
DEVELOPMENT OF A NON-OVERLAPPING DOMAIN
DECOMPOSITION METHOD FOR PROBLEMS WITH

BOUNDARY LAYER

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Hongru LI
Department of Mechanical, Aerospace and Civil Engineering

Contents

Contents 2

List of figures 5

List of tables 8

List of publications 9

Terms and abbreviations 10

Abstract 16

Declaration of originality 18

Copyright statement 19

Acknowledgements 20

1 Introduction and literature review 22
1.1 Near-wall turbulence challenge . 22
1.2 Near-wall domain decomposition . 27
1.3 Outline of the thesis . 30

2 Derivation of non-local domain decomposition algorithms 32
2.1 Robin-type interface boundary condition . 33
2.2 Domain decomposition method . 35
2.3 NDD in application to HRN and LRN models 38
2.4 Non-local DR type domain decomposition method 41

2.4.1 Approximated near-wall domain decomposition 42
2.4.2 DR type ENDD algorithm . 43

2.5 Non-local RR type domain decomposition method 46
2.5.1 Introduction of Steklov-Poincaré operators 46
2.5.2 RR type ENDD algorithms . 48

2.6 Summary . 52

3 Convergence rate calculation of NDD algorithms 53
3.1 Convergence rate calculation of RR-SP0 . 54

3.1.1 Calculation via separation of variables 54
3.1.2 Calculation of RR-SP0: parallel version 58

2

3.1.3 Calculation via Fourier transform . 59
3.1.4 Calculation of symbol of SP operators 63

3.2 Convergence rate calculation of DR algorithm 65
3.3 Generalised convergence rate calculation of RR-SP0 67
3.4 Convergence rate calculation of RR-SP1 and RR-SP2 73

3.4.1 Calculation of RR-SP1 . 73
3.4.2 Calculation of RR-SP2 . 79

3.5 Summary . 83

4 Convergence analysis of NDD algorithms 84
4.1 Convergence analysis of RR-SP0 without boundary effect 85

4.1.1 Analysis of RR-SP0 . 86
4.1.2 Poisson’s equation test . 89
4.1.3 Comparison between parallel and sequential algorithms 90

4.2 Convergence analysis of RR-SP2 without boundary effect 92
4.2.1 Analysis of RR-SP2: approximation 1 92
4.2.2 Analysis of RR-SP2: approximation 2 96

4.3 Convergence analysis of conventional RR algorithm 99
4.4 Boundary effect analysis of RR-SP0 . 102

4.4.1 Modelling of boundary effect . 102
4.4.2 Model study of boundary effect . 107
4.4.3 Test case to evaluate boundary effect 116

4.5 Convergence rate calculation of RR-SP1 and RR-SP2 with boundary effect . . 119
4.5.1 Calculation of RR-SP1 with boundary effect 119
4.5.2 Calculation of RR-SP2 with boundary effect 123

4.6 Estimated analysis of boundary effect in RR-SP1 and RR-SP2 124
4.6.1 Key terms of boundary effect . 125
4.6.2 Boundary effect evaluation of RR-SP1 125
4.6.3 Boundary effect evaluation of RR-SP2 126

4.7 Summary . 128

5 Numerical tests 130
5.1 Discrete scheme and coding language . 131
5.2 Poisson’s equation . 133
5.3 Model equations . 134

5.3.1 Model equation 1 . 134
5.3.2 Model equation 2 . 144

5.4 Floating interface boundary method . 149
5.5 Summary . 151

6 Analysis and implementation of GMRES 155
6.1 Introduction of GMRES as a projection method 155
6.2 Derivation of GMRES . 157

3

6.2.1 Arnoldi algorithm . 157
6.2.2 Full orthogonalization method . 159
6.2.3 Standard GMRES and restarted GMRES 160

6.3 Solution to the least square problem and practical discussion 162
6.3.1 Solving the least square problem . 162
6.3.2 Compressed row storage . 165

6.4 Convergence analysis . 166
6.4.1 General analysis using Chebyshev Polynomial 166
6.4.2 Eigenvalue analysis of GMRES convergence 167

6.5 ILU(0) preconditioning of GMRES . 173
6.6 Summary . 176

7 Conclusions and recommendations 178
7.1 Summary of the work . 178
7.2 Future work . 180

7.2.1 Theoretical future work . 180
7.2.2 Numerical future work . 181

References 182

Appendices 191

A Convergence rate calculation of DN and NN algorithms 192

Word count: 70427

4

List of figures

3.1 Convergence rate of DR algorithm with various A, θ = 1, B = 1. 68

4.1 Profile of Ŝ1 applied to Poisson’s equation. It is known that Ŝ1(ω) = ω coth(ωA),
and the profile is plotted against various ω and A. 86

4.2 Profile of Ŝ2 applied to Poisson’s equation. It is known that Ŝ2(ω) =

ω coth(ω(B − A)), and the profile is plotted against various ω and A. 87
4.3 Energy spectrum of 1, x, x2 and x3. 88
4.4 Profile of ∆s1(ω)∆s2(ω) with various A. 89
4.5 Profile of S1I, S2I applied to Poisson’s equation, A = 7

8
. 91

4.6 Profile of Ŝ1ωω(ω) with various A. The profile of Ŝ2ωω(ω) could also be depicted
by this figure: Ŝ2ωω(ω)|A∗ = Ŝ1ωω(ω)|(1−A∗). 92

4.7 Profile of Ŝ1ω(ω) with various A. The profile of Ŝ2ωω(ω) could also be depicted
by this figure: Ŝ2ωω(ω)|A∗ = Ŝ1ωω(ω)|(1−A∗). Every line has a ’turning point’
where the line turns to flat. The point value decreases with increasing A. For
A = 7/8, the point value is about 2π; for A = 1/8, the point value is about 6π
or even larger. 93

4.8 Profile of Ŝ1ωω(0)Ŝ2ωω(0). Since Ŝ1ωω|A(0) = Ŝ2ωω|1−A(0), the profile is
symmetric along A = 4/8, so the cases for A > 4/8 are not plotted. 95

4.9 Convergence rate of RR-SP0 and RR-SP2 with various A. 96
4.10 Profile of Ŝ1(ω) := ω coth(ωA) with various A. If ω∗ is smaller than 1

2
ωt, the

mean value ω∗ is approximately equal to 1
2
ω because Ŝ1ω(ω) rises almost linearly

before ωt. Therefore, ηi ≈ 1/2 in this case. 99
4.11 Profile of ∆s1ωω(ω)∆s2ωω(ω). The definition of ∆siωω(ω) is ∆siωω(ω) :=

Ŝiωω(ω) − Ŝiωω(0). By cutting off the part of ω > ωt, the figure could show
∆s1ωω(ω

∗∗) ·∆s2ωω(ω
∗∗) . 100

4.12 Profile of ∆σ1∆σ2. In Lui’s case, λ = σ1 = σ2 = 6.794. In otherwise case,
λ = σ1 = σ2 = S∗

1I . 101
4.13 Convergence history of Lui’s algorithm in application to solving a Poisson’s

equation with three different λ, A = 1/8. 103
4.14 Convergence history of Lui’s algorithm in application to solving a Poisson’s

equation with three different λ, A = 3/8. 103
4.15 Convergence history of Lui’s algorithm in application to solving a Poisson’s

equation with three different λ, A = 7/8. 104
4.16 Profile of CRi(ω), which is always non-positive and decreasing with rising ω. . 108

5

4.17 Fourier transform of polynomials, real part. One model line is plotted for the
case of order 2 according to Eq.(4.35). The parameters are: Lr = 0.8, Nr =

0.75, ωr
0 = −π/3. 109

4.18 Fourier transform of polynomials, imaginary part. One model line is plotted for
the case of order 2 according to Eq.(4.36). The parameters are: Li = 0.85, Ni =

0.9, ωi
0 = 5π/12, ξ = 0.9. 109

4.19 Fourier transform of Pi(x), real part. The first three lines are plotted according to
Eq.(4.24). In addition, one model function for α = 1, β = 1 case is also plotted
according to Eq.(4.37) with the following parameters: lr = 1.8, nr = 1.3, ωr

0p =

−π/5. It fits the original function well. 110
4.20 Fourier transform of Pi(x), imaginary part. The first three lines are plotted

according to Eq.(4.25). In addition, one model function for α = 1, β = 1 case is
also plotted according to Eq.(4.38) with the following parameters: li = 1.3, ni =

1.1, ωi
0p = π/6. It fits the original function well. 111

4.21 Profile of y1 = 1.5(Φ1 + Φ2) and y2 = 1.5(Φ3 + Φ4) as a function of ω. The
magnitude of both functions are mainly less than y = ±ω when ω > π. Vi(ω) is
assumed to be 3 sin(ω). 115

4.22 Profile of y1 = 1.5(Φ1 + Φ2) and y2 = 1.5(Φ3 + Φ4) as a function of ω. The
magnitude of both functions are mainly less than y = ±ω when ω > π. Vi(ω) is
assumed to be 3 cos(ω). 115

4.23 Profile of S1I applied to a Poisson’s equation, A = 1
8
, 3
8

and 7
8
. 117

4.24 Profile of S2I applied to a Poisson’s equation, A = 1
8
, 3
8

and 7
8
. 117

4.25 Profile of P̂ i(ω), real part. 118
4.26 Profile of P̂ i(ω), imaginary part. 118
4.27 Profile of P l

1 and P q
1 in a Poisson test, A = 1/8. P l

1 := S2x − S2I · x − 0,
P q
1 = (S2x

2−2xS2x+x2S2I)− (S∗
2x

2−x2S∗
2I). S∗

2x
2 is obtained numerically

with boundaries in x direction set at far place (x = ±5). 119
4.28 Profile of P l

2 and P q
2 in a Poisson test, A = 1/8. P l

2 := S1x − S1I · x − 0,
P q
2 = (S1x

2−2xS1x+x2S1I)− (S∗
1x

2−x2S∗
1I). S∗

1x
2 is obtained numerically

with boundaries in x direction set at far place (x = ±5). 120
4.29 Numerator of the standard convergence rate CR2 of RR-SP0(1) and RR-SP2.

The magnitude of the former is always no less than the latter. The numerator of
CR2(SP0) := 1

A
− Ŝ1(ω), and the numerator of CR2(SP2) := 1

A
− Ŝ1(ω) +

1
2
ω2Ŝ1ωω(0). 128

5.1 Convergence history of Lui’s algorithm (λ = 6.794) and (parallel) RR-SP0 in
comparison to solve a Poisson’s equation. A = 1

8
, 7
8

. 135
5.2 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in

application to solving a Poisson’s equation. A = 1
8
. 135

5.3 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in
application to solving a Poisson’s equation. A = 3

8
. 136

5.4 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in
application to solving a Poisson’s equation. A = 7

8
. 136

6

5.5 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in
application to solving a model equation. α = 1. 139

5.6 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in
application to solving a model equation. α = 102. 139

5.7 Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in
application to solving a model equation. α = 104. 140

5.8 The profile of SiI in application to a model equation, α = 1. 142
5.9 The profile of SiI in application to a model equation, α = 102. 142
5.10 The profile of SiI in application to a model equation, α = 104. 143
5.11 The profile of P l

1 and P q
1 in application to the model equation, α = 102. P l

1 :=

S2x− S2I · x− 0, P q
1 := (S2x

2 − 2xS2x+ x2S2I)− (S∗
2x

2 − x2S∗
2I). S∗

2x
2 is

obtained numerically with boundaries in x direction set at far place (x = ±2). . 143
5.12 The profile of P l

2 and P q
2 in application to the model equation, α = 102. P l

2 :=

S1x− S1I · x− 0, P q
2 := (S1x

2 − 2xS1x+ x2S1I)− (S∗
1x

2 − x2S∗
1I). S∗

1x
2 is

obtained numerically with boundaries in x direction set at far place (x = ±2). . 144
5.13 The profile of P l

1 and P q
1 in application to the model equation, α = 104. P l

1 :=

S2x− S2I · x− 0, P q
1 := (S2x

2 − 2xS2x+ x2S2I)− (S∗
2x

2 − x2S∗
2I). S∗

2x
2 is

obtained numerically with boundaries in x direction set at far place (x = ±2). . 145
5.14 The profile of P l

2 and P q
2 in application to the model equation, α = 104. P l

2 :=

S1x− S1I · x− 0, P q
2 := (S1x

2 − 2xS1x+ x2S1I)− (S∗
1x

2 − x2S∗
1I). S∗

1x
2 is

obtained numerically with boundaries in x direction set at far place (x = ±2). . 146
5.15 The contour plot of the solution to α = 104 model equation. The solution mainly

changes with x. 146
5.16 The divergence history of RR-SP0(1)* in application to the model equation, α =

106. The convergence of V is speculated to be achieved within the first 5 iterations.147
5.17 Solution profile of the model equation (Re = 106). α = 102. 152
5.18 Solution profile of the model equation (Re = 106). α = 104. 152
5.19 Solution profile of the model equation (Re = 106). α = 106. 153
5.20 Profile of e1 and e2, which are defined in Eqs.(5.11) and (5.12). 153

7

List of tables

4.1 Convergence iterations of RR-SP0 in application to a Poisson’s equation case. . 90
4.2 Convergence iterations of Lui’s algorithm in application to a Poisson’s equation. 102
4.3 Parameters of the modelled pike functions. 119

5.1 Convergence iterations of (parallel) RR-SP0, RR-SP1 and RR-SP2 in application
to a Poisson’s equation. 133

5.2 Convergence iterations of RR-SPN,DR and Lui’s algorithm in application to
solving a Poisson’s equation. 134

5.3 Convergence iteration of (sequential) RR-SP0, RR-SP1, RR-SP2 and DR in
application to a model equation, A = 10−3. 138

5.4 Convergence iteration of (sequential) RR-SPN (N=0,1,2) and RR-SPN* in
comparison to solve a model equation, A = 10−3. 138

5.5 Convergence iteration of RR-SP0, RR-SP1, RR-SP2 and DR algorithms in
application to a model equation, A = 5× 10−4. 145

5.6 Convergence iteration of a model equation case. Note ’NA’ denotes not applicable.148
5.7 Convergence iteration of RR-SPN and RR-SPN* in application to a model

equation, α = 106. Note ’DIV’ denotes divergence. 149

8

List of publications

Utyuzhnikov, Sergey V., and Hongru Li. ”Domain decomposition with nonlocal interface
boundary conditions.” Journal of Computational and Applied Mathematics 421 (2023):
114847.

9

Terms and abbreviations

Acronyms

Computational Fluid Dynamics CFD

Navier-Stokes NS

Direct Numerical Simulation DNS

Large Eddy Simulation LES

Reynolds-averaged Navier-Stokes RANS

Low Reynolds Number LRN

High Reynolds Number HRN

Eddy-Viscous Model EVM

Non-Linear Eddy Viscous Model NLEVM

Near-wall Domain Decomposition NDD

Domain Decomposition DD

Interface Boundary Condition IBC

Thin Boundary Layer TBL

Analytical Wall Function AWF

Generalized Wall Function GWF

Robin-type Wall Function RWF

10

Scalable Wall Function SWF

Approximated Near-wall Domain Decomposition ANDD

Exact Near-wall Domain Decomposition ENDD

Dirichlet-to-Robin DR

Dirichlet-to-Neumann DN

Neumann-to-Neumann NN

Robin-to-Robin RR

Steklov-Poincaré SP

Unsteady Interface Boundary Condition UIBC

Laminar-Turbulent Transition LTT

Generalized Minimum Residual Methods GMRES

Boundary Value Problem BVP

Parabolized Navier-Stokes PNS

Partial Differential Equation PDE

Ordinary Differential Equation ODE

Zero Fill-in Incomplete LU ILU(0)

Full Orthogonalization Method FOM

Classic Gram-Schmidt CGS

Modified Gram-Schmidt MGS

Compressed Row Storage CRS

11

Roman symbols

Si Steklov-Poincaré operator defined in subdomain Ωi

I unit function

S∗
i

’boundary-effect-free’ Steklov-Poincaré operator defined in
subdomain Ωi

y∗ interface boundary position

Ŝi

symbol of Steklov-Poincaré operator defined in subdomain
Ωi

Ŝiω

derivative of symbol of Steklov-Poincaré operator defined in
subdomain Ωi

Ŝiωω

second order derivative of symbol of Steklov-Poincaré
operator defined in subdomain Ωi

F Fourier transform operator

un
i function value u in subdomain Ωi at iteration n

û Fourier transformation of function u

ê Fourier transformation of error function e

j imaginary unit

A interface boundary position in Poisson’s equation

B
upper boundary position of subdomain 2 in Poisson’s
equation

Pi

pike function defined by Steklov-Poincaré operator applied
to unit function

12

P l
i

pike function defined by Steklov-Poincaré operator applied
to x

P q
i

pike function defined by Steklov-Poincaré operator applied
to x2

P̂ i Fourier transformation of pike function

RR-SP0
Robin-to-Robin type algorithm where Steklov-Poincaré
operators are constantly approximated

RR-SP1
Robin-to-Robin type algorithm where Steklov-Poincaré
operators are linearly approximated

RR-SP2
Robin-to-Robin type algorithm where Steklov-Poincaré
operators are quadratically approximated

RR-SP0*
simplified variant of RR-SP0 algorithm without considering
boundary effect

RR-SP1*
simplified variant of RR-SP1 algorithm without considering
boundary effect

RR-SP2*
simplified variant of RR-SP2 algorithm without considering
boundary effect

Re Reynolds number

∆hx spacing step in x direction

∆hy spacing step in y direction

DIV divergence

L two-dimensional linear differential operator

Ly

one-dimensional linear differential operator with respect to
y

13

A coefficient matrix of linear system

x unknown vector to be solved of linear system

b right hand side vector of linear system

xm m-dimensional approximated solution to x

x0 initial guess of xm

Km m-dimensional search subspace

Lm m-dimensional constraint subspace

r residual vector

V m m-dimensional orthogonal basis of Km

H̄m m-dimensional upper Hessenberg matrix

Hm H̄m excluding the last row

em m-th column of m×m identical matrix

ym reflection of δ in Km

qi a vector equal to i-th column of V m

F j

rotation matrix to modify two certain entries of a given
vector

F rotation matrix used in Givens rotation

R̄m

product of Givens rotation applied to upper Hessenberg
matrix

Rm R̄m excluding the last row

14

Greek symbols

Γ interface boundary between two subdomains

ω wave number

γ̂ Fourier transformation of function γ

θ relaxation parameter

θi
representation of boundary effect on convergence in
subdomain Ωi

Ω computing domain

δ Dirac δ function

δ the difference between estimated solution and initial guess

Λ
diagonal matrix composed of eigenvalues of coefficient
matrix

κ condition number of a matrix

λi

i−th eigenvalue of a given matrix, listed in reduced order of
magnitude

15

Abstract

Development of a non-overlapping domain decomposition method for problems with
boundary layer
Hongru LI
A thesis submitted to the University of Manchester for the degree of Doctor of
Philosophy , 2022

Near-wall turbulence modelling has been a popular research object in computational fluid dynamics over the past few

decades. Apart from low Reynolds number models and high Reynolds number models, the method of near-wall domain

decomposition has been developed to be an effective approach for solving this issue. The basic idea of near-wall domain

decomposition is to transfer the boundary condition from the wall to an interface boundary with no/little knowledge of

the off-wall solution. It is important to note that unlike conventional methods, near-wall domain decomposition could be

applied to both low Reynolds number models and high Reynolds number models, which makes the approach capable of

overcoming the limitations of the two models by maintaining a trade-off between accuracy and efficiency. The approach

allows for the distance between the interface boundary and the wall to be varied so as to improve either efficiency and

accuracy. Previous research has proved that if the governing equation in the near-wall region is of boundary-layer type and

locally one-dimensional, the transfer of the boundary condition could be exact. However, in more generalised cases the local

interface boundary condition is found to be deficient in capturing the essential non-local feature of turbulent flows in both

time and space. The challenge posed by this problem motivates the development of the near-wall domain decomposition

approach with non-local interface boundary conditions.

In this thesis an effective and novel near-wall domain decomposition approach with non-local interface boundary conditions

is developed and tested in application to model equations that simulate high-Reynolds-number flow with a boundary layer.

The approach is also compared with existing non-local near-wall domain decomposition approaches in the literature and is

proven to be more efficient. The supreme convergence of the approach is analysed theoretically in Poisson’s equation and the

result is further confirmed to be valid in application to the model equations. Both theoretical and numerical analysis shows

that the approach has great potential to be applied to near-wall turbulence modelling.

The non-local interface boundary condition of the approach is obtained by approximating the non-local Steklov-Poincaré

operators, which are decomposed into a few basic units under local Taylor expansions. The approximation is proved to be

effective in retaining the non-local nature of the operators and is easy to implement. The convergence analysis is performed

in two steps: first ignore the boundary effect when analysing the product of Steklov-Poincaré operators applied to given

functions (standard analysis); next restore the ignored boundary effect. These two steps reflect the influence of the governing

equation and boundary conditions respectively. Together they describe the complete non-local nature of Steklov-Poincaré

operators in application to a given problem.

As an advanced numerical method to solve large linear systems: the generalised minimum residual method is widely used

in the project and its convergence is studied. The convergence of the generalised minimum residual method is found to be

determined by the eigenvalue distribution of the coefficient matrix of the linear system. The result is intended to serve as a

theoretical foundation to evaluate the comparative computing cost of applying the near-wall domain decomposition approach

as opposed to the one-block approach.

16

17

Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted in
support of an application for another degree or qualification of this or any other university or
other institute of learning.

18

Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property and/or
Reproductions described in it may take place is available in the University IP Policy
(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420),
in any relevant Thesis restriction declarations deposited in the University Library, The
University Library’s regulations (see http://www.library.manchester.ac.uk/a
bout/regulations/) and in The University’s policy on Presentation of Theses.

19

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

Firstly, I would like to thank my supervisor Dr Sergey Utyuzhnikov for his immense support
and patience during the last 4 years of my postgraduate study. He was a great mentor and his
honest advice was crucial for my development as an academic.

Secondly, I am grateful to Dr Adel Nasser, Dr Andrea Cioncolini and Prof. Dominique
Laurence for helping me during my different stages of PhD journey. Their help was not only
useful in helping me improve my annual report quality but also in reminding me of what better
research could look like so that I was greater aware of my weakness and tried to strengthen
it. I could not have progressed without their support.

Thirdly, I would like to acknowledge the China scholarship council (Grant No.
201908890054) for funding my research. I have always been feeling honoured to be awarded
the funding and hence motivated to study hard throughout my PhD career. I wish I did not fail
the support by my efforts and could always feel proud of not only receiving but also deserving
the funding.

I would also like to mention some of my good friends: Afreen Islam, Chen Wang, Elliot Buss,
Fanchao Meng, Kai Liu, Dr Kamil Fedorowicz, Lei Chen, Xiaoxi Pang, Xinyu Bian and Yang
Zhou, for spending with me a lot of relaxing and wonderful time in chatting, cooking, eating,
drinking, exercising, walking, hiking and gaming, and offering generous help in every aspects
of my life when I was in need. The memories with them are so incredible that hardly did I feel
lonely nor helpless in the tough and long journey of PhD-I knew I always had hands around.
Meanwhile, I can not forget the enjoyable time spent with my school colleagues and flatmates
in all kinds of academic and social events, including GTA training and lab/tutorial delivery
(special thanks to Dr Dale Smith and Dr Tom Fisher who helped and cheered me up so much
in my first year of GTA), coffee mornings, table tennis night, pool game night, Halloween
carving, etc.

There were some ’silent’ friends keeping accompanying and inspiring me of which I would
like to specially acknowledge: my books. I can not forget those summer afternoons sitting on
the bench of nearby parks and immersed in the adventures of Harry Potter and his friends,
or draining my brain power to catch the steps of Hercule Poirot, or immersing myself in the
legendary world of Narnia and seeking Aslan. There were still so many that I do not have
chance to introduce but every single one created a wonderful dream for me to explore and I
would like even to write another thesis to report my exploration result!

My particular thanks to my girlfriend Peimiao Zou, who was on her PhD journey as well but
spared no efforts to support my study as well. Although not living in the same city, she knew
my life better than anyone else and played an unique and irreplaceable role in entertaining and

20

comforting me in many occasions. Awareness of the fact that we were together was a powerful
secret weapon I always possessed to overcome the confronted difficulties in my PhD life.

Last but not least, I would like to thank my loving parents, who were always unconditionally
helpful and supportive to my PhD study in Manchester. I feel extraordinarily lucky to have
such open-minded parents on my back and appreciate every efforts they made to support my
study in both physical and emotional ways. What is more important, we never felt lack of
words in the regular video calls on weekends and the calls usually lasted hours and ended up
with one side feeling too late to continue. The talks included everything in our lives and my
parents synchronised well with my progress/dilemma of the PhD study although living apart
by thousands of kilo-meters. Actually I never felt I was too far from them.

21

Chapter 1

Introduction and literature review

1.1 Near-wall turbulence challenge

Turbulence simulation has been a challenging subject in computational fluid dynamics (CFD)
field over the past few decades. Especially when it comes to the vicinity of the wall,
the problem becomes more complex [1], [2]. Turbulent flow losses its velocity fluctuation
at solid-fluid interface due to non-slip boundary condition, which makes the momentum
transport dominated by molecular diffusion in the near-wall region, and the flow is locally
subjected to laminar flow law due to strong viscous effect. This region is very thin in size and
is known as viscous sublayer. Further off the sublayer the flow changes rapidly to turbulent
status that prevails over the remainder of the flow. Between the viscous sublayer and the fully
turbulent flow there lies a transition zone, and the so-called boundary layer is composed of
the above three parts.

The challenge of modelling near-wall turbulence is related to the small thickness (usually
around 1% of entire flow [3]) of the zone and extremely high rate of transport properties
change (could be two or more order of magnitude higher than elsewhere in the flow [3]). If the
mesh density is roughly equal between the near-wall region and off-wall region, the computing
time of solving the former could be three to 300 times more than the latter, depending on the
flow, turbulence model and CFD solver [3]. In addition, the thickness (δ) of the boundary layer
shrinks as Reynolds number (Re) increases (δ ∼ L/

√
Re) [4] and it makes the simulation

more challenging in highly turbulent scenario.

The straightforward way to resolve the problem is to discretize Navier-Stokes (NS) equations
and solve the linear system in the entire flow domain that naturally includes the near-wall
region. The method is so-called Direct Numerical Simulation (DNS) and could provide
the most accurate solution among all existing simulation methods. However, the computing
expense is very high: nodes number ∼ Re9/4 in three-dimensional simulation and time
steps are proportional to Re3/4 [5]. Therefore, DNS is not affordable for most of industrial
simulations especially if Re is high. The solution to DNS is usually referred to as benchmark
solution by other simulation schemes, for example, [6]–[10]

To reduce computing expense, Large Eddy Simulation (LES) [11] only simulates large-scale
flow motions numerically as DNS does but builds simplified models to simulate small-scaled
flow behaviour. Since its invention in 1960s, the method has become a popular and powerful

22

tool to provide affordable simulation result for complex turbulence problems [12], [13].
However, applying LES to near-wall turbulence simulation is still high in computing costs:
nodes number and computing time proportional to Re1.8 and Re2.4 respectively [14], while
the ratio is merelyRe0.4 andRe0.6 in main flow [15]. Therefore, LES is restricted to be applied
to medium-Re turbulent flows and usually excluded from being considered as effective tool
to resolve near-wall turbulence.

Apart from DNS and LES, vast efforts have been made to resolve near-wall turbulence
with so-called Reynolds-averaged Navier-Stokes (RANS) models. The method considers
the complex turbulent flow in larger time scale thus provide approximated time-averaged
solutions to NS equations. Within the framework of RANS approach, one class of models
resolve the entire flow domain down to the wall with very fine mesh. Due to strong viscous
effect and locally low Reynolds number in the near-wall region, the models adopting the
scheme are denoted by low Reynolds number (LRN) models. The governing equations of
LRN models are valid throughout the entire turbulence region. One other class of models
resolve the near-wall flow by replacing the differential equations across the viscous sublayer
with algebraic formulae or other low-cost routes that are ’packaged’ in so-called wall
functions. The overall characteristics of the momentum transport in the region are represented
by wall functions. Due to locally high Reynolds number outside the near-wall region, the
models to resolve near-wall flow with the ’package’ strategy are denoted by high Reynolds
number (HRN) models. Unlike the firm validity in LRN models, the relations in near-wall
region are often empirical in HRN models. LRN and HRN models constitute the two basic
classes of RANS models.

LRN models range from mixing-length schemes in 1960s and two-equation eddy-viscosity
models (EVMs) in 1970s to more delicate non-linear eddy-viscous models (NLEVMs) that
enables non-linear connections between turbulent quantities and mean-flow filed gradients.
Among all, LRN k − ε model has been developing to one of the most successful and most
widely-adopted models in RANS family so far. Launder and Jones proposed the earliest LRN
k−εmodel to resolve near-wall turbulence flow [16], where turbulent viscosity is determined
from the solution to transport equation for turbulent kinetic energy and energy dissipation rate.
In [17], the model was used to predict turbulent shear flow and showed satisfactory agreement
with experiment result. Furthermore, the model was applied to simulating flows with high
gradients of swirl velocity in the vicinity of spinning wall. The simulation result was found
to predict accurately the flow, heat and mass transfer in the vicinity of the rotating wall, and
more importantly, provides a successful sample of the generality of the model (known as LS
model) for the flow simulation of such kind [18]. Although originally designed to simulate
swirling flow, soon the model was widely accepted as classic benchmark LRN k−εmodels to
simulate turbulent wall-bounded flow. The comparative study of various near-wall turbulence
models stated that LS model is one of the four models that managed to yield satisfactory
result in the test of simulating a flat-plate boundary layer [19]. One other model among the
four was proposed by [20] (Chieng model), where turbulent shear stress, kinetic energy and
dissipation rate were expanded by Taylor series. Chieng model was compared with LS model

23

in application to turbulent channel flow and boundary-layer flow over flat plate, where it
showed comparable result as LS model and even better prediction of peak turbulent kinetic
energy. Due to their popularity and wide application, the two classic models represent the
so-called standard k − ε LRN models to a large extent.

In [21], the near-wall region was modelled with one-equation model while the standard
k − ε model was applied to simulating the bulk flow. The ’two-layer approach’ was tested in
simulating a two-dimensional boundary layer flow and showed comparable result to LRN k−ε

model. On the basis of DNS data for boundary-layer flow [22], a LRN k− ε model proposed
by Rodi and Mansour [6] introduced a new damping function in the eddy-viscosity relation
and near-wall source/sink terms in ε equation [7]. The modified model yielded satisfactory
approximation for all major quantities in boundary layer flows. Similarly, based on k − ε

model, Durbin proposed an approach to impose kinematic boundary conditions on normal
component of turbulent intensity in order to avoid containing damping functions [8]. The
model was applied to resolving near-wall shear flow and showed close agreement with DNS
data. Other modified k − ε models to resolve near-wall turbulent flows include [23], [24].
In the former case, eddy viscosity was characterised by a turbulent velocity scale and a
turbulent time scale. The time scale was also used to reformulate the dissipation equation. On
application level, [25] develops a specific model to simulate the movement and heat transfer
of turbulent non-isothermal non-Newtonian fluid through a pipe with cold wall. The fluid
turbulence is modelled in the framework of the isotropic two-parameter k–ε model. The
application of several popular LRN models to simulate turbulent flow and heat transfer of
highly buoyant horizontal supercritical fluids is reported in [10].

Apart from k − ε, one other important RANS model type is k − ω [26], [27] that has
been under constant development in the past few decades to be applied to a wide range
of turbulent flows [28]–[31]. In particular, the model is considered more effective than
k − ε model in solving near-wall flows and has been widely used to resolve flows with
adverse pressure gradients [32]. The main problem of the approach is that ω−equation is
sensitive to the main flow value of ω in off-wall region. To remedy the problem, [33] firstly
suggested complimenting a cross diffusion term in ω equation for reducing its dependence
on frees-stream value. Similar strategy of implementing additional cross diffusion term
was adopted by [34]–[36] to eliminate the boundary condition sensitivity. Specifically, [34]
blended high Reynolds number k − ε model at the edge of boundary layer and conventional
k − ω model in elsewhere zone. Although it incurred resolution accuracy loss of free shear
flows, the improved model demonstrated much less dependent on main flow value and was
able to give promising simulation result for boundary layer flows with adverse pressure
gradient. The ’blending’ method was specially developed in [36] for the requirement in
high-lift aerodynamics such as high-lift air-foil flows. On the other hand, to avoid the use of
blending models, [37] limited the magnitude of eddy-viscosity by requiring turbulent energy
not exceeding turbulent-energy production, and [38] restricted the value of shear-stress in
similar way. The modifications were proved equally accurate as the blending models. What
is more, [39] reformulated the conventional k − ω model with the methodology in [30]

24

that analysed boundary layer and free shear flows using perturbation methods and similarity
solutions. The improved model enabled a significant expansion of the applicability including
in boundary layer flow simulation where accurate solution could be obtained at the presence
of complicated separated flows. In [40], the standard ω model is modified by applying a
non-linear (quadratic) stress-strain relation for the Reynolds stress tensor. In particular for
resolving the turbulent flow where near-wall anisotropy effects are important, the near-wall
turbulence anisotropy treatment is enhanced by a Reynolds number-based formulation. The
improved model is successfully applied to two-dimensional and three-dimensional internal
flows with boundary layers, curvature, separation, and swirl, showing improved performance
than standard k − ω model. The application of anisotropic turbulence treatment in complex
turbomachinery flows is incorporated with the so-called ’Advanced RANS models’ [41],
and the anisotropic models demonstrate exclusively promising ability in predicting flow
behaviours in chocking condition.

Comparing with LRN models, HRN models are able to show indisputable advantage in
saving computing time. Therefore, the approach is especially popular in commercial CFD
software-developing industry. HRN models do not resolve near-wall region directly (thus
computationally cheap), instead the region is represented by Dirichlet boundary conditions
at interface between the near-wall and free-stream regions, and the boundary conditions
are so-called wall functions. The construction of wall functions is crucial to the resolution
accuracy of HRN models. The earliest concept and study of wall functions were far back to
the pioneer work by [42]–[44], etc. Soon the conventional wall functions [45] that are based
on the assumption of log-law of velocity and temperature prevailed in the industry although
the log-law is an inadequately formulated empirical model to predict the viscous near-wall
region.

Over decades, there have been vast efforts made to improve the log-law-based model. To
reduce the dependence of the solution on near-wall size, [46] considered near-wall flow
as viscous and logarithmic layers with two velocity scales separately. Similarly strategy
was adopted by Amano who developed two new wall functions (namely ’two-layer model’
and a ’three-layer model’) based on basic k − ε model [47]. Although the models were
applied to separated and reattached flows successfully, the log-law still retained in velocity
formulation. Similar study could also be seen in [48] where Shih defined a ’hybrid velocity
scale’ and non-dimensional length that were used to categorise wall-bounded flow into three
regions: viscous sublayer, buffer layer and inertial sublayer. The piece-wise wall function
was denoted by ’unified wall function’ and was proved particularly effective in dealing with
flows with complex geometries. Apart from the ’hybrid’ approach, much efforts were made
on re-constructing wall functions or modifying log-law to produce more reliable near-wall
model. [49], [50] proposed simplified approximation of dissipation rate by regarding kinetic
energy and Reynolds stress tensor (uv) between viscous sublayer edge and near-wall cell wall
as constant. Efforts have also been made to modification of viscous sublayer determination
[51] and kinetic energy by fitting experimental data [49]. In [52], Kim introduced a pressure
gradient term and a convection term to modify the log-law. The modified model showed

25

more accurate result in application to boundary layer flow with separation, reattachment and
circulating flows, and demonstrated the significance of considering pressure gradient.

Since wall function usually requires the near-wall cell centre lies in logarithmic region, the
applicability of HRN models is restricted. To address the issue, [53] proposed so-called
scalable wall function (SWF, also known as adaptive wall function) that assumes the cell
centre is located at the edge of viscous sublayer if it is actually within the sublayer. The
approach mitigates the applicability dilemma of log-law-based HRN models to some extent
but the cell size dependence retains. In addition, log-law is not accurate itself thus incurring
inevitable errors to the wall functions. To remedy it, the so-called numerical and analytical
wall functions are developed.

Numerical wall functions [54]–[56] use two independent mesh schemes in near-wall region
and entire flow region, which are denoted by ’wall function mesh’ and ’primary mesh’
respectively. The former could also be considered as sub-grid of the latter. In principle, RANS
equations are solved throughout the entire domain with relatively coarse primary mesh. The
wall function mesh are much finer with which one-dimensional parabolic RANS momentum
equation is solved in near-wall region to evaluate shear stress and averaged near-wall cell
quantities. The two meshes are linked through the common boundary conditions. Unlike
log-law-based wall functions, the simplified RANS equation in near-wall region contains
convective terms and complete Reynolds stresses, which marks its superiority in computing
accuracy over conventional wall functions. In addition, the approach overcomes the weakness
of log-law that is only assumed to be applicable for simple-geometric and local-equilibrium
flows. In [56], the approach was applied to complex turbulent flows (including plane channel
flow, axisymmetric impinging jet and flow near spinning disc) with k−ε models and showed
significant computational savings (one order of magnitude less than LRN models) with better
reproduction of LRN predictions than conventional wall functions. The approach was also
successfully applied to three-dimensional simulation with body-fitted mesh [54].

Analytical wall functions (AWFs) [57], [58] consider near-wall flow as an analytical problem
and solve the equations in the region by integration. Although several assumptions (mainly
include: boundary layer type momentum equations in near-wall region and linear turbulent
viscosity profile outside viscous sublayer) are essential to facilitate the integration, the
analysis is supposed to have greater accuracy than standard wall functions since it includes
source terms of RANS equations. The near-wall region is split into two regions: viscous
sublayer and turbulent region. Correspondingly, the integration is separately performed in the
two regions. The thickness of viscous sublayer is usually empirical thus it incurs the weakness
of the method: the computation result could be largely influenced by the relative size of the
viscous sublayer and near-wall cell.

Apart from turbulent flow problem, AWFs are also widely applied to heat transfer
problems. As a matter of fact, the wall functions were essentially designed for both
momentum and energy transport equations. [59] applied several turbulent models including
standard and analytical wall functions to channel flows with heat transfer. The result

26

showed that AWF outperformed standard wall functions in both flow and heat transfer
quantity prediction accuracy. The research in [60] considered a modification on the
constant-treated eddy viscosity in conventional AWF to improve the solution accuracy in
complex flows such as recirculating and impinging flows. Simulations including rough,
porous and gas-liquid surface surface/interface were also considered [61]–[64]. Further
three-dimensional applications of the approach include the study of turbulent impinging heat
transfer where wall-normal convective effect was included in the AWF for energy equation
[65]. The utilisation of a new and more generalised AWF (so called ’buoyancy adapted’ AWF)
in application to two/three-dimensional heated cavities modelling is numerically proved to
make significant improvement of the HRN k − ε model in predicting the Nusselt number
compared with the log-law based wall function [66]. The improved prediction value is in
close agreement with the experimental data.

Kalitzin [67] proposed a look-up-table wall function that is applicable to any RANS models.
The idea of the method is to produce a table to refer to for turbulence quantities and
friction velocity by solving the near-wall equation numerically and storing the friction
velocity as a function of dimensionless parallel velocity. Numerical tests were implemented
on flat plate boundary layer flow with four advanced RANS models including v2 − f and
Spalart-Allmaras models. Numerical result showed that the analysis of v2−f model resulted
in new analytical solutions in viscous sublayer and logarithmic layer, and the analytical
solution to Spalart-Allmaras model could be used as wall function directly. The approach
was also considered by [68] to reduce the AWF solution dependence on spatial resolution in
viscous, buffer and logarithmic layers of near-wall region.

The so-called compound wall function was originally designed for computing complex
turbulent flows where the near-wall cell is located in transitional zone between viscous
sublayer and logarithmic layer [69]–[71]. In that case, neither wall function in near-wall region
nor turbulence model in off-wall region resolves the flow precisely. The idea of [70], [71] was
to combine the solution from both AWF [58] and v2−f (ζ−f) turbulence model into a single
boundary condition at interface. The aim of the mixed-style wall treatment is to reduce the
sensitivity of the result to the near-wall cell size so that the size could impose less influence on
the result. The compound wall function was tested in several pulsating/impinging flows with
satisfactory result. The industrial applications of the approach could be seen in spark ignition
engine heat transfer simulation and unsteady flow simulation over vehicles [72], [73].

1.2 Near-wall domain decomposition

AWF was originally the prototype of so-called near-wall domain decomposition (NDD)
method that has been developed over the past decade to an effective tool to model near-wall
turbulent flows. The NDD method was firstly proposed in [74] where a linear model equation
was studied to imitate the mathematical peculiarities of LRN models including viscous
sublayer and transition region. Regarding the near-wall region, the boundary condition is
transferred from the wall to a near-wall interface, yielding to a Robin type interface boundary

27

condition (IBC). If in the inner region the governing equations correspond to a thin boundary
layer (TBL) model, then the IBCs are always of Robin type. The Robin type IBC could also
be interpreted as generalised wall functions (GWF, sometimes also denoted by Robin-type
wall functions RWF) when in application to HRN models [75]. In the case, it is found that the
tangential velocity U , temperature T and turbulent kinetic energy k could all be solved by the
same method [76]. The GWF considers source terms such as pressure gradient or buoyancy
and do not include free parameters. One major advantage of the approach is that the solution
is mesh-independent, which means the interface boundary needs not necessarily be related
to the nearest wall cell. The application to a turbulent channel flow case (using HRN k − ε

model) confirmed that accurate result could be obtained even if IBC is set at viscous sublayer
or somewhere far off the wall [75]. Similar IBC transfer technique was also presented in
[77] in application to LRN models, which yielded to the domain decomposition method with
both Dirichlet and Neumann boundary conditions considered. The decomposition facilitates
the separate implementation of mesh schemes and numerical approaches in inner (near-wall)
and outer (off-wall) regions so that both regions could be effectively resolved. In addition, It
was proved in [76] that the IBC could also be derived by the theory of Calderón-Ryabenkii’s
potential [78], [79].

The solution to the inner region could be restored once the outer region is obtained using the
Robin-type IBC, and the trade-off between the efficiency and accuracy is largely affected by
the location of the interface boundary [80]. If the interface boundary is too close to the wall,
the solution in the inner region tends to be fully accurate but large quantity of computation
is actually carried out in outer region and the computing time could be relatively high. If
the interface boundary is too far from the wall, the inner region is not actually resolved thus
much time could be saved but the solution accuracy might not be guaranteed. The former
case corresponds to LRN model characteristic and the latter case corresponds to HRN model
characteristic.

In [81], a two-dimensional model equation that imitates the major mathematical peculiarities
of near-wall high-Reynolds-number flow was considered and the so-called non-local wall
functions were proposed to capture the two-dimensional characteristics of the problem on
interface. The non-local effects of the problem were represented by a pseudo-differential
operator and the non-local wall functions were derived by explicitly approximating the
pseudo-differential operator and retaining part of the approximation terms. The non-local
wall function inherits the good property of GWF that near-wall and off-wall regions are
considered separately and the solution is weakly mesh-dependent. Correspondingly, the
non-local wall functions could be developed into two-dimensional (non-local) domain
decomposition method directly as GWF in one-dimensional domain decomposition method.
A two-dimensional test was implemented between one-dimensional wall function and
non-local wall function, and the latter showed clear improvement in prediction of velocity
and friction coefficient than the former.

As will be elaborated later on, the one-dimensional domain decomposition based on GWF
is denoted by ’approximated near-wall domain decomposition’ (ANDD) method and the

28

two-dimensional domain decomposition based on non-local wall function is denoted by ’exact
near-wall domain decomposition’ (ENDD) method. The derivation and formulation of ANDD
and ENDD are shown in Chapter 2. The notations of the methods are how they appear in
publications nowadays and would be used in the rest part of the thesis where necessary. The
concepts are hereby explained in order to avoid reader confusion.

In [82], it was stated that ENDD could be used as supplement of ANDD when the latter
was unable to accurately resolve complex flows such as separated flow, laminar-turbulent
transition flow. In practice, ANDD could solve the problem with low time costs and let ENDD
complete the rest of the computation based on ANDD result. The two methods could be
shifted fluently based on the same mesh during the same-case computing. In addition, in [83]
the method of ANDD was proved to be a well-conditioned preconditioner in solving near-wall
turbulence problem because the construction of the proconditioner (inverted ANDD operator)
is directly associated with near-wall turbulence physics: the assumption of boundary-layer
type equation in ANDD method is mostly valid in near-wall region.

As an important version of ENDD method, Dirichlet-to-Robin (DR) algorithm (will be
derived in Chapter 2) proved its superiority over ANDD method [83]. In that study, the DR
type ENDD method was applied to simulating a one-dimensional channel flow using LRN
k − ε model, and the result showed that it offered accurate prediction of turbulent kinetic
energy and turbulent dissipation when ANDD failed to do so. The test case demonstrated
the advantage of ENDD in terms of maintaining resolution accuracy in multidimensional
situation. The convergence of DR method was also theoretically proved, showing that its
convergence is faster than one other ENDD method of Dirichlet-to-Neumann (DN) type.

Further to DR method, a more advanced ENDD method of Robin-to-Robin (RR) type was
proposed [84]. The construction of the RR method is based on so-called Steklov-Poincaré
(SP) interface equation and the realisation is implemented by the approximation of
Steklov-Poincaré operators, which play a crucial role in retaining the non-local nature of
the problem. There were three kinds of approximation methods proposed and comparatively
tested in the numerical cases of Poisson’s equation as well as a model equation to simulate
high-Reynolds-number flow with a boundary layer. Analytical analysis proved that RR
method achieves the convergence faster than DR and the convergence rate calculation was
also performed for one of the three cases in application to Poisson’s equation. The numerical
study showed that the algorithm with locally quadratic approximation of SP operators led to
the fastest convergence.

In [85], the Robin-type boundary condition transfer was derived for an unsteady model
equation that simulates the key terms of unsteady boundary layer equations. The derivation
showed that in the case of stationary situation the result led to the same domain decomposition
technique as in steady flow study. The numerical test of the model equation demonstrated
that the unsteady effect must be included in the boundary condition transfer process to avoid
significant resolution accuracy loss if domain decomposition is used to resolve unsteady flow.
Furthermore, it is found that the unsteady interface boundary condition (UIBC) must be

29

non-local in time and should be modified to include a memory term, which was proven to
consist of both the interface solution and driving force unsteadiness [86]. The properties of the
unsteady interface boundary conditions were studied through the case study of oscillatory and
pulsating laminar flows in a channel and a pipe. In addition, the accuracy of the NDD method
with UIBC was studied through unsteady case that revealed its association with viscosity,
frequency and location of the interface boundary (represented by Womersley number). With
unsteady cases in low frequency, the steady NDD method could still result in high accuracy,
and lower interface boundary position enabled the accuracy loss compensated for unsteady
cases in higher frequency. The approach was applied to three-dimensional unstructured-mesh
unsteady RANS equations in [87] with applications including pulsating flow in a channel and
past half-cylinder, as well as supersonic flow around circular cylinder. As mentioned earlier,
the UIBC contains a memory term that is crucial to capture the unsteady characteristic of the
flow, and the numerical test yielded satisfactory prediction of the skin friction with interface
boundary location up to y∗+ = 300.

The application of the NDD method was extended to compressible flows in [82], where
flows over blunted plate, half cylinder, compression corner and sharp edge were simulated
with Spalart-Allmaras model. The test demonstrated the capability of the method applied to
supersonic flows, and showed positive result in reconstructing density profile and computing
skin friction with high accuracy. What is more, it was the first time that ENDD method was
implemented to solving real turbulence problem.

In [88], the ANDD method was modified to be applied to non-equilibrium flows with
laminar-turbulent transition (LTT). The modification was implemented by considering
different viscosity profiles in laminar, transitional and turbulent regions individually and
the intermittent implementation expanded the capabilities of the adopted Spalart-Allmaras
model to non-equilibrium turbulent flows with extended transition region. In addition, ENDD
was found to be capable of simulating LLT directly but it took more computing time. It
was confirmed by the numerical tests (including subsonic, supersonic flows over flat plate,
compression corner and planar shock wave impinging on a turbulent boundary layer) that the
skin friction obtained by the NDD method almost agreed with one-domain method. The NDD
method was also proved effective in predicting accurately the position of separation point and
formation of shock wave with taking account of LTT.

1.3 Outline of the thesis

In Chapter 2, the thesis begins with the derivation of the non-local RR-type algorithms
that are the main study subjects of the project. Since the non-local algorithms are the
further development of existing ANDD methods that have been developed for over a
decade, the derivation starts from the prototype of ANDD method: the technique of Robin
type IBC transfer, and focuses on the evolution of the method from one-dimensional to
two-dimensional. Three variants (algorithms) of RR type method are derived from the NDD
method. The application of the IBC transfer to turbulence models is not fully elaborated

30

because only model equations that are supposed to simulate high-Reynolds-number flow
with a boundary layer are considered in the project. The derivation is performed with model
equations only.

In Chapter 3, the convergence rate calculation of RR algorithms is performed without
considering the boundary effect of the given boundary value problem (BVP). The calculation
is implemented by separation of variables and Fourier transform. The same calculation is
also performed to a Dirichlet-to-Robin algorithm for comparison. The boundary-effect-free
calculation method is denoted by ’standard approach’. In addition, the standard approach is
proved applicable for all BVPs that could be solved with separation of variables.

Chapter 4 analyses the standard convergence rate obtained from Chapter 3, and formulates
the convergence rate in generalised manner via the symbols of SP operators. The generalised
formulation is helpful in evaluating the effect of the interface boundary position on the
standard convergence. Next, the boundary effect of the three RR algorithms is analysed.
Together with the result of the standard approach in Chapter 3, the real convergence property
of the algorithms could be completely evaluated.

Chapter 5 conducts a series of numerical tests on Poisson’s equation and model equations.
The test on Poisson’s equation is to verify the convergence analysis result obtained from
Chapters 3 and 4. Then the tests are extensively applied to two model equations that link
Poisson’s equation and real turbulence modelling. The numerical result is discussed in terms
of non-local effect of the equations. At the end of the chapter, a new algorithm based on
movable interface boundary position is proposed and tested.

Chapter 6 studies an efficient numerical algorithm to solve linear system known as the
generalised minimum residual method (GMRES). It is essential to understand the mechanism
and implementation of GMRES because all the linear systems in the project are solved by the
algorithm. The derivation of GMRES is introduced first, followed by the convergence analysis
of the algorithm, which is closely associated with the computing costs of the NDD algorithms.
The aim of GMRES study is to evaluate the time cost of the NDD methods and if possible, to
help improve future NDD algorithm design. The implementation discussion of GMRES and
the preconditioning technique introduction are also shown in the chapter.

The main result and conclusion of each chapter are summarised at the end of the chapters.
Chapter 7 assembles them in a wider framework and highlights the novelty and main progress
in terms of developing the non-local NDD method. The deficiency of the work and potential
future work are recommended in the end.

31

Chapter 2

Derivation of non-local domain

decomposition algorithms

This chapter introduces the derivation of the non-local NDD method through model equation
demonstrations. The derivation does not include either LRN or HRN models applications and
specifically focuses on the development of the method from local to non-local evolution in
space.

At the beginning, the NDD method that is studied in this project were not actually based
on domain decomposition framework. The prototype of NDD method was originated
from the so-called Robin-type interface boundary condition transfer that aims at solving
boundary-layer-type equations. It is built by transferring the boundary condition on the wall
to an intermediate interface boundary condition of Robin type off the wall, so that the
near-wall region needs not be computed before the solution in off-wall region is obtained. If
the equation is locally one-dimensional (such as boundary-layer-type equation), the transfer
is exact. Otherwise the transfer could only be approximated due to the non-local effect,
which is the motivation of the development of the non-local NDD method. In particular,
applying the boundary condition transfer technique to HRN models (variables including
tangential and normal velocity components, temperature and kinetic energy) gives rise to
the so-called generalised wall function (Robin-type wall function). It is proved that GWF has
advantages over conventional wall functions in terms of interface location flexibility, mesh
scheme independence and computing efficiency.

There are more than one approach to realised the one-dimensional interface boundary
condition transfer and this chapter demonstrates two methods: integration and superposition.
The integration method assumes that the governing equation in near-wall region is simplified
to boundary-layer type and superposition method assumes the governing equation to be linear.
Note non-linear case derivation results in an iterative NDD method [89], and the method
is not elaborated in the thesis. The integration method is implemented by integrating the
equation twice in near-wall region with considering the boundary condition at the wall.
In superposition method, the boundary value problem in near-wall region is considered as
the sum of two auxiliary BVPs defined in the same domain. The derivation results of the
two methods are consistent. Comparatively speaking, the superposition method has wider
applicability, such as in the kinetic energy equation of LRN k − ε models. As a result, the

32

NDD method could be applied to both LRN and HRN models. The NDD method inherits
the good properties of GWFs in robustness, efficiency, mesh independence and resolution
accuracy, and is capable of extending the applications to LRN models and even LES.

Next, the superposition technique is extended to two-dimensional cases where non-local
effect of the BVP is studied and represented by a pair of pseudo-differential operators
(Steklov-Poincaré). The reservation of the non-local effect represents the essential difference
between the two-dimensional approaches and the one-dimensional approaches. The
approximation of the pseudo-differential operators plays the key role in designing the domain
decomposition algorithms because the approximation amounts to the reservation of the
non-local effect when dealing with the derivative of the problem with respect to y on
interface. Technically, the approximation comes with computing cost: the more accurate the
approximation, the higher the cost. If the non-local effect is fully computed, the algorithm is
called ’exact near-wall domain decomposition’ method, otherwise it is called ’approximated
near-wall domain decomposition’ method. The derivation of ANDD is closely associated
with the one-dimensional case derivation because non-local effect of the SP operators are
partially/fully ignored in ANDD, which results in the one-dimensional derivation of NDD.
In otherwise case where the non-local effect is fully retained, the ENDD method is obtained.
There are several variants of ENDD method and they could be classified into 2 categories in
terms of IBC types: DR and RR. In practice, ANDD methods cost less time than the standard
method (one-block method) but the solution is not fully accurate. To achieve the trade-off
between computing efficiency and accuracy, ENDD is used as a supplement of ANDD where
necessary.

2.1 Robin-type interface boundary condition

This section demonstrates how to transfer the boundary condition from the wall to some
intermediate interface and obtain the interface boundary condition of Robin type.

Consider the following BVP [74]–[77]:

(µuy)y = C. (2.1)

which is defined in Ω = [0, ye] with Dirichlet boundary conditions:

u(0) = u0, (2.2)

u(ye) = u1. (2.3)

As a model equation, Eq.(2.1) represents the boundary-layer-type equation in near-wall
region. The model equation is reduced from the generalised LRN model equation [74] by
neglecting the convective term. Note the right hand side term is retained, which represents
source term in transport equations or pressure gradient.

33

Firstly assume C is constant, and integrate Eq.(2.1) once from 0 to y:

(µuy)|y=0 = µuy − Cy.

Divide both sides by µ(y) and integrate from 0 to y again:

u(y) = u0 + (µuy)|y=0

∫︂ y

0

dξ

µ(ξ)
+ C

∫︂ y

0

ξ

µ(ξ)
dξ. (2.4)

Apparently, at some intermediate point y = y∗ (0 < y∗ < ye),

(µuy)|y=0 = (µuy)|y=y∗ − Cy∗. (2.5)

Substitute it into Eq.(2.4) to remove (µuy)|y=0:

u(y) = u0 + uy(y
∗)

∫︂ y

0

µ(y∗)

µ(y′)
dy

′ − C

µ(y∗)

∫︂ y

0

µ(y∗)

µ(y′)
(y∗ − y

′
)dy

′
.

Particularly, at y = y∗:

u(y∗) = u0 + f1uy(y
∗)− f2

C

µ(y∗)
, (2.6)

where

f1 =

∫︂ y∗

0

µ(y∗)

µ(y)
dy, (2.7)

f2 =

∫︂ y∗

0

µ(y∗)

µ(y)
(y∗ − y)dy. (2.8)

Next, consider when C(y) is not constant, the first integral becomes slightly different:

(µuy)|y=0 = µuy −
∫︂ y

0

C(ξ)dξ.

Similarly to C = const. case, divide both sides by µ(y) and integrate from 0 to y once more:

u(y) = u0 + (µuy)|y=0

∫︂ y

0

dξ

µ(ξ)
+

∫︂ y

0

∫︁ y∗

0
C(ξ)dξ

µ(y′)
dy

′
. (2.9)

To remove (µuy)|y=0 from the integral, substitute (µuy)|y=0 = (µuy)|y=y∗ −
∫︁ y∗

0
C(ξ)dξ into

above equation and it yields to:

u(y) = u0+uy(y
∗)

∫︂ y

0

µ(y∗)

µ(y′)
dy

′ −
∫︂ y∗

0

C(ξ)dξ

∫︂ y

0

dy
′

µ(y′)

+

∫︂ y

0

∫︁ y∗

0
C(ξ)dξ

µ(y′)
dy

′
.

34

In particular, at y = y∗:

u(y∗) = u0 + f1uy(y
∗)− f2

y∗µ(y∗)
(

∫︂ y∗

0

Cdy), (2.10)

where

f1 =

∫︂ y∗

0

µ(y∗)

µ(y)
dy, (2.11)

f2 = y∗
∫︂ y∗

0

µ(y∗)

µ(y)
(1−

∫︁ y

0
Cdy∫︁ y∗

0
Cdy

)dy. (2.12)

Particularly, if it is only the wall friction τw = (µuy)|y=0 required to be computed, the inner
region solution does not need to be obtained to compute τw. For instance, in Eq.(2.5) (and the
same with C ̸= const. case), τw is represented as a function of uy(y

∗) that could already be
known after outer region is computed:

τw =
µ(y∗)

f1
(u∗ − u0) + (

f2
f1

− y∗)C, C = const., (2.13)

τw =
µ(y∗)

f1
(u∗ − u0) + (

f2
y∗f1

− 1)

∫︂ y∗

0

C(y)dy. C(y) ̸= const.. (2.14)

2.2 Domain decomposition method

This section derives the Robin type boundary conditions using superposition method. For
the same boundary-layer-type equation, the result is identical to that derived in Section
2.1. As a matter of fact, superposition could be applied to more generalised governing
equations than the model equation Eq.(2.1), and the Robin-type interface boundary transfer
technique could be developed to the NDD method in generalised one-dimensional linear
case. Therefore, the boundary condition transfer derivation through superposition could also
be interpreted as the NDD method derivation, as the section title suggests. Due to wider
applicability of superposition, the NDD could be applied to LRN model equations and further
to two-dimensional NDD method derivation, as will be shown in Section 2.3.

Consider the following one-dimensional linear BVP with Dirichlet boundary condition on the
wall [77], [80]:

Lyu = f, (2.15)

u(0) = u0, u(ye) = u1. (2.16)

Note Ly is a linear differential operator with respect to y. Assume the boundary condition is
supposed to be transferred to an intermediate interface y∗, so the entire domain Ω := [0, ye]

is split into two subdomains: Ω1 := [0, y∗] (inner domain) and Ω2 := [y∗, ye] (outer domain).
The original function is split into two correspondingly: namely u1 and u2. Now consider two

35

auxiliary BVPs in inner domain:

Lyv = f,

v(0) = u0, v(y∗) = 0,

Lyw = 0,

w(0) = 0, w(y∗) = 1.

Clearly, the solution to Eq.(2.15) in Ω1 could be written as

u1(y) = v + u1(y
∗)w. (2.17)

Particularly, take derivative at y = y∗,

u1y(y
∗) = vy(y

∗) + u1(y
∗)wy(y

∗). (2.18)

This is the Robin-type boundary condition of BVP1. The solution to v and w should not be
difficult to obtain (so are vy and wy) as they are one-dimensional. Since at interface u1 = u2

and u1y = u2y, the Robin type boundary condition applies to u2 too, which reads:

u2y(y
∗) = vy(y

∗) + u2(y
∗)wy(y

∗). (2.19)

Therefore, the BVP in outer region is completed and could be solved separately from
inner region. Next, the inner region could be computed with Eq.(2.17). As is shown, the
computation is separate in two regions as well as mesh generations thus is regarded as a
domain decomposition method.

The result of integration and superposition could be proved consistent. Take Eq.(2.1) as
example, so that Ly = d

dy
(µ d

dy
) and take C as a constant. Applying integration on this case,

the solutions to the corresponding auxiliary BVPs are

v(y) = u0 + µ(0)vy(0)

∫︂ y

0

dξ

µ(ξ)
+ C

∫︂ y

0

ξ

µ(ξ)
dξ,

w(y) = µ(0)wy(0)

∫︂ y

0

dξ

µ(ξ)
,

where

vy(0) = −
u0 + C

∫︁ y∗

0
ξ

µ(ξ)
dξ

µ(0)
∫︁ y∗

0
dξ
µ(ξ)

,

wy(0) =
1

µ(0)
∫︁ y

0
dξ
µ(ξ)

.

36

Therefore, vy(y∗) and wy(y
∗) could be obtained:

vy(y
∗) =

u0 + C
∫︁ y∗

0
(y − y∗) dy

µ(y)

−µ(y∗)
∫︁ y∗

0
dy
µ(y)

,

wy(y
∗) =

1

µ(y∗)
∫︁ y∗

0
dy
µ(y)

.

Substitute vy(y
∗) and wy(y

∗) into Eq.(2.18), the result is consistent with the one obtained
from integral method, see Eq.(2.6). It could be verified that for C ̸= const. case, the result of
the two methods are consistent too.

The computation of v and w could be implemented either by analytical calculation or by
numerical approach in complex cases. For example, Thomas algorithm (simplified Gauss
elimination) is effective numerical tool to solving one-dimensional problem of such kind.
Since the inner and outer regions are separately computed, the two regions could use
different mesh schemes to cater for separated needs without compromising to the other. In
standard (one-block) method, the interface between the two regions has always to be carefully
considered in terms of cell size continuity and smooth junction.

One other advantage of domain decomposition method is that the solution to w could be
repeatedly used for similar BVPs in the form of Lu = f with different right hand side f . The
inner region computing cost is roughly halved ifw is already known. As will be seen in Section
2.3, the merit is also true for two-dimensional cases. In addition, the method could be widely
used in solving both LRN and HRN model equations, as has been mentioned previously.

Lastly, let us see two examples of Thomas algorithm to solve the one-dimensional function
v(w). Applying central finite difference method to the BVP yields to the following linear
system to solve:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 0 0 0

a21 a22 a23 0 0 0

0 a32 a33 a34 0 0

0

0 0 0 an−1,n−2 an−1,n−1 an−1,n

0 0 0 0 0 an,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note the boundary conditions are of Dirichlet type so the function value on both sides (x1, xn)
is known (and a11 = an,n = 1). In this case, Thomas algorithm is made of two steps:

• Forward transformation: for i = 2 to n − 1, ai,i−1 → 0, ai,i → ai,i − ai,i−1

ai−1,i−1
ai−1,i,

bi → bi − ai,i−1

ai−1,i−1
bi−1.

• Back substitution: for i = n− 1, 2, xi = (bi − ai,i+1xi+1)/ai,i.

In the forward transformation, the first non-zero entry of each row in the matrix becomes zero
so that the coefficient matrix reduces to upper tridiagonal form Ux = b. The linear system

37

could be solved at once by back substitution (or forward substitution in this case because the
first row has only one non-zero coefficient).

If the boundary conditions are not Dirichlet type, the first and last row of the coefficient matrix
are slightly different and Thomas algorithm changes accordingly. In this case, the initial linear
system reads:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

0 a32 a33 a34 0 0

0

0 0 0 an−1,n−2 an−1,n−1 an−1,n

0 0 0 0 an,n−1 an,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

...

...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

There are two non-zero entries in the first/last row of the matrix, and normally none of them
are equal to one. Then, Thomas algorithm is made of the following two steps:

• Forward transformation:
for i = 2 to n, ai,i−1 → 0, ai,i → ai,i − ai,i−1

ai−1,i−1
ai−1,i, bi → bi − ai,i−1

ai−1,i−1
bi−1.

• Back substitution: xn = bn/an,n; for i = n− 1, 1, xi = (bi − ai,i+1xi+1)/ai,i.

The forward transformation and back substitution are implemented from row two to n and
n−1 to one respectively. This is the standard Thomas algorithm that also applies to the specific
case with Dirichlet boundary conditions. Since Dirichlet boundary conditions already give
the boundary value explicitly, x1 and xn do not need to be addressed by the algorithm.

2.3 NDD in application to HRN and LRN models

When the boundary transfer technique is applied to solving HRN models, it yields
to generalised (Robin-typed) wall functions. For example, in Section 2.1 although the
Robin-type IBC is derived based on a model equation, the equation represents the common
form of the momentum, energy and kinetic energy equations in HRN k − ε model. The
equations are also known as parabolised (reduced) Navier-Stokes (PNS) equations. In other
words, the boundary condition transfer technique could be used to derive the wall functions
for tangential and normal velocity components, temperature and kinetic energy.

The formulation of PNS equations in HRN k − ε model is shown in [76], Eqs.(7)-(10). The
right hand side of the equations are assumed constant except in kinetic energy equation. The
resulting Robin-type IBCs correspond to Eqs.(2.6) and (2.10) respectively. Particularly in
constant case, f1 and f2 could be obtained analytically if µ is approximated in piece-wise
linear manner [76]. The sublayer thickness is calculated as the way in [50].

It is demonstrated in [89] that the implementation of Eqs.(2.6) and (2.10) depends on only
interface y∗ and kinetic energy k(y∗), and the latter could be determined from the solution

38

to HRN models at interface. Therefore, the interface boundary conditions complete the
BVP2 and could be considered as generalised wall functions. They differ from standard
wall functions due to the fact that the latter substitute the solution in boundary layer region
with Dirichlet boundary conditions, which means the profile of u in this region is already
approximately restored and the value on interface boundary y∗ is also given. By contrast,
Robin type (generalised) wall functions do not restore BVP1 directly but transfer the boundary
conditions from wall to some intermediate interface y∗. The transferred boundary conditions
enable BVP2 to be solved independently from BVP1 like what conventional wall functions
do in solving HRN models. In both wall functions, BVP1 is avoided to be computed.

Unlike conventional wall functions that there is a strong dependence on the location of the
nearest cell point to the wall, one of the major advantages of GWFs is that the interface y∗

could be located far from wall and the inner region could still use fine mesh without losing
stability.

The Robin-type IBC could also be applied to LRN models. Apart from the piece-wise linear
approximation of µ (µ = µt+µl) in HRN, the more accurate approximation is nonlinear and
dependent on wall friction τω that could be computed via the friction at interface boundary
[89]:

τω = (µt(y
∗) + µl)uy(y

∗)−
∫︂ y∗

0

Cdy. (2.20)

The above equation is essentially equal to Eqs.(2.13) and (2.14). The non-linear
approximation of µt could be found in [90], [91], or equivalently Eq.(18) in [89], which is
τω−dependent. Since both µt and τω remain unknown, iterative procedures are required. As
has been stated that τω could be obtained through interface friction, see Eq.(2.20), the inner
region does not need to be computed in the iterations. The entire iterative procedures [80] are
as follows:

• Step one: initialise µt with a preliminary guess.

• Step tow: initialise τw with a preliminary guess.

• Step three: calculate the Robin type IBC.

• Step four: solve BVP2 with the obtained IBC.

• Step five: update τw by Eq.(2.20).

• Step six: update µt using new τw.

• Step seven: re-calculate the Robin type IBC and repeat the following process from step
3 until convergence.

One specific example of applying the above procedures to LRN k−εmodel is given in [89]. As
as been mentioned earlier, the calculation of µt is τw-dependent, so the iterative procedures
should be arranged to obtain it (corresponding to steps five and six in above procedures).
Firstly assume ωw and ε are known, then µt could be calculated based on the assumed value

39

using the method proposed in [90] [91]. Next, the Robin type interface boundary condition
for the velocity u could be obtained, see Eq.(2.6), which is essentially equal to

uy(y
∗) =

u

I1
+

Px

µ(y∗)

y∗I1 − Ī2
I1

,

where I1 and Px (pressure gradient) are equal to f1 and C in Eq.(2.6) respectively, Ī2 =∫︁ y∗

0
y′µ(y∗)/µdy′. Clearly Ī2 corresponds to part of f2 in Eq.(2.6).

Apart from u, the turbulent kinetic energy and energy dissipation rate ε could be formulated
at interface [50]:

k(y∗) =
√︂
ε̃µt(y∗)/(Cµρfµ),

ε(y) = max{k
3/2

Cly
,
2νk

y2
},

where µt = Cµρfµk
2/ε̃, ε̃(y) = ε− 2νk/y2, ν = µl/ρ, fµ = fµ(y

+) and Cl = 2.55.

The interface boundary condition of other variables other than u, k and ε could be obtained
by Eq.(2.10). Finally the outer region could be resolved by the completion of the IBCs as
obtained above. Practically, several BVPs regarding corresponding variables are solved with
either Dirichlet/Robin type IBCs, and the solution gives more accurate estimation of τw and
ε that would be fed to drive the new iteration until convergence.

Assume the NDD method is applied to LRN model and the inner region is approximated using
Eq.(2.17). Regarding different y∗, there is a trade-off between computational efficiency and
accuracy. Consider 2 extreme cases: y∗ → 0 and y∗ is far off wall and laminar sub-layer. In
the former case, computing accuracy is guaranteed but the computing time could be high
(close to LRN) because the inner region is too thin to save time. In the latter case, like
HRN, computing time could be expected to drop largely but the computing accuracy would
be lost. This is because the inner region contains not only the laminar sub-layer but also
large area of main flow that fails to resemble the laminar sub-layer characteristic. In this
way the laminar sub-layer is not resolved and the wide ’mixed’ inner region could not be
approximated accurately by one single model equation. Assume the NDD method is applied
to LRN models and the inner region is approximated using Eq.(2.17). Regarding different y∗,
there is a trade-off between computational efficiency and accuracy. Consider 2 extreme cases:
y∗ → 0 and y∗ is far off wall. In the former case, computing accuracy is guaranteed but the
computing time could be high (close to LRN) because the inner region is too thin to save
time. In the latter case, like HRN, computing time could be expected to drop dramatically
but the computing accuracy would be lost. This is because the inner region contains not only
the laminar sublayer but also large area of main flow that fails to resemble laminar sublayer
characteristic. In this way the laminar sublayer is not resolved and the wide ’mixed’ inner
region could not be approximated accurately by one single model equation.

The trade-off between the efficiency and accuracy of the NDD method is studied in [92],
which shows that the method could reduce the computational time by one order of magnitude

40

with incurring just 1% of error compared with LRN resolution. Meanwhile, the solution is
not sensitive to y∗ given y∗ is small. A reasonable evaluation on the value of y∗ could be
obtained by preliminary calculation on coarse mesh or empirical approximation [80].

To summarise, GWF (RWF) and conventional AWF have the same nature and they are derived
based on similar assumptions, but GWF allows more complicated wall treatment of the
governing equations thus yields to more accurate IBC of Robin type. It shows advantage in
less solution dependence on interface boundary position and mesh schemes between the two
regions too. Further more, the NDD method could be interpreted as the extension of GWF
from HRN model application to LRN model application. Apart from the merits as mentioned
above, the method shows comparable accuracy to LRN and efficiency to conventional AWF.
The trade-off between accuracy and efficiency is manipulated by the position of interface
boundary y∗.

2.4 Non-local DR type domain decomposition method

This section considers the superposition method applied to two-dimensional problem to set up
the interface boundary conditions as has been done with one-dimensional case. The challenge
is the non-local effect of the problem makes the superposition relationship no longer simply
linear (not like Eq.(2.18)). To overcome it, a pair of pseudo-differential operators known as
Steklov-Poincaré operators are introduced to represent the non-local effect of the problem
and the key point turns to be the approximation of the pseudo-differential operators. Apart
from this, the analysis to represent the pseudo-differential operators by spectral approach [93]
is also performed. So far, it is yet impossible to fully approximate (compute) the operators
without large amount of computation, and two kinds of domain decomposition methods are
proposed: approximated and exact. The former retains only the constant term of the operators
once it is expanded using spectral approach and as a result part of the non-local characteristic
is lost in return for iteration-free computing. It saves computing time but losses solution
accuracy. The latter retains all non-local effect of the pseudo operators but requires iterations
to complete the calculation. Although capable of giving exact solution, sometimes the method
has problem with computing time compared to the standard (one-block) method. The two
methods are named ’approximated near-wall domain decomposition’ and ’exact near-wall
domain decomposition’ respectively.

41

2.4.1 Approximated near-wall domain decomposition

Firstly, formulate a two-dimensional linear BVP defined in [0, 1] × [0, ye] with Dirichlet
boundary condition on the wall to consider [81]:

Lu = f,

u(x, 0) = us(x),

u(0, y) = uw(y),

u(1, y) = ue(y),

u(x, ye) = un(x).

(2.21)

Note L is a linear differential operator with respect to x and y. Let the domain be split into
2 subdomains: inner region Ω1 := [0, 1]× [0, y∗] and outer region Ω2 := [0, 1]× [y∗, ye]. At
the moment it is only the inner region that is concerned because the goal is to decompose the
BVP in inner region into 2 auxiliary BVPs defined in the inner region ([0, 1]× [0, y∗]) as well:

LV = f,

V (x, 0) = us(x),

V (0, y) = uw(y),

V (1, y) = ue(y),

V (x, y∗) = 0.

LW = 0,

W (x, 0) = 0,

W (0, y) = 0,

W (1, y) = 0,

W (x, y∗) = U∗(x).

Note U∗(x) is unknown.

Apparently, the solution to u in inner domain (denoted u1) is the sum of V and W : u1 =

V + W. Since the solution to V is independent from outer domain and interface boundary
value, it could be solved with an independent mesh scheme efficiently, as is the same with
one-dimensional domain decomposition method. However, the solution to W could not be
obtained until U∗ is known.

Recall in one-dimensional case, Eq.(2.18), the second term is represented by u(y∗)w, and
similarly, an auxiliary BVP could be defined in Ω1 := [0, 1]× [0, y∗] to help approximate W
in the two-dimensional case:

LW̃ = 0,

42

W̃ (x, 0) = 0,

W̃ (0, y) = 0,

W̃ (1, y) = 0,

W̃ (x, y∗) = 1.

The solution to W could be approximated as

W ≈ W̃U∗(x), (2.22)

and
u1(x, y) ≈ V (x, y) + W̃ (x, y)U∗(x).

Taking derivative with respect to y at y = y∗ yields to (approximated) Robin-type boundary
condition of BVP1:

∂u1(x, y)

∂y
≈ ∂V (x, y)

∂y
+

∂W̃ (x, y)

∂y
U∗(x). (2.23)

Like in one-dimensional case, the boundary condition could be used to solve the BVP in Ω2

first (so that the left hand side becomes u2y, since u1y(x, y
∗) = u2y(x, y

∗)), and consequently
the solution to u2 on interface helps complete the BVP set-up in Ω1. The calculation does
not take iteration but the solution is not fully accurate because the boundary condition is not
exactly transferred.

If U∗ is a constant, Eq.(2.23) would be exact because W = W̃U∗. Note here the linear
operation with W̃ fully captures non-local nature of W but this is a special case (since U∗ is
constant). In more general cases (U∗ is not constant), the term ’W̃U∗’ merely captures part
of the non-local nature of W , as will be shown by more quantified analysis in next subsection
(2.4.2).

2.4.2 DR type ENDD algorithm

Consider the same BVP as Eq.(2.21). Clearly, the key to approximating W precisely is to find
a good method to represent W in a series of non-local terms.

Consider the following BVPs defined in [0, 1]× [0, y∗] [81]:

Lwn = 0, (2.24)

wn(x, 0) = 0, (2.25)

wn(0, y) = 0, (2.26)

wn(1, y) = 0, (2.27)

wn(x, y
∗) = sn(x), (2.28)

where sn is a set of basis function (n = 1, 2, ...). Then let W ≈
∑︁n=N

n=0 u∗
nwn with u∗

n

43

satisfying

min
u∗
n

∥U∗ −
N∑︂
0

u∗
nsn(x)∥2. (2.29)

Assume s0 = 1 (then w0 = W̃ in last Subsection 2.4.1) and N ≥ 1, expand W in terms of
wn and transform:

W (x, y) ≈
N∑︂
0

u∗
nwn + (U∗ −

N∑︂
0

u∗
nsn)w0, (2.30)

= U∗w0 +
N∑︂
1

(wn − snw0)u
∗
n. (2.31)

Take derivative and complement V , then it comes to the Robin type boundary condition of
the BVP1 at interface:

∂u1(x, y
∗)

∂y
= u1(x, y

∗)
∂w0

∂y
+

N∑︂
1

(
∂wn

∂y
− sn

∂w0

∂y
)u∗

n +
∂V

∂y
. (2.32)

Eq.(2.32) shows the ’structure’ of u1 in terms of wn, which contribute to the non-local nature
of u1 together with V . However, it is difficult to compute u∗

n until U∗ is known, see Eq.(2.29).
One remedy is to drop the second term and retains only the first and last terms of the right
hand side of Eq.(2.32). In other words, it is equal to simplifying the case to N = 0 at the cost
of computing accuracy lost. This way, only two BVPs need to be computed in advance:w0 and
V , on a separated mesh from Ω2, and those two BVPs do capture part of the non-local nature
of u1. This leads to the same ANDD boundary condition as Eq.(2.23) shows in Subsection
2.4.1.

Recall that Eq.(2.22) is actually inspired by one-dimensional local case, and when the strategy
is applied to two-dimensional equation, it naturally fails to represent the entire non-local
effect. Eq.(2.32) elaborates the failure in quantity: s0 = 1 only represents the constant
component of U∗ and W = U∗w0 is exact if U∗ is simply constant. Otherwise, there must
be other terms of sn (n ̸= 0) representing more complex nature of U∗ and the corresponding
wn that also contribute to the non-local nature of W could not be represented in Eq.(2.23).
Therefore, the more constant-like the functionU∗, the more accurate approximation Eq.(2.23)
makes. In this project, the inner region Ω1 mainly simulates the boundary layer zone
where the variation mostly occurs in y direction. This is the physical foundation of domain
decomposition method applied to solving near-wall turbulence problem.

To obtain exact boundary condition, any simplification to Eq.(2.32) is not allowed but there
remain so many unknown terms, therefore iterative process is needed. One possible iteration

44

scheme could be designed as follows: re-organise Eq.(2.31):

W (x, y) = U∗w0 +
N∑︂
1

(wn − snw0)u
∗
n,

= U∗w0 +
N∑︂
0

u∗
nwn − (u∗

0w0 +
N∑︂
1

u∗
nsnw0),

=
N∑︂
0

u∗
nwn + w0(U

∗ −
N∑︂
0

u∗
nsn).

(2.33)

Complement V and take derivative on both sides, the equation yields to

∂u1(x, y
∗)

∂y
=

N∑︂
0

u∗
n

∂wn

∂y
+

∂w0

∂y
(U∗ −

N∑︂
0

u∗
nsn) +

∂V

∂y
. (2.34)

The second term on the right hand side is actually 0, but it is only true when U∗ has
been obtained. Before that, the second term retains and it offers space to arrange iterations:
substitute ∂u1(x,y∗)

∂y
with ∂u2(x,y∗)

∂y
on the left and U∗ with u2(x, y

∗) on the right, the above
equation yields to the following interface boundary condition for BVP2:

∂u2(x, y
∗)

∂y
=

∂u1(x, y
∗)

∂y
+

∂w0

∂y
(u2(x, y

∗)− u1(x, y
∗)). (2.35)

Note that in Eq.(2.34), the term
∑︁N

0 u∗
nsn is considered as a whole and is equal to u1(x, y

∗)

(not known yet). The first and last terms on the right hand side are also considered together
as u1y(x, y

∗) and not explicitly known as well. Not one thing is neglected in the algorithm,
so the algorithm is exact. However, the cost is that not one thing is explicitly known (unlike
in ANDD case, w0 and V are known by pre-calculation) and all wn(sn) components have to
be taken as a whole to be solved in iterations. As is well known, iterative method is much
concerned about convergence and the convergence analysis of the ENDD algorithm would be
performed in Chapter 3 and 4.

Eq(2.35) is the Robin type boundary condition for solving BVP in Ω2. Once the solution in
Ω2 is available, the interface value could be used as Dirichlet type boundary condition for
solving BVP in Ω1, and a relaxation parameter θ (0 < θ ≤ 1) is introduced:

u1 = θu2 + (1− θ)u1.

Overall, the algorithm is called Dirichlet-to-Robin exact domain decomposition algorithm.
The algorithm starts from solving u2 and requires iterations:

∂uk+1
2

∂y
=

∂uk
1

∂y
+

∂w0

∂y
(uk+1

2 − uk
1) on Γ, (2.36)

uk+1
1 = θuk+1

2 + (1− θ)uk
1 on Γ. (2.37)

Note there are more than just DR type ENDD algorithm. If the second term on the right hand

45

side of Eq.(2.36) is dropped, the Robin type IBC reduces to Neumann type and DR algorithms
becomes so-called DN algorithm. Converting the interface interaction from Dirichlet into
Neumann type makes the algorithm become Neumann-to-Neumann (NN) type. The study
of the two algorithms could be found in [83], [94], and the convergence rate calculation is
presented in Appendix A.

2.5 Non-local RR type domain decomposition method

This section introduces an important concept that is frequently used in the project:
Steklov-Poincaré operators, and interprets the ENDD algorithm from a different
angle using the operators. Mathematically, Steklov-Poincaré operators represent the
Dirichlet-to-Neumann map of the BVP on the interface thus capturing the non-local nature
of the problem. As will be seen shortly, the operators applying to the interface corresponds to
the derivative of W (defined in Subsection 2.4.1) on Γ. In the error equation, the governing
equation is homogeneous as well as the boundary conditions on three sides. Therefore,
W actually corresponds to the error function and Steklov-Poincaré operators maps the
Dirichlet-to-Neumann values on the interface of the error equation in a global scale, which
is of great significance to understanding the interfacial behaviour (convergence behaviour)
of the error problem. It is the interface value of the error problem that is concerned in the
convergence analysis. Then, one other exact domain decomposition method of RR type is
introduced. The design of the method (algorithms) is inspired by Steklov-Poincaré interface
equation and there are three variants of the algorithm that are closely associated with the
approximation of Steklov-Poincaré operators.

2.5.1 Introduction of Steklov-Poincaré operators

Let us start from considering a pair of linear BVPs [94] in domain decomposition framework:

Lu1 = f in Ω1,

u1 = 0 on ∂Ω1 ∩ ∂Ω,

u1 = u2 on Γ,

∂u1

∂n
=

∂u2

∂n
on Γ,

Lu2 = f in Ω2,

u2 = 0 on ∂Ω2 ∩ ∂Ω.

Note n denotes upward normal derivative. The above BVPs are the re-formulation of the
original BVP defined in an entire domain Ω:

Lu = f in Ω,

u = 0 on ∂Ω.

46

Now, consider one other pair of linear BVPs (i = 1, 2):

Lwi = f in Ωi,

wi = 0 on ∂Ωi ∩ ∂Ω

wi = 0 on Γ.

It could be stated that
wi = u0

i + u∗
i , (2.38)

if u0
i and u∗

i satisfy the following BVPs:

Lu0
i = 0 in Ωi,

u0
i = 0 on ∂Ωi ∩ ∂Ω,

u0
i = λ on Γ.

Lu∗
i = f in Ωi,

u∗
i = 0 on ∂Ωi ∩ ∂Ω,

u∗
i = 0 on Γ.

Note that for each i = 1, 2, u0
i is the harmonic extension of λ into Ωi, and will be denoted by

Hiλ, and u∗
i will be denoted by Gif .

Compare ui and wi, it follows that

wi = ui i = 1, 2,

if and only if

∂w1

∂n
=

∂w2

∂n
on Γ,

→ ∂u0
1

∂n
+

∂u∗
1

∂n
=

∂u0
2

∂n
+

∂u∗
2

∂n
on Γ,

→ ∂u0
1

∂n
− ∂u0

2

∂n
=

∂u∗
2

∂n
− ∂u∗

1

∂n
on Γ.

(2.39)

It could be seen that Eq.(2.39) amounts to the requirement that λ satisfies the Steklov-Poincaré
interface equation [94]:

Sλ = χ, (2.40)

where
χ :=

∂

∂n
G2f − ∂

∂n
G1f, (2.41)

and Steklov-Poincaré operator [95] is defined as

Sη :=
∂

∂n
H1η −

∂

∂n
H2η. (2.42)

47

In particular, S can be split into S = S1 + S2:

Siη :=
∂

∂ni
Hiηi, i = 1, 2, (2.43)

where ni denotes the outward normal derivative direction of domain Ωi.

Note SP operator is defined by Eq.(2.42) as S, but in the thesis, the split form S1 and S2 are
more frequently used and hence denote the concept of SP operators.

Recall Eq.(2.35) represents the Robin type boundary condition of BVP2, and clearly the
derivative ∂w0

∂y
is equal to S1I: S1 applied to the given differential equation with interface

value 1. I is the unit function. Therefore, the DR algorithm could also be written as:

∂uk+1
2

∂y
=

∂uk
1

∂y
+ S1I(u

k+1
2 − uk

1) on Γ, (2.44)

uk+1
1 = θuk+1

2 + (1− θ)uk
1 on Γ. (2.45)

2.5.2 RR type ENDD algorithms

Now it is clear that the domain decomposition method could be realised by some iterative
procedures for solving Steklov-Poincaré interface equation, see Eq.(2.40). Meanwhile, the
following equations hold true:

∂

∂n
G1f =

∂u1

∂n
− S1η,

∂

∂n
G2f =

∂u2

∂n
+ S2η.

If the exact solution to u1 and u2 is given, it is simply true that ∂
∂n
G1f = ∂u1

∂n
−S1η = ∂u2

∂n
−S1η

and ∂
∂n
G2f = ∂u2

∂n
+ S2η = ∂u1

∂n
+ S2η, but the solution is yet to be found actually. Therefore,

consider some parallel iterative process to solve u1 and u2:

∂uk+1
1

∂n
+ S2u

k+1
1|Γ =

∂uk
2

∂n
+ S2u

k
2|Γ on Γ,

∂uk+1
2

∂n
− S1u

k+1
2|Γ =

∂uk
1

∂n
− S1u

k
1|Γ on Γ.

(2.46)

Nataf proposed the algorithm and proved the convergence to be guaranteed in only 2 iterations
[96]. However, the key challenge is how to compute S1η and S2η with low cost. Actually, SP
operators represent a kind of N2D map [97] of the given problem at interface, and the map
carries all the non-local effect of u0

i . Therefore, the approximation of SP operators could be
interpreted as the reservation of the non-local effect of the problem when dealing with the
derivative in y direction.

Over decades, there have been much efforts in developing RR domain decomposition
algorithm as an effective tool to solve linear BVP and Eq.(2.46) is one of them. The
development of RR algorithm is based on the classic Schwartz Alternating method [98] that

48

was originally developed as an overlapping DD approach. Then [99], [100] adopt the method
into non-overlapping DD method with Robin type IBCs and [101] formulates the IBC to an
equivalent form but with less normal derivative included. [102] proposes optimised parameter
for the algorithm based on the convergence analysis with Fourier analysis. Similar analysis
method is also presented in [96]. The algorithms in [99], [101] are essentially the same and
are denoted as conventional RR algorithm in the thesis.

Taylor series expand a function into a series of terms of its derivatives on a single point, see
Eq.(2.47). Near the point, the series could approximate the real function value with acceptable
error, but as the approximated point moves further off the single point on which the Taylor
series are expanded, the approximation accuracy declines. Therefore, Taylor series could be
considered as a local approximation of a function. To overcome the local effect, the fixed
(base) point must ’shift’ along the interface to make good ’global’ approximation of the
function. For instance, when approximating f(x), select x0 = x + δ (where δ → 0, could
be the space step of mesh) as the base point to expand Taylor series, and always select new
x0 as making approximation of f(x) elsewhere. This way, each f(x) is approximated by
Taylor series expanded on the nearest base point x0 thus the error is minimised. In other
words, the ’global’ approximation is performed by combining multiple piece-wise local
Taylor expansions on ever-shifting x0 along the entire interface.

f(x) =
n=∞∑︂
n=0

f (n)(x0)

n!
(x− x0)

n,

=f(x0) +
f

′
(x0)

1!
(x− x0) +

f
′′
(x0)

2!
(x− x0)

2 + ...

(2.47)

Having obtained approximation of interface value with Taylor series, it is now possible to
approximate Siη, (i = 1, 2) globally. Depending on the number of expansion terms of Taylor
series, there are three variants of the SP operator approximation.

Constant approximation:

Sif(x) = Sif(x0) = f(x0)SiI.

Linear approximation:

Sif(x) = Si[f(x0) + f
′
(x0)(x− x0)],

= (f(x0)− x0f
′
(x0))SiI + f

′
(x0)Six.

Quadratic approximation:

Sif(x) = Si[f(x0) + f
′
(x0)(x− x0) +

f
′′
(x0)

2
(x− x0)

2],

= (f(x0)− x0f
′
(x0) +

x2
0f

′′
(x0)

2
)SiI + (f

′
(x0)− x0f

′′
(x0))Six+

f
′′
(x0)

2
)Six

2.

49

Following the algorithm as shown in Eq.(2.46) and the three variants of SP operator
approximation, the following three algorithms could be formulated [84]:

RR-SP0:

∂uk+1
1

∂y
+ S2Iu

k+1
1 =

∂uk
2

∂y
+ S2Iu

k
2 on Γ, (2.48)

−∂uk+1
2

∂y
+ S1Iu

k+1
2 = −∂uk

1

∂y
+ S1Iu

k
1 on Γ. (2.49)

RR-SP1:

∂uk+1
1

∂y
+ S2Iu

k+1
1 +

∂uk+1
1

∂x
T1l =

∂uk
2

∂y
+ S2Iu

k
2 +

∂uk
2

∂x
T1l on Γ, (2.50)

−∂uk+1
2

∂y
+ S1Iu

k+1
2 +

∂uk+1
2

∂x
T2l = −∂uk

1

∂y
+ S1Iu

k
1 +

∂uk
1

∂x
T2l on Γ, (2.51)

where

T1l = S2x− x0S2I, T2l = S1x− x0S1I. (2.52)

RR-SP2:

∂uk+1
1

∂y
+ S2Iu

k+1
1 +

∂uk+1
1

∂x
T1l +

∂2uk+1
1

2∂x2
T1q =

∂uk
2

∂y
+ S2Iu

k
2 +

∂uk
2

∂x
T1l +

∂2uk
2

2∂x2
T1q on Γ,

(2.53)

−∂uk+1
2

∂y
+ S1Iu

k+1
2 +

∂uk+1
2

∂x
T2l +

∂2uk+1
2

2∂x2
T2q =

− ∂uk
1

∂y
+ S1Iu

k
1 +

∂uk
1

∂x
T2l +

∂2uk
1

2∂x2
T2q on Γ,

(2.54)

where T1l and T2l are identical to Eq.(2.52) and

T1q = S2x
2 − 2xS2x+ x2S2I, T2q = S1x

2 − 2xS1x+ x2S1I. (2.55)

Practically, the constant approximation requires the computing of SiI in advance; and linear
approximation requires SiI and Six; and quadratic approximation requires SiI, Six and
Six

2. The pre-computing could take place in separate mesh between subdomains and once
complete, the result could be used multiple times for the equation Lu = f with different right
hand side f . Apparently, the higher order of Taylor series expansion comes with more accurate
approximation of SP operators and less iterations of the algorithm to achieve convergence,
but the pre-computation is more computationally expensive. There should be a trade-off
between the cost of pre-computation and algorithm efficiency. Empirically, the numerical
tests conducted in the project suggests that in quadratic case, the pre-computation of SiI, Six

and Six
2 takes such amount of time that the algorithm is supposed to converge in 2 iterations,

50

otherwise the algorithm can not save time in account of pre-computation cost.

The algorithms introduced above are parallel, which abide by classical domain decomposition
principle of parallel computing. Regarding this project in which only 2 subdomains are
generated, sequential computing is also worth considering. As will be seen in Chapter 3, the
convergence rate of sequential version is actually 2 times faster than the parallel counterpart,
which could be confirmed by numerical tests.

The sequential version of RR-SP0, RR-SP1 and RR-SP2 all starts from computing u2 and
reads as follows:

RR-SP0 (sequential):

−∂uk+1
2

∂y
+ S1Iu

k+1
2 = −∂uk

1

∂y
+ S1Iu

k
1 on Γ, (2.56)

∂uk+1
1

∂y
+ S2Iu

k+1
1 =

∂uk+1
2

∂y
+ S2Iu

k+1
2 on Γ. (2.57)

RR-SP1 (sequential):

−∂uk+1
2

∂y
+ S1Iu

k+1
2 +

∂uk+1
2

∂x
T2l = −∂uk

1

∂y
+ S1Iu

k
1 +

∂uk
1

∂x
T2l on Γ, (2.58)

∂uk+1
1

∂y
+ S2Iu

k+1
1 +

∂uk+1
1

∂x
T1l =

∂uk+1
2

∂y
+ S2Iu

k+1
2 +

∂uk+1
2

∂x
T1l on Γ, (2.59)

where T1l and T2l coincide with those in Eq.(2.52).

RR-SP2 (sequential):

−∂uk+1
2

∂y
+ S1Iu

k+1
2 +

∂uk+1
2

∂x
T2l +

∂2uk+1
2

2∂x2
T2q =

− ∂uk
1

∂y
+ S1Iu

k
1 +

∂uk
1

∂x
T2l +

∂2uk
1

2∂x2
T2q on Γ,

(2.60)

∂uk+1
1

∂y
+ S2Iu

k+1
1 +

∂uk+1
1

∂x
T1l +

∂2uk+1
1

2∂x2
T1q =

∂uk+1
2

∂y
+ S2Iu

k+1
2 +

∂uk+1
2

∂x
T1l +

∂2uk+1
2

2∂x2
T1q on Γ,

(2.61)

where T1l and T2l coincide with those in Eq.(2.52), and T1q and T2q are identical to Eq.(2.55).

Nataf has proved the convergence of the algorithm as displayed in Eq.(2.46) guaranteed
to be achieved in 2 iterations but it could not be applied to RR-SPN (N = 0, 1, 2)
algorithms directly. The convergence analysis of RR-SPN (both parallel and sequential) will
be performed in Chapter 3 and 4.

51

2.6 Summary

This chapter presents the derivation of the non-local NDD method, which originates
from the Robin interface boundary condition transfer for boundary-layer-type equation.
When applied to HRN models and LRN models, the method yields to generalised wall
function and near-wall domain decomposition method respectively. The derivation follows the
development of the method from one-dimensional to two-dimensional evolution, and focuses
on the technique of retaining the non-local effect during the boundary condition transfer.
Compared with AWF, the NDD method could prove its advantage in terms of accuracy,
efficiency, applicability and solution independence on mesh scheme as well as interface
boundary position.

SP operators play a key role in retaining the non-local effect of the problem thus the
approximation of SP operators becomes especially significant. There are more than one way
to implement the approximation and this chapter shows two approaches that yield to two
different types of the NDD methods: namely DR and RR. DR has been previously studied
in existing literature and is used for the purpose of comparison in the thesis. Regarding RR
method, there are three variants (algorithms) of the method: RR-SP0, RR-SP1 and RR-SP2
which are based on the local expansion of Taylor series with different number of terms.
Although Taylor expansion is local, the expansion is considered as a whole all along the entire
interface with implicit formulation for every expansion node, therefore the local expansion
becomes almost global given there is fine node density on the interface. The accurate global
approximation of the operators is the key to the retaining of the non-local nature of the given
problem when constructing the IBCs between the two subdomains.

52

Chapter 3

Convergence rate calculation of NDD

algorithms

This chapter performs the calculation of the convergence rate of RR-SP0 (both parallel and
sequential), RR-SP1 (sequential), RR-SP2 (sequential) and DR (sequential) algorithms. The
analysis of the calculation result would be elaborated in Chapter 4.

Fourier method is used to calculate the convergence rate of the algorithms, which are applied
to solving Poisson’s equation because the solution to Poisson’s equation could be obtained
analytically. Poisson’s equation mimics part of the nature of the RANS model equations
whose analytical solution could not be obtained, so the conclusion drawn from Poisson’s
equation is expected to be analogous to that applied to RANS model equations to some extent.

In Section 3.1, the convergence rate calculation of RR-SP0 is performed using two methods:
separation of variables and Fourier transform. Both methods make minor simplification on
calculation of SiI . The method of separation of variables assumes SiI is a constant, which
is not true at the vicinity of the boundaries in x direction. The method of Fourier transform
assumes unit function I is defined in (−∞,∞) but it actually has boundaries, which is [0,−1]

in the project. With the two simplification, both methods result in identical calculation result.
This is because both simplifications are equal to removing the boundary effect in x direction
when calculating SiI , and the boundary conditions at x direction are too far to impose any
effect on the solution. In practice, the solution accuracy loss due to the simplification could
be ignored when the boundary effect is not strong.

In Section 3.2, the convergence rate calculation of DR algorithm is performed using
separation of variables. The calculation result is identical to that in [83], which originally
proposed the algorithm and studied it in detail. In this project, DR algorithm is not the main
object but mainly an algorithm to compare with RR-SPN (N = 0, 1, 2) algorithms.

The calculation of Poisson’s equation shows that the convergence rate of RR-SP0 algorithm
could be completely expressed by the symbols of SP operators: Ŝi (i = 1, 2). In Section 3.3,
the conclusion is proved applicable beyond Poisson’s equation itself. Poisson’s equation has
analytical solution and its convergence rate could be obtained when necessary, so studying
Poisson’s equation alone does not help much on understanding other problems. However,
Poisson’s equation represents a kind of equations that have variable-separation form solutions

53

and the conclusions drawn from Poisson’s equation also apply to those equations as well.
The convergence rate of those equations has the same form/structure as Poisson’s equation.
What is more, for the BVPs whose solution has limited dependence on x, the Poisson result
could be partially applied as well. Therefore, by merely studying the properties of the SP
operator symbols in application to given equations, the convergence rate could be obtained
directly. The cost of calculating the SP operator symbols is low because if the solution
has variable-separation form or weak dependence on x, the problem could be reduced to
one-dimensional.

In Section 3.4, the convergence rate of RR-SP1 and RR-SP2 algorithms is calculated by
Fourier transform. The calculation is performed based on limited assumptions: I, x and x2 are
all defined in (−∞,∞). Meanwhile, the assumptions are made in order: the calculation result
of the lower-order algorithm is used as assumption for the calculation of the higher-order
algorithm. For example, SiI is taken as constant in the calculation of RR-SP1 because it has
been justified by the calculation result of RR-SP0, which assumes I is defined in (−∞,∞).
Similarly, Six = S∗

i I · x is presumed in the calculation of RR-SP2 because it is the result of
the RR-SP1 calculation. The aim of making all those assumptions is to remove any boundary
effect whenever it appears so that the convergence rate obtained is ’boundary effect free’. In
practice, when the boundary effect is negligible, the result could be used directly. Otherwise,
the result could provide a foundation to evaluate the real case where the boundary effect
should be held accountable. The influence of the boundary effect in RR-SP0 will be discussed
in Chapter 4.

3.1 Convergence rate calculation of RR-SP0

This section considers RR-SP0 applied to Poisson’s equation and performs the calculation of
the convergence rate by 2 approaches: separation of variables and Fourier transform. They
differ in some technical ways and lead to identical result. Note in this section, there are two
simplifications made regarding calculating SiI in the two methods:

1. In separation of variables, SiI (i = 1, 2) is considered as constant, and the constant is
denoted by S∗

i I .

2. In Fourier transform, the unit function I is defined in (−∞,∞).

The two simplifications both amount to removing the boundary effect in x direction.

3.1.1 Calculation via separation of variables

Consider a Poisson’s equation defined in a square domain Ω : {0 ≤ x ≤ 1, 0 ≤ y ≤ B}.
An artificial interface boundary Γ (at y = A) splits the domain into two: Ω1 and Ω2. The
following iterative equations formulate the boundary conditions of the two subdomains, as is

54

displayed in Chapter 2 as RR-SP0 (sequential). The algorithm starts from u2.

un+1
1y + S∗

2I · un+1
1 = un+1

2y + S∗
2I · un+1

2 ,

−un+1
2y + S∗

1I · un+1
2 = −un

1y + S∗
1I · un

1 .

The corresponding IBCs for the error problem are:

en+1
1y + S∗

2I · en+1
1 = en+1

2y + S∗
2I · en+1

2 ,

−en+1
2y + S∗

1I · en+1
2 = −en1y + S∗

1I · en1 .

Let on interface:

γn+1
1 := en+1

2y (x,A) + S∗
2I · en+1

2 (x,A), (3.1)

γn+1
2 := −en1y(x,A) + S∗

1I · en1 (x,A), (3.2)

and the error problem could be written as Laplace equation with boundary conditions:

−∇2en+1
1 = 0, on Ω1, (3.3)

en+1
1 = 0, on ∂Ω1/Γ, (3.4)

en+1
1y + S∗

2I · en+1
1 = γn+1

1 , on Γ, (3.5)

−∇2en+1
2 = 0, on Ω2, (3.6)

en+1
2 = 0, on ∂Ω2/Γ, (3.7)

−en+1
2y + S∗

1I · en+1
2 = γn+1

2 , on Γ. (3.8)

Laplace equation could be solved using separation with variables that reduces two-dimensional
partial differential equation (PDE) to 2 ordinary differential equations (ODEs). The solution
to the PDE has the form

ei(x, y) = Xi(x)Yi(y).

Substitute the general form into Laplace equation yields to 2 ODEs with respect to x and y

respectively. Note λ is the separation constant:

1

Xi

∂2Xi

∂x2
= λ, (3.9)

− 1

Yi

∂2Yi

∂y2
= λ. (3.10)

First, apply the homogeneous boundary conditions with respect to x to solve the ODEs about x
(Eq.(3.9)). The homogeneous boundary conditions could be separated from original boundary
conditions:

Xi(0) = 0, Xi(1) = 0. (3.11)

55

The ODEs as shown in Eq.(3.9) have the general solution:

Xi(x) = Ci sin(kπx),

and the separation constant is also determined: λ = k2π2, k = 1, 2,

Second, consider the ODE with respect to y, as shown in Eq.(3.10):

− 1

Yi

∂2Yi

∂y2
= k2π2.

The ODE has the general form

Yi(y) = A′
i sinh(kπy) +B′

i cosh(kπy).

Therefore, the solution to ei(x, y) has the form:

ei(x, y) =
∞∑︂
k=1

sin(kπx)(Ai sinh(kπy) +Bi cosh(kπy)).

So far, the solution has been formulated as Fourier sine series. The Fourier coefficient remains
unsolved and denote it by ên+1

i :

ên+1
i (k, y) := An+1

i sinh(kπy) +Bn+1
i cosh(kπy). (3.12)

In this step, êi starts to have superscript (n + 1) because the solution is subjected to IBCs
that vary with iterations. Correspondingly, Ai and Bi have superscript too. To determine the
coefficient (in other words, An+1

i and Bn+1
i), one needs to consider the yet-unused boundary

conditions on interface Γ and those on y = 0 and y = B. Since the solution ei has Fourier
series form, γi should be expanded to Fourier sine series too and only the Fourier coefficients
are considered:

γn+1
i (x, y) =

∞∑︂
k=1

γ̂n+1
i (k, y) sin(kπx),

and the boundary conditions with respect to y read

BVP1 :

⎧⎨⎩ên+1
1 (x, 0) = 0,

ên+1
1y (k,A) + S∗

2I · ên+1
1 (k,A) = γ̂n+1

1 (k,A).
(3.13)

BVP2 :

⎧⎨⎩ên+1
2 (x, 0) = 0,

−ên+1
2y (k,A−B) + S∗

1I · ên+1
2 (k,A−B) = γ̂n+1

2 (k,A−B).
(3.14)

Note there is a variable substitute ȳ = y − B when considering ê2. The final solution could
be restored later on.

56

Apply above boundary conditions to Eq.(3.12), êi could be obtained:

ên+1
1 (k, y) =

γ̂n+1
1 (k,A) sinh(kπy)

kπ cosh(kπA) + S∗
2I sinh(kπA)

,

ên+1
2 (k, y) =

γ̂n+1
2 (k,A) sinh(kπ(y −B))

−kπ cosh(kπ(A−B)) + S∗
1I sinh(kπ(A−B))

.

Particularly, the solution at interface is

ên+1
1 (k,A) =

γ̂n+1
1 (k,A)

kπ coth(kπA) + S∗
2I

, (3.15)

ên+1
2 (k,A) =

γ̂n+1
2 (k,A)

−kπ coth(kπ(A−B)) + S∗
1I

. (3.16)

Next, expand γ̂n+1
i and according to Eqs.(3.1)&(3.2), consider only the Fourier coefficients:

γ̂n+1
1 (k,A) :=ên+1

2y + S∗
2I · ên+1

2 ,

=(kπ coth(kπ(A−B)) + S∗
2I)ê

n+1
2 (k,A),

γ̂n+1
2 (k,A) :=− ên1y + S∗

1I · ên1 ,

=(−kπ coth(kπA) + S∗
1I)ê

n
1 (k,A).

Finally, the convergence rate is obtained:

ên+1
1 (k,A)

=
γ̂n+1
1 (A)

kπ coth(kπA) + S∗
2I

,

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

ên+1
2 (k,A),

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

γ̂n+1
2 (A)

−kπ coth(kπ(A−B)) + S∗
1I

,

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

−kπ coth(kπA) + S∗
1I

−kπ coth(kπ(A−B)) + S∗
1I

ên1 (A).

(3.17)

ên+1
2 (k,A)

=
γ̂n+1
2 (A)

−kπ coth(kπ(A−B)) + S∗
1I

,

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

ên1 (k,A),

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

γ̂n
1 (A)

kπ coth(kπA) + S∗
2I

,

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

kπ coth(kπ(A−B)) + S∗
2I

kπ coth(kπA) + S∗
2I

ên2 (k,A).

(3.18)

57

Therefore, on interface: (k = 1, 2...)

∥ên+1
i ∥ =

⃓⃓⃓⃓
⃓ 1

A
− kπ coth(kπA)

1
A
+ kπ coth(kπ(B − A))

1
B−A

− kπ coth(kπ(B − A))
1

B−A
+ kπ coth(kπA)

⃓⃓⃓⃓
⃓ ∥êni ∥, (3.19)

as it is known that S∗
1I = 1

A
and S∗

2I = 1
B−A

.

Note the solution to the following two one-dimensional BVPs defines S∗
i I: S∗

1I := du1(A)
dy

and
S∗
2I := −du2(A)

dy
.

d2u1

dy2
= 0,

u1(0) = 0, u1(A) = 1.

d2u2

dy2
= 0,

u2(A) = 1, u2(B) = 0.

3.1.2 Calculation of RR-SP0: parallel version

This subsection considers the parallel version of RR-SP0 algorithm in terms of convergence
rate. The calculation would be performed in the same way as with sequential case in
Subsection 3.1.1, and only the calculation that differs from sequential case would be
displayed.

Recall the parallel IBC of RR-SP0 reads:

un+1
1y + S∗

2I · un+1
1 = un

2y + S∗
2I · un

2 ,

−un+1
2y + S∗

1I · un+1
2 = −un

1y + S∗
1I · un

1 .

The corresponding error BVPs to consider are identical to those as shown in Eqs.(3.3)-(3.8),
but the definition of γn+1

1 is slightly different:

γn+1
1 := en2y(x,A) + S∗

2I · en2 (x,A), (3.20)

γn+1
2 := −en1y(x,A) + S∗

1I · en1 (x,A). (3.21)

The above formulated BVPs could be solved with separation of variables as performed in
Subsection 3.1.1. Much of the calculation is the same and thus skipped to the following
intermediate stage:

ên+1
1 (k, y) =

γ̂n+1
1 (A) sinh(kπy)

kπ cosh(kπA) + S∗
2I sinh(kπA)

,

ên+1
2 (k, y) =

γ̂n+1
2 (A) sinh(kπ(y −B))

−kπ cosh(kπ(A−B)) + S∗
1I sinh(kπ(A−B))

,

58

where γ̂i is the Fourier coefficient of γi:

γ̂n+1
1 := ên2y + S∗

2I · ên2 (k,A),

γ̂n+1
2 := −ên1y + S∗

1I · ên1 (k,A).

Particularly, the solution at interface is

ên+1
1 (k,A) =

γ̂n+1
1 (A)

kπ coth(kπA) + S∗
2I

, (3.22)

ên+1
2 (k,A) =

γ̂n+1
2 (A)

−kπ coth(kπ(A−B)) + S∗
1I

. (3.23)

Transform Eq.(3.22):

ên+1
1 (k,A)

=
γ̂n+1
1 (A)

kπ coth(kπA) + S∗
2I

,

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

ên2 (k,A),

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

γ̂n
2 (A)

−kπ coth(kπ(A−B)) + S∗
1I

,

=
kπ coth(kπ(A−B)) + S∗

2I

kπ coth(kπA) + S∗
2I

−kπ coth(kπA) + S∗
1I

−kπ coth(kπ(A−B)) + S∗
1I

ên−1
1 (A).

(3.24)

(3.25)

Transform Eq.(3.23):

ên+1
2 (k,A)

=
γ̂n+1
2 (A)

−kπ coth(kπ(A−B)) + S∗
1I

,

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

ên1 (k,A),

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

γ̂n
1 (A)

kπ coth(kπA) + S∗
2I

,

=
−kπ coth(kπA) + S∗

1I

−kπ coth(kπ(A−B)) + S∗
1I

kπ coth(kπ(A−B)) + S∗
2I

kπ coth(kπA) + S∗
2I

ên−1
2 (k,A).

(3.26)

Therefore, the convergence rate is (k = 1, 2...)

∥ên+1
i ∥ =

⃓⃓⃓⃓
⃓ 1

A
− kπ coth(kπA)

1
A
+ kπ coth(kπ(B − A))

1
B−A

− kπ coth(kπ(B − A))
1

B−A
+ kπ coth(kπA)

⃓⃓⃓⃓
⃓ ∥ên−1

i ∥. (3.27)

3.1.3 Calculation via Fourier transform

This section makes the convergence analysis via Fourier transform. The final result is equal
to that of separation of variables.

59

Consider a Poisson’s equation again and the same boundary conditions. This time let us start
from the error equation directly but note S∗

i I is no more considered as constant. This makes
the calculation complicated but it shall be simplified in another way.

−∇2en+1
1 = 0, on Ω1, (3.28)

en+1
1 = 0, on ∂Ω1/Γ, (3.29)

en+1
1y + S2I · en+1

1 = γn+1
1 , on Γ, (3.30)

−∇2en+1
2 = 0, on Ω2, (3.31)

en+1
2 = 0, on ∂Ω2/Γ, (3.32)

−en+1
2y + S1I · en+1

2 = γn+1
2 , on Γ, (3.33)

where γn+1
1 := en+1

2y (x,A) + S2I · en+1
2 (x,A) and γn+1

2 := −en1y(x,A) + S1 · en1 (x,A).

Now apply Fourier transform with respect to x on the error equations as well as the boundary
conditions, then the original two-dimensional BVPs are reduced to one-dimensional BVPs.

BVP1:

∂2ên+1
1

∂y2
− ω2ên+1

1 = 0, (3.34)

ên+1
1 (0) = 0, (3.35)

ên+1
1y (A) +

1

2π
F(S2I) ∗ ên+1

1 (A) = γ̂n+1
1 (A). (3.36)

BVP2:

∂2ên+1
2

∂y2
− ω2ên+1

2 = 0, (3.37)

ên+1
2 (0) = 0, (3.38)

−ên+1
2y (A−B) +

1

2π
F(S1I) ∗ ên+1

2 (A−B) = γ̂n+1
2 (A). (3.39)

Note in the formulation of BVP2, y-coordinate shifts by y′ = y − B. The final result would
be restored based on y afterwards. Meanwhile, convolution is defined as f(x) ∗ g(x) =∫︁∞
−∞ f(τ)g(x−τ)dτ .Ff(x)means applying Fourier transform on f(x), such asFeni (x, y) =

êni (ω, y). Expanding the Fourier transform of γi reads

Fγn+1
1 := γ̂n+1

1 (A) := ên2y(ω,A) + F(S2I · en2 (ω,A)), (3.40)

Fγn+1
2 := γ̂n+1

2 (A) := −ên1y(ω,A) + F(S1 · en1 (ω,A)). (3.41)

The BVPs have general solution:

ê1(ω, y) = C1(ω) sinh(ωy) +D1(ω) cosh(ωy),

ê2(ω, y) = C2(ω) sinh(ωy) +D2(ω) cosh(ωy).

60

To determine the unknown coefficients of the general solution, the boundary conditions
need to be considered. Since the solution to the problem has variable-separation form, the
boundary conditions could be considered here independently from x. Firstly, applying the
homogeneous boundary conditions Eqs.(3.35), (3.38) eliminate D1, D2 so that the general
solution retains only sinh(ωy) term: êi(ω, y) = Ci sinh(ωy). Then, apply the boundary
conditions Eqs.(3.36), (3.39) to the general solution to determine C1 and C2. Since the
calculation involves convolution that is complex to compute, the following simplification is
made: assume unit function ’I’ is defined in the entire real domain (where is should have been
in [01]), then the Fourier transform ofSiI results in Ŝi2πδ, where Ŝi is the symbol (the symbol
will be introduced and the calculation will be performed in Subsection 3.1.4.) of operator Si

and δ is the Dirac delta function. As will be shown next, Dirac delta function δ could simplify
the calculation to some extent. Meanwhile, it is worth noting that the integral calculation
containing δ as shown below should not be interpreted as classic integral of conventional
functions. Instead, the calculation is performed under the concept of generalised function
(distribution).

ên+1
1y (A) +

1

2π
F(S2I) ∗ ên+1

1 (A) = γ̂n+1
1 (A),

→ C1(ω)ω cosh(ωA) +
∫︂ ∞

−∞
Ŝ2(τ)δ(τ)C1(ω − τ) sinh((ω − τ)A)dτ = γ̂n+1

1 (A),

→ C1(ω)(ω cosh(ωA) + Ŝ2(0) sinh(ωA)) = γ̂n+1
1 (A),

→ C1(ω) =
γ̂n+1
1 (A)

ω cosh(ωA) + Ŝ2(0) sinh(ωA)
.

(3.42)

− ên+1
2y (A′) +

1

2π
F(S1I) ∗ ên+1

2 A′) = γ̂n+1
2 (A′),

→ − C2(ω)ω cosh(ωA′) +

∫︂ ∞

−∞
Ŝ1(τ)δ(τ)D1(ω − τ) sinh((ω − τ)A′)dτ = γ̂n+1

2 (A′),

→ C2(ω)(−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)) = γ̂n+1
2 (A′),

→ C2(ω) =
γ̂n+1
2 (A′)

−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)
.

(3.43)

Since the coordinate shifts by y′ = y−B in above calculation, the ’new’ interface is defined
as A′ = A−B.

Having known the coefficients Ci, the solution to the 2 BVPs could be obtained. Note at this
step the coordinate has been shifted back to y rather than y′ in ên+1

2 case:

ên+1
1 (ω, y) =

γ̂n+1
1 (A) sinh(ωy)

ω cosh(ωA) + Ŝ2(0) sinh(ωA)
, (3.44)

ên+1
2 (ω, y) =

γ̂n+1
2 (A) sinh(ω(y −B))

−ω cosh(ω(A−B)) + Ŝ1(0) sinh(ω(A−B))
. (3.45)

61

Particularly, on y = A,

ên+1
1 (ω,A) =

γ̂n+1
1 (A)

ω coth(ωA) + Ŝ2(0)
, (3.46)

ên+1
2 (ω,A) =

γ̂n+1
2 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
. (3.47)

It is obvious that ên+1
i (A) is a function of γ̂n+1

i (A), (i = 1, 2). The convergence rate ên+1
i

êni
is

equal to γ̂n+1
i

γ̂n
i

. Next, consider γ̂n+1
1 , γ̂n+1

2 :

γ̂n+1
1 (A) = ên2y(ω,A) + F(S2I · en2 (ω,A)),

→ γ̂n+1
1 (A) = ω coth(ω(A−B))ên2 (ω,A) +

1

2π
F(S2I) ∗ ên2 (ω,A),

→ γ̂n+1
1 (A) = ω coth(ω(A−B))ên2 (ω,A) + Ŝ2(0)ê

n
2 (ω,A),

→ γ̂n+1
1 (A) = (ω coth(ω(A−B)) + Ŝ2(0))

γ̂n
2 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
,

→ γ̂n+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

−ω coth(ω(A−B)) + Ŝ1(0)
[−ên1y(ω,A) + F(S1 · en1 (ω,A))],

→ γ̂n+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

−ω coth(ω(A−B)) + Ŝ1(0)
[−ω coth(ωA)ên1 (ω,A) + Ŝ1(0)ê

n
1 (ω,A)],

→ γ̂n+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

−ω coth(ω(A−B)) + Ŝ1(0)

−ω coth(ωA) + Ŝ1(0)

ω coth(ωA) + Ŝ2(0)
γ̂n
1 (A).

(3.48)

γ̂n+1
2 (A) = −ên1y(ω,A) + F(S1I · en1 (ω,A)),

→ γ̂n+1
2 (A) = −ω coth(ωA)ên1 (ω,A) +

1

2π
F(S1I) ∗ ên1 (ω,A),

→ γ̂n+1
2 (A) = −ω coth(ωA)ên1 (ω,A) + Ŝ1(0)ê

n
1 (ω,A),

→ γ̂n+1
2 (A) = (−ωcoth(ωA) + Ŝ1(0))

γ̂n
1 (A)

ω coth(ωA) + Ŝ2(0)
,

→ γ̂n+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

ω coth(ωA) + Ŝ2(0)
[ên2y(ω,A) + F(S2 · en2 (ω,A))],

→ γ̂n+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

ω coth(ωA) + Ŝ2(0)
[ω coth(ω(A−B))ên2 (ω,A) + Ŝ2(0)ê

n
2 (ω,A)],

→ γ̂n+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

ω coth(ωA) + Ŝ2(0)

ω coth(ω(A−B)) + Ŝ2(0)

−ω coth(ω(A−B)) + Ŝ1(0)
γ̂n
2 (A).

(3.49)

The above transformation of γ̂1(A) and γ̂2(A) shows that

ên+1
i =

Ŝ1(0)− ω coth(ωA)
Ŝ1(0) + ω coth(ω(B − A))

Ŝ2(0)− ω coth(ω(B − A))

Ŝ2(0) + ω coth(ωA)
êni .

62

Given Ŝ1(0) =
1
A

and Ŝ2(0) =
1

B−A
, the convergence rate is:

∥ên+1
i ∥ =

⃓⃓⃓⃓
⃓ 1

A
− ω coth(ωA)

1
A
+ ω coth(ω(B − A))

·
1

B−A
− ω coth(ω(B − A))
1

B−A
+ ω coth(ωA)

⃓⃓⃓⃓
⃓ ∥êni ∥. (3.50)

Lastly, perform Fourier transform with respect to y on the original problem with the
homogeneous boundary conditions: en+1

1 (0, y) = 0 and en+1
1 (1, y) = 0. The two-dimensional

problem is then reduced to the following one-dimensional BVPs regarding x:

∂2ên+1
i

∂x2
− ω2ên+1

i = 0,

ên+1
i (0) = 0, ên+1

i (1) = 0.

The solution to above BVPs is

ên+1
i (x, ω) = sin(ωx). ω = kπ, k = 1, 2, ... (3.51)

The above calculation regulates ω := kπ, (k = 1, 2, ...).

It should be emphasized again that because Laplace equation has variable-separation-form
solution, Fourier transform could be independently applied twice with respect to x and y on
the original Laplace equations, and the boundary conditions could also be applied separately
to the one-dimensional BVPs derived from Fourier transform. In otherwise case, inverse
Fourier transform is needed to restore the solution (with unknown functions) and all boundary
conditions should be considered together to determine the specific solution to the given BVP.

In this case, two pairs of one-dimensional BVPs (with respect to x and y separately) are
considered independently. The convergence rate is determined by the solution to the BVPs
regarding y, see Eq.(3.50). Next, the BVPs regarding x regulates the value of ω apart from
determining the solution w.r.t.x. Therefore, the convergence rate should be written in the same
form as Eq.(3.50) but restricting ω to particular values:

∥ên+1
i ∥ =

⃓⃓⃓⃓
⃓ 1

A
− kπ coth(kπA)

1
A
+ kπ coth(kπ(B − A))

·
1

B−A
− kπ coth(kπ(B − A))
1

B−A
+ kπ coth(kπA)

⃓⃓⃓⃓
⃓ ∥êni ∥.

(k = 1, 2, ...)

(3.52)

3.1.4 Calculation of symbol of SP operators

The formulae to calculate the symbol a(x, ω) of a pseudo-differential operator T is as follows
[103]:

a(x, ω) := e−2πjxωT (e2πjxω). (3.53)

In this case, the pseudo-operator (Si) operates on y direction at interface y = A. First consider
the symbol of S1. According to the definition of S1 and its application on Poisson’s equation

63

in Ω1, the following BVP for calculating S1(e
2πjxω) could be formulated:

−∇2en+1
1 = 0, on Ω1,

en+1
1 = 0, on ∂Ω1/(y = A),

en+1
1 = e2πjxω, on y = A.

To solve it, apply Fourier transform w.r.t.x on the BVP defined in Ω1 to get a reduced
one-dimensional BVP:

∂2ên+1
1

∂y2
− ω2ên+1

1 = 0,

ên+1
1 (0) = 0, ên+1

1 (A) = 1.

(3.54)

Note again, it is because the solution to the original problem has variable-separation form,
the above 2 boundary conditions could be applied immediately to obtain the solution to the
one-dimensional BVP, which is:

ên+1
1 (ω, y) =

sinh(ωy)
sinh(ωA)

.

Furthermore, apply inverse Fourier transform on ên+1
1 to restore interface solution and take

derivative. Note there is only one harmonic to consider so the integral vanishes:

en+1
1 (x, y) =

∫︂
ên+1
1 (ω, y)e2πjxωdω = ên+1

1 (ω, y)e2πjxω.

S1(e
2πjxω) := en+1

1y (x,A) = e2πjxωω coth(ωA). (3.55)

Therefore, the symbol (Ŝ1) of the operator is:

Ŝ1(ω) := e−2πjxωS1(e
2πjxω) = ω coth(ωA). (3.56)

Next, consider the symbol of S2. The calculation is almost the same as that with Ŝ1. Apply
Fourier transform w.r.t.x on BVP2 defined in Ω2 to get a reduced one-dimensional BVP:

∂2ên+1
2

∂y2
− ω2ên+1

2 = 0,

ên+1
2 (0) = 0, ên+1

2 (A−B) = 1.

(3.57)

The solution is:
ên+1
2 (ω, y) =

sinh(ω(y −B))

sinh(ω(A−B))
.

Furthermore, restore the interface solution,

en+1
2 (x, y) =

∫︂
ên+1
2 (ω, y)e2πjxωdω = ên+1

2 (ω, y)e2πjxω.

64

S2(e
2πjxω) := −en+1

2y (x,A) = e2πjxωω coth(ω(B − A)). (3.58)

Therefore, the symbol (Ŝ2) of the operator is

Ŝ2(ω) := e−2πjxωS2(e
2πjxω) = ω coth(ω(B − A)). (3.59)

Naturally, all ω should be restricted: ω = kπ, k = 1, 2, ... because the boundary conditions
are defined at x = 0, 1 in this case, see Eq.(3.51). However, in Subsection 3.1.3, there is
Ŝi(0) showing up in the calculation and this is because the simplification made when dealing
with Si(I). Recall it is assumed that the unit function I is defined in (−∞,∞) rather than
where it should have been: [0 1]. In the latter case, there are boundaries on both sides of the
domain in x directions and two homogeneous boundary conditions that restrict the value of
ω := kπ, k = 1, 2.... In other words, it is the existence of the boundaries at x = 0 and x = 1

that requires ω taking particular values. If such boundaries become too far to exist anymore,
there would be no homogeneous boundary conditions at x = 0 and x = 1 too, hence the
restriction on ω disappears. As a matter of fact, in above calculation, the domain length is
set 1 in x-direction, so the separation constant is λ = k2π2. If the length is assumed L, the
constant λ would be λ = (kπ/L)2. The bigger L, the smaller interval between neighbour
ω := kπ/L. In the case that L is infinity, the interval tends to 0 and ω becomes continuous.
This is the scenario that happens when I is defined in (-∞, ∞), see Eq.(3.50). In addition,
it could also be seen from the definition: F [SiI] := Ŝi(ω)FI . The unit function (defined in
entire real domain) is composed of only 1 harmonic (ω = 0), so only Ŝi(0) exists. That is the
consequent of assuming I is defined in real domain and how Ŝi(0) arises in the calculation.

To sum up, Ŝi(0) is the result of the simplification that I is assumed to be defined throughout
the entire real domain, but it does not violate the principle of the convergence rate calculation.
The calculation result based on the simplification is identical to the result that is based on the
simplification of SiI being a constant. The effect of the simplification will be discussed in
Chapter 4.

Compare Ŝi(ω) with the general form of the symbol a(x, ω), it is seen that Ŝi is not a function
of x but only ω. This is still because the solution could be separated in terms of x and y. The
separation gives rise to the solution to the reduced one-dimensional BVP w.r.t.y directly,
as stated above, see Eq.(3.54), and the solution is free from containing any x. In otherwise
case, the solution to the one-dimensional BVP could not be determined until all boundary
conditions are considered together, in which case inverse Fourier transform is applied to
restore the solution and x is brought in.

3.2 Convergence rate calculation of DR algorithm

This section performs the convergence rate calculation of DR algorithm applied to Poisson’s
equation too. The separation of variables is used again. Since the calculation is highly similar

65

to previous calculation, some intermediate process would not be repeatedly elaborated.

Consider the following BVPs:

−∇2en+1
1 = 0, on Ω1,

en+1
1 = 0, on ∂Ω1/Γ,

en+1
1 = θen+1

2 + (1− θ)en1 , on Γ,

−∇2en+1
2 = 0, on Ω2,

en+1
2 = 0, on ∂Ω2/Γ,

en+1
2y = en1y + S∗

1I(e
n+1
2 − en1), on Γ,

where 0 < θ < 1.

As has been mentioned earlier, the solution has variable-separation form: ei(x, y) =

Xi(x)Yi(y). The BVPs regarding x are the same as those defined in RR-SP0, see Eqs.(3.9)
and (3.11). Here the solution is directly given: Xi(x) = sin(kπx), k = 1, 2...

Next, consider Yi(y), which is the Fourier coefficient of the solution to the Laplace equation.
Denote the Fourier coefficient by êi(k, y) := Yi(k, y). The general solution to Yi(y) is directly
given:

ên+1
i (y) := Y n+1

i (y) = An+1
i sinh(kπy) +Bn+1

i sinh(kπy).

To determine An+1
i and Bn+1

i , apply the rest 2 boundary conditions (at y = 0 and y = A) to
the general solution:

BVP1 :

⎧⎨⎩ên+1
1 (x, 0) = 0,

ên+1
1|Γ = θên+1

2|Γ + (1− θ)ên1|Γ.
(3.60)

BVP2 :

⎧⎨⎩ên+1
2 (x, 0) = 0,

ên+1
2y|Γ = ên1y|Γ + S∗

1I(ê
n+1
2|Γ − ên1|Γ).

(3.61)

Note there is a variable substitute ȳ = y − B when considering ê2. The final solution would
be restored.

The two homogeneous boundary conditions enables the elimination of sinh(kπy) term in the
general solution, so only sinh(kπy) term retains: ên+1

i = An+1
i (k) sinh(kπy). It is clear that

the convergence rate could be obtained by calculating the ratio between An+1
i (k) and An

i (k).
Next, transform the IBC as shown in Eq.(3.60):

An+1
1 sinh(kπA) = θAn+1

2 sinh(kπ(A−B)) + (1− θ)An
1 sinh(kπA),

→ An+1
1 = θ

sinh(kπ(A−B))

sinh(kπA)
An+1

2 + (1− θ)An
1 ,

→ An+1
2 =

sinh(kπA)
θ sinh(kπ(A−B))

(An+1
1 + (θ − 1)An

1).

(3.62)

66

Transform the IBC as shown in Eq.(3.61):

kπ cosh(kπ(A−B))An+1
2

= kπ cosh(kπA)An
1 + S∗

1I(sinh(kπ(A−B))An+1
2 − sinh(kπA)An

1),

→ An+1
2 =

kπ cosh(kπA)− S∗
1I sinh(kπA)

kπ cosh(kπ(A−B))− S∗
1I sinh(kπ(A−B))

An
1 .

(3.63)

Combining Eqs.(3.62) and (3.63), it could be obtained that

An+1
1 = (1− θΩ)An

1 , (3.64)

where
Ω :=

kπ coth(kπA) + kπ coth(kπ(B − A))

1/A+ kπ coth(kπ(B − A))
. (3.65)

From Eq.(3.63):

An+1
2

An
1

=
An+2

2

An+1
1

,

→ An+1
2 = (1− θΩ)An

2 (from Eq.(3.64)).

Therefore, the convergence rate is obtained:

∥ên+1
i (k,A)∥ = |1− θΩ| ∥êni (k,A)∥, (3.66)

where Ω is given in Eq.(3.65).

The convergence rate is plotted in Fig.3.1 with various A.

3.3 Generalised convergence rate calculation of RR-SP0

This section extends the convergence rate calculation from Poisson’s equation to those
equations that could be solved with separation of variables. It would be demonstrated that the
calculation process resembles that of Poisson’s equation so the calculation about Poisson’s
equation is representative. The convergence rate is determined by the symbols/eigenvalues
of SP operators applied to given equations. Due to separation of variables, either symbols
or eigenvalues of SP operators are not difficult to obtain, after which the convergence rate of
RR-SP0 algorithm could be obtained directly for the given problem. The convergence analysis
result obtained above applies to BVPs whose governing equation is interface-boundary-type
as well, which is the case for the model equation at vicinity of the wall in Chapter 5. Note the
following calculation is still performed using Fourier transform with the assumption that unit
function I is defined in (−∞,∞).

Consider a BVP that could be solved with separation of variables defined in a square domain

67

Figure 3.1. Convergence rate of DR algorithm with various A, θ = 1, B = 1.

Ω : {1 < x < 1, 0 < y < B}. The corresponding error BVPs for this problem are

Len+1
1 = 0, on Ω1,

en+1
1 = 0, on ∂Ω1/Γ,

en+1
1y + S∗

2I · en+1
1 = γn+1

1 , on Γ,

Len+1
2 = 0, on Ω2,

en+1
2 = 0, on ∂Ω2/Γ,

−en+1
2y + S∗

1I · en+1
2 = γn+1

2 , on Γ.

where γn+1
1 and γn+1

2 share the same definition as previous section, see Eqs.(3.1), (3.2).

Apply Fourier transform with respect to x to the above BVPs. The transform has been
performed on Laplace equations in previous section, and here on unknown governing
equations:

BVP1:

F(Len+1
1) = 0,

ên+1
1 (0) = 0,

ên+1
1y (A) +

1

2π
F(S2I) ∗ ên+1

1 (A) = γ̂n+1
1 (A).

68

BVP2:

F(Len+1
2) = 0,

ên+1
2 (0) = 0,

−ên+1
2y (A−B) +

1

2π
F(S1I) ∗ ên+1

2 (A−B) = γ̂n+1
2 (A),

where γ̂n+1
1 (A) and γ̂n+1

2 (A) are defined in Eqs.(3.40) and (3.41).

Because the operator L is not known, it is not possible to solve the above BVPs. However,
one could assume the general form of the solution as follows and apply the general solution
to the IBCs:

ên1 (ω, y) = Cn
1 (ω)ξ1(ω, y),

ên2 (ω, y) = Cn
2 (ω)ξ2(ω, y).

Particularly, in Poisson’s equation case it is known that

Cn
1 (ω)ξ1(ω, y) = cn1 (ω) sinh(ωy) + dn1 (ω) cosh(ωy),

Cn
2 (ω)ξ2(ω, y) = cn2 (ω) sinh(ω(y −B)) + dn2 (ω) cosh(ω(y −B)).

The selection of ξi(ω, y) is not unique. For instance, in Poisson’s equation case, ξ1 :=

cosh(ω, y) and Cn
1 = cn1 (ω) tanh(ωy) + dn1 (ω), and alternatively ξ1 could be sinh(ω, y) as

well.

In the following general calculation, the expression of ξi and Cn
i remains unknown.

Substitute the general solution to the interface boundary conditions:

ên+1
1y (A) +

1

2π
F(S2I) ∗ ên+1

1 (A) = γ̂n+1
1 (A),

→ Cn+1
1 (ω)ξ1y(ω,A) + Ŝ2(0)C

n+1
1 (ω)ξ1(ω,A) = γ̂n+1

1 (A),

→ Cn+1
1 (ω) =

γ̂n+1
1 (A)

ξ1y(ω,A) + Ŝ2(0)ξ1(ω,A)
.

− ên+1
2y (A) +

1

2π
F(S1I) ∗ ên+1

2 (A) = γ̂n+1
2 (A),

→ − Cn+1
2 (ω)ξ2y(ω,A) + Ŝ1(0)C

n+1
2 (ω)ξ2(ω,A) = γ̂n+1

2 (A),

→ Cn+1
2 (ω) =

γ̂n+1
2 (A)

−ξ2y(ω,A) + Ŝ1(0)ξ2(ω,A)
.

The solution to the problem on y = A is êni (ω,A) = Cn
i (ω)ξi(ω,A):

ên+1
1 (ω,A) =

γ̂n+1
1 (ω,A)

κ1(ω) + Ŝ2(0)
, (3.67)

69

ên+1
2 (ω,A) =

γ̂n+1
2 (ω,A)

−κ2(ω) + Ŝ1(0)
, (3.68)

where it is defined that

κ1(ω) :=
ξ1y(ω,A)

ξ1(ω,A)
, (3.69)

κ2(ω) :=
ξ2y(ω,A)

ξ2(ω,A)
. (3.70)

Next, expand γ̂n+1
1 , γ̂n+1

2 and transform:

ên+1
1 (ω,A) =

γ̂n+1
1 (ω,A)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

ên+1
2y + 1

2π
F(S2I) ∗ ên+1

2

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

Cn+1
2 (ω)κ2(ω)ξ2(ω,A) + Ŝ2(0)C

n+1
2 (ω)ξ2(ω,A)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) = ên+1

2 (ω,A)
κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

γ̂n+1
2

−κ2(ω) + Ŝ1(0)

κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

−ên1y +
1
2π
F(S1I) ∗ ên1

−κ2(ω) + Ŝ1(0)

κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

−Cn
1 (ω)κ1(ω)ξ1(ω,A) + Ŝ1(0)C

n
1 (ω)ξ1(ω,A)

−κ2(ω) + Ŝ1(0)

κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
,

→ên+1
1 (ω,A) =

−κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)

κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
ên1 (ω,A).

(3.71)

70

ên+1
2 (ω,A) =

γ̂n+1
2 (ω,A)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

−ên1y + Ŝ1(0)ê
n
1

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

−Cn
1 (ω)κ1(ω)ξ1(ω,A) + Ŝ1(0)C

n
1 (ω)ξ1(ω,A)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) = ên1 (ω,A)

κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

γ̂n
1

κ1(ω) + Ŝ2(0)

−κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

ên2y + Ŝ2(0)ê
n
2

κ1(ω) + Ŝ2(0)

−κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

Cn
2 (ω)κ2(ω)ξ2(ω,A) + Ŝ2(0)C

n
2 (ω)ξ2(ω,A)

κ1(ω) + Ŝ2(0)

−κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)
,

→ên+1
2 (ω,A) =

κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)

−κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)
ên2 (ω,A).

(3.72)

Therefore, the convergence rate is

∥ên+1
i (ω,A)∥ =

⃓⃓⃓⃓
⃓κ2(ω) + Ŝ2(0)

κ1(ω) + Ŝ2(0)
· −κ1(ω) + Ŝ1(0)

−κ2(ω) + Ŝ1(0)

⃓⃓⃓⃓
⃓ ∥êni (ω,A)∥. (3.73)

This is the generalised calculation of the convergence rate for equations that could be solved
by separation of variables. Like previously stated, the selection of ω might be restricted and
it could be determined by considering the Fourier transform with respect to x on the original
equation and boundary conditions.

To calculate the convergence rate of a particular problem, it is important to know κi and Ŝi(0).
From the definition of κi, it could be seen that κi is equal to the eigenvalue of SP operator
applied to the given problem:

κ1(ω) :=
ξ1y(ω,A)

ξ1(ω,A)
=

Cn
1 ξ1y(ω,A)

Cn
1 ξ1(ω,A)

=
ên1y(ω,A)

ên1 (ω,A)
= λ1(ω),

κ2(ω) :=
ξ2y(ω,A)

ξ2(ω,A)
=

Cn
2 ξ2y(ω,A)

Cn
2 ξ2(ω,A)

=
ên2y(ω,A)

ên2 (ω,A)
= λ2(ω),

where λi(ω) is the eigenvalue of Si [84].

Recall the formula to calculate the symbol of pseudo-differential operator T is as Eq(3.53)
shown

a(x, ω) := e−2πjxωT (e2πjxω).

71

Substitute T with Si and transform above equation:

Si(e
2πjxω) = Ŝi(x, ω)e

2πjxω,

→ Sif(x) =

∫︂ ∞

−∞
Ŝi(x, ω)e

2πjxωf̂(ω)dω.

Note f̂(ω) is the Fourier transform of f(x). The definition of eigenvalue of Si applied to f(x)

gives:

λ1(ω) :=
F(S1f(x))

Ff(x)
,

=
Ŝ1(x, ω)f̂(ω)

f̂(ω)
,

= Ŝ1(x, ω).

(3.74)

λ2(ω) := −F(S2f(x))

Ff(x)
,

= − Ŝ2(x, ω)f̂(ω)

f̂(ω)
,

= −Ŝ2(x, ω).

(3.75)

As demonstrated earlier, the symbol of pseudo-differential operator is a function of both wave
number ω and x in general, but for BVPs that could be solved with separation of variables,
the symbol is not related to x. Therefore, it is proved that the eigenvalue and the symbol of
SP operator are equivalent:

λ1(ω) = Ŝ1(ω), λ2(ω) = −Ŝ2(ω).

It shows that the convergence rate is purely determined by the symbols of SP operator. The
generalised convergence rate Eq.(3.73) could be transformed to Eq.(3.76), see below, although
restrictions on ω may vary from case to case. Particularly, in the case of Poisson’s equation,
the eigenvalues of SP operator is κ1(ω) = ω coth(ωA) and κ2(ω) = ω coth(ω(B − A)).
Substituting them into Eq.(3.73) yields to the same result as Eq.(3.19) or (3.50).

∥ên+1
1 ∥ =

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω)

Ŝ1(0) + Ŝ2(ω)
· Ŝ2(0)− Ŝ2(ω)

Ŝ2(0) + Ŝ1(ω)

⃓⃓⃓⃓
⃓ ∥ên1∥. (3.76)

The symbol calculation of SP operator is not expensive for BVPs that has variable-separation
form solution because the calculation could be reduced to one-dimensional, as is
demonstrated in Subsection 3.1.4. Then the convergence rate could be obtained. In this
project, the problem in inner region usually represents boundary layer or laminar sublayer,
which means the solution has limited dependence on x, so the symbol calculation could be
almost reduced to one-dimensional too. Meanwhile, the solution that is weakly dependent on
x could also be interpreted as having variable-separation form solution: the x-term solution

72

is constant. Therefore, the analysis result obtained in this section could be partially applied to
the model equations of high-Reynolds-number flow with a boundary layer (as will be shown
in Chapter 5), depending on how strong the solution is dependent on x.

3.4 Convergence rate calculation of RR-SP1 and RR-SP2

This section considers RR-SP1 and RR-SP2 applied to Poisson’s equation and performs the
calculation of the convergence rate by Fourier transform. Like in RR-SP0, some assumptions
are made to help simplify the calculation. The assumptions are made in order: the calculation
result of RR-SP0 is used in the calculation of RR-SP1, and the calculation result of RR-SP1
is also used in the calculation of RR-SP2. Each algorithm calculation uses the result obtained
from lower-order algorithm and lays a foundation for the calculation of the higher-order
algorithm.

In RR-SP0, it has been justified to consider SiI as a constant. So it will be used in the
calculation of RR-SP1 directly. What is more, as introduced in Chapter 2, the implementation
of RR-SP1 requires the knowledge of Six in advance, so it is necessary to consider the
Fourier transform to it: F [Six]. The strict calculation is complex so the same simplification
strategy as RR-SP0 is considered: assume function x is defined in (−∞,∞) apart from I .
The simplification is intended to remove any boundary effect incurred by boundary conditions
in x direction, and provide analogous result to the real case where the boundary effect really
exists. The calculation result shows that in ideal scenario (no boundary effect), RR-SP1 makes
no difference to RR-SP0.

In RR-SP1, it is justified to consider Six = S∗
i I ·x, which will be used by RR-SP2 calculation

directly. What is more, Six
2 is needed to implement the algorithm so F [Six

2] is considered
with the assumption that x2 is defined in (−∞,∞). The simplification is aimed to remove
the boundary effect and provide an analogous result too. The calculation result shows that
RR-SP2 has similar convergence rate structure to RR-SP0(1) and only differs by an extra
term, which makes the convergence different from RR-SP0(1).

Similar to previous analysis, the calculation result of RR-SP1 and RR-SP2 is beyond Poisson’s
equation and could be applied to the problems that have variable-separation form solution.

3.4.1 Calculation of RR-SP1

Consider applying RR-SP1 to solving a Poisson’s equation. The corresponding error equation
with boundary conditions could be formulated:

−∇2en+1
1 = 0, on Ω1, (3.77)

en+1
1 = 0, on ∂Ω1/Γ,

en+1
1y + S2I · en+1

1 + en+1
1x · T1l = γn+1

1 , on Γ, (3.78)

−∇2en+1
2 = 0, on Ω2, (3.79)

73

en+1
2 = 0, on ∂Ω2/Γ,

−en+1
2y + S1I · en+1

2 + en+1
2x · T2l = γn+1

2 , on Γ, (3.80)

where

γn+1
1 := en+1

2y (x,A) + S2I · en+1
2 (x,A) + en+1

2x · T1l,

γn+1
2 := −en1y(x,A) + S1I · en1 (x,A) + en1x · T2l,

T1l := S2x− S2I · x, (3.81)

T2l := S1x− S1I · x. (3.82)

Apply Fourier transform with respect to x on above BVPs, and it yields to the following two
one-dimensional BVPs:

BVP1:

∂2ên+1
1

∂y2
− ω2ên+1

1 = 0,

ên+1
1 (0) = 0,

ên+1
1y (A) +

1

2π
F [S2I] ∗ ên+1

1 (A) +
jω

2π
ên+1
1 ∗ F [T1l] = γ̂n+1

1 (A). (3.83)

BVP2:

∂2ên+1
2

∂y2
− ω2ên+1

2 = 0,

ên+1
2 (0) = 0,

−ên+1
2y (A−B) +

1

2π
F [S1I] ∗ ên+1

2 (A−B) +
jω

2π
ên+1
2 ∗ F [T2l] = γ̂n+1

2 (A). (3.84)

Note in the formulation of BVP2, y-coordinate shifts by y′ = y − B. The final result would
be restored based on y later on.

The right-hand-side γ̂1 and γ̂2 are defined as

γ̂n+1
1 (A) := ên+1

2y (ω,A) + F [S2I · en+1
2 (ω,A)] + F [en+1

2x · T1l],

γ̂n+1
2 (A) := −ên1y(ω,A) + F [S1I · en1 (ω,A)] + F [en1x · T2l].

Recall the previous calculation of RR-SP0 by separation of variables assumes SiI is constant
(denoted by S∗

i I), and the calculation result is equal to that by Fourier transform with
the simplification that I is defined in (−∞,∞). It shows that the two simplifications are
equivalent. Therefore, assume SiI is constant here and the definition of γi and γ2 could be
rearranged as

γ̂n+1
1 (A) := ên+1

2y (ω,A) + S∗
2I · F [en+1

2 (ω,A)] + F [en+1
2x · T1l],

γ̂n+1
2 (A) := −ên1y(ω,A) + S∗

1I · F [en1 (ω,A)] + F [en1x · T2l].

74

In addition, it is known that the constant S∗
2I is equal to the symbol of Si of 0-wave number:

S∗
i I = Ŝi(0).

It could be verified by Poisson’s equation, such as S∗
1I = Ŝ1(0) = 1/A and S∗

2I = Ŝ2(0) =

1/(B − A). Also, it could be proved:

Ŝi(ω) := e−2πjxωSi(e
2πjxω),

→ Ŝi(0) = Si(1) = S∗
i (1) = S∗

i I.

Now go back to the calculation of BVPs of êi, which have the general solution:

ê1(ω, y) = C1(ω) sinh(ωy) +D1(ω) cosh(ωy), (3.85)

ê2(ω, y) = C2(ω) sinh(ωy) +D2(ω) cosh(ωy). (3.86)

The homogeneous boundary condition at y = 0 and y = B enables the elimination of D1 and
D2 respectively. Then, apply the two interface boundary conditions to the general solution:

ên+1
1y (A) +

1

2π
F [S2I] ∗ ên+1

1 (A) +
jω

2π
ên+1
1 ∗ F [T1l] = γ̂n+1

1 (A). (3.87)

− ên+1
2y (A′) +

1

2π
F(S1I) ∗ ên+1

2 (A′) +
jω

2π
ên+1
2 ∗ F [T2l] = γ̂n+1

2 (A′). (3.88)

Since the coordinate shifts by y′ = y − B in Eq.(3.88), the ’new’ interface is defined as
A′ = A−B.

The left-hand-side of Eq.(3.87) is composed of three terms:

1. ên+1
1y (A),

2. 1
2π
F [S2I] ∗ ên+1

1 (A),

3. jω
2π
ên+1
1 ∗ F [T1l].

The first 2 terms have been known from previous calculation of RR-SP0:

ên+1
1y (A) = C1(ω)ω cosh(ωA),
1

2π
F [S2I] ∗ ên+1

1 (A) = Ŝ2(0)C1(ω) sinh(ωA)).

Alternatively, having assumed S2I is constant (Ŝ
∗
2I), the second term could be calculated

directly:
1

2π
F [S2I] ∗ ên+1

1 (A) = S∗
2I · ên+1

1 (A) = Ŝ2(0)C1(ω) sinh(ωA).

75

Next, consider the third term:

jω

2π
ên+1
1 ∗ F [T1l]

=
jω

2π
ên+1
1 ∗ F [S2x− S∗

2I · x],

=
jω

2π

∫︂ ∞

−∞
C1(τ) sinh(τA)[Ŝ2(ω − τ)2πjδ′(ω − τ)− Ŝ2(0)2πjδ

′(ω − τ)]dτ,

=− ω

∫︂ ∞

−∞
C1(τ) sinh(τA)[Ŝ2(ω − τ)δ′(ω − τ)− Ŝ2(0)δ

′(ω − τ)]dτ,

=− ω

∫︂ ∞

−∞
C1(τ) sinh(τA)(Ŝ2(ω − τ)− Ŝ2(0))δ

′(ω − τ)dτ,

=ω[C1(τ) sinh(τA)((Ŝ2(ω − τ)− Ŝ2(0)))]
′
τ=ω,

=ωC1(ω) sinh(ωA)Ŝ2ω(0).

(3.89)

Note Ŝ2ω is the derivative of Ŝ2 with respect to ω.

The left-hand-side of Eq.(3.88) is composed of three terms:

1. −ên+1
2y (A′),

2. 1
2π
F [S1I] ∗ ên+1

2 (A′),

3. jω
2π
ên+1
1 ∗ F [T1l].

The first 2 terms have been known from previous calculation of RR-SP0:

− ên+1
2y (A′) = −C2(ω)ω cosh(ω(A−B)),

1

2π
F [S1I] ∗ ên+1

2 (A′) = Ŝ1(0)C2(ω) sinh(ω(A−B)).

Next, consider the third term:

jω

2π
ên+1
2 ∗ F [T2l]

=
jω

2π
ên+1
2 ∗ F [S1x− S∗

1I · x],

=
jω

2π

∫︂ ∞

−∞
C2(τ) sinh(τA′)[Ŝ1(ω − τ)2πjδ′(ω − τ)− Ŝ1(0)2πjδ

′(ω − τ)]dτ,

=− ω

∫︂ ∞

−∞
C2(τ) sinh(τA′)[Ŝ1(ω − τ)δ′(ω − τ)− Ŝ1(0)δ

′(ω − τ)]dτ,

=− ω

∫︂ ∞

−∞
C2(τ) sinh(τA′)(Ŝ1(ω − τ)− Ŝ1(0))δ

′(ω − τ)dτ,

=ω[C2(τ) sinh(τA′)((Ŝ1(ω − τ)− Ŝ1(0)))]
′
τ=ω,

=ωC2(ω) sinh(ω(A−B))Ŝ1ω(0).

(3.90)

Note Ŝ1ω is the derivative of Ŝ1 with respect to ω.

76

Therefore, re-arranging Eq.(3.87) and (3.88) yields to:

C1(ω) =
γ̂n+1
1 (A)

ω cosh(ωA) + Ŝ2(0) sinh(ωA) + sinh(ωA)ωŜ2ω(0)
,

C2(ω) =
γ̂n+1
2 (A′)

−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′) + sinh(ωA′)ωŜ1ω(0)
.

The solution to the BVPs in both regions could be obtained:

ên+1
1 (ω, y) =

γ̂n+1
1 (A) sinh(ωy)

ω cosh(ωA) + Ŝ2(0) sinh(ωA) + sinh(ωA)ωŜ2ω(0)
,

ên+1
2 (ω, y) =

γ̂n+1
2 (A) sinh(ω(y −B))

−ω cosh(ω(A−B)) + Ŝ1(0) sinh(ω(A−B)) + sinh(ω(A−B))ωŜ1ω(0)
.

Particularly, at y = A, the solution is:

ên+1
1 (ω,A) =

γ̂n+1
1 (A)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0)
, (3.91)

ên+1
2 (ω,A) =

γ̂n+1
2 (A)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0)
. (3.92)

Obviously, ên+1
i (ω,A) is the function of γ̂n+1

i (A). So the transformation of γ̂i represents the
evolution of ên+1

i . The calculation resembles that of RR-SP0, see Eqs.(3.48) and (3.49), so
some intermediate process that has been demonstrated previously is skipped.

γ̂n+1
1 (A) := ên+1

2y (ω,A) + F(S2I · en+1
2 (ω,A)) + F [en+1

2x (ω,A) · T1l],

= ω coth(ω(A−B))ên+1
2 (ω,A) + Ŝ2(0)ê

n+1
2 (ω,A) + ωên+1

2 (ω,A)Ŝ2ω(0),

= [ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0)]
γ̂n+1
2 (A)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0)
,

=
ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(ω)
γ̂n+1
2 (A),

:= Φ1l(ω)γ̂
n+1
2 (A),

= Φ1l(ω)[−ên1y(ω,A) + S∗
1I · F [en1 (ω,A)] + F [en1x · T2l]],

= Φ1l(ω)[−ω coth(ωA)(ω,A) + Ŝ1(0) + ωŜ1ω(0)]ê
n
1 (ω,A),

= Φ1l(ω)
−ω coth(ωA) + Ŝ1(0) + ωŜ1ω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0)
γ̂n
1 (A).

(3.93)

77

γ̂n+1
2 (A) := −ên1y(ω,A) + F(S1I · en1 (ω,A)) + F [en1x(ω,A) · T2l],

= −ω coth(ωA)ên1 (ω,A) + Ŝ1(0)ê
n
1 (ω,A) + ωŜ1ω(0)ê

n
1 (ω,A),

= (−ω coth(ωA) + Ŝ1(0) + ωŜ1ω(0))
γ̂n
1 (A)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0)
,

=
−ω coth(ωA) + Ŝ1(0) + ωŜ1ω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0)
γ̂n
1 (A),

:= Φ2l(ω)γ̂
n
1 (A),

= Φ2l(ω)[ê
n
2y(ω,A) + S∗

2I · F [en2 (ω,A)] + F [en2x · T1l]],

= Φ2l(ω)[ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0)]ê
n
2 (ω,A),

= Φ2l(ω)
ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0)
γ̂n
2 (A).

(3.94)

It has been known that Ŝ1(ω) = ω coth(ωA) and Ŝ2(ω) = ω coth(ω(B − A)), then the
convergence rate is

∥ên+1
i ∥ = |Φ1l(ω)Φ2l(ω)| ∥êni ∥,

=

⃓⃓⃓⃓
⃓−Ŝ2(ω) + Ŝ2(0) + ωŜ2ω(0)

Ŝ2(ω) + Ŝ1(0) + ωŜ1ω(0)
· −Ŝ1(ω) + Ŝ1(0) + ωŜ1ω(0)

Ŝ1(ω) + Ŝ2(0) + ωŜ2ω(0)

⃓⃓⃓⃓
⃓ ∥êni ∥,

=

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) + ωŜ1ω(0)

Ŝ1(0) + Ŝ2(ω) + ωŜ1ω(0)
· Ŝ2(0)− Ŝ2(ω) + ωŜ2ω(0)

Ŝ2(0) + Ŝ1(ω) + ωŜ2ω(0)

⃓⃓⃓⃓
⃓ ∥êni ∥.

(3.95)

Note like in previous case of RR-SP0, there is a restriction on the value of ω := kπ, (k =

1, 2...)

The convergence rate of RR-SP1 differs from that of RR-SP0 only by an extra term at the end
of numerator and denominator separately: ωŜiω. Next Consider the value of Ŝiω(ω):

Ŝ1ω = coth(Aω) + Aω(1− coth2(Aω)),

Ŝ2ω = coth((B − A)ω) + (B − A)ω(1− coth2((B − A)ω)).

It could be calculated that Ŝiω(0) = 0. It means the extra term is 0 and the convergence rate
of RR-SP1 is identical to that of RR-SP0. Further more, comparing the algorithms of RR-SP0
and RR-SP1, to let them be equal, T1l and T2l must be equal to 0:

T1l := S2x− xS2I = 0, (3.96)

T2l := S1x− xS1I = 0. (3.97)

Together with the assumption in RR-SP0 that SiI is constant, the above equation yields to

S2x = S∗
2I · x, (3.98)

S1x = S∗
1I · x. (3.99)

78

The above two equations are the result of the assumption that I and x are defined in (−∞,∞),
which will be used in the convergence rate calculation of RR-SP2.

3.4.2 Calculation of RR-SP2

Consider applying RR-SP2 to solving a Poisson’s equation. The corresponding error equation
with boundary conditions could be formulated:

−∇2en+1
1 = 0, on Ω1,

en+1
1 = 0, on ∂Ω1/Γ,

en+1
1y + S2I · en+1

1 + en+1
1x · T1l +

1

2
en+1
1xx · T1q = γn+1

1 , on Γ,

−∇2en+1
2 = 0, on Ω2,

en+1
2 = 0, on ∂Ω2/Γ,

−en+1
2y + S1I · en+1

2 + en+1
2x · T2l +

1

2
en+1
2xx · T2q = γn+1

2 , on Γ,

where

γn+1
1 := en+1

2y (x,A) + S2I · en+1
2 (x,A) + en+1

2x · T1l +
1

2
en+1
2xx · T1q,

γn+1
2 := −en1y(x,A) + S1I · en1 (x,A) + en1x · T2l +

1

2
en1xx · T2q,

T1l := S2x− S2I · x,

T2l := S1x− S1I · x,

T1q := S2x
2 − 2x · S2x+ x2 · S2I,

T2q := S1x
2 − 2x · S1x+ x2 · S1I.

The above BVP resembles that of RR-SP1 and the calculation would be the same for most
part of the problem. To avoid repeated calculation, let us separate the overlapping part of
the interface boundary conditions from the unique part and re-write the interface boundary
conditions:

An+1
1l (x, y) +

1

2
en+1
1xx · T1q = γn+1

1 , on Γ,

An+1
2l (x, y) +

1

2
en+1
2xx · T2q = γn+1

2 , on Γ,

γn+1
1 := An+1

1r (x, y) +
1

2
en2xx · T1q,

γn+1
2 := An

2r(x, y) +
1

2
en1xx · T2q,

where

An+1
1l := en+1

1y + S2I · en+1
1 + en+1

1x · T1l,

An+1
2l := −en+1

2y + S1I · en+1
2 + en+1

2x · T2l,

79

An+1
1r := en+1

2y (x,A) + S2I · en+1
2 (x,A) + en+1

2x · T1l,

An
2r := −en1y(x,A) + S1I · en1 (x,A) + en1x · T2l.

The calculation of Ail and Air has been performed in RR-SP1 thus would be skipped in this
subsection.

Apply Fourier transform with respect to x on above BVPs, it yields to the following two
one-dimensional BVPs:

BVP1:

∂2ên+1
1

∂y2
− ω2ên+1

1 = 0, (3.100)

ên+1
1 (0) = 0, (3.101)

F [An+1
1l]− ω2

4π
ên+1
1 ∗ F [T1q] = γ̂n+1

1 (A). (3.102)

BVP2:

∂2ên+1
2

∂y2
− ω2ên+1

2 = 0, (3.103)

ên+1
2 (0) = 0, (3.104)

F [An+1
2l]− ω2

4π
ên+1
2 ∗ F [T2q] = γ̂n+1

2 (A). (3.105)

Note in the formulation of BVP2, y-coordinate shifts by y′ = y − B. The final result would
be restored based on y later on.

The right-hand-side γ̂1 and γ̂2 are defined as

γ̂n+1
1 (A) := F [An+1

1r]− ω2

4π
ên2 ∗ F [T1q],

γ̂n+1
2 (A) := F [An

2r]−
ω2

4π
ên1 ∗ F [T2q].

The problem has the general solution shown as Eq.(3.85), and the homogeneous boundary
conditions eliminate D1 and D2. Next, apply the general solution to the two interface

80

boundary conditions. F [Ail] term does not need to calculate.

− ω2

4π
ên+1
1 ∗ F [T1q]

=− ω2

4π
ên+1
1 ∗ F [S2x

2 − 2x · S2x+ x2 · S2I],

=− ω2

4π
ên+1
1 ∗ F [S2x

2 − x2 · S2I], (S2x = S∗
2I · x,)

=− ω2

4π
ên+1
1 ∗ [(Ŝ2(ω)− Ŝ2(0))(−2πδ(2)(ω))], (S∗

2I = Ŝ2(0),)

=
1

2

∫︂ ∞

−∞
τ 2C1(τ) sinh(τA)(Ŝ2(ω − τ)− Ŝ2(0))δ

(2)(ω − τ)dτ,

=
1

2
[τ 2C1(τ) sinh(τA)(Ŝ2(ω − τ)− Ŝ2(0))]

′′

τ=ω,

=
1

2
ω2C1(ω) sinh(ωA)Ŝ2ωω(0)− [ω2C1(ω) sinh(ωA)]′Ŝ2ω(0),

=
1

2
ω2C1(ω) sinh(ωA)Ŝ2ωω(0). (Ŝ2ω(0) = 0.)

(3.106)

− ω2

4π
ên+1
2 ∗ F [T2q]

=− ω2

4π
ên+1
2 ∗ F [S1x

2 − 2x · S1x+ x2 · S1I],

=− ω2

4π
ên+1
2 ∗ F [S1x

2 − x2 · S1I], (S1x = S∗
1I · x,)

=− ω2

4π
ên+1
2 ∗ [(Ŝ1(ω)− Ŝ1(0))(−2πδ(2)(ω))], (S∗

1I = Ŝ1(0),)

=
1

2

∫︂ ∞

−∞
τ 2C2(τ) sinh(τA′)(Ŝ1(ω − τ)− Ŝ1(0))δ

(2)(ω − τ)dτ, (A′ = A−B,)

=
1

2
[τ 2C2(τ) sinh(τA′)(Ŝ1(ω − τ)− Ŝ1(0))]

′′

τ=ω,

=
1

2
ω2C2(ω) sinh(ωA′)Ŝ1ωω(0)− [ω2C2(ω) sinh(ωA′)]

′
Ŝ1ω(0),

=
1

2
ω2C2(ω) sinh(ωA′)Ŝ1ωω(0). (Ŝ1ω(0) = 0.)

(3.107)

Note Ŝiωω is the second-order derivative of Ŝi with respect to ω.

Therefore, the coefficients C1 and C2 could be obtained:

C1(ω) =
γ̂n+1
1 (A)

[ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)] sinh(ωA)

,

C2(ω) =
γ̂n+1
2 (A′)

[−ω coth(ωA′) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)] sinh(ωA′)

.

The solution to the BVPs in both regions could be obtained:

ên+1
1 (ω, y) =

γ̂n+1
1 (A) sinh(ωy)

[ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)] sinh(ωA)

,

81

ên+1
2 (ω, y) =

γ̂n+1
2 (A) sinh(ω(y −B))

[−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)] sinh(ω(A−B))

.

Particularly, at y = A, the solution is

ên+1
1 (ω,A) =

γ̂n+1
1 (A)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

, (3.108)

ên+1
2 (ω,A) =

γ̂n+1
2 (A)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

. (3.109)

Clearly, ên+1
i (ω,A) is a function of γ̂n+1

i (A). So the evolution of γ̂n+1
i is equal to the evolution

of ên+1
i :

γ̂n+1
1 (A) := F [An+1

1r]− ω2

4π
ên+1
2 (A) ∗ F [T1q],

= F [An+1
1r] +

1

2
ω2ên+1

2 (A)Ŝ2ωω(0), (analogous to Eq.(3.106),)

=
ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0) +

1
2
ω2Ŝ2ωω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

γ̂n+1
2 (A),

= Φ1q(ω)γ̂
n+1
2 (A),

= Φ1q(ω) · [F [An
2r]−

ω2

4π
ên1 ∗ F [T2q]],

= Φ1q(ω) · [F [An
2r] +

1

2
ên1ω

2Ŝ1ωω(0)], (analogous to Eq.(3.107),)

= Φ1q(ω) ·
−ω coth(ωA)(ω,A) + Ŝ1(0) + ωŜ1ω(0) +

1
2
ω2Ŝ1ωω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

γ̂n
1 .

(3.110)

γ̂n+1
2 (A) := F [An

2r]−
ω2

4π
ên1 ∗ F [T2q],

= F [An
2r] +

1

2
ên1ω

2Ŝ1ωω(0), (analogous to Eq.(3.107),)

=
−ω coth(ωA)(ω,A) + Ŝ1(0) + ωŜ1ω(0) +

1
2
ω2Ŝ1ωω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

γ̂n
1 ,

= Φ2q(ω)γ̂
n
1 ,

= Φ2q(ω) · [F [An
1r]−

ω2

4π
ên2 (A) ∗ F [T1q]],

= Φ2q(ω) · [F [An
1r] +

1

2
ω2ên2 (A)Ŝ2ωω(0)], (analogous to Eq.(3.106),)

= Φ2q(ω) ·
ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0) +

1
2
ω2Ŝ2ωω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

γ̂n
2 (A).

(3.111)

It has been known that Ŝ1(ω) = ω coth(ωA) and Ŝ2(ω) = ω coth(ω(B − A)), then the

82

convergence rate is

∥ên+1
i ∥

= |Φ1q(ω)Φ2q(ω)| ∥êni ∥,

=

⃓⃓⃓⃓
⃓ Ŝ2(0)− Ŝ2(ω) + ωŜ2ω(0) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(ω) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

·
Ŝ1(0)− Ŝ1(ω) + ωŜ1ω(0) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(ω) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓ ∥êni ∥

=

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) + ωŜ1ω(0) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(0) + Ŝ2(ω) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

·
Ŝ2(0)− Ŝ2(ω) + ωŜ2ω(0) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(0) + Ŝ1(ω) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓ ∥êni ∥

(3.112)

Note such as in previous case of RR-SP0 and RR-SP1, there is a restriction on the value of
ω := kπ, (k = 1, 2...)

Comparing with RR-SP1, the convergence rate differs by an extra term at end of the numerator
and denominator respectively: 1

2
ω2Ŝiωω(0) The expression of Ŝiωω is

Ŝ1ωω(ω) =2A2ω coth(ωA)(coth2(ωA)− 1) + 2A(1− coth2(ωA)),

Ŝ2ωω(ω) =2(B − A)2ω coth(ω(B − A))(coth2(ω(B − A))− 1)+

2(B − A)(1− coth2(ω(B − A))).

The value of Ŝ1ωω(0) is not 0 so the convergence of the algorithm differs from that of RR-SP0.
The influence will be discussed in next Chapter 4.

3.5 Summary

This chapter performs the convergence rate calculation of RR-SP0, RR-SP1 and RR-SP2
applied to Poisson’s equation via the methods of separation of variables and Fourier
transform. Since the application of SP operators yields to two-dimensional problems that
could be largely influenced by the boundary conditions with respect to x, the calculation
result is actually subjected to the boundary conditions and the influence is called boundary
effect. To simplify the calculation, the boundary effect is not considered in the chapter
and the calculation method is so-called standard approach. The exclusion of the boundary
effect enables SiI to be reduced to one-dimensional (constant) thus the calculation is largely
simplified. The convergence rate of RR-SP0 (also apply to RR-SP1 and RR-SP2) between the
parallel and the sequential versions is also compared and it shows that the sequential algorithm
could converge twice as fast as the parallel version. Next, based on the calculation result of
RR-SP0, the case of RR-SP1 is calculated with additional assumption on Six. The calculation
of RR-SP2 (with additional assumption of Six

2) is performed on the foundation of RR-SP0
and RR-SP1 calculation results. The calculation result shows that RR-SP0 and RR-SP1 have
identical convergence rate and RR-SP2 is lower than the both two. In addition, the calculation
result is proved valid for any two-dimensional BVP that has variable-separation form solution.

83

Chapter 4

Convergence analysis of NDD algorithms

This chapter analyses the convergence property of RR algorithms in application to solving
Poisson’s equation with various A. The analysis is based on the convergence rate calculation
performed in Chapter 3. Then, the influence of the boundary effect of the algorithms is
discussed. The motivation of studying the boundary effect is to understand how different
A affects the strength of the boundary effect and explain the difference between S∗

i and Si

cases in numerical test.

In Section 4.1, the convergence analysis about RR-SP0(1) is made. The analysis finds that the
convergence rate is associated with the increment of SP operator symbols:∆si(ω) := Ŝi(ω)−
Ŝi(0), and the multiplication ∆s1∆s2 together determines the convergence of RR-SP0 with
given A. In addition, the multiplication is symmetric in terms of A so the convergence of
A = 1/8 is the same as A = 7/8. The theory is verified by a numerical test on Poisson’s
equation. At the end of the section, the parallel and sequential versions of the algorithm are
compared.

In Section 4.2, the convergence analysis about RR-SP2 is made. Unlike RR-SP0, the analysis
is not fully strict but with limited approximation. Two approximation methods are presented.
The first approximation assumes Ŝiω(ω) (that is the derivative of Ŝi(ω)) is linear before a
turning point and goes flat after the point. As a result of the linearity of Ŝiω(ω), its derivative
Ŝiωω(ω) is presumed to be constant when it is actually not. The second approximation
applies the first presumption only and analyses Ŝiω(ω) based on its real profile. In theory,
the second approximation should be slightly more accurate but the two methods actually lead
to the same result about the convergence of RR-SP2. According to the two approximations,
the convergence of RR-SP2 is determined by: Ŝ1ω(0)Ŝ2ω(0) and ∆s1ωω(ω

∗∗)∆s2ωω(ω
∗∗)

separately. Note∆siωω(ω) := Ŝiωω(ω)−Ŝiωω(0). In practice, the first approximation is easier
to implement because it requires the knowledge of Ŝiω(0) only while the second requires to
know Ŝiω(ω) across a range of ω.

In Section 4.3, a conventional Robin-to-Robin algorithm is introduced and analysed. The
algorithm is proposed and developed in [99], [101], [102] and it has similar structure to
RR-SP0. The study of [102] shows that the convergence of the algorithm could be improved
if a free parameter is optimised. As the representation of the conventional RR algorithm,
the optimised algorithm is studied in terms of the theoretical convergence rate, and the same
numerical test as done in [102] is conducted as well. Both theoretical and numerical study

84

prove that RR-SP0 has superior convergence property than the conventional algorithm.

Section 4.4 discusses the so-called boundary effect in RR-SP0 calculation. The boundary
effect is the result of the existence of the boundaries on both x ends, and has been ignored
in previous calculation and analysis. However, the numerical result shows that in some cases
it could incur non-negligible error if SiI is considered as S∗

i I . The aim of the study is to
understand by how much the boundary effect could affect the convergence and how it is
associated with A. An exponential function model is adopted to represent the boundary effect
and the convergence calculation is performed again with the boundary effect held accountable.
To simplify the calculation, some estimation is made to maintain the main character of the
boundary effect and the result shows that the strength of the boundary effect mainly depends
on the profile of the ’pike function’, which is the reflection/representation of the boundary
effect in SiI profile. Graphically, if the function is high and wide, the boundary effect imposes
strong boost on the convergence and otherwise not. Meanwhile, an empirical law is proposed
to estimate the boundary effect strength in a quantitative manner, and a Poisson’s equation
test is implemented to verify the validity of the law. The test result is positive.

Section 4.5 and 4.6 performs the convergence rate calculation and analysis of RR-SP1 and
RR-SP2 with considering the boundary effect in Poisson’s equation. The calculation method is
the same as in Section 4.4: find a ’pike functions’ to represent the boundary effect in Si profile
and analyse how the pike functions affect the standard convergence. In the case of RR-SP0, the
pike function is denoted by Pi(x) and it is defined in SiI profile. In this section, similar pike
functions are defined in Six and Six

2 respectively. Unlike RR-SP0 case, the pike functions
are not studied in fully quantitative manner because the model study as shown in Section 4.4
is not applied in the section. The study of the pike functions shows that the boundary effect
helps reduce the standard convergence rate in both RR-SP1 and RR-SP2 algorithms: they
both have positive effect on the convergence. In addition, considering the boundary effect,
RR-SP1 is supposed to converge faster than RR-SP0, but RR-SP2 could perform very similar
convergence to RR-SP1.

4.1 Convergence analysis of RR-SP0 without boundary effect

This section makes convergence analysis based on the convergence rate of RR-SP0 applied to
Poisson’s equation, which is obtained from Chapter 3. There are two versions of RR-SP0:
sequential and parallel, and only the former is discussed. The parallel algorithm should
resemble the sequential algorithm in every respect except taking twice number of iterations
to converge. It is found that the convergence rate is determined by the increment of the two
symbols of SP operators: ∆si(ω) := Ŝi(ω) − Ŝi(0). The analysis shows that the algorithm
has low convergence rate even if in high-ω phase. Meanwhile, the interface boundary location
has influence on the convergence rate, and A = 1/8 (or 7/8) is found optimal. To verify the
analysis result, a numerical test implemented on Poisson’s equation is conducted and the test
result is found to coincide well with the analysis. In addition, the convergence analysis of DR
could be found in [83] so no elaboration would be provided in the thesis.

85

Figure 4.1. Profile of Ŝ1 applied to Poisson’s equation. It is known that Ŝ1(ω) = ω coth(ωA), and the profile
is plotted against various ω and A.

4.1.1 Analysis of RR-SP0

In Chapter 3, it has been calculated that Ŝ1(ω) = ω coth(ωA) and Ŝ2(ω) = ω coth(ω(B−A)).
Particularly, Ŝ1(0) = 1/A and Ŝ2(0) = 1/(B − A). Therefore the convergence rate could
also be written as

∥ên+1
1 ∥ =

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω)

Ŝ1(0) + Ŝ2(ω)
· Ŝ2(0)− Ŝ2(ω)

Ŝ2(0) + Ŝ1(ω)

⃓⃓⃓⃓
⃓ ∥ên1∥,

(ω = kπ, k = 1, 2...).

(4.1)

The symbol value Ŝi(ω) := ω coth(ωx) is always positive and increases with rising ω, see
Fig.4.1 and 4.2, so the convergence rate is always less than 1, which means that there would
be no divergence happening. Meanwhile, it is important to know which harmonic needs to be
considered and which to ignore in terms of energy distribution, because it is not necessary to
consider ω up to∞. In this project, the initial guess of the solution is always zero, so the initial
error at interface is the solution to the problem itself. Assume the solution is a polynomial
function of up to order three (at least the solution could be fitted by polynomial function of
such kind) so that the polynomial function is composed of four basic functions: 1, x, x2 and
x3, all defined in (0 ≤ x ≤ 1). Next, consider the energy spectrum of each basic function.

86

Figure 4.2. Profile of Ŝ2 applied to Poisson’s equation. It is known that Ŝ2(ω) = ω coth(ω(B −A)), and the
profile is plotted against various ω and A.

Take Fourier transform on each basic function:

F(1) =
sin(ω)
ω

+ j
cos(ω)− 1

ω
, (4.2)

F(x) =
sin(ω)
ω

+
cos(ω)− 1

ω2
+ j(

cos(ω)
ω

− sin(ω)
ω2

), (4.3)

F(x2) =
sin(ω)
ω

+
2 cos(ω)

ω2
− 2 sin(ω)

ω3
+

j(
cos(ω)

ω
− 2 sin(ω)

ω2
− 2(cos(ω)− 1)

ω3
),

(4.4)

F(x3) =
sin(ω)
ω

+
3 cos(ω)

ω2
− 6 sin(ω)

ω3
− 6(cos(ω)− 1)

ω4
+

j(
cos(ω)

ω
− 3 sin(ω)

ω2
− 6 cos(ω)

ω3
+

6 sin(ω)
ω4

).

(4.5)

Note j is the imaginary unit. The energy spectrum could be calculated by
√
a2 + b2, given

the Fourier coefficient is expressed in the form of a+ bj. The energy spectrum of each basic
function is illustrated in Fig.4.3. It can be seen that energy is mostly distributed in low-ω zone.
Therefore, for each basic function, it is sufficient to consider only those low-wave-number
harmonics, which roughly dominate the convergence nature of the polynomial functions.
The standard of ’low’ or ’high’ wave number may vary, depending on how much energy
is neglected. In this project, wave number larger than 6π is cut off.

87

Figure 4.3. Energy spectrum of 1, x, x2 and x3.

Let us define
∆si(ω) := Ŝi(ω)− Ŝi(0), (4.6)

then the convergence rate Eq.(4.1) could be transformed to

∥ên+1
1 ∥ =

⃓⃓⃓⃓
⃓ ∆s1(ω)

Ŝ(0) + ∆s2(ω)
· ∆s2(ω)

Ŝ(0) + ∆s1(ω)

⃓⃓⃓⃓
⃓ ∥ên1∥,

=

⃓⃓⃓⃓
⃓1− Ŝ

2
(0) + Ŝ(0)(∆s1(ω)∆s2(ω))

Ŝ
2
(0) + Ŝ(0)(∆s1(ω)∆s2(ω)) + ∆s1(ω)∆s2(ω)

⃓⃓⃓⃓
⃓ ∥ên1∥,

(4.7)

where Ŝ(0) = Ŝ1(0) + Ŝ2(0).

It is clear that the convergence rate depends on the multiplication of ∆s1(ω) and ∆s2(ω):
the smaller the multiplication the lower (closer to 0) the convergence rate. When ω is low ,
the multiplication is negligible so the convergence rate is almost to 0. In high-ω phase, the
multiplication dominates and Ŝ

2
(0) is negligible so the convergence rate is roughly equal

to 1

1+Ŝ(0)
. Unlike DR algorithm that converges very slowly for high-ω harmonics, RR-SP0

algorithm performs relatively low convergence rate even if ω is high.

Meanwhile, with different interface boundary location A the multiplication differs and
the overall convergence rate could also be influenced correspondingly. Fig.4.4 illustrates
the value of ∆s1(ω)∆s2(ω) with various A, and it shows that A = 1/8 case has the
smallest multiplication value, while the other three lines (A = 2/8, 3/8, 4/8) are very

88

Figure 4.4. Profile of ∆s1(ω)∆s2(ω) with various A.

close. Consequently, it could be expected that A = 1/8 case (optimal case) has the fastest
convergence and the other three perform roughly equally.

4.1.2 Poisson’s equation test

To verify the analysis result regarding optimal A, let us consider a Poisson’s equation that was
solved in earlier work [102] (studied here for comparative purpose as will be seen in Chapter
5) as sample case:

−∇2u = f.

It is defined in a [0, 1]×[0, 1] square domain and the boundary conditions are exact. According
to [102], it is given that f = 20(y2(1 − y) + (3y − 1)x(1 − x)), and the exact solution is
u = 10x(1−x)2y2(1−y). The mesh is uniform with 65 nodes in each direction. The interface
boundary is evenly distributed at y = A = 1/8, 2/8...7/8 respectively. The convergence
criterion is

max(∥e
n+1
1 − en1
en+1
1

∥∞, ∥e
n+1
2 − en2
en+1
2

∥∞) < 10−3 on Γ. (4.8)

The Poisson’s equation is solved by RR-SP0 (parallel). The parallel algorithm is applied
because it takes twice iterations as sequential algorithm to converge, which makes it more
sensitive to capture the iteration difference among cases. In the test, SiI is considered as

89

constant (S∗
i I) and function of x separately. The numerical test result is shown in Table 4.1.

Table 4.1. Convergence iterations of RR-SP0 in application to a Poisson’s equation case.

A 1/8 2/8 3/8 4/8 5/8 6/8 7/8

SiI 8 9 9 9 8 8 7
S∗
i I 12 16 17 18 17 15 11

The second row of Table 4.1 shows the convergence iterations of RR-SP0 when SiI is
constant, which follows the simplification in the convergence rate calculation. It shows that
A = 1/8 converges in 12 iterations, while the other three (A = 2/8, 3/8, 4/8) perform very
close iterations, around 17. The test result fully agrees with the calculation result as shown in
Fig.4.4.

In addition, the convergence iteration number of A = 7/8 is nearly equal to A = 1/8, and
so are A = (2/8, 6/8), A = (3/8, 5/8) cases. As a matter of fact, it could be interpreted
as a reflection of ’symmetric’ property of Ŝ1 and Ŝ2 in terms of A. From the definition of
Ŝi, it could be seen that Ŝ1|A=A∗(ω0) = Ŝ2|A=1−A∗(ω0), as a result ∆s1|A=A∗∆s2|A=A∗ =

∆s2|A=1−A∗∆s1|A=1−A∗ . In other words, the profile of Ŝ1 (as well as ∆s1) coincides with the
mirror profile of Ŝ2 (∆s2). The axis of the mirror reflection is A = 4/8.

The cases of SiI not being a constant show less iterations than its counterpart, which could be
roughly explained by non-local effect of SiI: the two-dimensional operator retains non-local
effect but the one-dimensional operator hardly does. From Fig.4.5 it could be seen that the
non-local effect mostly happens at the vicinity of the two walls, so it could be stated that the
non-local effect of SiI is almost equal to the boundary effect. What is more, Table 4.3 shows
that the iteration numbers of SiI cases are nearly equal regardless of A, which means that
A could also affect the strength of the boundary effect. It could be speculated that A = 4/8

results in the strongest boundary effect while A = 1/8 (as well as 7/8) is merely mildly
influenced by the boundary effect. It will be discussed in Section 4.4 about how A affecting
the boundary effect strength.

To summarise, the convergence of RR-SP0 applied to Poisson’s equation depends on the
multiplication of SP operator symbols increment: ∆s1(ω)∆s2(ω). Lower multiplication
results in smaller convergence rate and faster convergence. In addition, the two symbol
increments are symmetric in terms of interface boundary location A, so the convergence rate
is always equivalent for a pair of symmetric A: A∗ and 1− A∗.

4.1.3 Comparison between parallel and sequential algorithms

Comparing with sequential version, the parallel algorithm takes twice number of iterations
in achieving the convergence, because the parallel algorithm takes two iterations to reduce
the error to a level to which sequential algorithm takes only 1 iteration. The reason could be
seen from the algorithms themselves: in the parallel case, en+1

1 uses the result of en2 from last
iteration when more accurate data of en+1

2 has been already updated in current iteration. The

90

Figure 4.5. Profile of S1I, S2I applied to Poisson’s equation, A = 7
8 .

newly-generated data is not used until next iteration. On the other hand, the parallel version
has the advantage of computing both subdomains at one time (assume two CPUs work at the
same time), which means the computing time of the parallel case is roughly 50% of sequential
case in each iteration. Therefore, the overall computing time of the two versions is roughly
equal.

In this project, only two subdomains are generated in domain decomposition method. If there
were more than two subdomains, the parallel computing should have taken less time because
in each iteration the computing workload is split byN (N is number of subdomains,N >> 2)
CPUs working at the same time. This is the typical way of parallel computing working in
conventional domain decomposition methods. In the thesis, ENDD algorithms in application
to resolving near-wall turbulence do not take much advantage of parallel computing because
only two subdomains are generated, and usually the inner subdomain contains finer mesh
and undertakes heavier computation. The numerical tests in this project suggest that inner
subdomain usually takes as twice computing time as outer subdomain does, which means two
CPUs could not synchronise if they were running in parallel. Therefore, sequential algorithm

91

costs less computing time in this project.

The comparison result between the parallel and the sequential algorithms applies to RR-SP1
and RR-SP2 as well, although the convergence rate calculation between the parallel and the
sequential versions of the two algorithms is not performed.

4.2 Convergence analysis of RR-SP2 without boundary effect

4.2.1 Analysis of RR-SP2: approximation 1

Figure 4.6. Profile of Ŝ1ωω(ω) with various A. The profile of Ŝ2ωω(ω) could also be depicted by this figure:
Ŝ2ωω(ω)|A∗ = Ŝ1ωω(ω)|(1−A∗).

The convergence rate of RR-SP2 has similar structure in formulation to RR-SP0, and the only
difference is the extra term in numerator and denominator: 1

2
ω2Ŝiωω(0). The middle term

ωŜiω(0) is 0 thus neglected:

∥ên+1
i (A)∥

=

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(0) + Ŝ2(ω) +
1
2
ω2Ŝ1ωω(0)

·
Ŝ2(0)− Ŝ2(ω) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(0) + Ŝ1(ω) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓ ∥êni (A)∥.

Comparing with the convergence rate of RR-SP0, the influence of the extra term depends on
the value of Ŝiωω(0), which is shown in Fig.4.6. The figure shows that the value of Ŝ1ωω(0)

increases with rising A. In addition, the profile of Ŝ2ωω(ω) is symmetric to Ŝ1ωω(ω) along

92

Figure 4.7. Profile of Ŝ1ω(ω) with various A. The profile of Ŝ2ωω(ω) could also be depicted by this figure:
Ŝ2ωω(ω)|A∗ = Ŝ1ωω(ω)|(1−A∗). Every line has a ’turning point’ where the line turns to flat. The point value
decreases with increasing A. For A = 7/8, the point value is about 2π; for A = 1/8, the point value is about
6π or even larger.

the axis A = 4/8 so the former could also be depicted by the figure.

To analyse the convergence rate, let us consider the numerator first:

Ŝi(0)− Ŝi(ω) +
1

2
ω2Ŝiωω(0).

Divide above expression by ω two times:

Ŝi(0)− Ŝi(ω)

ω
+

1

2
ωŜiωω(0),

→− Ŝiω(ω
∗) +

1

2
ωŜiωω(0), 0 ≤ ω∗ ≤ ω, ηiω = ω∗,

→ηi
Ŝiω(0)− Ŝiω(ω

∗)

ηiω
+

1

2
Ŝiωω(0), (Ŝiω(0) = 0,)

→− ηiŜiωω(ω
∗∗) +

1

2
Ŝiωω(0), 0 ≤ ω∗∗ ≤ ω∗.

(4.9)

Obviously, 0 < ηi < 1. The magnitude of the numerator depends on the value of Ŝiωω(0)

and Ŝiωω(ω
∗∗). The former has been given in Fig.4.6 but it is difficult to determine exactly

the value of the latter. Here is the estimation:

Fig.4.7 shows the profile of Ŝ1ω(ω) with various A. Due to the symmetry, Ŝ2ω(ω) could also

93

be depicted by the figure. Therefore, considering only the case of Ŝ1ωω(ω) with A ranging
from 1/8 to 7/8 is enough. The figure shows every line has a ’turning point’ at some ω, before
which the line rises quickly (nearly linearly) and afterwards almost goes flat. The turning point
(denote by ωt) increases with smaller A. Meanwhile, ω∗ < ωt. It is obviously true if ω < ωt.
Here is the explanation for the case when ω > ωt:

Ŝiω(ω
∗) =

Ŝi(ω)− Ŝi(0)

ω
,

=

∫︁ ω

0
Ŝiω(ξ)dξ

ω
,

≈
∫︁ ωt

0
lξdξ +

∫︁ ω

ωt lω
tdξ

ω
, (before ωt, assume Ŝiω(ω) = lω where l = const.)

=
lωt(ω − ωt

2
)

ω
< lωt = Ŝiω(ω

t).

(4.10)

Since Ŝiω(0) < Ŝiω(ω
∗) < Ŝiω(ω

t) and Ŝiω is continuous, it could be concluded that 0 <

ω∗ < ωt. In other words, ω∗ always falls on the (almost) straight line of Ŝiω. When ω >> ωt,
ω∗ ≈ ωt.

Additionally, ω∗∗ ≤ ω∗ so ω∗∗ is on the straight line too. According to Fig.4.7, Ŝ1ωω(ω
∗∗) ≈

Ŝ1ωω(ω
∗) ≈ Ŝ1ωω(0). Then Eq.(4.9) becomes

(
1

2
− η1)Ŝ1ωω(0).

Next, consider the convergence rate as a whole:⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(0) + Ŝ2(ω) +
1
2
ω2Ŝ1ωω(0)

·
Ŝ2(0)− Ŝ2(ω) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(0) + Ŝ1(ω) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓

≈

⃓⃓⃓⃓
⃓ (1

2
− η1)ω

2Ŝ1ωω(0)

Ŝ1(0) + Ŝ2(ω) +
1
2
ω2Ŝ1ωω(0)

·
(1
2
− η2)ω

2Ŝ2ωω(0)

Ŝ2(0) + Ŝ1(ω) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓ ,

=

⃓⃓⃓⃓
⃓1− G(ω) + [1

2
(η1 + η2)− η1η2]ω

4S1ωω(0)Ŝ2ωω(0)

G(ω) + 1
4
ω4Ŝ1ωω(0)Ŝ2ωω(0)

⃓⃓⃓⃓
⃓ ,

(4.11)

where

G(ω) :=(Ŝ1(0) + Ŝ2(ω))(Ŝ2(0) + Ŝ1(ω)) +
1

2
ω2Ŝ2ωω(0)(Ŝ1(0) + Ŝ2(ω))+

1

2
ω2Ŝ1ωω(0)(Ŝ2(0) + Ŝ1(ω)).

It is clear that the convergence rate depends on the multiplication Ŝ1ωω(0)Ŝ2ωω(0): the smaller
the multiplication, the lower the convergence rate, because when the multiplication is small
enough to be negligible to G(ω), the value tends to zero. Otherwise G(ω) could not dominate
the value and the entire value could be largely influenced by Ŝ1ωω(0)Ŝ2ωω(0).

94

According to symmetry, the multiplication could be transformed to:

Ŝ1ωω(0)|AŜ2ωω(0)|A = Ŝ1ωω(0)|AŜ1ωω(0)|(1−A). (4.12)

Fig.4.6 shows that a ’well-behaved’A is always paired with ’poorly-behaved’A. For example,
A = 1/8 and 7/8. The former has the least Ŝ1ωω(0) value but the latter has the largest. By
calculating Eq.(4.12), it enables the comparison of the convergence rate of RR-SP2 among
various A. The calculation result is illustrated in Fig.4.8, which shows that A = 1/8 case has
the smallest multiplication value and 4/8 case has the largest. Therefore, the former could be
expected to perform the fastest convergence while the latter performs the lowest. The other
2 cases should be in the middle place and follow the order of magnitude of A itself. Note
A = 7/8 case is identical to A = 1/8 and so are A = 5/8, 6/8, so the cases of A > 4/8 are
not plotted. For example, according to Eq.(4.12), Ŝ1ωω(0)| 1

8
Ŝ2ωω(0)| 1

8
= Ŝ2ωω(0)| 7

8
Ŝ1ωω(0)| 7

8
,

which is equal to the case of A = 7/8: Ŝ1ωω(0)| 7
8
Ŝ2ωω(0)| 7

8
.

Figure 4.8. Profile of Ŝ1ωω(0)Ŝ2ωω(0). Since Ŝ1ωω|A(0) = Ŝ2ωω|1−A(0), the profile is symmetric along
A = 4/8, so the cases for A > 4/8 are not plotted.

Fig.4.9 compares the convergence rate between RR-SP0 and RR-SP2 with A ranging from
1/8 to 4/8. The cases of A larger than 4/8 could be found in the figure by its ’twin’ pair:1−A

thus neglected. The figure shows that A = 1/8 has the lowest convergence rate and the case
of A = 2/8, 3/8 and 4/8 follows in the order of rising A. Meanwhile, the lines of A = 3/8

and 4/8 cases are very close and the two cases have close lines in Fig.4.8 as well. It indicates
that Ŝ1ωω(0)Ŝ2ωω(0) has good approximation of the convergence rate. In addition, it could be

95

seen that SP2 has clear advantage over SP0 when A is small. As A approaches the symmetry
line (A = 4/8), the advantage of SP2 becomes less. Overall, SP2 shows lower convergence
rate than SP0 regardless of A.

Figure 4.9. Convergence rate of RR-SP0 and RR-SP2 with various A.

4.2.2 Analysis of RR-SP2: approximation 2

The approximation in Subsection 4.2.1 assumes that the profile of Ŝiω(ω) is linear before
ωt and flat afterwards. The presumption leads to Ŝiωω(ω

∗∗) ≈ Ŝiωω(0), which could
incur non-negligible error especially when A is large, see Fig.4.6 (Ŝiωω(ω

∗∗) ̸= Ŝiωω(0)).
This subsection introduces another approximation of the convergence rate of RR-SP2. The
approximation still presumes that Ŝiω(ω) is linear before ωt and flat afterwards but will not
consider Ŝiωω as a constant.

96

According to Eq.(4.9), the convergence rate could be expressed as⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(0) + Ŝ2(ω) +
1
2
ω2Ŝ1ωω(0)

·
Ŝ2(0)− Ŝ2(ω) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(0) + Ŝ1(ω) +
1
2
ω2Ŝ2ωω(0)

⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓
⃓ Ŝ1(0)− Ŝ1(ω) +

1
2
ω2Ŝ1ωω(0)

Ŝ1(0)− Ŝ1(ω) +
1
2
ω2Ŝ1ωω(0) + Ŝ(ω)

·
Ŝ2(0)− Ŝ2(ω) +

1
2
ω2Ŝ2ωω(0)

Ŝ2(0)− Ŝ2(ω) +
1
2
ω2Ŝ2ωω(0) + Ŝ(ω)

⃓⃓⃓⃓
⃓ ,

=

⃓⃓⃓⃓
⃓ −η1ω

2Ŝ1ωω(ω
∗∗) + 1

2
ω2Ŝ1ωω(0)

−η1ω2Ŝ1ωω(ω∗∗) + 1
2
ω2Ŝ1ωω(0) + Ŝ(ω)

·
−η2ω

2Ŝ2ωω(ω
∗∗) + 1

2
ω2Ŝ2ωω(0)

−η2ω2Ŝ1ωω(ω∗∗) + 1
2
ω2Ŝ1ωω(0) + Ŝ(ω)

⃓⃓⃓⃓
⃓ ,

=

⃓⃓⃓⃓
⃓ −1

2
ω2∆s1ωω(ω

∗∗) + (1
2
− η1)ω

2Ŝ1ωω(ω
∗∗)

−1
2
ω2∆s1ωω(ω∗∗) + (1

2
− η1)ω2Ŝ1ωω(ω∗∗) + Ŝ(ω)

⃓⃓⃓⃓
⃓ ·⃓⃓⃓⃓

⃓ −1
2
ω2∆s2ωω(ω

∗∗) + (1
2
− η2)ω

2Ŝ2ωω(ω
∗∗)

−1
2
ω2∆s2ωω(ω∗∗) + (1

2
− η2)ω2Ŝ2ωω(ω∗∗) + Ŝ(ω)

⃓⃓⃓⃓
⃓ .

(4.13)

Note Ŝ(ω) = Ŝ1(ω) + Ŝ2(ω) and ∆siωω(ω) := Ŝiωω(ω)− Ŝiωω(0).

Next consider the value of ηi. Let us assume ω∗ := ηiω is either less or greater than 1
2
ωt

(certainly less than ωt, see Eq.(4.10)). The turning point ωt could be found from the profile
of Ŝ1(ω) as well, see Fig.4.10. The figure is similar to Fig.4.1 in terms of showing Ŝ1(ω)

profile but concentrates more on displaying the two-dimensional curvature of the lines. The
turning point is roughly where the lines start rising linearly, and before it the rise is acting
along changeable tangent.

1. If ω∗ is less than 1
2
ωt, ω should be smaller than ωt because ω ≈ 2ω∗ and ηi ≈ 1/2. Here is

the elaboration:

−Ŝ1ω(ω
∗) =

Ŝ1(0)− Ŝ1(ω)

ω
,

=−
∫︁ ω

0
Ŝ1ω(ξ)dξ

ω
,

≈−
Ŝ1ω(

ω
2
)ω

ω
, (Ŝ1ω is almost linear before ωt,)

=− Ŝ1ω(
ω

2
).

Therefore, ηi ≈ 1/2 and Eq.(4.13) becomes⃓⃓⃓⃓
⃓ −1

2
ω2∆s1ωω(ω

∗∗)

−1
2
ω2∆s1ωω(ω∗∗) + Ŝ(ω)

·
−1

2
ω2∆s2ωω(ω

∗∗)

−1
2
ω2∆s2ωω(ω∗∗) + Ŝ(ω)

⃓⃓⃓⃓
⃓ . (4.14)

2. If ω∗ is larger than 1
2
ωt, ω must be larger than ωt. Assume ω = kωt (k > 1), it could be

97

proved that ηi = 1
k
− 1

2k2
. Here is the elaboration:

Ŝiω(ω
∗) =

lωt(ω − ωt

2
)

ω
, from Eq.(4.10),

→ ω∗ =
ωt(ω − ωt

2
)

ω
,

→ ηi :=
ω∗

ω
=

ωt(ω − ωt

2
)

ω2
, (ω = kωt,)

→ ηi =
1

k
− 1

2k2
.

Both Fig.4.7 and Fig.4.10 show that for those small-valued A, ωt is relative large and k could
be quite small (no more than 2), so ηi is still close to 1/2 and (1

2
− ηi) is small enough to

neglect. For those high-valued A, k is large thus (1
2
− ηi) could not be neglected but on the

other hand Ŝiωω(ω
∗∗) could be very small, see Fig.4.6. It could be estimated that ω∗∗ is close

to (slightly smaller) ω∗ (due to quasi-linearity of Ŝiω before ωt) so when ω∗ is larger than 1
2
ωt,

so is ω∗∗. Take A = 7/8 case for example, ωt is about 2π. At ω = 0 the peak value is reached
but at merely ω = ωt

2
= π, Ŝiωω(π) drops down to nearly 0. It is common for high-valued A

cases that they all drop sharply down to very small number after 1
2
ωt so in this case Ŝiωω(ω

∗∗)

is negligible.

The above estimation shows that in any case, the term (1
2
−ηi)ω

2Ŝiωω(ω
∗∗) in Eq.(4.13) could

be neglected and the equation could be reduced to Eq.(4.14), which is equal to⃓⃓⃓⃓
⃓1− Ŝ

2
(ω)− 1

2
ω2Ŝ(ω)(∆s1ωω(ω

∗∗)∆s2ωω(ω
∗∗))

Ŝ
2
(ω)− 1

2
ω2Ŝ(ω)(∆s1ωω(ω∗∗)∆s2ωω(ω∗∗)) + 1

4
ω4∆s1ωω(ω∗∗)∆s2ωω(ω∗∗)

⃓⃓⃓⃓
⃓ .

It is clear that the smaller the multiplication ∆s1ωω(ω
∗∗)∆s2ωω(ω

∗∗), the smaller the
convergence rate. As mentioned earlier, 0 < ω∗∗ < ωt, so by cutting off the extra part (ω > ωt)
of the profile of ∆s1ωω(ω), the profile of ∆s1ωω(ω

∗∗) could be obtained.

Fig.4.11 illustrates the multiplication of ∆s1ωω(ω
∗∗)∆s2ωω(ω

∗∗) (extra part is not cut off but
the trend remains unchanged), which shows consistent result as Fig.4.8. The case of A = 1/8

has the smallest multiplication and it is followed by A = 2/8, 3/8 and 4/8 respectively.
The 3/8 and 4/8 lines are close, as is verified by Fig.4.9. It means that ∆s1ωω(ω)∆s2ωω(ω)

also offers good approximation of the convergence rate of RR-SP2. Compared with the
approximation by Ŝ1ωω(0)Ŝ2ωω(0), this approximation should be more accurate because it
does not presume Ŝiωω as constant (and it is really not). The result shows that both methods
are effective but the latter might be easier to use because it requires the knowledge of Ŝiωω(ω)

at ω = 0 only.

98

Figure 4.10. Profile of Ŝ1(ω) := ω coth(ωA) with various A. If ω∗ is smaller than 1
2ω

t, the mean value ω∗ is
approximately equal to 1

2ω because Ŝ1ω(ω) rises almost linearly before ωt. Therefore, ηi ≈ 1/2 in this case.

4.3 Convergence analysis of conventional RR algorithm

Consider a BVP defined in Ω := {0 ≤ x ≤ 1, 0 ≤ y ≤ B} to be solved by a Robin-Robin
algorithm:

Lun+1
1 = f1, on Ω1

un+1
1y + σ1u

n+1
1 = un

2y + σ1u
n
2 , on Γ,

un+1
1 = 0, on ∂Ω1\Γ,

Lun+1
2 = f2, on Ω2

un+1
2y − σ2u

n+1
2 = un

1y − σ2u
n
1 , on Γ,

un+1
2 = 0, on ∂Ω2\Γ.

(4.15)

Note σ1 and σ2 are constants. Particularly, if let σ1 := S∗
2I and σ2 := S∗

1I , the algorithm is
equal to RR-SP0. According to the convergence rate calculation performed in Chapter 3, the
convergence rate of the algorithm in application to solving Poisson’s equation could be given
directly:

∥ên+1
i ∥ =

⃓⃓⃓⃓
σ2 − kπ coth(kπA)

σ2 + kπ coth(kπ(B − A))

σ1 − kπ coth(kπ(B − A))

σ1 + kπ coth(kπA)

⃓⃓⃓⃓
∥êni ∥,

(k = 1, 2...)

(4.16)

99

Figure 4.11. Profile of ∆s1ωω(ω)∆s2ωω(ω). The definition of ∆siωω(ω) is ∆siωω(ω) := Ŝiωω(ω)− Ŝiωω(0).
By cutting off the part of ω > ωt, the figure could show ∆s1ωω(ω

∗∗) ·∆s2ωω(ω
∗∗)

If let λ := σ1 = σ2, the algorithm becomes what Lui proposed in [102]:

Lun+1
i = fi, on Ωi,

∂un+1
i

∂ni

+ λun+1
i = gn+1

i , on Γ,

un+1
i = 0 on ∂Ωi\Γ,

(4.17)

where
gn+1
1 = 2λun

2|Γ − gn2 , gn+1
2 = 2λun

1|Γ − gn1 . (4.18)

Following Eq.(4.16), the convergence rate is as follows:

∥ên+1
i ∥ =

⃓⃓⃓⃓
λ− kπ coth(kπA)

λ+ kπ coth(kπ(B − A))

λ− kπ coth(kπ(B − A))

λ+ kπ coth(kπA)

⃓⃓⃓⃓
∥êni ∥,

(k = 1, 2...).

(4.19)

Lui stated in his paper [102] that the optimal λ = 6.794 could achieve the fastest convergence
regardless of interface boundary position A. However, 6.794 is not always the best choice.
Let λ = S∗

1I , the convergence is proved faster than 6.794 by numerical test when A = 1/8.
Recall in Section 4.1, it is found that the convergence rate is determined by ∆s1(ω)∆s2(ω).
Similar to the definition of ∆si, the convergence rate of the algorithm as shown in Eq.(4.15)

100

is determined by:

∆σ1(ω)∆σ2(ω) := (kπ coth(kπA)− σ2)(kπ coth(kπ(B − A))− σ1),

= (Ŝ1(ω)− σ2)(Ŝ2(ω)− σ1), (ω := kπ, k = 1, 2...).
(4.20)

By calculating the value of ∆σ1(ω)∆σ2(ω) with various A, the convergence rate could be
compared. Fig.4.12 shows the comparison between λ = 6.794 case and λ = S∗

1I case against
several selections of A. The figure shows that when A = 1/8, S∗

1I case line is slightly below
6.794 case line, which means the convergence of the former could be slightly faster than the
latter. As forA = 3/8 andA = 7/8 cases, the lines of S∗

1I case are much above those of 6.794
case, which suggests that the convergence of 6.794 case would be better than its counterpart,
especially for A = 7/8 case.

Figure 4.12. Profile of ∆σ1∆σ2. In Lui’s case, λ = σ1 = σ2 = 6.794. In otherwise case, λ = σ1 = σ2 = S∗
1I

A numerical test is performed on the two algorithms to solve a Poisson’s equation with A =

1/8, 3/8 and 7/8. The test case is the same as Subsection 4.1.2 except for the convergence
criterion, which follows what Lui used in his paper:

max(∥en1∥∞, ∥en2∥∞) < 10−4. (4.21)

The numerical test result is summarised in Table 4.2, which shows consistent result with
Fig.4.12. Firstly, λ = S∗

1I is better than 6.794 in A = 1/8 case and worse in other 2 cases.
Secondly, given λ = S∗

1I , A = 1/8 case has the fastest convergence, and is followed by 3/8

101

and 7/8 respectively. In addition, the difference between λ = S∗
1I and S1I is related to the

boundary effect, which will be elaborated in Section 4.4. The convergence history of the test
is displayed in Fig.4.13 to 4.15.

Table 4.2. Convergence iterations of Lui’s algorithm in application to a Poisson’s equation.

A 1/8 3/8 7/8

λ = 6.794 5 8 6
λ = SiI 4 8 15
λ = S∗

i I 4 10 22

If let λ = S∗
2I or S2I , the algorithm could be expected to perform equally well in A = 7/8

case (and better than λ = 6.794 case) as λ = S∗
1I or S1I in A = 1/8 case because the

algorithm is symmetric in terms of A. Here is the elaboration: recall Eq.(4.20) determines
the convergence rate:

∆σ1(ω)∆σ2(ω) = (Ŝ1(ω)− σ2)(Ŝ2(ω)− σ1),

= (Ŝ1(ω)− S∗
1I)(Ŝ2(ω)− S∗

1I), (λ = σl = σr = S∗
1I,)

= (Ŝ
1
8

1 (ω)−
1

A
)(Ŝ

1
8

2 (ω)−
1

A
), (A =

1

8
,)

= (Ŝ
7
8

2 (ω)−
1

B − A
)(Ŝ

7
8

1 (ω)−
1

B − A
), (A =

7

8
,)

= (Ŝ
7
8

2 (ω)− S∗
2I)(Ŝ

7
8

1 (ω)− S∗
2I), (A =

7

8
).

(4.22)

Note the superscript (n) of Ŝ
n

i (ω) means Ŝi(ω) at A = n.

It shows that when A = 1/8, the convergence rate of λ = S∗
1I is equal to that of λ = S∗

2I

when A = 7/8. Compared with RR-SP0, letting σl = σr = S∗
i I (i = 1, 2) could be expected

to result in slower convergence because single σl(r) could not be close to both S∗
1I and S∗

2I at
the same time but RR-SP0 could do with 2 different σ. This proves the advantage of RR-SP0
over Lui’s single-value σ(λ) algorithm (conventional RR algorithm).

4.4 Boundary effect analysis of RR-SP0

This section discusses the influence of the so-called ’boundary effect’ on the convergence rate
of RR-SP0 algorithm. The boundary effect could boost the convergence compared with the
case of SiI treated as constant, but the boost intensity varies with A. This section quantifies
the boundary effect in an estimated way and propose an easy empirical method to evaluate
the boundary effect.

4.4.1 Modelling of boundary effect

The boundary effect arises from the existence of the boundary on x direction. It makes the unit
function I terminate at boundary and the value of SiI differ from what it should have been

102

Figure 4.13. Convergence history of Lui’s algorithm in application to solving a Poisson’s equation with three
different λ, A = 1/8.

Figure 4.14. Convergence history of Lui’s algorithm in application to solving a Poisson’s equation with three
different λ, A = 3/8.

103

Figure 4.15. Convergence history of Lui’s algorithm in application to solving a Poisson’s equation with three
different λ, A = 7/8.

if I had no boundary. The difference resulted by the boundary effect is illustrated in Fig.4.5,
where two ’pikes’ could be found at both ends of the figures. In otherwise case, the profile of
SiI is a constant. In previous convergence rate calculation, SiI is taken as a constant because
the ’pike function’ is difficult to quantify. However, the method might be over-simplified in
predicting the convergence, as can be seen from Table 4.1 that the result between SiI and S∗

i I

could vary much especially for middle-valued A cases. The idea to fix the simplification is
to fit the ’pike function’ with a model function and consider SiI as the sum of the constant
function and the ’pike function’:

SiI(x) = S∗
i I + Pi(x),

where Pi(x) represents the ’pike function’.

The following exponential function is used to model Pi(x):

Pi(x) := αe−β(x−σl) + αeβ(x−σr), (4.23)

where x ∈ [σl, σr] and 0 < σl, σr < 1.

The free parameters (α, β, σl, σr) of the model equation could be determined by fitting SiI(x)

profile. The plotting of SiI(x) requires the calculation of SiI in advance, which is part of the
pre-calculation of implementing RR-SP0 algorithm. Therefore, there is no extra computing

104

cost incurred.

Take Fourier transform on SiI: (j is imaginary unit)

F [SiI] = Ŝi(0) + fr(ω) + fi(ω)j,

where fr and fi are the real and imaginary part of Fourier transform of Pi(x) respectively,
and they could be obtained analytically:

fr(ω) :=
α

β2 + ω2
[β(cosσlω + cosσrω) + ω(sinσrω − sinσlω)], (4.24)

fi(ω) :=
α

β2 + ω2
[−β(sinσlω + sinσrω) + ω(cosσrω − cosσlω)]. (4.25)

Now consider the (parallel) convergence rate calculation of RR-SP0 again. The standard
approach has been performed in Chapter 3 and let us skip to Eqs.(3.42) and (3.43) directly:

ên+1
1y (A) + F [(S∗

2I + P2(x)) · en+1
1 (A)] = γ̂n+1

1 (A),

→ ên+1
1y (A) + Ŝ2(0)ê

n+1
1 (A) +

1

2π
P̂ 2(ω) ∗ ên+1

1 (A) = γ̂n+1
1 (A),

→ C1(ω)(ω cosh(ωA) + Ŝ2(0) sinh(ωA)) +
1

2π
P̂ 2(ω) ∗ ên+1

1 (A) = γ̂n+1
1 (A),

→ C1(ω) =
γ̂n+1
1 (A)− 1

2π
P̂ 2(ω) ∗ ên+1

1 (A)

ω cosh(ωA) + Ŝ2(0) sinh(ωA)
.

− ên+1
2y (A′) + F [(S∗

1I + P1(x)) · en+1
2 (A′)] = γ̂n+1

2 (A′),

→ − ên+1
2y (A′) + Ŝ1(0)ê

n+1
2 (A′) +

1

2π
P̂ 1(ω) ∗ ên+1

2 (A′) = γ̂n+1
2 (A′),

→ C2(ω)(−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)) +
1

2π
P̂ 1(ω) ∗ ên+1

2 (A′) = γ̂n+1
2 (A′),

→ C2(ω) =
γ̂n+1
2 (A′)− 1

2π
P̂ 1(ω) ∗ ên+1

2 (A′)

−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)
.

The solutions to the BVPs are

ên+1
1 (ω, y) =

(γ̂n+1
1 (A)− 1

2π
P̂ 2(ω) ∗ ên+1

1 (A)) sinh(ωy)
ω cosh(ωA) + Ŝ2(0) sinh(ωA)

,

ên+1
2 (ω, y) =

(γ̂n+1
2 (A)− 1

2π
P̂ 1(ω) ∗ ên+1

2 (A)) sinh(ω(y −B))

−ω cosh(ω(A−B)) + Ŝ1(0) sinh(ω(A−B))
.

Particularly, on y = A the (implicit) solution reads

ên+1
1 (ω,A) =

γ̂n+1
1 (A)− 1

2π
P̂ 2(ω) ∗ ên+1

1 (A)

ω coth(ωA) + Ŝ2(0)
, (4.26)

ên+1
2 (ω,A) =

γ̂n+1
2 (A)− 1

2π
P̂ 1(ω) ∗ ên+1

2 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
. (4.27)

105

Next, expand γ̂n+1
i (A):

γ̂n+1
1 (A) := ên2y(A) + Ŝ2(0)ê

n
2 (A) +

1

2π
P̂ 2(ω) ∗ ên2 (A),

= (ω coth(ω(A−B)) + Ŝ2(0))ê
n
2 (A) +

1

2π
P̂ 2(ω) ∗ ên2 (A).

γ̂n+1
2 (A) := −ên1y(A) + Ŝ1(0)ê

n
1 (A) +

1

2π
P̂ 1(ω) ∗ ên1 (A),

= (−ω coth(ωA) + Ŝ1(0))ê
n
1 (A) +

1

2π
P̂ 1(ω) ∗ ên1 (A).

Substitute the expanded γ̂n+1
i (A) into the solution at y = A, the solution could be re-arranged

as:

ên+1
1 (A) +

1
2π
P̂ 2(ω) ∗ ên+1

1 (A)

ω coth(ωA) + Ŝ2(0)
=
ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
ên2 (A)+

1
2π
P̂ 2(ω) ∗ ên2 (A)

ω coth(ωA) + Ŝ2(0)
,

(4.28)

ên+1
2 (A) +

1
2π
P̂ 1(ω) ∗ ên+1

2 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
=

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
ên1 (A)+

1
2π
P̂ 1(ω) ∗ ên1 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
.

(4.29)

The above equations are composed of two terms on each side separately, without the second
of which the equations are identical to the standard approach performed in Chapter 3:

ên+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
ên2 (A) := CR1(ω) · ên2 (A), (4.30)

ên+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
ên1 (A) := CR2(ω) · ên1 (A). (4.31)

It is the second term on both sides of Eqs.(4.28) and (4.29) that changes the convergence rate.
It is complicated to calculate the exact convolution, so some approximations need to be made.
First consider the convolution in the left extra term:

P̂ i(ω) ∗ ên+1
j (A) = P̂ i(ω) ∗ (θj(ω)CRj(ω)ê

n
i (A)), i ̸= j,

= Xj(ω) · P̂ i(ω) ∗ êni (A).

Note it is assumed that ên+1
i (A) = θi(ω)CR1(ω)ê

n
j (A), where the boundary effect is

represented by a complex function θi(ω). If |θi| < 1, the boundary effect boosts the
convergence (as numerical result shows, see Table 4.1), otherwise the boundary effect makes
the convergence slower. In addition, it is assumed that |Xi(ω)| < 1 because certainly
|ên+1

i (A)| < |ênj (A)|, and as a result the convolution of the former with P̂ i(ω) is smaller

106

than the convolution of the latter. Xi(ω) is the nonlinear reflection of θi(ω)CR1(ω) out of the
convolution calculation and remains unknown.

Next, move the second term of the left side in Eqs.(4.28) and (4.29) to the right side and
re-arrange:

ên+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
ên2 (A) +

1−X1(ω)
2π

P̂ 2(ω) ∗ ên2 (A)
ω coth(ωA) + Ŝ2(0)

,

→ ên+1
1 (A)

ên2 (A)
=

ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
+

1−X1(ω)
2π

P̂ 2(ω)∗ên2 (A)

ên2 (A)

ω coth(ωA) + Ŝ2(0)
.

(4.32)

ên+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
ên1 (A) +

1−X2(ω)
2π

P̂ 1(ω) ∗ ên1 (A)
−ω coth(ω(A−B)) + Ŝ1(0)

,

→ ên+1
2 (A)

ên1 (A)
=

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
+

1−X2(ω)
2π

P̂ 1(ω)∗ên1 (A)

ên1 (A)

−ω coth(ω(A−B)) + Ŝ1(0)
.

(4.33)

The first term on the right side represents the standard convergence rate (CRi(ω)) obtained
from simplified calculation in Chapter 3, and the second terms represents the boundary effect.
Comparing the two terms, it could be found that the two terms have identical denominators.
Meanwhile, the real part ofXi(ω) should be negative (sinceCRi(ω) is negative, see Fig.4.16)
and |Xi| < 1, so it could be estimated that 0 < |1−Xi(ω)| < 2 thus |1−Xi

2π
| < 1. Therefore,

the effect is actually dominated by

P̂ i(ω) ∗ êni (A)
êni (A)

. (4.34)

4.4.2 Model study of boundary effect

Recall in the convergence analysis of RR-SP0, it is assumed that the interface value eni (x)

is made up of polynomials up to order three, and Eqs.(4.2)-(4.5) show the Fourier transform
of the polynomials. The profile of the Fourier transform is illustrated in Fig.4.17 and 4.18.
Meanwhile, the Fourier transform of Pi(x) is given by Eqs.(4.24) and (4.25), and is illustrated
in Figs.4.19 and 4.20.

Figs.4.17 and 4.18 show that the Fourier transform of polynomials of different orders is highly
similar, especially when ω is high (thus Fourier transform of even higher order polynomials
is also similar) and they could be fitted by two models:

gr := F [eni (x,A)]r ≈
Lr

ωNr + 1
cos(ω + ωr

0); (4.35)

107

Figure 4.16. Profile of CRi(ω), which is always non-positive and decreasing with rising ω.

gi(ω) :=

⎧⎨⎩F [eni (x,A)]i ≈ Li

ωNi+1
(cos(ξω + ωi

0)− 1), if order = 0,

F [eni (x,A)]i ≈ Li

ωNi+1
cos(ξω + ωi

0). if order ̸= 0.
(4.36)

The free parameters are Lr, Li, Nr, Ni, ξ, ω
r
0 and ωi

0. 0 < Lr, Li, 0 < Nr, Ni, 0 < ξ and
π/2 > |ωr

0|, |ωi
0|. By changing them the model could be adjusted to fit the real lines of

different order. Actually, the models are simplified version of Eqs.(4.2)-(4.5). As can be seen,
the Fourier transform is either sine or cosine function, and the function magnitude declines
by the order of ω−N where N depends on the order of polynomials. The combination of sine
and cosine means that the model equations should have an initial angle ω0 when the models
are constructed by merely cosine function.

Next consider the modelling of Eqs.(4.24) and (4.25). The original functions are a mixture
of sine and cosine functions and the magnitude declines approximately by order of αβ

β2+ω2 or
αω

β2+ω2 . The figures show that the functions could be fitted by the following models:

fr(ω) ≈
αβ

β2 + ω2
cos(ω + ωr

0p),

≈ α

β

lr
1 + ωnr

cos(ω + ωr
0p).

(4.37)

108

Figure 4.17. Fourier transform of polynomials, real part. One model line is plotted for the case of order 2
according to Eq.(4.35). The parameters are: Lr = 0.8, Nr = 0.75, ωr

0 = −π/3.

Figure 4.18. Fourier transform of polynomials, imaginary part. One model line is plotted for the case of order
2 according to Eq.(4.36). The parameters are: Li = 0.85, Ni = 0.9, ωi

0 = 5π/12, ξ = 0.9.

109

Figure 4.19. Fourier transform of Pi(x), real part. The first three lines are plotted according to Eq.(4.24). In
addition, one model function for α = 1, β = 1 case is also plotted according to Eq.(4.37) with the following
parameters: lr = 1.8, nr = 1.3, ωr

0p = −π/5. It fits the original function well.

fi(ω) ≈
αω

β2 + ω2
(cos(ω + ωi

0p)− 1),

≈ α

β

li
1 + ωni

(cos(ω + ωi
0p)− 1).

(4.38)

The free parameters of above models are lr, li, nr, ni, ω
r
0p and ωi

0p. 0 < lr, li, 0 < nr, ni and
π/2 > |ωr

0p|, |ωi
0p|. The merit of the models is that α and β are separated from ω, which would

bring some convenience for the following calculation. In addition, one profile of the model is
plotted against the original profile in Figs.4.19 and 4.20 for (α = 1, β = 1) case. The figures
show that the modelled function fits well the original function.

Having obtained the model functions of P̂ i(ω) and êni (A), let us consider the calculation of
Eq.(4.34). Denote P̂ i(ω) = fr(ω) + fi(ω)j and êni (A) = gr(ω) + gi(ω)j. Note that P̂ i(ω)

(so are fr, fi) and êni (A) (so are gr, gi) are both assumed to be defined in (0,∞).

P̂ i(ω) ∗ êni (A)
êni (A)

=
gr(fr ∗ gr − fi ∗ gi)

g2r + g2i
+

gi(−fi ∗ gr − fr ∗ gi)
g2r + g2i

+

(
gi(fi ∗ gi − fr ∗ gr)

g2r + g2i
+

gr(fi ∗ gr + fr ∗ gi)
g2r + g2i

)j.

(4.39)

The exact calculation is complex but since fr, fi, gr and gi are simple and uniform in
expression, the calculation is similar in every part and the overall calculation could be largely

110

Figure 4.20. Fourier transform of Pi(x), imaginary part. The first three lines are plotted according to
Eq.(4.25). In addition, one model function for α = 1, β = 1 case is also plotted according to Eq.(4.38) with
the following parameters: li = 1.3, ni = 1.1, ωi

0p = π/6. It fits the original function well.

simplified. In addition, because α and β are separated from ω, they could be moved out from
convolution calculation. A sample is given below.

fr(ω) ∗ gr(ω) =
∫︂ ω

0

α

β

lr
1 + τnr

cos(τ + ωr
0p)

Lr

(ω − τ)Nr + 1
cos(ξ(ω − τ) + ωr

0)dτ

=
αω

β
[fg]rr(ω

∗), (0 ≤ ω∗ ≤ ω),

where [fg]rr(x) := lr
1+xnr cos(x+ ωr

0p)
Lr

(ω−x)NR+1
cos(ξ(ω − x) + ωr

0).

Instead of the mean-value estimation, fr(ω)∗gr(ω) could be estimated in a more precise way:

fr(ω) ∗ gr(ω) =
α

β

∫︂ ω

0

lr
1 + τnr

cos(τ + ωr
0p)

Lr

(ω − τ)Nr + 1
cos(ω − τ + ωr

0)dτ,

<
αlr
β

Lr

1 + τNr

∫︂ ω

0

cos(τ + ωr
0p) cos(ω − τ + ωr

0)dτ,

=
αlr
β

Lr

1 + τNr
(
sin(ωr

0p − ωr
0 + ω)

4
+

sin(ωr
0 − ωr

0p + ω)

4
+

ω cos(ωr
0p + ωr

0 + ω)

2
),

:=
α

β

Lrlr
1 + τNr

[FG]rr(ω).

111

Similar estimation could be made about fi ∗ gi :

fi(ω) ∗ gi(ω) =
α

β

∫︂ ω

0

li
1 + τni

cos(τ + ωi
0p)

Li

(ω − τ)Ni + 1
(cos(ξ(ω − τ) + ωi

0)− 1)dτ,

<
αli
β

Li

1 + τNi

∫︂ ω

0

cos(τ + ωi
0p)(cos(ξ(ω − τ) + ωi

0)− 1)dτ,

=
αli
β

Li

1 + τNi
(
sin(ωi

0p − ωi
0 + ξω)

2(ξ − 1)
+

sin(ωi
0p − ωi

0 + ω)

2(ξ − 1)
−

sin(ωi
0 + ξω) + sin(ωi

0) +
sin(ωi

0p + ωi
0 + ξω)

2(ξ − 1)
−

sin(ωi
0p + ωi

0 + ω)

2(ξ − 1)
),

:=
α

β

Lili
1 + τNi

[FG]ii(ω).

Therefore, the first term on the right-hand-side of Eq.(4.39) could be estimated:

gr(fr ∗ gr − fi ∗ gi)
g2r + g2i

=
α

β

gr(
Lrlr

1+τNr [FG]rr(ω) +
Lili

1+τNi
[FG]ii(ω))

g2r + g2i

≈αl

β

cos(ω + ωr
0)([FG]rr(ω)− [FG]ii(ω))

cos(ω + ωr
0)

2 + cos(ξω + ωi
0)

2

=
αl

β
Φ1(ω), l ≈ (lr + li)/2,

(4.40)

where

Φ1(ω) =[cos(ωr
0 + ω)(

sin(ωr
0p − ωr

0 + ω)

4
+

sin(ωr
0 − ωr

0p + ω)

4
−

sin(ωi
0p − ωi

0 + ω)

2(ξ + 1)
−

sin(ωi
0 − ωi

0p + ξω)

2(ξ + 1)
+

sin(ωi
0 + ξω)− sin(ωi

0)

ξ
+

ω cos(ωr
0p + ωr

0 + ω)

2
−

sin(ωi
0p + ωi

0 + ξω)

2(ξ − 1)
+

sin(ωi
0p + ωi

0 + ω)

2(ξ − 1)
)]/(cos(ωr

0 + ω)2 + cos(ωi
0 + ξω)2).

When ω is not too small (for instance, ω > π) and ξ ≈ 1,Φ1(ω) could be estimated as follows:

Φ1(ω) ≈
cos(ωr

0 + ω)(V1 +
ω cos(ωr

0p+ωr
0+ω)

2
)

cos(ωr
0 + ω)2 + cos(ωi

0 + ω)2
, (4.41)

where V1 represents a function whose magnitude is no more than three. The magnitude of V1

should be far less than ω cos(ωr
0p+ωr

0+ω)

2
when ω is not too small. The expression of V1 is:

V1(ω) :=
sin(ωr

0p − ωr
0 + ω)

4
+

sin(ωr
0 − ωr

0p + ω)

4
−

sin(ωi
0p − ωi

0 + ω)

4
−

sin(ωi
0 − ωi

0p + ω)

4
+ sin(ωi

0 + ω)− sin(ωi
0).

The same estimation could be performed on the other three terms of right-hand-side of
Eq.(4.39), which should all yield to similar result to above one. The calculation process hereby

112

is skipped and the results are given directly:

gi(fi ∗ gr + fr ∗ gi)
g2r − g2i

≈αl

β
Φ2(ω), l ≈ (lr + li)/2,

(4.42)

gi(fi ∗ gi − fr ∗ gr)
g2r + g2i

≈αl

β
Φ3(ω), l ≈ (lr + li)/2,

(4.43)

gr(fi ∗ gr + fr ∗ gi)
g2r + g2i

≈αl

β
Φ4(ω), l ≈ (lr + li)/2,

(4.44)

where Φi(ω) could be approximated as follows if ω is not too small and ξ ≈ 1:

Φ2(ω) ≈
− cos(ωi

0 + ω)(V2 +
ω cos(ωi

0p+ωr
0+ω)

2
)

cos(ωr
0 + ω)2 + cos(ωi

0 + ω)2
, (4.45)

Φ3(ω) ≈
− cos(ωi

0 + ω)(V3 +
ω cos(ωr

0p+ωr
0+ω)

2
)

cos(ωr
0 + ω)2 + cos(ωi

0 + ω)2
, (4.46)

Φ4(ω) ≈
cos(ωr

0 + ω)(V4 +
ω cos(ωi

0p+ωr
0+ω)

2
)

cos(ωr
0 + ω)2 + cos(ωi

0 + ω)2
. (4.47)

Note Vi(ω), (i = 2, 3, 4) are functions whose magnitude is no more than three. The expression
of Vi(i = 2, 3, 4) is similar to V1 and trivial thus would not be displayed.

Therefore,

P̂ i(ω) ∗ êni (A)
êni (A)

=
αl

β
((Φ1 + Φ2) + (Φ3 + Φ4)j). (4.48)

In Figs.4.17-4.20, two model lines for order-two polynomial and a pike function (α = 1, β =

1) are given respectively. The parameters used are summarised in the figure captions. Using
the model lines parameters, 1.5(Φ1+Φ2) and 1.5(Φ3+Φ4) could be computed and the result
is illustrated in Figure 4.21. The function of Vi(ω) is assumed to be 3 sin(ω) in the plotting.
The figure shows that both 1.5|Φ1 +Φ2| and 1.5|Φ3 +Φ4| are mostly no greater than y = |ω|
if ω > π.

The parameters of ωr
0, ω

i
0, ω

r
0p and ωi

0p only shift the plot by some angle but could not change
the magnitude. In addition, the profile of Φi(ω) is actually largely influenced by Vi(ω). In
Fig.4.21, Vi = 3 sin(ω). If Vi = 3 cos(ω), the profile is as shown in Fig.4.22. The profile

113

of (Φ3 + Φ4) especially change much. It is hard to know the exact expression of Vi(ω), but
whatever its real expression, it is important to know that the 1.5 times of the (Φ1(3) + Φ2(4))

remains less than y = |ω|.

Recall in Eqs.(4.32) and (4.33), the boundary effect term 1−Xi(ω)
2π

P̂ j(ω)ê
n
j (A)

ênj (A)
is supposed to

reduce the standard convergence rate CRi (defined in Eq.(4.30)). As mentioned before, 0 <

|1−Xi| < 2, the boundary effect term is roughly equal to (but less than) αl
βπ
((Φ1+Φ2)+(Φ3+

Φ4)j). Meanwhile, the numerator of CRi: Ŝ1(0)−ω coth(ωA) or Ŝ2(0)−ω coth(ω(B−A))

is nearly equal to −ω because coth(ωA) (or coth(ω(B − A))) is approximately equal to 1 if
ω is not too small. Therefore, the boundary effect intensity depends on the value of | αl

βπ
|. To

have appropriate convergence improvement, at least the value should be close to 1.5 or even
higher (because it was assumed |1−Xi|

2
= 1 but it is actually less than 1). By contrast, If | αl

βπ
|

is far less than 1.5 or even close to 0, the boundary effect could hardly implement any impact
on the convergence.

Although Xi is not known more than its magnitude approximation, it could be deduced that
(Φ3 + Φ4) is the real part of the boundary effect that offsets the numerator (roughly equal to
−ω) ofCRi, and (Φ1+Φ2) is the imaginary part of the boundary effect. The assumption could
be validated by both Figs.4.21 and 4.22: at ω = π, 2π, ..., (Φ3 + Φ4) is roughly equal to ω

and (Φ1+Φ2) is roughly equal to zero in magnitude. Therefore, the former mostly offsets the
numerator of CRi in real part and the latter adds very minor value in imaginary part. Overall,
the convergence rate is reduced by the boundary effect and it complies with |Xi| < 1. In
otherwise case ((Φ1 + Φ2) is the real part and (Φ3 + Φ4) is the imaginary part), the overall
convergence rate would be increased that leads to the wrong conclusion that |Xi| > 1.

To summarise, the procedures of evaluating the boundary effect are the following:

1. First, a pike function Pi(x) needs to be fitted by an exponential-function model, see
Eq.(4.23). There are four parameters to determine: α, β, σl and σr.

2. Once the four parameters are determined, the Fourier transform of Pi(x) could be
obtained, see Eqs.(4.24) and (4.25).

3. Then plot the figures of FPi according to Eqs.(4.24) and (4.25) to estimate lr and li. lr
is approximately equal to the largest wave magnitude (occurs at around ω = 0) divided
by (α/β). li is approximately equal to the largest wave magnitude (occurs at around
ω = π/2) divided by (α/β) and multiplied by (1 + π

2
N) ≈ 2.5 where N is not known

and taken as 1. The wave profile should enable an estimation on whether N is larger
or less than 1 so (1 + π

2
N) could be estimated more precisely. Note the exact model

formula (see Eqs.(4.37) and (4.38)) for FPi needs not be known because only lr and li

are concerned. The two parameter could be estimated from figures directly.

4. Lastly, take l = (lr + li)/2 and calculate (αl)/(βπ).

If (αl)/(βπ) is close to 1.5 or slightly larger, the boundary effect could boost the convergence
well; if the value is small (close to 0), the boundary effect has limited effect on the

114

Figure 4.21. Profile of y1 = 1.5(Φ1 +Φ2) and y2 = 1.5(Φ3 +Φ4) as a function of ω. The magnitude of both
functions are mainly less than y = ±ω when ω > π. Vi(ω) is assumed to be 3 sin(ω).

Figure 4.22. Profile of y1 = 1.5(Φ1 +Φ2) and y2 = 1.5(Φ3 +Φ4) as a function of ω. The magnitude of both
functions are mainly less than y = ±ω when ω > π. Vi(ω) is assumed to be 3 cos(ω).

115

convergence. In one word, given (αl)/(βπ) is not too large (for instance, > 2), the bigger
the value the better the convergence could be improved.

4.4.3 Test case to evaluate boundary effect

In Section 4.1, a Poisson’s equation is solved by RR-SP0 with SiI taken as constant and
real value respectively. The result is shown in Table 4.1. The difference between SiI and
S∗
i I varies with A: the middle-valued A (such as 4/8) has greater difference than those

large/small-valued A, which is certainly due to the boundary effect. To see the difference,
the profile of SiI applied to the Poisson’s equation with A = 1/8, 3/8 and 7/8 is given in
Figs.4.23 and 4.24. Note the two profiles are symmetric in terms of A so that S1I|A=1/8 is
nearly equal to S2IA=7/8. Therefore, only A = 1/8 case will be studied next.

According to Eq.(4.23), the modelled pike functions for A = 1/8 and 3/8 cases are
summarised in Table 4.3. It shows that for A = 1/8 case, one model is enough to fit the
pike function of S1I , while 2 models are needed to fit the pike function of S2I . It means the
pike function P2(x) is represented by:

P2(x) = [40e−36(x− 1
64

) + 40e−36(x− 63
64

)] + [23e−8(x− 5
64

) + 23e−8(x− 59
64

)].

For A = 3/8 case, two-modelled fitting is always needed for both S1I and S2I pike functions.
Next, having knownα, β, σl and σr, the Fourier transform ofPi(x) could be obtained and their
profile is given in Figs.4.25 and 4.26. Note that the case for α = 40, β = 36 is not plotted
because it highly resembles the case of α = 34, β = 49. The two cases could be considered
almost equal. It could be estimated that l ≈ 1, 2 respectively for (α, β) = (34, 49), (23, 8)

cases. The final step is to calculate αl
βπ

, which yields to the result that the value for (34,49)
case is far less than 1.5 (about 0.2) while the value for (23,8) case is about 1.8. Clearly (23,8)
case is much more effective in improving the convergence. Since A = 3/8 has (23,8)-type
pike function in both S1I and S2I , its convergence is better improved than A = 1/8 case that
only has (23,8)-type pike function in S2I . This is consistent with the numerical test result.

The case of (23,8) represents the pike functions that are high in ratio of α/β. According
to Eq.(4.23), α determines the peak height of the function and β determines the rise/fall
speed of the function. Graphically, high ratio means the ’pike’ is high and wide, while low
ratio means the ’pike’ is low and thin. It could be observed from Fig.4.5 as well: P1(x) is
approximately 40 in height and 0.25 in width; P2(x) is approximately 30 in height and 0.125
in width. Correspondingly, the former is fitted by a high-ratio model and a low-ratio model,
and the latter is fitted by a low-ratio model only. Therefore, the most direct way to evaluate
the boundary effect is to plot SiI profile and observe the shape of the pike function. ’High
and wide’ means the boundary effect is strong while ’low and thin’ means the opposite. The
criterion of ’high’ or ’low’, ’wide’ or ’thin’ is relative. Plotting all profiles of various A in one
figure creates the criterion automatically.

116

Figure 4.23. Profile of S1I applied to a Poisson’s equation, A = 1
8 ,

3
8 and 7

8 .

Figure 4.24. Profile of S2I applied to a Poisson’s equation, A = 1
8 ,

3
8 and 7

8 .

117

Figure 4.25. Profile of P̂ i(ω), real part.

Figure 4.26. Profile of P̂ i(ω), imaginary part.

118

Table 4.3. Parameters of the modelled pike functions.

S1I S2I

α β σl σr α β σl σr

A = 1/8 34 49 1
64

63
64 40 36 1

64
63
64

23 8 5
64

59
64

A = 3/8 40 36 1
64

63
64 40 36 1

64
63
64

23 8 5
64

59
64 23 8 5

64
59
64

4.5 Convergence rate calculation of RR-SP1 and RR-SP2 with boundary

effect

This section performs the convergence rate calculation of RR-SP1 and RR-SP2 algorithms
with considering boundary effect. The so-called boundary effect is defined in the profile of
Six and Six

2 apart from that in SiI , and is represented by (two other) pike functions similar
to the pike function in SiI . In one word, the calculation method and procedures totally follow
those of RR-SP0, and the calculation result is in similar form to that of RR-SP0 as well.

4.5.1 Calculation of RR-SP1 with boundary effect

Figure 4.27. Profile of P l
1 and P q

1 in a Poisson test, A = 1/8. P l
1 := S2x− S2I · x− 0,

P q
1 = (S2x

2 − 2xS2x+ x2S2I)− (S∗
2x

2 − x2S∗
2I). S∗

2x
2 is obtained numerically with boundaries in x

direction set at far place (x = ±5).

119

Figure 4.28. Profile of P l
2 and P q

2 in a Poisson test, A = 1/8. P l
2 := S1x− S1I · x− 0,

P q
2 = (S1x

2 − 2xS1x+ x2S1I)− (S∗
1x

2 − x2S∗
1I). S∗

1x
2 is obtained numerically with boundaries in x

direction set at far place (x = ±5).

Recall the error BVPs of (parallel) RR-SP1 reads

en+1
1y + S2I · en+1

1 + en+1
1x · T1l = γn+1

1 on Γ,

−en+1
2y + S1I · en+1

2 + en+1
2x · T2l = γn+1

2 on Γ,

where

γn+1
1 := en2y(x,A) + S2I · en2 (x,A) + en2x · T1l,

γn+1
2 := −en1y(x,A) + S1I · en1 (x,A) + en1x · T2l,

T1l := S2x− S2I · x,

T2l := S1x− S1I · x.

In the standard approach, Til is taken as 0 but it is actually not. Therefore, Til could be
considered as the sum of 0 and a pike function:

Til = 0 + P l
j(x) → P l

j(x) := Til − 0, (4.49)

where P l
j(x) represents the pike function in Til profile, as shown in Figs.4.27 and 4.28.

Next, consider the convergence rate calculation withP l
i (x). It is actually the term that contains

120

Til differs from the standard approach, so the calculation hereby focus on the difference and
starts from some intermediate stage:

ên+1
1y (A) + F [(S∗

2I + P2(x))e
n+1
1 (A)] +

j

2π
F [P l

2(x)] ∗ (ωên+1
1 (A)) = γ̂n+1

1 (A),

→ ên+1
1y (A) + Ŝ2(0)ê

n+1
1 (A) +

1

2π
P̂ 2(ω) ∗ ên+1

1 (A) +
j

2π
P̂

l

2(ω) ∗ (ωên+1
1 (A)) = γ̂n+1

1 (A),

→ C1(ω)(ω cosh(ωA) + Ŝ2(0) sinh(ωA)) +
1

2π
(P̂ 2(ω) ∗ ên+1

1 (A) + jP̂
l

2(ω) ∗ (ωên+1
1 (A)))

= γ̂n+1
1 (A),

→ C1(ω) =
γ̂n+1
1 (A)− 1

2π
(P̂ 2(ω) ∗ ên+1

1 (A)) + jP̂
l

2(ω) ∗ (ωên+1
1 (A)))

ω cosh(ωA) + Ŝ2(0) sinh(ωA)
.

− ên+1
2y (A′) + F [(S∗

1I + P1(x)) · en+1
2 (A′)] +

j

2π
F [P l

1(x)] ∗ (ωên+1
2 (A′)) = γ̂n+1

2 (A′),

→ − ên+1
2y (A′) + Ŝ1(0)ê

n+1
2 (A′) +

1

2π
P̂ 1(ω) ∗ ên+1

2 (A′) +
j

2π
P̂

l

1(ω) ∗ (ωên+1
2 (A′)) = γ̂n+1

2 (A′),

→ C2(ω)(−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)) +
1

2π
(P̂ 1(ω) ∗ ên+1

2 (A′) + jP̂
l

1(ω) ∗ (ωên+1
2 (A′)))

= γ̂n+1
2 (A′),

→ C2(ω) =
γ̂n+1
2 (A′)− 1

2π
(P̂ 1(ω) ∗ ên+1

2 (A′) + jP̂
l

1(ω) ∗ (ωên+1
2 (A′)))

−ω cosh(ωA′) + Ŝ1(0) sinh(ωA′)
.

Note Pi(x) still represents the pike function in SiI profile, as is denoted in Section 4.4,
Eq.(4.23).

The solutions to the BVPs are:

ên+1
1 (ω, y) =

[γ̂n+1
1 (A)− 1

2π
(P̂ 2(ω) ∗ ên+1

1 (A) + jP̂
l

2(ω) ∗ (ωên+1
1 (A)))] sinh(ωA)

ω cosh(ωA) + Ŝ2(0) sinh(ωy)
,

ên+1
2 (ω, y) =

[γ̂n+1
2 (A)− 1

2π
(P̂ 1(ω) ∗ ên+1

2 (A) + jP̂
l

1(ω) ∗ (ωên+1
2 (A)))] sinh(ω(y −B))

−ω cosh(ω(A−B)) + Ŝ1(0) sinh(ω(A−B))
.

Particularly, on y = A the (implicit) solution reads:

ên+1
1 (ω,A) =

γ̂n+1
1 (A)− 1

2π
(P̂ 2(ω) ∗ ên+1

1 (A) + jP̂
l

2(ω) ∗ (ωên+1
1 (A)))

ω coth(ωA) + Ŝ2(0)
, (4.50)

ên+1
2 (ω,A) =

γ̂n+1
2 (A)− 1

2π
(P̂ 1(ω) ∗ ên+1

2 (A) + jP̂
l

1(ω) ∗ (ωên+1
2 (A)))

−ω coth(ω(A−B)) + Ŝ1(0)
. (4.51)

Next, expand γ̂n+1
i (A):

γ̂n+1
1 (A) := ên2y(A) + Ŝ2(0)ê

n
2 (A) +

1

2π
P̂ 2(ω) ∗ ên2 (A) +

j

2π
P̂

l

2(ω) ∗ (ωên2 (A)),

= (ω coth(ω(A−B)) + Ŝ2(0))ê
n
2 (A) +

1

2π
(P̂ 2(ω) ∗ ên2 (A) + jP̂

l

2(ω) ∗ (ωên2 (A))),

121

γ̂n+1
2 (A) := −ên1y(A) + Ŝ1(0)ê

n
1 (A) +

1

2π
P̂ 1(ω) ∗ ên1 (A) +

j

2π
P̂

l

1(ω) ∗ (ωên1 (A)),

= (−ω coth(ωA) + Ŝ1(0))ê
n
1 (A) +

1

2π
(P̂ 1(ω) ∗ ên1 (A) + jP̂

l

1(ω) ∗ (ωên1 (A))).

Substitute the expanded γ̂n+1
i (A) into the solution at y = A, the solution could be re-arranged

as:

ên+1
1 (A)+

1
2π
(P̂ 2(ω) ∗ ên+1

1 (A) + jP̂
l

2(ω) ∗ (ωên+1
1 (A)))

ω coth(ωA) + Ŝ2(0)
=

ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
ên2 (A) +

1
2π
(P̂ 2(ω) ∗ ên2 (A) + jP̂

l

2(ω) ∗ (ωên2 (A)))
ω coth(ωA) + Ŝ2(0)

,

ên+1
2 (A)+

1
2π
(P̂ 1(ω) ∗ ên+1

2 (A) + jP̂
l

1(ω) ∗ (ωên+1
2 (A)))

−ω coth(ω(A−B)) + Ŝ1(0)
=

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
ên1 (A) +

1
2π
(P̂ 1(ω) ∗ ên1 (A) + jP̂

l

1(ω) ∗ (ωên1 (A)))
−ω coth(ω(A−B)) + Ŝ1(0)

.

Next, move the 2nd term of the left side to the right side and re-arrange:

ên+1
1 (A) =

ω coth(ω(A−B)) + Ŝ2(0)

ω coth(ωA) + Ŝ2(0)
ên2 (A)+

1−X1(ω)
2π

(P̂ 2(ω) ∗ ên2 (A)) +
1−Xl

1(ω)

2π
(jP̂

l

2(ω) ∗ (ωên2 (A)))
ω coth(ωA) + Ŝ2(0)

,

ên+1
2 (A) =

−ω coth(ωA) + Ŝ1(0)

−ω coth(ω(A−B)) + Ŝ1(0)
ên1 (A)+

1−X2(ω)
2π

(P̂ 1(ω) ∗ ên1 (A)) +
1−Xl

2(ω)

2π
(jP̂

l

1(ω) ∗ (ωên1 (A)))
−ω coth(ω(A−B)) + Ŝ1(0)

.

(4.52)

Similarly, X l
i(ω) is defined as X l

i := (P̂
l

j ∗ ên+1
i (A))/(P̂

l

j ∗ ênj (A)), and it could be estimated
that |X l

i(ω)| < 1 although it remains unknown. The reason is similar to Xi(ω) in RR-SP0,
see the explanation at end of Subsection 4.4.1.

It is the second term on the right-hand-side of above equations that determines the boundary
effect in RR-SP1. More precisely, divide both side of above equations by ênj (A), and it could
be seen that the term below actually represents the boundary effect:

P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))
êni (A)

.

122

4.5.2 Calculation of RR-SP2 with boundary effect

Recall the error BVPs of (parallel) RR-SP2 reads

en+1
1y + S2I · en+1

1 + en+1
1x · T1l +

1

2
en+1
1xx · T1q = γn+1

1 on Γ,

−en+1
2y + S1I · en+1

2 + en+1
2x · T2l +

1

2
en+1
2xx · T2q = γn+1

2 on Γ,

where

γn+1
1 := en2y(x,A) + S2I · en2 (x,A) + en2x · T1l +

1

2
en2xx · T1q,

γn+1
2 := −en1y(x,A) + S1I · en1 (x,A) + en1x · T2l +

1

2
en1xx · T2q,

T1l := S2x− S2I · x,

T2l := S1x− S1I · x,

T1q := S2x
2 − 2xS2x+ x2S2I,

T2q := S1x
2 − 2xS1x+ x2S1I.

Compared with RR-SP1, The additional term (1
2
enixx · Tiq) is unique in RR-SP2, so this

term will be paid special attention in this subsection. Recall in the standard approach, Tiq

is simplified as (the superscript ’∗’ means simplified version):

T ∗
iq := S∗

j x
2 − x2S∗

j I,

where S∗
j x

2 represents Sj applied to x2 that is defined in (−∞,∞).

Define a pike function P q
i (x) in Tiq profile, so that:

Tiq(x) = T ∗
iq(x) + P q

j (x) → P q
j (x) := Tiq(x)− T ∗

iq(x). (4.53)

The profile of P q
i (x) is illustrated in Figs.4.27 and 4.28. Note S∗

i x
2 could be obtained

numerically: set boundaries in x direction at far place so that the boundary effect is negligible.
In this case, the boundaries are set at x = ±5, while the real boundaries are at x = 0, 1.

Next, consider the convergence rate calculation of RR-SP2 with P q
i (x). Much of the

calculation resembles that in RR-SP1 as performed in last subsection (4.5.1). Therefore,
without presenting middle calculation, the following is given directly:

ên+1
1 (A)+

1
2π
(P̂ 2(ω) ∗ ên+1

1 (A) + jP̂
l

2(ω) ∗ (ωên+1
1 (A))− 1

2
P̂

q

2(ω) ∗ (ω2ên+1
1 (A)))

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

=

ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

ên2 (A)+

1
2π
(P̂ 2(ω) ∗ ên2 (A) + jP̂

l

2(ω) ∗ (ωên2 (A))− 1
2
P̂

q

2(ω) ∗ (ω2ên2 (A)))

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

,

123

ên+1
2 (A)+

1
2π
(P̂ 1(ω) ∗ ên+1

2 (A) + jP̂
l

1(ω) ∗ (ωên+1
2 (A))− 1

2
P̂

q

1(ω) ∗ (ω2ên+1
2 (A)))

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

=

−ω coth(ωA) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

ên1 (A)+

1
2π
(P̂ 1(ω) ∗ ên1 (A) + jP̂

l

1(ω) ∗ (ωên1 (A))− 1
2
P̂

q

1(ω) ∗ (ω2ên1 (A)))

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

.

Next, move the 2nd term of the left side to the right side and re-arrange:

ên+1
1 (A) =

−ω coth(ω(A−B)) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

ên1 (A)+

1−X1

2π
(P̂ 2(ω) ∗ ên2 (A)) +

1−Xl
1

2π
(jP̂

l

2(ω) ∗ (ωên2 (A))−
1−Xq

1

4π
(P̂

q

2(ω) ∗ (ω2ên2 (A)))

ω coth(ωA) + Ŝ2(0) + ωŜ2ω(0) +
1
2
ω2Ŝ2ωω(0)

,

(4.54)

ên+1
2 (A) =

−ω coth(ωA) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

ên1 (A)+

1−X2

2π
(P̂ 1(ω) ∗ ên1 (A)) +

1−Xl
2

2π
(jP̂

l

1(ω) ∗ (ωên1 (A)))−
1−Xq

2

4π
(P̂

q

1(ω) ∗ (ω2ên1 (A)))

−ω coth(ω(A−B)) + Ŝ1(0) + ωŜ1ω(0) +
1
2
ω2Ŝ1ωω(0)

.

(4.55)

Note Xq
i (ω) := (P̂

q

j ∗ (ω2ên+1
i (A)))/(P̂

q

j ∗ (ω2ênj (A))), and it could be estimated that
|Xq

i (ω)| < 1. The reason is similar to Xi(ω) in RR-SP0, see Eqs.(4.32),(4.33).

Divide above equations by ênj (A) on both sides, it could be seen that the following term plays
the key role in determining the boundary effect:

P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))− 1
2
P̂

q

i (ω) ∗ (ω2êni (A))

êni (A)
.

4.6 Estimated analysis of boundary effect in RR-SP1 and RR-SP2

This section makes analysis on the convergence of RR-SP1 and RR-SP2 based on the
convergence rate calculation result in Section 4.5. Since the boundary effect is represented
by an individual term that could be separated from the standard convergence rate term, the
section starts with listing the key terms in each algorithm. Next, similar analysis to RR-SP0 in
Section 4.4 is made upon RR-SP1 and RR-SP2 respectively but the model study as shown in
RR-SP0 is not conducted on RR-SP1 and RR-SP2. However, the model study result of RR-SP0
is used for understanding the boundary effect in RR-SP1 and RR-SP2, and helps evaluate the
boundary effect in the two algorithms in qualitative manner. Analysis result suggests that the
boundary effect in both RR-SP1 and RR-SP2 algorithms has positive influence on boosting
the convergence, and RR-SP1 is supposed to converge faster than RR-SP0 and roughly at
equal rate to RR-SP2.

124

4.6.1 Key terms of boundary effect

Recall in RR-SP0, the key term to represent the the boundary effect is P̂ i(ω)∗êni (A)

êni (A)
, see Eq(4.34)

and below, and it is supposed to reduce the numerator of the standard convergence rate:

Ŝ1(0)− ω coth(ωA) or Ŝ2(0)− ω coth(ω(B − A)).

Similar result could be obtained for RR-SP1 and RR-SP2:

Boundary effect of RR-SP0:
P̂ i(ω) ∗ êni (A)

êni (A)
.

Numerator of the standard convergence rate of RR-SP0:

Ŝ1(0)− ω coth(ωA),

Ŝ2(0)− ω coth(ω(B − A)).

Boundary effect of RR-SP1:

P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))
êni (A)

. (4.56)

Numerator of the standard convergence rate of RR-SP1:

Ŝ1(0)− ω coth(ωA) + ωŜ1ω(0), (4.57)

Ŝ2(0)− ω coth(ω(B − A)) + ωŜ2ω(0). (4.58)

Boundary effect of RR-SP2:

P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))− 1
2
P̂

q

i (ω) ∗ (ω2êni (A))

êni (A)
. (4.59)

Numerator of the standard convergence rate of RR-SP2:

Ŝ1(0)− ω coth(ωA) + ωŜ1ω(0) +
1

2
ω2Ŝ1ωω(0), (4.60)

Ŝ2(0)− ω coth(ω(B − A)) + ωŜ2ω(0) +
1

2
ω2Ŝ2ωω(0). (4.61)

4.6.2 Boundary effect evaluation of RR-SP1

This subsection considers the boundary effect in RR-SP1. From Eq.(4.56), it shows that one
additional term distinguishes the boundary effect of RR-SP1 from RR-SP0: j P̂

l
i(ω)∗(ωêni (A))

êni (A)
.

To analyse the term, similar model study to RR-SP0 is referred to. Recall in Section 4.4,
interface boundary value is assumed to be polynomials and the Fourier transform is given in

125

Eqs.(4.35) and (4.36). Assume Nr and Ni is close to one, the model to fit ωêni (A) could be
roughly formulated as:

F [ωeni (x,A)]r ≈ Lr cos(ω + ωr
0);

⎧⎨⎩F [ωeni (x,A)]i ≈ Li(cos(ξω + ωi
0)− 1), if order = 0

F [ωeni (x,A)]i ≈ Li cos(ξω + ωi
0). if order ̸= 0

Next, assume P l
i (x) could be fitted by the same models as Pi(x), see Eqs.(4.37) and (4.38),

thus the term in Eq.(4.56): P̂
l
i(ω)∗(ωêni (A))

êni (A)
could be estimated the same way as Eq(4.34). The

estimation process is mostly the same as that in Section 4.4, which leads to the estimation
result as shown in Eq.(4.48). The only difference is that the result is perpendicular to
P̂ i(ω)∗(êni (A))

êni (A)
because of the imaginary unit j. Technically, the real and imaginary part of

the result should be swapped. Roughly speaking, the term j
P̂

l
i(ω)∗(ωêni (A))

êni (A)
should augment

P̂ i(ω)∗(êni (A))

êni (A)
in magnitude and it could be estimated that

⃓⃓⃓⃓
⃓ P̂ i(ω) ∗ êni (A) + jP̂

l

i(ω) ∗ (ωêni (A))
êni (A)

⃓⃓⃓⃓
⃓ >

⃓⃓⃓⃓
⃓ P̂ i(ω) ∗ êni (A)

êni (A)

⃓⃓⃓⃓
⃓ .

On the other hand, the standard convergence rate of RR-SP0 and RR-SP1 is equivalent (and
so are the numerators), so the real convergence of RR-SP1 should outperform (be faster)
RR-SP0. The effect of the additional term jP̂

l
i(ω)∗(ωêni (A))

êni (A)
is equal to increasing the magnitude

of (Φ1 + Φ2) and (Φ3 + Φ4) in RR-SP0, see Eq.(4.48). The standard convergence rate
remaining unchanged means the base line in Figs.4.21 and 4.22 (y = ±ω) remains unchanged.
Meanwhile, since both the interface boundary value and the pike functions of RR-SP1 are
modelled the same way as RR-SP0, the analysis result for the latter applies to the former as
well: the strength of the boundary effect depends on α/β or the shape of the pike function,
which is elaborated in Subsection 4.4.3.

Lastly, as analysed before, both Pi and P l
i play positive role in accelerating the convergence

in RR-SP1, the boundary effect of RR-SP1 must make the algorithm converge faster than the
standard version.

4.6.3 Boundary effect evaluation of RR-SP2

This subsection considers the boundary effect in RR-SP2. Similar to the analysis in last
subsection (4.6.2), the boundary effect term of RR-SP2 is compared with RR-SP1 and the
additional term is paid special attention. Eq.(4.59) shows that the additional term of RR-SP2
is − 1

2
P̂

q
i (ω)∗(ω2êni (A))

êni (A)
. Since the profile of P q

1 does not resemble P q
2 (see Figs.4.27, 4.28) and

they have different effect on the convergence, P q
1 and P q

2 need to be considered separately.

Fig.4.27 shows thatP q
1 is small in value and could be nearly considered as constant throughout

126

the entire domain: P q
1 ≈ P ∗, (P ∗ < 0). It could be estimated that − 1

2
P̂

q
1(ω)∗(ω2ên1 (A))

ên1 (A)
≈

−1
2
P ∗ω2 > 0. The effect of −1

2
P ∗ω2 is equal to shifting (Φ3 + Φ4) upwards (in y direction)

by P ∗, see Figs.4.21 and 4.22.

Fig.4.28 shows that P q
2 is a positive function and it could be fitted by P q

2 = C + wq
2, where

C is a positive constant and wq
2 represents a function that could be modelled the same way as

Pi(x) by exponential functions such as Eqs.(4.37) and (4.38). Since C is a positive constant,
it must impose inverse effect on the convergence compared to P ∗, which means C shifts
(Φ3 + Φ4) downwards. Therefore, P ∗ and C are counterproductive in terms of influencing
the convergence rate.

In addition, the term wq
2∗(ω2ên2 (A))

ên2 (A)
remains unknown on how to change the standard

convergence rate. Assume the approximation of the term is similar to P̂ i(ω)∗êni (A)

êni (A)
in RR-SP0,

consequently the left and right parts of P q
2 are counterproductive in influencing the

convergence because they have different signs. The analysis of P2 in Section 4.4 has shown
that the positive pikes boost the convergence, and the right pike of P q

2 (which is negative,
considering the coefficient of the term: −1

2
) actually impairs the right pike of P2 thus weakens

the boost effect on the convergence. By contrast, the left pike of P q
2 (which is positive)

consolidates the left pike of P2 and strengthens the boost effect.

The numerator of the standard convergence rate of RR-SP2 differs itself from that of
RR-SP1(0) by an additional term: 1

2
ω2Ŝiωω(0), which makes the magnitude of the numerator

smaller or unchanged, see Fig.4.29. Now assume Eq.(4.62) holds true, as a result, the real
convergence rate of RR-SP2 is smaller than that of RR-SP0 and RR-SP1.⃓⃓⃓⃓

⃓ P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))− 1
2
P̂

q

i (ω) ∗ (ω2êni (A))

êni (A)

⃓⃓⃓⃓
⃓ ≥⃓⃓⃓⃓

⃓ P̂ i(ω) ∗ êni (A) + jP̂
l

i(ω) ∗ (ωêni (A))
êni (A)

⃓⃓⃓⃓
⃓ >

⃓⃓⃓⃓
⃓ P̂ i(ω) ∗ êni (A)

êni (A)

⃓⃓⃓⃓
⃓ .

(4.62)

Considering the overall effect of P ∗, C and wq
2, it is not straightforward to evaluate the

effect of P q
i because it largely depends on how counterproductive P ∗, C and wq

2∗(ω2ên2 (A))

ên2 (A)
are

working against each other. Despite much uncertainty, what could be assured is that due to
the counterproductive effect, the overall effect of P q

i should not be very strong (either positive
or negative), although the real effect needs to be determined by more quantitative study on
P ∗, C and wq

2.

Lastly, since Pi and P l
i are both positive in boosting the convergence and P q

i does not impose
strong influence, the overall boundary effect of RR-SP2 should make the algorithm converge
faster than the standard version.

To summarise, the standard convergence rate of RR-SP0 is equivalent to that of RR-SP1,
and higher than that of RR-SP2. Taking the boundary effect into consideration, the real
convergence rate is lower than the standard one for each single case. Meanwhile, the boundary
effect strength is supposed to become increasingly stronger as N (RR-SPN) grows from 0 to

127

1, so the real convergence rate of RR-SP0 should also be higher than that of RR-SP1. RR-SP2
remains unknown about whether having faster or slower convergence than RR-SP1 but the
difference should be minor. Therefore, it could be roughly considered as equal to RR-SP1.

Figure 4.29. Numerator of the standard convergence rate CR2 of RR-SP0(1) and RR-SP2. The magnitude of
the former is always no less than the latter. The numerator of CR2(SP0) := 1

A − Ŝ1(ω), and the numerator of
CR2(SP2) := 1

A − Ŝ1(ω) +
1
2ω

2Ŝ1ωω(0).

4.7 Summary

This chapter analyses the convergence rate result of the three RR algorithms obtained in
Chapter 3, and considers the influence of the boundary effect.

The standard convergence rate of RR-SP0 is determined by the increment of SP operator
symbol:∆si(ω) := Ŝi(ω)−Ŝi(0). Smaller value of∆s1∆s2 results in lower convergence rate.
Similar result is obtained for RR-SP2 that the convergence rate is determined by ∆s1ωω∆s2ωω

where ∆siωω(ω) := Ŝiωω(ω)− Ŝiωω(0). Clearly the nature of SP operator symbols is directly
associated with the convergence of the algorithms. In practice, the analysis result is useful for
evaluating the convergence of the algorithms with different interface boundary location y∗.
A numerical test on Poisson’s equation verifies the analysis result.

The boundary effect of RR-SP0 is estimated through a model study and it is supposed to help
understand how the real convergence differs from the standard convergence and by how much.
Through the study, one empirical law is summarised to estimate the strength of the boundary

128

effect, which varies from case to case in practice. The law provides a simple and quick way
to evaluate the real convergence based on the standard convergence result. The evaluation of
the boundary effect of RR-SP1 and RR-SP2 is performed the same way as RR-SP0 but in
a qualitative manner. The result shows that the boundary effect could improve the standard
convergence. Considering both the standard convergence nature and the boundary effect, the
real convergence rate in reducing order reads: RR-SP0 > RR-SP1 ≈RR-SP2. A numerical test
on Poisson’s equation verifies the prediction.

Additionally, the convergence of DR algorithm is proved slower than any of the Robin-Robin
type algorithms, which marks the significance of the project to study the latter.

129

Chapter 5

Numerical tests

This chapter conducts numerical tests on a Poisson’s equation and two model equations of
high-Reynolds-number flow with a boundary layer. The aim is to verify the convergence
analysis result as shown in Chapters 3 and 4, and to test the feasibility of applying RR
algorithms to near-wall turbulence modelling respectively.

In Section 5.1, the discrete scheme adopted in the thesis to implement the numerical tests is
introduced. In particular, the discrete form of the SP operator approximations that make up
the key components of the IBC formulations in the three domain decomposition algorithms
is elaborated. The coding language is clarified.

In Section 5.2, a numerical test is conducted on Poisson’s equation with various A. The test
result fully supports the analysis result. Meanwhile, RR-SPN algorithms demonstrate their
advantage over DR and the conventional RR algorithm [102] in the test.

In Section 5.3, a series of numerical tests are implemented on RR and DR algorithms
to solve a RANS model equation with small parameter on second order derivative. The
solution has different solution dependence on x. A free parameter α is used to manipulate
the dependence: larger α accounts for greater dependence. The model equation represents the
general equation form in RANS model. In low-α cases, the boundary effect is not powerful
enough to influence the standard convergence so the real convergence is actually dominated by
the standard convergence. In the test, RR-SP2 shows clear advantage over others as a result
of lower standard convergence. When α grows larger, the boundary effect becomes more
powerful so the real convergence differs more remarkably by the standard one. However, the
boundary effect is not always positive. The numerical tests shows that RR-SP1 performs very
slow convergence in high-α case. The speculation is that the solution u is composed of 2
parts: V and W , the former of which has variable-separation form and the latter does not.
The slow convergence of RR-SP1 should be resulted by W . On the other hand, RR-SP2
demonstrates the ability of avoiding being negatively influenced by W and maintaining
promising convergence in high-α case. The whole series of the tests show that RR-SP2
has better ability to perform faster convergence and maintain better stability in dealing with
complex problem. In other words, the algorithm is better at reserving the non-local nature of
SP operators applied to the given two-dimensional problem.

In the second part of Section 5.3, additional numerical tests are implemented to check the
result as drawn previously. Firstly, interface boundary is set closer to the wall (y = 0) so that

130

the non-local effect of the inner region problem is weaker. Since RR-SP0, RR-SP1 and DR are
less capable of retaining the non-local effect, the three algorithms especially benefit from the
change and perform clearer improvement in the convergence. Next, Reynolds number of the
model equations is set higher and the tests are repeated. Higher Reynolds number means the
solution becomes relatively less dependent on x and the problem is easier to solve thus less
iterations could be expected. The test result is comparatively studied with that from previous
test and it confirms again that RR-SP2 shows better performance in terms of efficiency and
stability.

In Section 5.4, a new method of floating interface boundary is proposed to achieve
’two-iteration’ convergence. The idea is to run any convergent ENDD algorithm in outer
region with an imaginary interface that is several nodes below the real interface. Then
resume the interface to where it really is and resolve inner region. After the first iteration,
the convergence is expected to be achieved and the second iteration is used to check the
convergence. The method is proved efficient in solving the model equations regardless of α,
and the two-iteration convergence is realised in all tested cases.

5.1 Discrete scheme and coding language

This section introduces how the numerical tests as presented in the thesis are implemented
in terms of discrete scheme. The discrete form of SP operator approximations is particularly
elaborated. The coding language is clarified.

The method of central finite difference is used as the discrete scheme. In particular on the
interface, if the mesh are uniform, the first derivative (for instance, at node (i0, j0)) is obtained
by

uy(i0, j0) =
1

2h
(3u(i0, j0)− 4u(i0, j0 − 1) + u(i0, j0 − 2)),

where h is the meshing space between two adjacent nodes. If the mesh is not uniform, the
derivative on interface is simply obtained by forward/backward differentiation.

Recall that the constant approximation of SP operators reads:

Siu(x) ≈ SiI · u(x0).

Regarding the discretisation of Siu(x), there are potentially two schemes to consider:

scheme 1: Siu(i0) ≈ SiI(i0) · u(i0); (5.1)

scheme 2: Siu(i0) ≈ SiI(i0) · u(i0 + 1). (5.2)

In scheme one, x and x0 are overlapping. In scheme two, x0 is always one node ahead of
the concerned node x. The value of x corresponds to the node index i0 and x0 has the index
(i0+1). Although x and x0 are intrinsically two distinctive nodes, numerical test on Poisson’s
equation (as will be elaborated in Section 5.2) shows that scheme one leads to convergence of

131

the test but scheme two causes divergence. The reason could be that the local error incurred by
constant approximation is massively accumulated as the ’global’ approximation is made. Note
that x depends on its neighbour node x0, and the local approximation error is proportional to
the space (h) between them. Then the error is transferred to the next node as the value of x0

is locally approximated depending on the nodes ahead of it. The procedure repeats and the
error accumulates. If there are N +1 nodes, the local approximation repeats N times and the
local error for the last node could be N times larger than the local error that is proportional
to the meshing space h. In other words, the maximum error is about the size of the domain
size (denote by L, L = Nh) and it could not be reduced by increasing the nodes number.
By contrast, if x and x0 are overlapping, the local error is always zero. However, it does not
mean that the approximation is exact because x and x0 are two distinctive nodes, and u(x0)

is considered as constant while u(x) as variable in the approximation. There is inevitable
error incurred by neglecting the difference between the constant and the variable, for example
Siu(x) ̸= SiI · u(x). The error is related to the non-local nature of the function as analysed
in Subsection 2.4.1. Only in special case (for instance, u(x) ≡ const.), the error could be
eliminated.

Based on the result of constant approximation, the discrete form of linear and quadratic
approximation of SP operators could be obtained:

linear approximation: Siu(x) ≈(u(x0)− x0ux(x0))SiI + ux(x0)Six(x);

discrete form: Siu(i0) ≈(u(i0)− x(i0)
u(i0 + 1)− u(i0 − 1)

2h
)SiI(i0)+

u(i0 + 1)− u(i0 − 1)

2h
Six(i0),

quadratic approximation: Siu(x) ≈(u(x0)− x0ux(x0) +
x2
0uxx(x0)

2
)SiI+

(ux(x0)− x0uxx(x0))Six(x) +
uxx(x0)

2
Six

2;

discrete form: Siu(i0) ≈(u(i0)− x(i0)
u(i0 + 1)− u(i0 − 1)

2h
+

x2(i0)
u(i0 + 1) + u(i0 − 1)− 2u(i0)

2h2
)SiI(i0)+

(
u(i0 + 1)− u(i0 − 1)

2h
−

x(i0)
u(i0 + 1) + u(i0 − 1)− 2u(i0)

h2
)Six(i0)+

u(i0 + 1) + u(i0 − 1)− 2u(i0)

2h2
Six

2(i0).

If the mesh is not uniform, the discrete form of derivative is slightly different:

ux(i0) =
u(i0 + 1)− u(i0 − 1)

h1 + h2

,

uxx(i0) =(
u(i0 + 1)− u(i0)

h2

+
u(i0)− u(i0 − 1)

h1

)/(h1 + h2),

132

where h1 is the meshing space between x(i0) and x(i0 − 1), and h2 is the meshing space
between x(i0) and x(i0 + 1).

In this thesis, all the numerical computation is implemented by Fortran 90 with GNU Fortran
compiler.

5.2 Poisson’s equation

In Subsection 4.1.2 of Chapter 4, a Poisson’s equation test is performed to verify the
theoretical analysis about RR-SP0 (both standard and real). In this subsection, the test is
extended to RR-SP1 (real) and RR-SP2 (real). The test parameters and conditions are the same
as Subsection 4.1.2 thus will not be introduced again. The test result is displayed in Table.5.1,
which shows that RR-SP2, RR-SP1 and RR-SP0 perform the convergence in fast-to-slow
order. Note RR-SP1 converges clearly faster than RR-SP0 but RR-SP2 shows no remarkable
advantage over RR-SP1, which is possibly associated with the counterproductive effect of
elements in P̂

q

i , as discussed in Chapter 4, Section 4.6. The numerical result in the table is
consistent with the theoretical analysis.

Table 5.1. Convergence iterations of (parallel) RR-SP0, RR-SP1 and RR-SP2 in application to a Poisson’s
equation.

A 1/8 2/8 3/8 4/8 5/8 6/8 7/8

RR-SP0 8 9 9 9 8 8 7
RR-SP1 6 7 7 7 7 7 6
RR-SP2 6 7 7 7 6 6 6

The Poisson’s equation as shown above follows Lui’s (conventional) case in [102] but the
convergence criterion is different. Instead, Lui used the convergence criterion as displayed
in Eq.(4.21), which monitors the convergence by checking absolute error on the interface.
However, the exact interface solution varies with A and it makes the absolute error check
unevenly strict for all cases: more strict for thoseA that have larger interface exact solution and
less strict for those A that have smaller interface exact solution. To avoid it, the convergence
criterion is replaced by Eq.(4.8) (relative criterion) in above test.

Next, consider repeating Lui’s case first and compare Lui’s algorithm with RR-SPN and DR
afterwards. In the test, Eq.(4.21) is used as the convergence criterion. Recall in Subsection
4.3 of Chapter 4, it is proved that Lui’s algorithm is essentially equivalent to RR-SP0 because
the two algorithms only differ in parameters selection: Lui makes σ1 = σ2 = λ = 6.794,
RR-SP0 makes σ1 = S2I and σ2 = S1I . Meanwhile, at the end of Subsection 4.3, it is stated
that RR-SP0 could prove its advantage over Lui’s algorithm. To verify it, a numerical test is
implemented and the result is shown in Table 5.2. The table also summarises the test result
of RR-SP1, RR-SP2 and DR.

The test result shows that Lui’s algorithm converges in the same iterations as RR-SP0
(parallel). However, RR-SP0 could prove its slight advantage from the convergence history

133

Table 5.2. Convergence iterations of RR-SPN,DR and Lui’s algorithm in application to solving a Poisson’s
equation.

Algorithm Parameter a = 1
8 a = 3

8 a = 7
8

Lui’s λ = 6.794 5 8 6
RR-SP0 5 8 6

RR(parallel) RR-SP1 4 5 4
RR-SP2 4 5 4
RR-SP0 3 5 3

RR(sequential) RR-SP1 2 3 3
RR-SP2 2 3 3

DR 4 7 7

plot, see Fig.5.1. Next, it is not surprising to see RR-SP1 and RR-SP2 show faster convergence
than RR-SP0, which is also displayed in Table 5.1. The convergence history of (sequential)
RR-SPN and DR algorithms is plotted in Figs.5.2 to 5.4. In addition, Table 5.2 compares the
convergence iterations between the parallel and the sequential algorithms and it shows that
the sequential algorithms take around half of iterations of the parallel algorithms to converge,
which is consistent with the theoretical analysis. Lastly, DR algorithm shows clearly slower
convergence than any RR-SPN algorithm. Note DR algorithm is supposed to compare with
sequential algorithms of RR-SPN because DR algorithm itself is constructed as sequential
algorithm: DR algorithm starts from solving u2, and u1 uses the information of u2 from the
same iteration. This is the typical iterative procedures of sequential computing.

Comparing the numerical result of RR-SP0 shown in Tables 5.1 and 5.2, it could be found
that A = 3/8 case converges three iterations slower (around 40% slower) than A = 1/8 case
in Table 5.2 while only 1 iteration slower (around 10% slower) in Table 5.1. This is possibly
because A = 3/8 case has larger exact value on interface and the absolute error check is
more strict for it, which makes it take additionally more iterations to meet the convergence
requirement.

5.3 Model equations

5.3.1 Model equation 1

This subsection applies the RR algorithms to solving two model equations that do not have
analytical solution. The model equations are two-dimensional and have small parameter in
second derivative term. The test result is supposed to be compared with that of Poisson’s
equation because the theoretical convergence analysis is made upon the latter.

Consider a model equation defined in a [0, 1] × [0, 1] square. The equation was solved
earlier [81] by the so-called non-local wall function, which gives approximated solution to

134

Figure 5.1. Convergence history of Lui’s algorithm (λ = 6.794) and (parallel) RR-SP0 in comparison to solve
a Poisson’s equation. A = 1

8 ,
7
8

Figure 5.2. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a Poisson’s equation. A = 1

8 .

135

Figure 5.3. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a Poisson’s equation. A = 3

8 .

Figure 5.4. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a Poisson’s equation. A = 7

8 .

136

the equation. In this thesis, the equation is supposed to be solved exactly.

(µUy)y + σUxx + βUy + γU = f(x, y),

U(x, 0) = 0,

U(x, 1) = Us(x),

U(0, y) = U0(y),

U(1, y) = U1(y).

(5.3)

Note σ = αµ, µ = 1−ey/ϵ+δ
Re

, ϵ = 3 × 10−2, δ = 10−2, β = y, γ = −y2, Re = 104,
f = −100x2, Us = 1 + 100x2.

The governing equation represents the general form of equations in RANS model. Apparently,
the bigger σ, the stronger non-local effect the function has. In the vicinity of the wall, the
function has boundary-layer profile and the mean flow feature prevails in off-wall region.
The first two terms on the left hand side represent dissipative terms in RANS equations and
the other terms are the representation of convective terms. The right hand side models source
terms such as pressure gradient in momentum equation. The coefficient µ represents effective
viscosity coefficient.

Note U0 and U1 are two one-dimensional functions that satisfy the following conditions:

(µUy)y + βUy + γU = 0, (5.4)

U(0) = 0, (5.5)

U(1) = Us. (5.6)

Such boundary conditions means flow becomes locally one-dimensional in the vicinity of the
boundaries at x = 0 and x = 1.

In this test, α = 1, 102 and 104 respectively. Here α is used to control the solution variation
with x. If α = 0, the problem becomes one-dimensional. The larger α, the stronger the
solution is influenced by the term σUxx and has greater dependence on x.

The mesh in x direction are uniformly generated with 101 nodes so ∆hx = 0.01. In y

direction, adaptive mesh are generated separately in inner and outer region [104]:

y = −ek

b
ln(1− cη) if 0 ≤ η ≤ η1, (5.7)

y = y(η1) +
c(η − η1)

b
if η1 ≤ η ≤ 1. (5.8)

The parameters are set as follows: k = −8.12, c = 1.67, b = 0.67, η1 = 0.6. The inner region
mesh are generated as η ≤ η1 and those in outer region are generate as η1 ≤ η ≤ 1. There
are about 270 nodes in inner region with y∗ ≈ 10−3 and about 230 nodes in outer region. The
total node number is about 500.

137

The convergence criterion is:

max(
∥un+1

1 − un
1∥∞

∥un+1
1 ∥∞

,
∥un+1

2 − un
2∥∞

∥un+1
2 ∥∞

) < 10−6. (5.9)

Table 5.3 shows that when the solution has weak dependence on x (α = 1 case), the three
algorithms converge at equal rate. This case matches the Poisson’s equation best because they
both have solutions that could be separated in terms of variables. In other words, the problem
is basically one-dimensional for α = 1 case. When the solution dependence on x becomes
stronger (α = 100, 104), RR-SP2 outperform the other 2 algorithms and RR-SP1 no longer
shows any advantage over RR-SP0. Particularly at α = 104 case, it converges especially
slowly. This is different from the result in Poisson’s equation test. The convergence history of
the four algorithms is displayed in Figs.5.5 to 5.7.

Table 5.3. Convergence iteration of (sequential) RR-SP0, RR-SP1, RR-SP2 and DR in application to a model
equation, A = 10−3.

α 1 102 104

RR-SP0 3 7 10
RR-SP1 3 8 44
RR-SP2 3 4 10
DR 4 10 21

Table 5.4. Convergence iteration of (sequential) RR-SPN (N=0,1,2) and RR-SPN* in comparison to solve a
model equation, A = 10−3.

α 1 102 104

RR-SP0 3 7 10
RR-SP0* 4 8 16
RR-SP1 3 8 44
RR-SP1* 4 8 16
RR-SP2 3 4 10
RR-SP2* 4 5 15

To examine the boundary effect in the three cases, it is necessary to illustrate the profile of
SiI of all α-cases, which is displayed in Figs.5.8 to 5.10.

Fig.5.8 shows that in α = 1 case, there hardly exists any boundary effect so the convergence
rate of the three algorithms is subjected to the standard convergence rate calculation. If
Ŝiω(0) = 0 still holds true for the model equation, RR-SP1 should have equal convergence
rate as RR-SP0. Fig.5.5 confirms this: it shows that the error line of RR-SP1 almost coincides
with RR-SP0. Meanwhile, RR-SP2 is shown to converge faster than the other two algorithms,
which means the standard convergence rate of RR-SP2 is lower than that of RR-SP0(1).

Regarding the case of α = 100, RR-SP2 shows clear superiority over the other 2 algorithms
and RR-SP1 is still equal (actually slightly worse than) to RR-SP0. The reason of RR-SP2
performing better could be either it has lower standard convergence rate or stronger positive
boundary effect. To study it, RR-SP2* is implemented to solving the problem and the
convergence iteration is five, which is only one iteration slower than RR-SP2. Meanwhile,

138

Figure 5.5. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a model equation. α = 1.

Figure 5.6. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a model equation. α = 102.

139

Figure 5.7. Convergence history of (sequential) RR-SPN (N=0,1,2) and DR algorithms in application to
solving a model equation. α = 104.

RR-SP0* is implemented to the same problem and it converges in eight iterations (three
iterations slower than RR-SP2*), see Table 5.4. It means that the advantage of RR-SP2
over RR-SP0(1) is mainly due to RR-SP2* having faster (standard) convergence than its
counterparts rather than the boundary effect. In addition, RR-SP1 shows no advantage (slight
disadvantage instead) over RR-SP0 and it suggests that the boundary effect of RR-SP1 is not
strong enough to make remarkable difference, either positive or negative. In other words,
the only difference between RR-SP1 and RR-SP0 is P l

i , which should be responsible for any
performance difference between the two algorithms.

Figs.5.11 and 5.12 illustrate the profile of P l
i and P q

i in α = 102 case. As can be seen, the size
of P q

i is nearly equal to 0 thus the boundary effect of RR-SP2 could hardly help the algorithm
gain much advantage over the standard version (RR-SP2*), which has been verified by the
numerical result as shown above. In addition, the shape of P l

i is ’low and thin’, suggesting
a low α

β
ratio and weak boundary effect. Note the height of P l

i is about 0.01 times of that
of Pi. Recall in Poisson’s equation, A = 1

8
case, the height of P l

i (about 0.5, see Figs.4.27,
4.28) is also around 0.01 times of that of Pi (about 40, see Fig.4.5 in Chapter 4). The ratio is
approximately equal but the width of P l

2 in Poisson’s equation case is far larger.

Note RR-SP0* algorithm amounts to modifying RR-SP0 by replacing SiI with S∗
i I so that

SiI is a constant. RR-SP1* algorithm amount to letting Til = 0 in RR-SP1 apart from
the simplification about SiI , which makes it identical to RR-SP0* thus the algorithm is

140

not specifically studied. The algorithm of RR-SP2* replaces Tiq in RR-SP2 with T ∗
iq :=

Sjx
2 − x2 · SjI, (i ̸= j), apart from retaining the simplification about SiI and Til. The

above three algorithms correspond to the standard approach in Chapter 3.

The case of α = 104 shows much different result from the above two. Firstly, RR-SP2 is no
more faster (but equal to) than RR-SP0. Secondly, RR-SP1 shows far slower convergence than
the other two algorithms. Thirdly, the standard version of RR algorithms makes remarkable
difference from the real algorithms, see Table 5.4, which suggests that the standard approach
plays secondary role in this case and the boundary effect is the main factor to influence the
numerical result.

As mentioned earlier, RR-SP1 differs from RR-SP0 only by P l
i , and RR-SP1 in α = 104

case converges much slower than RR-SP0, so it could be deduced that P l
i results in the slow

convergence of RR-SP1. The profile of P l
i is displayed in Figs.5.13 and 5.14 together with

the profile of P q
i . It could be seen that the two figures highly resemble Figs.4.27 and 4.28

in terms of shape, and the size of P 1
i and P q

i in the former two figures is also comparable
to that of the latter figures. It means that the model equation and the Poisson’s equation
should have been equally influenced by P l

i and P q
i and performed similar convergence

iterations, but the numerical result fails to support it. The most likely reason might be that
the solution to the model equation with large α has strong dependence on x hence no more
has variable-separation form, so the analysis result drawn from Poisson’s equation could not
be fully applied to the model equation. Considering RR-SP1 performs poorly (as mentioned
earlier, because of P l

i) and RR-SP2 overcomes it with P q
i , It could be deduced that P q

i offsets
the negative effect that P l

i imposes on the convergence and the overall effect of P l
i plus P q

i is
0. That explains why RR-SP0 and RR-SP2 achieve the convergence within equal iterations.

Strictly speaking, the analysis result drawn from Poisson’s equation could be partially applied
to large-α model equation. Assume the solution u := V +W where V has variable-separation
form and W does not. Clearly the convergence of V is predictable via the convergence
rate calculation so the slow convergence has nothing to do with it. Instead, the unusual
convergence in α = 104 case should be resulted by W . In addition, Fig.5.15 shows that
the solution to α = 104 case mainly changes with x, which means V is much larger than W

so the former dominates the entire solution. Note in this case V is a one-dimensional function
of x and it could be considered to have variable-separation form. If V does not prevail, the
influence of W could be expected to be larger than this case, and the convergence in RR-SP1
might be even slower, as will be shown in next subsection (5.2.2).

To conclude, the real convergence is influenced by both the standard convergence and the
boundary effect of the algorithms. The standard convergence nature plays the key role when
α is small. As α grows, the strength of the boundary effect keeps increasing. In addition,
comparing the three algorithms, RR-SP2 algorithm performs the most stable and fastest
convergence among all cases regardless of α. When α is low and the boundary effect is not
strong, the standard convergence rate mainly determines the real convergence, and RR-SP2 is
proved (both theoretically and numerically) to have lower standard convergence rate than

141

Figure 5.8. The profile of SiI in application to a model equation, α = 1.

Figure 5.9. The profile of SiI in application to a model equation, α = 102.

142

Figure 5.10. The profile of SiI in application to a model equation, α = 104.

Figure 5.11. The profile of P l
1 and P q

1 in application to the model equation, α = 102.
P l
1 := S2x− S2I · x− 0, P q

1 := (S2x
2 − 2xS2x+ x2S2I)− (S∗

2x
2 − x2S∗

2I). S∗
2x

2 is obtained numerically
with boundaries in x direction set at far place (x = ±2).

143

Figure 5.12. The profile of P l
2 and P q

2 in application to the model equation, α = 102.
P l
2 := S1x− S1I · x− 0, P q

2 := (S1x
2 − 2xS1x+ x2S1I)− (S∗

1x
2 − x2S∗

1I). S∗
1x

2 is obtained numerically
with boundaries in x direction set at far place (x = ±2).

RR-SP0(1) thus it shows faster convergence. When α is high and the boundary effect is
strong enough to largely influence the real convergence, the convergence of RR-SP1 may
be ’backfired’ by the boundary effect of itself but RR-SP2 could offset the negative effect and
maintains stable performance.

Both the standard convergence nature and the boundary effect could be considered as
reflections of the non-local effect reservation of SP operators in application to given problems.
Obviously, in the standard convergence rate calculation, SiI, Six and Six

2 are considered as
two-dimensional functions thus the calculation reserves part of the non-local effect of the
problem. Additionally, the rest part of the non-local effect is represented by the boundary
effect (pike functions). The standard convergence calculation shows that RR-SP2 has lower
(standard) convergence rate and the numerical test shows that RR-SP2 has stronger ability to
avoid itself being negatively influenced by the boundary effect. The former makes RR-SP2
faster in achieving the convergence and the latter makes it more stable in dealing with complex
problem.

5.3.2 Model equation 2

This subsection considers applying the algorithms to the same model equation as Subsection
5.2.1 but with two parameters adjusted: y∗ and Re. Both adjustments change the non-local

144

Figure 5.13. The profile of P l
1 and P q

1 in application to the model equation, α = 104.
P l
1 := S2x− S2I · x− 0, P q

1 := (S2x
2 − 2xS2x+ x2S2I)− (S∗

2x
2 − x2S∗

2I). S∗
2x

2 is obtained numerically
with boundaries in x direction set at far place (x = ±2).

Table 5.5. Convergence iteration of RR-SP0, RR-SP1, RR-SP2 and DR algorithms in application to a model
equation, A = 5× 10−4.

α 1 102 104

RR-SP0 3 5 10
RR-SP1 3 5 29
RR-SP2 3 4 8
DR 4 7 19

effect strength of the problem on the interface. The additional test aims to check the analysis
result drawn from Subsection 5.2.1 so the numerical result is comparatively studied with that
from the subsection too.

Consider the case of implementing RR-SPN (N=0,1,2) and DR to the same model equations
(parameters and mesh scheme all remain) but with interface boundary at lower position:
y∗ = 5× 10−4. Moving y∗ to nearer-wall position means the non-local effect of the near-wall
problem becomes weaker so that the reservation of the non-local effect of S1 becomes less
important. In other words, the problem is closer to one-dimensional to some extent and the
difficulty to solve it becomes lower. Table 5.5 confirms it that all algorithms take less iterations
to converge, especially DR, RR-SP0 and RR-SP1. This is because the three algorithms are
less capable of retaining the non-local nature of the problem hence are more sensitive to the
reduction of it.

145

Figure 5.14. The profile of P l
2 and P q

2 in application to the model equation, α = 104.
P l
2 := S1x− S1I · x− 0, P q

2 := (S1x
2 − 2xS1x+ x2S1I)− (S∗

1x
2 − x2S∗

1I). S∗
1x

2 is obtained numerically
with boundaries in x direction set at far place (x = ±2).

Figure 5.15. The contour plot of the solution to α = 104 model equation. The solution mainly changes with x.

146

Figure 5.16. The divergence history of RR-SP0(1)* in application to the model equation, α = 106. The
convergence of V is speculated to be achieved within the first 5 iterations.

Next, consider the model equation with Re = 106 (all other parameters remain). The
adjustment mainly affects σ that controls the solution variation in x direction. If Re becomes
larger, σ relatively gets smaller and the solution less depends on xwith the same α. Therefore,
it could be expected that the problem is easier to solve.

Note different mesh scheme in y direction is adopted in the case:

y(i) = δ(
tanh(R

2
(i− n

2
))

tanh(R
2
)

+ 1), i = 0, 1, 2, ...n. (5.10)

The space step ∆hy(i) := y(i) − y(i − 1). The following parameters are given in the test:
n = 401, δ = 1, R = 20. The scheme is originally used for generating mesh in cylindrical
pipe simulation so the mesh are symmetric along i = n/2. In this case, only half generated
mesh are used so the final mesh have 202 nodes in total and 125 of them are located in inner
region (y ≤ 10−3) and 78 are in the outer region (10−3 < y ≤ 1). Compared with the
mesh scheme (Eqs.(5.7), (5.8)) in Subsection 5.2.1, both have well-refined mesh in the inner
region (accommodating over half number of nodes) with appropriate growing ratio, so they
should both be able to capture the rapid velocity change in the boundary layer simulation.
The numerical result based on the two schemes should be comparable.

The numerical test result is displayed in Table 5.6. Firstly, all cases converge in a few iterations
including RR-SP1 that had slow convergence in high-α case of Re = 104. It proves the

147

Table 5.6. Convergence iteration of a model equation case. Note ’NA’ denotes not applicable.

Parameter parallel sequential

α = 1 α = 100 α = 104 α = 1 α = 100 α = 104

RR-SP0 3 4 9 3 3 5
RR-SP1 4 4 9 3 3 5
RR-SP2 3 3 5 3 3 3
DR NA NA NA 3 3 5

problem indeed easier to converge. Next, consider each α respectively. In low-α cases (α =

1, 100), (parallel) RR-SP2 shows slight advantage in the convergence rate than the other two,
which should be resulted in by the standard convergence nature difference. The α = 100 case
matches the case of α = 1 in Subsection 5.2.1 because they both have σ ∽ 10−4. When α is
high (104), (both parallel and sequential) RR-SP2 shows remarkable advantage over the other
two. The case matches the case of α = 100 in Table 5.3 (because they both have σ ∽ 10−2),
so the explanation should be the same as well: the advantage is mainly due to the standard
convergence rate and is also influenced by the boundary effect. To verify it, (parallel) RR-SP2*
and RR-SP0(1)* is implemented to the case of α = 104, and the convergence iterations are 5
and 9 respectively, which is exactly the same as the result with the boundary effect. It shows
that the boundary effect of the algorithms almost has no impact on the convergence. The same
test is implemented to sequential RR-SP2* and RR-SP0(1)* as well, and the result is three,
four respectively, which shows the boundary effect of RR-SP0(1)* imposes slight impact on
the convergence but the standard convergence still plays the leading role. To sum up, the test
result with Re = 106 case is consistent with the previous analysis.

Table 5.6 also compares the iteration numbers between the parallel and the sequential
algorithms. It shows that in whichever case, the former takes about twice number of iterations
as the latter, as is in Poisson’s equation test, see Table 5.2. Therefore, the solution to the model
equation must also have (or dominated by) variable-separation form regardless of α. As will
be seen in Section 5.3, the solution is speculated to be quasi-one-dimensional with respect to
y and x in inner and outer region respectively.

Recall in last model equation test, α = 104 case, RR-SP1 shows very slow convergence
and RR-SP2 overcomes the negative trend and shows satisfactory stability in maintaining the
outstanding convergence performance. The poor performance of RR-SP1 is deduced to be
associated with part of the solution W that has no variable-separation form, and RR-SP2
proves itself capable of securing the convergence of W within small number of iterations.
To test RR-SP2 again, the model equation studied in this subsection is particularly applied
to (sequential) RR-SPN and RR-SPN* with α = 106 so that σ ∽ 1. The test result is shown
in Table 5.7. In this test, RR-SP2* proves its superior standard convergence rate and RR-SP2
proves its stability that the convergence is not impeded by the boundary effect. Actually the
error of RR-SP2 is slightly less than RR-SP2* although not resulting in iteration number
deduction, and it shows that the boundary effect not only does not impede but also boosts the
convergence. Therefore, RR-SP2 proves its advantage in having lower convergence rate and
better stability again in dealing with complex problem.

148

In the Re = 106 case, although RR-SP0(1)* fails to converge, the divergence history of
RR-SP0(1)* shows temporary decrease of the error (en2) in the first two iterations. The error
history is displayed in Fig.5.16. It suggests that error elimination takes place at the beginning
as if the convergence could have been achieved, but shortly afterwards the error line goes
up and keeps fluctuating at around 1, which is the symbol of ’mild divergence’ (means error
could neither be eliminated nor be enlarged). Clearly the algorithm managed to work at the
beginning but crashed soon. The reason could be that the algorithm works well with V but
does not with W . The early error elimination happens on V and it has actually reached the
convergence at around iteration 5. By contrast, the error of W could not be eliminated all
the time and the divergence is not visible during the first few iterations. Iteration 2-5 is the
transient zone where V is converging but W remains in divergence.

Table 5.7. Convergence iteration of RR-SPN and RR-SPN* in application to a model equation, α = 106. Note
’DIV’ denotes divergence.

SP0* SP1* SP2* SP0 SP1 SP2

Iterations DIV DIV 4 DIV DIV 4

5.4 Floating interface boundary method

This section introduces a new domain decomposition method to solve the model equations.

Figs.5.17 to 5.19 illustrate the solution profile of the model equations (Re = 106) with three
different α: 102, 104 and 106. The increasing α represents stronger non-local effect of the
solution in x direction. It could be seen that Fig.5.17 resembles Fig.5.18 where both profiles
are mainly in blue (low function value) and only the right bottom corner reserves small
area of yellow colour (high function value). The small yellow strip represents extremely
high gradient zone in y direction (from top to bottom) in inner region, and it is supposed
to simulate the boundary layer in turbulence flow. The outer region witnesses much milder
transition in colour and the transition mainly happens in x direction. This region is supposed
to simulate turbulence main flow. Roughly speaking, inner region could be approximated as
a one-dimensional problem in y direction with super-high velocity gradient and outer region
could be approximated as a one-dimensional problem in x direction with very low gradient.
Reducing the inner problem to one-dimensional with respect to y fits the solution nature of
the near-wall flow (exactly what ANDD algorithms do), but the outer region could suffer
more from accuracy loss because it is basically a problem of x. In other words, outer region
has stronger non-local effect than inner region. Recall it is previously stated that the boundary
effect ofSiI mostly represents the non-local effect of the operator (see end of Subsection 4.1.2
in Chapter 4). In the model equation tests, Fig.5.9 shows that S2I has higher pike (boundary
effect) than S1I , so the outer region should have stronger non-local effect. Figs.4.23 and 4.24
also confirm this: A = 1/8 has larger pike in S2I than in S1I and A = 7/8 has larger pike in
S1I than in S2I .

Fig.5.19 is remarkably different from the above two figures because it has the yellow zone

149

much bigger in size and located at top right of the domain (out of inner region). It means that
the solution in inner region might still be largely influenced by the gradient in y direction but
the gradient is much lower (might not dominate) thus not capable of representing boundary
layer. By contrast, the outer region shows higher gradient in x direction: from right to left, so
it becomes closer to a one-dimensional problem with respect to x. To summarise, inner region
could not be simplified as one-dimensional problem of y in the case and outer region becomes
closer to a one-dimensional problem with respect to x. The equation no longer simulates
turbulence flow.

It is not surprising to see Fig.5.19 highly resembles Fig.5.15 because they both have α ∽ 1.
The difference between the two figures is that the latter has bigger bright colour zone (or
simply yellow zone) at the right top corner, which means the velocity gradient in x direction
of the case is higher and the solution is closer to one-dimensional. Recall previous study
assumes the solution to the case is made of two parts: u = V +W where V could be solved
with separation of variables and W could not. It could be speculated that V makes up higher
portion of the solution as shown in Fig.5.15 so the negative effect of W on the convergence is
weaker. In that case, RR-SP1 could still converge and RR-SP0 shows even better convergence,
see Table 5.3. When W composes larger portion in the solution, as is the case as shown in
Fig.5.19, the convergence condition could be worse or even divergence, see Table 5.7.

As has been analysed, in whichever case, the solution in outer region mainly varies with x as a
result of strong non-local nature. Consequently, the solution gradient is low in y direction and
the solution changes very slowly in this direction. Now considering outer region Ω2 alone,
throughout the iterative computing it has three exact boundary conditions (at x = 0, 1, y =

1) and one boundary condition not exact (at y = A). Presume the error on the interface
is e02(x) before the iteration launches, and after the first iteration, e02(x) must propagate to
other nodes in Ω2. Since the BVP is a quasi-one-dimensional problem with respect to x, the
error mainly spreads along x direction and hardly travels along y direction, which means the
solution u1

2(x,A + δy) should not be largely influenced by e02(x). The larger δy, the smaller
the influence should be. If the propagation of e20 could fade away within certain scope of δy,
the solution beyond δy should be exact.

The method of floating interface boundary is proposed. The idea is that in the first iteration,
define an imaginary interface several nodes below the real interface, denoted by y∗i := y∗−δy.
At the moment the outer region is slightly larger than it should haven been, and the real
interface y∗ is in outer region. Let the algorithm (whatever as long as it is convergent) run
one iteration in outer region, and the value on y = y∗ in outer region should be very close to
exact value. Then resume the real interface and let the algorithm run in inner region. So far
the 1st iteration is completed. If the interface value at y = y∗ is close enough to exact value,
the whole solution should already be exact. Afterwards let the algorithm run 1 more iteration
to check error. It is expected that the algorithm will converge after the completion of iteration
2. As the interface boundary slightly moves around during the iterations, it is called ’floating
interface boundary method’. It could be combined with any convergent ENDD algorithm,
such as simply RR-SP0.

150

To approximately elaborate the error propagation in Ω2, consider the following
one-dimensional BVP:

Lye2 = 0,

e2(A) = e02, e2(1) = 0.
(5.11)

The above BVP represents the error problem in Ω2 and it is simplified to one-dimensional.
To compare, similar error BVP could be defined in Ω1:

Lye1 = 0,

e1(A) = e02, e1(0) = 0.
(5.12)

If let e02 = 1, the above BVPs could be used to obtain S∗
1I and S∗

2I by computing e1y(A) and
−e2y(A). Instead of computing them, what is concerned here is the solution to e1 and e2. Now
consider computing the above BVPs with Re = 106. Let Ly :=

µ d
dy

dy
+β d

dy
+ γ, where µ, β, γ

are all defined the same as previous model equations. δy is 10 nodes so that the imaginary y∗i

is at 115th node. The solution to e1 and e2 is displayed in Fig.5.20.

The figure shows that the error is at maximum at y = y∗i and propagates to both sides of the
domain. In Ω2, the error drops so quickly that after 10 nodes it reduces to almost 0. In Ω1,
the error falls too but at much slower rate. It takes about half of the nodes in the region to let
the interface error reduce to almost 0. This is consistent with the previous analysis: in inner
region error mainly spreads along y so e02 travels deep into the centre part of Ω1; in outer
region error mainly spreads along x and hardly transports along y direction, so the error is
almost ’isolated’ in the narrow strip along y = y∗i .

To verify the method, the model equation (Re = 106) with α = 1, 102 and 104 is solved by
RR-SP0 with floating interface boundary. The test conditions remain all the same as above
test. The result is that all three cases converge in two iterations, while RR-SP0 converges
in three, three, five iterations respectively, see Table 5.6. Even RR-SP2 converges in three
iterations, which is one iteration slower. What is more, the computing cost of ’floating
RR-SP0’ is the same as RR-SP0, which requires only the pre-computation of SiI . By contrast,
the implementation of RR-SP2 requires additionally the computation of Six and Six

2 apart
from SiI .

The high efficiency of the method is closely associated with the nature of near-wall turbulent
flow: boundary layer has high gradient in y direction and main flow is mainly a function of x.
Therefore, the method is specifically aimed to solve near-wall turbulent flow but should not
be expected to work effectively with other problems such as Poisson’s equation.

5.5 Summary

This chapter conducts numerical tests to verify the convergence analysis result of RR
algorithms, and to test the feasibility of applying the RR algorithms to resolving near-wall

151

Figure 5.17. Solution profile of the model equation (Re = 106). α = 102.

Figure 5.18. Solution profile of the model equation (Re = 106). α = 104.

152

Figure 5.19. Solution profile of the model equation (Re = 106). α = 106.

Figure 5.20. Profile of e1 and e2, which are defined in Eqs.(5.11) and (5.12).

153

turbulence problem.

Numerical test result on Poisson’s equation fully coincides with theoretical result. Next,
numerical tests are extensively conducted to two model equations with different solution
variation on x direction. Greater variation accounts for stronger non-local nature of the
problem. Since the algorithms are designed to deal with non-local problems, they should
not perform much differently when the non-local effect is weak. The numerical test confirms
the analysis: all the three algorithms converge in a few iterations and RR-SP2 shows slight
advantage, which is due to lower standard convergence rate. As the non-local effect gets
stronger, the advantage of RR-SP2 becomes greater and this is because the boundary effect
improves the convergence. Overall, RR-SP2 shows both superior stability and efficiency in
solving the model equations.

Section 5.4 proposes a new algorithm based on movable interface boundary, which is proven
to be as efficient as to achieve the convergence in two iterations. The high efficiency of the
algorithm is found to be directly associated with the physical nature of near-wall turbulent
flow: normal derivative of function dominates in near-wall region and tangential derivative
dominates in off-wall region.

154

Chapter 6

Analysis and implementation of GMRES

This chapter discusses one of the most effective iterative algorithms to solve large sparse
linear systems: the generalized minimum residual method [105], which is used in the project
to solve the discrete BVPs as introduced in previous chapters. The method of GMRES
usually goes with preconditioning procedures to achieve faster convergence. There are various
preconditioning techniques applicable to GMRES and the so-called ILU(0) is elaborated in
the chapter as it is implemented in the project.

The computing cost of solving a linear system is directly associated with the working
mechanism of the solver that is used. For example, the size of the linear system could play
an important role in determining the computing cost of applying direct solving method such
as LU factorization, but it is usually not true for more complicated iterative solving method
including GMRES. Therefore, the object of studying GMRES is to understand how it works
to solve large sparse systems and find approach to evaluate the computing cost of applying
GMRES to NDD method as opposed to one-block method.

6.1 Introduction of GMRES as a projection method

Consider a large sparse linear problem where A ∈ Rn×n and x, b ∈ Rn:

Ax = b. (6.1)

This section introduces so-called projection method to solve the problem. The basic idea of
projection method is to find an approximation of x (denoted by xm) in the search subspace
Km so that b − Axm ⊥ Lm, in which both Km and Lm are two m−dimensional subspace
in Rn. The approximated solution has the structure: xm = x0 + δ, in which x0 is an
arbitrary initial guess and δ ∈ Km. To extract such a xm from Km, a typical technique is
to impose m orthogonality conditions on the subspace Km so that for example, the residual
vector b − Axm is orthogonal to m linearly independent vectors, which form the so-called
constraint subspace Lm [106]. As stated above, this is the basic framework of so-called
Petrov-Galerkin conditions. Particularly, when Lm = Km, the Petrov-Galerkin conditions

155

are called Galerkin conditions [106].

xm = x0 + δ, δ ∈ Km, (6.2)

(b − Axm, ω) = 0, ∀ω ∈ Lm. (6.3)

There are as many projection-method-based algorithms as the selections of Km. Particularly,
Krylov subspace method is a method for which the search subspace Km is defined as Krylov
subspace [107]:

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}. (6.4)

where r0 = b − Ax0. From now on, Km ≡ Km(A, r0) would represent Krylov subspace of
dimension m only unless otherwise indicated.

The implementation of GMRES usually starts from running Arnoldi algorithm [108].
The importance of Arnoldi algorithm largely lies in its property that it produces an
orthogonal basis (denoted by Vm) of Km, so that δ could be expressed as δ = Vmym,
where ym ∈ Rm. Essentially, the algorithm uses (modified) Gram-Schmidt method to
orthogonalize the non-orthonormal basis of Km and the relationship between A and Vm

holds: Hm ≡ V T
mAVm, where Hm is an m×m upper Hessenberg matrix. The Hessenberg

matrix is not only a by-product of the orthogonalization operation on Km, as will be seen,
it is also the matrix representation of A projected in Krylov subspace Km with Vm as basis
and it contains important information of eigenvalues of matrix A. In addition, there could be
other ways to obtain the orthogonal basis of Km: Householder method and Givens rotation for
example. The following discussion would demonstrate that modified Gram-Schmidt(MGS)
has its unique advantage over all others in application to GMRES method.

There are two classes of projection methods in term of Lm: Lm := Km and Lm := AKm,
namely orthogonal and oblique projection respectively [106]. In the first case, Galerkin
conditions becomes (b − Axm, ω) = 0,∀ω ∈ Km and it yields to the estimation of
xm = x0 + Vmy, where y = H−1

m ∥r0∥e1 and e1 is the first column of m ×m identical
matrix [109]. This directly leads to the full orthogonalization method (FOM), an algorithm
highly similar (but less efficient than) to GMRES. In the second case when Lm = AKm,
the estimation xm could be found in such a way that the residual norm ∥b − Axm∥2 is
minimized over x0 + Km. Actually this is the optimal process of a least square problem
because xm ∈ Km and m < n. Together with Arnoldi algorithm, the process of solving the
least square problem directly forms the standard GMRES.

The convergence of GMRES is guaranteed that it must converge in at most n iterations when
A is a n×n matrix. In this case, the solution is exact. However, it is rarely practical because n
is usually very large and GMRES is expected to converge with acceptable error inm iterations
(sometimes re-start after m iterations) where m is a pre-determined parameter and m ≪ n. It
could be proven that the rate of convergence is highly related to the eigenvalue distribution of
A: higher clustered distribution of eigenvalues makes GMRES converge faster, which means

156

the convergence could be achieved within less iterations.

6.2 Derivation of GMRES

6.2.1 Arnoldi algorithm

In both Petrov-Galerkin and Galerkin conditions, the estimated solution xm is a member
of Km, therefore an orthogonal basis of the subspace Km is always useful in revealing the
structure of the subspace and simplifying the analysis due to the orthogonality of the basis.
With Galerkin condition, Lm = Km, intuitively this is simpler because the search subspace
and constrain subspace share the common orthogonal basis that could be obtained by Arnoldi
algorithm.

Arnoldi algorithm was firstly proposed in 1951 to decompose a dense matrix into Hessenberg
matrix with unitary transformation. Then it was discovered that the Hessenberg matrix also
offers good approximation of the eigenvalues of the decomposed matrix even if it is large
and sparse. What is more, the unitary matrix V actually builds up the orthogonal basis of
Krylov susbspace Km(A, v) ≡ {v,Av,A2v, ..., Am−1v}, which is exactly the search
(also constraint) subspace in GMRES (FOM). Finally, from technical viewpoint, Arnoldi
algorithms using Gram-Schimidt method produces the Hessenberg matrix and unitary matrix
in an ’one-column-by-another’ manner, which means it could stop at any iteration with an
incomplete decomposition product. It makes it convenient for the implementation of re-started
GMRES.

With classic Gram-Schmidt (CGS) method, Arnoldi algorithm reads as follows:

ALGORITHM: Arnoldi algorithm (CGS)

1. Choose a vector r1, let v1 = r1/∥r1∥2
2. For j = 1, 2, ...,m, Do

hi,j = (Avj, vi), i = 1, 2, ..., j

wj = Avj −
j∑︂

i=1

hi,jvi

hj+1,j = ∥wj∥2
if hj+1,j = 0, then stop

else vj+1 = wj/hj+1,j

End Do

The matrix representation of the above orthogonalizaiton process is as follows:

AVm = Vm+1H̄m. (6.5)

157

The unitary matrix composed of v1, v2, ..., vm defined by Arnoldi algorithm is denoted byVm.
The upper Hessenberg matrix whose non-zero elements are determined by Arnoldi algorithm
is denoted by H̄m. The dimension of the upper Henssenberg matrix is (m+ 1)×m.

Expand the matrix formation:

Vm =
[︂
q1, q2, q3, ...qm

]︂
(6.6)

Vm+1 =
[︂
q1, q2, q3, ...qm, qm+1

]︂
(6.7)

H̄m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 ... h1m

h21 h22 ... h2m

0 h32 h33 ... h3m

0 h43 h44 ... h4m

... ... 0 ...

0 ... hm,m−1 hm,m

0 ... 0 ... 0 hm+1,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.8)

When hj+1,j = 0, it marks the breakdown of the orthogonalization process or when m = n,
it marks the full orthogonalization of n−order Krylov subspace. The latter happens when
hj+1,j = 0 at the last iteration of Arnoldi algorithm, and there would be no new column
generated to complement Vm because wj = 0. The matrix representation is

AVn = VnHn, (6.9)

where Hn is a n× n matrix whose non-zero element hij has indices (i− 1) ≥ j.

What is more concerned is in general case, where there is no breakdown, no m = n, the
relationship between AVm and VmHm. To see this, transform Eq.(6.5) into

AVm = Vm+1H̄m = VmHm + hm+1,mqm+1e
T
m, (6.10)

where eT
m is the m−th column of m×m identical matrix. In other words, the last column of

VmHm plus vector hm+1,mqm+1 is equal to the last column of Vm+1H̄m. Note the added
vector hm+1,mqm+1 is equal to wm in Arnoldi iteration. Meanwhile, the latest-generated
orthogonal vector qm+1 is actually normalized wm as shown in Arnoldi process, so when
Arnoldi algorithm breaks down or n−order Krylov subspace has been fully orthogonalized,
no new orthogonal basis is produced and the term hm+1,mqm+1e

T
m vanishes, and Eq.(6.9)

naturally holds true.

Next consider left-multiplying Vm
T on both sides of Eq.(6.10) and due to orthogonality of

Vk, it yields to
V T

mAVm = Hm, (6.11)

where Hm is equal to H̄m excluding the last row whose only non-zero element is hm+1,m,

158

see below:

Hm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 ... h1m

h21 h22 ... h2m

0 h32 h33 ... h3m

0 h43 h44 ... h4m

...

0 ... 0 ... hm,m−1 hm,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.12)

Rearranging Eq.(6.11) yields to the similarity transformation V T
mAVm = Hm, which

indicates that Hm has the same eigenvalues as A. Due to the simpler structure of Hm, it
is easier to obtain the eigenvalues of A(also Hm) by numerical method like QR algorithm.
As will be seen in Section 6.4, the distribution of eigenvalues of A plays a crucial role in
estimating the convergence rate of GMRES.

Arnoldi algorithm could also be achieved via modified Gram-Schmidt method, which is
mathematically equivalent to the one by CGS method. The former is more reliable due to
better elimination of round-off error in computing process. It takes the form as follows:

ALGORITHM: Arnoldi algorithm (MGS)

1. Choose a vector r1, let v1 = r1/∥r1∥2
2. For j = 1, 2, ...,m, Do

Compute wj := Avj

For i = 1, ..., j, Do

hij = (wj, vi)

wj := wj − hijvi

End Do

hj+1,j = ∥wj∥2
if hj+1,j = 0, then stop

else vj+1 = wj/hj+1,j

End Do

6.2.2 Full orthogonalization method

Consider the simpler case first where Km = Lm = span{r0, Ar0, ..., Am−1r0}. With the
orthogonal basis vi(i = 1, 2, ...,m) of Krylov subspace produced by Arnoldi method, the

159

Galerkin condition requires that b − Axm ⊥Km:

b − Axm ⊥Km,

→ b − A(x0 + Vmym)⊥Km,

→ r0 − AVmym ⊥Km,

→ V T
m(r0 − AVmym) = 0,

→ V T
mr0 − Hmym = 0, (by Eq.(6.11),)

→ βe1 − Hmym = 0, (by orthogonality of Vm,)

(6.13)

where β := ∥r0∥2. Then, the estimated solution ym = βH−1
m e1.

ALGORITHM: Full Orthogonalization Method

1. Compute r0 = b− Ax0, let v1 = r0/β, where β := ∥r0∥2
2. Arnoldi process: For j = 1, 2, ...,m, Do

hi,j = (Avj, vi), i = 1, 2, ..., j

wj = Avj −
j∑︂

i=1

hi,jvi

hj+1,j = ∥wj∥2
if hj+1,j = 0, then stop, let m := j

else vj+1 = wj/hj+1,j

End Do
3. Find the solution: xm = x0 + Vmym, where ym = βH−1

m e1.

Here is the error estimation: the residual generated by the approximated solution xm is

b − Axm = b − A(x0 + Vmym),

= r0 − AVmym,

= βv1 − VmHmym − hm+1,mqm+1e
T
mym, (by Eq.(6.10),)

= −hm+1,mqm+1e
T
mym, (by Hmym = βe1.)

(6.14)

6.2.3 Standard GMRES and restarted GMRES

Consider Petrov-Galerkin condition applied to the case when Km is the m−dimensional
Krylov subspace with v0 := r0. It could be proved that the estimated solution xm satisfying
the condition minimizes the 2-norm of the residual vector b − Ax over x0+Km. Therefore,
the key problem turns into finding the optimal solution to a least square problem:

min
δ ∈Km

∥b − A(x0 + δ)∥2. (6.15)

Obviously δ could be expressed as δ = Vmym, as is performed previously.

160

Recalling the equality relationship Eq.(6.5), the least square problem could be simplified as
follows:

min
δ ∈Km

∥b − A(x0 + δ)∥2 (6.16)

= min
ym ∈Rm

∥r0 − AVmym∥2, (6.17)

= min
ym ∈Rm

∥r0 − Vm+1H̄mym∥2, (6.18)

= min
ym ∈Rm

∥βv1 − Vm+1H̄mym∥2, (6.19)

= min
ym ∈Rm

∥Vm+1(βe1 − H̄mym)∥2, (6.20)

= min
ym ∈Rm

∥βe1 − H̄mym∥2. (6.21)

Them×(m+1) least square problem could be addressed by QR factorization and the method
especially becomes easier due to the simple structure of H̄m.

ALGORITHM: GMRES (standard)

1. Compute r0 = b− Ax0, let v1 = r0/β, where β := ∥r0∥2
2. Arnoldi process: For j = 1, 2, ...,m, Do

hi,j = (Avj, vi), i = 1, 2, ..., j (6.22)

wj = Avj −
j∑︂

i=1

hi,jvi (6.23)

hj+1,j = ∥wj∥2 (6.24)

if hj+1,j = 0, then stop, let m := j (6.25)

else vj+1 = wj/hj+1,j (6.26)

End Do
3. Form the solution by solving the least square problem: xm = x0 + Vmym, where ym

minimizes ∥βe1 − H̄mym∥2.

The only difference between GMRES and FOM lies in the last step: the former finds an
optimal solution to a least square problem while the latter computing ym directly. Although
the difference seems trivial, the two algorithms fall into two distinct categories of projection
method: GMRES is a projection method based on taking Km as search subspace and Lm =

AKm as constraint subspace, while FOM has the same search/constraint subspace Km. The
derivation of the algorithms also varies correspondingly as has been demonstrated.

The breakdown of GMRES could only possibly occur at Arnoldi iteration when hj+1,j = 0.
As analyzed before, it means that the Krylov subspace basis has been fully orthogonalized
if A is non-singular. In this situation, m must be equal to n and the solution must be exact
because the degree of freedom matches the degree of restraint.

In cases when m is very large, the standard GMRES becomes increasingly expensive as m

161

keeps growing. One remedy is to re-start the algorithm after every m iterations and m is a
pre-set integer and could even be dynamic. The algorithm is as follows:

ALGORITHM: GMRES(re-started)

1. Compute r0 = b− Ax0, let v1 = r0/β, where β := ∥r0∥2
2. Arnoldi process: Produce Vm and H̄m using Arnoldi algorithm
3. Compute ym which minimizes ∥βe1 − H̄mym∥2 and xm = x0 + Vmym

4. Examine rm = b− Axm. If satisfied, then stop. Else let x0 := xm and go to step 1.

6.3 Solution to the least square problem and practical discussion

6.3.1 Solving the least square problem

This section discusses how to solve the least square problem:

min
ym∈Rm

∥βe1 − H̄mym∥2. (6.27)

The normal way to solve the problem is by QR factorization that transforms H̄m into an
upper triangular matrix Rm, and ym could be directly obtained by backward substitution.
Particularly, the special structure of H̄m simplifies the transformation process. Givens
rotation is a widely-used method to implement the transformation. Consider a transformation
matrix F applied to H̄m and transform it into an upper triangular matrix R:

FH̄m = R. (6.28)

The transformation matrix F =
∏︁
j

Fj is composed of a series of ’rotation’ matrix Fj which

has the form:

Fj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ...

...

... c ... s ...

... 1 ...

... −s ... c ...

...

... 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.29)

Note the ’...c...s...’ row is the ith row of the rotation matrix and ’...− s...c...’ is the jth row
(j > i). Meanwhile, it is easy to see that F j is unitary. The matrix is able to turn the jth entry
of a vector α = (α1, α2, ...αi, ...αj, ...αm) into 0 and update the ith entry accordingly while
remaining all other entries unchanged:

Fjα = (α1, α2, ...α
(1)
i , ...α

(1)
j , ...αm), (6.30)

162

where α
(1)
i =

√︂
α2
i + α2

j and α
(1)
j = 0. Actually the formation of Fj is related to the vector

that is being changed:

c =
αi√︂

α2
i + α2

j

, (6.31)

s =
αj√︂

α2
i + α2

j

. (6.32)

In one word, Fj ’rotates’(swaps position) the ith and jth entries of a vector α and updates
their values in such a way that the newly updated jth entry is 0. All other entries except those
two entries are not affected by the rotation. Therefore, applying multiple Fj (j must decrease
in order) on a vector is able to turn multiple entries into 0, and applying the same rotation
operations to multiple column vectors (matrix) is able to eliminate particular non-zero entries
as demanded.

Consider applying the following rotation matrices on the Hessenberg matrix H̄m and
transforming it into an upper triangular matrix R̄m:

FmFm−1...F1H̄m = FH̄m = R̄m. (6.33)

Obviously, sinceF j is unitary, so isF . Each rotation matrix operates on two particular entries
in a vector: F k, (k = 1, 2, ...m) rotates the (k+1)th and kth entries of the kth column of H̄m

and turns the new (k+1)th entry into 0. For example, F 1 shifts h21 to 0, and F 2 shifts h32 to
0 ..., until hm+1,m becomes 0 by Fm. Note that F k is applied to not only the kth column of
H̄m although it is only this column turning a non-zero entry into zero, all other columns are
affected by the rotation matrix imposed. Denoting H̄m composed by multiple column vectors
hi, (i = 1, 2, ...,m), for those column vectors that i < k, they remain unchanged because their
kth and (k+1)th entries are already 0; for those vectors that i > k, their entries in position k

and k+ 1 would be updated by F k. Therefore, the rotation matrix F k is actually determined
by the two entries at position k and (k + 1) of vector column h

(k−1)
k := Fk−1...F1hk rather

than original hk.

Technically, F k is built by modifying the k-th and (k + 1)-th rows of (m + 1) × (m + 1)

identity matrix as follows:

Fk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ...

...

... ck sk ...

... −sk ck ...

...

... 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.34)

163

where

ck =
h
(k−1)
k,k√︂

(h
(k−1)
k,k)2 + (hk+1,k)2

, (6.35)

sk =
hk+1,k√︂

(h
(k−1)
k,k)2 + (hk+1,k)2

. (6.36)

The outcome upper triangular matrix R̄m has the form:

R̄m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 ... r1m

0 r22 ... r2m

0 r33 ... r3m

0 r44 ... r4m

...

... ... 0 rm,m

... ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.37)

While transforming H̄mym into a simpler form, the other side of the problem βe1 is also
imposed by the same operation at the same time. Instead of eliminating any non-zero entry,
the operation turns all 0 entries into non-zero:

Fβe1 := ḡ = [γ1, γ2, ..., γm+1]
T . (6.38)

The original least square problem becomes

min
ym∈Rm

∥βe1 − H̄mym∥2, (6.39)

min
ym∈Rm

∥Fβe1 − FH̄mym∥2, (F is unitary,) (6.40)

min
ym∈Rm

∥ḡ − R̄mym∥2. (6.41)

The last row of R̄m is a null-vector and deleting it from R̄m gives a m×m upper triangular
matrix Rm. The size of ym is m, and together with g that is the m−vector deleting γm+1

from ḡ, the least square problem could be transformed to

min
ym ∈Rm

∥ḡ − R̄mym∥22 = min
ym ∈Rm

∥g − Rmym∥22 + |γm+1|2. (6.42)

Now it is time to compute ym because the first term in the right hand side of Eq.(6.42) is a
simple triangular system, which gives the solution

ym = R−1
m g. (6.43)

Note it is not necessary to calculate the inverse of R in real calculation because Gauss
elimination is good enough to solve ym.

164

In GMRES, the convergence criteria is formulated via rm rather than ym (or even xm)
because there is an immediate way to obtain rm. Recall Eq.(6.42), the term ∥g − Rmym∥22
is equal to 0 with optimal ym and consequently,

min
ym ∈Rm

∥ḡ − R̄mym∥2 = |γm+1|. (6.44)

That means that after m-step of Arnoldi iteration and Givens rotation, the 2-norm of
the minimum residual rm is given directly by the last entry of ḡm. With no more extra
computation cost, the convergence condition could be examined.

6.3.2 Compressed row storage

In the project, the matrices to deal with are usually large and sparse, which means they have
large number of entries (∼ 108 at least) but most of them (over 99%) are 0, which would not
play any essential role in matrix calculation. It would be a huge waste if so many entries are
stored but not using. Therefore, an effective storage strategy called compressed row storage
method (CRS) is implemented to address the problem.

The idea of CRS is to create a system of much smaller size to store all the non-zero entries of
the matrix and identify them with pre-designed order. This way the zero-entries are excluded
from the computer memory unit occupation without any influence on the computing. Here
demonstrates the way CRS works via an example:

Consider a m × (m + 2) matrix A that has three non-zero entries at each row in diagonal
and beside positions: ai,i, ai,i+1, ai,i+2 at row i, as shown in Eq.(6.45). It has 3m non-zero
entries, so a vector nz(3m) is defined to store the entries in so-called row-wise fashion that
fills the entries into nz by up-to-bottom and left-to-right order. In this case, for example,
nz(1) = a11, nz(2) = a12, nz(5) = a23. Next, two vectors ja and ia are defined to help
identify their positions in the matrix. Firstly, vector ja is of size 3m and is used to store
the column indices of the non-zero entries in row-wise fashion as well. The column index
represents the position of the referred entry in its row. For example, a11 is the 1st entry in
row 1, so its column index is 1, and similarly, a13 has column index ’3’, a24 has ’4’, am,m,m+1

has m+ 1. Secondly, vector ia that is of size (m+ 1) is used to store the row indices of the
non-zero entries still in row-wise fashion. The row index represents the number of non-zero
entries of each row in A. In this case, each row of the matrix has three non-zero entries so
that all entries of ia are three except ia(1) = 1 by default.

CRS uses three vectors whose size is merely of order m to store and identify all the entries
needed for the matrix computation. If all the matrix A is saved as conventional way, the
memory cost would be of order m2, which means approximately m times less efficient in

165

storing and addressing the data. In the project, m is usually of order 104.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a22 a23 a24

a33 a34 a35

...

...

...

am,m am,m+1 am,m+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.45)

6.4 Convergence analysis

This section discusses the convergence rate of GMRES. It is known that GMRES must
converge in up to n iterations if the linear system to solve has dimension of n× n. However,
it is often too expensive to let GMRES run to full scale in real problem. Instead, GMRES is
usually allowed to run m iterations (m ≪ n) and the residual rm norm is then examined for
the convergence check. Sometimes m iterations are not enough and another m-iteration-cycle
is needed. Therefore, the key problem is by how many iteration could GMRES converge to
required convergence criteria. In other words, the problem is how precise an approximation
could be made from m-dimensional Krylov subspace to construct a n-dimensional solution.
The intuition is that it depends on some property of matrix A since Krylov subspace is made
of it apart from r0. As will be shown next, it is actually the eigenvalue distribution of A that
determines the convergence rate of GMRES.

To demonstrate this, first a brief overview of the convergence study of GMRES by Saad
is provided in Subsection 6.4.1, which is made in quite general basis using Chebyshev
polynomials. Then in Subsection 6.4.2, a more detailed eigenvalue analysis is made without
the assistance of Chebyshev polynomials. The conclusions in the above 2 subsections are
consistent.

6.4.1 General analysis using Chebyshev Polynomial

This subsection briefly introduces the main conclusion of the GMRES convergence analysis
made by Saad [106]. The provided conclusion is supposed to be compared with the analysis
as will be shown in Subsection 6.4.2 as benchmark.

Assume that all the eigenvalues of A are contained within the ellipse E(c, d, a), which
represents an ellipse with center c, focal distance d and major semi axis a. The ellipse does
not encircle origin in it. Meanwhile, suppose A could be diagonalizable that A = XΛX−1

where Λ = diag{λ1, λ2, ...λn}, composed of eigenvalues of A. Then, the residual norm rm

166

after m steps of GMRES has the norm

∥rm∥2 ≤ κ(X)
Cm(

a
d
)

|Cm(
c
d
)|
∥r0∥2, (6.46)

where

κ(X) = ∥X∥∥X−1∥, (6.47)
Cm(

a
d
)

Cm(
c
d
)
≈

(︃
a+

√
a2 − d2

c+
√
c2 − d2

)︃m

. (6.48)

Note Cm is the m−order complex Chebyshev polynomials. Let alone κ(X), Eq.(6.48) shows
the residual rm is affected by the geometry of the ellipse defined by eigenvalues of A. It
could be seen that a and d determines the distribution characteristic (loose or compressed)
of eigenvalues of A and c roughly determines the average eigenvalue. To make Eq.(6.48)
small (≈ 0), a and d are supposed to be small and c is supposed to be large, which means
the ellipse is small in size and located far from origin. That means eigenvalues of A should
be distributed around the average eigenvalue that is supposed to be large. Alternatively, very
roughly speaking, Cm(a

d
)

Cm(c
d
)
≈ (a

c
)m and that indicates the eigenvalues should be distributed in

such a concentrated way that the difference among them is minor compared to the average
value of them.

6.4.2 Eigenvalue analysis of GMRES convergence

Assume A ∈ Rn×n is non-singular with n eigenvalues: λ1, λ2, ..., λn and |λ1| ≥ |λ2| ≥ ... ≥
|λn|. Meanwhile α1, α2, ..., αn are the corresponding eigenvectors. Apparently r0 could be
written as:

r0 = b1α1 + b2α2 + ...+ bnαn, (6.49)

where bi (i = 1, 2, ...n) are coefficients.

The second column vector of Krylov subspace Ar0 is:

Ar0 = b1λ1α1 + b2λ2α2 + ...+ bnλnαn. (6.50)

Similarly, expand Krylov subspace up to column n:

An−1r0 = b1λ
n−1
1 α1 + b2λ

n−1
2 α2 + ...+ bnλ

n−1
n αn. (6.51)

Recall that A(x − x0) = r0, and x − x0 could be expressed as members of Krylov
subspace:

(x − x0) = z1r0 + z2Ar0 + ...znA
n−1r0, (6.52)

where zi (i = 1, 2, ...n) are coefficients.

167

Clearly,

A(x − x0) = z1Ar0 + z2A
2r0 + ...znA

nr0. (6.53)

Substitute Eqs.(6.50) and (6.51) into Eq.(6.53) and transform:

A(x − x0)

=z1Ar0 + z2A
2R0 + ...+ znA

nr0, (6.54)

=z1(b1λ1α1 + b2λ2α2 + ...+ bnλnαn)+ (6.55)

z2(b1λ
2
1α1 + b2λ

2
2α2 + ...+ bnλ

2
nαn)+

...

zn(b1λ
n
1α1 + b2λ

n
2α2 + ...+ bnλ

n
nαn),

=α1b1(z1λ1 + z2λ
2
1 + ...+ znλ

n
1)+ (6.56)

α2b2(z1λ2 + z2λ
2
2 + ...+ znλ

n
2)+

...

αnbn(z1λn + z2λ
2
n + ...+ znλ

n
n).

Clearly, A(x − x0) must be equal to r0 as expanded in Eq.(6.49). In matrix formation the
equality could be expressed as follows:⎡⎢⎢⎢⎢⎣

b1λ1 b1λ
2
1 ... b1λ

n
1

b2λ2 b2λ
2
2 ... b2λ

n
2

... ...

bnλn bnλ
2
n ... bnλ

n
n

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
z1

z2

...

zn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1

b2

...

bn

⎤⎥⎥⎥⎥⎦ , (6.57)

which is equal to ⎡⎢⎢⎢⎢⎣
λ1 λ2

1 ... λn
1

λ2 λ2
2 ... λn

2

... ...

λn λ2
n ... λn

n

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
z1

z2

...

zn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

1

...

1

⎤⎥⎥⎥⎥⎦ . (6.58)

This is the full-scale problem formulation. Apparently the solution would be exact and
completely depend on the eigenvalue matrix. Next, consider the case when Krylov subspace
is not expanded to n−th column and the solution is hence approximated (denoted by xm).

Assume m iterations has been run and xm − x0 are members of m-dimensional Krylov
subspace xm − x0 = span{b,Ab,A2b, ..., Am−1b}. Therefore, A(xm − x0) could be

168

written as

A(xm − x0)

=z̄1Ar0 + z̄2A
2r0 + ...+ z̄mA

mr0,

=z̄1(b1λ1α1 + b2λ2α2 + ...+ bnλnαn)+

z̄2(b1λ
2
1α1 + b2λ

2
2α2 + ...+ bnλ

2
nαn)+

...

z̄m(b1λ
m
1 α1 + b2λ

m
2 α2 + ...+ bnλ

m
n αn),

=α1b1(z̄1λ1 + z̄2λ
2
1 + ...+ z̄mλ

m
1)+

α2b2(z̄1λ2 + z̄2λ
2
2 + ...+ z̄mλ

m
2)+

...

αnbn(z̄1λn + z̄2λ
2
n + ...+ z̄mλ

m
n).

(6.59)

Then, the equation A(xm − x0) = r0 has the matrix form as follows⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 λ2
1 ... λm

1

... ...

λm λ2
m ... λm

m

... ...

... ...

... ...

λn λ2
n ... λm

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎣
z̄1

z̄2

...

...

z̄m

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

...

...

1

...

...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.60)

Note that the equality relationship A(xm − x0) = r0 is not strictly true because xm is
approximated solution to a least square problem. It is preferable to writeA(xm − x0) ≈ r0.

Denote the matrix equation as shown in Eq.(6.58) by Gz = f . In order to match the
dimension of matrix equation as shown in Eq.(6.60) with Gz = f , expand Eq.(6.60) to the
same dimension as Gz = f and denote the expanded matrix equation as Ḡz̄ ≈ f :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 λ2
1 ... λm

1 0 ... 0

λ2 λ2
2 ... λm

2 0 ... 0

... 0 ... 0

λm λ2
m ... λm

m 0 ... 0

... ... 0 ... 0

... ... 0 ... 0

λn λ2
n ... λm

n 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̄1

z̄2

...

z̄m

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

...

...

1

...

...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.61)

Comparing Gz = f and Ḡz̄ ≈ f , it could be seen that:

Gz = (Ḡ + ∆G)(z̄ + ∆z) = f , (6.62)

where it is defined that G = Ḡ + ∆G and z = z̄ + ∆z.

169

Formulate Eq.(6.62) in matrix equation as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 λ2
1 ... λm

1 δ1,m+1 ... δ1,n

λ2 λ2
2 ... λm

2 δ2,m+1 ... δ2,n

...

λm λ2
m ... λm

m δm,m+1 ... δm,n

... ... δm+1,m+1 ... δm+1,n

...

λn λ2
n ... λm

n δn,m+1 ... δn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̄1 + δz1

z̄2 + δz2

...

z̄m + δzm

δz(m+1)

...

δzn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

...

...

1

...

...

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.63)

This system is equal to Eq.(6.58) and displays ∆G and ∆z in every entry separately. It is
clear that δi,j = λj

i (j ≥ (m + 1)) in the eigenvalue matrix. The concerned problem now is
how large ∆G could be as a result of ∆z in the eigenvalue matrix. Note ∆z represents the
difference between the exact solution to the original problem and the approximated solution
to the least square problem. In GMRES programming, applying certain convergence criterion
on residual r means the error ∆z in solution is also restraint to a certain level. In other words,
suppose that GMRES has foundxm close enough to x afterm iterations (hence ∥∆z∥ is given
and small), how much close is the approximated eigenvalue matrix Ḡ to the full eigenvalue
matrix G? If ∆G is small, it means the Krylov subspace must be expanded to relative high
order so that Ḡ has more columns equivalent to G. This would cost more GMRES steps and
thus causes slower convergence. By contrast, if ∆G is large, it means Ḡ is less resembling
G, hence less GMRES steps to run and faster convergence. Therefore, it is expected that ∆G

is as large as possible if certain ∆z is given.

To address this problem, transform Eq.(6.62):

∆z = −(Ḡ + ∆G)−1∆Gz̄, (6.64)

= −(M + (1− θ)∆G)−1∆Gz̄, (6.65)

where M = Ḡ + θ∆G and θ ∈ [0, 1]. Note there is a simplification f = Ḡz̄ when
performing the transformation. The simplification could be justified because f − Ḡz̄ is the
monitored residual to check the convergence in GMRES programming and it is usually set
very small (usually about 10−8).

Next, take the norm on both sides:

∥∆z∥ ≤ ∥(M + (1− θ)∆G)−1∥∥∆G∥∥z̄∥. (6.66)

Now consider (M + (1 − θ)∆G)−1 for a while. Assume M + (1 − θ)∆G is non-regular
(A has n distinct eigenvalues), and its inverse could be written as

(M + (1− θ)∆G)−1 = M−1 − (1− θ)M−1∆G(Ḡ + ∆G)−1, (6.67)

170

and the norm follows

∥(M + (1− θ)∆G)−1∥ ≤ ∥M−1∥+ (θ − 1)∥M−1∥∥∆G∥∥(G + ∆G)−1∥,

→ 1 ≤ ∥M−1∥
∥(M + (1− θ)∆G)−1∥

+ (θ − 1)∥M−1∥∥∆G∥,
(6.68)

→ ∥(M + (1− θ)∆G)−1∥ ≤ ∥M−1∥
1− (θ − 1)∥M−1∥∥∆G∥

. (6.69)

Substitute Eq.(6.69) into Eq.(6.66):

∥∆z∥ ≤ ∥M−1∥∥∆G∥∥z̄∥
1− (θ − 1)∥M−1∥∥∆G∥

,

→ ∥∆z∥
∥z̄∥

≤
∥M−1∥∥M∥∥∆G∥

∥M∥

1− (θ − 1)∥M−1∥∥∆G∥
,

(6.70)

→ ∥∆z∥
∥z̄∥

≤ ∥M−1∥∥M∥∥∆G∥
∥M∥

, (let θ ≈ 1). (6.71)

In the case when θ ≈ 1, the denominator of right hand side of Eq.(6.70) ’1 − (θ −
1)∥M−1∥∥∆G∥’ is approximately equal to 1 and M is roughly equal to G. Therefore, the
above inequality could also be written as

∥∆G∥
∥G∥

≥ 1

∥G−1∥∥G∥
∥∆z∥
∥z̄∥

. (6.72)

As can be seen, the relative ’error’ of eigenvalue matrix ∥∆G∥
∥G∥ is no less than 1

∥G−1∥∥G∥ times
of the relative ’error’ in the solution vector ∥∆z∥

∥z̄∥ . Considering 1
∥G−1∥∥G∥ is the inverse of

condition number of matrix G : 1
κ(G)

, it means higher κ(G) leads to lower projection of ∥∆z∥
∥z∥

onto error band of G, which means ∆G is restricted to be smaller. By contrast, lower κ(G)

leads to higher projection of ∥∆z∥
∥z∥ onto error band of G, which allows higher ’error’ (∆G) in

formulating G by m−dimensional Krylov subspace. Therefore, the condition number of G
affects the convergence rate of GMRES and it is preferably supposed to be small.

The condition number κ(G) depends on the eigenvalues of matrix A as could be seen from
its composition. Therefore, studying κ(G) is equal to studying the eigenvalue nature of A.
Denote v0 := [λ1, λ2, ...λn]

T where λi is the eigenvalue of A (as defined previously). The
eigenvalue matrix G could be written as

G =
[︂
v0 Λv0 Λ2v0 ... Λn−1v0

]︂
, (6.73)

where

Λ =

⎡⎢⎢⎢⎢⎣
λ1

λ2

...

λn

⎤⎥⎥⎥⎥⎦ . (6.74)

Vector v0 is specially composed of eigenvalues of A, and on the other hand, like any arbitrary
vector, could be rewritten as v0 = (a1x1 + a2x2 + ...anxn)

T where ai (i = 1, 2, ...n) are

171

coefficients andxi(i = 1, 2, ...n) are eigenvectors ofΛ (alsoA) corresponding to eigenvalues
λi (i = 1, 2, ...n) respectively. Then, the second column of G could be written as

Λv0 = a1λ1x1 + a2λ2x2 + ...anλnxn. (6.75)

Repeat the multiplication k times:

Λkv0 = a1λ
k
1x1 + a2λ

k
2x2 + ...anλ

k
nxn, (6.76)

= λk
1[a1x1 + a2(

λ2

λ1

)kx2 + ...an(
λn

λ1

)kxn], (6.77)

the above vector represents the k−th column of matrix G.

Since λ1 is the dominant eigenvalue, other coefficients ∥(λi

λ1
)k∥ (i ̸= 1) could be no greater

than 1 and tend to be 0 if k is large or ∥ λi

λ1
∥ ≪ 1 (i ̸= 1). In such case, Λku ≈ λ1Λ

k−1u,
which means the two neighbor columns of G are roughly linearly dependent and G tends to
be regular and very ill-conditioned. Therefore, the condition number κ(G) actually depends
on the ratio between the dominant eigenvalue ofA and its any other eigenvalue, especially the
second largest. The ideal scenario to let κ(G) keep low is that A has all eigenvalues almost
equal to each other (not exactly equal because the above analysis presumes G is not singular).
At least the dominant eigenvalue should not be too larger than the second largest eigenvalue.
In eigenvalue distribution, it is preferably supposed to have the first few largest eigenvalues
clustered together.

Next consider the case when A has multiple identical eigenvalues: G is singular and the
system Gz = f does not have unique solution (Ax = b still does). Recall the system as
shown in Eq.(6.58), and assume any two eigenvalues identical, λk−1 = λk, and the system
becomes ⎡⎢⎢⎢⎢⎣

λ1 λ2
1 ... λn

1

λ2 λ2
2 ... λn

2

... ...

λn−1 λ2
n−1 ... λn

n−1

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
z1

z2

...

zn−1

zn

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

1

...

1

⎤⎥⎥⎥⎥⎦ . (6.78)

The solution is not unique. There are as many solutions as the selection of ’free’ entry zn. The
solution vector [z1, z2, ...zn−1]

T depends on zn. Assume zn is given, and the solution vector
[z1, z2, ...zn−1]

T could be uniquely obtained by solving the following (n−1)×(n−1) system:
(G′z′ = f ′) ⎡⎢⎢⎢⎢⎣

λ1 λ2
1 ... λn−1

1

λ2 λ2
2 ... λn−1

2

... ...

λn−1 λ2
n−1 ... λn−1

n−1

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
z1

z2

...

zn−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1− λn

1zn

1− λn
2zn

...

1− λn
n−1zn

⎤⎥⎥⎥⎥⎦ . (6.79)

There might be infinite selections of the free entry zn but the selection of zn only affects f ′

but does not change the structure of G′ and z′. The matrix G′ is non-singular and the norm

172

analysis performed with Gz = f could be applied to this system. After m steps, GMRES
finds an approximated solution z̄′ from the m−dimensional Krylov subspace whose size is
(n−1). The conclusion regarding the convergence remains: closer distribution of eigenvalue
λi makes less columns of G′ generated hence enables faster GMRES convergence.

Therefore, the convergence rate of GMRES is directly affected by κ(G) and essentially the
eigenvalue distribution ofA. Sometimes it is also possible to examine κ(G) by checking κ(A)
(condition number of A) if it could be estimated cheaply. Here is the explanation:

|λ1| ≤ ∥A∥, (6.80)
1

|λn|
≤ ∥A−1∥. (6.81)

clearly, κ(A) = ∥A∥∥A−1∥ ≥ |λ1|
|λn| ≥ 1. If κ(A) is small, the ratio between |λ1| and |λn|

could be even less and tends to 1 ideally. That also means the eigenvalue distribution of A is
highly clustered.

6.5 ILU(0) preconditioning of GMRES

Preconditioning plays a significant role in GMRES. Usually the implementation of GMRES
comes with some kind of preconditioner to improve its convergence. There are a number
of techniques to design preconditioner and this project only uses the so-called zero fill-in
incomplete LU (ILU(0)) factorization. This section is going to briefly introduce the way
preconditioner works in GMRES followed by the implementation of ILU(0).

Recall that the linear system to solve is as Eq.(6.1) shows. Preconditioning is to transform
the system into another system that is computationally cheaper to solve while maintaining the
same solution by constructing a preconditioning matrix M (left preconditioning):

M−1Ax = M−1b, (6.82)

or applying M on the right(right preconditioning):

AM−1y = b, (6.83)

where x := M−1y.

The preconditioning matrix M is usually constructed to be close to A and M−1 must not be
singular. The two techniques mainly differ on program-implementation level as will be seen
next.

ALGORITHM: Left preconditioned GMRES

1. Compute r0 = M−1(b − Ax0), let v1 = r0/β, where β := ∥r0∥2

173

2. Arnoldi process: For j = 1, 2, ...,m, Do

hi,j = (M−1Avj ,vi), i = 1, 2, ..., j

wj = M−1Avj −
j∑︂

i=1

hi,jvi

hj+1,j = ∥wj∥2
if hj+1,j = 0, then stop, let m := j

else vj+1 = wj/hj+1,j

End Do
3. Define V m = {v1, v2, ...vm} and H̄m = {hij}, 1 ≤ i ≤ (j + 1), 1 ≤ j ≤ m.

4. Form the solution: xm = x0 + Vmym, where ym minimizes ∥βe1 − H̄mym∥2.

ALGORITHM: Right preconditioned GMRES

1. Compute r0 = b − Ax0, let v1 = r0/β, where β := ∥r0∥2
2. Arnoldi process: For j = 1, 2, ...,m, Do

hi,j = (AM−1vj ,vi), i = 1, 2, ..., j

wj = AM−1vj −
j∑︂

i=1

hi,jvi

hj+1,j = ∥wj∥2
if hj+1,j = 0, then stop, let m := j

else vj+1 = wj/hj+1,j

End Do
3. Define V m = {v1, v2, ...vm} and H̄m = {hij}, 1 ≤ i ≤ (j + 1), 1 ≤ j ≤ m.

4. Form the solution: xm = x0 + M−1Vmym, where ym minimizes ∥βe1 − H̄mym∥2.

The two preconditioning techniques are similar and require almost equal amount of
computation. In left preconditioning algorithm, the system aims to solve a transformed system
(M−1A)x = M−1b and the original residual is substituted by preconditioned residual
M−1b. As a result, the convergence check is imposed on the preconditioned residual too.
In right preconditioning algorithm, the solution vector does not participate the computation
explicitly but in the form ofM−1y. That is why the original solutionxm needs to be retrieved
in step 4. However, the residual remains throughout the iterative process, where it differs from
left preconditioning algorithm.

One commonly used technique to build preconditioner M is so-called incomplete LU (ILU)
factorization. The idea is inspired by Gauss elimination that is widely applied to decompose
a matrix into two matrices A = LU , where L is an unit lower triangular matrix and U is
an upper triangular matrix. LU factorization is usually effective in solving small dense linear
system but the idea is adopted here to precondition large sparse linear systems. Due to the

174

large size of the system to solve, the factorization result is usually not fully accurate in return
for low computing cost.

The standard LU factorization goes through the entire matrix A in one-by-one fashion then
generates and stores the result in the corresponding position of A to save computer memory.
Therefore, the resultant matrices L and U are supposed to be stored in A as well, and the
zero-entries of A are expected to still remain zero after being updated. Now consider L and
U have the same non-zero pattern as A,

R = LU −A, (6.84)

the problem is that the product matrixLU could not be precisely equal toA. There are always
some extra near-diagonal entries that fails to match the zero entries in A. Those entries are
called fill-in elements. In order to minimize R in a simple way, the idea is to ignore those
fill-in elements and make LU merely equal to A in those non-zero locations of A. This is
so-called ILU(0).

Due to the fact that the Gauss elimination is only imposed on the entries that belong to the
sparsity pattern of A, the computing cost is very low with the expense of accuracy lost. There
should have been much more entries filled in with non-zero entries by Gauss elimination in
L and U . To get more accurate factors L and U , the sparsity pattern should be augmented
obviously, but that rises computing cost. The trade-off is that the sparsity pattern is slightly
augmented and drop those fill-in elements that are ’too small’ during iterative process. There
is a model to measure the value of fill-in elements with an index k ∈ [0,∞). The higher
k, the smaller elements and vice versa. Zero entries have k = ∞. All elements with k

greater-equal than a certain value would be round off to 0 (dropped) during the computing.
The ILU(0) preconditioning method drops all entries out of the sparsity pattern because all
filled-in elements have k ≥ 0. Therefore, ILU(0) is the cheapest but also the most inaccurate
factorization among its family.

Algorithm: ILU(0)

1. For i = 2, ...n Do
2. For k = 1, ...i− 1 and (i, k) ∈ NZ(A) Do
3. aik = aik/akk

4. For j = k + 1, ...n and (i, j) ∈ NZ(A) Do
5. aij = aij − aikakj

6. End Do
7. End Do
8. End Do

Lastly, consider a practical issue: how to calculateM−1 effectively. ClearlyM−1 = U−1L−1

and the problem turns to calculating the inverse of L and U . Assume LX = I where X :=

L−1 = [x1, x2, ...xn] and I is the identity matrix. Addressing the problem is equal to solving

175

the following linear system n times:

Lxi = ei (i = 1, ...n). (6.85)

It is efficient to solve it by Gauss elimination and due to the high sparsity of L, the computing
cost would not be much more than pure backward substitution. In each column there are only
a few non-zero entries, therefore in line three of Gauss elimination algorithm, only a few aik

whose k ⪅ i needs to be computed rather than all (i− 1) aik. Then, in line 5, only those aij

where j ⪅ i. In one word, the computation only takes place around the left-sided diagonal of
the matrix instead of everywhere in the lower triangular domain.

Similarly, the inverse of U could be obtained efficiently by solving the linear systems n times:

Uyi = ei (i = 1, ...n). (6.86)

The elimination process merely takes place around the right-sided diagonal of the upper
triangular matrix, and U−1 = [y1, y2, ...yn].

Algorithm: Gauss elimination

1. For i = 2, ...n Do
2. For k = 1, ...i− 1 Do
3. aik = aik/akk

4. For j = k + 1, ...n Do
5. aij = aij − aikakj

6. End Do
7. End Do
8. End Do

In either left or right preconditioned GMRES, it is always required to compute M−1Avj in
each Arnoldi step (take left-preconditioned GMRES as example). Recall Eq.(6.84), then

M−1Avj = M−1(M − R)vj = vj −M−1Rvj. (6.87)

The matrix R is more sparse than A hence more efficient in computing implement. Notice
that R is just a matrix made up of the dropped fill-in elements in ILU(0). It is not difficult to
compute and store those elements when running ILU(0) algorithm.

6.6 Summary

This chapter introduces an effective algorithm to solve large linear equation system: GMRES,
which is widely used in the project to solve every given linear system. It is highly important
to understand how the given linear system is solved by the computer because it lays the
foundation to evaluate the computing time and enables the comparison of the computing

176

time between NDD method and normal method. The key finding is that the convergence of
GMRES is directly associated with the eigenvalue distribution of the coefficient matrix A

where a linear system Ax = b is solved. The ideal scenario is to let A have almost equal
eigenvalues to achieve the fastest convergence of GMRES. One practical way to evaluate
eigenvalue distribution ofA is to estimate the condition number of the matrix: small condition
number accounts for desired eigenvalue distribution. The derivation, implementation and
preconditioning technique are also elaborated in the chapter.

177

Chapter 7

Conclusions and recommendations

This chapter summarises the main work of the thesis. More detailed conclusions can be found
at the end of each chapter. Recommendations for future work that could follow this thesis are
also given.

7.1 Summary of the work

The thesis has developed a novel non-overlapping domain decomposition approach with
non-local interface boundary conditions that is applied to second order differential equations
with small parameters at second derivative. The method is aimed at solving two-dimensional
boundary value problems where the non-local effect is essential. The approach transfers the
boundary condition from the wall to an intermediate interface in such a way that the non-local
effect of the given problem is fully retained. Therefore, the approach provides a completely
exact solution to the problem.

The derivation of the non-local interface boundary conditions is implemented based
on the approximation of Steklov-Poincaré operators by local Taylor series expansions.
Steklov-Poincaré operators contain the non-local nature of the given problem, so the accuracy
of the operator approximations determine the convergence of the NDD approach. The
approximations are realised by local Taylor expansions. Although the expansion itself is local,
an almost non-local expansion could be obtained by considering the expansion everywhere
at a global scale, formulating all function values in implicit equations, and solving all the
equations in an entire system. The resulting interface boundary condition is of Robin-to-Robin
type. Three variants (algorithms) of the NDD approach are proposed depending on
how the Taylor series are locally expanded: the constantly-approximated algorithm, the
linearly-approximated algorithm and the quadratically-approximated algorithm.

The convergence of the three algorithms is studied analytically in application to Poisson’s
equation. The product of Steklov-Poincaré operators applied to a given problem is not
only affected by the governing equation but also the boundary position with respect to x

(so-called ’boundary effect’ in the thesis) which could vary from case to case. To simplify the
analysis, the analysis does not consider the boundary effect at first and the way the analysis
is performed is denoted by the standard approach. Technically, excluding the boundary
effect means that certain functions (I, x and x2 in the thesis), to which Steklov-Poincaré

178

operators are applied, are defined in (−∞,∞), so that the boundary effect is too far
to impose any influence. The standard analysis shows that the algorithm with constant
approximation of Steklov-Poincaré operators has an equivalent convergence rate to that with
linear approximation but a higher convergence rate than that with quadratic approximation.
In addition, the factors that determine the convergence are also studied: the convergence
rate of the constantly (linearly)-approximate algorithm is determined by the multiplication of
Steklov-Poincaré operator symbol increment: ∆s1∆s2 where ∆si := Ŝi(ω)−Ŝi(0), i = 1, 2,
and the convergence rate of the quadratically-approximated algorithm is determined by the
multiplication of the increment of the second-order derivative of Steklov-Poincaré operator
symbol: ∆s1ωω∆s2ωω where ∆siωω := Ŝiωω(ω) − Ŝiωω(0), i = 1, 2. Note the symbol of
operator Si is denoted by Ŝi. In other words, the convergence rate of the algorithms are
determined by the symbols (or the derivative of the symbols) of Steklov-Poincaré operators.
What is more, it is proved that the result applies to all equations that have variable-separation
form rather than only Poisson’s equation. Besides, every algorithm has two versions: parallel
and sequential, and the latter achieves convergence twice as fast as the former.

The study of the boundary effect shows that it has positive effect on boosting the
convergence for all the three algorithms, which means that the real convergence
rate of the algorithms is lower than that obtained from the standard approach.
Considering the convergence result from both the standard approach and the boundary
effect enables the complete (real) convergence evaluation. Comparatively speaking,
quadratically-approximated algorithm has the lowest (real) convergence rate, followed by
linearly-approximated and constantly-approximated algorithms respectively. The difference
between quadratically-approximated and linearly-approximated algorithms is not remarkable.
For practical use, an empirical law is proposed to evaluate the strength of the boundary effect:
the boundary effect could be depicted/represented as a function (called ’pike function’) in
the profile of Steklov-Poincaré operators applied to I, x or x2, and the taller and wider pike
function accounts for stronger boundary effect.

The NDD algorithms are also compared with a conventional Robin-to-Robin algorithm and
a Dirichlet-to-Robin algorithm to solve the same Poisson’s equation. It is both analytically
and numerically proven that the NDD algorithms have faster convergence than both the
conventional Robin-to-Robin algorithm and the Dirichlet-to-Robin algorithm, especially
quadratically-approximated algorithm. The comparative study demonstrates the superiority
of the NDD method over other similar methods.

Beyond Poisson’s equation, the three algorithms are further applied to solving model
equations with changeable parameters (α) at second derivative. The equations are supposed
to imitate the main mathematical features of high-Reynolds-number flow with a boundary
layer. The changeable parameter α manipulates the solution dependence on x. Three
values of α are tested, which represent low, medium and high non-local effect. Numerical
result shows that when the non-local effect is low, the problem could be considered as
semi-one-dimensional and all the three algorithms converge equally fast. When the non-local
effect strength is medium, quadratically-approximated algorithm shows remarkably faster

179

convergence than the other two due to faster standard convergence rate. When the non-local
effect strength becomes strong, quadratically-approximated algorithm maintains promising
convergence because the boundary effect does not undermine the standard convergence,
which is not the case in linearly-approximated algorithm. Therefore, it could be stated that
quadratically-approximated algorithm demonstrates both high efficiency and outstanding
robustness in all conditions. The high efficiency is associated with the low standard
convergence rate, and the great robustness is resulted by the positive boundary effect. The
combination of high efficiency and good robustness amounts to the promising ability of
quadratically-approximated algorithm in reserving the non-local effect of Steklov-Poincaré
operators. The numerical test result on model equations suggests that the proposed NDD
approach has great potential to be applied to modelling near-wall turbulent flow.

GMRES is an advanced method to solve large sparse linear systems and is widely used in the
project. The convergence analysis of GMRES elaborates how by splitting a big matrix into
two smaller ones and solving them separately could it save computing time. The convergence
of GMRES is found associated with the eigenvalue distribution of the coefficient matrix A

when the linear system Ax = b is supposed to be solved. When the eigenvalues of a matrix
is higher clustered, GMRES takes less iterations to converge and computing cost becomes
lower too. The analysis lays a theoretical foundation for evaluating the computing time of the
NDD approach and comparing efficiency with the standard (one-block) method.

7.2 Future work

In the project, an efficient non-overlapping domain decomposition method is studied both
theoretically and numerically. Therefore, the possible future work is also recommended from
the two aspects.

7.2.1 Theoretical future work

1. The theoretical convergence analysis is composed of two parts: the standard
approach and the boundary effect analysis. The latter is only quantitatively studied for
constantly-approximated algorithm but the rest two algorithms. Especially considering the
boundary effect is not always positive (for example, in linearly-approximated algorithm
case) in boosting convergence, more accurate model might be needed to elaborate the effect
(especially the negative effect) that has been observed in the numerical test.

2. It is demonstrated that the symbol (as well as the derivative) of Steklov-Poincaré operators
determines the convergence of the NDD algorithms. Therefore, it is important to gain the
knowledge of the symbol when the operators are applied to random two-dimensional problem.
In the project, the knowledge is obtained from analytical calculation of the symbol because
Poisson’s equation enables the calculation. However, in real turbulent flow problems it is no
more practical to rely on analytical tools and there should be an easy and effective way to

180

estimate/compute the symbol in application to given problems.

3. Regarding GMRES, the eigenvalue characteristics of the coefficient matrix A is not easy
to know without substantial amount of computational costs. As a matter of fact, Arnoldi
algorithm, as part of GMRES, already offers good approximation of the eigenvalues of the
decomposed matrix but the eigenvalue information is no more used in the later process.
Therefore, it is possible to estimate the computational costs of implementing the NDD method
via Arnoldi algorithm and even derive an empirical law to link the computational costs
directly with linear system properties (such as mesh density in the two regions, interface
boundary location, etc.).

7.2.2 Numerical future work

1. The numerical test is implemented on a Poisson’s equation and two model equations. The
former is to verify the theoretical result and the latter is to test the feasibility of extensively
applying the method to turbulence modelling. Both goals have been achieved with the
conclusion that quadratically-approximated algorithm is especially effective and robust to
resolve near-wall turbulent flows. Next, the algorithm could be applied to RANS models and
consider computational times as an important criterion to evaluate the efficiency.

2. A NDD algorithm with movable interface boundary is proposed at the end of Chapter 5
and is proven to be efficient in the numerical test of a model equation. The efficiency of the
method is associated with the nature of the problems it solves: solution to the problems has
high gradient in y direction in near-wall region, and off-wall region solution is dominated
by x−variation. The nature is widely shared by near-wall turbulent flow quantities thus the
algorithm has large potential to be further explored. Any other quantity characterised by such
distinct patterns in two regions (not necessarily the same two regions as velocity) could be
possibly resolved by the method.

181

References

[1] F. Karimpour and S. K. Venayagamoorthy, “Some insights for the prediction of

near-wall turbulence,” Journal of Fluid Mechanics, vol. 723, pp. 126–139, 2013.

[2] A. Patel, B. J. Boersma, and R. Pecnik, “The influence of near-wall density and

viscosity gradients on turbulence in channel flows,” Journal of Fluid Mechanics,

vol. 809, pp. 793–820, 2016.

[3] T. Craft, S. Gant, A. Gerasimov, H. Iacovides, and B. Launder, “Development and

application of wall-function treatments for turbulent forced and mixed convection

flows,” Fluid Dynamics Research, vol. 38, no. 2-3, p. 127, 2006.

[4] H. Schlichting and J. Kestin, Boundary layer theory. Springer, 1961, vol. 121.

[5] S. B. Pope and S. B. Pope, Turbulent flows. Cambridge university press, 2000.

[6] W. Rodi, “Low Reynolds number k − ε modeling with the aid of direct simulation

data,” in Proceedings of the 1990 Summer Program, Center for Turbulence Research,

NASA Ames research center, 1990.

[7] V. Michelassi, W. Rodi, and J. Zhu, “Testing a low-Reynolds number k−ε turbulence

model based on direct simulation data,” AIAA journal, vol. 31, no. 9, pp. 1720–1723,

1993.

[8] P. A. Durbin, “Near-wall turbulence closure modeling without “damping functions”,”

Theoretical and computational fluid dynamics, vol. 3, no. 1, pp. 1–13, 1991.

[9] B. D. Wood, X. He, and S. V. Apte, “Modeling turbulent flows in porous media,”

Annual Review of Fluid Mechanics, vol. 52, pp. 171–203, 2020.

[10] J. Wang, J. Gong, X. Kang, C. Zhao, and K. Hooman, “Assessment of rans turbulence

models on predicting supercritical heat transfer in highly buoyant horizontal flows,”

Case Studies in Thermal Engineering, vol. 34, p. 102 057, 2022.

[11] J. Smagorinsky, “General circulation experiments with the primitive equations: I. the

basic experiment,” Monthly weather review, vol. 91, no. 3, pp. 99–164, 1963.

[12] Y. Zhiyin, “Large-eddy simulation: Past, present and the future,” Chinese journal of

Aeronautics, vol. 28, no. 1, pp. 11–24, 2015.

182

[13] E. Karchniwy, N. E. L. Haugen, A. Klimanek, Ø. Langørgen, and S. Sładek,

“The effect of turbulence on mass transfer in solid fuel combustion: Rans model,”

Combustion and Flame, vol. 227, pp. 65–78, 2021.

[14] D. R. Chapman, “Computational aerodynamics development and outlook,” AIAA

journal, vol. 17, no. 12, pp. 1293–1313, 1979.

[15] U. Piomelli, “Wall-modeled large-eddy simulations: Present status and prospects,” in

Direct and Large-Eddy Simulation VII, Springer, 2010, pp. 1–10.

[16] W. Jones and B. Launder, “The prediction of laminarization with a two-equation

model of turbulence,” International journal of heat and mass transfer, vol. 15, no. 2,

pp. 301–314, 1972.

[17] W. Jones and B. Launder, “The calculation of low-Reynolds-number phenomena

with a two-equation model of turbulence,” International Journal of Heat and Mass

Transfer, vol. 16, no. 6, pp. 1119–1130, 1973.

[18] B. Launder and B. Sharma, “Application of the energy-dissipation model of

turbulence to the calculation of flow near a spinning disc,” Letters in heat and mass

transfer, vol. 1, no. 2, pp. 131–137, 1974.

[19] V. C. Patel, W. Rodi, and G. Scheuerer, “Turbulence models for near-wall and low

Reynolds number flows-a review,” AIAA journal, vol. 23, no. 9, pp. 1308–1319, 1985.

[20] K. Y. Chien, “Predictions of channel and boundary-layer flows with a low-Reynolds-number

turbulence model,” AIAA journal, vol. 20, no. 1, pp. 33–38, 1982.

[21] W. Rodi, “Experience with two-layer models combining the k − ε model with a

one-equation model near the wall,” in 29th Aerospace sciences meeting, 1991, p. 216.

[22] P. R. Spalart, “Direct simulation of a turbulent boundary layer up to Rθ= 1410,”

Journal of fluid mechanics, vol. 187, pp. 61–98, 1988.

[23] Z. Yang and T. H. Shih, “New time scale based k−ε model for near-wall turbulence,”

AIAA journal, vol. 31, no. 7, pp. 1191–1198, 1993.

[24] Y. Nagano and M. Tagawa, “An improved k-epsilon model for boundary layer flows,”

ASME Journal of Fluids Engineering, vol. 112, pp. 33–39, 1990.

[25] M. A. Pakhomov and U. K. Zhapbasbayev, “Rans modeling of turbulent flow and

heat transfer of non-newtonian viscoplastic fluid in a pipe,” Case Studies in Thermal

Engineering, vol. 28, p. 101 455, 2021.

[26] A. N. Kolmogorov, “Equations of turbulent motion in an incompressible fluid,” in

Dokl. Akad. Nauk SSSR, vol. 30, 1941, pp. 299–303.

183

[27] P. G. Saffman, “A model for inhomogeneous turbulent flow,” Proceedings of the

Royal Society of London. A. Mathematical and Physical Sciences, vol. 317, no. 1530,

pp. 417–433, 1970.

[28] D. C. Wilcox and I. Alber, “A turbulence model for high speed flows,” in Proceedings

of the 1972 Heat Transfer and Fluid Mechanics Institute, Stanford University Press,

vol. 231, 1972, p. 252.

[29] D. C. Wilcox, “Reassessment of the scale-determining equation for advanced

turbulence models,” AIAA journal, vol. 26, no. 11, pp. 1299–1310, 1988.

[30] D. C. Wilcox et al., Turbulence modeling for CFD. DCW industries La Canada, CA,

1998, vol. 2.

[31] S. A. A. Mirjalily, “Lambda shock behaviors of elliptic supersonic jets; a numerical

analysis with modification of rans turbulence model,” Aerospace Science and

Technology, vol. 112, p. 106 613, 2021.

[32] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with

the SST turbulence model,” Turbulence, heat and mass transfer, vol. 4, no. 1,

pp. 625–632, 2003.

[33] C. G. Speziale, R. Abid, and E. C. Anderson, “Critical evaluation of two-equation

models for near-wall turbulence,” AIAA journal, vol. 30, no. 2, pp. 324–331, 1992.

[34] F. R. Menter, “Improved two-equation k-omega turbulence models for aerodynamic

flows. nasa sti,” Recon Technical Report, vol. 93, p. 22 809, 1992.

[35] J. C. Kok, “Resolving the dependence on freestream values for the k − ω turbulence

model,” AIAA journal, vol. 38, no. 7, pp. 1292–1295, 2000.

[36] A. Hellsten, “New advanced k − ω turbulence model for high-lift aerodynamics,”

AIAA journal, vol. 43, no. 9, pp. 1857–1869, 2005.

[37] P. Huang, “Physics and computations of flows with adverse pressure gradients,” in

Modeling Complex Turbulent Flows, Springer, 1999, pp. 245–258.

[38] T. Coakley, “Turbulence modeling methods for the compressible Navier-Stokes

equations,” in 16th Fluid and Plasmadynamics Conference, 1983, p. 1693.

[39] D. C. Wilcox, “Formulation of the k − ω turbulence model revisited,” AIAA journal,

vol. 46, no. 11, pp. 2823–2838, 2008.

[40] H. Fadhila, H. Medina, S. Aleksandrova, and S. Benjamin, “A new non-linear

rans model with enhanced near-wall treatment of turbulence anisotropy,” Applied

Mathematical Modelling, vol. 82, pp. 293–313, 2020.

184

[41] E. Casartelli, L. Mangani, D. Roos Launchbury, and A. Del Rio, “Application of

advanced rans turbulence models for the prediction of turbomachinery flows,” Journal

of Turbomachinery, vol. 144, no. 1, 2022.

[42] D. Spalding, “Monograph on turbulent boundary layers,” Imperical College:

Mechanical Engineering Department Report TWF/TN, vol. 33, 1967.

[43] S. V. Patankar, “Heat and mass transfer in turbulent boundary layers,” Ph.D.

dissertation, University of London, 1967.

[44] M. Wolfshtein, “The velocity and temperature distribution in one-dimensional flow

with turbulence augmentation and pressure gradient,” International Journal of Heat

and Mass Transfer, vol. 12, no. 3, pp. 301–318, 1969.

[45] B. Launder and D. Spalding, “The numerical computation of turbulent flows,”

Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289,

1974.

[46] C. Chieng and B. Launder, “On the calculation of turbulent heat transport downstream

from an abrupt pipe expansion,” Numerical heat transfer, vol. 3, no. 2, pp. 189–207,

1980.

[47] R. Amano, “Development of a turbulence near-wall model and its application to

separated and reattached flows,” Numerical Heat Transfer, vol. 7, no. 1, pp. 59–75,

1984.

[48] T. H. Shih, L. A. Povinelli, and N.-S. Liu, “Application of generalized wall function

for complex turbulent flows,” Journal of Turbulence, vol. 4, no. 1, p. 015, 2003.

[49] M. Ciofalo and M. Collins, “k − ε Predictions of heat transfer in turbulent

recirculating flows using an improved wall treatment,” Numerical Heat Transfer, Part

B: Fundamentals, vol. 15, no. 1, pp. 21–47, 1989.

[50] T. Craft, A. Gerasimov, H. Iacovides, and B. Launder, “Progress in the generalization

of wall-function treatments,” International Journal of Heat and Fluid Flow, vol. 23,

no. 2, pp. 148–160, 2002.

[51] R. Johnson and B. Launder, “Discussion of “on the calculation of turbulent heat

transport downstream from an abrupt pipe expansion”,” Numerical Heat Transfer, Part

A Applications, vol. 5, no. 4, pp. 493–496, 1982.

[52] S. Kim, “A near-wall treatment using wall functions sensitized to pressure gradient,”

in Separated and Complex Flows, ASME/JSME Fluids Engineering and Laser

Anemometry Conference and Exhibition, Hilton Head, SC, 1995, 1995.

185

[53] H. Grotjans and F. R. Menter, “Wall functions for general application CFD codes,”

Computational fluid dynamics’98, pp. 1112–1117, 1998.

[54] S. Gant, “Development and application of a new wall function for complex turbulent

flows,” Ph.D. dissertation, University of Manchester, 2003.

[55] T. Craft, “Development and application of a new wall function for a complex turbulent

flows,” in ECCOMAS Computational Fluid Dynamics Conference, 2001.

[56] T. Craft, S. Gant, H. Iacovides, and B. Launder, “A new wall function strategy for

complex turbulent flows,” Numerical Heat Transfer, Part B: Fundamentals, vol. 45,

no. 4, pp. 301–318, 2004.

[57] A. Gerasimov, “Development and application of an analytical wall-function strategy

for modelling forced, mixed and natural convection flows,” Ph.D. dissertation,

University of Manchester Institute of Science and Technology, 2003.

[58] T. Craft, A. Gerasimov, H. Iacovides, and B. Launder, “Progress in the generalization

of wall-function treatments,” International Journal of Heat and Fluid Flow, vol. 23,

no. 2, pp. 148–160, 2002.

[59] R. Amano, H. Arakawa, and K. Suga, “Turbulent heat transfer in a two-pass cooling

channel by several wall turbulence models,” International Journal of Heat and Mass

Transfer, vol. 77, pp. 406–418, 2014.

[60] K. Suga, Y. Ishibashi, and Y. Kuwata, “An analytical wall-function for recirculating

and impinging turbulent heat transfer,” International journal of heat and fluid flow,

vol. 41, pp. 45–54, 2013.

[61] K. Suga, T. Craft, and H. Iacovides, “An analytical wall-function for turbulent flows

and heat transfer over rough walls,” International Journal of Heat and Fluid Flow,

vol. 27, no. 5, pp. 852–866, 2006.

[62] K. Suga, “Computation of high prandtl number turbulent thermal fields by the

analytical wall-function,” International journal of heat and mass transfer, vol. 50,

no. 25-26, pp. 4967–4974, 2007.

[63] K. Suga and S. Nishiguchi, “Computation of turbulent flows over porous/fluid

interfaces,” Fluid dynamics research, vol. 41, no. 1, p. 012 401, 2009.

[64] K. Suga and M. Kubo, “Modelling turbulent high schmidt number mass transfer across

undeformable gas–liquid interfaces,” International journal of heat and mass transfer,

vol. 53, no. 15-16, pp. 2989–2995, 2010.

186

[65] K. Suga, S. Nishiguchi, H. Asano, and M. Kitada, “Application of the combination

of an analytical wall-function and a realizable two component limit second moment

closure to hvac related complex turbulent flows,” in The 14th International Conference

of Fluid Flow Technologies, Budapest, Hungary, 2009.

[66] C. Katsamis, T. Craft, H. Iacovides, and J. C. Uribe, “Use of 2-d and 3-d unsteady rans

in the computation of wall bounded buoyant flows,” International Journal of Heat and

Fluid Flow, vol. 93, p. 108 914, 2022.

[67] G. Kalitzin, G. Medic, G. Iaccarino, and P. Durbin, “Near-wall behavior of RANS

turbulence models and implications for wall functions,” Journal of Computational

Physics, vol. 204, no. 1, pp. 265–291, 2005.

[68] F. Billard, D. Laurence, and K. Osman, “Adaptive wall functions for an elliptic

blending eddy viscosity model applicable to any mesh topology,” Flow, Turbulence

and Combustion, vol. 94, no. 4, pp. 817–842, 2015.

[69] M. Popovac, “Modelling and simulation of turbulence and heat transfer in

wall-bounded flows,” Ph.D. dissertation, Delft University of Technology, 2006.

[70] M. Popovac and K. Hanjalic, “A combined WF and ItW treatment of wall boundary

conditions for turbulent convective heat transfer,” in 9th UK National Heat Transfer

Conference, Manchester, UK, 2005.

[71] M. Popovac and K. Hanjalic, “Compound wall treatment for RANS computation of

complex turbulent flows and heat transfer,” Flow, turbulence and combustion, vol. 78,

no. 2, pp. 177–202, 2007.

[72] R. Tatschl, B. Basara, J. Schneider, et al., “Advanced turbulent heat transfer modeling

for IC-engine applications using AVL FIRE,” in Proceedings of International

Multidimensional Engine Modeling User’s Group Meeting, Detroit, USA, 2006.

[73] B. Basara, F. Aldudak, S. Jakirlić, et al., “Experimental investigations and

computations of unsteady flow past a real car using a robust elliptic relaxation closure

with a universal wall treatment,” SAE Transactions, pp. 22–32, 2007.

[74] S. V. Utyuzhnikov, “Some new approaches to building and implementation of

wall-functions for modeling of near-wall turbulent flows,” Computers & fluids, vol. 34,

no. 7, pp. 771–784, 2005.

[75] S. V. Utyuzhnikov, “Generalized wall functions and their application for simulation

of turbulent flows,” International journal for numerical methods in fluids, vol. 47,

no. 10-11, pp. 1323–1328, 2005.

[76] S. V. Utyuzhnikov, “Robin-type wall functions and their numerical implementation,”

Applied Numerical Mathematics, vol. 58, no. 10, pp. 1521–1533, 2008.

187

[77] S. V. Utyuzhnikov, “The method of boundary condition transfer in application

to modeling near-wall turbulent flows,” Computers & fluids, vol. 35, no. 10,

pp. 1193–1204, 2006.

[78] V. S. Ryaben’Kii, Method of difference potentials and its applications. Springer

Science & Business Media, 2001, vol. 30.

[79] S. V. Utyuzhnikov, “Generalized calderón–ryaben’kii’s potentials,” IMA journal of

applied mathematics, vol. 74, no. 1, pp. 128–148, 2009.

[80] S. V. Utyuzhnikov, “Domain decomposition approach for near-wall turbulence

modeling,” in VII European Congress on Computational Methods in Applied Sciences

and Engineering, Springer Nature, 2016.

[81] S. V. Utyuzhnikov, “Domain decomposition for near-wall turbulent flows,” Computers

& fluids, vol. 38, no. 9, pp. 1710–1717, 2009.

[82] M. Petrov, S. V. Utyuzhnikov, A. Chikitkin, and V. Titarev, “On extension of

near-wall domain decomposition to turbulent compressible flows,” Computers &

Fluids, vol. 210, p. 104 629, 2020.

[83] S. V. Utyuzhnikov and C. Wang, “Exact non-overlapping domain decomposition for

near-wall turbulence modeling,” Computers & Fluids, vol. 181, pp. 283–291, 2019.

[84] S. V. Utyuzhnikov and H. Li, “Domain decomposition with nonlocal interface

boundary conditions,” Journal of Computational and Applied Mathematics, vol. 421,

p. 114 847, 2022.

[85] S. V. Utyuzhnikov, “Towards development of unsteady near-wall interface boundary

conditions for turbulence modeling,” Computer Physics Communications, vol. 185,

no. 11, pp. 2879–2884, 2014.

[86] S. V. Utyuzhnikov and N. Smirnova, “Unsteady interface boundary conditions

for near-wall turbulence modeling,” Computers & Mathematics with Applications,

vol. 79, no. 5, pp. 1483–1502, 2020.

[87] A. Chikitkin, S. V. Utyuzhnikov, M. Petrov, and V. Titarev, “Non-overlapping

domain decomposition for modeling essentially unsteady near-wall turbulent flows,”

Computers & Fluids, vol. 202, p. 104 506, 2020.

[88] M. Petrov, S. V. Utyuzhnikov, A. Chikitkin, and N. Smirnova, “Extension

of near-wall domain decomposition to modeling flows with laminar-turbulent

transition,” Communications in Computational Physics, 2021.

[89] S. V. Utyuzhnikov, “Interface boundary conditions in near-wall turbulence modeling,”

Computers & fluids, vol. 68, pp. 186–191, 2012.

188

[90] W. Cabot and P. Moin, “Approximate wall boundary conditions in the large-eddy

simulation of high Reynolds number flow,” Flow, Turbulence and Combustion,

vol. 63, no. 1, pp. 269–291, 2000.

[91] M. Wang and P. Moin, “Dynamic wall modeling for large-eddy simulation of complex

turbulent flows,” Physics of Fluids, vol. 14, no. 7, pp. 2043–2051, 2002.

[92] A. Jones and S. V. Utyuzhnikov, “Application of a near-wall domain decomposition

method to turbulent flows with heat transfer,” Computers & Fluids, vol. 119,

pp. 87–100, 2015.

[93] A. Quarteroni, “Domain decomposition techniques using spectral methods,” Calcolo,

vol. 24, no. 2, pp. 141–177, 1987.

[94] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential

equations, BOOK. Oxford University Press, 1999.

[95] V. I. Agoshkov, “Poincaré-Steklov operators and domain decomposition methods

in finite dimensional spaces,” in First International Symposium on Domain

Decomposition Methods for Partial Differential Equations, 1988, pp. 73–112.

[96] F. Nataf, “Interface connections in domain decomposition methods,” in Modern

methods in scientific computing and applications, Springer, 2002, pp. 323–364.

[97] M. Aletti and D. Lombardi, “A reduced-order representation of the Poincaré–Steklov

operator: An application to coupled multi-physics problems,” International Journal

for Numerical Methods in Engineering, vol. 111, no. 6, pp. 581–600, 2017.

[98] H. Schwarz, “Ueber einige abbildungsaufgaben.,” Journal für die reine und

angewandte Mathematik, vol. 71, pp. 105–120, 1869.

[99] P. L. Lions et al., “On the Schwarz alternating method,” in First international

symposium on domain decomposition methods for partial differential equations, Paris,

France, vol. 1, 1988, p. 42.

[100] W. P. Tang, “Generalized schwarz splittings,” SIAM Journal on Scientific and

Statistical Computing, vol. 13, no. 2, pp. 573–595, 1992.

[101] Q. Deng, “Timely communicaton: An analysis for a nonoverlapping domain

decomposition iterative procedure,” SIAM Journal on Scientific Computing, vol. 18,

no. 5, pp. 1517–1525, 1997.

[102] S. Lui, “On accelerated convergence of nonoverlapping schwarz methods,” Journal

of computational and applied mathematics, vol. 130, no. 1-2, pp. 309–321, 2001.

[103] M. Ruzhansky, “Introduction to pseudo-differential operators,” 2014.

[104] V. D. Liseikin, Grid generation methods. Springer, 1999, vol. 1.

189

[105] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical

computing, vol. 7, no. 3, pp. 856–869, 1986.

[106] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[107] A. N. Krylov, “On the numerical solution of the equation by which in technical

questions frequencies of small oscillations of material systems are determined (in

russian),” Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel. mat.

i estest. nauk, vol. 7, no. 4, pp. 491–539, 1931.

[108] W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix

eigenvalue problem,” Quarterly of applied mathematics, vol. 9, no. 1, pp. 17–29, 1951.

[109] Y. Saad, “Krylov subspace methods for solving large unsymmetric linear systems,”

Mathematics of computation, vol. 37, no. 155, pp. 105–126, 1981.

190

Appendices

191

Appendix A

Convergence rate calculation of DN and

NN algorithms

A.1 Convergence rate calculation of Neumann-to-Neumann algorithm

Consider a Neumann-to-Neumann algorithm in application to Poisson’s equation. The
algorithm starts from u2:

un+1
2y = un

1y on Γ,

un+1
1y = un+1

2y on Γ.

The corresponding IBCs for the error problem are:

en+1
2y = en1y on Γ,

en+1
1y = en+1

2y on Γ.

Since the error BVPs have homogeneous boundary conditions except on interface, the IBCs
in error problem can be also formulated as:

−S2e
n+1
2 = S1e

n
1 on Γ, (A.1)

S1e
n+1
1 = −S2e

n+1
2 on Γ. (A.2)

The eigenfunctions of SP operators (N2D map) in application to Poisson’s equation (0 < x <

1, 0 < y < B) follows that in [84][97]:

φk(x) = sin(kπx), k = 1, 2, ... (A.3)

The corresponding eigenvalues (λ1, λ2) could be obtained by solving the following BVPs in
the two sub-domains (Ω1 and Ω2) respectively:

−∇2e1 = 0, on Ω1,

e1 = 0, on ∂Ω1/Γ,

e1y = λ1e1, on Γ,

−∇2e2 = 0, on Ω2,

e2 = 0, on ∂Ω2/Γ,

e2y = λ2e2, on Γ.

(A.4)

192

The eigenvalues are:

λ1k = kπ coth(kπA), λ2k = kπ coth(kπ(B − A)). (A.5)

Next, expand ei into the eigenfunctions φk(x) and consider the coefficient (êi) equations:

−λ2kê
n+1
2 = λ1kê

n
1 , (A.6)

λ1kê
n+1
1 = −λ2kê

n+1
2 . (A.7)

By transforming above equations, the convergence rate could be obtained:

∥ên+1
i ∥ =

⃓⃓⃓⃓
λ1kλ2k

λ1kλ2k

⃓⃓⃓⃓
∥ênj ∥ = ∥ênj ∥. (i ̸= j.)

A.2 Convergence rate calculation of Dirichlet-to-Neumann algorithm

Consider a (relaxed) Dirichlet-to-Neumann algorithm in application to Poisson’s equation.
The algorithm starts from u2:

un+1
2y = un

1y on Γ,

un+1
1 = θun+1

2 + (1− θ)un
1 on Γ.

Note 0 ≤ θ ≤ 1. The corresponding IBCs for the error problem are:

en+1
2y = en1y on Γ,

en+1
1 = θen+1

2 + (1− θ)en1 on Γ.

Since the error BVPs have homogeneous boundary conditions except on interface, the IBCs
in error problem can be also formulated as:

−S2e
n+1
2 = S1e

n
1 on Γ, (A.8)

en+1
1 = θen+1

2 + (1− θ)en1 on Γ. (A.9)

Expand ei into the eigenfunctions as shown in Eq.(A.3) and consider the coefficient (êi)
equations:

−λ2kê
n+1
2 = λ1kê

n
1 , (A.10)

ên+1
1 = θên+1

2 + (1− θ)ên1 . (A.11)

The eigenvalues λ1k, λ2k are given in Eq.(A.5). By transforming the above two equations, the

193

convergence rate of the algorithm could be obtained:

∥ên+1
i ∥ =

⃓⃓⃓⃓
1− θ(1 +

λ1k

λ2k

)

⃓⃓⃓⃓
∥ênj ∥

=

⃓⃓⃓⃓
1− θ

kπ coth(kπ(B − A)) + kπ coth(kπA)
kπ coth(kπ(B − A))

⃓⃓⃓⃓
∥ênj ∥. (i ̸= j, k = 1, 2, ...)

194

	Front matter
	Title page
	Contents
	List of figures
	List of tables
	List of publications
	Terms and abbreviations
	Abstract
	Declaration of originality
	Copyright statement
	Acknowledgements

	1 Introduction and literature review
	1.1 Near-wall turbulence challenge
	1.2 Near-wall domain decomposition
	1.3 Outline of the thesis

	2 Derivation of non-local domain decomposition algorithms
	2.1 Robin-type interface boundary condition
	2.2 Domain decomposition method
	2.3 NDD in application to HRN and LRN models
	2.4 Non-local DR type domain decomposition method
	2.4.1 Approximated near-wall domain decomposition
	2.4.2 DR type ENDD algorithm

	2.5 Non-local RR type domain decomposition method
	2.5.1 Introduction of Steklov-Poincaré operators
	2.5.2 RR type ENDD algorithms

	2.6 Summary

	3 Convergence rate calculation of NDD algorithms
	3.1 Convergence rate calculation of RR-SP0
	3.1.1 Calculation via separation of variables
	3.1.2 Calculation of RR-SP0: parallel version
	3.1.3 Calculation via Fourier transform
	3.1.4 Calculation of symbol of SP operators

	3.2 Convergence rate calculation of DR algorithm
	3.3 Generalised convergence rate calculation of RR-SP0
	3.4 Convergence rate calculation of RR-SP1 and RR-SP2
	3.4.1 Calculation of RR-SP1
	3.4.2 Calculation of RR-SP2

	3.5 Summary

	4 Convergence analysis of NDD algorithms
	4.1 Convergence analysis of RR-SP0 without boundary effect
	4.1.1 Analysis of RR-SP0
	4.1.2 Poisson's equation test
	4.1.3 Comparison between parallel and sequential algorithms

	4.2 Convergence analysis of RR-SP2 without boundary effect
	4.2.1 Analysis of RR-SP2: approximation 1
	4.2.2 Analysis of RR-SP2: approximation 2

	4.3 Convergence analysis of conventional RR algorithm
	4.4 Boundary effect analysis of RR-SP0
	4.4.1 Modelling of boundary effect
	4.4.2 Model study of boundary effect
	4.4.3 Test case to evaluate boundary effect

	4.5 Convergence rate calculation of RR-SP1 and RR-SP2 with boundary effect
	4.5.1 Calculation of RR-SP1 with boundary effect
	4.5.2 Calculation of RR-SP2 with boundary effect

	4.6 Estimated analysis of boundary effect in RR-SP1 and RR-SP2
	4.6.1 Key terms of boundary effect
	4.6.2 Boundary effect evaluation of RR-SP1
	4.6.3 Boundary effect evaluation of RR-SP2

	4.7 Summary

	5 Numerical tests
	5.1 Discrete scheme and coding language
	5.2 Poisson's equation
	5.3 Model equations
	5.3.1 Model equation 1
	5.3.2 Model equation 2

	5.4 Floating interface boundary method
	5.5 Summary

	6 Analysis and implementation of GMRES
	6.1 Introduction of GMRES as a projection method
	6.2 Derivation of GMRES
	6.2.1 Arnoldi algorithm
	6.2.2 Full orthogonalization method
	6.2.3 Standard GMRES and restarted GMRES

	6.3 Solution to the least square problem and practical discussion
	6.3.1 Solving the least square problem
	6.3.2 Compressed row storage

	6.4 Convergence analysis
	6.4.1 General analysis using Chebyshev Polynomial
	6.4.2 Eigenvalue analysis of GMRES convergence

	6.5 ILU(0) preconditioning of GMRES
	6.6 Summary

	7 Conclusions and recommendations
	7.1 Summary of the work
	7.2 Future work
	7.2.1 Theoretical future work
	7.2.2 Numerical future work

	References
	Appendices
	A Convergence rate calculation of DN and NN algorithms
	A.1 Convergence rate calculation of Neumann-to-Neumann algorithm
	A.2 Convergence rate calculation of Dirichlet-to-Neumann algorithm

