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Abstract

A major challenge in the transition to a net-zero energy system is how to decarbonise

energy use for heating, cooling and transport via electrification, whilst simultane-

ously ensuring the security of a power system with high penetration of renewable

energy generation. One possible way to address this challenge is to implement a

multi-energy systems approach, in which traditionally separate energy systems for

the delivery of electricity, gas, heating and cooling are co-optimised as an integrated

whole. A major benefit of this approach is that flexible distributed energy resources

in non-electrical systems can be exploited in support of the power grid.

This thesis presents a novel multi-energy system optimisation modelling framework,

capable of quickly generating large-scale optimisation problems. These problems are

readily integrated into model predictive control (MPC) schemes, providing a method

for online energy management of a continuously evolving system. Such schemes can

optimally manage distributed energy resources at district-scales, ensuring that all

energy demands are met, networks are operated within acceptable limits and costs

savings are delivered to both customers and network operators.

Given the potentially large size of the resulting control problem, a multi-agent control

architecture and associated coordination algorithms are also presented. These ensure

that near-optimal, feasible control actions can be determined within timescales that

are suitable for online energy management. In an exemplary case study, considering

a 15 minute sampling interval for a district comprising 84 buildings and multiple

energy supply networks, a maximum computation time of around 55 minutes for a

single controller is reduced to just over 1 second using the novel multi-agent MPC

scheme, demonstrating the substantial benefit of the proposed approach.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Transition to Net Zero

The Intergovernmental Panel on Climate Change continues to report changes in the

Earth’s climate that are unprecedented in thousands of years, many of which are irre-

versible over hundreds to thousands of years to come [1]. The rate of global warm-

ing is accelerating and, unless large-scale reductions in greenhouse gas emissions

commence immediately, limiting warming close to 1.5◦C or even 2◦C will not be pos-

sible [2]. The consequences of increased warming to these levels include increased

frequency and intensity of hot extremes, marine heatwaves, heavy precipitation and

flooding, droughts, tropical cyclones and sea level rises. Mitigation against these con-

sequences requires the reduction of cumulative CO2 emissions in the coming decades,

reaching at least net zero CO2 [2].

It is against this backdrop that many governments around the world have committed

to significant decarbonisation plans up to 2040 and beyond, aiming to fulfil their

contributions to global emissions reductions as part of the Paris Agreement [3]. The

drive for decarbonisation has already caused significant changes to national electric-

ity supply systems and will continue to do so as the transition is made to net zero.

In a scenario in which all governments’ national decarbonisation policies are imple-

mented by 2040, the following changes are also expected (see Fig. 1.1):
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• the recent global expansion in gas based generation is set to slow down and

generation from coal should finally start to decline by 2025 [4];

• renewable generation from wind and solar photovoltaics (PV) is anticipated to

expand rapidly, with solar PV likely to become the dominant generation tech-

nology; and

• nuclear generation is also expected to significantly expand compared to the

previous two decades.
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Figure 1.1: Change in global electricity generation by source in the IEA Stated Policies Sce-

nario, 2000-2040 (Source: [4]).

The decarbonisation agenda will also have an impact on electricity demand, both in

terms of the amount consumed and the pattern of consumption [5]. Transport and

heating sectors, traditionally reliant on fossil fuels, contribute more than half of all

greenhouse gas emissions in the UK and these have reduced far more slowly than

those produced by the electricity sector [6]. Direct electrification of these sectors

is a potential strategy for their decarbonisation; however, in addition to an overall

increase in electricity consumption, this will also yield disproportionately higher de-

mand peaks, based on current transport and heating patterns [5], [7]. Such changes

could not be accommodated with the current UK power system infrastructure.
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All of these changes will have far-reaching consequences in terms of energy security,

the growth of power system ancillary service markets and the way in which energy

systems are operated.

1.1.2 Power System Operation

Power systems must operate within strict ranges of frequency and voltage in order

to maintain stability. In the UK, for example, the nominal frequency is equal to 50

Hz and variations within 1% of this value are permitted; on low voltage distribution

networks the nominal voltage is 230 V with permitted variations of -6%/+10%. The

challenge for power system operators is to deliver generation output that is equal

to the instantaneous system load, whilst maintaining frequency and voltage within

these ranges.

The system load is inherently uncertain and must be predicted ahead of time, based

on historical trends and weather forecasts. Power generation capacity is then allo-

cated to cover the base load, with additional spinning reserve capacity (generators

operating below maximum output) allocated to cover peaks in the load. At any given

time, the output from system generators is unlikely to exactly equal the load and this

is reflected in the frequency. When output exceeds the load, generators spin faster,

which increases the system frequency, and vice versa. Variation within the permit-

ted frequency range is normal and often of little consequence; for small excursions

below the lower limit, the headroom of spinning reserve can be used to restore the

frequency to its nominal value. However, if the total capacity of generation (both

scheduled and in reserve) is insufficient and frequency falls by more than around

1 Hz, loads may need to be continually disconnected until frequency is restored, a

process known as load shedding, to avoid a full system blackout [8].

Traditionally, system operators have had limited control over the system load and

would rely on the generation capacity of large, nuclear or fossil fuel driven syn-

chronous generators (operating at nominal frequency) to balance the system. How-

ever, as coal and gas fired power plants are phased out as part of the transition to net

zero, system operators will no longer have this large amount of controllable capacity

at their disposal. Instead, the supply mix will become dominated by unscheduled

wind and solar PV, greatly reducing supply side flexibility to match changes in de-

mand; currently, intermittent renewable generation must be backed up by expensive
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gas-fuelled spinning reserve to provide flexibility, known as renewable energy firming

[9]. The loss of large synchronised generators also reduces system inertia, which is

the effect of kinetic energy in the system resisting changes in frequency. Inertia pro-

vides vital time to respond in the event of a sudden loss of generation or a network

fault.

Voltage stability is also impacted by greater penetration of generation from wind and

solar PV, which are connected to the grid using power electronic inverters. These

non-synchronous generators, whilst able to provide some voltage regulation, cannot

do so over as wide a range as synchronous machines [10]. Therefore, when voltage

rises or falls due to active and reactive power imbalances in the power system, there

is limited capability to restore voltage to a stable operating point. In fact, the inter-

mittency of distributed renewable generation, coupled with weak connections to the

main grid via congested power lines, is a major cause of voltage instability in the first

place [11].

1.1.3 Demand-Side Flexibility

To address the inflexibility of generation in a net zero scenario, power system oper-

ators and researchers are increasingly looking at how flexibility can be sourced from

the demand side - through demand-side response. This refers to the various ways in

which power consumption can be managed at the customer side of the meter, which

can be broadly defined under three categories [12]:

• reduction of energy consumption through load curtailment;

• demand shifting between time periods; and

• use of onsite generation capacity to vary consumption from the main grid.

The various demand-side assets which can fulfil these criteria are known as dis-

tributed energy resources, comprising flexible loads, energy storage and distributed

generation:

• Flexible loads capable of temporary interruption or adjustment can be used for

load curtailment, e.g. building lighting or ventilation fans;
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• temporal demand shifting can be provided by storage devices and shiftable or

pliable loads, e.g. electric vehicle batteries, smart washing machines or heat

pumps (HPs)

• small scale generators, e.g. combined heat and power plants (CHPs), by sup-

plying power to local loads, can effectively reduce consumption from the main

grid; and

• curtailment of distributed generation output would increase consumption from

the main grid and this is a form of flexibility which is also available for small

scale generators, e.g. wind and PV installations.

Demand response from transport, heating and cooling loads is especially important,

not only because of their potential impact on power system utilisation, but also be-

cause of the energy storage opportunities associated with these sectors [9], [13].

Electric vehicles with smart charging or vehicle-to-grid capability [14], [15] could

provide a vast reserve of fast-response electrical energy storage with which to ac-

commodate large amounts of renewable generation. Similarly, buildings heated or

cooled by electric HPs or air-conditioning units have inherent thermal storage capa-

bility due to their thermal inertia, meaning that these loads can be shifted in time

without compromising building user comfort [16], [17]. Moreover, the advent of

ultra-low-temperature district heating and cooling (ULTDHC) networks (see Section

2.2.4) provides the opportunity for large amounts of thermal energy storage to be

leveraged for power system demand shifting [18]. These networks are operated

through the use of electrically driven HPs and water circulation pumps, which means

that the use of thermal energy storage capacity, e.g. from water tanks in buildings or

larger centralised storage such as aquifers and borehole fields, has direct impacts on

power system load [19].

1.1.4 Flexibility in Energy Markets

The value of flexibility from distributed energy resources is significant, both in terms

of reduced capital investments in power system infrastructure and reduced oper-

ating costs. The potential cost saving due to decentralised flexibility in the Great

Britain system has been estimated to be £3.8-8.1 billion/year in 2030, if target emis-

sions of 50-100 gCO2/kWh are to be reached by then [20]. More recently, flexibility
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managed across heat, transport, industry and power sectors in Great Britain was es-

timated to potentially save £9.6-16.7 billion/year for a net zero scenario in 2050

[6]. However, the full benefits of flexibility from distributed energy resources are

not currently recognised in European energy retail markets; most small customers

are still presented with flat tariffs which do not reflect time-varying system operating

conditions [5]. To unlock flexibility from whole-energy systems, customers with the

capacity to provide demand response must be transformed from passive consumers

into active prosumers. The use of dynamic rates in retail markets, which reflects the

time-varying components of energy system operation costs, is one way to incentivise

prosumers [21]; when exposed to hourly or sub-hourly pricing, flexible customers

can shift their consumption from periods of high prices, normally occurring during

demand peaks, to periods of lower prices and make significant savings on their elec-

tricity bills [5].

The use of dynamic pricing in energy retail markets is an indirect type of flexibil-

ity management, since prosumers may or may not respond to these price changes

[21]. Explicit demand response, on the other hand, refers to the trading of flexi-

bility services in wholesale markets, whereby commitments to provide consumption

reductions are made to preserve the reliability of the power system [12]. The value

and price of these services is expected to undergo significant growth in a system with

large-scale integration of renewable generation [5]. However, small prosumers are

currently prevented from participating in wholesale markets, owing to their size and,

in the case of commercial or residential customers, also their time-varying ability

to provide flexibility. This has led to the establishment of aggregators, commercial

entities which act as mediators between the system operator and a portfolio of pro-

sumers providing flexibility services [22]. By amassing a large and diverse portfolio

of distributed energy resources, aggregators can provide demand response services

with a higher level of certainty than is possible from individual prosumers.

Although aggregation does not need to take place over a specific geographical lo-

cation, commercial aggregation at the district scale is beneficial and convenient for

customers that are already physically aggregated by shared infrastructure, e.g. an

electrical feeder or district heating and cooling network. Not only are the benefits of

cumulative size and diversity of prosumers obtained within a district, coordination

at this scale can also provide distribution of system management tasks [21]. As an

example, if an aggregator detects a potential voltage instability event on the local
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distribution network, it could unilaterally procure load reductions from prosumers,

without necessarily having to involve the power system operator. In addition, an ag-

gregator with knowledge of district power, gas, heating and cooling networks would

be able to coordinate resources so that network performance and reliability objec-

tives are satisfied individually, whilst also recognising operational constraints and

the inherent interdependencies between these systems.

1.1.5 Coordination of Multi-Energy Districts

Optimisation of independent power systems enables operators to determine optimal

set points of controllable generators, i.e. such that performance objectives are opti-

mised, whilst satisfying operational, security and demand related constraints [23].

Generators each have an associated fixed cost and marginal cost per MWh of energy

used in each scheduling period, hence optimisation involves minimising the power

provided from more expensive generators. For power system operators, single pe-

riod optimisation, known as optimal power flow, and multi-period scheduling, known

as unit commitment, are routine computational tasks. However, implementation of

global scheduling and control of an aggregated, multi-energy system district presents

significant technical challenges [24]. Difficulties arise due to several factors:

• the large number of decision variables in the combined system;

• the non-linear equations used to describe the flow physics in multiple, inter-

connected energy networks; and

• the non-convex, mixed-integer modelling formulations commonly used to rep-

resent hybrid dynamical energy resources, e.g. battery storage systems or multi-

mode energy conversion devices [25], [26].

The combination of these factors increases the likelihood that a global optimisation

problem for on-line district management will be intractable, i.e. not solvable in the

timescales required, particularly as the system size and scheduling horizon are in-

creased [24].

An attractive method to address the high computational burden of complex optimisa-

tion problems is to decompose the global problem into smaller sub-problems which

can be solved in parallel by multiple independent agents. In the context of district
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coordination, the role of an independent agent could be fulfilled by an automated

building energy management control system, which manages demand response at

the individual building level [12], in communication with a district energy aggrega-

tor. For such methods to gain acceptance, the agents must exhibit guaranteed conver-

gence to solutions which are feasible for the original global problem; these solutions

would ideally be globally optimal too, although sub-optimality is generally accepted

due to the challenges involved [24]. However, for non-convex mixed-integer for-

mulations, convergence of decomposition approaches can prove difficult and even

converged solutions may not actually be feasible [27]. Decentralised approaches to

mixed-integer linear optimisation have recently been developed [27], [28], but they

have not been applied to the problem of non-linear multi-energy system optimisation.

In light of the above issues and given the potential for huge cost savings, improved

reliability and emissions reductions enabled by flexible multi-energy districts, the

authors in [24] recently concluded that:

‘...it is critical to represent multi-energy system and network models as relevant optimi-

sation and control tasks and uncover intrinsic convexity structures that lead to compu-

tationally efficient distributed solutions’.

This critical need for improved modelling representations and efficient optimisation

approaches, which can turn the ambitious vision of multi-energy districts into a prac-

tical reality, is the central motivation for this research.

1.2 Project Aim and Objectives

The research reported in this thesis is part of a project whose aim was to develop

a modelling and control framework which would enable a commercial multi-energy

district aggregator to manage energy flows from distributed energy resources, pro-

viding ancillary service brokering between prosumers and power system operators.

The energy management control framework proposed in the thesis supports this aim

by:

• being capable of on-line implementation, providing regular control actions which

take into account sub-hourly retail price updates in the energy market;
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• minimising customer costs whilst avoiding problematic demand response syn-

chronisation;

• ensuring customer comfort levels and inflexible loads are not compromised by

the provision of demand response;

• supporting energy system security by restricting operation to within acceptable

limits; and

• maintaining privacy between different stakeholders through a decentralised im-

plementation.

The following development objectives were initially identified to represent progres-

sive milestones towards the final modelling and control tool that would satisfy the

project aim:

1. Establish a general multi-energy system optimisation modelling framework and

develop an object-oriented programming software implementation.

2. Adopt or develop computationally efficient models of relevant distributed en-

ergy resources.

3. Adopt or develop computationally efficient models of relevant energy trans-

portation networks.

4. Adopt or develop a multi-agent control architecture for district energy system

management.

The satisfaction of these objectives required the development of novel modelling

formulations, optimisation algorithms and control schemes. These are described as

contributions in the following section.

1.3 Contributions

In the course of this research, several contributions to the body of knowledge on

multi-energy district modelling and coordination have been made. The contributions

of this thesis are summarised as follows:
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• The extension of existing multi-energy system mixed-integer linear program-

ming (MILP) frameworks to a mixed-integer second-order cone programming

(MISOCP) framework that can be readily integrated into model predictive con-

trol (MPC) schemes.

• Model development for key distributed energy resources which couple elec-

tricity and heat networks, namely reversible variable-speed water circulation

pumps and reversible water-source heat pumps.

• The development of a bi-directional ULTDHC MISOCP model, which is con-

vex after integer relaxation, ensuring efficient computation using mixed integer

programming (MIP) solvers.

• The development of a multi-agent optimisation algorithm for MILP problems,

using dual decomposition with constraint tightening and convergence acceler-

ation using Nesterov’s Accelerated Gradient method.

• A control scheme implementation of the multi-agent optimisation algorithm

in which an aggregator coordinates distributed energy resources, described by

MILP models, to maintain security in energy networks, described by MISOCP

models.

It should be noted that the development of a computationally efficient ULTDHC

model could also be applied in energy system design and planning applications where

computational efficiency may also be of value. Similarly, the applications of the multi-

agent optimisation algorithm extend beyond energy management control, indeed this

method could be applied to any MILP problem of suitable structure.

1.4 Published Research

Research outputs from the project, which are described in Chapter 4, have also been

published as a journal article:

[29] M. Taylor, S. Long, O. Marjanovic, and A. Parisio, ‘Model Predictive Control of

Smart Districts with Fifth Generation Heating and Cooling Networks,’ IEEE Trans.

Energy Convers., 2021.
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However, it should be noted that the method of generating model constraints used

in Chapter 4 is different from that detailed in the published article. The modelling

framework used in the article follows that of [30], which was initially adopted for

use in the project. After publication, a decision was subsequently taken to adopt

and develop a different modelling framework, that of [26], owing to the following

drawbacks of [30]:

• the approach of defining particular node types with connecting arcs, to gener-

alise modelling of energy conversion devices, was not intuitive;

• the generality of the framework did not extend to modelling water circulation

pumps and required modification to accommodate these devices;

• another node type had to be introduced to model all incoming and outgoing

flows of thermodynamic cycle devices; and

• device operational constraints, such as minimum up and downtime constraints,

could not be readily accommodated in the original framework.

By contrast, the modelling framework of [26], based on the established Mixed-

Logical Dynamical (MLD) framework [31] (see Chapter 3), is both intuitive and can

readily incorporate the above elements within the original generalised description,

without modification. These reasons of clarity and greater generalisation motivated

the decision to switch methods during the project, as well as the decision to only

describe the framework of [26] in this thesis. However, whilst the methods of gen-

erating constraints differ between the published article and Chapter 4, the actual

constraints passed to the optimisation solver were the same in each case (after sim-

plification) and therefore the results are also the same.

Some preliminary results of Chapter 6 have also been published in conference pro-

ceedings:

[32] M. Taylor, O. Marjanovic, and A. Parisio, ‘Decentralised Predictive Control of

Multi-Energy Resources in Buildings,’ Proceedings - IEEE 29th Mediterranean Confer-

ence on Control and Automation (MED), 2021, pp. 39–44.

To the authors’ knowledge, the research presented at the conference was the first

implementation of a decentralised iterative solution algorithm for multi-agent MILP
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problems from [27] within an MPC scheme (see Algorithm 8 of Chapter 6). How-

ever, as elaborated in Chapter 6, conditions were subsequently found for which the

algorithm in [27] encountered convergence issues, making it unattractive for a MPC

scheme in certain cases. Hence, novel algorithms are described in Chapter 6 which

address these issues and are therefore suitable for MPC.

Finally, a journal article is in preparation which presents the combined outcomes of

Chapters 5, 6 and 7:

[33] M. Taylor, O. Marjanovic, and A. Parisio, ‘Decentralised Supervisory Control of

Networked Multi-Energy Buildings,’ Manuscript in preparation, 2023.

1.5 Thesis Outline

The remainder of the thesis consists of the following topics by chapter:

• A literature review covering multi-energy system modelling concepts, energy

coordination methods and techniques to address computational efficiency in

district-scale optimisation problems (Chapter 2).

• An introduction to the optimisation modelling methodology used, documenting

any existing models adopted from the literature and proposed models devel-

oped for this work (Chapter 3).

• Application to buildings in a small multi-energy district, without detailed net-

work energy flow modelling, examining the performance of MPC versus a rule-

based control scheme to optimally integrate electricity, gas and ULTDHC sys-

tems (Chapter 4).

• Assessment of centralised MPC performance for a large multi-energy district,

considering detailed electricity and ULTDHC energy-flow models (Chapter 5).

• Development and implementation of a multi-agent optimisation algorithm within

an MPC scheme, with application to control a large number of buildings in a

district, without detailed energy-flow modelling (Chapter 6).

• Implementation of the multi-agent optimisation algorithm within an MPC scheme

capable of managing a district whilst considering detailed electricity and ULT-

DHC energy-flow models (Chapter 7).

34



• Final conclusions and discussion of several research challenges, highlighted by

this work, which could be addressed in future (Chapter 8).
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Chapter 2

Literature Review

This chapter begins with a brief introduction in Section 2.1, discussing the two main

types of multi-energy system coordination which are encountered in the literature.

Following this, various modelling frameworks for multi-energy system optimisation

are discussed in Section 2.2, together with an introduction to Ultra-Low-Temperature

District Heating Networks, which cannot be modelled with sufficient accuracy using

the available frameworks. Finally, examples of multi-energy system coordination

from the literature are reviewed in Section 2.3.

2.1 Introduction

As mentioned in Chapter 1, coordination of multi-energy systems involves the pri-

oritisation of some performance objective(s) whilst satisfying operational, security

and demand related constraints. This may be achieved through operational planning

ahead of time, e.g. days or hours ahead, or through online control, which regularly

imposes actions at intervals in the order of minutes or seconds. There are clear ad-

vantages to each approach and they are often used in unison: operational planning

facilitates participation in day-ahead markets and can be used for more complex

problems, since the time taken to reach a solution is less critical; whereas online

control offers the opportunity to address deviations from imperfect forecasts that are

used when planning, such as price or demand forecasts.

This literature review explores various approaches to energy system management in

relation to operational planning and online control, for which the trade-off between
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model accuracy and computation time must be managed differently. The scope is lim-

ited to multi-energy system applications, except in circumstances where background

knowledge from another relevant topic is required. The definition of a multi-energy

system that was used to guide the literature search is taken from [13], in which the

concept of multi-energy refers to:

‘considering a whole-system approach to optimisation and evaluation of the specific case

under study (for instance, a building or a country). In particular, the analysis approach

refers to explicitly expanding the system boundary beyond one specific sector of interest

(for instance, beyond electricity only or beyond heat only, as typical study cases).’

In addition, works concerned with optimal infrastructure planning in multi-energy

systems are not within the scope of this review, only strategies and modelling ap-

proaches that are concerned with optimal system operation.

Most multi-energy management schemes proposed in the literature involve solving

a mathematical optimisation problem at some point. The following sections assume

an understanding of mixed-integer mathematical programming problems, problem

structure, convexity and the implications for optimisation solvers. For the unfamiliar

reader, some basic concepts and terminology frequently used in relation to mathe-

matical optimisation are provided in Appendix A.

2.2 Multi-Energy System Modelling

For optimisation problems in multi-energy system management, equality and in-

equality constraints are used to describe the physical or operational limits of un-

determined system variables, as well as the physical relationships between them; the

constraints provide a representative mathematical model of the system. A conve-

nient level of detail at which to model resources in large, complex energy systems is

to focus on steady-state energy flows. These are the quantities for which there may

be limited capacity at various points within a system and which strongly correlate

to overall operating costs, since commodities such as electricity and gas are priced

per unit of energy. Models therefore typically describe the production, consumption,

conversion, storage and loss of energy during operation. However, these processes in

real, dynamic systems are inherently non-linear and often involve discrete states of

operation, i.e, they are hybrid dynamical systems. Therefore, the main challenge for
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multi-energy system modelling is to formulate constraints that represent real systems

relatively accurately, whilst also ensuring that the problem can be solved efficiently

and remain tractable.

2.2.1 Mixed Logical Dynamical Systems

In the majority of articles reviewed, mixed-integer linear programming (MILP) was

used to model and optimise the energy system of interest [25], [26], [30], [34]–

[49]. This stems from the fact that non-linear and hybrid system behaviour can be

approximated by transforming logical statements into mixed-integer linear equality

and inequality constraints. For prediction of hybrid dynamical systems, this method

has been formalised using a compact representation known as the mixed-logical dy-

namical (MLD) approach [31]. This method introduces additional continuous and

discrete auxiliary variables, z and δ, to the well-known discrete state-space represen-

tation of a system:

xk+1 = Axk +Buuk +Bdδk +Bzzk (2.1)

yk = Cxk +Duuk +Ddδk +Dzzk (2.2)

Edδk +Ezzk ≤ Euuk +Exxk +E (2.3)

However, the casting of logical constraints into inequalities in (2.3) can be non-

intuitive and this can hinder the generation of MLD models [26]. One option is to

use HYSDEL parser software [50], yet the reliance on another layer of software with

rigid functionality is restrictive when designing an energy management scheme. This

highlights another challenge in multi-energy system modelling - the development of

frameworks which enable rapid generation of the required optimisation constraints

for potentially large systems.

2.2.2 Energy Hub Framework

The energy hub framework [51], [52] was intended to address the issue of optimi-

sation model constraint generation, providing a matrix-based formulation to model

co-located energy conversion devices within a ‘hub’, which could be a building, a

building complex or even a district [52]. In this framework, static input-output mod-

els are used to represent any number of connected conversion devices within a hub,
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using conversion coefficients, cαβ, to describe energy flow between a hub input, P in
β

of energy type β, and a hub output, P out
α of energy type α. The matrix formulation

for an energy hub is given as follows:
P out
α

P out
β

...

P out
ω

 =


cαα cαβ . . . cαω

cβα cββ . . . cβω
...

... . . . ...

cωα cωβ . . . cωω




P in
α

P in
β

...

P in
ω

 (2.4)

The fact that this approach is straightforward to formulate, easily scalable and can

represent many hub topologies has made it popular amongst researchers, e.g. [34],

[53]–[56], and the term ‘energy hub’ has become synonymous with multi-energy

systems. However, there are well documented drawbacks to this approach:

• The use of ‘dispatch factors’ to describe multi-output devices leads to a non-

linear formulation [13], [34];

• bi-directional energy flows can not be accommodated [30], [57];

• a converter which connects hub outputs, e.g. an absorption chiller, cannot be

modelled [57]; and

• the use of a conversion coefficient matrix only permits very basic modelling

of devices in comparison to the MLD approach - for example, affine functions,

which are commonly used to represent thermal generators such as CHP units,

cannot be modelled using the energy hub formulation.

There have been various developments reported in the literature to improve the en-

ergy hub framework, such as linearising the constraints and adding the functionality

to either include logical conditions for hybrid systems [30], [34] or to accommo-

date more complex topologies [30], [55], [57]. Unfortunately, these improvements

detract from the simplicity and ease of the original formulation, whilst failing to

address the issue of affine function representation.

2.2.3 Modular Multi-Energy Management Framework

The multi-energy management framework presented in [26] presents arguably the

most computationally efficient and straightforward approach for modelling hybrid
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systems. This framework consists of individual sub-system modules using the follow-

ing generic representation:

xk+1 = Axk +Buuk +Bdδk +Bzzk +Bwwk (2.5)

yk = Cxk +Duuk +Ddδk +Dzzk +Dwwk (2.6)

Edδk +Ezzk ≤ Euuk +Exxk +Ewwk +E (2.7)

It therefore extends the original MLD method to account for predictable disturbance

forecasts, wk, and, because it is intended specifically for multi-energy systems, the

difficulty in generating constraints is avoided by having a set of predefined modules

with which to model distributed energy resources. Modules may be connected up

in any configuration and a general cost function is provided which allows a user to

encourage desirable operational behaviour, e.g. to minimise the rate of change in the

value of a given decision variable. The set of predefined modules includes energy

conversion devices, controllable energy sources and sinks, predictable (uncontrol-

lable) energy sources and sinks, simple energy balances and storage devices, only.

Hence, a key disadvantage with this, and all the other frameworks mentioned thus

far, is the lack of support for detailed, computationally efficient modelling of physi-

cal network flows in conjunction with distributed energy resources. The framework

is therefore limited to applications with relatively small systems or situations where

network conditions might justifiably be ignored.

2.2.4 Network Modelling and Analysis

Network conditions are not usually ignored in practice and modelling is typically

carried out using:

• alternating current (AC) power flow models of voltage, current, active and re-

active power in electricity networks [23];

• gas flow models of mass and pressure in gas networks [58]; and

• thermal models relating mass, pressure and temperature in district thermal

networks [59].

Each of these flow models, which are herein collectively referred to as energy flow

models, involves highly non-linear, non-convex relationships.
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Power flow models include the bus injection model and the less common branch flow

model, which are used to represent steady-state, balanced, single-phase networks

[23]. The branch flow model is of particular interest for optimisation because it

can be relaxed to a convex second-order cone programming (SOCP) form for which

solutions are considered to be exact, i.e. feasible for the original problem, under mild

conditions [60].

The gas flow model, typically based on the popular steady-state Weymouth equa-

tion to determine pressure drop [58], can also be relaxed to a mixed-integer conic

form which has been shown to be exact for radial gas networks that have one fixed

pressure node [61].

Finally, district thermal networks require both a hydraulic model and a thermal

model, each based on steady-state conservation of mass and energy [54], [59]. Both

of these models are non-convex and attempts to provide a convex formulation have

either involved a conic relaxation of the hydraulic model and linearisation of the

thermal model, by ignoring thermal losses [62], or linearisation of both models

by assuming fixed mass flow rates [63]–[66]. However, district heating networks

with constant mass flow rates have worse performance than for variable flows [59]

and the assumption of negligible thermal losses to the surroundings would only be

valid for networks operating at close to ambient temperatures, known as Ultra-Low-

Temperature District Heating (ULTDH) [67].

Ultra-Low-Temperature District Heating and Cooling Networks

District heating has evolved over the last 140 years via a series of distinct technolog-

ical generations, from the 1st to the current 4th generation of district heating (4GDH)

(see Fig. 2.1). The 1st generation is identified by the use of centrally generated pres-

surised steam as the heating medium, relying on coal combustion for the production

of heat. In each subsequent generation, operating temperatures have decreased in-

crementally, motivated by some socio-economic change [68]. The 2nd generation was

introduced in the 1930s to maximise the use of efficient, fossil fuel-based combined

heat and power plants, necessarily lowering the supply temperature, whilst the 3rd

generation was driven by a desire to improve efficiency and reduce costs, following

two international oil crises in the 1970s. The 3rd generation is typified by a lowering

of temperatures, the use of pre-insulated pipes to reduce thermal losses, and greater
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Figure 2.1: The evolution of district heating by generation, based on [68]. Sourced from

[69].

use of cheaper alternatives to oil, such as natural gas, biomass and waste incineration

[67].

Now, in recognition of the need to decarbonise the supply of energy, the 4GDH con-

cept has been developed [68] to continue the trend of lower operating temperatures,

increased efficiency and alternative heat sources, with the aim to completely displace

fossil fuels for heating. An additional stipulation of 4GDH is that it can be operated

flexibly in a smart multi-energy system, making use of cheap thermal storage and

coupling to the power system, via electrically powered heating, to support the inte-

gration of electrical and thermal energy from renewable sources.

Ultra-Low-Temperature District Heating (ULTDH) is a specific configuration of 4GDH

which operates at temperatures closer to the ground (below 50◦C) and is therefore

not suitable for direct heating (Fig. 2.2). As a result, each substation connecting the

network to a given building is equipped with a water-source heat pump (WSHP) able

to supply heated water at the required delivery temperature. It is also possible for

substations to operate in reverse, to provide building cooling by means of a WSHP

or direct cooling (if network operating temperatures are sufficiently low), to form an
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Ultra-Low-Temperature District Heating and Cooling (ULTDHC) network. This is a

unique advantage not shared with other, higher temperature 4GDH configurations,

which deliver heat from heat producers to end-users by a series of uni-directional

supply and return pipes (Fig. 2.3). When using such uni-directional configurations,

the provision of cooling would have to be delivered by a separate cooling network

[67], [68]. Heating is supplied from ULTDHC networks by drawing water from a

warm pipe, extracting the heat using a WSHP and discharging the cooled water to a

cooler pipe (Fig. 2.4). The reverse is true for a cooling demand. Thus both heating

and cooling can be supplied simultaneously by a single two-pipe network, reducing

installation cost and complexity.

Heat/Cold
Source

Warm Side

Cold Side
Building

Heat Pump
for Hea�ng

Heat Pump
for Cooling

Substa�on

Figure 2.2: Schematic of the ‘ULTDH combined heating and cooling (ULTDHC)’ 4GDH con-

figuration, based on [67].

Heat
Source

Substa�on

Supply

Return
Building

Circula�on
Flow

Delivery
Flow

Figure 2.3: Schematic of the ‘Classic’ 4GDH configuration, based on [67].

ULTDHC networks may have a centralised pumping station, with some users demand-

ing heating and others cooling (bi-directional energy flow), or have decentralised

pumps located at each substation (Fig. 2.4), with users able to switch between de-

mand for heating or cooling at different times (bi-directional mass and energy flow),

enabling them to become heat prosumers [19]. Heating and cooling demands from
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Figure 2.4: Schematic of an example ULTDHC substation, capable of bi-directional operation

using a reversible WSHP, based on [19].

buildings are partly balanced in real time by the district network. However, sea-

sonal variations will cause either heating or cooling demands to dominate at different

times. Therefore, some form of large thermal storage to manage seasonal balancing

is needed, e.g. aquifer or borehole storage. If cumulative heating and cooling de-

mands are not balanced in a given year then an external supply of heating or cooling

is also needed.

ULTDHC networks can provide additional benefits to those gained in other 4GDH net-

works: increased interchange of heat between buildings, negligible thermal losses,

fewer pipelines and increased operational flexibility so that large thermal storage ca-

pacity can be leveraged to support the power system. Due to the differences in design

and operation of ULTDHC compared to other 4GDH configurations, such networks

are often referred to 5th Generation District Heating and Cooling [19], including by

this author [29]. However, given that 4GDH is still in the early adoption phase [67]

and that generations are defined over several decades [68], it is more accurate to

describe these networks as a configuration of 4GDH [70].

An analysis of levelised cost of heat apparently showed that ‘Classic’ 4GDH was more

cost effective than UTLDH [71], yet the analysis did not take into consideration any

cooling demands, the cost of a separate cooling network or the additional revenue

for prosumers providing ancillary services. It may also be noted that whilst the im-

proved thermal efficiency of ULTDHC networks is slightly offset by increased circula-

tion pumping requirements [19], ULTDHC networks still offer emissions and energy

consumption reductions in comparison to traditional district heating and separate

cooling [72]. Many successful examples of bi-directional ULTDHC networks exist

[19], including the ‘Mijnwater Grid’ in Heerlen, The Netherlands [73], the ‘Surstoffi
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District’ in Rotkreuz, Switzerland [74] and the ‘Anergy Grid’ in ETH Zurich, Switzer-

land [75].

In order to exploit the flexibility of bi-directional ULTDHC networks for optimal in-

tegration with other energy systems, an advanced control strategy is required [18].

Not only is it needed to effectively dispatch energy resources that can provide sup-

port to the power system, it is also necessary to provide supervisory level dispatch of

circulation pumps in a network with bi-directional mass flows. Otherwise, pump-to-

pump interactions in bi-directional networks can cause pump feedback control loops

to become unstable, with pumps continuously adjusting their speed [76]. However,

of the few examples of bi-directional ULTDHC models in the literature, [77] does

not include pressure drop modelling and therefore uses linearised pump models,

whilst [78] and [72] each present models from a simulation environment which are

not suitable for optimisation. There is therefore a research opportunity to develop

a computationally efficient, bi-directional ULTDHC network flow model, including

variable flow circulation pumps, which could be utilised in an energy management

scheme.

To summarise, multi-energy system modelling and ULTDHC network concepts have

been introduced in this section and two gaps in the literature have been identified

thus far: the lack of support for detailed network analysis in multi-energy system

optimisation modelling frameworks and the lack of computationally efficient mod-

elling approaches for bi-directional ULTDHC networks with decentralised circulation

pumps. The following sections review existing approaches to multi-energy system

management in both the operational planning and online control domains.

2.3 Multi-Energy System Management

In this section, numerous examples of operational planning and of online control for

multi-energy systems are assessed. As discussed in the introduction to this chapter,

the relevant aspects when distinguishing between these problem classifications are

the time available for computation, the accuracy of problem inputs and the overar-

ching objective, from energy market participation to minimisation of resource con-

sumption. The general approach taken when discussing examples of each is to start

with the most basic problem formulations, which may exhibit good computational
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performance but do not provide the most accurate reflection of the real system, be-

fore moving on to other examples with gradually increasing size and complexity.

2.3.1 Operational Planning

Several approaches to multi-energy resource management in the literature use oper-

ational planning to facilitate strategic bidding in day-ahead markets, including retail

[34], [39], [43], [45], [46], [55], [62], [63], [65], [66], [79], [80], peer-to-peer

[44], ancillary service [43], [45], [81] and carbon trading markets [45], [55]. These

range from solving relatively simple problems, e.g. deterministic resource schedul-

ing of a small system, to large, complex problems, e.g. robust scheduling of a district

whilst accounting for network energy flows (see Table 2.1).

Ref. Year
Prediction Sampling Connected Networks Uncertainty

Method
Horizon Interval Systems Modelled Handling

Problems without Network Energy Flow Constraints:

[55] 2019 24 hr 1 hr 1 n/a Deterministic MILP

[44] 2020 24 hr 1 hr 2 None Deterministic MILP

[46] 2021 24 hr 1 hr 5 None Deterministic MIQP

[34] 2012 24 hr 1 hr 1 n/a RO MILP

[81] 2021 1 hr 5 min 6 None RO MINLP

[43] 2019 24 hr 0.5 hr 50 None RO MILP

[79] 2020 24 hr 1 hr 1 n/a RO MILP

Problems involving Network Energy Flow Constraints:

[54] 2018 n/a n/a 5 Power & HTDH n/a NR

[82] 2016 n/a n/a 32 Power & HTDH n/a NR

[83] 2016 n/a n/a 11 Power, Gas & HTDH n/a NR

[84] 2014 n/a n/a 11 Power & Gas n/a EA

[85] 2017 n/a n/a 118 Power & Gas n/a MILP

[80] 2018 n/a n/a 13 Power & Gas n/a SOCP

[65] 2018 n/a n/a 33 Power & HTDH n/a SOCP

[86] 2018 n/a n/a 24 Power & Gas n/a MISOCP

[87] 2015 24 hr 1 hr 30 Power, Gas & HTDH Deterministic EA

[62] 2019 24 hr 1 hr 5 Power & HTDH Deterministic MISOCP

[66] 2021 24 hr 1 hr 6 Power & HTDH Deterministic MISOCP

[63] 2020 24 hr 1 hr 4 Power, Gas & HTDH Deterministic MISOCP

[45] 2021 24 hr 1 hr 26 Power, Gas & HTDH Deterministic MIQP + NLP

[64] 2020 24 hr 1 hr 32 Power & HTDH RO MISOCP

[39] 2018 24 hr 0.5 hr 26 Power, Gas & HTDH RO NR + MILP

Table 2.1: Overview of operational planning studies reviewed in this section. EA = Evolu-

tionary Algorithm; HTDH = High-Temperature District Heating; NR = Newton-Raphson;

RO = Robust Optimisation.

Problems without Network Energy Flow Constraints

The most basic example of resource scheduling is presented in [55], in which a day-

ahead optimisation is used to minimise the operating costs of a single energy hub,

considering carbon pricing and time-of-use electricity and gas prices. The method
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uses a modified energy hub modelling approach to determine optimisation con-

straints, resulting in an MILP problem, although converters are only represented by

static models.

Prices for electricity and heat are determined in [44] using a peer-to-peer market

between a residential and a commercial prosumer, for which an MILP is also solved.

The centralised optimisation seeks to maximise fairness between the two prosumers

based on an uncooperative game, exploiting the demand flexibility from their respec-

tive distributed energy resources. The outputs of the optimisation are fixed prices for

electricity and heat over the next 24 hours, together with an operating schedule for

demand response.

A more complicated scheme in [46] attempts to implement dynamic pricing for a

collection of four integrated energy systems connected to a power supplier. The

scheme uses an MIQP optimisation to allow the power supplier to determine real-

time pricing which maximises supplier profits and reduces the costs for each energy

system. Demand response from the energy systems is determined using a rule-based

strategy and all information regarding the operation of the energy systems must be

available to the power supplier carrying out the centralised optimisation.

In each of these schemes, economic and operational decisions are made based on an

operating schedule without any method for mitigation against uncertainty in system

models and forecast data. Robust scheduling may be used to address this by consid-

ering worst-case bounds on parameter uncertainty during optimisation, as demon-

strated in [34], [43], [79], [81].

The uncertainty of conversion coefficients, production and load for an energy hub is

captured in a robust MILP formulation in [34]. The work demonstrates that robust-

ness against uncertainty can be ensured for a small (∼10%) increase in the cost of

purchased energy for a relatively small system.

Multiple district energy systems are coordinated using robust scheduling in [81],

enabling an amount of ‘certain’ capacity to be traded in the electricity reserve market.

However, the problem is formulated using mixed-integer non-linear programming

(MINLP) and solved by particle swarm optimisation, which may or may not converge

to a globally optimal solution.
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In [43], a similar objective to provide reserve capacity from flexible resources in a

smart district, without compromising thermal building comfort, is demonstrated us-

ing stochastic, robust MILP optimisation. For the case studied, the response to reserve

calls from the power system operator, by manipulating indoor building temperatures,

proved to be effective in maximising revenue.

An affine adjustable robust optimisation, formulated as a MILP problem, is presented

in [79], using a hospital and a university campus as case studies. The approach per-

forms comparably to an ‘omniscient’ optimisation, in terms of cost and satisfaction of

demands, and also significantly outperforms a deterministic counterpart with imper-

fect forecasts. One downside, as noted by the authors, is that the size of the robust

MILP problem grows rapidly with an increase in the system scale. A further weakness

in each of these methods is the lack of detailed network analysis when scheduling

resources, since these resources ultimately affect network operation.

Problems involving Network Energy Flow Constraints

Before submitting bids on behalf of prosumers in a district, for energy supply or

purchase in retail or flexibility service markets, a multi-energy aggregator must first

check that their bidding strategy is feasible and will not violate district network con-

straints. Otherwise the aggregator’s bids may be rejected or they may face fines by

the energy system operator for failure to deliver [40], [45]. This requires integrated

multi-energy network analysis to be carried out, to determine whether submitted bids

for energy production and consumption violate network constraints in any given time

period. Checks could either be carried out as:

• an energy flow problem, in which all production and consumption variables

have already been determined (except for slack nodes) [54], [82], [83], [86];

• as an optimal energy flow problem, which optimises resources subject to net-

work constraints in a single period [65], [80], [84], [85]; or

• as a network constrained unit commitment or scheduling problem, in which the

temporal constraints of distributed energy resources at the district [62]–[64],

[66], [87] or building level [39], [45] are taken into consideration.
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Since energy flow problems simply involve solving a set of simultaneous equations,

coupled non-linear energy flow models for power and heat [54], [82] or power,

heat and gas [83] can be solved relatively easily using the iterative Newton-Raphson

method. However, as is discussed in Appendix A, optimisation problems with non-

linear constraints are not so easily solved. Hence, integrated optimal energy flow

problems based on the same non-linear models must be solved using heuristic algo-

rithms [84], [87], which cannot guarantee convergence to the optimal solution.

To avoid non-linear solution methods, the same general problem from [84] is refor-

mulated as a MILP problem in [85], linearising the gas flow constraints and using

the linear DC power flow model (which assumes negligible line resistance, constant

voltage and small voltage angles). This can be solved much more easily and the er-

ror introduced by linearising the gas network constraints is reduced through further

MILP optimisations in an iterative algorithm. However, the inaccuracy introduced by

use of the DC flow model for an AC power network is not addressed. The linearised

AC DistFlow model is utilised in [63], [64], which incorporates reactive power and

voltage magnitudes, but is still inaccurate when power losses and voltage drop are

significant.

The energy flow problem in [86] and optimisation problems in [62], [65], [66], [80]

accommodate AC power flow behaviour by adopting a convexified branch flow model

[60]. For integrated power and gas networks, the gas flow problem may be trans-

formed into a mixed-integer second-order cone programming (MISOCP) problem,

by relaxing non-convex quadratic equalities to convex inequalities and introducing

binary variables to indicate gas flow directions [86], or solved as a SOCP problem in

successive iterations [63], [80]. However, for integrated power and heat networks

in [62]–[66], the heat flow problem is transformed into a convex one by assuming

fixed mass flows in supply and return lines which, as previously mentioned, is not the

preferred operating mode due to their inefficiency when compared to variable mass

flow operation.

Network-secure scheduling of buildings’ energy systems in a smart district is consid-

ered in [39] and [45]. In each case, the problem of optimally scheduling resources

in buildings is separated from the integrated network analysis problem. In [39], the

non-linear integrated power, gas and heat energy flow problem is solved using the

Newton-Raphson method from [83], enabling the identification of network violations

produced by the optimal building operation schedule. If there are any violations, ad-
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ditional linear constraints are added to the optimal scheduling problem and it is

resolved in an iterative process until a feasible operation schedule is determined.

Similarly, separate non-linear energy flow models are solved for power, gas and heat

networks using a non-linear solver in [45]. Power, gas and heat system operators

interact with an aggregator, responsible for optimal scheduling of energy resources

in buildings and submitting market bids, via an alternating method of multipliers

algorithm. Whilst the computational performance of the two approaches reported in

[39], [45] is shown to be sufficiently quick for day-ahead bidding, the use of non-

linear network models and centralised optimisation for all buildings are weaknesses

in each case. Privacy of building users is not preserved with this structure and, given

that each also considers mixed-integer modelling of energy resources, increasing the

size or complexity of the system is likely to cause exponential increases in computa-

tion time.

The various methods discussed in this section may offer some advantage in oper-

ational planning for their intended application, particularly those which are based

on robust optimisations and/or consider network energy flow constraints. However,

this approach of ‘open-loop’ scheduling, without any recourse to address forecast or

modelling errors, is unsuitable for online dispatch of controllable system resources.

This is the role for online control, as discussed in the following section.

2.3.2 Online Control

Online control strategies reported in the literature either assume that a schedule for

a set of aggregated resources has already been determined via day-ahead scheduling,

and that there are economic incentives or penalties for tracking this schedule, or that

resources are dispatched in online based on known and forecasted price signals. The

dominant online control strategy, model predictive control (MPC), is well suited to

handling either scenario and is discussed first.

Model Predictive Control

Many of the techniques in optimal scheduling can be repurposed for online control

by implementing a MPC or receding horizon strategy. It is important to note that MPC
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does not designate a specific control formulation, rather a wide range of methods

with the following common features [88]:

• explicit use of a model to predict system outputs over a time horizon;

• calculation of a control signal by minimising an objective function; and

• receding horizon updates (see Fig. 2.5) in which the first instance of the control

signal is applied before the time horizon is displaced one time step towards the

future and a new control signal is recalculated.

Past Future

Prediction Horizon, 𝑁𝑝

𝑦

𝑦

𝑢 𝑢

Reference Trajectory

Past output

Predicted future output

Past control input

Future control input

k-1 k k+1 k+2 k+𝑁𝑝

Figure 2.5: Illustration of receding horizon strategy from [89]. At each sampling instance,

k, system states are updated and new future trajectories determined.

A MPC scheme is a multi-variable strategy integrating online optimisation of a pre-

diction model with a feedback mechanism which can compensate for forecast and

modelling errors [88]–[91]. All of these features make MPC ideal for energy man-

agement applications which generally involve a large number of variables, dynamic

models, operational constraints and a degree of uncertainty in forecasted variables

[25]. Whether explicitly stated or not, many optimisation based methods in real-

time control of multi-energy systems satisfy this generic definition of MPC [26], [30],

[36], [37], [40]–[42], [47], [48], [56], [92]–[94].
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Computation time is a critical factor in optimal online control. If a feasible, optimal

(or at least near-optimal) control action cannot be provided within a limited period

after a system state measurement or estimate is obtained, then this action will be

based on out of date information and may no longer be optimal or even feasible.

Furthermore, if the worst-case computation time is longer than the sampling interval

length, an even more problematic situation may arise in which no control action is

provided at all. As a result, there is typically a compromise made regarding either the

modelling accuracy, system scale, scheduling horizon length or sampling frequency

when designing online energy management control schemes (see Table 2.2).

Ref. Year
Prediction Sampling Connected Networks Uncertainty

Method
Control

Horizon Interval Systems Modelled Handling Structure

Model Predictive Control:

[37] 2017 4 hr 15 mins 1 n/a Deterministic MILP Single Controller

[30] 2019 24 hr 30 mins 1 n/a Deterministic MIQP Single Controller

[26] 2020 24 hr 15 mins 1 n/a Deterministic MILP Single Controller

[48] 2021 3-7 days 7.5-15 mins 1-12 HTDH & DC Deterministic MILP Single Controller

[94] 2019 24 hr 1 hr 6 None ANN NLP Single Controller

[95] 2017 150 secs 30 secs 1 n/a SO QP Single Controller

[93] 2016 10 secs 1 sec 1 n/a SO QP Hierarchical

[40] 2019 24 hr 30 mins 1000 None SO MILP + RBC Hierarchical

[42] 2019 3-24 hr 0.5-1 hr 1 n/a Deterministic MILP + RBC → LP Single Controller

[41] 2019 24 hr 10 mins 1 n/a Deterministic LP Single Controller

[92] 2018 24 hr 15 mins 3690 Power Deterministic MILP Multi-Agent

[63] 2020 24 hr 1 hr 4 Power, Gas & HTDH Deterministic MISOCP Multi-Agent

[36] 2017 24 hr 10 mins 5-15 None Deterministic MILP Multi-Agent

Table 2.2: Overview of model predictive control studies reviewed in this section. ANN = Arti-

ficial Neural Network; DC = District Cooling; HTDH = High-Temperature District Heating;

RBC = Rule-Based Control; SO = Stochastic Optimisation.

For example, an MPC scheme for a microgrid with a combined cooling, heat and

power system is presented in [37]. The scheme aims to minimise energy production

costs by solving an MILP problem every 15 minutes, using short-term error prediction

and static optimisation based feedback correction every 5 minutes. The computation

times of the rolling optimisation and feedback correction are sufficiently small, aver-

aging 2.2 and 1.1 seconds, respectively. However, the prediction horizon length of 4

hours is relatively short and the size of the system is also relatively small, with only

two storage systems and four controllable energy conversion devices, therefore the

resulting MILP problem is small and easily solved.

The scale and complexity of the system under consideration is increased in [30], in

which an energy hub supplies three university campus buildings. One of the buildings

can consume heat flexibly, whilst another can consume electricity flexibly, providing

additional demand response capacity. The controller optimises an economic objective

52



to minimise costs and changes to flexible loads, resulting in an MIQP problem, for

a prediction horizon of 24 hours which is discretised into 48 half hourly periods.

Although the reported computation time for the control problem of 32 seconds is

appropriate given the sampling frequency, if the system scale were increased to the

district scale then the problem could become intractable.

A similarly sized system was studied in [26] which utilised more detailed device

modelling by virtue of the adopted MLD modelling formulation, although it did not

include flexible loads. A very similar MPC scheme to that of [30] was presented, solv-

ing a single MILP problem every 15 minutes with a prediction horizon of 48 hours.

The computation time was surprisingly fast at approximately 1.3 seconds, which may

be attributed to the use of a high performance server to run the computation and

possibly fewer binary variables in comparison to [30]. However, no networks were

modelled in detail in either study and the problem of scalability for MILP problems

remains.

The problem of scalability is well demonstrated by [48], for which an MILP problem

is designed to manage the thermal comfort of up to twelve buildings, connected by a

high temperature district heating network and separate cooling network. Due to the

slow thermal dynamics considered, a prediction horizon of three days to one week is

considered, for which the resulting computational times are given in Table 2.3.

No. of Buildings Prediction Horizon Sampling Interval Computation Time

1 7 days 15 mins < 5 mins

12 7 days 7.5 mins 5 hrs

12 3 days 7.5 mins 20 mins

Table 2.3: Computational time for case studies of varying problem size reported in [48]

Clearly the scheme would require amendment if it were to be used in a receding

horizon implementation, as is suggested by the authors, since the computation time

for twelve buildings exceeds the sampling interval. Moreover, the network modelling

is arguably already over-simplified since fixed mass flows and uniform supply tem-

peratures are considered in the thermal networks.

The approach proposed in [94] avoids MILP optimisation altogether, favouring a

combination of non-linear modelling and an artificial neural network. The reason

given for avoiding MILP is that it cannot accommodate the non-linear functions used
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to represent devices operating at part-load, although these can be approximated us-

ing MILP, as discussed in [26]. The artificial neural network is used to predict the

indoor temperature of an office building in response to a controllable set-point tem-

perature. This office temperature prediction model and non-linear models for a heat

pump, gas boiler and CHP are incorporated into a genetic algorithm optimisation

solver, implemented every hour with a 24 hour prediction horizon. Despite hav-

ing relatively few controllable resources and only four fixed heating loads from other

buildings, the non-linear optimisation takes 143 seconds to compute a control action,

which is slow for a system of this size.

At the other end of the spectrum of modelling complexity, stochastic optimisation

schemes for a hydrogen based microgrid in [95] make use of models which have been

linearised around an operating point. The increased computational burden encoun-

tered with scenario based stochastic MPC methods is offset by a very short prediction

horizon of 150 seconds and very small system size, enabling a sampling interval of

30 seconds. These examples highlight the compromises made in centralised single-

controller MPC architecture in order to maintain tractability.

Hierarchical MPC schemes offer one route to decompose the control problem into

simpler sub-problems at different timescales. The stochastic MPC controller from

[95] is split into two management layers in [93], an optimal generation scheduling

layer and an MPC layer. Stochastic scenario generation optimisation is undertaken

every hour and provides a reference value to be tracked by the MPC layer. Still using

linearised modelling for a small system, the MPC optimisation is undertaken every

second, a considerable increase in sampling frequency, and uses a prediction horizon

of 10 seconds.

A much larger system consisting of 1000 prosumers is also managed by a hierarchical

MPC scheme in [40]. An aggregator first submits bids in day-ahead energy and re-

serve markets on behalf of the prosumers, based on a stochastic optimisation model

[96], providing a schedule of energy demand and reserve capacity which must be

satisfied. The MPC controller then attempts to minimise the cost of delivering this

schedule, updating the state of the prosumers’ resources and solving a MILP opti-

misation every half an hour, whilst a lower level rule-based controller dispatches

resources with higher frequency, i.e. every 10 seconds, in response to an automatic

generation control signal from a power system operator. The scheme leaves the re-

sponsibility for congestion analysis with the system operator and it should be noted
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that a heating network is not considered. Furthermore, whilst the computational per-

formance of the MPC controller is impressive, considering there are 1000 prosumers

each with three flexible resources, i.e. an electric vehicle, battery and controllable

thermal load, the execution time of nearly 20 minutes is far from ideal for half hourly

sampling.

Other innovative ways to address computation time include methods which reduce

the number of optimisation variables in the control problem. For example, rule-based

MPC is proposed for an electricity-only microgrid in [42], in which binary variables

are fixed prior to optimisation. This method, which uses a set of rules related to

dynamic prices and output from renewable energy sources to fix binary values, can

reduce the computation time of the original MILP by 65-80%, with only a marginal

increase in microgrid operating costs. However, when the method is applied to more

complex systems with greater degrees of freedom for demand satisfaction, the deriva-

tion of if-then-else rules for fixing integer variables becomes too complicated.

Alternatively, variable reduction can be achieved through multi-rate MPC, which in-

volves using two different time steps in the control problem - a short time step for the

prediction model and a longer time step for applying control inputs. The technique is

demonstrated in [41] to schedule operation of a chiller which is used to regulate the

indoor temperature of an office building. A prediction model time step of 10 minutes

is considered with control actions determined at time steps of between 10 minutes

and 8 hours. Computation time in comparison to the single-rate case is reduced by

around two thirds for all control intervals tested, with little increase in overall costs

up to a control interval of 2 hours. Whilst this may be useful for a specific problem

with high computational burden, the fact that no further reduction in computation

time is achieved for longer control intervals suggests this approach has a limit to its

effectiveness.

A proven method to aid tractability is to decompose the global optimisation into

a set of smaller sub-problems which can be solved in parallel by individual agents

[97]. A secondary advantage of these multi-agent schemes for energy system man-

agement is that a greater degree of privacy can be maintained between different

parts of a multi-stakeholder system. There are numerous examples of decentralised

energy management schemes which are based on Lagrangian dual decomposition of

convex system models [56], [98]–[102]. However, there are fewer examples that
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optimise mixed-integer model formulations, since convergence of Lagrangian-based

decomposition methods is affected by convexity.

There are at least two algorithms enabling multi-agent, mixed-integer optimisation

using Lagrangian-based methods, either by solving decomposed sub-problems suc-

cessively [92] or in parallel but with an additional iterative sequential stage involving

integer relaxation [63]. Another, non-Lagrangian, cooperative algorithm involving

an energy aggregator was presented in [36] and used to coordinate flexibility ser-

vices amongst network connected microgrids. Optimal microgrid power profiles were

coordinated in a series of phases involving parallel computations and a final power

redistribution phase which required sequential sub-problem solving. Therefore, none

of these methods allow agents to solve the mixed-integer problem in parallel, using

a single iterative algorithm.

Recently the use of dual decomposition and constraint tightening has been demon-

strated for decentralised optimisation of up to 10,000 modelled electric vehicles,

each subject to shared resource constraints [27], [28]. The proposed algorithms

allow parallel computation of sub-problems and require only one iterative stage to

achieve finite-time convergence to a feasible solution [27]. Whereas a commercial

solver was unable to provide an adequate solution to the centralised MILP problem if

the number of vehicles exceeded 700, the decomposition method provides solutions

in 30 mins for 10,000 vehicles. Furthermore, the optimality gap diminishes as the

size of the system increases, whilst privacy is also maintained between local agents

and a central coordinator. Despite these attractive features, the method has not been

incorporated into an online control scheme. Moreover, the method has not been

demonstrated for the more complex application to flexible multi-energy systems,

which typically requires greater computational effort due to additional constraints

used to model energy system interactions.

Model Predictive Control Alternatives

Aside from MPC schemes, several other online energy management approaches are

reported in the literature. An auction mechanism for day-ahead and online energy

trading between system stakeholders is presented in [103]. Trades are made be-

tween end-users, a distributed multi-energy generation plant and supplier network

operators, with penalties for users who deviate from their agreed schedule. Whilst
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this mechanism is shown to be fair for participants, it does not consider a prosumer’s

ability to sell energy, nor are networks accurately modelled.

Alternatively, a greedy algorithm is discussed in [35] which provides very efficient

computation in comparison to a comparable optimisation. The algorithm ranks re-

sources in order of flexibility and prioritises allocation to inflexible resources during

dispatch. However, this does not allow energy arbitrage to be carried out, since future

control actions are not considered, resulting in solutions that are far from optimal.

Another interesting method is the use of deep reinforcement learning to achieve real-

time control [104], [105]. These are ‘model-free’ approaches, since a control policy

based in Markov decision processes is constructed using training data, with the ad-

vantage that uncertainty is captured during the learning process. Such methods do

not require forecasts, only current state information, and control actions for a resi-

dential system in [105] are computed in seconds, with comparable optimality to a

MILP solution. However, despite strong performance for a relatively small system

with operation which does not deviate significantly from normal operating condi-

tions, it is difficult to predict the controller response in extreme situations not cap-

tured by the training data set. Furthermore, a period of retraining would be needed

for every change made to the energy system, which requires expertise to select train-

ing algorithm parameters and to avoid under- or over-fitting to the training data. For

these reasons model based optimal control still holds some advantages.

2.4 Summary

This review has covered a cross section of the literature on multi-energy systems, fo-

cusing on modelling approaches and energy management strategies. The two main

areas which have not yet been fully addressed in the literature are: the lack of com-

putationally efficient integrated energy network modelling approaches and poor scal-

ability in optimisation based control methods for which computation time must be

minimised. These can be broken down more specifically as:

1. Available multi-energy system optimisation modelling frameworks do not suffi-

ciently accurately model, in a computationally efficient manner, the non-linear

flow physics of multiple interconnected energy networks.
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2. None of the surveyed case studies for online control considered bi-directional

ULTDHC networks in an integrated multi-energy system.

3. There are no available methods to model mass and energy flows in bi-directional

ULTDHC networks such that they are suitable for optimisation and can there-

fore be used for network pump dispatching.

4. No MPC strategies have been demonstrated for online management of large

hybrid multi-energy systems, modelled using MILP, which allow sub-problems

to be solved in parallel via a single iterative algorithm.

5. Novel dual decomposition and constraint tightening methods for MILP prob-

lems have not been applied either in an MPC strategy, in a multi-energy systems

context or for MISOCP problems.

In the following chapters these gaps are addressed and demonstrated via a series of

case studies. In Chapter 3 a multi-energy system optimisation modelling framework

is presented which can be used to generate MISOCP problems. It is therefore capable

of incorporating network energy flow models. For rapid generation of problems for

integration into MPC schemes, an extensive library of pre-defined system component

modules are also presented, together with device modifiers to allow modelling of

specific device characteristics. Cost modifiers are also included in the framework,

allowing for customisation of the control objective associated with a given problem,

such that actual economic costs and other penalties to encourage specific system

behaviours can be considered.

Newly proposed component modules are then integrated into a control scheme for

coordinating a small-scale multi-energy district framework in Chapter 4. These are

reversible WSHP and fixed speed circulation pump components which permit a ULT-

DHC substation to be added to the control problem. A simple network power balance

module is also used so that exchange between buildings can be modelled, based on

a directed graph representation of a given network. A case study then demonstrates

control of three buildings within a small district, each connected to power, gas and a

bi-directional ULTDHC network.

Since simple network power balances cannot be used to avoid voltage or pressure vi-

olations, in Chapter 5 modules for detailed AC networks and ULTDHC networks are
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utilised in the control scheme instead. A module for modelling variable speed circu-

lation pumps, which are more efficient than fixed speed pumps, is then also included,

made possible by the ability to model ULTDHC network pressures. The case study

of a large multi-energy district which is presented in this chapter demonstrates that

these modules can be used to ensure feasible network operation whilst pursuing eco-

nomic objectives. Set points can also be obtained for decentralised circulation pumps

to avoid pump-to-pump interactions, which may otherwise occur if controlled only

by feedback control loops based on network sensors. However, the computational

performance of the scheme in this chapter is very poor as the employed centralised

control approach is not scalable.

To address this, in chapter 6 more scalable optimisation methods are introduced

which use dual decomposition to enable parallelised solution of a global problem.

Two novel multi-agent algorithms are proposed to address convergence issues when

existing approaches from literature are applied in a MPC scheme. The multi-agent

algorithms are compared in two case studies, one involving an EV charging opti-

misation problem and one for control of a multi-energy district with basic network

capacity constraints.

The results of Chapters 5 and 6 are combined in Chapter 7, in which a MPC scheme

is proposed that is both scalable and capable of considering detailed multi-energy

network constraints. Case study results are then presented for online control of a

large-scale multi-energy district, demonstrating improved economical performance

over a centralised alternative and computational times which would be appropriate

for real world applications.

59



Chapter 3

Multi-Energy System Optimisation

Modelling Framework

3.1 Introduction

A general multi-energy system optimisation modelling framework is defined in this

chapter. The framework takes inspiration from several MILP based multi-energy sys-

tem modelling approaches [25], [26], [30], though the hybrid MLD system represen-

tation described in [26], specifically, is adopted and extended throughout the thesis.

All of the different approaches can be followed to generate the same underlying con-

straints, after simplification, for a given system and produce the same results. In

fact, each of them has been followed to generate material for publication at the var-

ious stages of this research project. However, the general representation in [26] is

perhaps the easiest to understand in a multi-energy system context and should be

familiar to control practitioners, being an extension to the original MLD modelling

formulation [31].

The purpose of the framework is to enable an end-user to generate an optimisa-

tion problem which can then be readily integrated into a MPC scheme. Therefore,

the framework should facilitate the generation of constraints and a cost function for

multi-energy systems of arbitrary configuration, and also be amenable to software

implementation. As in [26], this is achieved by defining a set of individual mod-

ules which represent the component parts of a multi-energy system, which can then

be connected to one another in any desired configuration. Individual modules may
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represent conversion devices, system loads, storage or connecting networks and, as

a minimum, each pre-defined module contains a set of modelling constraints to de-

scribe the basic physical characteristics of that component part. An end-user can also

modify modules, through the addition of pre-defined constraint sets which alter the

operational behaviour of a given component (see Section 3.3.12), and/or via inclu-

sion of pre-defined cost function terms to define how the component is optimised

(see Section 3.7). The framework therefore provides a scalable and versatile means

of MPC model development for multi-energy systems.

To facilitate model development, an object-oriented programming solution was cre-

ated, built upon the open-source optimisation software parser, YALMIP [106]. The

newly developed software uses classes, methods and inheritance to enable the rapid

development of large system models, by connecting up individual device modules to

form larger, aggregated modules. The open-source repository for this software can

be found at: https://github.com/mike280512/COMMES_MLD.

3.2 Generic Module Representation

The general representation of MILP module constraints is given by [26] as:

xk+1 = Axk +Buuk +Bdδk +Bzzk +Bwwk (3.1)

yk = Cxk +Duuk +Ddδk +Dzzk +Dwwk (3.2)

Edδk +Ezzk ≤ Euuk +Exxk +Ewwk +E (3.3)

where k is the discrete time index, xk ∈ RNx is the vector of system states, uk ∈

R
Nuc × ZNud is the vector of continuous and discrete control inputs, δk ∈ ZNδ is the

vector of discrete auxiliary variables, zk ∈ RNz is the vector of continuous auxiliary

variables, wk ∈ RNw is the vector of disturbance forecasts and yk ∈ RNy is the vector

of system outputs. The vector E contains variable upper and lower bounds as well as

fixed system inputs. Variable values are held constant during each sampling period,

i.e. they are modelled with zero-order hold.

In order to accurately represent non-linear component behaviour, modules may also

be defined that feature quadratic inequality constraints. Hence, the general represen-

tation of (3.1)-(3.3) is extended with the addition of constraints with the following
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form:

1

2
z⊤
k Fzznzk + F⊤

znzk ≤ Fn, n = 1, ...,m (3.4)

in which m is the total number of quadratic constraints per discrete time period, Fzzn

is a Nz ×Nz matrix, Fzn is a Nz × 1 vector and Fn is a scalar.

All of the component parts of a generic multi-energy system are represented as dis-

tinct modules which may be connected up to form larger aggregate modules. Hence,

energy demand, conversion and storage components can be aggregated to represent

energy systems in buildings and these in turn can be aggregated to represent build-

ing districts (see Fig. 3.1). When components are aggregated, their variable vectors

are concatenated, their respective coefficient matrices in (3.1) - (3.3) are combined

using block-diagonal concatenation and matrices in (3.4) are padded with zeros to

achieve the correct dimensions. For example, if two components are aggregated,

their continuous auxiliary variable vectors, zk1 ∈ R
Nz1 and zk2 ∈ R

Nz2 , would be

concatenated to zk ∈ RNz1+Nz2 , matrices Bz1and Bz2 would be combined to form

Bz =

Bz1 0

0 Bz2

 and new matrix FNz×Nz
zzi

and vector FNz×1
zi

would be generated,

for which Nz = Nz1 +Nz2.

To form connections within aggregations, output variables of each component mod-

ule, yk, are designated as either source or sink ports for connection to the ports of

other components. Connection constraints are added which define the flow of energy

between connected ports:

yk,snkj = γij · yk,srci (3.5)

For example, the heat output of a heat pump would be designated as a source port

and may be connected to the sink port of a heat demand. By convention, a positively

valued output variable at a sink port, yk,snkj , always represents a physical flow into

the component at that port. Unlike in [26], γij may take positive or negative values

to enforce this convention. Furthermore, γij may take values of any magnitude, to

represent physical transmission losses (|γij| < 1), to convert between different units

of a physical quantity, e.g. between kW and p.u. of electricity, or to convert between

different physical quantities of relevance, e.g. conversion between a mass flowrate

of water at a given temperature and the amount of heat energy available from the

water. A table is provided in Appendix B which gives examples of the various forms

of γij that may be used to connect different modules.
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Figure 3.1: Illustration showing the recursive aggregation of connected component mod-

ules. Multiple components are aggregated to form a building module and in turn multiple

buildings are aggregated to form a district. Filled circles indicate source ports, empty circles

indicate sink ports and lines indicate connections.

Whenever there is a need to connect several output ports of the same physical type

at a common junction, then a distributor module is used with a defined number of

source and sink ports:

ysnki = zsnki (3.6)

ysrcj = zsrcj (3.7)
Nsnk∑
i=1

zsnki −
Nsrc∑
j=1

zsrcj = 0 (3.8)

where Nsnk and Nsrc are the number of sink and source ports of the distributor, re-

spectively. This slightly different representation to [26] ensures positively valued

flows into module sink ports can be accommodated. The distributor module may be

aggregated and connected via connection constraints like any other module.

The benefits of this aggregation become clear when using an object-oriented soft-

ware implementation of the framework. It allows optimisation models to be devel-
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oped in a logical, bottom-up manner, in which named component objects are first

instantiated individually, before being passed as sub-components for the instantia-

tion of aggregation objects. The properties of these aggregation objects comprise the

combined properties of the sub-components, alongside a specific ‘sub-components’

property which stores individual instances of each sub-component object. Since ag-

gregation objects can be created recursively, this makes interrogation of the model to

find the properties of specific components easier, as successive aggregations create a

hierarchy to facilitate navigation through the model. This is particularly useful for

very large optimisation models. It also allows an entire district to be represented

by a single, top-level object, one which stores the variable names (sorted by type),

constraints and cost function terms of all aggregated sub-components in a single lo-

cation. This means that the constraint and cost function properties from this single

object can be passed to an optimisation solver at run time, reducing the programming

effort required to locate and parse this information. Furthermore, when viewing the

optimisation results, it is possible to retrieve all variable values of a given type, e.g.

all control inputs, by simply referring to the top-level object.

In the following sections, various pre-defined modules and module modifiers are pre-

sented which provide useful functionality for the optimisation modelling framework,

and which can already be found in the literature regarding multi-energy systems.

Newly developed modules which form part of the main contributions of this thesis are

highlighted as being ‘Proposed’ models. The modelling constraints in all pre-defined

modules do not provide perfectly accurate descriptions of physical behaviour in each

case, since simplifications are often required to obtain tractable problems. However,

they are sufficiently accurate to describe steady-state, time-averaged energy flows

through the system, the control of which is the primary concern for economic energy

management.

3.3 Energy Conversion Device Modules

3.3.1 Boiler Module

Boilers are modelled as single input, single output devices which convert a given

fuel input, yk,b,in, into useable heat, yk,b,heat, e.g. via biomethane combustion. The
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rate of fuel input is determined by the control input, uk,b and a constant conversion

efficiency ηb is assumed. They are described by the following static constraints:

yk,b,in = uk,b (3.9)

yk,b,heat = ηbuk,b (3.10)

0 ≤ uk,b ≤ uk,b (3.11)

The boiler module has one designated sink port, yk,b,in, and one source port, yk,b,heat.

3.3.2 Electrical Resistance Heater Module

Electrical resistance heaters are also modelled as single input, single output devices

but are even simpler to model, since they convert 100% of the electrical input,

yk,rh,elec, into useful heat output, yk,rh,heat, as dictated by the control input uk,rh. They

are described by the following static constraints:

yk,rh,elec = uk,rh (3.12)

yk,rh,heat = uk,rh (3.13)

0 ≤ uk,rh ≤ uk,rh (3.14)

The electrical resistance heater module has one designated sink port, yk,rh,elec, and

one source port, yk,rh,heat.

3.3.3 Transformer Module

Transformers are found throughout electrical networks and, since they are less than

100% efficient, it is important to model their conversion behaviour. Iron and cop-

per losses may be modelled approximately using a single linear conversion efficiency

coefficient ηtx relating the input and output [30]. However, a transformer permits

electrical power to flow in either direction and is therefore a bi-directional device. To

account for bi-directional flows, it is necessary to specify differing, reciprocal con-

version efficiencies depending on whether the flow is in the forward direction, from

yk,tx,in to yk,tx,out, or in the reverse direction. Following the example of [25], both

forward and reverse power flows can be described by the following constraint set:

yk,tx,in = zk,tx,in (3.15)
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yk,tx,out = zk,tx,out (3.16)

zk,tx,out = (ηtx −
1

ηtx
)zk,tx,fwd +

1

ηtx
zk,tx,in (3.17)

− zk,tx,in ≤ zk,tx,in ≤ zk,tx,in (3.18)

− zk,tx,out ≤ zk,tx,out ≤ zk,tx,out (3.19)

together with the introduction of binary variable δk,tx,fwd and mixed-integer linear

inequalities equivalent to the following logical conditions (see (C.1) and (C.2) in

Appendix C):

zk,tx,in ≥ 0 ⇐⇒ δk,tx,fwd = 1 (3.20)

zk,tx,fwd = δk,tx,fwdzk,tx,in (3.21)

The transformer output variable yk,tx,in is designated as a sink port and yk,tx,out is

designated as a source port.

3.3.4 Combined Heat and Power Unit Module

Combined heat and power (CHP) units couple electricity, yk,chp,elec, and heat, yk,chp,heat,

energy flows to a given fuel input, yk,chp,in, such as biomethane, the amount of which

is determined by the control input, uk,chp. CHP units convert fuel into heat and

electricity with differing efficiencies and are described most simply by the following

static model constraints [30]:

yk,chp,in = uk,chp (3.22)

yk,chp,elec = ηelecuk,chp (3.23)

yk,chp,heat = ηheatuk,chp (3.24)

0 ≤ uk,chp ≤ uk,chp (3.25)

The CHP module has one designated sink port, yk,chp,in, and two source ports, yk,chp,elec

and yk,chp,heat.

3.3.5 Air-Source Heat Pump / Electric Chiller Module

Air-source heat pumps (ASHPs), similarly to a CHP, couple a heat energy output flow,

yk,ahp,heat, to an electrical input, yk,ahp,elec, with the ratio of useful heating output to
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electrical input known as the coefficient of performance, or COP. The operation of an

ASHP is governed by the control input, uk,ahp, and described by the following static

model constraints [30]:

yk,ahp,elec = uk,ahp (3.26)

yk,ahp,heat = COPuk,ahp (3.27)

0 ≤ uk,ahp ≤ uk,ahp (3.28)

The output variables yk,ahp,elec and yk,ahp,heat are designated as a sink port and a source

port, respectively.

A chiller is effectively an ASHP in reverse and can be modelled analogously, with the

air acting as a heat sink rather than a heat source. The chiller provides useful heat

extraction, yk,ahp,heat ≤ 0, from an electrical input, yk,ahp,elec, in a ratio known as the

energy efficiency ratio, or EER. Hence, if the COP in (3.41) is replaced by a negatively

valued EER, the same module may be used to model an electric chiller.

3.3.6 Reversible Air-Source Heat Pump Module

A reversible ASHP is a multi-mode device which can provide either heating or cooling

(heat extraction) using a given electrical input, yk,rahp,elec. Depending on which mode

is active, the heat flow, yk,rahp,heat, is determined by multiplying the control input,

uk,rahp, by either a COP or EER constant. This is an amalgamation of the ASHP and

chiller cases from the previous section, but requires additional logical conditions to

determine which mode applies [30]. Following the example of [25], this can be

represented with the constraints:

yk,rahp,elec = uk,rahp (3.29)

yk,rahp,heat = zk,rahp,heat (3.30)

zk,rahp,heat = (COP + EER)zk,rahp,fwd − EERuk,rahp (3.31)

0 ≤ uk,rahp ≤ uk,rahp (3.32)

− zk,rahp,heat ≤ zk,rahp,heat ≤ zk,rahp,heat (3.33)

together with the introduction of binary variable δk,rahp,fwd and mixed-integer linear

inequalities equivalent to the following logical conditions ((C.1) and (C.2) in Ap-

pendix C):

zk,rahp,heat ≥ 0 ⇐⇒ δk,rahp,fwd = 1 (3.34)
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zk,rahp,fwd = δk,rahp,fwduk,rahp (3.35)

The output variables yk,rahp,elec and yk,rahp,heat are designated as a sink port and a source

port, respectively.

3.3.7 Water-Source Heat Pump Module

A water-source heat pump (WSHP) module is distinguished from an ASHP by an ad-

ditional system output variable, yk,whp,cool, which represents the flow of water from

a heat source. Knowledge of this variable’s value might be useful to determine wa-

ter pumping requirements or to define a capacity limit on this flow. The WSHP is

described by the following static model constraints [26]:

yk,whp,elec = uk,whp (3.36)

yk,whp,heat = COPuk,whp (3.37)

yk,whp,cool = (COP− 1)uk,whp (3.38)

0 ≤ uk,whp ≤ uk,whp (3.39)

Sink and source ports are the same as for an ASHP, with yk,whp,cool designated as an

additional sink port.

3.3.8 Absorption Chiller

An absorption chiller can be modelled similarly to an electrical chiller, except the

EER refers to the ratio of (high temperature) heat input to the ratio of useful (low

temperature) heat extraction. The following static model constraints are used to

describe an absorption chiller:

yk,ach,heatHT = uk,ach (3.40)

yk,ach,heatLT = EERuk,ach (3.41)

0 ≤ uk,ach ≤ uk,ach (3.42)

The output variables yk,ach,heatHT and yk,ach,heatLT are each designated as sink ports.
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3.3.9 Proposed Reversible Water-Source Heat Pump Module

The prosumer-enabled bi-directional ULTDHC concept is predicated on the ability

to deliver both heating and cooling to/from the network and therefore individual

buildings are able to operate their own reversible WSHPs. The reversible WSHP

model described in [29] has been re-written to fit the general optimisation modelling

framework used in this thesis, starting with the following equations:

yk,hp,elec =

1/COP · yk,hp,out, (heating mode)

1/EER(−yk,hp,in), (cooling mode)
(3.43)

yk,hp,elec = |yk,hp,out − yk,hp,in| (3.44)

COP = ηcarnot,h
θheatload

θheatload − (θw + θc)/2
(3.45)

EER = ηcarnot,c
θcoolout

(θw + θc)/2− θcoolload

(3.46)

which account for the differences between the heating and cooling modes of the

heat pump. When in heating mode, the positive heat output yk,hp,out is the product

of the coefficient of performance (COP) and the electrical power input yk,hp,elec. In

cooling mode the direction of heat flow is reversed, so that the product of the energy

efficiency ratio (EER) and the positive electrical power input must be equal to the

negative value of heat flow at the input side, yk,hp,in. Constant COP and EER values

are assumed since the optimal temperature set points in the warm and cool pipes

of the ULTDHC network, θw and θc, are fixed. The required temperatures to serve

heating and cooling loads are θheatload and θcoolload, respectively. The Carnot efficiencies

ηcarnot,h and ηcarnot,c represent reductions from the theoretical maximum, or Carnot,

COP and EER.

Following the example of [25], these equations can be expressed as the following

constraint set:

yk,rwhp,elec = uk,rwhp (3.47)

yk,rwhp,in = zk,rwhp,in (3.48)

yk,rwhp,out = zk,rwhp,out (3.49)

zk,rwhp,in = ((COP− 1) + EER)zk,rwhp,fwd − EERuk,rwhp (3.50)

zk,rwhp,out = (COP + (EER + 1))zk,rwhp,fwd − (EER + 1)uk,rwhp (3.51)

0 ≤ uk,rwhp ≤ uk,rwhp (3.52)
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− zk,rwhp,in ≤ zk,rwhp,in ≤ zk,rwhp,in (3.53)

− zk,rwhp,out ≤ zk,rwhp,out ≤ zk,rwhp,out (3.54)

together with the introduction of binary variable δk,rwhp,fwd and mixed-integer linear

inequalities equivalent to the following logical conditions ((C.1) and (C.2) in Ap-

pendix C):

zk,rwhp,in ≥ 0 ⇐⇒ δk,rwhp,fwd = 1

zk,rwhp,fwd = δk,rwhp,fwduk,rwhp

The outputs yk,rwhp,elec, yk,rwhp,in are designated as sink ports whilst yk,rwhp,out is a source

port.

3.3.10 Proposed Bi-directional Fixed Speed Circulation Pump Mod-

ule

Hydraulic circulation pumps are required to overcome the pressure losses due to

friction when transporting liquids via pipes. They are therefore an integral part of

district thermal networks and, since they are typically driven by electrical motors,

also contribute to overall power consumption during network operation. A fixed-

speed, bi-directional circulation pump model is introduced here since network pres-

sure modelling is required to determine the power requirements of more efficient

variable speed pumps; a variable speed pump model is introduced in the following

chapter. Bi-directional flows at substations are required to switch between heating

and cooling provision, enabled by a three-way valve configuration (Fig. 3.2). The

fixed-speed, bi-directional circulation pump model introduced in [29] has been re-

written to fit the general optimisation modelling framework used in this thesis.

The electrical power, yk,fsp,elec, required by a fixed speed centrifugal pump is a non-

linear function of both pressure added to the pumped fluid and the mass flowrate,

yk,fsp,in, through the pump. However, a good linear approximation of this relation-

ship can be easily found by fitting a first-order model to manufacturer data over the

operational range of yk,fsp,in [107]–[109]:

yk,fsp,elec = afsp,on + bfsp · yk,fsp,in (3.55)

where the standby power afsp,on and coefficient bfsp are constants that can be obtained

from characteristic pump curves. Although the flow through a real pump is always
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Figure 3.2: Illustration of a bi-directional ULTDHC substation, adapted from [19].

in one direction, for modelling purposes the action of three-way valves is captured

within the pump module, such that the sign of output variable yk,fsp,in can be negative

or positive to indicate flow direction. Therefore, the linear approximation for a bi-

directional fixed speed circulation pump becomes:

yk,fsp,elec = afsp,on + bfsp · |yk,fsp,in| (3.56)

As this is no longer a linear relationship, this equation is expressed as the following

constraint set, using the example of [25]:

yk,fsp,elec = zk,fsp,elec (3.57)

yk,fsp,in = zk,fsp,flow (3.58)

yk,fsp,out = zk,fsp,flow (3.59)

zk,fsp,elec = afsp,on + 2bfspzk,fsp,fwd − bfspzk,fsp,flow (3.60)

0 ≤ zk,fsp,elec ≤ zk,fsp,elec (3.61)

zk,fsp,flow ≤ zk,fsp,flow ≤ zk,fsp,flow (3.62)

together with the introduction of binary variable δk,fsp,fwd and mixed-integer linear

inequalities equivalent to the following logical conditions ((C.1) and (C.2) in Ap-

pendix C):

zk,fsp,flow ≥ 0 ⇐⇒ δk,fsp,fwd = 1

zk,fsp,fwd = δk,fsp,fwdzk,fsp,flow

The outputs yk,fsp,elec, yk,fsp,in are designated as sink ports whilst yk,fsp,out is a source

port.
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3.3.11 Proposed Bi-Directional Variable Speed Pump Module

As discussed in Section 3.6.3, circulation pumps are required to provide a pressure

gain at each substation. Since the pumps are electrically driven, they are also a point

of coupling between the electricity and ULTDHC systems. The pressure gain yk,vsp∆H

and mass flow into the pump yk,vsp,in are already determined by the ULTDHC network

model, an equation is therefore needed to determine the electrical power, yk,vsp,elec,

used at this operating point:

yk,vsp,elec =
ρ · g |yk,vsp,in| yk,vsp∆H

ηm · ηh
(3.63)

where the motor efficiency ηm and hydraulic efficiency ηh are assumed constant [78].

This equation is bilinear and involves a discontinuity because electrical power is con-

sumed whether the pump is acting on a positive or negative valued mass flow. The

discontinuity can be hidden by following the example of [25] and introducing the

auxiliary variables δk,vsp,fwd and zk,vsp,fwd:

yk,vsp,elec = zk,vsp,elec (3.64)

yk,vsp,in = zk,vsp,in (3.65)

yk,vsp,out = zk,vsp,out (3.66)

yk,vsp,∆H = zk,vsp,∆H (3.67)

zk,vsp,in = zk,vsp,out (3.68)

zk,vsp,elec = 2Cvspzk,vsp,fwdzk,vsp,∆H − Cvspzk,vsp,inzk,vsp,∆H (3.69)

where Cvsp =
ρ · g

ηm · ηh

together with mixed-integer linear inequalities equivalent to the following logical

conditions ((C.1) and (C.2) in Appendix C:

zk,vsp,in ≥ 0 ⇐⇒ δk,vsp,fwd = 1 (3.70)

zk,vsp,fwd = δk,vsp,fwdzk,vsp,in (3.71)

This does not address the bilinear term in (3.63). However, an approximate Mc-

Cormick relaxation can be used to replace bilinear terms and make the model con-

vex. Since this relaxation is automatically carried out on bilinear terms by the mixed-

integer solver Gurobi [110], the procedure is not explicitly described here. Moreover,

when using the multi-agent approach described in Chapter 7, an iterative procedure

is used to avoid the bilinear term altogether, by fixing the value of pump pressure

head.
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The outputs yk,vsp,elec, yk,vsp,in are designated as sink ports whilst yk,vsp,out is a source

port.

3.3.12 Conversion Device Operational Behaviour Modifiers

Modules can be selectively modified by adding pre-defined constraints and any nec-

essary auxiliary variables to model more complex operational behaviour, i.e. device

on/off states, ramp rates and minimum up and down times. In each case the modifi-

cation applies to any single given variable, vk,j, from the set of all decision variables

in the module, vk :=
[
x⊤
k u⊤

k δ⊤
k z⊤

k

]⊤.

On/Off States

Device on/off states are required to represent the condition that a given device is

either off, with vk,j = 0, or on, with some minimum value vk,j > 0. For any given

variable, vk,j, to which this applies, the following constraint may be added, based on

the example of [26]:

δk,vj ,onvk,j ≤ vk,j ≤ δk,vj ,onvk,j (3.72)

where δk,vj ,on is a binary auxiliary variable, which takes the value ‘1’ when the device

is on, and vk,j and vk,j are the minimum and maximum values of vk,j, respectively.

Ramp Rate Limits

If a device has restrictions on the rate at which a given variable value can be increased

or decreased, this can be captured with ramp rate constraints [26]. By introducing

a continuous auxiliary variable, zk,vj ,ramp, the following constraints can be added to

represent ramp rate restrictions:

vk,j = vk−1,j + zk,vj ,ramp (3.73)

zvj ,ramp ≤ zk,vj ,ramp ≤ zvj ,ramp (3.74)

where zvkj ,ramp and zvj ,ramp are the minimum and maximum possible value changes

per discrete sampling interval duration. Note that for the current sampling instance

k = k̂, the constraint set (3.73) includes a time-varying constraint, since vk̂−1,j is a

measured input which is repeatedly updated.
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Minimum Up and Down Time Limits

It may be necessary to prevent continuous switching between a device’s on and off

states, for example to improve efficiency, or prevent wear, by reducing the number

of start-up and shut-down events. This can be enforced with minimum up and down

time constraints, which specify that a device must be switched on for a minimum

number of discrete sampling intervals, Tup, or switched off for a given number of

intervals, Tdn. In addition to the on/off state constraint (3.72), the following con-

straints are also added [25]:

δk,vj ,on − δk−1,vj ,on ≤ δτup,vj ,on, ∀k (3.75)

δk−1,vj ,on − δk,vj ,on ≤ 1− δτdn,vj ,on, ∀k (3.76)

where τup = k+1, ...,min{k+Tup− 1, H} is the index of sampling intervals for which

a device must remain on after switching on and τdn = k + 1, ...,min{k + Tdn − 1, H}

is the index of sampling intervals for which a device must remain off after switching

off. Each index set is limited by the prediction horizon, H. Note that for the current

sampling instance k = k̂, the constraints (3.75) and (3.76) are time varying, since

δk̂−1,vj ,on is a measured input which is repeatedly updated. Furthermore, the control

scheme must consider the device’s on/off status history to capture device switching

which has occurred prior to k̂ − 1:

σup ≤ δτ̂up,vj ,on (3.77)

σdn ≤ 1Tdn−1 − δτ̂dn,vj ,on (3.78)

where σup ∈ ZTup−1 and σdn ∈ ZTdn−1 are repeatedly updated binary vector inputs to

the control scheme based on past on/off states. Non-zero elements of these vectors

force corresponding on/off status variables indexed by τ̂up = k̂ + 1, ..., k̂ + Tup − 2 or

τ̂dn = k̂+1, ..., k̂+Tdn−2 to take the value 1 or 0, respectively, whereas zero elements

have no effect.

3.4 Storage Device Modules

3.4.1 Battery Storage Module

Batteries provide essential storage capability for electrical system flexibility but ex-

hibit losses upon charging and discharging due to internal resistance. Like trans-
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formers, losses must be modelled for both the forward and reverse flows through the

battery, requiring separate charging and discharging efficiencies. The state-space bat-

tery storage model from [25] describes separate charging and discharging efficiencies

which apply to mutually exclusive charging and discharging states, represented by

the following constraints:

xk+1,batt = (1− Lbatt)xk,batt + (ηchg −
1

ηdchg
)zk,batt,chg∆t+

1

ηdchg
uk,batt,chg∆t (3.79)

yk,batt,chg = uk,batt,chg (3.80)

xk,batt ≤ xk,batt ≤ xk,batt (3.81)

uk,batt,chg ≤ uk,batt,chg ≤ uk,batt,chg (3.82)

with the introduction of binary variable δk,batt,chg and the following logical conditions

((C.1) and (C.2) in Appendix C):

uk,batt,chg ≥ 0 ⇐⇒ δk,batt,chg = 1 (3.83)

zk,batt,chg = δk,batt,chguk,batt,chg (3.84)

where xk,batt is the amount of energy stored in the battery, uk,batt,chg is the control

input, ηchg and ηdchg are the efficiencies of charging and discharging, respectively, and

Lbatt is the standby loss factor due to battery self discharge. The output amount of

battery charging yk,batt,chg is designated as a sink port.

3.4.2 Thermal Storage Module

Assuming a perfectly mixed water vessel and well insulated pipes, the only losses

considered from thermal storage are due to heat transfer through vessel walls to

the surroundings. Therefore a simple state-space model is used for thermal storage

modules [26]:

xk+1,thm = (1− Lthm)xk,thm + uk,thm,chg∆t (3.85)

yk,thm,chg = uk,thm,chg (3.86)

xk,thm ≤ xk,thm ≤ xk,thm (3.87)

uk,thm,chg ≤ uk,thm,chg ≤ uk,thm,chg (3.88)

where xk,thm is the amount of energy stored, uk,thm,chg is the control input and Lthm is

the standby loss factor for loss of energy to the surroundings. The output amount of

storage charging, yk,thm, is designated as a sink port.
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3.5 Prosumer Modules

3.5.1 Fixed Generation / Demand Modules

Fixed energy generation/demand is the term given to system input/output energy

flows that cannot be controlled, only forecasted; they are acknowledged, or ‘known’,

disturbances to the system. These are modelled as fixed flows into or out of the

system, equivalent to the current (measured) and future (forecasted) values. Such an

approach in an MPC setting is known as certainty-equivalent MPC [111], in which an

uncertain optimisation problem is transformed into a deterministic one by assuming

that all future disturbances are equal to deterministic estimates.

All fixed energy generation/demand modules follow the example of [26]. The known

disturbance variables wk,fixd,j are the predicted profiles of generation/demand j from

a chosen forecasting method; the first element in wfixd,j is the current measured value

of the disturbance.

yk,fixd,j = wk,fixd,j (3.89)

The output yk,fixd,j is designated as a sink port. For a fixed generation flow, the values

of wfixd,j are negative.

3.5.2 Flexible Demand Modules

Flexible demands are controllable energy flows out of a system that may be ma-

nipulated in some way whilst still delivering a nominal amount of energy. These

demands have been formally categorised for a multi-energy system in [30] as be-

ing either shiftable, adjustable, pliable or interruptible, or indeed any combination

of these categories. The constraints required to model each of these demands are

given below; for details on how these flexible demand types might be combined to

derive new compound flexibility types, the reader is referred to [30]. The following

definitions and general constraints are common to all types of flexible demand.

Each cyclic flexible demand, n, has a cycle duration of N c
n discrete time periods.

The cycle itself is split into Nph
n phases, with the length of the ith phase equal to

Np
n,i discrete periods. For example, a flexible demand may have a daily cycle length
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N c
n = 24 one hour periods and within this cycle the demand may be split into three

phases (Nph
n = 3) of length Np

n,1 = Np
n,2 = Np

n,3 = 8 periods.

During each phase of the cycle, a nominal amount of energy, En,i, is to be consumed.

The amount of energy actually consumed by demand n in any given time period, yk,n,

is given by:

yk,n =

Nph
n∑

i=1

uk,n,i, ∀k, n (3.90)

where uk,n ∈ RNph
n is a vector of consumption amounts in each phase of demand at

time k. Each element of uk,n is associated with:

• a binary auxiliary variable, δpk,n,i, which indicates whether a given phase is being

processed in any given time period;

• a second binary variable, δck,n,i, which indicates whether a given phase has al-

ready been completed in any given time period; and

• a third binary variable, δwk,n,i, which indicates whether a phase is waiting to start

in any given time period.

These binary indicator values are defined by the following set of constraints:

uk,n,iδ
p
k,n,i ≤ uk,n,i ≤ uk,n,iδ

p
k,n,i, ∀k, n, i (3.91)

δpk,n,i + δck,n,i ≤ 1, ∀k, n, i (3.92)

δpk−1,n,i − δpk,n,i ≤ δck,n,i, ∀k, n, i (3.93)

δck−1,n,i ≤ δck,n,i, ∀k, n, i (3.94)

δpk,n,i ≤ δck,n,i−1, ∀k, n, i ∈ {2 : Nph
n } (3.95)

These constraints ensure that:

• a phase cannot be both processing and complete at once (3.92);

• a phase may only be considered complete once it is no longer processing (3.93);

• once complete, a phase must remain complete for the remainder of the predic-

tion horizon (3.94); and

• the subsequent phase may only begin processing once the previous phase is

complete (3.95).
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The following section presents the constraint set that defines and differentiates a

pliable demand module, which is needed in addition to the common constraints

(3.90)-(3.95). The remaining flexible demand modules are not actually employed

to generate results referred to in later chapters, therefore these are presented in Ap-

pendix D for the interested reader.

Pliable Demand Module

A pliable demand allows consumption within each time period to vary, provided that

the nominal energy consumption of each multi-period phase is satisfied before the

phase has finished processing. The specific constraints for a pliable demand are as

follows:

H∑
k=1

uk,plia,i = Eplia,i, ∀i (3.96)

Np
plia,i ≤

H∑
k=1

δpk,plia,i ≤ N
p

plia,i, ∀i (3.97)

δpkc,plia,1 = 1 (3.98)

δck,plia,i−1 = δpk,plia,i + δck,plia,i ∀k, n, i ∈ {2 : Nph
plia} (3.99)

where Np
plia,i and N

p

plia,i are the minimum and maximum number of periods over

which a given phase can be processed. These constraints ensure that:

• the nominal amount of energy is consumed in each phase within the prediction

horizon (3.96);

• each phase must be completed within a given range of time periods (3.97);

• the demand commences at a given time period kc (3.98); and

• each phase starts immediately after the preceding phase (3.99).

In a receding horizon control scheme, the constants Eplia,i, N
p
plia,i and N

p

plia,i need

to be updated between each call to the optimisation solver. A programmable logic

controller (PLC) can fulfil this updating role, performing the following assignments

at the end of each time period:

Eplia,i = Eplia,i − uk,plia,i, ∀i (3.100)

78



Np
plia,i =


Np

plia,i, if δpk,plia,i = 0

Np
plia,i − 1, if δpk,plia,i = 1 and Np

plia,i > 0

0, otherwise

(3.101)

N
p

plia,i =


N

p

plia,i, if δpk,plia,i = 0

N
p

plia,i − 1, if δpk,plia,i = 1 and N
p

plia,i > 0

0, otherwise

(3.102)

The PLC would also iterate through the nominal energy consumption profile at the

end of each demand cycle.

3.6 Network Modules

3.6.1 Simple Network Power Balance Module

To facilitate modelling of energy exchanges between buildings via AC power, gas and

ULTDHC networks, a simple power balance representation of energy networks is pre-

sented here. The intention is to avoid modelling of non-linear physical relationships

and to therefore ensure a tractable optimisation problem.

The following modelling assumptions are made to avoid introducing non-linearities

into the simple network module:

1. Hydraulic circulation pumps are capable of supplying the required pressure

head of water at maximum flow conditions;

2. Gas pressure sufficient for maximum flow is provided from an external distri-

bution network, upstream of the district network;

3. ULTDHC substation return temperatures to warm and cold network pipes are

maintained at fixed, pre-defined set-points, since the sampling time of the con-

sidered control scheme is significantly longer than that imposed by low-level

temperature controllers;

4. A single-phase, balanced AC power network is considered; and

5. Nominal voltage is maintained throughout the AC power network and resistive

losses are negligible.
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Assumptions 1) and 2) should be satisfied when infrastructure is correctly designed

to work at maximum flow conditions. With these in place there is no maximum pres-

sure constraint to be considered in either network and therefore pressure changes

do not need to be modelled. The assumption of fixed set-point temperatures in 3)

is based on [72], in which constant optimal set-point temperatures are identified

for thermal networks serving heating and cooling loads; it is shown that the fixed-

temperature approach offers comparable performance to varying temperatures, yet

is much simpler to implement. If temperatures are assumed fixed, then temperature

changes do not need to be modelled. Lastly, assumptions 4) and 5) are commonly

used to simplify AC network modelling. Hence, voltage changes do not need to be

modelled, only the balance of real power needs to be determined. These assumptions

are considered to be valid when modelling a small district with simple structure, since

power is transferred over relatively short distances.

Let Gn = (N n,An) be a directed graph representing given network of energy type n,

where nodes N n :=
{
0, 1, ..., Nnodes

}
represent buses or substations in the network

and each arc An ⊆ Nn × Nn represents a distribution line or pipe. Denote an arc

originating at node i and ending at node j as (i, j), let zk,Pij,n
be the power flow along

arc (i, j) and yk,pj,n be the power injections at each node j. A generic energy balance

at each node may be used to determine energy flows between them:

yk,pj,n =
∑
l:j→l

zk,Pjl,n
−
∑
i:i→j

zk,Pij,n
(3.103)

so that power leaving a network at any given node takes a negative value. The output

yk,pj,n is designated as a source port.

3.6.2 AC Power Flow Module

An optimal power flow problem using SOCP constraints is used to accurately model

internal AC electricity networks, taken from [60]. This problem describes a balanced,

radial network with a pre-specified set of bus power injections. The optimal solution

determines the required power injection at the slack bus, as well as line powers,

currents and bus voltages, which are constrained to be within statutory limits.

Let GE = (NE,AE) be a directed graph representing a radial AC network, where

nodesNE := {0, 1, ..., n} represent buses in the network and each arcAE ⊆ NE×NE

represents a distribution line. Denote an arc originating at node i and ending at node
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Figure 3.3: Generic representation of AC network section.

j as (i, j) and let Rij and Xij be the resistance and reactance on that line. Let zk,Pij

and zk,Qij
be the sending end active and reactive power flows along line (i, j) and

let yk,pj and yk,qj be the active and reactive power injections at each bus j. Let zk,Iij

be the complex current along line (i, j) and zk,ℓij the magnitude of current squared.

Finally, let zk,Vj
be the complex voltage at each bus j and zk,νj the magnitude of

voltage squared. The root of the graph GE (node 0) represents the substation bus

which is connected to a higher voltage network and is given a reference voltage zk,ν0

of 1 p.u. The orientation of the directed graph is chosen with all arcs directed away

from the root node, as shown in Fig. 3.3.

The branch flow model for radial networks is relaxed to form the following convex

model (3.104) - (3.106), ∀j ∈ NE and (3.107), ∀(i, j) ∈ AE [60]:

yk,pj =
∑
l:j→l

zk,Pjl
−
∑
i:i→j

(zk,Pij
−Rijzk,ℓij) (3.104)

yk,qj =
∑
l:j→l

zk,Qjl
−
∑
i:i→j

(zk,Qij
−Xijzk,ℓij) (3.105)

zk,νi − zk,νj − 2(Rijzk,Pij
+Xijzk,Qij

) + (R2
ij +X2

ij)zk,ℓij = 0 (3.106)

z2k,Pij
+ z2k,Qij

− zk,ℓijzk,νi ≤ 0 (3.107)

The outputs yk,pj and yk,qj are designated as source ports.

Due to the inequality in (3.107), it is necessary to solve the model as a minimisation

problem with an objective that is strictly increasing in zk,ℓij [60]. A value cost mod-

ifier (see Section 3.7) associated with zk,ℓij is therefore added to the AC electrical

network module:

ck,AC =
∑

i→j∈AE

λval
ℓij
zk,ℓij (3.108)

with λval
ℓij

> 0, which is intended to help recover an exact, feasible solution from the

model, i.e. when (3.107) is satisfied to equality.
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3.6.3 Proposed ULTDHC Network Module

Based on a review of existing operational examples, several classifications of ULTDHC

networks can be made [19]. These are whether the network is an open or closed

system, the number of pipelines used at differing temperature levels, if the network

is radial or in a ring topology and whether energy and mass flows within the network

are uni- or bi-directional. Here a closed system of two pipelines is considered, one

warm and one cool, with bi-directional flows between them [29]. The model which

is proposed can be applied to networks with a radial or ring topology.

The modelled ULTDHC network connects a number of different users which are re-

ferred to as substations. These are subdivided into prosumer, plant and storage sub-

stations, using the terminology of [78]. Prosumer substations are responsible for

covering a fluctuating heating or cooling demand, acting as a thermal producer or

consumer, depending on whether they are supplying or extracting heat to/from a

building or process. When in heating mode, prosumers draw water from the warm

pipe, extract some heat and then discharge the water into the cool pipe. In cooling

mode, prosumers withdraw water from the cool pipe, use the water for cooling and

discharge into the warm pipe. The direction of mass flow between the two pipes is

therefore reversed in each of the two modes, i.e. flows are bi-directional.

Plant substations, on the other hand, must balance the net annual thermal demand of

all prosumers in the network, providing a regular service as a heat source (or sink),

depending on whether there is a net annual deficit (or surplus) of heat from prosumer

substations. Examples of plant substations include sewage plants, combined heat and

power plants and solar thermal collectors.

Storage substations are needed to balance the instantaneous demand for heating or

cooling in a closed network, since the thermal energy provided by plant substations

will not always balance the net demand from prosumer substations. A typical ex-

ample is the difference between summer and winter seasons, exhibiting a surplus

of heat rejected to the network in the summer and a deficit of heat in the winter.

Flows through storage substations are bi-directional to accommodate both charging

and discharging modes.

Since substations can exchange water with the network pipes bi-directionally, the

pressure profile around the network will vary depending on the actions of individual
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Figure 3.4: Generic representation of ULTDHC network section.

substations. It will sometimes be necessary for a building to withdraw water from

a pipe at a lower pressure than that of the intended discharge pipe, therefore each

building must operate its own decentralised circulation pump; a pump bypass line

with throttling valve is required for the opposite scenario where an building with-

draws from the pipe at higher pressure. However, pump-to-pump interactions in

bi-directional ULTDHC networks can cause feedback control loops to become unsta-

ble, with pumps continuously adjusting their speed [76]. This is a primary benefit of

the proposed network model: to be able to determine an optimal pump dispatch at a

higher control level so that pump speeds are coordinated throughout the network.

The following modelling assumptions, some of which are carried over from the pre-

vious section, are necessary to ensure validity of the proposed ULTDHC module:

1. ULTDHC substation return temperatures to warm and cold network pipes are

maintained at fixed, pre-defined set-points, since the sampling time of the con-

sidered control scheme is significantly longer than that imposed by low-level

temperature controllers; and

2. Large, inter-seasonal thermal storage substations, for example geothermal bore-

hole fields, are able to balance heating and cooling loads annually so that in-

stantaneous prosumer substation demands are always satisfied.

With these assumptions, modelling of the ULTDHC network can be reduced to a

water flow problem, determining the mass flows and pressures around the network

for a given set of inputs, i.e. exchanges between substations and the network.

Let GW = (NW ,AW ) be a directed graph representing the warm side of the ULTDHC

network, where nodes NW := {0, 1, ..., n} represent junctions in the network and
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each arc AW ⊆ NW × NW represents a pipe. Denote an arc originating at node i

and ending at node j as (i, j). The mass flow of water injected to the warm side at

each junction j is yk,mj
, whilst zk,wHj

is the pressure head of water at that point in

mH2O. Pressure head at the cold side of junction j is denoted zk,cHj
. Let zk,sub∆Hj

≥ 0

be the head loss that occurs with flow yk,mj
through pressure reducing elements of a

substation located at j. The head gain supplied by the substation pump is denoted

zk,pump∆Hj
≥ 0. Let zk,w∆Hij

≥ 0 be the frictional head loss between the ends of

pipe (i, j) for a given mass flow zk,mij
. By convention head loss in a pipe is given a

positive value, whilst flow zk,mij
is considered positive in the direction from i to j (see

Fig. 3.4). Another convention is defined that heating supplied to a substation from

a warm pipe is given by a negative flow of warm water yk,mj
at a node j, whereas

rejection of heat at a substation is given by a positive nodal flow.

Assuming incompressible flow and constant water properties, the equation for con-

servation of mass at each node j ∈ NW (3.110) and the Darcy-Weisbach pressure

drop equation in all warm pipes (i, j) ∈ AW (3.111) can be defined [54]:

yk,mj
= zk,mj

(3.109)

zk,mj
−
∑
l:j→l

zk,mjl
+
∑
l:l→j

zk,mlj
= 0 (3.110)

Cijzk,mij

∣∣zk,mij

∣∣− zk,wHi
+ zk,wHj

= 0 (3.111)

where Cij =
8Lpipef

gD5ρ2π2

where Lpipe is the pipe length in m, f is the pipe friction factor (assumed constant),

g = 9.81 m/s2 is gravitational acceleration, D is the internal diameter of the pipe in m

and ρ = 998 kg/m3 is the density of water. Constraint (3.111) is piecewise quadratic

due to the bilinear term which accounts for the direction of pressure drop. This can

be reformulated in terms of absolute pressure drop:

Cijz
2
k,mij

− zk,w∆Hij
= 0 (3.112)

with the addition of mixed-integer linear inequalities and the binary indicator vari-

able δk,mij
to express the following logic (see (C.1) and (C.3) in Appendix C):

zk,mij
≥ 0 ⇐⇒ δk,mij

= 1 (3.113)

zk,mij
≥ 0 =⇒ zk,wHi

+ zk,wHj
= zk,w∆Hij

(3.114)

zk,mij
≤ 0 =⇒ zk,wHi

+ zk,wHj
= −zk,w∆Hij

(3.115)

where zk,w∆Hij
≥ 0 is ensured due to the squared term in (3.112).
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Constraint (3.112) is no longer piecewise but is still a non-convex quadratic equality;

it must be relaxed to a convex inequality in order to be solved efficiently:

Cijz
2
k,mij

− zk,w∆Hij
≤ 0 (3.116)

This particular reformulation to (3.116) is chosen over comparable approaches [61],

[63] because it only requires a single binary indicator variable and a single quadratic

constraint to be included per pipe.

The warm and cold side pipes are coupled by mass flows and exhibit symmetry,

meaning that known mass flows in the warm side are also known in the cold side

[54]. If the warm and cold side pipe networks are assumed to be identical, then

it follows that frictional pressure losses are also symmetrical. The following can

therefore be defined ∀(i, j) ∈ AW :

zk,wHi
− zk,wHj

+ (zk,cHi
− zk,cHj

) = 0 (3.117)

reducing the number of constraints needed to determine pressures in the cold side.

Similarly to the pipe network, the Darcy-Weisbach equation can also be reformulated

for pressure drop through individual substations, zk,sub∆Hj
, ∀j ∈ NW :

yk,pump∆Hj
= zk,pump∆Hj

(3.118)

Cjz
2
k,mj
− zk,sub∆Hj

≤ 0 (3.119)

with the addition of mixed-integer linear inequalities and the binary indicator vari-

able δk,mj
used to express the following logical conditions ((C.1) and (C.3) in Ap-

pendix C):

zk,mj
≥ 0 ⇐⇒ δk,mj

= 1 (3.120)

zk,mj
≥ 0 =⇒ zk,cHj

− zk,wHj
= zk,sub∆Hj

− zk,pump∆Hj
(3.121)

zk,mj
≤ 0 =⇒ zk,cHj

− zk,wHj
= −zk,sub∆Hj

+ zk,pump∆Hj
(3.122)

As previously mentioned, a positive mass flow, zk,mj
, is from the cool side to the

warm side through the substation. The pump head gain, zk,pump∆Hj
, is always pos-

itive and the pressure drop due to pressure reducing substation elements, zk,sub∆Hj
,

is bounded from below by the quadratic constraint (3.119). The constant Cj is de-

termined for frictional losses which are due to static equipment in the substation,

e.g. heat exchangers, fittings, etc. If zk,sub∆Hj
exceeds these losses to match the dif-

ference between warm and cool side pressure head, this additional pressure drop is
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physically interpreted as being due to valve throttling, i.e. variably increasing fric-

tional losses by reducing the pump bypass valve opening. If water is flowing through

the substation to discharge into a pipe at greater pressure head than the inlet pipe,

then zk,pump∆Hj
must take a non-zero value to ensure (3.119) is satisfied. Otherwise,

the inequalities describing logical conditions would require zk,sub∆Hj
to be negative,

violating (3.119).

Outputs yk,mj
and yk,pump∆Hj

are designated as source ports for connection to other

component modules.

The inclusion of quadratic inequality relaxations (3.116) and (3.119) necessitates

minimisation of zk,w∆Hij
and zk,sub∆Hj

to ensure that feasible solutions are obtained

from the model. Another objective is to minimise pumping power throughout the

network. Due to the inclusion of pump pressure gain, zkpump∆Hj
, in logical condi-

tions describing substation pressure drop, minimising zkpump∆Hj
ensures that substa-

tion pressure drop, zk,sub∆Hj
, is also minimised. Hence, value cost modifiers (see

Section 3.7) associated with only zk,w∆Hij
and zkpump∆Hj

are added to the ULTDHC

module:

ck,HC =
∑

i→j∈AW

λval
∆Hij

zk,w∆Hij
+
∑

j∈NW

λval
pump∆Hj

zk,pump∆Hj
(3.123)

A feasible solution is only obtained when (3.116) is satisfied to equality, at which

point the model is said to be exact. This takes priority over pump energy minimisation

and so the penalty prices are determined accordingly, with λval
∆Hij

> λval
pump∆Hj

> 0.

When the presented AC power and ULTDHC network component models are used in

isolation, the cost functions (3.123) and (3.108) are sufficient to recover an exact,

feasible solution (if one exists) in each case. However, when aggregated with other

components each with their own cost function, an optimisation solver may only pri-

oritise feasibility if the cost coefficients in (3.123) and (3.108) are given a sufficiently

large weighting, which may not produce economically optimal results for the global

system. To address this problem, the upper bounds of pipe pressures, zk,w∆Hij
, and

the upper bounds of line currents, zk,ℓij , may be iteratively lowered using an algo-

rithm (see Section 5.2), which is intended to ensure an exact solution regardless of

penalty weighting.
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3.7 Cost Function Definition

Desirable system objectives, e.g. to minimise purchase of electricity, minimise bat-

tery charging cycles or to prevent rapid changes in energy flows, can be achieved by

minimising a time-varying cost function, ck. In any controlled system, at least one

module must have an associated cost function which the automated energy manage-

ment scheme can minimise to determine a rolling optimal schedule.

An end-user may specify cost function modifiers that are associated with any given

variable(s), vk,j, from the set of all decision variables in a module, vk :=
[
x⊤
k u⊤

k δ⊤
k

z⊤
k

]⊤. These cost function modifiers are added together to create an overall cost

function for the module:

ck = ck,val + ck,buy/sell + ck,abs + ck,∆ + ck,slack (3.124)

where the individual modifiers are explained in the subsequent sections. When mod-

ules are aggregated, ck is a linear combination of all individual module cost functions

in the aggregate module.

3.7.1 Cost Function Modifiers

Value Costs

When a unidirectional energy flow is metered with an associated price of purchase,

or when a bidirectional energy flow is metered with equal buying and selling prices,

a simple value based cost function may be added. Let Fval represent the set of all

variables in a module which have an associated value cost; these costs are given by:

ck,val =
∑

j∈Fval
λval
k,vj
· vk,j (3.125)

where λval
k,vj

is the price associated with the positive or negative value of the variable

vk,j.

Purchase and Sale Costs

When a metered bidirectional energy flow has differing prices for buying and selling,

a simple value based cost function is not suitable. Instead, the different prices must
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be applied exclusively, depending on whether the flow is positive or negative. First

auxiliary variables δk,vj ,buy and zk,vj ,buy are introduced and defined by mixed-integer

inequalities equivalent the following logical conditions (see (C.1) and (C.2) in Ap-

pendix C):

vk,j ≥ 0 ⇐⇒ δk,vj ,buy (3.126)

zk,vj ,buy = δk,vj ,buyvk,j (3.127)

LetFbuy/sell represent the set of all variables in a module which have associated buying

and selling costs; these costs are given by:

ck,buy/sell =
∑

j∈Fbuy/sell
(λbuy

k,vj
− λsell

k,vj
)zk,vj ,buy + λsell

k,vj
· vk,j (3.128)

where λbuy
k,vj

and λsell
k,vj

are the prices associated with the positive and negative values

of the variable vk,j, respectively.

Absolute Value Costs

An example where absolute value costs may be required is to account for the degra-

dation costs of a battery, for which there is a positive associated cost every time the

battery is charged or discharged. An auxiliary variable is first introduced, zk,vj ,abs,

which is defined by mixed-integer inequalities equivalent to the following logical

condition (see (C.4) in Appendix C):

zk,vj ,abs = |vk,j| (3.129)

Use of the auxiliary variable permits the use of a linear objective function. Let Fabs

represent the set of all variables in a module which have an associated absolute value

cost; these costs are given by:

ck,abs =
∑

j∈Fabs
λabs
k,vj
· zk,vj ,abs (3.130)

where λabs
k,vj

is the price associated with absolute value of the variable vk,j.

Absolute Rate of Change Costs

It may sometimes be desirable to reduce the rate of change of a given variable to

aid system stability, even if significant changes from one sampling instance to the
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next are feasible, i.e. safe and physically possible. In this case it is appropriate to

use a cost function to discourage high rates of change where possible. An example

might include so called demand smoothing, reducing fluctuations in energy flows to

a building in order to reduce peaks in demand [112]. An auxiliary variable is first

introduced, zk,vj ,∆, which is defined by mixed-integer inequalities equivalent to the

following logical condition (see (C.4) in Appendix C):

zk,vj ,∆ = |vk,j − vk−1,j| (3.131)

Let F∆ represent the set of all variables in a module which have associated rate of

change costs; these costs are given by:

ck,∆ =
∑

j∈F∆

λ∆
k,vj
· zk,vj ,∆ (3.132)

where λ∆
k,vj

is the price associated with absolute rate of change of the variable vk,j.

Slack Variable Costs

Slack variables may be included in a module’s cost function to penalise deviations

from some reference value or to add soft constraints to a model. In the latter case

this might be useful to aid feasibility when using storage, by protecting a reserve of

storage for use when there is no other option to match fixed generation or demands.

The slack variable, zk,vj ,slack is defined by the following constraints:

vk,j ≥ ṽj,slack − zk,vj ,slack (3.133)

vk,j ≤ v˜j,slack + zk,vj ,slack (3.134)

zk,vj ,slack ≥ 0 (3.135)

where v˜j,slack and ṽj,slack are the preferred upper and lower limits for the variable

vk,j, respectively. It is then straightforward to define a cost function which penalises

non-zero values of the slack variable. Let Fslack represent the set of all variables in a

module which have associated slack variables; the penalty costs are given by:

ck,slack =
∑

j∈Fslack
λslack
k,vj
· zk,vj ,slack (3.136)

where λslack
k,vj

is the price for using the slack variable associated with vk,j. It should be

noted that if preferred upper and lower limits are made equal, they serve to provide

a reference value for vk,j.
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3.8 Summary

This chapter has introduced the multi-energy system optimisation modelling frame-

work which will be used throughout the thesis. Existing modular component models

from the literature were presented, together with newly proposed models and mod-

ifying constraints to alter the behavioural characteristics of individual energy con-

version devices. Cost function modifiers have also been introduced, which can be

selectively added to fine tune the operational objectives of a controlled system.

The framework provides a flexible tool through which an end-user, e.g. an aggrega-

tor or a multi-building site manager, can quickly develop a customised optimisation

model of an energy system. The use of modules and standard modifiers, together

with recursive aggregation capability, allows systems of significant complexity to be

built in manageable stages.
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Chapter 4

Centralised Coordination of a

Small-Scale Multi-Energy District

4.1 Introduction

The results presented in this chapter concern coordination of several buildings con-

nected by power, gas and bi-directional ULTDHC networks to form a small-scale

multi-energy district. A MPC scheme for district-level coordination is first introduced

and is then compared to the use of a simple rule-based controller (RBC) to manage

each building separately, a common approach for energy system management of a

single building in the absence of advanced optimisation-based control [19], [94],

[113]. Component modules proposed in Chapter 3 for modelling reversible WSHPs

and fixed speed circulation pumps are utilised in the MPC scheme, which are each

necessary for considering bi-directional mass and energy flows between buildings

and the ULTDHC network.

4.2 Control Scheme

The following scheme enables a single, centralised MPC controller to schedule oper-

ation of a district, with the objective of minimising system costs and maximising rev-

enues. Set-points determined by the MPC controller for the current sampling interval

are passed to controllable distributed energy resources for implementation (see Fig.

4.1). Actions are then determined by lower-level feedback controllers with higher

91



frequency in order to track these set-points, responding to deviations in expected

demand due to unknown disturbances, incorrect forecasts or modelling inaccuracies.

Building

Physical 

Networks
MPC Controller

Forecasted Profiles

Controllable 

Resource(s)

Control

Actions

Multi-Energy DistrictEnergy Management Control

State Updates

Simulated System

Feedback 

Controllers

Figure 4.1: Illustration of district control scheme, adapted from [29].

The optimisation performed by the MPC controller is based on the certainty equiv-

alence principle, whereby future values of unknown daily price schedules, energy

demand and generation are assumed known and equal to forecasted values. As fore-

casting methods are not within the scope of this thesis, simple persistence forecasting

is adopted which predicts that future disturbances are equal to historical values mea-

sured 24 hours previously. If this was substituted for a better forecasting method,

then the performance of the MPC controller should improve.

Aggregated component modules, with or without additional modifiers, and the con-

nections between them provide the system model for the MPC controller. The op-

timisation problem for the MPC controller is to minimise a cost function given in

(4.1) at each sampling instance k, subject to the constraints of m aggregated compo-

nents. The prediction horizon H is a user-defined value that should be long enough

to ensure long-term economic optimality.

Jk =
∑
m

H−1∑
h=0

ck+h,m (4.1)

Solving the controller’s optimisation problem provides a solution vector v∗
k from

which a set of control actions can be derived, as outlined in Algorithm 1.

It is assumed in this chapter that the district is operated by a single entity, as would

be the case for a university, airport or hospital district, for example. This is the basis

for (4.1), through which buildings are coordinated for the benefit of the overall dis-

trict. This objective may also be used to control a district of independent buildings

if it is assumed that they are part of a coalition also coordinated by a single entity,

e.g. a commercial aggregator. In this case an additional benefit allocation mecha-
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Algorithm 1 Generic algorithm for model predictive control scheme
1: t = 0, ∆t > 0

2: for k = 0, 1, 2, ... do

3: Update current system states, xk

4: Update price forecasts, λk+h, h = 0, ...,H − 1

5: Update disturbance forecasts, wk+h, h = 0, ...,H − 1

6: Minimise 4.1 to determine schedule of control actions,

u∗
k+h, i = 0, ...,H − 1

7: Pass control inputs for next sampling interval, u∗
k, to lower-level feedback

controllers; discard u∗
k+h, h = 1, ...,H − 1

8: Wait until t = (k + 1)∆t

9: k ← k + 1

10: end for

nism would be required to ensure a fair distribution of revenue amongst cooperating

buildings (see, for example [114]).

For the simulations reported in Section 4.4, it is assumed that the simulated system

shown within the dashed boundary in Fig. 4.1 follows precisely the set-points issued

by the MPC controller. The case study in Section 4.3 therefore demonstrates the

effectiveness of the MPC controller to continually schedule operation of the district,

whilst stability and robustness are ensured by the actions of lower-level controllers.

4.3 Case Study

A multi-energy district shown in Fig. 4.2 is used to exemplify the added capability of

the proposed component modules utilised in this chapter, taking inspiration from the

case study of [30]. It comprises a commercial office building, a supermarket building

and a ULTDHC district heating and cooling (DHC) plant. These are connected by a

looped ULTDHC network and by radial electricity and gas networks. Conversion fac-

tors associated with devices are provided in Table 4.1 and specific device parameters,

such as operational limits and modelling coefficients, are given in Table 4.2. Network

modelling parameters are given in Table 4.3. The following paragraphs describe the

energy system of each building in detail.
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Figure 4.2: Illustration of district modules, adapted from [29].

Table 4.1: Device Conversion Factors

Conversion Factor Device Value

ηtx Transformer 0.98

COP/EERsc Heat Pump (heating/space cooling) 3.40 / 9.50

EERref Heat Pump (refrigeration) 3.90

ηb,heat Auxiliary Boiler 0.80

ηrh,heat Immersion Heater 1.00

ηchp,heat/ηchp,elec CHP (heat/electricity) 0.40 / 0.33

EERAC Absorption Chiller 1.70

ηbatt,chg/ηbatt,dchg Battery (charging/discharging) 0.90 / 0.85

ηhthm,chg/ηhthm,dchg Hot Store (charging/discharging) 0.95 / 0.95

ηcthm,chg/ηcthm,dchg Cold Store (charging/discharging) 0.95 / 0.95

A reversible WSHP serves office heating and cooling demands by either importing

or exporting heat to the thermal network, via a decentralised circulation pump (see

Fig. 4.3). A thermal water storage tank decouples thermal demands from use of the

WSHP. An auxiliary gas boiler is also present to ensure sanitary hot water can still

be provided when the WSHP is used for space cooling. In addition, local electrical

consumption and a solar photovoltaic (PV) array combine to impose a fixed net gen-

eration/demand on the building’s energy system and a battery is also located within

the office.
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Table 4.2: Hub Specific Device Modelling Constraints and Coefficients

Building Office Supermarket DHC

Transformer capacity, kW 500 500 500

Battery capacity, kWh 300 400 -

Min./Max. Battery SoC, % 20 / 80 20 / 80 -

Max. Battery charge/disch., kW 225 225 -

Battery loss coefficient 0.001 0.001 -

Hot Store capacity, kWh 200 - 2.40×103

Max. Hot Store charge/disch., kW 60.0 - 400

Hot Store loss coefficient 0.01 - 0.001

Cold Store capacity, kWh -150 -150 -

Max. Cold Store charge/disch., kW 60.0 60.0 -

Cold Store loss coefficient 0.01 0.01 -

HP input capacity, kW 160 160 -

Aux. Boiler input capacity, kW 200 - -

µ-CHP input capacity, kW - - 250

Abs. Chiller input capacity, kW - - 300

Pump power constants, Ψon/b
[115] 2.97/0.0355 2.97/0.0355 2.97/0.0355

Max. Pump flowrate, m3 h−1 85.0 85.0 85.0

Table 4.3: Network Parameters

Parameter Description Value

yp1,elec
Main Feeder Capacity Limit 600 kW

θw Warm Line Temperature 20.0 ◦C

θc Cool Line Temperature 16.0 ◦C

Cwater
p Heat Capacity of Water 4.18 kJ kg−1K−1

ρwater Density of Water 998 kgm−3

A supermarket refrigeration demand is served by a single mode WSHP whilst a rel-

atively small demand for sanitary hot water is met using an electrical immersion

heater (see Fig. 4.4). Similarly to the office, thermal storage is present to decouple

operation of the WSHP from demand, in this case a cold storage tank operating at

temperatures below ambient. Although no electricity is generated within the super-

market, battery storage is available for energy arbitrage.
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Figure 4.3: Illustration of office modules, adapted from [29].
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Figure 4.4: Illustration of supermarket modules, adapted from [29].

The district heating and cooling (DHC) plant is needed to provide the balance of

thermal demands across the district (see Fig. 4.5). It consists of a tri-generation

system with connections to a large solar thermal collector (TC) and seasonal storage.

The tri-generation system comprises a microturbine driven CHP (µ-CHP) and an ab-

sorption chiller which is able to use heat from the µ-CHP to provide cooling, with the

remaining waste heat released to atmosphere via passive cooling. Surplus electricity

from the µ-CHP is exported to the district.

Fixed
Generation

DHC

Distributor

Absorption
Chiller

CHP

Circulation
Pump

Circulation
PumpDistributorDistributor

Seasonal
Storage

Transformer

Electrical System

Heating System

Gas System

Cooling System

Figure 4.5: Illustration of DHC modules, adapted from [29].
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The µ-CHP, due to its small size, is assumed to have greater flexibility than larger

CHP units. Hence, the case study does not consider operational constraints on µ-CHP

output levels such as minimum up and down-times. Given the considered sampling

period, this is unlikely to significantly impact the results. As shown in Chapter 3,

these constraints could easily be added to the CHP module using the relevant modi-

fiers provided within the framework. However, at the time of publishing [29], these

modifiers had not yet been added to the framework, so were not included in the case

study.

4.3.1 Control Problem

The objective function Jk minimised by the controller at each time step consists of

the economic cost to the district for importing, and revenue for exporting, energy

from/to external networks, as well as the cost associated with battery degradation. A

purchase and sale cost modifier is applied to the electricity network output variable,

yk,p1,elec, with associated prices λbuy
k,yp1,elec

and λsell
k,yp1,elec

. A value cost modifier is applied

to the gas network output variable yk,p1,gas, with associated cost λval
k,yp1,gas

. A battery

degradation cost coefficient λabs
k,ubattj ,chg

is applied to all batteries, denoted batts, by

adding an absolute value cost modifier applied to uk,batt,chg.

Jk =
H−1∑
h=0

ck+h (4.2)

ck+h = (λbuy
k,yp1,elec

− λsell
k,yp1,elec

)zk,yp1,elec,buy + λsell
k,yp1,elec

· yk,p1,elec + λval
k,yp1,gas

· yk,p1,gas

+
∑

j∈batts

λabs
k,ubattj ,chg

· zk,ubattj ,chg,abs (4.3)

The control problem is formally stated as:

min
vi

Jk =
H−1∑
h=0

ck+h (4.4)

s.t. (3.1)-(3.4) ∀ m

for which the m aggregated components are shown in Figs. 4.2 to 4.5 and the specific

constraints for these components are given in Chapter 3.
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4.3.2 Simulation Parameters and Inputs

The simulation uses data from February 2018 with a half-hourly sampling interval,

totalling 1,344 data points. Half-hourly electricity prices used in the simulation are

those set in February 2018 by UK energy supplier Octopus Energy Ltd for customers

on its Agile Octopus tariff [116]. Fixed prices are assumed for export of electricity to

the external grid and purchasing of gas, at 1 p/kWh and 2.8 p/kWh respectively; the

value of λabs
batt,chg = 3.15 p/kWh is determined using the approach in [117]. Historical

data recorded for February 2018 in the University of Manchester’s building manage-

ment system were used to obtain representative profiles of energy generation and

consumption. For clarity, data profiles are shown for a single weekday only (Figs.

4.6(a)-(d).

4.3.3 Comparative Rule-Based Control Scheme

In order to gauge the performance of the MPC controller, a simple rule based control

(RBC) scheme has also been simulated for the same period. This scheme uses simple

if-then-else logic to assign priority for the use of resources based on relative costs

(see Table 4.4), following the examples of [42], [118], [119]. Renewable generation

is always dispatched, whilst batteries and thermal storage tanks are charged or dis-

charged when the electricity buying price passes pre-specified threshold values, i.e.

λbuy
p1,elec,low = 10 and λbuy

p1,elec,high = 20. These thresholds have been tuned to achieve the

best performance from the RBC controller for the considered system and electricity

price profile. After local storage dispatch has been determined, the RBC scheme en-

sures that local building demands are always met by dispatching remaining available

resources. Any surplus energy is exported to internal networks.

4.4 Results

The data described in Section 4.3 were used to run a simulation over 1,296 half-

hourly intervals, with prediction horizon H = 48. IBM ILOG CPLEX 12.9 [120]

with MATLAB [121] API was used to solve the controller MILP problem on an Intel

Core i5-6200U CPU @ 2.30 GHz with 8.00 GB of RAM. The default relative MIP gap

tolerance of 1× 10−4 was increased to 1× 10−3; this improves the computation time
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Figure 4.6: (a) Gas and electricity prices; (b) Office half-hourly energy demands; (c) Su-

permarket half-hourly demands; (d) Half-hourly energy generation from solar PV and solar

TC. Profiles are those for 2nd February 2018. Dotted lines in (a)-(d) represent forecasts,

recorded on the previous day.

of the controller with only a marginal (< 0.05%) increase in the optimal cost. For

clarity, the results are plotted for a single weekday only (Figs. 4.7(a)-(e)).

The amount of energy imported to the district from external gas and electricity net-

works is shown in Fig. 4.7(a). Import of electricity is minimised by the controller

during higher purchase price periods, to the extent that no electricity is imported

between 17:00 and 18:30. As shown by the profiles of imported thermal energy in

4.7(b), electricity associated with ULTDHC substation devices is minimised at this

time, relying on thermal storage and use of the office gas boiler to reduce use of

network pumps. It is worth noting that 19% of the total electrical energy demand of
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Table 4.4: Resource Dispatch Priority using Rule-Based Control

Resource Condition Dispatch Status

Solar PV - Always dispatched

Solar TC - Always dispatched

Batteries

if λbuy
k,p1,elec < λbuy

p1,elec,low Charging state

else if λbuy
k,p1,elec > λbuy

p1,elec,high Discharging state

else Standby

Storage Tanks

if λbuy
k,p1,elec < λbuy

p1,elec,low Charging state

else if λbuy
k,p1,elec > λbuy

p1,elec,high Discharging state

else Standby

Heat Pumps - Always dispatched

Immersion Heater - Always dispatched

Auxiliary Boiler

if heat load exceeds Dispatched

heat pump capacity

else Standby

Absorption Chiller
if cooling is required Dispatched

else Standby

µ-CHP

if heat load exceeds Dispatched

solar TC output

else Standby

Seasonal Storage

if solar TC output exceeds Charging state

heat load

else if heat load exceeds Discharging state

solar TC output plus

µ-CHP capacity

else Standby

ULTDHC substation devices over the month is used by the network pumps, substan-

tiating their significance and necessary inclusion in the prediction model.

Thermal and electrical battery storage levels are shown in Figs. 4.7(c) and 4.7(d),

respectively, for both the office and supermarket. Fig. 4.7(d) clearly shows that the

batteries are operated to take advantage of fluctuating electricity prices, charging at

a lower price period and discharging when prices peak. The fact that this behaviour

is also observed for the thermal storage in 4.7(c) highlights the coupling between

these systems and supports their integrated optimisation. Also apparent from com-

parison of Figs. 4.7(a) and 4.7(d) is the effect of the electrical network’s main feeder
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Figure 4.7: (a) District electricity and gas imports; (b) Imports from ULTDHC network; (c)

Office hot tank and supermarket cold tank storage levels; (d) Office and supermarket battery

storage levels; (e) District µ-CHP output. Results are those for 2nd February 2018.

capacity constraint on simultaneous charging of the batteries. In particular, between

04:00 and 05:00 the controller opts to stagger the rate of charging of each battery so

that this constraint is not violated. This scenario shows the importance of including

network constraints in the control problem formulation. If, conversely, network ca-

pacity constraints were not considered, i.e. if electrical import was only constrained
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by transformer capacity, then the main feeder capacity limit could be exceeded by

simultaneous charging of the batteries.

The µ-CHP is always operational during periods when the electricity price is at or

above approx. 9 p/kWh (Figs. 4.6(a) and 4.7(e)). During these periods it is more

economical to supply district electrical loads using local gas-fired generation, even

if there are no demands from the ULTDHC network at the time, leading to some

charging of the seasonal thermal storage. This again highlights the importance of a

multi-energy systems approach; a µ-CHP solely operated to satisfy thermal demands

would have reduced output, resulting in higher electricity costs for the district. Fig.

4.7(b) shows that, by discharging seasonal storage, the DHC plant may still provide

the balance of energy required by the thermal network when electricity prices are low

and the µ-CHP is not operational. Regardless of whether there is an excess or a deficit

of heat, the controller is able to schedule operation to balance the ULTDHC network

since the DHC plant includes a multi-mode tri-generation plant. This capability relies

on the determination of bi-directional power exchanges with the network, enabled

by the introduction of reversible fixed speed pump modules to the optimisation mod-

elling framework.

Table 4.5: Comparison of Daily Cost (1 Month Simulation)

Daily Cost (£) Ave. Std. Dev. Min. Max.

Rule-Based Control 1,115 184 845 1,652

MPC (H = 48) 998 (-10.4%) 182 704 1,480

The simulation results using the proposed MPC controller compare favourably with

those of the RBC scheme introduced in Section 4.3.3, with an average daily cost

that is 10.4% lower than that of the RBC scheme (Table 4.5). The MPC controller

is able to achieve this improved economic performance whilst maintaining operation

within prescribed limits, unlike the RBC scheme which was found to violate the main

electrical feeder capacity limit on several occasions; this is due to the RBC scheme

prioritising energy arbitrage and the satisfaction of thermal loads, whilst electricity

is left as a degree of freedom to balance energy demands. Hence, the proposed

MPC controller performs significantly better than the RBC scheme, both in terms of

optimality and operational feasibility.

Table 4.6 shows the impact of increasing prediction horizon length on solver com-

putation time. As expected, there is an increase in average computation time as the
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Table 4.6: Effect of Prediction Horizon Length on Computational Performance (1 Month

Simulation)

Prediction Horizon Length 12(6h) 24(12h) 36(18h) 48(24h)

Number of Variables 2028 4056 6084 8112

Number of Binary Variables 444 888 1332 1776

Ave. Comp. Time (secs) 0.11 0.25 0.64 0.83

Max. Comp. Time (secs) 0.59 3.25 9.77 2.94

Std. Deviation (secs) 0.05 0.16 0.42 0.27

horizon length is increased from H = 12 (6 hrs) to H = 48 (24 hrs), although the

average computation time of 0.83 secs for H = 48 is well within acceptable limits

for a control scheme with half-hourly updates. The maximum computation time for

the particular case under study can be several seconds longer than the average. This

may be explained since in most intervals it was only necessary for the CPLEX solver

to explore the route node of the MILP problem before obtaining an optimal solution;

longer computation time results from more exhaustive searches by the solver’s branch

and cut algorithm. With a smaller relative MIP gap tolerance, additional nodes would

have to be explored more often, with an associated increase in average computation

time.

If the system scale is significantly increased to incorporate a large number of build-

ings, long computation times could become problematic. However, referring to Fig.

4.8, which shows the effect of increasing horizon length on the overall cost for a

single day, it is clear that increasing the prediction horizon length beyond H = 27

offers little benefit in this case. Therefore, if computation times are likely to be exces-

sive for larger systems, a similar analysis could be performed in order to determine

a minimum horizon length for MPC, thereby significantly reducing the size of the

optimisation problem.

4.5 Conclusions

In this chapter, results have been presented to demonstrate that a gap in the research

into control of multi-energy districts has been partially addressed; namely, the need

for a general model development technique which considers ULTDHC networks and
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Figure 4.8: Effect of prediction horizon length on overall cost, using data for 2nd February

2018.

which can be readily incorporated into MPC schemes. The modelling contributions

utilised in this chapter include the addition of component modules to represent sim-

plified multi-energy networks, fixed speed hydraulic pumps and reversible WSHPs.

Using the extended framework, an MPC scheme has also been proposed and anal-

ysed by simulation of a district featuring a ULTDHC network. In comparison to a

simulation using rule-based control, the proposed scheme exhibits significantly bet-

ter performance. The results highlight the importance of modelling energy networks

and interactions, both to improve optimality and avoid infeasible network operation.

Experimentation to vary the MPC prediction horizon length also indicated that there

is potential to define a minimum horizon length, thereby minimising the problem

size, in order to manage computational burden whilst maintaining optimal economic

operation.

A criticism of the method used in this chapter is that the power required from fixed

speed circulation pumps is likely to greatly exceed an equivalent network using vari-

able speed pumps. In the following chapter, more detailed multi-energy networks

models will be employed for a much larger district, since the assumptions that allow

pressures and voltages to be neglected no longer hold for a large district. The use

of a reversible variable speed circulation pump module is also used, since it will be

possible to determine the necessary pressure head gain required of the pump, based

on the modelled network conditions.
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Chapter 5

Centralised Coordination of a

Large-Scale Multi-Energy District

5.1 Introduction

Modelling formulations of optimal energy flow problems in both ULTDHC and AC

electrical networks are incorporated as modules into the multi-energy district control

problem in this chapter. The formulation of the ULTDHC optimal flow problem is an

original contribution of this thesis, whereas the AC electrical network reformulation

is based on the work in [60], adapted for the current framework. An analogous

modelling formulation for gas networks based on [122] may also be added to the

framework but is not utilised for the case study in this or subsequent chapters. As

will become clear from the case study results, the inclusion of just the ULTDHC and

AC network types, when modelled in detail and at large scale, is enough to cause the

district coordination problem to become intractable. The problem of tractability at

large scales is addressed in Chapter 6.

Also utilised in this chapter is a reversible variable speed circulation pump module

which relies on the inclusion of the detailed ULTDHC module to function properly.

Since the pump is governed by a non-linear relationship, this adds further complexity

to the energy management problem, which will similarly be addressed in Chapter 7.

As well as the use of these new component modules, two additional algorithms are

presented in the chapter which are used to ensure that the optimal energy flow solu-
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tions are feasible and exact, i.e. when all second order cone inequalities are satisfied

to equality, a concept which was described in Sections 3.6.2 and 3.6.3.

Having introduced the control scheme required for these more detailed network mod-

ules, a case study is described to test the functionality of these framework additions

when using a single, centralised MPC controller, as in the previous chapter.

5.2 Control Scheme

The control scheme from Chapter 4 is utilised here, with a small amendment to the

controller’s algorithm to ensure exactness of the ULTDHC and AC network energy

solutions. The optimisation problem for the controller remains the same, i.e. to

minimise the cost function given in (4.1) at each sampling instance k, subject to

the model of m aggregated components. However, the aggregated components now

include the ULTDHC and AC network modules. The revised procedure is shown in

Algorithms 2 and 3.

The constants ∆Hmax
ij and ℓmax in Algorithm 3 are the maximum allowable pipe pres-

sure head loss and line capacity, respectively. The algorithm iteratively replaces these

with reduced limits for individual pipes or lines if the optimisation solver returns an

inexact solution with respect to the given pipe or line. The solver may return an inex-

act solution if there is an overall economic benefit for artificially increasing the head

loss or line current, an occurrence which is more likely when bi-directional flows are

considered and strict limits on voltages and pump capacities apply. The algorithm pa-

rameters rmax and toln are used to balance solution exactness with the time taken to

compute a solution and can be adjusted to suit the specific control application; here

they are given rmax = 10, tolW = 1×10−3 and tolE = 1×10−4. Since the primary aim

of this chapter is to assess the functionality of the additional component modules,

uncertainty is not considered; perfect forecasts are provided to the controller.

5.3 Case Study

A case study is presented in this section, in which the operation of a large multi-

energy district under centralised control is simulated. The district topology is based
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Algorithm 2 Generic algorithm for model predictive control scheme
1: t = 0, ∆t > 0

2: for k = 0, 1, 2, ... do

3: Update current system states, xk

4: Update price forecasts, λk+h, h = 0, ...,H − 1

5: Update disturbance forecasts, wk+h, h = 0, ...,H − 1

6: Run Algorithm 3

7: Pass control inputs for next sampling interval, u∗
k, to lower-level feedback

controllers; discard u∗
k+h, h = 1, ...,H − 1

8: Wait until t = (k + 1)∆t

9: k ← k + 1

10: end for

Algorithm 3 Algorithm to improve inexact energy flow solutions
1: zk,w∆Hij

= ∆Hmax
ij

2: zk,ℓij = ℓmax

3: for r = 1 : rmax do

4: recompute = false

5: Minimise 4.1 to determine schedule of control actions,

u∗
k+h, i = 0, ...,H − 1

6: if Cijz
2
k,mij

− zk,w∆Hij
≥ tolW ∀(i, j) then

7: zk,w∆Hij
= Cijz

2
k,mij

8: recompute = true

9: end if

10: if z2k,Pij
+ z2k,Qij

− zk,ℓijzk,vi
≥ tolE ∀(i, j) then

11: zk,ℓij =
(
z2k,Pij

+ z2k,Qij

)
/zk,vi

12: recompute = true

13: end if

14: if recompute = false then

15: break

16: end if

17: end for

on a MATPOWER test case, ‘case85’ [123], and the building energy system devices

reported for ULTDHC networks in [49], [77]. The district consists of an 85 bus AC

distribution network and an 84 node ULTDHC network, connecting NB = 84 large

residential and commercial buildings/plants. The topology of the AC network is

shown in Fig. 5.1, in which bus 1 represents a connection to a larger network. The

topology of the ULTDHC network (also Fig. 5.1) follows that of the AC network but

starts at node 2, a plant substation, where a fixed amount of waste heat is contin-
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Figure 5.1: Graphs of AC distribution network, based on MATPOWER test case ‘case85’

[123], and ULTDHC network.
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Figure 5.2: Illustration of aggregated building module. Buildings at nodes 31 and 59 utilise

a cooling system, with a cold storage tank replacing the hot storage tank shown.

uously supplied by a sewage treatment plant. A large borehole storage field is also

located local to the sewage plant at node 2. Nodes 3 to 85 represent buildings, all

of which have fixed electricity and heating demands, with the exception of nodes

31 and 59 which both have fixed cooling demands. Every building has the use of

a WSHP, circulation pump, battery and thermal storage water tank (Fig. 5.2). Two

circulation pumps are located at the plant substation, one for network circulation

and one for pumping through the borehole storage field (Fig. 5.3).

5.3.1 Control Problem

The objective function Jk minimised by the controller at each time step consists of

the economic cost to each building for importing, and revenue for exporting, power

108



PlantFixed
Generation

Distributor

Circulation
Pump

Distributor

Seasonal
Storage

Circulation
Pump

Electrical System

Thermal System

Figure 5.3: Illustration of aggregated plant module.

from/to the AC power network, as well as the cost associated with battery degra-

dation. The controller also considers the cost for purchasing power at the plant

substation and the penalty costs associated with each network. A purchase and sale

cost modifier is applied to the electricity distributor output variable, yk,snk1,elec, of all

NB buildings, with associated prices λbuy
k,ysnk1,elec

and λsell
k,ysnk1,elec

. A value cost modifier

is applied to the electricity distributor output variable, ysnk1,elec, of the plant substa-

tion, with associated cost λval
k,ysnk1,elec

. A battery degradation cost coefficient λabs
k,ubatt,chg

is

applied to all batteries by adding an absolute value cost modifier applied to uk,batt,chg.

Jk =
H−1∑
h=0

ck+h (5.1)

ck+h =

NB∑
j

[
(λbuy

k,yj,snk1,elec
− λsell

k,yj,snk1,elec
)zk,yj,snk1,elec,buy + λsell

k,yj,snk1,elec
· yk,j,snk1,elec

+ λabs
k,ubattj ,chg

· zk,ubattj ,chg,abs

]
+ λval

k,yplant,snk1,elec
· yplant,snk1,elec + ck,AC + ck,HC (5.2)

where the cost functions ck,AC and ck,HC are given in Sections 3.6.2 and 3.6.3.

The control problem is formally stated as:

min
vi

Jk =
H−1∑
h=0

ck+h (5.3)

s.t. (3.1)-(3.4) ∀ m

for which the m aggregated components are shown in Figs. 5.1 to 5.3 and the specific

constraints for these components are given in Chapter 3.
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5.3.2 Simulation Parameters and Inputs

The AC distribution network parameters are taken from a MATPOWER test case

‘case85’ [123] and the ULTDHC network parameters have been derived by nor-

malising the AC line resistance values to obtain relative distances and scaling for

a pipe pressure drop of 0.03 mH2O/100 m at a base mass flow rate of 10 kg/s. Fric-

tional losses in each substation are determined with the same head loss coefficient,

Cj = 5× 10−4 mH2O · s/kg. Component model parameters are given in Table 5.1 and

various operating limits for the district are given in Table 5.2.

Table 5.1: Component Model Coefficients

Parameter Value1

Heat Pump COP 3.90

Heat Pump EER 2.10

Battery Cycle Efficiency [0.68;0.81]

Battery Standby Loss Factor 2.50 ×10−4

Tank Standby Loss Factor 2.60 ×10−4

Borehole Standby Loss Factor 2.50 ×10−4

Circulation Pump Efficiency 0.49

1 [a;b] - uniform random distribution.

Data to represent a day’s active power and heating demands from the 83 buildings at

15 minute intervals (Figs. 5.4 and 5.5) have been assembled from an OpenEI dataset

[124]. These data have been scaled so that network voltage and pressure constraints

become active during simulation. For simplicity, the reactive power consumption

at each node is assumed to be 0 p.u.; therefore reactive power is only supplied to

balance power dissipated in network lines. Electricity purchase prices have been

interpolated at 15 minute intervals from historic price data available from UK energy

supplier Octopus Energy Ltd for their Agile Octopus tariff [116] (see the orange

plot in Figs 5.6 and 5.7). Fixed prices are assumed for selling electricity and for

battery degradation, at 1p/kWh and 3.15p/kWh, respectively. The penalty costs used

to obtain exact solutions in the AC and ULTDHC networks are λval
ℓij

= 10, λval
∆Hij

= 100

and λval
pump∆Hj

= 10.
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Table 5.2: District Parameters

Device Parameter Value1 Units

AC Substation Capacity 3 MW

AC Voltage Limits 0.9 / 1.1 p.u.

ULTDHC Pipe Temperatures 16 / 20 ◦C

Plant Heat Input 1.60 MW

Plant Pump Max. Head Gain 50 mH2O

Plant Pump Max. Mass Flow 250 kg/s

Borehole Storage Capacity 0.00 / 500 MWh

Borehole Heat Transfer Rate -4.00 / 4.00 MW

Borehole Pump Head Gain 30 mH2O

Battery Capacity Limits [4.70;4.90] / [18.8;19.6] kWh

Battery Charge Rate [-12.5;-11.5] / [11.5;12.5] kW

Tank Heat Capacity Limits 0.00 / 40.0 kWh

Tank Heat Transfer Rate -20.0 / 20.0 kW

Building Pump Max. Head Gain 10 mH2O

1 [a;b] - uniform random distribution.
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Figure 5.4: Electricity demand profiles used in simulations.

5.4 Results

The data described in Section 5.3.2 were used to run a simulation over 96 sampling

periods of 15 minutes, with prediction horizon H = 3. The prediction horizon used,

despite being very short, leads to unacceptably long computation times, which is why

a longer horizon length was not simulated. The simulations were carried out using

Gurobi [110] and YALMIP [106] in MATLAB [121] on a laptop with Intel Core i5-
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Figure 5.5: Heating demand profiles used in simulations.

6200U CPU @ 2.30GHz and 8 GB RAM. The default relative MIP gap tolerance of

1×10−4 was increased to a comparatively large value of 1×10−2; this was necessary to

speed up the already prohibitively long computation time of the controller in certain

periods.

The electrical power and heat power supplied to all the buildings during the simu-

lated day (Figs 5.6 and 5.7), is mostly consumed at periods of low electricity price.

This shows that the controller is able to manipulate controllable devices in attempt

to minimise the overall cost of the district. However, it is also apparent that the

prediction horizon length is not long enough to deliver optimal control. The con-

troller responds to a foreseen increase in the price of electricity in period k = 62 by

increasing consumption of both electricity and heat to charge battery and thermal

storage. This is enables a short term cost saving as the electricity and heat consumed

in subsequent periods is temporarily reduced by discharging both types of storage.

However, the price continues to rise whilst simultaneously the fixed demands for

electricity and heat also rise, leaving the controller with no option but to purchase

electricity and heat during the price peak because there is no stored power available.

Clearly the prediction horizon length needs to be at least as long as the main price

peak and preferably equal to cyclic patterns of price and energy use, i.e. one full day.

Unfortunately, increases in the prediction horizon length are not possible as the time

for computation with H = 3 is already prohibitive (Table 5.3). During one sampling

instance the time taken to compute a control action was almost 1 hour, greatly ex-

ceeding the sampling interval of 15 minutes, and the standard deviation of over 7

minutes suggests poor consistency.

Although time consuming, the optimisation solutions that were returned by the con-

troller were exact and ensured that the control actions were feasible for the global
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Figure 5.6: Total electrical power supplied to buildings.
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Figure 5.7: Total heat power supplied to buildings.

Table 5.3: Computational Performance over 96 Sampling Instances

H = 3

Mean computation time, secs 153.88

Minimum computation time, secs 13.58

Maximum computation time, secs 3,354.40

Standard deviation of computation time, secs 464.57

system. This is demonstrated by the fact that, during the period of highest energy

consumption, k = 29, both the nodal voltage and required pump head gain values

were on or close to the operational limits, without exceeding them in any location

(Figs. 5.8 and 5.9).
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Figure 5.8: Voltage profile throughout AC network for sampling period k = 29. Dashed lines

indicate voltage limits, as per Table 5.2.
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Figure 5.9: Pump pressure gain profile throughout ULTDHC network for sampling period

k = 29. Dashed lines indicate limits on pump capacity, as per Table 5.2.

5.5 Conclusions

Three additional modules have been added to the multi-energy district control prob-

lem in this chapter, the AC and ULTDHC network modules together with the re-

versible variable-speed circulation pump module. There are several reasons for adding

these modules:

• To improve the modelling accuracy of the AC network so that network voltage

limits could be considered when determining control actions for a large district;

• To enable modelling of power consumption from variable speed pumps;

• To enable variable speed pump scheduling so that decentralised pump capaci-

ties are not exceeded and their interactions do not cause instabilities in regula-

tory feedback control loops.
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Whilst the modules have achieved these aims, the number of binary variables and

quadratic constraints introduced in each prevent efficient computation using an ad-

vanced commercial solver, evidenced by the excessively long computation times. This

is despite reformulations to make the AC and ULTDHC network modules convex

when integrality constraints are relaxed. Hence, if the benefits of these modules are

to be realised in a real control application, the lengthy computation times must be

addressed. In the following chapter a multi-agent control scheme is introduced to

mitigate this problem.
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Chapter 6

Multi-Agent Coordination Methods

6.1 Introduction

In the previous chapter, it was established that a single centralised controller would

not be able to coordinate hybrid multi-energy systems in a large building district with

multiple connecting networks. Another problem with this type of control structure is

that, in the case of a commercial aggregator, it involves a violation of privacy and the

need to take direct control of customer-owned distributed energy resources, neither

of which are likely to be accepted by customers. Instead, a multi-agent control struc-

ture is needed which ensures that customer privacy and autonomy is maintained,

whilst the burden of computation is shared amongst individual control agents. In this

approach, building agents responsible for their own local system send non-sensitive

energy demand data to an aggregator, which acts as a central coordinator perform-

ing limited calculations to ensure that any shared network constraints would not be

violated by the aggregated energy demand. If shared constraints would be violated,

the aggregator then sends updated price signals to the individual agents to encour-

age a particular behaviour, either to ensure network security within the district or

to provide a flexibility service to support wider power system operation. This pro-

cess is then repeated until shared network constraints are no longer violated, thereby

coordinating the agents whilst preserving a degree of privacy and autonomy.

The available strategies to decompose large optimisation problems into smaller, more

easily solved agent sub-problems, by solving the Lagrange dual, often rely on strong

duality to ensure that the recovered solution to the original problem is optimal [125].
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However, for non-convex, mixed-integer problems with non-zero duality gap, the re-

covered solution may be sub-optimal or even infeasible. Recently, this issue was

addressed in [28] for dual decomposition of MILPs in which the problem is com-

pletely separable after the removal of global linear constraints. For problems of this

structure, it was shown that a suitable amount of tightening of the global constraint

enabled ‘good’ feasible solutions to be found by using established methods to solve

the dual problem, such as the subgradient method [126]. For high-level energy man-

agement control of complex energy systems which are subject to uncertainty, a ‘good’

feasible solution, as oppose to a globally optimal one, can be justified. The work in

[28] was later extended with an algorithm for using the subgradient method with

adaptive constraint tightening [27]. This algorithm reduces the conservatism intro-

duced by the worst-case constraint tightening of [28] and in doing so increases the

number of problems for which dual decomposition and constraint tightening might

be applied. Proofs of finite-time convergence and performance guarantees for this

algorithm are also provided in [27]. The first known application of the dual de-

composition and constraint tightening technique of [27] within an MPC scheme was

presented at the 29th Mediterranean Conference on Control and Automation (MED),

Bari, Italy, 2021, by this author, for a case study considering 175 connected multi-

energy buildings [32]. That work has since been developed and the results are pre-

sented in this chapter.

The relevant background to these previous works is presented in the following sec-

tion. In Section 6.3, two alternative algorithms are presented that use well-known

subgradient acceleration techniques, the Classical Momentum method and Nesterov’s

Accelerated Gradient method. Then, in Sections 6.5 and 6.6, these new algorithms

are compared against that of [27] in two different case studies, the latter case study

demonstrating the convergence and tuning difficulties when embedding the algo-

rithm from [27] into a MPC scheme, which motivated the development of acceler-

ated algorithms. The development of an MPC scheme with accelerated algorithms

for multi-agent optimisation represents another contribution of this thesis.

6.2 Background

The background information presented in this section is an amalgamation of the the-

ory presented in [27], [28]. It is intended to replicate the minimum prerequisites for
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understanding the multi-agent method and does not contain any original contribu-

tions. The equations provided are taken almost verbatim from these sources, with

some slight changes to notation and ordering which should facilitate understanding

of the contributions made by each work.

The multi-agent method is applied to MILP problems with the following structure,

which is separable after the removal of global coupling constraints [27]:

min
v

∑
i∈M

c⊤i vi

s.t.
∑
i∈M

Aivi ≤ b

vi ∈ Vi, ∀i ∈M

(P)

in which vi is the decision vector, c⊤i vi is the local cost and Vi is the local constraint set

of a subsystem i. Each mixed-integer polyhedral set Vi = {vi ∈ Rri × Zzi : Divi ≤ di}

is assumed to be non-empty and compact. Matrices Ai ∈ RH × Rri+zi and a sin-

gle resource vector b ∈ RH define a global inequality constraint which is applied

component-wise. By introducing a vector of Lagrange dual multipliers λ ∈ RH it is

possible to derive the dual problem, (D), of the primal problem (P), in which the

global constraint is added to the objective function:

max
λ≥0

− λ⊤b+
∑
i∈M

min
vi∈Vi

(
c⊤i + λ⊤Ai

)
vi (D)

The inner minimisations within D are separable, lower-dimensional sub-problems as-

sociated with each subsystem i and may be solved in parallel by independent agents.

It is possible to solve D using a subgradient algorithm [126], in which candidate

primal solutions v(λ)i are determined for each inner minimisation problem over a

series of iterations. If all the variables vi in each local subsystem were continuous,

then by averaging these tentative solutions across iterations, it would be possible

to recover an optimal solution v(λ∗) which is also an optimal solution of P [127].

However, in the mixed-integer case, the recovered solution would not satisfy the

integrality condition and would therefore not be feasible for P. What is actually

recovered is a solution to the following problem, PLP:

min
v

∑
i∈M

c⊤i vi

s.t.
∑
i∈M

Aivi ≤ b

vi ∈ conv(Vi), ∀i ∈M

(PLP)
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where conv(Vi) denotes the convex hull of Vi. This connection between the solution

v∗
LP to PLP and v(λ∗) is exploited by the authors in [28]. They note that (v∗

LP)i ∈ Vi

for at least |M |−H sub-problems and (v∗
LP)i ∈ conv(Vi) for the remaining ones. They

then prove the following proposition, transferring this useful property onto the inner

solutions v(λ∗).

Proposition 1. (Relation between v∗
LP and v(λ∗), Theorem 2.5, [28]). For v(λ∗)i ∈

argminvi∈Vi

(
c⊤i + λ⊤Ai

)
vi, i ∈ M , there exists M1 ⊆ M , with |M1| ≥ |M | −H, such

that (v∗
LP)i = vi(λ

∗)

This result is used to determine an amount of constraint tightening ρ ∈ Rp in the

following modified version of P:

min
v

∑
i∈M

c⊤i vi

s.t.
∑
i∈M

Aivi ≤ b− ρ

vi ∈ Vi, ∀i ∈M

(P)

Let D and PLP be defined similarly to D and PLP but for the modified problem P.

Assumption 1. (Existence and Uniqueness, [28]). Problems D and PLP have unique

solutions λ
∗

and v∗
LP.

Proposition 2. (Feasible Solutions, Theorem 3.1 in [28]). If Assumption 1 holds then

any primal solution v(λ
∗
) recovered when solving D will be a feasible solution for P,

providing an appropriate ρ is used.

If P does not have a unique solution, then a small perturbation of the cost function

coefficients can be incorporated to ensure the returned solution is unique and that

Assumption 1 is fulfilled [28]. A worst-case contraction for the k-th element of ρ is

given in (6.1). This means that in each row of the global constraint, the resource

vector will be contracted by p times the largest possible consumption range of any

subsystem [28].

[ρ(1)]k = H ·max
i∈M

(
max
vi∈Vi

Ak
i vi − min

vi∈Vi

Ak
i vi

)
(6.1)

A less conservative contraction is given in (6.2), which contracts b by the p-largest

possible consumption ranges of all subsystems, thus ρ(2) ≤ ρ(1) [27].

[ρ(2)]k = max
M⊆M, |M|=H

∑
i∈M

(
max
vi∈Vi

Ak
i vi − min

vi∈Vi

Ak
i vi

) (6.2)
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An even less conservative contraction can be determined adaptively as per Algorithm

4, first proposed in [27]. In this algorithm the contraction is based on the p-largest

consumption ranges determined up to the current iteration, j, of an iterative scheme.

This approach is herein referred to as multi-agent dual decomposition and adaptive

constraint tightening, which is shortened to simply MA.

Algorithm 4 MA algorithm from [27]

1: si(0) = −∞, i ∈M

2: si(0) = +∞, i ∈M

3: j = 0

4: while stopping criteria is not met do

5: for i = 1 to |M | do

6: vi(j + 1)← arg min
vi∈Vi

(c⊤i + λ(j)⊤Ai)vi

7: end for

8: si(j + 1) = max {si(j), Aivi(j + 1)}, i ∈M

9: si(j + 1) = min {si(j), Aivi(j + 1)}, i ∈M

10: ρi(j + 1) = si(j + 1)− si(j + 1), i ∈M

11: ρ(j + 1) = max
{∑

i∈M,|M |=H ρi(j + 1)
}

12: ∇g(j + 1) =
∑
i∈M

Aivi(j + 1)− b+ ρ(j + 1)

13: λ(j + 1) = [λ(j) + α(j)∇g(j + 1)]+

14: j ← j + 1

15: end while

MA is a variant of the subgradient algorithm, with steps 6 and 13 comprising the two

main subgradient update steps. Step 6 may be carried out in parallel by individual

agents and the output communicated to a central coordinator that is responsible for

all remaining steps. In Step 13 the dual multiplier is updated, involving a step-length

equal to α(j) and a projection onto the positive orthant, denoted by [·]+. The step-

length sequence {α(j)}j≥0 is chosen so that α(j) → 0 and
∑∞

j=1 α(j) = ∞. A simple

stopping criterion is that the original global constraint in P is satisfied for a number

of consecutive iterations, e.g. 5 iterations.

Assumption 2. (Boundedness). The polyhedral sets Vi, i ∈M , in P are bounded.

Under Assumption 2, the iterative sequence to determine ρ in Algorithm 4 converges

in finite-time to some ρ, since it takes values from a finite-set and is monotonically
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increasing [27]. Therefore the following proposition, an extension to Proposition 2,

holds for Algorithm 4 (see [27] for detailed proofs).

Proposition 3. (Finite-time Feasibility, Theorem 1 in [27]). Under Assumptions 1 and

2, there exists a finite iteration index J such that, for all j ≥ J , v(j) is a feasible solution

for P, i.e.,
∑

i∈M Aivi(j) ≤ b, j ≥ J and vi(j) ∈ Vi, where vi(j), i ∈ M are computed

by Algorithm 4.

A finite-time optimality bound may be similarly defined [27]. First, for any iteration

j ≥ 1 in Algorithm 4, let

ϕ = H ·max
i∈M

{
max
r≤j

c⊤i vi(r)−min
r≤j

c⊤i vi(r)

}
(6.3)

Assumption 3. (Slater). There exists a scalar ζ > 0 and v̂i ∈ conv(Vi) for all i ∈ M

such that
∑

i∈M Aiv̂i ≤ b− ρ− ζ |M |1.

Proposition 4. (Performance Guarantee, Theorem 2 in [27]). Under assumptions 1-3,

there exists a finite iteration index J such that, for all j ≥ J , v(j) is a feasible solution

for P that satisfies: ∑
i∈M

c⊤i vi(j)− CP∗ ≤ ϕ+
||ρ||∞
Hζ

ϕ (6.4)

where CP∗ is the optimal cost of P and vi(j), i ∈M are computed by Algorithm 4.

The MA method is an effective means to distribute the computational burden of large

problems with the form of P over multiple agents. Furthermore, as the number of

managed subsystems |M | → ∞ for a fixed dimension H of the global constraint,

the optimality gap to CP∗ → 0 [28]. However, whilst MA achieves these feasibility

and performance guarantees in finite-time, the actual timescale for convergence may

not always be considered of practical benefit, as shown in Sections 6.5 and 6.6.

Moreover, tuning of MA by changing the step-length sequence can be difficult because

the step-length sequence can either be tuned for large subgradients (relative to final

optimal dual values), requiring small step-lengths, or small subgradients, requiring

large step-lengths, but not both. Excessive oscillations occur if large step-lengths are

used with large sub-gradient values, whereas asymptotic-like convergence may result

if small step-lengths are used with small sub-gradients. This issue must be addressed

in receding horizon control schemes since there is no time available for trial and error

tuning at each sampling instance.
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Algorithm 5 MA-CM algorithm

1: Steps 1 to 3 of Algorithm 4.

2: while stopping criteria not met do

3: Steps 5 to 12 of Algorithm 4.

4: λ(j + 1) = [λ(j) + α∇g(j + 1) + β (λ(j)− λ(j − 1))]+

5: j ← j + 1

6: end while

In the following section improved algorithms are proposed with the intention of

avoiding this problem, by accelerating convergence when using small step-lengths.

The two acceleration methods are the well-known Classical Momentum method [128]

and Nesterov’s Accelerated Gradient method [129]. These methods are chosen over

other acceleration methods because no prior knowledge of optimal converged values

is required to determine the step-length at each iteration [128]. In Section 6.5, com-

parable performance of each algorithm is demonstrated for an electric vehicle (EV)

charging case study, providing that algorithm parameters have been tuned effectively.

Section 6.6 then demonstrates the superior performance of MA algorithm with accel-

erated gradients for model predictive control of connected multi-energy buildings, in

which the presence of very small dual function subgradients slows down convergence

at certain sampling instances.

6.3 Proposed Accelerated Algorithms

The alternatives to MA that are explored in the following sections are shown in Algo-

rithms 5 and 6, which are herein referred to as MA with Classical Momentum (MA-

CM) and MA with Nesterov’s Accelerated Gradient (MA-NAG). In each algorithm,

the dual update step is replaced by an accelerated dual update step and all duals are

initialised with λ(0) = 0. The momentum variable µ, which is used in MA-NAG, is

also initialised with µ(0) = 0. It should be noted that the dual update for MA-NAG

is only restricted to the positive orthant when updating λ, not for the update of µ

(step 4 of Algorithm 6). This is to prevent the acceleration term exhibiting a bias

towards positive subgradients. A feasible solution is found when all subgradients are

non-positive, i.e. ∇g ≤ 0.
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Algorithm 6 MA-NAG algorithm

1: Steps 1 to 3 of Algorithm 4.

2: while stopping criteria not met do

3: Steps 5 to 12 of Algorithm 4.

4: µ(j + 1) = λ(j) + α∇g(j + 1)

5: λ(j + 1) =
[
µ(j + 1) + j

j+β
(µ(j + 1)− µ(j))

]
+

6: j ← j + 1

7: end while

In each algorithm an additional tuning parameter is introduced, β, which must be

determined a-priori. For MA-CM the value of β should be chosen within the interval

(0, 1) and requires a trial and error approach to determine a suitable value. When

NAG is applied to problems such as ordinary differential equations which are con-

vex and Lipschitz continuous, it is possible to determine values for α and β which

guarantee convergence at a rate O(1/t2) [129]. However, the dual problem D does

not exhibit these convenient properties and therefore requires a heuristic approach

to determine these parameters. A value of β = 3 works well for MA-NAG in all the

problems encountered, which constitutes a monotonically increasing series
∑∞

j=1
j

j+β

in the interval [0.25,1). For both algorithms the initial value of α is chosen to be

sufficiently small that large dual price oscillations do not occur, which can otherwise

slow down convergence and cause the contraction ρ to be excessive, which would

then lead to overly conservative constraint tightening.

6.4 Control Schemes

When using these algorithms in a MPC scheme, it is necessary to define new con-

trol algorithms for both individual agents and the central energy coordinator. An

overview of the multi-agent control scheme (Fig. 6.1) illustrates the communication

signals between N agents and the central energy coordinator; it should be noted that

agents do not communicate with one another. Although a fully distributed scheme,

in which agents only communicate with their nearest neighbours, may be preferable

in some multi-agent control schemes, the central coordinator is utilised here so that

it can perform optimal energy flow checks when detailed network modules are con-
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Figure 6.1: Illustration of the multi-agent district control scheme. Although only shown for

Agent 1, all agents in the scheme receive forecasted data and utilise a controller.

sidered. The scheme is applied to the case study from Chapter 5 in the next chapter,

which requires detailed network modelling.

Component modules aggregated at the building level provide the system models for

individual agent MPC controllers. The optimisation problem for each agent controller

i ∈M is to minimise the cost function given in 6.5, subject to the local system model

of mi aggregated components within a given building i.

Jk,i =
H−1∑
h=0

ck+h,i + λval ⊤
k+h,dualAivk+h,i (6.5)

Solving the agent’s optimisation problem provides a candidate solution vector vk,i

which is communicated to the central coordinator, as per Algorithm 7. The cen-

tral coordinator then carries out Algorithm 8, 9 or 10 (depending on the selected

method). Updated dual prices, λval
dual, are then returned to the agent with an instruc-

tion to carry out the optimisation again, if the stopping criteria has not been met,

or otherwise an instruction to continue, at which point the agent will implement the

control actions based on the incumbent solution. This means that the agents are co-

ordinated – dual prices are used to encourage globally feasible solutions and control

actions are not implemented until a globally feasible solution has been found – but

that they have autonomy over how they operate their local system in response to the

combination of actual energy prices and imposed dual prices.

The dual update vectors λval
dual and µ are initialised with all zero vectors only once

before the control scheme is online. Once online, these vectors are warm started at

each k, determined by applying a circular shift to the final vectors of the previous
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Algorithm 7 Agent receding horizon scheme
1: t = 0, ∆t > 0

2: Initialise λval
dual with zero vector, 0H×1

3: for k = 0, 1, 2, ... do

4: Update current system states, xk

5: Update price forecasts, λval
k+h, h = 0, ..., H − 1

6: Update disturbance forecasts, wk+h, h = 0, ..., H − 1

7: Minimise the agent control objective (6.5)

8: Communicate candidate solution, vi, to the central coordinator

9: Wait until instruction received from central coordinator

10: if instruction == “re-optimise” then

11: Go to step 7

12: end if

13: Pass control inputs for next sampling interval, uk, to lower-level feedback

controllers; discard uk+h, h = 1, ..., H − 1

14: Wait until t = (k + 1)∆t

15: k = k + 1

16: end for

control instance (step 16 of Algorithm 8). The circular shift is described by multipli-

cation with the matrix, Cshift =

0 I

1 0

. After applying this shift, the final element of

each vector is given a zero value. This is to reduce the number of algorithm iterations

taken to find a feasible solution at each sampling instance. Algorithm iterations for

a given control sampling instance are interrupted once a suitable stopping criteria

has been met, e.g. that the incumbent agent solutions do not violate any global con-

straints. Since the primary aim of this chapter is to assess the functionality of the

multi-agent algorithms, uncertainty is not considered; perfect forecasts are provided

to the agent controllers.

In the following sections, the performance of the multi-agent optimisation algorithms

and the multi-agent MPC schemes are compared in consecutive case studies.
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Algorithm 8 Central coordination using MA method in receding horizon scheme

1: Initialise λval
dual with zero vector, 0H×1

2: Initialise si(0) = −∞, i ∈M

3: Initialise si(0) = +∞, i ∈M

4: j = 0

5: if new candidate solutions, vi, received from all agents i ∈M then

6: si(j + 1) = max {si(j), Aivi(j + 1)}, i ∈M

7: si(j + 1) = min {si(j), Aivi(j + 1)}, i ∈M

8: ρi(j + 1) = si(j + 1)− si(j + 1), i ∈M

9: ρ(j + 1) = max
{∑

i∈M,|M |=H ρi(j + 1)
}

10: ∇g(j + 1) =
∑
i∈M

Aivi(j + 1)− b+ ρ(j + 1)

11: λval
dual(j + 1) =

[
λval

dual(j) + α(j)∇g(j + 1)
]
+

12: if stopping criteria not met then

13: Broadcast λval
dual to agents i ∈M with instruction “re-optimise”

14: j = j + 1

15: else

16: Shift algorithm parameter vector λval
dual by one time step

17: Broadcast λval
dual to agents i ∈M with instruction “continue”

18: si(0) = −∞, i ∈M

19: si(0) = +∞, i ∈M

20: j = 0

21: end if

22: end if

23: Go to step 5

Algorithm 9 Central coordination using MA-CM method in receding horizon scheme

1: Steps 1 to 4 of Algorithm 8.

2: if new candidate solutions, vi, received from all agents i ∈M then

3: Steps 6 to 10 of Algorithm 8.

4: λval
dual(j + 1) =

[
λval

dual(j) + α∇g(j + 1) + β
(
λval

dual(j)− λval
dual(j − 1)

)]
+

5: Steps 12 to 21 of Algorithm 8.

6: end if

7: Go to step 2
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Algorithm 10 Central coordination using MA-NAG method in receding horizon

scheme
1: Initialise µ with zero vector, 0H×1

2: Steps 1 to 4 of Algorithm 8.

3: if new candidate solutions, vi, received from all agents i ∈M then

4: Steps 6 to 10 of Algorithm 8.

5: µ(j + 1) = λval
dual(j) + α∇g(j + 1)

6: λval
dual(j + 1) =

[
µ(j + 1) + j

j+β
(µ(j + 1)− µ(j))

]
+

7: if stopping criteria not met then

8: Broadcast λval
dual to agents i ∈M with instruction “re-optimise”

9: j = j + 1

10: else

11: Shift algorithm parameter vectors λval
dual and µ by one time step

12: Broadcast λval
dual to agents i ∈M with instruction “continue”

13: si(0) = −∞, i ∈M

14: si(0) = +∞, i ∈M

15: j = 0

16: end if

17: end if

18: Go to step 3

6.5 Case Study: Application to Optimal EV Charging

To provide a fair comparison between MA and the accelerated MA-CM and MA-NAG

algorithms (Algorithms 4 - 6), each are applied to the plug-in electric vehicle (EV)

charging problem described in [28], which was used to demonstrate the performance

improvements of MA in [27]. In other words, the EV problem is an example of the

type of problem for which the MA method was originally intended (although refer-

ence to MPC schemes is made in [27]). This problem considers m vehicles for which

an optimal 24 hour charging schedule must be found to satisfy local constraints,

such as EV battery limitations and a specified minimum final charge state, as well as

a shared capacity limit for power supply in each time slot.
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6.5.1 Simulation Inputs and Parameters

The ‘charge-only’ case in which EVs only import power from the network is consid-

ered, with the battery component module used to represent EVs. The problem was

set-up with m = 300 and power capacity limit b = 1.5m, whilst all other inputs and

parameters were randomly generated from uniform probability distributions, includ-

ing the electricity price, as described in Table 1 of [28]. The step-length sequence

used for all algorithms was either α =
∑jmax

j=1 1 × 10−5/j or α =
∑jmax

j=1 5 × 10−6/j,

where j is the iteration index and jmax = 300. For MA-CM, three values for β were

explored, 0.5, 0.7 and 0.9, with β = 0.5 found to give the best performance for

this problem, both in terms of optimality and number of iterations to convergence.

The stopping criterion used in all cases was that the recovered primal solution was

feasible for 5 consecutive iterations.

6.5.2 Results

The local minimisations carried out in step 7 of Algorithm 4 were solved using Gurobi

[110] and YALMIP [106] in MATLAB [121] on a laptop with Intel Core i5-6200U

CPU @ 2.30GHz and 8 GB RAM. The default settings for MILP problems were used

in Gurobi. Across 50 independent simulations with randomly generated parameters,

optimality of the solution was comparable across the three methods whenever con-

vergence was achieved (Fig. 6.2), though did marginally favour MA with an initial

α = 5 × 10−6. It is clear that the MA algorithm is more sensitive to the choice of α

than the other two methods, since when the initial value of α is halved from 1× 10−5

to 5× 10−6, the number of iterations to convergence increase significantly for certain

simulations, with three simulations failing to converge within the iteration limit (Fig.

6.3). In these simulations, the dual multipliers approach their optimal values too

slowly, the effect of diminishing step-length causing convergence to appear asymp-

totic. For the two accelerated algorithms, on the other hand, the additional momen-

tum terms used for the dual updates counteract the effect of diminishing step-length,

accelerating duals to their optimum values when using either α sequence.

The EV charging problem highlights that MA requires some tuning to achieve a con-

sistently fast convergence rate, which can be impractical if used within a receding

horizon control scheme where system conditions are likely to change. In the follow-
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Figure 6.2: Overall cost of EV charging determined from 50 independent charge schedule

optimisations, plotted for each algorithm and each initial step-length.
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Figure 6.3: Number of iterations before convergence for 50 independent charge schedule

optimisations, plotted for each algorithm and each initial step-length. Convergence was not

achieved in instances where the maximum number of iterations, jmax = 300, is shown.

ing section another energy management problem is explored in which these difficul-

ties become more apparent.

6.6 Case Study: Application to Multi-Energy Building

Control

This case study is a development of research undertaken as part of this project which

has already been published in conference proceedings [32]; for brevity, the prior case

study description is not replicated here and the interested reader is referred to [32]

for full details. The previous study demonstrated the application of Algorithm 8 for

management of 175 connected multi-energy buildings with limited supply capacity

of both electricity and gas. Each building was able to schedule it’s own microturbine-

driven combined heat and power unit (µ-CHP), heat pump and battery, providing
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Figure 6.4: Illustration of aggregated building module.

some flexibility in electricity consumption (Fig. 6.4). Additional flexibility was made

available to local agent controllers via pliable heating demands for each building, for

which the consumption profile could be manipulated within four hour phases. The

agents’ objective was to minimise local costs, similarly to the previously discussed EV

charging schedule problem, whilst ensuring that the gas and electricity consumed by

all buildings did not exceed capacity limits of 500 kW for each network. A sampling

interval of one hour was chosen and the prediction horizon length was H = 24. The

MA based MPC scheme exhibited good performance against an equivalent centralised

control scheme, with order of magnitude reductions in computation time for only a

3.7% increase in overall costs. However, subsequent work has highlighted that in

situations for which there is less available flexibility and a shorter sampling period,

such that the same prediction horizon length covers a shorter time span, the MA

based scheme exhibits convergence issues.

To demonstrate these issues, the case study presented below lowers the capacity

limit of the electricity network, removes the gas capacity constraint, increases the

sampling frequency and removes the flexibility from pliable heating demands. The

effect of these changes when determining dual prices is that very small subgradients

are encountered in certain time periods, associated with small violations of shared

constraints. Furthermore, at certain times such small subgradients are derived from

agent candidate solutions which reside in steep-sided local minima. This situation re-

quires large dual update step-lengths to quickly move away from these local minima

and find a globally feasible solution, since the small subgradients depress the size
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of dual updates. However, at other time periods the agent solutions reside in very

shallow local minima, which requires small step-lengths to minimise dual multiplier

oscillations which would otherwise slow down convergence to a feasible solution. It

is therefore possible to demonstrate the difficulties in choosing a suitable step-length

sequence for MA when embedded in an MPC scheme, unlike in the EV charging

problem, in which only shallow local minima are encountered.

6.6.1 Control Problem

The objective function Jk,i minimised by agent controller i at each time step con-

sists of the economic cost to each building for importing, and revenue for exporting,

power from/to the AC power network, the cost for importing gas, as well as the cost

associated with battery degradation. A purchase and sale cost modifier is applied to

the electricity transformer output variable, yk,tx,in, with associated prices λbuy
k,ytx,in

and

λsell
k,ytx,in

. A value cost modifier is applied to the CHP output variable, ychp,in, with as-

sociated cost λval
k,ytx,in

. A battery degradation cost coefficient λabs
k,ubatt,chg

is applied to the

battery by adding an absolute value cost modifier applied to uk,batt,chg.

Jk,i =
H−1∑
h=0

ck+h,i + λval ⊤
k+h,dualAivk+h,i (6.6)

ck+h,i = (λbuy
k,yi,tx,in

− λsell
k,yi,tx,in

)zk,yi,tx,in,buy + λsell
k,yi,tx,in

· yk,i,tx,in + λval
k,yi,chp,in

· yi,k,chp,in

+ λabs
k,ubatti,chg

· zk,ubatti,chg,abs (6.7)

λval ⊤
k+h,dualAivk+h,i = λval ⊤

k+h,tx,in,dual · yk,i,tx,in (6.8)

The agent control problem is formally stated as:

min
vi

Jk,i =
H−1∑
h=0

ck+h,i + λval ⊤
k+h,dualAivk+h,i (6.9)

s.t. (3.1)-(3.4) ∀ mi

for which the mi aggregated components are shown in Fig. 6.4 and the specific

constraints for these components are given in Chapter 3.
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6.6.2 Simulation Inputs and Parameters

For the 175 buildings considered in this case study, the device conversion factors are

given in Table 6.1 and key parameters are given in Table 6.2. The electricity supply

capacity limit is nearly halved from the value in [32] to 260 kW. Fixed electricity and

heating demands used in the simulation have been interpolated from hourly building

data [124] to produce data at 15 minute sampling intervals (Figs. 6.5-6.6). Similarly,

electricity purchase prices have been interpolated from those set on 1st February 2018

by UK energy supplier Octopus Energy Ltd for customers on its Agile Octopus tariff

[116] (Fig. 6.7). Fixed prices are assumed for export of electricity to the external

grid and purchasing of gas, at 1 p/kWh and 2.8 p/kWh respectively. A purchase and

sale cost modifier is applied to the electricity network output variable, yk,p1,elec, with

associated prices λbuy
k,p1,elec and λsell

k,p1,elec. A value cost modifier is applied to the gas

network output variable yk,p1,gas, with associated cost λval
p1,gas. A battery degradation

cost coefficient λabs
batt,chg is applied to each battery by adding an absolute value cost

modifier applied to uk,batt,chg; the value of λabs
batt,chg = 3.15 p/kWh is determined using

the approach in [117].

For the MA MPC method, the step-length sequence takes the form
∑jmax

j=1 α(j) = a/j,

where parameter a is varied to try and achieve consistent convergence to a feasible

solution between agents. For both the MA-CM and MA-NAG MPC approaches, the

step-length is kept constant at α = 3 × 10−4 in every iteration, having been tuned

to achieve the fastest convergence with minimal dual oscillations. For MA-CM, the

value of β is varied in the range [0.5,0.99] to try and achieve fast convergence. The

range of small, uniformly distributed random perturbations added to cost function

coefficients is [−5 × 10−2; 5 × 10−2]. The prediction horizon length used in each

simulation is H = 24, the duration of each simulation was a single day (96 × 15

minute sampling intervals) and the maximum number of algorithm iterations at each

sampling instance was 500.

6.6.3 Results

The simulations were carried out using Gurobi [110] and YALMIP [106] in MATLAB

[121] on a laptop with Intel Core i5-6200U CPU @ 2.30GHz and 8 GB RAM. The

default settings for MILP problems were used in Gurobi.

132



Table 6.1: Device Conversion Factors

Conversion Factor Device Value1

ηtx Transformer 0.98

COP Heat Pump 3.90

ηchp,heat CHP (heat) [0.30;0.50]

ηchp,elec CHP (electricity) [0.23;0.43]

ηbatt,chg Battery (charging) [0.85;0.95]

ηbatt,dchg Battery (discharging) [0.80;0.90]

1 [a;b] - uniform random distribution.

Table 6.2: Simulation Parameters

Parameter Value1 Units

Starting battery level [1.2;2.6] kWh

Minimum/maximum battery capacity [1.0;1.4] / [4.0;5.6] kWh

Minimum/maximum charge rate [-3.0;-1.0] / [1.0;3.0] kW

Standby discharge 0.9997 -

Minimum/maximum transformer capacity -5 / 5 kW

Minimum/maximum µ-CHP fuel input 0 / 6 kW

Minimum/maximum heat pump output 0/20 kW

1 [a;b] - uniform random distribution.
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Figure 6.5: Electricity demand profiles used in simulations.

The MA method was used in a number of simulations, each with an increasing value

of the step-length sequence parameter, a, from 0.001 up to 1. None of these sim-

ulations were able to be completed since for each value of a there was a sampling

instance at which the MA algorithm failed to achieve the stopping criterion within
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Figure 6.6: Heating demand profiles used in simulations.
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Figure 6.7: Price profiles used in simulations.
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Figure 6.8: Number of iterations taken to compute a solution at each sampling instance.

Simulations were terminated after reaching 500 iterations in any sampling instance. Note

that for MA, only a small sample of the a values simulated are shown, although every

attempt was unsuccessful.

the 500 iteration limit (see Fig. 6.8). On the other hand, convergence to a feasi-

ble solution within the iteration limit was possible at every sampling instance when

using MA-CM or MA-NAG. However, tuning of β was needed for MA-CM and some

simulations were not completed.
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Figure 6.9: Total power consumption schedules at sampling instance k = 52. Capacity limit

is exceeded by MA method with a = 0.01 in final scheduling period, h = 23, even after 1000

iterations.

It can be seen that MA with a = 0.01 reaches the stopping criterion with relatively

few iterations early in the simulation but then at sampling instance k = 52 it reaches

500 iterations without obtaining a feasible solution. The reasons for this can be bet-

ter understood by comparing the predicted schedule of total electricity consumption

determined at the final iteration for this sampling instance (Fig. 6.9), together with

the dual variable values at each iteration (Fig. 6.10), across different methods.

The capacity limit is violated in the final time period of the prediction schedule for

MA with a = 0.01, indicating an infeasible solution, even though the simulation

was actually allowed to proceed to 1000 iterations (Fig. 6.9). Across the different

methods, the final values of the dual associated with this time period are: MA (a =

0.01), λk+23 = 1.17; MA (a = 0.1), λk+23 = 5.93; MA-CM (β = 0.99), λk+23 = 6.62;

and MA-NAG, λk+23 = 2.68.

Clearly for MA with a = 0.01, the value of this particular dual needs to be further

increased, yet it increases in an apparently asymptotic manner and therefore a fea-

sible solution is never obtained (Fig. 6.10a). In contrast, when the step-lengths are

increased for MA with a = 0.1, the value of this dual variable increases quickly to a

final value (Fig. 6.10b). However, this final value is much higher, due to large oscil-

lations in other dual variables which result in excessive constraint tightening. Also,

these high frequency oscillations prevent the stopping criterion from being satisfied

until the 96th iteration, even though the duals oscillate around their final values from

about the 40th iteration. This highlights the tuning problems encountered for MA

with this type of problem, in which dual variable values increase at very different

rates: it is difficult to find a step-length rule which increases duals with small sub-
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Figure 6.10: Dual variable value iterations at sampling instance k = 52 for (a) MA with

a = 0.01, (b) MA with a = 0.1, (c) MA-CM with β = 0.99 and (d) MA-NAG.

gradients quickly, whilst not causing other duals with larger initial subgradients to

excessively oscillate. It should be noted that only a subset of the a values used for

MA are shown here and that despite time-consuming manual tuning, it was not pos-

sible to find an a value that resulted in feasible solutions in every sampling instance.

Furthermore, the use of other nonsummable diminishing step-length rules were also

unsuccessful, although an exhaustive search of step-length rules was not undertaken.

It was possible to achieve convergence to feasible solutions using a constant step-

length for MA-CM and MA-NAG. This is because the added momentum terms accel-

erate duals to their final values, regardless of the step-length. A diminishing step-

length rule was employed in the previous EV problem for a like-for-like comparison

with MA and because convergence was relatively quick. However, for this problem

a diminishing step-length only slows convergence because a relatively small initial

136



step-length is required to prevent high frequency dual value oscillations. Step-length

tuning is therefore simple - the largest value is chosen which does not result in high

frequency dual oscillations at any sampling instance.

Despite being the fastest MA-CM simulation to successfully converge in every sam-

pling instance, MA-CM with β = 0.99 exhibits large slow oscillations in the dual

values due to aggressive acceleration and subsequent overshoot (Fig. 6.10c). As a

result, the schedule produced in Fig. 6.9 is overly conservative in periods h = 0 to 11

and consumes more electricity during the electricity price peak at h = 16 to 21. MA-

NAG, on the other hand, requires less tuning and exhibits minimal dual oscillations

(Fig. 6.10d), enabling the most optimal schedule to be found in the fewest itera-

tions. Oscillations are dampened because in the MA-NAG method, acceleration is

determined based on current subgradient values, whereas in MA-CM acceleration is

based only on past dual values.

The actual computation times for MA-CM with β = 0.99 and MA-NAG are compared

against a benchmark in Table 6.3. A (possibly sub-optimal) solution to the global

MILP problem, without decomposition, provides the benchmark against which to

compare the decentralised methods; this problem does not have tightened constraints

and should therefore be less conservative. The overall costs for operating all build-

ings are also compared with the benchmark simulation (Table 6.4). It is clear that

MA-NAG outperforms MA-CM in both aspects and also achieves comparable costs

to the benchmark. The small increase in costs compared to the benchmark can be

attributed to constraint tightening in periods of low electricity price, resulting in

higher consumption of electricity during the price peak (Fig. 6.11). However, aver-

age computation times are greatly reduced when using both MA-CM and MA-NAG

in comparison to the benchmark. Moreover, whereas the the benchmark method is

likely to scale poorly, both MA-CM and MA-NAG should scale much more favourably

due to the ability of agents to solve local sub-problems in parallel.

6.7 Conclusions

The capability to solve large MILP problems in a decentralised fashion is of signif-

icant benefit for advanced control of hybrid dynamical systems. Such systems are

often modelled using a mixed logical dynamical (MLD) framework which involves
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Figure 6.11: Comparison of total power consumption between centralised benchmark, MA-

CM and MA-NAG methods.

Table 6.3: Computation Time

Benchmark MA-CM* MA-NAG*

Mean comp. time, secs 6.53 0.76 0.61

Min. comp. time, secs 5.20 0.21 0.27

Max. comp. time, secs 8.69 7.67 6.09

Std. Dev. comp. time, secs 0.75 1.46 1.06

* - parallel computation time for all agents is assumed to be equal to the slowest

agent; communication time between agents and coordinator is assumed to be

insignificant.

Table 6.4: Overall Cost

Benchmark MA-CM MA-NAG

Overall Cost, £ 2,514 2,598 (+3.31%) 2,556 (+1.63%)

both continuous and discrete variables. Recent work has shown that decentralised

optimisation of large MILPs is possible using dual decomposition and constraint tight-

ening, achieving ‘good’ feasible solutions. An algorithm to exploit this finding and

minimise the degree of constraint tightening was later developed and shown to pro-

vide finite-time feasibility and performance. However, in this chapter it has been

shown by way of an illustrative case study that this method may exhibit impracti-

cally long convergence behaviour under certain possible conditions. Therefore, two

new algorithms have been presented which accelerate convergence using Classical

Momentum and Nesterov’s Accelerated Gradient methods, respectively. In addition,

a model predictive control implementation is presented which expands the use of
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multi-agent MILP for use in control applications. Both novel algorithms introduced

in this chapter outperform the inspiring algorithm in two case studies and are par-

ticularly effective for MPC, for which the minimal need for tuning is a considerable

benefit. However, due to the need for tuning of a momentum parameter and overall

inferior performance of the Classical Momentum algorithm, the algorithm with Nes-

terov’s Accelerated Gradient method should be recommended for any MILP problem

which would benefit from multi-agent computation.

In the following chapter, the computationally inefficient problem derived in the case

study from Chapter 5 is solved using a modified form of the multi-agent MPC scheme

with Nesterov’s Accelerated Gradient, further demonstrating the utility of this ap-

proach.
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Chapter 7

Multi-Agent Coordination of a

Large-Scale Multi-Energy District

7.1 Introduction

In this chapter, the problematic case study of Chapter 5 is revisited to try and address

the issues of prohibitive computation times when incorporating detailed models for

reversible variable speed circulation pumps, an ULTDHC network and an AC network

into a multi-energy district coordination problem. The Multi-Agent dual decomposi-

tion and adaptive constraint tightening method with Nesterov’s Accelerated Gradient

(MA-NAG) is applied for this purpose. The central coordinator in this application

serves a dual purpose, to not only check global constraint violations and update

dual prices but also to perform optimal energy flow checks to ensure that, for the

power flows requested by agents, the supplied global constraints ensure feasibility.

If there are any violations of network limits incurred by the combined agents’ oper-

ating schedules then the global constraints are adjusted, causing associated changes

to dual prices which should encourage feasible schedules. For this reason the central

coordinator is referred to as an energy flow coordinator in this chapter.

In the following section, the MA-NAG based MPC scheme from Chapter 6 is extended

to account for the new role of the energy flow coordinator. The notation is also made

more explicit to improve clarity of the algorithms presented.
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7.2 Control Scheme

Agent controllers in the MA-NAG MPC scheme only consider components which have

been aggregated at the building scale, they do not individually consider network

constraints. Coordination of agent controllers therefore requires the use of price

signals to encourage energy schedules that do not violate network limits.

To achieve this, first an overall district problem is defined which comprises the set

of all aggregated building modules, M , and has added shared capacity constraints to

limit the consumption of energy from each network:

min
vi

H−1∑
h=0

∑
i∈M

ck+h,i

s.t.
∑
i∈M

yB
mi
≤ bHC,

∑
i∈M

yB
pi
≤ bAC,

and xk+1,i = Aixk,i +Bu,iuk,i +Bd,iδk,i +Bz,izk,i +Bw,iwk,i

yk,i = Cxk,i +Duuk,i +Ddδk,i +Dzzk,i +Dwwk,i

Edδk,i +Ezzk,i ≤ Euuk,i +Exxk,i +Ewwk,i +E

yk,snkj = γij · yk,srci

∀ k ∈ H, i ∈M

(MAP)

where H is the prediction horizon length, bHC is a H × 1 vector of mass flow capacity

limit for the ULTDHC network and bAC is a H × 1 vector of power capacity limit

for the electricity network. Since the building-side output variables which connect

to network component output variables ymi
and ypi could belong to any suitable

building component (depending on the specific layout of the building), the generic

yB
mi

and yB
pi

are used to represent the connected outputs on the building side. The

structure of (MAP) is amenable to Lagrangian dual decomposition and the agent

problems can therefore be solved in parallel, with the use of a central energy flow

coordinator.

By introducing H × 1 dual multiplier vectors λval
HC and λval

AC, the dual problem (D)

of the primal problem (MAP) can be derived, in which the shared constraints are

added to the objective function:

max
λval

HC≥0, λval
AC≥0

−λval
HC

⊤
bHC − λval

AC
⊤
bAC

+
∑
i∈M

min
vi

(
H−1∑
h=0

ck+h,i + λval
HC

⊤
yB
mi

+ λval
AC

⊤
yB
pi

) (D)
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The inner minimisations within D are separable, lower dimensional sub-problems

associated with each aggregated module i and may be solved in parallel. As in the

previous chapter, Algorithm 12 provides a method to exploit this property and find a

good feasible solution to (MAP) by coordinating individual agent controllers.

The MA-NAG MPC scheme is extended in this section to include additional sub-

routines, Algorithms 13 and 14, in which optimal energy flow problems are solved

and the vectors bHC, bAC and ŷcpi,∆H are updated. The centralised energy flow co-

ordinator carries out all steps in Algorithms 12, 13 and 14, whilst Algorithm 11 is

carried out by each individual building agent. Therefore, the agents each solve their

local optimisation problem (AP) and the only optimisation problems solved by the

coordinator are network optimal energy flow problems (HC) and (AC).

The inner minimisations of D become the local optimisation problems (AP) of each

agent i ∈M :

min
vi

H−1∑
h=0

ck+h,i + λval
HC

⊤
yB
mi

+ λval
AC

⊤
yB
pi

s.t. (3.1)− (3.3), (3.5) for aggregated module i

(AP)

The energy flow problem for the ULTDHC network includes a nodal mass flow refer-

ence term in the cost function:

min
v

ck,HC +
∑
i∈M

λref
k,mi
· |yk,mi

− rk,mi
| ∀k

s.t. (3.1)− (3.5) for ULTDHC component

(HC)

The cost function ck,HC is given in Section 3.6.3. The reference signal, rk,mi
, for each

nodal mass flow, yk,mi
, is that determined by the agent controller located at node

i, with an associated cost, λref
k,mi

, that is much larger than other penalty terms in

ck,HC. Solving this problem determines a feasible energy flow solution with values of

nodal mass flow which are of minimum absolute distance from the reference values.

If the distance is non-zero (|yk,mi
− rk,mi

| > 0) for a given sampling instance k in

the prediction horizon, then the value of bk,HC is updated to equal the sum of all

mass flows determined in the energy flow solution, yk,mi
; otherwise bk,HC remains

unchanged (see Algorithm 13). This tightening of shared constraints, by reducing

bk,HC for the affected sampling periods, increases the associated dual prices so that all

agents are encouraged to shift their demand to alternative sampling intervals. The

eventual result of this constraint tightening is that agents converge to local energy
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schedules that do not violate network limits. At this point, the stopping criteria has

been met and the coordinator allows agents to implement their incumbent solutions.

A secondary purpose of solving (HC) is that the required pump pressure gain at each

node, ŷk,cpi,∆H , can be communicated to individual agents and used to fix the value

of yk,cp,∆H . Hence, the bilinear term in (3.69) is linearised at the determined feasible

energy flow solution.

Similarly, the power flow problem solved by the energy flow coordinator for the

AC distribution network includes a nodal power injection reference term in the cost

function:
min
v

ck,AC +
∑
i∈M

λref
k,pi
· |yk,pi − rk,pi | ∀k

s.t. (3.1)− (3.5) for AC component

(AC)

The cost function ck,AC is given in Section 3.6.2. The total capacity limit, bAC, for

the AC network is similarly updated if |yk,pi − rk,pi| > 0, otherwise bAC remains un-

changed (see Algorithm 14).

In both Algorithm 11 and Algorithm 12, the dual update vectors λval
HC, λval

AC, µHC and

µAC are initialised with all zero vectors only once before the control scheme is online.

Once online, these vectors are warm started at each k, determined by applying a

circular shift to the final vectors of the previous control instance (step 27 of Algorithm

12). The circular shift is represented by multiplication with the matrix, Cshift =0 I

1 0

. After applying this shift, the final element of each vector is given a zero

value. This is to reduce the number of algorithm iterations taken to find a feasible

solution at each sampling instance. Algorithm iterations for a given control sampling

instance are interrupted once a suitable stopping criteria has been met, e.g. that the

incumbent agent solutions do not violate any network constraints.

In the following case study section, the performance of the multi-agent scheme is

compared against the equivalent centralised MPC scheme, achieved by employing a

single controller to solve the global problemMAP, as per Chapter 5. The centralised

scheme provides a benchmark in terms of solution optimality, since the constraints

do not need be tightened in the centralised scheme.
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Algorithm 11 Agent receding horizon scheme
1: t = 0, ∆t > 0

2: Initialise λval
HC, λval

AC and ycpi,∆H(i ∈M) with zero vector, 0H×1

3: for k = 0, 1, 2, ... do

4: Update current system states, xk

5: Update price forecasts, λval
k+h, h = 0, ..., H − 1

6: Update disturbance forecasts, wk+h, h = 0, ..., H − 1

7: Solve local optimisation problem (AP)

8: Communicate candidate solution, vi, to energy flow coordinator

9: Receive instruction from energy flow coordinator

10: if instruction == ”re-optimise” then

11: Go to step 7

12: end if

13: Pass control inputs for next sampling interval, uk, to lower-level feedback

controllers; discard uk+h, h = 1, ..., H − 1

14: Wait until t = (k + 1)∆t

15: k = k + 1

16: end for

7.3 Case Study

The case study introduced in Chapter 5 is also used in this section, with identical

inputs and system parameters for 84 buildings and a ULTDHC plant substation, con-

nected by an AC network and ULTDHC network as per Fig. 5.1. Two main branches

can be identified for each network, which split at node 8. Capacity constraints and

associated dual multipliers were applied separately to the sets of nodes describing

these branches, which each include the nodes preceding node 8. This is to avoid

constraint violations on a given branch causing constraint tightening on unaffected

branches. The stopping criteria for Algorithm 12 is that, for the current iteration, fea-

sibility checks have been carried out without adjustment to any capacity constraints

and that these constraints are satisfied for both networks. Algorithm parameters used

for the multi-agent scheme during simulation were αHC = 1 × 10−4, αAC = 1 × 10−5

and β = 3.

The prediction horizon used for simulating the centralised scheme in Chapter 5 was

H = 3 which, despite being very short, led to unacceptably long computation times.
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Algorithm 12 Energy flow coordination

1: Initialise λval
HC, λval

AC, µHC and µAC with zero vector, 0H×1

2: Initialise sHCi
(0) = sACi

(0) = −∞H×1, i ∈M

3: Initialise sHCi
(0) = sACi

(0) =∞H×1, i ∈M

4: j = 0, n = 0

5: if new candidate solutions, vi, received from all agents i ∈M then
6: sHCi

(j + 1) = max {sHCi
(j),yB

mi
(j + 1)}, i ∈M

7: sHCi
(j + 1) = min {sHCi

(j),yB
mi
(j + 1)}, i ∈M

8: ρHCi
(j + 1) = sHCi

(j + 1)− sHCi
(j + 1), i ∈M

9: ρHC(j + 1) = max(
∑

i∈M̂,|M̂ |=H ρi(j + 1))

10: Repeat 6 to 9 for AC network parameters.
11: if j < 2 OR

∑
i∈M yB

mi
(j + 1) ≤ bHC then

12: Run Algorithm 13.
13: end if
14: if j < 2 OR

∑
i∈M yB

pi
(j + 1) ≤ bAC then

15: Run Algorithm 14.
16: end if
17: ∇gHC(j + 1) =

∑
i∈M yB

mi
(j + 1)− bHC(j + 1) + ρHC(j + 1)

18: ∇gAC(j + 1) =
∑

i∈M yB
mi
(j + 1)− bAC(j + 1) + ρAC(j + 1)

19: µHC(j + 1) = λHC(j) + αHC∇gHC(j + 1)

20: λHC(j + 1) =
[
µHC(j + 1) + n

n+β
(µHC(j + 1)− µHC(j))

]
+

21: µAC(j + 1) = λAC(j) + αAC∇gAC(j + 1)

22: λAC(j + 1) =
[
µAC(j + 1) + n

n+β
(µAC(j + 1)− µAC(j))

]
+

23: if stopping criteria not met then
24: Broadcast λval

HC, λval
AC and ycpi,∆H to agents i ∈M with

instruction ”re-optimise”
25: j = j + 1

26: else
27: Shift algorithm parameter vectors bHC, bAC, λval

HC, λval
AC, µHC, µAC

and ycpi,∆H by one time step
28: Broadcast λval

HC, λval
AC and ycpi,∆H to agents i ∈M with

instruction ”continue”
29: sHCi

(0) = sACi
(0) = −∞H×1, i ∈M

30: sHCi
(0) = sACi

(0) =∞H×1, i ∈M

31: j = 0

32: end if
33: end if
34: Go to step 5

When simulating the multi-agent scheme, prediction horizons of H = 3 and H = 24

are used for both a direct comparison to the centralised benchmark and to demon-
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Algorithm 13 Sub-routine for checking ULTDHC network solution feasibility

1: for i = 1 to |M | do

2: rmi
= yB

mi
(j + 1)

3: end for

4: Solve (HC)

5: for i = 1 to |M | do

6: ŷcpi,∆H = ypump∆Hi

7: if |yk,mi
− rk,mi

| > 0 ∀k then

8: bk,HC =
∑

i∈M yk,mi
(j + 1)

9: end if

10: end for

11: n = 0

Algorithm 14 Sub-routine for checking AC network solution feasibility

1: for i = 1 to |M | do

2: rpi = yB
pi
(j + 1)

3: end for

4: Solve (AC)

5: for i = 1 to |M | do

6: if |yk,pi − rk,mi
| > 0 ∀k then

7: bk,AC =
∑

i∈M yk,pi(j + 1)

8: end if

9: end for

10: n = 0

strate scalability to larger problems. The penalty costs used to obtain exact solutions

in the AC and ULTDHC networks are λval
ℓij

= 0.1, λval
∆Hij

= 1 and λval
pump∆Hj

= 0.1.

7.3.1 Agent Control Problems

The objective function Jk,i minimised by agent controller i at each time step varies

between the plant substation at node 2 and the buildings at the remaining nodes.

Hence, they are given separately below. For each building, the economic cost for im-

porting, and revenue for exporting, power from/to the AC power network, as well as

the cost associated with battery degradation is included in the objective function. The

cost for purchasing power is the only economic term included for the plant substa-
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tion objective function. A purchase and sale cost modifier is applied to the electricity

distributor output variable, yk,snk1,elec, of all buildings, with associated prices λbuy
k,ysnk1,elec

and λsell
k,ysnk1,elec

. A value cost modifier is applied to the electricity distributor output

variable, ysnk1,elec, of the plant substation, with associated cost λval
k,ysnk1,elec

. A battery

degradation cost coefficient λabs
k,ubatt,chg

is applied to all batteries by adding an absolute

value cost modifier applied to uk,batt,chg. The objective function for all agents includes

dual variable terms associated with both the AC power and the ULTDHC networks.

The control objective for the plant substation agent is as follows:

Jk,2 =
H−1∑
h=0

ck+h,2 + λval ⊤
k+h,dualA2vk+h,2 (7.1)

ck+h,2 = λval
k,y2,snk1,elec

· yk,2,snk1,elec (7.2)

λval ⊤
k+h,dualA2vk+h,2 = λval

k,ysnk1,elec,dual
· yk,2,snk1,elec + λval

k,yvsp,in
· yk,2,vsp,in (7.3)

Similarly, the control objective for the building agents is as follows:

Jk,i̸=1,2 =
H−1∑
h=0

ck+h,i ̸=1,2 + λval ⊤
k+h,dualAi ̸=1,2vk+h,i ̸=1,2 (7.4)

ck+h,i ̸=1,2 = (λbuy
k,yi,snk1,elec

− λsell
k,yi,snk1,elec

)zk,yi,snk1,elec,buy + λsell
k,yi,snk1,elec

· yk,i,snk1,elec

+ λabs
k,ubatti,chg

· zk,ubatti,chg,abs (7.5)

λval ⊤
k+h,dualAi ̸=1,2vk+h,i ̸=1,2 = λval

k,ysnk1,elec,dual
· yk,i,snk1,elec + λval

k,yvsp,in
· yk,i,vsp,in (7.6)

The control problem for each agent is formally stated as:

min
vi

Jk,i =
H−1∑
h=0

ck+h,i + λval ⊤
k+h,dualAivk+h,i (7.7)

s.t. (3.1)-(3.4) ∀ mi

for which the mi aggregated components are shown in Figs. 5.2 and 5.3, and the

specific constraints for these components are given in Chapter 3.

7.4 Results

The simulations were carried out using Gurobi [110] and YALMIP [106] in MATLAB

[121] on a laptop with Intel Core i5-6200U CPU @ 2.30GHz and 8 GB RAM. There

is little difference in the actions determined by the two schemes for a prediction
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horizon of H = 3, when comparing the total electrical and heat power supplied to

the buildings (Figs. 7.1 and 7.2). This is also reflected in the very similar overall

costs to plant and building owners when using each scheme (Table 7.1). However,

there is a marked difference in the computational performance (Table 7.2), with a

single optimisation problem in the centralised scheme taking as long as 55 minutes to

solve and an average computation time of over 2.5 minutes, whereas the multi-agent

equivalent scheme takes no longer than 1.01 seconds.

As expected, when the prediction horizon is increased to H = 24 and H = 48, the

agent controllers consume energy more strategically. Greater amounts of energy are

consumed during periods of lower electricity purchase price and less is consumed

during price peaks. This results in a slight reduction in cost versus the centralised

benchmark. However, the main benefit of this multi-agent scheme is that, despite

a sixteen-fold increase in the problem size, the computation time remains several

orders of magnitude faster than the centralised scheme. It may also be noted that,

as in Chapter 4, there is a point at which increases in the prediction horizon length

provides little benefit for this particular study, based on the marginal decrease in

costs when increasing H from 24 to 48. Finally, whilst agents did often generate

energy schedules which, according to detailed energy flow analysis, initially violated

network constraints, it was always possible to coordinate their actions to find feasible

alternatives. The case study therefore demonstrates the capability of the multi-agent

control scheme to coordinate a multi-energy district without neglecting local network

constraints.

In order to give greater confidence that MA-NAG can produce consistently good com-

putational performance, a longer simulation was undertaken consisting of 2,016 sam-

pling intervals of 15 minutes, i.e. a simulation length of 21 days, with H = 24, a

prediction horizon of 4 hours. This was not carried out for the benchmark scheme,

due to the excessively slow computation time already highlighted, and therefore cost

comparisons cannot be made. However, it is clear from the number of algorithm iter-

ations for this extended dataset that the computational performance remains consis-

tent (Fig. 7.3). The mean number of iterations was 6.58 and the minimum number

was 2. The maximum number of iterations was 165, with more iterations occurring

at the start of each day at around 4.00 am, 4 hours before the morning electricity

and heating load peaks, the time when both networks are most congested.
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Figure 7.1: Total electrical power supplied to buildings under benchmark (BM) and multi-

agent NAG (MA) schemes.

Table 7.1: Overall Cost for Purchase/Sale of Electricity and Battery Usage over 24 Hour

Period

Benchmark Multi-Agent

H = 3 H = 3 H = 24 H = 48

Overall Cost, £ 5,247 5,265 (+0.3%) 5,121 (-2.4%) 5,102 (-2.8%)

Despite these impressive results for the control of this multi-energy district, there are

some limitations to the control scheme. Whilst the energy flow coordinator performs

a vital role in validating the combined operating schedules of agents in the district,

much like the ‘independent platform’ in [45], it does have the potential to become a

bottleneck within the scheme. This could take place either as a result of increases to

the geographical scale of the district, since the sizes of optimal energy flow problems

solved by the coordinator are directly proportional to the size of the networks, or

due to the communication burden as every agent must communicate with the energy

flow coordinator. On the other hand, there is an upper limit to the size of networks

that may be considered, as pointed out in [92]. Another limitation is that the en-

ergy flow coordinator represents a single point of failure for the scheme, something

which could also be said of a centralised scheme but might be avoided with a fully

distributed scheme; this should be the subject of further research into multi-agent

multi-energy district coordination schemes.
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Figure 7.2: Total heat power supplied to buildings under benchmark (BM) and multi-agent

NAG (MA) schemes.

Table 7.2: Computational Performance over 96 Sampling Instances

Benchmark Multi-Agent*

H = 3 H = 3 H = 24 H = 48

Mean computation time, secs 153.88 0.19 2.82 2.37

Min. computation time, secs 13.58 0.13 1.39 0.31

Max. computation time, secs 3,354.40 1.01 35.43 60.21

Std. dev. computation time, secs 464.57 0.10 3.09 7.22

Mean Algorithm Iterations - 2.95 7.81 6.92

Max. Algorithm Iterations - 65 121 160

* - parallel computation time for all agents is assumed to be equal to the slowest agent;

communication time between agents and coordinator is assumed to be insignificant. Com-

putation time includes that of the energy flow coordinator.
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Figure 7.3: Required number of iterations at each sampling instance for an extended three

week simulation, H = 24.
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7.5 Conclusions

In this final results chapter, the contributions of Chapters 5 and 6, namely the ULT-

DHC modelling modules and the accelerated multi-agent optimisation algorithm MA-

NAG, have been combined and extended to produce an effective means to coordinate

large district energy systems comprising hybrid dynamical systems. The introduction

of the energy flow coordinator has enabled consideration of non-linear flow physics

in multiple district energy networks, whilst keeping the overall problem tractable.

It has also been possible to separate the security of these networks from the opera-

tion of energy systems in individual buildings, ensuring that a commercial aggregator

can coordinate a district without raising privacy concerns. However, some limitations

have also been identified in relation to this centralised coordinator, since it represents

a potential single point of failure and could incur high computation and communi-

cation burdens. These and other areas for improvement will be discussed further in

the following chapter.
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Chapter 8

Conclusion and Future Work

8.1 Introduction

In the introductory chapter to this thesis, a central motivation for the research was

articulated by the following quote from [24]:

‘...it is critical to represent multi-energy system and network models as relevant optimi-

sation and control tasks and uncover intrinsic convexity structures that lead to compu-

tationally efficient distributed solutions’.

The reason that this has been identified as such a critical research area, is due to the

significant potential benefits afforded by multi-energy system modelling and control

in real world applications, which has been the main focus of the project. In power

system operations, commercial multi-energy aggregators, responsible for managing

large portfolios of distributed resources in support of a net-zero energy system, re-

quire tools to optimise the coordination of these resources via online control. The

aim is that these tools not only support secure operation of the energy system, they

also maximise social benefit, utilising the full flexibility of ‘behind the meter’ assets

to lower costs for consumers, all while maintaining the privacy and independence of

individual stakeholders.

The objectives of the project are centered on delivery of such a tool, including the

establishment of a general optimisation modelling framework and the addition of

computationally efficient models of relevant distributed energy resources and supply

networks. A final objective was to incorporate a decentralised control architecture

which would allow the tool to be scalable and ensure privacy.
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A review of the relevant literature identified several specific research gaps which

needed to be addressed in order to achieve these objectives. A discussion of how

well these aims, objectives and gaps have been addressed follows in the next section,

before future research directions are suggested in the final section.

8.2 Conclusion

The first step in this project was to establish a general multi-energy systems modelling

and control framework which could be developed to incorporate detailed networks

models. Initially the framework introduced in [30] was used, since it was intended

to be technology agnostic and therefore could, in theory, represent any arbitrary sys-

tem. However, this approach involved representing devices in an abstract way, which

could become confusing, and also required development to represent devices such as

circulation pumps and WSHPs. Despite updating the method to allow modelling of

these devices in [29], it was decided that the potential for confusion outweighed the

benefits of generality, especially when considering that there is only a limited number

of different types of energy device.

Instead, the framework first introduced in [26] was adopted and presented in Chap-

ter 3. Rather than use HYSDEL to implement this framework, as in [26], an object-

oriented programming solution was created based on the open-source optimisation

software parser, YALMIP [106]. The newly developed software uses classes, methods

and inheritance to enable the rapid development of large system models, by connect-

ing up individual pre-defined device modules to form larger, aggregated modules.

Each module inherits a basic set of methods or ‘modifiers’ which can alter the be-

haviour of the device, or add specific cost objectives related to the device, when

activated by an end-user.

The general constraints of the framework in [26] were updated to include quadratic

inequality constraints, which could easily be handled within the software implemen-

tation, and the useful flexible prosumer models from [30] were also incorporated into

the framework. At this point, the objective of establishing a general multi-energy op-

timisation modelling framework for optimisation and control had been met. Further-

more, the framework was structured to allow further modules to be easily defined
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and incorporated, so that both network energy flow models and additional device

models could be added.

Initially, a simple network power balance module was demonstrated in Chapter 4,

which enabled bi-directional exchange of power between a small number of buildings

but did not allow power losses or changes in pressure and voltage to be modelled.

Alongside this, modules for reversible WSHPs and fixed speed circulation pumps were

also employed, enabling ULTDHC substations to be modelled. With the addition of

these three modules it was possible to generate an MPC scheme for an integrated

district with couplings between gas, electricity and ULTDHC networks, addressing the

second research gap. This was also compared against a simple rule-based controller,

demonstrating the economic advantage of using MPC.

Noting the issues of scalability with this centralised scheme using a single controller,

it was demonstrated that the prediction horizon could be reduced by almost half

without impacting economic performance. This could be exploited for managing

the computational burden of the scheme but does not fully address the problem of

scalability.

This is borne out by the case study presented in Chapter 5, in which modules for

optimal energy flow modelling of AC power and ULTDHC networks were included in

the control problem. These modules, together with a reversible, variable speed circu-

lation pump module, increased the number of binary variables in the control problem

significantly and also added non-linear constraints, giving a MISOCP problem. As a

result, even though the prediction horizon was reduced to H = 3, which reduced the

ability of the scheme to plan effectively, it took as long as 55 minutes to compute

a solution when using a single controller. This meant that the controller could not

provide control actions in the time required, preventing its use for practical applica-

tions. On the other hand, this case study did demonstrate that it is possible to model

mass and energy flows in bi-directional ULTDHC networks, such that pumps may be

dispatched and globally feasible control actions can be found for a large multi-energy

district.

As a first step towards reducing the computation time of MPC schemes incorporating

these modules, the scalability of MILP based MPC schemes using dual decomposition

and constraint tightening methods was then addressed. Existing techniques were

tested in a case study using multi-agent MPC to coordinate many multi-energy build-
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ings and flexible demands in [29], for which the performance was considerably better

than a centralised equivalent. However, in Chapter 6 it was shown that, under cer-

tain circumstances which could easily be encountered in a flexible energy system, the

scheme exhibited poor convergence. This was because algorithm parameters needed

time-consuming re-tuning as the system evolved, something which is impractical for

online control. Therefore, two accelerated algorithms were proposed and shown to

be both more robust and capable of achieving faster convergence without re-tuning.

Finally, in Chapter 7, an MISOCP based multi-agent MPC scheme was presented,

building on the contributions of both Chapters 5 and 6. This scheme separated the

global MISOCP problem for an entire multi-energy district into 85 local agent MILP

problems and two central optimal energy flow problems, carried out as feasibility

checks by a central energy flow coordinator. The iterative scheme, in which a set

of dualised, linear global constraints are progressively updated to prevent network

violations by the collective actions of agents, consistently returned feasible control

actions. Computation times were reduced by two orders of magnitude in comparison

to the centralised equivalent scheme, despite using a prediction horizon of H = 48,

a sixteen-fold increase in the problem size. Owing to this increase in prediction

horizon length, the multi-agent scheme outperformed the centralised scheme, which

was used as a benchmark since the larger feasible region for the centralised scheme

permits a lower optimality bound.

Based on these findings, the objectives and research gaps have been successfully

addressed through a series of original contributions to this research area. However,

there are some limitations to the work carried out and there are several suggestions

to improve this research through further studies in the following section.

8.3 Further Research

Throughout this project the presence of uncertainty in forecasting has been acknowl-

edged but not addressed, since achieving control of large scale multi-energy systems

without considering uncertainty was a considerable challenge in itself. However,

depending on the capability of forecasting methods, robustness against uncertainty

should be built into the control scheme to some extent. Examples of optimisation

schemes which addressed uncertainty in the literature often exhibited higher com-
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putational burden and this is likely to be the case if considered for the final MISOCP

based multi-agent scheme. On the other hand, the fact that forecasts are only consid-

ered by the individual agents, which compute solutions in parallel, may indicate that

the scheme could handle the added problem complexity; however, research would

have to be undertaken to demonstrate if this was indeed the case.

Another limitation to the presented work, is that the use of a centralised energy flow

coordinator necessarily introduces a single point of failure and a communication bur-

den which will require ever greater bandwidth as more agents are added. A potential

solution is to employ a fully distributed scheme, in which agents only communicate

with their nearest neighbours. The multi-agent dual decomposition and constraint

tightening method [27], which inspired the work in Chapters 6 and 7, has been im-

plemented as a fully distributed scheme in [130]. However, this was for an MILP

problem; the inclusion of quadratic network constraints changes the problem struc-

ture and such an approach may not be applicable when networks are modelled. This

would need to be confirmed through further research.

Finally, whilst the methods in this thesis have been shown to be effective in a basic

simulation environment, where there is no transient behaviour in the system and no

prediction model error, to fully validate the proposed control scheme would require

application to a dynamic simulation model. It would then be possible to empiri-

cally assess the stability and robustness of the scheme in situations where the system

behaviour is different from that expected by the prediction model. Due to the non-

convex nature of the prediction model and the multiple physical environments being

considered, it is not thought to be possible to determine stability and robustness

analytically.
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“A convex mathematical program for pump scheduling in a class of branched

water networks,” Applied Energy, 2017, ISSN: 03062619. DOI: 10.1016/j.

apenergy.2015.12.090.

[108] D. Verleye and E.-H. Aghezzaf, “Optimising production and distribution op-

erations in large water supply networks: A piecewise linear optimisation

approach,” International Journal of Production Research, vol. 51, no. 23-24,

pp. 7170–7189, Nov. 2013, ISSN: 0020-7543. DOI: 10.1080/00207543.2013.

850550. [Online]. Available: http://www.tandfonline.com/doi/full/10.

1080/00207543.2013.850550.

[109] B. Geiler, O. Kolb, J. Lang, G. Leugering, A. Martin, and A. Morsi, “Mixed

integer linear models for the optimization of dynamical transport networks,”

Mathematical Methods of Operations Research, vol. 73, no. 3, pp. 339–362,

2011, ISSN: 14325217. DOI: 10.1007/s00186-011-0354-5.

[110] Gurobi Optimization LLC, Gurobi Optimizer Reference Manual, 2021. [On-

line]. Available: https://www.gurobi.com.

[111] J. Skaf and S. P. Boyd, “Design of affine controllers via convex optimiza-

tion,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2476–

2487, 2010, ISSN: 00189286. DOI: 10.1109/TAC.2010.2046053.

170

https://doi.org/10.1109/TII.2017.2787751
https://doi.org/10.1109/TII.2017.2787751
https://doi.org/10.1016/J.SCS.2016.01.010
https://doi.org/10.1016/J.SCS.2016.01.010
https://doi.org/10.1109/TSG.2020.2976771
https://doi.org/10.1016/j.apenergy.2015.12.090
https://doi.org/10.1016/j.apenergy.2015.12.090
https://doi.org/10.1080/00207543.2013.850550
https://doi.org/10.1080/00207543.2013.850550
http://www.tandfonline.com/doi/full/10.1080/00207543.2013.850550
http://www.tandfonline.com/doi/full/10.1080/00207543.2013.850550
https://doi.org/10.1007/s00186-011-0354-5
https://www.gurobi.com
https://doi.org/10.1109/TAC.2010.2046053


[112] S. Long, O. Marjanovic, and A. Parisio, “Demand smoothing in multi-energy

systems using model predictive control,” in 2018 IEEE PES Innovative Smart

Grid Technologies Conference Europe (ISGT-Europe), 2018, pp. 1–6. DOI: 10.

1109/ISGTEurope.2018.8571560.

[113] H. Abdi, S. Derafshi Beigvand, and L. Scala, “A review of optimal power flow

studies applied to smart grids and microgrids,” Renewable and Sustainable

Energy Reviews, vol. 71, pp. 742–766, 2017. DOI: 10.1016/j.rser.2016.12.

102. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.12.

102.

[114] Q. Wu, H. Ren, W. Gao, and J. Ren, “Benefit allocation for distributed en-

ergy network participants applying game theory based solutions,” Energy,

vol. 119, pp. 384–391, 2017, ISSN: 03605442. DOI: 10.1016/j.energy.

2016.12.088.

[115] Grundfos, TP 80-240/2 Performance Curve. [Online]. Available: https://

product-selection.grundfos.com.

[116] Octopus Energy Ltd, Agile Octopus rates. [Online]. Available: https://s3-

eu - west - 1 . amazonaws . com / octoenergy - production - statics / data /

agile-rates/agile_rates.2018-12-20.xlsx (visited on 02/04/2020).

[117] Y. Shi, B. Xu, D. Wang, and B. Zhang, “Using Battery Storage for Peak Shaving

and Frequency Regulation: Joint Optimization for Superlinear Gains,” IEEE

Transactions on Power Systems, vol. 33, no. 3, pp. 2882–2894, 2018, ISSN:

08858950. DOI: 10.1109/TPWRS.2017.2749512. arXiv: 1702.08065.

[118] J. Salpakari and P. Lund, “Optimal and rule-based control strategies for en-

ergy flexibility in buildings with PV,” Applied Energy, vol. 161, pp. 425–436,

2016, ISSN: 03062619. DOI: 10.1016/j.apenergy.2015.10.036. [Online].

Available: http://dx.doi.org/10.1016/j.apenergy.2015.10.036.

[119] J. B. Almada, R. P. Leão, R. F. Sampaio, and G. C. Barroso, “A centralized

and heuristic approach for energy management of an AC microgrid,” Renew-

able and Sustainable Energy Reviews, vol. 60, pp. 1396–1404, 2016, ISSN:

18790690. DOI: 10.1016/j.rser.2016.03.002. [Online]. Available: http:

//dx.doi.org/10.1016/j.rser.2016.03.002.

[120] IBM Corporation, ILOG CPLEX Optimization Studio, 2019. [Online]. Avail-

able: www.cplex.com.

171

https://doi.org/10.1109/ISGTEurope.2018.8571560
https://doi.org/10.1109/ISGTEurope.2018.8571560
https://doi.org/10.1016/j.rser.2016.12.102
https://doi.org/10.1016/j.rser.2016.12.102
http://dx.doi.org/10.1016/j.rser.2016.12.102
http://dx.doi.org/10.1016/j.rser.2016.12.102
https://doi.org/10.1016/j.energy.2016.12.088
https://doi.org/10.1016/j.energy.2016.12.088
https://product-selection.grundfos.com
https://product-selection.grundfos.com
https://s3-eu-west-1.amazonaws.com/octoenergy-production-statics/data/agile-rates/agile_rates.2018-12-20.xlsx
https://s3-eu-west-1.amazonaws.com/octoenergy-production-statics/data/agile-rates/agile_rates.2018-12-20.xlsx
https://s3-eu-west-1.amazonaws.com/octoenergy-production-statics/data/agile-rates/agile_rates.2018-12-20.xlsx
https://doi.org/10.1109/TPWRS.2017.2749512
https://arxiv.org/abs/1702.08065
https://doi.org/10.1016/j.apenergy.2015.10.036
http://dx.doi.org/10.1016/j.apenergy.2015.10.036
https://doi.org/10.1016/j.rser.2016.03.002
http://dx.doi.org/10.1016/j.rser.2016.03.002
http://dx.doi.org/10.1016/j.rser.2016.03.002
www.cplex.com


[121] The MathWorks Inc., MATLAB & Simulink. [Online]. Available: https://uk.

mathworks.com/products/matlab.html.

[122] “Natural Gas Flow Solvers Using Convex Relaxation,” IEEE Transactions on

Control of Network Systems, vol. 7, no. 3, pp. 1283–1295, Sep. 2020. DOI:

10.1109/TCNS.2020.2972593.

[123] R. D. Zimmerman and C. E. Murillo-Sanchez, “MATPOWER manual,” pp. 0–

249, 2020. [Online]. Available: https://matpower.org/docs/MATPOWER-

manual.pdf.

[124] U.S. Department of Energy, Commercial reference buildings, 2016.

[125] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004, ISBN: 9780521833783. [Online]. Available: http://stanford.

edu/%7B~%7Dboyd/cvxbook/%7B%5C%%7D5Cnhttp://stanford.edu/%7B~%

7Dboyd/cvxbook/bv%7B%5C_%7Dcvxbook.pdf.

[126] N. Z. Shor, Minimization Methods for Non-Differentiable Functions (Springer

Series in Computational Mathematics September 2013). Berlin, Heidelberg:

Springer Berlin Heidelberg, 1985, vol. 3, pp. 22–47, ISBN: 978-3-642-82120-

2. DOI: 10.1007/978-3-642-82118-9. arXiv: arXiv:1011.1669v3.

[127] K. M. Anstreicher and L. A. Wolsey, “Two ”well-known” properties of subgra-

dient optimization,” Mathematical Programming, vol. 120, no. 1 SPEC. ISS.

Pp. 213–220, 2009, ISSN: 00255610. DOI: 10.1007/s10107-007-0148-y.

[128] S. Boyd and A. Mutapcic, Subgradient Methods, 2008.

[129] Y. Nesterov, “A method for solving a convex programming problem with

convergence rate o (1/k2),” in Soviet Mathematics. Doklady, vol. 27, 1983,

pp. 367–372.

[130] A. Falsone, K. Margellos, and M. Prandini, “A Distributed Iterative Algorithm

for Multi-Agent MILPs: Finite-Time Feasibility and Performance Characteri-

zation,” IEEE Control Systems Letters, vol. 2, no. 4, pp. 563–568, 2018, ISSN:

24751456. DOI: 10.1109/LCSYS.2018.2844353.

[131] J. Nocedal and S. J. Wright, “Numerical optimization,” Springer Series in Op-

erations Research and Financial Engineering, Springer Series in Operations

Research and Financial Engineering, pp. 1–664, 2006, ISSN: 21971773. DOI:

10.1201/b19115-11. [Online]. Available: http://link.springer.com/10.

1007/978-0-387-40065-5.

172

https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/matlab.html
https://doi.org/10.1109/TCNS.2020.2972593
https://matpower.org/docs/MATPOWER-manual.pdf
https://matpower.org/docs/MATPOWER-manual.pdf
http://stanford.edu/%7B~%7Dboyd/cvxbook/%7B%5C%%7D5Cnhttp://stanford.edu/%7B~%7Dboyd/cvxbook/bv%7B%5C_%7Dcvxbook.pdf
http://stanford.edu/%7B~%7Dboyd/cvxbook/%7B%5C%%7D5Cnhttp://stanford.edu/%7B~%7Dboyd/cvxbook/bv%7B%5C_%7Dcvxbook.pdf
http://stanford.edu/%7B~%7Dboyd/cvxbook/%7B%5C%%7D5Cnhttp://stanford.edu/%7B~%7Dboyd/cvxbook/bv%7B%5C_%7Dcvxbook.pdf
https://doi.org/10.1007/978-3-642-82118-9
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/s10107-007-0148-y
https://doi.org/10.1109/LCSYS.2018.2844353
https://doi.org/10.1201/b19115-11
http://link.springer.com/10.1007/978-0-387-40065-5
http://link.springer.com/10.1007/978-0-387-40065-5


[132] C. A. Floudas, “Nonlinear and mixed-integer optimization : fundamentals

and applications,” p. 462, 1995.

173



Appendix A

Preliminaries in Mathematical

Optimisation

Expressed simply, mathematical optimisation is the minimisation or maximisation

of some objective function f(x), where x is a set of undetermined decision vari-

ables. Constrained optimisation, which is the subject of this discussion, also involves

restricting the values of decision variables by adding equality and inequality con-

straints. In general form, a constrained optimisation problem can be written as

[131]:
x∗ = argmin

x
f(x)

subject to ci(x) = 0, ∀i ∈ E

ci(x) ≤ 0, ∀i ∈ I

(A.1)

where E and I are the index sets of the equality and inequality constraints, respec-

tively. For maximisation problems, the objective function can simply be replaced with

−f(x).

The optimal solution of (A.1) is the vector of decision variable values, denoted x∗,

for which the value of f(x) is minimised. The equality and inequality constraint sets

restrict the search for x∗ to a feasible region of interest, such that candidate solutions

are either optimal and feasible or sub-optimal and feasible. This is illustrated with
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the following example:

min
x1,x2

f(x) = x1 + x2

subject to − 2x1 + x2 ≤ 0

1.5 ≤ x1 ≤ 5

2 ≤ x2 ≤ 10

(A.2)

Since there are only two decision variables in this problem, x1 and x2, it can be solved

graphically by plotting all the inequality constraints and objective function contours,

as in Fig. A.1. Given that the objective is to minimise the sum of x1 and x2, it can

be seen intuitively that the optimal solution is x∗
1 = 1.5 and x∗

2 = 3, for which the

objective function value is f(x∗) = 4.5.
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Figure A.1: Graphical illustration of the simple optimisation problem in (A.1). The green

shaded area is the feasible region, the red shaded area is the infeasible region and the red

circle indicates the optimal point.

This is an example of a linear programming (LP) problem, since the objective func-

tion and all constraints are linear. All LP problems are convex, meaning that for any

two feasible points, a straight line segment between these points must reside wholly

within the feasible region [125]. Quadratic programming (QP) problems, involving

a quadratic objective function and linear or quadratic inequalities, are also convex if
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this property holds. Non-linear programming (NLP) problems, involving non-linear

equalities or higher-order inequalities, are often not convex. The importance of con-

vexity is associated with the ease in which a problem can be solved using numerical

methods. If a problem can be formulated as a convex optimisation, the unique global

optimum can be found very quickly using computationally efficient algorithms, such

as the simplex method or interior point methods [131]. However, if a problem is

non-linear and non-convex, then there are no effective methods to solve it without

compromising efficiency or optimality [125].

Another class of non-convex problems is that of mixed-integer programming (MIP)

problems, for which some of the decision variables are restricted to discrete integer

values:
min
x,y

f(x, y)

subject to ci(x, y) = 0, ∀i ∈ E

ci(x, y) ≤ 0, ∀i ∈ I

x ∈ R, y ∈ Z

(A.3)

Even for the simplest sub-class of MIP problems, i.e. mixed-integer LP (MILP) prob-

lems with y ∈ {0, 1}, finding an optimal solution can be very difficult and such

problems are known to have computational complexity that is NP-Hard. A brute-

force approach to solving such an MILP problem would be to enumerate all possible

combinations of 0 or 1 for each decision variable in y and solve a separate convex

LP problem for each combination. The complexity of this approach grows expo-

nentially with the number of binary variables, such that to solve a problem with ny

binary variables would result in the requirement to solve 2ny LP problems [132].

Fortunately, there are MIP solvers available, e.g. [110], [120], which offer heuris-

tic approaches to drastically reduce the computation time for many MILP problems,

e.g. using a branch-and-bound algorithm with cutting planes to reduce the search

space. However, even with computationally efficient MIP solvers, the combinatorial

explosion that occurs as ny increases can still cause particularly large MILP problems

to be intractable. On the other hand, in comparison to similarly sized non-convex

NLP problems, especially those with integrality constraints, i.e. mixed-integer NLP

(MINLP) problems, MILP problems can still be solved much more efficiently.
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Appendix B

Connection Coefficients

Connections between component modules’ sink and source ports, as outlined in Sec-

tion 3.2, are modelled as constraints which define the flow of energy between con-

nected ports:

yk,snkj = γij · yk,srci (B.1)

Since it may be necessary to model linear losses, convert units or consider different

physical flows of interest when moving between different modules, the connection

coefficient γij can take various forms. Some examples encountered in this thesis are

given below.

Table B.1: Connection Coefficient Examples

Description Source Type Sink Type γij Value Units

Linear loss Real Power (kW) Real Power (kW) < 1 -

Scaling Mass Flow (kg/s) Mass Flow (100 kg/s) 1
100

-

Unit conversion Real Power (kW) Real Power (p.u.) 1
Sbase

p.u.
kW

Quantity conversion Heat (kW) Mass Flow (kg/s) 1
Cp∆T

kg·K
kJ ·K
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Appendix C

Logical Constraints

As shown in [25], [31], it is possible to cast logical statements as a system of mixed-

integer linear constraints. This methodology is utilised in several models that are pre-

sented in the main thesis but presenting these logical constraints each time can both

negatively impact model readability and involve much repetition. Instead the mixed-

integer linear constraints representing various logical statements are explained here

in general form and only specific logical statements are presented in the main thesis

chapters.

C.1 Logical Indicators

Binary indicator variables, δ, are used extensively in this thesis and in the literature

[25], [26], [30], since they can be used to define if...then type conditions based on

the value of a given variable or function, f(k). Here a binary indicator is defined to

indicate whether a given function is positive:

f(k) ≥ 0 ⇐⇒ δ = 1

is true if and only if

−mδ ≤ f(k)−m

−(M + ε)δ ≤ −f(k)− ε

(C.1)

where f(k) is upper and lower bounded by M and m, respectively, and ε is a small

tolerance (typically the machine precision) needed to transform a constraint of the

form y > 0 into y ≥ 0, since MILP solvers can only handle nonstrict inequalities [25].
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It can be shown that if, δ = 0, the constraints in (C.1) are equivalent to −m ≤ f(k) ≤

−ε, whereas if δ = 1, they are equivalent to 0 ≤ f(k) ≤ M , thereby satisfying the

logical statement.

C.2 Conditional Activation of Terms

If a given variable or function, f(k), within a constraint or cost function, must only be

considered under a certain condition indicated by δ, then it could simply be replaced

by δf(k) in the constraint. However, this introduces a non-linearity which should

ideally be avoided to improve computational efficiency. Instead it is possible to ‘hide’

this product by defining an auxiliary variable, y = δf(k), which may be expressed

using mixed-integer linear inequalities. Having already defined δ using (C.1), it then

follows that:

y = δf(k)

is equivalent to



y ≥ mδ

y ≤Mδ

y ≥ f(k)−M(1− δ)

y ≤ f(k)−m(1− δ)

(C.2)

In this case, when δ = 0, the first two constraints are equivalent to y = 0 whilst the

latter two satisfied trivially. When δ = 1, the first two constraints are satisfied trivially

whilst the latter two are equivalent to y = f(k).

C.3 Sign Function

Where it is necessary to express a constraint g(k) = sign(f(k))h(k), in which sign(f(k))

returns the sign of a given function f(k) and h(k) is a positively valued function, this

constraint must be formulated as mixed-integer inequalities. Having first defined δ

using (C.1), it then follows that:

f(k) ≥ 0 =⇒ g(k) = h(k)

f(k) ≤ 0 =⇒ g(k) = −h(k)

where 0 ≤ h(k) ≤M
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is equivalent to



g(k) ≥ h(k)− 2M(1− δ)

g(k) ≤ h(k)

g(k) ≥ −h(k)

g(k) ≤ −h(k) + 2Mδ

(C.3)

where g(k) is a function upper and lower bounded by M and −M , respectively. Here,

when δ = 0, the first two constraints are satisfied trivially whilst the latter two are

equivalent to g(k) = −h(k). Similarly, when δ = 1, the first two constraints are

equivalent to g(k) = h(k) whilst the latter two are satisfied trivially.

C.4 Absolute Value Cost Function Terms

The absolute value of a given function or variable, f(k), can be replaced within a

linear cost function by introducing an auxiliary variable, y = |f(k)|. Provided that a

minimisation problem is being considered and the cost function is strictly increasing

in y, it follows that:

y = |f(k)|

is equivalent to

y ≥ f(k)

y ≥ −f(k)
(C.4)

This simple reformulation ensures that y is equal to whichever is the greater of f(k)

or −f(k).
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Appendix D

Additional Flexible Demand Models

Constraints for flexible demand modules which are not used in the thesis are pre-

sented here for information. The following constraints, repeated from Chapter 3, are

common to all flexible demand types:

yk,n =

Nph
n∑

i=1

uk,n,i, ∀k, n (D.1)

uk,n,iδ
p
k,n,i ≤ uk,n,i ≤ uk,n,iδ

p
k,n,i, ∀k, n, i (D.2)

δpk,n,i + δck,n,i ≤ 1, ∀k, n, i (D.3)

δpk−1,n,i − δpk,n,i ≤ δck,n,i, ∀k, n, i (D.4)

δck−1,n,i ≤ δck,n,i, ∀k, n, i (D.5)

δpk,n,i ≤ δck,n,i−1, ∀k, n, i ∈ {2 : Nph
n } (D.6)

D.1 Shiftable Demand Module

A shiftable demand must complete a number of phases within the cycle duration but

does not have a fixed start time. The specific constraints for a shiftable demand are

as follows:

N rem
shift∑

k=1

uk,shift,i = Eshift,i, ∀i (D.7)

H∑
k=1

δpk,shift,i = 1, ∀i (D.8)

δck,shift,i−1 = δpk,shift,i + δck,shift,i ∀k, n, i ∈ {2 : Nph
shift} (D.9)
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δpk,shift,i ≤ T pref
k,shift, ∀i, k (D.10)

where N rem
shift is the number of remaining periods within which all demand phases

must be satisfied, H is the prediction horizon and T pref
shift is a user-defined vector of

time preferences, i.e. T pref
k,shift = 1 if and only if a demand can be processed during

period k. These constraints ensure that: the nominal amount of energy is delivered

within the cycle time, preventing the demand start from being shifted indefinitely

(D.7); each phase is only processed over one time period (D.8); each phase starts

immediately after the preceding phase (D.9); and that phases can only be processed

at times preferred by the user (D.10).

When this module is used as part of a receding horizon control scheme, the constants

Eshift,i, N
rem
shift and T pref

shift need to be updated between each call to the optimisation solver.

A programmable logic controller (PLC) can fulfil this updating role, performing the

following assignments at the end of each time period:

Eshift,i = Eshift,i − uk,shift,i, ∀i (D.11)

N rem
shift = N rem

shift − 1 (D.12)

T pref
k = T pref

k+1, ∀k ∈ {1 : H − 1} (D.13)

T pref
H = 1 (D.14)

The PLC would also reset all values to their defaults upon completion of the demand

cycle.

D.2 Adjustable Demand Module

An adjustable demand is able to vary energy consumption above or below the nom-

inal amount in each phase. The specific constraints for an adjustable demand are as

follows:

uk,adj,i = zbase
k,adj,i + z+k,adj,i − z−k,adj,i, ∀i (D.15)

H∑
k=1

zbase
k,adj,i = Eadj,i, ∀i (D.16)

z+k,adj,iδ
+
k,adj,i ≤ z+k,adj,i ≤ z+k,adj,iδ

+
k,adj,i, ∀k, i (D.17)

z−k,adj,iδ
−
k,adj,i ≤ z−k,adj,i ≤ z−k,adj,iδ

−
k,adj,i, ∀k, i (D.18)

δ+k,adj,i + δ−k,adj,i ≤ 1, ∀k, i (D.19)
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0 ≤ z+k,adj,i ≤ z+k,adj,iδ
p
k,adj,i, ∀k, i (D.20)

0 ≤ z−k,adj,i ≤ z−k,adj,iδ
p
k,adj,i, ∀k, i (D.21)

H∑
k=1

δpk,adj,i = 1, ∀i (D.22)

δpkc,adj,1 = 1 (D.23)

δck,adj,i−1 = δpk,adj,i + δck,adj,i ∀k, n, i ∈ {2 : Nph
adj} (D.24)

where zbase
k,adj,i is the baseline consumption, z+k,adj,i is a positive adjustment above the

baseline consumption and z−k,adj,i is a negative adjustment below the baseline energy

consumption. These constraints ensure that: the nominal energy consumption of

each demand phase can be adjusted up or down within defined limits (D.15)-(D.19);

adjustments are positive only when a given phase is processing (D.20),(D.21); each

phase is only processed over one time period (D.22); the demand commences at a

given time period kc (D.23); and each phase starts immediately after the preceding

phase (D.24).

Only the nominal energy consumption, Eadj,i, must be repeatedly updated in a reced-

ing horizon control scheme, therefore a PLC can simply iterate through the nominal

energy consumption profile at the end of each time period.

D.3 Interruptible Demand Module

An interruptible demand can have interruptions between each phase, the length of

which are limited within a given range. The specific constraints for an interruptible

demand are as follows:

H∑
k=1

uk,int,i = Eint,i, ∀i (D.25)

H∑
k=1

δpk,int,i = 1, ∀i (D.26)

Nw
int,i ≤

H∑
k=1

δwk,int,i ≤ N
w

int,i (D.27)

δwk,int,i = δck,int,i−1 − (δpk,int,i + δck,int,i) ∀k, n, i ∈ {2 : Nph
int} (D.28)

δpk,int,i ≤ T pref
k,int, ∀i, k (D.29)

δpkc,adj,1 = 1 (D.30)
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where Nw
int,i and N

w

int,i are the minimum and maximum number of periods for which

a phase can wait after the preceding phase has been completed. These constraints

ensure that: the nominal amount of energy is consumed in each phase within the

prediction horizon (D.25); each phase is only processed over one time period (D.26);

the waiting period before any given phase must be completed within a given range

of time periods (D.27),(D.28); phases can only be processed at times preferred by

the user (D.29); and the demand commences at a given time period kc (D.30).

In a receding horizon control scheme, the constants Eint,i, N
p
int,i and N

p

int,i need to

be updated between each call to the optimisation solver. A PLC would perform the

following assignments at the end of each time period:

Eint,i = Eint,i − uk,int,i, ∀i (D.31)

Nw
int,i =


Nw

int,i, if δwk,int,i = 0

Nw
int,i − 1, if δwk,int,i = 1 ∧Nw

int,i > 0

0, otherwise

(D.32)

N
w

int,i =


N

w

int,i, if δwk,int,i = 0

N
w

int,i − 1, if δwk,int,i = 1 ∧N
w

int,i > 0

0, otherwise

(D.33)

The PLC would also reset all values to their defaults upon completion of the demand

cycle.
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