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Abstract

A method for decomposing Cartesian forces into pairwise interactions is de-

scribed and investigated. These forces are then fitted by a variety of machine

learning techniques with the most notable being a residual neural network which

grows in size during the course of training. We also construct a machine learn-

ing model that predicts Cartesian forces via the predictions of pairwise forces

whilst evaluating the error on the Cartesian predictions.

We then apply these machine learned force fields to molecular dynamics

simulations and evaluate their performance, investigating the issue of energy

gain via calculation of intermediary structures along the trajectory.

Finally we show that our decomposition scheme is useful not only for the

prediction of forces, but for other properties where the sum of the properties

should be zero. The example used is charges.
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Chapter 1

Introduction

1.1 An overview of simulation

Since the invention of the computer, computational power has continuously

increased. This has enabled a revolution in science, technology and engineering

with computer simulations forming a routine part of a plethora of fields. The

applications of these simulations are extremely varied, from simulating proteins

with applications to drug discovery1 such as virtual screening2 to simulations

important to safety such as crack propagation in materials3.

Techniques for simulation are equally varied and use different levels of ap-

proximation to model the real world system as appropriate for the application.

The two main limiting factors for the usefulness of any simulation are the

time taken to obtain results from the simulation and the accuracy to which the

model predicts the phenomena under investigation, with the latter naturally

being informed by the former and both being affected by availability of com-

putational power. With more computational power comes the ability to make

fewer potentially inaccurate assumptions whilst completing the simulation in an

acceptable time frame.

Though computational power is continually increasing, as noted, through

careful design of simulation methods we can maximise the usefulness of any

model.

Advances in computational power will not render such efforts to improve

simulation techniques in vain, for the developed techniques may be applied to

ever increasingly complicated systems.
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Simulation represents a cost effective method of replacing expensive exper-

imentation, improving safety and acquiring new insights into systems. In the

work presented here we focus on a class of simulations used to model small

drug like molecules using a technique known as molecular dynamics; however

the applications of the developed techniques may be beyond this scope as well.

In particular, we focus on the use of machine learning in order to accurately

predict the forces between atoms to a high degree of accuracy with a minimal

impact on the time required to make a prediction compared with existing less

accurate methods.

1.2 Molecular Dynamics

Molecular dynamics (MD) involves simulating the real time motion of systems

by Newtonian mechanics. A very general overview of the procedure is, calculate

the forces for the current structure, use these forces to calculate an acceleration

and combine this with velocity and position information to make a perturbation

to the atomic positions r over a time step δt.

1.2.1 Taking a step

Algorithms for the calculation of the next structure r(t + δt) are based on the

assumption that dynamics properties (positions,velocities, accelerations, jerk,

jounce, etc) can be approximated by a Taylor expansion series (equation 1.1).

∞∑
n=0

fn(a)

n!
(x− a)n (1.1)

These include the Verlet algorithm (equation 1.2), which does not require

the velocities explicitly

r(t+ δt) = 2r(t)− r(t− δt) + δ2a(t) (1.2)

and is derived from the addition of the expansion series taking a step back-

wards and forwards (equations 1.4 and 1.3).

r(t+ δt) = r(t) + v(t)δt+
1

2
δt2a(t) (1.3)

r(t− δt) = r(t)− v(t)δt+
1

2
δt2a(t) (1.4)
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A potential issue of the Verlet algorithm is it requires the computation of

the difference of potentially large numbers 2r− r(t− δt), also it does not explic-

itly calculate velocities which are required for the kinetic part of total energy

calculations.

These disadvantages are overcome by the leap-frog algorithm4, which gets

its name from the fact that the positions and the velocities are calculated at

staggered time steps, which are defined using equations 1.5 and 1.6.

r (t+ δt) = r(t) + δtv

(
t+

1

2
δt

)
(1.5)

v

(
t+

1

2
δt

)
= v

(
t− 1

2
δt

)
+ δta(t) (1.6)

In order to implement this algorithm one first applies equation 1.6 to work

out v(t + 1
2δt) then equation 1.5 to work out the new positions at timestep t,

then the velocities are t+ 1
2δt are recalculated and so on, with the positions and

velocities being staggered by half the timestep.

The staggered nature of the velocities and distances adds extra difficulty to

the calculation of the kinetic energy part of the total energy. For the sake of

simplicity in our implementation of MD in chapter 4 we opt to use the Verlet

algorithm. There are other methods such as the velocity Verlet algorithm, which

gives velocities and accelerations without compromising on the accuracy of the

verlet algorithm5 but are all based on the Taylor series.

Note in any method for taking a step the next structure is dependent on the

current one. This means that the successive structures obtained are interdepen-

dent and any errors in the prediction are cumulative.

Although the choice of integration algorithm may permit longer time steps,

it is usually not the limiting factor in the accuracy and speed to which one

can conduct a calculation. The main limiting factor being the time taken to

calculate the forces and the accuracy to which they are computed.

1.2.2 Calculating the forces

Accurate forces may be obtained by application of quantum mechanical meth-

ods. However these forces, though accurate are very time consuming to calcu-

late. Semi-empirical methods such as PM66, which we use to compare perfor-

mance of our method in chapter 3, make assumptions about the integrals that

need to be calculated based on data to speed up the calculations.
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We choose to compare to PM6 as Semi-empirical methods represent a com-

petitor to the new class of machine learned force fields, running in a faster time

than methods such as density functional theory whilst still retaining a good

level of accuracy.

More simpler to compute still are forcefield methods, which are often clas-

sical mechanical in nature. For example consider the general amber forcefield

(GAFF)7, which we run a simulation of aspirin with in order to compare to our

simulations in chapter 4, which can be given by equation 1.7.

Epair =
∑
bonds

(Kr(r − req)
2) +

∑
angles

(Kθ(θ − θeq)
2) +

∑
dih

(
Vn

2
(1 + cos(nϕ− γ))

)

+
∑
i<j

(
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ϵRij

)
(1.7)

Where req and θeq correspond to the equilibrium positions of a bond and

angle respectively, Kr,Kθ and Vn are force constants, n is multiplicitly (how

many minima one observes) and γ is the phase angle.

Force fields such as GAFF are then parametrized using a mixture of exper-

imental data and computational calculations, for a range of atoms in different

chemical environments.

A new class of methods have been developed in recent years which use ma-

chine learning in order to make predictions of forces. These methods all take

datasets of structures and fit a function to make predictions of energies or forces.

Machine learning methods for predicting energies or forces will be discussed in

more detail in section 1.3.

1.2.3 Analysing the results

The collection of structures one obtains from a molecular dynamics simulation

is called a trajectory. A trajectory is useful for analysing the time dependent

behaviour of a system - a notable advantage over other simulation techniques

such as the Metropolis Monte Carlo approach.

A trajectory is also useful for determining which conformers a molecule is

likely to adopt and the free energy cost of a transition between them.
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1.2.4 Adding a solvent

Many of the systems of interest do not exist in a vacuum but are surrounded by

the presence of a solvent such as water. The effects of solvent can be accounted

for using either implicit or explicit methods. In implicit solvent models the

solvent is modelled as a continuum and adds a perturbation to the gas phase

behaviour of a system.8

Alternatively solvent may be modelled explicitly where the behaviour of the

solvent molecules and their effects on the solute are modelled via molecular

dynamics. As interactions with the solvent molecules in explicit solvent are

modelled as charge-charge interactions and van der Waals interactions. We

attempt to predict charges in chapter 5 based on the conformation of the solute

which may be useful in more accurately modelling the explicit interactions with

solvent.

1.3 Machine learning and its applications to chem-

istry

Machine learning is a subclass of artificial intelligence in which the computer ac-

quires new behaviours or knowledge based on the results of experience or data.

The applications of machine learning are extremely diverse and in many areas

machine learning has begun to equal or surpass the abilities of humans, for ex-

ample in the image classification test set ImageNet9 where human classification

is only 11% better on average.

There are many different approaches to machine learning but one of the

most successful in recent years for a variety of applications is the artificial neural

network, especially with the possibility to construct deep learning models.

1.3.1 Artificial neural networks

Artificial neural networks are a machine learning technique loosely based on the

workings of the brain. They consist of a series of ‘artificial neurons’ which are

connected to each other. Each neuron applies a function, called an activation

function to a weighted sum of its inputs (figure 1.1).

There are many activation functions to choose from but two common ones are

the sigmoid function (equation 1.8) or the rectified linear unit (relu) function10

(equation 1.9)
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Figure 1.1: An example of an artificial neurone with 3 inputs x1 x2 and x3

which applies a function g of their weighted sum and returns y

y =
1

1 + exp(−
∑

(wixi))
(1.8)

y = max(0,
∑

wixi) (1.9)

The choice of activation function can be important depending on network

architecture as we will see in our discussion of network training.

From the activation functions listed it should be easy to see that a single

neuron is limited in the functions it can fit. As such multiple neurons are

employed in a variety of architectures. The simplest consists of neurons that

form a single ‘hidden layer’ followed by an output layer but often multiple

hidden layers are used (see Figure 1.2). Hidden layers are called as such as they

lie between the inputs and the outputs and consist of any network layer that

does not predict the final output.

It has been shown that a neural network consisting of a single hidden layer

of infinite size may fit any arbitrary continuous function. This is referred to

as universal approximation theory and was proved first for sigmoid functions11,

then later for any bounded nonconstant function12. Although universal approx-

imation theorem offers some reassurances of the capabilities of a neural network,

it does not offer any insights as to how to acquire a set of weights that fit a

14



Figure 1.2: The connectivity of a feedforward neural network. The input layer
serves to introduce inputs into the network and does not actually apply an
activation function. Layers between the input layer and output layer are called
hidden layers.

desired function.

The values of the weights of a neural network need to be optimized in order

to make good predictions of a function. This optimization procedure is referred

to as training. There are multiple strategies for training a neural network such as

reinforcement learning13 which is useful for learning behaviours in the context of

game playing for example or unsupervised learning14 which is useful for learning

classes or patterns in unlabelled data (such as a picture of a cat without the label

‘cat’). However the type of learning that is most applicable to our interest (the

prediction of forces) is called supervised learning. Supervised learning involves

using labelled data and attempting to learn the appropriate labels for the data,

in our context molecular structures and the forces on each of the atoms.

For most fixed architectures, the number of neurons, how they are connected

and the activation functions employed are all predetermined. This means the

weights are the only adjustable parameter to better produce the desired output

for a given input. Though there are multiple strategies for the selection of initial

weights with some potentially offering the ability to reach better fits faster15,

there is always a need to conduct an optimization. This optimization procedure

involves assigning ‘blame’ to hidden neurons and making adjustments of their

weights accordingly.

For example, consider the backpropagation algorithm which adjusts the
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weights according to equation 1.10:

∆w (n) = αδ (n)x (n) + λ∆w (n− 1) (1.10)

where ∆w (n) is the change in a weight for the nth time; α is a constant referred

to as the learning rate; λ is known as the momentum constant. δ has two

different expressions depending on if the neuron is in an output layer or a hidden

layer given by equations 1.11 and 1.12 respectively:

δo = f ′(a)× (t− y) (1.11)

δh = f ′(a)×
∑
j∈Ih

δjwjh (1.12)

where δo and δh are for output and hidden neurons; f ′(a) is the derivative

of the activation function; the sum j ∈ Ih is over all neurons that take an input

from the output of the neuron of interest; δj is the function δ for the neuron

receiving an input from the neuron of interests output and wjh is the weight of

this connection. The values of t and y correspond to the target output value

and the outputted value respectively.16

From this scheme it should be possible to see that the weight adjustments

of the earlier layers in a neural network are dependent on the gradients of

the later layers they connect to, multiplied together. This is problematic in

deeper networks containing multiple hidden layers as the gradient function δh

may become very small and these weights will not change through successive

training cycles. This is referred to as the vanishing gradient problem17 and

is an issue in networks which employ neurons such as sigmoid functions which

may have shallow gradients in some regions they are sensitive to. The vanishing

gradient problem may be overcome by the use of activation functions such as the

relu activation function which has the same gradient in all regions of sensitivity.

Consider for example the ANI-1 model18, a neural network with Gaussian

activation functions in its hidden layers which learned to make predictions of

energies based on structures. The authors noted that having 3 or 4 hidden

layers offers the best performance which is likely a direct consequence of the

vanishing gradient problem as any more layers would mean the earlier layers

will not train.

Although optimization algorithms which do not depend on the gradients

have been developed such as the use of particle swarm optimization19, it is
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still most common to use algorithms which use the gradients, with algorithms

such as the Adam optimizer20 employed routinely in the optimization of neural

networks and is included within the tensorflow library21.

In our work we only use relu functions in the hidden layers of networks

which are deep (consisting of more than two or three hidden layers) and have a

fixed architecture to overcome this issue and indeed we are able to obtain well

performing deep architectures as a consequence.

Another potential issue one could encounter when training a neural network

is overfitting. This occurs when the training data has error associated with it

(for example experimental data) but instead of fitting a good general trend, the

network instead fits through every point exactly. This is countered by the use of

‘cross validation’, which involves a set of inputs that the network’s performance

is evaluated on, but not trained on. If during training the error of the cross

validation set increases, even if the training error is decreasing, this is indicative

of overfitting and training should be terminated early.

In our work we exclusively fit computational data calculated in a determin-

istic manner meaning there is no error at any of the training points (within

floating point precision) and ideally we should fit each point exactly. As such

in our work we do not employ cross validation to terminate training early.

So far we have only considered what are called ‘feed forward networks’ with

a fixed defined architecture which take a fixed number of inputs. However there

are many different types of neural network which we will discuss now.

Architecture types

A disadvantage of using a fixed architecture is that one is required to define a

suitable number of hidden layers, the number of neurons in each and connectiv-

ity. Failing to do so appropriately could significantly impact the results of the

machine learning experiment. The simplest extension to allow some variation in

network architecture involve the use of pruning algorithms22 which cut connec-

tions between neurons during the course of training, simplifying the architecture

as training progresses with the hopes of attaining a better general fit.

Other approaches such as cascade-correlation neural networks23 or Neural

Evolution of Augmenting Topologies (NEAT)24, take a more extreme approach

to changing architecture as the network is trained. In both cascade correlation

and NEAT the network begins with only a single output neuron.

At the start of cascade-correlation first the output neuron(s) (connected to
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the network inputs) are optimized. Then a series of trial neurons are trained

independently receiving the network inputs as inputs, to maximise the corre-

lation between their output and the error over the training data. The neuron

with the highest correlation after training is then selected and inserted into the

network. It is connected to the network inputs with its output connected to the

output neuron(s). The output neuron(s) are then re-optimized. Then another

set of neurons is selected, with input connections to the network inputs but also

the previously added neuron and the process is repeated. Every neuron that

is added is connected to the network inputs and all previous neurons. Cascade

correlation produces deep neural networks with every new neuron being con-

nected to all previous ones. Although implementations of cascade correlation

exist, it would not have been easy to implement in our choice of neural network

library, Keras (see Section 1.7), as such we opted not to use it.

NEAT uses genetic algorithms in order to optimize the weights,connectivity

and architecture simultaneously ensuring sensible crossovers by tracking inno-

vations in the structure. An extension of NEAT is HyperNEAT25 which uses

NEAT to construct a network known as the complex pattern producing network

(CPPN) which is then used to define the weights between neurons and inputs

based on their positions in space. This is very interesting as it means the re-

sulting connection weights are a function of the geometry of the system. An

example of how the CPPN may be queried in order to determine a connection

between two nodes is presented in figure 1.3.

Although the use of an adapted HyperNEAT was considered because of its

interesting feature of being a function of the positions of the various nodes, this

was ultimately discarded as an option because of the lack of good implementa-

tions of the code at the time.

Another very important development in network architectures is the con-

volutional neural network (CNN). These networks attempt to make use of the

geometry of the problem by learning features of the inputs invariant to trans-

lations implicitly. Although the features learned are not implicitly invariant to

rotations it is possible to learn rotationally invariant features by presenting the

network with the same input patterns but rotated to some degree of success.

For example, in the work conducted by Dieleman, Willett and Dambre,26 where

CNNs were used for the prediction of galaxy type based on images of galaxies,

they found that by including specific rotations of the input data it yielded a

model which appeared to show invariance to rotations in its predictions. CNNs

have also been successfully applied to chemical problems such as the work con-
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Figure 1.3: An example of determining the weight between two neurons by
querying the CPPN by passing the coordinates in space of each one. Note
sometimes other information is also passed such as the distance between them.

ducted by Ragoza et al27, who conducted protein-ligand docking calculations

based on the results of training a CNN which took 3D ‘pictures’ of molecular

structures as input and they outperformed both other machine learning tech-

niques and the AutoDock Vina scoring function.

For simplicity sake we shall consider a convolutional that takes a two dimen-

sional input such as an image. In a convolutional neural network neurons in the

first hidden layer can be thought of as being arranged in independent sheets.

The neurons in each sheet have a defined ‘receptive field’, a region of input space

to which they are sensitive. In order to encode translational invariance of the

detected features every neuron in the sheet will have an identical set of weights

for the inputs in its receptive field. For example in Figure 1.4 for both a) and

b) the weight of the connection of the top left neuron in their receptive fields

(coloured in black) will be identical.28

The sharing of weight values yields far fewer weights to be optimised in

a CNN as compared to its fully connected counterparts. This reduction in

parameters can improve generalisation.26

After the first hidden layer it is common to employ a ‘pooling layer’. These

layers have a receptive field to the previous layer. They do not have a trainable

weight set but rather serve to combine multiple features together using a well

defined rule. The idea of this is to reduce the dimensionality of the problem

and eliminate noise sensitivity.29
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Figure 1.4: The connections for two neurons in the hidden layer of a convolu-
tional neural network. In this example each neuron has a 2 × 2 receptive field
which is coloured black.

The exact number of layers and their arrangement are subject to ongoing

research. Some of the more recent networks have had a very large number of

layers, one of the largest (at the time of writing) having 152 layers.30

Deep convolutional neural networks have come to dominate the field of im-

age classification in recent times.31 A class of convolutional nets which use a

shortcut connection to add the input to the output of a convolutional layer (see

Figure 1.5) have proven to be the most powerful tools for image classification

to date based on the results of the “ImageNet Large Scale Visual Recognition

Competition” (ILSVRC) image classification challenge. It is argued the success

of such networks comes about as a result of the layers attempting to learn a

residual or slight change to the input rather than hoping individual layers learn

appropriate features.30. For very deep networks the use of these shortcut con-

nections allows for better performance than similar networks of equal depth that

do not have them. They consist of 1 or more convolutional layers and then a

combinational layer. The combinational layer takes the output after the series

of convolutions as well as the input to them and combines them using methods
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such as addition or a fully connected neural network layer.32

Figure 1.5: An example of a residual unit containing a shortcut connection
bypassing the convolutional layer. In the combinational layer various methods
may be employed ranging from a simple addition to a fully connected neural
network layer.

Given their successes, convolutional networks have had in various fields but

more specifically in chemical applications such as the prediction of docking scores

but also in the case of the SchNet convolutional network’s33 ability to predict

molecular properties we decided to use convolutional networks as our model.

For our input we initially used a grid based system which created a 3D image

of a molecule to be used as input based on equation 1.13:

y =

N∑
i


(

mi√
2×π×σ2

i

)
exp

(
−d2

2×σ2
i

)
if d < 2.0

0 if d ≥ 2.0

(1.13)

where y is the value at a particular grid point; N is the number of atoms; σi is

half the covalent radius of atom i; mi is the mass of atom i and d is the distance

between the grid point and the atom.

To yield 3D grids such as the ones shown in figure 1.6.

However this idea was later abandoned due to concerns about rotational in-

variance. The appropriate selection of rotations/schemes to orientate a molecule

and the large computational overhead related to constructing and storing the

grids. The networks we fit in Section 3.2 are not convolutional in nature as

this would not have been appropriate for the input used but do contain fea-

tures such as shortcut connections, which were shown to improve performance

in CNNs and also build the architecture as the network trains to exploit the

advantages of this.

21



Figure 1.6: A 200× 200× 200 grid populated according to equation 1.13. The
(x,y,z) positions are plotted with the colour determining the value at each point.
A threshold is used to remove points below a certain value. The left image has
a higher threshold value than the right. The large number of grid points is to
aid visualisation

1.3.2 Other machine learning methods

Although the focus of our work was the use of neural networks we will now

discuss some of the other machine learning methods that exist.

One of the oldest forms of machine learning is the use of rule based systems.

These have a series of rules of the format of IF THEN statements. Additionally

Rules may also be acquired from data such as in the case of the Dendral project.

The Dendral project was an influential project concerned with the identifica-

tion of unknown organic compounds based on the results of mass spectrometry

and used rules in order to conduct its analysis. More interestingly another pro-

gram called Meta-Denral was constructed which analysed the rules of Dendral

based on training data consisting of mass spectra and organic compounds they

were derived from. Not only was Meta-Dendral able to rediscover the known

rules of mass spectroscopy, it was able to contribute to the discovery of new

rules and make good predictions for mass spectra outside the original training

data.

Although due to lack of marketability the Dendral project was ultimately dis-

continued, the various modules which made up the program have been adapted

to other purposes such as chemical database management.34

Another commonly used method is radial basis function or a similar method

called kriging. Radial basis function interpolation is discussed further in section.3.3

When conducting Kriging one first constructs and fits a variogram (see 1.9.3),

this is then used to calculate weights for training structures, for a given new

structure. These weights are then used to make a prediction.
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1.3.3 Input design

The design of an appropriate input scheme is key in determining the perfor-

mance of any machine learning experiment. Three important factors must be

considered namely, logical adequacy (completeness), heuristic power and no-

tional convenience. The first is how well can the input scheme distinguish every

unique input, or in our context can the input scheme adequately distinguish

different conformations of a molecule. The second is how well does the input

relate to the output. An input that has a perfect linear correlation with the

output will be very easy to fit but more complicated relationships may be less

well fitted. The final relates to how large the input scheme is and how easy it is

to compute, using more than 3N-6, where N is the number of atoms, numbers

to represent a chemical structure is sub optimal from a notional convenience

point of view, but doing so may offer more heuristic power.

A variety of techniques exist for encoding chemical structures for use by a

machine learning method each with advantages and disadvantages.

One example is the symmetry functions conceived by Behler and Parrinello.35

These serve to encode the enviroment around a single atom and were used in

conjunction with a neural network to predict energies of atoms. They defined

two types of symmetry functions: the first is a radial symmetry function (G)

defined by the equation 1.14:

Gi =

N∑
j ̸=i

e−η(Rij−Rs)
2

fc (Rij) (1.14)

where Rc is the cut off distance; η and Rs are parameters for the Gaussian

function; Rij is the interatomic distance, N is the total number of atoms and

fc defined in equation 1.15, is a cut off function;.

fc(Rij) =

0.5×
[
cos
(

πRij

Rc

)
+ 1
]

if Rij ≤ Rc

0 if Rij > Rc

(1.15)

The second type of symmetry function is an angular symmetry function given
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by the equation:

Gi = 21−ζ
N∑

j,k ̸=i

(1 + λ cos θijk)
ζ

× e−η(R2
ij+R2

ik+R2
jk)fc (Rij) fc (Rik) fc (Rjk)

(1.16)

where the value of ζ determines the angular resolution of the symmetry

function with higher values yielding a narrower range of none zero values for

the symmetry function and λ has values between zero and one and serves to

shift the the maxima of the cosine function.

A set of multiple symmetry functions are used for a single atom in order to

describe its environment, in Behler and Parrinello’s experiment which consisted

of modelling the energies of silicon atoms, a total of 48 different symmetry

functions were used.

These symmetry functions were extended by Smith, Isayev and Roitberg to

account for different chemical environments18 which was shown to improve per-

formance. As most neural networks require a fixed number of inputs, symmetry

functions are a potentially good choice of input for experiments where multiple

molecules of different sizes should be fitted simultaneously. However they are

not necessarily a complete input and they can be computationally expensive to

compute and the constants difficult to define.

In our early work we attempted to use a modified version of symmetry

functions to describe the environment around a pair of atoms. We chose to

describe the environment around a pair rather than a single atom as our work

consists of making pairwise predictions such as those presented in chapter 2.

We developed functions which were sensitive to angles, dihedrals and distances

(with all combinations to assure invariance to permutations). We found that

generating the symmetry functions required significant computational time, that

some had large values whereas others were barely influenced and that the neural

network fit was poor. Given the difficulty associated with optimising this input

scheme as well as optimizing the network architecture employed we instead

opted for an input in our work not too dissimilar from coulomb matrices.

Coulomb matrices are another popular input choice and are N ×N matrices

(where N is the number of atoms) that encode the distance between atoms and
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the product of their charges as a single number according to the equation:

Mij =

0.5Z2.4
i if i = j

ZiZj

|Ri−Rj | if i ̸= j
(1.17)

where Ri and Rj are the Cartesian coordinates of atoms i and j.36 In this rep-

resentation the size of the matrix will change as a function of the number of

atoms. This may make them unsuitable for neural networks for the aforemen-

tioned reason of neural networks generally requiring a fixed input and output

size.

In our work we primarily use the lower triangle of the nuclear repulsion force

matrix as our input. This is appropriate as it is complete, forms part of the

total force between a pair of atoms and is relatively easy to compute.

1.4 Delaunay triangulation and natural neigh-

bour interpolation

Delaunay triangulation is a technique for joining points in space in order to form

simplices (triangles in 2D, tetrahedrons in 3D etc). The condition that must be

satisfied is that for any given simplex, the circumcircle in 2D, circumsphere in

3D, or circum-hypersphere in higher dimensions, joining the points of a simplex

must not contain any other points.

An example of a Delaunay triangulation is shown in figure 1.7.i

In Chapter 3 we considered the use of Delaunay triangulation to reduce the

number of pairwise interactions between atoms. However we found this intro-

duced a situation whereby the number of outputs was not necessarily constant

and which atoms still had connections could vary from structure to structure

making it nigh on impossible to fit.

In Chapter 4 we considered the use of Delaunay triangulation to identify the

convex hull defined by our training data to identify frames in a simulation where

the forces were extrapolated but found this too computationally expensive to

compute as the data is 3N-6 dimensional.

The Delaunay triangulation is the dual graph of the Voronoi diagram. The

Voronoi diagram is constructed by drawing lines in positions where multiple

iDelaunay triangulation Image (figure 1.7) by By N es derivative work: Matthias Kop-
sch - This file was derived from: Delaunay circumcircles centers.png:, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=18929097
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Figure 1.7: The Delaunay triangulation of 2D points (black dots) with circum-
circles shown with centers(red dots)

points in the data are equidistant. These diagrams are observed in nature for

example in dragonfly wings (figure 1.8)ii or giraffe spots.

The area of a Voronoi polygon can give us insight into how well sampled

the area around the centre point. A large Voronoi polygon means there are no

nearby points and that the region is sparsely sampled, whereas a small area

means there are nearby points and the area is well sampled. The Voronoi

diagram may be a useful tool in dataset construction because of this. However

we opt to use available datasets instead (see section 1.8).

The Voronoi diagram can also be used to conduct an interpolation method

called natural neighbour interpolation37. Natural neighbour interpolation works

by first constructing the Voronoi diagram for all the training data. Then a point

to be interpolated is inserted into the diagram, the subsequent change in area of

the polygons when the diagram is recalculated with the point to be interpolated

added in is calculated. These are used to generate weights for each training

point (w) which are calculated by equation 1.18;

wi =
∆Ai

∆Atotal
(1.18)

where wi is the weight for training point i, ∆Ai is the change in area for the

polygon corresponding to point i and ∆Atotal is the total change in area of all

iiDragonfly wing photo by Joi Ito on flickr.com
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Figure 1.8: Wing of a dragonfly, note the pattern of polygons, these can be
modelled by a Voronoi diagram.

polygons. The interpolated value is calculated using equation 1.19;

y(x) =

n∑
i=1

wif(xi) (1.19)

where y(x) are the value(s) to predict for interpolated point x, wi is the

weight for training point i and f(xi) are the value(s) at position xi.

In our early work we used a special kind of neural network called an autoen-

coder, these networks have an output identical to their input. However they

have a layer that consists of only a few neurons (in our case two neurons). Then

the output of those two neurons was used to define the now 2D positions of all

the training points. With this lower dimensionality it became possible to con-

struct the Voronoi diagram and conduct natural neighbour interpolation. We

noticed very poor performance though likely due to a poor correlation between

these 2 values and the force to predict and the local nature of the technique

employed - natural neighbour interpolation only considers the points nearest to

the one to be interpolated with no consideration of global trends.
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1.5 Fit forces or energies?

Although one requires forces to update the positions of the atoms in the system

during the course of an MD simulation, predictions of the forces may be obtained

from energies as the force is simply the negative of the first derivative of energy,

shown in equation 1.20.

F = − δE

δR
(1.20)

where R is the position of a particle.

Energies represent an easier value to predict as they are scalar values rather

than forces which are vectors. Schemes for fitting energies usually involve al-

lowing the machine learning method to decompose the energies internally and

then summing them to give a total energy.18 35

A scheme which uses this approach is the ANI-1 neural network18. This net-

work consisted of 4 layers of neurons with a Gaussian activation function which

made per atom predictions of energies. The network used modified versions of

the symmetry functions introduced in section 1.3.3 and was fitted using 80% of

a very large dataset consisting of 58,000 small molecules sampled to give nearly

17.2 million conformers.

The deep tensor neural network (DTNN) scheme38 is similar to ANI-1 except

that instead of using symmetry functions to model the chemical environment,

they instead employ an iterative method which serves to pass ‘messages’ from

one atom to another, which over multiple iterations serves to capture informa-

tion about the environment.

The SchNet architecture33 also makes predictions of arbitrarily decomposed

atomic energies. It used a convolutional neural network to make these pre-

dictions but it also incorporated forces into its error function by analytically

calculating the first derivative of the model with respect to molecular positions.

They demonstrate that by including this force information in their error func-

tion they are able to obtain better predictions compared to simply making their

error function a function of the total energies only. The SchNet architecture em-

ploys a convolutional neural network with radially sensitive convolutional filters

and short cut connections as well.

The creators of the SpookyNet method39 argue it is important to include

information not just pertaining to nuclear positions, such as symmetry functions

or atoms sending messages, but also to incorporate electronic information as part

of the input. As such as well using the Cartesian coordinates as inputs, they
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also include the spin state of the system and the number of electrons in the

system. By including these inputs they demonstrated better performance than

SchNet on the QM7 dataset.

An alternative approach to arbitrarily decomposing the energy within a ma-

chine learning method is to calculate energies for individual atoms and then fit

these independently. This was done by Fletcher and Popelier who calculated

per atom energies using a technique called interacting quantum atoms (IQA)40

in the development of the FFLUX force field41. An issue with this approach is

the large computational cost of running IQA calculations to generate the train-

ing data, which ultimately serves to limit the usefulness of such a technique to

smaller systems.42

An advantage of fitting forces is there is more information per structure

to work with. Whereas in most examples which fit energies there is only one

global energy which then has to be decomposed by the machine learning method,

there are 3N-6 independent forces. Methods such as GDML43 fit forces directly

because of this benefit and guarantee energy conservation in their fit. GDML

used a distance metric between coulomb matrices as its input, it was later

extended in sGDML44 to account for molecular symmetry by attempting to

find permutation matrices that transformed one input into another.

1.6 Notation used in this thesis

1.6.1 Neural network diagrams

Multiple neural network diagrams will be presented to illustrate the various

architectures employed in this work. In order to simplify these diagrams and

not show explicitly every neuron and every connection, a simpler approached is

used.

A layer of neurons or a series of layers will be represented by a solid, la-

belled rectangle. Multiple rectangles with the same label may be present in one

diagram which means the architecture is the same. However the weights are

different unless otherwise stated.

A circle labelled with a function represents a layer that applies that function

and has no optimizable weights.

A solid arrow represents fully connected when connecting between rectangles

(every neuron in one rectangle’s output connects to every neuron in the other

rectangle’s input).
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In B1 f(Inputs) B1 f(Inputs) B2 Out

Figure 1.9: An example of a neural network diagram, showing two identical
series of fully connected layers (B1) and a third block which is different (B2) as
well as two instances of some defined function f

1.7 Software versions

Although it is possible to implement a neural network from scratch, doing so

will be time consuming and likely yield worse performance compared to various

libraries that exist. As there are multitude of libraries one can use to implement

neural networks careful consideration must be given as to the best choice for

the problem to be solved. The library should be simple to use, allow for the

implementation of a wide range of architectures and optimize to a solution

quickly.

We believed using the Keras frontend to the Tensorflow library represented

the best choice for this. The Tensorflow library allows for the implementation of

diverse architectures including custom functions and the Keras frontend allows

this to be achieved in a only a few lines of code. This makes the implementation

of network architectures easy. The Tensorflow library also implements some of

the most (at the time of writing) up to date optimizers. Tensorflow is also

extremely well optimized and can seamlessly use GPUs to speed up training,

handling all the details of doing so internally.

A well maintained, powerful library Tensorflow represented one of the best

choices for a neural network library to implement the architectures we designed,

even if we could not easily implement algorithms such as cascade correlation.

All neural networks were implemented and run in keras version 2.2.4 with a

tensorflow backend version 1.14.0.

1.8 Datasets

Machine learning can require large datasets to generate good results. For

the purposes of this project we use the MD17 dataset43, using the positions

and forces for aspirin, toluene and malonaldehyde. Throughout this project
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we assumed that the forces provided within this dataset are noise free, how-

ever the version used was before the corrections issued to the dataset in 2020

(https://archive.materialscloud.org/record/2020.82). Whereas this may explain

the poor performance of our radial basis function fits presented in section 3.3,

neural networks are excellent at dealing with noisy data which is why they are

often employed in fields such as computer vision, voice recognition or many

other applications where data may contain significant noise.

Our reasoning for not using cross validation in our network fits presented in

section 3.2 is not valid. However given the similarity between the training error

and the test error for our fits using this dataset, it is reasonable to conclude

that over-fitting did not occur to a significant degree.

1.8.1 Atom numbering

In order to aid discussion we number the atoms in aspirin, toluene and malon-

aldehyde according to figure 1.10

(a) Aspirin numbers (b) toluene numbers

(c) malonaldehyde numbers

Figure 1.10: Numeric labelling scheme for aspirin toluene and malonaldehyde
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1.8.2 Training and test set creation

The data were split into training and test sets by first ordering each structure

by energy then evenly sampling aiming for 50k structures but never more and

placing these data into the training set. The remaining structures formed the

test set.

The dataset was created using molecular dynamics meaning minima and

points around them will be sampled more than higher energy structures. An

advantage of this is a molecular dynamics simulation will sample these points

more meaning it is important the machine learning method learns to fit these

the best as errors are cumulative in an MD simulation. However poor sampling

of other structures means there is a higher probability that when making pre-

dictions for them, the network will be extrapolating rather than interpolating.

1.9 Analysis techniques

To analyse the performance of our machine learning models we employ multiple

techniques which are discussed here.

1.9.1 S curves

When considering performance an average error such as the RMSE does not

yield the complete picture. A small average error with a large range of er-

rors may ultimately result in poor performance in the context of a molecular

dynamics simulation.

S curves present a simple method for seeing the percentage of points that

lie beneath a certain error. They are constructed by calculating the cumulative

histogram of errors presented as a percentage of the total number of points

within each bin versus the error given on a logarithmic scale. At any value of

error on the x axis the percentage of points that have that error or lower may

be read off the y axis.

Consider the example S curve presented in figure 1.11

Using figure 1.11 we can see that the percentage of points that have an error

below 1 kcal mol−1 Å−1 is approximately 35%.
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Figure 1.11: An example of an S curve, the x axis is a logarithmic scale

1.9.2 L1 plots

After creating a machine learning model to fit pairwise forces in chapter 3, it

is of interest to see which interactions were fitted better than others. As there

can be a large number of pairwise interactions in the system (as many as 210

in the case of aspirin), the construction of individual S curves for each pairwise

interaction would not be a sensible way of achieving this, instead we plot ”L1

plots”.

An L1 plot consists of the interaction number on the x axis and the percent-

age of points in the test data that have an error of less than 1 kcal mol−1 Å−1

for that interaction on the y axis. This plot can be quickly used to indicate

performance for the prediction of particular interactions and spot patterns in

performance for certain classes of interaction. For example consider figure 1.12,

we can that for interaction one’s predictions, approximately 75% of them have
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Figure 1.12: An example of an L1 plot

an error of less than 1 kcal mol−1 Å−1.
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1.9.3 Variograms

A variogram or semivariogram (the two terms are often used interchangeably)

is a description of spacial continuity of data and gives an indication of how well

the change in the value at a point in space correlates with the change in the

distance between points.

The variogram plot is γ(r) vs r where r is the distance between points and

γ(r) is given by equation 1.21

γ(r) =
1

2N

∑
i

j<i∑
j

(Zi − Zj) (1.21)

where Zi and Zj are the values at the two points separated by distance r

and N is the number of pairs of points which have a separation of this distance.

As data do not usually lie on a regular grid, γ(r) is calculated for bins of

distance to yield meaningful information on the plot. An example of a simple

variogram plot is given in figure 1.13.

Generally as the distance increases, so does the variability of values between

points separated by that distance (γ(r)), up until a value of r where no or little

correlation is observed between the value of γ(r) and r. The value of γ(r) this

is observed at is called the sill and the value of r at which the curve reaches the

sill gives us the range. At the range there there is no correlation between the

values of Zi and Zj , meaning a distance metric can only be a useful predictor

up until the value of the range.

A variogram fit should implicitly go through the origin of the plot as points

separated by a distance of zero should have a value of γ(r) of zero. However it is

possible for a discontinuity to occur which would suggest that the plot does not

go through the origin rather some other value on the y axis. This is called the

“Nugget effect”. The origin of the term comes from gold mining where samples

taken at small distances from each other may show very different concentrations

of gold because of the presence of gold nuggets causing a spike in the value of

γ(r) as the values of Zi and Zj will be very different over a short distance. The

nugget effect could also be caused by experimental error, which over an entire

dataset serves to cause a spike in γ(r) at small distances.

As our data consists entirely of deterministically computationally calculated

values, we will not consider the existence of a nugget effect in any of our analyses.

Figure 1.13 presents an idealistic view of what a variogram should look like

and in reality, the experimental variogram shows much greater fluctuation. In
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Figure 1.13: A simple example of a variogram plot with key features labelled

order to determine values for the sill, range and nugget the variogram is fitted

using standard functions, such as cubic, gaussian or a spherical model and these

key features are determined from the fit. As some of these models approach

the value of the sill asymptotically the ‘effective range’ is often quoted which

corresponds to the value of r at which 95% of the sill value has been observed.

When considering data on a 2D grid (for example mining data), it is possible

that the direction also influences the value obtained for the effective range. As

such it is common to plot variograms which consider points at a certain dis-

placement from one another. As our data is very high dimensional, significantly

limiting the number of points separated by a vector, when we plot variograms

we do not consider the directional dependence of the variogram.
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Chapter 2

Pairwise force

decomposition schemes

2.1 Introduction

We wish to improve the performance of molecular dynamics simulations by

creating a new force field generated by machine learning that predicts the forces

close to quantum accuracy but at a fraction of the time cost of existing methods.

Such a method would allow for simulations to be conducted in a similar time

frame as simulations run using force fields. However the simulations will have a

greater accuracy in the forces yielding an overall more accurate simulation. An

appropriate output must be constructed for the prediction of forces in order to

achieve this. We present a series of schemes here that all revolve around treating

forces as the sum of pairwise interactions and discuss the benefits of them.

An extra difficulty in force prediction, as opposed to predictions of the molec-

ular energy, is that the forces are vector quantities meaning they have a mag-

nitude and direction. Additionally the forces in a system must obey Newtons

third law - they must be equal and opposite (equations 2.1 and 2.2).

ϵtranslational =

N∑
A=1

FA = 0 (2.1)

ϵrotational =

N∑
A=1

(rA × FA) = 0 (2.2)

37



where rA = RA − Ro, RA is the Cartesian coordinates of atom A, FA is the

Cartesian force on atom A, N is the number of atoms in the system and R0 is

the rotational centre given by equation 2.3

Ro =
1

N

N∑
A=1

RA (2.3)

In order to reduce the challenge of predicting forces, a machine learning output

was proposed such that a machine learning model will only predict the mag-

nitude and that obedience to Newtons third law is accomplished implicitly in

the output. This is done by making predictions of the magnitude of the force

between pairs of atoms with the direction defined as lying along the vector that

connects them.

Obedience to Newton’s third law is accomplished by having one atom take

the positive of this predicted quantity and the other the negative, which can be

illustrated by the case where we have two atoms A and B as shown in figure

2.1.

A
fABfAB

B

Figure 2.1: Two atoms A and B interacting with force fAB which the machine
learning model would predict the magnitude of.

Another significant advantage of predicting the Cartesian forces via pre-

dictions of pairwise forces as opposed to direct predictions of the x, y and z

components, is the invariance of the value to predict to rotations of the system.

It must also be noted that if every pairwise interaction is to be predicted,
(
N
2

)
predictions are necessary as opposed to 3N − 6 Cartesian forces.

It is possible to construct a machine learning method that makes predictions

of these pairwise forces, combines them to obtain the Cartesian forces and then

evaluates the error in those to use in its optimization. This will be described

in section 2.6; however we believe the direct calculation of some pairwise forces

and fitting these conveys numerous advantages.

One advantage of calculating the pairwise forces as opposed to allowing a

machine learning method to predict them internally is that it allows us to po-

tentially construct different independent models for each pairwise interaction or

class of pairwise interaction. Another advantage is it allows us to run sanity

checks to see if the pairwise forces show trends we would expect to see (bond
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stretching/squeezing, dihedral angle rotations) rather than simply hoping a ma-

chine learning model learns such trends. Additionally the pairwise forces could

be calculated in such a manner that distant interactions have a force close to

zero and therefore can be ignored, helping to deal with the issue of having to

make
(
N
2

)
predictions.

2.2 The vanilla force decomposition scheme

What we call the vanilla scheme is a simple method for obtaining pairwise forces

from Cartesian forces. Let us consider a system containing 3 atoms shown in

figure 2.2.

A

C

B
fAB

fAC fBC

Figure 2.2: 3 atoms A, B and C with their pairwise forces fAB, fBC and fAC

In the absence of external influences, the Cartesian force on each atom may

be given as a sum of the projection of all the pairwise forces connected to it into

Cartesian space by the following equations:

FA = eABfAB + eACfAC

FB = −eABfAB + eBCfBC

FC = −eACfAC − eBCfBC

where FA FB and FC are the Cartesian forces on atom A,B and C respectively

and e is a normalized projection into Cartesian space which may be given by

equation 2.4:

eAB =
RB −RA

∥RB −RA∥
(2.4)

We now have a set of simultaneous equations which in matrix format may be

given by equation 2.5.

F = e · f (2.5)
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where F is a vector of length 3N of Cartesian forces, e is a matrix of dimensions

3N by
(
N
2

)
of projections and f is a vector of length

(
N
2

)
of pairwise interactions.

For the three atom system presented in figure 2.2 the matrix e is:

e =



exAB exAC 0

eyAB eyAC 0

ezAB ezAC 0

−exAB 0 exBC

−eyAB 0 eyBC

−ezAB 0 ezBC

0 −exAC −exBC

0 −eyAC −eyBC

0 −ezAC −ezBC


where the term exAB for example may be given by:

exAB =
Rx

A −Rx
B

∥RA −RB∥

where Rx
A is the x coordinate of atom A. For our three atom system the set of

simultaneous equations is an overdetermined system. However because of the

constraints on the forces arising from equations 2.1 and 2.2 there are only 3

unique forces that are linearly independent thus a unique solution exists.

The equations are solved using equation 2.6, as the matrix e is not square

the Moore-Penrose pseudo inverse is used to find values for e−1.

f = e−1F (2.6)

For systems which have 5 atoms or more the system of equations is un-

derdetermined and has an infinite number of solutions; however by using the

Moore-Penrose pseudo inverse to find the inverse of e when applying equation

2.6 we pick the solution that gives the smallest norm.

In the general case the vector f will consist of the lower triangle of an N by

N matrix of all pairwise interactions and will be
(
N
2

)
in length, e will be 3N

by
(
N
2

)
, the columns will correspond to the pairwise interactions in the vector f

whilst each of the N atoms will have three rows corresponding to the x, y and

z components of the force. The matrix e will have zeros in columns where the

atom on the corresponding row is not involved in the pairwise interaction, it

will be positive if the row number is the lower atom index for the two atoms
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interacting and negative if the row number is the higher of the two indices. The

Moore-Penrose pseudo inverse will be applied to the matrix e which will be

dotted with a vector created by flattening the matrix F into a vector of length

3N .

2.2.1 Analysis of the vanilla force decomposition scheme

The vanilla scheme does not take into consideration atomic masses or distances,

which are two important factors in determining the magnitude of an interaction

but is still able to produce rather intuitive pairwise forces. For the purposes of

this analysis the pairwise nuclear repulsion force (NRF) is used which is given

by equation 2.7 where qA and qB are the nuclear charges on atoms A and B

respectively.

NRFAB =
qAqB
r2AB

(2.7)

Let us begin by looking at the application of the vanilla scheme to the aspirin

training data presented in section 1.8. For this dataset we plot the pairwise

vanilla force against the pairwise nuclear repulsion force (Figure 2.3).

From figure 2.3 we are able to see multiple ‘bands’. These correspond to

different interactions and we decompose the plot to investigate some of these

separately in figure 2.4.
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Figure 2.3: The pairwise vanilla force vs the pairwise nuclear repulsion force for
aspirin.

From figure 2.4 we can see that the correlation between the decomposed

force and the nuclear repulsion force is greatest for the closer interactions with

double and single bonds showing good correlation whereas more distant ones

correlate less.

As for the 1-4 interaction shown in figure 2.4d it appears to have two separate

bands associated with it. Plotting the NRF versus the dihedral angle (figure

2.6) shows that there are two conformers. Though these conformers may be

distinguished by the NRF the relationship between NRF and the dihedral angle

is weak in this dataset. We repeat the numeric labelling scheme for aspirin in

figure 2.5 to aid identification of the different interactions being investigated.

A plot of the vanilla decomposed pairwise force versus the dihedral angle

yields no relationship 2.7.
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(a) Carbon oxygen single bond (atoms 7
and 13)

(b) Carbon oxygen double bond (atoms 8
and 11)

(c) Carbon oxygen 1 3 interaction (atoms
5 and 12)

(d) Carbon oxygen 1 4 interaction (atoms
1 and 10)

(e) Carbon oxygen non-bonding interaction
(atoms 4 and 11)

Figure 2.4: Pairwise force calculated using the vanilla decomposition method vs
Nuclear repulsion force for different carbon oxygen interactions in the aspirin
training data.

We also see a similar band structure for toluene and malonaldehyde shown in

figure 2.8 showing that the observed band structures are not unique to aspirin.

43



Figure 2.5: Aspirin numerical labelling scheme

Figure 2.6: Nuclear repulsion force versus dihedral angle in radians for 1-4
interaction (atoms 1 and 10) in aspirin.
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Figure 2.7: Vanilla decomposed force versus dihedral angle in radians for 1-4
interaction in aspirin (atoms 1 and 10)
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(a) malonaldehyde

(b) toluene

Figure 2.8: Pairwise force decomposed by the vanilla method versus the nuclear
repulsion force for toluene and malonaldehyde.
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For malonaldehyde shown in figure 2.8a the large band furthest to the right

at approximately 10000 kcal mol−1 Å−1 corresponds to the interactions between

O4 and C3 as well as the interaction between O5 and C1, which is expected as

these are double bonds between two heavy atoms and should give the highest

values for the nuclear repulsion force. The next band at approximately 5000

kcal mol−1 Å−1 corresponds to interactions between C1 and C2 as well as C3

and C2 - bonding interactions between carbon atoms.

As we move more to the left in figure 2.8a the peaks correspond to longer

range interactions between the heavier atoms, then interactions with the hydro-

gen atoms.

For toluene shown in figure 2.8b the band furthest to the right is far less well

defined owing to the numerous interactions that contribute to it, these interac-

tions are all the bonded interactions between the carbons in the aromatic ring.

The next band to the left of this one which partially merges with the first is the

interaction between C2 and C1. The remaining bands as with malonaldehyde

correspond to longer range interactions and interactions with hydrogen.

2.3 Biasing the decomposition scheme

2.3.1 Introduction

The vanilla decomposition provides a set of pairwise forces from the infinite num-

ber of possible solutions to the set of simultaneous equations given by equation

2.6. The solution calculated does not consider the distance between atoms or

even atom type.

Ideally the solution obtained would have larger forces for closer, heavier

atoms and smaller forces for distant, lighter atoms, generally as it is chemically

intuitive that closer heavier atoms interact more than distant light ones.

This would also allow us to define a sensible cut off that allows the number

of pairwise interactions to be reduced from
(
N
2

)
. Additionally it is desirable

to have larger forces on pairs of heavier atoms and smaller forces on pairs of

lighter atoms, as in an MD simulation, errors in the force prediction of light

atoms yield greater errors in the acceleration than for heavier atoms.

In order to achieve this we must select a different solution to the set of

simultaneous equations, which can be accomplished by changing the values of

e in equation 2.5.
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2.3.2 Method

We note in section 2.2.1 that the nuclear repulsion force is able to make reason-

able distinctions between distance and atom type and has large values for closer

heavier atoms and smaller values for lighter closer atoms. As such we use this

as our biasing function.

In order to bias the decomposition we multiply the values of e by the nu-

clear repulsion force for that interaction. We then obtain pairwise forces using

this adjusted matrix, using the pseudo inverse as in the vanilla scheme. These

obtained forces are then multiplied by the nuclear repulsion force in order to

obtain a set of forces which give the correct total force when recombined using

the equation 2.5 with an unbiased value of e.

This is done for the aspirin, toluene and malonaldehyde training sets.

2.4 Results and discussion

The NRF-biased pairwise forces follow a similar pattern as the vanilla scheme

for aspirin; however the magnitude of the forces is larger (figure 2.9). We see

similar patterns for the various interactions on the graph.

Our goal was to reduce the force magnitudes of interactions to lighter atoms,

as such in figure 2.10 we replot figure 2.3 and figure 2.9 taking into consideration

only interactions to hydrogen atoms. It can be seen in the plot that whereas

some interactions at smaller values of the nuclear repulsion force have a smaller

range of force values, others at higher values of nuclear repulsion force have a

larger range.

Although the total Cartesian force on each hydrogen atom is the same in

both the vanilla and the biased methods, it is hoped that if the pairwise inter-

actions between two hydrogen atoms are minimized, the fitting error for these

interactions will be smaller. This is desirable as an error in a pairwise prediction

for a carbon-hydrogen interaction will contribute to an error in the Cartesian

forces for a carbon atom and a hydrogen atom, whereas an error in the pairwise

force prediction for two hydrogen atoms will contribute to the total error in the

Cartesian forces for two hydrogen atoms, therefore having twice the impact on

the total error in the Cartesian forces of hydrogen atoms.

Looking at the biased decomposition for toluene and malonaldehyde we see

a similar pattern, a larger range of forces but still with visible band structures

(figure 2.11).
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Figure 2.9: Nuclear repulsion force versus the pairwise forces for aspirin decom-
posed using the biased decomposition scheme.
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(a) Vanilla decomposition

(b) biased decomposition

Figure 2.10: pairwise force for interactions to hydrogen in aspirin decomposed
by the vanilla (a) and biased (b) method versus the nuclear repulsion force
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(a) Malonaldehyde

(b) Toluene

Figure 2.11: pairwise forces decomposed using the biased decomposition scheme
for a) malonaldehyde and b) toluene versus the nuclear repulsion force
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2.5 Potential energy surface scans using DFT

2.5.1 Introduction

To further assess the continuity and behaviour of the decomposed forces we

use the Gaussian software package.45 We are able to stretch/compress bonds

or rotate angles whilst minimizing the rest of the structure and calculate the

forces i. This will allow us to see the effects of changing one internal coordinate

on the pairwise forces that are generated across multiple structures (a scan).

2.5.2 Method

Different scans were performed using Gaussian version 9 are summarised in

table 2.1. The forces were then extracted from the output files, converted into

Table 2.1: Gaussian scans performed for aspirin

scan type Atoms involved basis set functional # structures
C-C-C-O dihedral 1,6,8,10 6-31G(d) B3LYP 12

C-O bond 7,13 6-31G(d) UB3LYP 10
C=O bond 8,11 6-31G(d) UB3LYP 8

units of kcal mol−1 Å−1 then decomposed using either the vanilla decomposition

method or the biased vanilla decomposition method.

2.5.3 Results and discussion

Biasing the decomposition using the nuclear repulsion forces causes the pairwise

interactions to have large values. This can be seen in the case for a single and

double bond as well as the dihedral scan (figure 2.13) and is consistent with

the observations made when looking at the decomposed forces on the aspirin

dataset. We show the numerical labelling scheme for aspirin again in figure 2.12

to aid easy identification of the different interactions.

Although based on this observation one may quick to conclude the barrier

to rotation of the dihedral or the stiffness of the bond changes depending on

the biasing used, one must remember that the Cartesian forces are the same

for both the biased and the vanilla method even if the pairwise interactions are

different.

iGaussian scans conducted by Dr N. Burton.

52



Figure 2.12: Aspirin numerical labelling scheme

These scans show that chemically sensible patterns in the pairwise forces

may be seen when dihedrals are rotated and bonds are squeezed and stretched

and that they are continuous between structures. We even observe that in both

the biased and the vanilla decomposition cases the sensitivity to a change in

bond distance for a double bond is greater than that for a single bond.

The continuous nature in the forces likely arises from the fact that the same

criteria for a solution (the minimum norm) is employed for any given struc-

ture. This means that for a small change in the forces one would expect a

correspondingly small change in the pairwise force.
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(a) Scan of the C1,C6,C8,O10 dihedral (b) C7 O13 CO single bond

(c) C8 O11 CO double bond

Figure 2.13: Pairwise forces decomposed using the vanilla method (black) and
NRF biased (red) for the Gaussian scans plotted against a) the dihedral angle
C1,C6,C8,O10 in radians b) the bond length C7 O13 and c) C8 O11 bond length
for aspirin.
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2.6 Network decomposed pairwise forces

2.6.1 Introduction

When the forces are decomposed using either the vanilla or biased decomposi-

tion method a specific solution is used from the infinite number of solutions to

the set of simultaneous equations involving the pairwise forces. A solution is

determined for each structure individually with no consideration for other sim-

ilar conformers. Furthermore we are relying on a sensible choice of biasing in

order to yield forces which are easy to fit across multiple structures by a neural

network.

An alternative approach is to allow a neural network to decompose the forces

from Cartesian to pairwise forces internally. This may be achieved by creating a

neural network that makes predictions of pairwise forces for a structure, evalu-

ates the error based on the Cartesian forces and then uses it to adjust predictions

of pairwise forces.

The Keras library allows the use of ‘lambda layers’: these are layers con-

taining a custom function using Keras defined mathematical routines, such as

addition, subtraction, square root, et cetera. When using lambda layers, Keras

is able to find the first derivative of the function and back-propagate the error

in the same way it would do for a layer of neurons.

Unlike the vanilla or biased decomposition method which would allow for

pairwise forces to be predicted independently, this approach requires that all

pairwise interactions are fitted simultaneously.

The lambda layer was used to achieve our goal of predicting pairwise forces

by fitting Cartesian forces. We created a lambda layer that calculated the dot

product of the predicted pairwise forces and the matrix e in equation 2.5.

2.6.2 Method

A neural network with an architecture defined by figure 2.14 was constructed,

where NRF is the lower triangle of the nuclear repulsion force matrix, NN1 is

a series of fully connected layers ending with a layer of
(
N
2

)
neurons. y is the

network output from that layer which are the pairwise force predictions f.

In the evaluation of a training performance we use the mean squared error

(MSE) of the predictions of the Cartesian forces which is given by equation

2.8, where t is the target value y is the predicted value and n is the number of
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NRF NN1
y

e · y F

Figure 2.14: Scheme for generating network decomposed pairwise forces

samples, which for our tests will be the number of training samples multiplied

by the number of atoms multiplied by three (three Cartesian forces on each

atom over all the training data).

MSE =
1

n

n∑
i

(t− y)
2

(2.8)

For NN1 we used a hidden layer of 1000 neurons before the
(
N
2

)
neurons,

which were created using the Keras ‘dense’ function and had an activation of

relu and linear respectively. The network was trained for a total of 33 977 epochs

over a period of 14 days on the aspirin training data. A termination criterion

of 500 epochs without improvement was implemented. However after 14 days

it was observed that over the last 500 epochs the MSE had only improved by

0.0469 kcal mol−1 Å−1 and training was terminated. The final training RMSE

was 0.619 kcal mol−1 Å−1 and the test RMSE was 0.649 kcal mol−1 Å−1. The

network was trained using the Adam optimizer with the default parameters for

the version of keras employed.

We used the Keras library to obtain the output from the hidden layer that

predicted the pairwise forces and saved the network predictions for the aspirin

training data.

The trained network was then run on the structures from the Gaussian scans

introduced in section 2.5 by using the structures as inputs.

2.6.3 Results and discussion

The network decomposed forces for aspirin look very different to the vanilla

and biased vanilla decomposed forces (figure 2.15) showing a much clearer band

structure and a greater range of pairwise forces. This is possibly due to the fact

that unlike the vanilla and biased vanilla methods which are determined using

the pseudo inverse giving the solution with the minimum norm, the network

may pick any solution and the choice is informed by the other structures in the
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training data.

Figure 2.15: Nuclear repulsion force versus the network pairwise forces for as-
pirin.

We also see more of a relationship between the dihedral angle and the pair-

wise force compared with the other decomposition methods shown in figure 2.16.

The structures from the Gaussian scans show significantly larger errors for

the network predictions compared to the training data, these are summarised

in table 2.2. The error for the structures from the dihedral scan is much smaller

than for the bond stretches as during the course of an MD simulation one

would expect to sample this rotation quite well whereas large strains on bonding

interactions will be less well sampled. This means the training data - constructed

using MD will contain many examples of this rotation but very few (if any) of

the bond stretches, which means the network’s ability to fit those stretches well

is likely poor, especially given the nature of the scans where one interaction is

manipulated whilst the others minimized - something unlikely to be observed

in the course of an MD simulation.

The predictions for the structures obtained from the Gaussian scans are

quite different for the network decomposition (figure 2.18). First the magnitude
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Figure 2.16: dihedral angle 1,6,8,10 in radians versus the network decomposed
pairwise forces for aspirin.

Table 2.2: RMSE for network predictions of gaussian scans

Interaction Error (RMSE mol−1 Å−1)
C8-O11 double bond 6.99
C7-O13 single bond 3.40

C1,C6,C8,O10 dihedral 0.249

of the forces are much larger for the single and double bonds; however this was

expected given figure 2.15. We again show the numerical labelling scheme for

aspirin to allow for easy identification of the different interactions in figure 2.17.
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Figure 2.17: Aspirin numerical labelling scheme

Unlike the vanilla and the biased methods which implicitly guarantee that

when the forces acting on all the atoms are zero (equilibrium position), the

decomposed forces are also zero, no such guarantee is offered by the neural

network and we see in figure 2.18 that the pairwise forces are large even when

the structure is at an equilibrium position (these forces will still cancel out to

an overall small error in the prediction of the Cartesian forces).
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(a) C1,C6,C8,O10 dihedral (b) C7 O13 CO single bond

(c) C8 O11 CO double bond

Figure 2.18: Pairwise forces decomposed using the neural network for the Gaus-
sian scan structures for a) the dihedral scan structures versus the dihedral angle
in radians b) the C7 O13 single bond scan structures versus the bond length c)
the C8 O11 CO double bond scan structures versus the bond length
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2.7 Conclusions

As forces are a vector quantity and it is important that Newton’s 3rd law is

obeyed, we constructed a scheme which allows Cartesian forces to be simply

broken down into pairwise interactions, allowing for predictions of forces which

implicitly guarantee a rotational and translational sum of the forces to zero.

We showed that this scheme can be biased in order to increase the force on

some interactions whilst decreasing it on others and we opted to bias it using

the nuclear repulsion force, which will bias it dependent on atomic mass and

distance. When this bias was applied we successfully showed that the magnitude

of the hydrogen - hydrogen interactions was reduced.

Finally we showed that the decomposition can be incorporated into a ma-

chine learning routine which will make predictions of pairwise forces based on

patterns it learns from the training data. We note that sensible trends such as

having an overall force of zero does not implicitly guarantee that all the pairwise

forces are also zero as it does for the vanilla scheme.

Further work could include investigating different biasing schemes and their

effects on the calculated pairwise forces. Additionally work could be conducted

to find a suitable scheme for reducing the
(
N
2

)
interactions down to a smaller

number.

We now have an appropriate output scheme for a machine learning model

with good features as described and the next step is to attempt to fit the pairwise

forces in our training sets and then use the models to evaluate the errors in the

predictions of the test sets.
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Chapter 3

Prediction of the pairwise

forces

3.1 Introduction

In chapter 2 we introduced a method for creating an appropriate machine learn-

ing output for predicting Cartesian forces which implicitly guarantees obedience

to Newton’s third law. Now we attempt to fit these pairwise forces using ma-

chine learning so that the forces on new structures may be predicted which may

be utilized in an MD simulation.

Two main considerations now are the input to the machine learning method,

and the nature of the machine learning method. As for the input we choose to

use the elements of the lower triangle of the N by N nuclear repulsion force

matrix where each element is given by equation 2.7.

This is an appropriate choice of input as it is complete, meaning every pos-

sible structure is uniquely defined, it does not require too much computation to

generate and has relatively low dimensionality. Also the nuclear repulsion force

is a component of the total force and as we saw in chapter 2, it correlates quite

well with some pairwise interactions.

Symmetry functions that described the environment around a pair of atoms

were considered to generate inputs but multiple issues were encountered with

this input scheme. First the number of symmetry functions to adequately de-

scribe the environment around a pair including angle and dihedral angle in-

formation proved quite large, making these a notionally inconvenient method.
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The next issue is symmetry functions do not necessarily represent a complete

input as there is not necessarily a one-to-one mapping between structure and

set of symmetry functions. They are also potentially not a heuristically pow-

erful method as there may not be a good correlation between the symmetry

function values for an interaction and the force, therefore determining if a ma-

chine learning fit was performing poorly because of these factors or other ones

is rather difficult to achieve. As such this input idea was abandoned and our

focus instead was on improving the machine learning method to obtain the best

fit possible.

For the machine learning method we first consider a deep neural network

taking inspiration from more recent advances in image recognition namely the

use of defined repeatable blocks and the use of shortcut connections.

3.2 Using neural networks to fit the pairwise

forces

3.2.1 Introduction

We develop a series of neural networks for the prediction of pairwise forces,

which we refer to as “pairwise force networks” (PFN).

The choice of network architecture is very important in determining the

performance of a neural network. In recent years the addition of short cut

connections between layers has enabled a significant increase in performance in

tasks such as image recognition yielding a new class of neural networks called

residual neural networks, called as such as each layer needs only to learn a

small transformation of the inputs as any information not captured by a layer

is still passed on to the next one, unlike standard neural networks where this

information is lost.

Additionally in order to reduce the problem of architecture optimization and

prevent tailoring of the architecture to a very specific problem, repeating blocks

are often defined which are used to construct the overall architecture, we do

the same using a standard block of 1000 fully connected neurons connected to

a layer of
(
N
2

)
neurons in all our networks which will henceforth be referred to

as the standard block.

We also combine this idea of residual connections with the idea of building

up the architecture during training drawing some inspiration from cascade cor-
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relation neural networks23. This partially removes the need to decide upon an

architecture before beginning training. We start with a single standard block

and optimize it until a termination criterion is met, then freeze the weights of

this block, add another standard block as well as any shortcut connections, op-

timize the weights for that block before freezing them and repeating the process

to build up an architecture of arbitrary size. We refer to this training scheme

as “greedy blockwise training”. Networks that utilize the standard block with

this method of training are referred to as the PFN3 series, which consists of

PFN3a,PFN3b etc.

In greedy blockwise training we begin with a single block training until a

termination criterion is met (Figure 3.1)

NRF S1 f

Figure 3.1: Step 1: train a single block until termination to predict the pairwise
forces f

After the termination criterion is met, the weights in the block ‘S1’ are frozen

(are treated as constants and cannot be changed) to give the block ‘S1*’. The

output of this block is combined with the inputs by some function ‘f ’ and used

as the input to another S1 block, which is then trained until the termination

criterion is met (Figure 3.2)

NRF S1*
y1

f(NRF,y1) S1 f

Figure 3.2: Step 2 combine the inputs with the output of the previously trained
block (y1), add another block and train until termination

After the new S1 block has been trained the same process is repeated again,

the weights are frozen to give S1*, the outputs combined with the inputs using

the function f and another block is added which is trained until termination

(Figure 3.3)
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NRF S1*
y1

f(NRF,y1) S1*
y2

f(NRF,y2) S1 f

Figure 3.3: Step 3 combine the inputs with the output of the previously trained
block y2, add another block and train until termination

We also train neural networks that use the standard block but have a fixed

architecture, which will be referred to as standard training. Networks that are

in this class will be referred to as the PFN2 series.

Finally we train networks with just a single block to act as a benchmark for

comparison with the other networks and we call these the PFN1 series.

For most networks the pairwise force is used as an output, we also try fitting

the pairwise force minus the pairwise nuclear repulsion force to see if this yields

any improvement on the fit. We believed this may be the case as the nuclear

repulsion force is a component in the total DFT force, and by fitting the pairwise

forces minus the nuclear repulsion forces we will have a simpler problem to solve.

3.2.2 Method

As we are fitting the pairwise forces we use the mean squared error (equation

2.8) for predictions of the pairwise forces not the Cartesian forces as done in

section 2.6. We use the Adam optimizer with the default parameters for the

version of Keras used.

The different inputs and outputs for each architecture are summarised in

table 3.1

Table 3.1: Different networks and their parameters

network ID Input Output Training method number of blocks
PFN3a NRF f -NRF greedy block wise 1
PFN2a NRF f -NRF fixed block number 2
PFN1a NRF f fixed block number 1
PFN3b NRF f greedy block wise 5
PFN1b NRF f fixed block number 1
PFN2b NRF f fixed block number 4
PFN2c NRF f fixed block number 6

The training and architectural details of all the networks trained are as
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follows.

PFN3ao

PFN3ao used relu functions for the first layer of 1000 neurons in the standard

block and linear functions in the second layer. It was optimized using a 500

epoch with no improvement termination criterion for each of the blocks added

to the network. Training was terminated when additional blocks did not cause

a reduction in the overall error. The combining function (f(NRF,y)) used in

the residual connections was addition. The inputs were the nuclear repulsion

forces and the outputs the vanilla decomposed pairwise forces.

Training was terminated after the addition of 18 blocks as the rate of im-

provement in the MSE was too slow to ensure it was worthwhile continuing

training.

PFN3a,PFN3b

These networks used sigmoid activations in both layers of the standard block

(equation 3.1).

y =
1

1 + e−x
(3.1)

As a consequence of this these networks can only predict an output between 0

and 1. PFN3b fitted the target values t of t = f
2×max (|f|) + 0.5 as its output

where max (|f|) is the largest pairwise force in the training data, meaning the

outputs would range between 0 and 1 where 0 to 0.5 would represent negative

numbers and 0.5 to 1 would represent positive numbers.

PFN3a fitted the aspiring training data where its target value t was defined

by t = (f−NRF)−max(f−NRF)
max(|f|) meaning all predictions were for negative values

only. This was done as the range went from 30.3 to -12,937.8 kcal mol−1 Å−1,

meaning having 0.5 to 1.0 represent positive numbers did not seem sensible.

The training algorithm for these networks may be summarised by algorithm

3.1.

PFN2a,PFN2b,PFN2c

As these networks used a fixed architecture consisting of multiple layers, the

vanishing gradient problem becomes important. As such these networks use

RELU functions in all the blocks except the final layer of the final block which
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Algorithm 3.1 PFN3 series training algorithm

get starttime
load coords,pairforces,atomtypes
reshape coords ← [# samples][# atoms][3]
reshape pairforces ← [# samples][

(
#atoms

2

)
]

5: declare NRFinputs shape ← [# samples][
(
#atoms

2

)
]

counter ← 0
loop i← 1 : #atoms

loop j ← 0 : i
NRFinputs[all][counter]← calcNRF(coords[all][i], coords[all][j],

atomtypes[i], atomtypes[j])
10: counter ← counter + 1

end loop
end loop
NRFinputs← NRFinputs/max(NRFinputs)
pairforces← Scale pairforces

15: mc← Keras checkpoint, save best to filename “best model”
es← Keras early stopping, check loss, patience 500 epochs
besterror ← 1000
maxdepth← 6
network ← 1 input block

20: loop i← 0 : maxdepth
if i > 0 then

add shortcut connections
end if
network ← add block

25: print network summary
network ← keras train net(maxepochs = 100k,callbacks = mc, es)
if evaluate(network)> besterror then

besterror ← evaluate(network)
save network filename “best ever model”

30: end if
if endsignal or time− starttime >6 days then

end program
end if
network ← freezeweights(network)

35: end loop
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uses sigmoid functions, serving to limit the output between 0 and 1 as with the

other networks.

PFN1a,PFN1b

PFN1a and PFN1b are the simplest networks constructed and consisted of a

single block. Both networks predicted the decomposed force f, PFN1a used the

standard block whereas PFN1b had 5000 neurons in the first layer instead of

1000.

Verification of the network architecture

The keras library provides a simple method for the analysis of the network

architecture in the form of the model.summary method. This provides a table of

network layers, their connections and the number of trainable and none trainable

parameters. The number of weights was checked as were the connections using

this method for the various networks. When training using the greedy blockwise

method a summary was printed after the addition of each block.

PM6 calculations

To help assess the quality of the network fit we also calculate the PM66 forces for

each structure in the aspirin training data using the Gaussian software pack-

age with a key word of “force” and then decompose these using the vanilla

decomposition scheme.

3.2.3 Results and Discussion

Network training

A training curve shows how the error of network predictions of the training data

changes as a function of the number of training epochs. For our plots we use

the RMSE for this error. Generally this is a smooth curve which asymptotically

approaches the final training error, for example the training curve for PFN2b

(Figure 3.4) which shows an error of just under 2 kcal mol−1 Å−1 after 80,000

epochs.. Note although the error is technically still improving when training

is terminated the rate of improvement is small enough to justify terminating

training.
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Figure 3.4: Training curve for network PFN2b

The training curve for the PFN3 series is rather different because of the

greedy blockwise training regime. For example consider the training curve for

network PFN3b fitting the aspirin dataset (Figure 3.5).

Multiple sharp spikes are observed which correspond to the addition of new

blocks and are caused by the random nature of the weights which now determine

the output of the network. Shortly after the addition of the block we notice a

rapid decrease in the error. This likely occurs as the previous error may be

attained by simply predicting the output of the previous block, which is used

as an input, exactly.

The addition of a new block causes the error to not only match the previous

error but improve upon it rapidly. This is most noticeable after the addition of

the second block at around 1e+05 epochs and subsequent blocks give diminish-

ing returns and overall we asymptotically approach the final error in the same

way a fixed architecture would.

These observations lend credence to the idea that sequential blocks are cap-

turing the information of the previous blocks and learning an improvement to

the function constructed. Looking at the performance of the networks show

that this method of learning produces superior results.
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Figure 3.5: Training curve for network PFN3b for the aspirin training data.

Network performance

Our first network in the series, PFN3ao seemed to show poor performance for

the aspirin dataset on average attaining an MSE of 5.70 kcal mol−1Å−1. The

S curve for this network is shown in figure 3.6 and shows the predictions are

of comparable accuracy to the PM6 predictions for the training data. Whereas

the network predicts 45% of points in the test data to an RMSE below 1 kcal

mol−1Å−1, there are a small number of points that have very high errors, the

largest being over 2000 kcal mol−1Å−1, this serves to make the average error

appear larger. Should a force be predicted with an error that high for even one

frame in a molecular dynamics simulation the result would be catastrophic.

The ability to make such large predictions is of a consequence of the use

of relu and linear functions which do not have a limit on the range of values

they can predict. This in combination with the use of an addition function to

combine a blocks output and shortcut connection allows for inputs to get larger

from one layer to the next potentially exacerbating the issue. Consequently all

future networks used concatenation where the block outputs and the net inputs

are simply joined to give a new input of length 2 ×
(
N
2

)
as their method of
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Figure 3.6: S curve for PFN3ao, showing the the error in the pairwise training
predictions (dashed line), the test predictions (solid black) and the S curve for
the PM6 training predictions (red) for the aspirin dataset.

combining the network outputs rather than addition. This ensures that there is

no build up of value between layers.

As the data we fit was assumed to be inherently noise free being acquired

from deterministic calculations, we reasoned that ideally every point should be

fitted exactly. However unlike methods such as fitting radial basis functions we

do not implicitly guarantee this with a neural network. Because of this assumed

noise free nature of the data being fitted, we opted not to use any sort of cross

validation to terminate training early. We do however note that as the training

and test errors for our models are fairly similar over-fitting likely did not occur

to a significant degree.

The performance of the networks in the series that followed PFN3ao for

predictions of the Cartesian forces in the aspirin test set is summarised in table

3.2. The mean absolute error (MAE) and RMSE for the magnitude of the

force is also given in this table by considering ||Fp|| − ||Fa||, where Fp are the

predicted Cartesian forces and Fa are the actual Cartesian forces of an atom to

yield a vector of length equal to the number of test set samples multiplied by
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the number of atoms. The angular MAE is also presented which is calulated by

considering arccos
(

Fp

||Fp || ·
Fa

||Fa ||

)
for each atom. These metrics are presented

as they were included in the analysis of the GDML method43.
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In the series of networks that followed after PFN3ao we note that PFN3a

performs particularly poorly achieving an MAE of 5.51 kcal mol−1 Å−1. Train-

ing terminated after only the addition of a single block and the network being

too small was suspected as a reason for the poor performance. PFN2a, consist-

ing of two blocks and a fixed architecture did show some improvement attaining

an MAE of 4.83 kcal mol−1 Å−1. However network PFN1a, which had only a

single block but fit the value of f and not f −NRF improved significantly on

both of these networks attaining an MAE of 1.91 kcal mol−1 Å−1. This would

suggest the issue lies with the output scheme of using f − NRF rather than

the architecture as PFN1a was a much simpler network yet improved on the

performance.

The assumption that the values of the NRF form a component of the to-

tal force value and therefore subtracting the pairwise NRF from the pairwise

decomposed force would yield a better fit is incorrect. This is because of the

nature of the pairwise forces, which are not necessarily physically meaningful.

This can be illustrated by calculating the total Cartesian nuclear repulsion force

on each atom which is the sum of the pairwise terms given by equation 3.2),

then decomposing these using the vanilla scheme, then plotting this against the

calculated pairwise forces given by equation 2.7 (Figure 3.7).

FNRF
A =

N∑
i,A ̸=i

qiqA
|RA −Ri|2

(3.2)

From Figure 3.7 we are able to see a poor correlation between the decom-

posed NRF and the calculated NRF. This even holds true for the biased de-

composition scheme, where even though a greater correlation is observed, the

decomposition does not yield the exact pairwise terms Figure 3.8.

We conclude that subtracting out the values of the nuclear repulsion forces

from the pairwise forces yields, represents an arbitrary change to the output

and actually makes the problem more difficult to fit, not less. All the networks

in the rest of the series therefore fitted the value of f.

We repeated PFN3a but outputting the value of f instead and we note a

significant improvement on the error obtained compared with PFN3a as well

as an increase in the number of blocks added before training termination. The

S curve for network PFN3b also shows significant improvement from PFN3a

(Figure 3.9) predicting 68.8% of test points to an error below 1 kcal mol−1 Å−1.
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Figure 3.7: The decomposed total atomic NRF using equation 3.2 into pair-
wise forces using the vanilla scheme versus the calculated pairwise NRF using
equation 2.7

Although the MAE for network PFN1a (1.91 kcal mol−1 Å−1) and PFN3b

(1.72 kcal mol−1 Å−1) is comparable, plotting the S curves for the test error on

the same graph shows that PFN3b had higher percentages of points below low

errors (Figure 3.10) as PFN1a only predicted 48% of points to an accuracy of

1 kcal mol−1 Å−1. This may be due to the ‘herd effect’ described by Fahlman

and Lebiere23.

The herd effect is a consequence of neurons training independently from

one another in a neural network which may cause them to all be sensitive to

certain regions of inputs at the expense of others. Essentially as the network

is optimized the neurons will try to be more sensitive to regions of high error

changing their weights accordingly, this will cause new regions of high error to

appear which the neurons will then try be sensitive to and so on. Consequently

whereas some regions will be fitted well, this will be done at the expense of

others. With PFN3b the weights of previous layers are fixed meaning that

those layers will never change the regions they are sensitive to and thus produce
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Figure 3.8: The biased decomposed pairwise NRF versus the calculated NRF

an overall better fit. By freezing weights of some neurons during training (as we

do for PFN3b after a block has been trained) the herd effect can be effectively

mitigated.

In order to compare our greedy block-wise scheme to networks with fixed

architectures we constructed networks PFN2a and PFN2b. Whilst this isn’t

an exact comparison as the activation function is different in the hidden layers,

without this change we would expect poor performance. PFN3b outperformed

both of these networks showing our training scheme has merit.

We also constructed PFN1b to show that increasing the number of neurons

in the standard block does not have a large impact on the performance we

attain, comparing PFN1b to PFN1a shows this is the case.

The better performance of PFN3b compared with the other networks can

be seen clearly in the values of L1 (Table 3.3) where the L1 value is calculated

using equation 3.3
#(
√
(fp − fa)2 ≤ 1)

#f
× 100 (3.3)

where the value of #f is the number of pairwise interactions in a structure

multiplied by the number of structures in the set. PFN3b attains an L1 value of
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Figure 3.9: S curve for PFN3b, showing the the error in the pairwise training
predictions (dashed line), the test predictions (solid black) and the S curve for
the PM6 training predictions (red) for the aspirin dataset.

68.8% significantly higher than PFN1a and PFN1b which achieved an L1 value

of 48.0% and 49.0% respectively, this is still an improvement on PFN3a which

only achieved a value of 25.8%. The increased performance of PFN3b over the

Table 3.3: The values of L1 for the different networks

network name L1 test (L1 train)
PFN3a 25.8 (26.0)
PFN2a 31.0 (32.0)
PFN1a 48.0 (49.5)
PFN3b 68.8 (76.7)
PFN1b 49.0 (51.2)
PFN2b 45.2 (46.3)
PFN2c 37.6 (38.2)

fixed architectures in the PFN2 series is possibly due to PFN3b mitigating the

herd effect.

Given the better performance of PFN3b compared with the other networks

we use this network to fit both malonaldehyde and toluene, the results for the 3
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Figure 3.10: S curve for test error of PFN1a (black) and PFN3b (red) for
predictions of the aspirin test set.

molecules are summarised in table 3.4. The S curves also show a similar profile

Figure 3.11.
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(a) malonaldehyde

(b) toluene

Figure 3.11: S curves for the pairwise predictions of the test set (solid line) and
training predictions (dashed line) by network PFN3b for malonaldehyde (a) and
toluene (b).
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The s curve for the training predictions and the test predictions are very

similar for these two datasets, especially for malonaldehyde. This indicates that

the training data and the test data contain very similar structures which is not

unexpected given toluene has little flexibility and malonaldehyde has only a few

degrees of freedom when compared with aspirin.

Table 3.4: The performance of network PFN3b fitting the aspirin, toluene and
malonaldehyde datasets.

Molecule aspirin malonaldehyde toluene
Total MAE 1.72 0.54 1.25
Toal RMSE 2.39 0.72 1.71

Magnitude MAE 1.96 0.58 1.44
Magnitude RMSE 2.8 0.77 1.97

Angle MAE 0.0268 0.0099 0.0200
Angle RMSE 0.0402 0.0147 0.0300

L1 test (L1 train) 68.8 (76.7) 87.9 (90.8) 58.4 (65.8)

We next consider which pairwise interactions are predicted well and which

are poorly for aspirin. This is important as it can serve to highlight types of

interactions our method performs poorly on. As mentioned in chapter 2 it is

more important to ensure that pairwise interactions involving light atoms such

as hydrogen atoms are predicted to a higher level of accuracy as errors in these

will have a larger impact on the simulation. We calculate the L1 values for each

pairwise interaction independently then plot them for network PFN3b (Figure

3.12).

We note there are several areas of poorer performance which appear to be

common to the other networks for example the PFN2 series (Figure 3.13). We

combine the L1 graphs for these networks into a single graph to better illustrate

the similarity in the profile in figure 3.14.

One region of higher error runs from approximately interaction number 150

until 209, which corresponds to interactions between H18 and H17 and H18

with H16 as well as interactions to the methyl hydrogen atoms in aspirin. As

for those interactions with H18 no adequate explanation can be offered, an

investigation did note no correlation between the NRF of these interactions and

the decomposed force.

For the interactions with the methyl hydrogens the poor performance may

be attributed to the input scheme not capturing permutational invariance. This

means if the methyl group was rotated to a chemically equivalent position the
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Figure 3.12: The L1 value for the different interactions in aspirin predicted
by PFN3b. Interactions 0 to 35 correspond to carbon-carbon interactions. 36
to 77 correspond to oxygen-oxygen and oxygen-carbon interactions and 78-209
correspond to all interactions to hydrogen atoms.
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(a) PFN2a (b) PFN2b

(c) PFN2c

Figure 3.13: L1 plots for the PFN2 series for (a) PFN2a, (b) PFN2b and
(c) PFN2c predicting the aspirin test data.Interactions 0 to 35 correspond to
carbon-carbon interactions. 36 to 77 correspond to oxygen-oxygen and oxygen-
carbon interactions and 78-209 correspond to all interactions to hydrogen atoms.

labels on each hydrogen atom will not update accordingly. This, combined with

the flexibility on the methyl group presents an increased challenge to fitting.

To ensure a good fit the dataset would have to include training points along a

full 360◦ rotation of this group, instead of 109.5◦ if the labels were updated to

account for permutational invariance.

Another common region of poor performance is interactions 36 to 65 which

correspond to interactions with the oxygen atoms 10,11 and 12. Perhaps these

are modelled less accurately as the behaviour of oxygen atoms is more compli-

cated due to the presence of lone pairs compared with carbon and hydrogen

atoms.

We also note in the L1 plot that symmetrical interactions show repeating

patterns in the L1 plot showing equal difficulty in predicting these interactions.

For example consider interactions to the methyl hydrogens in aspirin, the accu-
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Figure 3.14: The L1 value for the different interactions in aspirin predicted by
PFN2a (black), PFN2b (red) and PFN2c (blue). Interactions 0 to 35 corre-
spond to carbon-carbon interactions. 36 to 77 correspond to oxygen-oxygen
and oxygen-carbon interactions and 78-209 correspond to all interactions to
hydrogen atoms.
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racy of the predictions for each of these shows a very similar pattern which can

be seen in figure 3.15.

Figure 3.15: L1 values for H19 (black), H20 (red) and H21 (blue) interact-
ing with the other 18 atoms in the aspirin test set as predicted by PFN3b
(interactions between these hydrogens are excluded). The interaction number
corresponds to the atom number minus 1, for example interaction 0 corresponds
to the interaction to C1.

Figure 3.15 could indicate that some environments of the methyl hydrogens

are harder to fit than others for certain interactions, for example the interactions

with C7 show significant difference between the hydrogens. Figure 3.16 which

shows that the methyl hydrogens are sampled with different frequencies for the

dihedral angle (methyl hydrogen, C5 C9 O13), meaning they are in different

environments with different frequencies, this supports the theory that some

environments are harder to fit than others, had the sampling been even we

would have expected similar performance.

Applying PFN3b to the biased decomposed forces for aspirin we obtain a

rather different result. The S curve is significantly shallower suggesting a greater

range in errors, likely caused by the extra complexity of fitting certain interac-

tions figure 3.17.

The L1 plot (Figure 3.18) looks very different to that for pairwise forces
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Figure 3.16: histogram frequency of values of dihedral angle (HX C5 C9 O13)
where HX is H19 (black), H20 (red) and H21 (blue) in the aspirin training data

generated using the vanilla method (Figure 3.9) and confirms the previous con-

clusion that some interactions have been made easier to fit whereas others have

become considerably harder as a consequence of biasing the force decomposition

scheme.
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Figure 3.17: S curve for errors in the predictions of pairwise forces for the biased
decomposed forces predicted for the aspirin test set by PFN3b (solid black line)
the training set (dashed black line) and PM6 predictions decomposed using the
vanilla method compared with aspirin training set vanilla decomposed forces
(red line)
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Figure 3.18: L1 plot for predictions of pairwise forces decomposed using the
biased method for aspirin fitted by PFN3b
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We compare PFN3b for aspirin with the network decomposed forces pre-

sented in section 2.6 for predictions of the test set. As there are no reference

decomposed forces to compare to for the network decomposed forces we instead

construct an S curve for the total Cartesian force (Figure 3.19).

We notice a very similar performance between the PFN3b fitting the biased

decomposed forces and PFN3b fitting the vanilla decomposed forces when the

error is evaluated for the total force. This suggests that biasing the decompo-

sition scheme serves only to impact the total error minimally (Table 3.5). The

total MAE for PFN3b fitting the vanilla forces was 1.72 kcal mol−1 Å−1

Figure 3.19: S curve for total forces for the network decomposed forces (black)
and PFN3b (red)

It can be seen in figure 3.19 that the network decomposed forces appear to

significantly outperform PFN3b, this is likely due to the flexibility of the former

to select the pairwise forces allowing it to produce a better fit. We also compare

the performance of the two networks in table 3.5.

Although one could conclude from this that decomposing the forces inter-

nally within the network yields the best performance, it is important to consider

how well the simulation runs, which will be discussed in chapter 4.

In order to prove the reproducibility of our fits we reran PFN3b for aspirin
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and obtained an RMSE of 2.46 kcal mol−1 Å−1 for the test data which is

very similar to the RMSE obtained for the first run of 2.39 kcal mol−1 Å−1.

Whereas it may be initially surprising that a neural network with millions of

parameters to optimize fitting high dimensional data fitted using a stochastic

process yields such similar results. This is consistent with the conclusions of the

work conducted by Choromanska et al. who showed that for neural networks

with large numbers of parameters the error surface consists of many local minima

with similar errors, meaning we would expect the network to optimize to similar

errors.46
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3.3 Radial basis function fits

3.3.1 Introduction

In this section we attempt to use radial basis function (RBF) interpolation to fit

the decomposed forces. We construct a different model for each of the pairwise

forces and predict them independently of one another. We use the same input

as the neural networks, the pairwise nuclear repulsion forces.

Radial basis function interpolation is conducted by first constructing an Npts

by Npts matrix where Npts is the number of training points and each element

is a function g of the distance r between the training points. In our example

the distance between training points is the euclidean distance between their

respective nuclear repulsion forces input.

This matrix is dotted by a vector of weights w of length Npts to give a vector

of predictions of f of equal length, with 1 value per training point. Consider the

case of the pairwise interaction between atoms A and B, we would construct

equation 3.4

0 gAB(r1,2) gAB(r1,3) · · · gAB(r1,N )

gAB(r2,1) 0 gAB(r2,3) · · · gAB(r2,N )

gAB(r3,1) gAB(r3,2) 0 · · · gAB(r3,N )
...

...
...

. . .
...

gAB(rN,1) gAB(rN,2) gAB(rN,3) · · · 0





wAB
1

wAB
2

wAB
3

...

wAB
N


=



fAB
1

fAB
2

fAB
3

...

fAB
N


(3.4)

and solve for wAB .

As the matrix of functions of distance is square, the solution to the set of

simultaneous equations presented in 3.4 can be found using the inverse of this

matrix to obtain a vector of weights wAB . Once this is achieved this vector of

weights may be applied to a new structure to yield predictions for that structure.

This is achieved by taking a new structure (m) and finding its distances to

each training structure, applying the function of this distance g and taking the

dot product with the weights, (see equation 3.5).
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fAB
prediction =



gAB(r1,m)

gAB(r2,m)

gAB(r3,m)
...

gAB(rN,m)





wAB
1

wAB
2

wAB
3

...

wAB
N


(3.5)

Unlike neural networks, RBF interpolation implicitly guarantees that the

function fits every training point exactly, assuming that for any training point

the measurement is exact, this would have been a desirable quality if the data

we are fitting was actually noise free. It is also a deterministic method, meaning

the same solution will be obtained every time it is run and the end point of the

optimization is well defined.

Neural networks are a function of the entire input. RBF interpolation is a

function of some distance metric between the different input structures. This

is problematic as input design becomes more important as the distance met-

ric must correlate well with the output in order to obtain useful predictions

away from training points. RBF interpolation guarantees a continuous fit if the

function g is continuous, neural networks can offer the same guarantee in the

case where all neurons use a continuous activation function (such as a sigmoid

function).

For our approach, the distance between structures is calculated as the Eu-

clidean distance between the nuclear repulsion force inputs given by equation

3.6.

g(rij) = ||NRFi −NRFj || (3.6)

For the function we begin by using the cube of this distance (method RBF1).

This was selected for multiple reasons, first one does not need to worry about

selecting appropriate parameters for the width as you would with a Gaussian

function. Secondly as one moves away from the training points the output of

the function becomes larger which may serve to move the simulation towards

these points and help prevent extrapolation.

We also applied a Gaussian function as the radial basis function to the

previously mentioned distance metric, called RBF2. In order to avoid the ‘bed

of nails’ interpolant where there is a small region of sensitivity near training

points and values of zero everywhere else, it was important to ensure there was

sufficient overlap between Gaussian functions.
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3.3.2 Method

We constructed a radial basis function interpolation program using python’s

numpy libraries numpy.solve method to calculate the weights. The script was

run in parallel for every pairwise interaction. The nuclear repulsion force inputs

were identical for each run so were calculated prior to fitting each model. The

resulting weights were then used to make predictions for the test sets.

The algorithm used for conducting an RBF fit for a particular interaction is

given by algorithm 3.2

Algorithm 3.2 RBF fitting

load NRFinputs shape ← [# samples][
(
#atoms

2

)
]

get jobnum from terminal input
load pairforces[jobnum] shape ← [# samples]
Declare distmat shape ← [# samples][# samples]

5: loop i← 0 : #samples
loop j ← 0 : #samples

distmat[i][j]← f(||NRFinputs[i][all]−NRFinputs[j][all]||)
end loop

end loop
10: constants← numpy.solve(distmat, pairforces)

save constants

After the constants are obtained by algorithm 3.2 predictions on a test set

can be made using algorithm 3.3

Algorithm 3.3 RBF run on test

load testNRF shape ← [# testsamples][
(
#atoms

2

)
]

get jobnum from terminal input
load constants shape ← [# samples]
load NRFinputs shape ← [# samples][

(
#atoms

2

)
]

Declare testresult shape ← [# testsamples]
Declare distmat shape ← [# samples]
loop i← 0 : #testsamples

loop j ← 0 : #samples
distmat[j]← f(||testNRF [i][all]−NRFinputs[j][all]||)

end loop
testresult[i]← distmat · constants

end loop
save constants
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Variogram plots

In order to assess the performance of the RBF method we construct variograms

for each interaction which are fitted by writing python code using the scikit

gstat47 library. From this fit we obtain the effective range of the different

interactions.

RBF1

RBF1 fitted the distance r between each NRF input matrix (equation 3.6)

cubed.

RBF2

The general equation for a Gaussian function Ga is given by equation 3.7:

Ga = a exp

(
− (r − b)2

2c2

)
(3.7)

where a b and c are constants. The constant b determines the location of the

Gaussian function, c is the standard deviation or how wide it is and a controls

the height of the peak. The values of b and c are determined manually then the

RBF fitting method is used to determine values of a.

The values of r employed in equation 3.4 can be given by equation 3.8

ri,j = exp
(
−Ci × ||NRFi −Rj ||2

)
(3.8)

where Ci is dependent on the euclidean distance to the furthest point in the

nearest 1% of points P1% may be given by equation 3.9.

Ci =
1(

2P1%

3

)2 (3.9)

We divide 2P1% by 3 as we want the position corresponding to P1% to be

overlapped by three times the standard deviation.

The value of P1% for an atom was found by ordering its corresponding row

in the distance matrix from lowest to highest. The structure that was at the

index floor
(

#trainig
100

)
was selected and the euclidean distance to this structure

calculated to give P1%.
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3.3.3 Results and discussion

The RBF1 fits were completed successfully for both aspirin and toluene; however

we note that there was a significant error in the fit for malonaldehyde for all

interactions. This was evident as the error for predictions of the training set

should be zero, this was not the case for malonaldehyde. As no coding error was

found upon inspection, and the same code used for all runs, we attribute this

to either issues with the numpy solve routine or problems within the dataset.

Attempting to invert the matrix without the use of the numpy solve routine

proved too memory intensive and we omit the analysis of malonaldehyde here.

We apply the same analysis as we did to the neural networks to the RBF

fits. We begin by plotting the S curve for RBF1 for the aspirin test set and

compare this to the PM6 data calculated earlier (Figure 3.20).

Figure 3.20: S curve for RBF1 (black) and PM6 (red)

We note that the gradient of this curve is significantly smaller than the

gradients observed for the neural networks predicting the vanilla decomposed

forces and PM6. This can be explained by the large range of accuracies for the

predictions of different pairwise interactions, which can be seen from the L1 plot

(Figure 3.21).
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Figure 3.21: l1 plot for RBF1. Interactions 0 to 35 correspond to carbon-
carbon interactions. 36 to 77 correspond to oxygen-oxygen and oxygen-carbon
interactions and 78-209 correspond to all interactions to hydrogen atoms.

The range of the L1 values in the plot is significantly larger than the previ-

ously presented L1 plots ranging from 14.9% to 90.3% for different interactions.

It is also noted that the same observations about the best fitted pairwise in-

teractions obtained from the L1 plots for neural network fits to vanilla method

decomposed forces, cannot be observed for the RBF fit, with methyl hydrogen

interactions being among some of the best fitted interactions.

Plotting the pairwise interactions involving methyl hydrogens we see a re-

peating pattern as we did with PFN3b (Figure 3.22).

We note the same patterns repeated from PFN3b where for example in the

case of the interaction with C7 the same hydrogens show better/worse perfor-

mance relative to each other. We also note very similar L1 values for these

interactions when looking at PFN3b and RBF1.

We similarly note a shallower gradient in the S curve for toluene compared

with PFN3b and that it shows worse performance than PFN3b (Figure 3.23).

We attempted to explain which interactions would be fitted better by plot-

ting the L1 value of an interaction against the effective range calculated from
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Figure 3.22: L1 values for H19 (black), H20 (red) and H21 (blue) interacting
with the other 18 atoms in the aspirin test set as predicted by RBF1 (interactions
between these hydrogens are excluded).

the variogram for that interaction, for both aspirin (Figure 3.24) and toluene

(Figure 3.25) however, surprisingly we observe no correlation in either case.

RBF2 shows a worse result for fitting aspirin than RBF1 based on the s curve

shown in figure 3.26 which shows a significantly lower L1 value. This could be

due to the added difficulty in determining appropriate values of the exponents

(something Fornberg et al.48 show is very important) and good further work

would be an exploration of this or perhaps a cubic function is better suited to

fitting the relationship between distance and the value of the force.

We summarise the performance of RBF1 and RBF2 in table 3.6. This clearly

shows RBF1 fitting aspirin significantly outperformed the toluene fit and the

RBF2 fit on aspirin.
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Figure 3.23: S curve for RBF1 making predictions on the toluene test set

Figure 3.24: L1 values versus effective range for RBF1 making predictions on
the aspirin test data
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Figure 3.25: L1 values versus effective range for RBF1 making predictions on
the toluene test data

Figure 3.26: S curve for pairwise predictions for aspirin made by RBF2
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3.4 Conclusions and further work

In this section we attempted to fit the pairwise forces calculated in chapter 2

by using neural networks and radial basis function fits.

We developed a novel neural network architecture called PFN3b which com-

bined the advantages of shortcut connections proposed by resnet with the ad-

vantages of constructing an architecture during training observed in network

types such as cascade correlation or the neural evolution through augmenting

topologies.

We demonstrated that this network was able to significantly outperform fixed

network architectures of comparable size. By constructing the network block by

block we were able to use a sigmoid activation function without encountering

issues due to the vanishing gradient problem.

We note that although this network was outperformed by the network de-

composed forces network, the pairwise forces it learned are more chemically

sensible as the data fitted implicitly guarantees features such as structures cor-

responding to maxima or minima have a set of pairwise forces of 0.

We also applied PFN3b to fitting the set of biased decomposed forces and

noted only slightly worse performance in the total MAE which was 1.82 kcal

mol−1 Å−1 compared with 1.72 kcal mol−1 Å−1 for the vanilla decomposed

forces. However we noted that the interactions to lighter atoms appear to have

been fitted significantly better which is important for the performance of an MD

simulation.

Further work for the network fits would involve investigating changes to

the optimization algorithm, changing the activation functions, changing the

number of neurons or connections of the standard block and perhaps altering

the training scheme to resemble cascade-correlation where multiple candidate

blocks are trained with the best being added to the network.

We then attempted to use radial basis function interpolation, which unlike

neural networks, implicitly guarantees that every training point will be predicted

exactly - which would have been a desirable quality because of the nature of our

training data being deterministically calculated as opposed to based on exper-

imental measurement with an associated error but because of the presence of

noise in the training data, this is less desirable. However the RBF fits performed

worse, showing significant issues when fitting the malonaldehyde datasets, likely

due to issues with the data.
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We partially attributed this poorer performance to the need to define an

appropriate distance metric that allows for easy interpolation of the pairwise

force and further work in this area could involve identifying a more appropriate

distance metric.

In the case of RBF2 which used a Gaussian function further work needs to

be done to identify appropriate exponents which may yield better performance.

Comparing the RBF fitting with neural networks, neural networks seem to

be the better approach. With the use of modern deep architectures one can

more easily obtain a good model, which although does not guarantee implicitly

each training point is fitted exactly it does attain good performance on a test

set and is not sensitive to noise in the same way RBF interpolation is.

We now have multiple machine learned force field models capable of accu-

rately predicting the forces in our test sets, the next step is to evaluate the

performance of these models in the context of a molecular dynamics simulation.
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Chapter 4

Simulations using the fitted

forces

4.1 Introduction

In chapter 3.2 we produced machine learning models that fit the forces of our

aspirin, toluene and malonaldehyde datasets to a high degree of accuracy. How-

ever the real test for any machine learned force field is how well it performs in

simulations compared with force fields currently employed.

We implemented our machine learned force field into the Amber software

package49 such that it could make force predictions at every time step.i However

due to difficulties in interfacing the python libraries within the FORTRAN code

of Amber this proved very slow.

Therefore a simple molecular dynamics simulation code was written in python

as a way to test the performance. This simulated the molecule in vacuum in an

NVE ensemble using the Verlet equation at each time step. The initial velocities

were simply set to 0.

Every simulation run for our three test molecules (aspirin, toluene and mal-

onaldehyde) “exploded” - an increase in kinetic energy was observed to the

extent that distances between atoms became completely unrealistic and the

molecule dissociated. This was observed for both the neural network and RBF

fits. However the time taken for the explosion to be observed was different for

each method.

iAchieved as part of a collaboration with Linghan Kong
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Even when using AMBER to conduct an NVT molecular dynamics simula-

tion using PFN3b for malonaldehyde, run using a thermostat to help remove

excess energy by keeping the temperature constant, we still observe the explo-

sion.

There could be multiple reasons for the simulation to explode. The first and

most obvious is the lack of energy conservation in our force predictions which

could mean over time we are gaining energy as the simulation progresses.

Another potential issue is one of extrapolation. The simulation may not

necessarily be staying in regions of phase space appropriately represented by

our training data. If this occurs then the force predictions may be completely

nonsensical inevitably affecting the quality of our simulation. To investigate

if extrapolation is an issue we looked at every structure in the simulation and

assessed if any of the distances between the atoms lie outside the range of

distances for those atoms in the training set, to obtain a subset of extrapolated

points. Ideally one would calculate the convex hull of the data and assess if

the structures lay within or outside it. This would give us a complete set of

extrapolated points. However given the dimensionality of the data, this proved

computationally prohibitive when attempting to use Delaunay triangulation in

order to do so.

The final issue which could contribute to the systems exploding is “deter-

ministic noise” in the force predictions. Deterministic noise is when a flexible

function (such as a neural network) is fitted to a dataset, where potentially

the function passes through each point exactly. However between points the

function is very complicated such that the values can vary considerably. This

is illustrated in figure 4.1.

This is of notable concern as it means the network is potentially very sensitive

to small changes in the structures, which if true, would necessitate very small

time steps to compensate. This would also be an argument for the use of cross

validation when training the networks, even though ideally we should fit every

point exactly.

We investigate the sensitivity of the neural network to changes in the struc-

ture by generating the intermediary points between two normal timesteps in a

simulation, then calculating the forces for these additional points. We also do

the same for a simulation run with the GAFF force field7 to compare.
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y

x

Figure 4.1: Illustration of deterministic noise. Note each of the black points
is fitted by the red line (a hypothetical machine learned fit) exactly; however
the function shows significant complexity between the points, which may differ
considerably from the true function (dashed line).

4.2 Method

In order to investigate the observed trajectories of the simulation the temper-

ature of the aspirin simulation with PFN3b and GAFF was calculated. This

included the intermediary points (see section 4.2.4), which were used to calcu-

late the kinetic energy, which was then used to calculate the temperature in

Kelvin.

Additionally the temperatures for the trajectory obtained from the simula-

tion using the network decomposed forces were calculated.

4.2.1 The simulation program

The algorithm for our simulation program is summarised in algorithm 4.1. We

ran simulations using this code to test the performance of the various fits in the

context of an MD simulation.

As the models predicted pairwise forces, these were simply rescaled when

necessary for the models which made predictions between zero and one; and

combined using equation 2.5 to give Cartesian forces.

For aspirin we ran simulations using PFN3b and the network decomposed

forces and analysed them. For the other molecules these were simulated using

their PFN3b fits using Amber.
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Algorithm 4.1 Molecular dynamics simulation

load startstructure
load predictionmodel
timestep← 0.5fs
Declare #timesteps

5: Declare trajectory shape ← [#steps][#atoms][3]
trajectory[0]← statstructure
loop i← 0 : #timesteps

forces← predictionmodel get Cartesian forces for trajectory[i]
if i == 0 then

10: VerletStep (r(t−∆t) = trajectory[i],r(t) = trajectory[i],forces)
else

VerletStep (r(t−∆t) = trajectory[i−1],r(t) = trajectory[i],forces)
end if
Save trajectory

15: end loop

4.2.2 Amber simulations

For NVT simulations or simulations where the GAFF forces were used with the

default parameters for the version of AMBER employed and the simulations of

malonaldehyde and toluene, AMBER was used to run them.

The NVT simulations were run using the Langevin thermostat with no pres-

sure limit, a time step of 0.5 fs and a reference temperature of 300K. Different

runs were conducted with a collision frequency of 5, 10, 15 or 20 and using

these parameters we were able to obtain a simulation of length 23.3 ps for as-

pirin without issues of the system ‘exploding’ being present. Using a lower

collision frequency of 2.0 only allowed for a simulation of length 2.5 ps before

the system ‘exploded’.

An NVT simulation was also run with a collision frequency of 20 but with a

timestep of 1.0 fs and were able to obtain a 55ps simulation without the system

exploding.

Due to difficulties in integrating the python code into AMBER’s FORTRAN

code, an alternative approach was required.

For every frame, the AMBER code was modified to write the atomic coor-

dinates to a text file. AMBER then called a python program which read this

text file then made predictions of the forces, saving these to a text file. AMBER

then read this text file, and used the forces to predict the next frame. This was

very slow but was a pragmatic initial way of integrating the two programs.
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4.2.3 Exploring extrapolation

In investigating extrapolation in the aspirin dataset we first plotted the two

dihedral angles (τ7,6,8,11 ) and (τ6,7,13,9). These indicate how the two functional

groups attached to the benzene ring in aspirin move out of the plane of the

benzene ring relative to each other and is indicative of the conformers observed in

the dataset for every structure in the aspirin training data. The dihedral angles

were calculated for the PFN3b trajectory in order to yield a visual indication

of how dense the training sampling was along the followed trajectory.

We then constructed a mechanism to find a subset of the extrapolated points.

We define “extrapolation” as points which lie outside the convex hull defined by

the training data. Attempts were made to calculate the convex hull and assess

if points lay within it by the use of Delaunay triangulation; however this was

found to be computationally prohibitively expensive.

Instead we simply identified the points that had at least one nuclear repulsion

force that lay outside the range of the values for that nuclear repulsion force in

the training data.

4.2.4 Investigating deterministic noise

A step in a simulation is determined using the Verlet method (equation 4.1)

r(t+∆t) = 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (4.1)

where ∆t is the timestep r(t+∆t) are the positions after a timestep r(t−∆t)

are the positions in the step before the current structure, r(t) are the current

positions and f(t) are the forces for the current positions.

This equation is derived from the sum of equations 4.2 and 4.3.

r(t+∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 (4.2)

r(t−∆t) = r(t)− v(t)∆t+
f(t)

2m
∆t2 (4.3)

In order to generate the intermediary points along a trajectory for a given

point r(t) we need to make a step using a time step smaller than ∆t, which we

will call δt. We need to calculate values of r(t+ δt). Simply substituting δt for

∆t in equation 4.1 will not work as the values of r(t− δt) are not known.

First we rewrite equation 4.2 in terms of δt to give equation 4.4
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r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt2 (4.4)

Rearranging equation 4.3 to make v(t) the subject for the time step ∆t and

then substituting into 4.4 gives us equation 4.5

r(t+ δt) = r(t) + [r(t)− r(t−∆t)]
δt

∆t
+

f(t)

2m
(δt2 +∆tδt) (4.5)

This then tidies up to giving equation 4.6

r(t+ δt) = r(t) +

[
r(t)− r(t−∆t)

∆t
+

f(t)

2m
∆t

]
δt+

f(t)

2m
δt2 (4.6)

We use equation 4.6 to generate nine more points between the regular

timesteps (∆t) in the simulation using PFN3b.

We generate nine intermediary structures between each pair of structures

in the trajectory for PFN3b and GAFF simulating aspirin. For PFN3b we

compute the forces for these additional points and recombine them to give the

Cartesian forces.

In order to judge the change in force between points we calculate the av-

erage difference between the first point in a pair of structures and each of the

intermediary points. This is done for both GAFF and the PFN3b simulation.

We then calculate the average rate of change of force between the smaller

timesteps δt and the previous full timesteps ∆t given by equation 4.7, where

i is the structure in the trajectory with the nine intermediary points, N is the

number of atoms and R0 and F0 are the positions and forces of the previous full

timestep.

δF

δR
=

1

3N

∑ Fi − F0

||Ri −R0||
(4.7)

4.3 Results and Discussion

The gain in kinetic energy as the simulation runs is evident from figure 4.2,

which compares the temperature change of the simulation run with PFN3b

and GAFF for NVE simulations. Whereas the GAFF temperature shows little

overall change, the network run begins to gain temperature at an appreciable

rate and eventually the temperature is so high the molecule falls apart.

The other fits show a similar pattern when used in a simulation, a period of
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Figure 4.2: Change in temperature over the course of the simulation for aspirin
simulated using PFN3b forces (black) and GAFF forces (red)

lower temperature where the simulation appears stable followed by an increase

in temperature. Looking at the time taken to reach 1000K, the network decom-

posed forces show the best performance with 11.4 ns before this temperature is

reached and PFN3b ran for 2.5 ns.

4.3.1 Investigating extrapolation

The plot of (τ6,7,13,9) vs (τ7,6,8,11) (Figure 4.3) for the aspirin training data shows

multiple well sampled conformers. However the transitions between them are

rather poorly sampled shown by the lack of data points, as expected as these

data were generated using an MD simulation which will sample lower energy

configurations more than higher energy configurations.

We superimpose the trajectory followed for PFN3b on figure 4.3 to give

Figure 4.4. The start of the trajectory is within a well represented area in the

cluster at approximately (0,-2). However as the trajectory progresses and a

transition occurs from the cluster at (0,-2) to the one at (0,2) the path taken is

only very sparsely represented in the dataset.

Working out a subset of the points that are being extrapolated (Figure 4.5)
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Figure 4.3: The aspirin training data plotted as dihedral (τ6,7,13,9) vs dihedral
(τ7,6,8,11) in radians.

shows that even early in the simulation, certain frames are being extrapolated

rather than interpolated and by the end of the simulation, before the “explosion”

almost every point is extrapolated.

Although extrapolation likely plays a role in the simulation exploding, it

is not the only factor. When a simulation was run in AMBER where every

detected extrapolated point had its forces predicted using GAFF rather than

PFN3b, the simulation still exploded having gained so much energy that even

with GAFF conducting 100% of the predictions by the end, it was still not

enough.

4.3.2 Investigating deterministic noise

It would appear from a comparison in figure 4.6 between the average change

in forces between each timestep for GAFF and for network PFN3b that both

are very similar for the majority of the simulation, only differing significantly

towards the end of the simulation. This would indicate that deterministic noise

is perhaps not a reason for energy gain in the NVE simulation until later on and

this indicates for the majority of the simulation the network is not too sensitive
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Figure 4.4: The aspirin training data (black) and for the PFN3b simulation
trajectory (red) plotted as dihedral (τ6,7,13,9) vs dihedral (τ7,6,8,11) in radians.

to change and the time step of 0.5fs is appropriate.
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Figure 4.5: The aspirin simulation trajectory with PFN3b forces. The subset of
extrapolated points are shown in red plotted as Dihedral (τ6,7,13,9) vs dihedral
(τ7,6,8,11 ) in radians. Note even early in the simulation around the range of
x=(0,-1) y=(-0.5,-2) we observe multiple instances of extrapolation.
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Figure 4.6: The rate of change of force ( δFδr ) for intermediary steps compared
to the previous full timestep for the PFN3b (black) and GAFF (red), NVE
simulations of aspirin.
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4.3.3 Investigating energy conservation

The final issue which may be causing energy gain is the problem of energy

conservation. Essentially all of the atomic forces should be the first derivative

of the energy. If they are, then energy change between two points is always equal

regardless of the path taken and any arbitrary path that starts and finishes in

the same place it started necessarily has an energy change of zero.

If the forces are not the first derivative of the energy, none of the previous

necessarily holds true. Unfortunately it may be shown analytically that our

forces are not energy conserving. This could help explain the observed energy

gain.

The proof is as follows:

2 atom system, single neuron

Forces are energy conserving when they can be expressed as the negative of the

first derivative of the energy (equation 4.8)

F = −∇E (4.8)

As ∇×∇ is always 0, to prove (4.8) we can show that the curl of the forces

equals zero (equation 4.9):

∇× F = 0 (4.9)

Expanded, we must show that equation 4.10 holds true for the Cartesian

force on an atom. 
∂Fz

∂y −
∂Fy

∂z
∂Fx

∂z −
∂Fz

∂x
∂Fy

∂x −
∂Fx

∂y

 =


0

0

0

 (4.10)

To prove this is true for all values of the pairwise force let us consider trying

to prove ∂Fz

∂y =
∂Fy

∂z .

As the equation for the Cartesian force can be given by equation (2.5),

considering a single pairwise interaction between two atoms A and B we get the

two equations (4.11) and (4.12)
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∂Fz

∂y
=

∂f

∂y
× (zA − zB)

rAB
+f× (yA − yB)(zA − zB)

((xA − xB)2 + (yA − yB)2 + (zA − zB)2)
3
2

(4.11)

∂Fy

∂z
=

∂f

∂z
× (yA − yB)

rAB
+f× (yA − yB)(zA − zB)

((xA − xB)2 + (yA − yB)2 + (zA − zB)2)
3
2

(4.12)

Simplifying, equations (4.11) and (4.12) will be equivalent when (4.13) is

true.
∂f

∂y
× (zA − zB) =

∂f

∂z
× (yA − yB) (4.13)

Now consider our neural network with a single neuron. This can be given by

equation (4.14) where w is the network weight.

f = f(wrAB) (4.14)

Using the chain rule, which states the derivative of a composite function is

the derivative of the outer function evaluated at the inner function times the

derivative of the inner function, we can show

∂f

∂y
=

w(yA − yB)

rAB
f′(rAB)

and
∂f

∂z
=

w(zA − zB)

rAB
f′(rAB)

Substituting this back into equation 4.13 we get equation 4.15 which proves the

force is conservative for any prediction of the value f .

w(yA − yB)

rAB
f′(rAB)(zA − zB) =

w(zA − zB)

rAB
f′(rAB)(yA − yB) (4.15)

4.3.4 3 atoms, 3 neurons

For a 3 atom system consisting of atoms A B and C, the total Cartesian force

is given as the sum of projected pairwise interactions. Therefore equation 4.13

may be given for atom A by equation 4.16

∂fAB

∂y
×(zA − zB)+

∂fAC

∂y
×(zA − zC) =

∂fAB

∂z
×(yA − yB)+

∂fAC

∂z
×(yA − yC)

(4.16)
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For our predictions we predict fAB and fAC independently; therefore this

may be treated as two separate functions which we will call f and g.

A neuron in a neural network is a function of the weighted sum of its inputs.

Our inputs are a function of r but for simplicity let us assume they are r. We

can express the derivative of the single neuron network as equations 4.17 and

4.18 for ∂fAB

∂z and fAC

∂y respectively. Similar equations can be constructed for
∂fAB

∂y and fAC

∂z .

∂fAB

∂z
=

(
w1(zA − zB)

rAB
+

w2(zA − zC)

rAC

)
f′
(∑

(wiri)
)

(4.17)

∂fAC

∂y
=

(
k1(zA − zB)

rAB
+

k2(zA − zC)

rAC

)
g′
(∑

(kiri)
)

(4.18)

Substituting this back into equation 4.16 we must prove(
w1(yA − yB)

rAB
+

w2(yA − yC)

rAC

)
f′
(∑

(wiri)
)
(zA − zB)+

(
k1(yA − yB)

rAB
+

k2(yA − yC)

rAC

)
g′
(∑

(kiri)
)
(zA − zC)

equals (
w1(zA − zB)

rAB
+

w2(zA − zC)

rAC

)
f′
(∑

(wiri)
)
(yA − yB)+

(
k1(zA − zB) + k2(zA − zC)

rAB

)
g′
(∑

(kiri)
)
(yA − yC)

which is true only when

f′
(∑

(wiri)
)
= g′

(∑
(kiri)

)
and therefore the weights k equal the weights w. Therefore our forces are not

conservative as we do not guarantee the above for any network predicting forces

for systems with more than two atoms.

As a consequence of this lack of conservation, energy may be continually

gained as the simulation progresses as it does not necessarily follow that a path

consisting of a closed loop will result in an energy change of zero.

One solution would be to fit a simple pairwise potential which would guar-

antee energy conservation; however this is unlikely to represent an improvement

on existing forcefield or machine learned methods. Alternatively one could fit
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energies rather than forces and then either analytically find the first derivative

of the model or do so numerically, which other groups have done.

4.4 Conclusions and further work

We have observed that simulations using our fitted forces observe a gain in

kinetic energy to the point where the simulation becomes unstable. We at-

tributed this to 3 potential factors, deterministic noise, extrapolation and the

lack of energy conservation in our predictions.

We found that deterministic noise, though present significantly towards the

end of the simulation where it likely serves to further increase the energy gain,

is not a factor early on in the simulation.

Interestingly we observe that extrapolation is present even quite early in the

simulation and likely serves to cause energy gain because of poor predictions

of force. However it is likely not the only factor as code written to use GAFF

when a subset of extrapolated points was detected did not serve to improve the

issue significantly and we still saw kinetic energy gain.

Finally we show mathematically that our forces are not energy conserving.

This means the forces cannot be written as the first derivative of a potential

energy and therefore the energy change between two points may be entirely

dependent on the path taken, or that energy gain/loss may be observed when

a path consisting of a loop is taken.

None of these observations necessarily explains why we observe an overall

gain in energy on average as they could all equally be responsible for a loss in

energy and no reasonable explanation has been found for this.

Further work in this area to combat the issue of energy conservation may be

to implement a network that implicitly guarantees that the predicted pairwise

forces are energy conserving. This would mean they are no longer predicted

independently of one another, this work has shown fairly conclusively that pre-

dicting them independently without any other ‘fix’ yields a poor simulation in

an NVE simulation.

Another solution may lie in the post processing of forces, potentially looking

at predictions for similar structures and making adjustments such that the forces

are energy conserving; however this will yield a poorer result than the previous

solution as the corrections will never be perfect.

Finally identifying and implementing a method that allows for the detection
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of all extrapolated points (those that lie outside the convex hull defined by the

data points) quickly and efficiently will potentially help in the implementation

of any checks on forces and prevent poor predictions from being used in the

simulation. Chemical space is very large and high dimensional and the chances

of covering it appropriately in a training set, such that no points are extrapolated

during the course of a simulation, are slim.
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Chapter 5

Charge decomposition

5.1 Introduction

In chapter 2 we introduced a method for decomposing total Cartesian forces

into pairwise internal forces which were fitted by machine learning models to

create a forcefield.

This pairwise decomposition method also has a wide range of other applica-

tions to situations where predictions must be made and some total value kept

constant. One example of this are the partial atomic charges of molecules in a

system. In the absence of any external influence, the total charge of a system

is constant during an MD simulation. However it is possible for the charge on

each atom to change.

The ability to predict changing charges may be useful for simulations where

there are multiple components interacting, where decomposing pairwise forces

for all these different components is not feasible. The charge on an atom will

be influenced by the structure and conformation of the molecule,as well as by

the other molecules in the system being studied. Currently it is common to

use none polarizable force fields such as GAFF where the charges are fixed,

when simulating systems in solution. We hope to improve on this by predicting

charges for molecules in a system which are dependent on the conformation of

that molecule. This will not capture the effects of multiple molecules influencing

each other; however it represents a step forward from fixed charges.

In other work charges are updated by using quantum methods; however

just like with forces, these incur a large computational overhead which could be
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reduced using machine learned fits. It has been shown that updating charges can

have a significant impact on the observations made during a molecular dynamics

simulation, for example on protein folding50 but also on much simpler systems

such as erythritol in water51.

Existing methods for charge prediction using machine learning such as the

work conducted by Mills and Popelier52, the work conducted by Kato et al.53 or

the work conducted by Wang and Gao54 do not implicitly guarantee the charge

will sum to zero in their predictions, something that is a noteworthy advantage

of our approach.

5.2 Vanilla charge decomposition scheme

For every atom in a system we have a single value of charge associated with

it, unlike forces which are a vector quantity with 3 values. Consequently the

vanilla scheme for charges is dependent only on the distances between atoms,

and not displacements. Consider the 3 atom system presented in figure 5.1

A

C

BcAB

cAC cBC

Figure 5.1: 3 atoms A B and C with their pairwise charges cAB,cBC and cAC

In the vanilla charge decomposition scheme the charge on each atom (qA, qB

and qC) can be given by the sum of fictious pairwise charges (CAB , CBC and

CAC), given by the following equations for our three atom system:

qA =
CAB

rAB
+

CAC

rAC

qB = −CAB

rAB
+

CBC

rBC

qC = −CAC

rAC
− CBC

rBC

Note that the value of e (equation 2.4) used in the force decomposition scheme,
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in the charge decomposition becomes

eAB =
1

rAB

for atoms A and B.

The inverse of the distance is used as there is no direction to the charge

unlike the forces. Alternatively one could employ values of e which are simply

zeros and ones; however it was not believed that was this a sensible approach.

As there is only 1 value per atom rather than 3 when we decompose forces

our matrix for e has dimensions of N by
(
N
2

)
rather than 3N by

(
N
2

)
.

The difference in matrix size and the different method for calculating e

represent the only differences between this scheme and the vanilla method for

force decomposition and the two methods are solved in the same way.

Care should be taken when attempting to ascribe physical meaningfulness to

the pairwise charges as with the pairwise forces as the solution is selected from

an infinite set of possible solutions somewhat arbitrarily. It could be considered

that the pairwise charge is simply a measure of how much one atom polarizes

another.

We note that charge predictions made for pairwise charges are implicitly

charge conserving, always summing to zero whilst allowing for the charges on

individual atoms to vary.

Although the charges implicitly summing to zero presents a limitation of the

method in applications to systems with an overall charge, this issue is potentially

surmountable by inclusion of charged ‘counter ions’ in the calculation.

Another limitation is the assumption that the charges are a function of the

conformation of the solute alone as only the solute can be reasonably included

in the decomposition scheme hence fitted model, as the number of pairwise

interactions scales according to
(
N
2

)
. Whereas this is a poor assumption, this

technique does still represent a step forward from assuming constant charge.

5.3 Application to the aspirin dataset

5.3.1 Introduction

We apply the vanilla charge decomposition scheme to the aspirin dataset as a

proof of principle. The charges were generated using antechamber49 for every

training structure and every test structure. This was chosen as the method for
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charge calculation as the GAFF forcefield is parametrized to use these charges

and an analysis of how these charges change is indicative of the usefulness of

this method for aspirin.

5.3.2 Method

The structures for the aspirin training and test set were converted into xyz

format using a python script, and then from xyz to mol2 format using openbabel.

Another python script was created to run antechamber on small batches of

structures, as attempting to run it for all structures in one job caused it to

exceed the maximum allowed time on the available computing resource.

The AM1-BCC model was used for calculating the charges.55

5.3.3 Results and discussion

We begin by looking at the range of charges in the aspirin training data noting

that the different atoms show a range of charges which is summarised in table

5.1.

The pairwise charges form bands not too dissimilar to the pairwise forces

which can be seen in figure 5.2. There appears to be a line of points across the

plot with a charge of zero, inspection of these points reveals that the charges

on every atom are zero meaning some structures returned an error when the

charges were calculated. It was determined that a total of 24 structures out of

42353 had this issue.

We then calculate the pairwise force that results from the total charges using

equation 2.7 in order to see the range of forces that is obtained (Figure 5.3).

We note from figure 5.3 that even for more distant interactions between

lighter atoms (smaller values of the nuclear repulsion force) we see a significant

range in the forces obtained within a band. This further illustrates the impor-

tance of accounting for changing charges during the course of an MD simulation.
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Table 5.1: Charges on different atoms in aspirin for the training data

Atom ID Average charge (e) standard deviation
C1 -0.0594 0.00242
C2 -0.152 0.00552
C3 -0.155 0.00394
C4 -0.0808 0.00228
C5 -0.149 0.00378
C6 -0.144 0.00431
C7 0.175 0.00612
C8 0.663 0.016
C9 0.656 0.0172
O10 -0.603 0.0163
O11 -0.557 0.0155
O12 -0.52 0.0125
O13 -0.369 0.0133
H14 0.445 0.0109
H15 0.159 0.00397
H16 0.159 0.00544
H17 0.143 0.00343
H18 0.142 0.00341
H19 0.0826 0.00217
H20 0.0826 0.00217
H21 0.0826 0.00217
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Figure 5.2: Decomposed charges versus the nuclear repulsion force for the aspirin
training data.
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Figure 5.3: The range of forces, calculated as pairwise charge charge interactions
observed for the aspirin training data
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5.4 Network decomposed charges

5.4.1 Introduction

As for forces in section 2.6 we construct a neural network that internally de-

composes the charges, making predictions of pairwise charges, recombining them

and then evaluating the error of the total charge on each atom before backprop-

agating this error.

Choosing to decompose the charges in this manner conveys the same benefits

as it did with the forces. The network can decompose charges as a function of

all the structures and not just a single structure at a time, independently and

secondly the network is not restricted to picking the solution with the smallest

norm as we are when we use the Moore-Penrose pseudo inverse.

Whereas it is possible to predict the total charge for each atom and indeed

others have done this53 56 an advantage of predicting charges as fictitious pair-

wise interactions is the implicit guarantee that the charges will always sum to

zero. Such an implicit guarantee is not offered by the cited methods which may

cause issues in the context of a molecular dynamics simulation as charge is not

necessarily conserved.

5.4.2 Method

A neural network was constructed which consisted of a single block consisting

of 1000 neurons with a relu activation function followed by
(
N
2

)
with a linear

function. A sigmoid function was initially employed. However it was found

that this did not yield satisfactory results possibly due to discontinuities in the

calculated charges.

The dot product of the output layer of
(
N
2

)
neurons from this block and a

‘projection layer’ which was a matrix of dimensions N by
(
N
2

)
was calculated

to give N charge predictions. The error was evalulated for these and back

propagated to adjust the weights of the
(
N
2

)
network predictions.

The projection layer was calculated similarly to equation 2.5 with the values

of each pairwise interaction being given by 5.1.

eAB =
1

||RA −RB ||
(5.1)

Similarly to the network decomposed forces we inspect the inner layer of the

network containing
(
N
2

)
neurons with the linear activation function in order to
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see the network predicted pairwise charges. This was done using by creating a

model that used the same inputs but its output was determined by the layer of

interest which was obtained using the ‘get layer’ method in keras.

5.4.3 Results and discussion

When plotting the network decomposed pairwise charges we see a similar result,

a series of band structures (Figure 5.4).

Figure 5.4: Decomposed charges versus the nuclear repulsion force for the aspirin
training data.

Unlike the vanilla charge decomposition scheme, the network decomposed

charges do not show the band at zero charge. This is likely because the network

did not fit these points exactly and instead made more sensible predictions for

them.

The error for predictions of the test charges can be seen in the S curve

shown in figure 5.5. The S curve is calculated for predictions of the force based

on charges predicted by the network.

The performance of the network appears poor for predictions of forces on

the test set despite good performance on the training data which may indicate
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Figure 5.5: S curve for pairwise forces based on the predictions of charge by
the network for the aspirin training data (dashed line) and the test data (solid
line).

that the relationship between the inputs and outputs is complicated and there-

fore additional training data is required; however this would require further

investigation.

5.5 Conclusions

In this short chapter we showed that the pairwise decomposition scheme devel-

oped for forces can easily be extended to other properties and we chose charges

to demonstrate this. These pairwise charges could be fitted by a machine learn-

ing method and doing so would implicitly guarantee the conservation of charge.

Fitting charges based on the conformation of the solute may be useful when

considering interactions with solvent and demonstrates a step forward from fixed

charges.

We also show that like forces the machine learning method may also learn

pairwise charges internally but recombine them to give total charges on each

atom, implicitly guaranteeing that the charge remains constant in the system.
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Although the charge will always sum to zero, in the case of a system with

an overall charge, counter ions are oft employed, including these in the decom-

position scheme will allow for the solute to have an overall charge.
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Chapter 6

Conclusions

This project involved three key aspects, the development of an appropriate out-

put for the prediction of Cartesian forces, the development of a machine learning

method capable of fitting these forces and simulation using the predicted forces.

The pairwise force decomposition scheme developed to allow predictions of

forces that implicitly obey Newton’s 3rd law, allows for a simple and effective

method for the acquisition of pairwise forces from Cartesian forces. The method

requires very little computational overhead in comparison to schemes such as

interacting quantum atoms (IQA) which can be used to find per atom energies

and even with the simple vanilla scheme, chemically intuitive properties of these

forces are obtained. Additionally we showed that by biasing this approach one

can easily change which interactions have larger or smaller forces and developing

new schemes for biasing the scheme, represents an interesting line of enquiry.

With an appropriate selection of a biasing scheme the forces may be tailored

to be more chemically meaningful or to have the interactions to more distant

atoms smaller or to cut connections completely with a bias of 0.

Though it is possible to decompose the forces internally as part of a machine

learning routine and obtain a high level of accuracy, we note that this does not

guarantee to yield chemically intuitive forces and we found that features such

as minima having a force of zero are not necessarily guaranteed in the same way

as the vanilla scheme.

We then fitted these decomposed pairwise forces, developing a novel neural

network architecture called PFN3b to do so. PFN3b combined the advantages

of building a network during the training process and freezing connections with

shortcut connections and its superior performance compared with fixed archi-
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tecture networks of a comparable size shows the advantages of this.

PFN3b could be further developed, perhaps with new blocks, training meth-

ods or additional features that enable it to better fit the pairwise forces. A key

issue is the fit currently does not guarantee energy conservation. This is not an

issue with the decomposed pairwise forces which recombine to give the Carte-

sian forces they were decomposed from implicitly. Therefore if the Cartesian

forces were energy conserving, the pairwise forces will be as well.

We saw the issues caused by the lack of energy conservation in the molecu-

lar dynamics simulations which, combined with extrapolated points caused the

simulation to fail. Consequently a redesign of PFN3b would be a priority for

any further work, to ensure that it implicitly predicts energy conserving forces.

Another issue which must be resolved is the generation of training data

in an appropriate manner. In this work we used datasets created by running

MD simulations. This does not produce a dataset which will ensure we avoid

extrapolation and as we saw during the course of a simulation, predictions were

made for structures that lay outside the range of the training data, even before

the energy gain was large.

One must consider the chemical space likely to be explored during the course

of an MD simulation and sample it appropriately to ensure extrapolation does

not occur or at least implement an appropriate scheme for the identification of

extrapolated points and method for dealing with them.

Molecular dynamics is an inappropriate tool for creating a good training

set, it does include transitions between conformers however predominately sam-

ples around minima. Given the importance of accurate predictions both around

minima and over transitions between conformers an alternative approach is re-

quired.

A much more fundamental analysis of the problem to be solved is required.

In fields such as computer vision or voice recognition, the manifold hypothesis

states that despite the usually high dimensionality of the data fitted the solution

space lies on a much lower dimensional manifold which is constructed through

successive layers of a deep learning model. It is debatable whether or not the

manifold hypothesis will apply to chemical space where arguable all 3N-6 co-

ordinates are important. Furthermore, sampling must be reasonably dense as

many interactions such as hydrogen bonding or halogen bonding are directional

and potentially very sensitive to changes in position.

However with the continuously increasing availability of computational power,

the construction of appropriate extremely large databases of quantum calcula-
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tions becomes feasible which may serve to mitigate the aforementioned issues.

With such datasets available, the construction of machine learned forcefields

becomes more feasible and this work represents a step along the path to the

development of a good methodology for doing so.
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[47] M. Mälicke, E. Möller, H. D. Schneider and S. Müller, scikit-gstat: Version

0.6, 2021.

[48] B. Fornberg, E. Larsson and N. Flyer, SIAM Journal on Scientific Com-

puting, 2011, 33, 869–892.

[49] D. Case, H. Aktulga, K. Belfon, I. Ben-Shalom, S. Brozell, D. Cerutti,

T. Cheatham, III, G. Cisneros, V. Cruzeiro, T. Darden, R. Duke, G. Gi-

136



ambasu, M. Gilson, H. Gohlke, A. Goetz, R. Harris, S. Izadi, S. Izmailov,

C. Jin, K. Kasavajhala, M. Kaymak, E. King, A. Kovalenko, T. Kurtz-

man, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo,

M. Machado, V. Man, M. Manathunga, K. Merz, Y. Miao, O. Mikhailovskii,

G. Monard, H. Nguyen, K. O’Hearn, A. Onufriev, F. Pan, S. Pantano,

R. Qi, A. Rahnamoun, D. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo,

J. Shen, C. Simmerling, N. Skrynnikov, J. Smith, J. Swails, R. Walker,

J. Wang, H. Wei, R. Wolf, X. Wu, Y. Xue, D. York, S. Zhao and P. Koll-

man, Amber20, 2021.

[50] L. L. Duan, Y. Mei, D. Zhang, Q. G. Zhang and J. Z. Zhang, Journal of

the American Chemical Society, 2010, 132, 11159–11164.

[51] J. Marañón and J. R. Grigera, Journal of Molecular Structure:

THEOCHEM, 1998, 431, 7–15.

[52] M. J. Mills and P. L. Popelier, Theoretical Chemistry Accounts 2012 131:3,

2012, 131, 1–16.

[53] K. Kato, T. Masuda, C. Watanabe, N. Miyagawa, H. Mizouchi, S. Na-

gase, K. Kamisaka, K. Oshima, S. Ono, H. Ueda, A. Tokuhisa, R. Kanada,

M. Ohta, M. Ikeguchi, Y. Okuno, K. Fukuzawa and T. Honma, Journal of

Chemical Information and Modeling, 2020, 60, 3361–3368.

[54] X. Wang and J. Gao, RSC Advances, 2020, 10, 666–673.

[55] A. Jakalian, D. B. Jack and C. I. Bayly, Journal of Computational Chem-

istry, 2002, 23, 1623–1641.

[56] R. Martin and D. Heider, Frontiers in Genetics, 2019, 0, 990.

137


