subsumer of X under O.

None of the concept conveying mechanisms discussed in this thesis are contextu-
ally subsumer complete for ALC .

Definition 43 (Contextually Complete Subsumee). Let O be a TBox, X a concept name

and Σ a subset of sig(O). Let C be a subsumee of X such that O |= C v X. If X is

definable under Σ, we say C is a contextually complete subsumee of X with respect to

Σ if O |=X ≡C and sig(C)⊆Σ. If X is not definable under Σ, we say C is a contextually
complete subsumee of X with respect to Σ if sig(C)⊆ Σ and for any other C′ such that

sig(C′)⊆ Σ and O |=C′ v X, we have that O |=C′ vC.

7.3. CONTEXTUAL COMPLETENESS FOR SUBUMERS AND SUBSUMEES169

Let C and C′ be two subsumees of X with respect to Σ such that O |= C v X,

O |= C′ v X, sig(C) ⊆ Σ, and sig(C′) ⊆ Σ. We say C is more contextually complete
than C′ (C′ is less contextually complete than C) if O |=C′ vC and O 6|=C ≡C′.

Let L be a description logic. A a concept conveying mechanism Ω is said to be

contextually subsumee complete for L if for any input L-concept X, L-TBox O, and

signature Σ such that Σ ⊆ sig(O), Ω returns a contextually complete subsumee of X

under O.

None of the concept conveying mechanisms discussed in this thesis are contextu-
ally subsumee complete for ALC .

The use of the word definable in Definitions 42 and 43 is meant in the sense of
Definition 9.

Example 7.2.2 illustrates that ANEMONE-subsumers are not contextually sub-
sumer complete for EL ontologies, and thus can not be contextually subsumee com-
plete for DLs more expressive than EL . A similar example can easily be constructed
to show that ANEMONE-subsumees are not contextually subsumee complete for EL
ontologies.

Contextual completeness allows us to evaluate how complete a subsumer or a sub-
sumee of a concept name is with respect to a background ontology. If a communicating
agent AG1 has the ability to extract a contextually complete subsumer for an definable
(under the common vocabulary) uncommon concept name X , then it is guaranteed to
never unnecessarily switch from the normal communication protocol to the concept
definition protocol. Similarly if X is not definable with respect to the common vo-
cabulary and AG1 has the ability to extract a subsumer and subsumee of X that are
contextually complete, then it can extract a maximally precise concept description of
X in the concept definition protocol, and thus not unnecessarily switch to the concept
explication protocol.

Limitation of Contextual Completeness for Agent Communication

It is important to stress that contextual completeness is not sufficient for agent com-
munication as completeness in this sense is only with respect to the ontology of the
speaking agent. Let X be an uncommon concept name that an agent AG1 is attempt-
ing to convey to another agent AG2 with respect to Σ such that Σ = sig(O1)∩ sig(O2)

where O1 and O2 are the respective ontologies of AG1 and AG2. Regardless of whether
X is defined or not, a contextually complete subsumer or subsumee of X with respect
to Σ can still lead to communication errors. This is because AG2 does not have access

170 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

to O1, and X may have other relations to concepts that are expressible in Σ that are not
captured by contextually complete subsumers or subsumees. Example 7.3.1 illustrates
this.

Example 7.3.1. Let AG1 denote an agent with the following ontology O1:

α1: A≡ ∃r.C

α2: Av D

Let AG2 denote an agent with the following ontology O2:

β1: ∃r.C(i)

β2: ¬D(i)

Let Σ = sig(O1)∩ sig(O2) = {r,C,D}. Let A be the concept name that AG1 wishes
AG2 to extract instances for. A contextually complete subsumer of A with respect
to Σ under O is ∃r.C. If AG1 conveys ∃r.C in place of A, then AG2 will return i as
an instance that belongs to A, and AG1 may erroneously add A(i) to its knowledge.
However, observe that this contradicts AG1’s knowledge: O2 |= (∃r.Cu¬D)(i) while
O1∪{A(i)} |= (∃r.CuD)(i). A more contextually complete subsumer of A that could
prevent this contradiction is ∃r.CuD.

This example highlights the fact that the lack of minimality of strongest necessary
conditions as highlighted in Chapter 6 may not be so disadvantageous when it comes
to standalone completeness, as a concept that may be deemed superfluous (in Chapter
6), is only so with respect to the ontology, but may be essential for another agent to
know. In fact, given the ontology in Example 7.3.1, our implementation for extracting
strongest necessary conditions will extract ∃r.CuD as a strongest necessary condition
of A with respect to the signature {r,C,D}.

7.4 Standalone Completeness for Subumers and Sub-
sumees

Section 7.3 highlights the fact that when communicating agents do not have access to
each other’s ontologies, they must find a way to extract maximally precise subsumers
and subsumees of uncommon concepts in a fashion that extracts all information about
subsumers and subsumees from their respective ontologies. To capture this, we intro-
duce standalone notions of completeness for subsumers and subsumees.

7.4. STANDALONE COMPLETENESS FOR SUBUMERS AND SUBSUMEES171

Definition 44 (Standalone Completeness for Subsumers). Let O be a TBox, X a con-

cept name and Σ a subset of sig(O). Let C be a subsumer of X such that O |=X vC. We

say C is a standalone complete subsumer of X with respect to Σ if C is a contextually

complete subsumer of X with respect to Σ, and for any other C′ such that sig(C′) ⊆ Σ

and O |= X vC′, we have that |=C vC′.

Let C and C′ be two subsumers of X with respect to Σ such that O |= X v C,

O |= X v C′, sig(C) ⊆ Σ, and sig(C′) ⊆ Σ. We say C is more standalone complete
than C′ (C′ is less standalone complete than C) if |=C vC′ and 6|=C ≡C′.

Let L be a description logic. A a concept conveying mechanism Ω is said to be

standalone subsumer complete for L if for any input L-concept X, L-TBox O, and

signature Σ such that Σ ⊆ sig(O), Ω returns a standalone complete subsumer of X

under O.

Example 7.4.1. Let O be the set of the following axioms:

1. Av ∃r.C

2. B≡ ∃r.C

3. Bv D

Let Σ = sig(O)\{A}= {r,C,B,D}. Let A be the concept name to be conveyed.
A possible strongest necessary condition of A with respect to Σ under O is ∃r.C
The ANEMONE-subsumer of A with respect to Σ under O is BuD.
The compiled superconcept of A with respect to Σ is ∃r.CuBuD.
Therefore only CSP(A;O;Σ) is standalone complete (|= ∃r.C u B uD v B uD, |=
∃r.C uBuD v ∃r.C). Furthermore CSP(A;O;Σ) is more standalone complete than
SNC(A;O;Σ) and ANEMONE-subsumer(A;O;Σ). SNC(A;O;Σ) is more contextually
complete than ANEMONE-subsumer(A;O;Σ) but not more standalone complete.
ANEMONE-subsumer(A;O;Σ) is not more standalone complete than SNC(A;O;Σ).
However, observe that ANEMONE-subsumer(A;O;Σ)u SNC(A;O;Σ) is more stan-
dalone and contextually complete than ANEMONE-subsumer(A;O;Σ) and SNC(A;O;Σ),
and in fact a compiled superconcept of A with respect to Σ.

Now consider Σ to be {B,D}.
A possible strongest necessary condition of A with respect to Σ under O is B

The ANEMONE-subsumer of A with respect to Σ under O is BuD.
The compiled superconcept of A with respect to Σ is BuD. Therefore only CSP(A;O;Σ)

and ANEMONE-subsumer(A;O;Σ) are standalone complete.

172 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Definition 45 (Standalone Complete Subsumee). Let O be a TBox, X a concept name

and Σ a subset of sig(O). Let C be a subsumee of X such that O |= C v X. If X

is definable under Σ, we say C is contextually is a standalone complete subsumee of

X if C is a contextually complete subsumee of X with respect to Σ and C′ such that

sig(C′)⊆ Σ and O |=C′ v X, we have that |=C′ vC.

Let C and C′ be two subsumees of X with respect to Σ such that O |= C v X,

O |=C′ v X, sig(C)⊆ Σ, and sig(C′)⊆ Σ. We say C is more standalone complete than
C′ (C′ is less standalone complete than C) if O |=C′ vC and O 6|=C ≡C′.

Let L be a description logic. A a concept conveying mechanism Ω is said to be

standalone subsumee complete for L if for any input L-concept X, L-TBox O, and

signature Σ such that Σ ⊆ sig(O), Ω returns a standalone complete subsumee of X

under O.

None of the concept conveying mechanisms discussed in this thesis are standalone
complete for ALC . However, we believe that there are classes of ontologies for which
ANEMONE-subsumers and ANEMONE-subsumees are contextually subsumer com-
plete and contextually subsumee complete.

Examples include:

1. EL ontologies without any existential quantification.

2. AL ontologies without any universal or existential quantifications.

Definition 46 (ANEMONE fragment). We say an ontology O falls under the ANEMONE

fragment if it satisfies the following syntactic requirements:

1. Axioms involving concept names in O are only of the form A≡C or AvC such

that:

(a) A is always an atomic concept.

(b) C is always either an atomic concept, a negated atomic concept, or a con-

junction L1uL2u ...uLN where Li (such that 1≤ i≤N) is either an atomic

concept or a negated atomic concept.

The key differences between DLANEMONE and the ANEMONE fragment is that (1)
DLANEMONE involves the use of strict subsumptions (@) while the ANEMONE frag-
ment allows for subsumptions (v). (2) DLANEMONE includes the overlap (⊕) operator
while the ANEMONE fragment does not.

7.4. STANDALONE COMPLETENESS FOR SUBUMERS AND SUBSUMEES173

Conjecture 2. ANEMONE-subsumers and ANEMONE-subsumees are standalone
subsumer complete and standalone subsumee complete (respectively) for ontologies
O that fall under the ANEMONE fragment.

The reasoning behind Conjecture 2 is that for an ontology O that falls within the
ANEMONE fragment, we believe that due to the syntactic restriction in Definition 46,
all subsumers of any concept name A∈ sig(O) will be equivalent-to or a superconcept-
of a subsumer C of A which has the form: C1u ...uCn where each Ci such that 1≤ i≤ n

is either an atomic concept or a negated atomic concept. Similarly, we believe that
due to the syntactic restriction in Definition 46, all subsumees of any concept name
A ∈ sig(O) will be equivalent-to or a subconcept-of a subsumee C of A which has the
form: A1t ...tAn where each Ai such that 1≤ i≤ n is an atomic concept.

7.4.1 Relationship between CSPs, CSBs, SNCs, WSCs, ANEMONE
subsumers, ANEMONE subsumees and Contextual/Standalone
completeness

As demonstrated in Section 6.4, extraction of compiled superconcepts is often infea-
sible. ANEMONE-subsumers and ANEMONE-subsumees can be extracted easily us-
ing an off-the-shelf reasoner such as Hermit [GHM+14]. Reasoning tasks for concept
names (subsumption checking, satisfiability checking, equivalence checking, and dis-
jointness checking) all have been shown [BCM+03] to have worst case exponential
complexity for ALC TBoxes. Observe that all of the reasoning tasks required to extract
ANEMONE-subsumers and ANEMONE-subsumees fall under subsumption checking,
satisfiability checking, equivalence checking, and disjointness checking, and thus we
expect the extraction of ANEMONE-subsumers and ANEMONE-subsumees to have
an exponentially complexity in the worst case. Results from Chapter 6 suggest that
the extraction of strongest necessary conditions (and similarly weakest sufficient con-
ditions) using Algorithm 5.1.1 (Algorithm 5.1.2 for WSCs) may be feasible in some
cases; however, both Algorithm 5.1.1 and 5.1.2 have a double exponential complexity
(Section 5.1.3).

Example 7.4.1 highlights the fact that depending on the uncommon concept name
and signature, ANEMONE subsumers are sometimes standalone complete, regardless
of the expressivity of the ontology of interest. Furthermore, Example 7.4.1 highlights
that the contextual completeness of SNCs can sometimes be used to make ANEMONE-
subsumers more contextually complete (a dual example for subsumees can be easily

174 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

constructed). Let O be an ontology, X an uncommon concept name and Σ a sub-
set of sig(O), Example 7.4.1 highlights that if an SNC(X ;O;Σ) is more contextu-
ally complete than ANEMONE-subsumer(X ;O;Σ) then SNC(X ;O;Σ)u ANEMONE-

subsumer(X ;O;Σ) is going to be more standalone complete than ANEMONE-subsumer(X ;O;Σ).
However, if O |= SNC(X ;O;Σ) ≡ ANEMONE-subsumer(X ;O;Σ), then SNC(X ;O;Σ)

only makes ANEMONE-subsumer(X ;O;Σ) more standalone complete if
|= SNC(X ;O;Σ) v ANEMONE-subsumer(X ;O;Σ) i.e., SNC(X ;O;Σ) is more stan-
dalone complete than ANEMONE-subsumer(X ;O;Σ).
If O |= SNC(X ;O;Σ)≡ ANEMONE-subsumer(X ;O;Σ), and
|= ANEMONE-subsumer(X ;O;Σ)v SNC(X ;O;Σ), then SNC(X ;O;Σ) does not make
ANEMONE-subsumer(X ;O;Σ) more standalone complete in any way, because it means
that with respect to the ontology and the empty ontology, the ANEMONE-subsumer
conveys as much or more than (in the case of |= ANEMONE-subsumer(X ;O;Σ) v
SNC(X ;O;Σ)) the strongest necessary condition.

7.5 Empirical Evaluation

The following empirical evaluation aims to explore how frequently SNCs and WSCs
are useful in making ANEMONE-subsumers and ANEMONE-subsumees of concept
names occuring in the ontologies from Section 6.1 more standalone complete.

Because SNCs and WSCs can be used to extract subsumers and subsumees that
may concepts that involve role restrictions, we expect SNCs and WSCs to make ANEMONE-
subsumers and ANEMONE-subsumees more standalone complete when extracting for
non-cyclic concept names.

We implement the extraction of ANEMONE-subsumers and ANEMONE-subsumees
using Hermit [GHM+14]. We implement Algorithms 5.1.1 and 5.1.2 using the LETHE
implementation4. We impose a twenty minute timeout on algorithms as in a practical
communication latency is key for efficient communication.

For variability, we sample various subset signatures of each ontology in our dataset
to emulate the common signature. Given an ontology O, we take seven unique uni-
form samples of sig(O). The seven samples are of different sizes with respect to the
signature of the ontology. The signature sizes range from 10% to 70% of the ontology’s
signature (using an interval of 10%). These signature sizes determine the portion of the
ontology’s signature that is randomly selected to serve as the common signature. Let

4LETHE can be accessed at https://lat.inf.tu-dresden.de/˜koopmann/LETHE/.

https://lat.inf.tu-dresden.de/~koopmann/LETHE/

7.5. EMPIRICAL EVALUATION 175

Σ be a sample common signature for an ontology O. We assume the agent is interested
in querying for instances of concept-names in sig(O) \ Σ (which we call the query

sample). We then record how frequently the extracted ANEMONE-subsumers and
ANEMONE-subsumees are made more standalone complete by the extracted SNCs
and WSCs of all the concept names in sig(O)\Σ.

7.5.1 Evaluating Extraction of Subsumers

In this section, we evaluate the extraction of subsumers on the corpus from Section
6.1. For an ontology O, and signature Σ such that Σ⊆ sig(O), the experiment pipeline
was as follows:

1. for every concept name A ∈ sig(O)\Σ do:

(a) Extract SNC(A;O;Σ) following Algorithm 5.1.1.

(b) Extract ANEMONE-subsumer(A;O;Σ) using Hermit.

2. if O |= SNC(A;O;Σ)v ANEMONE-subsumer(A;O;Σ) and O 6|= SNC(A;O;Σ)≡
ANEMONE-subsumer(A;O;Σ) do:

(a) Record SNC(A;O;Σ) as making ANEMONE-subsumer(A;O;Σ) more stan-
dalone complete

else if O |= SNC(A;O;Σ)≡ ANEMONE-subsumer(A;O;Σ) do:

(a) Record ANEMONE-subsumer(A;O;Σ) as not being made more standalone
complete by SNC(A;O;Σ)

else if |= SNC(A;O;Σ)v ANEMONE-subsumer(A;O;Σ) and 6|= SNC(A;O;Σ)≡
ANEMONE-subsumer(A;O;Σ) do:

(a) Record SNC(A;O;Σ) as making ANEMONE-subsumer(A;O;Σ) more stan-
dalone complete

else if 6|= SNC(A;O;Σ) v ANEMONE-subsumer(A;O;Σ) and 6|= ANEMONE-

subsumer(A;O;Σ)v SNC(A;O;Σ)

and 6|= SNC(A;O;Σ)≡ ANEMONE-subsumer(A;O;Σ) do:

(a) Record SNC(A;O;Σ) as making ANEMONE-subsumer(A;O;Σ) more stan-
dalone complete

176 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

else:

(a) Record ANEMONE-subsumer(A;O;Σ) as not being made more standalone
complete by SNC(A;O;Σ)

Results

The results are displayed in Figures 7.2, 7.3, 7.4, and 7.5. We only display results
for instances in which both the extraction of the ANEMONE-subsumer and strongest
necessary conditions were successful. An extraction is deemed successful if no timeout
occurs and the signature of the extracted subsumer is a subset of the sample signature.
Algorithm 5.1.1 always timed out in the MHCRO and TCO cases, as such we exclude
those cases from the result.

The ontology BNO falls under the ANEMONE-fragment (we have verified this
syntactically). As such it is not that surprising the ANEMONE subsumer is more
standalone complete than the SNC in all instances. This is most likely because our
implementation for extracting the strongest necessary condition may not factor in
other superconcepts of an uncommon concept name. For example, given the ontology
O = {Av B,BvC}, and signature Σ = {B,C}, the strongest necessary condition of A

with respect to Σ extracted by Algorithm 5.1.1 is B, while the ANEMONE-subsumer
is BuC. EO, MEDEON, ONTOMA, EPIE, and EPIP are ontologies that do not fall
under the ANEMONE-fragment but are all cases in which the extracted strongest nec-
essary condition could not make the ANEMONE-subsumer more standalone complete
for any concepts. These cases further support the notion that even though ANEMONE-
subsumers are not standalone or contextually subsumer complete for a description
logic, they are not necessarily always less useful than strongest necessary conditions
(which have the ability to extract concepts that involve role restrictions). Table 7.3
summarises the results across all signature samples observed for all the ontologies in
the dataset. As we can see, the strongest necessary conditions extracted using Algo-
rithm 5.1.1 makes the ANEMONE-subsumer more standalone complete under fifty
percent of the time in cases except for XEO, CCTOO, and PDON.

7.5. EMPIRICAL EVALUATION 177

Ontology ID ANE Standalone Complete SNC Enhanced
ACESO 96 % (72) 4 % (3)

BNO 100 % (288) 0 % (0)
PDON 0 % (1) 99 % (176)
CHMO 90 % (774) 9 % (78)
RXNO 50 % (740) 49 % (722)
HPIO 96 % (880) 3 % (28)
MOP 96 % (5126) 3 % (206)
EPIE 100 % (173) 0 % (0)
EPIP 100 % (129) 0 % (0)

ONTOMA 100 % (138) 0 % (0)
ONTOPARON SOCIAL 68 % (3148) 31 % (1460)

HP O 55 % (302) 44 % (241)
ISSVA 67 % (294) 32 % (140)

GECKO 95 % (351) 4 % (15)
DLORO 53 % (385) 46 % (338)

EO 100 % (613) 0 % (0)
MEDEON 100 % (95) 0 % (0)

XEO 33 % (141) 66 % (278)
CCTOO 4 % (142) 95 % (2732)

Table 7.3: Subsumer extraction Results aggregated over all signature samples
. The column titled ‘ANE Standalone Complete’ indicates the percentage and number
of concept names for which (1) the extracted strongest necessary condition could not
make the ANEMONE-subsumer more standalone complete and (2) the ANEMONE

subsumer was more standalone complete than the strongest necessary condition
across all common signature samples. The column titled ‘SNC Enhanced’ indicates

the percentage and number of concept names for which the extracted strongest
necessary condition made the ANEMONE-subsumer more standalone complete.

178 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Figure 7.2: Results for subsumer extraction. The horizontal axis indicates the size
of the sampled common signature as a percentage of the ontology’s signature. The
vertical axis indicates the number of concept names. The blue bars indicate the number
of concepts for which the extracted strongest necessary condition made

the extracted ANEMONE-subsumer more standalone complete. The orange bars
indicate the number of concepts for which the ANEMONE-subsumer was not made
more standalone complete by the extracted strongest necessary condition. The ticks

without bars are cases in which either (1) the extracted SNC included a definer
symbol (2) Algorithm 5.1.1 timed out when extracting an SNC.

7.5. EMPIRICAL EVALUATION 179

Figure 7.3: Results for subsumer extraction. See Figure 7.2 caption for details.

180 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Figure 7.4: Results for subsumer extraction. See Figure 7.2 caption for details.

7.5. EMPIRICAL EVALUATION 181

Figure 7.5: Results for subsumer extraction. See Figure 7.2 caption for details.

182 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

7.5.2 Evaluating Extraction of Subsumees

In this section we evaluate the extraction of subsumees on the corpus from Section 6.1.
For an ontology O, and signature Σ such that Σ⊆ sig(O), the experiment pipeline was
as follows:

1. for every concept name A ∈ sig(O)\Σ do:

(a) Extract WSC(A;O;Σ) following Algorithm 5.1.2.

(b) Extract ANEMONE-subsumee(A;O;Σ) using Hermit.

2. if O |= ANEMONE-subsumee(A;O;Σ) vWSC(A;O;Σ) and O 6|= ANEMONE-

subsumee(A;O;Σ)≡WSC(A;O;Σ)do:

(a) Record WSC(A;O;Σ) as making ANEMONE-subsumee(A;O;Σ) more stan-
dalone completeX

else if O |=WSC(A;O;Σ)≡ ANEMONE-subsumee(A;O;Σ) do:

(a) Record ANEMONE-subsumee(A;O;Σ) as not being made more standalone
complete by WSC(A;O;Σ)

else if |= ANEMONE-subsumee(A;O;Σ)vWSC(A;O;Σ) and 6|=WSC(A;O;Σ)≡
ANEMONE-subsumee(A;O;Σ) do:

(a) Record WSC(A;O;Σ) as making ANEMONE-subsumee(A;O;Σ) more stan-
dalone complete

else if 6|= ANEMONE-subsumee(A;O;Σ) vWSC(A;O;Σ) and 6|= ANEMONE-

subsumee(A;O;Σ)vWSC(A;O;Σ) and 6|=WSC(A;O;Σ)≡ ANEMONE-subsumee(A;O;Σ)

do:

(a) Record WSC(A;O;Σ) as making ANEMONE-subsumee(A;O;Σ) more stan-
dalone complete

else:

(a) Record ANEMONE-subsumee(A;O;Σ) as not being made more standalone
complete by WSC(A;O;Σ)

7.5. EMPIRICAL EVALUATION 183

Results

The results are displayed in Figures 7.6, 7.7, 7.8, and 7.9. Similar to the previ-
ous section, we only display results for instances in which both the extraction of the
ANEMONE-subsumee and weakest sufficient conditions were successful. An extrac-
tion is deemed successful if no timeout occurs and the signature of extracted subsumee
is a subset of the sample signature.

Unlike the case with subsumer extraction, here we observe that for most of the
ontologies, the weakest sufficient conditions extracted using Algorithm 5.1.2 rarely
makes the ANEMONE subsumees more standalone complete. The exception is the
PDON case where the weakest sufficient conditions extracted using Algorithm 5.1.2
made the ANEMONE-subsumee more standalone complete 100% of the time in the
70% sample common signature size iteration. In other cases, either the extracted weak-
est sufficient condition does not make the extracted ANEMONE-subsumees more stan-
dalone complete at all, or only makes the ANEMONE-subsumees more standalone
complete a minimal percentage of the time. In fact from Table 7.4 we observe that
except for the PDON case, the extracted weakest sufficient condition only makes the
ANEMONE-subsumees more standalone complete less than 10% of the time, and 0%
of the time in most cases across all signature size samples observed.

184 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Ontology ID ANE Standalone Complete WSC Enhanced
ACESO 97 % (41) 2 % (1)

BNO 100 % (119) 0 % (0)
PDON 0 % (0) 100 % (129)
CHMO 99 % (244) 0 % (1)
RXNO 89 % (302) 10 % (35)
HPIO 98 % (236) 1 % (3)
MOP 99 % (971) 0 % (4)
EPIE 100 % (36) 0 % (0)
EPIP 100 % (27) 0 % (0)

ONTOMA 100 % (81) 0 % (0)
ONTOPARON SOCIAL 97 % (1089) 2 % (31)

HP O 97 % (106) 2 % (3)
ISSVA 94 % (103) 5 % (6)

GECKO 99 % (128) 0 % (1)
DLORO 100 % (243) 0 % (0)

EO 100 % (35) 0 % (0)
MEDEON 100 % (41) 0 % (0)

XEO 90 % (108) 10 % (12)
CCTOO 98 % (246) 1 % (3)

Table 7.4: Subsumee extraction Results aggregated over all signature samples. The
column titled ‘ANE Standalone Complete’ indicates the percentage and number of con-
cept names for which (1) the extracted weakest sufficient condition could not make the
ANEMONE-subsumee more standalone complete and (2)the ANEMONE subsumee
was more standalone complete than the weakest sufficient condition across all com-
mon signature samples. The column titled ‘WSC Enhanced’ indicates the percentage
and number of concept names for which the extracted weakest sufficient condition
made the ANEMONE-subsumee more standalone complete.

7.5. EMPIRICAL EVALUATION 185

Figure 7.6: Results for subsumee extraction. The horizontal axis indicates the size of
the sampled common signature as a percentage of the ontology’s signature. The ver-
tical axis indicates the number of concept names. The green bars indicate the number
of concepts for which the extracted weakest sufficient condition made the extracted
ANEMONE-subsumer more standalone complete. The orange bars indicate the num-
ber of concepts for which the ANEMONE-subsumee was not made more standalone
complete by the extracted weakest sufficient condition. The ticks without bars are
cases in which either (1) the extracted WSC included a definer symbol (2) Algorithm
5.1.2 timed out when extracting an WSC.

186 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Figure 7.7: Results for subsumee extraction. See Figure 7.6 caption for details.

7.5. EMPIRICAL EVALUATION 187

Figure 7.8: Results for subsumee extraction. See Figure 7.6 caption for details.

188 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

Figure 7.9: Results for subsumee extraction. See Figure 7.6 caption for details.

7.5. EMPIRICAL EVALUATION 189

7.5.3 Discussion

ANEMONE-subsumers and ANEMONE-subsumees are the most practical and eas-
ily implemented concepts (out of those discussed up to this point in the thesis) for
agent communication given that they may easily be implemented using an off-the-
shelf reasoner such as Hermit. However, ANEMONE-subsumers and ANEMONE-
subsumees do not guarantee contextual or standalone completeness for ALC ontolo-
gies without cycles. We have investigated how often our implementations for ex-
tracting strongest necessary and weakest sufficient conditions could be used to make
ANEMONE-subsumers and ANEMONE-subsumees more standalone complete in prac-
tice. The results suggest that our implementation of Algorithm 5.1.1 for extract-
ing strongest necessary conditions, when successful, seems to make ANEMONE-
subsumers more standalone complete about half the time; the rest of the time, ANEMONE-
subsumers are not made more standalone complete by the extracted strongest necessary
conditions, and in one case (BNO) ANEMONE-subsumers are standalone complete for
all concepts. However, it is worth noting that there are a significant number of cases
in which Algorithm 5.1.1 times out. This is a reflection of the double exponential
complexity associated with Algorithm 5.1.1.

Unlike the case with subsumers, we observe that our implementation of Algorithm
5.1.2 for extracting weakest sufficient conditions rarely makes ANEMONE-subsumees
more standalone complete. This may just be a reflection of the fact that subsumees of
concept names in the ontologies of the dataset are not expressive enough to warrant the
use of weakest sufficient conditions.

Neither ANEMONE-subsumers nor ANEMONE-subsumees are standalone sub-
sumer and subsumee complete for ALC for ALC ontologies without cycles, yet we
observe that in a significant number of instances, they can not be made more standalone
complete by strongest necessary or weakest sufficient conditions.

In theory, ANEMONE-subsumers and ANEMONE-subsumees are neither contex-
tually nor standalone complete for ALC ontologies without cycles, but in practice,
they can be feasibly and easily extracted.
In practice, Algorithms 5.1.1 and 5.1.2 can sometimes be feasibly extracted given
enough of a timeout.
Because SNCs and WSCs may be used to extract concepts that involve role restrictions
(which ANEMONE-subsumers and subsumees can not), we expected SNCs/WSCs to
make ANEMONE-subsumers/ANEMONE-subsumees more standalone complete in

190 CHAPTER 7. ADOPTION WITHIN AGENT COMMUNICATION

practice; however, our results demonstrate that the SNCs/WSCs extracted by Algo-
rithms 5.1.1 and 5.1.2 rarely do so.

7.6 Contribution Summary

The contributions of this chapter are as follows:

• A discussion of the possible impact of strongest necessary conditions and weak-
est sufficient conditions on agent communication in the ANEMONE system.

• A characterisation of completeness for subsumers and subsumees. We initially
characterise completeness with respect to an ontology (contextual complete-
ness), however, highlight that such notions of completeness are not sufficient
for agent communication, thus prompting the characterisation of completeness
(standalone completeness) without the background ontology.

• An evaluation of how frequently our algorithms for extracting strongest nec-
essary conditions could enhance the standalone completeness of ANEMONE-
subsumers, and similarly how frequently the weakest sufficient conditions could
enhance the standalone completeness ANEMONE-subsumees. Our results sug-
gest that our algorithm for extracting strongest necessary conditions, when suc-
cessful, seems to make ANEMONE-subsumers more standalone complete about
half the time, whereas our algorithm for extracting weakest sufficient conditions
rarely make ANEMONE-subsumees more standalone complete.

Chapter 8

Finite Entailment Sets and Ontology
Alignment

Up to this point in thesis, we have assumed the pre-existence of a common vocabulary
between communication partners. Ontology matching is a common way for agents
to establish a common vocabulary. In this chapter we investigate the usefulness of
knowledge extraction techniques in evaluating a common vocabulary established via
ontology matching.

Thus, this chapter tries to answer RQ7 “Can knowledge extraction techniques be

applied to establishing a common vocabulary?”. The goal of ontology matching is to
build an ontology alignment which is a set of mappings or correspondences between
symbols in two different ontologies. The integrity of an alignment determines the
accuracy and quality of knowledge shared between communicating partners.

We investigate entailment sets that can be built using knowledge extraction tech-
niques and how entailment sets can be used to evaluate ontology alignments.

In Section 8.1, we provide a background on entailment sets and discuss design
decisions to be taken into consideration when constructing entailment sets. Section
8.2 introduces the entailment sets and how they can be constructed. Finally in Section
8.3, we discuss developed entailment sets and their applications to evaluating ontology
alignments.

8.1 Entailment Sets

We call the (infinite) set of all axioms α such that O |=α the theory of O (also called the
deductive closure of O). Therefore, an ontology is a finite set of axioms that represents

191

192CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

an infinite theory of knowledge. A finite entailment set is a subset of the deductive
closure of O. Finite entailment sets may be extracted for several reasons such as find-
ing the semantic and syntactic differences and similarities between a pair of ontologies
[GPS12, GPS11], and generating metrics for ontologies [Bai13]. Practical examples
of entailment sets include the class hierarchy of an ontology, i.e., a set of atomic sub-
sumption and equivalence class axioms over the set of concept names in an ontology.
Class hierarchies have several uses, including constructing alignments for ontologies
(we expand on this in Section 3.3.2). Uniform interpolants also form a category of fi-
nite entailment sets, specifically those that capture the deductive closure of an ontology
over a specified subset signature of the ontology. An imperative limitation of the class
hierarchy is that it fails to capture entailments involving complex concepts that include
roles in their signature. In this chapter, we are interested in finite entailment sets for
the TBox of an ontology. Specifically, we are interested in entailment sets that can
also capture some information about entailments that contain complex concepts, and
investigate whether the knowledge extraction tools discussed and developed in Chap-
ter 5 may be used to construct entailment sets that prove useful to evaluating ontology
alignments.

Bail [Bai13] outlines several design decisions to be taken into account when con-
structing a finite entailment-set. We discuss design decisions outlined by Bail [Bai13]
that are relevant to the entailment sets developed in this chapter.

Design Decisions for Entailment sets

1. Tautologies: Tautologies are axioms that are vacuously entailed by an ontology,
i.e., axioms that do not follow from any explicitly stated axioms in an ontology.
For example, the axioms ⊥ v A,A v A,A v >,>(a) can be inferred from any
ontology. Including tautologies in an entailment set increases the size of the
entailment set without capturing any knowledge from O. We do not include
tautologies in the entailment sets discussed in this chapter.

2. Equivalence to> or⊥: Let A be a concept name such that an ontology O entails
A≡⊥. The decision to add A≡⊥ (or Av⊥) affects the number of axioms that
have to be added to an entailment set. If A ≡ ⊥ or A v ⊥ is excluded, then
for every concept name A′, such that A′ ∈ sig(O) and O 6|= A′ ≡ ⊥, the axiom
Av A′ may need to be added for every such A′. Similarly the dual case holds if
O |= A≡>.

8.2. DEVELOPED ENTAILMENT SETS 193

3. Axioms and expression Types: Entailments involving class expressions that
include value restrictions are sometimes needed for an application. To capture
a finite set of such entailments, prime implicates and prime implicants [Bie08]
have been suggested as a method to construct entailment sets involving class ex-
pressions that include roles [Bai13]. Strongest necessary conditions in negated
normal form that do not contain any conjunctions (u) can be regarded as vari-
ants of implicates that factor in a background ontology, i.e., subsumption is con-
sidered with respect to a background ontology. The notion of strength (in the
sense for strongest necessary conditions) loosely corresponds with the notion of
primeness (in the sense of prime implicates). For the application of ontology
alignment, the background ontology plays a significant role in the interpretation
of class expressions. We therefore propose strongest necessary conditions as op-
posed to prime implicates in the construction of entailment sets for the evaluation
of ontology alignments.

In the next sections, we investigate using SNC(s) and WSC(s) as alternatives to
prime implicates to be used in constructing finite entailment sets that involve non-
atomic concept expressions. We explore whether entailment sets constructed using
SNC(s) and WSC(s) are useful in evaluating ontology alignments, and can thus be
useful in the process of establishing a common vocabulary between agents.

8.2 Developed entailment sets

Unless otherwise stated, we only discuss entailment sets involving ALC ontologies or
less expressive ontologies. Let O be an ALC ontology or less expressive ontology. We
define three entailment sets that may be constructed over O using SNC(s), WSC(s),
domain extraction, and range extraction, namely: (1) Ascending Entailment Set, (2)
Descending Entailment Set, and (3) Relation Entailment Set.

8.2.1 Ascending Entailment Sets

The ascending entailment set is constructed by extracting SNCs for all concept names
in the ontology and is described in Definition 47.

Definition 47 (Ascending Entailment Set). Let Σ be sig(O) for an ontology O. The

ascending entailment set of O denoted AESO is the set of all axioms A⊕SNC(A;O;Σ\

194CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

{A}) such that A ∈ Σ, ⊕ =≡ if O |= A ≡ SNC(A;O;Σ \ {A}) and ⊕ =v if O 6|= A ≡
SNC(A;O;Σ\{A}).

Following Definition 47 the AES of an ontology is constructed using SNCs. Our

ALGORITHM 8.2.1

Input:

1. An ALC ontology O.

2. A signature Σ such that Σ⊆ sig(O).

Output: The ascending entailment set AESO of O.

1. Initialise AESO: AESO← /0.

2. for each concept name A ∈ Σ do:

Extract SNC(A;O;Σ\{A}).

if O |= A≡ SNC(A;O;Σ\{A}) do:

AESO← AESO∪{A≡ SNC(A;O;Σ\{A})}

else:

AESO← AESO∪{Av SNC(A;O;Σ\{A})}

endfor

3. return AESO.

method for constructing ascending entailment sets is specified in Algorithm 8.2.1. To
illustrate the procedure of Algorithm 8.2.1, consider the ontology O consisting of the
following axioms:

{A≡ BtC,C v ¬B,Dv A}

We have that:

• SNC(A;O;Σ\{A}) = BtC.

• SNC(B;O;Σ\{B}) = Au¬C

• SNC(C;O;Σ\{C}) = Au¬B

8.2. DEVELOPED ENTAILMENT SETS 195

• SNC(D;O;Σ\{D}) = A

We have that A, B and C are equivalent to their respective strongest necessary con-
ditions under O, thus, the ascending entailment set AESO of O is {A ≡ BtC,B ≡
Au¬C,C ≡ Au¬B,D v A}, and in this case, AESO is indeed equivalent to O. In
the context of ALC ontologies (or less expressive ontologies), ascending entailment
sets can thus be regarded as summaries of ontologies that capture the subsumers of
concept names. Ascending entailment sets can thus have applications to the same do-
mains other entailment sets such as class hierarchies, including finding and detecting
the semantic and syntactic differences between a pair of ontologies, ontology sum-
marisation, and ontology alignment. In this chapter we are specifically interested in
applications to ontology alignment, and in Section 8.3.1, we expand on how ascending
entailment sets can be applied to ontology alignments.

8.2.2 Descending Entailment Sets

Descending entailment sets are the duals of AESs and are constructed by extracting
the WSC for each concept name in an ontology and constructing the corresponding
appropriate axiom.

Definition 48 (Descending Entailment Set). Let Σ be sig(O) for an ontology O. The

descending entailment set of O denoted DESO is the set of all axioms WSC(A;O;Σ \
{A})⊕A such that A ∈ Σ, ⊕ =≡ if O |= A ≡WSC(A;O;Σ \ {A}) and ⊕ =v if O 6|=
A≡WSC(A;O;Σ\{A}).

Our method for constructing descending entailment sets is specified in Algorithm
8.2.2. To illustrate the procedure of Algorithm 8.2.2, consider the ontology O consist-
ing of the following axioms:

{A≡ BtC,C v ¬B,Dv A}

In O, there is no concept name that is equivalent to > or ⊥, as such, Σ = sig(O). Thus
we have that:

• WSC(A;O;Σ\{A}) = BtC.

• WSC(B;O;Σ\{B}) = Au¬C

• WSC(C;O;Σ\{C}) = Au¬B

196CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

ALGORITHM 8.2.2

Input:

1. An ALC ontology O.

2. A signature Σ such that Σ⊆ sig(O).

Output: The descending entailment set DESO of O.

1. Initialise DESO: DESO← /0.

2. for each concept name A ∈ Σ do:

Extract WSC(A;O;Σ\{A}).

if O |= A≡WSC(A;O;Σ\{A}) do:

DESO← DESO∪{WSC(A;O;Σ\{A})≡ A}

else:

DESO← DESO∪{WSC(A;O;Σ\{A})v A}

endfor

3. return DESO.

• WSC(D;O;Σ\{D}) =⊥ (this is a tautology and is thus omitted)

We have that A, B and C are equivalent to their respective weakest sufficient condi-
tions under O, thus, the descending entailment set of O is {A≡ BtC,B≡ Au¬C,C≡
Au¬B}, which is also equivalent to O. Descending entailment sets capture specific

information about concept names that usually can not be captured by ascending entail-
ment sets 1.

8.2.3 Relation Entailment Sets

A relation entailment set is a set of axioms that should contain information about the
roles in an ontology. Since we focus on ALC (or less expressive) ontologies, the
relation entailment set is induced by extracting the domain and range axioms of all the
roles in an ontology. Let O be an ontology and Σ be sig(O) without concept names

1The exception here is equivalent concepts.

8.2. DEVELOPED ENTAILMENT SETS 197

that are equivalent to > or ⊥ such that for each concept name A′ ∈ Σ, we have that
O 6|= A′ v ⊥ and O 6|= > v A′. For each role r ∈ sig(O), an axiom α representing the
strongest domain of r with respect to Σ is added to the relation entailment set of O,
similarly, an axiom β representing the strongest range of of r is added to the relation
entailment set of O

Definition 49 (Relation Entailment Set). Let Σ be sig(O) for an ontology O. The rela-
tion entailment set of O denoted RESO is the set of all axioms of the form ∃r.>doms(r;O;Σ)

and >v ∀r.rans(r;O;Σ).

ALGORITHM 8.2.3

Input:

1. An ALC ontology O.

2. A signature Σ such that Σ⊆ sig(O).

Output: The relation entailment set DESO of O.

1. Initialise RESO: RESO← /0.

2. for each role r ∈ Σ do:

Extract doms(r;O;Σ\{r}).

Extract rans(r;O;Σ\{r}).

RESO← RESO∪{∃r.>v doms(r;O;Σ\{r})}

RESO← RESO∪{> v ∀r.rans(r;O;Σ\{r})}

endfor

3. return DESO.

Our method for constructing descending entailment sets is specified in Algorithm
8.2.2. To illustrate the procedure of Algorithm 8.2.2, consider the ontology O consist-
ing of the following axioms:

{Av BuC,C v ¬B,Dv E,∃r.>v DtA,>v ∀p.B}

We have that O |= Av⊥, therefore, Σ = {B,C,D,E,r, p}. Thus we have that:

198CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

• doms(r;O;Σ\{r}) = D

• rans(r;O;Σ\{r}) => (this is a tautology and is thus omitted)

• doms(p;O;Σ\{p}) => (this is a tautology and is thus omitted)

• rans(p;O;Σ\{p}) = B

The relation entailment set of O is {> v ∀p.B,∃r.>v D}.
Similar to ascending and descending entailment sets, relation entailment sets factor

in tautologies by placing similar constraints on Σ and ensuring that each extracted
domain and range is not equivalent to > or ⊥.

8.2.4 Impact of Defined Concepts and Primitive Signatures

If a suitable primitive signature can be identified for the ontology of interest, it may
be more beneficial to use the primitive signature as the basis of extracting the as-
cending or descending entailment set as opposed to using the signature of the entire
ontology. Let ΣP denote a suitable primitive signature for O, and let Σ be the sub-
set of sig(O) that does not contain any concept names A such that O |= > v A or
O |= Av⊥. When extracting the ascending or descending entailment sets for O, both
the SNCs and WSCs for any concept name A in Σ should be extracted with respect
to Σ∩ΣP \ {A} in order to make sure the entailment set is as informative as possible.
For example, let O be {A1 ≡ A2,A2 ≡ A3tA4,A3 ≡ ∃r.C1}; the primitive signature of
O is {A4,C1,r}. The ascending entailment set AESO for O without taking the primi-
tive signature into consideration is {A1 ≡ A2,A2 ≡ A1,A3 ≡ ∃r.C1} while the ascend-
ing entailment set AES′O for O that takes the primitive signature into consideration is
{A1 ≡ ∃r.C1 tA4,A2 ≡ ∃r.C1 tA4,A3 ≡ ∃r.C1}. Observe that AESO fails to capture
that A1 and A2 are equivalent to ∃r.C1tA4, unlike AES′O, which also captures that A1

and A2 are equivalent to A3tA4.

In general, we posit that primitive signatures should be taken into consideration
when designing entailment sets that involve complex concepts.

A related problem is the information that may be included in GCIs of the ontology.
Thus any application built on ascending or descending entailment sets inherits the limi-
tation that any entailments involving GCIs will most likely be missing. For example, let
O= {A1≡∃r.C1,A1vB1,∃r.B2v∃p.C2}, O entails the following GCIs (1) ∃r.C1vB1

(2) ∃r.B2 v ∃p.C2; a valid ascending entailment set for O is {A1 ≡ ∃r.C1uB1} and a

8.3. APPLICATION TO ONTOLOGY ALIGNMENT 199

valid descending entailment set for O is {A1 v B1}, both of which do not capture the
GCI ∃r.B2 v ∃p.C2.

8.3 Application to Ontology Alignment

There are several methods to evaluate the accuracy of alignments [SJRG17b]. How-
ever, the majority of these methods rely on entailments sets such as the class hierarchy
of input ontologies [SJRG17b]. As a result, the scope of evaluation is often limited to
atomic concepts and simple concept expressions.

In this section, we discuss how the entailment sets developed in this chapter can be
exploited to expand the scope of potentially invalid mappings that are detected in the
process of evaluating the accuracy of computed alignments. Section 3.3.2 provides a
background on existing alignment approaches. In Section 8.3.1, we present our pro-
posal for using ascending and descending entailment sets to extend the evaluation of
alignments.

8.3.1 A Proposal for extending detection of conservativity viola-
tions

Detecting and generating repairs to an alignment can be seen as a form of debugging

the alignment. As discussed earlier (Section 3.3.2), some existing approaches employ
the use of some structure (such as an index or a graph) based on the class hierar-
chy of the input ontologies to reflect the semantic structure of the input ontologies
and detect conservativity violations. However, the conservativity violations detected
are only focused on atomic subsumptions, meaning that diagnoses involving complex
concepts can be potentially missed. To capture conservativity violations involving
complex concepts, some alignment approaches include an interaction component that
enable a human user (preferably a domain expert) to contribute to the diagnostic pro-
cess. ContentMap [JRGHL09] for example, allows users to customise and evaluate
entailments that may include atomic subsumptions, disjointness, atomic universal re-
strictions2, atomic existential restrictions 3, and role hierarchies.

2I.e., restrictions of the form ∀r.A, where A is always an atomic concept.
3I.e., restrictions of the form ∃r.A, where A is always an atomic concept.

200CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

Computing Deductive Differences using Uniform Interpolation

Uniform interpolation has been demonstrated [ZAS+19] to be useful in computing an
approximation of the deductive difference between two ontologies that involve non-
atomic concepts in DLs as expressive as ALC . We provide an adaptation of the de-
ductive difference algorithm proposed by Zhao et al. [ZAS+19] (originally called uni-

form interpolation difference) in Algorithm 8.3.1. We briefly explain the functioning
of Algorithm 8.3.1. Let O and O′ be ontologies. The uniform interpolation difference
between O and O′ with respect to O can be derived by extracting the uniform inter-
polant V of O′ for Σ = sig(O)∩ sig(O′). A UI-witness is any axiom α ∈ V such that
O 6|= α. Thus, the set of all UI-witnesses can be considered as a finite representation of
the deductive difference between O and O′ with respect to O.

Because uniform interpolation is not restricted to atomic subsumptions, we have
the advantage of capturing deductive differences that involve complex concepts.

ALGORITHM 8.3.1

Input: Two ALC ontologies O and O′.
Output: The set of all UI-witnesses between O and O′ that provide a represen-
tation of the deductive difference between O and O′ with respect to O denoted
UI−di f f (O,O′).

1. Initialise Σ: Σ← sig(O)∩ sig(O′)

2. Extract a uniform interpolant V of O′ for Σ

3. Initialise UI−di f f (O,O′): UI−di f f (O,O′)← /0

4. for each axiom α ∈ V do:

if O 6|= α do:

UI−di f f (O,O′)←UI−di f f (O,O′)∪α

endif

endfor

5. return UI−di f f (O,O′).

8.3. APPLICATION TO ONTOLOGY ALIGNMENT 201

We generalise the Definition of conservativity violations to include complex con-
cept inclusions in Definition 50.

Definition 50 (General Conservativity Violation). Let O1 and O2 be ontologies mapped

by a coherent alignment A , let Oi ∈ {O1,O2}. We define two sets of violations of

O1∪O2∪A with respect to Oi:

• general subsumption violations, denoted subViolG(Oi,O1 ∪O2 ∪A), as the set

of axioms AvC satisfying: (i) UI−di f f (Oi,O1∪O2∪A) |= AvC4, (ii) Oi 6|=
C v A, and (iii) there is no D such that Oi 6|= D≡>, Oi 6|= D≡⊥, Oi |= Dv A,

and Oi |= DvC, where A and D are atomic, A ∈ sig(Oi), C is possibly complex,

sig(C)⊆ sig(Oi)\{A} and D 6= A.

• general equivalence violations, denoted as eqViolG(Oi,O1∪O2∪A), as the set

of A ≡ C axioms satisfying (i) O1 ∪O2 ∪A |= A ≡ C, (ii) UI− di f f (Oi,O1 ∪
O2∪A) |= A vC or UI− di f f (Oi,O1∪O2∪A) |= C v A, where A is atomic,

A ∈ sig(Oi), C is possibly complex, and sig(C)⊆ sig(Oi)\{A}.

Condition (ii) and (iii) of general subsumption violations in Definition 50 are mo-
tivated by the assumption of disjointness[Sch05] (similar to the case in Definition 31).
We assume that if there is a concept name D that is included in both A and C, then A

and C intersect on some interpretation and that D is a witness concept of this intersec-
tion. If there is no witness to support that A and C intersect on some interpretation, then
we assume that A and C are disjoint, per the assumption of disjointness [Sch05]. Con-
dition (iii) of general equivalence violations in Definition 50, highlights that a novel
subsumption (Cv A or AvC) has been induced by the alignment which is not allowed
(recall from Section 3.3.2 that conservativity violations in an alignment indicate that
the alignment introduces new semantic relationships in the vocabulary of one of the
input ontologies).

The main difference between Definition 50 and Definition 31 is that Definition 50
also includes non-atomic concepts for general subsumption and equivalence violations.
Definition 50 includes subsumptions of the form AvC where A is atomic, and C may
be a compound concept with roles in its signature when evaluating subsumptions for
conservativity violations. Similarly, Definition 50 includes equivalences of the form
A≡C where A is atomic, and C may be a compound concept with roles in its signature
when evaluating equivalences for conservativity violations unlike Definition 31 which

4Observe that this means Oi 6|= AvC following the definition of deductive difference.

202CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

strictly focuses on atomic concepts. Thus the set of conservativity violations captured
by Definition 31 can be considered a subset of the convservativity violations captured
by Definition 50.

The deductive difference computed by Algorithm 8.3.1 is only one of the com-
ponents we use to detect the general conservativity violations specified in Definition
50. This is because some extra processing is required to evaluate each concept for
conservativity violations.

In the next Section, we describe how the deductive difference computed using Al-
gorithm 8.3.1 can be used in conjunction with ascending and descending entailment
sets to detect general conservativity violations.

Detecting General Conservativity Violations using Uniform Interpolation and En-
tailment sets

In order to detect general conservativity violations, we use the deductive difference
which can be computed using Algorithm 8.3.1. However, some extra processing is
required to evaluate each concept for general subsumption and equivalence violations.
Let O1 = {A1vB1tC1,A2v¬D1,A3v∃r.C2} and O2 = {A′1v∃r′.B′1,∃r′.A′2v¬A′1}
such that every symbol S∈O is mapped to its dual symbol S′ ∈O′ O1 and O2. We have
that UI− di f f (O1,O2) = {A1 v ∃r.B1,∃r.A2 v ¬A1}. However, UI− di f f (O1,O2)

alone does not state what the general subsumption or equivalence violations are and
whether there are any such violations.

General conservativity violations can be detected using a combination of Algorithm
8.3.1 (which outputs a set of UI-witnesses given two ontologies), ascending and de-
scending entailment sets. We provide an algorithm for detecting general subsumption
conservativity violations (as in Definition 50) in Algorithm 8.3.2. We briefly explain
the functioning of Algorithm 8.3.2. Algorithm 8.3.2 checks for general subsumption
violations by iterating over all subsumptions A v C ∈ AESUI−di f f (O,U) where U de-
notes O∪O′∪A . For each subsumption AvC, the requirements of Definition 50 are
validated as follows: if A does not have a subsumed concept name D with respect to
O then we assume that both A and C do not have a common subsumed-concept with
respect to O, and thus consider AvC to be a general subsumption violation. Observe
that because ascending entailment sets are used in Algorithm 8.3.2, the checks made
for subsumers are minimal: for every axiom AvC ∈ AESUI−di f f (O,U), C is a strongest
necessary condition of A for a signature Σ\{A} such that Σ⊆UI−di f f (O,U) and for
all concept names A′ ∈ Σ, UI−di f f (O,U) 6|= A′ v⊥ and UI−di f f (O,U) 6|=>v A′

8.3. APPLICATION TO ONTOLOGY ALIGNMENT 203

ALGORITHM 8.3.2

Input:

1. Two ALC (or less expressive) ontologies O and O′ mapped via A .

2. The UI difference UI−di f f (O,U) of O and U.

3. The ascending entailment set AESO of O.

4. The descending entailment set DESO of O.

5. The ascending entailment set AESUI−di f f (O,U) of UI−di f f (O,U).

Output: subViolG(O,U).
Where U denotes O∪O′∪A .

1. subViolG(O,U)← /0

2. Σ← sig(O)∩ sig(A)

3. for each axiom of the form AvC ∈ AESUI−di f f (O,U) do:

if O 6|=C v A do:

if there exists no axiom of the form Dv A in DESO do:

subViolG(O,U)← subViolG(O,U)∪{AvC}.

endif

if there exists some axiom Dv A in DESO do:

if there exists no concept-name B such that O |= B v A and O |=
BvC do:

subViolG(O,U)← subViolG(O,U)∪{AvC}.

endif

endif

endfor

4. return subViolG(O,U).

204CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

thus for every necessary condition C′ A may have with respect to Σ we can be confident
that UI− di f f (O,U) |= C vC′. As an example, consider the ontology O consisting
of the following axioms:

O = {A1 v A2,A3 v ∃p.B1,B3 v A5,B2 v A4}

and the ontology O′ consisting of the following axioms:

O′ = {A′6 v ¬A′5,A
′
3 v B′2,A

′
3 v A′4uA′6,A

′
5 v ∃p′.A′1}

such that every symbol S ∈O is mapped to a dual symbol S′ ∈O′ and we have that
UI−di f f (O,U) consists of the following axioms:

{A3 v A4u¬A5,A3 v B2,A5 v ∃p.A1}

Observe that for A3 the following subsumers exist A4, B2, A4uB2 A4u¬A5, A4u
∃p.A1, and more. However, the strongest necessary condition is A4u¬A5uB2 and thus
only one evaluation has to be made. Similarly we could naively assume that the only
subsumer of A5 is ∃p.A1; however, A5 also has the subsumers ¬A3 and ¬A4, which will
all follow from the SNC of A5. In a larger ontology, there may be even more subsumers
to evaluate depending on the concept name.

We briefly explain the functioning of Algorithm 8.3.3. Algorithm 8.3.3 checks for
general equivalence violations by iterating over all axioms A≡C ∈ AESO,U . For each
axiom A≡C, the requirements of Definition 50 are validated as follows: if there exists
a concept D that is equivalent to A with respect to UI−di f f (O,U), then we check to
see if U |=C≡D holds and in the case that it holds, then C≡D is considered a general
equivalence violation. Otherwise, we check if there exists a subsumer or subsumed-
concept D of A with respect to AESUI−di f f (O,U), and if so, if U |=C ≡ D holds, then
C ≡ D is considered a general equivalence violation.

As an example, consider the ontology O consisting of the axiom:

O = {A1 v ∃r.C1}

and the ontology O′ consisting of the axiom:

O′ = {A′1 ≡ ∃r′.C′1}

such that every symbol S ∈ O is mapped to a dual symbol S′ ∈ O′ and we have that

8.3. APPLICATION TO ONTOLOGY ALIGNMENT 205

ALGORITHM 8.3.3

Input:

1. Two ALC (or less expressive) ontologies O and O′ mapped via A .

2. The UI difference UI−di f f (O,U) of O and U.

3. The ascending entailment set AESU of O,U.

4. The ascending entailment set AESUI−di f f (O,U) of UI−di f f (O,U).

5. The descending entailment set DESUI−di f f (O,U) of UI−di f f (O,U).

Output: eqViolG(O,O∪O′∪A).
Where U denotes O∪O′∪A .

1. eqViolG(O,U)← /0

2. Σ← sig(O)∩ sig(A)

3. for each axiom A≡C ∈ AESU do:

if there exists some axiom A≡ D in AESUI−di f f (O,U) do:

if U |=C ≡ D do:

eqViolG(O,U)← eqViolG(O,U)∪{A≡C}.

endif

elif there exists some axiom Av D in AESUI−di f f (O,U) or

there exists some axiom Dv A ∈ DESUI−di f f (O,U) do:

if U |=C ≡ D do:

eqViolG(O,U)← eqViolG(O,U)∪{A≡C}.

endif

endfor

4. return eqViolG(O,U).

206CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

UI−di f f (O,U) consists of the axiom:

A1 ≡ ∃r.C1

Thus, A1 ≡ ∃r.C1 is a general equivalence violation.

Impact of GCIs Algorithm 8.3.2 and Algorithm 8.3.3 are limited in their ability to
detect general conservativity violations involving entailments relating to GCIs. As an
example, consider the ontology O consisting of the following axioms:

O = {A1 v ∃r.C,A2 v ∃p.>,A3 v B2}

and the ontology O′ consisting of the following axioms:

O′ = {A′4 ≡ ∃r′.C′,A′3 v ∃p′.B′2}

such that every symbol S ∈O is mapped to a dual symbol S′ ∈O′ and we have that
UI−di f f (O,U) (where U denotes O∪O′∪A) consists of the following axioms:

{∃r.C v ∃p.B2}

∃r.C v ∃p.B2 is a subsumption violation according to Definition 50 but a violation
that can not be detected by Algorithm 8.3.3. However, since the deductive difference
returned by Algorithm 8.3.1 is finite, the GCIs in the result may be used as a foundation
to evaluate as potential general conservativity violations involving GCIs.

Experimental Evaluation

To evaluate Algorithms 8.3.2 and 8.3.3, we used an implementation of LogMap 2
[JRGZH12] publicly available at http://krrwebtools.cs.ox.ac.uk/logmap/ to
generate alignements. LogMap 2 automatically applies repairs to the alignments gen-
erated, thus our evaluation aims to report on any additional conservativity violations
not detected by LogMap, specifically general conservativity violations.

To construct a corpus for evaluation, a set of pairs of ontologies to be aligned is re-
quired. In constructing a corpus, the ontologies in the Ontology Alignment Evaluation
Initiative 2021 track [ANPAA+21] were considered. However, most of the ontolo-
gies in this corpus are either more expressive than ALC (such as the ontologies in the
conference track), or too large for the implementation of LETHE used (such as the

http://krrwebtools.cs.ox.ac.uk/logmap/

8.3. APPLICATION TO ONTOLOGY ALIGNMENT 207

ontologies in large biomedical ontologies track). Of all the tracks, we find the most
compatible for evaluation is the anatomy track which only consists of the Adult Mouse
Anatomy ontology and the NCI Thesaurus describing the human anatomy. This only
gives us one pair of ontologies for evaluation.

The ontologies in the main corpus were all retrieved from the BioPortal ontology
repository [WNS+11] which sometimes contains several versions of the same ontol-
ogy. In order to augment the corpus, we used ontologies from the main corpus that had
several versions available on the BioPortal ontology repository. Two separate versions
of the same ontology provide an additional pair of ontologies for evaluation. For each
ontology O in the main corpus, the following criteria were used to assess whether it
would be used in the evaluation:

1. O had more than one version on the BioPortal repository.

2. The other version O′ of O to be used from the BioPortal repository was not more
expressive than ALCH (for ALCH ontologies, we deleted the role hierarchy).

3. The mappings generated by the LogMap tool could be parsed using the OWL-
API.

4. Some evidence of a significant difference existed in the ontologies such as a
significant difference in the number concept names, axioms, or roles.

5. The ontology could be classified using the Hermit reasoner [GHM+14] (under a
time-out of one-hour).

6. The ontology contained no unsatisfiable concept names.

7. The number of concept names in O was less than 1,000. This is to reduce the
risk of the LETHE implementation timing out whilst attempting to forget a role
(as role-forgetting is compulsory for Algorithms 8.3.2 and 8.3.3) or throwing an
exception.

The resulting dataset is provided in Table 8.1.
For each ontology, we extracted alignments using the LogMap tool. For each align-

ment, we only considered mappings that had a confidence value of greater than 0.5.

208CHAPTER 8. FINITE ENTAILMENT SETS AND ONTOLOGY ALIGNMENT

Ontology
ID

DL Class
Count

Role
Count

Axiom
Count

Upload
Date

Mapped
Symbols

HUMAN ALC 3,304 2 11,544 13-02-2006 1350
MOUSE ALE 2,744 3 4,838 18-01-2007 1365
RXNO ALC 1074 14 1,735 16-12-2021 17
RXNO’ ALCH 901 14 1,472 29-01-2021 15
ISSVA ALC 194 1 259 29-04-2021 195
ISSVA’ ALCH 202 3 337 03-02-2021 201
XEO ALE 146 4 343 25-06-2014 21
XEO’ ALE 145 4 243 03-04-2013 21

Table 8.1: Ontology alignment Corpus. HUMAN represents the NCI Thesaurus ontol-
ogy describing the human anatomy from the anatomy track of the ontology alignment
evaluation initiative. MOUSE represents the Adult Mouse Anatomy ontology from the
anatomy track of the ontology alignment evaluation initiative. Upload date represents
the upload date found in the corresponding ontology as an annotation (for the HUMAN
and MOUSE case) or for the upload date as described on the BioPortal repository.

Ontology ID SubViol EqViol

HUMAN (O1) 0 0
MOUSE (O2) 0 0
RXNO (O1) 0 11
RXNO’ (O2) 0 0
ISSVA (O1) 0 3
ISSVA’ (O2) 0 0
XEO (O1) 0 19
XEO’ (O2) 0 0

Table 8.2: Detected general violations

We ran our implementation of Algorithm 8.3.2 to detect general subsumption viola-
tions with respect to O and O′. The results are displayed in Table 8.2. Our implementa-
tion of Algorithm 8.3.2 only managed to detect general subsumption violations for two
cases: (1) the HUMAN/MOUSE case (2) the ISSVA case, this can be observed in the
columns titled ‘SubViol (with respect to O1’ and ‘SubViol (with respect to O2)’. In the
HUMAN/MOUSE case, there were no general subsumption or equivalence violations
detected. For the ISSVA case, no general subsumption violations were found.

We also ran our implementation of Algorithm 8.3.3 to detect general equivalence
violations with respect to O and O′. The results are displayed in Table 8.2. Our imple-
mentation of Algorithm 8.3.3 only managed to detect general equivalence violations

8.4. CONTRIBUTION SUMMARY 209

for three cases: (1) the RXNO case, (2) the ISSVA case, (3) the XEO case, this can
be observed in the columns titled ‘EqViol (with respect to O1’ and ‘EqViol (with re-
spect to O2)’. There no general equivalence violations found for the HUMAN/MOUSE
case possibly because the HUMAN and MOUSE ontologies have no defined concept
names. In all cases, no general subsumption violations could be found.

While minimal these results suggest that our methods proposed for detecting gen-
eral conservativity violations are feasible in some cases. In practice, we expect that
the double exponential complexity associated with uniform interpolation and our algo-
rithms for extracting strongest necessary and weakest sufficient conditions would be
the main factor that may impede the feasibility of our methods.

8.4 Contribution Summary

The primary contribution of this Chapter are as follows:

• We have developed a characterisation of conservativity violations, namely gen-

eral conservativity violations that aim to capture non-atomic/complex conserva-
tivity violations that may exist in ontology alignments.

• We have developed algorithms based on uniform interpolation, strongest neces-
sary conditions, weakest sufficient conditions, strongest domains, and strongest
ranges to detect general conservativity violations. We have minimally evaluated
these algorithms on a small dataset and demonstrated that they do indeed capture
general conservativity violations in real world ontologies.

Chapter 9

Conclusions and Summary

The primary aim of this thesis (RQ1) was to explore how knowledge extraction tech-
niques could be applied to facilitate communication among agents that only have a sub-
set of their respective vocabularies in common. We have studied existing knowledge
extraction tools with existing theoretical specifications including uniform interpola-
tion, module extraction, strongest necessary conditions, and weakest sufficient condi-
tions, thus addressing RQ1 “What are the various knowledge extraction techniques in

ALC and which of them are relevant to the problem of conveying words or expressions

with respect to a restricted vocabulary?”. We are interested in empirically evaluating
the knowledge extraction tools studied in this thesis. As such, we focus on knowledge
extraction tools with existing implementations. Uniform interpolation and module ex-
traction have implementations for description logics, but are however not suited for
some agent communication tasks such as sharing concept descriptions. While strongest
necessary conditions and weakest sufficient conditions have been demonstrated to be
applicable for knowledge sharing among agents in propositional logic [Lin01], first
order logic [DLS01], and second order logic, we find that studies in description log-
ics are lacking. In Chapter 5, we fill the knowledge gap (i.e., the lack of any study of
strongest necessary conditions and weakest sufficient conditions) by studying strongest
necessary conditions and weakest sufficient conditions and creating adaptations in the
description logic ALC . Furthermore, we propose and implement algorithms for ex-
tracting strongest necessary conditions and weakest sufficient conditions. In Chapter
5 we propose and investigate novel knowledge extraction methods (and their com-
putation) for agent communication, namely, compiled superconcepts, compiled sub-
concepts, strongest domain, and strongest range. In Chapter 5, we also explore the

210

211

application of strongest necessary and weakest sufficient conditions to extracting def-
initions for defined concept names in ALC ontologies thus partially exploring RQ5
“What is the most precise way to convey a word or expression with respect to a subset

vocabulary of an ontology?”. As suggested in the introduction and background, when
a concept-name A is definable with respect to a subset vocabulary, then a definition

of that concept-name is the maximal description of A with respect to the ontology of
interest. In Chapter 5 we demonstrate that strongest necessary conditions may be used
to extract definitions of concept-names with respect to subset vocabularies. However,
in the case when a concept-name is not definable, a maximal description of A with
respect to a subset vocabulary and ontology O may be constructed using the strongest
necessary and weakest sufficient conditions of A. Chapter 5 goes on to explore max-
imal descriptions of concepts that do not rely on background information from the
ontology of interest; we define compiled superconcepts and compiled subconcepts to
capture such notions and specify an algorithm designed to extract approximate forms
of these notions.

Chapter 6 empirically evaluates the algorithms developed for extracting strongest
necessary conditions and compiled superconcepts. Chapter 6 continues the exploration
of RQ5 and also explores RQ2 “How do the relevant knowledge extraction techniques

perform in practice on real-world ontologies?” by investigating how Algorithm 5.1.1
for extracting strongest necessary conditions performs in practice for extracting defi-
nitions. We find that in practice, our algorithm for extracting strongest necessary con-
ditions successfully extracts definitions in about 99% of cases for concept names with
respect to the entire signature of the ontology; however, our algorithms for extracting
compiled superconcepts and compiled subconcepts rarely successfully terminate, and
even when they do, output a result that may not be feasible for use, thus we deem
our algorithms unusable due to their poor design which includes a saturation element.
Chapter 6 also explores RQ3 “What are the factors that affect the performance of the

relevant knowledge extraction techniques?” and RQ4 “What are the considerations on

the common or subset vocabulary that should be accounted for when conveying words

or expressions?” by evaluating the extraction of definitions (using strongest necessary
conditions) and definability in the context of primitive signatures. Our exploration
shows that the success of our developed definition extraction algorithm depends on
whether the TBox of interest is general and if the concept-name of interest is cyclic.
Our exploration also highlights that it is often times not the case that all definable con-
cept names are definable with respect to the primitive signature of the input TBox, thus

212 CHAPTER 9. CONCLUSIONS AND SUMMARY

this potential loss of definability should be taken into account if when considering the
primitive signature as a common vocabulary.

Chapter 7 is an exploration of RQ4 “How can the relevant knowledge extraction

techniques be integrated into existing MAS frameworks or agent communication pro-

tocols?”. In Chapter 7 we study ANEMONE and characterise the completeness of
subsumers and subsumees of concept names for agent communication. We introduce
two notions: contextual completeness, and standalone completeness. We empirically
evaluate the usefulness of strongest necessary and weakest sufficient conditions in
improving the standalone completeness of the methods proposed by the ANEMONE
framework. Our results suggest that in practice, our algorithm for extracting strongest
necessary conditions (Algorithm 5.1.1) may provide some enhancement in a few cases.
However the dual case can not be stated for weakest sufficient conditions as we observe
that in practice, our algorithm (Algorithm 5.1.2) for extracting weakest sufficient con-
ditions rarely provides any enhancements.

Our study concludes in Chapter 8 where we investigate applications of strongest
necessary conditions and weakest sufficient conditions to ontology alignment. We
demonstrate that the knowledge extraction tools studied in this thesis, specifically
uniform interpolation, strongest necessary conditions, weakest sufficient conditions,
strongest domains and strongest ranges are useful for detecting conservativity viola-
tions in ontology alignments. The detection of conservativity violations helps in de-
bugging by identifying potentially erroneous mappings that exist in alignments, thus
laying the groundwork for improving the accuracy of alignments. Ontology alignments
are often proposed and used as a means to establish a common vocabulary for com-
municating agents. As such, the integrity of an alignment affects the effectiveness of
communication and Chapter 8 can be seen as an exploration of RQ7 “Can knowledge

extraction techniques be applied to establishing a common vocabulary?”. Our results
demonstrate that the knowledge extraction techniques explored have the potential to be
applied to establishing a common vocabulary, but further research and empirical eval-
uation is required to investigate how significantly they contribute to existing methods.

9.1. LIMITATIONS OF THE THESIS 213

9.1 Limitations of the Thesis

9.1.1 Emphasis on ALC

The overarching motivation for this thesis was to empirically investigate the appli-
cation of uniform interpolation in the context of agent communication, specifically
knowledge sharing applications. To this extent, there has been a focus on evaluating
relevant knowledge extraction tools based on available existing implementations of
uniform interpolation (such as LETHE). Our algorithms required a uniform interpola-
tion implementation that could perform both TBox and ABox forgetting. At the time of
writing the thesis, the available implementation of LETHE could only perform TBox
and ABox forgetting on ALC ontologies. This naturally narrowed the scope of our
investigation into knowledge extraction tools such as strongest necessary conditions
and weakest sufficient conditions.

In an ideal case, i.e., a case where the available implementation of LETHE could
handle TBox and ABox forgetting in ontologies as expressive as SH R OI Q , we would
have been able to evaluate our algorithms for extracting strongest necessary and weak-
est sufficient conditions for more expressive ontologies. Nevertheless, a theoretical
evaluation and study of the knowledge extraction tools investigated in more expressive
description logics would still form a significant contribution; a relevant research ques-
tion that may have been explored is: Are strongest necessary conditions and weakest

sufficient conditions always finitely representable? A tangential question is whether
all description logics have the uniform interpolation property. For example, we know
[Koo15] that without the use of fixpoint operators or definer symbols, it is not possible
to finitely represent uniform interpolants of ontologies with cycles.

9.1.2 Underexploration of representation limitations

Another point of concern is the finite representation of strongest necessary conditions
and weakest sufficient conditions. A relevant research question that needs to be ex-
plored: In the case that strongest necessary conditions and weakest sufficient con-
ditions are not finitely representable, what is the closest approximation that can be
constructed? For example, we know that a finite SNC or WSC cannot be extracted for
the concept A with respect to the ontology A≡ ∃r.A over the signature {r}.

214 CHAPTER 9. CONCLUSIONS AND SUMMARY

9.1.3 Underexploration of alternative methods

Because of the expensive cost of uniform interpolation, another relevant research ques-
tion is: What alternative options are there to extracting strongest necessary conditions
and weakest sufficient conditions that are not related to uniform interpolation? As
more practical methods may enable better empirical evaluation and analysis of results.

9.1.4 Emphasis on investigating sharing TBox knowledge

This thesis has focused on extracting descriptions of concepts and roles. However,
a significant aspect of ontologies is the ABox, furthermore, most logic-based agent
systems have implementations that use ABoxes to represent the beliefs of an agent.
Theoretically speaking, uniform interpolation and reasoning should suffice to restrict
an ABox to a specific signature; however, a relevant point of inquiry is the empir-
ical evaluation of uniform interpolation using ontologies with existing ABoxes, and
furthermore, dynamic ABoxes.

9.2 Application to General Aspects of Agent Commu-
nication

In this section, we outline how the knowledge extraction tools we have studied are
worth taking into consideration when designing communication protocols for agent
communication.

9.2.1 Factors to consider in the Design of Communication Proto-
cols

Interpretation of the common signature

When designing communication protocols for agents, an agent engineer must be aware
of how the interpretation of the common signature can affect the accuracy of the knowl-
edge shared between agents.

If the agent engineer requires or assumes all symbols in the common signature
to have the same interpretation (in the respective ontologies of the agents), then it is
safe to assume that most knowledge extraction techniques convey enough and accurate

9.2. APPLICATION TO GENERAL ASPECTS OF AGENT COMMUNICATION 215

information about shared concepts, in fact, some more effectively (in terms of signa-
ture minimality) than others: for example a strongest necessary condition (weakest
sufficient condition) of a concept conveys as much information as the compiled super
concept (compiled subconcept). In such cases, the agent engineer can prioritise SNC-
s/WSCs over CSPs/CSBs in the agent communication protocols as they are more likely
to be less in size than the CSPs/CSBs.

Given a pair of ontologies O1 and O2 for the respective communicating agents
AG1 and AG2, in a less restrictive case, an agent engineer may require or assume that
either (1) O1 is a conservative extension of O2 over the common signature, or (2)
O2 is a conservative extension of O1 over the common signature. An example is a
case in which one of the communicating agents only has a TBox and the other agent
only has an ABox using some intersecting signature; it may be that the TBox agent
aggregates terminological data from other TBox agents following some policy and
the ABox agent collects instances using its sensors or classifiers or from other ABox
agents following its own policy. Again, in such a case, it is safe to assume that most
knowledge extraction techniques addressed in Chapter 5 convey enough and accurate
information about concepts.

In the case that the agent engineer has no control, assumptions, or estimate about
the interpretation of the symbols in the common signature, the agent engineer must
take into account the communication objectives and constraints of the agents to design
an effective communication protocol. As an example, there may be cases in which
the consistency of the interpretation of the common signature is of little importance:
consider two agents designed to share instances of the concept HospitalPatient with
the intention of aggregating as many instances of the concept, regardless of how it is
defined or described in an ontology, HospitalPatient may be defined (with respect to
the common signature) as Out patient in one agent’s ontology, and
∃hasPrescription.Medicine in another agent’s ontology. Here it does not matter as
long as the communication process maximises the number of instances that are aggre-
gated. In such cases, it may be the case that the agents seeking to aggregate instances
have an internal mechanism that helps filter out genuine instances from irrelevant in-
stances. An agent engineer may also not care about the consistency of the interpretation
of the common signature in order to account for incomplete modeling in an ontology.
As an example scenario, consider an agent engineer attempting to design a multi-agent
system to aggregate as many instances of home addresses in the world: a home address
is a concept that can be very unique to a territorial body, and it may be impossible to

216 CHAPTER 9. CONCLUSIONS AND SUMMARY

create a definition that captures all the possible interpretation of the concept.

Without the guarantee of some notion of consistency over the common signature of
the communicating agents, the consistency of the information shared about concepts
is also not guaranteed. In such cases, an agent engineer may want to identify whether
the knowledge of agents is compatible. A simple algorithm to accomplish this is to
extract the uniform interpolants of both ontologies with respect to the common signa-
ture and use a reasoner to verify the consistency of the union of the extracted uniform
interpolants, i.e., given two ontologies O1 and O2 representing the ontologies of com-
municating agents with a common vocabulary Σ, extract a uniform interpolant V1 with
respect to Σ of O1, and a uniform interpolant V2 with respect to Σ of O2 and verify
V1∪V2 is consistent.

Assuming knowledge of the communicating agents is compatible in some sense
and that there is no guarantee that the symbols in the common signature have the same
interpretation, a further point of consideration is the tool used to extract information. In
a scenario where the agents wish to convey information about concepts, it may be nec-
essary for the agents to prioritise using compiled superconcepts (if a mechanism exists
to extract them) over strongest necessary conditions in order to ensure that information
is maximally captured.

Time/Space constraints

Depending on the application scenario, there may be constraints on time (in terms of
latency) and space (in terms of message size) between communicating agents.

In the presence of strict constraints on latency (i.e., constraints that require agents to
respond quickly), an agent engineer should consider the potential worst computational
complexity associated with knowledge extraction methods against other factors such
as the accuracy of the information shared. For example, for scenarios with strict time
constraints that may also impose strict constraints on the information conveyed (i.e., all
conveyed content must be within the common signature), it may be useful to ensure that
agents precompute respective uniform interpolants, SNCs/WSCs of their ontologies
with respect to the common signature prior to communicating.

The agent engineer must balance their selection of tools (based on time constraints)
against space constraints, taking into consideration the complexity of knowledge ex-
traction tools. Large messages may increase the latency of communication and may
be thus more difficult to understand. Therefore, care must be taken when choosing
uniform interpolation (or any method based on uniform interpolation) as a knowledge

9.2. APPLICATION TO GENERAL ASPECTS OF AGENT COMMUNICATION 217

extraction device given the double exponential complexity associated with uniform in-
terpolation. Similarly, care must be taken when choosing module extraction as the
knowledge extraction device due to the possibility for current implementations to ex-
tract redundant information when extracting modules.

Expressivity A property of ontologies that can severely limit knowledge extraction
techniques, is its expressivity. For example, to the best of our knowledge practical
uniform interpolation methods for DLs that allow for nominals are lacking. As such,
an agent engineer must be familiar with the limitations of the knowledge extraction
tools of choice when implementing communication protocols.

It is also worth noting that knowledge extraction tools may produce results that
are more expressive than the language of the ontology from which the knowledge is
being extracted. This is likely to be the case when results cannot be represented within
the original expressivity of the ontology from which the knowledge is being extracted.
LETHE, for example, may use fixpoints to represent certain concept descriptions for
results that are not finitely respresentable. Fixpoints are not a standard DL construct,
and to the best of our knowledge there are no existing implementations of reasoners
that facilitate reasoning with concept descriptions that include fixpoints. LETHE and
FAME may also extend a less expressive ontology (such as ALC) to ALCOI in order
to represent some results.

Frequency and Duration of Communication

The estimated frequency of communication between communicating agents should
influence the knowledge extraction tool to be used and the nature of knowledge extrac-
tion for communication scenarios that require knowledge extraction. For example, if
communicating agents are envisaged to be communicating frequently, it may be worth
pre-computing any artefact required for communication such as uniform interpolants
or strongest necessary conditions, as this can help reduce the latency of communica-
tion.

Long term communication may require artefacts that the agents can reference as
opposed to computing on the fly: it may be beneficial to construct a common ontol-
ogy based on the common signature via uniform interpolation or module-extraction as
opposed to repeatedly extracting strongest necessary conditions and weakest sufficient
conditions.

218 CHAPTER 9. CONCLUSIONS AND SUMMARY

Applications of conveyed information

A potential issue to consider is whether the knowledge extracted or conveyed needs
to be readable or not. As demonstrated in Chapter 6, extracted superconcepts and
subconcepts can often contain superfluous information; this, combined with the double
exponential complexity associated with uniform interpolation suggests that there are
cases in which knowledge extracted using uniform interpolation may be difficult to
process by agents depending on the size (e.g., in cases where the signature of the
compiled superconcepts exceed that of the bottom module as discussed in Section 6.4).

The application domain influences the nature of the knowledge extraction tool to be
used. We envisage three general application patterns that would influence the knowl-
edge extraction tools selected:

Figure 9.1: ANEMONE case.

9.2. APPLICATION TO GENERAL ASPECTS OF AGENT COMMUNICATION 219

Figure 9.2: Other cases.

1. Sharing instances of concepts: As a motivating example, consider agents at-
tempting to share instances of movie genres. If the agents do not have any built
in classifiers or sensors to classify an individual to a class, it is safer to always re-
quest instances of the weakest sufficient condition of an uncommon movie genre
X (with respect to the common vocabulary) in order to ensure that all the in-
stances returned are indeed instances of the required movie genre. However, this
comes with the disadvantage that a weakest sufficient condition may not exist
or that the weakest sufficient condition only captures a minimal portion of the
required movie genre (when in reality, the other agent has a lot more instances).
Alternatively the agent may request instances of the strongest necessary condi-
tion of the uncommon movie genre X . However, the instances returned may
capture other instances of other classes as the strongest necessary condition is
a subsumer approximation of X . However, if the requesting agent has an in-
built classifier, it can always filter instances of relevant movie genres from the
returned set of instances. The agent engineer must asses the communication goal
of the communication protocol in tandem with the agent’s capabilities in order
to maximise the efficiency of the knowledge exchanged between agents.

2. Sharing information about individuals: In applications where the domain of
interpretation is shared among agents, agents may ask other agents to classify
instances. As a motivating example, consider a scenario where agents are com-
municating to catalogue URLs on the internet (i.e., the domain of interpretation

220 CHAPTER 9. CONCLUSIONS AND SUMMARY

is the set of all URLs on the internet), an agent may encounter a URL u and have
no means to classify u thereby prompting them to ask another agent to classify
u using only symbols in their common vocabulary. If the responding agent can
classify u, it may simply most specific concept C of u and extract a strongest
necessary condition of C with respect to the common vocabulary to convey to
the requesting agent.
Another example is an agent requesting additional facts about an individual, for
example, in the cataloguing scenario, the requesting agent may want to know all
possible concepts the URL u belongs to (with respect to the common vocabu-
lary). In such a scenario, the compiled super concept of C is better suited than
strongest necessary conditions to convey the required information.

3. Sharing TBox knowledge or TBox information about concepts: In some
cases, agents may only be interested in sharing TBox knowledge. As an ex-
ample, consider an assembly line scenario in which the schematics of a device to
be assembled are represented using only the TBox. Each agent in the MAS has
a vocabulary associated with their assembly capabilities (each agent may be as-
sociated with a robot). For example, there may be a MAS consisting of an agent
that specialises in electronics, an agent that specialises in chasis building, and
an agent that specialises in testing and verifying. Such a MAS may be applied
to assemble different products (cars, computers, ovens, etc) which have their re-
spective schematics represented using a large TBox. Thus in order to capture the
relevant aspects of the schematics, a uniform interpolant or a module may be ex-
tracted with respect to the vocabulary of each agent. In another case, agents may
only be interested in the concept descriptions in their respective ontologies. For
example agents may be only be communicating with other agents to augment or
diagnose the knowledge in their ontologies. Depending on the level of knowl-
edge required, it may be preferable to extract a uniform interpolant, a strongest
necessary condition, or a weakest sufficient condition.

9.3. FURTHER APPLICATIONS 221

9.3 Further Applications

9.3.1 Ontology Strengthening

A potential application of strongest necessary conditions and weakest sufficient con-
ditions not explored in this thesis, is exploring their applications to ontology engineer-
ing. Specifically, we are referring to cases where the ontology of interest is constructed
using a description logic that has the Beth definability property. In such cases, an on-
tology can be potentially strengthened by extracting explicit definitions for implicitly
defined concepts and proposing such definitions to an ontology engineer as an alterna-
tive description for implicitly defined concepts.

9.3.2 Constructing Ontology Alignments

In Chapter 8 we defined ascending, descending, and relation entailment sets as a basis
for detecting general conservativity violations. However, a relevant point of inquiry is
to investigate how ontology alignments may be constructed using ascending, descend-
ing, and relation entailment sets: the class hierarchy of an ontology is often used as
the basis for constructing alignments in existing alignment tools such as LogMap and
AML, thus the hypothesis here is that similar principles can be applied to construct on-
tology alignments on the basis of ascending, descending and relation entailment sets.

Bibliography

[ADMF13] Mohsen Afsharchi, Arman Didandeh, Nima Mirbakhsh, and Behrouz
Far. Common understanding in a multi-agent system using ontology-
guided learning. Knowledge and Information Systems, 36(1):83–120,
Jul 2013.

[AJM+21] Alessandro Artale, Jean Christoph Jung, Andrea Mazzullo, Ana Ozaki,
and Frank Wolter. Living without beth and craig: Definitions and in-
terpolants in description logics with nominals and role inclusions. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages
6193–6201, 2021.

[ANPAA+21] Mina Abd Nikooie Pour, Alsayed Algergawy, Florence Amardeilh,
Reihaneh Amini, Omaima Fallatah, Daniel Faria, Irini Fundulaki,
Ian Harrow, Sven Hertling, Pascal Hitzler, Martin Huschka, Lil-
iana Ibanescu, Ernesto Jimenez-Ruiz, Naouel Karam, Amir Laadhar,
Patrick Lambrix, Huanyu Li, Ying Li, Franck Michel, Engy Nasr,
Heiko Paulheim, Catia Pesquita, Jan Portisch, Catherine Roussey,
Tzanina Saveta, Pavel Shvaiko, Andrea Splendiani, Cassia Trojahn,
Jana Vatascinova, Beyza Yaman, Ondrej Zamazal, and Lu Zhou. Re-
sults of the ontology alignment evaluation initiative 2021. In Proceed-

ings of the 16th International Workshop on Ontology Matching co-

located with the 20th International Semantic Web Conference (ISWC

2021), Virtual conference, October 25, 2021 :, number 3063 in CEUR
Workshop Proceedings, pages 62–108. CEUR-WS.org, 2021.

[AP19] Anas Alseyat and Jae-Do Park. Multi-agent system using jade for dis-
tributed dc microgrid system control. In 2019 North American Power

Symposium (NAPS), pages 1–5. IEEE, 2019.

222

BIBLIOGRAPHY 223

[AvH04] Grigoris Antoniou and Frank van Harmelen. Web Ontology Language:

OWL, pages 67–92. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[Baa03] Franz Baader. Computing the least common subsumer in the descrip-
tion logic el w.r.t. terminological cycles with descriptive semantics. In
Bernhard Ganter, Aldo de Moor, and Wilfried Lex, editors, Conceptual

Structures for Knowledge Creation and Communication, pages 117–
130, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[Bai13] Samantha Bail. The justificatory structure of OWL ontologies. The
University of Manchester (United Kingdom), 2013.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-
Schneider, Daniele Nardi, et al. The description logic handbook : the-

ory, implementation, and applications. Cambridge University Press,
Cambridge, UK ;, 2003.

[BHW07] Rafael Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-

ming multi-agent systems in AgentSpeak using Jason, volume 8. John
Wiley & Sons, 2007.

[Bie07] Meghyn Bienvenu. Consequence finding in alc. In Proceedings of

the Twentieth International Workshop on Description Logics (DL2007),
volume 250 of CEUR Workshop Proceedings, 2007.

[Bie08] Meghyn Bienvenu. Prime implicate normal form for alc concepts. In
Proceedings of the 23rd National Conference on Artificial Intelligence

- Volume 1, AAAI’08, page 412–417. AAAI Press, 2008.

[Bie09] Meghyn Bienvenu. Prime implicates and prime implicants: From
propositional to modal logic. Journal of Artificial Intelligence Re-

search, 36:71–128, 2009.

[BLCT16] Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia
Tsamoura. Generating plans from proofs: the interpolation-based ap-
proach to query reformulation. Synthesis Lectures on Data Manage-

ment, 8(1):1–205, 2016.

224 BIBLIOGRAPHY

[BLR+19] Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Query inseparability for ALC ontologies. Ar-

tificial Intelligence, 272:1–51, 2019.

[Boo09] George Boole. An Investigation of the Laws of Thought: On Which

Are Founded the Mathematical Theories of Logic and Probabilities.
Cambridge Library Collection - Mathematics. Cambridge University
Press, 2009.

[BPR01] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Develop-
ing multi-agent systems with jade. In Intelligent Agents VII Agent The-

ories Architectures and Languages, Lecture Notes in Computer Sci-
ence, pages 89–103, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

[Bro86] Rodney Brooks. A robust layered control system for a mobile robot.
IEEE journal of robotics and automation, 2(1):14–23, 1986.

[BT02] Sidney Bailin and Walt Truszkowski. Ontology negotiation: How
agents can really get to know each other. In Workshop on Radical Agent

Concepts, pages 320–334. Springer, 2002.

[CCMV06] Balder ten Cate, Willem Conradie, Maarten Marx, and Yde Venema.
Definitorially complete description logics. In Proceedings of the Tenth

International Conference on Principles of Knowledge Representation

and Reasoning, KR’06, page 79–89. AAAI Press, 2006.

[dKLW05] Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge.
A formal specification of dmars. In Intelligent Agents IV Agent Theo-

ries, Architectures, and Languages, Lecture Notes in Computer Sci-
ence, pages 155–176, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[DLS01] Patrick Doherty, Witold Łukaszewicz, and Andrzej Szałas. Computing
strongest necessary and weakest sufficient conditions of first-order for-
mulas. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence - Volume 1, IJCAI’01, page 145–151, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 225

[DLS07] Patrick Doherty, Witold Lukaszewicz, and Andrzej Szalas. Knowl-

edge representation techniques: a rough set approach, volume 202.
Springer, 2007.

[Don06] Kevin Donnelly. Snomed-ct: The advanced terminology and cod-
ing system for ehealth. Studies in health technology and informatics,
121:279, 2006.

[DTPP09] Paul Doran, Valentina Tamma, Terry Payne, and Ignazio Palmisano.
Dynamic selection of ontological alignments: A space reduction mech-
anism. In Proceedings of the 21st International Joint Conference on

Artificial Intelligence, IJCAI’09, page 2028–2033, San Francisco, CA,
USA, 2009. Morgan Kaufmann Publishers Inc.

[DV13] Chiara Del Vescovo. The modular structure of an ontology: Atomic

Decomposition and its applications. PhD thesis, University of Manch-
ester, 2013.

[ECMC14] Soledad Escolar, Jesús Carretero, Maria-Cristina Marinescu, and Ste-
fano Chessa. Estimating energy savings in smart street lighting by us-
ing an adaptive control system. International Journal of Distributed

Sensor Networks, 10(5):971587, 2014.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-
Verlag, Berlin, Heidelberg, 1. aufl. edition, 2007.

[FFMM94] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml
as an agent communication language. In Proceedings of the Third In-

ternational Conference on Information and Knowledge Management,
CIKM ’94, page 456–463, New York, NY, USA, 1994. Association for
Computing Machinery.

[Fit12] Melvin Fitting. First-order logic and automated theorem proving.
Springer Science & Business Media, 2012.

[FMA92] Ingrand Felix, Georgeff Michael, and Rao Ayyagari. An architecture
for real-time reasoning and system control. IEEE expert, 7(6):34–44,
1992.

226 BIBLIOGRAPHY

[FPS+13] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Is-
abel Cruz, and Francisco M Couto. The agreementmakerlight ontology
matching system. In On the Move to Meaningful Internet Systems:

OTM 2013 Conferences, Lecture Notes in Computer Science, pages
527–541, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Gab08] Dov Gabbay. Second-order quantifier elimination : foundations, com-

putational aspects and applications. Studies in logic : Mathematical
logic and foundations ; 12. College Publications, London, 2008.

[Gel18] David Geleta. Minimal Definition Signatures: Computation and Ap-

plication to Ontology Alignment. PhD thesis, University of Liverpool,
2018.

[GF+92] Michael Genesereth, Richard E Fikes, et al. Knowledge interchange
format-version 3.0: reference manual. 3, 1992.

[GHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Modular reuse of ontologies: Theory and practice. J. Artif. Int.

Res., 31(1):273–318, feb 2008.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang. Hermit: An owl 2 reasoner. Journal of Automated Reasoning,
53(3):245–269, 2014.

[Gia96] Giuseppe De Giacomo. Eliminating ”converse” from converse pdl.
Journal of Logic, Language, and Information, 5(2):193–208, 1996.

[GLW06] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did i damage my on-
tology? a case for conservative extensions in description logic. In Pro-

ceedings of the Tenth International Conference on Principles of Knowl-

edge Representation and Reasoning, KR’06, page 187–197. AAAI
Press, 2006.

[GO92] Dov Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in
second-order predicate logic. In Proceedings of the Third International

Conference on Principles of Knowledge Representation and Reason-

ing, KR’92, page 425–435, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

BIBLIOGRAPHY 227

[GPS11] Rafael Gonçalves, Bijan Parsia, and Ulrike Sattler. Categorising logical
differences between owl ontologies. In Proceedings of the 20th ACM

International Conference on Information and Knowledge Management,
CIKM ’11, page 1541–1546, New York, NY, USA, 2011. Association
for Computing Machinery.

[GPS12] Rafael Gonçalves, Bijan Parsia, and Ulrike Sattler. Concept-based se-
mantic difference in expressive description logics. In Proceedings of

the 11th International Conference on The Semantic Web - Volume Part

I, ISWC’12, page 99–115, Berlin, Heidelberg, 2012. Springer-Verlag.

[GPSK06] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyan-
pur. Modularity and web ontologies. In Proceedings of the Tenth Inter-

national Conference on Principles of Knowledge Representation and

Reasoning, KR’06, page 198–208. AAAI Press, 2006.

[GPT16] David Geleta, Terry Payne, and Valentina Tamma. An investiga-
tion of definability in ontology alignment. In Knowledge Engineer-

ing and Knowledge Management, volume 10024 of Lecture Notes in

Computer Science, pages 255–271. Springer International Publishing,
Cham, 2016.

[GPT17] David Geleta, Terry Payne, and Valentina Tamma. Minimal coverage
for ontology signatures. In Mauro Dragoni, Marı́a Poveda-Villalón,
and Ernesto Jimenez-Ruiz, editors, OWL: Experiences and Directions

– Reasoner Evaluation, pages 128–140, Cham, 2017. Springer Interna-
tional Publishing.

[GZ95] Silvio Ghilardi and Marek Zawadowski. Undefinability of proposi-
tional quantifiers in the modal system s4. Studia Logica, 55(2):259–
271, Jun 1995.

[HB11] Matthew Horridge and Sean Bechhofer. The owl api: A java api for
owl ontologies. Semant. Web, 2(1):11–21, jan 2011.

[HCZS14] Frank Ibarra Hernandez, Carlos Alberto Canesin, Ramon Zamora, and
Anurag K Srivastava. Active power management in multiple micro-
grids using a multi-agent system with jade. In 2014 11th IEEE/IAS

228 BIBLIOGRAPHY

International Conference on Industry Applications, pages 1–8. Ieee,
2014.

[HM+00] James Hendler, Deborah McGuinness, et al. The darpa agent markup
language. IEEE Intelligent systems, 15(6):67–73, 2000.

[JRCG11] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-
based and scalable ontology matching. In International Semantic Web

Conference, pages 273–288. Springer, 2011.

[JRGHB11] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga. Logic-based assessment of the compatibility of umls
ontology sources. Journal of biomedical semantics, 2 Suppl 1(Suppl
1):S2–S2, 2011.

[JRGHL09] Ernesto Jimenez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks, and
Rafael Berlanga Llavori. Logic-based ontology integration using con-
tentmap. In JISBD, pages 316–319, 2009.

[JRGZH12] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian
Horrocks. Large-scale interactive ontology matching: Algorithms and
implementation. In ECAI, volume 242, pages 444–449, 2012.

[KB08] Thomas Klapiscak and Rafael Bordini. Jasdl: A practical programming
approach combining agent and semantic web technologies. In Interna-

tional Workshop on Declarative Agent Languages and Technologies,
pages 91–110. Springer, 2008.

[KHA06] Thomas Konnerth, Benjamin Hirsch, and Sahin Albayrak. Jadl – an
agent description language for smart agents. In Matteo Baldoni and
Ulle Endriss, editors, Declarative Agent Languages and Technologies

IV, pages 141–155, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[KLWW09] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal

Properties of Modularisation, pages 25–66. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009.

[Koo15] Patrick Koopmann. Practical uniform interpolation for expressive de-

scription logics. PhD thesis, The University of Manchester, 2015.

BIBLIOGRAPHY 229

[KWW09] Boris Konev, Dirk Walther, and Frank Wolter. Forgetting and uniform
interpolation in large-scale description logic terminologies. In Inter-

national Joint Conference on Automated Reasoning, pages 830–835,
2009.

[LBBH06] Michal Laclavı́k, Zoltán Balogh, Marián Babı́k, and Ladislav Hluchý.
Agentowl: Semantic knowledge model and agent architecture. Com-

puting and informatics (Bratislava, Slovakia), 25(5):421–439, 2006.

[LBT+07] Loredana Laera, Ian Blacoe, Valentina Tamma, Terry Payne, Jerôme
Euzenat, and Trevor Bench-Capon. Argumentation over ontology cor-
respondences in mas. In Proceedings of the 6th international joint

conference on Autonomous agents and multiagent systems, pages 1–8,
2007.

[LDGS11] Lin Padgham, David Scerri, Gaya Jayatilleke, and Sarah Hickmott. In-
tegrating bdi reasoning into agent based modeling and simulation. In
Proceedings of the 2011 Winter Simulation Conference (WSC), pages
345–356, 2011.

[Lin01] Fangzhen Lin. On strongest necessary and weakest sufficient condi-
tions. Artificial Intelligence, 128(1):143–159, 2001.

[LK13] Michel Ludwig and Boris Konev. Towards practical uniform interpo-
lation and forgetting for alc tboxes. In In Proceedings of DL 2013,

volume 1014 of CEUR Workshop Proceedings, 2013.

[LKK15] Marco Lützenberger, Thomas Konnerth, and Tobias Küster. Program-
ming of multiagent applications with jiac. In Industrial agents, pages
381–398. Elsevier, 2015.

[LPL+14] JeeHang Lee, Julian Padget, Brian Logan, Daniela Dybalova, and
Natasha Alechina. N-jason: Run-time norm compliance in agentspeak
(l). In International Workshop on Engineering Multi-Agent Systems,
pages 367–387. Springer, 2014.

[LPW10] Carsten Lutz, Robert Piro, and Frank Wolter. Enriching el-concepts
with greatest fixpoints. In Proceedings of the 2010 Conference on

ECAI 2010: 19th European Conference on Artificial Intelligence, page
41–46, NLD, 2010. IOS Press.

230 BIBLIOGRAPHY

[LR94] Fangzhen Lin and Ray Reiter. Forget it. In Working Notes of AAAI Fall

Symposium on Relevance, pages 154–159, 1994.

[LW11] Carsten Lutz and Frank Wolter. Foundations for uniform interpolation
and forgetting in expressive description logics. In Twenty-Second In-

ternational Joint Conference on Artificial Intelligence, 2011.

[LWW07a] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative exten-
sions in expressive description logics. In Proceedings of the 20th In-

ternational Joint Conference on Artifical Intelligence, IJCAI’07, page
453–458, San Francisco, CA, USA, 2007. Morgan Kaufmann Publish-
ers Inc.

[LWW07b] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions
in expressive description logics. In International Joint Conference on

Automated Reasoning, volume 7, pages 453–458, 2007.

[Mar07] Maarten Marx. Queries determined by views: Pack your views. In Pro-

ceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems, PODS ’07, page 23–30, New
York, NY, USA, 2007. Association for Computing Machinery.

[Mat16] Nicolas Alexander Matentzoglu. Module-based classification of OWL

ontologies. PhD thesis, University of Manchester, 2016.

[McM03] Kenneth McMillan. Interpolation and sat-based model checking. In
International Conference on Computer Aided Verification, pages 1–13.
Springer, 2003.

[MFHS02] Deborah Mcguinness, Richard Fikes, James Hendler, and Lynn Stein.
Daml+oil: an ontology language for the semantic web. IEEE Intelligent

Systems, 17(5):72–80, 2002.

[MGH+09] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille
Fokoue, Carsten Lutz, et al. Owl 2 web ontology language profiles.
W3C recommendation, 27:61, 2009.

[MP94] Joerg Muller and Markus Pischel. Integrating agent interaction into

BIBLIOGRAPHY 231

a planner-reactor architecture. In Proceedings of the 13th Interna-

tional Workshop on Distributed Artificial Intelligence, Seattle, WA,

USA, 1994.

[MS21] Renate Schmidt Mostafa Sakr. Semantic forgetting in expressive de-
scription logics. In B. Konev and G. Reger, editors, Frontiers of Com-

bining Systems (FroCoS 2021), volume 12941 of Lecture Notes in Com-

puter Science, pages 118–136. Springer, 2021.

[MVBH05] Alvaro Moreira, Renata Vieira, Rafael Bordini, and Jomi Hübner.
Agent-oriented programming with underlying ontological reasoning.
In International Workshop on Declarative Agent Languages and Tech-

nologies, pages 155–170. Springer, 2005.

[Neb90a] Bernhard Nebel. Terminological cycles, pages 119–147. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1990.

[Neb90b] Bernhard Nebel. Terminological reasoning is inherently intractable.
Artificial Intelligence, 43(2):235–249, 1990.

[Nik11] Nadeschda Nikitina. Uniform interpolation in general el terminologies.
In 24th International Workshop on Description Logics, page 345, 2011.

[PK15a] Renate Schmidt Patrick Koopmann. LETHE: A saturation-based tool
for non-classical reasoning. In Proc. ORE-2015, volume 1387 of CEUR

Workshop Proceedings. CEUR-WS.org, 2015.

[PK15b] Renate Schmidt Patrick Koopmann. LETHE: A saturation-based tool
for non-classical reasoning. In Proceedings of the 4th International

Workshop on OWL Reasoner Evaluation (ORE-2015), volume 1387 of
CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[PK15c] Renate Schmidt Patrick Koopmann. Saturation-based forgetting in the
description logic S IF . In D. Calvanese and B. Konev, editors, Proceed-

ings of the 28th International Workshop on Description Logics (DL-

2015), volume 1350 of CEUR Workshop Proceedings. CEUR-WS.org,
2015.

232 BIBLIOGRAPHY

[PK15d] Renate Schmidt Patrick Koopmann. Uniform interpolation and for-
getting for ALC ontologies with aboxes. In B. Bonet and S. Koenig,
editors, Proc. AAAI-2015, pages 175–181. AAAI Press, 2015.

[PT14] Terry Payne and Valentina Tamma. Negotiating over ontological corre-
spondences with asymmetric and incomplete knowledge. In Proceed-

ings of the 2014 international conference on Autonomous agents and

multi-agent systems, pages 517–524, 2014.

[Ram92] Ramesh Patil, Richard Fikes, Peter Patel-Schneider, Donald McKay,
Tim Finin, Thomas Gruber, and Robert Neches. The DARPA Knowl-
edge Sharing Effort: Progress Report. In Bernhard Nebel, editor,
Proceedings of the Third International Conference on Principles Of

Knowledge Representation And Reasoning. Morgan Kaufman, August
1992.

[Rao96] Anand S. Rao. Agentspeak(l): Bdi agents speak out in a logical com-
putable language. In Walter Van de Velde and John W. Perram, ed-
itors, Agents Breaking Away, pages 42–55, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[RBHC19] Alessandro Ricci, Rafael Bordini, Jomi Hübner, and Rem Collier.
Agentspeak(er): Enhanced encapsulation in agent plans. In Engineer-

ing Multi-Agent Systems, Lecture Notes in Computer Science, pages
34–51, Cham, 2019. Springer International Publishing.

[RG+95] Anand Rao, Michael Georgeff, et al. Bdi agents: from theory to prac-
tice. In ICMAS, volume 95, pages 312–319, 1995.

[SCE15] Chaimae Saadi, Habiba Chaoui, and Hassan Erguig. Security analysis
using ids based on mobile agents and data mining algorithms. (IJCSIT)

International Journal of Computer Science and Information Technolo-

gies, 6(1):597–602, 2015.

[Sch05] Stefan Schlobach. Debugging and semantic clarification by pinpoint-
ing. In European Semantic Web Conference, pages 226–240. Springer,
2005.

BIBLIOGRAPHY 233

[Sch12] Renate A Schmidt. The ackermann approach for modal logic, cor-
respondence theory and second-order reduction. Journal of Applied

Logic, 10(1):52–74, 2012.

[SG11] Diego Goncalves Silva and Joao Carlos Gluz. Agentspeak(pl): A new
programming language for bdi agents with integrated bayesian network
model. In 2011 International Conference on Information Science and

Applications, pages 1–7. IEEE, 2011.

[Sho93] Yoav Shoham. Agent-oriented programming. Artificial intelligence,
60(1):51–92, 1993.

[SJRG17a] Alessandro Solimando, Ernesto Jimenez-Ruiz, and Giovanna Guer-
rini. Minimizing conservativity violations in ontology alignments:
Algorithms and evaluation. Knowledge and Information Systems,
51(3):775–819, 2017.

[SJRG17b] Alessandro Solimando, Ernesto Jiménez-Ruiz, and Giovanna Guer-
rini. Minimizing conservativity violations in ontology alignments:
algorithms and evaluation. Knowledge and Information Systems,
51(3):775–819, 2017.

[SKH11] František Simančı́k, Yevgeny Kazakov, and Ian Horrocks.
Consequence-based reasoning beyond horn ontologies. In Proceedings

of the Twenty-Second International Joint Conference on Artificial

Intelligence - Volume Volume Two, IJCAI’11, page 1093–1098. AAAI
Press, 2011.

[SLZ04] Kaile Su, Guanfeng Lv, and Yan Zhang. Reasoning about knowledge
by variable forgetting. In Proceedings of the Ninth International Con-

ference on Principles of Knowledge Representation and Reasoning,
KR’04, page 576–586. AAAI Press, 2004.

[SMVM16] Marlo Souza, Alvaro Moreira, Renata Vieira, and John-Jules Meyer.
Integrating ontology negotiation and agent communication. In Ontol-

ogy Engineering, Lecture Notes in Computer Science, pages 56–68,
Cham, 2016. Springer International Publishing.

[SS69] John Searle and John Rogers Searle. Speech acts: An essay in the phi-

losophy of language, volume 626. Cambridge university press, 1969.

234 BIBLIOGRAPHY

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. Which
kind of module should i extract? Description Logics, 477:78, 2009.

[Stu03] Russell Stuart. Artificial intelligence : a modern approach. Prentice
Hall series in artificial intelligence. Prentice Hall, Upper Saddle River,
N.J, 2nd ed. edition, 2003.

[Sza93] Andrzej Szalas. On the correspondence between modal and classical
logic: An automated approach. Journal of Logic and Computation,
3(6):605–620, 1993.

[TCFS13] Balder Ten Cate, Enrico Franconi, and Inanç Seylan. Beth definabil-
ity in expressive description logics. Journal of Artificial Intelligence

Research, 48:347–414, 2013.

[TS19] David Toluhi and Renate Schmidt. Knowledge sharing among agents
with ontological reasoning. In Automated Reasoning Workshop 2019,
page 1, 2019.

[TS21] David Toluhi and Renate Schmidt. Knowledge extraction for multi-
agent system communication. In Logical Aspects in Multi-Agent Sys-

tems and Strategic Reasoning, page 1, 2021.

[TSP22] David Toluhi, Renate Schmidt, and Bijan Parsia. Concept description
and definition extraction for the anemone system. In Natasha Alechina,
Matteo Baldoni, and Brian Logan, editors, Engineering Multi-Agent

Systems, pages 352–372, Cham, 2022. Springer International Publish-
ing.

[vB08] Johan van Benthem. The many faces of interpolation. Synthese,
164(3):451–460, 2008.

[vDBD+06] Jurriaan van Diggelen, Robbert-Jan Beun, Frank Dignum, Rogier van
Eijk, and John-Jules Meyer. Anemone: An effective minimal ontol-
ogy negotiation environment. In Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multiagent Systems, AA-
MAS ’06, page 899–906, New York, NY, USA, 2006. Association for
Computing Machinery.

BIBLIOGRAPHY 235

[VDBD+07a] Jurriaan Van Diggelen, Robbert-Jan Beun, FPM Dignum, Rogier
Van Eijk, and John-Jules Meyer. Ontology negotiation: goals, require-
ments and implementation. International Journal of Agent-Oriented

Software Engineering, 1(1):63–90, 2007.

[VDBD+07b] Jurriaan Van Diggelen, Robbert-Jan Beun, FPM Dignum, Rogier
Van Eijk, and John-Jules Meyer. Ontology negotiation: goals, require-
ments and implementation. International Journal of Agent-Oriented

Software Engineering, 1(1):63–90, 2007.

[VDRA11] Viviana Mascardi, Davide Ancona, Rafael Bordini, and Alessandro
Ricci. Cool-agentspeak: Enhancing agentspeak-dl agents with plan ex-
change and ontology services. In 2011 IEEE/WIC/ACM International

Conferences on Web Intelligence and Intelligent Agent Technology, vol-
ume 2, pages 109–116. IEEE, 2011.

[VMWB07] Renata Vieira, Álvaro Moreira, Michael Wooldridge, and Rafael Bor-
dini. On the formal semantics of speech-act based communication in
an agent-oriented programming language. Journal of Artificial Intelli-

gence Research, 29:221–267, 2007.

[Wan10] Peng Wang. Lily-lom: An efficient system for matching large ontolo-
gies with non-partitioned method. In Proc. CEUR Workshop, volume
658, pages 69–72. CEUR-WS.org, 2010.

[WDP19] Renate Schmidt Warren Del-Pinto. ABox abduction via forgetting in
ALC. In P. Van Hentenryck and Z.-H. Zhou, editors, Proceedings of the

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-2019),
pages 2768–2775. AAAI Press, 2019.

[Wer12] Christoph Wernhard. Projection and scope-determined circumscrip-
tion. Journal of Symbolic Computation, 47(9):1089–1108, 2012.

[Wer14] Christoph Wernhard. Second-order characterizations of definientia in
formula classes. In Knowledge Representation and Reasoning 14-03,
2014.

[WNS+11] Patricia Whetzel, Natalya Noy, Nigam Shah, Paul Alexander, Csongor
Nyulas, Tania Tudorache, and Mark Musen. Bioportal: enhanced func-
tionality via new web services from the national center for biomedical

236 BIBLIOGRAPHY

ontology to access and use ontologies in software applications. Nucleic

acids research, 39(suppl 2):W541–W545, 2011.

[YZ15] Renate Schmidt Yizheng Zhao. Concept forgetting in alcoi-ontologies
using an ackermann approach. In The Semantic Web, 14th International

Semantic Web Conference, ISWC 2015, volume 9366 of Lecture Notes

in Computer Science, pages 587–602. Springer, 2015.

[YZ18] Renate Schmidt Yizheng Zhao. FAME: An automated tool for seman-
tic forgetting in expressive description logics. In Proc. IJCAR 2018,
volume 10900 of Lecture Notes in Artificial Intelligence, pages 19–27.
Springer, 2018.

[ZAS+19] Yizheng Zhao, Ghadah Alghamdi, Renate Schmidt, Hao Feng, Giorgos
Stoilos, Damir Juric, and Mohammad Khodadadi. Tracking logical
difference in large-scale ontologies: a forgetting-based approach. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages
3116–3124, 2019.

[ZWL+14] Yuanzhe Zhang, Xuepeng Wang, Siwei Lai, Shizhu He, Kang Liu, Jun
Zhao, and Xueqiang Lv. Ontology matching with word embeddings.
In Maosong Sun, Yang Liu, and Jun Zhao, editors, Chinese Compu-

tational Linguistics and Natural Language Processing Based on Natu-

rally Annotated Big Data, pages 34–45, Cham, 2014. Springer Interna-
tional Publishing.

[ZZ10] Yan Zhang and Yi Zhou. Forgetting revisited. In Proceedings of the

Twelfth International Conference on Principles of Knowledge Repre-

sentation and Reasoning, KR’10, page 602–604. AAAI Press, 2010.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Scope of Research
	Research Questions
	Challenges and Contributions
	Published work

	Overview of the Thesis

	Background on Logic and Knowledge Extraction
	Description Logics
	Knowledge Structures in Logic
	Definitions and Definability in DL
	Module Extraction
	Forgetting and Uniform Interpolation
	Craig Interpolation
	Strongest Necessary Conditions and Weakest Sufficient Conditions
	Prime implicates and Prime implicants
	Most Specific Concept
	Least Common Subsumers

	Background On Agents
	Agent Oriented Programming Frameworks
	JASON
	JADE
	Ontology Based Agent Oriented Programming Frameworks

	Agent Communication
	Speech Acts
	KQML
	FIPA ACL
	Agent Communication in JASON
	Agent Communication in JADE

	Related Work
	Ontology Negotiation
	Ontology Alignment

	Setting the Scene for the rest of the Thesis
	DL of focus (ALC)
	Approach to Conveying Symbols

	Realising Knowledge Extraction for DL
	Defining SNC(s) and WSC(s)
	Motivation
	Realisation
	Complexity
	Relation to Prime Implicates and Prime Implicants
	Relation to Least Common Subsumers
	Limitations

	Developed Approaches
	Compiled Superconcepts and Compiled Subconcepts
	Conveying Information about Roles

	Contribution Summary

	Conveying Maximally Precise Descriptions
	The corpus
	Evaluating Definition Extraction using SNCs
	Results on extracting definitions for explicitly defined concept names

	Evaluating Definability w.r.t Primitive Signatures
	Evaluation of Compiled Super Concept Extraction
	Contribution Summary

	Adoption within Agent Communication
	ANEMONE
	Extracting Concept Descriptions in ANEMONE
	The Ability to extract subsumers of an unshared concept name
	The Ability to extract subsumees of an unshared concept name

	Contextual Completeness for Subumers and Subsumees
	Standalone Completeness for Subumers and Subsumees
	Relationship between CSPs, CSBs, SNCs, WSCs, ANEMONE subsumers, ANEMONE subsumees and Contextual/Standalone completeness

	Empirical Evaluation
	Evaluating Extraction of Subsumers
	Evaluating Extraction of Subsumees
	Discussion

	Contribution Summary

	Finite Entailment Sets and Ontology Alignment
	Entailment Sets
	Developed entailment sets
	Ascending Entailment Sets
	Descending Entailment Sets
	Relation Entailment Sets
	Impact of Defined Concepts and Primitive Signatures

	Application to Ontology Alignment
	A Proposal for extending detection of conservativity violations

	Contribution Summary

	Conclusions and Summary
	Limitations of the Thesis
	Emphasis on ALC
	Underexploration of representation limitations
	Underexploration of alternative methods
	Emphasis on investigating sharing TBox knowledge

	Application to General Aspects of Agent Communication
	Factors to consider in the Design of Communication Protocols

	Further Applications
	Ontology Strengthening
	Constructing Ontology Alignments

	Bibliography

