
Development of a Numerical Platform

for the Simulation of Electro-Mechanical

Models of the Human Heart

A thesis submitted to the University of Manchester for the

degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Thomas M A Scrase

Department of Physics and Astronomy

Contents

1 Introduction 15

1.1 Motivations, aims, and objectives 15

1.2 Heart physiology . 19

1.2.1 Cardiac tissue: micro to macro scale structures 19

1.3 Distinct sub-physics of the heart 22

1.3.1 The iso-potential, leaky cell 22

1.3.2 Cell ion kinetics and dynamics 24

1.3.3 Function and AP morphology 28

1.3.4 Electrical conduction 31

1.4 Anisotropic solid mechanics 32

1.4.1 Structure . 32

1.4.2 Mechanism of contraction 34

2 Mathematical modelling principles 36

2.1 Ion dynamics . 36

2.1.1 Modelling ion channels 36

2.2 Cell models . 42

2.3 Continuum mechanics . 44

2.3.1 Describing the world 44

2.3.2 Tensor product and tensor contraction 47

2

CONTENTS 3

2.3.3 Metric tensors . 47

2.4 Electrical diffusion . 49

2.4.1 Conductance tensors 50

2.4.2 Bidomain equations . 52

2.4.3 Monodomain equation 54

2.5 Solid mechanics . 54

2.5.1 Strain tensor . 54

2.5.2 Strain invariants . 56

2.5.3 The principle of virtual displacements 57

2.5.4 Constitutive modelling 59

2.5.5 Incompressibility constraint 63

2.5.6 The passive myocardium 64

2.5.7 The active stress decomposition 65

2.5.8 The active strain decomposition 66

3 Numerical methods 72

3.1 The finite element method . 73

3.2 Basis functions . 73

3.2.1 Local to global mapping 75

3.2.2 Spatial derivatives . 75

3.3 Approximating integrals . 76

3.3.1 General implementation of integration in Oomph-lib . . 77

3.4 Time integration . 77

3.4.1 Forward and backward Euler 78

3.4.2 Rush-Larsen . 78

3.4.3 Trapezoid rule: Crank-Nicolson 79

3.4.4 Implicit linear multi-step methods 81

3.4.5 Adaptive time integration 82

4 CONTENTS

3.5 Monolithic and partitioned solutions 82

3.5.1 Monolithic solutions 83

3.5.2 Weak coupling . 84

3.5.3 Operator splitting . 85

3.5.4 Operator splitting and diffusion models 98

3.5.5 Mechano-electrical feedback 100

3.6 Solving linear systems . 100

3.6.1 Newton’s method . 100

3.6.2 Direct and iterative solvers 102

4 Developing the numerical package 103

4.1 Oomph-lib . 105

4.2 Structures within Oomph-lib 107

4.2.1 Data . 107

4.2.2 Nodes . 108

4.2.3 Elements . 109

4.2.4 Meshes . 109

4.2.5 Problems . 110

4.3 The use of Oomph-lib . 111

4.4 What has been added to Oomph-lib 111

4.4.1 Solving for electrical diffusion 114

4.4.2 Adding non-linear point source terms 119

4.4.3 Operator splitting and diffusion models 134

4.4.4 Multiple discretisations 139

4.4.5 Anisotropic solid mechanics 145

4.4.6 Generating anatomical unstructured meshes 156

CONTENTS 5

5 Validation 161

5.1 Monolithic and Non-Adaptive operator splitting 163

5.2 Adaptive operator splitting . 167

5.3 Time-stepping with operator splitting 170

6 Use of the numerical package 172

6.1 Defining a point-source model 172

6.2 Calculating conduction velocity in a fibre of tissue 174

6.3 Adaptive operator splitting methods 177

7 Applying adaptive operator splitting 180

7.1 Methods . 184

7.1.1 Cardiac cell models . 184

7.1.2 The operator splitting stage 185

7.1.3 Solving the monodomain equation 185

7.1.4 Solving the cell equations 186

7.1.5 The combined methods 188

7.1.6 Benchmark simulations 189

7.2 Results . 191

7.2.1 Conduction velocity in a fibre 191

7.2.2 Target pattern wave simulations 197

7.2.3 Spiral wave simulations 204

7.3 Discussion . 208

8 Future work 213

8.1 Remaining validation . 213

8.2 Alternative time-stepping methods 214

8.3 Additions of blood flow . 219

8.3.1 Valve boundary conditions 220

8.4 Windkessel type models . 222

9 Summary and conclusions 224

Final word count: 40858

List of Figures

2.1 Two-state Markov chain . 40

3.1 Time-step length control in the solution of a cell model 95

4.1 Operator splitting solve-projection schematic 136

4.2 Cell and diffusion meshes with misaligned nodes 141

4.3 Schematic of the overview of the inheritance structure of the

anisotropic solid mechanics classes and how they relate to

the isotropic solid classes. Oomph-lib classes are displayed

in green and classes added as part of this work are shown in

red. Arrows point from a derived class to its base class. 146

4.4 Schematic of the inheritance structure of the anisotropic con-

stitutive law classes. 155

5.1 Convergence of solution of the Monodomain equation for de-

creasing time-step . 166

5.2 Convergence of solution of the Monodomain equation for de-

creasing spatial resolution . 168

5.3 Convergence of solution of the Monodomain equation when

solved with adaptive operator splitting for a varying error tol-

erance . 169

7

8 LIST OF FIGURES

5.4 Convergence of solution of the Monodomain equation when

solved with adaptive operator splitting for varying spatial res-

olution . 170

7.1 Simulated conduction velocity in a heterogeneous transmural

left ventricular fibre . 192

7.2 Error in simulated conduction velocity in a heterogeneous

transmural left ventricular fibre 193

7.3 Total time taken to perform simulation of heterogeneous left

ventricular fibre . 194

7.4 Average rate of advance of simulation of a heterogeneous left

ventricular fibre. 195

7.5 Fraction of total simulation time taken to solve monodomain

equation . 196

7.6 Total number of solves of the monodomain equation when sim-

ulating a heterogeneous fibre 197

7.7 Target pattern wave front through a 2D sheet 199

7.8 Snapshots of simulated target pattern excitation wave in a 2D

sheet for the HRd model . 200

7.9 Rate of advance (ROA) of TNNP simulations of planar wave

and spiral waves . 203

7.10 Rate of advance (ROA) of HRd simulations of target pattern

wave and spiral waves . 205

7.11 Time-step taken in HRd simulations of spiral waves 206

List of Tables

5.1 Weights of spatially dependent source term, Λij, in the forced

2D monodomain validation test 164

5.2 Weights of the initial conditions, Aij, for the forced 2D mon-

odomain validation test . 165

7.1 Time taken to simulate target pattern waves 201

7.2 Time taken to perform planar wave simulation with various

methods for the TNNP model 202

7.3 Time taken to perform spiral wave simulation with various

methods for the HRd model 207

7.4 Time taken to perform spiral wave simulation with various

methods for the TNNP model 207

9

Acronyms

ADP Adenosine Diphosphate

ALE Arbitrary Lagrangian Eulerian

ATP Adenosine Triphosphate

BDF Backward Differentiation Formula

CT Computerised Tomography

DEM Discrete Element Method

DOF Degree of Freedom

DOFs Degrees of Freedom

FDM Finite Difference Method

FE forward Euler

FEM Finite Element Method

FERL Forward Euler with Rush-Larsen

FSI Fluid-Solid Interaction

FVM Finite Volume Method

10

LIST OF TABLES 11

HE Heun-Euler

MR Magnetic Resonance

ODE Ordinary Differential Equation

ODEs Ordinary Differential Equations

Oomph-lib Object Oriented Multi-physics Library

PDE Partial Differential Equation

PDEs Partial Differential Equations

PVD Principle of Virtual Displacements

ROA Rate of Advance

SQT The Short QT Syndrome

TR Trapezoid

Abstract

Cardiac diseases are among the most prevalent in the world. The scope

and impact of these diseases on society are far-reaching. Therefore, develop-

ing tools to aid in identifying and understanding the underlying mechanisms

of these diseases is an ongoing and vital field of research in which compu-

tational modelling has emerged as an essential tool. Using flexible, open-

source software, and modern numerical methods can aid in this endeavour.

In this thesis, I have developed a computational platform, for the simulation

of bio-physically detailed cardiac tissue models with general cell models. This

platform consists of significant additions to the open-source multi-physics fi-

nite element library Object Oriented Multi-physics Library (Oomph-lib) and

allows for the novel application of Oomph-lib to cardiac modelling. These

developments couple single-cell models to tissue and 2D or 3D anatomical

models of the heart. The platform can simulate electrical excitation waves

and mechanical contraction of cardiac tissue. In addition to this platform, I

have also developed methods of applying adaptive operator splitting meth-

ods for the stable and efficient numerical solution of cardiac models which

I show outperform other more commonly used methods. In conclusion, an

efficient, scalable, open-source computational platform applicable to cardiac

modelling has been developed and further areas for development have been

investigated and noted that form a basis for further model development and

validation.

12

Declaration of originality

No portion of the work referred to in this thesis has been submitted in

support of an application for another degree or qualification of this or any

other university or other institute of learning

13

Copyright Statement

The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and they have given the University of Manchester certain rights to use such

Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University

has from time to time. This page must form part of any such copies made.

The ownership of certain Copyright, patents, designs, trademarks and

other intellectual property (the “Intellectual Property”) and any reproduc-

tions of copyright works in the thesis, for example graphs and tables (“Re-

productions”), which may be described in this thesis, may not be owned by

the author and may be owned by third parties. Such Intellectual Property

and Reproductions cannot and must not be made available for use with-

out the prior written permission of the owner(s) of the relevant Intellectual

Property and/or Reproductions.

Further information on the conditions under which disclosure, publica-

tion and commercialisation of this thesis, the Copyright and any Intellec-

tual Property and/or Reproductions described in it may take place is avail-

able in the University IP Policy (see http://documents.manchester.ac.

uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction decla-

rations deposited in the University Library, the University Library’s regula-

tions (see http://www.library.manchester.ac.uk/about/regulations/)

and in the University’s policy on Presentation of Theses.

14

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Chapter 1

Introduction

1.1 Motivations, aims, and objectives

Cardiac diseases are among the most prevalent in the world, it has been esti-

mated that approximately 18,6 million deaths worldwide in 2019 were due to

cardiac diseases[1]. There exist several diseases, such as Torsades de Pointes,

which often present no symptoms and are associated with a very high risk of

mortality when untreated. Other diseases, such as The Short QT Syndrome

(SQT), are rare, affecting only between 0.02% and 0.1% of the adult popu-

lation[2] [3]. SQT is thought to be highly lethal for individuals of all ages,

with a probability of 40% that an affected individual will experience their

first cardiac arrest before the age of 40[4]. This elevated estimated lethality

however could be due to a detection bias in that, given the small number

of reported cases, a large majority of asymptomatic individuals frequently

go undetected. Since the disorder is often symptomless the total number

of cases may be much higher. However, since most cases first present with

cardiac arrest or sudden cardiac death, there are very few estimates for how

many individuals have the disease worldwide. Difficulty in estimating the

15

16 CHAPTER 1. INTRODUCTION

number of individuals suffering from SQTS may be explained in part by a

lack of a clear cut-off between a healthy, abbreviated QTc interval and a

pathologically short QTc interval[5][6][2][7][8]. Due to their rarity, such rare

diseases can present challenges for developing effective therapeutics. Since

so few cases are reported, undertaking human trials to determine safe and

effective treatments can be very difficult.

Pre-clinical in-silico modelling is an essential and emerging tool in under-

standing and designing treatments for many diseases[9]. In-silico modelling

provides an environment in which well-tested models of the healthy human

myocardium can be subject to experiment to attempt to identify the theo-

retical mechanisms which underlie diseases[9][10].

Potential therapeutics for diseases can be investigated by using models for

drug action, or other potential interventions, to which biophysically detailed

tissue models are subjected[9]. In-silico simulations enable a better under-

standing of protocol parameters, thus providing insight into the expected

effects. This provides an opportunity to explore different possible study de-

signs, therefore reducing the uncertainty of the outcomes and resulting in the

faster and more efficient development of therapeutics. These methodologies

can allow for better design of human and animal trials by identifying mecha-

nistic causes and potential issues with drugs through the use of biophysically

detailed in-silico tissue models[11].

Incorporation of patient data into simulations allows for modelling that

more accurately reflects patient-specific physiologies and geometries[12]. This

is achieved through applying clinical data to parameterize cardiac models[13].

Results of these models are then more likely to reflect the conditions in the

patient’s body.

The primary aim of this work is to develop an environment for the bio-

1.1. MOTIVATIONS, AIMS, AND OBJECTIVES 17

physically detailed simulation of cardiac tissue with general cell models. As

a result of the many physical processes which occur within the cardiovascular

system, mathematical models of the cardiovascular system are by their na-

ture multi-physics[14] and multi-scale[15] models. Simple models of the heart

contain fewer physical systems, for example, the simplest models are those

of single cells which contain no models for electrical diffusion, solid deforma-

tion, or fluid dynamics. As models become more developed, more physical

systems are included in the modelling. The current code within the group

which is used for simulating cardiovascular physics is difficult to adapt to in-

clude these new physics into the system. A novel numerical platform centred

around multi-physics is required so that future modelling decisions can be

easily incorporated. There are many numerical platforms for the simulation

of the myocardium and connected tissues and systems. However, most are

either closed-source or highly specific to the simulation of particular regions

of the heart and are very difficult to modify.

The Oomph-lib is developed at the University of Manchester and is a

versatile, open-source, platform for running multi-physics simulations[16]. It

has been applied to the simulation of a number of physical systems but lacks

a number of capabilities required for the simulation of the human heart.

The primary aim of this project is to add a number of those functionalities

to Oomph-lib so that they may be applied to robust numerical simulations of

the human heart. These additions to Oomph-lib capture a range of existing

models for cardiovascular physics and the resultant numerical platform both

conforms with the Oomph-lib standard, where possible and accommodates

the ease of future additions and development.

In developing the numerical platform, aspects of cardiac models that

Oomph-lib is currently unable to simulate must be identified and the re-

18 CHAPTER 1. INTRODUCTION

quired additions to add this functionality must be determined. Due to time

and resource constraints, not all aspects of cardiac modelling can be incor-

porated in the time permitted by the project, so the most widely used and

most pressing are prioritised. Once the required additions are identified, the

systems of equations which represent those physics are implemented and in-

corporated into the numerical platform. These additions must conform to

the Oomph-lib standard wherever possible, including the Oomph-lib ethos

of code reuse and coding standards. Any code developed must be optimised

to ensure that memory use and computation time are acceptable and scale

suitably as simulation size is increased. The validity of the newly developed

modules must be carefully validated before they are applied to simulations

used in research. Due to time constraints, specific areas of the library were

selected for validation and those that were not have been identified for future

validation.

A secondary aim of this project is to investigate the novel application of

adaptive operator splitting techniques to solving cardiac systems. Numeri-

cal accuracy and stability in solving in-silico models are highly important.

Any numerical simulations of the physical world must be carefully validated

and determined to be both stable and accurate, particularly those intended

to inform potential human or animal trials. However, biophysically detailed

models of the physiology of the heart result in systems of equations which

can be exceedingly expensive to solve. It is therefore also essential that the

tools used to solve these equations are efficient since the number of Degrees

of Freedom (DOFs) increases rapidly as simulations approach the scale of

the entire organ or larger. To this end, operator splitting techniques such

as Strang-splitting are often exploited[17]. However, relatively recent devel-

opments in adaptive operator splitting techniques present an opportunity to

1.2. HEART PHYSIOLOGY 19

improve upon these current methods[18]. Here, the application of adaptive

operator splitting techniques to simulating cardiac physiology is investigated

for several second-order operator splitting methods and the application of

higher-order methods is discussed. The results given by the adaptive oper-

ator splitting methods are compared to the results due to Strang-splitting,

furthermore, the numerical complexity of the methods is compared in or-

der to demonstrate the potential advantages of adaptive operator splitting

in the context of cardiac simulations. Application of the library to adaptive

operator splitting requires several additional functionalities which support

reverting the solution to a previously saved solution

These additions, although intended primarily for the simulation of car-

diac systems, represent substantial additions to the Oomph-lib environment

including anisotropic solid modelling, anisotropic electrical diffusion, parti-

tioned solutions of finite element formulations from non-linear short time-

scale point-source terms, and a pipeline for the generation of meshes from

arbitrary geometries. Since the additions developed as part of this work are

in line with the Oomph-lib standard, it is possible that they can be used

in conjunction with proven Newtonian and non-Newtonian fluid dynamics

models which already exist as part of Oomph-lib for the simulation of blood

flow within the cardiovascular system.

1.2 Heart physiology

1.2.1 Cardiac tissue: micro to macro scale structures

Cardiac myocytes constitute the majority of the heart muscle. Their pri-

mary purpose is to produce contraction by generating mechanical tension.

The generation of this mechanical tension is initiated by the electrical de-

20 CHAPTER 1. INTRODUCTION

polarisation of the cell. It is common practice, in mammalian atrial and

ventricular tissue, to represent the cardiac myocytes as a cylinder of diam-

eter between 10 − 20µm and length between 50 − 150µm [19, 20, 21, 22].

However, since the size and shape of cardiac myocytes is known to vary in

complex ways even in small regions of tissue[23, 24], this is considered to be

a coarse representation.

Cardiac myocytes are encased within a bi-lipid layer, the sarcolemma,

which serves a similar purpose to the bi-lipid layer in other eukaryotes[25],

namely it separates the interior of the cell from its exterior and provides a

semi-permeable membrane through which soluble material can diffuse[25].

Embedded within the sarcolemma are ion channels, structures which fa-

cilitate the ingress and egress of intracellular and extracellular ion species

through the sarcolemma via pores or exchanger proteins. These channels

serve to regulate the potential difference of the cell membrane and are essen-

tial to ensure proper electrical diffusion and mechanical contraction of the

myocyte. Most ion channels are more permeable to a specific ion species and

are thus referred to in terms of the ion they permit[26]. Pores provide a route

by which ions are allowed to flow through the sarcolemma in the direction of

the concentration gradient. Ion pumps are capable of forcing an ion species

against a concentration gradient, a process which requires energy provided

by the hydrolysis of Adenosine Triphosphate (ATP)[26]. The permeability of

ion channels and pumps is greatly affected by a multitude of factors includ-

ing membrane potential, tissue type, disease, and internal and external ionic

concentrations.

The cytoplasm of a myocyte is called the sarcoplasm, it is filled with an

aqueous solution containing ion species, lipids, glycosomes and protein en-

zymes[26]. Submerged in this solution are larger structures, and organelles

1.2. HEART PHYSIOLOGY 21

including mitochondria, myofibrils, the sarcoplasmic reticulum, and the cy-

toskeleton. The cytoskeleton provides an anchoring structure to which the

other organelles are attached[26].

The primary chemical process mitochondria undergo is the production of

ATP a nucleotide used to provide energy for most cellular processes in the

body[26]. Energy is extracted by the mitochondria through the breakdown

of glucose in the presence of oxygen into carbon dioxide and water. This

energy is released through ATP hydrolysis, where ATP reacts with water to

form Adenosine Diphosphate (ADP), inorganic phosphate, and a hydrogen

ion[26].

Present in ventricular myocytes and occurring less frequently in atrial

myocytes are transverse tubules or T-tubules. T-tubules are invaginations in

the sarcolemma, originating over the Z-line at the end of each sarcomere[27],

they, therefore, occur at intervals of approximately 2µm. T-tubules can be

considered an extension of the myocyte’s membrane since they are exposed to

the same extracellular fluid as the rest of the cell membrane[28, 29]. Due to

this and their high concentration of L-type calcium channels near the calcium

release sites of the sarcoplasmic reticulum, they are believed to communicate

electrical and calcium signals to the interior of the cell in order to facilitate

uniform mechanical contraction.

The sarcoplasmic reticulum is a network structure covering the surfaces

of the myofibrils. It contains an excess of calcium ions which are released into

the sarcoplasm and subsequently diffuse into the myofibrils which catalyse

the sliding of actin and myosin filaments, producing mechanical contraction

of the fibre[28, 29]. Pumps on the surface of the sarcoplasmic reticulum

ensure muscular contraction halts at the correct time. At the end of phase

3 of the action potential, the flow of calcium into the sarcoplasm from the

22 CHAPTER 1. INTRODUCTION

sarcoplasmic reticulum ends and pumps into the surface of the sarcoplasmic

reticulum rapidly pumping calcium ions from the sarcoplasm back into the

sarcoplasmic reticulum[30, 31].

Cardiac myocytes are electrically coupled via structures called gap junc-

tions. Gap junctions are channels directly connecting the sarcoplasm of two

myocytes and allow for ions, larger molecules, and electrical impulses to flow

directly from one cell’s sarcoplasm to the other[26]. They are formed by two

connexons, one in the sarcolemma of each cell. A connexon is a hemichannel,

a pore in the sarcoplasm of a cell, consisting of a number of subunit proteins

called connexins. Connexins are named according to their atomic weight,

the most common of which found in mammalian hearts are connexins 37,

40, 43, 45, 46, and 50[32]. Connexin43 is the most abundant and, with the

exception of the sinoatrial and atrioventricular cells, is found in all parts of

the organ[32]. Connexin40 appears to be present exclusively in the electri-

cal conduction systems of the atria and ventricles, less common connexins

include, 37, 43, 46, and 50 and have been shown to exist in only specific

regions such as the endothelium [33, 34, 35, 36] and atrioventricular valves

in rat hearts[37].

1.3 Distinct sub-physics of the heart

1.3.1 The iso-potential, leaky cell

The bi-lipid layer surrounding the cell is non-conducting and has a specific

capacitance of around 100µF/m2, with some measurements placing it at

1000µF/m2 in Purkinje cells. The bi-lipid layer contains ion channels which

allow for ions to enter and leave the cell, the layer is therefore not a perfect

insulator and is considered electrically leaky. The system can therefore be

1.3. DISTINCT SUB-PHYSICS OF THE HEART 23

considered as analogous to a resistor and capacitor connected in parallel[38].

By considering the total current through the membrane, Im, in terms of

the currents charging the capacitor (membrane), Ic, and the current flowing

through the resistor (channels), Iion, we can write

Im = Ic + Iion. (1.1)

The charge stored in the capacitor can be written in terms of the potential

difference across it, Vm, and its capacitance, Cm, as

Q = CmVm. (1.2)

The capacitor charges at a rate given by the current applied to it, and it is

given by

Ic =
∂Q

∂t
. (1.3)

Combining 1.1 and 1.3 gives

Im =
∂Q

∂t
+ Iion (1.4)

which, when 1.2 is substituted for Q, provides the equation equating mem-

brane current to change in membrane potential, and ion current of a cell

modelled as iso-potential

Im = Cm
∂Vm
∂t

+ Iion. (1.5)

In reality, the cell membrane is not iso-potential, its membrane takes time

to transmit charge from one section to another. However, considering a cell

as anisotropically charged results in a dramatic leap in modelling complexity

24 CHAPTER 1. INTRODUCTION

and is an area of research in its own right.

Since this work is predominantly concerned with the solution to the sys-

tems of equations governing cardiac tissue dynamics, the specifics and the

general theory of ion channel gating and permeability are beyond the scope

of this thesis. However, there exist numerous sources which describe and

explain the processes by which they operate.

1.3.2 Cell ion kinetics and dynamics

Ion channels can be found in every cell in the body. Ion channels are struc-

tures made of proteins and are embedded in the cell membrane. They reg-

ulate several essential processes including maintaining homeostasis and reg-

ulating electrical signalling with other cells [39][40]. They achieve this by

allowing ions to pass through them in a process which alters the transmem-

brane potential of the cell and is highly dependent on the physical conditions

surrounding the channel[41]. Transmembrane potential, ionic concentration,

temperature, mechanical strain, and the presence of other chemical com-

pounds can all affect the function of the ion channel, although most are

predominantly modulated via the transmembrane potential[41]. Proteins

which constitute the ion channel deform and change their configuration in

response to these external effects and, through doing so, regulate the flow

of ions through the channel by altering its structure[41]. Embedded within

the cell membrane are many thousands of ion channels. Each ion channel

can be one of several different types which are defined by the proteins it is

comprised of. The types of ion channels found in a given cell are known to

vary depending on its location in the body and each type of ion channel is

observed to have a different response to external effects[41][39]. Each type

of ion channel will, in general, have some specificity to a certain ion species,

1.3. DISTINCT SUB-PHYSICS OF THE HEART 25

however, there are many which permit the flow of several ion species[41][42].

If a given type of ion channel is present, a large number of such ion

channels can generally be found within the cell membrane. Together, the

small flux of ions generated by each ion channel combine to form an ion

current[41]. For a given cell, these channels will have a maximal conductance,

often labelled Ḡx, where x is the label given to the ion current.

In cardiac cells, ion currents play a particularly important role in the

genesis and maintenance of the action potential[41]. The action potential is

the time course of the transmembrane potential of a cell produced by the

complex opening and closing of ion channels within the cell membrane[41].

Maintaining the correct action potential is essential for ensuring both proper

electrical signalling between cells in all regions of the myocardium and proper

mechanical contraction of cardiomyocytes[41][40].

The dynamics of each ion current are governed by the dynamics of the

underlying ion channels and their constituent proteins. Hence, as a result of

the presence of a given ion channel in the cell membranes, only specific ion

currents can be found in each region of the body[40]. For simple ion channels,

each channel can be considered to be either open or closed, therefore, for a

large number of channels of the same type, the quantity Kx can be defined

to be the fraction of those channels which are open. Kx = 0 corresponds

to all the channels being closed, and Kx = 1 corresponds to them being

open. Ion channels can be classified according to the mechanisms which

affect their gating kinetics, the major categories being voltage-dependent,

ligand-dependent, and mechano-sensitive.

Voltage-dependent channels are the most numerous[43][44][41]. Their

conductance is modulated by the transmembrane potential, as such their

kinetics are directly affected by the stage of the action potential the cell is

26 CHAPTER 1. INTRODUCTION

currently in[43][41].

Ligand-dependent channels have gating kinetics which are dependent on

the binding of ligands to receptor sites either on the intracellular or extra-

cellular regions of the ion channel[45][44][41]. A number of ion channels

commonly found in the heart are ligand-dependent and act to couple non-

electrical processes to the electrical dynamics of the cell. For example, the

ATP-sensitive potassium channel IK,ATP is dependent on the ratio of intra-

cellular concentrations of ADP and ATP and therefore couples the electrical

dynamics to the metabolic state of the cell[45][44][41].

Mechano-sensitive channels change configuration and therefore conduc-

tance in response to mechanical stimuli[46]. Their presence directly couples

the mechanical forces experienced by the cell to its electrical dynamics and

action potential[46].

In general, the fraction of open ion channels for a given current, Kx,

changes according to some non-linear time-dependent system of equations.

Models of these dynamics can vary in complexity from the relatively simple

Hodgkin-Huxley[38] to the more complex Markov chain[47][48]. Most, how-

ever, consider a number of channel variables, ω, which vary in time according

to the general equation
dω

dt
= f(ω, Vm) (1.6)

where Vm is the transmembrane potential of the cell. The open fraction of

the current is then written as a function of these variables

Kx = Kx(ω). (1.7)

Ions can move through ion channels due to the effects of both diffusion and

transmembrane potential[41][44]. Diffusive effects will in general cause ions

1.3. DISTINCT SUB-PHYSICS OF THE HEART 27

to move through ion channels from the side of high concentration to the side

of lower concentration[41][44]. Through electromagnetic forces, the difference

in electrical charge between the extracellular and intracellular spaces will act

to force the charged ions across the cell membrane in a specific direction

dependent on the difference in the charge of the two sides of the channel

and the charge of the ion[41][44]. The combination of both the diffusive and

electrical effects is often called the electrochemical gradient since it concerns

both diffusive (chemical) and electrical effects.

An important quantity which can be determined for each ion species is

the Nernst potential[49]. It defines the transmembrane potential at which

the diffusive and electrical effects on the ion species cancel out to produce a

net-zero flux across the cell membrane and is given by

Ex =
RT

zF
ln

(
[x]o
[x]i

)
(1.8)

where, x is the ion species, [x]o and [x]i are the extracellular and intracellular

concentrations of x respectively, R is the universal gas constant, T is the

temperature in Kelvin, F is Faraday’s constant, and z is the valence of the

ion species.

The total ionic current produced by an ion channel can be written as

Ix = ḠxKx(Vm − Ex) (1.9)

where Ix is the current, Ḡx is the maximal conductance, Kx is the fraction

of open channels, Vm is the transmembrane potential, and Ex is the Nernst

potential of the ion species carried by the current[41][44][49].

There also exist ion pumps which actively transfer ions across the cell

membrane[50]. Since such ion channels can act against the direction of the

28 CHAPTER 1. INTRODUCTION

electrochemical gradient, they require energy, which is derived from ATP

hydrolysis, in order to operate[50].

1.3.3 The action potential morphology and function of

different regions of the heart

Cellular heterogeneity throughout the heart results in different regions of the

heart expressing different proportions and types of ion channels[49][51]. This

results in the distinct regions of the heart producing very different electro-

physiological behaviours. These heterogeneous behaviours are essential to

proper heart function.

Sinoatrial node

The sinoatrial node is located in the right atrium and is the primary pace-

maker of the heart. It is capable of spontaneous excitation without requiring

an external stimulus to begin depolarisation. Its resting diastolic potential

lies between −60mV and −50mV with a slow upstroke velocity of around

5mV/ms in humans[51]. As a result of electrical coupling with cells in the

atria, sinoatrial node cells located on the periphery have a more negative

diastolic potential. Cells within the sinoatrial node have a diameter be-

tween 5µm and 10µm and an action potential duration between 100ms and

200ms. The sinoatrial node has a relatively slow conduction velocity which

is typically less than around 0.05m/s.

Atrial myocytes

Atrial myocytes are the primary component of atrial tissue. They are inca-

pable of spontaneous excitation and require an external stimulus to begin de-

1.3. DISTINCT SUB-PHYSICS OF THE HEART 29

polarisation. They have a resting potential of between −65mV and −80mV

[52] and a fast upstroke velocity of between 150mV/ms and 300mV/ms [53,

54, 55, 56, 57][51][58].

Measurements of the action potential of human atrial myocytes have

been shown to vary between 150ms and 500ms with an external stimulus

of 1Hz[53, 54, 55, 56, 57]. Atrial myocytes are approximately cylindrical,

with a diameter ranging from approximately 10µm to 15µm and a length of

around 120µm. The conduction velocity in atria is significantly higher than

that of the sinoatrial node, ranging from around 0.3m/s to 0.4m/s.

Atrioventricular node

The atrioventricular node serves to delay cardiac conduction from the atria to

the ventricles in order to allow the atria to contract and empty their contents

before the ventricles are allowed to contract. It is located near the partition

between the atria, at the base of the right atrium. Cells in the atrioventricular

node, as in the sinoatrial node, are capable of self-excitation with a slow

upstroke velocity of around 5mV/ms to 15mV/ms [51][58]. The conduction

velocity in the atrioventricular node is faster than that in the sinoatrial node,

but slower than in the atria, at around 0.1m/s. Such cells have an action

potential duration typically between around 100ms and 300ms [51][58] and

a resting potential of between −60mV and −70mV [51][58]. The diameter

of cells in the atrioventricular node is similar to that of cells in the sinoatrial

node, at between around 5µm to 10µm [51][58].

The Bundle of His and Purkinje system

The Bundle of His and Purkinje system is the fast conduction and signalling

pathway to the ventricles. They begin at the atrioventricular node, and from

30 CHAPTER 1. INTRODUCTION

there they penetrate the tissue separating the atria and the ventricles and

extend down the septum between the ventricles. They then separate into

the left and right bundle branches which penetrate the ventricular tissue

itself before branching into the network of Purkinje fibres. The His bun-

dle and Purkinje fibres ensure near uniform activation of the ventricles by

rapidly conducting electrical signals to the apex of the ventricles and from

there throughout the endocardial regions[51][58]. The Bundle of His con-

sists of wide, rapidly conducting muscle fibres with a diameter of around

100µm[58] and an upstroke velocity of between approximately 500mV/ms

and 700mV/ms[51][58], which result in a conduction velocity of between

2m/s and 5m/s[51][58]. They have a typical resting potential between

−90mV and −95mV [51][58] and an action potential duration ranging from

around 296ms to 342ms[59].

Ventricular myocytes

Throughout the ventricles, ventricular cardiomyocytes can exhibit different

characteristics. APD varies not only between the left and right ventricles but

also transmurally from the epicardial to endocardial regions[51]. The endo-

cardial cells (ENDO) are those on the inside of the ventricle and the epicardial

cells (EPI) are those on the outside. There is also a region of mid-myocardial

cells (MCELL) which lie between the ENDO and EPI regions. Biophysically

detailed simulations commonly use a different model for cardiomyocytes in

this region. MCELLs have the longest APD with a length comparable to

that of Purkinje fibre cells. APD in EPI cells is shorter than that of ENDO

cells for most species, however, some experimental observations indicate that

the opposite may be true in humans[60].

Ventricular myocytes have a similar diameter to atrial myocytes of 10−

1.3. DISTINCT SUB-PHYSICS OF THE HEART 31

20µm [51][58] and a length of approximately 80− 100µm [61]. Conduction

velocity in the ventricles is faster than in the atria, with a speed of between

0.3−1.0m/s [51][58][61]. Normal depolarisation of the ventricles starts at the

endocardium near the apex, initiated by the Purkinje fibres, and propagates

to the epicardial wall at the base.

1.3.4 Electrical conduction

Extracellular matrix

The extracellular matrix provides the supporting structure for cardiac my-

ocytes and all other cells in the heart and thus determines the passive me-

chanical properties of cardiac tissue in the absence of contractile muscle fi-

bres. It consists of strands of collagen and elastin, fibrous proteins, which

surround and support cardiac cells. The composition of the extracellular ma-

trix varies throughout the myocardium, varying with age, species, and tissue

type[62, 63]. The varying arrangement of the extracellular matrix at different

regions of the myocardium results in the diverse structures observed. Within

the endomysium, the collagen network surrounds a single myocyte forming

fibres[64]. In the perimysium collagen, fibres envelop groups of several adja-

cent myocytes, forming bundles which produce the laminar structure found

in the myocardium[64]. The epimysium is a result of collagen and elastic

forming a layer around the surface of the entire muscle[64] as is seen in the

interior and exterior walls of the chambers.

32 CHAPTER 1. INTRODUCTION

1.4 Anisotropic solid mechanics

1.4.1 Structure

Muscle fibres

Cardiac muscle is composed of cardiomyocytes, or fibres, which are them-

selves composed of smaller subunits. Each fibre has two membranes, an

inner membrane and an outer membrane consisting of thin collagen fibres.

Myofibrils

Cardiac muscle fibre contains thousands of rods known as myofibrils[26] ar-

ranged in groups. Spaced along the length of each myofibril are thousands

of discs called z-discs. The part of the myofibril which lies between adja-

cent z-discs is called the sarcomere and so the myofibril consists of thousands

of sarcomeres. The sarcomere is a specific configuration of thick myosin

filaments and thin actin filaments[28, 29, 26] which slide over each other

during cellular contraction to produce a contractile force. Actin filaments

extend from the z-discs in both directions away from the z-disc parallel to

the length of the myofibril. The z-discs are arranged obliquely within the

myofibril and extend into adjacent myofibrils, which connects them together

and so forms the clustered groups. The traversal of the z-discs through the

muscle fibre results in light and dark bands which give cardiac muscle its

striped appearance.

Myosin filaments are arranged parallel to one another, connected per-

pendicularly through their centres by M-line proteins. These proteins act to

maintain a regular array of thick myosin filaments within the sarcomere[28,

29, 26].

The thick myosin filaments are made up of many molecules of the protein

1.4. ANISOTROPIC SOLID MECHANICS 33

myosin. Myosin proteins have heads which protrude from the sides of the

myosin filaments to form structures known as cross bridges. Actin filaments

interact with the myosin filaments via the cross-bridges to produce the sliding

motion which results in contraction.

Actin and myosin filaments partially overlap which produces a striped

appearance in the myofibril, this is in addition to the striped appearance of

the muscle fibre due to the z-discs.

Sarcoplasm, transverse tubules, sarcoplasmic reticulum

Intracellular space contains the thousands of myofibrils which make up the

muscle fibre. Between these fibres is the sarcoplasm, the intracellular fluid

which contains large amounts of potassium, magnesium, phosphate, and pro-

tein enzymes which are essential for ensuring proper mechanical contraction

of the fibre[28][65]. Additionally, many mitochondria are aligned parallel to

the fibres in order to provide a large amount of energy in the form of ATP

necessary for muscular contraction[28][65].

Transverse tubules, or T-tubules, are deep invaginations in the membrane

of the fibre. They traverse the interior of the fibre, across the myofibrils, and

back to the exterior of the cell[28][65]. T-tubules are therefore an extension of

the cell membrane and can therefore communicate changes in the electrical

potential to the interior of the cell[28][65]. It is the molecular machinery

in the interior of the fibres which detects these changes in the membrane

potential and initiates muscular contraction[28][65].

The sarcoplasmic reticulum is a space within the cell kept separated from

the sarcoplasm by a semi-permeable membrane. The sarcoplasmic reticulum

covers the surfaces of the myofibrils and contains an excess of calcium ions.

The terminals of the sarcoplasmic reticulum lie adjacent to the T-tubules

34 CHAPTER 1. INTRODUCTION

and contain calcium channels. Electrical excitation of the T-tubules causes

activation of these calcium channels in the terminals of the sarcoplasmic

reticulum, and the subsequent electrical excitation through the sarcoplas-

mic reticulum causes calcium channels throughout the sarcoplasmic retic-

ulum to activate[28][65]. This activation causes calcium ions to flow from

the sarcoplasmic reticulum into the sarcoplasm, which catalyses the reac-

tions between actin and myosin filaments in the myofibrils causing contrac-

tion[28][65]. When the flow of calcium from the sarcoplasmic reticulum into

the sarcoplasm ceases, calcium pumps in the sarcoplasmic reticulum rapidly

pump calcium ions back into the sarcoplasmic reticulum which terminates

muscular contraction.

1.4.2 Mechanism of contraction

Myosin filament

Each thick myosin filament consists of several myosin proteins. The myosin

protein is formed of a rod and two heads. The rod is formed from two heavy

chains wrapped into a helix. The heads are globular structures formed from

the folding of the heavy chains and are connected to the main filament by

an arm. Additionally, each head also contains two light chains. The heads

of each myosin molecule, which protrude from the surface of the myosin

filament, form the cross-bridges which interact with actin filaments[28][65].

Actin filament

Actin filaments consist of three proteins, actin, tropomyosin, and troponin.

The tropomyosin and actin filaments are wrapped around each other. In the

resting state, the tropomyosin protein covers the active sites on the actin

1.4. ANISOTROPIC SOLID MECHANICS 35

filament, which are believed to interact with ADP to inhibit contraction.

Along the length of the tropomyosin protein are troponin proteins. Troponin

consists of three proteins, Troponin I, Troponin T, and Troponin C. The

troponin proteins bind tropomyosin to the actin[28][65].

Chapter 2

Mathematical modelling

principles

2.1 Ion dynamics

2.1.1 Modelling ion channels

Hodgkin Huxley

The continuous voltage-dependent and time-dependent part of a channel are

called the current and is represented, in part, by several ’gating variables’[66].

Hodgkin and Huxley proposed a gating mechanism to describe the behaviour

of a channel in which each gate must be in an open state in order to permit

the flow of ions through the channel[38]. Consider a gate with the label i,

the gating variable ni represents the proportion of channel pores for which

gate i is open. Gate i of the channel is then considered open for every pore

if ni = 1, closed for every pore if ni = 0, and open for some if it has a value

in between 0 and 1. By representing maximum channel conductance as ḡx,

36

2.1. ION DYNAMICS 37

a description of channels conductance can be written as

gx = ḡx
∑
i

ni. (2.1)

By assuming that the state of each gate is independent of the others, the

dynamics of ni were assumed to be described by

dni

dt
= αni

(1− ni)− βni
ni, (2.2)

where αni
is the probability of a closed gate transitioning to an open state,

and βni
is the probability of an open gate transitioning to a closed state. For

simplicity and computational convenience, equation 2.2 is often rewritten in

the form
dni

dt
=
ni∞ − ni

τni

, (2.3)

where

τni
=

1

αni
+ βni

(2.4)

is referred to as the time constant for the gating variable, and

ni∞ =
αni

αni
+ βni

(2.5)

is the steady-state relation for the gating variable. The full Hodgkin-Huxley

ion channel formulation can now be written in the following form:

Ix = gx

(∏
i

ni

)
(V − Ex) (2.6)

Since the gating variables were introduced as a mathematical tool to describe

the data and weren’t derived from physical processes, seeking physical inter-

38 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

pretations for them in order to quantify their dynamics is moot. However, in

order to promote understanding, a pseudo-physical interpretation of ni may

be the probability that a protein within the pore structure has undertaken a

required conformational change to allow conduction. Another interpretation

is that ni is the probability that a molecule required for the transmission of

ions has bound to an active site on the pore. Since foldings of proteins and

molecular dynamics is a stochastic process, by assuming a protein or molecule

can either be in the required state or not in the required state equation 2.2

can be attributed some physical meaning. The value of gating variables need

not be determined via an Ordinary Differential Equation (ODE). Often, an

instantaneous voltage-dependent gate is required in order to fully capture a

channel’s behaviour. In these cases, the form of a gating variable is often

determined through experience or insight into the channel being modelled.

Markov chain

Despite inspiring a new field of modelling transmembrane cellular processes

and closely reproducing observed current data, the HH model lacks a physical

basis and instead represents a purely mathematical approach to describing

macro-scale data. For example, the governing equation for gating variables in

terms of transition rates is far too simplistic to capture all possible behaviours

reliably. Furthermore, transition rates are determined purely through curve

fitting to steady states and not by consideration of underlying dynamic molec-

ular processes. In order to facilitate the intuitive modification of cell models

in response to the effects of genetic disorders, diseases, and drugs, use is often

made of a more sophisticated and general model.

A further drawback of the HH model is the assumption that the possible

states a channel can occupy are independent of one another, experiments

2.1. ION DYNAMICS 39

have since shown that this is not the case. In fact, due to physical limi-

tations, ion channels cannot in general directly transition between any two

given states and are instead confined to a small set of transitions. The

set of transitions a channel can make reflect physically permissible confor-

mational changes to the channel’s components. The use of Markov Chain

processes lends itself to modelling and simulating these state-dependent ion

channel models. The suitability of Markov chains in modelling ion channel

processes has been widely studied and their application has resulted in rapid

progress and numerous advancements in the field[67][68]. A Markov chain

is a memory-less stochastic process wherein the system can occupy one of a

number of states, and the probability of any given transition is only depen-

dent on the current state of the system[69]. In general, the set of states is

labelled Si and the probabilities of the system transitioning between them

are given by P (Si → Sj). By taking the assumption that a large number

of channel pores are evenly distributed over the cell membrane, the Markov

chain process representing the dynamics of a single pore is transformed into

a transition rate representation for the entire channel. In doing so, the prob-

abilities in the Markov chain model become the proportion of channel pores

in each state, and the transition probabilities become the transition rates

of the pores between them. Consider the case of a two-state Markov chain

process, figure 2.1 describes the dynamics of a large number of such chains.

The proportion of the Markov chains in states A and B are labelled SA and

SB respectively, and they change according to the transition rates α, and β.

In general the transition rates α and β are time-dependent, the dynamics

40 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

A B

Figure 2.1: A schematic of a two-state Markov chain. The proportion of the
population in state A is given by SA and the proportion of the population in
state B is given by SB. Transitions from state A to state B occur at a rate
of α, and transitions from state B to state A occur at a rate of β.

of SA and SB are given by the equations

dSA

dt
= β(t)SB − α(t)SA, (2.7)

dSB

dt
= α(t)SA − β(t)SB. (2.8)

Since SA and SB represent the proportions of pores in the only two possible

states, it follows that SB = 1− SA. By inserting this into equations 2.7, the

two equations reduce to

dSA

dt
= SAα1(t)− (1− SA)β1(t) (2.9)

which is equivalent to equation 2.2. This demonstrates that the dynamics of

a Hodgkin-Huxley gating variable model is a special case of a Markov chain

model. Indeed, a Hodgkin-Huxley channel model with N gating variables can

be described by a set of N independent 2-state Markov chains. When applied

to modelling ion channel dynamics, the Markov chain states can represent

2.1. ION DYNAMICS 41

the possible configurations under which proteins in each pore of the channel

can be folded. Changes to the transmembrane potential, V , of a cell induce

dipoles within channel proteins, these dipoles produce free energy barriers

which must be overcome for conformational changes to the proteins to occur.

Reaction rate theory describes the transition rates between possible protein

states as

r(V) = r0 exp
−∆G(V)

RT
, (2.10)

where r0 is a constant, R and T are the universal gas constant and tem-

perature respectively, and G(V) is the free energy barrier as a function of

transmembrane potential. In general, for a protein to transition from its

current state to another, it must first pass through an intermediary state in

order to overcome the resistance of any induced dipoles. For this reason, the

free energy barrier is often written as G(V) = G∗(V)−G0(V) where G∗(V)

is the free energy of the intermediary state, and G0(V) is that of the current

state. A simplifying assumption which is often made is that of a small free

energy barrier. By application of Taylor’s theorem to G(V), equation 2.10

can then be simplified to

r(V) = r0 exp
[a+ bV]

RT
(2.11)

where r0, a, and b are parameters which must be determined experimen-

tally for each transition rate in the model. As with the Hodgkin-Huxley

formulation, more factors such as ionic or molecular concentrations can be

incorporated in order to capture other dependencies exhibited by particular

channels[70].

42 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

2.2 Cell models

For cardiac electrophysiological modelling, myocytes can be treated as a

coupled capacitor-resistance system, where the capacitor represents a semi-

permeable membrane that separates the intracellular from the extracellular

space, and the variable resistance represents ion channels embedded in the

lipid bilayer membrane [71]. The conductivity of each channel is dependent

on its particular molecular structure and other environmental factors includ-

ing transmembrane potential, temperature, and intracellular and extracel-

lular ionic concentrations [71] [72] [73]. Modelling the electrophysiological

behaviour of a cardiomyocyte then becomes synonymous with modelling the

dynamics of these channels and the resultant kinetics of the ionic species they

carry. The entire population of a given channel type can be grouped together

and modelled as a single integrated channel. This is because the underlying,

discrete, protein dynamics in each channel are governed by the same kinetics

and thus the channel can be represented by a continuous stochastic process

as the number of such pores becomes very large [69]. In order to capture the

complex nature of the channel properties, a number of Ordinary Differential

Equations (ODEs) is required to describe their activation and inactivation

process. Each channel model can vary in complexity and may result in a large

number of state variables, each of which is modelled by a set of ODEs. A cell

model consists of many such channels, each carrying one of a number of ionic

species. Resultant cell models can therefore contain a very large number of

coupled equations, each governed by a potentially stiff differential equation.

A general electrophysiological model of cardiomyocyte can be described as:

2.2. CELL MODELS 43

dVm
dt

= −Iion

Cm

(2.12)

dω

dt
= f(ω, Vm, t) (2.13)

Iion =
∑
j

Ij(w, Vm, t). (2.14)

where Cm(Fm
−2) is the cell membrane capacitance, ω ∈ RN is the vector of

N cell state-variables, Vm(mV) is the transmembrane potential, Iion(Am
−2)

is the total transmembrane ionic current generated by each of the individual

ion channels Ij(Am−2), t is time, and each element in the vector f : RN 7→ RN

models the time-varying dynamics of the corresponding element in ω. Due

to the variety of physical processes ω represent, f can take a variety of forms

of modelling equations, each representing different physiological processes,

such as the dynamical course of ionic concentrations, and distribution of

conformational states of protein subunits which govern the activation and

inactivation of ion channel gating kinetics. Similarly, each Ij can vary in

complexity from relatively simple Hodgkin-Huxley models of currents flowing

through pores[71] to models of ion exchangers and pumps[74].

This results in the general form of cell models which appear in most

publications
∂ω

∂t
= f(ω, Vm, t). (2.15)

The total ionic flux across the cell membrane is given by the sum of those

due to the individual channels,

Iion =
∑
j

Ij(ω, Vm, t). (2.16)

44 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

2.3 Continuum mechanics

Continuum mechanics is a vast subject which covers a wide variety of physi-

cal modelling principles and requires a breadth of preliminary mathematical

knowledge. Although the derivation of the governing equations of elasticity is

dependent on this knowledge, their implementation does not require so much

prior information. For this reason, only those areas specific to the implemen-

tation of the governing equations of electrical diffusion and anisotropic hy-

perelastic solids within Oomph-lib are included. The derivations here closely

follow that within[75] which should be referred to for a complete derivation.

2.3.1 Describing the world, curvilinear coordinates and

covariant and contravariant basis vectors

We apply a set of Lagrangian coordinates ξi to parameterise a position vec-

tor in the undeformed configuration as r = r(ξi). The choice of the specific

Lagrangian coordinates used depends on the application, however, for com-

putational purposes, it is often advantageous for the governing equations to

be as compact as possible which is often achieved through the use of the

Cartesian coordinate system.

The vector r can be written in the Cartesian coordinate system in terms

of its components as r(ξi) = xK(ξi)eK = xK(ξ
i)eK where eK , and eK are the

covariant and contravariant Cartesian basis vectors. We note that, since the

Cartesian coordinate system is orthonormal, it follows that eK = eK .

For general curvilinear coordinates, there are natural basis vectors which

can be applied to represent quantities. The covariant vectors for curvilinear

2.3. CONTINUUM MECHANICS 45

coordinates ξi are defined by

g
i
=
∂xK

∂ξi
eK . (2.17)

Similarly the contravariant vectors are defined by

gi =
∂ξi

∂xK
eK . (2.18)

The coordinates of a material point within a deformed body can be writ-

ten in terms of its original, undeformed coordinates as

R(r) = XK(r)e
K = XK(r)eK . (2.19)

A mapping between the undeformed and deformed coordinates can be

written in the Cartesian basis in the form

F =
∂XI

∂xJ
eI ⊗ eJ . (2.20)

Physical constraints are imposed on this mapping by the realisation that

the body must deform such that a continuous, injective mapping from the

undeformed to the deformed configuration exists. These constraints demand

that

detF = J > 0 (2.21)

where the additional constraint that the relative orientation of material lines

is preserved is applied which disallows negative values.

The matrix F with components FIJ is one possible representation of the

deformation gradient tensor. The deformation gradient tensor represents the

mapping of undeformed line elements to their corresponding deformed line

46 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

elements. In this way, a line element, dr with components in the Cartesian

basis drJ are convected with the deformation of the solid and has Cartesian

coordinates in the deformed configuration dRI = FIJ drJ .

Similarly to undeformed coordinates, deformed coordinates can be pa-

rameterised by a set of Lagrangian coordinates, χi, as R(χi) = XK(χi)eK =

XK(χ
i)eK . The Lagrangian coordinates used to parameterise the deformed

coordinates can, in general, differ from those used for the undeformed co-

ordinates, however, for this application, it will be assumed that they are

the same. The covariant and contravariant basis vectors of the deformed

configuration are defined to be

Gi =
∂XK

∂ξi
eK . (2.22)

and

Gi =
∂ξi

∂XK
eK . (2.23)

respectively.

The deformation gradient tensor can be re-written in terms of the unde-

formed contravariant and deformed covariant basis vectors since

F =
∂XI

∂xJ
eI ⊗ eJ =

∂XI

∂ξk
∂ξk

∂xJ
eI ⊗ eJ =

(
∂XI

∂ξk
eI

)
⊗
(
∂ξk

∂xJ
eJ
)

= Gk ⊗ gk,

(2.24)

where a⊗ b represents the dyadic product of two vectors a and b.

By inverting the expressions 2.17, 2.18, 2.22, and 2.23 the following rela-

tions between the basis vectors can be constructed

eI = eI =
∂xI

∂ξk
gk =

∂ξk

∂xI
g
k
=
∂XI

∂ξk
Gk =

∂ξk

∂XI
Gk (2.25)

which are useful when transforming tensor components between different

2.3. CONTINUUM MECHANICS 47

bases.

2.3.2 Tensor product and tensor contraction

The tensor product can be defined through the action of the dyadic product

of two vectors a and b, a⊗ b on a vector c to be

(a⊗ b)(c) = (b · c)a. (2.26)

The tensor contraction between two tensors given by the dyadic products

a⊗ b, and c⊗ d is defined to be

(a⊗ b) · (c⊗ d) = (b · c)(a⊗ d). (2.27)

2.3.3 Metric tensors

Important quantities when describing deformation are the covariant and con-

travariant undeformed and deformed metric tensors. These are given by the

inner product of the covariant and contravariant undeformed and deformed

basis vectors respectively and are listed below

Undeformed metric tensors:

Covariant gij = g
i
· g

j
=
∂xK

∂ξi
∂xK

∂ξj
= gji (2.28)

Contravariant gij = gi · gj = ∂ξi

∂xK
∂ξj

∂xK
= gji (2.29)

Mixed gji = g
i
· gj = ∂xK

∂ξi
∂ξj

∂xK
= δji (2.30)

48 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

Deformed metric tensors:

Covariant Gij = Gi ·Gj =
∂XK

∂ξi
∂XK

∂ξj
= Gji (2.31)

Contravariant Gij = Gi ·Gj =
∂ξi

∂XK

∂ξj

∂XK
= Gji (2.32)

Mixed Gj
i = Gi ·Gj =

∂XK

∂ξi
∂ξj

∂XK
= δji (2.33)

The right Cauchy-Green deformation tensor

The right Cauchy-Green deformation tensor is given by C = F TF . It rep-

resents the square length of deformed line elements relative to the length of

their corresponding undeformed line elements.

The pullback of a tensor from the deformed to the undeformed

configuration

Given a tensor, Ã, in the undeformed configuration which convects with the

solid, there exists a corresponding tensor, A, in the deformed configuration.

The two are then related by

Ã = F−1AF−T . (2.34)

Volume elements in the deformed configuration, dνt, and the undeformed

configuration dν0 are related by dνt = J dν0.

The Arbitrary Lagrangian Eulerian formulation

Within each finite element, the value of a quantity, u is represented by inter-

polation between the values at the nodes in an equation given by

u(s, t) = Uk(t)ψk(s) (2.35)

2.4. ELECTRICAL DIFFUSION 49

where s is the local coordinate in the element, Uk is the value at the k-th

node, and ψk(s) is the basis function associated with the kth node evaluated

at local coordinate s.

The quantity ∂Uk

∂t
represents the rate of change of the quantity at the

moving node, not at the fixed Eulerian position. Often the rate of change

at the fixed Eulerian position is what is required by the governing equation.

The rate of change in the Eulerian frame can be determined through the

material derivative of the quantity

Du

Dt
=
∂u

∂t
(s, t) +

∂u

∂Xk

(s, t)
∂Xk(s, t)

∂t
(2.36)

Xm is determined by interpolation of the coordinates at the nodes through

the equation

Xm(s) = Xmk(t)ψk(s) (2.37)

where Xmk is the kth component of the coordinate of the kth node.

Through re-arranging for the Eulerian derivative, 2.36 gives

∂u

∂t
(s, t) =

∂Uk(t)

∂t
ψk(s)− Uk(t)

∂ψk(s)

∂Xm

∂Xm(t)

∂t
. (2.38)

Equation 2.38 is referred to as the Arbitrary Lagrangian Eulerian (ALE) and

is used to evaluate the time-derivative in Oomph-lib elements when the nodes

of the element move with time, as is the case in moving domains.

2.4 Electrical diffusion

Cardiac tissue is a syncytium of cardiac cells, which are coupled electrically

through connexin proteins [76] [77] [78] between adjacent cells, which allows

for the diffusion of membrane excitation potentials from cell to cell. Thus,

50 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

the model of electrophysiology of cardiac tissue, in general, consists of two

parts, cell kinetics (i.e., a set of ODEs as described in Equation 2.13), and

diffusion of membrane potentials in the tissue via intercellular electrotonic

coupling, which is modelled by one or more Partial Differential Equations

(PDEs).

2.4.1 Derivation of the conductance tensors in terms of

the preferred directions

Electrical conduction in the heart is heavily influenced by conductance. Con-

ductance is represented by the conductance tensors, these describe the

anisotropic electrical conduction throughout the tissue. Electrical signals will

preferentially conduct along fibres, and conduct more slowly transversely to

the fibre orientation. This is often represented[79] by the following equation

A = aff ⊗ f + ass⊗ s+ ann⊗ n (2.39)

where A is the conductivity tensor, and the vectors f , s, and n represent the

mutually orthonormal fibre, sheet, and sheet-normal directions respectively,

and af , as, and an are the conductances in those directions respectively per

unit volume. Since

f ⊗ f + s⊗ s+ n⊗ n = I

this allows for 2.39 to be simplified to

A = anI+ (af − an)f ⊗ f + (as − an)s⊗ s (2.40)

So far, these quantities have been given in the deformed configuration,

however, they are often only defined in the undeformed configuration. To

2.4. ELECTRICAL DIFFUSION 51

do this, the vectors f , and s are represented in terms of their values in

the undeformed configuration, f̃ and s̃. This is achieved by the following

equations

f =
F(f̃)

||F(f̃)||
, s =

F(s̃)

||F(s̃)||
, (2.41)

which represent the normalized push-forward of the undeformed vectors f̃

and s̃, where ||a|| =
√∑

i a
i2.

The equations 2.41 can be applied to 2.40 to determine the representation

in the Cartesian basis

AIJ = anδIJ + (af − an)
FIM f̃

MFJN f̃
N

f̃PCPQf̃Q
+ (as − an)

FIM s̃
MFJN s̃

N

s̃PCPQs̃Q
(2.42)

where f̃M and s̃M , are the cartesian components of the preferred vectors f̃

and s̃ in the reference frame. Through the pullback formula 2.34 can be

converted into the reference frame[79]

ÃIJ = JanC
−1
IJ + J(af − an)

f̃I f̃J

f̃PCPQf̃Q
+ J(as − an)

s̃I s̃J
s̃PCPQs̃Q

(2.43)

where the factor of J accounts for changes in volume due to the deformation,

since the conductance is defined per unit volume of tissue.

Often, the two transverse-to-fibre conductances are modelled as equal,

as = an = aT . This allows for a further simplification to

ÃIJ = JaTC
−1
IJ + J(af − aT)

f̃I f̃J

f̃PCPQf̃Q
. (2.44)

This can be represented in the undeformed covariant basis by

Ãij = JaTG
ij + J(af − aT)

f̃ if̃ j

f̃pGpqf̃ q
. (2.45)

52 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

where f̃k and s̃k now represent curvilinear covariant components of the pre-

ferred vectors, f̃ and s̃, in the reference frame.

2.4.2 Bidomain equations

A commonly used diffusion model is that of the bidomain equations. These

are derived by assuming that cardiac tissue can be separated into an intra-

cellular and extracellular domain[80]. The continuous and finite intracellular

and extracellular domains occupy the same spatial region, Ω ⊂ RD where

D = 2 or 3 is the number of spatial dimensions the tissue has, but are dis-

tinct from one another, separated by the cell membrane potential. It is

assumed that electrical conductivity can differ between the extracellular and

intracellular domains and that electrical charge and current are conserved.

With these assumptions, it is possible to derive[80] the bidomain equations

for the domain Ω to be,

Cm
∂V

∂t
+ Iion − Ii,source = ∇ · (D∇(V + ϕ)) (2.46)

∇ · (D∇V) +∇ · ((D + E)∇ϕ)− Ii,source − Ie,source = 0. (2.47)

The boundary conditions are often chosen as insulating by enforcing the

following

n · (D∇ (V + ϕ)) = 0 (2.48)

n · (E∇ (ϕ)) = 0 (2.49)

where n is the outward unit normal vector to the surface ∂Ω. Iion is the

transmembrane ionic flux due to the ion channels and is given by 2.16.

It can be shown that a compatibility condition on the source terms ii,source

2.4. ELECTRICAL DIFFUSION 53

and ie,source exists such that the boundary conditions are satisfied and that

this condition is given by[81][82][83]

∫
Ω

(ii,source + ie,source) dx = 0. (2.50)

This is satisfied by choosing the following constraint on the applied source

terms

ii,source = −ie,source = isource. (2.51)

The above formulations of the Bidomain model are in the deformed config-

uration. That is the frame following the tissue as it deforms. Often it is

advantageous to simulate these equations in the undeformed, or reference,

configuration. This is achieved by performing the necessary "pull-backs" of

the various quantities, and by representing the time-derivative using the ALE

formulation. This results in the following formulation

JCm

(
∂ṽ

∂t
− ∂ṽ

∂xI

∂XI

∂t

)
+ J(Iion − Isource) =

∂

∂xI

(
D̃IJ

∂(ṽ + ϕ̃)

∂xJ

)
,

(2.52)

∂

∂xI

(
D̃IJ

∂ṽ

∂xJ

)
+

∂

∂xI

(
(D̃IJ + ẼIJ)

∂ϕ̃

∂xJ

)
= 0, (2.53)

where the boundary conditions in the reference configuration are

nI

(
D̃IJ

∂(ṽ + ϕ̃)

∂xJ

)
= 0, (2.54)

nI

(
ẼIJ

∂ϕ̃

∂xJ

)
= 0. (2.55)

54 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

2.4.3 Monodomain equation

A common simplification applied to the Bidomain model is to assume that the

intracellular and extracellular conductivity tensors are scalar multiples[84]

[85], that is that

D̃IJ = λẼIJ (2.56)

where λ is the spatially and temporally independent intracellular-

extracellular conductivity ratio.

JCm

(
∂ṽ

∂t
− ∂ṽ

∂xI

∂XI

∂t

)
+ J(Iion − Isource) =

∂

∂xI

(
1

1 + λ
D̃IJ

∂ṽ

∂xJ

)
(2.57)

where a relabelling is often applied such that 1
1+λ

D̃IJ → D̃IJ . Similarly, the

boundary conditions can be simplified to

nID̃IJ
∂ṽ

∂xJ
= 0. (2.58)

2.5 Solid mechanics

2.5.1 Strain tensor

Strain can be defined in a number of different ways depending on the appli-

cation and the physical system being modelled. By far the most commonly

used measure when discussing cardiac tissue is the Green strain tensor[86][12],

which is defined in the Cartesian basis as

EIJ =
1

2
(FKIFKJ − δIJ) (2.59)

2.5. SOLID MECHANICS 55

This definition can be derived by considering the square lengths of an unde-

formed line, ds2 = dr · dr, and its corresponding deformed length, dS2 =

dR · dR = F dr · F dr.

The difference between these two quantities is given by

dS2− ds2 = FIK drKFIJ drJ− drM drM = (FIKFIJ − δKJ) drK drJ . (2.60)

This quantity vanishes when FKIFKJ−δIJ = 0, since it is expected that there

will be no strain within a body if the length of material lines is not changed

from the undeformed configuration this motivates the definition 2.59 which

provides an objective measure of strain.

The corresponding strain tensor relative to the undeformed contravariant

basis vectors can be derived to be

γij =
1

2
(Gij − gij), (2.61)

where line elements in the undeformed and deformed configurations have

instead been defined in terms of their covariant basis vectors as dr = g
i
dξi

and dr = Gi dξ
i respectively.

It can be shown using the relationships described in 2.25 that these quan-

56 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

tities are in fact equivalent by considering the following arguments,

EIJe
I ⊗ eJ =

1

2
(FKIFKJ − δIJ) e

I ⊗ eJ (2.62)

=
1

2

(
∂XK

∂xI
∂XK

∂xJ
− δIJ

)
∂xI

∂ξi
gi ⊗ ∂xJ

∂ξj
gj (2.63)

=
1

2

(
∂XK

∂xI
∂XK

∂xJ
∂xI

∂ξi
∂xJ

∂ξj
− δIJ

∂xI

∂ξi
∂xJ

∂ξj

)
gi ⊗ gj (2.64)

=
1

2

(
∂XK

∂ξi
∂XK

∂ξj
− ∂xI

∂ξi
∂xI

∂ξj

)
gi ⊗ gj (2.65)

=
1

2
(Gij − gij) g

i ⊗ gj (2.66)

= γijg
i ⊗ gj (2.67)

The following derivatives of the metric tensors with respect to the strain

tensor are useful when computing components of the stress tensor,

∂gmk

∂γij
= 0 (2.68)

∂gmk

∂γij
= 0 (2.69)

∂Gmk

∂γij
= 2δimδ

j
k (2.70)

∂Gmk

∂γij
= −2GmiGkj. (2.71)

Where 2.68 and 2.69 follow since the undeformed metric tensors do not vary

with any quantity once the undeformed configuration has been defined.

2.5.2 Strain invariants

The deformed metric tensor has only real components and is symmetric, this

implies that it has real eigenvalues µ and mutually orthogonal eigenvectors

v[75]. Such eigenvectors and eigenvalues are given by the equation Gijv
j =

2.5. SOLID MECHANICS 57

µvi the strain invariants are therefore the solutions to the equation[75]

det (Gij − µgij) = 0

and are given by[87]

I1 = gikGki, (2.72)

I2 =
1

2

(
I21 − gikGkjg

jnGni

)
, (2.73)

I3 =
detG

detg
. (2.74)

Since these quantities are invariant under coordinate transform, and since

the behaviour of a material should not depend on the coordinate system,

they constitute an important part of constitutive modelling[75].

These can also be expressed in the cartesian basis as

I1 = CKK , (2.75)

I2 =
1

2

(
I21 − (CKK)

2) , (2.76)

I3 = det (CIJ). (2.77)

2.5.3 The principle of virtual displacements

Through consideration of conservation laws and variational principles, the

governing equations of solid deformation can be derived. However, the de-

tails of the derivation of these governing equations are surplus to their im-

plementation within the Oomph-lib framework.

Applied surface traction T is a force per unit deformed surface area on

some part of the body’s deformed surface Atract ⊂ ∂Ω[75]. The applied body

force, f, is the force per unit volume of the undeformed body[75].

58 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

It is assumed that displacements are prescribed on the remaining parts

of the body surface not subject to surface traction, so that

R(ξi) = R(BC)(ξi) on Adispl ⊂ ∂Ω,

where Atract∩Adispl = 0 and Atract∪Adispl = ∂Ω, and R(BC)(ξi) are prescribed.

The Principle of Virtual Displacements (PVD) can be derived[75] to be

∫
Ω

{
sijδγij −

(
f − ρ

∂2R

∂t2

)
· δR

}
dv −

∮
Atract

T · δR dA = 0 (2.78)

where sij is the second Piola Kirchhoff stress tensor. The variation of the

strain tensor is

δγij =
1

2

(
∂R

∂ξi
· δ ∂R
∂ξj

+ δ
∂R

∂ξi
· ∂R
∂ξj

)
. (2.79)

Since the second Piola Kirchhoff stress tensor is symmetric, the principle of

virtual displacements 2.78 can be re-written in displacement form as

∫
Ω

{
sij
∂R

∂ξi
· δ ∂R
∂ξj

−
(
f − ρ

∂2R

∂t2

)
· ∂R

}
dv −

∮
Atract

T · δR dA = 0. (2.80)

This equation must be augmented by a constitutive equation which deter-

mines sij in terms of potentially many quantities including the deformation

of the body[75]. For elastic solids, however, the stress is a function only of

the strain[75].

2.5. SOLID MECHANICS 59

2.5.4 Constitutive modelling of anisotropic hyperelastic

solids

Hyperelastic solids are defined in terms of a strain energy function which,

for the sake of objectivity is often written in terms of the strain invariants

W = W (Ik).

Most constitutive laws are presented on the Cartesian basis, however, the

implementation of hyperelastic solids in Oomph-lib requires them in terms

of curvilinear coordinates. It is often simpler to work in terms of the Carte-

sian basis for the majority of derivations and then convert the second Piola-

Kirchhoff stress tensor to a curvilinear basis at the end via the following

relationship

sij =
∂W

∂γij
=
∂W

∂Ik

∂Ik
∂γij

. (2.81)

Cardiac tissue is inherently anisotropic[87]. Muscle fibres are connected

via the extracellular matrix and are arranged into sheets. The stress-strain

relationship of the tissue in the sheet plane is observed to be different to the

stress-strain relationship normal to the sheets[87][88].

The inclusion of anisotropy to the solid model introduces several new

strain invariants which correspond to the fibre, sheet, and normal direc-

tions[87].

For unit vectors a and b in the undeformed configuration several invariants

60 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

under body deformation can be derived[87] to be

I4,a = a · Ca, (2.82)

I4,b = b · Cb, (2.83)

I5,a = a · (C2a), (2.84)

I5,b = b · (C2b), (2.85)

I8,ab = a · Cb, (2.86)

where a and b are each one of the prefered directions f , s, or n.

Note that since I8,ab can change sign if the direction of either a or b

is reversed, it is not strictly invariant, for this reason it often appears in

constitutive laws in either the form I28,ab or sometimes I8,aba · b provided that

a · b ̸= 0[87].

The myocardium has three preferred directions, the fibre, f , sheet, s, and

sheet-normal, n directions. However, by definition, these three vectors are

considered to form an orthonormal basis. It, therefore, follows that

f ⊗ f + s⊗ s+ n⊗ n = I (2.87)

where I is the identity. Hence, I4,n can be rewritten in terms of I4,f and

I4,s. It is also possible to write I5,f , I5,s, and I5,n in terms of the other

invariants[87].

It, therefore, follows that there are 4 additional invariants due to

anisotropic preferential vectors[87], the full list of which is given in the

2.5. SOLID MECHANICS 61

Cartesian basis by

I4,f (F) = FKMFKMfMfN , (2.88)

I4,s(F) = FKMFKMsMsN , (2.89)

I8,fs(F) = FKMFKMfMsN , (2.90)

I8,sn(F) = FKMFKMsMnN , (2.91)

where f = fM(ξi)eM , s = sM(ξi)eM , and n = nM(ξi)eM are the fibre, sheet,

and sheet-normal directions in the undeformed configuration.

Written in the curvilinear basis the preferential vectors can be written as

f = fkg
k
, s = skg

k
, and n = nkg

k
. Along with the original "isotropic" strain

invariants, the complete list of invariants used in this anisotropic constitutive

modelling is

I1 = gmkGmk, (2.92)

I2 =
1

2

(
I21 − gmkGkrg

rnGmn

)
, (2.93)

I3 =
detG

det g
, (2.94)

I4,f = Gmnf
mfn, (2.95)

I4,s = Gmns
msn, (2.96)

I8,fs = Gmn(f
msn + smfn), (2.97)

I8,sn = Gmn(s
mnn + nmsn). (2.98)

The derivatives of the complete list of invariants with respect to the Green

62 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

strain tensor are as follows

∂I1
∂γij

= 2gij, (2.99)

∂I2
∂γij

= 2
(
I1g

ij − gimgjnGmn

)
, (2.100)

∂I3
∂γij

= 2I3G
ij, (2.101)

∂I4,f
∂γij

= 2f if j, (2.102)

∂I4,s
∂γij

= 2sisj, (2.103)

∂I8,fs
∂γij

= 2(f isj + sif j), (2.104)

∂I8,sn
∂γij

= 2(sinj + nisj). (2.105)

Where the result 2.101 can be derived through the application of the chain

rule, Jacobi’s formula[89], and the definition of a matrix adjugate[89]

∂ detG
det g

∂γij
=

1

det g

∂ detG

∂Gkl

∂Gkl

∂γij
=

1

det g
adj(G)lk2δikδ

j
l =

detG

det g
(G−1)ij. (2.106)

Since for, metric tensors, GijG
jk = δki the result 2.101 follows.

Alternatively, as per the derivation in[75], the determinant of Gij can be

re-written in terms of the Levi-Civita symbol[75] by first noting that

Gij = gij + 2γij (2.107)

and that

detG =
1

6
ϵmnlϵpqrGmpGnqGlr (2.108)

then, by the chain rule, the result 2.101 follows.

Following from 2.81 and using 2.99-2.105 the expanded form of of the

2.5. SOLID MECHANICS 63

second Piola-Kirchhoff stress tensor in terms of derivatives of the invariants

is

∂W

∂γij
= 2gij

∂W

∂I1
+ 2

(
I1g

ij − gimgjnGmn

) ∂W
∂I2

+ 2I3G
ij ∂W

∂I3

+ 2f if j ∂W

∂I4,f
+ 2sisj

∂W

∂I4,s

+ 2(f isj + sif j)
∂W

∂I8,fs
+ 2(sinj + nisj)

∂W

∂I8,sn
.

(2.109)

2.5.5 Incompressibility constraint

The myocardium constitutes mostly water-filled cells connected by an extra-

cellular matrix of macromolecules, such as collagen and elastin filled with

intracellular fluid. Since water comprises the majority of cardiac muscle and

water is essentially incompressible, cardiac muscle is often considered to be

incompressible. The myocardium however also contains many small blood

vessels which are ingrained throughout the tissue. These blood vessels are

observed to drain during systole which allows the total volume of the my-

ocardium to decrease during contraction. However, these effects are often

ignored during modelling due to the mathematical and numerical complexity

of the arising poroelastic solid mechanics[90].

Assuming incompressibility, it follows that the volume of infinitesimal

elements does not change between the undeformed and deformed configura-

tions[75][87]. It can therefore be written that

detGij − det gij = 0. (2.110)

In this case

I3 ≡ 0 =⇒ ∂I3
∂γij

≡ 0. (2.111)

64 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

Stress can be separated into a deviatoric, σ̄ij, and hydrostatic part, 1
3
δijσkk,

where the hydrostatic part reflects changes in volumes and written as

sij = s̄ij +
1

3
δijskk. (2.112)

In order to solve for the deformation with incompressibility constraints,

the hydrostatic stress is subtracted from the second Piola-Kirchhoff stress

tensor and the incompressibility constraint 2.110 is enforced via a Lagrange

multiplier, p, which represents the pressure. The second Piola-Kirchhoff

stress tensor used in the PVD 2.78 becomes

sij =
∂W

∂γij
− 1

3
δij

∂W

∂γkk
− pGij (2.113)

where p is determined by enforcing the constraint 2.110.

2.5.6 The passive myocardium

Numerous constitutive models of the passive myocardium exist. Several of

these models are implemented in the additions made to Oomph-lib as part

of this work, along with some simpler models.

The neo-Hookean model is an isotropic passive tissue model and has a

strain energy function

W =
µ

2

(
I1 − δii)

)
. (2.114)

Exponential strain energy functions can take the form

W =
a

2b
exp

(
b(I1 − δii)

)
. (2.115)

Alternative strain energy functions have been proposed in terms of the Green

2.5. SOLID MECHANICS 65

strain tensor decomposed into the preferential vector directions f = v(0) =

v(0)kg
k
, s = v(1)kg

k
, and n = v(2)kg

k
which have been labelled numerically to

ease the following notation. Such a decomposition is performed by computing

the following

Eij = γpqv
(i)pv(j)q. (2.116)

Pole-Zero strain energy function is widely used[91][92][93] and can be written

in terms of the above decomposition of the Green strain as follows

W =
i=2∑
i=0

j=2∑
j=i

kijE
2
ij

|aij − |Eij||bij
. (2.117)

This model is derived from bi-axial tension tests and is considered unlikely

to be suitable for use in simulating other forms of deformation[87].

Holzapfel and Ogden proposed[87] a physically detailed model for strain

energy in the form

W =
a

2b
exp

(
b(I1 − δii)

)
+
∑
i=f,s

ai
2bi

(
exp

(
bi(I4,i − 1)2

)
− 1
)

+
afs
2bfs

(
exp (bfsI8,fs)

2 − 1
)
. (2.118)

2.5.7 The active stress decomposition

A common approach to the inclusion of active stress in the stress-strain

relationship is to simply add the active stress generated by the single cells to

the passive stress generated by the deformation of the body.

Here, the second Piola-Kirchhoff stress tensor will be given by

sij = sP
ij
+ sA

ij
, (2.119)

66 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

where the passive Piola-Kirchhoff stress tensor, sP ij, is given by the consti-

tutive law and active Piola-Kirchhoff stress tensor sAij is described through

the equation

sA
ij
= TAf if j, (2.120)

where TA is the active stress generated by sarcomere shortening, and f i are

the covariant components of the fibre direction in the undeformed configura-

tion. From equation 2.113 it follows that if the tissue is incompressible, the

second Piola-Kirchhoff stress tensor is given by

sij = (SP ij − 1

3
δijSP kk

) + (TAf if j − 1

3
δijTA)− pGij (2.121)

The active stress decomposition has been criticised for the phenomeno-

logical manner in which forces due to cardiomyocyte contraction are incor-

porated into the stress tensor[94].

2.5.8 The active strain decomposition

An alternative approach is to consider the active and passive deformations

to be two separate virtual components of the final deformation[94].

In such models, the final deformation map F is decomposed into two

virtual deformations, the elastic deformation F̃ and the active deformation

F̂, and is written as follows

F = F̃F̂. (2.122)

In general, it is not possible to represent the quantities F̂ and F̃ in terms

of the gradient of a vector mapping since they represent virtual, intermediate

deformations, and will therefore not, in general, be conservative. However,

2.5. SOLID MECHANICS 67

the final deformation gradient tensor is given by FIJ = ∂XI

∂xJ
since it represents

the physically deformed conformation of the tissue. In order to determine the

invariants of the elastic deformation, it is necessary to calculate F̃ = FF̂−1.

Through considering the deformation of a single cardiomyocyte in re-

sponse to sarcomere shortening/lengthening, F̂ = F̂IJ(e
I ⊗ eJ) may be con-

structed as

F̂IJ = δIJ + γffIfJ + γssIsJ + γnnInJ (2.123)

where γf , γs, and γn are the strain in the fibre, sheet, and sheet-normal

directions respectively generated by changes in sarcomere length.

Through fundamental results of linear algebra, the determinant and in-

verse of F̂ can be determined to be

detF̂ = (1 + γf)(1 + γs)(1 + γn), (2.124)

F̂−1
IJ = δIJ − γf

1 + γf
fIfJ − γs

1 + γs
sIsJ − γn

1 + γn
nInJ . (2.125)

The final elastic deformation is then given by

F̃IJ = FIK

(
δKJ − γf

1 + γf
fKfJ − γs

1 + γs
sKsJ − γn

1 + γn
nKnJ

)
. (2.126)

The cytosol of cardiomyocytes is mostly water which is itself incompressible,

this leads to the commonly applied assumption that the cardiomyocytes are

isochoric (incompressible). Furthermore, for simplicity, cardiomyocytes are

often modelled as transversely isotropic cylinders, because there is no distinc-

tion at the cellular level between the deformation of the cell in the sheet and

in the sheet-normal directions. It follows from this assumption that γs = γn.

Since the cardiomyocyte is assumed to be isochoric, conservation of volume

during cellular contraction implies that detF̂ = Ĵ = 1. It can then be deter-

68 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

mined that γs = γn = 1√
1+γf

−1. These modelling assumptions allow for the

simplification of F̃IJ to

F̃IJ = FIK

(
δKJ

√
1 + γf + fKfJ

(
1

1 + γf
−
√

1 + γf

))
. (2.127)

In order to describe the stresses induced in hyperelastic solids under this

strain decomposition, we seek the strain invariants of the elastic deformation

F̃. By defining the quantity

g(γf) = −γf − γf
γf + 2

(γf + 1)2
(2.128)

the strain invariants can be succinctly written as

IE1 = I1(F̃) = (1 + γf)FJKFJK + g(γf)FJKFJMfKfM , (2.129)

IE3 = I3(F̃) = J2 = I3, (2.130)

IE4,f = I4,f (F̃) =
1

(1 + γf)
2FPMFPNfMfN , (2.131)

IE4,s = I4,s(F̃) = (1 + γf)FPMFPNsMsN , (2.132)

IE8,fs = I8,fs(F̃) =
1

2
√

1 + γf
FPMFPN(fMsN + fNsM), (2.133)

IE8,sn = I8,sn(F̃) = (1 + γf)FPMFPN(sMnN + sNnM). (2.134)

The invariant IE2 is omitted since it is not used in any of the example con-

stitutive relations. The third invariant can be determined by considering

that

2.5. SOLID MECHANICS 69

IE3 = det C̃IJ = det (F̃KIF̃KJ)

= det (F̃KI) det (F̃KJ)

= det (FKM F̃
−1
MI) det (FKN F̃

−1
NJ)

= det (FKM) det (F̃−1
MI) det (FKN) det (F̃

−1
NJ)

= J2Ĵ−1

= J2 = I3.

In order to calculate these in the environment of the Oomph-lib constitutive

law class, they must be converted to curvilinear coordinates, they can be

re-written as

IE1 = (1 + γf)Gmkg
mk + g(γf)Gmkf

mfk (2.135)

IE3 =
detG

det g
(2.136)

IE4,f =
1

(1 + γf)
2Gmkf

mfk (2.137)

IE4,s = (1 + γf)Gmks
msk (2.138)

IE8,fs =
1

2
√

1 + γf
Gmk(f

msk + fksm) (2.139)

IE8,sn = (1 + γf)Gmk(s
mnk + sknm) (2.140)

(2.141)

where, since JA does not vary with strain.

Derivatives of the strain invariants with respect to the Green strain tensor

70 CHAPTER 2. MATHEMATICAL MODELLING PRINCIPLES

are given by the following,

∂IE1
∂γij

= 2(1 + γf)g
ij + 2g(γf)f

if j, (2.142)

∂IE3
∂γij

= 2I3G
ij, (2.143)

∂IE4,f
∂γij

=
2

(1 + γf)
2f

if j, (2.144)

∂IE4,s
∂γij

= 2 (1 + γf) s
isj, (2.145)

∂IE8,fs
∂γij

=
1√

1 + γf
(f isj + f jsi), (2.146)

∂IE8,sn
∂γij

= 2 (1 + γf) (s
inj + nisj). (2.147)

The relationship 2.143 and 2.110-2.113 imply that when applied to stress

derived through the active strain decomposition, the incompressibility con-

straints remain unchanged. This is because the incompressibility condition
∂I3
∂γij

= 0 implies that ∂IE3
∂γij

= 0.

The second Piola-Kirchhoff stress tensor for the active strain decomposi-

tion is given by

sij =
∂W

∂IE1
2(1 + γf)g

ij + 2g(γf)f
if j

+
∂W

∂IE2

∂IE2
∂γij

+
∂W

∂IE3
2I3G

ij

+
∂W

∂IE4,f

2

(1 + γf)
2f

if j +
∂W

∂IE4,s
2 (1 + γf) s

isj

+
∂W

∂IE8,fs

1√
1 + γf

(f isj + f jsi) +
∂W

∂IE8,sn
2 (1 + γf) (s

inj + nisj).

(2.148)

A potential advantage of the active strain decomposition formulation

over the active stress formulation is that the resulting simulation of strain-

2.5. SOLID MECHANICS 71

mediated ion channels may be more accurate. Due to a large number of

DOFs and the long time-scale associated with solving for solid deformation,

their solution is often calculated in a partitioned manner from the electrical

model. As such, the deformation of the solid cannot be updated in response

to changes in the cell model. For the active stress formulation, this forces

the cell model to either assume that tissue strain is given entirely by the

cardiomyocyte, ignoring the effects of the continuum solid model, or to as-

sume that tissue strain is constant and given by the deformation of the solid.

The active strain decomposition formulation however does not impose such a

concession, since the strain in the tissue due to the active strain formulation

can be allowed to change in response to varying lengths in the absence of

deformation of the solid. This follows from equation 2.127.

Since it may be advantageous to implement constitutive laws using the

active strain decomposition it was therefore elected that the implementation

of anisotropic solid mechanics into Oomph-lib allows for the use of active

strain decomposition as well as the more commonly used active stress de-

composition. This is achieved, without requiring any substantial changes to

the implementation of active stress, by treating the active stress and active

strain as the same generic quantity. In this manner, active strain or active

stress models can be simulated within the same finite elements.

Chapter 3

Numerical methods

Numerical methods are required to solve the equations which were described

in the previous chapter. For certain aspects of this solution, the choice of the

numerical method used is restricted by the general methodologies imposed

by Oomph-lib. For example, Oomph-lib is highly specialised to the finite

element method for the solution of PDEs and therefore the use of other

methods such as Finite Volume Method (FVM) or Finite Difference Method

(FDM) would be better suited to other numerical platforms.

Certain commonly used methods can often be divergent from the stan-

dard methodology and application of Oomph-lib. For example, operator

splitting methods are commonly used to improve the efficiency of numerical

computation, particularly of the electrophysiology problem. These methods,

however, are at odds with the monolithic nature of the Oomph-lib solve rou-

tines. Such methods were identified and methods of implementing them were

explored. The most suitable method was then implemented in the additions

to the library.

72

3.1. THE FINITE ELEMENT METHOD 73

3.1 The finite element method

The solution of all implemented PDEs is computed with the Finite Element

Method (FEM). FEM is chosen through necessity since Oomph-lib is highly

specialised for this rather than FDM or FVM.

The Discrete Element Method (DEM) has recently been used to include

effects which arise due to the distinct nature of cardiomyocytes. The frame-

work necessary for implementing such a system is very different to that of

the finite element method and therefore from that of Oomph-lib. However,

the framework set out in later sections for how cardiomyocytes are handled

could facilitate future implementations of the DEM. These implementations

are discussed in the chapter on future work.

A thorough discussion of the principles and implementation of the finite

element method can be found within the Oomph-lib documentation[16] how-

ever, for completeness, a brief overview of the most relevant aspects is given

here.

The FEM is predicated on efficiently approximating a function using basis

functions which have finite support, that is which are zero over the majority

of the domain[16].

Computation of integrals can be performed by summing the contribution

from each of the finite elements which make up the domain. The contribution

from each element can be computed using high-order and efficient numerical

approximations, such as Newton-Cotes.

3.2 Basis functions

Basis functions, also called shape functions within the Oomph-lib environ-

ment, represent functions by providing a basis for the function space. These

74 CHAPTER 3. NUMERICAL METHODS

basis functions could be any functions which form a complete base over the

domain to which the function is being represented, however, in the finite

element method it is often useful to consider functions associated with each

node of the mesh. Each node in the mesh has associated with it a basis

function which has a value of 1 at the location of that node and zero at the

locations of all other nodes. Written more rigorously, each basis function

satisfies

ψj(Xi) = δij (3.1)

where ψj is the jth basis function, Xi is the coordinate of the ith node in the

mesh, and δij is the Dirac delta function. Representation of a quantity is

then performed by taking a sum of the contributions due to each node in the

mesh such that a quantity u at the global coordinate x is given by

u(x) =
N∑
i=1

Uiψi(x) = Uiψi(x) (3.2)

where Ui is the local value at the ith node in the mesh. As such the shape

functions provide an interpolation from the nodes of the finite elements to

the interior of those elements.

Depending on the implementation, there are certain restrictions on the

basis functions which can be used. Specifically, restrictions on how mini-

mally differentiable and integrable a function must arise from the form of

the residual and Jacobian functions for the equations being solved.

Within FEM, basis functions are often chosen which have finite support,

that is the basis associated with a particular node is only non-zero within

elements that contain that node. This ensures that, when considering inter-

polations and integrals within a particular element, only the basis functions

of nodes within that element have to be considered.

3.2. BASIS FUNCTIONS 75

The most commonly used set of basis functions in Oomph-lib is Lagrange

polynomials. For a set of N points si, the Lagrange polynomials are given

by

ℓj(s) =
i=N∏

i=0,i ̸=j

s− si
sj − si

(3.3)

which are used to construct the Lagrange interpolating polynomial, Ly(s)

through a corresponding set of points yi = y(si):

Ly(s) = yjℓj(s). (3.4)

In FEM, for a particular element, the set of points si are chosen as the local

coordinates of the nodes within the element. N is then the number of nodes

within the element and the local interpolation of the solution y within an

element e is then given by 3.4 for the local nodal values and basis functions

within that element only.

3.2.1 Local to global mapping

Given a local coordinate s within an element, the corresponding global coor-

dinate x can be computed through a local to global mapping. The simplest

choice of such a mapping[16] is to simply use the local basis functions to

interpolate the global coordinates of the nodes within the element

x(s) =
n∑

j=1

Xj,eψj(s). (3.5)

3.2.2 Spatial derivatives

Spatial derivatives of this value can be calculated by calculating the deriva-

tives of the shape functions

76 CHAPTER 3. NUMERICAL METHODS

∂u(x)

∂xj
= Ui

∂ψi(x)

∂xj
. (3.6)

Spatial derivatives of quantities are calculated by differentiating the basis

functions with respect to the global coordinate:

∂u(s)

∂xi
= Uj

∂ψj(s)

∂xi
= Uj

∂ψj(x)

∂sm

∂sm
∂xi

. (3.7)

The quantity ∂sm
∂xi

is the inverse of the Jacobian of the local to Eulerian

mapping. It is calculated by constructing

∂si
∂xj

=

(
∂xj
∂si

)−1

=

(
xLj
∂ψL

∂si

)−1

. (3.8)

These calculations are performed within Oomph-lib when spatial derivative

functions are called and do not have to be calculated explicitly when imple-

menting new finite element formulations.

3.3 Approximating integrals

Spatial integrals which arise in physical models are often difficult or im-

possible to compute analytically. They are therefore often evaluated with

numerical approximations. In Oomph-lib this is commonly performed us-

ing Gaussian quadrature[16][95]. Gaussian quadrature evaluates integrals by

taking a weighted sum of the function evaluated at a number of points within

the region, D. The general form of Gaussian quadrature is given by

∫
D

F (x) dx ≈
Nint∑
i=1

WiF (xi) (3.9)

3.4. TIME INTEGRATION 77

where Nint is the number of integral points, Wi is the weight associated with

integral point i, and xi is the coordinate of the i-th integral point.

3.3.1 General implementation of integration in Oomph-

lib

In FEM a domain D is split into N elements each enclosing a region Ei such

that the total region of those elements is the domain D, that is E0∪· · ·∪EN =

D. Approximating an integral over the domain D is then computed by taking

a sum of the contributions from each element in the mesh. The integral within

the ith element is given by

∫
Ei

F (x) dx ≈
∑
iint

JiwiintF (siint) (3.10)

where siint and wiint are the local coordinate and integral weight for the iint
th

integral point and are provided by the numerical integration scheme of the

finite element. Ji represents the scaling of the integral due to the size of the

element and is calculated from the Jacobian of the local to global coordinate

mapping.

3.4 Time integration

Depending on the specific situation, several approximations of time deriva-

tives are used throughout Oomph-lib.

78 CHAPTER 3. NUMERICAL METHODS

3.4.1 Forward and backward Euler

Forward Euler is an explicit, single-step method. It is used frequently for the

solution of ion kinetics within cell models due to its simplicity and low cost.

It requires only one evaluation of the derivative function and is computed by

solving

y(tn+1) = y(tn) + ∆tf(y(tn), tn), (3.11)

but is generally unstable and has a large associated local error.

Backward Euler is an implicit, single-step method. In Oomph-lib, it is

implemented as a special case of a backwards differentiation formula, one

with a single step, and is evaluated by solving

y(tn+1) = y(tn) + ∆tf(y(tn+1), tn+1). (3.12)

3.4.2 Rush-Larsen

Special care must be taken when solving 2.3 to ensure that singularities in

the formulation are suitably handled as well as ensuring that the chosen time-

stepper does not overstep and result in non-physical values of ni. Success in

ensuring stability when solving this has been found through the application

of the method of Rush and Larsen. The Rush-Larsen formulation for gating

kinetics has been widely used for solving single-cell equations[96] [97]. The

success of Rush-Larsen is due to the added stability it provides to gating

variables in single-cell models. It is often applied to a single cell gating

variable, y, of the form
dy

dt
=
y∞ − y

τy
(3.13)

3.4. TIME INTEGRATION 79

where

y∞(Vm) =
αy(Vm)

αy(Vm) + βy(Vm)

τy(Vm) =
1

αy(Vm) + βy(Vm)

and y is the gating variable and Vm is the membrane potential. The Rush-

Larsen method assumes that the membrane potential does not vary over the

interval of time integration. This assumption simplifies 3.13 into a linear

ODE with the exact solution[96]. This assumption simplifies the above into

a linear ODE with the exact solution,

y(tn+1) = y∞ + (y(tn)− y∞) exp

(
−∆t

τy

)
(3.14)

where y∞ = y∞(Vm(tn)) and τy = τy(Vm(tn)).

Application of Rush-Larsen to gating variables in conjunction with the

application of forward Euler to other cell model variables results in a method

which has been shown to outperform forward Euler alone[98] in terms of

accuracy, stability, and efficiency.

3.4.3 Trapezoid rule: Crank-Nicolson

The trapezoid rule, also known as Crank-Nicolson, is a second-order, uncon-

ditionally stable, implicit time integration method[99]. It can be derived for

a PDE of the form
∂y

∂t
= f(y, t), (3.15)

80 CHAPTER 3. NUMERICAL METHODS

by constructing a point-wise approximation to the function f(y, t) over the

time interval [tn, tn+1] in the form of the linear function,

f(y, t) ≈ f(y(tn), tn) +
(t− tn)

∆t
(f(y(tn+1), tn+1)− f(y(tn), tn)) . (3.16)

Which, upon integration over the interval, gives the approximation

y(tn+1)− y(tn) ≈
∆t

2
(f(y(tn+1), tn+1) + f(y(tn), tn)) . (3.17)

When applied to the Monodomain equation this results in the approximation

to the PDE to be solved for V (tn+1)

V (tn+1)− Vm(tn) =
∆t

2
(∇ · (D(tn+1)∇V (tn+1)) +∇ · (D(tn)∇Vm(tn))) .

(3.18)

The components of the conductivity tensor, Dij, will in general vary spatially,

but can also vary temporally as the tissue deforms (as was discussed in the

sections on solid mechanics). In the heart, the time scale of solid deformation

is generally longer than that of electrical activity; as a result, the equations

which describe solid deformation are often fully decoupled from those for the

membrane potential. Therefore, over the course of solving for the membrane

potential, the conductivity, D, is assumed to be constant. As such D(tn+1) =

D(tn) and simplifies 3.18 to

V (tn+1)− V (tn) =
∆t

2
(∇ · (D(tn+1)∇ (V (tn+1) + V (tn)))) , (3.19)

which is the form of the Monodomain equation implemented in monodomain

elements. If it is desired that the electrophysiology equations are solved

monolithically with the solid deformation, then a new implementation of the

3.4. TIME INTEGRATION 81

multiphysics element would be required in which the previous node positions

are used to calculate the deformation of the conductivity tensor at the last

time-step and the current node positions are used to calculate the deforma-

tion of the conductivity tensor at the current time-step.

3.4.4 Implicit linear multi-step methods

Implicit linear multi-step methods are commonly used in Oomph-lib for most

time-stepping applications. They utilise the solution at previous time steps to

approximate time derivatives. They are widely used for the solution of stiff

differential equations and have advantages over other high-order, implicit,

time integration methods, such as Runge-Kutta.

Backward differentiation formula

Backward Differentiation Formula (BDF) are derived from applying Lagrange

interpolation polynomials to the set of points (tn, yn), (tn−1, yn−1), . . . (tn−s, yn−s).

The derivative of this polynomial then represents an approximation of the

derivative of the function y(t) which can be written in the form

y′(tn) =
i=s∑
i=0

aiyn−i,

where the coefficients ai depend on the time-steps ∆tk = tn−k − tn−k−1.

The order of the method is determined by the value of s[100]. In Oomph-

lib 3 BDF time-steppers are implemented corresponding to s = 1, 2, 4. Error

estimates can be calculated from the previous time derivatives of the solution.

Backward differentiation formulae are often applied to the solution of stiff

PDEs [100]

82 CHAPTER 3. NUMERICAL METHODS

3.4.5 Adaptive time integration

For each Degree of Freedom (DOF) a measure of the error in the solution can

be computed. The time-step is adjusted according to some heuristic, that

which is used by Oomph-lib is

∆tnew = 0.9∆told

(
TE
ϵ

) 1
2

.

If the error is greater than the specified tolerance, then the time-step length

is halved, the solution is rejected, and the solution at the current time-step is

re-computed. Otherwise the new suggested time-step length is used for the

next time step.

3.5 Monolithic and partitioned solutions

It is often computationally advantageous to solve the individual sub-physics

of a problem separately instead of at the same time. For example, problems

containing highly non-linear terms alongside linear ones could be solved by

solving only either the non-linear or linear terms at any one time.

Partitioned solutions are often used for solving the reaction-diffusion type

system of cardiac electrophysiology. There are several reasons for this, firstly

the number of DOFs in most physiological cell models is very large. The

number of equations and the size of the matrix in the resultant linear system

makes a monolithic solution far too expensive. Secondly, the stiffness and

non-linearity of the cell equations can result in many Newtonian iterations

before convergence is achieved. Additionally due to the common existence

of poles within the cell equations very small time steps are often required in

order to resolve the solution close to these singularities. If the solution of the

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 83

system is not partitioned, then stiffness in the cell equations requires that

the entire system is solved many times. Furthermore, since the cell equations

have no explicit spatial dependence, each cell can be solved independently

of the others which makes inverting the very large, dense, matrix due to

the monolithic solution redundant in the absence of diffusion. Since the cell

equations tend to have much smaller time scales than the diffusion equations,

solving the two together results in many more time steps over which the linear

system must be assembled and solved potentially many times.

Partitioned solution methods are at odds with the de facto method within

Oomph-lib of solving all sub-physics of a problem at the same time in a mono-

lithic fashion using high-order implicit time-steppers. Their use, therefore,

necessitated additions to the library and changes to the time-stepping pro-

cedure. However, we will see that changes to driver codes are minimal and,

with future work, could be reduced further.

3.5.1 Monolithic solutions

Monolithic solutions are widely considered to be the most stable way to

solve coupled systems of equations, however, it is commonly assumed that

the monolithic solution of large systems is more computationally expensive

than alternative partitioned methods. Heil and Hazel demonstrated that for

Fluid-Solid Interaction (FSI) problems, with proper use of preconditioners, a

monolithic solution is competitive when compared with a partitioned solution

using Picard iteration.

It has been argued[101] that monolithic solvers with suitable precondi-

tioners can outperform partitioned solvers. Commonly, FSI problems are

solved using a partitioned method, but it is understood that a monolithic

solution with a suitable pre-conditioner for the resultant block matrix can

84 CHAPTER 3. NUMERICAL METHODS

converge faster in certain circumstances.

This example differs from simulations of cardiac biomechanics since the

cell models in the multi-physics problems contain many variables and often

contain no explicit spatial dependence in their formulation. Additionally,

cell variables often change on a much shorter time scale to the membrane

potential and so solving the two together will result in having to construct and

invert a very large Jacobian many times. Although block pre-conditioners

will likely assist in reducing the time taken to perform this computation,

such pre-conditioners will have to be determined for each cell model and

could be exceedingly complex. These are therefore not investigated here, nor

are monolithic implementations attempted. Instead, partitioned solvers were

considered.

3.5.2 Weak coupling

Weak coupling is the term often used to describe when the solutions of two

systems with different intrinsic time scales are coupled. In such situations,

the solution of one system often requires significantly smaller time steps

than the other. It may be more efficient to separate the solution of the

subsystems so that the system with the longer intrinsic time-scale is not

solved to unnecessarily high accuracy.

In the context of cardiac biomechanics, two examples where weak coupling

may be effectively applied are in the separation of the sub-cellular dynamics

from the electrical diffusion, and the separation of the cellular and electrical

dynamics from the FSI.

During an operator-splitting solve, the cell model is solved for the time-

step prescribed by the operator-splitting method. Often, cell models are

known to have a maximum time step for which the model is stable. If the

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 85

operator splitting method requires a time step which exceeds this value, as

can be the case for adaptive operator splitting methods, then the cell model

must take multiple smaller time steps in order to fulfil the time step requested

by the operator splitting method. In this way, although operator splitting

techniques are generally strongly coupled solvers, since there may be multi-

ple solutions of the cell model for each solution of the diffusion equations,

the diffusion equations and cell model equations can be described as being

dynamically weakly coupled when adaptive operator splitting methods are

implemented.

Solid and fluid models can be solved alongside the electrophysiological

model by applying weak coupling. Here, the electrophysiological system is

solved using operator splitting, then the solid/fluid system is solved over

the whole time step with the active strain prescribed by the cell model.

This method is cheaper than strongly coupling the solid/fluid system to the

electrophysiological system since the linear and non-linear systems can be

separated, and thus the systems solved at each stage of the method have

fewer DOFs. Additionally, the solid/fluid system only requires to be solved

once for each time step of the simulation instead of the several times which

would be required if the solid/fluid system were solved monolithically with

the electrophysiological system or if an ABC operator-splitting method.

3.5.3 Operator splitting

Partitioned solutions can sometimes be used to effectively reduce the cost

of numerical computation for certain physical systems. This is achieved by

solving for the individual sub-physics separately. Many techniques exist for

calculating the partitioned solution, several of which will be introduced and

discussed.

86 CHAPTER 3. NUMERICAL METHODS

Cell models usually consist of many state variables, ranging from a min-

imal 3 in caricature cell models [102] to many dozen in biophysically de-

tailed cell models [103]. These state variables are explicitly dependent on

the membrane potential (Vm) and are hence implicitly dependent on spatial

derivatives of Vm when solving for their values at some future time. The

full electro-physiological tissue model consists of the point-wise cell model

equations (e.g., a set of ODEs for ion channel kinetics and membrane poten-

tial) and the spatially dependent diffusion of membrane potential. Finding a

solution to this combined system involves solving both of these sub-problems

simultaneously. However, solving for the cell state variables within a finite el-

ement method turns out to be prohibitively expensive, since this necessitates

assembling and inverting a very large and dense matrix at each iteration of

the Newtonian solver.

Instead, operator splitting techniques [18] are employed such that the cell

equations are solved point-wise in time and a relatively small, linear matrix

which arises from the diffusion problem is inverted at each iteration of the

Newtonian solver.

Perhaps the most intuitive operator splitting technique is that of strong

coupling. Strong coupling is the name often given to the Lie-Trotter operator

splitting method which corresponds to solving one differential operator over

the entire time-step and then solving the other using the solution given by

the first operator as the initial conditions. Lie-Trotter splitting is the most

simple and the least accurate of operator splitting methods.

For systems with two distinct sets of DOFs, such as FSI where DOFs can

be separated into fluid and solid, Picard fixed point iterations can be applied.

In these cases, the solution is given by two or more sets of equations with

coupling terms. Each set of equations corresponds to its own set of DOFs

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 87

and therefore solving one of these sets of equations corresponds to updating

its corresponding DOFs. Each set of equations is solved alternately, with the

DOFs corresponding to the other equation held as fixed. This is a common

method of tackling large FSI simulations where the monolithic problem is

often considered to be too large to solve efficiently.

However, the use of partitioned solutions is not always suitable or guar-

anteed to improve the cost of simulation. For example, it has been demon-

strated by Heil and Hazel that the common assumption that partitioned

solutions of FSI systems converge faster than monolithic solutions may not

always be true. They demonstrated that provided a suitable pre-conditioner

for the resultant linear system, a monolithic solution can indeed converge

significantly faster than a partitioned solution using Picard fixed-point itera-

tions and Iron and Tucks convergence acceleration. Additionally, they showed

that the monolithic solution was considerably more stable than the Picard

iteration counterpart which often failed to converge or diverged quickly.

Furthermore, since this method only works for implicit equations it may

not be suitable for applications including cell models since these are often

solved explicitly. Indeed methods for solving the bidomain and monodomain

equations exist which make use of a single Picard iteration[104][105]. How-

ever, these methods necessitate the implicit solution of cell models. Since

cell models are often highly non-linear, these implicit solutions can take

many Newton iterations to converge and hence negatively impact compu-

tation time.

The cell equations and diffusion equations are often solved using the oper-

ator splitting method known as Strang splitting. Here, the diffusion equation

is often solved using an implicit, single-step, time-stepper such as Crank-

Nicolson, and the cell equations are often solved using explicit, single-step,

88 CHAPTER 3. NUMERICAL METHODS

time-steppers, such as forward Euler or Rush-Larsen, depending on the spe-

cific cell equation being solved. This paradigm has generally been found to

be the most computationally efficient and widely used for most choices of cell

and diffusion models.

To illustrate this method of solving the cell and diffusion equations, the

steps taken to calculate the solution using Strang-splitting as applied to a

cell model, and the Monodomain model are described explicitly.

1. Initially the solution is given at time t = tn to be Vn and wn for the

membrane potential and the cell variables respectively.

2. The solution is advanced in time by ∆t/2 according to the cell equations

to give the first intermediate solution V 1/2
1 and w1/2

1 .

3. The membrane potential is then advanced in time by ∆t according to

the Crank-Nicolson formulation of the Monodomain equation starting

at V 1/2
1

V
1/2
2 − V

1/2
1 =

∆t

2

(
∇ ·
(
Dn∇

(
V

1/2
2 + V

1/2
1

)))
(3.20)

which gives the second intermediate solution V 1/2
2 , and w1/2

2 = w
1/2
1 .

4. Finally, the solution is advanced in time by ∆t/2 according to the cell

equations, starting at V 1/2
2 and w1/2

2 to give Vn+1 and wn+1

Operator splitting introduces new uncertainty into the solution in the

form of splitting error, the size and nature of which are dependent on the

operator splitting scheme chosen and the particulars of the problem being

solved [18].

A general class of operator splitting schemes is based on sequentially solv-

ing the two sub-operators over fractional time steps. These techniques are

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 89

derived from the Campbell-Baker-Hausdorff theorem as applied to matri-

ces which do not commute under the exponential mapping [18] [106]. Such

techniques have been shown to be capable of achieving high degrees of accu-

racy and may significantly reduce the cost of solving some multi-physics and

multi-scale problems [107]. The operator splitting scheme of this kind most

commonly applied to cardiac electro-physiological systems is Strang split-

ting [108] [109]. Also known as Störmer-Verlet or leapfrog, Strang splitting

is second-order accurate and is applied extensively throughout the field to

great success [108] [110] [111]. However, despite its widespread use, Strang

splitting does not provide a dynamic measure of error and as a result, cannot

be used to adaptively change the time-step length. Depending on the stiffness

of the differential equations being solved, this may result in an under-resolved

or over-resolved solution, giving either incorrect or inefficient results.

For a general differential equation which can be split into two differential

operators, it may be represented as:

∂y

∂t
= A(y, t) +B(y, t). (3.21)

To solve the equation, we can define the mapping φτ as in [106] which cor-

responds to advancing y in time by τ according to 3.21, such that

y(tn + τ) = φτy(tn). (3.22)

We can further define the mappings Ψ
[A]
τ and Ψ

[B]
τ which correspond to ad-

vancing the system in time by τ according to the PDEs

∂ŷ

∂t
= A(ŷ, t) and

∂ỹ

∂t
= B(ỹ, t)

90 CHAPTER 3. NUMERICAL METHODS

respectively, such that

ŷ(tn + τ) = Ψ[A]
τ ŷ(tn) (3.23)

ỹ(tn + τ) = Ψ[B]
τ ỹ(tn) (3.24)

In the context of the Monodomain equation, this corresponds to

∂V̂m
∂t

= ∇ ·D∇V̂m = A(V̂m, t) (3.25)

∂

∂t

Ṽm
ω̃

 =

−Iion(ω̃, Ṽm)/Cm

f(ω̃, Vm, t)

 = B(ω̃, Ṽm, t) (3.26)

Strang-splitting can be written using this notation:

ΨStrang
∆t = Ψ

[A]
∆t
2

Ψ
[B]
∆tΨ

[A]
∆t
2

. (3.27)

Strang-splitting is a specific case of a larger family of operator splitting

schemes which are evaluated by alternately performing the two mappings

[18]. In general, a member of this family can be written using the ordered

product:

Ψ∆t =
i=m∏
i=1

Ψ
[B]
βi∆tΨ

[A]
αi∆t ≈ φ∆t, (3.28)

where
∏

successively applies terms to the left-hand side, m is any finite

positive integer, and αi, βi ∈ C.

For a proper choice of m, αi, and βi a method of order p such that

Ψ∆t = φ∆t + O (∆tp+1) can be found [106]. It has been shown [106] that

necessary and sufficient conditions on the values of m, αi, and βi exist for a

method to be of order 1, 2, or 3 and are as follows:

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 91

1. order 1:
m∑
i=1

αi = 1,
m∑
i=1

βi = 1

2. order 2:
m∑
i=1

βi

(
i∑

j=1

αj

)
=

1

2

3. order 3:

m−1∑
i=1

βi

(
m∑

j=i+1

αj

)2

=
1

3
,

m∑
i=1

αi

(
m∑
j=1

βj

)2

=
1

3

where methods of order p satisfy all conditions on orders ≤ p. It has further

been shown [106] that the conditions for order 3 necessitate the existence of

at least one negative coefficient in both αi and βi and therefore any method

of order ≥ 3 must contain backwards time integration of the differential

operators A and B. Ideally, a high-order splitting method will be used in

order to ensure that the splitting error is of the same order as the errors

in both the diffusion and cell solvers. However, this presents an issue since

the equations in the Monodomain and Bidomain models are parabolic PDEs

and widely understood to be ill-posed when solved backwards in time. It was

found that attempts to use methods with order greater than two resulted in

unreliable solutions which often diverged unpredictably from run to run, indi-

cating that numerical round-off error determined whether or not the solution

converged and thus that the resultant system is ill-posed. For this reason,

the focus was restricted to finding efficient second-order, adaptive operator

splitting schemes. Algorithms for generating methods of arbitrary order have

been developed [18], and a large repository exists [18] which contains several

methods of orders 1 and 2 as well as higher orders.

92 CHAPTER 3. NUMERICAL METHODS

Predictor-corrector methods have long been used in numerical integration

to achieve a solution with the desired accuracy [112] [113]. In these, two

different methods, Ψ(1)
∆t and Ψ

(2)
∆t , are applied and their solutions are compared

in order to give an approximation of the solution error [18]. There exist

several broad types of predictor-corrector methods in the context of operator

splitting [18], in this study only methods which are either Milne pairs or

palindromic types were considered.

Milne pairs are constructed by applying the Milne device [114] to an

operator splitting scheme. In the repository used [18], Milne pairs were

generated by seeking methods such that the local errors are related according

to

Ψ
(1)
∆ty − φ∆ty = C(∆t, y)∆tp+1 +O

(
∆tp+2

)
(3.29)

Ψ
(2)
∆ty − φ∆ty = γC(∆t, y)∆tp+1 +O

(
∆tp+2

)
(3.30)

for some γ ̸= 1.

The solution is then given by the additive scheme

φ∆ty ≈ 1

1− γ

(
−γΨ(1)

∆ty +Ψ
(2)
∆ty
)
, (3.31)

with the local error estimate

Ψ∆ty − φ∆ty ≈ 1

1− γ

(
Ψ

(1)
∆ty −Ψ

(2)
∆ty
)
. (3.32)

Palindromic methods are achieved through swapping the order of the two

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 93

mappings as applied in Ψ
(1)
∆t when applying Ψ

(2)
∆t , and so if

Ψ
(1)
∆t =

i=m∏
i=1

Ψ
[B]
βi∆tΨ

[A]
αi∆t (3.33)

=⇒ Ψ
(2)
∆t =

i=m∏
i=1

Ψ
[A]
βi∆tΨ

[B]
αi∆t. (3.34)

The local error estimate of Ψ(1)
∆ty − φ∆ty provided by a palindromic method

is dependent on Ψ
(1)
∆ty and Ψ

(2)
∆ty.

Another type of predictor-corrector for operator splitting is embedded

methods (similar in concept to Runge-Kutta pairs [115]) in which the predic-

tor and corrector share several initial steps and so Ψ
(1)
∆t can be partially (or

fully) embedded within Ψ
(2)
∆t [116]. These methods may result in reduced com-

putational complexity, however, relatively few embedded operators splitting

schemes exist in the collection [18] and there were no second-order methods

which out-performed either the Palindromic or Milne methods tested.

Auzinger et al[18] provide a collection of many operators splitting schemes

of which all first and second-order predictor-corrector methods which contain

non-negative coefficients were selected for use in this study. This results

in three methods: Palindromic Lie-Trotter, Strang-Milne, and Symmetric-

Milne-32.

The Strang-Milne [18] method requires 5 applications of Ψ[A]
τ and 3 appli-

cations of Ψ[B]
τ and is given by equations 3.27 and 3.35, where 3.35 provides

an error measure when compared to 3.27

ΨStrang-Milne Device
∆t = Ψ

[A]
∆t
4

Ψ
[B]
∆t
2

Ψ
[A]
∆t
2

Ψ
[B]
∆t
2

Ψ
[A]
∆t
4

. (3.35)

An alternative to Strang-Milne is Symmetric-Milne-32 which is given by

equations 3.36 and 3.37, where 3.36 provides an error measure when com-

94 CHAPTER 3. NUMERICAL METHODS

pared to 3.36. Although Symmetric-Milne-32 requires one additional appli-

cation of Ψ[B]
τ when compared to Symmetric-Milne it may provide a better

estimate of the solution and local error.

ΨSymmetric-Milne
∆t = Ψ

[A]
433494437
2269806340

∆t
Ψ

[B]
∆t
2

Ψ
[A]
701408733
1134903170

∆t
Ψ

[B]
∆t
2

Ψ
[A]
433494437
2269806340

∆t
(3.36)

ΨSymmetric-Milne Device
∆t = Ψ

[B]

(1−
√
2/2)∆t

Ψ
[A]
√
2∆t
2

Ψ
[B]
√

2∆t
2

Ψ
[A]

(1−
√
2/2)∆t

(3.37)

The final method considered is the palindromic Lie-Trotter method de-

scribed in equations 3.38 and 3.39. Although each of ΨPalindromic-Lie-Trotter-Forward
∆t y

and ΨPalindromic-Lie-Trotter-Backward
∆t y are of first order, their combination

1
2

(
Ψ

(1)
∆ty +Ψ

(2)
∆ty
)

is a second order approximation to φ∆t, and their

difference 1
2

(
Ψ

(1)
∆ty −Ψ

(2)
∆ty
)

provides a local error estimate of Ψ(1)
∆ty.

ΨPalindromic-Lie-Trotter-Forward
∆t = Ψ

[B]
∆tΨ

[A]
∆t (3.38)

ΨPalindromic-Lie-Trotter-Backward
∆t = Ψ

[A]
∆tΨ

[B]
∆t (3.39)

For all methods applied, for a given variable xi, the error estimate of that

variable, ϵi, is normalised to its magnitude according to

ϵi =
ϵi

1 + max (|x̂i| , |x̃i|)
(3.40)

where x̂i and x̃i are the approximations to xi given by the two methods. The

total error over all N variables is then given by

ϵ =

√√√√ 1

N

N∑
i

ϵ2i . (3.41)

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 95

The time step taken by the operator splitting scheme is modified in re-

sponse to the error estimate. Applying the widely used method [117] given

by

∆tnew = 0.9∆told

(
TE
ϵ

) 1
2

where TE > 0 is the error tolerance, ϵ is the error approximation, and ∆told

is the previously taken time-step, results in error estimates very close to and

slightly under the specified tolerance and therefore only rarely resulted in

re-computation of the solution.

Since source functions for applied electrical stimulus are often discontinu-

ous, frequently taking the form of Heaviside functions, uncontrolled adaptive

operator splitting methods can often overstep the application of external

stimuli. Therefore, in order to ensure that important features of a simula-

tion, such as stimuli, are not excluded, the maximum size of ∆t for each time

step must be controlled.

As an example, a simulation in which the substrate is subjected to pacing

stimuli with period ∆BCL, stimulus duration ∆duration, and total simulation

length tmax is defined. The time since the last stimulus is ∆last, and the

current time is t. A diagram describing this situation is given in figure 3.1

Figure 3.1: Schematic of time step control for simulation with paced applied
electrical stimulus. Pacing stimuli with period ∆BCL are applied with dura-
tions ∆duration. The time since the last applied stimulus is ∆last. A maximum
time step can then be calculated to ensure that the entire duration of each
stimulus is applied and that the next applied stimulus is not excluded.

96 CHAPTER 3. NUMERICAL METHODS

The time step can be controlled such that: neither the stimuli are ig-

nored nor the desired end of the simulation is overstepped by the following

procedure

1. ∆t = ∆tnew

2. if ∆duration > ∆last then ∆t = min (∆duration −∆last,∆t)

3. ∆t = min (∆BCL −∆last,∆t)

4. ∆t = min (tmax − t, δt)

An upper limit on ∆t was imposed by setting ∆t = min (∆tnew, TNext − T)

in order to ensure that external stimuli applied to the simulated tissue are

not overstepped by the solver. Here TNext is the time of the next applied

stimulus or the time at which the simulation is to end, whichever comes first,

and T is the current simulation time.

Due to the nature of adaptive operator splitting schemes, arbitrarily

coarse time steps could be imposed on the solver of the cell model. For

such coarse time steps, the commonly used methods of forward Euler and

Rush-Larsen[96] are unlikely to give a sufficiently accurate or stable solution.

The maximum value of the super time steps taken by the operator split-

ting method could be controlled by imposing a hard upper limit known to

be under the maximum value for which FERL converges, however, this will

potentially result in a less efficient overall method since then the diffusion

equation will also have to be solved over this smaller time-step.

Instead, in order to account for this, cell model methods are solved several

times over each time interval. This ensures that the time step used for each

solution of the cell equations is no larger than the maximum time step that

is known to produce accurate and stable results. This time step is iteratively

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 97

applied until the equations have been solved over the desired interval. If a

maximum time-step of ∆tmax < ∆t is imposed while solving the cell equations

over an interval of length ∆t. Then N + 1 steps can be taken such that

∆t = N∆tmax + ϵ, where N ≥ 0 is any positive whole number and 0 < ϵ <

∆tmax. The cell equations are solved N times with the time-step ∆t and

once with the time-step ϵ. It was found, during validation, that this method

was sufficiently robust and accurate for solving the cell equations during the

required stages of the adaptive operator splitting schemes.

Solid and fluid systems are non-linear and have much DOFs. In compari-

son, the diffusion system is linear and has comparatively few DOFs. Solving

for the solid and fluid dynamics at every iteration of the electrophysiology

solve is therefore much more expensive than solving for electrophysiology

alone.

Operator splitting methods alternately solve for the individual differential

operators over fractional time steps from the solution of which the next differ-

ential operator is solved. Solving with inertial effects (i.e unsteady, solid and

fluid mechanics) requires BDF/Newmark time-steppers, which use previous

solution values to approximate time derivatives. Since the fractional time-

steps found in operator splitting methods are not physical solutions, it may

not make sense to apply generally, high order, BDF/Newmark time-steppers

to them.

Single-step time-steppers such as backward Euler, which is synonymous

with the single-step BDF time stepper, are used in operator splitting to

solve the cell-diffusion coupled system. This could also be applied to the FSI

coupled system, however, due to the nonlinearity and stiffness of hyperelastic

solid equations and fluid models, this may result in a high error and therefore

require very small time steps to guarantee convergence. The solution of solid

98 CHAPTER 3. NUMERICAL METHODS

and fluid mechanics with inertial effects may therefore not be feasible over

the course of an operator splitting solve.

Commonly, inertia-free assumptions are made for cardiac tissue[97]. If

the inertia-free assumption is made, then the solid and fluid mechanics can

be solved during the operator splitting method in a third stage using an

ABC operator splitting method. However, changes in the pressure of blood

entering the heart, and deformation of the fluid domain during muscular

contraction and relaxation result in a physical system which is unlikely to be

suitably approximated by a steady fluid flow.

It is observed that the time scale of sarcomere shortening and therefore

that of solid deformation and changes to blood flow are longer than that of

cellular electrical dynamics. This motivates the use of weak coupling.

3.5.4 Operator splitting applied to the bidomain and

monodomain equations

The bidomain equations solved by the newly implemented Oomph-lib ele-

ments are given by 2.52 and 2.53 along with 2.15 which is solved for the cell

variables and where Iion is given by 2.16.

When operator splitting is employed to solve this system, the non-linear

source terms are separated from the linear diffusion terms. This results in

3.5. MONOLITHIC AND PARTITIONED SOLUTIONS 99

the equations

JCm

(
∂ṽ

∂t
− ∂ṽ

∂xI

∂XI

∂t

)
=

∂

∂xI

(
D̃IJ

∂(ṽ + ϕ̃)

∂xJ

)
, (3.42)

∂

∂xI

(
D̃IJ

∂ṽ

∂xJ

)
+

∂

∂xI

(
(D̃IJ + ẼIJ)

∂ϕ̃

∂xJ

)
= 0, (3.43)

Cm
∂ṽ

∂t
+ Iion(ω, ṽ, t)− Isource(x, t) = 0, (3.44)

∂ω

∂t
= f(ω, ṽ, t). (3.45)

With the same boundary conditions defined in 2.54 and 2.55.

The equations 3.42 and 3.43 now represent one of the splitting operators,

and equations 3.44 and 3.45 represent the other. When Strang-splitting is

applied, the non-linear source terms are the first operator and the diffusion

terms are generally the second operator.

In order to derive the system of equations for the monodomain model

with operator splitting the same simplifying assumption 2.56 is made. This

results in

JCm

(
∂ṽ

∂t
− ∂ṽ

∂xI

∂XI

∂t

)
=

∂

∂xI

(
D̃IJ

∂(ṽ)

∂xJ

)
, (3.46)

Cm
∂ṽ

∂t
+ Iion(ω, ṽ, t)− Isource(x, t) = 0, (3.47)

∂ω

∂t
= f(ω, ṽ, t), (3.48)

with the same boundary condition 2.58 and where a relabelling of the intracel-

lular conductivity tensor has incorporated the 1
1+λ

term into the conductivity

tensor components D̃IJ

100 CHAPTER 3. NUMERICAL METHODS

3.5.5 Mechano-electrical feedback

The conductivity tensor changes in response to tissue deformation. Strong

coupling allows for the conductivity tensor to be updated in response to solid

deformation, whereas for weak coupling the solid deformation is fixed for the

duration of the electrophysiological solution.

Strong coupling, for the stress decomposition formulation, also allows for

SAC to be mediated by a continuously changing measure of strain, whereas

for weak coupling the strain either has to be taken only from the cell model or

prescribed by the solid deformation and hence held constant. However, since

the elastic strain formulation varies over the course of solving the electrophys-

iology system, the active strain decomposition method allows for the strain

to be updated even when the deformation of the body is held constant. The

active strain decomposition may therefore mitigate the drawbacks of only

weakly coupling the electro-physiology solve to the FSI physics.

3.6 Solving linear systems

3.6.1 Newton’s method

Oomph-lib assumes all problems to be non-linear and that the solution is

dependent on M discrete values. Some variables may be prescribed, e.g.

boundary conditions, and therefore only some subset N of these values are

unknowns. It is assumed that these values are determined by solving a system

of N non-linear equations which may be written in a residual form as

Ri(Uj) = 0, for j = 1, . . . , N.

This system of equations is then solved using Newton’s method.

3.6. SOLVING LINEAR SYSTEMS 101

Consider a choice of parameters Ūj to be some initial guess for the true

solution Uj. Assuming that the initial guess is suitably close to the true

values we can write

Ūj + δUj = Uj.

Substituting this form of Uj into the residuals provides

Ri(Ūj + δUj) = 0

and the task is now to find the values δUj. We perform Taylors expansion

on the residuals which yields

Ri(Ūj) +
∂Ri

∂Uk

∣∣∣∣
Ūj

δUk ≈ 0

which when rearranged provides

Jik

∣∣
Ūj
δUk = −Ri(Ūj). (3.49)

The default procedure to solve equations 3.49 is through iteration. An

initial guess is provided, the variance δUK is calculated and the guess is

updated and fed back into the equations. The full procedure is outlined as

1. Initialise the iteration counter, n = 0.

2. An initial approximation of the unknowns is given by U (n)
j .

3. The residuals are evaluated as R(n)
i = Ri(U

(n)
j).

4. A suitable norm of the residual vector, R(n)
i , is evaluated. If the value

of this norm is less than some predefined tolerance then stop and accept

U
(n)
j as the solution.

102 CHAPTER 3. NUMERICAL METHODS

5. The Jacobian matrix is evaluated with J (n)
ik = ∂Ri

∂Uk

∣∣∣∣
U

(n)
k

.

6. The linear system J (n)
ik δUk = −R(n)

i is solved.

7. The guess is updated with U (n+1)
j = U

(n)
j + δUj.

8. Increment n = n+ 1 and go to step 3.

3.6.2 Direct and iterative solvers

Solving the linear system,

JijδUj = −Rj (3.50)

can vary in numerical complexity depending on the form of the matrix Jij.

Through personal experience, systems arising in cardiac simulations are ad-

equately and most efficiently solved using direct linear solvers, however, for

comparison, a brief overview of iterative solvers will be given.

Issues with convergence emerged when SuperLU was used in solving the

monodomain equation. These issues were remedied when the Mumps direct

parallel solver was used. Mumps is a parallel sparse direct solver and its use

within Oomph-lib is well documented[118].

Chapter 4

Developing the numerical package

Oomph-lib is a proven numerical library for the simulation of multi-physics

problems. It has been applied to research in a number of different fields and

presents a possible alternative approach to numerical simulation of cardiac

multi-physics.

Cardiac simulations involve the solution of many, often stiff, systems of

equations. The robust method in which the Oomph-lib monolithic solver

handles stiff numerical systems, such as those which arise in FSI with large-

scale deformations[16], potentially makes it particularly well suited for whole

organ cardiac or whole cardiovascular system simulations.

FEM, although generally more complicated to implement than FDM

and DEM, has several advantages such as robust spatial error measures,

well-documented mesh refinement procedures, and taking advantage of the

weak formulation to reduce smoothness requirements on the solution. How-

ever, cardiac biomechanics can be, and often are, simulated with FVM[119],

FDM[95], DEM[120], or FEM[109]. Oomph-lib is implemented to use FEM,

although it is conceivable that the finite elements within Oomph-lib could

be repurposed to use other numerical methods such as FDM. Indeed, since

103

104 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Oomph-lib is open source, any changes or additions to Oomph-lib necessary

for any purpose can be made to the library.

One of the key advantages of Oomph-lib over other numerical libraries,

other than its open-source licensing, is the flexibility in which boundary

conditions and source terms can be implemented as well as how multiphysics

interactions between separate elements are set up.

Implementing the equations required for simulating cardiac biomechanics

within Oomph-lib will add several key features to the library. Namely, the ad-

dition of operator splitting methods for highly non-linear point source terms.

Oomph-lib is a monolithic solver, which is well-suited for most physical prob-

lems. However, the simulation of biophysically detailed cardiac biomechanics

requires the computation of cell models with many variables, often of the

order 102. Although the Oomph-lib’s monolithic solver could indeed simu-

late these point source terms alongside the electrical diffusion equations that

couple them, this approach is often prohibitively slow since the resultant

Jacobian in the Newton solver would be very large. For this reason, opera-

tor splitting schemes are often implemented to separate the non-linear point

source terms from the diffusion terms. In developing cardiac electrophysiol-

ogy elements, additions were made to the library which allows for the sepa-

ration of point source terms from the rest of the Oomph-lib finite elements

and meshes which may be applicable to other, structurally similar, physical

problems. Anisotropic solid mechanics was also added. The equations which

govern non-linear solid deformation within Oomph-lib are implemented in an

isotropic fashion. Currently, changes can be made to the constitutive laws

which determine stress-strain relationships to include anisotropic effects such

as fibre reinforcement, however, if anisotropic effects vary spatially in a way

which is difficult to capture analytically, as is found in the heart, then a

4.1. OOMPH-LIB 105

reimplementation of these elements is required. Anisotropic versions of the

isotropic non-linear solid elements were developed and implemented in such

a way that anisotropic terms can be derived from external finite elements,

including the non-linear point source terms. This approach allows for tissue

models based on detailed Magnetic Resonance (MR)/Computerised Tomog-

raphy (CT) imaging to be simulated. A pipeline has been developed for the

generation of Oomph-lib meshes from such MR/CT images which provides an

alternative approach to the current method by which biological solid meshes

are generated within Oomph-lib.

By developing the equations for cardiac biomechanics within Oomph-lib,

the choice of numerical methods, such as time-stepping and spatial inter-

polation and integration, can be restricted to those which are already im-

plemented within Oomph-lib. Although the library does not prohibit the

development of alternative methods should they be more suitable for a spe-

cific purpose.

Finally, Oomph-lib has been predominantly developed at the University

of Manchester which has allowed for insightful and expert guidance during

the development of several of these additional features.

4.1 Oomph-lib

Oomph-lib is an open-source finite-element library developed and maintained

within the Department of Mathematics at The University of Manchester. In

order to write a simulation with Oomph-lib, a user will write their own C++

driver code using high-level objects contained within the library. Extensive

documentation is provided for existing functionality contained within the

library along with example codes and tutorials.

106 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Oomph-lib provides a large number of existing objects including elements

and time-steppers which can be combined to solve many problems. For any

problems which cannot be solved with the provided objects, new functionality

can be added.

Self-tests are provided for use during code development, which

can be enabled by setting the compiler flags DPARANOID and

DRANGE_CHECKING. If an issue is encountered when these flags

are set then the code will terminate gracefully and provide the information

required to perform diagnostic checks[121]. Considerable computational

overhead is incurred through the use of such checks, so they can be turned

off in production runs.

The main aim in the design and implementation of the Oomph-lib library

is to provide an environment which facilitates robust, monolithic solutions

to multi-physics problems while maximising the potential for code reuse.

Application of monolithic solvers allows for the complete system of algebraic

equations, derived after discretisation of systems of PDEs, to be solved using

Newton’s method[122]. Newton’s method is known to converge quadratically

for a suitable initial guess which leads to a robust solution to coupled multi-

physics problems. In contrast to Picard, or partitioned, solvers which often

converge slowly or fail to converge at all, this is a favourable outcome.

Oomph-lib has been used in a number of studies in fluid mechanics, solid

modelling, FSI, and acoustics. Its open-source nature has allowed for the

implementation of new functionality specific to cardiac modelling which is

capable of interfacing with pre-existing Oomph-lib objects and code.

Oomph-lib is designed for ease of use at the highest level of interaction.

Comparatively, little training is required for a user to write their own driver

codes and run simulations using the existing high-level objects.

4.2. STRUCTURES WITHIN OOMPH-LIB 107

Support is provided for parallel processing using mumps and for use of

external linear solvers and preconditioners including scalapack, trillinos, and

hypre.

Support and tutorials exist for conversion between medical scans and

Oomph-lib meshes. Examples include analysis of fluid flow through bifurca-

tions of blood vessels[123], the geometry of which is derived from MR/CT

scans using the Vascular Modelling Toolkit, VMTK[124].

Two-dimensional and three-dimensional idealised geometries can be gen-

erated using structured or unstructured techniques. Hard-coded structured

meshes can be written in the form of new geometries and meshes, whereas

unstructured meshes can be generated using third-party open-source soft-

ware such as Triangle and Tetgen. Tutorials for both are provided in the

online documentation.

4.2 Structures within Oomph-lib

The main components of Oomph-lib are Data, Node, GeneralisedElement,

Mesh, and Problem

4.2.1 Data

The most basic elementary data in Oomph-lib is Data. Data stores a double

precision number, the value of which is typically determined by a system

of equations. The solution of this system will usually require a numbering

scheme which describes the unknowns, for this reason, Data also stores an

integer which represents the number of the unknown in the global numbering

scheme.

Often when solving such equations, DOFs can be pinned. Oomph-lib

108 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

adopts the convention which enforces that the equation number is set to a

negative value if the Data is pinned.

In time-dependent problems, approximations of time derivatives are re-

quired. Therefore Data also stores auxiliary variables which describe the val-

ues of the unknowns at previous time steps and a pointer to the time-stepper

which relates these history values to the time derivatives of the values.

In many problems, the solution is given by vector-valued unknowns. For

this reason, Data is allowed to store multiple values, all of which have their

own global equation number and history values.

Values stored within Data are read and written to by access functions.

The ith value at present time is accessed via

Data : : value_pt (i)

and the tth history value with

Data : : value_pt (t , i) .

Write functions are similarly defined as

Data : : set_value (i , va l)

and

Data : : set_value (t , i , va l)

respectively.

4.2.2 Nodes

Nodes in Oomph-lib are derived from Data. They store nodal data within the

Data values, in addition to this they store spatial position which is specified

at a number of coordinates. The nodal positions are accessed using

Node : : x (i)

4.2. STRUCTURES WITHIN OOMPH-LIB 109

and history values with

Node : : x (t , i) .

4.2.3 Elements

Elements in Oomph-lib are based upon a four-level inheritance structure[125],

separating:

1. the basic functionality that is shared by all generalised elements.

2. the functionality that is shared by all finite elements.

3. the implementation of the finite element geometry i.e. the shape-

function-based mapping between local and global coordinates.

4. the representation of the mathematics that describes a specific problem.

The distinction between the four levels of inheritance facilitates code reuse

as for example, many geometric elements can be used for the solution of

a number of different equations defined at the mathematics level. More

information on the different levels of inheritance of Oomph-lib elements is

provided in the online documentation[125]

4.2.4 Meshes

A Mesh has several minimum requirements that it must satisfy, these are

listed in the online documentation (http://www.Oomph-lib.org/) as

• Construct the elements and the Nodes.

• Store pointers to the elements in the Mesh::Element_pt vector.

• Store pointers to the Nodes in the Mesh::Node_pt vector.

http://www.Oomph-lib.org/

110 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

• Set the elements’ pointers to their local Nodes.

• Set the positions of the Nodes.

Those which are most relevant to the development of the numerical package

are discussed briefly here.

A Mesh stores the finite element representation of a domain. Such a

representation consists of finite elements, which themselves consist of nodes.

At construction, a Mesh will construct the elements and nodes that it con-

tains. The pointers to the elements and nodes are stored in the vectors

Mesh::Element_pt and Mesh::Node_pt respectively.

In order to function properly, the finite elements must be made aware

of which nodes in the mesh are their local nodes. This is often achieved

through calling the finite element member functions construct_node or con-

struct_boundary_node. These functions create a node, pass a pointer to it to

the finite element at the appropriate local node number, and return a pointer

to the node for the Mesh to store.

The global position of the nodes must be set. This defines the global

shape and size of the finite elements.

4.2.5 Problems

Within Oomph-lib, the problem class contains the meshes and additional

objects, such as time-steppers required to perform the numerical calcula-

tions. Mesh construction, Newton solves, and time-stepping is performed by

invoking high-level member functions of the problem class.

4.3. THE USE OF OOMPH-LIB 111

4.3 The use of Oomph-lib

The procedure for setting up a driver code with Oomph-lib is extensively

detailed in the library’s online documentation and the many tutorials found

therein[121]. According to the coding conventions set out in the documen-

tation, a driver code will consist of a name space that details parameters

and static functions used throughout the code to formulate the physical sys-

tem, a problem class which outlines the problem being solved, and the main

function loop which is executed.

4.4 What has been added to Oomph-lib

In order to simulate the physical processes within the human cardiac system,

several additions needed to be developed in line with the Oomph-lib state-

of-the-art and integrated into the library. Broadly speaking there were four

areas which were added to the library, each containing several sub-structures

which had to be developed. These areas are anisotropic electrical diffusion

models, computation of non-linear source terms and communication of these

terms to the wider library, anisotropic solid mechanics and constitutive laws,

and biophysically detailed mesh generation.

The additions most similar to existing Oomph-lib structures are the

anisotropic electrical diffusion models, and the anisotropic solid mechanics

and constitutive laws. These consist of classes similar in implementation

to existing Oomph-lib classes. Anisotropic electrical diffusion models were

implemented from scratch, and anisotropic solid mechanics and constitutive

laws were implemented by, in part, inheriting from the existing PVD

elements.

There were a number of major obstacles to implementing these additions.

112 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

The obstacle which required the most time to design, refine, and test was the

addition of separate structures by which non-linear source terms are stored,

computed, and communicated to the rest of the Oomph-lib classes. These

structures needed to be applicable to general cardiac cell models, integrate

into Oomph-lib finite elements, operate in both serial and parallel, operate

correctly within distributed problems and meshes, efficiently handle mem-

ory, and implement operator splitting by means of calculating a partitioned

solution alongside Oomph-lib. This functionality had to be implemented in

a manner which minimally impacts the structure and form of driver codes

and is in line with the existing Oomph-lib coding conventions.

A further addition which required extensive work to implement is the gen-

eration of biophysically detailed finite element meshes. These unstructured

meshes can often be very large with many millions of nodes and elements

and, in general, are not in a format which can be recognised by Oomph-

lib. A method of generating Oomph-lib meshes for the simulation of both

electrophysiology and mechanical deformation was implemented. Oomph-

lib can implement 3D unstructured mesh generation using TetGen. A spe-

cific example driver code[123] implements the generation of solid and fluid

meshes of an iliac bifurcation from MR/CT images which are converted using

VMTK to files required by TetGen. This implementation however is specific

to bifurcation-like geometries. Furthermore, since the solid mesh is gener-

ated from the MR/CT images of the fluidic region by a conversion code, this

implementation only deals with the constant thickness of the vessel walls.

In order to simulate anatomical cardiac meshes, a more general method of

constructing Oomph-lib meshes from biophysically detailed geometries was

required and was implemented. Since Oomph-lib mesh generation procedures

require knowledge of element facets on the boundaries on a domain, a robust

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 113

and efficient method for the identification of boundary facets had to be de-

signed. This unstructured mesh generation was implemented in such a way

that, in future work, the corresponding fluidic meshes on the interior of the

vessel can be generated for electro-mechanical-fluidic simulations.

Anisotropic electrical diffusion elements were implemented from scratch.

The bidomain equations are so dissimilar from all existing Oomph-lib ele-

ments that it was simpler to start without using an existing element as a

framework. However, the monodomain equation is similar to the unsteady

heat equation. The unsteady heat equation was therefore used as a guide for

the implementation, although certain substantial changes were made.

The PVD equations represent some of the most complicated structures

in Oomph-lib. These implement the solution of the PVD, specified to Carte-

sian coordinates, for compressible, incompressible, and nearly-incompressible

solids. Several satellite elements handle the application of surface trac-

tion and communications of forces and pressures to and from fluid elements

when used in FSI problems. In order to avoid re-implementing these fea-

tures and to maximise code re-use, which is a core part of the Oomph-lib

ethos, the anisotropic solid PVD classes inherit from the existing Oomph-

lib PVD classes. Additions and changes to certain functions were made so

that anisotropy can be communicated to the required points of computation.

This code reuse means that the anisotropic PVD elements can piggyback on

existing functionality which implements FSI.

All additions developed as part of this work are included in the source

files located at[126].

114 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

4.4.1 Solving for electrical diffusion

Monodomain and Bidomain equations were implemented in the standard

way for Oomph-lib. The equations were converted into the weak formulation

and the residual and Jacobian contributions from a general element were

formulated and implemented.

These finite elements can be used in the normal sense for Oomph-lib, used

as a template argument to build a finite element mesh which is then used to

solve the equations with or without time-stepping. As such, these equations

can be used in monolithic problems without any additional changes. They

have a forcing term which represents the transmembrane flux or fluxes of ions

and can be set to some analytic function which represents an idealised cell

model. Alternatively, if a cell model is implemented as an Oomph-lib element,

the elements can be used to construct Oomph-lib multi-physics elements or

be used in multi-physics, multi-domain discretisation simulations through

using the Oomph-lib multi-physics machinery. It is a requirement, for the

implementation of general cell models and operator splitting methods, that

these elements be set up in such a way that they can also be solved as part

of a wider operator splitting method.

Preparing for operator splitting

In order for general electrical diffusion models to be used with the operator

splitting machinery (described later), a base class from which all electrical

diffusion classes inherit was implemented as part of this work.

The BaseCellMembranePotentialEquations class defines several virtual

functions which must be overridden in a diffusion equations class.

The function which defines the index of the DOF which represents the

transmembrane potential is given by

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 115

virtual inl ine unsigned vm_index_BaseCellMembranePotential ()

const {return 0 ;}

This is virtual in case the element is used for multi-physics via multiple

inheritance. In such cases, the index of the DOFs required by this element

may have to be shifted to account for those of the other parent elements.

Alternatively, the DOFs of the other parent elements may be placed after

those of this one using the function

in l ine unsigned max_index_plus_one_BaseCellMembranePotential

() const {return vm_index_BaseCellMembranePotential ()+

required_nvalue () ; }

This accesses the first DOF index which is not used by this class and is

defined by the virtual function,

in l ine unsigned required_nvalue (const unsigned &n) const =0

which returns the number of DOFs this element requires. It is implemented

as virtual since any derived diffusion model must specify how many DOFs it

requires. For instance, the monodomain model has one DOF, whereas the

bidomain model has two.

Finally, and most importantly, the equations which represent the diffusion

model must be implemented. This is performed by filling the residual vector

and Jacobian matrix with the appropriate values via the function

virtual void

f i l l_in_gener ic_res idua l_contr ibut ion_BaseCe l lMembranePotent ia l

(

Vector<double> &re s i dua l s , DenseMatrix<double> &jacobian ,

DenseMatrix<double> &mass_matrix , unsigned f l a g)

Details of the fill-in procedure of the residual and Jacobian are given

throughout the Oomph-lib documentation and a brief resumé is provided in

the relevant sections on the finite element method.

116 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Additional functions that provide source terms and variables such as

membrane capacitance or conductivity are defined. This serves two pur-

poses. Firstly it reduces the amount of code which must be written when

implementing a new conductance model. Secondly, when used in multiphysics

such as when the tissue is deformed during muscular contraction, these func-

tions may change. This can be illustrated by the variable χ which represents

the membrane surface area per unit volume in the tissue in the monodomain

equations. This variable will, in general, change during the elastic deforma-

tion of the tissue. Implementing such functions in the BaseCellMembranePo-

tentialEquations class, therefore, means that a multiphysics version of these

functions only needs to be implemented once in the form of a wrapper class.

Of course, this cannot necessarily capture all functionality required by

a generic electrical diffusion model. All functionality required by the bido-

main equation and monodomain equation has been implemented, any further

functionality will have to be implemented as needed.

Relevant example drivers

The Oomph-lib website contains numerous example problems which detail

how the library can be used to simulate a myriad of physical systems. Several

of these example problems are important for the development of additions

to the library which are used in the simulation of the heart. The problems

discussed each provide an important step in library development.

The unsteady heat equation, which is already implemented in Oomph-lib,

is similar to the monodomain equation. It is given by

α
∂u

∂t
+ f = β

∂2u

∂x2
. (4.1)

Both the monodomain equation and unsteady heat equation contain only a

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 117

single DOF and so the number of DOFs required by their respective Oomph-

lib equation classes is also one.

The monodomain equation contains a weighting term in the second spa-

tial derivative which reflects variation in diffusion in the preferred directions

within the tissue.

Monodomain equations

The monodomain model over a domain Ω with boundary ∂Ω is given by 2.57

and 2.58 where V is the transmembrane potential, χ(x) is the membrane

surface area per unit volume of tissue, Cm(x) is the membrane capacitance

per unit membrane surface area, iion(x) is the transmembrane ionic current

per unit membrane surface area, D(x) is the conductivity tensor, and n(x)

is the outer unit normal to the domain boundary ∂Ω.

Implementing the monodomain equation using the unsteady heat equa-

tion as a framework required several changes. The parameters α and β must

be allowed to vary spatially. β must, instead of being a scalar, contain the

entries of a matrix which represents the conductivity tensor in the suitable

coordinate basis. Additionally, β must also be incorporated into the second

derivative. Finally, the variable χ must be introduced to the formulation and

also be permitted to change spatially throughout the element.

The weak formulation of 2.57 is determined by multiplying by a test

function ψ and integrating over the domain Ω

∫
Ω

{
χ(x)

(
Cm(x)

∂V

∂t
+ iion(x)

)
ψ + (D∇V) · ∇ψ

}
dν =

∮
∂Ω

ψD∇V · n ds,

(4.2)

where dν is the volume element, and ds is the surface area element. The

118 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

boundary condition 2.58 is then applied to arrive at the residual equation

which is implemented by the monodomain equations class

R =

∫
Ω

{
−χ(x)

(
Cm(x)

∂V

∂t
+ iion(x)

)
ψ − (D∇V) · ∇ψ

}
dν. (4.3)

In the finite element formulation, this corresponds to the residual element

contributions from the eth element enclosing the region Ωe,

Rk =

∫
Ωe

{
−χ(x)

(
Cm(x)

∂V

∂t
+ iion(x)

)
ψk − (D∇V) · ∇ψk

}
dν, (4.4)

and the Jacobian element contributions

Jkj =

∫
Ω

{
−χ(x)

(
Cm(x)ψjw + Ẋ(x) · ∇ψj

)
ψk − (D∇ψj) · ∇ψk

}
dν.

(4.5)

During residual and Jacobian fill-in procedures, the variables χ(x), Cm(x),

D(x), and iion(x) are determined via spatially dependent functions which are

specified by the user when writing the driver code. These functions are

inherited from the BaseCellMembranePotentialEquations class.

Bidomain Equations

The bidomain equations contain several terms which are similar to the mon-

odomain equation and solve for two different variables. Their implementation

cannot be simply based on any existing Oomph-lib elements and they must

be implemented in their entirety.

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 119

The contributions to the residual for the eth element are given by

RV
k =

∫
Ωe

−χ(x)
(
Cm(x)

∂Vm
∂t

+ (Iion(x)− I1(x))

)
ψk

− (D(x)∇(Vm + ϕ)) · ∇ψk dν (4.6)

Rϕ
k =

∫
Ωe

− (D(x)∇Vm) · ∇ψk − ((D(x) + E(x))∇ϕ) · ∇ψk dν. (4.7)

and the Jacobian entries

∂RV
k

∂Vj
=

∫
Ωe

−χ(x)
(
Cm(x)ψjw + Ẋ(x) · ∇ψj

)
ψk − (D(x)∇ψj) · ∇ψk dν

(4.8)

∂J ϕ
k

∂Vj
=

∫
Ω

− (D(x)∇ψj) · ∇ψk dν. (4.9)

∂RV
k

∂ϕj

=

∫
Ωe

− (D(x)∇(ψj)) · ∇ψk dν (4.10)

∂J ϕ
k

∂ϕj

=

∫
Ω

((D(x) + E(x))∇ψj) · ∇ψk dν. (4.11)

4.4.2 Adding non-linear point source terms

So far, electrical diffusion elements have been implemented in the standard

way for Oomph-lib elements. However, if operator splitting is to be employed

then several additional functionalities are needed. In this case, the cell model,

instead of being an Oomph-lib element or an ideal forcing function, is rep-

resented by an external container which must be in some way linked to the

standard Oomph-lib objects. Among other requirements, the transmembrane

potential has to be communicated to and from the cell model, active strain

needs to be communicated from the cell model to PVD elements, the elastic

strain may need to be communicated from PVD elements to the cell model,

and physiologically detailed diffusion tensor and cell alignment information

120 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

may need to be communicated from the cell model to the diffusion and PVD

elements. A wrapper of the conductance element handles this communica-

tion of data between the Oomph-lib elements and the cell model containers.

Additionally, a wrapper of the Mesh class sets up the correspondence between

the cells and the nodes/elements in the mesh, stores the cell containers, and

provides helper functions which facilitate operator splitting solutions as well

as the construction of the cell mesh.

Previous iterations of the implementation

Several implementations of non-linear point source term implementations

were attempted and after testing were further refined. These included at-

tempts to introduce non-linear point source terms as Oomph-lib finite ele-

ments and in doing so hijack the Monolithic Newton solver to solve for any

point-source variables. These attempts led to either unwieldy implemen-

tations or inefficient computation time. As such the final implementation

represents the most efficient and elegant attempted solution.

The Cell Mesh

CellMeshBase operates as a wrapper to the Mesh class. It adds functionality

required by a mesh to operate with the non-linear source terms and pro-

vides useful helper functions which aid in constructing cell models, setting

up initial conditions, outputting, and performing partitioned time-stepping

via operator splitting.

Instances of cell models are stored within CellMeshBase which handles

their construction and the communication of variables to and from other

multi-physics elements. Cell models are stored via pointers within a dynam-

ically allocated vector. Cells are associated with nodes in the mesh in a

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 121

one-to-one correspondence, this allows for operator splitting to be performed

without the need to project the membrane potential from the cells to the

nodes or vice-versa when the cells have the same resolution as the electri-

cal diffusion mesh. As such, the value of the underlying node can simply

be copied to the relevant cell, or the value in the cell can be copied to the

relevant node.

In order to be used with an Oomph-lib mesh, the user must define

the function BuildCells which handles the construction of cells at the

nodes in the mesh. This is performed by calling the templated function

build_cell_at_node for each of the nodes in the mesh. The template argu-

ment is the class of the cell model which is to be built. build_cell_at_node

accepts two arguments, the node number in the mesh, and the number of

backup data the cell model requires. Backup data is utilised by the cell model

to store and restore solutions internally. These operations are useful when

implementing adaptive operator splitting methods. build_cell_at_node

returns a pointer to the constructed node so that any other setup required

by the model, such as assigning cell type, setting the external electrical

stimulus function, and setting fibre alignment and diffusion coefficients, can

be performed. All other setups, such as constructing a correspondence with

the correct node and elements in the mesh is automatically performed.

Any child class which inherits from CellMeshBase must call the CellMesh-

Base function FinalizeMeshSetup within its constructor. FinalizeMeshSetup

builds the lookup tables for nodes and elements, calls BuildCells, and finally

sets up for parallel computation if Oomph-lib has been built with MPI. Fi-

nalizeMeshSetup must be called in the child class constructor since CellMesh-

Base requires the nodes and elements of the mesh to already be created and

so cannot be called in the CellMeshBase constructor.

122 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Node-Element lookup tables are generated within FinalizeMeshSetup by

a call to the function BuildNodeElementTables. This constructs the vector

of pairs Elements_containing_node. The index of the vector is the global

node number, and each element in the vector consists of the list of numbers

of the elements which contain that node and the local node number of the

node within those elements.

During calls to the function build_cell_at_node in BuildCells, the

function add_cell_to_node is called in which the cell is provided infor-

mation about its corresponding node, an element that node exists in,

and the local and global coordinate of the node. This function relies on

Elements_containing_node which is assembled only once after the elements

and nodes have been constructed during the call to FinalizeMeshSetup. This

expedites the construction of cell models at the nodes of the mesh since cor-

responding elements can be found quickly using Elements_containing_node.

When a cell model is built at a node, all elements which contain the node

are provided with a pointer to the cell along with the local index of the

node within the element. The elements are then able to access data in the

cell model, for example, to access fibre alignment or active stress, and the

cell model is able to access and modify data in the elements, such as when

assigning initial membrane potential.

Finally, if Oomph-lib has been built with MPI enabled, the function Se-

tupDataIndices is called. This prepares storage for the communication of

cell solutions across processors. For large numbers of cells, it may be benefi-

cial to solve them in parallel rather than in series. In such cases, the list of

cells within the mesh is partitioned and each processor computes the solu-

tion to only a subset of the total cells. The solution stored on each processor

must then be communicated to the other processors. In order to do so, vec-

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 123

tors of local solutions must be assembled by each processor, which are then

sent to all processors through a call to MPI_Allreduce. In some cases, such

as caricature cell models consisting of very few simple equations, commu-

nication of data between processors may be more computationally expen-

sive than calculating the solution to the cell model. For these circumstances

the compiler flag Oomph_FORCE_SERIAL_SINGLE_CELL_SOLVE can

be defined, in which case each processor computes the solution to all cells

independently and serially. Taking time steps with all cells in the mesh

either in parallel or in series is handled automatically through a call to

Take_time_step_with_all_cells_in_mesh. This function accepts as its ar-

guments the time-step ∆t, and a pointer to the Oomph-lib problem class

which is used to access the MPI distribution.

Large-scale simulations can consume a huge amount of memory. By de-

fault, a complete copy of the Oomph-lib Problem is stored on each processor.

Therefore when simulations are run in parallel they consume roughly that

volume of memory times the number of processors they are run on. The

size of a problem can therefore be limited by the amount of memory avail-

able on each processor. Additionally, mesh adaptation does not benefit from

parallelisation since each processor must adapt its own copy of the meshes

within the problem. Oomph-lib has a system for dealing with this, called

distribution. In distributed problems, the problem is initially built in serial.

The Problem class member function distribute is called which in turn calls

the Mesh class member function distribute for each mesh in the Problem.

This, for each mesh, removes from each processor all but that processor’s

share of elements and nodes so that only a subset of the finite elements from

each mesh are stored on each processor. In this way, the complete problem

is only stored in memory once. As a result, distributed problems consume

124 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

substantially less memory when run in parallel than their non-distributed

versions. Furthermore, the time taken to perform mesh adaptation can be

substantially decreased since each processor now only needs to perform the

adaptation procedure on a subset of the total elements.

Simple problems within Oomph-lib can be fairly trivially distributed.

More complicated problems require more care and work at the point the

driver is implemented.

The wrapper class CellMeshBase adds additional member data and mem-

ber functions to the Mesh class. Such additions must be handled properly

when the problem is distributed. Therefore, in order to allow for larger prob-

lems using the CellMeshBase to be run in parallel, distribution has been

re-implemented in CellMeshBase. Distributed problems more efficiently fill

memory, however, since data must be communicated between the regions

solved by different processors, additional computational overhead is intro-

duced during the Newton step and single cell solve. This overhead may be

offset to some degree by the introduction of additional processors, however,

an optimal number of processors will likely exist for each problem. Fur-

ther improvements may be made to a problem by minimising the size of the

boundaries between the distinct distributed regions since this will minimise

the communication required between the processors.

Since cardiac simulations are often characterised by small stiff sub-regions

in the form of a propagation wave, it follows that a small number of processors

may bear a disproportionately large fraction of the cost required to solve for

a single time step. It is unclear however how this could be mitigated since

the distribution of a problem is often costly, and would have to be performed

several times as the wave front travels through the domain. This may not

prove to be such an issue since cell models often do not require significantly

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 125

more computation when experiencing upstroke as compared with other times

unless adaptive time-stepping is implemented.

CellMeshBase can handle any number of different cell models. Since the

cells operate fully independently of one another there is no conflict with data

storage or performing operations such as time-stepping. If the cell model

data was stored as DOFs within an Oomph-lib mesh then each node in the

mesh would require an arbitrary number of DOFs. Such implementations

may be possible within Oomph-lib, and indeed some elements, such as fluid

meshes with continuous pressure allow for nodes with differing numbers of

DOFs. However, the number of DOFs required by each node is known a-

priori since it is clearly specified within the element class. This was one

of the main contributing factors in the decision to extricate the cell models

from the Oomph-lib finite element paradigm and instead store them within

an entirely distinct, newly implemented structure.

As with Oomph-lib mesh classes, CellMeshBase requires a template ar-

gument which specifies the finite element class. In order to ensure that this

finite element class is compatible with the CellMeshBase and cell models,

this element must inherit from the class BaseCellMembranePotentialEqua-

tions. In order to handle Paraview output with more than one cell model, an

alternative Paraview output function is provided for CellMeshBase derived

meshes. The function output_paraview_per_cell_model will produce a vtu

output file for each cell type the mesh contains. As arguments, it requires the

directory in which the vtu files are to be generated, the generic root file name

(e.g. cell_sheet, etc), the output number which is appended to the names

of each of the files, and the number of points to be plotted along the edges

of each finite element. output_paraview_per_cell_model returns a vector of

pairs of strings, each element of the vector contains the cell model name and

126 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

the corresponding vtu file to which that cell model’s data was output. The

user can then use this information in the driver to append the appropriate

.vtu file to each .pvd file. A separate vtu file must be generated for each cell

model within the mesh since each cell model may have an arbitrary number

of variables with no relation to the variables in the other cell models.

The Fully Partitioned wrapper class

Data from the cell model is required for multi-physics simulations. Diffusion

models require the diffusion tensor and the membrane potential from the cell

models, and external elements such as AnisotropicSolidEquations require fi-

bre and sheet alignment and active strain or stress. Additionally, the cell

model requires data, such as membrane potential or strain, from these ele-

ments. This data must be suitably interpolated to the coordinates at which

the cells exist, or where the external elements require it. In order to facili-

tate this, the wrapper class FullyPartitionedCellEquations is provided. This

wrapper adds functionality which allows for cell data to be interpolated to

Oomph-lib elements. It contains the pointers to cells associated with each

local node in the element, as well as procedures for interpolating the data

from the cells to any local coordinate within the element as well as adding

new dummy integral points at the nodes of the element, so that external data

may be interpolated directly to the coordinate of the cell via multi-physics.

To interpolate cell data for use by finite elements, the normal Oomph-lib

interpolation procedure is undertaken whereby basis shape functions are

evaluated at the interpolation point and the cell data at each node is com-

piled together with a weighted sum. Several functions for accessing specific

data have been implemented, including get_interpolated_cell_alignment

which calculates interpolated local fibre, sheet, normal directions,

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 127

get_interpolated_diffusion_tensor which calculates the diffusion tensor at

a local coordinate, and get_interpolated_active_strain_from_cell_model

which interpolates active strain generated by the cell models at each node.

In order to access data from external elements at each cell, integral points

are required to be aligned with the nodes of the element. This is because the

Oomph-lib function setup_multi_domain_interactions calculates the local

coordinate in elements of external meshes at which local coordinates of each

element lie only performs such operations at local integral points. This is

because such multi-domain interactions so far have only been required at

integral points for the calculation of contribution to residual and Jacobian

elements which take the form of an integral arising from weak formulations.

To provide these additional integral points, a new quadrature class

which is based on the Oomph-lib Gauss quadrature elements have been

used. These contain additional integral points with local coordinates aligned

with those of the nodes in the element. The integral weights associated

with the additional integral points are zero so that their existence does

not affect the value of integrals computed using the quadrature. The

member function ipt_at_node returns the appropriate integral point for

the requested local node number which can then be used by Elemen-

tWithExternalElement procedures to access the required external data.

Since these quadrature schemes are only used in meshes which contain

specific elements, such as those which inherit from MonodomainEquations,

fill_in_generic_residual_contribution_BaseCellMembranePotential of

these elements can be written such that only the genuine integral points

associated with the integral scheme are iterated over.

FullyPartitionedCellEquations also handles generic Paraview output of

cell data which is called by the CellMeshBase containing the element when

128 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

required.

The Cell Model class

Often in cardiac cell models, different types of variables require different time-

stepping schemes, such as forward Euler for ion concentrations, Rush-Larsen

for gating variables, and dense linear solvers for mechanical contraction-

related variables. It is often easier to hard code these solvers for each variable

rather than defining the derivative and using a general time-stepper such as

those used in Oomph-lib. There is also no guarantee that a cell model vari-

able will be linear or explicit in its first-time derivative as is a requirement

for Oomph-lib explicit time-steppers. This would restrict the use of implicit

time-stepping to the cell models which would require the inversion of dense

matrices and is often less efficient than explicit time-stepping. Furthermore,

as is mentioned in the discussion of the CellMeshBase class, cell models can

contain an arbitrary number of variables due to their differences such as the

number and types of ion channel models. As such, it would be particularly

difficult to engineer an Oomph-lib finite element which can implement, po-

tentially many simultaneously, generic cell models.

CellModelBaseFullyPartitioned contains all the functions required for

solving arbitrary cell models and linking their solution to Oomph-lib finite

element meshes with operator splitting. It is intended that CellModelBase-

FullyPartitioned allows for generic cell models to be implemented easily

without major modifications. CellModelBaseFullyPartitioned stores the

DOFs which represent the single-cell variables, such as ion concentrations

and gating variables, as generic double precision variables, similarly to

Oomph-lib Data/Node class. However, this data is stored with a difference

in the ordering of the information in contiguous memory when compared to

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 129

the Oomph-lib Node/Data class. The information in Oomph-lib Node/Data

is stored in blocks corresponding to each variable, accessing the next pointer

in the block returns the value at the next time step. This is not suitable for

generic cell models, since these are often implemented as accepting an array

which represents the current state of the cell variables. In order to facilitate

passing the information as an array to the CellModel function TakeTimestep,

it is required that the information is stored in blocks corresponding to each

state. In this way, accessing the next pointer within each block returns the

next variable at that backup. Information is stored in backup blocks within

the generic cell model base class in order to facilitate adaptive operator

splitting by storing and restoring solution states. Adaptive operator splitting

may additionally necessitate the storing and restoring of solutions due to

large time-steps attempts diverging or becoming unstable. In such cases,

it is useful to have a safe backup of the simulation at some previous time

to which the entire solution space can be reverted and reattempted with

smaller time steps. The number of backups for the cell variables is specified

by an argument in the cell class constructor and cannot be changed after

the cell has been constructed. This number of backups is passed to the

CellModelBaseFullyPartitioned constructor by the CellMeshBase function

build_cell_at_node.

CellModelBaseFullyPartitioned contains the function get_cell_model_name

which returns the name of the cell model. This is essential for the generic

output of cell data. Since a mesh containing cells can feasibly contain any

number of cell models, e.g. when the mesh contains several regions of the

heart each with distinct modelling characteristics, it is important that any

Paraview output be handled separately for each cell model. This is handled

automatically by the CellMeshBase as has already been discussed.

130 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Within the constructor of the cell class the vectors Names_Of_Cell_Variables

and Names_Of_Output_Data must be defined to contain the names of all

time-varying DOFs the cell model handles. This list must also contain the

membrane potential since, during operator splitting, differing versions of the

membrane potential are stored by each cell. The lengths of these vectors

inform the base cell class how much memory to allocate for the cell model,

as well as what to label the Paraview variables during the output of the

solution.

The function index_of_membrane_potential_in_cell_data must be de-

fined to return the index within the Names_Of_Cell_Variables at which the

membrane potential is stored. This is used for outputting and for functions

which assign the membrane potential to the cell model or underlying node.

The function get_initial_state_variable accepts as an argument the in-

dex of the variable for which the initial state is returned. The output of this

function must be determined for each cell model and can vary depending on

purpose and implementation. It is often used to return the state of cell model

variables after a number of conditioning external stimuli have been applied

and the cell model has reached a consistent resting state.

CellModelBaseFullyPartitioned contains several generic functions which

must be overridden in order to implement a new cell model. TakeTimestep

accepts as arguments the time-step to be taken, ∆t, the current simulation

time t, and the array of current cell variables. The function must be im-

plemented in such a way that the array of variables is updated to reflect

the values at time t + ∆t. This time-stepping can be performed by a call

to an external numerical library such as Mumps or CVODE, or by a user-

implemented method such as Rush-Larsen or explicit Euler. TakeTimestep

is never called by the driver code and is instead called by the function

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 131

Take_Time_Step which accepts only the time-step length as an argument.

Take_Time_Step itself is often only called by a call to the CellMeshBase

function Take_time_step_with_all_cells_in_mesh which accepts as argu-

ments the time-step length and the Oomph-lib Problem class. This function

handles any potential parallelisation and distribution of the cell mesh.

The function get_output provides a means by which the cell model can

compute information which may be required by other processes. It accepts as

arguments the state variables and an output vector. The output variables are

specified by their names in the vector Names_Of_Output_Data. get_output

is called automatically after each time the cell model takes a time step and

the values are stored in an array within the cell model so that the function

does not need to be called each time this additional information is required.

The generated information is output during the generic Paraview output

procedure.

The function GetActiveStrain is defined to specifically calculate the active

stress or strain which is generated by the cell model. It is, by default, im-

plemented to return a default value of 0, since most implementations use the

active stress decomposition and a value of 0 specifies no active stress. Active

stress or strain could be contained within the get_output function however,

since mechanical simulations are a specific purpose of this development, it

is more convenient when implementing multi-physics elements for it to be

specified as its own function.

Once these functions and variables have been defined the cell model is

ready for use in single-cell as well as multi-physics simulations.

The cell model constructor must end with a call to the base cell

class function FinalizeConstruction, which takes the sizes of the vectors

Names_Of_Cell_Variables and Names_Of_Output_Data as well as the

132 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

number of backup states required and suitably allocates memory for the cell

model.

During adaptive operator splitting, it is often necessary to store and re-

store solutions. The cell model solution can be stored in one of the backup

states through a call to Store_State_In_Backup which accepts an unsigned

integer which specifies the backup the state is to be stored in. Backup 0

corresponds to the current solution so should not be written to since such an

attempt will not result in the solution being saved. If the library is compiled

with the -DPARANOID flag, attempting to back up to index 0 will result

in an error being thrown. The current solution can be restored from one of

the backups through a call to Restore_State_From_Backup which accepts

the index of the desired backup as an argument. Similarly, this function will

throw an error if the user attempts to restore from backup 0.

During adaptive operator splitting, since alternating solutions of varying

step lengths are taken, the time according to the cell models will change dif-

ferently to that of the Oomph-lib problem class. However, at the end of each

operator splitting solve the time values must be identical in order for the op-

erator splitting method to make physical sense. In order to facilitate checking

if this is the case, the function check_if_time_is_consistent can be called

to check if the argument matches the current value stored in the cell model

and returns true if they are and false if they are not. By default this function

checks if the values are within 10−9 of each other, however, this value can be

modified by the user. Due to the numerical round-off, the time values may

drift from one another. Over the course of long simulations with many time

steps, this drift could potentially become significant. The function synchro-

nise_time is therefore provided to allow for the user to force synchronisation

of time according to the cell model to the value which is provided as an ar-

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 133

gument. Such a function should only be called once the operator splitting

technique has rigorously been tested with check_if_time_is_consistent to

ensure that the two values are within the specified tolerance and only diverge

after many iterations of the operator splitting algorithm have been taken.

Most cardiac cells are sensitive to electrical stimuli. Such stimuli could

result from electrodes applied to the tissue or from nerve cells which transmit

an electrical impulse to the tissue. The CellModelBaseFullyPartitioned class

contains a pointer to an external function which specifies such an applied

stimulus. This function follows the usual form of source terms in Oomph-lib

and must be specified by the user. It can then be passed to the cell, similar

to the method of assigning source functions to Oomph-lib finite elements,

by using the access function stim_func_pt. In the computation of the cell

model timestep, the cell model can access this source term using the protected

member function get_stimulus which accepts the current time, according to

the cell, as an argument. The arguments representing spatial coordinates

in the function stim_func_pt are automatically filled by the base cell class

and are defined when the cell is constructed by a CellMeshBase class derived

mesh.

If the cell is not built by a suitable mesh, for example when being used

for single-cell simulations, the coordinates are all given the default value of

0 with the local and global coordinates set to the 3D origin. The user may

override the coordinate values in the case of single cell simulations using the

functions set_local_coord and global_coord. For safety, if these are called

for a cell generated as part of a CellMeshBase then an error will be thrown

since it is unlikely to be physically meaningful to move a cell once it has been

built in a tissue mesh.

Fibre, sheet, normal alignment as well as electrical conductivity coeffi-

134 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

cients in these directions are stored within the CellModelBase. Although

these quantities are not used by the cell model instead the diffusion or solid

models, this storage decision makes sense from a practical perspective. When

generating meshes from anatomical geometries, fibre alignment is provided

node or element-wise. As such, storing and accessing this data is simplified

by storing it within the cells and accessing it via interpolation using functions

contained within the FullyPartitionedCellEquations class.

Several models of the dynamics of cardiomyocytes are implemented within

the context of the numerical package in order to demonstrate its applicability

to general physiological models. Three models were selected, the Coleman-

Ni-Zhang (CNZ) human atria model, a version of the Tusscher-Noble-Noble-

Panfilov (TNNP) human ventricle model, and a version of the HRd human

ventricle model. Additionally, several caricature models were implemented

for testing purposes.

4.4.3 Solving the diffusion equations with operator

splitting

Due to its widespread application to the solution of simulations of myocardial

function, the use of operator splitting methods is emphasised in the design

of the handling of diffusion and cell equations by the numerical package.

One important characteristic of operator-splitting methods is the com-

munication of data from the solution of one operator to the initial conditions

of another. In this package, this communication is handled by the structures

which conduct the solution of the cell equations.

For the operator splitting techniques outlined in 3.5.3, solution of the sys-

tem of equations is performed by alternately solving the individual operators.

After each operator is solved the solution is projected to the object which

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 135

handles solution of the other differential operator. The procedure of solution

and projection is outlined in figure 4.1. The objects which handle solution

of the individual operators must keep track of time according to the solution

to that operator. That is, the current time according to an operator only

changes when that operator is solved. This is essential to ensuring that any

applied source functions which are explicit in time are evaluated correctly

during time-stepping.

It was a principle intention that the inclusion of operator splitting had

a minimal impact on the structure of time-stepping in driver codes. Un-

less additional physics, such as solid and fluid mechanics, are to be solved

separately from the electrophysiology problem there are very few changes

required to perform time-stepping on the problem. The entire procedure

for implementing Strang-splitting with the developed machinery is presented

below.

If the Oomph-lib problem is to be solved with adaptive time-stepping,

then it must be ensured that the total time which is solved over is exactly

that required by the operator splitting method. This can be achieved with a

while loop and capping the maximum time-step used by the duration left to

be covered. This procedure is illustrated in the code snipped below.

const double t_pre = this−>time_pt ()−>time () ;

double dt_current = dt∗ operator_sp l i t t ing_we ight ;

const double t_post = this−>time_pt ()−>time ()+dt_current ;

while (this−>time_pt ()−>time ()<t_post)

{

dt_current = adaptive_unsteady_newton_solve (dt_current ,

e r ro r_targe t) ;

dt_current = std : : min (dt_current , (t_post−this−>time_pt ()−>

time ())) ;

136 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Project solution as

initial conditions

Solve over

Solve over

Project solution as

initial conditions

Solve over

Project solution as

initial conditions

Solve over

First
stage

Final
stage

O
utput
as

solution
to tim

e-
step

O
perator A

O
perator B

F
igure

4.1:
Illustration

of
solution-projection

protocol
w

hen
applying

operator
splitting.

T
he

object
that

handles
each

operator
keeps

track
ofsolution

tim
e

independently
ofthe

other.
T

his
w

ay
any

source
term

s
w

hich
are

explicitly
dependent

on
tim

e
are

handled
appropriately

during
the

solution
of

each
operator.

In
the

context
of

solving
cell

m
odels

w
ith

the
developed

num
ericallibrary,the

O
om

ph-lib
problem

class
keeps

track
oftim

e
for

the
operator

w
hich

corresponds
to

electricaldiffusion,and
the

cellm
odels

them
selves

keep
track

ofthe
tim

e
for

the
other

operator.

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 137

}

It remains to be determined if the error estimates of Oomph-lib time-

steppers are appropriate in this instance. Considering BDF time-steppers,

the velocity of the DOFs is calculated during the shift of the time values.

This is performed within the call to adaptive_unsteady_newton_solve and

so is performed after the membrane potential has been projected from the cell

models. This may therefore overestimate or underestimate the error for the

first adaptive time-step, although this aspect of time-stepping with operator

splitting within Oomph-lib is yet to be rigorously investigated.

Crank-Nicolson is a time-stepping method which is commonly applied to

solving the bidomain and monodomain models. It is synonymous with the

Trapezoid (TR) time-stepper as it is often referred to in other literature.

One might therefore assume that Crank-Nicolson can be used by building

the diffusion elements with the TR time-stepper. Use of this time-stepper

in Oomph-lib requires that the governing equation is explicit and linear in

the time derivative and that the residual for a given DOF is written in the

form r = f(t, u) − dudt. Initially, the TR time-stepper requires a call to

Setup_initial_derivative so that the derivative at the first time step is cor-

rectly stored within the history values. The time derivative at the current

time step is then calculated before time values are shifted by simply taking

the difference with the previous value. This poses potential issues. Since

the value at the previous time-step is being changed during the projection

from the cell models, the function Setup_initial_derivative may have to be

called every time the solution to the cell operator is projected to the diffu-

sion DOFs. This could be very expensive. Additionally, through inspection

of the implementation, the function Setup_initial_derivative appears only

to work when the TR time-stepper is the only time-stepper used in the prob-

138 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

lem. This prohibits the use of this time-stepper alongside other sub-physics,

such as FSI, since they will in general use their own, different, time-steppers.

That is unless those meshes are removed from the problem whenever the

electrophysiology sub-physics is being solved, however adding and removing

meshes and rebuilding the global mesh are expensive procedures to undergo

at every stage of calculating a time step.

During validation of the electrophysiology implementation with operator

splitting, it was found that the TR time-stepper either does not perform as

well as other time-steppers or fails to converge at all. This was the case when

both the function Setup_initial_derivative was called before an unsteady

Newton solve and when it was not.

A hard-coded monodomain model element which uses Crank-Nicolson

by explicitly calculating the derivatives at the current and previous

time-step was also implemented. This element does not require calls to

Setup_initial_derivative since such derivatives are calculated on the fly.

This is more expensive than the TR time-stepper since the derivatives are

calculated more cheaply during shifting the time values. It was found, as

shown in the validation data, that this explicit Crank-Nicolson element does

converge appropriately and results in a smaller error than backward Euler,

as is expected. In order to appropriately allocate history values to the DOFs,

this element must be built with the BDF〈1〉 time-stepper. This element

cannot currently be used with adaptive time-stepping since it has not been

determined if the error measure provided by the BDF〈1〉 time-stepper is

appropriate.

It was also found that higher-order time-steppers, such as BDF〈2〉, are

less accurate than BDF〈1〉 when used within operator splitting. This could be

because the value at the previous time-step, given by the solution to the cell

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 139

model, actually represents a virtual solution from which the diffusion model

should be solved. Use of this virtual solution alongside the genuine solutions

at older time steps to approximate the time-derivative of the membrane po-

tential may therefore be fundamentally incorrect. Indeed this appears to

be the case since, as is shown in the validation data, that BDF〈4〉 is even

less accurate than BDF〈2〉 which is less accurate than BDF〈1〉. Therefore, if

higher-order solutions to the diffusion model are required, then explicit imple-

mentations of time-steppers, such as implicit RKF or single-step Obrechkoff

methods, could be required. However, implicit RKF methods introduce addi-

tional DOFs to the elements which may negatively impact solution efficiency.

Furthermore, the calculation of an error estimate will likely require the de-

velopment of alternative dummy time-steppers.

4.4.4 Solving the electrophysiology problem with mul-

tiple domain discretisations

If it is required that there are different resolutions of diffusion elements and

the cell point sources then changes to the method of solution are required. It

was found that this is minimally implemented with two meshes and projec-

tion of the solution from one mesh to another via Oomph-lib multi-physics

procedures.

Operator splitting is characterised by the assignment of the initial condi-

tions of one differential operator from the solution given by solving the other

operator. The normal Oomph-lib element with external element framework

cannot necessarily be used directly to achieve this, since directly assigning

the solution from one mesh to another and back again does not necessarily

leave the solution unchanged. Doing this can result in spurious diffusion of

the solution in the absence of solving any of the equations. This is illustrated

140 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

in the figure 4.2 in which two meshes, one cell mesh, denoted C and one dif-

fusion mesh, denoted D, have misaligned nodes. It can be shown, through

consideration of the values calculated through simple projection at integral

points, that spurious diffusion can easily occur. The membrane potential

values in the cell mesh are labelled V ∗
1 and V ∗

2 and the values in the diffusion

mesh are labelled V1, V2, and V3. Basis functions in the cell mesh are labelled

ϕ∗
1 and ϕ∗

2, and basis functions in the diffusion mesh are labelled ϕ1, ϕ2, and

ϕ3.

The first node in the cell mesh is aligned with the local coordinate s1 in the

first diffusion element, and the second node in the cell mesh is aligned with

the local coordinate s2 in the second diffusion element. Similarly, the second

diffusion node is aligned with the local coordinate s∗2 in the cell element.

Projecting from the diffusion mesh to nodes in the cell mesh gives the values

V ∗
1 = V1ϕ1(s1) + V2ϕ2(s1)

and

V ∗
2 = V2ϕ2(s2) + V3ϕ3(s2).

Then projecting from the cell mesh to the second node in the diffusion mesh

gives the value

V2 = V ∗
2 ϕ

∗
2(s

∗
2) + V ∗

3 ϕ
∗
3(s

∗
2)

= V2(ϕ2(s1)ϕ
∗
2(s

∗
2) + ϕ2(s2)ϕ

∗
3(s

∗
2)) + V1ϕ1(s1)ϕ

∗
3(s

∗
2) + V3ϕ3(s2)ϕ

∗
3(s

∗
2)

(4.12)

which is not necessarily equal to the original value at that node. Contribu-

tions from the neighbouring nodes in the diffusion mesh have been included.

In order to project the solution from one mesh to the other, the local

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 141

Figure 4.2: Schematic of projection between meshes with misaligned nodes.
Projection between meshes with misaligned nodes can produce spurious dif-
fusion in the data. Illustrated is a 1D example in which the top row of the
image represents an element with nodes 1∗ and 2∗ with membrane poten-
tial V1∗ and V2∗ respectively, and the bottom row represents two adjoining
elements with nodes 1, 2, and 3 with membrane potential V1, V2, and V3
at those nodes respectively. The elements occupy the same physical space
but represent different domain discretisations. First, the membrane potential
in the bottom elements is interpolated to the locations of nodes 1∗ and 2∗,
these values are then re-interpolated to the location of node 2. In doing so
the value at node 2 has potentially been polluted with data from nodes 1
and 3.

142 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

solution is sought, such that the difference between the local interpolated

solution and the external interpolated solution is zero. This projection of the

membrane potential is implemented in class wrappers, one for cell elements

and one for diffusion elements.

Projection could be implemented by adding an additional projected mem-

brane potential DOF to the elements. For the wrapper of cell elements, this

is the chosen method, since the base class for the wrapper is set to the NoD-

iffusionEquations class which contains no DOFs. As a result, only one DOF

is required, which is the value of membrane potential projected from the

external diffusion mesh. It has the residual function

Rk = −
∫
e

(
V Proj(s)− V Ext(s)

)
ϕk(s) dV (4.13)

and Jacobian

Jkl = −
∫
e

ϕk(s)ϕl(s) dV (4.14)

where V Proj(s) is the projected membrane potential in the cell mesh which

is to be solved for, and V Ext(s) is the value of the membrane potential in the

external mesh.

Since the projection is only performed when reassigning initial conditions

at the start of each time step, this additional DOF is an unneces-

sary inclusion for the diffusion elements. Instead, the wrapper class

provides alternative versions of fill_in_contribution_to_residuals and

fill_in_contribution_to_jacobian. These alternatives, instead of solving for

the membrane potential due to the base class diffusion model, solve for the

value of the membrane potential as projected from the external cell mesh.

A Boolean switch changes which residual and Jacobian fill-in is used. This

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 143

removes the requirements of extra storage of additional DOFs and reduces

computational overhead, since DOFs do not need to be pinned and unpinned

during projection. It has the residual function

Rk = −
∫
e

(
V (s)− V Ext(s)

)
ϕk(s) dV = 0 (4.15)

and Jacobian

Jkl = −
∫
e

ϕk(s)ϕl(s) dV . (4.16)

Both 4.13 and 4.15 are linear in the DOFs and so the Newton method as

applied to the resultant linear systems will converge in a single iteration.

For the Bidomain equations solved in a multi-domain discretisation, pro-

jection of the membrane potential to the Bidomain mesh from the cell mesh

and solution of the extracellular charge (which must be solved after reas-

signment of initial conditions for membrane potential) can be performed at

the same time. In the same method as described above, the same wrapper

class as for the Monodomain equation, the Bidomain finite elements are given

an alternative residual and Jacobian fill-in procedure to perform projection

from the cell mesh for the membrane potential. By leaving the equations

for extracellular charge unchanged, this results in solving for an extracel-

lular charge which corresponds to the reassigned initial conditions for the

membrane potential.

The procedure for performing projection from the diffusion to the cell

mesh would be as follows:

1. Pin all problem DOFs except for the projected membrane potential

DOFs in the cell mesh.

2. Newtonian solve.

144 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

3. Restore pinned status of all problem DOFs and pin projected membrane

potential DOFs.

The procedure for projection from the cell mesh to the diffusion mesh is as

follows:

1. Pin all problem DOFs except for the DOFs of the diffusion elements.

2. Switch boolean in diffusion element such that residual and Jacobian fill

in membrane potential entries for projected values.

3. Newtonian solve.

4. Switch Boolean in diffusion elements such that the normal diffusion

model equations are solved.

5. Restore pinned status of all DOFs.

The above methodology also works for refinable diffusion meshes.

Situations where the diffusion mesh is refineable and the cell mesh is not

could also be implemented by assigning cells to the nodes of macro elements

in the diffusion mesh. The solution would then be interpolated from cells to

the hanging nodes at the start of an operator splitting step. However, this

method would require a partial re-implementation of the Fully Partitioned

wrapper class for refinable elements. Such an implementation however would

potentially be more efficient, since the projection step would not require a

Newton solve of its own. Although the multi-domain implementation is less

restrictive and allows for a much broader variety of multiple discretisation

options without the need for additional specific versions to be written.

In future, a refineable version of FullyPartitionedCellEquations could be

implemented which allows for cells to be built at the nodes at only the nodes

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 145

of the macro elements. For a given element within the mesh, interpolation of

information from the cells in the mesh will then be taken from that element’s

macro element instead. Similarly, the projection of data from and to external

meshes can be performed in a similar fashion. Refinement and un-refinement

of the mesh can then be performed without altering the number or arrange-

ment of cells within the mesh since the mesh cannot be unrefined in such a

way that cells are removed. This implementation however requires refineable

versions of the FullyPartitionedCellEquations class and will likely require

modifications to the CellMeshBase class so is left as a potential objective for

future work.

4.4.5 Anisotropic solid mechanics

Anisotropy introduces new information which must be assimilated into the

solid mechanics computation. For simple, prescribed preferential vectors and

active stress/strain this could be achieved by passing relevant function point-

ers to the constitutive law or strain energy function. However, for physio-

logical cell models and preferential vectors taken from anatomical scan data,

a more robust and adaptable method for ingesting this information is re-

quired. This method is based on re-implementing the existing Oomph-lib

isotropic solid mechanics elements and adding new member functions which

allow for data to be sent to and from the FullyPartitionedCellEquations class.

Due to this approach, driver codes which use the resultant AnisotropicPVD-

Equations derived elements are the same as those which use the isotropic

counterpart elements.

146 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

AnisotropicPVD
EquationsBase

PVD
EquationsBase

H
erm

iteAnisotropicPVD
Elem

ent

AnisotropicPVD
Equations

PVD
Equations

Q
AnisotropicPVD

Elem
ent

Q
PVD

Elem
ent

H
erm

itePVD
Elem

ent

AnisotropicPVD
EquationsW

ithPressure

PVD
EquationsW

ithPressure
SolidElem

entW
ithD

iagonalM
assM

atrix

Q
PVD

Elem
entW

ithPressure
Q
PVD

Elem
entW

ithPressure

Q
AnisotropicPVD

Elem
entW

ithC
ontinuousPressure

Q
PVD

Elem
entW

ithC
ontinuousPressure

TAnisotropicPVD
Elem

ent
TPVD

Elem
ent

TPVD
BubbleEnrichedElem

ent

TAnisotropicPVD
BubbleEnrichedElem

ent
TAnisotropicPVD

Elem
entW

ithC
ontinuousPressure

TPVD
Elem

entW
ithC

ontinuousPressure

F
igure

4.3:
Schem

atic
ofthe

overview
ofthe

inheritance
structure

ofthe
anisotropic

solid
m

echanics
classes

and
how

they
relate

to
the

isotropic
solid

classes.
O

om
ph-lib

classes
are

displayed
in

green
and

classes
added

as
part

of
this

w
ork

are
show

n
in

red.
A

rrow
s

point
from

a
derived

class
to

its
base

class.

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 147

Inheriting from the PVD elements

The newly implemented anisotropic solid mechanics elements are built upon

the Oomph-lib non-linear isotropic solid mechanics elements. They inherit

from the already existing classes and declare and define new methods and

functions for implementing anisotropic features.

Anisotropic solid mechanics elements are implemented as a wrapper of

the existing hyperelastic isotropic solid mechanics elements with several vir-

tual functions overridden in order to implement the anisotropic components

of the hyperelasticity models. Additional functions are provided which allow

for data to be passed to the anisotropic solid elements, either through func-

tion pointers or through interfacing with external elements in multi-physics

simulations.

Since additional data is required by many member functions, several

functions with the same names as existing isotropic counterparts are re-

implemented to allow for the addition of anisotropy by including additional

function arguments.

Two versions of the function get_stress exist in the isotropic implemen-

tation

void ge t_s t r e s s (const Vector<double> &s ,

DenseMatrix<double> &sigma) ;

and

void ge t_s t r e s s (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

DenseMatrix<double> &sigma) ;

The first is called by output functions to calculate the stress at local coor-

dinate s. The latter is called during the compressible residual and Jacobian

calculation to calculate stress as a function of the components of the unde-

148 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

formed and deformed metric tensor components g and G. The first calculates

the deformed and undeformed metric tensors and then calls the latter.

Alternative anisotropic versions of these functions were implemented. The

first has no changes to arguments, however, the latter has additional argu-

ments which represent the preferential vectors and the actives stress/strain

inl ine void ge t_s t r e s s (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

const Vector<Vector<double>>& A,

const Vector<double> &V,

DenseMatrix<double> &sigma) ;

where A is a vector, the ith element of which is the ith preferential vector,

and V is the vector of active stress or active strain.

For incompressible solids, the derivative of the stress with respect to the

contravariant deformed metric tensor is required and is calculated by the

following function

inl ine void get_d_stress_dG_upper (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

const DenseMatrix<double> &sigma ,

RankFourTensor<double> &d_sigma_dG)

For anisotropic incompressible solids, this calculation requires the pref-

erential vectors and active stress/strain and so an updated version of this

function is implemented as the following

inl ine void get_d_stress_dG_upper (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

const Vector<Vector<double>>& A,

const Vector<double> &V,

const DenseMatrix<double> &sigma ,

RankFourTensor<double> &d_sigma_dG)

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 149

Similarly, there is a version of this function for nearly incompressible

isotropic solids

inl ine void get_d_stress_dG_upper (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

const DenseMatrix<double> &sigma ,

const double &gen_dil ,

const double &inv_kappa ,

const double &interpo lated_so l id_p ,

RankFourTensor<double> &d_sigma_dG ,

DenseMatrix<double> &d_gen_dil_dG)

and so an implementation of this function which adds preferential vectors

and active stress/strain is added

inl ine void get_d_stress_dG_upper (const DenseMatrix<double> &g ,

const DenseMatrix<double> &G,

const Vector<Vector<double>>& A,

const Vector<double> &V,

const DenseMatrix<double> &sigma ,

const double &gen_dil ,

const double &inv_kappa ,

const double &interpo lated_so l id_p ,

RankFourTensor<double> &d_sigma_dG ,

DenseMatrix<double> &d_gen_dil_dG)

These functions all serve to pass the preferential vectors and active stress or

strain to the anisotropic constitutive law which then calculates the required

values according to the constitutive model it represents.

The residual and Jacobian fill-in functions are re-implemented, from

the versions in PVDEquations and PVDEquationsWithPressure. The new

implementations are functionally identical to the originals, except that when

get_stress or get_d_stress_dG_upper is called, the alternative anisotropic

version is called instead. Additionally, preferential vectors and active

150 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

strain/stress are also calculated as needed.

Similarly, output functions are re-implemented so that stress can be prop-

erly calculated from the anisotropic formulation in the constitutive law.

Member functions which get the values of preferential vectors and active

stress/strain are implemented. These take the form of source functions used

throughout Oomph-lib and are given by

virtual inl ine void p r e f e r e n t i a l_v e c t o r s (const unsigned& ipt ,

const Vector<double> &s ,

const Vector<double>& xi ,

Vector<Vector<double>>& A)

and

virtual inl ine void dr iv ing_st ra in (const unsigned& ipt ,

const Vector<double>& s ,

const Vector<double>& xi ,

Vector<double>& V)

respectively.

These call function pointers of the form

typedef void (∗ Pre f e r en t i a lVec to r sFc tPt) (const unsigned& ipt ,

const Vector<double>& s ,

const Vector<double>& x ,

Vector<Vector<double>>& A) ;

and

typedef void (∗ Driv ingStra inFctPt) (const unsigned& ipt ,

const Vector<double>& s ,

const Vector<double>& x ,

Vector<double>& V) ;

respectively which must be defined and assigned by the user within a driver

code as per source functions in other Oomph-lib finite elements.

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 151

When the preferential vectors and active stress/strain must be taken from

a more complicated source than these simple source functions can provide,

the virtual functions preferential_vectors and driving_strain are overridden

so that they can take their values from the required location instead.

Despite these re-implementations, the code reuse achieved through imple-

menting anisotropic solid mechanics as a wrapper of the existing hyperelastic

solid elements results in comparatively little new code when compared to the

size of the original isotropic hyperelastic solid mechanics files. This is in line

with the code reuse ethos of Oomph-lib.

Methods for acquiring preferential vector and active strain or stress infor-

mation are added to the anisotropic solid mechanics elements and standalone

anisotropic versions of the constitutive law and strain energy classes are im-

plemented in order to allow for information on anisotropy to be passed to

them.

Anisotropic Constitutive laws

Anisotropic constitutive laws and anisotropic strain energy function classes

are implemented from scratch and do not inherit from their existing isotopic

counterparts. This is because the classes themselves are comparatively simple

and already contain very few functions, the interfaces of all of which have

to be modified in order to communicate the necessary information regarding

anisotropy to the function.

The names of the member functions of ConstitutiveLaw which are called

by the solid mechanics elements, namely calculate_second_piola_kirchhoff_stress,

requires_incompressibility_constraint remain unchanged in the Anisotropic-

ConstitutiveLaw classes. However, additional arguments A and V are added

to calculate_second_piola_kirchhoff_stress which represent the anisotropic

152 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

orientations within the solid and the active strain/stress generated by

the cardiomyocyte model in each of those directions respectively. A is a

vector of vectors of doubles, each of which contains the orientations which

define the preferred vectors of the solid, and V is a vector of doubles

which contains the active stress/strain in each of those directions. For

brevity and simplicity, and since models of cardiomyocyte contraction can

be defined to compute the force generated due to contraction or compute

the sarcomere shortening ratio, V is allowed to represent either the active

strain or active stress components. It is then required that a suitable

corresponding anisotropic constitutive law which defines either the active

stress or active strain formulation is used. Since no distinction in terms of

the nature of the information which is passed from the cardiomyocyte model

to the constitutive law can be made, there are no checks which ensure that

a constitutive law which requires the active stress/strain is indeed receiving

the stress/strain. It is left to the user to ensure that proper combinations of

constitutive laws and cardiomyocyte models are used.

Indeed a function could be written that checks if the active stress/strain

information required by the constitutive law matches that provided by the

cell model. However, such a function has not been implemented as of yet.

Implementation of anisotropic constitutive laws which are derived from

strain energy functions is similar to that of isotropic constitutive laws. The

class AnisotropicStrainEnergyFunctionConstitutiveLaw computes the com-

ponents of the second Piola-Kirchhoff stress tensor as well as other quan-

tities required by the anisotropic solid elements through calls to functions

contained within a pointer to the AnisotropicStrainEnergyFunction derived

class used. AnisotropicStrainEnergyFunction contains several virtual func-

tions which compute the strain energy in terms of the strain tensor or strain

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 153

invariants, the derivative of the strain energy with respect to the strain, and

derivatives of the strain energy with respect to the strain invariants. By de-

fault, derivatives are implemented using generic finite differencing schemes,

although these can be overridden when an analytic form exists in order to

improve performance.

Several constitutive laws commonly used within cardiac modelling and in

the validation of numerical schemes have been implemented and are shown

in figure 4.4. Both the active strain and active stress decompositions of these

laws have been implemented.

The existing isotropic Mooney-Rivlin constitutive law is upgraded to in-

clude terms accounting for active stress/strain which arise from the contrac-

tion of cardiomyocytes, both the active stress and active strain decomposi-

tions are applied in separate classes.

Secondly, a constitutive law which contains a simple exponential term is

implemented. Again, this model is implemented with both the active stress

and active strain decompositions. Due to its simplicity, it is commonly used

in validation rather than physiological simulation. Due to its prevalence, it

is included in the library.

The simplest phenomenological constitutive law which is implemented is

due to the Pole-Zero strain energy function. This model, introduced by Nash

and Hunter 2000, seeks to account for observed strain limiting in the three

principal axes of anisotropy within the myocardium. Both the active stress

and active strain decompositions are implemented.

The Holzapfel Ogden constitutive law is widely used in studying struc-

tural deformation of the myocardium. Both the active stress and active strain

decompositions are implemented. For the active stress decomposition, all of

the incompressible, nearly incompressible, and compressible forms are imple-

154 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

mented, whereas for the active strain decomposition only the incompressible

form is implemented.

Communicating active stress/strain and cell alignment from the

cell models

A multiphysics version of AnisotropicSolidElement is implemented

template<class SOLID_ELEMENT, class EXT_CELL_SOLVER_ELEMENT>

class AnisotropicSol idElementWithExternalCel lElement :

public virtual SOLID_ELEMENT,

public virtual ElementWithExternalElement

{

. . .

} ;

This multiphysics version has an external FullyPartitionedCellEqua-

tions derived class which is defined by the second template argument

EXT_CELL_SOLVER_ELEMENT.

For instances when the active stress/strain must be taken from a cell

model rather than a source function, the function driving_strain must be

overridden to take the active strain/stress from the cell model using the

element with external element procedures.

There is no distinction made between active stress and active strain within

the function arguments of either the anisotropic finite elements or the consti-

tutive law class. Both active stress and active strain are passed around as the

same variable since only one of the two is ever used at any time in modelling.

It is the job of the user to ensure that the output of the cell model (either

active stress or active strain) matches what the constitutive law expects to

receive.

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 155

AnisotropicConstitutiveLaw

AnisotropicGeneralisedHookean

ActiveNeoHookeanStressConsitutiveLaw

ActiveNeoHookeanConstitutiveLaw

ActiveExponentialConstitutiveLaw

ActiveHolzapfelOgdenConstitutiveLaw

AnisotropicStrainEnergyFunctionConstitutiveLaw

Figure 4.4: Schematic of the inheritance structure of the anisotropic consti-
tutive law classes.

156 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

Refineable anisotropic solid mechanics elements

A refineable version of the anisotropic solid mechanics elements has not yet

been implemented. However, it would essentially follow the implementation

of the Oomph-lib isotropic solid mechanics elements. The only change nec-

essary would be to pass the additional function pointers,

Pre f e r en t i a lVec to r sFc tPt Pre ferent ia l_Vectors_fct_pt ;

Dr iv ingStra inFctPt Driving_strain_fct_pt ;

to the child elements.

4.4.6 Generating unstructured meshes from anatomi-

cally detailed geometries

Within Oomph-lib, generating ideal geometries with structured meshes is

relatively easy. This process is detailed throughout the Oomph-lib documen-

tation. However, generating geometries with unstructured meshes can be

more challenging. This requires the Oomph-lib triangle mesh functions to

be called wherein an external library Triangle or TetGen is invoked. Fur-

thermore, mesh adaptation and large displacements require re-meshing and

projection of any fields from the old mesh to the new one.

Defining more intricate geometries with curvilinear boundaries for the

generation of unstructured meshes is similarly tedious to the process for sim-

ple geometries. Generation of unstructured meshes with non-ideal geometries

is more difficult. The use of complex, unstructured, and non-idealised bio-

physically detailed meshes is essential for the study of cardiac electrophysi-

ology. Such meshes are often generated from MR or CT scan data. Methods

must therefore be developed to permit their use within the Oomph-lib com-

puting environment if the additions to Oomph-lib produced as part of this

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 157

thesis are to be used for biophysically detailed simulations. The methods and

the resultant pipeline for the use of such meshes are introduced and detailed.

Since there is no method in place within Oomph-lib for handling the file

types often used for bio-physically detailed meshes, a new method must be

implemented which allows for this. Such a method has been implemented.

Initially, the geometries are loaded into ParaView. The element and node

data is then exported by viewing the geometry in a spreadsheet view and

exporting when viewing the attributes "point data" and "cell data". It is

these two files which are used to generate the unstructured mesh within

Oomph-lib. Since the files used by the method are generated by Paraview,

this method can potentially be used for any mesh which can be loaded into

paraview.

The node file contains the global coordinate of the nodes as well as any

other node data packaged with the geometry. The node data is read and

the relevant information is saved. In addition to the global nodal coordi-

nates, this information could include local coordinates, cell types, or fibre

orientations.

Next, the element file is loaded. This file contains the element numbers

as well as the global identifying numbers of each node contained within each

element. Additional information could be contained within this file if cell

type or fibre orientation data is defined per element instead of per node.

For each node, the elements which contain that node are recorded. This

is essential for correctly constructing the elements as well as constructing

boundary nodes.

Next, the list of unique facets is generated. The files generated by par-

aview do not contain boundary information, this is an issue since correct

construction of an Oomph-lib mesh requires explicitly knowing which nodes

158 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

are on the boundaries of the domain. This information can be generated from

the element data. Since the elements are tetrahedral, every combination of

three nodes within each element represents a unique facet of that element.

In order to determine which of these facets are on the domain boundary the

complete list of facets of all the elements is interrogated to look at facets

which are not repeated. Non-repeated facets must be on a domain boundary

since if a facet is on the inside of the domain it must also exist within another

element.

In order to interrogate the element facets efficiently, a hash function is

constructed which converts each facet into a unique identifying integer. These

identifying integers are then used to generate an unordered map. The facets

are looped over, their identifying integer is generated, and the corresponding

element of the unordered map is incremented. After this procedure, if an

element in the unordered map returns a value of one then the corresponding

facet only appears once in the mesh and so must be a boundary facet.

The hash function used requires that the global identifying numbers of

the nodes are ordered from smallest to largest, otherwise, the global node

numbers could be rearranged and as such produce three identifying integers

for each element. Once the node numbers are ordered in ascending order, a

unique identifying number is constructed by appending the digits of the node

numbers to form one long integer. In order to ensure that the hash function

produces unique identifying numbers the node numbers have zeros added to

the end until they are of a set length in terms of digits. This set length

should be large enough to accommodate the number of nodes in the mesh,

for example, if there are 1× 105 nodes, the node numbers should be buffered

with zeros until they are 6 digits long. The resultant integer produced for

each facet is guaranteed to be unique for a unique combination of three nodes

4.4. WHAT HAS BEEN ADDED TO OOMPH-LIB 159

in the facet.

In situations when an electrophysiological mesh is generated from a bio-

physically detailed geometry, it is possible that elements are created with

a local-to-global coordinate mapping with an inverted Jacobian. To han-

dle such cases, the function check_for_and_deal_with_inverted_jacobian

is provided which checks for inverted Jacobian and appropriately swaps node

numbers within the element if needed.

A drawback of this mesh generation procedure is that only tetrahedral

elements with 2 nodes per edge can be generated, as such only linear basis

functions can be applied to the finite elements. Although it could be possible

to add more nodes to the elements in between the corner nodes, this has

not been implemented. As such higher-order spatial approximations of the

solution are not possible on meshes generated with this method.

Good quality and usefully labelled meshes such as those provided in [127]

are very useful when generating meshes from anatomical geometries. This

large data set containing a cohort of 24 four-chamber heart meshes derived

from CT scans is provided along with a natural local coordinate system

describing the left ventricle. The coordinates are the fractional distance from

the endocardial to epicardial surfaces, the fractional distance from the apex

to the base, and the angle clockwise from the septum around the ventricle

wall. The use of such coordinates permits easy identification of nodes and

element facets which are on the endocardial and epicardial surfaces, as well

as being helpful in identifying the ring of nodes and elements surrounding the

aortic and mitral valves - which is essential for a full description of the blood

pool within the vessel. Such surface identification is required when building

meshes in Oomph-lib since the application of boundary conditions assumes

knowledge of the surfaces of the mesh. Additionally, should only a segment

160 CHAPTER 4. DEVELOPING THE NUMERICAL PACKAGE

of the left ventricle be required for localised simulations or for toy problems

during development, it is possible to only include nodes and elements within

a specified subdomain. Nodes which are on the endocardial and epicardial

surfaces can be identified by their transmural coordinate. Similarly, nodes

at the ventricle base or apex can be identified. Suitable boundary conditions

or applied tractions or stimuli for the electrical and solid simulations can

then be applied to these regions individually. This virtual cohort provides

cell fibre, sheet, and sheet-normal alignments for the elements in the left

ventricle which can then be interpolated to the cells at the nodes. These

alignments and cell types within the left ventricle were generated by the

authors by applying rule-based methods which are functions of the local

coordinates: transmural and apicobasal ratios, and the azimuthal angle[128].

Such rules are extensively discussed in the literature and have been shown

to closely reflect the physiological arrangement of the ventricles. However,

for patient-specific modelling, scan data of fibre and sheet alignments would

likely produce more reliable results. Such scan data is not available in the

cohort dataset used in the development of this mesh generation but can be

determined through diffusion MR imaging[129].

Chapter 5

Validation

In order to determine that the implemented elements correctly simulate their

governing equations, several validation tests were undertaken. For the mon-

odomain equation, validation in 2D was performed for homogeneous conduc-

tivity and for source functions which provide known analytic solutions. Val-

idation was performed on an undeformed mesh and so the ALE formulation

and any pullback of components of the equations are ignored. Capacitance

is also assumed to be unity since, given the assumption of homogeneous con-

ductivity, the capacitance can be absorbed into the conductivity tensor. A

general method for the validation of numerical models for physical systems

is that the solution converges to a finite value as the spatial and temporal

resolutions become infinitely fine. To test for this, in all validation cases an

additional test was performed wherein the spatial and temporal resolutions

are refined and the resultant solutions are inspected for convergence.

For certain forms of the stimulus function, analytic solutions of the mon-

odomain equation exist. For this validation, source functions of the form

Istim = α(x)+ f(t) were chosen. The resultant equation was solved using the

monodomain element implementation in the library with a source function

161

162 CHAPTER 5. VALIDATION

to represent the source term.

As a further validation, a cell model was employed which is coupled to

the monodomain elements with operator splitting techniques. The two meth-

ods were then compared to the analytic solution, and as such the error of

each method was determined. For clarity, the solution which uses Oomph-lib

style finite elements with a source function and Oomph-lib time-stepping is

referred to as the Monolithic solution, whereas the solution which involves

the separation of the source terms from the finite elements through the use

of operator splitting is referred to as the Partitioned solution. The Parti-

tioned solution was computed for the operator splitting methods Lie-Trotter,

Strang-Splitting, and AM-32.

Additionally, the partitioned solution was computed with the adaptive op-

erator splitting methods: Palindromic Lie-Trotter, Strang-Milne, and Sym-

metric Milne-32. For these methods, an adaptive time-stepping procedure

was applied to the solution of the diffusion equation.

The solution to the Monodomain equation was computed for several

Oomph-lib times-steppers: the trapezoidal time-stepper, BDF〈1〉, BDF〈2〉,

BDF〈4〉, and a hard-coded Crank-Nicolson implementation of the Mon-

odomain model. Results demonstrate the assertion that time-stepping

methods with more than one history value are incompatible with operator-

splitting methods. The global error was observed to increase as the order

of the time-stepper was increased where an increase in time-stepper order

corresponds to an increase in the number of history values. Additionally,

these validation results indicate that the Oomph-lib trapezoidal time-stepper

may not be applicable to operator splitting either since the results given by

it disagree with those of an explicitly coded Crank-Nicolson monodomain

element.

5.1. MONOLITHIC AND NON-ADAPTIVE OPERATOR SPLITTING163

In the application of adaptive operator splitting methods, only 〈1〉 was

used for solving the diffusion equations. This is because only the BDF〈1〉 was

identified as being suitable for use with operator splitting and because the ex-

plicitly coded Crank-Nicolson implementation of the monodomain equation

does not provide a measure of solution error.

For both the Partitioned solutions, for consistency, the maximum time-

step allowed for the solution to the non-linear source term was set to ∆tmax =

0.01 and solved in the method set out in section 3.5.3.

5.1 Monolithic and Non-Adaptive operator

splitting

The non-dimensionalised monodomain equation including the source function

is of the form
∂V

∂t
+ α(x, y) + f(t) = σ2

x

∂2V

∂x2
+ σ2

y

∂2V

∂y2

with the insulating boundary conditions ∇V ·n = 0 on (x, y) = (0, y), (x, y) =

(L, y), (x, y) = (x, 0), and (x, y) = (x, L) where n is the outward pointing

normal from the domain Ω on the boundary. Through the separation of

variables, the analytic solution is given by

V =
∞∑
j=0

∞∑
i=0

Aij cos

(
iπx

L

)
cos

(
jπy

L

)
exp

(
−π

2

L2

(
i2σ2

x + j2σ2
y

)
t

)

+γ(x, y) +

t∫
0

−f(τ) dτ
(5.1)

164 CHAPTER 5. VALIDATION

Where it is assumed that α(x, y) takes the form

α(x, y) =
∞∑
j=0

∞∑
i=0

Λij cos

(
iπx

L

)
cos

(
jπy

L

)

for given Λij. γ(x, y) is therefore given by

γ(x, y) = −L
2

π2

∞∑
j=0

∞∑
i=0

Λij

σ2
xi

2 + σ2
yj

2
cos

(
iπx

L

)
cos

(
jπy

L

)
.

The initial conditions Aij are then given by

Aij =
L2Λij

π2(σ2
xi

2 + σ2
yj

2)
+
L2

4

L∫
0

L∫
0

V0(x) cos

(
iπx

L

)
cos

(
jπy

L

)
dx dy.

Weights in the source term are given in table 5.1 Weights in the initial

j
i 0 1 2 3 4
0 0.0 0.0 0.0 0.0 0.0
1 0.0 -0.05 0.05 0.01 -0.02
2 0.0 0.28 0.09 0.28 0.8
3 0.0 0.03 -0.03 -0.03 -0.06
4 0.0 -0.08 0.3 0.002 0.08

Table 5.1: Weights of spatially dependent source term, Λij,

conditions were given in table 5.2. Conductivities were set to σx = 1.0 and

σy = 0.24.

f(t) is the same as for the 1D validation test and so is the correspond-

ing term in the analytic solution with the exception of a scalar change in

magnitude of 0.05.

f(t) = −Γ sin(ωt) exp(−λt)

5.1. MONOLITHIC AND NON-ADAPTIVE OPERATOR SPLITTING165

j
i 0 1 2 3 4
0 0.6 0.210 -0.12 -0.1 0.0
1 0.3460 -0.9 0.4 0.001 -0.12
2 0.1237 0.37 0.1 0.0 0.8
3 0.26 0.98 0.01 2.1 -0.7
4 0.1 0.01 0.4 -0.6 0.416

Table 5.2: Weights of the initial conditions, Aij,

is chosen with ω, λ,Γ ∈ R. This results in the corresponding term in the

exact solution

t∫
0

f(τ) dτ =
Γ

ω2 + λ2
(
exp(−λt) (ω cos(ωt) + λ sin(ωt))− ω

)
.

The values are set to ω = 0.1, λ = 0.5, and Γ = 1
20

.

The error, as in the previous validation tests, is determined as the differ-

ence between the calculated solution and the analytic solution. The solution

was computed for both the Monolithic and Partitioned methods for several

time-steppers and operator-splitting techniques. The error, as in the previ-

ous 1D validation test, is determined as the difference between the calculated

solution and the analytic solution. The solution was computed for both the

Monolithic and Partitioned methods for several time-steppers and operator-

splitting techniques. The results for the monolithic solution are presented in

figures 5.1 (a) and 5.2 (a).

Figure 5.1 (a) shows that for the monolithic solution, the error does not

decrease monotonically for large time-step values and for the BDF〈2〉 and

BDF〈4〉 methods. This is because large time steps render the solution unsta-

ble for higher-order time-stepping methods. For the trapezoidal and BDF〈1〉

methods, the error is of lower order so larger time-steps do not produce as

166 CHAPTER 5. VALIDATION

large an error. For Strang-splitting (Figure 5.1 (b)), Lie-Trotter (Figure 5.1

(c)), and AM32 (Figure 5.1 (d)), the error from applying Crank-Nicolson

and BDF〈1〉 converges monotonically. However, the error from applying the

Trapezoidal, BDF〈2〉, and BDF〈4〉 methods does not decrease monotonically

which indicates that these time-stepping methods may not be suitable for

use with adaptive operator splitting.

(a) (b)

(c) (d)

Figure 5.1: Relative error of the validation test with a fixed spatial resolution
and varying time-step. Each panel presents the error for either the mono-
lithic method or an operator-splitting method. Each method is applied with
several time-stepping methods which are applied to time-stepping either the
combined equation in the monolithic case, or each of the monodomain and
source equations in the operator splitting cases. (a) is Monolithic, (b) is
Strang-Splitting, (c) is Lie-Trotter, (d) is AM32.

Figure 5.2 (a) shows that, for the monolithic solution with a fixed time-

5.2. ADAPTIVE OPERATOR SPLITTING 167

step, the error converges monotonically as the spatial resolution is decreased

as expected. However, for the operator splitting methods: panels (b), (c),

and (d) only the error of the BDF〈1〉 and Crank-Nicolson methods converge

monotonically with decreasing spatial resolution, as was observed with de-

creasing time-step. The error from applying other time-stepping methods,

Trapezoidal, BDF〈2〉, and BDF〈4〉, does not converge monotonically as spa-

tial resolution decreases, further indicating that these time-stepping methods

may be unsuitable for use with operator splitting. The results in panels (b),

(c), and (d) are very similar, indicating that Strang-Splitting, Lie-Trotter,

and AM32 respond similarly to changes in spatial resolution for a fixed time-

step.

5.2 Adaptive operator splitting

The monodomain equation with non-linear source terms was also solved with

adaptive operator splitting methods. These methods are discussed in the

relevant section 3.5.3.

Adaptive operator splitting was applied to the system. Within the solu-

tion to the non-linear source equations, the maximum time step was imposed

as was the case for the non-adaptive partitioned solutions in the previous

section 5.1. The monodomain equation was solved with both adaptive and

non-adaptive time-stepping in order to observe the effects on the results.

It was demonstrated in figures 5.1 and 5.2 that BDF〈2〉, BDF〈4〉, and the

trapezoidal time-stepper appear to be unsuitable for use with operator split-

ting. As such, higher-order time-steppers were not used since their use with

operator splitting methods was shown to increase the local error measure.

Additionally, since the explicitly coded Crank-Nicolson formulation does not

168 CHAPTER 5. VALIDATION

(a) (b)

(c) (d)

Figure 5.2: Relative error of the validation test with a fixed time-step and
varying spatial resolution. Each panel presents the error for either the mono-
lithic method or an operator-splitting method. Each method is applied with
several time-stepping methods which are applied to time-stepping either the
combined equation in the monolithic case, or each of the monodomain and
source equations in the operator splitting cases. (a) is Monolithic, (b) is
Strang-Splitting, (c) is Lie-Trotter, (d) is AM32.

5.2. ADAPTIVE OPERATOR SPLITTING 169

provide an error measure, only BDF〈1〉 is used for adaptive solutions to the

monodomain equation.

The error tolerance of the adaptive operator splitting and adaptive time-

stepping of the diffusion equation was varied in order to demonstrate con-

vergence. The error tolerance of the adaptive time-stepping was set to the

same value as for the adaptive operator splitting error tolerance.

All initial conditions, source terms, and simulation parameters were the

same as for the previous section 5.1.

Comparison of figure 5.3 (a) and figure 5.3 (b) shows that the applica-

tion of adaptive time-stepping to solving the monodomain and source term

equations improves the convergence of the methods as target error tolerance

is decreased.

(a) (b)

Figure 5.3: Relative error in the validation simulation when adaptive op-
erator splitting is applied. For a fixed spatial resolution, the target error
tolerance in the operator splitting is varied and the time-step is allowed
to change adaptively as the operator splitting algorithm progresses. Three
adaptive operator splitting methods were applied: Palindromic Lie-Trotter,
Strang-Milne, and Symmetric-Milne-32, and BDF〈1〉 was used in all cases.
Panel (a) is the error when the monodomain equation and source equation
were solved with a fixed time-step, and panel (b) is the error when the mon-
odomain equation and source equation were solved with adaptive operator
splitting.

170 CHAPTER 5. VALIDATION

Comparison of figure 5.4 (a) and figure 5.4 (b) demonstrate that applying

adaptive time-stepping to solving the monodomain and source term equations

has little effect on convergence as the spatial resolution is decreased.

(a) (b)

Figure 5.4: Relative error in the validation simulation when adaptive op-
erator splitting is applied. For a fixed target error tolerance, the spatial
resolution in the operator splitting is varied and the time-step is allowed
to change adaptively as the operator splitting algorithm progresses. Three
adaptive operator splitting methods were applied: Palindromic Lie-Trotter,
Strang-Milne, and Symmetric-Milne-32, and BDF〈1〉 was used in all cases.
Panel (a) is the error when the monodomain equation and source equation
were solved with a fixed time-step, and panel (b) is the error when the mon-
odomain equation and source equation were solved with adaptive operator
splitting.

5.3 Considerations for time-stepping with op-

erator splitting

When using operator splitting it is clear that the use of certain time-steppers

to solve the monodomain equation produces larger errors than expected. Sev-

eral methods are used when solving the monodomain equation. The BDF

time-steppers, BDF〈1〉, BDF〈2〉, and BDF〈4〉 are applied. These are pack-

aged within Oomph-lib. BDF〈1〉 and BDF〈2〉 support error estimation and

5.3. TIME-STEPPING WITH OPERATOR SPLITTING 171

adaptive time-stepping procedures. The trapezoidal time-stepper, often re-

ferred to as the Crank-Nicolson method was also used. Crank-Nicolson is

a widely used time-stepping method when solving the monodomain equa-

tion. Through investigation, it appears that the trapezoidal time-stepper,

as it appears within Oomph-lib, cannot be used to implement the Crank-

Nicolson method when used with operator splitting. When compared to

an explicitly coded version of Crank-Nicolson in which the derivatives are

calculated explicitly in the residual equation, the trapezoidal time-stepper

consistently produces results which are significantly different. This is in all

cases where either setup_initial_derivative or setup_initial_derivative and

actions_after_timestep are called for the time-stepper. This is likely an is-

sue arising from the way in which the trapezoidal time-stepper calculates

the residual function at the previous time step. This is performed by sim-

ply calculating f(tn−1) = V (tn−1)−V (tn−2)
∆t

rather than explicitly performing

the calculation, in the monodomain equation, this explicit calculation would

correspond to calculating f(tn−1) = ∇ ·D∇V (tn−1). Under the normal cir-

cumstances in which the trapezoidal time-stepper is designed to operate, such

a simplification is mathematically sound and effectively reduces the computa-

tional load required to use the trapezoidal time-stepper. However, since this

calculation is performed after the solution to the cell equations, V C(tn−1), is

projected to the diffusion DOFs the resultant quantity V (tn−1)C−V (tn−2)
∆t

is not

necessarily equal to ∇ ·D∇V C(tn−1) since V C(tn−1) was not determined by

solving the equation ∂V
∂t

= ∇ ·D∇V . This discrepancy and the unsuitabil-

ity of the trapezoidal time-stepper in solving cardiac electrophysiology with

operator splitting are highlighted in the results sections.

Chapter 6

Use of the numerical package

Many example codes and tutorials have been written to inform users of

Oomph-lib’s many features and to work as a self-study guide[121]. Similarly,

several example code snippets are provided throughout this section which

details the use of different features of the additions made to Oomph-lib as a

part of this thesis.

6.1 Defining a point-source model

Defining point-source models is simple. The process is outlined for a version

of the Fitzhugh-Nagumo model. The model needs to define how many vari-

ables there are, compute appropriate initial conditions, define how the vari-

ables are updated by a time-step, compute any additional variables required

for output or required by other elements, and compute active strain/stress.

Cell models can be defined in header files or in a drive code itself and must

inherit from CellModelBaseFullyPartitioned.

Within the model constructor, the names of the cell variables are

set and the function FinalizeConstruction is called which invokes the

172

6.1. DEFINING A POINT-SOURCE MODEL 173

base class, CellModelBaseFullyPartitioned, to assign appropriate mem-

ory for the cell variables. The index within the cell data at which

membrane potential is stored is defined by the protected function in-

dex_of_membrane_potential_in_cell_data which is called by the CellMod-

elBaseFullyPartitioned class, and hence protected. The value returned must

match the label of membrane potential in Names_Of_Cell_Variables in

order for output labels to be correct.

Several functions are required to be overridden. In order for

the model to set initial conditions the protected member function.

get_initial_state_variable is defined which assigns the value of cell variables

and membrane potential respectively. For this example model, the initial

conditions must be calculated numerically for the specified model param-

eters. Therefore, these functions check if the initial conditions have been

calculated, if they have not then the function calculate_initial_conditions

is called which uses the Newton method to calculate the initial conditions of

the model to be those which guarantee a steady state.

The protected member function which defines how time steps are per-

formed is given by TakeTimestep which calls either the explicit time-stepping

or implicit time-stepping function depending on the value of a boolean flag.

The explicit time-stepping function is given by ExplicitTimestep which

applies forward Euler to calculate the new variable values, and the implicit

time-stepping function applies the Newton-Raphson method to solve the

equations with backward Euler.

The additional functions which calculate the optional output and active

strain or stress are given by get_output and GetActiveStrain, which in bio-

physically detailed models are used to compute any information required by

external models.

174 CHAPTER 6. USE OF THE NUMERICAL PACKAGE

6.2 Calculating conduction velocity in a fibre

of tissue

One of the simplest applications of the library is in the simulation of elec-

trophysiology using a structured mesh representation of idealised geometries.

To demonstrate this functionality, this section presents code snippets illus-

trating the process of generating a fibre of tissue, building and populating

the mesh with instances of a cell model, and performing a series of external

stimuli after which the conduction velocity within the fibre is measured.

The pacing external stimulus is given by the function cell_source_func

which defines the stimulus applied to a point in the tissue at a given time.

A pointer to this function is passed to the cells within the stimulus region

within the construction of the cell mesh. The cell mesh class is defined by

the following

//Define the c e l l mesh

template<class CONDUCTANCE_MODEL>

class CellAugmentedOneDMesh : public virtual OneDMesh<

CONDUCTANCE_MODEL>,

public virtual CellMeshBase<

CONDUCTANCE_MODEL>

{

public :

//Upon cons t ruc t i on c a l l the cons t ruc t o r o f the OneDMesh

CellAugmentedOneDMesh (const unsigned &Nx, const double &Lx ,

TimeStepper∗ time_stepper_pt) :

OneDMesh<CONDUCTANCE_MODEL>(Nx, Lx , time_stepper_pt) ,

CellMeshBase<CONDUCTANCE_MODEL>(){ this−>Final izeMeshSetup () ; }

//Override the func t i on c a l l e d to b u i l d the c e l l s in the mesh

void Bu i ldCe l l s () ov e r r i d e {

//Loop over the nodes in the mesh

6.2. CALCULATING CONDUCTION VELOCITY IN A FIBRE OF TISSUE175

const unsigned long n_node = this−>nnode () ;

for (unsigned long l =0; l<n_node ; l++)

{

CELL_MODEL∗ ce l l_pt = this−>template build_cell_at_node<

CELL_MODEL>(l , 1) ;

const double x = this−>node_pt (l)−>x (0) ;

ce l l_pt−>set_ce l l_type (CELL_MODEL: : LVEPI) ;

i f (x<Lx ∗0 . 6) { ce l l_pt−>set_ce l l_type (CELL_MODEL: :LVMCELL) ; }

i f (x<Lx∗0 . 25) { ce l l_pt−>set_ce l l_type (CELL_MODEL: :LVENDO) ; }

i f (x<=source : : st im_region) { ce l l_pt−>stim_func_pt () = &

source : : ce l l_source_func ; }

}

}

} ;

which constructs the fibre mesh and then defines how the cells are built

within it. The macro CELL_MODEL can be any generic cell model.

The problem constructor is very similar to those found in other Oomph-

lib example driver codes. The time-stepper is defined, the meshes are built

and added, the global mesh is built, equation numbers are assigned, the time-

step is initialised, initial values are set for an impulsive start, and the initial

conditions are assigned to the cells.

The major difference in this driver code to Oomph-lib example

drivers is in time-stepping. Since, in this example, time-stepping

is performed with Strang splitting, a call to unsteady_newton_solve

is insufficient. Strang-Splitting is implemented by invoking un-

steady_newton_solve as well as two additional CellMeshBase member

functions: Take_time_step_with_all_cells_in_mesh and SetNodeVal-

uesToCellValues. The implementation of Strang-splitting is given by the

function

176 CHAPTER 6. USE OF THE NUMERICAL PACKAGE

//Take a time−s t ep us ing Strang s p l i t t i n g

void Timestep_StrangSpl i t t ing (const double& dt)

{

// Ce l l t imes t ep

Cell_Mesh_pt−>Take_time_step_with_all_cells_in_mesh (dt /2 . 0 ,

this) ;

// Pro jec t the s o l u t i o n to the nodes

SetNodeValuesToCellValues () ;

// Do a d i f f u s i o n s o l v e

unsteady_newton_solve (dt) ;

// Pro jec t the s o l u t i o n to the c e l l s

SetCellValuesToNodeValues () ;

// Ce l l t imes t ep

Cell_Mesh_pt−>Take_time_step_with_all_cells_in_mesh (dt /2 . 0 ,

this) ;

// Pro jec t the s o l u t i o n to the nodes (f o r ou t pu t t i n g)

SetNodeValuesToCellValues () ;

}

Here the cell models contained with the cell mesh take a half-time-step,

the membrane potential values are projected to the finite element mesh,

unsteady_newton_solve is called to compute the solution to the monodomain

equation over a full-time-step, the membrane potential values are projected

back to the cell models, the cell models contained with the cell mesh take a

half-time-step, and finally, the membrane potential values are projected to

the finite element mesh.

In the time-stepping loop, this function is invoked in the same way as

unsteady_newton_solve is in other driver codes:

//The main time−s t e pp ing loop

for (unsigned i s t e p =0; i s t ep <nstep ; i s t e p++){problem .

Timestep_StrangSpl i t t ing (dt) ; }

6.3. ADAPTIVE OPERATOR SPLITTING METHODS 177

The functions SetNodeValuesToCellValues and SetCellValuesToNodeVal-

ues call generic functions which automatically handle the projection of mem-

brane potential to and from the cells and finite element mesh respectively.

6.3 Adaptive operator splitting methods

The use of adaptive operator splitting introduces several changes to the driver

code. Adaptive operator splitting requires the use of additional backup mem-

ory in the cell models. This is allocated and accessed by calling high-level

functions during the construction of the problem and in the time-stepping

procedure.

The first change made is to the amount of data allocated to the cell

model. This is changed by modifying the argument of the cell mesh member

function build_cell_at_node. In the above example, this argument was set to

one since only one copy of the cell variables was required. However, in order

to implement adaptive operator splitting, two additional copies are required:

one for the value at the start of the time-step, and one for the solution to

the lower order operator splitting scheme. The modified line of code in the

cell mesh is then

CELL_MODEL∗ ce l l_pt = this−>template build_cell_at_node<

CELL_MODEL>(l , 3) ;

which informs the cell model constructor that three values are required in-

stead of one.

A new time-stepping function is required to implement adaptive operator

splitting. In this example, Strang-Milne is implemented. This function op-

erates similarly to adaptive_unsteady_newton_solve in that it returns the

next suggested time-step. It differs however in that if the measured operator

178 CHAPTER 6. USE OF THE NUMERICAL PACKAGE

splitting error is larger than the specified tolerance, the solution is reverted to

the start of the time interval and the next suggested time step is returned. In

adaptive_unsteady_newton_solve the function will invoke itself again with

the next suggested time-step if the error of the previous time-step is too large.

double adaptive_Timestep_strang_milne (const double& dt) {

// Store i n i t i a l c ond i t i on s in backup 1 .

StoreStateInBackup (1) ;

const double dt_pre = this−>time_pt ()−>time () ;

// So lve by Strang−s p l i t t i n g

Timestep_StrangSpl i t t ing (dt) ;

// Store the s o l u t i o n due to Strang s p l i t t i n g in backup 2 .

StoreStateInBackup (2) ;

//Restore s o l u t i o n 1 .

RestoreStateFromBackup (1) ;

this−>time_pt ()−>time () = dt_pre ;

// So lve by Milne dev ice , t h i s s o l u t i o n i s s t o r ed in backup 0 .

Timestep_StrangSplitt ing_Milne_Device (dt) ;

// Ca l cu l a t e l o c a l e r ror

double e r r o r = . . . ;

// Ca l cu l a t e new time−s t ep

double dt_next = . . . ;

i f (e r r o r > er ro r_to l e rance)

{

RestoreStateFromBackup (1) ;

this−>time_pt ()−>time () = dt_pre ;

}

return dt_next ;

}

The solution is computed for Strang-splitting and the Milne device counter-

part to Strang-splitting. The operator splitting error measure will depend on

the adaptive operator splitting method used. This error is calculated by the

6.3. ADAPTIVE OPERATOR SPLITTING METHODS 179

cell models by comparing the solution in backup 0 to the solution in another

backup. The default implementation in the cell model base class calculates

the relative error but can be overridden to suit other requirements.

Both Strang-splitting and the Strang-splitting Milne device represent

valid operator splitting methods, the difference between their solutions is

used to calculate the error in the solution due to Strang splitting. The main

difference between these operator splitting methods and that used by the pre-

vious, non-adaptive, example is the use of adaptive_unsteady_newton_solve

rather than unsteady_newton_solve, which applies adaptive time-stepping

to calculate the solution to the diffusion equation over the entire interval

given by ∆t. This is implemented in the following

//perform an adap t i v e unsteady newton over the en t i r e i n t e r v a l [t

, t+dt] i n c l u s i v e

void adaptive_unsteady_newton_solve_over_complete_interval (const

double& dt)

{

const double t_end = this−>time_pt ()−>time ()+dt ;

double dt_current = dt ;

while (this−>time_pt ()−>time ()<t_end)

{

dt_current = adaptive_unsteady_newton_solve (dt_current ,

e r r o r_to l e rance) ;

dt_current = std : : min (dt_current , t_end−this−>time_pt ()−>

time ()) ;

}

}

which applies adaptive_unsteady_newton_solve iteratively until the desired

time t+∆t has been reached and is not overstepped.

Chapter 7

Applying adaptive operator

splitting methods for the efficient

solution of cardiac

electrophysiology models

Simulations of highly nonlinear and complex systems such as the cardiac tis-

sue provide insights into the understanding of mechanisms underlying the

complex dynamics of the system. Given the large scale and complexity of

the system, this gives rise to the need to develop fast, efficient, stable and

parallelizable numerical solvers for obtaining accurate solutions to the model.

In this study, a temporally doubly adaptive method for the efficient solution

of general cardiac electrophysiology models was developed. By testing and

comparing the developed methods by using representative cardiac models,

it was found that the application of adaptive operator splitting significantly

improves the efficiency of solving the monodomain model of cardiac elec-

trophysiology, and overall this improvement is model-independent. The de-

180

181

veloped method is highly parallelisable and capable of more efficiently and

robustly solving cardiac cell and tissue simulations than Strang-Splitting.

It is further demonstrated that adaptive time-steppers applied to the cell

model often select time steps smaller than those commonly used in similar

numerical studies, indicating that commonly used time steps in solving cell

models may not be applicable to adaptive operator splitting. These results

demonstrate that adaptive operator splitting schemes could improve the effi-

ciency of numerical schemes used to solve electrophysiological models of the

myocardium.

Biophysically detailed cardiac models consist of a large number of ODEs

representing kinetics of ion channels, ion exchange and pumps, as well as in-

tracellular Ca2+ handling, that are coupled with a small number of diffusive

PDEs that are representative for intercellular membrane potential diffusion

[130] [131] [132] [133]. The ODEs act to model source terms (i.e., the gen-

eration of cellular membrane potential) in the PDEs. The solution of the

PDEs in turn affects the dynamical behaviour of the ODEs. Efficiently cal-

culating the solution to this coupled system is an important field of active

research since simulations of cardiac tissue are often very large and require

enormous amounts of computational resources to solve the cardiac model

equations [105]. Several methods have been developed which seek to tackle

this problem, however, issues remain in balancing efficiency with accuracy

[104]. There are a few examples of methods which utilise predictor-corrector

error estimation to ensure the solution has converged to a suitable tolerance

whilst minimising computational cost, even in highly efficient and specialised

methods [108]. Additionally, the majority of adaptive methods proposed are

based on qualitative and heuristic estimation of the stiffness of the cell equa-

tions with no general measure of error [134] [135] which is not guaranteed to

182 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

achieve an acceptable error in the final solution. These methods are gener-

ally used since a heuristic estimation of stiffness is often sufficient to ensure

convergence and often requires only a single evaluation of the cell equa-

tions. However, a quantitative measure of the error in a solution is important

for verification purposes. Furthermore, when simulating new untested mod-

els, the robust convergence criteria provided by predictor-corrector methods

substantially improve the trustworthiness and reproducibility of results over

heuristic adaptive schemes.

In the field of computational cardiology, most of the widely used numerical

methods have remained unchanged since their conception. These methods

were generally developed for solving large-scale multi-physics problems on

machines with comparatively little memory and computational power. For

example, the partitioned method of using Rush-Larsen alongside forward

Euler has been used for solving equations governing intracellular ion cycling

kinetics and channel gating dynamics since it was developed in 1978 [96]. A

number of attempts have been made to improve upon it with new algorithms,

such as that of Sundnes [136], and Perego [137], however, the original Rush-

Larsen method was demonstrated to outperform these newer methods for the

majority of cell models tested [98].

However, with more abundant, faster memory and more powerful proces-

sors, alternative methods can be implemented which make use of predictor-

corrector temporal adaptivity. During the time course of excitation, cardiac

tissue simulations generally encounter both stiff and non-stiff time periods,

during which the models are or are not numerically difficult to solve respec-

tively. Non-temporally-adaptive methods provide no guarantee that they

will suitably resolve the solution and may result in large errors during stiff

periods. In general, a time stepper can take larger time steps when the gov-

183

erning equations are non-stiff but must take many smaller time steps when

the equations become stiffer. Most cardiac cell models are only stiff during

periods of rapid change in membrane potential during the phase-0 depolarisa-

tion phase, which occurs during only a relatively small time window within

the action potential duration of the upstroke. Furthermore, at any given

time during large-scale tissue simulations, only a relatively small fraction of

the total population of cells in the tissue, corresponding to the excitation

wavefront, are undergoing rapid change in membrane potential and therefore

most cells can be solved with coarser time steps. A parallel method which

allows for autonomous adaptivity for solving equations of each cell in the

population tissue model could therefore result in improvements in the time

taken to complete the simulation [138] [139].

The rapid change in the membrane potential during the upstroke phase

in cell models is not the only source of error in solving cardiac model equa-

tions. Due to a large number of variables within cell models, the equations

of sub-cellular and tissue-scale dynamics are partitioned so that each may be

independently solved more efficiently. This splitting of the governing differ-

ential operators however introduces a further source of error [140] [141] which

may be controlled through the application of predictor-corrector techniques

to the operator splitting stage [18].

A recent study has made use of adaptive time stepping to solve the cell and

the diffusion equations [142] in order to reduce error and improve stability.

However, this method implements explicit methods for both sets of equations

in order to improve scalability and memory use. Furthermore, a fixed super-

time-step length is used and so the method may not be optimal for non-stiff

periods of computation.

In this study, an alternative method where adaptive predictor-corrector

184 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

algorithms [115] [114] [18] are instead applied to both the operator splitting

stage and the cell equations is proposed and has been developed. The resul-

tant temporally doubly adaptive method is highly parallelisable and capable

of more efficiently and robustly solving cardiac simulations than the other

methods tested. It is also shown that the adaptive cell solver not only allows

for a more efficient solution but is required in order to ensure a numerically

accurate and stable result when adaptive operator splitting is applied. It is

further demonstrated that adaptive cell time-steppers often select time steps

smaller than those commonly used in similar numerical studies.

7.1 Methods

7.1.1 Cardiac cell models

The general form of a cell model follows from that given in section 2.2.

In order to demonstrate the model independence of the adaptive operator

splitting schemes, two cell models are applied. Both the HRd 2011[103]

and an SQT1 variant of the TNNP 2006 left ventricle model[130] which

was developed[111] to simulate the N588K mutation on KCNH2-encoded

hERG and is capable of sustaining persistent spiral waves were applied. Both

cell models are applied to 1D simulations in order to determine conduction

velocity. For 2D simulations, in order to facilitate the generation of re-entrant

waves, only the SQT1 TNNP model was applied.

Diffusion Model

The monodomain equation is used to model electrical diffusion through the

tissue, it is given by 2.57 with boundary conditions given by 2.58.

7.1. METHODS 185

7.1.2 The operator splitting stage

Operator splitting is performed as per the description in 3.5.3. All operator

splitting methods used are detailed there. Several operator-splitting meth-

ods are applied: Strang-splitting, palindromic Lie-Trotter, Strang-Milne, and

symmetric Milne-32.

These splitting methods were selected since they all do not require back-

ward time integration as they are second-order or less. It has been demon-

strated that operator splitting methods of order three or greater could po-

tentially be applied to some parabolic equations[143], including the mon-

odomain and bidomain equations[144]. However, the application of these

methods can introduce instability due to ill-posed backward time-integration

of the parabolic PDEs. In order to remove the risk of instabilities due to

backward integration confusing results, these methods are omitted. Adap-

tive operator splitting methods used are as follows. Palindromic Lie-Trotter

which produces a second-order accurate solution and second-order accurate

error measure. Strang-Milne is also second order and is produced by applying

the Milne device to Strang-splitting. Symmetric Milne-32 is a combination

of two methods, one of which is very similar to AM32 which is second order,

which together can be used to produce an error measure.

7.1.3 Solving the monodomain equation

Two methods were applied to solve the monodomain equations. The more

basic method of solving the monodomain equation was the commonly used

Crank-Nicolson method [99]. Crank-Nicolson is unconditionally stable and

second-order accurate[99] making it suitable for use with the potentially

coarse time steps imposed by the adaptive operator splitting scheme and

186 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

is given by 3.17

A more advanced method used to solve the monodomain equation was

an adaptive backward Euler time-stepper. Here, the time-derivative was

approximated using the backward Euler method, and the rate of change of

each DOF was used to determine a predicted value from which an error

approximation was calculated.

The weak form of the diffusion equations is obtained by multiplication

with a test function and integration over the domain Ω. The weak form of

the diffusion equation is then solved via the finite element method within the

Oomph-lib open source multi-physics library[16] using a custom extension,

and the resultant large linear system is solved at each iteration of the Newton

method using the Mumps solver and openMPI. The Crank-Nicolson formu-

lations of the Monodomain and Bidomain equations have been implemented

as extensions to Oomph-lib.

7.1.4 Solving the cell equations

Due to the nature of adaptive operator splitting schemes, arbitrarily coarse

time-steps could be imposed on the solver of the cell model. For such coarse

time-steps, the commonly used Forward Euler with Rush-Larsen (FERL)[96]

is unlikely to give a sufficiently accurate or stable solution.

For the cell models used, it is known that a maximum time-step of ap-

proximately 0.01 ms is required when they are solved with FERL. Therefore,

when FERL is applied to solving them, a maximum time-step of 0.01 ms

could be enforced and the method of solving cell equations outlined in sec-

tion 3.5.3 would be applied.

Alternatively, adaptive time-stepping methods could be used. A com-

monly used adaptive method for solving single cell equations is that of Qu

7.1. METHODS 187

and Garfinkel [135]. Here, the time-interval is subdivided into K smaller

intervals dependent on the magnitude of ∂Vm

∂t
. Larger magnitudes indicate

potentially stiffer equations and a smaller ∆t is required. It has been widely

used [145] [146] [147] to provide more stable solutions to single cell equations

than FERL. Since the adaptive time-step is chosen before any derivative

evaluations are made, no partial solutions are discarded and fewer deriva-

tive functions are evaluated when compared to predictor-corrector adaptive

methods. It was observed that this method diverged for many of the cell

models tested but, when a finite solution was found, converged to a solution

much faster than other adaptive methods tested. During the time-step selec-

tion of this method, single-cell variables other than transmembrane potential

are ignored and so may result in large errors. Additionally, the method is not

general and so is not guaranteed to converge for a general single cell model. It

was found that a very small maximum time step value was required in order

to ensure convergence for some models. This resulted in a much less efficient

method when compared to predictor-corrector type adaptive time-steppers.

Heun-Euler (HE) is an explicit Runge-Kutta method. It compares the

solutions given by the first order forward Euler (FE) and second order Heun

methods. In the implementation of HE, checks for non-finite-values are made

after the initial FE step. When non-finite-values are encountered, the solu-

tion is reverted to the start of the time interval and the time-step is halved. If

the time-step is not discarded for the reason of encountering non-finite-values,

then an error measure is calculated. This is used to inform the next time-step

length, if it is below the target error tolerance, or to adjust and repeat the

current time-step length if the error measure is above the target error toler-

ance. HE requires an additional function evaluation to compute the solution

to each time interval when compared with FE. In terms of derivative evalua-

188 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

tions, the efficiency of HE is double that of FERL for a successful time-step.

To solve the cell equations over a given interval of length ∆t, choice of the

new time-step at each iteration of HE is made to ensure that the single cell

equations are solved over exactly ∆t. Each cell within the tissue is free to

autonomously select appropriate time-steps independently of the other cells.

Again, as in the operator splitting stage, a new time-step-length is chosen by

the widely used method of [117].

7.1.5 The combined methods

To perform the target pattern and spiral wave simulations there were four

combined methods used: Strang-splitting, which represents the de-facto

method to which the others were compared, and the adaptive operator split-

ting methods, palindromic Lie-Trotter, Strang-Milne, Symmetric-Milne-32.

Strang-Splitting was implemented with the cell equations solved using a

combination of forward Euler and Rush-Larsen depending on the cell vari-

able solved. The resultant combined method is refered to here as SSFE.

The adaptive operator splitting methods were implemented with the cell

equations solved using Heun-Euler and are referred to here by the acronyms

PLTHE, SMHE, and SM32HE. Adaptive operator splitting was applied with

relative error tolerances of 0.1, 0.01, and 0.001.

The diffusion equations in all cases were solved using the Crank-Nicolson

formulation.

To perform measurements of conduction velocity within a heterogeneous

fibre, temporal adaptivity was applied to solving the monodomain equa-

tion and the cell equations were solved using the forward Euler and Rush-

Larsen methods with a hard limit on the maximum time-step allowed. For

these methods, as has been discussed previously, Crank-Nicolson is not suit-

7.1. METHODS 189

able since the implementation within Oomph-lib does not provide an error

measure. Instead the backward Euler time-stepper is applied. The com-

bined methods for these simulations are referred to simply by their operator

splitting name: Strang splitting, Palindromic Lie-Trotter, Strang-Milne, and

symmetric-Milne-32. For these methods, the maximum error tolerance per-

mitted for the adaptive time-stepping solution to the monodomain equation

was set to the tolerance permitted in the operator splitting solve. As for the

target pattern and spiral wave simulations, error tolerances of 0.1, 0.01, and

0.001 were applied.

7.1.6 Benchmark simulations

Adaptive operator splitting schemes are compared to Strang-splitting using

four benchmark simulations: pacing of a heterogeneous fibre of cells, target

pattern waves in a 2D square geometry, and re-entrant waves in a heteroge-

neous 2D square geometry.

1D fibre simulations

Conduction velocity is measured in a one-dimensional heterogeneous fibre so

the results given by the adaptive operator splitting schemes can be compared

to that of Strang-splitting. The fibre is of length 15 mm and consists of 100

2-node, one-dimensional, finite elements each of length 0.15 mm. Each node

in the mesh corresponds to a model of a ventricular cell for a total of 101 cells

in the fibre. The selected spatial resolution of 0.15 mm is similar to measured

ventricular cell length which is approximately 0.8 mm-0.15 mm[148]. Cells

in the mesh are of varying cell-type so as to represent spatial heterogeneity

observed transmurally through the ventricular wall. As was used in other

similar studies[149][150][151][152], the fibre comprises of 25% endocardial,

190 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

35% mid-myocardial, and 40% epicardial cells. The fibre is stimulated at the

left most edge, that containing the endocardial cells, in a region of width 0.6

mm for a duration of 2 ms with current amplitude −52 pA/pF. This stimulus

was applied a total of 10 times, one every 600 ms, before the 11th stimulus

wave was measured for conduction velocity.

Conduction velocity is measured as a function of the conductivity D for

each numerical scheme in order to compare results. The membrane potential

of two cells, one at 25% and one at 75% along the length of the fibre, is

measured after the 11th stimulus. The CV is calculated as ∆x/∆t where ∆x

is the distance between the two cells and ∆t is the time delay between when

dVm/ dt was largest for the measured cells.

2D simulation of target pattern excitation waves

Target pattern excitation waves are simulated in a heterogeneous 2D tissue.

Tissue of dimensions 9× 9 mm and spatial resolutions 150× 150µm as used

in previous studies [149] [153] is stimulated in the lower left corner in a patch

of size 1 × 1 mm. The tissue is heterogeneous with 25% endocardial, 35%

midmyocardial, and 40% epicardial left ventricular cells from the left most

edge to the right. The simulation is run for 800 ms in order to capture both

the excitation wave and subsequent repolarization of the tissue.

2D simulations of target pattern waves

A piece of 2D cardiac tissue is generated by extending the fibre mesh de-

scribed previously perpendicular to the fibre by 50 mm, producing a rect-

angular mesh of dimensions 15 × 50 mm which is discretised by a spatial

resolution 150×150µm as was used in the original presentation of the SQT1

model [111]. Spatial heterogeneity is asserted in the direction of the short

7.2. RESULTS 191

edge as described for the 1D fibre simulation. Conductivity in the fibre

direction was the same as in the 1D simulations described previously, and

anisotropic conduction was simulated by setting conductivity in the sheet

direction to D = 0.1m2s−1, which gave a conduction velocity of 0.5ms−1

which is close to observed values[154]. Re-entry is initiated by a standard

S1-S2 protocol, wherein the S1 is applied to the endocardial region along the

left-most edge of the substrate in order to invoke a planar excitation wave

which propagates towards the epicardial region. The S2 stimulus is then ap-

plied to a region of tissue in the mid-myocardium region which is within the

vulnerable window of the model.

7.2 Results

7.2.1 Measuring conduction velocity in a transmural

left ventricle fibre for the HRd ventricle model

The conduction velocity within the fibre for each operator splitting method

is presented in figure 7.1. The solution due to Strang-splitting with a time-

step of 0.01ms is used as the benchmark to which the results due to the

adaptive operator splitting methods are compared due to the prevalence and

justification of this choice of time-step within the literature. Adaptive op-

erator splitting methods were applied with a relative error tolerance in the

operator splitting stage of 0.1. Of the adaptive operator splitting methods,

Strang-milne in general produced the least error, with a relative error of less

than 5% for conduction velocities greater than 1.2m/s, figure 7.2. However,

for conduction velocities less than 1.2m/s errors rose substantially up to ap-

proximately 15% for a conduction velocity of 0.1m/s. The other adaptive

192 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

operator splitting methods resulted in higher errors than Strang-Milne.

Figure 7.1: Conduction velocity is measured in a simulated heterogeneous
transmural left ventricular fibre of the HRd cell model of length 15mm.
Strang splitting with a time step of 0.01ms is compared to adaptive operator
splitting methods each with a relative error tolerance of 0.1. The simulation
is run for each method with conductances ranging from 0.05m2/s to 1.0m2/s
and the resulting conduction velocity is measured for each.

It was found that for smaller values of relative error tolerances, the

adaptive time-stepping heuristic used to solve the monodomain equation

failed to converge. Furthermore for symmetric Milne-32 at a conductance of

0.01m2/s2 the monodomain adaptive time-stepping failed in the same way for

a relative error tolerance of 0.1. These failures in the adaptive time-stepping

procedure to solve the monodomain equation occurred in all instances im-

mediately following the application of the first external stimulus to the fibre.

This could be because the backward Euler time-stepper is of relatively low

order and could indicate that a higher-order adaptive time-stepper for solving

7.2. RESULTS 193

Figure 7.2: Relative error is calculated for the conduction velocity mea-
sured in a simulated heterogeneous transmural left ventricular fibre of length
15mm. Strang splitting with a time step of 0.01ms is used to calculate the
solution against which the relative error is calculated. The simulation is run
for each method with conductances ranging from 0.05m2/s to 1.0m2/s and
the resulting conduction velocity is measured for each.

194 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

the diffusion equations may be required.

All adaptive operator splitting methods with a relative error tolerance of

0.1 took less time to complete each simulation than Strang-splitting with a

time-step of 0.01ms.

Figure 7.3: Total time taken to perform simulation of heterogeneous left
ventricular fibre of length 15mm. Strang splitting with a time step of 0.01ms
is compared to adaptive operator splitting methods each with a relative error
tolerance of 0.1. Adaptive operator splitting methods took less time than
Strang splitting with a time-step of 0.01ms.

The Rate of Advance (ROA) is defined as the duration of the simulation

in milliseconds achieved divided by the time taken to perform that simulation

in seconds. ROA for the methods tested is presented in 7.4. All adaptive

methods had a larger ROA than Strang splitting with a time-step of 0.01ms.

The fraction of the entire computation time required for solving the mon-

odomain equation and the cell equations is compared. The application of

adaptive operator splitting methods appears to shift the computational load

7.2. RESULTS 195

Figure 7.4: The average rate of advance of the simulation of a heterogeneous
left ventricular fibre of length 15mm. Strang splitting with a time step
of 0.01ms is compared to adaptive operator splitting methods each with a
relative error tolerance of 0.1. The average rate of advance is defined here
as the total simulation time (ms) divided by the total time taken to perform
the simulation (s).

196 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

from solving the cell equations to solving the monodomain equation. Fig-

ure 7.5 shows that the fraction of the entire computational time applied to

solving the monodomain equation was significantly higher for the adaptive

operator splitting methods than for Strang-splitting.

Figure 7.5: Fraction of the total simulation time taken to solve monodomain
equation for a heterogeneous left ventricular fibre of length 15mm. For every
operator splitting method, each time-step requires computing the solution to
the cell model equations and the monodomain equation. Since an adaptive
time-stepping method is applied to solving the monodomain equation at each
stage, the number of solves of the monodomain equation is not fixed and
varies between time-steps and between methods. For Strang-splitting, the
fraction of time spent solving the monodomain equation is relatively constant
at around 0.77, however for the adaptive operator splitting methods a greater
fraction of the total time taken to execute the simulation is spent solving the
monodomain equations.

It is shown in figure 7.6 that the Strang-Milne and Palindromic Lie-

Trotter methods require substantially fewer solves of the monodomain equa-

7.2. RESULTS 197

tion when compared to Strang-splitting with a times-step length of 0.01ms.

Figure 7.6: Total number of solves of the monodomain equation when simu-
lating a heterogeneous left ventricular fibre of length 15mm. Since an adap-
tive time-stepping method is applied to solving the monodomain equation at
each stage, the number of solves of the monodomain equation is not fixed
and varies between time steps and between methods. The total number of
solves of the monodomain equation will, in general, depend on the number
of solves required for computing each time-step and the size and number of
time steps taken by the method in computing the solution. For Strang split-
ting, the number of solves of the monodomain equation is relatively constant,
however, for the adaptive operator splitting methods, the number of solves of
the monodomain equation varies significantly as the conductance is changed.

7.2.2 Target pattern wave simulations

In the 2D tissue model, the numerical schemes were first tested for simulating

excitation waves of target pattern using both the HRd and TNNP06 models

for cellular excitability. Results are shown in Figure 7.8. Snapshots are shown

198 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

of target pattern excitation waves at 10ms (left panels) and 20ms (right pan-

els) after the simulation computed from the HRd model using Strang-splitting

with forward Euler and Rush-Larsen (SSFERL) (∆t = 0.01ms; Figure 7.8

A-B), Strang-Milne with Heun-Euler (SMHE) (Figure 7.8 C-D), Symmetric-

Milne-32 with Heun-Euler (SM32HE) (Figure 7.8 E-F), and Palindromic-

Lie-Trotter with Heun Euler (PLTHE) (Figure 7.8 G-H). In simulations, the

excitation waves were evoked by a local stimulus applied to the left bot-

tom corner of the tissue. With both HRd and TNNP06, simulation results

on the wave-shape (i.e., smoothness of the curved wavefront) due to both

SMHE, SM32HE, and PLTHE with target operator splitting error less than

or equal to 0.01 matched those due to SSFERL with ∆t = 0.01ms (there is

no variation throughout each column of Figure 7.8). The same simulation

was run for the TNNP cell model, (Figure 7.7). It was found that although

PLTHE was faster than both SMHE and SM32HE for an operator splitting

error of 0.1, it produced oscillations in the initial wave-front which smoothed

out as the wave travelled through the tissue. Furthermore, the time taken

for PLTHE increases significantly faster than either SMHE or SM32HE as

tighter restrictions on operator splitting error are imposed. PLTHE was not

run for TNNP06.

The parallelisability of the numerical schemes was tested in solving the

excitation of target pattern waves. Results in simulating the HRd model are

shown in Table 7.1 and results of simulating the TNNP model are shown

in Table 7.2. Target pattern waves were simulated for varying numbers of

processors from 1 to 6. Computing a line of best fit of the form T = ANB,

where T is the total time taken to compute the simulation, N is the number

of processors, and A and B are the parameters to be found, produces an

estimation of how the computation time scales with the number of proces-

7.2. RESULTS 199

Figure 7.7: Snapshots of a target pattern wavefront through a 2D sheet
consisting of the TNNP cell model. Results are shown for SSFERL with
∆t = 0.01ms, and SMHE and SM32HE with target operator splitting error
1E-3. A, C, E: results for SSFERL, SMHE, SM32HE respectively at time
t = 10ms. B, D, F: results for SSFERL, SMHE, and SM32HE respectively
at time t = 20ms.

200 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

Figure 7.8: Snapshots of simulated target pattern excitation wave in a 2D
sheet of HRd model with different operator splitting methods. Results were
obtained by using SSFERL with ∆t = 0.01ms, and SMHE, SM32HE, and
PLTHE with target operator splitting error 1×10−3. A, C, E, and G: results
for SSFERL, SMHE, SM32HE, and PLTHE respectively at time t = 10ms.
B, D, F, H: results for SSFERL, SMHE, SM32HE, and PLTHE respectively
at time t = 20ms.

7.2. RESULTS 201

sors. More negative values of B indicate that the method scales better with

increasing numbers of processors.

In simulating HRd, Strang-splitting produces B = −0.47, whereas

Strang-Milne, Symmetric-Milne 32, and Palindromic-Lie-Trotter produce

B = −0.74, B = −0.635, and B = −0.50 respectively with an operator

splitting error of 0.001. This indicates that Strang-Milne is the most scal-

able of the methods tested, whereas palindromic-Lie-Trotter only slightly

outperforms Strang-Splitting.

Num
procs

Time Taken (s)
SSFERL SMHE SM32HE PLTHE
∆t (ms) OS error OS error OS error

0.01 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
1 3696 403 467 616 N/A 436 645 379 543 1130
2 2403 206 239 333 N/A 234 386 195 314 708
3 2061 142 177 256 N/A 170 288 136 233 552
4 1765 114 141 212 N/A 136 240 102 192 498
5 1571 95 122 187 N/A 117 221 84 176 467
6 1695 76 99 159 N/A 109 215 74 171 484

Table 7.1: Time taken to perform target pattern wave simulation with several
operator-splitting methods for the HRd model. All operator splitting meth-
ods were applied with varying numbers of processors from 1 to 6. Adaptive
operator splitting methods were applied with operator splitting errors of 0.1,
0.01, and 0.001. Strang-splitting was applied with a time-step of 0.01ms.
SM32HE did not converge to a finite solution for operator splitting error 0.1.

In simulating TNNP, Strang-splitting produces B = −0.55, whereas

Strang-Milne and Symmetric-Milne 32 produce B = −0.96 and B = −0.94

respectively with an operator splitting error of 0.001. This indicates that

Strang-Milne is the most scalable of the methods tested and is significantly

more scalable than Strang-Splitting, however, there was little variance be-

tween Strang-Milne and symmetric-Milne 32.

The ROA for variant schemes for both HRd and TNNP models was inves-

202 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

Num
processors

Time Taken (s)
SSFERL SMHE SM32HE
∆t (ms) OS error OS error

0.01 0.1 0.01 0.001 0.1 0.01 0.001
1 3188.6 2054.2 2017.6 2117.5 2002.2 2040.5 2135.6
2 2090.7 1017.6 1015.7 1076.7 1008.8 1028.3 1088.2
3 1600.2 665.7 694.2 717.5 671.3 686.2 735.4
4 1428.6 503.5 514.4 547.4 506.2 520.4 565.8
5 1258.6 402.4 414.8 446.1 410.1 418.5 458.1
6 1201.5 337.0 356.6 379.2 343.4 350.5 396.6

Table 7.2: Time taken to perform planar wave simulation with various meth-
ods for the TNNP model. All operator splitting methods were applied with
varying numbers of processors from 1 to 6. Adaptive operator splitting meth-
ods were applied with operator splitting errors of 0.1, 0.01, and 0.001. Strang-
splitting was applied with a time-step of 0.01ms.

tigated. Results are shown in figure 7.10 and figure 7.11 for HRd and figure

7.9 for TNNP. Figure 7.10 A shows that for target pattern simulation, an OS

error of 1E-3, ROA of SSFERL was greater than that of SMHE, SM32HE,

and PLTHE whilst the wave-front was within the substrate (t < 25ms), al-

though ROA of SMHE, SM32HE, and PLTHE was significantly higher than

SSFERL once the wave-front left the substrate.

Similarly, with the TNNP cell model, figure 7.9 A demonstrates that

SSFERL with ∆t = 0.01ms is faster than both SMHE and SM32HE while

the wavefront is within the tissue. However, SSFERL is significantly slower

than SMHE and SM32HE once the wavefront leaves the tissue. PLTHE was

not used in solving the simulation with the TNNP cell model.

Additionally, it was found that with TNNP ROA was not necessarily

improved by larger time-step values. Towards the end of the simulation

(after approximately 525ms) the ROA of both SMHE and SM32HE drops

precipitously as the time-step increases and remains low until the end of the

simulation. This occurs at a stage when very little spatial variation in the

7.2. RESULTS 203

(a)

(b)

Figure 7.9: Rate of advance (ROA) of TNNP simulations of planar wave and
spiral waves. A: Rate of advance of planar waves, ROA is plotted on the
right y-axis against simulation time for SSFERL with ∆t = 0.01ms, SMHE,
SM32HE, PLTHE with OS error 1E-3. Time-step taken ∆t is also plotted
on the right y-axis against simulation time for each individual method. B:
Rate of advance of spiral waves, ROA is plotted on the right y-axis against
simulation time for SSFERL with ∆t = 0.01ms, SMHE, SM32HE, PLTHE
with OS error 1E-3. Time-step taken ∆t is also plotted on the right y-axis
against simulation time for each individual method.

204 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

solution exists and so little OS error is produced. This drop in ROA may

be explained by stiffness in the single-cell equations necessitating smaller

time-step lengths during the single-cell solve stage. However, it was observed

that the reduced ROA persists even after the cells are recovered and their

underlying variables are varying only slowly. This could be an indication

that when applied to certain cell models, such as TNNP, this method may

benefit from an upper limit on time-step length. Contrasted with the ROA

of HRd, shown in Figure 7.10 A, which reaches a steady, high value as the

time-step increases.

It was observed that SM32HE was not guaranteed to converge for a target

operator splitting error of 0.1. For example, when applied to solving target

pattern waves through a heterogeneous 2D substrate of HRd model cells,

SM32HE stalled approximately 302ms into the simulation. Discontinuities

which had emerged between the three regions resulted in excessively stiff

conditions which required arbitrarily small time steps to solve and caused

the simulation to stall. It was found that the break discontinuities caused

the adaptive single-cell solver to take arbitrarily small time steps. A target

error of 0.1, in this case, corresponds to a 10% relative error in the solution, it

is therefore not believed that this negatively reflects the method since smaller

target errors did not produce such discontinuities in the same simulation.

7.2.3 Spiral wave simulations

Similar investigations were also conducted in the 2D tissue model with spiral

excitation waves. It was found that re-entrant waves were not generated in

the substrate for the HRd model for any method tested. Results for HRd are

shown in Table 7.3. This data shows that when applied to large 2D tissue

simulations of the HRd model, SMHE, SM32HE, and PLTHE are faster than

7.2. RESULTS 205

(a)

(b)

Figure 7.10: Rate of advance (ROA) of HRd simulations of target pattern
wave and spiral waves. A: The Rate of advance of target pattern waves,
ROA is plotted on the right y-axis against simulation time for SSFERL with
∆t = 0.01ms, SMHE, SM32HE, PLTHE with OS error 1E-3. Time-step
taken ∆t is also plotted on the left y-axis against simulation time for each
individual method. B: Rate of advance of spiral waves, ROA is plotted on the
right y-axis against simulation time for SSFERL with ∆t = 0.01ms, SMHE,
SM32HE, PLTHE with OS error 1E-3. Time-step taken ∆t is also plotted
on the right y-axis against simulation time for each individual method.

206 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

Figure 7.11: Time-step taken by several operator splitting methods in sim-
ulating HRd simulations of spiral waves. Strang-Splitting is simulated with
a constant time-step of 0.01ms, Symmetric-Milne 32 and Strang-Milne are
used with an operator splitting error of 1E-3.

SSFERL with ∆t = 0.01ms for all tested target operator splitting errors.

Table 7.3 A shows that all of SMHE, SM32HE, and PLTHE are faster in

total than SSFERL with ∆t = 0.01ms for all tested OS errors. It is further

shown in Table 7.3 B that SM32HE with OS error 1E-3 is faster than SSFERL

even while the wave-front is within the tissue, whereas SMHE and PLTHE

both with the same OS error were not. This may indicate that SM32HE

provides a more reliable speed-up when simulations contain many cells than

for smaller simulations. Complete numerical results for all methods and OS

errors tested are shown in Table 7.3. Note that re-entrant wave simulations

were only run on 6 processors.

Similarly, when applied to the TNNP cell model, SMHE and SM32HE

were faster than SSFERL with a time-step of ∆t = 0.01ms for all tested

OS errors. PLTHE was not run for TNNP. It was observed that for TNNP,

re-entrant waves of delayed after depolarisations were generated for SSFERL

7.2. RESULTS 207

Time Taken (s)
SSFERL SMHE SM32HE PLTHE
∆t (ms) OS error OS error OS error

0.01 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
55252 3126 5092 12188 2324 4554 10027 1731 7540 29853

Table 7.3: Time taken to perform spiral wave simulation with various meth-
ods for the HRd model. All alternative methods (SMHE, SM32HE, and
PLTHE) outperformed SSFERL with ∆t = 0.01ms for all chosen operator
splitting errors.

with ∆t = 0.01ms and both SMHE and SM32HE with OS error 1E-2 and

1E-3, however, no re-entrant waves were generated for OS error of 1E-1. Ta-

ble 7.4 A shows that, overall both SMHE and SM32HE were significantly

faster than SSFERL with ∆t = 0.01ms for all OS errors tested. Addition-

ally, Table 7.4 B further shows that at all stages of the simulation, SMHE

and SM32HE progress faster than SSFERL. Complete numerical results for

TNNP re-entrant wave simulations are shown in table 7.4.

Time Taken (s)
SSFERL SMHE SM32HE
∆t (ms) OS error OS error

0.01 0.1 0.01 0.001 0.1 0.01 0.001
45326 10321 15236 31162 10667 11947 27676

Table 7.4: Time taken to perform spiral wave simulation with various meth-
ods for the TNNP model. All alternative methods (SMHE, SM32HE, and
PLTHE) outperformed SSFERL with ∆t = 0.01ms for all chosen operator
splitting errors.

It was found that, during re-entrant wave simulation of TNNP, ROA of

SMHE and SM32HE with OS error 1E-3 (figure 7.9 B) remain on average

higher than that of SSFERL with ∆t = 0.01ms for the majority of the

simulation. During this simulation, the time-step of the adaptive methods

peaks between 0.25 − 0.3ms, and so the drop in performance associated

208 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

with larger time-step values observed in target pattern simulations was not

observed.

It was found that a slight difference between the solution of SSFERL with

∆t = 0.01ms and SMHE and SM32HE with OS error 1E-3 emerged by the

end of the 500ms simulation. Interrogating identical points within the two

solutions shows (data not shown) that this is associated with a drift (< 5ms)

in upstroke times between the two solutions.

7.3 Discussion

For simple, non-physiological test cases, it was found that the error was large

when adaptive operator splitting methods were applied in the absence of a

time-adaptive solution of the diffusion model and when the maximum time-

step was enforced in the solution of the point-source model. For the same,

non-physiological, test cases it was found that inclusion of time adaptive

time-stepping to the solution of the diffusion model significantly improved

the accuracy of the computed solution. In the context of a physiologically de-

tailed model of a transmural fibre in the human left ventricle it was found that

adding temporal adaptability to the solution of the diffusion equation was

not sufficient to ensure that measured conduction velocities were accurate,

when measured against the widely accepted Strang-splitting method, with

an over-refined time-step. Additionally, for the symmetric-Milne-32 method,

the time adaptive time-stepper used to solve the monodomain model failed

to converge for specific conductances and the diffusion time-stepper failed to

converge for all adaptive operator splitting methods tested when the required

error tolerance was reduced further. This failure always occurred immedi-

ately following the application of an external electrical stimulus. This could

7.3. DISCUSSION 209

indicate that temporal adaptability in the diffusion model alone, although

sufficient to ensure accuracy for non-stiff test cases, is not sufficient to ensure

that stiff physiological models converge when solved with adaptive operator

splitting even when a maximum time-step in the solution of the cell models

was applied.

The adaptive Heun-Euler method to solving the cell models was applied to

test the response of simulation results to temporal adaptability in the solution

of the point-source cell models. Adaptive operator splitting with temporal

adaptability in the cell model and non-adaptability in the diffusion model was

tested in 2D sheets of tissue simulating target pattern waves and induced

re-entrant spiral waves. In these cases, it was found that execution time

was substantially reduced when compared to Strang-splitting, by a factor

of approximately 10 for smaller simulations and a factor of approximately 5

for larger ones. In contrast, the application of temporal adaptability in the

diffusion model alone produced a speed-up by a factor of approximately 5

in the best case. This indicates that solving cardiac models with adaptive

operator splitting methods would benefit from temporal adaptability in both

the diffusion model and the cell models.

In general, it was found that the application of adaptive operator

splitting can significantly improve the efficiency of solving the monodomain

model of cardiac electrophysiology, and overall this improvement is model-

independent. However, modifications in the form of a limit on the adaptive

time-step size may further improve the method for some cell models such

as TNNP06 which appeared to take considerably longer to solve for larger

time-steps even when solved with adaptive time-stepping. The paralleliz-

ability of methods of adaptive operator splitting tested was greater than

methods using non-adaptive operator splitting. It was also found that for

210 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

small-scale simulations of target pattern waves, while the wave-front was

within the substrate, a target operator splitting error of 0.01 or less resulted

in methods which were slower than SSFERL but for large re-entrant wave

simulations adaptive methods were faster at all stages of the simulation. It

was demonstrated that for large target operator splitting error, PLTHE was

faster than both SMHE and SM32HE in both small target pattern wave and

large re-entrant wave simulations. However, for a smaller target operator

splitting error, PLTHE was significantly slower than SMHE and SM32HE,

this is likely due to the lower accuracy of PLTHE. Furthermore, for large

target operator splitting errors, solutions obtained from PLTHE exhibited

more spurious oscillations than the solutions obtained by either SMHE or

SM32HE which could indicate that PLTHE is a less stable method.

It is clear that the use of adaptive operator splitting methods benefits

from the additional application of adaptive time-steppers to solve both the

diffusion model and the cell model. However, more work is needed to deter-

mine the most appropriate adaptive time-steppers for solving the individual

sub-physics in this context.

When smaller relative error tolerances are enforced, the adaptive time-

stepping heuristic for solving the monodomain equation often failed to con-

verge for suitably large time steps. The Oomph-lib implementation of BDF

methods produces a measure of the error in the solution. This error is cal-

culated from the rate of change of the variables. It is unclear how this rate

of change should be approximated in the case of operator splitting, where

the initial conditions of the current time step are prescribed by the solu-

tion to the cell model equations. Adaptive operator splitting methods may

be worth revisiting with a more suitable time-stepping method applied to

solving the diffusion equation. It was found that applying BDF methods

7.3. DISCUSSION 211

of more than one step to solving the monodomain equation with operator

splitting resulted in an increased error. It is therefore unlikely that higher-

order BDF methods will increase the accuracy of adaptive operator splitting

methods. Higher-order time-steppers which use only the current values as

initial conditions should be investigated. Commonly implicit methods are

applied to the monodomain and bidomain equations for reasons of stability.

However, high-order explicit Runge-Kutta methods may present a possible

alternative. The inclusion of explicit time adaptive solution of the diffu-

sion equations may further improve the numerical efficiency of this method

[142]. Such time-stepping methods already exist within Oomph-lib, do not

introduce additional DOFs, and produce reliable error measures for adaptive

time-stepping.

Alternatively, implicit Runge-Kutta methods could be implemented.

These, as for the Crank-Nicolson method, would require re-implementing

a specific formulation of the monodomain and bidomain equations. Since

implicit Runge-Kutta methods contain additional variables which must be

calculated by solving a system of equations, implementing them within

Oomph-lib will likely introduce additional DOFs to the specific implementa-

tions of the monodomain or bidomain equation elements. These additional

DOFs will likely increase the numerical cost of solving the monodomain and

bidomain equations. However, this effect may be mitigated by choosing

the most suitable time-stepping methods and perhaps by developing and

applying a preconditioner. Furthermore, the use of implicit Runge-Kutta

methods will require a dummy time stepper which exists to perform essential

Oomph-lib operations such as shifting time-values, but also to calculate the

error based on the additional DOFs required by the Runge-Kutta method.

It has been demonstrated in another study[144] that third-order operator

212 CHAPTER 7. APPLYING ADAPTIVE OPERATOR SPLITTING

splitting methods can be used to solve the monodomain and bidomain equa-

tions. In order to avoid instabilities, an implicit Runge-Kutta method was

applied to solve the monodomain and bidomain equations, and a high-order

explicit Runge-Kutta method was applied to solve the cell model equations.

Using these methods, it may be possible to apply adaptive third-order oper-

ator splitting and produce more stable and reliable results while improving

efficiency.

Chapter 8

Future work

During this body of work, numerous areas were identified for future work.

Initial thoughts for scope and implementation are noted in this study but

represent significant areas for further development of oomph-lib and should

be considered as such.

8.1 Validation of the remaining areas of the li-

brary

It became apparent during this study that validation of several areas of the

numerical platform represent a large amount of further analysis, modelling,

testing and resultant further validation. These areas are the bidomain ele-

ments, anisotropic solid elements, and validation of unstructured mesh gen-

eration from anatomical geometries.

Validation of these aspects of the library, as with all areas, is essential in

order for the platform to be applied in cardiac research.

213

214 CHAPTER 8. FUTURE WORK

8.2 Implementation of Monodomain and Bido-

main elements with alternative time-

stepping techniques

Crank-Nicolson has long been established as a suitable method for the solu-

tion of cardiac electrophysiology simulations. However, it was demonstrated

here that the accuracy of applying adaptive operator splitting methods is

greatly improved when used in conjunction with adaptive time-stepping tech-

niques to solve the monodomain equation. For the time-steppers which al-

ready exist as part of Oomph-lib, the backward Euler time-stepper was the

only implicit, adaptive time-stepper which was found to be suitable for use

with operator splitting techniques. However, issues were encountered with

regard to convergence and accuracy for certain adaptive operator splitting

techniques. To address this, alternative high-order adaptive time-stepping

methods should be investigated. These methods should not require data

from more than one previous time-step, since it has been shown in this body

of work that methods such as high-order BDF time-steppers do not converge

when used alongside operator splitting. Fractional time-stepping methods

such as Runge-Kutta are a potential alternative, however, these require the

introduction of additional DOFs which would negatively impact the efficiency

of the method. Formulation of the residual and Jacobian formulations for

the additional DOFs would be required. The resultant blocks of the Jaco-

bian which correspond to the DOFs within each element will be very dense.

However, Runge-Kutta methods provide error measures which are dependent

entirely on the additional DOFs. This could result in a much more efficient

adaptive time-stepping technique than using the Oomph-lib backward Eu-

ler time-stepper since history values before the current time interval are not

8.2. ALTERNATIVE TIME-STEPPING METHODS 215

taken into account.

Alternatively, it may be possible to construct higher-order time-stepping

methods by exploiting the form of the diffusion equations which are used

to simulate cardiac electrophysiology. There exist high-order time-stepping

methods which only require data at the endpoints of the temporal inter-

val. These methods improve the approximation of the Partial Differential

Equation (PDE) over the time interval from a linear interpolation for Crank-

Nicolson to arbitrarily higher order interpolations without the introduction

of additional DOFs.

The general first order linear PDE„

∂u

∂t
= f(t, u(t)) (8.1)

can be solved over the interval [tn, tn+h] by constructing an approximation,

F(t, u(t)), to the integral of the function f(t, u(t)) over the interval. General

N-point approximations can be constructed to have the form

tn+h∫
tn

f(t, u(t)) ≈
I∑

i=0

∂if(tn, u(tn))

∂ti
Ti1 +

∂if(tn + h, u(tn + h))

∂ti
Ti2 (8.2)

where Ti1 and Ti2 are weights. However, 2-point approximations which use

data only at the end-points of the interval have the advantage that no addi-

tional DOFs are introduced to the resulting numerical method.

The following approximation to 8.1 can then be constructed

u(tn + h)− u(tn) ≈
I∑

i=0

∂if(tn, u(tn))

∂ti
Ti1 +

∂if(tn + h, u(tn + h))

∂ti
Ti2. (8.3)

This method is a special case of single-step Obrechkoff methods[155].

216 CHAPTER 8. FUTURE WORK

Single-step Obrechkoff methods can be of arbitrarily high order[155], and do

not introduce the need for additional initial conditions as is required by multi-

step methods, such as BDF. Furthermore, unlike Runge-Kutta, Obrechkoff

methods do not necessitate additional DOFs. Obrechkoff methods do how-

ever introduce stricter requirements on the temporal differentiability of the

terms in the PDE. In the context of the Monodomain and Bidomain equa-

tions, it is shown later that this requirement of temporal differentiability of

terms in the governing equations is equivalent to stricter requirements for

spatial differentiability and therefore requires the use of higher-order finite

elements. Additionally, several terms must either be assumed as Natural

boundary conditions or, if they cannot be assumed to be natural boundary

conditions, added to the formulation at the boundaries of the domain.

A general Obrechkoff method is given by

k∑
j=0

αiyn+j =
l∑

i=1

hi
k∑

j=0

βijy
(i)
n+j. (8.4)

Obrechkoff methods of arbitrary order can be constructed by suitably choos-

ing the values of k and l. Single-step methods are given when k = 1. It has

been shown that the error constant decreases more rapidly for increasing l

than increasing k. For values of k > 1 the method has more than two steps

which have been shown to be unsuitable for use with operator splitting. Re-

stricting k = 1 produces all single-step Obrechkoff methods which are of the

form

α0yn + α1yn+1 =
l∑

i=1

hi(βi0y
(i)
n + βi1y

(i)
n+1). (8.5)

Crank-Nicolson is a special case of this method, where l = 1, a0 = 1, a1 = 1,

β10 = 0.5, and β11 = 0.5. These single-step methods can be constructed by

considering approximations of the right-hand side of the differential equation

8.2. ALTERNATIVE TIME-STEPPING METHODS 217

8.1 over the interval [tn, tn + h] and then calculating the definite integral

of the resultant approximation over the interval. The term f(t, y(t)) can

be interpolated within the interval and, if such an interpolation uses only

information at the end-points of the interval, tn+1 and tn, then the resultant

approximation will be a single step method, rather than a fractional or multi-

step method.

Crank-Nicolson can be constructed in this way by choosing linear inter-

polation over the interval.

By considering a higher order cubic Hermite approximation which also

interpolates the derivatives of f(t, y(t)) at the end-points of the interval, the

fourth order Obrechkoff method which corresponds to k = 1, l = 2 can be

determined where the corresponding weights of this method in equation 8.5

are α0 = α1 = 1, β10 = β11 = 0.5, β20 = 1
12

, and β21 = − 1
12

. In general, it

may not be practical to compute terms containing ∂f
∂t

. However, the form

of the Monodomain and Bidomain equations can be exploited to calculate

them analytically in terms of higher-order spatial derivatives of the membrane

potential.

For the Monodomain equation, ∂f
∂t

takes the form

∂f

∂t
= ∇ ·

(
∂D

∂t
∇V +D∇ (∇ ·D∇V)

)
(8.6)

The resultant single-step Obrechkoff time-stepping method is of fourth order

and contains derivatives of up to fourth order. Conversion to the weak form

reduces the requirements on the spatial differentiability of the solution to

second order which can be approximated by basis functions which already

exist within Oomph-lib.

This method could improve the order and accuracy of numerical solutions

when compared to that of Crank-Nicolson or backward Euler. When used in

218 CHAPTER 8. FUTURE WORK

conjunction with a higher order operator splitting method or with an adap-

tive operator splitting method, it may allow for larger splitting time steps

to be used since the error associated with the diffusion solve could be lower.

However, it is possible that the error in such solutions may be dominated

by the operator splitting error, in which case the application of such higher-

order single-step time-steppers to solving the diffusion equations would be

unlikely to result in any improvement to efficiency or overall accuracy.

Implementation of simulations using these Obrechkoff methods requires

higher order basis functions than Crank-Nicolson in order to approximate the

terms involving repeated derivatives. Within Oomph-lib, this corresponds to

introducing additional nodes to the finite elements in the mesh which is used

to solve the diffusion equations. Within the framework which was developed

for handling cell models coupled with diffusion equations, this could result

in changes to the spatial resolution of the cells and introduce more cells to

the tissue. Such changes may affect the results of the simulation. This issue

can be resolved by using separate meshes for solving the diffusion equations

and the cell models individually. A diffusion mesh with high-order basis

functions can then be used along with a coarser cell model mesh with linear

interpolating basis functions.

The newly developed additions to the Oomph-lib library contain elements

which can handle such separation of the diffusion equations and cell models

into separate meshes. These elements utilise the Oomph-lib multi-physics

procedures as well as additional DOFs to facilitate the projection of mem-

brane potential between the meshes.

The separation of the meshes which are used for solving the separate

physics presents the possibility of using an adaptive mesh for the solution

of the diffusion equations. This isn’t practical when the cell models and

8.3. ADDITIONS OF BLOOD FLOW 219

diffusion equations are handled within a single mesh, since the introduction

of additional cells would potentially alter the solution. An adaptive diffusion

mesh may provide a more accurate solution in the vicinity of the wave front

and a more efficient solution in regions of tissue where there is little spatial

variation in the cell model dynamics. However, since there is a significant

numerical overhead associated with mesh refinement and un-refinement, it

is possible that the cost of such methods may be greater than any potential

efficiency gains.

This single-step Obrechkoff time-stepping method could be applied to per-

forming adaptive time-stepping through consideration of an associated error

measure. Since the use of single-step Obrechkoff time-stepping in Oomph-lib

would require an explicitly implemented finite element, generic Oomph-lib

time-steppers can not be used to compute the associated error. Instead, a

placeholder time-stepper which computes the error will need to be imple-

mented. This requirement is the same as for other similar implicit time-

stepping techniques, such as implicit Runge-Kutta.

8.3 Additions of blood flow

Blood flow within the heart is multi-scale, the simulation of which requires

several numerical and modelling approaches. Larger pools of blood that exist

within the vessels are often modelled with Navier-Stokes or non-Newtonian

models and simulated with FEM. Smaller vessels, such as capillaries, can be

modelled as a branching network of one-dimensional tubes. Large areas of the

circulatory system are often modelled with lumped sum parameter models,

where complex organs or structures involving many processes are instead

represented by a few variables representing the macro-scale behaviour. For a

220 CHAPTER 8. FUTURE WORK

complete model of the circulatory system to be implemented, these distinct

modelling approaches must be implemented along with methods of coupling

them together.

8.3.1 Valve boundary conditions

Commonly used FEM approaches for simulating blood flow, such as Navier-

Stokes and generic non-Newtonian fluid elements already exist within

Oomph-lib. However, inlet and outlet conditions for the heart chambers

require significant modelling. Blood flow in the inlets and outlets of the

ventricles is regulated by valves. These valves, when operating normally,

prevent blood from flowing back through the system. This improves the

efficiency of the heart, since the regurgitation of blood back into the vessels

during muscular relaxation is prevented, and is essential for proper heart

function. Defects within the valves are known to cause a plethora of serious

health risks.

The most realistic approach to modelling the heart values is through

FSI and solid-solid interaction. Heart valves consist of leaflets which are

in contact with one another when the valve is shut and separate as blood

is pushed through them. The valve leaflets are connected to the papillary

muscles via the chordae tendinae which together help to regulate the opening

and closing of the valves. Under normal conditions, blood pressure within the

heart chambers and contraction of the papillary muscles orchestrate to ensure

proper opening and closing of the valves to ensure that blood is permitted

to flow in only one direction.

A full FEM approach to modelling this system is very complex and would

require the addition of several significant physics models, such as solid contact

modelling, which do not currently exist within Oomph-lib. Instead, reduced

8.3. ADDITIONS OF BLOOD FLOW 221

parameter models of the valves could be considered. Such reduced parameter

models have been successful in improving the realism of FEM models of blood

flow within the heart chambers[156], however, their addition to Oomph-lib

requires several modelling considerations.

A common approach of coupling reduced parameter heart valve models

to FEM blood models is to allow the valve model to enforce parallel blood

flow in only one direction. Such models assume that there is no regurgita-

tion and also ignore the complex and well-documented interaction between

the valve leaflets and the surrounding blood. However, their use has been

shown to improve the predictive capabilities of blood flow simulations. If

the valve boundaries are not aligned with the global basis vectors, then La-

grange multipliers will be needed to enforce parallel inflow-outflow to the

fluidic elements. Implementation of this could take the form of a fluid face

element which applies Lagrange multipliers to ensure that fluid flow only

occurs normal to the element face.

Another modelling method is to apply lumped sum parameter models

which represent the cross-sectional area of the valve opening and its dynam-

ics in response to changes in fluid pressure across the valve. Such models

are advantageous over simpler positive parallel flow boundary condition ap-

proximations since they account for the time-dependent nature of the valve

leaflet dynamics, and thus the admittance of the valve, in response to blood

pressure. Such models offer a compromise between detailed, computationally

intensive finite element models of valve leaflets and simplified, more easily

implemented and computed positive flow conditions.

For anatomical geometries, it is a significant problem to determine how

external fluid boundaries should be identified automatically e.g. inlet, outlet.

A potential approach is to manually label facets in the anatomical geometry.

222 CHAPTER 8. FUTURE WORK

These labels can then be read during the generation of the mesh and the

elements treated accordingly.

8.4 Windkessel type models

The fluid dynamics within the heart are highly dependent on the conditions

in the extra-cardiac space. For example, high impedance in the lungs is

known to adversely affect the function of the left atrium and left ventricle,

and atherosclerosis can affect the blood pressure within the left ventricle and

thus impede proper contraction. There exist a large number of numerical

models which approximate blood flow and conditions within distinct regions

of the body. Windkessel models are lumped sum parameter models which

contain several terms, each representative of a separate process or part of the

circulatory system[157]. Although phenomenological, their use allows for pre-

dictive modelling of the effects of drugs and conditions which affect the heart

or extra-cardiac systems. Windkessel models can vary in complexity and can

represent several distinct processes within the circulatory system[158][159].

Implementation of Windkessel models within Oomph-lib would require

the development of additional elements which are not used as part of a finite

element mesh. Instead, the DOFs of any Windkessel elements would repre-

sent the variables in the Windkessel models and would have to be coupled

to the FEM formulation in some manner.

This could be achieved by attaching Windkessel-coupling face elements

to the inlet and outlet faces of the fluidic finite element mesh. These face

elements would have to be developed to communicate various aspects of the

FEM fluidic simulation, such as pressure and volume of fluid flow, to the

lumped sum Windkessel models.

8.4. WINDKESSEL TYPE MODELS 223

The inclusion of Windkessel models could allow for the simulation of

lumped sum closed-loop cardiovascular simulations. These could then be

further developed to introduce FEM modelling of other important areas of

the cardiovascular system, such as blood flow in the pulmonary capillaries, or

blood flow through the brain or placenta. Adding the capability of coupling

FEM models of disparate areas of the body through lumped sum parameter

models, such as those represented by Windkessel models, would represent an

important and essential development in the functionality of Oomph-lib.

Chapter 9

Summary and conclusions

This work represents significant additions to the Oomph-lib numerical li-

brary as well as an investigation into the applicability of alternative operator

splitting techniques to the simulation of cardiac models. Other areas were

researched and are noted in Chapter 8 as further areas for study and later

inclusion in oomph-lib

The application of alternative operator splitting methods to cardiac elec-

trophysiology models was investigated. Currently, Strang-splitting repre-

sents the de-facto method for finding partitioned solutions to cardiac electro-

physiology models. However, the application of Strang splitting requires

manual tuning of the time step to ensure that error and stability in the

resulting solution are acceptable. Furthermore, since models for cardiac elec-

trophysiology represent electrical oscillators connected within a syncytium,

both stiff and non-stiff periods are passed through during any simulation.

A fixed time-step operator splitting method, such as Strang-splitting, may

therefore not represent the most efficient method for performing such sim-

ulations. Three adaptive operator splitting methods were investigated in

conjunction with adaptive time-stepping in the electrical conduction model,

224

225

and adaptive time-stepping in the cell model. These methods demonstrated

improved efficiency in the solution of the cardiac models but presented po-

tential issues with accuracy and reliability. These issues could be addressed

through the additional application of higher-order time-stepping to the elec-

trical diffusion and point-source cell models in further research.

An efficient framework for coupling the partitioned solution of many

point-source non-linear differential equations to the FEM solution of PDEs

within Oomph-lib has been developed. Such a framework is essential for car-

diac simulations where such partitioned solvers are commonly applied. How-

ever, this framework could also be applied to other physical systems where

the decoupling of individual terms in the governing equations allows for a

more efficient solution. Elements used in solving for anisotropic electrical

diffusion models were implemented. These models were developed to oper-

ate fully within the pre-existing Oomph-lib environment and to adhere to the

coding practices of the library. However, substantial additional functionality

was also added which facilitates communication between these anisotropic

electrical diffusion elements and non-linear point-source models. This func-

tionality takes the form of a wrapper class for a finite element which, along

with an associated wrapper for the Oomph-lib mesh class, performs the neces-

sary spatial interpolation and communication of information to and from the

point-source terms and finite elements. A generalisation of the pre-existing

isotropic solid mechanics elements which solves for anisotropic solid deforma-

tion driven by an internal source of stress or strain was also developed. This

extension is built upon the existing isotropic solid mechanics elements, from

which the newly implemented anisotropic solid mechanics elements inherit.

This inheritance-based implementation allows for the swapping of the new

anisotropic solid mechanics elements for the original isotropic elements with-

226 CHAPTER 9. SUMMARY AND CONCLUSIONS

out changing driver codes. Additional terms which represent active stress

or strain and the preferential vectors within the anisotropic solid are imple-

mented in a generic fashion implemented throughout the pre-existing Oomph-

lib elements. As such, these newly implemented anisotropic solid mechanics

elements extend the functionality of the existing library without introducing

added complexities when implementing driver codes. These additions to the

Oomph-lib library were successfully applied in the study of adaptive operator

splitting methods and were found to scale well with parallel computing. The

body of work noted in this thesis represents large additions to the functional-

ity of Oomph-lib, that while these are applicable to various areas of physical

modelling, specifically create a computational platform for the simulation of

biophysically detailed cardiac tissue models with general cell models. This

platform consists of significant additions to Oomph-lib and allows for the

novel application of Oomph-lib to cardiac modelling

Bibliography

[1] Gregory A. Roth, George A., et al. “Global Burden of Cardiovascu-

lar Diseases and Risk Factors, 1990–2019: Update From the GBD

2019 Study”. In: Journal of the American College of Cardiology 76.25

(2020), pp. 2982–3021. issn: 0735-1097. doi: https://doi.org/10.

1016/j.jacc.2020.11.010. url: https://www.sciencedirect.

com/science/article/pii/S0735109720377755.

[2] Mark Michael Gallagher et al. “Distribution and prognostic signifi-

cance of QT intervals in the lowest half centile in 12,012 apparently

healthy persons”. en. In: Am. J. Cardiol. 98.7 (Oct. 2006), pp. 933–

935.

[3] Akira Funada et al. “Assessment of QT intervals and prevalence of

short QT syndrome in Japan”. en. In: Clin. Cardiol. 31.6 (June 2008),

pp. 270–274.

[4] ESC Councils. “2015 ESC Guidelines for the management of patients

with ventricular arrhythmias and the prevention of sudden cardiac

death”. In: European Heart Journal 36 (2015), pp. 2793–2867.

[5] Ciprian Rezuş et al. “QT interval variations and mortality risk: is

there any relationship?” en. In: Anatol. J. Cardiol. 15.3 (Mar. 2015),

pp. 255–258.

227

https://doi.org/https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/https://doi.org/10.1016/j.jacc.2020.11.010
https://www.sciencedirect.com/science/article/pii/S0735109720377755
https://www.sciencedirect.com/science/article/pii/S0735109720377755

228 BIBLIOGRAPHY

[6] Jason Gencher, Bishoy Deif, and Jason D. Roberts. “Short QT

Syndrome”. In: Electrocardiography of Inherited Arrhythmias and

Cardiomyopathies: From Basic Science to Clinical Practice. Cham:

Springer International Publishing, 2020, pp. 41–50. isbn: 978-

3-030-52173-8. doi: 10 . 1007 / 978 - 3 - 030 - 52173 - 8 _ 3. url:

https://doi.org/10.1007/978-3-030-52173-8_3.

[7] O. Anttonen et al. “Prevalence and Prognostic Significance of Short

QT Interval in a Middle-Aged Finnish Population”. In: Circulation

116.7 (2007), pp. 714–720. doi: 10 . 1161 / CIRCULATIONAHA . 106 .

676551. eprint: https://www.ahajournals.org/doi/pdf/10.1161/

CIRCULATIONAHA.106.676551. url: https://www.ahajournals.

org/doi/abs/10.1161/CIRCULATIONAHA.106.676551.

[8] Calum J Redpath et al. “Rapid genetic testing facilitating the diagno-

sis of short QT syndrome”. en. In: Can. J. Cardiol. 25.4 (Apr. 2009),

e133–e135.

[9] Francesca Margara et al. “In-silico human electro-mechanical ventric-

ular modelling and simulation for drug-induced pro-arrhythmia and

inotropic risk assessment”. In: Progress in Biophysics and Molecular

Biology 159 (2021). Mechanobiology of the Cardiovascular System,

pp. 58–74. issn: 0079-6107. doi: https://doi.org/10.1016/j.

pbiomolbio.2020.06.007. url: https://www.sciencedirect.

com/science/article/pii/S007961072030064X.

[10] Richard B. Colquitt, Douglas A. Colquhoun, and Robert H. Thiele. “In

silico modelling of physiologic systems”. In: Best Practice & Research

Clinical Anaesthesiology 25.4 (2011). New Approaches in Clinical Re-

search, pp. 499–510. issn: 1521-6896. doi: https://doi.org/10.

https://doi.org/10.1007/978-3-030-52173-8_3
https://doi.org/10.1007/978-3-030-52173-8_3
https://doi.org/10.1161/CIRCULATIONAHA.106.676551
https://doi.org/10.1161/CIRCULATIONAHA.106.676551
https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.676551
https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.676551
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.106.676551
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.106.676551
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2020.06.007
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2020.06.007
https://www.sciencedirect.com/science/article/pii/S007961072030064X
https://www.sciencedirect.com/science/article/pii/S007961072030064X
https://doi.org/https://doi.org/10.1016/j.bpa.2011.08.006

BIBLIOGRAPHY 229

1016/j.bpa.2011.08.006. url: https://www.sciencedirect.

com/science/article/pii/S1521689611000656.

[11] Houman Savoji et al. “Cardiovascular disease models: A game

changing paradigm in drug discovery and screening”. In: Biomaterials

198 (2019). Organoids and Ex Vivo Tissue On-Chip Technologies,

pp. 3–26. issn: 0142-9612. doi: https://doi.org/10.1016/j.

biomaterials.2018.09.036. url: https://www.sciencedirect.

com/science/article/pii/S0142961218306811.

[12] Jiahe Xi et al. “The estimation of patient-specific cardiac dias-

tolic functions from clinical measurements”. In: Medical Image

Analysis 17.2 (2013), pp. 133–146. issn: 1361-8415. doi: https :

//doi.org/10.1016/j.media.2012.08.001. url: https://www.

sciencedirect.com/science/article/pii/S1361841512001004.

[13] Nic Smith et al. “euHeart: personalized and integrated cardiac care

using patient-specific cardiovascular modelling”. In: Interface Focus

1.3 (2011), pp. 349–364. doi: 10.1098/rsfs.2010.0048. eprint:

https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.

2010.0048. url: https://royalsocietypublishing.org/doi/abs/

10.1098/rsfs.2010.0048.

[14] D.A. Nordsletten et al. “Coupling multi-physics models to car-

diac mechanics”. In: Progress in Biophysics and Molecular Biology

104.1 (2011). Cardiac Physiome project: Mathematical and Mod-

elling Foundations, pp. 77–88. issn: 0079-6107. doi: https :

/ / doi . org / 10 . 1016 / j . pbiomolbio . 2009 . 11 . 001. url:

https : / / www . sciencedirect . com / science / article / pii /

S0079610709000789.

https://doi.org/https://doi.org/10.1016/j.bpa.2011.08.006
https://doi.org/https://doi.org/10.1016/j.bpa.2011.08.006
https://www.sciencedirect.com/science/article/pii/S1521689611000656
https://www.sciencedirect.com/science/article/pii/S1521689611000656
https://doi.org/https://doi.org/10.1016/j.biomaterials.2018.09.036
https://doi.org/https://doi.org/10.1016/j.biomaterials.2018.09.036
https://www.sciencedirect.com/science/article/pii/S0142961218306811
https://www.sciencedirect.com/science/article/pii/S0142961218306811
https://doi.org/https://doi.org/10.1016/j.media.2012.08.001
https://doi.org/https://doi.org/10.1016/j.media.2012.08.001
https://www.sciencedirect.com/science/article/pii/S1361841512001004
https://www.sciencedirect.com/science/article/pii/S1361841512001004
https://doi.org/10.1098/rsfs.2010.0048
https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2010.0048
https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2010.0048
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2010.0048
https://royalsocietypublishing.org/doi/abs/10.1098/rsfs.2010.0048
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2009.11.001
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2009.11.001
https://www.sciencedirect.com/science/article/pii/S0079610709000789
https://www.sciencedirect.com/science/article/pii/S0079610709000789

230 BIBLIOGRAPHY

[15] James Southern et al. “Multi-scale computational modelling in biology

and physiology”. In: Progress in Biophysics and Molecular Biology

96.1 (2008). Cardiovascular Physiome, pp. 60–89. issn: 0079-6107.

doi: https://doi.org/10.1016/j.pbiomolbio.2007.07.019.

url: https://www.sciencedirect.com/science/article/pii/

S0079610707000673.

[16] Matthias Heil and Andrew L Hazel. “oomph-lib–an object-oriented

multi-physics finite-element library”. In: Fluid-structure interaction.

Springer, 2006, pp. 19–49.

[17] Ismail Adeniran, Juldes Hancox, and Henggui Zhang. “In silico in-

vestigation of the short QT syndrome, using human ventricle models

incorporating electromechanical coupling”. In: Frontiers in Physiology

4 (2013). issn: 1664-042X. doi: 10.3389/fphys.2013.00166. url:

https://www.frontiersin.org/articles/10.3389/fphys.2013.

00166.

[18] Winfried Auzinger et al. “Practical splitting methods for the adaptive

integration of nonlinear evolution equations. Part I: Construction of

optimized schemes and pairs of schemes”. In: BIT Numerical Math-

ematics 57.1 (July 2016), pp. 55–74. doi: 10.1007/s10543-016-

0626-9. url: https://doi.org/10.1007/s10543-016-0626-9.

[19] Gerdes A.M. et al. “Regional differences in myocyte size in normal rat

heart”. In: Anatomical Record 215 (1986).

[20] H. Satoh et al. “Surface:volume relationship in cardiac myocytes stud-

ied with confocal microscopy and membrane capacitance measure-

ments: species-dependence and developmental effects”. In: Biophysical

Journal 70 (1996).

https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2007.07.019
https://www.sciencedirect.com/science/article/pii/S0079610707000673
https://www.sciencedirect.com/science/article/pii/S0079610707000673
https://doi.org/10.3389/fphys.2013.00166
https://www.frontiersin.org/articles/10.3389/fphys.2013.00166
https://www.frontiersin.org/articles/10.3389/fphys.2013.00166
https://doi.org/10.1007/s10543-016-0626-9
https://doi.org/10.1007/s10543-016-0626-9
https://doi.org/10.1007/s10543-016-0626-9

BIBLIOGRAPHY 231

[21] M.S. Spach et al. “Cell size and communication: role in structural

and electrical development and remodelling of the heart”. In: Heart

Rhythm 1, 500-515 (2004).

[22] D.D.J. Streetner et al. “Fiber orientation in the canine left ventri-

cle during diastole and systole”. In: Circulation research 24, 339-347

(1969).

[23] D.M. Bers. “Excitation-Contraction Coupling and Cardiac Contractile

Force”. In: Springer, Dordrecht (2008).

[24] S.E. Campbell, A.M. Gerdes, and T.D. Smith. “Comparison of re-

gional differences in cardac myocyte dimensions in rats, hamsters,

and guinea pigs”. In: Anatomical Record 19, 53-59 (1987).

[25] Walter F. Boron. Medical Physiology 2nd edition. Philadelphia: Saun-

ders. 9–21, 2009.

[26] A. Vander, J. Sherman, and D. Luciano. human physiology: The Mech-

anisms of Body Function, seventh edition. WCB/McGraw-Hill, 1998.

[27] E. Page. “Quantitative ultrastructural analysis in cardiac membrane

physiology”. In: American Journ1al of Physiology-Cell Physiology

235.5 (1978), pp. C147–C158. doi: 10.1152/ajpcell.1978.235.5.

C147. url: https://doi.org/10.1152/ajpcell.1978.235.5.C147.

[28] A Katz. Physiology of the heart Fifth edition. Lippincott Williams and

Wilkins, Philadelphia, 2010.

[29] PhD JEH. Guyton and hall textbook of medical physiology. Saunders,

2010.

[30] D.W. Fawcett and N.S. McNutt. “The ultrastructure of the cat my-

ocardium. I. Ventricular papillary muscle”. In: Journal of Cell Biology

42, 1-45 (1969).

https://doi.org/10.1152/ajpcell.1978.235.5.C147
https://doi.org/10.1152/ajpcell.1978.235.5.C147
https://doi.org/10.1152/ajpcell.1978.235.5.C147

232 BIBLIOGRAPHY

[31] F. Brette and C. Orchard. “T-tubule function in mammalian cardiac

myocytes”. In: Circulation research 92, 1182 - 1192 (2003).

[32] van der Velden et al. “Cardiac gap junctions and connexins: their role

in atrial fibrillation and potential as therapeutic targets”. In: Car-

diovascular Research 54.2 (May 2002), pp. 270–279. doi: 10.1016/

S0008- 6363(01)00557- 0. eprint: http://oup.prod.sis.lan/

cardiovascres/article-pdf/54/2/270/758665/54-2-270.pdf.

url: https://doi.org/10.1016/S0008-6363(01)00557-0.

[33] Reed KE, Westphale EM, and Larson DM et al. “Molecular cloning

and functional expression of human connexin37, an endothelial cell

gap junction protein”. In: J Clin Invest;91(3):997–1004. (1993).

[34] Delorme B, Dahl E, and Jarry-Guichard T et al. “Developmental

regulation of connexin 40 gene expression in mouse heart corre-

lates with the differentiation of the conduction system”. In: Dev

Dyn;204(4):358–371. (1995).

[35] Verheule S et al. “Characterization of gap junction channels in adult

rabbit atrial and ventricular myocardium”. In: Circ Res;80(5):673–681

(1997).

[36] van Kempen MJ, Ten V I, and Wessels A et al. “Differential connexin

distribution accommodates cardiac function in different species”. In:

Microsc Res Tech;31(5):420–436. (1995).

[37] Gourdie RG et al. “Immunolabelling patterns of gap junction con-

nexins in the developing and mature rat heart”. In: Anat Embryol

(Berl);185(4):363–378 (1992).

https://doi.org/10.1016/S0008-6363(01)00557-0
https://doi.org/10.1016/S0008-6363(01)00557-0
http://oup.prod.sis.lan/cardiovascres/article-pdf/54/2/270/758665/54-2-270.pdf
http://oup.prod.sis.lan/cardiovascres/article-pdf/54/2/270/758665/54-2-270.pdf
https://doi.org/10.1016/S0008-6363(01)00557-0

BIBLIOGRAPHY 233

[38] A.L. Hodgkin and A.F. Huxley. “A Quantitative Description Of Mem-

brane Current And Its Application To Conduction And Excitation In

Nerve”. In: The Journal of physiology 117 (Sept. 1952), pp. 500–44.

doi: 10.1016/S0092-8240(05)80004-7.

[39] Dee Unglaub Silverthorn. Human physiology. Jones & Bartlett Pub-

lishers, 2015.

[40] Frances M Ashcroft. Ion channels and disease. Academic press, 1999.

[41] Augustus O Grant. “Cardiac ion channels”. In: Circulation: Arrhyth-

mia and Electrophysiology 2.2 (2009), pp. 185–194.

[42] David Colquhoun and Alan G Hawkes. “The principles of the stochas-

tic interpretation of ion-channel mechanisms”. In: Single-channel

recording. Springer, 1995, pp. 397–482.

[43] Frank Lehmann-Horn and Karin Jurkat-Rott. “Voltage-gated ion

channels and hereditary disease”. In: Physiological reviews 79.4

(1999), pp. 1317–1372.

[44] Dan M Roden et al. “Cardiac ion channels”. In: Annual review of

physiology 64 (2002), p. 431.

[45] Graham L Collingridge et al. “A nomenclature for ligand-gated ion

channels”. In: Neuropharmacology 56.1 (2009), pp. 2–5.

[46] Rémi Peyronnet, Jeanne M Nerbonne, and Peter Kohl. “Cardiac

mechano-gated ion channels and arrhythmias”. In: Circulation

research 118.2 (2016), pp. 311–329.

[47] Martin Fink and Denis Noble. “Markov models for ion channels: versa-

tility versus identifiability and speed”. In: Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences 367.1896 (2009), pp. 2161–2179.

https://doi.org/10.1016/S0092-8240(05)80004-7

234 BIBLIOGRAPHY

[48] Raimond L Winslow et al. “Mechanisms of altered excitation-

contraction coupling in canine tachycardia-induced heart failure, II”.

en. In: Circ. Res. 84.5 (Mar. 1999), pp. 571–586.

[49] Michael J Ackerman and David E Clapham. “Ion channels—basic sci-

ence and clinical disease”. In: New England Journal of Medicine 336.22

(1997), pp. 1575–1586.

[50] Dario Di Francesco and Denis Noble. “A model of cardiac electrical

activity incorporating ionic pumps and concentration changes”. In:

Philosophical Transactions of the Royal Society of London. B, Biolog-

ical Sciences 307.1133 (1985), pp. 353–398.

[51] Carmeliet E and Vereecke J. Cardiac cellular electrophysiology 1st edi-

tion. springer, New York, 2002.

[52] Erwin Shibata et al. “Contribution of transient outward current to

repolarization in human atrium”. In: The American journal of phys-

iology 257 (Jan. 1990), H1773–81. doi: 10.1152/ajpheart.1989.

257.6.H1773.

[53] Henry Gelband et al. “Electrophysiologic Properties of Isolated Prepa-

rations of Human Atrial Myocardium”. In: Circulation research 30

(Apr. 1972), pp. 293–300. doi: 10.1161/01.RES.30.3.293.

[54] G.J. Amos et al. “Differences between outward currents of hu-

man atrial and subepicardial ventricular myocytes”. In: The

Journal of physiology 491 (Pt 1) (Mar. 1996), pp. 31–50. doi:

10.1113/jphysiol.1996.sp021194.

[55] Dobromir Dobrev et al. “Molecular Basis of Downregulation of G-

Protein–Coupled Inward Rectifying K+ Current (IK,ACh) in Chronic

Human Atrial Fibrillation Decrease in GIRK4 mRNA Correlates With

https://doi.org/10.1152/ajpheart.1989.257.6.H1773
https://doi.org/10.1152/ajpheart.1989.257.6.H1773
https://doi.org/10.1161/01.RES.30.3.293
https://doi.org/10.1113/jphysiol.1996.sp021194

BIBLIOGRAPHY 235

Reduced IK,ACh and Muscarinic Receptor–Mediated Shortening of

Action Potentials”. In: Circulation 104 (Dec. 2001), pp. 2551–7. doi:

10.1161/hc4601.099466.

[56] Yanggan Wang et al. “Differences in transient outward current proper-

ties between neonatal and adult human atrial myocytes”. In: Journal

of molecular and cellular cardiology 35 (Oct. 2003), pp. 1083–92. doi:

10.1016/S0022-2828(03)00200-1.

[57] D Escande et al. “Age-related changes of action potential plateau

shape in isolated human atria! fibers”. In: The American journal of

physiology 249 (Nov. 1985), H843–50. doi: 10.1152/ajpheart.1985.

249.4.H843.

[58] Arnold M Katz. Physiology of the Heart. Lippincott Williams &

Wilkins, 2010.

[59] Fan-Yen Lee et al. “Electromechanical properties of Purkinje fiber

strands isolated from human ventricular endocardium”. In: The Jour-

nal of heart and lung transplantation 23.6 (2004), pp. 737–744.

[60] Emmanuel Drouin et al. “Electrophysiologic characteristics of cells

spanning the left ventricular wall of human heart: evidence for pres-

ence of M cells”. In: Journal of the American College of Cardiology

26.1 (1995), pp. 185–192.

[61] Paul M. Heerdt and George J. Crystal. “Chapter 20 - Cardiovascular

Physiology: Cellular and Molecular Regulation”. In: Pharmacology and

Physiology for Anesthesia. Ed. by Hugh C. Hemmings and Talmage D.

Egan. Philadelphia: W.B. Saunders, 2013, pp. 351–365. isbn: 978-1-

4377-1679-5. doi: https://doi.org/10.1016/B978-1-4377-1679-

https://doi.org/10.1161/hc4601.099466
https://doi.org/10.1016/S0022-2828(03)00200-1
https://doi.org/10.1152/ajpheart.1985.249.4.H843
https://doi.org/10.1152/ajpheart.1985.249.4.H843
https://doi.org/https://doi.org/10.1016/B978-1-4377-1679-5.00020-X

236 BIBLIOGRAPHY

5.00020- X. url: https://www.sciencedirect.com/science/

article/pii/B978143771679500020X.

[62] C. Abrahams, J.S. Janicki, and K.T. Webet. “Myocardial hypertrophy

in Macacafascicularis. Structural remodelling of the collagen matrix”.

In: Laboratory Investigation 56, 676-683 (1987).

[63] H Ju and I.M. Dixon. “Exctracellular matrix and cardiovascular dis-

eases”. In: Canadian Journal of Cardiology 12, 1259-1267 (1996).

[64] A.J. Pope et al. “Three dimensional transmural organisation of the

perimysial colalgen in the heart”. In: American Journal of Physiology

(Heart and Circulatory Physiology) 295, H11243-H1252 (2008).

[65] Douglas P Zipes. “Braunwald’s heart disease: a textbook of cardio-

vascular medicine”. In: BMH Medical Journal-ISSN 2348–392X 5.2

(2018), pp. 63–63.

[66] Yoram Rudy and Jonathan R Silva. “Computational biology in the

study of cardiac ion channels and cell electrophysiology”. In: Quarterly

reviews of biophysics 39.1 (2006), pp. 57–116.

[67] Aslak Tveito and Glenn T Lines. Computing characterizations of drugs

for ion channels and receptors using Markov models. Springer Nature,

2016.

[68] Martin Fink et al. “Cardiac cell modelling: observations from the heart

of the cardiac physiome project”. In: Progress in biophysics and molec-

ular biology 104.1-3 (2011), pp. 2–21.

[69] David Roxbee Cox and Hilton David Miller. The theory of stochastic

processes. Methuen, 1965.

https://doi.org/https://doi.org/10.1016/B978-1-4377-1679-5.00020-X
https://doi.org/https://doi.org/10.1016/B978-1-4377-1679-5.00020-X
https://www.sciencedirect.com/science/article/pii/B978143771679500020X
https://www.sciencedirect.com/science/article/pii/B978143771679500020X

BIBLIOGRAPHY 237

[70] C H Luo and Y Rudy. “A dynamic model of the cardiac ventricular

action potential. II. Afterdepolarizations, triggered activity, and po-

tentiation.” In: Circulation Research 74.6 (1994), pp. 1097–1113. doi:

10.1161/01.RES.74.6.1097. eprint: https://www.ahajournals.

org/doi/pdf/10.1161/01.RES.74.6.1097. url: https://www.

ahajournals.org/doi/abs/10.1161/01.RES.74.6.1097.

[71] A. L. Hodgkin and A. F. Huxley. “A quantitative description of mem-

brane current and its application to conduction and excitation in

nerve”. In: The Journal of Physiology 117.4 (1952), pp. 500–544. doi:

https://doi.org/10.1113/jphysiol.1952.sp004764. eprint:

https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/

jphysiol.1952.sp004764. url: https://physoc.onlinelibrary.

wiley.com/doi/abs/10.1113/jphysiol.1952.sp004764.

[72] Bertil Hille. Ion Channels of Excitable Membranes. Vol. 18. Sinauer

Associates, Jan. 2001, pp. 1–814. isbn: 0878933212.

[73] Martin Morad et al. Molecular physiology and pharmacology of cardiac

ion channels and transporters. Vol. 182. Springer Science & Business

Media, 2012.

[74] Louis J DeFelice. Electrical properties of cells: patch clamp for biolo-

gists. Springer Science & Business Media, 1997.

[75] Albert Edward Green and Wolfgang Zerna. Theoretical elasticity.

Courier Corporation, 1992.

[76] Mario Delmar et al. “Chapter 8 - Molecular Organization and Regu-

lation of the Cardiac Gap Junction Channel Connexin43”. In: Cardiac

Electrophysiology (Fourth Edition). Ed. by DOUGLAS P. ZIPES and

JOSÉ JALIFE. Fourth Edition. W.B. Saunders, 2004, pp. 66–76. isbn:

https://doi.org/10.1161/01.RES.74.6.1097
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.74.6.1097
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.74.6.1097
https://www.ahajournals.org/doi/abs/10.1161/01.RES.74.6.1097
https://www.ahajournals.org/doi/abs/10.1161/01.RES.74.6.1097
https://doi.org/https://doi.org/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1952.sp004764
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1952.sp004764

238 BIBLIOGRAPHY

978-0-7216-0323-0. doi: https://doi.org/10.1016/B0-7216-0323-

8/50011- 7. url: https://www.sciencedirect.com/science/

article/pii/B0721603238500117.

[77] Habo J. Jongsma and Ronald Wilders. “Gap Junctions in Cardio-

vascular Disease”. In: Circulation Research 86.12 (2000), pp. 1193–

1197. doi: 10.1161/01.RES.86.12.1193. eprint: https://www.

ahajournals.org/doi/pdf/10.1161/01.RES.86.12.1193. url:

https://www.ahajournals.org/doi/abs/10.1161/01.RES.86.12.

1193.

[78] M J van Kempen et al. “Spatial distribution of connexin43, the major

cardiac gap junction protein, in the developing and adult rat heart.”

In: Circulation Research 68.6 (1991), pp. 1638–1651. doi: 10.1161/

01.RES.68.6.1638. eprint: https://www.ahajournals.org/doi/

pdf/10.1161/01.RES.68.6.1638. url: https://www.ahajournals.

org/doi/abs/10.1161/01.RES.68.6.1638.

[79] Piero Colli Franzone, Luca F Pavarino, and Simone Scacchi. “A nu-

merical study of scalable cardiac electro-mechanical solvers on HPC

architectures”. In: Frontiers in physiology 9 (2018), p. 268.

[80] R.H. Clayton et al. “Models of cardiac tissue electrophysiology:

Progress, challenges and open questions”. In: Progress in Biophysics

and Molecular Biology 104.1 (2011). Cardiac Physiome project: Math-

ematical and Modelling Foundations, pp. 22–48. issn: 0079-6107.

doi: https://doi.org/10.1016/j.pbiomolbio.2010.05.008.

url: https://www.sciencedirect.com/science/article/pii/

S0079610710000362.

https://doi.org/https://doi.org/10.1016/B0-7216-0323-8/50011-7
https://doi.org/https://doi.org/10.1016/B0-7216-0323-8/50011-7
https://www.sciencedirect.com/science/article/pii/B0721603238500117
https://www.sciencedirect.com/science/article/pii/B0721603238500117
https://doi.org/10.1161/01.RES.86.12.1193
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.86.12.1193
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.86.12.1193
https://www.ahajournals.org/doi/abs/10.1161/01.RES.86.12.1193
https://www.ahajournals.org/doi/abs/10.1161/01.RES.86.12.1193
https://doi.org/10.1161/01.RES.68.6.1638
https://doi.org/10.1161/01.RES.68.6.1638
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.68.6.1638
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.68.6.1638
https://www.ahajournals.org/doi/abs/10.1161/01.RES.68.6.1638
https://www.ahajournals.org/doi/abs/10.1161/01.RES.68.6.1638
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2010.05.008
https://www.sciencedirect.com/science/article/pii/S0079610710000362
https://www.sciencedirect.com/science/article/pii/S0079610710000362

BIBLIOGRAPHY 239

[81] E.J. Vigmond et al. “Solvers for the cardiac bidomain equations”. In:

Progress in Biophysics and Molecular Biology 96.1 (2008). Cardio-

vascular Physiome, pp. 3–18. issn: 0079-6107. doi: https://doi.

org/10.1016/j.pbiomolbio.2007.07.012. url: https://www.

sciencedirect.com/science/article/pii/S0079610707000740.

[82] P. Colli Franzone, L. F. Pavarino, and S. Scacchi. “Effects of me-

chanical feedback on the stability of cardiac scroll waves: A bidomain

electro-mechanical simulation study”. In: Chaos: An Interdisciplinary

Journal of Nonlinear Science 27.9 (2017), p. 093905. doi: 10.1063/

1.4999465. eprint: https://doi.org/10.1063/1.4999465. url:

https://doi.org/10.1063/1.4999465.

[83] Piero Colli Franzone, Luca F. Pavarino, and Simone Scacchi. “A Nu-

merical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC

Architectures”. In: Frontiers in Physiology 9 (2018). issn: 1664-042X.

doi: 10.3389/fphys.2018.00268. url: https://www.frontiersin.

org/articles/10.3389/fphys.2018.00268.

[84] Ramesh M Gulrajani. Bioelectricity and biomagnetism. J. Wiley, 1998.

[85] L.Joshua Leon and B.Milan Horáček. “Computer model of excitation

and recovery in the anisotropic myocardium: I. Rectangular and cubic

arrays of excitable elements”. In: Journal of Electrocardiology 24.1

(1991), pp. 1–15. issn: 0022-0736. doi: https://doi.org/10.1016/

0022-0736(91)90077-Y. url: https://www.sciencedirect.com/

science/article/pii/002207369190077Y.

[86] Vicky Y Wang et al. “Modelling passive diastolic mechanics with quan-

titative MRI of cardiac structure and function”. In: Medical image

analysis 13.5 (2009), pp. 773–784.

https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2007.07.012
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2007.07.012
https://www.sciencedirect.com/science/article/pii/S0079610707000740
https://www.sciencedirect.com/science/article/pii/S0079610707000740
https://doi.org/10.1063/1.4999465
https://doi.org/10.1063/1.4999465
https://doi.org/10.1063/1.4999465
https://doi.org/10.1063/1.4999465
https://doi.org/10.3389/fphys.2018.00268
https://www.frontiersin.org/articles/10.3389/fphys.2018.00268
https://www.frontiersin.org/articles/10.3389/fphys.2018.00268
https://doi.org/https://doi.org/10.1016/0022-0736(91)90077-Y
https://doi.org/https://doi.org/10.1016/0022-0736(91)90077-Y
https://www.sciencedirect.com/science/article/pii/002207369190077Y
https://www.sciencedirect.com/science/article/pii/002207369190077Y

240 BIBLIOGRAPHY

[87] Gerhard A. Holzapfel and Ray W. Ogden. “Constitutive modelling

of passive myocardium: a structurally based framework for material

characterization”. In: Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 367.1902 (2009),

pp. 3445–3475. doi: 10.1098/rsta.2009.0091. eprint: https://

royalsocietypublishing.org/doi/pdf/10.1098/rsta.2009.

0091. url: https://royalsocietypublishing.org/doi/abs/10.

1098/rsta.2009.0091.

[88] L L Demer and F C Yin. “Passive biaxial mechanical properties of

isolated canine myocardium”. en. In: J. Physiol. 339.1 (June 1983),

pp. 615–630.

[89] Richard Bellman. Introduction to matrix analysis. SIAM, 1997.

[90] Ming Yang and Larry A Taber. “The possible role of poroelasticity

in the apparent viscoelastic behavior of passive cardiac muscle”. In:

Journal of biomechanics 24.7 (1991), pp. 587–597.

[91] N. P. Smith et al. “Multiscale computational modelling of

the heart”. In: Acta Numerica 13 (2004), pp. 371–431. doi:

10.1017/S0962492904000200.

[92] Pras Pathmanathan and Jonathan P Whiteley. “A numerical method

for cardiac mechanoelectric simulations”. en. In: Ann. Biomed. Eng.

37.5 (May 2009), pp. 860–873.

[93] P.J. Hunter, A.D. McCulloch, and H.E.D.J. ter Keurs. “Modelling

the mechanical properties of cardiac muscle”. In: Progress in Bio-

physics and Molecular Biology 69.2 (1998), pp. 289–331. issn: 0079-

6107. doi: https://doi.org/10.1016/S0079-6107(98)00013-3.

https://doi.org/10.1098/rsta.2009.0091
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2009.0091
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2009.0091
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2009.0091
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2009.0091
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2009.0091
https://doi.org/10.1017/S0962492904000200
https://doi.org/https://doi.org/10.1016/S0079-6107(98)00013-3

BIBLIOGRAPHY 241

url: https://www.sciencedirect.com/science/article/pii/

S0079610798000133.

[94] Simone Rossi et al. “Orthotropic active strain models for the numeri-

cal simulation of cardiac biomechanics”. In: International Journal for

Numerical Methods in Biomedical Engineering 28.6-7 (2012), pp. 761–

788. doi: https://doi.org/10.1002/cnm.2473. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2473. url:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2473.

[95] Martyn P Nash and Alexander V Panfilov. “Electromechanical model

of excitable tissue to study reentrant cardiac arrhythmias”. en. In:

Prog. Biophys. Mol. Biol. 85.2-3 (June 2004), pp. 501–522.

[96] Stanley Rush and Hugh Larsen. “A Practical Algorithm for Solving

Dynamic Membrane Equations”. In: IEEE Transactions on Biomedi-

cal Engineering BME-25.4 (1978), pp. 389–392. doi: 10.1109/TBME.

1978.326270.

[97] Ismail Adeniran et al. “Abnormal calcium homeostasis in heart failure

with preserved ejection fraction is related to both reduced contractile

function and incomplete relaxation: an electromechanically detailed

biophysical modeling study”. In: Frontiers in Physiology 6 (2015).

issn: 1664-042X. doi: 10.3389/fphys.2015.00078. url: https:

//www.frontiersin.org/article/10.3389/fphys.2015.00078.

[98] Megan E. Marsh, Saeed Torabi Ziaratgahi, and Raymond J. Spiteri.

“The Secrets to the Success of the Rush–Larsen Method and its Gen-

eralizations”. In: IEEE Transactions on Biomedical Engineering 59.9

(2012), pp. 2506–2515. doi: 10.1109/TBME.2012.2205575.

https://www.sciencedirect.com/science/article/pii/S0079610798000133
https://www.sciencedirect.com/science/article/pii/S0079610798000133
https://doi.org/https://doi.org/10.1002/cnm.2473
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2473
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2473
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2473
https://doi.org/10.1109/TBME.1978.326270
https://doi.org/10.1109/TBME.1978.326270
https://doi.org/10.3389/fphys.2015.00078
https://www.frontiersin.org/article/10.3389/fphys.2015.00078
https://www.frontiersin.org/article/10.3389/fphys.2015.00078
https://doi.org/10.1109/TBME.2012.2205575

242 BIBLIOGRAPHY

[99] J. Crank and P. Nicolson. “A practical method for numerical evalua-

tion of solutions of partial differential equations of the heat-conduction

type”. In: Mathematical Proceedings of the Cambridge Philosophical

Society 43.1 (1947), pp. 50–67. doi: 10.1017/S0305004100023197.

[100] C F Curtiss and J O Hirschfelder. “Integration of stiff equations”. en.

In: Proc. Natl. Acad. Sci. U. S. A. 38.3 (Mar. 1952), pp. 235–243.

[101] Matthias Heil, Andrew L Hazel, and Jonathan Boyle. “Solvers for

large-displacement fluid–structure interaction problems: segregated

versus monolithic approaches”. In: Computational Mechanics 43.1

(2008), pp. 91–101.

[102] Richard FitzHugh. “Impulses and Physiological States in Theoreti-

cal Models of Nerve Membrane”. In: Biophysical Journal 1.6 (1961),

pp. 445–466. issn: 0006-3495. doi: https://doi.org/10.1016/

S0006-3495(61)86902-6. url: https://www.sciencedirect.com/

science/article/pii/S0006349561869026.

[103] Thomas O’Hara et al. “Simulation of the Undiseased Human Cardiac

Ventricular Action Potential: Model Formulation and Experimental

Validation”. In: PLOS Computational Biology 7.5 (May 2011), pp. 1–

29. doi: 10.1371/journal.pcbi.1002061. url: https://doi.org/

10.1371/journal.pcbi.1002061.

[104] J.P. Whiteley. “An Efficient Numerical Technique for the Solution of

the Monodomain and Bidomain Equations”. In: IEEE Transactions on

Biomedical Engineering 53.11 (2006), pp. 2139–2147. doi: 10.1109/

TBME.2006.879425.

https://doi.org/10.1017/S0305004100023197
https://doi.org/https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/https://doi.org/10.1016/S0006-3495(61)86902-6
https://www.sciencedirect.com/science/article/pii/S0006349561869026
https://www.sciencedirect.com/science/article/pii/S0006349561869026
https://doi.org/10.1371/journal.pcbi.1002061
https://doi.org/10.1371/journal.pcbi.1002061
https://doi.org/10.1371/journal.pcbi.1002061
https://doi.org/10.1109/TBME.2006.879425
https://doi.org/10.1109/TBME.2006.879425

BIBLIOGRAPHY 243

[105] James A Southern et al. “Solving the coupled system improves compu-

tational efficiency of the bidomain equations”. In: IEEE Transactions

on Biomedical Engineering 56.10 (2009), pp. 2404–2412.

[106] Sergio Blanes and Fernando Casas. “On the necessity of negative co-

efficients for operator splitting schemes of order higher than two”. In:

Applied Numerical Mathematics 54.1 (2005), pp. 23–37. issn: 0168-

9274. doi: https://doi.org/10.1016/j.apnum.2004.10.005.

url: https://www.sciencedirect.com/science/article/pii/

S0168927404002259.

[107] Shev MacNamara and Gilbert Strang. “Operator Splitting”. In: Split-

ting Methods in Communication, Imaging, Science, and Engineering.

Cham: Springer International Publishing, 2016. Chap. 3, pp. 95–114.

isbn: 978-3-319-41589-5. doi: 10.1007/978-3-319-41589-5_3. url:

https://doi.org/10.1007/978-3-319-41589-5_3.

[108] Steven Niederer et al. “Simulating Human Cardiac Electrophysiology

on Clinical Time-Scales”. In: Frontiers in Physiology 2 (2011). issn:

1664-042X. doi: 10.3389/fphys.2011.00014. url: https://www.

frontiersin.org/article/10.3389/fphys.2011.00014.

[109] Shankarjee Krishnamoorthi, Mainak Sarkar, and William S. Klug.

“Numerical quadrature and operator splitting in finite element meth-

ods for cardiac electrophysiology”. In: International Journal for Nu-

merical Methods in Biomedical Engineering 29.11 (2013), pp. 1243–

1266. doi: https://doi.org/10.1002/cnm.2573. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2573. url:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2573.

https://doi.org/https://doi.org/10.1016/j.apnum.2004.10.005
https://www.sciencedirect.com/science/article/pii/S0168927404002259
https://www.sciencedirect.com/science/article/pii/S0168927404002259
https://doi.org/10.1007/978-3-319-41589-5_3
https://doi.org/10.1007/978-3-319-41589-5_3
https://doi.org/10.3389/fphys.2011.00014
https://www.frontiersin.org/article/10.3389/fphys.2011.00014
https://www.frontiersin.org/article/10.3389/fphys.2011.00014
https://doi.org/https://doi.org/10.1002/cnm.2573
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2573
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.2573
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2573

244 BIBLIOGRAPHY

[110] Pras Pathmanathan et al. “Computational modelling of cardiac elec-

trophysiology: Explanation of the variability of results from different

numerical solvers”. In: International Journal for Numerical Methods

in Biomedical Engineering 28 (Aug. 2012), pp. 890–903. doi: 10.

1002/cnm.2467.

[111] Ismail Adeniran et al. “Increased Vulnerability of Human Ventricle to

Re-entrant Excitation in hERG-linked Variant 1 Short QT Syndrome”.

In: PLOS Computational Biology 7.12 (Dec. 2011), pp. 1–16. doi:

10.1371/journal.pcbi.1002313. url: https://doi.org/10.

1371/journal.pcbi.1002313.

[112] William B. Gragg and Hans J. Stetter. “Generalized Multistep

Predictor-Corrector Methods”. In: J. ACM 11.2 (Apr. 1964),

pp. 188–209. issn: 0004-5411. doi: 10.1145/321217.321223. url:

https://doi.org/10.1145/321217.321223.

[113] Richard Wesley Hamming. “Stable predictor-corrector methods for

ordinary differential equations”. In: Journal of the ACM (JACM) 6.1

(1959), pp. 37–47.

[114] William Edmund Milne and WE Milne. Numerical solution of differ-

ential equations. Vol. 64. Wiley New York, 1953.

[115] Erwin Fehlberg. Classical fifth-, sixth-, seventh-, and eighth-order

Runge-Kutta formulas with stepsize control. National Aeronautics

and Space Administration, 1968.

[116] O. Koch, Ch Neuhauser, and Mechthild Thalhammer. “Embedded ex-

ponential operator splitting methods for the time integration of non-

linear evolution equations”. In: Applied Numerical Mathematics 63

(Jan. 2013), pp. 14–24. doi: 10.1016/j.apnum.2012.09.002.

https://doi.org/10.1002/cnm.2467
https://doi.org/10.1002/cnm.2467
https://doi.org/10.1371/journal.pcbi.1002313
https://doi.org/10.1371/journal.pcbi.1002313
https://doi.org/10.1371/journal.pcbi.1002313
https://doi.org/10.1145/321217.321223
https://doi.org/10.1145/321217.321223
https://doi.org/10.1016/j.apnum.2012.09.002

BIBLIOGRAPHY 245

[117] Roland Bulirsch, Josef Stoer, and J Stoer. Introduction to numerical

analysis. Springer, 1991.

[118] Andrew L. Hazel. “Spatial and Temporal Adaptivity in Numerical

Studies of Instabilities, with Applications to Fluid Flows”. In: Com-

putational Modelling of Bifurcations and Instabilities in Fluid Dynam-

ics. Cham: Springer International Publishing, 2019, pp. 75–115. isbn:

978-3-319-91494-7. doi: 10.1007/978- 3- 319- 91494- 7_3. url:

https://doi.org/10.1007/978-3-319-91494-7_3.

[119] David M. Harrild and Craig S. Henriquez. “A finite volume model

of cardiac propagation”. In: Annals of Biomedical Engineering 25.2

(Mar. 1997), pp. 315–334. doi: 10.1007/bf02648046. url: https:

//doi.org/10.1007/bf02648046.

[120] Paul Brocklehurst et al. “A 2D electromechanical model of human

atrial tissue using the discrete element method”. en. In: Biomed Res.

Int. 2015 (Oct. 2015), p. 854953.

[121] Matthias Heil and A Hazel. Oomph-lib documentation. http :

//oomph-lib.maths.man.ac.uk/doc/html/index.html. Accessed:

2020-04-15. 2017.

[122] Matthias Heil and Andrew L. Hazel. “oomph-lib – An Object-Oriented

Multi-Physics Finite-Element Library”. In: Fluid-Structure Interac-

tion. Ed. by Hans-Joachim Bungartz and Michael Schäfer. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 19–49. isbn: 978-

3-540-34596-1.

[123] Matthias Heil, Andrew Hazel, and Amine Massit. Linking VMTK with

oomph-lib. http://oomph-lib.maths.man.ac.uk/doc/meshes/

mesh_from_vmtk/html/index.html. Accessed: 2020-05-4. 2017.

https://doi.org/10.1007/978-3-319-91494-7_3
https://doi.org/10.1007/978-3-319-91494-7_3
https://doi.org/10.1007/bf02648046
https://doi.org/10.1007/bf02648046
https://doi.org/10.1007/bf02648046
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/meshes/mesh_from_vmtk/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/meshes/mesh_from_vmtk/html/index.html

246 BIBLIOGRAPHY

[124] S Manini and L Antiga. VMTK website. http://www.vmtk.org/.

Accessed: 2020-06-24. 2020.

[125] Matthias Heil and Andrew Hazel. Oomph-lib The data structure.

http://oomph-lib.maths.man.ac.uk/doc/the_data_structure/

html/index.html. Accessed: 2020-06-12. 2017.

[126] Thomas Scrase. user_src. Version 1.0.0. Apr. 2023. url: https://

github.com/thomas-scrase/user_src.

[127] Marina Strocchi et al. “A publicly available virtual cohort of four-

chamber heart meshes for cardiac electro-mechanics simulations”. In:

PLOS ONE 15.6 (June 2020), pp. 1–26. doi: 10.1371/journal.

pone.0235145. url: https://doi.org/10.1371/journal.pone.

0235145.

[128] Jason D Bayer et al. “A novel rule-based algorithm for assigning my-

ocardial fiber orientation to computational heart models”. In: Annals

of biomedical engineering 40.10 (2012), pp. 2243–2254.

[129] D F Scollan et al. “Reconstruction of cardiac ventricular geometry

and fiber orientation using magnetic resonance imaging”. en. In: Ann.

Biomed. Eng. 28.8 (Aug. 2000), pp. 934–944.

[130] K H W J Ten Tusscher and A V Panfilov. “Cell model for efficient

simulation of wave propagation in human ventricular tissue under nor-

mal and pathological conditions”. In: Physics in Medicine and Biology

51.23 (Nov. 2006), pp. 6141–6156. doi: 10.1088/0031-9155/51/23/

014. url: https://doi.org/10.1088/0031-9155/51/23/014.

[131] K. H. W. J. ten Tusscher et al. “A model for human ventricular

tissue”. In: American Journal of Physiology-Heart and Circulatory

Physiology 286.4 (2004). PMID: 14656705, H1573–H1589. doi: 10.

http://www.vmtk.org/
http://oomph-lib.maths.man.ac.uk/doc/the_data_structure/html/index.html
http://oomph-lib.maths.man.ac.uk/doc/the_data_structure/html/index.html
https://github.com/thomas-scrase/user_src
https://github.com/thomas-scrase/user_src
https://doi.org/10.1371/journal.pone.0235145
https://doi.org/10.1371/journal.pone.0235145
https://doi.org/10.1371/journal.pone.0235145
https://doi.org/10.1371/journal.pone.0235145
https://doi.org/10.1088/0031-9155/51/23/014
https://doi.org/10.1088/0031-9155/51/23/014
https://doi.org/10.1088/0031-9155/51/23/014
https://doi.org/10.1152/ajpheart.00794.2003

BIBLIOGRAPHY 247

1152/ajpheart.00794.2003. eprint: https://doi.org/10.1152/

ajpheart.00794.2003. url: https://doi.org/10.1152/ajpheart.

00794.2003.

[132] Yoram Rudy and Jonathan R. Silva. “Computational biology in the

study of cardiac ion channels and cell electrophysiology”. In: Quar-

terly Reviews of Biophysics 39.1 (2006), pp. 57–116. doi: 10.1017/

S0033583506004227.

[133] Jakub Tomek et al. “Development, calibration, and validation of a

novel human ventricular myocyte model in health, disease, and drug

block”. In: eLife 8 (Dec. 2019). Ed. by José D Faraldo-Gómez et al.,

e48890. issn: 2050-084X. doi: 10.7554/eLife.48890. url: https:

//doi.org/10.7554/eLife.48890.

[134] Bernard Victorri et al. “Numerical integration in the reconstruction

of cardiac action potentials using Hodgkin-Huxley-type models”. In:

Computers and Biomedical Research 18.1 (1985), pp. 10–23. issn:

0010-4809. doi: https://doi.org/10.1016/0010-4809(85)90003-

5. url: https://www.sciencedirect.com/science/article/pii/

0010480985900035.

[135] Zhilin Qu and A. Garfinkel. “An advanced algorithm for solving partial

differential equation in cardiac conduction”. In: IEEE Transactions on

Biomedical Engineering 46.9 (1999), pp. 1166–1168. doi: 10.1109/

10.784149.

[136] Joakim Sundnes et al. “A Second-Order Algorithm for Solving Dy-

namic Cell Membrane Equations”. In: IEEE Transactions on Biomed-

ical Engineering 56.10 (2009), pp. 2546–2548. doi: 10.1109/TBME.

2009.2014739.

https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1017/S0033583506004227
https://doi.org/10.1017/S0033583506004227
https://doi.org/10.7554/eLife.48890
https://doi.org/10.7554/eLife.48890
https://doi.org/10.7554/eLife.48890
https://doi.org/https://doi.org/10.1016/0010-4809(85)90003-5
https://doi.org/https://doi.org/10.1016/0010-4809(85)90003-5
https://www.sciencedirect.com/science/article/pii/0010480985900035
https://www.sciencedirect.com/science/article/pii/0010480985900035
https://doi.org/10.1109/10.784149
https://doi.org/10.1109/10.784149
https://doi.org/10.1109/TBME.2009.2014739
https://doi.org/10.1109/TBME.2009.2014739

248 BIBLIOGRAPHY

[137] Mauro Perego and Alessandro Veneziani. “An efficient generalization

of the rush-larsen method for solving electro-physiology membrane

equations”. In: Electronic transactions on numerical analysis ETNA

35 (Dec. 2009), pp. 234–256.

[138] V M Garcia et al. “An adaptive step size GPU ODE solver for simu-

lating the electric cardiac activity”. In: 2011 Computing in Cardiology.

2011, pp. 233–236.

[139] V.M. Garcia-Molla et al. “Adaptive step ODE algorithms for the 3D

simulation of electric heart activity with graphics processing units”. In:

Computers in Biology and Medicine 44 (2014), pp. 15–26. issn: 0010-

4825. doi: https://doi.org/10.1016/j.compbiomed.2013.10.023.

url: https://www.sciencedirect.com/science/article/pii/

S0010482513003107.

[140] QIN SHENG. “Global error estimates for exponential splitting”. In:

IMA Journal of Numerical Analysis 14.1 (Jan. 1994), pp. 27–56. issn:

0272-4979. doi: 10 . 1093 / imanum / 14 . 1 . 27. eprint: https : / /

academic.oup.com/imajna/article-pdf/14/1/27/1998333/14-1-

27.pdf. url: https://doi.org/10.1093/imanum/14.1.27.

[141] Gilbert Strang. “On the Construction and Comparison of Difference

Schemes”. In: SIAM Journal on Numerical Analysis 5.3 (1968),

pp. 506–517. issn: 00361429. url: http://www.jstor.org/stable/

2949700.

[142] Konstantinos A. Mountris and Esther Pueyo. “A dual adaptive explicit

time integration algorithm for efficiently solving the cardiac mon-

odomain equation”. In: International Journal for Numerical Methods

in Biomedical Engineering 37.7 (2021), e3461. doi: https://doi.

https://doi.org/https://doi.org/10.1016/j.compbiomed.2013.10.023
https://www.sciencedirect.com/science/article/pii/S0010482513003107
https://www.sciencedirect.com/science/article/pii/S0010482513003107
https://doi.org/10.1093/imanum/14.1.27
https://academic.oup.com/imajna/article-pdf/14/1/27/1998333/14-1-27.pdf
https://academic.oup.com/imajna/article-pdf/14/1/27/1998333/14-1-27.pdf
https://academic.oup.com/imajna/article-pdf/14/1/27/1998333/14-1-27.pdf
https://doi.org/10.1093/imanum/14.1.27
http://www.jstor.org/stable/2949700
http://www.jstor.org/stable/2949700
https://doi.org/https://doi.org/10.1002/cnm.3461

BIBLIOGRAPHY 249

org/10.1002/cnm.3461. eprint: https://onlinelibrary.wiley.

com/doi/pdf/10.1002/cnm.3461. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/cnm.3461.

[143] Andrew Sornborger. “Higher-order operator splitting methods for de-

terministic parabolic equations”. In: Int. J. Comput. Math. 84 (June

2007), pp. 887–893. doi: 10.1080/00207160701458294.

[144] Jessica Cervi and Raymond J Spiteri. “High-order operator splitting

for the bidomain and monodomain models”. en. In: SIAM J. Sci. Com-

put. 40.2 (Jan. 2018), A769–A786.

[145] Yuanfang Xie et al. “How does β-adrenergic signalling affect the tran-

sitions from ventricular tachycardia to ventricular fibrillation?” In:

Europace 16.3 (2014), pp. 452–457.

[146] Hong Zhang et al. “Mechanisms of the acute ischemia-induced

arrhythmogenesis–a simulation study.” In: Mathematical biosciences

203 1 (2006), pp. 1–18.

[147] E. Heidenreich et al. “Vulnerability to reentry in a 3D regionally is-

chemic ventricular slab preparation: A simulation study”. In: 2007

Computers in Cardiology. 2007, pp. 321–324. doi: 10.1109/CIC.

2007.4745486.

[148] Emmanuel Drouin et al. “Electrophysiologic characteristics of cells

spanning the left ventricular wall of human heart: Evidence for pres-

ence of M cells”. In: Journal of the American College of Cardiol-

ogy 26.1 (1995), pp. 185–192. issn: 0735-1097. doi: https://doi.

org / 10 . 1016 / 0735 - 1097(95) 00167 - X. url: https : / / www .

sciencedirect.com/science/article/pii/073510979500167X.

https://doi.org/https://doi.org/10.1002/cnm.3461
https://doi.org/https://doi.org/10.1002/cnm.3461
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3461
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3461
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3461
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3461
https://doi.org/10.1080/00207160701458294
https://doi.org/10.1109/CIC.2007.4745486
https://doi.org/10.1109/CIC.2007.4745486
https://doi.org/https://doi.org/10.1016/0735-1097(95)00167-X
https://doi.org/https://doi.org/10.1016/0735-1097(95)00167-X
https://www.sciencedirect.com/science/article/pii/073510979500167X
https://www.sciencedirect.com/science/article/pii/073510979500167X

250 BIBLIOGRAPHY

[149] Henggui Zhang et al. “Repolarisation and vulnerability to re-entry in

the human heart with short QT syndrome arising from KCNQ1 mu-

tation—A simulation study”. In: Progress in Biophysics and Molecu-

lar Biology 96.1 (2008). Cardiovascular Physiome, pp. 112–131. issn:

0079-6107. doi: https://doi.org/10.1016/j.pbiomolbio.2007.

07.020. url: https://www.sciencedirect.com/science/article/

pii/S0079610707000661.

[150] Daniel L. Weiss et al. “Modelling of short QT syndrome in a hetero-

geneous model of the human ventricular wall”. In: EP Europace 7.s2

(Jan. 2005), S105–S117. issn: 1099-5129. doi: 10.1016/j.eupc.

2005 . 04 . 008. eprint: https : / / academic . oup . com / europace /

article-pdf/7/s2/S105/28936103/s105.pdf. url: https://doi.

org/10.1016/j.eupc.2005.04.008.

[151] Kazutaka Gima and Yoram Rudy. “Ionic Current Basis of Electrocar-

diographic Waveforms”. In: Circulation Research 90.8 (2002), pp. 889–

896. doi: 10.1161/01.RES.0000016960.61087.86. eprint: https:

//www.ahajournals.org/doi/pdf/10.1161/01.RES.0000016960.

61087.86. url: https://www.ahajournals.org/doi/abs/10.

1161/01.RES.0000016960.61087.86.

[152] Henggui Zhang and Jules C. Hancox. “In silico study of action po-

tential and QT interval shortening due to loss of inactivation of the

cardiac rapid delayed rectifier potassium current”. In: Biochemical

and Biophysical Research Communications 322.2 (2004). Calcium Sig-

naling and Disease, pp. 693–699. issn: 0006-291X. doi: https://

doi.org/10.1016/j.bbrc.2004.07.176. url: https://www.

sciencedirect.com/science/article/pii/S0006291X04016201.

https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2007.07.020
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2007.07.020
https://www.sciencedirect.com/science/article/pii/S0079610707000661
https://www.sciencedirect.com/science/article/pii/S0079610707000661
https://doi.org/10.1016/j.eupc.2005.04.008
https://doi.org/10.1016/j.eupc.2005.04.008
https://academic.oup.com/europace/article-pdf/7/s2/S105/28936103/s105.pdf
https://academic.oup.com/europace/article-pdf/7/s2/S105/28936103/s105.pdf
https://doi.org/10.1016/j.eupc.2005.04.008
https://doi.org/10.1016/j.eupc.2005.04.008
https://doi.org/10.1161/01.RES.0000016960.61087.86
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.0000016960.61087.86
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.0000016960.61087.86
https://www.ahajournals.org/doi/pdf/10.1161/01.RES.0000016960.61087.86
https://www.ahajournals.org/doi/abs/10.1161/01.RES.0000016960.61087.86
https://www.ahajournals.org/doi/abs/10.1161/01.RES.0000016960.61087.86
https://doi.org/https://doi.org/10.1016/j.bbrc.2004.07.176
https://doi.org/https://doi.org/10.1016/j.bbrc.2004.07.176
https://www.sciencedirect.com/science/article/pii/S0006291X04016201
https://www.sciencedirect.com/science/article/pii/S0006291X04016201

BIBLIOGRAPHY 251

[153] Cunjin Luo et al. “Effects of quinidine on short QT syndrome variant

2 in the human ventricle: A modelling and simulation study”. In: 2017

Computing in Cardiology (CinC). 2017, pp. 1–4. doi: 10 . 22489 /

CinC.2017.310-147.

[154] Peter Taggart et al. “Inhomogeneous Transmural Conduction During

Early Ischaemia in Patients with Coronary Artery Disease”. In: Jour-

nal of Molecular and Cellular Cardiology 32.4 (2000), pp. 621–630.

issn: 0022-2828. doi: https://doi.org/10.1006/jmcc.2000.1105.

url: https://www.sciencedirect.com/science/article/pii/

S0022282800911052.

[155] B Neta and T Fukushima. “Obrechkoff versus super-implicit methods

for the solution of first- and second-order initial value problems”. In:

Computers & Mathematics with Applications 45.1 (2003), pp. 383–

390. issn: 0898-1221. doi: https://doi.org/10.1016/S0898-

1221(03) 80024 - X. url: https : / / www . sciencedirect . com /

science/article/pii/S089812210380024X.

[156] Alfio Quarteroni et al. “Integrated Heart—Coupling multiscale and

multiphysics models for the simulation of the cardiac function”. In:

Computer Methods in Applied Mechanics and Engineering 314 (2017).

Special Issue on Biological Systems Dedicated to William S. Klug,

pp. 345–407. issn: 0045-7825. doi: https://doi.org/10.1016/

j.cma.2016.05.031. url: https://www.sciencedirect.com/

science/article/pii/S0045782516304662.

[157] Nico Westerhof, Jan-Willem Lankhaar, and Berend E Westerhof. “The

arterial Windkessel”. en. In: Med. Biol. Eng. Comput. 47.2 (Feb. 2009),

pp. 131–141.

https://doi.org/10.22489/CinC.2017.310-147
https://doi.org/10.22489/CinC.2017.310-147
https://doi.org/https://doi.org/10.1006/jmcc.2000.1105
https://www.sciencedirect.com/science/article/pii/S0022282800911052
https://www.sciencedirect.com/science/article/pii/S0022282800911052
https://doi.org/https://doi.org/10.1016/S0898-1221(03)80024-X
https://doi.org/https://doi.org/10.1016/S0898-1221(03)80024-X
https://www.sciencedirect.com/science/article/pii/S089812210380024X
https://www.sciencedirect.com/science/article/pii/S089812210380024X
https://doi.org/https://doi.org/10.1016/j.cma.2016.05.031
https://doi.org/https://doi.org/10.1016/j.cma.2016.05.031
https://www.sciencedirect.com/science/article/pii/S0045782516304662
https://www.sciencedirect.com/science/article/pii/S0045782516304662

252 BIBLIOGRAPHY

[158] Yasser Aboelkassem and Zdravko Virag. “A hybrid Windkessel-

Womersley model for blood flow in arteries”. In: Journal of

Theoretical Biology 462 (2019), pp. 499–513. issn: 0022-5193.

doi: https://doi.org/10.1016/j.jtbi.2018.12.005. url:

https : / / www . sciencedirect . com / science / article / pii /

S0022519318305952.

[159] A Cappello, G Gnudi, and C Lamberti. “Identification of the three-

element windkessel model incorporating a pressure-dependent compli-

ance”. en. In: Ann. Biomed. Eng. 23.2 (Mar. 1995), pp. 164–177.

https://doi.org/https://doi.org/10.1016/j.jtbi.2018.12.005
https://www.sciencedirect.com/science/article/pii/S0022519318305952
https://www.sciencedirect.com/science/article/pii/S0022519318305952

	Introduction
	Motivations, aims, and objectives
	Heart physiology
	Cardiac tissue: micro to macro scale structures

	Distinct sub-physics of the heart
	The iso-potential, leaky cell
	Cell ion kinetics and dynamics
	Function and AP morphology
	Electrical conduction

	Anisotropic solid mechanics
	Structure
	Mechanism of contraction

	Mathematical modelling principles
	Ion dynamics
	Modelling ion channels

	Cell models
	Continuum mechanics
	Describing the world
	Tensor product and tensor contraction
	Metric tensors

	Electrical diffusion
	Conductance tensors
	Bidomain equations
	Monodomain equation

	Solid mechanics
	Strain tensor
	Strain invariants
	The principle of virtual displacements
	Constitutive modelling
	Incompressibility constraint
	The passive myocardium
	The active stress decomposition
	The active strain decomposition

	Numerical methods
	The finite element method
	Basis functions
	Local to global mapping
	Spatial derivatives

	Approximating integrals
	General implementation of integration in Oomph-lib

	Time integration
	Forward and backward Euler
	Rush-Larsen
	Trapezoid rule: Crank-Nicolson
	Implicit linear multi-step methods
	Adaptive time integration

	Monolithic and partitioned solutions
	Monolithic solutions
	Weak coupling
	Operator splitting
	Operator splitting and diffusion models
	Mechano-electrical feedback

	Solving linear systems
	Newton's method
	Direct and iterative solvers

	Developing the numerical package
	Oomph-lib
	Structures within Oomph-lib
	Data
	Nodes
	Elements
	Meshes
	Problems

	The use of Oomph-lib
	What has been added to Oomph-lib
	Solving for electrical diffusion
	Adding non-linear point source terms
	Operator splitting and diffusion models
	Multiple discretisations
	Anisotropic solid mechanics
	Generating anatomical unstructured meshes

	Validation
	Monolithic and Non-Adaptive operator splitting
	Adaptive operator splitting
	Time-stepping with operator splitting

	Use of the numerical package
	Defining a point-source model
	Calculating conduction velocity in a fibre of tissue
	Adaptive operator splitting methods

	Applying adaptive operator splitting
	Methods
	Cardiac cell models
	The operator splitting stage
	Solving the monodomain equation
	Solving the cell equations
	The combined methods
	Benchmark simulations

	Results
	Conduction velocity in a fibre
	Target pattern wave simulations
	Spiral wave simulations

	Discussion

	Future work
	Remaining validation
	Alternative time-stepping methods
	Additions of blood flow
	Valve boundary conditions

	Windkessel type models

	Summary and conclusions

