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Abstract

The shape of colloidal particles drives their self-organisation in ordered structures, that
in turn confer peculiar characteristics to the suspension. In the design of new smart
materials, we first need to understand how particle diffusion and self-assembly relate
to each other and to the macroscopic properties of the entire system. To this end, this
thesis focused on the dynamics and microrheology of crowded suspensions with differ-
ent degrees of long-range ordering. We modelled different systems using hard spheres
and hard board-like particles, i.e., cuboids: the latter can self-assemble in many liquid
crystalline phases depending on their geometry. All the systems have been studied by
means of classic Monte Carlo and dynamic Monte Carlo simulations, which proved to
be effective to model hard-core particles of any shape and to mimic Brownian motion.
The first part of the thesis is dedicated to the derivation and benchmarking of our col-
lision detection algorithm between one sphere and one cuboid. Thanks to the use of
OpenMP directives, we managed to make the algorithm both time efficient and stable
in different scenarios and user-friendly. Then, we investigated the diffusion of globu-
lar macromolecules in isotropic and uniaxial nematic phases of hard board-like parti-
cles. Macromolecules, modelled as hard spheres, showed anisotropic diffusion in ne-
matic phases, with preferential displacement in the direction parallel or perpendicular
to the director. Non-Gaussian distribution of particle displacements has been observed
for both hard spheres and cuboids, in particular for prolate cuboids in isotropic phases.
We performed cluster analysis in the isotropic phase, and we observed the formation
of nematic-like cluster of hard board-like particles, which may induce local temporary
non-isotropic diffusion. The third part of the thesis focuses on electrorheological fluids
of nanocubes. At low dilution and specific field strength, we observed the formation
of string-like clusters, with an equilibrium distribution of chain lengths and fixed re-
sponse times. Performing passive microrheology simulations in the field-on and field-off
states, we observed anisotropic viscoelasticity of concentrated string-like fluids, depend-
ing on the direction of the external field. We then investigated the rotational dynamics
of cuboids in the induced transition from a uniaxial to a biaxial nematic phase. The re-
sponse time is geometry-dependent, with remarkable slow dynamics for cuboids close
to self-dual shape, despite such geometry is known to favour biaxiality. In the last part of
the thesis, we applied active microrheology simulation techniques in isotropic phases of
cuboids with prolate, self-dual shaped and oblate geometries. Local friction coefficient
at different Péclet numbers shows typical force-thinning behaviour, both density and
geometry dependent. Differences in the effective friction for systems with different par-
ticle geometry may be explained by the presence of nematic-like clusters and the ratio
in size between the bath and the tracer particles.
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Chapter 1

Introduction

Abstract

In this chapter a basic introduction of colloidal particles is presented. Here, we describe the

static and dynamical properties that characterise colloidal particles, by comparing them to

atoms and molecules. We then give a brief overview of hard board-like particles and, finally,

an outline of the structure of the thesis.

1.1 Colloids and ordering

By definition, a colloid is a biphasic system composed of a "dispersed" phase and a sur-

rounding dispersion medium, where the former is organised in subdomains with least

one of their three spatial dimensions between 1 nm and 1 µm [1]. Blood is composed

of blood cells immersed in liquid plasma; in clay, tiny aggregates of mineral particles

are separated by thin layers of water; one single cell contains a myriad of organelles

and supramolecular structures immersed in liquid cytoplasm; in industry, solid parti-

cles within a range of 1-100 nm, e.g., nanoparticles, are added in paint, lubricant and

detergent to confer specific physical and chemical properties to the entire solution. All

the aforementioned materials are examples of colloids. Colloidal systems are classified

depending on the thermodynamic state of the two phases that compose them. In this

thesis, we mainly focus our attention on suspensions of solid particles dispersed in liquid

medium, and we refer to the dispersed phase as "colloidal particles".

Despite the difference in size, colloidal particles and molecules have features in com-

mon. From a topological point of view, colloidal particles of many different shapes can
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be found in nature or can be artificially synthesised, and shape alone can be a determi-

nant factor in their spatial organisation. Tobacco Mosaic Virus (TMV) is an example:

this single-strand molecule of RNA encapsulated in a protein supramolecular structure

has a unique cylindrical shape. It has been observed that, depending on ion concentra-

tion in solution and pH, particles of TMV tend to align with each other with respect

to their length [2, 3, 4]. A similar behaviour has been observed in suspensions of syn-

thetic nanorods of different materials, at specific conditions of concentration [5, 6, 7].

The spontaneous reconfiguration of cylindrical particles in domains with a preferential

orientation is a typical liquid crystal phase transition. Liquid crystals (LCs) are thermo-

dynamic phases of matter that are characterised by their intermediate level of spatial

symmetry between the one of an isotropic liquid and a perfect crystalline phase [8].

LCs have been observed both in the molecular and the colloidal scales [9]. The seminal

work of Onsager proved that a system made of infinitely long rigid rod-like particles,

at a specific concentration, undergoes phase transition from a state of pure disorder

(e.g., an isotropic (I) phase) to having a preferential orientation in space (e.g., a nematic

(N) phase). This I-to-N phase transition is entropically favoured, formally proving that

particle shape is sufficient to induce self-organisation [10]. This discovery lead to the

investigation of the phase behaviour of particles of any shape, from prolate [11] to oblate

geometry [12], disk-like or board-like [13, 14], to particles with a certain degree of cur-

vature [15], via theoretical studies and nanoparticle synthesis [16]. We dedicate here

a special attention to hard board-like particles (HBPs), i.e., cuboids: despite their sim-

ple shape, they can self-assemble in many different LC phases, from nematic to smectic

(Sm), columnar (Col), cubatic (Cu) and parquet (Par) phases, when changing their size

from prolate to oblate geometries [13, 17, 18]. It has been shown that their biaxial ge-

ometry can also promote the formation of biaxial nematic (NB) phases, in which HBPs

have not one but two different main axes of preferential orientation. Experiments on

particles of this shape managed to stabilise this elusive LC phase [19], and particle sim-

ulations suggested that polydispersed systems of HBPs tend to naturally form stable NB

phases [20, 21]. Particular attention has been dedicated also to biaxial particles with

dual-shaped geometry, where one particle extent is the geometric average of the other

two, since different studies show that such a specific geometry, intermediate between

prolate and oblate, promote biaxiality [22, 23]. The augmented orientational order of
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biaxial rather than uniaxial nematic phases, make the former appealing for the design

of new optical materials [24].

Another similar characteristic in common between colloidal particles and molecules

is their inter-particle interaction. Colloidal particles can attract or repel each other. Their

attraction can be reversible or not, and they can bind with each other. Their interaction

can also be directional, and selective of specific sites. These features give them the pos-

sibility to assemble in different kind of structures, regardless of their shape [25, 26, 27].

These characteristics make colloidal particles the perfect candidate to investigate phys-

ical phenomena that occur in the molecular scale, while being more easily accessible

to be observed from an experimental point of view [28]; at the same time, their physi-

cal and chemical properties can be optimised and tuned to fabricate new materials with

exceptional properties.

1.2 Dynamics of colloidal particles

Despite the similarities between molecular and colloidal systems, one major difference

between the two is their dynamics. Colloidal particles are much slower than single

molecules, and the motion of the former depends on both the interaction between parti-

cles of the same scale, and the interactions with the surrounding medium, which is com-

monly made of molecules. The presence of the medium make the dispersed phase move

in a unique way, known as Brownian motion, in honour of botanist Robert Brown, who

observed random fluctuating motion of grains of pollen under microscope [29]. Brow-

nian motion is peculiar of colloidal systems, such that particles with this dynamics are

also known as Brownian particles. In 1905, Albert Einstein presented a theoretical expla-

nation of the Brownian motion of suspended particles using molecular kinetic theory:

the dynamics of one single particle in suspension, in the absence of other forces, depends

solely on the drag resistance of the medium and the thermal energy with molecules of

the medium; the motion of a colloidal particle is hindered by the resistance of the sur-

rounding fluid; this resistance is dissipated into thermal energy, and, consequently, as

kinetic energy by the molecules that compose the medium; solvent particles randomly

collide with the surface of the dispersed particles, which start moving randomly in the

medium [30]. The work of Einstein and Smoluchowski prove that the probability dis-
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tribution function of particle position in space is described exactly by Fick’s second law

of diffusion [31], and that particle motion is characterized by a diffusivity which is de-

pendent on the viscosity of the medium and temperature [32]. Later, Paul Langevin

showed that Brownian motion can be equivalently described by a stochastic differential

equation, based on classical Newtonian mechanics plus a random fluctuating force [33].

According to both formulations, the mean square displacement of the particles is lin-

ear with time, i.e., ⟨Δ𝑟2⟩ ∝ 𝑡, but only in the absence of other forces. The inclusion of

interactions with other particles and other external forces adds a higher degree of com-

plexity to the theoretical treatment of Brownian motion. If we take into account solely

particle concentration, it has been observed that when Brownian particles start to collide

with each other, their diffusion is damped and their motion show a subdiffusive regime,

i.e., ⟨Δ𝑟2⟩ ∝ 𝑡𝛽 , 𝛽 < 1. Eventually, the diffusive regime is restored, with a diffusivity lower

than the diffusion coefficient at infinite dilution [34]. If we also consider the presence

of ordered structures surrounding one or a collection of moving particles, their dynam-

ics gets even more complex. This is commonly observed in nature, for macromolecules

that move from one organelle to another, passing through the cytoplasm, which is rich

of macromolecules and supramolecular structures of any kind [35, 36, 37]. Studies of

macromolecular crowding are fundamental for research in cancer medicine. Innovative

treatments of cancer focus on targeted therapy and they exploit nanoparticles as drug

carriers; due to the structural complexity of the system that such particles have to move

into, not only particle size but also their shape plays a determinant role in diffusion in

living tissue [38, 39, 40]. Understanding the dynamics of Brownian particles is funda-

mental also in the design of new smart materials, that respond to the application of an

external stimulus. Examples of materials of this kind are electorheological and magne-

torheological fluids, i.e., suspensions of solid particles that reversibly transform from a

fluid-like to a plastic-like states when an external electric or magnetic field is applied.

The sudden change in rheological properties of the suspension is caused by the parti-

cle alignment and the formation of fibrous structures along the direction of the field.

These devices have already been used as electric valves, clutches and damping devices

[41, 42]. The effect of particle shape on these systems is still under investigation, but it

is crucial to be taken into account[43, 44]. Going a step further, not only the dynamics

of Brownian particles influences the macroscopic behaviour of the entire suspension,
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but their dynamics retains itself information of the local viscoelastic properties of the

suspension, because of possible collisions with their surroundings. This field of study,

known as "microrheology", exploits the motion of a probe particle, with or without an

external field acting on it, to recover local viscoelastic properties of the material in the

vicinity of the moving probe particle [45, 46]. It is clear that a deep comprehension of

the effect of shape and self-organisation of Brownian particles in their motion, and the

consequent effect of their motion on macroscopic properties of the entire suspension, is

undoubtedly fundamental for developments in different areas, from biology to material

science, and this is what this PhD project is focused on.

Computer simulation so far have proved to be an excellent tool to study colloidal

systems, to investigate their self-assembly and their dynamics, and it has become a use-

ful instrument to predict and, at the same time, confirm experimental observation and

theoretical expectations. Nowadays, Monte Carlo simulations are a standard method

of investigation of particle self-assembly, due to their simple implementation and effec-

tiveness. This technique has been widely used to study the phase behaviour of particles

of hypothetically any shape, usually neglecting the effective nature of interactions that

particles may have in a real systems, in favour of a selective attention on volume ex-

cluded interactions [47]. Several techniques like Brownian Dynamics [48, 49], Dissipa-

tive Particle Dynamics [50], Stokesian Dynamics [51], just to mention a few, have been

developed to study the nature of the dynamics of colloidal systems, where any of them

either neglects or incorporates different kind of interactions between the particles, and

between particles and liquid medium. Due to the stochastic nature of Brownian motion,

Monte Carlo methods have been developed to integrate particle motion [52, 53]. In this

PhD research, we performed dynamic Monte Carlo simulations, following the algorithm

proposed by Patti and Cuetos [54].

1.3 Outline of the thesis

The aim of this PhD project is to unravel the mechanisms in play in the dynamics of col-

loidal particles in crowded media with a degree of ordering. We focused our attention

on how the non-trivial relations between particle shape, concentration and self organi-

sation may induce anomalous diffusion in suspensions, and if and how their dynamical
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behaviour can explain macroscopic properties of the suspension, with a focus on its me-

chanical and rheological ones. To do so, we modelled different problems in soft matter by

simulating colloidal suspensions of hard board-like particles (HPBs) and hard spheres via

dynamic Monte Carlo simulations. All the DMC simulations performed over the course

of this PhD research project, neglected the effect of hydrodynamic interactions on the

motion of the colloidal systems simulated.

In the first part of the thesis, we focused on developing the algorithm for collision

detection between spheres and cuboids. We optimised the algorithm for simulation pur-

poses, we developed a FORTRAN version of the algorithm and we compared its efficiency

with other algorithms available in literature. We showed its computational efficiency in

scenarios made of one sphere and one cuboid of anisotropic (oblate to prolate) shape, at

a specific acceptance rate. An article of this project is published in Algorithms, volume

14, page 72 (2021); the content of the article is presented in Chapter 3.

In the second part of the project, we performed dynamic Monte Carlo (DMC) sim-

ulations of suspensions of small hard spheres and prolate and oblate HBPs, to model

the diffusion of globular macromolecules in crowded suspensions. More specifically, we

wanted to investigate how long-range ordering affects the dynamics of macromolecules

in purely diffusive regime, analysing the dynamics of host spheres moving in a bath of

isotropic and uniaxial nematic liquid crystal phases of cuboids. We observed anisotropic

diffusion of spherical tracers in uniaxial nematic phases along the directions parallel and

perpendicular to the nematic director of the host phase, with the formation of tempo-

rary cages at intermediate time scales. We observed strong deviation of the total non-

Gaussian parameter (NGP) of prolate cuboids in the isotropic phase; to this end we anal-

ysed their local structural properties and we observed that some HBPs form clusters

with nematic-like organisation, whose formation could explain the observed deviation

from expected Gaussian distribution of particle displacements. An article of this project

is published in Journal of Molecular Liquids, volume 338, page 116640 (2021) and its con-

tent can be found in Chapter 4.

In the third part of the project, we implemented the Ewald summation method for

dipolar interactions in our software, and we performed out-of-equilibrium simulations

of electrorheological fluids of colloidal cubes, switching an external electric field on and

off. We analysed the kinetics of formation of clusters of cubic particles in the transient

30



regime: at low dilution and specific field strength, such systems tend to form string-like

clusters, separated from each other, with an equilibrium distribution of string lengths

and a characteristic response time. We then added one hard spherical tracer to the sys-

tem of cubes and we performed passive microrheology DMC simulations at equilibrium

with the field on and off. While at low dilution the viscoelastic response of the suspen-

sion is the same regardless of the presence of the external field, at higher density the

suspension exhibits different viscous and elastic behaviour in the direction parallel and

perpendicular to the applied field, due to the presence of string-like clusters oriented

along the field. An article of this project is published in Journal of Chemical Physics

volume 157, page 224906 (2022) and its content is presented in Chapter 4.

While working on my main research project, I contributed as co-author in two dif-

ferent projects.

In the first one, we investigated the rotational dynamics of HBPs, whose orienta-

tion changes under the application of a model external field, spanning from prolate to

oblate particle anisotropy. At specific concentration, these systems form uniaxial and

biaxial nematic phases when the external field is off and on, respectively. We computed

the response times of the suspensions in the off-to-on and on-to-off transient regimes:

self-dual shaped cuboids, theoretically considered as the most suitable to promote phase

biaxiality, exhibit slow response times, especially if compared to prolate cuboids. It this

project, I contributed by providing coding support for the computation of dynamical

properties, by contributing in the investigation and the discussion of the simulation re-

sults over the course of the entire project, and by co-writing and editing the manuscript.

These results are published in Physics of Fluids, volume 33, page 067115 (2021); Chapter 6

of this thesis is dedicated to this research.

In the second project, we performed active microrheology simulations of isotropic

phases of HBPs at different particle anisotropy and volume fraction, for different Péclet

(Pe) numbers. The effective friction coefficients show two plateaus at low and high Pe

numbers with a force-thinning regime at intermediate Pe; this profile, typical for sus-

pensions, is observed for all system packing and particle geometry investigated. While

enhanced friction of the bath of HBPs is observed at higher densities, non-monotonic be-

haviour of the effective fiction coefficient is evident when passing from prolate to oblate

cuboids at fixed volume fraction. In this project, I contributed by implementing active
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microrheology simulations in the main software for DMC simulations, by investigating

and discussing the simulations results over the course of the entire project, and by re-

viewing and editing the manuscript. An article on this project has been published in

Physical Review E and its content can be found in Chapter 7 of this thesis.
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Chapter 2

Theoretical Background

Abstract

In this chapter, we describe in detail the main methods employed in our investigations. We

first introduce basic concepts of statistical mechanics and how Monte Carlo algorithms are

commonly used in particle simulation. We then thoroughly present dynamic Monte Carlo

methods, which are the main computational simulation techniques used in the research

project presented in this thesis. We conclude with a brief discussion on how to describe

inter-particle interaction in simulations.

2.1 Statistical mechanics

A system made of colloidal particles, as well as molecular systems, obeys the rules of

statistical mechanics [1]. In statistical mechanics, a macroscopical property of the entire

system at equilibrium can be defined as follows:

lim
𝑡→∞

1
𝑡 ∫

𝑡

0
𝐴(𝐩(𝑡′), 𝐪(𝑡′)) 𝑑𝑡′ = ⟨𝐴⟩ =

∬ 𝐴(𝐩, 𝐪)𝑓 (𝐩, 𝐪) 𝑑𝐩𝑑𝐪
∬ 𝑓 (𝐩, 𝐪) 𝑑𝐩𝑑𝐪

. (2.1)

The property 𝐴 is averaged over time in the LHS and in the phase space in the RHS.

𝑓 (𝐩, 𝐪) is the probability distribution of the system in the phase space at equilibrium,

q = (𝑞1,𝑥 , 𝑞1,𝑦 , 𝑞1,𝑧, 𝑞2,𝑥 , ..., 𝑞𝑁 ,𝑥 , 𝑞𝑁 ,𝑦 , 𝑞𝑁 ,𝑧) contains the positions of all the particles, 𝐩 the

momenta. The equivalence of the two different averages is valid if the ergodic hypoth-

esis is respected, i.e., if the particles can access the entire phase space after a certain

amount of time [2]. The average of 𝐴 in the phase space has specific forms depending
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on the statistical ensemble we are using to define the system. All the research projects

presented in this thesis focused on systems in the canonical (𝑁𝑉𝑇 ) ensemble. In statisti-

cal mechanics, an ensemble is a set of identical copies of a system, characterised by some

macroscopic variables. In the canonical ensemble, each copy of the system has constant

number of particles 𝑁 , temperature 𝑇 and volume 𝑉 . In this ensemble, the average of a

property depending on 𝐪 and 𝐩 has the following expression:

⟨𝐴⟩ =
1

𝑁 !ℎ3𝑁
∬ 𝐴(p, q)𝑒−𝛽(𝐩,𝐪)𝑑p𝑑q

𝑄
, (2.2)

𝑄 =
1

𝑁 !ℎ3𝑁 ∬ 𝑒−𝛽(𝐩,𝐪)𝑑p𝑑q. (2.3)

𝑄 is the canonical partition function, ℎ is the Planck constant and is the Hamiltonian of

the system, which is defined as the sum of kinetic (𝐸𝐾 (𝐩)) and potential (𝑈 (𝐪)) energies.

We can split the Hamiltonian in two terms and integrate Eq. 2.3 over the momenta, to

obtain:

𝑄 =
1
𝑁 !

𝑍𝑁𝑉𝑇

Λ3𝑁 , Λ =
√

ℎ2

2𝑚𝑘𝐵𝑇
, 𝑍𝑁𝑉𝑇 = ∫ 𝑒−𝛽𝑈 (𝐪)𝑑q, (2.4)

where Λ is the thermal de Broglie wavelength. If the property 𝐴 depends only on the

positions, i.e., 𝐴 = 𝐴(𝐪), then Eq. 2.1 can be simplified and, using formulas in Eq. 2.4,

⟨𝐴⟩ becomes:

⟨𝐴⟩ =
∫ 𝐴(q)𝑒−𝛽𝑈 (𝐪)𝑑q

𝑍𝑁𝑉𝑇
, (2.5)

where 𝑒−𝛽𝑈 (𝐪) is the Boltzmann probability distribution of our system and 𝑍𝑁𝑉𝑇 its nor-

malisation factor.

According to Eq. 2.1, we have two different ways to average properties of the entire

system: (i) we describe the physical motion of the particles that compose our system, (ii)

we estimate the probability density distribution of all the possible states of our system. In

both cases, we reduce the physical problem to a mathematical one: in case (i) we need to

solve the equation of motion of all the particles; in case (ii) we instead perform a numer-

ical integration of Eq. 2.5, assuming that we know the probability distribution of all the

states of our system, which is the Boltzmann distribution. These two different methods

have their own advantages and limitations, and either of them is preferable depending

on the properties we want to estimate numerically. In the research projects presented

in this thesis, we used both types of algorithms to investigate our systems of study, to
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recover both statistical and dynamical properties, in equilibrium and out-of-equilibrium

conditions. The next sections will give a detailed description of standard Monte Carlo

(MC) methods, which fall in case (ii), and novel dynamic Monte Carlo (DMC) algorithms,

specific for Brownian particles, which fall in case (i).

2.2 Monte Carlo simulation

With the name "Monte Carlo" (MC), we describe all the procedures that make use of

pseudo-random number generators to obtain numerical solutions of a variety of prob-

lems. This method was first presented as a procedure for general application in the

seminal work of Nicholas Metropolis and Stanislaw Ulam [3]. In this section, we will

focus on Monte Carlo integration and simulation. In order to give a general idea of the

technique, we consider the following integral:

𝐺 = ∫

𝑔(𝑥)𝑑𝑥 = ∫

 (
𝑔(𝑥)
𝑓 (𝑥))

𝑓 (𝑥)𝑑𝑥. (2.6)

𝐺 is the value that we want to obtain, 𝑔(𝑥) is the function that we want to integrate,  is

the space in which we want to estimate the integral and 𝑓 (𝑥) in the RHS is a probability

distribution. 𝐺 can be computed by common quadrature methods, evaluating 𝑔(𝑥) on

a grid of points in  , or with Monte Carlo methods, where we average (𝑔(𝑥∗)/𝑓 (𝑥∗)),

estimated from a random set of 𝑥∗ values sampled from 𝑓 (𝑥). In our case, can not use

neither of the two methods straight away to solve Eq. 2.5: we do not know 𝑍𝑁𝑉𝑇 , and

estimating it would require solving a 3𝑁 -dimensional integral, for 𝑁 the total number

of particles. If we consider all the possible configurations of particles in the system, the

majority of them will have at least two particles really close to each other, if not overlap-

ping: these configurations have high energy and, according to Boltzmann distribution,

low probability to occur, and their contribution to the integral can be discarded. Thus,

we can sample the possible states of our system of particles using the Boltzmann distri-

bution, to estimate the integral only in the "most important" areas of the phase space.

The first algorithm to implement this kind of method on computer machines was pro-

posed by Nicholas Metropolis et al. and it is known as Metropolis algorithm [4]. The

Metropolis algorithm generates random states of the system and uses a known proba-

bility distribution 𝑓 (𝑥), which must be proportional to the target one, in our case 𝑓 (𝑥)
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of Eq. 2.6, to select the states in the process. The sequence of accepted states generated

by the algorithm is a stochastic process known as Markov chain. A Markov chain has

the following properties:

• the probability of a certain state of the system depends only on the previous state

of the chain, i.e., 𝑃(𝐗(𝑡+1)|𝐗(𝑡),𝐗(𝑡−1),… ,𝐗(0)) = 𝑃(𝐗(𝑡+1)|𝐗(𝑡)),

• all the possible states of the system are contained in a finite space state, 𝐗(𝑡) ∈  ∀ 𝑡.

Metropolis algorithm is structured as follows:

1. the initial state is a configuration of particles 𝐗(0) = 𝐪(0),

2. starting from the old state 𝑜 = 0, we estimate its probability as 𝑝0 = 𝑓 (𝐗(𝑜)),

3. we generate a new state 𝑛, with configuration of particles 𝐗(𝑛), starting from the

previous configuration 𝐗(𝑜),

4. we estimate the probability of state 𝑛 as 𝑝𝑛 = 𝑓 (𝐗(𝑛)),

5. we generate a random number 𝜁 {0, 1} from a uniform distribution,

6. we decide whether we accept of reject the new state 𝑛:

(a) 𝑝(𝑛)/𝑝(𝑜) > 𝜁 {0, 1} ⟹ the new state 𝑛 is accepted,

(b) 𝑝(𝑛)/𝑝(𝑜) ≤ 𝜁 {0, 1} ⟹ the new state 𝑛 is rejected and the new state remains

the old one, 𝑛 → 𝑜,

7. the new state becomes the old one, 𝑜 → 𝑛,

8. the algorithm restarts from 3.

This algorithm, with an appropriate choice of transformation from configuration 𝐗(𝑜) to

𝐗(𝑛), accepts the generated states over the chain with probability 𝑎𝑐𝑐 = {1, 𝑝(𝑛)/𝑝(𝑜)}. In

stage 6 of the algorithm, the transition probability from one state to another depends

on the ratio 𝑝(𝑛)/𝑝(𝑜); since 𝑓 (𝐗) ∝ 𝑓 (𝐗), then 𝑓 (𝐗(𝑛))/𝑓 (𝐗(𝑜)) = 𝑓 (𝐗(𝑛))/𝑓 (𝐗(𝑜)). This

choice in the definition of transition probability guarantees that the generated states are

sampled correctly from the target probability distribution. In 𝑁𝑉𝑇 Monte Carlo simula-

tions, the target equilibrium probability distribution is 𝑓 (𝐗) = exp(−𝛽(𝑈 (𝐗)))/𝑍𝑁𝑉𝑇 ; in
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the algorithm we instead define the probability of a state with the distribution 𝑓 (𝐗) =

exp(−𝛽(𝑈 (𝐗))). 𝑁 number of trials are commonly referred to as a "cycle", to compare

it with one standard time step in a Molecular Dynamics simulation. The Markov chain

generated in this way does not have any correspondence with an arrow of time. Thus,

also unphysical moves, like displacements of clusters of particles, or insertion/deletion of

particles, can be performed in Monte Carlo simulations and they have been implemented

in different versions of the Metropolis algorithm to accelerate its rate of convergence to

the stationary distribution [5].

2.2.1 Dynamic Monte Carlo

The Langevin equation describes the motion of a Brownian particle immersed in a fluid:

𝑚�̇�(𝑡) = −∇𝑈 (𝐫) − 𝛾𝐯(𝑡) + 𝑅(𝑡), (2.7)

where the the inertia of the particle depends on the frictional forces acting on the moving

particle (−𝛾𝐯(𝑡)), the random fluctuating forces caused by the continuous collisions of

solvent molecules with the Brownian particle (𝑅(𝑡)), and all the other external forces

acting on the particle (−∇𝑈 (𝐫)). Due to the nature of the fluctuating term, Langevin

equation is a stochastic differential equation [6]. In the overdamped limit, i.e., 𝛾 ≫ 𝑚,

Eq. 2.7 gives the true Brownian dynamics of a particle. Monte Carlo simulations can be

exploited to mimic the stochastic nature of the Brownian motion, thanks to the random

sampling of particle displacement in a trial move. Several application of Monte Carlo

methods can be found in literature to numerically solve the Fokker-Plank equation or

to mimic Brownian Dynamics (BD) simulations [7, 8, 9]. The simulations performed

in all the research projects of this thesis followed the approach developed by Patti and

Cuetos initially for pure systems [10], then expanded for multicomponent mixtures [11],

both in equilibrium and out-of-equilibrium conditions [12], in the presence of system

inhomogeneities [13] and for active microrheology simulations [14].

We consider a general case, with a multicomponent system of particles of 𝑛𝑐 different

species, in an 𝑁𝑉𝑇 ensemble. The total number of particles is

𝑁 =
𝑛𝑐
∑
𝑗=1

𝑁𝑗 . (2.8)
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Following the Metropolis algorithm, we sample a new state of the system from the old

one: in this case we randomly select one particle and we randomly move it at each trial.

A rigid particle has a certain number of degrees of freedom to describe its position and

orientation in space. So, the position and orientation of a particle 𝑝 of species 𝑗 are

described as a point 𝝃𝑗 = (𝜉1,𝑗 ,… , 𝜉𝑘,𝑗) in a 𝑘-dimensional space, where 𝑘 is the number

of degrees of freedom for 𝑗-type particles. At every new state, we attempt to move

particle 𝑝 of species 𝑗 in a point inside a 𝑘-dimensional hyperprism 𝚵𝑗 , with volume

𝑉Ξ,𝑗 = ∏𝑘
𝑖=1 2𝛿𝜉𝑖,𝑗 . The probability of moving one particle 𝑝 of species 𝑗 for one trial is:

P (𝑝)
𝑚𝑜𝑣𝑒,𝑗(𝝃𝑗) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1
𝑁

1
𝑉Ξ,𝑗

A𝑗 , 𝑖𝑓 𝝃𝑗 ∈ 𝚵𝑗 ,

0 𝑖𝑓 𝝃𝑗 ∉ 𝚵𝑗 .
(2.9)

1/𝑁 is the probability to choose particle 𝑝, 1/𝑉Ξ,𝑗 the probability to pick the point 𝝃𝑗

inside 𝚵𝑗 (since it is sampled with a uniform distribution), A𝑗 is the acceptance rate for

𝑗-type particles. Since every movement is sampled inside 𝚵𝑗 , the probability of moving

particle 𝑝 outside the hyperprism is zero. Being P (𝑝)
𝑚𝑜𝑣𝑒,𝑗 independent among attempted

moves, the total probability of moving a 𝑗-type particle after one cycle of 𝑁 trials is

P𝑚𝑜𝑣𝑒,𝑗(𝝃𝑗) = 𝑁P (𝑝)
𝑚𝑜𝑣𝑒,𝑗(𝝃𝑗) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1
𝑉Ξ,𝑗

A𝑗 , 𝑖𝑓 𝝃𝑗 ∈ 𝚵𝑗 ,

0 𝑖𝑓 𝝃𝑗 ∉ 𝚵𝑗 .
(2.10)

So far, we did not impose any condition on the acceptance rate A𝑗 . The probability of

a move to be accepted will depend on the forces acting on the trial particles and the

local density distribution: in out-of-equilibrium conditions, the system will evolve from

one stationary condition to a different one, and the acceptance rate will consequently

change over the Monte Carlo cycles; in the presence of density inhomogeneities, A𝑗 will

be different in different areas of the box; in constant-force active microrheology simula-

tions, where a tracer particle is attracted by an external field along a specific direction,

the Metropolis algorithm determines the probability for a trial move of the tracer to be

accepted moving towards or in the opposite direction of the external field. We consider

the case of a homogeneous system out-of-equilibrium, where each particle of species 𝑗

has its own average acceptance rate, and we assume A𝑗 to be uniform over the sampling
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hyperprism Ξ𝑗 but dependent on the state of the simulation. We can use the defined

probability to calculate the mean square displacement (MSD) of a degree of freedom 𝑖,

for 𝑗-type particles, after one cycle:

⟨𝜉 2𝑖,𝑗⟩ = ∫ 𝜉2𝑖,𝑗P𝑚𝑜𝑣𝑒,𝑗(𝝃𝑗)𝑑𝜉1,𝑗 … 𝑑𝜉𝑖,𝑗 … 𝑑𝜉𝑘,𝑗 =
A𝑗 ,𝑙(𝛿𝜉𝑖,𝑗)

2

3
, (2.11)

where now A𝑗 ,𝑙 is the acceptance rate of particle of species 𝑗 at cycle 𝑙. The relative

formula for the MSD after C𝑀𝐶 cycles is

⟨𝜉 2𝑖,𝑗⟩ = (𝛿𝜉𝑖,𝑗)
2

3

C𝑀𝐶

∑
𝑙=1

A𝑗 ,𝑙. (2.12)

To link the Monte Carlo simulation with a proper timescale, we use the Einstein relation

to define the maximum variation 𝛿𝜉𝑖,𝑗 and define a MC timescale 𝛿𝑡𝑀𝐶 for 𝑗-type particles:

(𝛿𝜉𝑖,𝑗)
2
= 2𝐷𝑖,𝑗𝛿𝑡𝑀𝐶,𝑗 , (2.13)

where 𝐷𝑖,𝑗 is the diffusion coefficient at infinite dilution of the degree of freedom 𝑖 of par-

ticle species 𝑗 . In a Brownian Dynamics (BD) simulation, the MSD is directly dependent

on time through the Einstein relation:

⟨𝜉2𝑖,𝑗⟩ = 2𝐷𝑖,𝑗 𝑡𝐵𝐷, (2.14)

where 𝑡𝐵𝐷 is the time unit of the BD simulation. Equating Eq. 2.14 and 2.12, and using

the definition in Eq. 2.13, we can recover the correct timescale in a DMC simulation:

𝑡𝐵𝐷 =
𝛿𝑡𝑀𝐶,𝑗

3

C𝑀𝐶

∑
𝑙=1

A𝑗 ,𝑙. (2.15)

Eq. 2.15 shows that, despite each particle has a distinct MC timescale, they all must

be linked with the correct arrow of time of a BD simulation. Indeed, the equivalence

of Eq. 2.15 for all the particles of species 𝑗 poses a fundamental relation between MC

timescales of different particles:

A1,𝑙𝛿𝑡𝑀𝐶,1 = A2,𝑙𝛿𝑡𝑀𝐶,2 = ⋯ = A𝑛𝑐 ,𝑙𝛿𝑡𝑀𝐶,𝑛𝑐 . (2.16)
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To respect all the constraints in Eq. 2.16, the MC timescale of one species of particle must

be kept fixed, while all the other must be adjusted during the simulation, for each MC

cycle. When the system has only one species of particles, no constraint in the definition

of the MC timescale is needed, and it is fixed over the entire duration of the simulation.

The results on kinetics of formation of chains presented in Chapter 5 and all the results

reported in Chapter 6 have been obtained by performing out-of-equilibrium DMC sim-

ulations of one-component systems. If the system is at equilibrium, the acceptance rate

of each species will fluctuate around an average value, and Eq. 2.15 can be simplified:

𝑡𝐵𝐷 =
𝛿𝑡𝑀𝐶,𝑗

3
C𝑀𝐶A𝑗 , (2.17)

where A𝑗 is the total average acceptance rate of particle species 𝑗 . All the results in

Chapter 4 and the passive microrheology results in Chapter 5 have been obtained by

performing equilibrium bi-component DMC simulations.

DMC simulations are useful to explore a broad time scale with low computational

cost, since it proved to efficiently recover BD results even with larger MC timescales.

Moreover, since BD simulations perform numerical integration of overdamped Lange-

vin equation of motion, they require the definition of forces and, as a consequence, dif-

ferentiable interaction potentials between particles. DMC methods overcome this issue,

since Metropolis-based MC simulations do not require the momenta of the particles,

making this method a perfect candidate to explore the dynamics of Brownian rigid bod-

ies with any shape. It is important to notice that DMC methods described so far neglect

the effect of hydrodynamic interactions (HI) between different particles: while there are

algorithms capable to take into account also HI [15, 16, 17], they mainly rely on spheri-

cal particles, and rigid bodies defined as clusters of spheres, or they necessarily simulate

also the flow of the medium.

2.3 Microrheology

In this section we will present in more detail how active and passive rheology simu-

lations can be performed in the DMC framework. In the case of constant-force active

microrheology simulations, an external force is imposed only on one spherical tracer
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particle:

𝐅𝑒𝑥𝑡 = 𝐹𝑒𝑥𝑡 �̂� = Pe
2𝑘𝐵𝑇
𝜎

�̂�, (2.18)

where 𝜎 is the diameter of the tracer, �̂� is the orientation of the external field and Pe is

the Péclet number, i.e., the ratio between the external force and the thermal forces. In

the presence of an external force, the acceptance rate of the tracer is space dependent.

This requires a more detailed analysis of the behaviour of the Metropolis algorithm in

this specific conditions. Considering that the equilibrium acceptance rate of the tracer

due to the interaction with the surrounding particles is A0, the probability of moving the

tracer particle along �̂� depends also on the potential energy 𝛽𝑈𝑒𝑥𝑡 = −𝛽𝐹𝑒𝑥𝑡𝑥 as follows:

P𝑚𝑜𝑣𝑒,𝑡(𝑥) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1
2𝛿𝑥

A0 𝑖𝑓 0 < 𝑥 ≤ 𝛿𝑥,
1

2𝛿𝑥
A0 exp (𝛽𝐹𝑒𝑥𝑡𝑥) 𝑖𝑓 − 𝛿𝑥 ≤ 𝑥 ≤ 0,

0 𝑖𝑓 𝑥 ∉ [−𝛿𝑥, 𝛿𝑥],

(2.19)

where the trial move along the direction of the force is in the range [−𝛿𝑥, 𝛿𝑥]. We can

use the definition of P𝑚𝑜𝑣𝑒,𝑡(𝑥) to obtain the average displacement of the tracer along �̂�

and the acceptance rate of the tracer:

⟨𝑥𝑡⟩ = ∫
∞

−∞
𝑥P𝑚𝑜𝑣𝑒,𝑡𝑑𝑥 ≃

𝛽𝐹𝑒𝑥𝑡A0 (𝛿𝑥)2

6 (1 −
3
8
𝛽𝐹𝑒𝑥𝑡𝛿𝑥) +  ((𝛽𝐹𝑒𝑥𝑡𝛿𝑥)2) , (2.20)

A𝑡 = ∫
∞

−∞
P𝑚𝑜𝑣𝑒,𝑡𝑑𝑥 ≃ A0 (1 −

1
4
𝛽𝐹𝑒𝑥𝑡𝛿𝑥) +  ((𝛽𝐹𝑒𝑥𝑡𝛿𝑥)2) , (2.21)

where we expanded exp(𝛽𝐹𝑒𝑥𝑡𝑥) up to the first term, and we neglected  ((𝛽𝐹𝑒𝑥𝑡𝛿𝑥)2)

terms, which is true for 𝛽𝐹𝑒𝑥𝑡𝛿𝑥 ≪ 1. In a BD simulation with an external force, the

average displacement of the tracer along �̂� reads:

⟨𝑥𝑡⟩ = 𝐷𝑡𝛽𝐹𝑒𝑥𝑡 𝑡𝐵𝐷. (2.22)

We can substitute Eq. 2.21 into Eq. 2.20, and then compare the resulting equation with

Eq. 2.22, for C𝑀𝐶 cycles, to recover the BD time for the tracer in an active microrheology

DMC simulation:

𝑡𝐵𝐷 =
1
3 (

3
2
A𝑡 −

1
2
A0) 𝛿𝑡𝑀𝐶,𝑡 . (2.23)
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Since the tracer will likely move towards the direction of the field rather than perpen-

dicular to it, the maximum displacement of the tracer is different in different directions:

𝛿𝑟𝑚𝑎𝑥∥,𝑡 =
√
2𝐷𝑡𝛿𝑡𝑀𝐶,𝑡 + (𝐷𝑡𝛽𝐹𝑒𝑥𝑡𝛿𝑡𝑀𝐶,𝑡)

2
, (2.24)

𝛿𝑟𝑚𝑎𝑥⟂,𝑡 =
√
2𝐷𝑡𝛿𝑡𝑀𝐶,𝑡 . (2.25)

To ensure that the approximations applied in Eq. 2.20 and 2.21 are correct, we must

respect the inequality 𝛽𝐹𝑒𝑥𝑡𝛿𝑥 ≪ 1. In the same way as generic multicomponent DMC

simulations, also in the case of active microrheology the constrains in Eq. 2.16 must be

respected, between the tracer particle and the bath (𝑏) particles:

(
3
2
A𝑡 −

1
2
A0) 𝛿𝑡𝑀𝐶,𝑡 = A𝑏𝛿𝑡𝑀𝐶,𝑏. (2.26)

For the case of passive microrheology simulations, Pe = 0 and we recover the stan-

dard equilibrium multicomponent DMC simulations presented above. Nevertheless, in

the case of a single spherical tracer moving in a bath of colloidal particles, we can re-

cover the linear viscoelastic response of the suspension following the trajectory of the

tracer. In the seminal works of Mason and Weitz [18, 19, 20], the authors showed how the

motion of the tracer particle in suspension can be described by a generalised Langevin

equation, where the viscous damping of the fluid is time-dependent. By performing a

Fourier transform of the Langevin equation, and assuming the validity of a frequency-

dependent Stokes-Einstein relation for a viscoelastic fluid at all frequencies, the complex

shear modulus can be recovered from the MSD of the tracer:

𝐺∗ (𝜔) =
𝑘𝐵𝑇

𝜋𝑎𝑖𝜔𝑢 {⟨Δ𝑟2 (𝑡)⟩}
, (2.27)

where:

|𝐺∗ (𝜔)| =
𝑘𝐵𝑇

𝜋𝑎 ⟨Δ𝑟2 (1/𝜔)⟩ Γ [1 + 𝛼 (𝜔)]
(2.28)

𝐺′ (𝜔) = |𝐺∗ (𝜔)| cos (𝜋𝛼 (𝜔) /2) (2.29)

𝐺
′′
(𝜔) = |𝐺∗ (𝜔)| sin (𝜋𝛼 (𝜔) /2) (2.30)

𝛼 (𝜔) ≡
𝑑 ln ⟨Δ𝑟2(𝑡)⟩

𝑑 ln 𝑡

|||||𝑡=1/𝜔
(2.31)
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Active and passive microrheology simulations can be implemented in DMC simula-

tions and they proved to be a powerful tool to have an insight on the local viscoelastic

properties of colloidal suspensions. In this thesis, results in Chapter 7 have been ob-

tained through active microrheology simulations, while equilibrium passive microrhe-

ology simulations have been carried out to explore the linear viscoelastic response of

the electrorheological fluid of nanocubes, whose results can be found in Chapter 5.

2.4 Collision detection

One of the main problems of particle simulations is the definition of an interaction po-

tential between two particles. Generally, we can distinguish hard-core and soft-core

potentials. The former defines the interaction between two rigid impenetrable objects,

with the generic formula:

𝜙(𝑑𝑚𝑖𝑛) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0, 𝑑𝑚𝑖𝑛 > 0

∞, 𝑑𝑚𝑖𝑛 ≤ 0,
(2.32)

where 𝑑𝑚𝑖𝑛 is the minimum distance between the surfaces of the two particles. The latter

describes soft particles, that can attract and/or repel each other, depending on how the

potential is defined. A generic formula for two convex objects is 𝜙(𝐫𝑖, 𝐫𝑗 , 𝜽𝑖, 𝜽𝑗), where 𝐫 =

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) contains the position of the centre of mass and 𝜽 = (𝜃1, 𝜃2, 𝜃3) the orientation of

the particle in space. If we consider the complexity of the problem, we can realize why

the first simulations ever performed to mimic real systems involved the use of disks and

spheres. As a matter of fact, two spheres with diameters 𝜎1, 𝜎2 and positions of their

centres of mass 𝐫1, 𝐫2 do overlap, or at least be in contact, if:

‖𝐫2 − 𝐫1‖ ≤
𝜎1 + 𝜎2

2
, (2.33)

which is a set of simple operations to compute in a processing unit. However, when

particles have different shapes, the problem of collision detection (and, possibly, min-

imum distance computation) gets more complicated. Even though algorithms for the

collision detection of general convex objects can be found and are commonly used in

computer graphics [21], they are computationally expensive and they can compromise

the efficiency of particle simulations. To overcome this problem, there are, generally,
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two possible solutions:

1. describe the complex object as a composition of spheres or other shapes whose

properties are easier to compute [22, 23],

2. find the easiest and most efficient way to define the overlap between the two par-

ticles with their exact shapes.

Case 1 can be applied depending on the set up of the simulations and on the relevance

that the roughness of the surface of the "composed" particle has on the results of the

simulations; the smaller are the unit particles used for the definition, the bigger the total

number of particles is, with consequences on the computational cost of the simulation.

Case 2 is more appealing, but optimized algorithms for collision detection or computa-

tion of the minimum distance are not available for all the particle shapes that we may

want to simulate.

In all the research projects reported in this thesis, we simulated systems of hard

cuboidal particles and hard spherical particles, with cases of external forces dependent

of the position of particle centres of mass or orientation, with no inter-particle poten-

tial dependent on the minimum distance between the surfaces of two particles. The

algorithm we used to detect collision between to randomly oriented cuboids is the one

developed by Gottschalk et al. for Oriented Bounded Boxes [24]. For the collision de-

tection between one cuboid and one sphere, we developed our Oriented Cuboid Sphere

Intersection (OCSI) algorithm, whose description and performance is published as an

article in Algorithms and it is presented in Chapter 3.
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Chapter 3

Fast Overlap Detection Between
Hard-Core Colloidal Cuboids and
Spheres. The OCSI Algorithm

The content of this Chapter has been published as a full article in the journal Algo-

rithms. My contributions are listed as follows: Luca Tonti developed the methodology

and the software; Luca Tonti and Alessandro Patti performed the validation; Luca Tonti

performed the formal analysis; Luca Tonti and Alessandro Patti performed the investi-

gation; Luca Tonti was responsible for data curation; Luca Tonti wrote the original draft;

Luca Tonti produced the data visualisation.

Abstract

Collision between rigid three-dimensional objects is a very common modelling problem in

a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans

from realistic animation of polyhedral shapes for computer vision to the description of ther-

modynamic and dynamic properties in simple and complex fluids. For instance, colloidal

particles of especially exotic shapes are commonly modelled as hard-core objects, whose

collision test is key to correctly determine their phase and aggregation behaviour. In this

work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect colli-

sions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by

bench-marking it against a number of algorithms commonly employed in computer graph-

ics and colloidal science: Quick Rejection First (QRF), Quick Rejection Intertwined (QRI)

and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses

SIMD Streaming Extensions (SSE) intrinsics, here referred to as SSE-intr. We observed that

QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while
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SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI

and SSE-intr, both based on SIMD parallelization, show excellent and very similar perfor-

mance, the former provides a more accessible coding and user-friendly implementation as

it exploits OpenMP directives for automatic vectorization.

3.1 Introduction

Employing computer programs and algorithms to generate 2D or 3D images is referred

to as rendering. Rendering is a topic of striking relevance in computer graphics with

practical impact on many heterogeneous disciplines, spanning engineering, simulators,

video games and movie special effects. Collision detection and collision determination

are key elements of rendering as they determine the distance between two objects and

their possible intersection [1]. Due to their widespread use in video representation of

time-evolving systems, with tens of frames displayed per second, algorithms for render-

ing are expected to be very efficient [2, 3]. Generally, to assess whether two complex

objects collide, the distance between their respective bounding volumes is evaluated

first. Common bounding volumes are cuboidal boxes, whose axes might or might not be

aligned, or spheres. Due to their simple geometry, the collision between cuboids and/or

spheres is computationally easier [4, 5, 6, 7], thus enhancing the speed and efficiency of

the overall rendering process [2]. Collision detection algorithms are of utmost relevance

in many heterogeneous applications spanning computer graphics for shape modelling

and video games [8, 9, 10, 11, 12], robotics to prevent potential collisions in man–robot

interactions [13, 14, 15, 16, 17], risk assessment associated to vessel collision [18] or ma-

chining of sculptured surfaces [19], and simulations of molecular or particle systems to

estimate their thermodynamic properties [20, 21].

Collision algorithms have also been key to address the thermodynamics of liquid

and solid phases and their phase transition by early molecular simulation studies that

employed the hard-sphere model [22, 23, 24]. More recently, and following the sem-

inal theory by Onsager on the isotropic-to-nematic transition of hard rods [25], they

were fundamental to confirm the crucial role of excluded volume effects in the forma-

tion of colloidal liquid crystal phases of anisotropic particles [20]. Realising the practical

impact of the particle shape on the design of nanomaterials triggered the blooming of
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biosynthetic [26], chemical [27] and physical [28] experimental routes to manufacture

precise building blocks with ad hoc properties, including lock-and-key particles [29],

fused spheres [30], superballs [31] and cuboids [32, 33, 34, 35]. The appearance of these

exotic shapes unveiled a realm of novel opportunities in nanomaterials science by of-

fering an increasingly varied selection of morphologies for state-of-the-art applications

spanning medicine (controlled drug delivery), smart materials (self-healing coatings) and

photonics (light detection), among others. Often anticipating experimental evidence,

computer simulations have significantly contributed to our comprehension of the ef-

fect of particle shape and interaction at the nanoscale on the material properties at the

macroscale [36, 37, 38, 39]. Understanding the fundamentals of such a complex correla-

tion, which develops over orders of magnitude in length and time scales, dramatically

depends on the existence of reliable force fields mimicking the interactions between par-

ticles. This is not always the case for most exotic particle shapes, whose force field is

assumed to be described by mere excluded volume effects and thus only incorporates a

hard-core interaction potential. Consequently, efficient and robust algorithms able to de-

tect collisions and intersections between objects become essential to extract structural,

thermodynamic and dynamic properties of such systems from a molecular simulation.

In colloid science, cuboids are especially intriguing building blocks that can form a rich

variety of liquid crystal phases [40, 41, 42, 43, 44]. Incorporating guest spherical particles

in these phases is relevant to understand phenomena of diffusion in crowded environ-

ments that display a significant degree of ordering.

In the light of these considerations, which highlight the harmonious inter-disciplina-

ry convergence of computer graphics and colloid science, here we report on the specific

case of cuboid-sphere collision detection. In particular, we propose our own Oriented

Cuboid Sphere Intersection (OCSI) algorithm to detect collisions in monodispersed sys-

tems of cuboids and spheres oriented in a 3D space. OCSI is found to be especially

efficient when compared to the Quick Rejection First (QRF) and the Quick Rejection In-

tertwined (QRI) algorithms, and more user-friendly and easier to implement than the

vectorized version of the algorithm that employs SSE intrinsic functions [7]. For sim-

plicity, we refer to the vectorized version of the collision detection algorithm developed

by Larsson et. al. with the abbreviation "SSE-intr", since it uses Intel ® intrinsic func-

tions specific for SSE instruction set. In particular, QRI and QRF make use of a quick
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rejection test that discards overlaps if the minimum distance, 𝑑𝑚𝑖𝑛, between the surface

of a cuboid and the center of a sphere is larger than the sphere radius. Because this test

depends on the cuboid size and shape, the efficiency of both QRI and QRF is expected

to be determined, to some extent, by the specific sphere and cuboid geometry. By con-

trast, SSE-intr, which runs in parallel and it is therefore significantly faster than QRI

and QRF, does not need quick rejection tests and makes use of vectorization to estimate

𝑑𝑚𝑖𝑛. Our algorithm, available in C and FORTRAN 90, incorporates a few key elements

(e.g., the absolute value to estimate the minimum distance and OpenMP directives to

parallelize the code with no use of SIMD intrinsics) that make it faster than QRI and

QRF and more versatile than SEE-intr. This paper is organised as follows. In Section 2,

we detail the theoretical framework of the cuboid-sphere intersection problem and the

state-of-the-art in software implementation. In Section 3, we describe the code that we

have specifically developed to test each of the above-mentioned algorithms’ efficiency

for cuboids of different shape and spheres of different size. The comparison between the

algorithms is then discussed in Section 4, while, in Section 5, we draw our conclusions.

3.2 Algorithms

In geometry, a sphere is identified by its radius, 𝑅, and the position of its centre, 𝐫𝐒,with

respect to a reference point. Similarly, a cuboid  can be defined by the extension of its

thickness, 2𝑐𝑇 , length, 2𝑐𝐿, and width, 2𝑐𝑊 , the position of its centre of mass, 𝐫𝐂, and the

unit vectors �̂�𝐓, �̂�𝐋 and �̂�𝐖 that indicate the orientation of its three orthogonal axes. As

a result, all the points within the volume occupied by the cuboid can be indicated by a

vector 𝐂 that reads

𝐂 = 𝐫𝐂 + ∑
𝑖=𝑇 ,𝐿,𝑊

𝛼𝑖𝑐𝑖�̂�𝐢, (3.1)

where 𝑇 , 𝐿 and 𝑊 indicate, respectively, the cuboid thickness, length and width, whereas

𝛼 = [−1, 1] is a scalar interval. With these essential definitions, the minimum distance,

𝑑𝑚𝑖𝑛, between the surface of a randomly oriented cuboid and the center of a sphere can

be calculated as follows:
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𝑑𝑚𝑖𝑛 =
√

∑
𝑖=𝑇 ,𝐿,𝑊

Θ(
||𝐫𝐒𝐂 ⋅ �̂�𝐢|| − 𝑐𝑖)

{
||𝐫𝐒𝐂 ⋅ �̂�𝐢|| − 𝑐𝑖

}2
, (3.2)

where 𝐫𝐒𝐂 = 𝐫𝐒 − 𝐫𝐂 and Θ is the Heaviside step function:

Θ(𝑥) =
{
0 𝑥 ≤ 0

1 𝑥 > 0
(3.3)

The interested reader is referred to Appendix 3.A1 for a formal derivation of Eq. 3.2.

To the best of our knowledge, Arvo was the first to propose an algorithm detecting

the intersection between a sphere and an axis-aligned cuboid, that is a cuboid whose

orientation matches that of the reference axes [5]. For this specific case, we assume that

the cuboid thickness is aligned with the 𝑥 axis, i.e., �̂�𝐓 = �̂�, its length with the 𝑦 axis, i.e.,

�̂�𝐋 = �̂�, and its width with the 𝑧 axis, i.e., �̂�𝐖 = �̂�. Following this assumption, Eq. 3.1 can

be rewritten as

𝐂 = 𝐫𝐂 + 𝛼𝑇 𝑐𝑇 �̂� + 𝛼𝐿𝑐𝐿�̂� + 𝛼𝑊 𝑐𝑊 �̂� =

= 𝐫𝐂 + [ − 𝑐𝑇 , 𝑐𝑇]�̂� + [ − 𝑐𝐿, 𝑐𝐿]�̂� + [ − 𝑐𝑊 , 𝑐𝑊 ]�̂� =

= [𝑟𝐶,𝑥 − 𝑐𝑇 , 𝑟𝐶,𝑥 + 𝑐𝑇]�̂� + [𝑟𝐶,𝑦 − 𝑐𝐿, 𝑟𝐶,𝑦 + 𝑐𝐿]�̂�+

+[𝑟𝐶,𝑧 − 𝑐𝑊 , 𝑟𝐶,𝑧 + 𝑐𝑊 ]�̂� =

= ∑
𝑖=𝑥,𝑦,𝑧

𝐵𝑖ı̂

(3.4)

where ı̂ = �̂�, �̂�, �̂� are the reference axes for 𝑇 , 𝐿 and 𝑊 , respectively, and 𝐵𝑥 = [𝑟𝐶,𝑥 −

𝑐𝑇 , 𝑟𝐶,𝑥 + 𝑐𝑇], 𝐵𝑦 = [𝑟𝐶,𝑦 − 𝑐𝐿, 𝑟𝐶,𝑦 + 𝑐𝐿] and 𝐵𝑧 = [𝑟𝐶,𝑧 − 𝑐𝑊 , 𝑟𝐶,𝑧 + 𝑐𝑊 ]. Therefore, for an

axis-aligned cuboid, 𝑑𝑚𝑖𝑛 can be calculated as

𝑑𝑚𝑖𝑛 =
√

∑
𝑖=𝑥,𝑦,𝑧

{
min (𝑟𝑆,𝑖 − 𝐵𝑖)

}2
. (3.5)

By using the infimum and supremum of 𝐵𝑖, the terms in the above sum can be easily

calculated:

1. if 𝑟𝑆,𝑖 < 𝐵𝑖,𝑖𝑛𝑓 , then min (𝑟𝑆,𝑖 − 𝐵𝑖) = 𝐵𝑖,𝑖𝑛𝑓 − 𝑟𝑆,𝑖,

2. if 𝑟𝑆,𝑖 > 𝐵𝑖,𝑠𝑢𝑝, then min (𝑟𝑆,𝑖 − 𝐵𝑖) = 𝑟𝑆,𝑖 − 𝐵𝑖,𝑠𝑢𝑝,

3. if 𝑟𝑆,𝑖 ∈ 𝐵𝑖, then min (𝑟𝑆,𝑖 − 𝐵𝑖) = 0.
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Consequently, the algorithm proposed by Arvo only requires the extreme values of

𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 along with the sphere radius and position and detects cuboid-sphere collisions

if 𝑑𝑚𝑖𝑛 ≤ 𝑅. An illustrative example of a pseudocode describing its main steps is reported

in Algorithm 1.

Algorithm 1 - Arvo

1: function Arvo(𝐫𝐒, 𝑅, 𝐵𝑖,𝑖𝑛𝑓 , 𝐵𝑖,𝑠𝑢𝑝)
2: 𝑑 ← 0 ⊳ initialising minimum distance
3: for 𝑖 ∈ {𝑥, 𝑦, 𝑧} do
4: if (𝑟𝑆,𝑖 < 𝐵𝑖,𝑖𝑛𝑓 ) then
5: 𝑑 ← 𝑑 + (𝐵𝑖,𝑖𝑛𝑓 − 𝑟𝑆,𝑖)

2

6: else if (𝑟𝑆,𝑖 > 𝐵𝑖,𝑠𝑢𝑝) then
7: 𝑑 ← 𝑑 + (𝑟𝑆,𝑖 − 𝐵𝑖,𝑠𝑢𝑝)

2

8: end if
9: end for

10: if (𝑑 ≤ 𝑅2) return 𝑡𝑟𝑢𝑒 ⊳ checking overlap
11: return 𝑓 𝑎𝑙𝑠𝑒
12: end function

The alignment of the cuboid unit vectors with the reference axes is a particular case

of a more general scenario with the cuboid randomly oriented. Eventually, Arvo’s algo-

rithm can also be applied to randomly oriented cuboids by performing a transformation

of the vectors involved in the calculation of 𝑑𝑚𝑖𝑛 in the reference frame of . Rokne and

Ratschek proposed to estimate 𝑑𝑚𝑖𝑛 by employing interval analysis and reported a test

to determine whether a point 𝑃 ∈  is within a sphere delimited by four peripheral

points [6]. The algorithms proposed by Larsson and co-workers employ quick rejection

overlap tests to enhance the efficiency of collision detection between a sphere and either

an aligned or a randomly oriented cuboid [7]. The pseudocode of these algorithms are

reported in Algorithm 2 and Algorithm 3, respectively. Both QRI and QRF are based on

the implementation of a quick rejection test that immediately excludes an overlap if at

least one of the summands in Eq. 3.2 or Eq. 3.5 is larger than 𝑅2. For the general case of

a randomly oriented cuboid, this condition reads

{
||𝐫𝐒𝐂 ⋅ �̂�𝐢|| − 𝑐𝑖

}2
> 𝑅2 ⇔ 𝐫𝐒𝐂 ⋅ �̂�𝐢 < −𝑐𝑖 − 𝑅 ∪ 𝐫𝐒𝐂 ⋅ �̂�𝐢 > 𝑐𝑖 + 𝑅

∀ 𝑖 = 𝑇 , 𝐿,𝑊
(3.6)

A geometrical representation of this condition is provided in Fig. 3.1, where a sphere

 of radius 𝑅 and centered at 𝐫𝐒 is at the distance 𝐫𝐒𝐂 ⋅ �̂�𝐋 from the center of mass of a
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cuboid  that is centered at 𝐫𝐂. For this specific arrangement, the left-hand side of Eq. 3.6

measures the distance of  from the face of  delimited by 𝑇 and 𝑊 and schematically

identified by the vertical solid line of Fig. 3.1.

cL RrC rS

rSC · êL

C

S

Figure 3.1: Schematic representation of a sphere  and a cuboid  at relative distance
𝐫𝐒𝐂 ⋅ �̂�L. Sphere and cuboid are centered, respectively, at 𝐫𝐒 and 𝐫𝐂, and 𝑐𝐿 is half of the
cuboid length. If 𝐫𝐒𝐂 ⋅ �̂�𝐿 > 𝑐𝐿 + 𝑅, then  and  do not overlap.

QRI applies this rejection criterion within the loop that evaluates the minimum distance,

precisely at lines 6 and 9 of Algorithm 2. By contrast, QRF performs the three quick

rejection tests, one for each summand of Eq. 3.2, before the computation of the minimum

distance, between lines 3 and 6 of Algorithm 3. In this case, the scalar products 𝐫𝐒𝐂 ⋅ �̂�𝐢

are stored in line 4 and eventually employed to compute 𝑑 = 𝑑2𝑚𝑖𝑛 in the following loop.

The different location of the quick rejection tests in QRI and QRF is expected to deter-

mine a difference in the efficiency of the two algorithms, which is analysed in detail

in Section 4. Additionally, QRI and QRF quick rejection tests depend on both 𝑐𝑖 and 𝑅,

so these algorithms’ efficiency are expected to be influenced also by sphere and cuboid

geometry. Finally, keeping in mind the potential application in computational colloid

science, where crowded systems are usually simulated, the efficiency of QRI and QRF

is also influenced by the system packing, which determines the probability for an at-

tempted move to produce an overlap.

Larsson et. al. also proposed a parallel version of Algorithm 1, generalised for ran-

domly oriented cuboids and using SSE intrinsic functions (SSE-intr) [7]. SSE is an in-

struction set available in x86 architectures; it uses 128-bit registers to process simple in-
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Algorithm 2 - QRI

1: function QRI(𝐫𝐒𝐂, 𝑅, �̂�𝐓, �̂�𝐋, �̂�𝐖, 𝑐𝑇 , 𝑐𝐿, 𝑐𝑊 )
2: 𝑑 ← 0 ⊳ initialising minimum distance
3: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do
4: 𝑎 ← 𝐫𝐒𝐂 ⋅ �̂�𝐢
5: if ((𝑙 ← 𝑎 + 𝑐𝑖) < 0) then
6: if (𝑙 < −𝑅) return 𝑓 𝑎𝑙𝑠𝑒 ⊳ quick rejection test
7: 𝑑 ← 𝑑 + 𝑙2
8: else if ((𝑙 ← 𝑎 − 𝑐𝑖) > 0) then
9: if (𝑙 > 𝑅) return 𝑓 𝑎𝑙𝑠𝑒 ⊳ quick rejection test

10: 𝑑 ← 𝑑 + 𝑙2
11: end if
12: end for
13: if (𝑑 ≤ 𝑅2) return 𝑡𝑟𝑢𝑒 ⊳ checking overlap
14: return 𝑓 𝑎𝑙𝑠𝑒
15: end function

Algorithm 3 - QRF

1: function QRF(𝐫𝐒𝐂, 𝑅, �̂�𝐓, �̂�𝐋, �̂�𝐖, 𝑐𝑇 , 𝑐𝐿, 𝑐𝑊 )
2: 𝑑 ← 0 ⊳ initialising minimum distance
3: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do
4: 𝑎𝑖 ← 𝐫𝐒𝐂 ⋅ �̂�𝐢
5: if (𝑎𝑖 < −𝑐𝑖 − 𝑅 or

𝑎𝑖 > 𝑐𝑖 + 𝑅) return 𝑓 𝑎𝑙𝑠𝑒 ⊳ quick rejection test
6: end for
7: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do
8: if (𝑎𝑖 < −𝑐𝑖) then
9: 𝑙 ← 𝑎𝑖 + 𝑐𝑖

10: 𝑑 ← 𝑑 + 𝑙2
11: else if (𝑎𝑖 > 𝑐𝑖) then
12: 𝑙 ← 𝑎𝑖 − 𝑐𝑖
13: 𝑑 ← 𝑑 + 𝑙2
14: end if
15: end for
16: if (𝑑 ≤ 𝑅2) return 𝑡𝑟𝑢𝑒 ⊳ checking overlap
17: return 𝑓 𝑎𝑙𝑠𝑒
18: end function

structions on multiple data in parallel [45]. By substituting the "if" statements in lines 8

and 11 of Algorithm 3 to compute the minimum distance, with the "max" and "min"

functions available in SSE instruction set, the computation of the minimum distance can

be vectorized. This algorithm, running in parallel and thus significantly faster than QRI

and QRF, does not need quick rejection tests. A pseudocode for this algorithm, here

named after the SSE instruction set, is presented in Algorithm 4 for the general case of
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randomly oriented cuboids.

Algorithm 4 - SSE-intr

1: function SSE(𝐫𝐒𝐂, 𝑅, �̂�𝐓, �̂�𝐋, �̂�𝐖, 𝑐𝑇 , 𝑐𝐿, 𝑐𝑊 )
2: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do
3: 𝑎𝑖 ← 𝐫𝐒𝐂 ⋅ �̂�𝐢 ⊳ vectorizing the dot product
4: end for
5: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do ⊳ vectorizing the cycle
6: 𝑙𝑖 ← min(𝑎𝑖 + 𝑐𝑖, 0) + max(𝑎𝑖 − 𝑐𝑖, 0)
7: 𝑙𝑖 ← 𝑙2𝑖
8: end for
9: if (𝑙𝑇 + 𝑙𝐿 + 𝑙𝑊 ≤ 𝑅2) return 𝑡𝑟𝑢𝑒 ⊳ checking overlap

10: return 𝑓 𝑎𝑙𝑠𝑒
11: end function

Finally, we present our own algorithm, which incorporates a number of elements

providing additional efficiency when compared to Algorithms 1, 2 and 3, and versatility

when compared to Algorithm 4. A new element that significantly simplifies the algo-

rithm is the use of the absolute value to estimate the minimum distance. In addition,

we employed OpenMP directives for an SIMD parallelization of the two loops, one over

the computation of the dot products of the distance of the centres of mass of the two

particles with the orientation of the cuboid, and the other over the computation of the

minimum distance, without using SSE intrinsic instructions. OpenMP is an application

programming interface specification composed of compiler directives, library routines

and environment variables for parallel programming in FORTRAN and C/C++. From

version 4.0 it provides mechanisms to assist SIMD parallelization of loops [46]. The

advantage of avoiding explicit SIMD vectorization is the possibility to vectorize the al-

gorithm using different instruction set architectures, such as the more modern Advanced

Vector Extensions (AVX) instruction set [47], by simply changing compiler settings dur-

ing compilation. Moreover, in this way vectorization of the algorithm can be assisted

for different programming languages, e.g., FORTRAN, since SIMD intrinsic functions

are available only in C and C++. Given the heterogeneous nature of the communities

using collision-detection algorithms and their preference for likely different program-

ming languages, an user-friendly code is a crucial advantage. Our algorithm, referred to

as Oriented Cuboid Sphere Intersection (OCSI), proved to be efficient and functional for

both C and FORTRAN 90 (F90). Its pseudocode is presented in Algorithm 5.
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Algorithm 5 - OCSI

1: function OCSI(𝐫𝐒𝐂, 𝑅, �̂�𝐓, �̂�𝐋, �̂�𝐖, 𝑐𝑇 , 𝑐𝐿, 𝑐𝑊 )
2: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do ⊳ this cycle is vectorized
3: 𝑎𝑖 = 𝐫𝐒𝐂 ⋅ �̂�𝐢
4: end for
5: for 𝑖 ∈ {𝑇 , 𝐿,𝑊 } do ⊳ this cycle is vectorized
6: 𝑙𝑖 = max(|𝑎𝑖| − 𝑐𝑖, 0)
7: 𝑙𝑖 = 𝑙2𝑖
8: end for
9: if (𝑙𝑇 + 𝑙𝐿 + 𝑙𝑊 ≤ 𝑅2) return 𝑡𝑟𝑢𝑒 ⊳ checking overlap

10: return 𝑓 𝑎𝑙𝑠𝑒
11: end function

3.3 Computational details

To test the relative performance of the above algorithms, we have developed two ver-

sions of the same program in C and in F90 that detect collision between one cuboid and

one sphere. For compatibility with the benchmark program by Larsson et al., all the float-

ing point variables are expressed in 32-bit single precision. The dimensions of the cuboid

and sphere are given in units of the cuboid thickness 𝑇 , which is our unit length, and do

not change within the same detection-collision test. In particular, the colloid length and

width are 𝐿∗ ≡ 𝐿/𝑇 and width 𝑊 ∗ ≡ 𝑊/𝑇 , respectively, whereas the sphere radius is

𝑅∗ ≡ 𝑅/𝑇 . For each of the cuboid shapes analysed, we have pondered the impact on the

algorithms’ efficiency of changing the sphere radius between 𝑅∗ = 0.05 and 𝑅∗ = 5. To

control the value of the acceptance ratio, i.e., the percentage of random configurations

that do not produce overlaps, the sphere  is generated within a spherocuboid. This

spherocuboid, centred and oriented as , results from the Minkowski addition [48] of 

and a sphere larger than  and whose diameter is optimized to obtain the desired accep-

tance rate. A dedicated program optimises the volume of the spherocuboid according to

the target value of the acceptance ratio and the dimensions of both  and  , which are

specified as input parameters. To generate a configuration,  is initially aligned with the

reference axes and its centre is set as origin, while the centre of  is randomly positioned

within the volume of the spherocuboid. Then, the reference system is randomly rotated

and the cuboid-sphere overlap checked. For consistency, the section of the code that calls

the overlap function is the same as that proposed by Larsson et al. [7]. The time spent

by each algorithm to detect collisions for a specific case of cuboid and sphere (in term of
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radius of the sphere and dimensions of the cuboid) is computed for 3 independent sets of

𝑁𝑐 = 2 × 106 configurations and then averaged out. The efficiency of the algorithms has

been assessed on a Lenovo ThinkCentre M920s Desktop PC, with 8 Gb of DDR4 RAM

and Intel ® Core™ i5-8500 CPU @ 3.00GHz (Coffee Lake) CPU with 9 Mb of cache, with

Ubuntu 18.04 Desktop version OS. In order to prove the versatility of our algorithm, we

performed benchmarks using two different compilers. In particular, we compiled the F90

and C/C++ versions of the program using Intel ® FORTRAN and C Compilers version

19 [49] and GNU FORTRAN and C++ Compilers version 10 [50]. Both the compilers

used OpenMP API 4.5 specification for vectorization [51]. In addition, for all the cases

listed above, we compiled two versions of the same program, enabling the generation

of SSE or AVX instructions. In this work, configurations of cuboids with 𝐿∗ = [1, 20],

𝑊 ∗ = [1, 20] and spheres with 𝑅∗ = {0.05, 0.5, 5} with an average acceptance ratio of 40%

have been tested.

3.4 Results and discussion

Due to the large number of benchmarks performed, we intended to report here the be-

haviour of the run-time efficiency of the algorithms with respect to the shape of the

cuboid and the sphere only for the programs compiled using Intel ® C and Intel ® FOR-

TRAN Compiler, enabling the use of AVX instruction set for SIMD parallelization. The

dependence of the algorithms run-time with respect to the shape of the cuboid and the

sphere is generally similar for all the compilers and the instruction sets specified during

compilation. All the results obtained for the other cases are reported in the Supplemen-

tary Information. The relative performance of each algorithm is assessed in Fig. 3.2 and

Fig. 3.3 for codes written in C and F90, respectively.

Fig. 3.2 offers a benchmark between QRI, QRF, SSE-intr and OCSI, while Fig. 3.3 only

for QRI, QRF and OCSI , since SSE-intr uses specific Intel ® intrinsic functions: these

sets of functions enable to use SIMD instructions (like SSE and AVX) without the need

of an assembly code for vectorization, but they are available only for C programming

language. Both figures report the run-times for detecting collisions between one cuboid

of 1 ≤ 𝐿∗ ≤ 20 and 1 ≤ 𝑊 ∗ ≤ 20 and one sphere of radius 𝑅∗ = 0.05 (frames (a)), 0.5

(frames (b)) and 5 (frames (c)). The 𝑁𝑐 random configurations tested per run have been
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Figure 3.2: Run-times of algorithms written in C/C++ that detect collision between one
cuboid of length 𝐿∗ and width 𝑊 ∗ and one sphere of radius 𝑅∗ = 0.05 (a), 0.5 (b) and 5 (c).
The program was compiled using Intel®C Compiler and enabling the generation of AVX
instructions. Each test generates 2 × 106 random configurations at constant acceptance
ratio of 40%.
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Figure 3.3: Run-times of algorithms written in F90 that detect collision between one
cuboid of length 𝐿∗ and width 𝑊 ∗ and one sphere of radius 𝑅∗ = 0.05 (a), 0.5 (b) and
5 (c). The program was compiled using Intel ® FORTRAN Compiler and enabling the
generation of AVX instructions. Each test generates 2 × 106 random configurations at
constant acceptance ratio of 40%.

produced at the constant acceptance ratio of 40%, which is within the usual range of

values employed in Metropolis Monte Carlo simulations of hard-core particles [52]. It

is evident that SSE-intr and OCSI perform significantly better than QRI and QRF under

the conditions specified here, although we have also tested cuboids of larger length and

width (up to 100𝑇 ) with the same acceptance ratio and observed very similar tendencies.

The difference in performance is especially evident at 𝑅∗ = 5 as SSE-intr and OCSI run-

times are up to 5 and 6 times faster than QRF and QRI, respectively. In general, C codes

show a better performance than F90 codes, although this difference is not substantial.

62



Interestingly enough, SSE-intr and OCSI do not present any relevant dependence on the

cuboid and sphere geometry, being the run-times basically constant across the whole

range of dimensions. This is probably due to the SIMD parallelism implemented, differ-

ent from QRI and QRF, which have to run in serial for their use of quick rejection tests

(see lines 6 and 9 in QRI and line 5 in QRF). Basically, if the quick rejection test is true

for the first dot product, the algorithms exit the loop with negative result ( and  do

not overlap) with no need to compute the remaining two.

The geometry of both cuboid and sphere exhibits a very intriguing effect on the

performance of QRI and QRF as the shape of the run-time surfaces in the 𝐿∗𝑊 ∗ plane

suggests. More specifically, for spheres with 𝑅∗ = 0.5 (frames b in Figs. 3.2 and 3.3)

the time required for the collision detection decreases upon increasing the cuboid di-

mensions, with the shortest time detected at 𝐿∗ = 𝑊 ∗ = 20 (disk-like cuboid). Larger

spheres, with 𝑅∗ = 5 (frames (c) in Figs. 3.2 and 3.3), induce a different performance

resulting in an opposite concavity of the run-time surface as compared to that observed

for smaller spheres. In this case, for the results obtained using Intel ® Compilers and

specifying AVX instruction set during compilation, the slowest detection is measured at

(𝐿∗, 𝑊 ∗) = (7, 8) and (3, 5) for QRI and QRF in C/C++ program, respectively, and (6, 7)

and (3, 5) for QRI and QRF in F90 program, respectively. For the parameters set in these

benchmarks, in terms of acceptance ratio and shapes of cuboids and spheres, QRF is gen-

erally faster than QRI. The only exceptions to this tendency are observed for the C/C++

program compiled either with Intel ® C Compilers with AVX instructions (panel (a) of

Fig. 3.2) or with GNU C++ Compiler with SSE instructions (see Supplementary Informa-

tion), in both cases when the spheres are especially small (𝑅∗ = 0.05). The difference in

performance between QRI and QRF might also be due to how data are stored and read

by C/C++ and F90 compilers. As a matter of fact, Larsson and coworkers had already

noticed that the run-times of QRI and QRF were very similar for acceptance ratios of

approximately 50%, although their collision-detection method tests run-times for sets

of configurations with cuboids and sphere of random dimensions [7]. Despite the main

differences between C /C++ and FORTRAN programming languages, the average run-

time performance of QRI and QRF with respect to the radius of the sphere available in

C is similar to the ones we translated and provide also in FORTRAN in our benchmark

source code.
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To more easily compare the efficiency of the algorithms tested, the run-times com-

puted for each possible combination of cuboid and sphere size studied here have been

averaged out for each value of 𝑅∗. The resulting averaged run-times for all these cases,

which are 400 considering all the possible combinations of 1 ≤ 𝐿∗ ≤ 20 and 1 ≤ 𝑊 ∗ ≤ 20

of the cuboids, are reported in Tables 3.1 and 3.2. For every averaged run-time reported

in both tables, we evaluated also its standard deviation, which resulted to be less than

0.5 ms for all the cases. For comparison with benchmarks performed by Larsson et al.,

the run-times are reported with a precision of 1 ms [7]. We stress that these average

run-times should be taken as indicative values for QRI and QRF as their speed strongly

depends on the cuboid geometry. We observe that QRI and QRF average run-times tend

to be longer for larger spheres, with no significant difference between C/C++ and F90.

By contrast, both SSE-intr and OCSI are completely insensible to the sphere radius as no

relevant change in their average run-time is detected between 𝑅∗ = 0.05 and 0.5.

Intel ® C Compiler

𝑅∗ SSE AVX

QRI QRF OCSI SSE-intr QRI QRF OCSI SSE-intr

0.05 24 22 11 12 25 21 10 12
0.50 38 28 11 12 39 27 10 12
5.00 54 39 11 12 55 38 10 12

GNU C++ Compiler

𝑅∗ SSE AVX

QRI QRF OCSI SSE-intr QRI QRF OCSI SSE-intr

0.05 23 24 13 11 23 22 12 11
0.50 37 30 13 11 37 28 12 11
5.00 53 41 13 11 53 38 12 11

Table 3.1: Average run-times of the C/C++ version of algorithms for collision detection
between one cuboid of 1 ≤ 𝐿∗ ≤ 20 and 1 ≤ 𝑊 ∗ ≤ 20 and one sphere of radius 𝑅∗ over
2×106 configurations with 40% of acceptance ratio. Results, reported in ms, are obtained
compiling the benchmark program using Intel ® C Compiler and GNU C++ Compiler,
enabling the generation of SSE and AVX instructions. The standard deviations of all the
run-times are < 0.5 ms.

Regarding the performance of OCSI, we notice that its C version is faster than the

F90 version for both the compilers. Moreover, checking the optimization report of the

two compilers, we observed that GNU compilers were not capable of vectorizing the first

loop of OCSI over the dot products. This seems to be the reason why Intel ® Compilers
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Intel ® FORTRAN Compiler

𝑅∗ SSE AVX

QRI QRF OCSI QRI QRF OCSI

0.05 22 21 13 22 22 13
0.50 36 27 13 36 28 13
5.00 53 38 13 53 40 13

GNU FORTRAN Compiler

𝑅∗ SSE AVX

QRI QRF OCSI QRI QRF OCSI

0.05 23 21 17 22 21 18
0.50 38 27 17 36 27 18
5.00 56 37 17 53 36 18

Table 3.2: Average run-times of the F90 version of algorithms for collision detection
between one cuboid of 1 ≤ 𝐿∗ ≤ 20 and 1 ≤ 𝑊 ∗ ≤ 20 and one sphere of radius 𝑅∗

over 2 × 106 configurations with 40% of acceptance ratio. Results, reported in ms, are
obtained compiling the benchmark program using Intel FORTRAN®Compiler and GNU
FORTRAN Compiler, enabling the generation of SSE and AVX instructions. The standard
deviations of all the run-times are < 0.5 ms.

performed better in terms of run-time efficiency. Anyway, except the F90 version com-

piled with GNU FORTRAN Compiler, for all the other cases the average OCSI run-time

to analyze 2 × 106 cuboid-sphere configurations oscillates between 10 and 12 ms. Even

for the worst-case scenario, OCSI is still faster than QRI and QRF.

Looking at the relative performance of the C/C++ version of OCSI with respect to

SSE-intr, OCSI is between 8.3 and 16.7% faster than SSE-intr when using Intel ® C Com-

piler, and between 9.1 and 18.2% slower if the GNU C++ Compiler is employed. At the

same time, SSE-intr is 1 ms faster when compiled with the GNU C++ Compiler instead of

the Intel ® C Compiler. The difference in performance between OCSI and SSE-intr, per

se, would not be especially significant if the overlap checks were limited to 2 × 106 con-

figurations. However, the typical number of configurations generated in Monte Carlo

simulations of colloids is usually a few millions per particle, which are rarely less than a

few thousands. Moreover, because colloids can be especially dense systems, one random

configuration might generate more than a single collision. Consequently, it is reasonable

to assume that, within a single Monte Carlo simulation, a collision-detection algorithm

might be called between 103 and 105 times the configurations explored here. This would

produce a difference of seconds between OCSI and SSE-intr, which anyway is still not
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especially relevant.

The main advantage of using OCSI is that it is based on automatic vectorization

and employs OpenMP libraries to be parallelized, making it a very user-friendly algo-

rithm. Since SSE-intr uses intrinsic functions that are specific for SSE, this version of the

algorithm for cuboid-sphere collision detection is limited only to that instruction set.

Moreover, Intel ® intrinsic functions are available only in C and cannot be used in FOR-

TRAN, unless we compile a mixed C/FORTRAN program. By contrast, OCSI is based

on automatic vectorization by the compiler, guided using OpenMP pragmas and direc-

tives. In this way, the algorithm can be extended to different instruction sets without

changing the source code, simply specifying the instruction set during compilation. It

can also implement vectorization in FORTRAN and extend its use to 64-bit floating point

arithmetic, which is commonly used in molecular modelling. OCSI proved to be efficient

for the most two common compilers, for two different programming languages and for

two different instruction sets, SSE and AVX, highlighting its versatility with respect to

SSE-intr.

3.5 Conclusions

In summary, we have benchmarked four different collision-detection algorithms that

check the occurrence of overlaps between one cuboid and one sphere. Our analysis

focused on a specific acceptance ratio, which is within the usual range applied to ef-

ficiently sample the configuration space of hard-core systems in Monte Carlo simula-

tions [52]. We notice that SSE-intr has been previously tested for different acceptance

ratios and did not show relevant changes in performance [7]. A similar tendency is also

expected for OCSI, but should be confirmed by further tests. While QRI and QRF are

observed to be geometry-dependent, SSE-intr and OCSI are basically insensible to the

cuboid anisotropy and sphere radius and, thanks to automatic vectorization, they are

also significantly faster. According to these results, we expect OCSI and SSE-intr run-

times to be constant also for bigger spheres, while QRI and QRF run-times can show a

different behaviour than the ones observed so far. To ascertain these tendencies, fur-

ther tests should be performed. In particular, the OCSI algorithm proved to be especially

valuable in terms of performance and simplicity of implementation in both C and F90.

66



Intel ®compilers and GNU Compilers were not able to automatically vectorize QRI and

QRF. Anyway, there are ways to perform conditional statements like the ones used in

the quick rejection test implementing SIMD parallelism [53]. Whether or not vectorized

versions of QRF and QRI are possible and, if so, how efficient they would be as compared

to the current versions requires further study.

It should be stressed that the method applied to generate the sphere around the

cuboid is crucial to provide a robust comparison between different algorithms. The

choice of the spherocuboid as a sampling volume allows to precisely set the desired ac-

ceptance ratio and guarantees that the algorithms are tested for all the possible positions

of the sphere around or inside the cuboid. This is especially relevant to fairly assess the

performance of QRI and QRF, due to their use of quick rejection tests. In Monte Carlo

simulations, where the generation of configurations follows a different procedure, the

performance of collision-detection algorithms, most likely affected by the degree of sys-

tem order and packing, should be tested. Finally, it is important to mention that the OCSI

algorithm allows for the calculation of the cuboid-sphere minimum distance, hence sug-

gesting future study to determine a suitable interaction potential beyond mere hard-core

interactions. The formal proof reported here can also be useful to test the intersection of

cuboids with particles of different shape. As a final note, we stress that our algorithm has

been only tested for a specific pairs of geometries (cuboids and spheres), while it might

be relevant, in computational colloid science as well as in computer graphics, to assess

its performance with other geometries. We are currently working on extending our al-

gorithm to detect collisions between cuboids and oblate or prolate spherocylinders. It

would also be especially interesting to investigate to what extent our methodology could

be applied to more complex geometries, whose collision is generally detected by more

sophisticated decomposition techniques, such as e.g., Voronoi diagrams [54] or convex

polygon triangulations [55, 56]. We hope that our contribution might stimulate further

research in this direction.
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Appendices

3.A1 On the minimum distance between a sphere and a randomly ori-

ented cuboid

Let 𝐕 be a 𝑛-dimensional vector space in an orthonormal basis  =
{
�̂�𝟏, �̂�𝟐, ..., �̂�𝐧 || �̂�𝐢 ⋅�̂�𝐣 =

𝛿𝑖𝑗
}

, with 𝛿𝑖𝑗 the Kronecker delta. The set of points of a cuboid  in 𝐕 is

𝐂 = 𝐫𝐂 +
𝑛

∑
𝑖=1

𝛼𝑖𝑐𝑖�̂�𝐢 (3.7)

where 𝐫𝐂 is the position of the centre of the cuboid, 𝑐𝑖 > 0 is a scalar equal to half of the

cuboid length, width or thickness, 𝛼𝑖 is also a scalar with values in [−1, 1], and �̂�𝐢 is a unit

vector that defines the orientation of . Specifically �̂�𝐢 ⋅ �̂�𝐣 = 𝛿𝑖𝑗 , so also ′ = {�̂�𝟏, �̂�𝟐, ..., �̂�𝐧}

is an orthonormal basis for 𝐕. The minimum distance between 𝐂 and a random point 𝐫𝐒

reads

min
(
‖‖‖‖
𝐫𝐒 − 𝐂

‖‖‖‖‖)
= min

(
‖‖‖‖
𝐫𝐒 − 𝐫𝐂 −

𝑛

∑
𝑖=1

𝛼𝑖𝑐𝑖�̂�𝐢
‖‖‖‖‖)

. (3.8)

Since ′ is an orthonormal basis for 𝐕, the vector 𝐫𝐒𝐂 = 𝐫𝐒 − 𝐫𝐂 can be written as

𝐫𝐒𝐂 =
𝑛

∑
𝑖=1

(𝐫𝐒𝐂 ⋅ �̂�𝐢) �̂�𝐢 (3.9)

and substituting Eq. 3.9 in Eq. 3.8

min
(
‖‖‖‖

𝑛

∑
𝑖=1

{
(𝐫𝐒𝐂 ⋅ �̂�𝐢) − 𝛼𝑖𝑐𝑖

}
�̂�𝐢
‖‖‖‖)

=

=

√

min
(

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

{
(𝐫𝐒𝐂 ⋅ �̂�𝐢) − 𝛼𝑖𝑐𝑖

}{
(𝐫𝐒𝐂 ⋅ �̂�𝐣) − 𝛼𝑗𝑐𝑗

}
�̂�𝐢 ⋅ �̂�𝐣)

=

=

√
𝑛

∑
𝑖=1

min
(

{
(𝐫𝐒𝐂 ⋅ �̂�𝐢) − 𝛼𝑖𝑐𝑖

}2

)

(3.10)

The last term in Eq. 3.10 has been obtained considering that �̂�𝑖 ⋅ �̂�𝑗 = 𝛿𝑖𝑗 and that every

member of the sum depends on just one value 𝛼𝑖, hence they are all independent. It is
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sufficient to calculate only one term of this sum as all dimensions are equivalent. In

particular, this term equals zero if the following conditions are met:

𝛼𝑖𝑐𝑖 − (𝐫𝐒𝐂 ⋅ �̂�𝑖) = 0 ⇔ 𝛼𝑖 =
𝐫𝐒𝐂 ⋅ �̂�𝑖
𝑐𝑖

(3.11)

Because 𝛼𝑖 = [−1, 1], this implies that

−1 ≤
𝐫𝐒𝐂 ⋅ �̂�𝑖
𝑐𝑖

≤ 1 ⇔
|||||

𝐫𝐒𝐂 ⋅ �̂�𝑖
𝑐𝑖

|||||
≤ 1 ⇔ ||𝐫𝐒𝐂 ⋅ �̂�𝑖|| ≤ 𝑐𝑖 (3.12)

If |𝐫𝐒𝐂 ⋅ �̂�𝑖| > 𝑐𝑖, then (𝐫𝐒𝐂 ⋅ �̂�𝑖) > 𝑐𝑖 or (𝐫𝐒𝐂 ⋅ �̂�𝑖) < −𝑐𝑖. The former inequality implies that

min
(

{
𝛼𝑖𝑐𝑖 − (𝐫𝐒𝐂 ⋅ �̂�𝑖)

}2

)
=
{
𝑐𝑖 − (𝐫𝐒𝐂 ⋅ �̂�𝑖)

}2
=
{
𝑐𝑖 − ||𝐫𝐒𝐂 ⋅ �̂�𝑖||

}2
(3.13)

while, the latter inequality implies

min
(

{
𝛼𝑖𝑐𝑖−(𝐫𝐒𝐂⋅�̂�𝑖)

}2

)
=
{
−𝑐𝑖−(𝐫𝐒𝐂⋅�̂�𝑖)

}2
=
{
−𝑐𝑖+||𝐫𝐒𝐂⋅�̂�𝑖||

}2
=
{
𝑐𝑖−||𝐫𝐒𝐂⋅�̂�𝑖||

}2
(3.14)

Because the solution of Eqs. 3.13 is the same as that of 3.14, if |𝐫𝐒𝐂 ⋅ �̂�𝑖| > 𝑐𝑖, then one can

write

min
(

{
𝛼𝑖𝑐𝑖 − (𝐫𝐒𝐂 ⋅ �̂�𝑖)

}2

)
=
{
𝑐𝑖 − ||𝐫𝐒𝐂 ⋅ �̂�𝑖||

}2
=
{
||𝐫𝐒𝐂 ⋅ �̂�𝑖|| − 𝑐𝑖

}2
(3.15)

The solutions of Eqs. 3.11 and 3.15 can be incorporated in a single equation by using a

step function defined as

Θ(𝑥) =
{
0 𝑥 ≤ 0

1 𝑥 > 0
(3.16)

Therefore, the minimum distance of a point 𝐫𝐒 from the surface of a cuboid  reads

min
(
‖‖‖‖
𝐫𝐒 − 𝐂

‖‖‖‖)
=

√
𝑛

∑
𝑖=1

Θ(
||𝐫𝐒𝐂 ⋅ �̂�𝑖|| − 𝑐𝑖)

{
||𝐫𝐒𝐂 ⋅ �̂�𝑖|| − 𝑐𝑖

}2
(3.17)

Finally, a cuboid  overlaps with a sphere of radius 𝑅 and centre in 𝐫𝐒, if the following

inequality is satisfied:
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√
𝑛

∑
𝑖=1

Θ(
||𝐫𝐒𝐂 ⋅ �̂�𝑖|| − 𝑐𝑖)

{
||𝐫𝐒𝐂 ⋅ �̂�𝑖|| − 𝑐𝑖

}2
≤ 𝑅 (3.18)

Supporting information

The source code of the program for the optimisation of the spherocuboid volume, the

C/C++ and F90 benchmark programs and the raw data required to reproduce our findings

can be downloaded at http://dx.doi.org/10.17632/w7g3ynkc6n.2.
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Chapter 4

Diffusion of Globular Macromolecules
in Liquid Crystals of Colloidal Cuboids
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A. García Daza wrote the original draft.

Abstract

Macromolecular diffusion in dense colloidal suspensions is an intriguing topic of interdis-

ciplinary relevance in Science and Engineering. While significant efforts have been under-

taken to establish the impact of crowding on the dynamics of macromolecules, less clear

is the role played by long-range ordering. In this work, we perform Dynamic Monte Carlo

simulations to assess the importance of ordered crowding on the diffusion of globular macro-

molecules, here modelled as spherical tracers, in suspensions of colloidal cuboids. We first

investigate the diffusion of such guest tracers in very weakly ordered host phases of cuboids

and, by increasing density above the isotropic-to-nematic phase boundary, study the in-

fluence of long-range orientational ordering imposed by the occurrence of liquid-crystalline

phases. To this end, we analyse a spectrum of dynamical properties that clarify the existence

of slow and fast tracers and the extent of deviations from Gaussian behaviour. Our results

unveil the existence of randomly oriented clusters of cuboids that display a relatively large

size in dense isotropic phases, but are basically absent in the nematic phase. We believe

that these clusters are responsible for a pronounced non-Gaussian dynamics that is much

weaker in the nematic phase, where orientational ordering smooths out such structural het-

erogeneities.
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4.1 Introduction

Understanding the diffusion of tracers in crowded colloidal suspensions is a problem

with a multifaceted interdisciplinary impact. In Biology, it is especially related to the

ability of macromolecules, such as proteins, of penetrating the cell membrane, diffusing

through the cytosol and organelles and thus contributing to regulate the cell function [1].

In Nanomedicine, the release rate of a drug from a nanovehicle, such as a micelle, de-

pends on its ability to diffuse through its hydrophobic core and hydrophilic corona [2].

In Food Science, moisture migration in dried food products determines how long these

can be preserved from spoilage [3]. In Materials Science, the self-healing ability of a

smart coating, which is activated by an external stimulus, such as a pH or temperature

gradient, relies on the diffusion of a corrosion inhibitor through a polymeric matrix into

the defect [4]. Additionally, investigating the dynamics of tracers in colloids has also

opened a path to the study of rheology of the host phase, a technique commonly re-

ferred to as microrheology, which allows to extract the viscoelastic response of a soft

material from a tracer’s mean square displacement (MSD) [5, 6].

Although specific attributes and properties make them unique and different from

each other, all the above-mentioned soft-matter systems exhibit interesting common

features. One is that macromolecular diffusion shows an anomalous behaviour, where

the MSD, rather than growing linearly with time, as predicted by Fick’s diffusion the-

ory [7], follows a power-law of the type 𝑟2(𝑡) ∝ 𝑡𝛽 , with 0 < 𝛽 < 1 the anomalous

diffusion exponent [8, 9, 10, 11]. Such a subdiffusion usually develops at intermediate

time scales, but it is not persistent and, at sufficiently long times, the MSD recovers a

Brownian-like behaviour, generally referred to as Fickian diffusion [12, 13, 14]. Crowded

soft-matter systems can also exhibit a degree of ordering that might influence the dif-

fusion of macromolecules or nanoparticles, for instance by creating preferential paths

[15], and thus should not a priori be disregarded. Nevertheless, when assessing macro-

molecular diffusion in crowded media, most research works have especially focused on

the host-guest affinity [16, 17], relative characteristic lengths [18, 19] and volume frac-

tions [20, 21] as well as on the effect of structural heterogeneities [22], but much less on

whether or not it could be enhanced, inhibited or made more complex by the occurrence

of long-range ordering and spatial anisotropy.

Due to their rich phase behaviour, colloidal liquid crystals (LCs), namely colloidal
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suspensions of orientationally and/or positionally ordered anisotropic particles, are par-

ticularly appropriate to gain insight into the effect of ordered crowding on macromolec-

ular diffusion. This is especially evident in systems of biaxial particles, whose phase

behaviour is decorated by a plethora of intriguing morphologies that cannot be ob-

served with uniaxial particles [23]. Over the last few years, our group has specifically

explored the self-assembly of oblate and prolate cuboidal particles, unveiling the exis-

tence of uniaxial and biaxial nematic and positionally-ordered smectic and columnar

phases [24, 25, 26, 27]. More recently, we have also determined the main features of

their equilibrium dynamics in uniaxial nematics, detecting Fickian and Gaussian dy-

namics at both short-time and long-time scales [28]. In this work, we investigate the

diffusion of globular macromolecules, here modelled as spherical tracers, in uniaxial

nematics of oblate and prolate colloidal cuboids, modelled as hard board-like particles

(HBPs). Our main goal is understanding how long-range ordering affects tracers’ dif-

fusion as compared to diffusion in weakly ordered (isotropic) phases. To this end, we

employ a stochastic simulation technique, referred to as Dynamic Monte Carlo (DMC),

that is especially efficient to mimic the Brownian motion of particles interacting by mere

excluded volume effects [29, 30, 31, 32, 33].

4.2 Model and simulation methodology

The systems studied in this work comprise 𝑁𝑐 = 2000 HBPs of thickness 𝑇 , which is the

system unit length, reduced length 𝐿∗ ≡ 𝐿/𝑇 and width 𝑊 ∗ ≡ 𝑊/𝑇 , and 𝑁𝑠 = 200 hard

spheres (HSs) with diameter 𝑑𝑠∗ ≡ 𝑑𝑠/𝑇 . The size of the spherical tracers with respect to

that of cuboids has been set to mimic the diffusion of macromolecules, such as globular

proteins like enzymes, whose diameter is generally in the order of 1 to 10 nm [34]. Given

that these model macromolecular tracers are incorporated in a host phase of significantly

larger colloidal particles, their diameter has been set to 𝑑𝑆 = 𝑇/10. In particular, we

investigated the dynamics of spherical tracers in systems of HBPs with reduced dimen-

sions (𝐿∗, 𝑊 ∗) = {(12, 1), (12, 8)} at packing fractions 𝜂 = 0.15 and 𝜂 = 0.34, where HBPs

self-assemble, respectively, into isotropic (I) and uniaxial nematic (NU) phases [24]. The

packing fraction is defined as 𝜂𝑝𝑢𝑟𝑒 ≡ 𝐿𝑊𝑇𝑁𝑐/𝑉 , with 𝑉 the volume of the simulation

box. Initial configurations have been prepared by incorporating the tracers into pure
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systems of cuboids at the desired packing fraction 𝜂𝑝𝑢𝑟𝑒. The actual packing fraction of

the mixture should also include the volume occupied by the spherical tracers as follows

𝜂 = 𝜂𝑝𝑢𝑟𝑒 [1 + 𝛿𝜂] , (4.1)

𝛿𝜂 =
𝜋𝑁𝑠𝑑3𝑠

6𝑁𝑐𝐿𝑊𝑇
, (4.2)

where 𝛿𝜂 provides the difference in packing fraction between the pure system of HBPs

and the mixture of HBPs and HSs. Within the range of cuboid dimensions explored here,

𝛿𝜂 < 10−5 and it is therefore reasonable to assume that 𝜂 ∼ 𝜂𝑝𝑢𝑟𝑒.

To equilibrate I and NU phases, we performed standard Monte Carlo (MC) simula-

tions in the canonical ensemble at the above-mentioned packing fractions and consid-

ered the systems at equilibrium when order parameters achieved a steady state value

within reasonable statistical fluctuations. Given that all particles interact via hard-core

potentials, MC moves are always accepted if they do not overlap. Overlap tests between

two cuboids are based on the separating axes algorithm [35] adapted to investigate the

phase behaviour of colloidal HBPs with square cross section [36]. Overlap tests between

spheres and cuboids are based on our recent Oriented Cuboid Sphere Intersection (OCSI)

algorithm [37].

Uniaxial order parameters have been obtained from the diagonalization of the fol-

lowing tensor:

Q𝑘𝑘 =
1
2𝑁𝑐

𝑁𝑐

∑
𝑖=1

[3(�̂�𝑘,𝑖 ⊗ �̂�𝑘,𝑖) − I], (4.3)

where the unit vector �̂�𝑘,𝑖 indicates the orientation of 𝑘 = 𝑇 , 𝐿,𝑊 for each cuboid 𝑖 and I

is the unit tensor. The largest eigenvalue of Q𝑘𝑘, is the uniaxial order parameter relative

to size 𝑘, here referred to as 𝑈𝑘, while the corresponding eigenvector, 𝐝𝑘, indicates its

preferential orientation. In an I phase, 𝑈𝑇 ≈ 𝑈𝑊 ≈ 𝑈𝐿 ≈ 0 and the vectors 𝐝𝑘 are mean-

ingless. By contrast, in an NU phase, one eigenvalue is significantly larger than 0 and the

associated eigenvector �̂� defines the direction of the nematic director. The tensor Q𝑘𝑘

also allows for the computation of the biaxial order parameters, which are anyway all

close to zero for the systems studied here. To characterise the positional order of HBPs

and spheres, we computed the radial distribution function, 𝑔(𝑟), in the I phases and pair

correlation functions parallel, 𝑔∥(𝑟), and perpendicular, 𝑔⟂(𝑟), to the nematic director in

the NU phases. All of them have been obtained for cuboid-cuboid, sphere-sphere and
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sphere-cuboid distributions. The interested reader is referred to Refs. [27, 38] for addi-

tional details on the calculation of parallel and perpendicular pair correlation functions.

𝑊 ∗ 𝐷𝑡𝑟𝑎
𝑇 𝐷0

−1 𝐷𝑡𝑟𝑎
𝑊 𝐷0

−1 𝐷𝑡𝑟𝑎
𝐿 𝐷0

−1 𝐷𝑟𝑜𝑡
𝑇 𝜏 𝐷𝑟𝑜𝑡

𝑊 𝜏 𝐷𝑟𝑜𝑡
𝐿 𝜏

1 2.2 × 10−2 2.2 × 10−2 3.1 × 10−2 1.1 × 10−3 1.1 × 10−3 2.3 ⋅ 10−2
8 9.4 × 10−3 1.4 × 10−2 1.5 × 10−2 3.5 × 10−4 3.6 × 10−4 6.3 × 10−4

Table 4.1: Translational and rotational diffusion coefficient at infinite dilution of the
HBPs studied in this work.

As far as the dynamics is concerned, we generated time trajectories by employing

the Dynamic Monte Carlo (DMC) simulation method [29, 30, 31, 32]. In DMC simula-

tions, the Brownian motion of colloidal particles in a fluid is modelled through stochastic

displacements and rotations, whose timescale is set by the Einstein relation [39]. In par-

ticular, a random particle is selected and a trial translation is attempted if the particle is

a sphere, 𝐫𝑠,𝑛𝑒𝑤 = 𝐫𝑠,𝑜𝑙𝑑+𝛿𝐫𝑠, or a rototranslation if it is a cuboid, namely 𝐫𝑐,𝑛𝑒𝑤 = 𝐫𝑐,𝑜𝑙𝑑+𝛿𝐫𝑐

for translation and �̂�𝑘,𝑛𝑒𝑤 = R𝑇𝐿𝑊 �̂�𝑘,𝑜𝑙𝑑 for rotations. The rotation matrix R𝑇𝐿𝑊 is em-

ployed to rotate the cuboids around their axes of orientation �̂�𝑇 , �̂�𝐿, �̂�𝑊 . The elementary

displacements 𝛿𝑟𝑘,𝑠 of spheres along the reference axes 𝑘 = �̂�, �̂�, �̂� are uniformly sampled

in the interval [−𝛿𝑟𝑘,𝑚𝑎𝑥,𝑠; 𝛿𝑟𝑘,𝑚𝑎𝑥,𝑠]. Similarly, the elementary displacements of cuboids,

𝛿𝑟𝑘,𝑐, are sampled in the interval [−𝛿𝑟𝑘,𝑚𝑎𝑥,𝑐; 𝛿𝑟𝑘,𝑚𝑎𝑥,𝑐], while their elementary rotations,

𝛿𝜃𝑘,𝑐, in [−𝛿𝜃𝑘,𝑚𝑎𝑥,𝑐; 𝛿𝜃𝑘,𝑚𝑎𝑥,𝑐], for 𝑘 = 𝑇 , 𝐿,𝑊 . The maximum displacements and rotations

are defined using the Einstein relation given below:

𝛿𝑟𝑘,𝑚𝑎𝑥,𝑠 =
√
2𝐷𝑠𝛿𝑡𝑀𝐶,𝑠 𝑘 = �̂�, �̂�, �̂�, (4.4)

𝛿𝑟𝑘,𝑚𝑎𝑥,𝑐 =
√
2𝐷𝑡𝑟𝑎

𝑘,𝑐𝛿𝑡𝑀𝐶,𝑐 𝑘 = 𝑇 , 𝐿,𝑊 , (4.5)

𝛿𝜃𝑘,𝑚𝑎𝑥,𝑐 =
√
2𝐷𝑟𝑜𝑡

𝑘,𝑐𝛿𝑡𝑀𝐶,𝑐 𝑘 = 𝑇 , 𝐿,𝑊 , (4.6)

where 𝛿𝑡𝑀𝐶 is the MC timescale of the simulation, 𝐷𝑠 is the sphere diffusion coefficient

at infinite dilution, whereas 𝐷𝑡𝑟𝑎
𝑘,𝑐 and 𝐷𝑟𝑜𝑡

𝑘,𝑐 are, respectively, the translational and rota-

tional cuboid diffusion coefficients also at infinite dilution. In a DMC simulation of a

binary mixture, the MC timescales of the two components are different, but the Brown-

ian timescale is unique. These timescales are therefore related as follows:

A𝑐𝛿𝑡𝑀𝐶,𝑐 = A𝑠𝛿𝑡𝑀𝐶,𝑠, (4.7)
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where A𝑐 and A𝑠 are the acceptance rates of the attempted moves of cuboids and spheres,

respectively. In practice, the MC timescale of either HBPs or HSs is kept constant to a

given input value, while the other converges according to Eq. 4.7 by updating the accep-

tance rates. The Brownian timescale of the DMC simulation is linked to the acceptance

rate of the components of the system and their MC timescales, according to Eq. 4.8:

𝑡𝐵𝐷 =
A𝑐

3
C𝑀𝐶𝛿𝑡𝑀𝐶,𝑐 =

A𝑠

3
C𝑀𝐶𝛿𝑡𝑀𝐶,𝑠, (4.8)

where C𝑀𝐶 is the number of MC cycles performed, with 1 MC cycle corresponding to

𝑁𝑠+𝑁𝑐 attempted moves. A detailed theoretical discussion of the DMC method for mono-

and multi-component systems is reported in Refs. [29, 30].

To apply Eqs. 4.4-4.6, one needs to estimate the diffusion coefficient of spheres and

cuboids at infinite dilution. The former is obtained from the Stokes-Einstein equation:

𝐷𝑠 =
𝐷0

3𝜋𝑑𝑠∗
∼ 1.061𝐷0, (4.9)

where 𝐷0 ≡ 𝑇 2𝜏−1 is a diffusion constant, with 𝜏 the time unit. The diffusion tensor of

HBPs at infinite dilution was estimated numerically using HYDRO++, an open-source

software that calculates the solution properties of macromolecules and colloidal parti-

cles by approximating their shape and volume with an array of spherical beads of arbi-

trary size [40, 41]. The diffusion tensor of biaxial particles is in principle non-diagonal,

implying the existence of a rototranslational coupling that is taken into account by a

generalised version of the DMC method [33]. Nevertheless, the diffusion tensor that we

obtained showed that its off-diagonal terms were at least 4 orders of magnitude smaller

than the remaining terms and thus safely negligible. The translational and rotational dif-

fusion coefficients at infinite dilution of prolate and oblate HBPs are listed in Table 4.1.

As in typical Brownian Dynamics and Langevin Dynamics simulations, Hydrodynamic

Interactions (HI) are neglected also in DMC simulations. The effect of HI in BD simula-

tions of crowded suspensions has been evaluated for binary mixtures of Lennard-Jones

spheres of different sizes and results show that HI interactions slow down the dynamics

of the spheres without modifying the qualitative features of the diffusion [42].

In all DMC simulations, we set the MC time step of spheres in the range 𝛿𝑡𝑀𝐶,𝑠 = {5×

10−5; 10−2}𝜏. The smallest time step determined a maximum displacement approximately
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equal to 𝑑∗𝑠 /10, whereas the largest time step has been set in order to reproduce the same

conditions as those recently studied in pure systems of HBPs [28]. We first performed

a preliminary simulation of 104 MC cycles to find the time step of cuboids according to

Eq. 4.7, that is 𝛿𝑡𝑀𝐶,𝑐 = A𝑠
(10)𝛿𝑡𝑀𝐶,𝑠/A𝑐

(10), averaging every 10 MC cycles. A summary of

the systems investigated with the corresponding time steps are listed in Table 4.2.

Systems 𝑁𝑠 𝑁𝑐 𝑑𝑠∗ 𝑊 ∗ 𝐿∗ 𝜂𝑝𝑢𝑟𝑒 Phase 𝛿𝑡𝑀𝐶,𝑠 𝛿𝑡𝑀𝐶,𝑐 A𝑠 A𝑐

𝑆1 200 2000 0.1 1 12 0.15 I 5.000×10−5 5.015×10−5 0.998 0.995
𝑆1 200 2000 0.1 1 12 0.15 I 1.000×10−2 1.043×10−2 0.972 0.932
𝑆2 200 2000 0.1 1 12 0.34 N+

U 5.000×10−5 5.034×10−5 0.994 0.987
𝑆2 200 2000 0.1 1 12 0.34 N+

U 1.000×10−2 1.109×10−2 0.912 0.822
𝑆3 200 2000 0.1 8 12 0.15 I 5.000×10−5 5.000×10−5 0.999 0.999
𝑆3 200 2000 0.1 8 12 0.15 I 1.000×10−2 1.006×10−2 0.984 0.979
𝑆4 200 2000 0.1 8 12 0.34 N−

U 5.000×10−5 5.013×10−5 0.997 0.995
𝑆4 200 2000 0.1 8 12 0.34 N−

U 1.000×10−2 1.031×10−2 0.952 0.924

Table 4.2: Systems investigated in this work and associated simulation parameters. 𝑁𝑠
and 𝑁𝑐 refer to the number of HSs and HBPs, respectively; 𝑑∗𝑠 is the diameter of spherical
tracers; 𝐿∗ and 𝑊 ∗ are the reduced cuboid length and width, respectively; 𝜂𝑝𝑢𝑟𝑒 ≈ 𝜂 is
the system packing fraction; 𝛿𝑡𝑀𝐶,𝑠 and 𝛿𝑡𝑀𝐶,𝑐 are the MC time steps of HSs and HBPs,
respectively; and A𝑠 and A𝑐 are the MC acceptance rates of HSs and HBPs, respectively.
The symbols N+

U and N−
U refer to uniaxial prolate and oblate nematic phases, respectively.

The systems are indexed according to the shape of the HBPs and the packing fraction.
Systems that have the same settings, but different input MC time step, are given the
same index.

We characterised the dynamics of the systems investigated by computing the mean

square displacement (MSD), the non-Gaussian parameter (NGP), the apparent exponent

of the generalized Einstein relation and the self-part of the Van-Hove distribution func-

tions (s-VHF), averaging out over 90 different uncorrelated trajectories. All these prop-

erties were computed for both the HBPs and the HSs and for different components: the

3D position of the particles, i.e., 𝐫𝑡𝑜𝑡 with dimensionality 𝑑 = 3, the components in the

direction parallel and perpendicular to the nematic director in the NU phases, i.e., 𝐫∥ with

dimensionality 𝑑 = 1 and 𝐫⟂ with 𝑑 = 2, respectively, and along the three box axes in the

I phases, 𝐫𝑥 , 𝐫𝑦 , 𝐫𝑧, with 𝑑 = 1. In the following, we use the symbol 𝜆 = {𝑡𝑜𝑡, ∥,⟂, 𝑥, 𝑦, 𝑧}

to indicate that the dynamical properties of a given observable have been estimated in

1, 2 and 3 dimensions. The MSD is defined as the ensemble average of the particle dis-
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placement from their original position at time 0:

⟨Δ𝑟2𝜆(𝑡)⟩ =
1
𝑁⟨

𝑁

∑
𝑖=1

‖‖𝐫𝜆,𝑖(𝑡) − 𝐫𝜆,𝑖(0)‖‖
2

⟩
. (4.10)

The diffusion coefficients at long timescales are obtained from the MSD as follows:

𝐷𝜆,𝑙𝑜𝑛𝑔 =
1
2𝑑𝑡

lim
𝑡→∞

⟨Δ𝑟2𝜆(𝑡)⟩. (4.11)

Considering the generalised Einstein relation, where the MSD can have a nonlinear

dependence on time, i.e., ⟨Δ𝑟2𝜆⟩ = 2𝑑𝐷𝜆𝑡𝛽𝜆 , we can define the apparent exponent 𝛽𝜆 as

follows [43]:

ln ⟨Δ𝑟2𝜆⟩ = ln (2𝑑𝐷𝜆) + 𝛽𝜆 ln 𝑡, (4.12)

𝛽𝜆 =
𝑑 ln ⟨Δ𝑟2𝜆⟩
𝑑 ln 𝑡

, (4.13)

where 𝛽𝜆 describes deviations from a linear dependence of the MSD on time.

The probability distribution of particle displacements at time 𝑡, given their position

at time 0 can be defined as

𝜈𝑑𝐺𝑠,𝜆(𝑟 , 𝑡) =
1
𝑁⟨

𝑁

∑
𝑖=1

𝛿(𝑟 − ‖‖𝐫𝜆,𝑖(𝑡) − 𝐫𝜆,𝑖(0)‖‖)⟩
, (4.14)

where 𝜈𝑑𝐺𝑠,𝜆(𝑟 , 𝑡) represents the probability that a particle 𝑖 has displaced a distance 𝑟 , in

1, 2 or 3 dimensions, from its initial position at time 𝑡. In particular, 𝐺𝑠,𝜆 are the s-VHFs,

and 𝜈𝑑 a normalization factor: ∫ ∞
0 𝐺𝑠,𝜆(𝑟𝜆, 𝑡)𝜈𝑑𝑑𝑟𝜆 = 1, where 𝜈1 = 1 for the distributions

parallel to the nematic director in the NU phases or along �̂�, �̂�, �̂� in the I phases, 𝜈2 = 2𝜋𝑟 ,

and 𝜈3 = 4𝜋𝑟2. If 𝐺𝑠,𝜆 are Gaussian-distributed, the s-VHFs can be approximated as:

𝐺𝑠,𝜆(𝑟 , 𝑡) =
1√

(4𝜋𝐷𝜆,𝑡 𝑡)
𝑑
exp

(
−

𝑟2

4𝐷𝜆,𝑡 𝑡)
, (4.15)

where 𝐷𝜆,𝑡 = ⟨Δ𝑟2𝜆(𝑡)⟩/2𝑑𝑡 is the instantaneous diffusion coefficient along the direction 𝜆.

It has been recently showed that, if the diffusion of the particle is anisotropic, Eq. (4.15)

does not correctly estimate (deviations from) the Gaussianity of particle displacements

in all the 3D space, i.e., when 𝜆 = 𝑡𝑜𝑡, and a Gaussian distribution with an ellipsoidal
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symmetry has been proposed [14].

Finally, the non-Gaussian parameter (NGP) expresses deviations from the expected

Gaussian distribution of the displacements. A general formula for the NGP is:

𝛼2,𝑑 =
⟨Δ𝑟4𝜆(𝑡)⟩

𝑐2,𝑑⟨Δ𝑟2𝜆(𝑡)⟩2
− 1. (4.16)

The constant 𝑐2,𝑑 depends on the equivalence between the fourth moment, ⟨Δ𝑟4𝜆(𝑡)⟩, and

second moment, ⟨Δ𝑟2𝜆(𝑡)⟩, of the Gaussian distribution of the displacements. For a per-

fect isotropic system, where there is no preferential direction for diffusion, the Gaussian

distribution is spherical and the constant 𝑐2,𝑑 = (1 + 2/𝑑), with 𝑑 = 1, 2, 3. Eq. 4.16,

first defined by Rahman [44], was initially employed in the analysis of experimental and

simulation results to evaluate if the s-VHF and the self intermediate scattering func-

tion follow a normal distribution, as expected for fluids in the diffusive limit at long

times. Positive values of 𝛼2,3 at intermediate times have been observed in simulation

of liquid argon modelled with Lennard-Jones and Buckingham interaction potentials,

caused by collision between particles and cage effects [45, 46]. The same parameter has

been employed also to study the dynamical behaviour of colloidal suspensions of spher-

ical [47, 48] and anisotropic shapes [49, 50], and it showed similar patterns previously

observed in studies of atomic liquids. For systems with orientational anisotropy, with

particles that tend to diffusive preferentially in a specific direction, a modification of the

constant in Eq. 4.16 has been proposed, for a 3D particle displacement. The modified

parameter 𝑐′2,3 reads [14]

𝑐′2,3 =
3𝐷2

∥,𝑡 + 8𝐷2
⟂,𝑡 + 4𝐷∥,𝑡𝐷⟂,𝑡

𝐷2
∥,𝑡 + 4𝐷2

⟂,𝑡 + 4𝐷∥,𝑡𝐷⟂,𝑡
. (4.17)

4.3 Results and discussion

In this section, we study the dynamical properties of globular macromolecules immersed

in colloidal suspensions of cuboids. The former are modelled as hard spherical tracers,

while the latter as hard boards. Following standard MC simulations in the canonical

ensemble, the complete set of uniaxial order parameters of the equilibrated systems were

calculated and their values are summarised in Table 4.3.

We also computed the biaxial order parameters and no significant long-ranged biaxiality
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Systems Phase 𝑈𝑇 𝑈𝑊 𝑈𝐿

𝑆1 I 0.020 0.020 0.025
𝑆2 N+

U 0.255 0.256 0.962
𝑆3 I 0.031 0.021 0.023
𝑆4 N−

U 0.943 0.250 0.252

Table 4.3: Average uniaxial order parameters relative to 𝑇 , 𝐿,𝑊 of oblate and prolate
HBPs in I (𝜂 = 0.15) and NU (𝜂 = 0.34) phases. The results reported are obtained from
standard MC simulations in the canonical ensemble, after equilibration of the systems
and before running DMC simulations. Absolute errors are lower than 5 × 10−3.

was detected, in agreement with previous works on monodispersed HBPs [24]. Addi-

tionally, inspection of the pair correlation functions and the snapshots of the equilibrated

systems, respectively reported in Figs. 4.11, 4.12 and 4.13 of the Supporting information,

does not reveal long-ranged positional ordering of HBPs, thus suggesting that smectic

phases are not formed. We also note that the presence of spherical tracers does not affect

the morphology of the phases observed in pure systems of HBPs at the same packing

fractions. In order to ensure that the positional distribution of the spherical tracers is

homogeneous in the entire volume of the systems simulated, we computed the HS - HS

radial distribution functions (Fig. 4.1) and the density profile of the HS along the �̂�, �̂�, �̂�

directions of the reference axes (Fig. 4.2). The density profile was computed as the av-

erage number of HS found in a slab, i.e., 𝜌𝑟 = ⟨𝑁𝑠⟩slab/𝑉slab, with 𝑉slab = 𝑉 2/3Δ𝑟 for Δ𝑟

oriented in the three directions of the box frame, normalised by the density of the trac-

ers all over the box, i.e., 𝑁𝑠/𝑉 . All the one-particle distributions along the reference axes

are flat and equal to the numeral density of the tracers, clearly proving that the tracers

are homogeneously distributed. In addition, all the HS - HS radial distribution functions

decay to unity at short distances, proving that the position of the tracers is completely

uncorrelated in all the systems.

4.3.1 Dynamical properties

Fig. 4.3 depicts the MSD, NGP and apparent exponent of prolate (𝑊 ∗ = 1) and oblate

(𝑊 ∗ = 8) HBPs in NU phases in the directions parallel and perpendicular to the nematic

director. The dynamics of HBPs is anisotropic as the distinct dependence of ⟨Δ𝑟2∥ ⟩ and

⟨Δ𝑟2⟂⟩ on time reveals. However, an analogous sequence of dynamical regimes is ob-

served for all the cases studied. At short times, HBPs diffuse within the cage formed
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Figure 4.1: HS - HS Radial distribution functions in I (dashed lines) andNU (straight lines)
phases of prolate (left panel) and oblate (right panel) HBPs. The flat profile of the radial
distribution functions from short radius proves the uncorrelation of the relative position
of the spherical tracers for all the systems investigated.
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Figure 4.2: Profile of the average numeral density of HS in slabs, i.e., 𝜌𝑟 , normalized by the
numeral density of the HS in the entire box, i.e., 𝑁𝑠/𝑉 , for all the systems investigated.
The slabs have volume 𝑉 2/3Δ𝑟 , where Δ𝑟 is oriented along �̂� (△), along �̂� (∙) and along �̂�
(□). Flat profiles prove that the spherical tracers are homogeneously distributed.

by nearby particles, rattling around their initial location and not yet interacting with

their neighbours. At this stage, the MSD is linear with time. At slightly larger times,

the effect of this cage fully develops as diffusion is slowed down due to the collisions

with the surrounding particles, resulting in a nonlinear MSD with time. Finally, the ex-

pected Brownian motion sparks at sufficiently long time scales, when the MSD recovers

its linear dependence on time.

According to Fig. 4.3, the MSD perpendicular to �̂� is larger than its parallel counterpart

at short times. This is caused by the higher dimensionality in the displacements perpen-

dicular to �̂� (𝑑 = 2) compared to those parallel to it (𝑑 = 1). At intermediate times, a
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Figure 4.3: MSDs (a,b) and NGPs (c,d) of HBPs in the direction parallel (∙) and perpen-
dicular (◦) to �̂� in prolate (left) and oblate (right) nematic phases, at packing fraction
𝜂 = 0.340. Frames (e) to (h) report the instantaneous values (dots), average (thick line)
and twice its standard deviation (gray-shaded area) of the apparent exponents 𝛽∥ and 𝛽⟂.
Solid lines in panels (a) and (b) show the linear regime where ⟨Δ𝑟2𝜆⟩/𝑇 2 = 𝑡/𝜏, as a guide
to the eye.

sub-diffusive behaviour is observed for both prolate and oblate HBPs, which depends on

the preferential orientation of the nematic phases and particle anisotropy. While HBPs

in the N+
U phase (𝑊 ∗ = 1) are predominantly oriented along the axis parallel to their

length 𝐿 and move preferentially along �̂� (solid circles in Fig. 4.3(a)), particles in the N−
U

phase (𝑊 ∗ = 8) are mostly oriented along their thickness 𝑇 and their motion along �̂� is

hampered (solid circles in Fig. 4.3(b)). Prolate HBPs also experience a similar slow down

in planes perpendicular to �̂�, but this effect is significantly less pronounced. Finally, at

long times, the particles enter a new diffusive regime in which ⟨Δ𝑟2𝜆⟩ recovers its linear-

ity with time. All these observations can be further appreciated by the evolution of the

apparent exponents 𝛽∥ and 𝛽⟂ in Figs. 4.3(e) and 4.3(g) for prolate HBPs and Figs. 4.3(f)
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and 4.3(h) for oblate HBPs, respectively. In the direction along which the particle mo-

tion is especially hampered, 𝛽𝜆 shows larger deviations from 1 (the Fickian-like value),

corresponding to a sub-diffusive behaviour and the formation of temporary cages. The

most relevant sub-diffusive regime is observed in systems of oblate HBPs in the direc-

tion parallel to �̂�, where 𝛽∥ ∼ 0.6 at 𝑡/𝜏 ∼ 100. The NGP of prolate and oblate HBPs are

shown in panels (c) and (d) of Fig. 4.3, respectively, along �̂� and perpendicularly to it.

Although a subtle growth of the NGP is observed in all systems, its maximum value is

relatively low as it does not exceed 0.1. For comparison, the NGP of hard spherocylin-

ders in smectic phases was reported to be between 3 at 𝜂 = 0.508 and 7 at 𝜂 = 0.557 in

the direction of �̂� [51]. This suggests that the dynamics in nematic LC phases of HBPs is

basically Gaussian-like as also reported in a recent work [28]. To better understand the

effect of particle geometry on the mobility of HBPs in nematic LCs, we have calculated

the long-time translational diffusion coefficients, which are listed in Table 4.4. One can

observe that, as the particle width increases, the diffusion coefficient parallel to �̂� de-

creases significantly. Upon increasing 𝑊 ∗, the probability of HBPs to collide with their

neighbours increases as well, which in turn slows down the overall mobility. The oppo-

site effect occurs for diffusion coefficients perpendicular to �̂� where a small increment is

observed when the width of the HBPs increases. Our MSDs and diffusion coefficients are

in excellent quantitative agreement with those reported by Cuetos and Patti in systems

of pure HBPs [28]. This agreement suggests that the presence of spherical tracers does

not affect the dynamics of HBPs in N+
U or N−

U phases.

Systems 𝐷∥,𝑙𝑜𝑛𝑔𝐷0
−1 𝐷⟂,𝑙𝑜𝑛𝑔𝐷0

−1

𝑆2 1.7 × 10−2 3.1 × 10−3
𝑆4 4.8 × 10−4 5.9 × 10−3

Table 4.4: Long-time translational diffusion coefficients of HBPs parallel and perpen-
dicular to �̂� in NU phases of HBPs, at packing fraction 𝜂 = 0.34 for both systems. The
absolute errors are lower than half of the last significant digit.

In the light of these considerations on the dynamics of HBPs, we now examine the

dynamics of the dispersed HSs. In Fig. 4.4, we show their MSDs, NGPs and apparent

exponents in NU phases of prolate (left panels) and oblate (right panels) HBPs. Due to

their relatively small size, spherical tracers are expected to explore the available space

more effectively than HBPs. This is indeed confirmed by their MSDs, which are larger
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Figure 4.4: MSDs (a,b) and NGPs (c,d) of HSs in the direction parallel (∙) and perpendicu-
lar (◦) to �̂� in prolate (left) and oblate (right) nematic phases of HBPs, at packing fraction
𝜂 = 0.340. Frames (e) to (h) report the instantaneous values (dots), average (thick line)
and twice its standard deviation (gray-shaded area) of the apparent exponents 𝛽∥ and 𝛽⟂.
Solid lines in panels (a) and (b) show the linear regime where ⟨Δ𝑟2𝜆⟩/𝑇 2 = 𝑡/𝜏, as a guide
to the eye.

than those of HBPs at all time scales. These results are also in agreement with Brownian

dynamics simulations of mixtures of spheres of different sizes [42, 52]. The MSDs of the

spherical tracers have a behaviour similar to that observed for HBPs: a linear behaviour

at short and long times, and a very soft, almost negligible sub-diffusive behaviour at in-

termediate times. As the geometry of HBPs changes from prolate (Fig. 4.4(a)) to oblate

(Fig. 4.4(b)), the sub-diffusive regime of ⟨Δ𝑟2∥ ⟩ becomes more evident, while no changes

are practically detected in ⟨Δ𝑟2⟂⟩. These tendencies can be better appreciated by analysing

the NGPs in Figs. 4.4(c) and 4.4(d). While the peak of 𝛼2,2 vanishes from N+
U to N−

U, the

peak of 𝛼2,1 increases, indicating more pronounced deviations from Gaussianity in ne-

matic LCs of oblate HBPs. Interestingly, while the peak of 𝛼2,2 in the N+
U phase occurs
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at 𝑡/𝜏 ∼ 0.4 and is lower than 0.1, confirming the substantially Gaussian dynamics of

tracers in prolate nematics, the peak of 𝛼2,1 in the N−
U phase, observed at 𝑡/𝜏 ∼ 3.3, is

significantly larger and approximately equal to 0.3. This result indicates that long-range

ordering can have a relevant influence on macromolecular diffusion as not only does it

establish preferential paths of mobility, but it can also affect the nature of these paths

by inducing deviations from Gaussianity, at least at intermediate times. At long time

scales, the NGPs decay to zero and, correspondingly, the MSDs end up displaying Fick-

ian behaviour. The cage effect exerted by the neighboring HBPs determine the transient

sub-diffusive regimes. This cage provides a barrier against diffusion of both HBPs and

guest molecules. Due to their smaller size and increased mobility as compared to HBPs,

the spherical tracers perceive the effect of the surrounding cage at shorter times and over

a shorter time interval than HBPs, as the position and broadness of the peak of the NGPs

in panels (c) and (d) of Fig. 4.3 with respect to those in Fig. 4.4 reveal. The analysis of the

HSs’ apparent exponents in Fig. 4.4(e-h) suggests that the tracers maintain a Fickian-like

diffusion at all times. The only exception is detected in the N−
U phase for diffusion along

�̂�, where 𝛽∥ < 1 for 𝑡 < 102𝜏. Such a temporary non-Fickian and non-Gaussian dynam-

ics is also observed in the host phase (see Fig. 4.3(f)). The main difference between the

dynamics of host and guest particles, in this case, is in the peak of 𝛼2,1, which is larger

for HSs than for HBPs. This is not surprising if one considers that HSs are mostly sur-

rounded by oblate HBPs whose dynamics, relatively slow in the direction of �̂�, slows

down the diffusion of HSs, rather abruptly, after the initial diffusive regime. Parallel and

perpendicular long-time diffusion coefficients of HSs, obtained with Eq. 4.11, are listed

in Table 4.5.

Systems 𝐷∥,𝑙𝑜𝑛𝑔𝐷0
−1 𝐷⟂,𝑙𝑜𝑛𝑔𝐷0

−1

𝑆2 9.9 × 10−1 6.4 × 10−1
𝑆4 3.5 × 10−1 9.0 × 10−1

Table 4.5: Long-time translational diffusion coefficients of HSs parallel and perpendicu-
lar to �̂� in NU phases of HBPs, at 𝜂 = 0.34. Absolute errors are smaller than half of the
last significant digit.

While, in prolate nematics, spherical tracers diffuse faster in the direction of �̂� than

perpendicularly to it, with 𝐷∥,𝑙𝑜𝑛𝑔 ≈ 1.55𝐷⟂,𝑙𝑜𝑛𝑔 , in oblate nematics this tendency changes

dramatically as the parallel diffusion becomes significantly slower than the perpendic-

91



ular diffusion, with 𝐷∥,𝑙𝑜𝑛𝑔 ≈ 0.39𝐷⟂,𝑙𝑜𝑛𝑔 . Such a dependence of the dynamics of HSs on

the geometry of the host HBPs and, ultimately, on the symmetry of the nematic phase,

reveals a close analogy with the diffusion of HBPs, which is faster along �̂� in the N+
U

phase and perpendicularly to it in the N−
U phase (see Table 4.4). This result suggests that

the anisotropic mobility of guest HSs is closely controlled by the dynamics of host HBPs.

We notice that the decoupling of the dynamics of our spherical tracers as a result of the

space anisotropy determined by the host cuboids, exhibits common characteristics with

the dynamics of apoferritin, a globular protein generally found in the intestinal mem-

brane, in I and N suspensions of fd viruses at different concentrations [53, 54]. The time

evolution of the self-Van Hove functions of HSs in prolate and oblate nematic phases is

presented, respectively, in the left and right frames of Fig. 4.5.
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Figure 4.5: Self-Van Hove distributions of HSs in nematic phases of HBPs with 𝑊 ∗ = 1
(panels (a), (c) and (e)) and 𝑊 ∗ = 8 (panels (b), (d) and (f)), at 𝜂 = 0.340, at different times.
Histograms obtained from simulations are plotted as points for the components parallel
(∙) and perpendicular (◦) to �̂�. Dashed and dotted lines refer to the theoretical Gaussian
distributions obtained from Eq. 4.15 for the directions parallel and perpendicular to �̂�,
respectively.
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For each phase, we show the s-VHFs at three different times: (i) 𝑡/𝜏 = 0.01 (frames (a)

and (b)), being a representative time for short-time diffusion in both phases; (ii) 𝑡/𝜏 = 0.4

(frame (c)) and 𝑡/𝜏 = 3.3 (frame (d)), which pinpoint the crossover from short- to long-

time diffusion in prolate and oblate nematics, respectively; and (iii) 𝑡/𝜏 = 2400 (frames

(e) and (f)), which is a representative time of the long-time diffusive regime. Parallel and

perpendicular s-VHFs were also estimated with the Gaussian approximation of Eq. 4.15

with 𝑑 = 1 and 2, respectively. These Gaussian distributions are also plotted in Fig. 4.5

as dotted and dashed lines. As a general tendency, the distribution of displacements as

obtained from simulations is practically Gaussian at short and long times, while small

deviations are detected at intermediate times, especially in the N−
U phase (frame (d) in

Fig. 4.5). In this case, the Gaussian approximation significantly sub-estimates the prob-

ability of HSs to remain in their original position or very close to it at 𝑡/𝜏 = 3.3. This

implies that there are more slow tracers than those a Gaussian distribution would pre-

dict. By contrast, the probability of observing fast tracers, given by the tail of the s-VHFs

at large distances, is approximated very well by a Gaussian distribution across the six

time decades simulated here and in both N+
U and N−

U phases. We also notice that, at long

times, the Fickian-like dynamics of our model globular macromolecules is also Gaus-

sian, again discarding the ubiquity of Fickian yet non-Gaussian diffusion in soft-matter

systems [14, 28].

To better understand how the long-range orientational ordering of nematics influ-

ences macromolecular diffusion, we have also investigated the dynamics of our tracers

in I phases of HBPs. We firstly notice that the MSDs and NGPs of both host and guest

species along the three space directions (shown in Figs. 4.14 and 4.15 of the Support-

ing information) reveal the same quantitative behaviour and confirm the absence of any

preferential direction of motion. Consequently, it makes sense to limit our analysis only

to the total MSD (⟨Δr2tot⟩) and NGP (𝛼2,3). Both properties are reported, along with the

total apparent exponent (𝛽tot), in Figs. 4.6 and 4.7 for HBPs and HSs, respectively. More

specifically, Fig. 4.6 displays these three dynamical properties in I and NU phases of pro-

late (left frames) and oblate (right frames) HBPs. At short times, the dynamics of HBPs

results to be unaffected by the degree of local ordering, if any, as the total MSDs in the

I and NU phases, shown in Figs. 4.6(a) and 4.6(b), are practically identical. This is not

surprising as, at these short time scales, HBPs are still rattling around their original po-
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sition and do not yet perceive the presence and degree of ordering of their neighbours.

At longer time scales, the MSD slightly deviates from its linear behaviour with time and
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Figure 4.6: Total MSDs (a-b), NGPs (c-d) and apparent exponents (e-h) of prolate (left)
and oblate (right) HBPs in I (∙), at 𝜂 = 0.150, and NU phases (◦), at 𝜂 = 0.340. Solid
lines in panels (a) and (b) show the linear regime where ⟨Δ𝑟2𝜆⟩/𝑇 2 = 𝑡/𝜏, as a guide to
the eye. NGPs in (c) and (d) are computed using Eq. 4.16 for HBPs in I phases (∙), with
𝑐2,3 = 5/3, and for HBPs in NU phases (◦), with 𝑐′2,3 from Eq. 4.17. Frames (e-h) report the
instantaneous values (dots), average (thick line) and twice its standard deviation (gray-
shaded area) of the apparent exponent.

enters a sub-diffusive regime. At this stage, HBPs start to collide with each other and

their dynamics slow down. Such a temporary cage effect is more effectively appreciated

by analysing 𝛼2,3 (Fig. 4.6(c-d)) and 𝛽tot (Fig. 4.6(e-h)). The apparent exponent presents

very similar trends at 𝑊 ∗ = 1 and 8, with deviations from unity that do not depend on

the background ordering. Because 𝛽tot is a measure of the instantaneous Fickianity of

the diffusion, these features and the analogies between the dynamics in I and NU phases,

are also observed in the MSDs at intermediate and long time scales. Especially intriguing
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is the analysis of the NGPs, reported in Fig. 4.6(c) and 4.6(d). Oblate HBPs show almost

indistinguishable NGPs in both I and N−
U phases and across the three time regimes, with

a very small peak at 𝑡/𝜏 ≈ 500. A very similar trend is also observed for prolate HBPs,

but only in the N+
U phase (empty circles in frame (c)). The NGP of prolate HBPs in the

I phase exhibits a peak that is located at slightly earlier times (𝑡/𝜏 ≈ 200) and is sur-

prisingly larger than any other. Because deviations from Gaussianity usually increase

with system packing [55, 56, 57, 58], it is quite remarkable to find a family of particles

that inverts this tendency when compressed from the I to the N+
U phase. We remind the

reader that 𝛼2,3 of a NU phase is estimated using the modified parameter 𝑐′2,3 defined in

Eq. 4.17, which assumes an anisotropic particle displacement with respect to the nematic

director, while 𝑐2,3 = 5/3 is used for I phases, as expected for particles moving in sys-

tems with spherical symmetry. We have analysed the origin of this atypical behaviour

and found that it is most probably determined by the occurrence of randomly-oriented

nematic-like clusters in the I phase. A detailed discussion is provided in Section 4.3.2.

In Fig. 4.7, we report the total MSDs, NGPs and apparent exponents of the spherical

tracers in I and NU phases of prolate (left frames) and oblate (right frames) HBPs. The

three sets of observables suggest a Fickian and Gaussian dynamics across the whole

time scales and in both phases. These results might appear in contradiction with those

reported in Fig. 4.4, showing sub-diffusive, non-Gaussian dynamics at intermediate time

scales in the direction parallel to �̂� in the N−
U phase. Nevertheless, spherical tracers move

preferentially in planes perpendicular to �̂� as the difference between the MSDs measured

in Fig. 4.4(b) indicates. Consequently, although the dynamics along �̂� deviates from

Brownian diffusion over a relevant period of time, these deviations are averaged out

when one computes ⟨Δr2tot⟩, 𝛼2,3 and 𝛽tot. It is only by decoupling the HSs’ dynamics

according to the background anisotropy imposed by the host phase that we are able to

detect the full picture and appreciate elements that otherwise would go underground.

The total long-time diffusion coefficients, 𝐷𝑡𝑜𝑡,𝑙𝑜𝑛𝑔 , of HBPs and HSs in the I andNU phases

are calculated by using Eq. 4.11 with 𝑑 = 3 and summarised in Table 4.6. Increasing the

system packing has a negative effect on the mobility of HSs and HBPs by substantially

decreasing the free space available for diffusion. Consequently, the long-time diffusion

coefficient of HBPs in NU phases is ∼ 20−30% smaller than that measured in the I phases

(systems 𝑆1 vs 𝑆2 and 𝑆3 vs 𝑆4).
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Figure 4.7: Total MSDs (a-b), NGPs (c-d) and apparent exponents (e-h) of HSs in I (∙) and
NU phases (◦) of prolate (left frames) and oblate (right frames) HBPs. Both I phases have a
packing fraction of 𝜂 = 0.150, while both NU phases have a packing fraction of 𝜂 = 0.340.
Solid lines in panels (a) and (b) show the linear regime where ⟨Δ𝑟2𝜆⟩/𝑇 2 = 𝑡/𝜏, as a guide
to the eye. NGPs in (c) and (d) are computed using Eq. 4.16 for HSs in I phases (∙), with
𝑐2,3 = 5/3, and for HSs in NU phases (◦), with 𝑐′2,3 from Eq. 4.17. Frames (e-h) report the
instantaneous values (dots), average (thick line) and twice its standard deviation (gray-
shaded area) of the apparent exponent.

Systems 𝐷𝑡𝑜𝑡,𝑙𝑜𝑛𝑔𝐷0
−1, HBPs 𝐷𝑡𝑜𝑡,𝑙𝑜𝑛𝑔𝐷0

−1, HSs

𝑆1 9.7 × 10−3 9.3 × 10−1
𝑆2 7.7 × 10−3 7.6 × 10−1
𝑆3 5.7 × 10−3 8.1 × 10−1
𝑆4 4.1 × 10−3 7.2 × 10−1

Table 4.6: Total long-time translational diffusion coefficients of HBPs and HSs, in I (𝜂 =
0.15 for systems 𝑆1 and 𝑆3) and NU (𝜂 = 0.34 for systems 𝑆2 and 𝑆4) phases of HBPs.
Absolute errors are smaller than half of the last significant digit.
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A slightly less strong effect is observed in the case of the HSs, whose long-time diffusiv-

ities in the NU phases are ∼ 10 − 20% smaller than those in the I phase.

4.3.2 Cluster formation in isotropic phases of HBPs

To throw light on the origin of the intriguing non-Gaussian dynamics of prolate HBPs

observed in the I phase at intermediate time scales, we first compare the results ob-

tained in isotropic mixtures at 𝜂 = 0.15 with those of pure systems of HBPs at 𝜂 =

{0.07, 0.15, 0.20}. At each of these packing fractions, we kept the total number of cuboids

equal to 𝑁 = 2000 and particle thickness and length constant to 𝑇 and 12𝑇 , respectively,

and varied particle width. In particular, we confirmed 𝑊 ∗ = 1 and 8 to mimic prolate

and oblate HBPs, respectively, and added 𝑊 ∗ =
√
𝐿∗ ≈ 3.46 for self-dual shaped HBPs, a

geometry exactly in between the oblate and prolate shape. The so-defined nine systems

were all in the I phase. In the I mixtures of Fig. 4.6, deviations from Gaussian dynamics,

where 𝛼2,3 > 0, become significant at 𝑡/𝜏 > 1 for 𝑊 ∗ = 1 and 𝑡/𝜏 > 10 for 𝑊 ∗ = 8.

To explore the same time scales in pure systems of HBPs, we set the MC time step to

𝛿𝑡𝑀𝐶,𝑐 = 1.0×10−2. The resulting MSDs and NGPs are shown, respectively, in the top and

bottom frames of Fig. 4.8. As expected, the MSDs corresponding to the same particle

geometry collapse on a single curve at short times, when the effect of packing is still

negligible. As time increases, a moderate deviation from the linear regime is observed

at all concentrations, with the long-time MSD decreasing with increasing system pack-

ing. This decrease in MSD with packing correlates very well with the increase in the

peak of the NGP. While prolate HBPs exhibit a relatively pronounced non-Gaussianity

at 𝜂 = 0.15 and 0.20 (see frame (d) in Fig. 4.8), the NGP of self-dual and oblate HBPs is

less significant at all packing fractions, suggesting a quasi-Gaussian dynamics.

Typically, large values of the NGP at intermediate time scales stem from the occur-

rence of transient cages. If the morphology of these cages followed a common pattern,

independent from their location in the system, deviations from a Gaussian behaviour

would be very limited, even at large system densities. InNU phases, HBPs are almost per-

fectly aligned as the large values of their order parameters confirms [24]. This suggests

that cages are very similar to each other, being the random orientation of the particle

minor axes possibly the only discerning feature. By contrast, in I phases, particles are

randomly oriented and, if the resulting NGP is large, such a structural randomness must
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be somehow transferred to their dynamics. In I phases of 4-n-hexyl-4’-cyanobiphenyl, a

prolate molecule able to form LCs, the occurrence of anomalous diffusion was ascribed

to the presence of cages comprising molecules that tend to align in the direction of their

longitudinal axis [59]. If this picture holds at the colloidal scale, one might expect the

occurrence of clusters of similarly oriented HBPs with broad enough size and shape dis-

tributions to spark non-Gaussian dynamics. To test these intuitions, we have verified

whether clusters actually exist in the I phase. To this end, following past works on the

nucleation of crystals and nematic LCs in systems of colloidal rods [60, 61], we defined

a criterion able to identify nematic-like clusters in I phases. According to this criterion,

two HBPs 𝑖 and 𝑗 belong to the same cluster if their relevant axes (�̂�𝐿 for prolate and �̂�𝑇

for oblate HBPs) are sufficiently aligned. For prolate HBPs, |�̂�𝐿,𝑖 ⋅ �̂�𝐿,𝑗 | > 𝐾1. Additionally,

the resulting order parameter of this cluster should be larger than a threshold value, i.e.,

𝑈𝐿,𝑙𝑜𝑐𝑎𝑙 > 𝐾2. Finally, 𝑖 and 𝑗 should be close enough along the cluster’s nematic director,

�̂�𝑙𝑜𝑐𝑎𝑙, and perpendicularly to it, i.e., ‖𝐫∥𝑖,𝑗 ‖ < 𝐾∥,3 and ‖𝐫⟂𝑖,𝑗 ‖ < 𝐾⟂,3. The threshold values, 𝐾1,

𝐾2, 𝐾∥,3 and 𝐾⟂,3, were first optimised to identify a cluster containing at least 95% of HBPs

in an NU phase. The parameters optimised with this procedure are listed in Table 4.7, for

both oblate and prolate HBPs.
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Figure 4.8: Total MSDs (top frames) and corresponding NGPs (bottom frames) in I phases
of pure HBPs of different shape anisotropy. Empty triangles (△), solid circles (∙) and
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Parameters 𝑊 ∗ = 1 𝑊 ∗ = 8

𝐾1 0.85 0.85
𝐾2 0.90 0.90
𝐾∥,3 12.25 1.32
𝐾⟂,3 1.55 13.00

Table 4.7: Optimised parameters for nematic-like cluster identification in I phases. The
parameterisation procedure has been performed inNU phases of prolate and oblate HBPs
at 𝜂 = 0.34 (see text for details).

We then applied this criterion in I phases of prolate and oblate HBPs to ponder the ex-

istence of nematic-like clusters and estimate their size distribution. Results are shown

in Fig. 4.9 for both prolate and oblate HBPs at the three packing fractions studied. Most

clusters contain no more than 𝑛 = 5 particles at the largest system density and this

number reduces to 𝑛 = 2 in very dilute I phases. While at low particle concentrations

the average cluster size, ⟨𝑁𝑛⟩, decays rapidly with 𝑛, the cluster size distribution be-

comes broader as the particle concentration increases. Consequently, as system packing

increases, more and larger clusters are observed. Cluster distributions of prolate and

oblate systems are very similar and, excluding the more dilute suspension at 𝜂 = 0.07,

prolate HBPs are slightly more prone to form clusters as the density increases. Differ-

ences in cluster formation can be better appreciated from the average total number of

clusters, i.e., ⟨𝑁𝑡𝑜𝑡⟩, which reveals a larger number of clusters formed in systems of pro-

late HBPs at sufficiently large packing. To assess whether the orientation of the clusters

is isotropic, we estimated the orientational distributions of the local nematic director

along the Cartesian coordinates �̂�, �̂�, �̂�. Our results revealed that clusters are randomly

oriented, with a uniform distribution of their directors (see Fig. 4.16 in Supporting infor-

mation). Illustrative examples of nematic-like clusters forming in I phases are reported

in Fig. 4.10 for prolate HBPs at 𝜂 = 0.20 and in Fig. 4.17 for oblate HBPs at 𝜂 = 0.20. The

structure of the clusters in the snapshots suggest that the shape and size of the HBPs

affect also the morphology of the clusters: prolate particles form prolate-like clusters,

while oblate particles seem to arrange in oblate-structured clusters. Additionally, we

observe that the presence of spherical tracers does not seem to play a significant role

in the formation of clusters. This is evinced from the monotonic behaviour of many of

the properties analysed with respect to density, together with uniform distributions of

HSs observed in Fig. 4.1. However, we stress that we have only investigated this effect
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at 𝜂 = 0.150, while at the remaining packing fractions the formation of clusters was

analysed in pure systems of HBPs. A more thorough investigation of the dynamics of

the clusters in the presence of spheres is necessary to address their stability over time

in I phases.
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frame). In the panel legend is reported the average number of clusters found in a sample
configuration, i.e., ⟨𝑁𝑡𝑜𝑡⟩.
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(a) (b) (c)

Figure 4.10: Snapshots of HBPs with 𝑊 ∗ = 1 in I phase with packing fraction 𝜂 = 0.20.
While clusters of sizes 3 (a), 7 (b) and 11 (c) are highlighted in blue, the remaining par-
ticles are represented as green lines.

4.4 Conclusions

In summary, we have analysed the dynamics of globular macromolecules, modeled as

hard spherical tracers, in isotropic and nematic suspensions of colloidal HBPs. To this

end, we have implemented DMC simulations, which allow one to replicate the Brow-

nian motion of particles and cover a broad range of timescales. The small size of HSs

compared to HBPs does not affect the structural and dynamical properties of the host

phase, at least at the concentrations considered in this work. The MSD of HBPs and the

corresponding apparent exponents, which measure the deviations from Fickian diffu-

sion, show three distinct regimes: a linear behaviour of the MSD with time at short and

long timescales, and a nonlinear trend at intermediate times representing sub-diffusive

dynamics. This sub-diffusive behaviour develops simultaneously to the onset of devi-

ations from Gaussian dynamics. The MSD parallel to the nematic director exhibits a

more pronounced sub-diffusive region in systems of oblate HBPs. An opposite tendency

is detected in systems of prolate HBPs. Consequently, prolate HBPs diffuse faster along

�̂�, whereas oblate HBPs diffuse faster in the direction perpendicular to �̂�. This overall

behaviour dominates the diffusion of guest HSs. On the one hand, while the NGPs of HSs

perpendicular to �̂� vanish with increasing particle width, parallel NGPs increase. On the

other hand, the tracers qualitatively replicate the changes in diffusion coefficients with

the geometry of the host HBPs. As 𝑊 ∗ increases, the diffusivities of HSs parallel and per-

pendicular to the �̂� decrease and increase, respectively. This indicates that the diffusion

of tracers depends on the structural organization of the systems in which they displace,
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and anisotropic suspensions of surrounding particles make the diffusion of the tracers

anisotropic, with the formation of temporary cages only along specific directions.

The packing fraction, the size and the shape of the HBPs guide the suspension to the

formation of preferential orientations and structures, which enable preferential path-

ways for the tracers’ diffusion. The s-VHFs of the tracers deviate slightly from the theo-

retical Gaussian distribution only at the same time where the correspondent NGPs > 0

and reach local maxima. The comparison of the total diffusion of HSs between I and

NU phases showed that larger system densities hamper the tracers’s diffusion at long

timescales, similar to experimental results on the dynamics in crowded suspensions of

spherical particles [62]. The occurrence of cage effects in crowded suspensions is related

to the percolation of the systems [63], which depends not only on the system density,

but also on the shape of the colloidal particles and, as a consequence, on their structural

organisation. In systems of prolate HBPs, we observed larger deviations of the total

NGP in I phases rather than in NU phases, even though I suspensions are less packed.

By further investigating the possible origin of this interesting behaviour, we noticed

that, in dense I phases, HBPs form nematic-like randomly-oriented clusters, whose size

and morphology depends on particle anisotropy. We believe that the presence of these

clusters determine significant deviations from Gaussian dynamics.
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4.S1 Pair correlation functions

In this section are reported the relevant HBP - HBP and HBP - HS pair correlation func-

tions for all the systems investigated. As expected, all the distributions do not show any

preferential ordering of both the HBPs and the HSs, as all the functions fluctuate close

to unity and decay at short distances.
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Figure 4.11: HBP - HBP (straight line) and HBP - HS (dashed line) pair correlation func-
tions, obtained from NU phases of HBPs with 𝑊 ∗ = 1 (frames (a) and (c)) and 𝑊 ∗ = 8
(frames (b) and (d)), both at packing fraction 𝜂 = 0.340. Frames (a) and (b) show the
pair correlation functions in the direction parallel to �̂� of the correspondent phases. The
perpendicular pair correlation functions are shown in frames (c) and (d).
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(b)), both at packing fraction 𝜂 = 0.150.
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4.S2 Snapshot of equilibrated LC phases

This section contains snapshots of equilibrated systems of HBPs and HSs, for both pro-

late and oblate HBPs organised in I and NU phases. Magnification of the configurations

in insets show spherical tracers diffusing in the bath HBPs.

(a) (b)

(c) (d)

Figure 4.13: Snapshots of equilibrated systems of HSs and HBPs with 𝑊 ∗ = 1 in I phase
(a), andN+

U phase (c) and HBPs with𝑊 ∗ = 8 in I phase (b) andN−
U phase (d). Magnification

insets show spherical tracers dispersed in the host phase of HBPs. Both I systems have
packing fraction 𝜂 = 0.15, while both NU systems have 𝜂 = 0.34.
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4.S3 MSDs and NGPs of HBPs and HSs along the Cartesian axes

Figs. 4.14 and 4.15 display MSDs and NGPs of HBPs and HSs in isotropic phases of oblate

and prolate HBPs. In all the cases, both the MSD and the NGP along the three box axes

follow the same trend, proving the isotropy of the displacement of all the particles.
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Figure 4.14: MSDs (top frames) and corresponding NGPs (bottom frames) of HBPs in
I phases of HBPs with 𝑊 ∗ = 1 and 𝑊 ∗ = 8, both at packing fraction 𝜂 = 0.150. Both
MSDs and NGPs are computed and shown for different directions: empty triangles (△) for
displacements along �̂�, solid circles (∙) along �̂� and empty squares (□) along �̂� reference
axis. Solid lines in panels (a-b) indicate the expected dependence of MSD on time in
Fickian diffusion.
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Figure 4.15: MSDs (top frames) and corresponding NGPs (bottom frames) of HSs in I
phases of HBPs with 𝑊 ∗ = 1 and 𝑊 ∗ = 8, both at packing fraction 𝜂 = 0.150. Both
MSDs and NGPs are computed and shown for different directions: empty triangles (△) for
displacements along �̂�, solid circles (∙) along �̂� and empty squares (□) along �̂� reference
axis. Solid lines in panels (a-b) indicate the expected dependence of MSD on time in
Fickian diffusion.
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4.S4 Nematic-like clusters in I phases of HBPs

Fig. 4.16 shows the probability distribution of the orientation of the nematic-like clusters

with respect to the box reference axes, in I phases of HBPs with 𝑊 ∗ = 1 and 𝑊 ∗ = 8 at

different packing fractions. The distribution are reported as function of |𝑐𝑜𝑠𝜃| because of

the symmetry of the cuboid with respect to its three axes of orientation. All the distri-

butions are close to unity, proving that the cluster do not have a preferential orientation

for all cases. Frames (a-c) in Fig. 4.17 display clusters of oblate HBPs found in an I phase

at 𝜂 = 0.20.
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Figure 4.16: Probability density distribution of the orientation of the nematic-like clus-
ters with respect to the box axes �̂� (straight line), �̂� (dashed lines) and �̂� (dotted lines), in
I phases of HBPs with 𝑊 ∗ = 1 and 𝑊 ∗ = 8, at packing fractions 𝜂 = 0.07, 0.15, 0.20.
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(a) (b) (c)

Figure 4.17: Snapshots of HBPs with 𝑊 ∗ = 8 in I phase with packing fraction 𝜂 = 0.20.
While clusters of 5 (a), 10 (b) and 14 (c) HBPs are highlighted in dark green, the remaining
particles are represented as small light green cubes.
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Chapter 5

Kinetics of Isotropic to String-Like
Phase Switching in Electrorheological
Fluids of Nanocubes
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Daza and Alessandro wrote the original draft and reviewed and edited the draft.

Abstract

Applying an electric field to polarisable colloidal particles, whose permittivity differs from

that of the dispersing medium, generates induced dipoles that promote the formation of

string-like clusters and ultimately alter the fluid mechanical and rheological properties.

Complex systems of this kind, whose electric-field-induced rheology can be manipulated

between that of viscous and elastic materials, are referred to as electrorheological fluids. By

dynamic Monte Carlo simulations, we investigate the dynamics of self-assembly of dielectric

nanocubes upon application of an electric field. Switching the field on induces in-particle

dipoles and, at sufficiently large field intensity, leads to string-like clusters of variable length

across a spectrum of volume fractions. The kinetics of switching from the isotropic to the

string-like state suggests the existence of two mechanisms, the first related to the nucle-

ation of chains and the second to the competition between further merging and separation.

We characterise the transient unsteady state by following the chain length distribution and
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analysing the probability of transition of nanocubes from one chain to another over time.

Additionally, we employ passive microrheology to gain an insight on the viscoelastic be-

haviour of the suspension in the isotropic state, in the field-off scenario.

5.1 Introduction

In his 1949 seminal paper, Winslow demonstrated that the application of an electric field

to high-dielectric-constant particles dispersed in low-viscosity oils induces their self-

assembly in fibrous filaments, with dramatic changes in the rheological properties (e.g.,

shear modulus, viscosity, yield stress) of the suspension [1]. These systems, generally

referred to as electrorheological (ER) fluids, are a class of smart soft materials that can

adapt their viscoelasticity in response to an electric field of a given intensity. Due to

their relatively simple manufacturing, significant responsiveness to external stimuli and

reversible recovery, ER fluids are especially suitable for industry-relevant applications,

such as damping systems, microfluidics, tactile displays, where an abrupt change in ma-

terial rheology is required [2, 3, 4].

As originally predicted by Clausius [5] and Mossotti [6], the application of an ex-

ternal electric field generates an induced dipole in non-conducting suspended parti-

cles when their dielectric constant differs from that of the dispersing medium. Un-

der these circumstances, particles polarise and tend to align with each other and with

the direction of the electric field [7]. The effect of external fields on suspensions of

spherical particles has been extensively investigated by experiments [8, 9, 10, 11, 12]

and simulations [13, 14, 15, 16, 17, 18]. Thanks to recent advances in chemical [19],

physical [20] and biosynthetic [21] techniques for the synthesis of anisotropic parti-

cles [22, 23, 24, 25, 26, 27, 28], which were key to discover new phases either driven

by simple excluded-volume effects [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] or induced

by external stimuli [40, 41, 42, 43, 44], electrorheology has been extended to more ex-

otic colloidal suspensions [45, 46, 47]. Polarisation has then been employed to explore

the fabrication of an intriguing family of novel materials, termed colloidal polymers,

where a field-induced alignment of particles in polymer-like chains of tunable flexibility

is subsequently made permanent even when the field is switched off [48, 49]. Most of

the work on colloidal polymers and, more generally, on ER fluids has so far explored
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suspensions of spherical particles, with very few exceptions. One of these exceptions is

the very recent experimental work by Cai and co-workers who prepared colloidal poly-

mers of micron-sized 𝛼-Fe2O3 cubes combining dipolar-directed assembly and in situ

hydrolysis-condensation of tetraethylorthosilicate [50]. Despite the widespread interest

in ER fluids of colloidal spheres, particle shape definitely plays a crucial role in the ki-

netics of clustering as well as in the resulting rheology of the suspension, thus opening

the path to novel materials with tunable properties.

We have recently developed a stochastic method to mimic the dynamics of Brownian

particles via standard Markov Chain Monte Carlo (MC) simulations with specific settings

on the particle elementary moves. This method, referred to as dynamic Monte Carlo

(DMC), allows one to implement discontinuous interaction potentials and generate time

trajectories in equilibrium or over transitory unsteady states [51, 52, 53, 54, 55, 56, 57].

In this work, we apply a novel DMC technique to assess the response of a suspension of

perfect hard dielectric nanocubes under the application of an electric field. At sufficiently

low volume fraction and moderate field strength, colloidal hard nanocubes are expected

to assemble into string-like clusters, as predicted by equilibrium MC simulations and

observed experimentally [58]. While the phase behaviour of these ER fluids has been

well documented, very little attention has been given to the kinetics of such an isotropic

to string-like phase switching and to its impact on the viscoelastic properties of the

material. To bridge this gap, here we investigate the responsiveness of nanocubes to the

application of an electric field and compute the time scales associated to the formation of

these chains and their length distribution. Additionally, we apply passive microrheology

(MR) to infer, from the computation of the mean square displacement of a free-diffusing

tracer, the elastic and viscous moduli of the suspension of nanocubes in the field-off

scenario. While at low dilution, the motion of the tracer is unaffected by the presence

of the surrounding particles, at higher concentration of nanocubes 𝜂 = 0.2, the analysis

showed a typical predominantly viscous behaviour of the suspension at all frequencies.
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5.2 Computational methodology

5.2.1 Model

We set the length of a cube edge 𝜎, the reciprocal of the thermal energy 𝛽 ≡ 1/𝑘B𝑇 , with

𝑘B the Boltzmann constant and 𝑇 the absolute temperature, and the solvent viscosity

𝜇 as system units. It follows that time has units 𝜏 ≡ 𝛽𝜇𝜎3. Polarised cubes are mod-

eled via hard core interactions, and the induced dipole-dipole interaction between their

centers of mass is considered only in the presence of an electric field. We apply an algo-

rithm based on the separating axis theorem to detect overlaps between two nanocubes

[59]. Hard core models neglect more complex phenomena of anisotropic interactions,

observed in simulations and experiments of dielectric nanocubes with electric double

layers, where the type of the solvent and the salt concentration proved to have a role in

the preferential relative orientation as they get closer to each other [60].

We modelled the induced polarisation of the cubic particles using a point-dipole ap-

proximation, i.e., 𝐩𝑖 = 𝛼𝐸0�̂� = 𝑝�̂�, where 𝑝 is the magnitude of the dipole moment, 𝛼

the particle polarizability and 𝐸0�̂� the external field. The point dipole approximation has

been proven to successfully mimic the phase behaviour of polarised cubes at different

densities and strengths of the external electric fields. The Clausius-Mossotti relationship

is used to express the particle polarizability:

𝛼 = 3𝑉𝑝𝜖𝑜𝜖𝑠 (
𝜖𝑝 − 𝜖𝑠
𝜖𝑝 + 2𝜖𝑠)

=
3𝑉𝑝𝜖𝑠
4𝜋𝑘 (

𝑎 − 1
𝑎 + 2)

(5.1)

where 𝑘 ≡ 1/(4𝜋𝜖0) is the Coulomb constant, set as unit in our simulations, 𝑉𝑝 = 𝜎3 is

the volume of one cubic particle, 𝜖0 is the vacuum permittivity and 𝑎 = 𝜖𝑝/𝜖𝑠 the ratio

between permittivities of the particles and the solvent [5, 6, 61]. The dipolar interaction

between two dipoles is:

𝑢𝑖𝑗 ,𝑑𝑖𝑝 = −
𝑘
𝜖𝑠
3(𝐩𝑖 ⋅ �̂�𝑖𝑗)(𝐩𝑗 ⋅ �̂�𝑖𝑗) − 𝐩𝑖 ⋅ 𝐩𝑗

𝑟3𝑖𝑗
, (5.2)

where 𝑟𝑖𝑗 �̂�𝑖𝑗 is the distance vector between particles 𝑖 and 𝑗 . One can simplify Eq. 5.2

considering that 𝐩𝑖 ⋅ 𝐩𝑗 = 𝑝2 and 𝐩𝑖 ⋅ �̂�𝑖𝑗 = 𝐩𝑗 ⋅ �̂�𝑖𝑗 = 𝑝 cos(𝜃𝑖𝑗), where cos(𝜃𝑖𝑗) = �̂� ⋅ �̂�𝑖𝑗 . We

can finally express Eq. 5.2 as a function of a dimensionless interaction parameter 𝛾 , as
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already defined in the work by Vutukuri et al. [58]:

𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝(𝑟𝑖𝑗 , 𝜃𝑖𝑗) =
𝛾
2(

𝜎
𝑟𝑖𝑗)

3

[1 − 3 cos2(𝜃𝑖𝑗)], (5.3)

where

𝛾 =
2𝑘𝛽𝑝2

𝜖𝑠𝜎3 . (5.4)

Fig. 5.1 shows a schematic representation of the model dipolar interaction described by

Eq. 5.3, while Table 5.1 lists the units of the physical quantities used in this work.

Quantity Units

Length of cube edge 𝜎
Solvent viscosity 𝜇

Thermodynamic beta 𝛽 ≡ 1/(𝑘𝐵𝑇 )
Time 𝜏 ≡ 𝛽𝜇𝜎3

Frequency 1/𝜏
Translational diffusivity 𝜎2/𝜏

Rotational diffusivity rad2/𝜏
Pressure 1/(𝛽𝜎3)

Coulomb constant 𝑘 ≡ 1/(4𝜋𝜖0)
Magnitude of dipole moment

√
𝜎3/(𝛽𝑘)

Polarizability 𝜎3/𝑘
Intensity of external field

√
𝑘/(𝛽𝜎3)

Table 5.1: List of units used in this work.

Figure 5.1: Model of dipolar interactions between nanocubes. The interaction potential
𝑢𝑖𝑗 ,𝑑𝑖𝑝(𝑟𝑖𝑗 , 𝜃𝑖𝑗) depends on the module of the vector 𝐫𝑖𝑗 between the centers of mass of
particle 𝑖 and 𝑗 , and 𝜃𝑖𝑗 , i.e., the angle between 𝐫𝑖𝑗 and the external field with orientation
�̂�.

Since simulations are performed in boxes with periodic boundaries, we employ the

Ewald summation method for dipolar interactions to compute the long range contribu-
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tions to the system’s energy [62]. In all simulations with field on, 𝛾 is set equal to 13. At

this field intensity, one can observe the formation of isolated strings that do not perco-

late through the simulation box and do not cluster. For this value of the dipole-dipole

interaction strength, Vutukuri et al. [58] determined that no phase transition has been

observed within the packing fractions we investigated.

For simulations of passive microrheology, where a spherical probe is added to the

suspension of nanocubes, the external field is kept off and only hard-core interactions

between the tracer and the cubic particles are considered. For each trial move of the

tracer, collisions between the sphere and the cubes are checked by using the OCSI algo-

rithm [63].

5.2.2 Dynamic Monte Carlo simulations

We perform simulations in the 𝑁𝑉𝑇 ensemble using the dynamic Monte Carlo (DMC)

technique to investigate the Brownian motion of nanocubes. Each trial consists of one

translation of the center of mass and one body-centered rotation of a randomly selected

particle. Random moves are sampled uniformly within [−𝛿𝜉𝑘, 𝛿𝜉𝑘], where 𝛿𝜉𝑘 are defined

by the Einstein relation

𝛿𝜉2𝑘 = 2𝐷𝑘𝑘𝛿𝑡MC, (5.5)

being 𝐷𝑘𝑘 the diagonal element of the diffusion tensor of the particle, and 𝛿𝑡MC the MC

timescale of the particle. One time step in our simulations corresponds to 1 MC cycle

(𝑁 attempts to displace particles). In out-of-equilibrium DMC simulations, the physical

time is recovered using Eq. 5.6

𝑡BD = 𝛿𝑡MC

CMC

∑
𝑐=0

A𝑐

3
, (5.6)

where A𝑐 indicates the average acceptance of trial moves in one MC cycle, and CMC the

total number of MC cycles simulated [53]. We note that if the system is at equilibrium,

the acceptance rate is constant over the the entire simulation and Eq. 5.6 can be further

simplified to

𝑡BD =
A

3
𝛿𝑡MCCMC. (5.7)
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Particles with different sizes and shapes exhibit different diffusivities and acceptance

rates. Accordingly, since every particle holds its own MC timescale, they all have to be

balanced with their respective acceptance rates to recover a unique timescale. In our

microrheology simulations, 𝛿MC,𝑠𝑝ℎ𝑒𝑟𝑒 and 𝛿MC,𝑐𝑢𝑏𝑒 are balanced using Eq. 5.8

A𝑠𝑝ℎ𝑒𝑟𝑒𝛿𝑡MC,𝑠𝑝ℎ𝑒𝑟𝑒 = A𝑐𝑢𝑏𝑒𝛿𝑡MC,𝑐𝑢𝑏𝑒. (5.8)

As in this case the systems are in equilibrium, A𝑠𝑝ℎ𝑒𝑟𝑒 and A𝑐𝑢𝑏𝑒 will be constant over

time. The validity of Eq. 5.8 is ensured before running the DMC simulations by fixing

one timescale and recalculating the other one using the estimated acceptance rate in a

preliminary trial-and-error simulation [52, 64].

The dynamics and kinetics of string formation are investigated by performing sim-

ulations of a system of 𝑁𝑐𝑢𝑏𝑒 = 1500 nanocubes in cubic simulation boxes with periodic

boundary conditions, at packing a fraction 𝜂 = 0.02. We perform 30 independent simu-

lations, setting 𝛿𝑡MC,𝑐𝑢𝑏𝑒 = 10−3 𝜏. The diffusion tensor of the cube is estimated using the

software Hydro++ [65], from which we obtain translational and rotational diffusivities,

𝐷𝑡,𝑐𝑢𝑏𝑒 = 8.35 × 10−2 𝜎2𝜏−1, and 𝐷𝑟 ,𝑐𝑢𝑏𝑒 = 1.48 × 10−1 rad2𝜏−1. We simulate 3 consecutive se-

quences over which the external electric field is turned on and off. In a single sequence,

starting from a perfect isotropic phase (field off), the external field is switched on for

2×106 time steps and then turned off for 3 × 105 time steps.

The study of microrheology is performed in suspensions of 𝑁𝑐𝑢𝑏𝑒 = 1500 cubes of

side 𝜎 and 1 spherical tracer with diameter 𝑑𝑠𝑝ℎ𝑒𝑟𝑒 = 3𝜎 at a packing fraction 𝜂 = 0.2,

at equilibrium states when the external field is off. The diffusivity of the tracer at infi-

nite dilution is 𝐷𝑡,𝑠𝑝ℎ𝑒𝑟𝑒 = (1/9𝜋)𝜎2𝜏−1, and attempted moves to displace it are sampled

through trial translations in all the tree spatial directions. We set the nanocubes time

step to 𝛿𝑡MC,𝑐𝑢𝑏𝑒 = 5.0 × 10−3 𝜏 and perform preliminary equilibration runs to recover

𝛿𝑡MC,𝑠𝑝ℎ𝑒𝑟𝑒,𝑂𝐹𝐹 = 5.307 × 10−3 𝜏 according to Eq. 5.8. We compute the rheological proper-

ties of the host phase from 1000 independent trajectories of the system.

5.2.3 Structural properties

The positional pair correlation functions are employed to investigate the structural prop-

erties of the suspension. Due to the system’s anisotropy, we decompose the analysis
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in the direction parallel and perpendicular to the external field. We define 𝑟𝑖𝑗 = ‖𝐫𝑖𝑗 ‖,

𝑟𝑖𝑗 ,∥ = |𝐫𝑖𝑗 ⋅ �̂�| and 𝑟𝑖𝑗 ,⟂ = ‖𝐫𝑖𝑗 −(𝐫𝑖𝑗 ⋅ �̂�)�̂�‖ as the moduli of the relative distance between par-

ticles 𝑖 and 𝑗 for the total, parallel and perpendicular directions to the field, respectively.

The generic definition of positional pair correlation function is

𝑔𝜁 (𝑟) =
⟨

𝑁
∑
𝑖=1

∑
𝑗≠𝑖

𝟏𝜁 (𝐫𝑖𝑗)⟩
𝑁𝑣𝜁𝜌

, (5.9)

where 𝜁 is a portion of the simulation box and 𝟏𝜁 is an indicator function defined as

follows

𝟏𝜁 =
{
1 𝐫𝑖𝑗 ∈ 𝜁 ,

0 𝐫𝑖𝑗 ∉ 𝜁 ,
(5.10)

the double sum in the angle brackets of Eq. 5.9 counts the number of particles 𝑗 contained

in 𝜁 with respect to a reference particle 𝑖, for all the particles 𝑖 in the system. The angle

brackets define an average over the configurations analyzed, while 𝑣𝜁 is the volume of

𝜁 . 𝑁 is the total number of particles in the system and 𝜌 the average numeral density,

i.e., 𝜌 = 𝑁/𝑉 . The following Table lists the definitions of 𝜁 and 𝑣𝜁 for all the positional

pair correlation functions computed:

Function symbol 𝜁 𝑣𝜁

𝑔(𝑟) 𝑟 ≤ 𝑟𝑖𝑗 < 𝑟 + Δ𝑟 4𝜋[(𝑟 + Δ𝑟)3 − 𝑟3]/3
𝑔∥(𝑟) 𝑟 ≤ 𝑟𝑖𝑗 ,∥ < 𝑟 + Δ𝑟 ⋂ ≤ 𝑟𝑖𝑗 ,⟂ < 𝑅∥ 𝜋𝑅2

∥Δ𝑟
𝑔⟂(𝑟) 𝑟 ≤ 𝑟𝑖𝑗 ,⟂ < 𝑟 + Δ𝑟 ⋂ ≤ 𝑟𝑖𝑗 ,∥ < ℎ⟂ 𝜋[(𝑟 + Δ𝑟)2 − 𝑟2]ℎ⟂

Table 5.2: Definition of positional pair correlation functions used in this work.

We analysed the structure of the suspension with field off using the classical radial distri-

bution function 𝑔(𝑟), whose corresponding 𝑣𝜁 is the volume of a hollow sphere of radii 𝑟

and 𝑟+Δ𝑟 [66]. To assess the formation of chains when the field is applied, we computed

𝑔∥(𝑟) and 𝑔⟂(𝑟). 𝑔∥(𝑟) is the parallel pair correlation function, and its corresponding 𝑣𝜁 is

the volume of a cylinder with radius 𝑅∥ and height Δ𝑟 . 𝑔⟂(𝑟) is the perpendicular pair

correlation function, and its corresponding 𝑣𝜁 is the volume of a cylindrical annulus of

height ℎ⟂ and thickness Δ𝑟 [67, 68].

We assess the degree of orientational order with respect to the field by computing

a specific uniaxial order parameter for each particle 𝑖, that takes into account the cubic
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symmetry of the particles

𝑆𝑖 =
𝜋(3max ((�̂� ⋅ �̂�𝑘,𝑖)2) − 1) − 2

√
3

2𝜋 − 2
√
3

, (5.11)

where �̂�𝑘,𝑖 are the three axes of orientation of particle 𝑖, for 𝑘 = 1, 2, 3. A detailed proof

for the normalisation of the order parameter is reported in Section 5.S2 of the Supporting

information. Since, by definition, each 𝑆𝑖 does not depend on the orientation of particles

𝑗 ≠ 𝑖, we could compute different order parameters depending on the set of particles

considered for the average: the total order parameter is obtained by averaging over all

the cubes in the system, i.e., 𝑆(𝑡𝑜𝑡) = ⟨𝑆𝑖⟩∀𝑖; the average order parameter of cubes that

belong to chains is 𝑆(𝑐) = ⟨𝑆𝑖⟩∀𝑖∈𝑐, for 𝑐 the set of cubes in clusters.

To investigate the formation of string-like structures we perform a cluster analysis

on the simulated trajectories. Given that 𝛽𝑢𝑚𝑎𝑥 is our choice of the threshold energy

for the cluster definition, two polarised cubes 𝑖 and 𝑗 are considered to form a cluster

if 𝑢𝑖𝑗 ,𝑑𝑖𝑝 ≤ 𝑢𝑚𝑎𝑥 . The cluster analysis of the trajectories is performed following the al-

gorithm described by Sevick and co-workers [69]. To properly optimize the threshold

parameter 𝛽𝑢𝑚𝑎𝑥 , we apply a density-based clustering algorithm to independent configu-

rations of cubes in the string-like state. A detailed description of the method is reported

in Section 5.S1 of the Supporting information. From the cluster analysis, we estimate

the number of clusters of size 𝑙 at time 𝑡, 𝑁 (𝑙, 𝑡). The molar fraction of strings of size 𝑙

(free cubes are labeled as 𝑙 = 1) reads

𝑋 (𝑙, 𝑡) =
𝑁 (𝑙, 𝑡)
𝑁𝑐𝑢𝑏𝑒

. (5.12)

From the above expression we can recover the molar fraction of cubes that belong to

strings as 𝑋𝑐 = ∑∞
𝑙=2 𝑙𝑋 (𝑙, 𝑡). Numerical and weighted average chain lengths read

⟨𝑙⟩𝑛(𝑡) =

∞
∑
𝑙=2

𝑙𝑁 (𝑙, 𝑡)
∞
∑
𝑙=2

𝑁 (𝑙, 𝑡)
(5.13)

⟨𝑙⟩𝑤(𝑡) =

∞
∑
𝑙=2

𝑙2𝑁 (𝑙, 𝑡)
∞
∑
𝑙=2

𝑙𝑁 (𝑙, 𝑡)
. (5.14)
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5.2.4 Microrheological properties

In passive microrheology, the viscoelastic properties of complex systems can be com-

puted from the MSD of a tracer particle embedded in the host phase [70, 71, 72, 73, 74].

More specifically, according to Mason [72], the complex shear modulus 𝐺∗(𝜔) = 𝐺′(𝜔)+

𝑖𝐺′′(𝜔), where 𝐺′(𝜔) and 𝐺′′(𝜔) are the elastic and viscous moduli, respectively, can be

written as

|𝐺∗(𝜔)| =
2𝜎3

𝜋𝑑𝑠𝑝ℎ𝑒𝑟𝑒⟨Δ𝑟2𝑡 (1/𝜔)⟩Γ[1 + 𝜒 (𝜔)]
1

𝛽𝜎3 , (5.15)

where 𝜒 (𝜔) = 𝑑 ln(Δ𝑟2𝑡 (𝑡))/𝑑 ln(𝑡)|𝑡=𝜔−1 indicates the local exponent of tracer’s MSD , Γ

is the gamma function and the modulus is in units of pressure, expressed as 1/(𝛽𝜎3).

Consequently, the elastic and viscous moduli are computed as follows

𝐺′(𝜔) = |𝐺∗(𝜔)| cos(
𝜋𝜒 (𝜔)

2 ) (5.16)

𝐺′′(𝜔) = |𝐺∗(𝜔)| sin(
𝜋𝜒 (𝜔)

2 ) . (5.17)

While in a viscous system the motion of the particles is mainly diffusive (𝜒 (𝜔) ≈ 1)

and 𝐺′′(𝜔) is larger than 𝐺′(𝜔), in a elastic system the tracer motion is hindered by

the local distribution of surrounding bath particles (𝜒 (𝜔) ≪ 1) and 𝐺′(𝜔) dominates

over 𝐺′′(𝜔). It should be pointed out that in addition to the Fourier approximation,

other methods have been proposed to calculate the viscoelastic response of the bath from

the tracer dynamics, including Laplace transform [70] and compliance-based [73, 74]

methods among others. In Fig. 5.12 of the Supporting information, we compare the

viscoelastic moduli calculated from the Fourier-based method (Eqs. 5.15-5.17) and the

compliance approach proposed by Evans et al. [73] and show that they are in excellent

quantitative agreement.

5.3 Results and discussion

In the following, we first discuss the effect of applying an electric field to a suspension

of polarisable nanocubes and what structural changes it determines. Then, we analyse

the nanocubes’ dynamics in the transitory unsteady state to gain an insight into the

mechanisms underpinning the process of formation of chains. Finally, we employ pas-
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sive MR to infer the local viscoelastic behaviour of our model ER fluid in the case where

no external stimuli are applied. As a reference system, we consider a suspension of hard

nanocubes, whose packing fraction vs field intensity phase diagram has been calculated

by MC simulations by Dijkstra and co-workers [58].

5.3.1 Effect of external field on system conformation

Fig. 5.2 shows the time evolution of the molar fraction 𝑋𝑐 of nanocubes in string-like

clusters, and the uniaxial order parameter 𝑆(𝑡𝑜𝑡) averaged over all nanocubes, for three

on/off field-switching cycles, at 𝜂 = 0.02 and 𝛾 = 13. This order parameter is specifically

proposed for particles with cubic symmetry (see Eq. 5.11). To identify the nanocubes
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Figure 5.2: Average molar fraction of nanocubes in chains (𝑋𝑐) and uniaxial order pa-
rameter (𝑆(𝑡𝑜𝑡)) over three on/off switching cycles. The inset depicts the average uniaxial
order parameter that only considers the nanocubes in chains (𝑆(𝑐)), for the first on/off
cycle (from 𝑡 = 0 to 600 𝜏). The packing fraction and field strength are 𝜂 = 0.02 and
𝛾 = 13, respectively.

belonging to the same cluster, we define an energy-based cluster criterion whose optimal

parameterization was achieved via a density-based cluster analysis (see Methods and

Section 5.S1 of Supporting information). When the external field is switched on, 𝑋𝑐

increases up to ∼ 0.50, indicating that nearly half of the nanocubes are assembled in

strings. The clustering is completed at a response time 𝑡𝑟 ≈ 150 𝜏. We notice that, when

the field is off, nanocubes displace an average distance approximately equal to 9𝜎 over

the same period of time. This suggests that, in terms of the nanocubes’ ability to diffuse

in an isotropic phase, the response time 𝑡𝑟 is relatively long.

Fig. 5.3 shows a typical snapshot of the system in the string-like state, with the strings

of nanocubes oriented along �̂�. Most string-like clusters comprise between 2 and 4

nanocubes, while longer chains are less likely to be observed. Our simulation results
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Figure 5.3: Suspensions of 𝑁𝑐𝑢𝑏𝑒 = 1500 nanocubes upon the application of an external
electric field. The orientation of the field �̂� is shown with a black arrow on the top right
of the Figure. Blue chains contain less than 6 nanocubes, while red chains contain at
least 6 of them. Isolated nanocubes are shown in green and reduced in size for clarity.
Packing fraction and field strength are 𝜂 = 0.02 and 𝛾 = 13, respectively.

also reveal the presence of isolated nanocubes (reduced in size for clarity in Fig. 5.3) that

are free to assume random orientations with respect to the field direction, in agreement

with former experiments and simulations [58]. In Fig. 5.2, we compare the total uniaxial

order parameter 𝑆(𝑡𝑜𝑡) with the same parameter averaged exclusively over particles that

belong to strings 𝑆(𝑐) (see inset). In particular, 𝑆(𝑐) = ⟨𝑆𝑖⟩𝑖∈𝑐 is defined as the average

contribution of particles in chains to 𝑆(𝑡𝑜𝑡), while 𝑆(𝑓 𝑟𝑒𝑒) = ⟨𝑆𝑖⟩𝑖∈𝑓 𝑟𝑒𝑒 is the contribution of

free nanocubes. According to Fig. 5.2, during the switching on, the nanocubes in chains

(𝑋𝑐 ∼ 50%) lead to 𝑆(𝑐) ∼ 0.50 whereas 𝑆(𝑡𝑜𝑡) ∼ 0.25. Thereby, the contribution of free

particles (𝑆(𝑓 𝑟𝑒𝑒)) to 𝑆(𝑡𝑜𝑡) is negligible since 𝑆(𝑡𝑜𝑡) ≈ (𝑆(𝑐) + 𝑆(𝑓 𝑟𝑒𝑒))/2 ≈ 𝑆(𝑐)/2. One should

notice that the dipolar interaction only depends on the distance between nanocubes and

not on their space orientation. However, this interaction becomes very attractive when

the nanocubes are face-to-face piled, minimizing their mutual distance and thus forming

strings aligned with 𝐄 as shown in Fig. 5.3.

When the field is switched off the system relaxes nearly instantaneously from the

string-like state. At equilibrium, the isotropic configurations where both 𝑋𝑐 ≈ 0 and

𝑆𝑐 ≈ 0 are fully recovered. Their sudden decay is due to the approximations in our model,

where the particle polarisation is assumed to be exclusively triggered by the external

field. It is worth noting that a more general definition of particle polarisation should

involve the contributions of both the external field and the particle-particle polarisation

i.e., 𝐩𝑖 = 𝛼(𝐄 + ∑𝑖≠𝑗 𝐄𝑗). Nevertheless, the approximation 𝐩 = 𝛼𝐄 is often found in
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simulations of ER fluids [14, 15, 75, 12]. Incorporating both local and external fields into

the particles’ dynamics would require either the inversion of a 3𝑁 ×3𝑁 matrix or the use

of iterative procedures [76, 77, 78], resulting in very demanding calculations. However,

we notice that, for moderate electric fields, simulations of dilute ER fluids of spheres

reveal that the particle-particle polarisation may contribute up to 5% of the total dipole

moment, and no tangible effects on dynamics are reported [18].

One may suggest that point-dipole approximations play a role in determining the

dynamics of cubes when an electric field is applied. Vutukuri et al. estimated the en-

ergy differences for pairs of aligned and misaligned cubes at face-to-face contact, being

discretized in smaller cubes each containing one point dipole [58]. These authors found

that energy differences level off to a limiting value of 0.01𝛾𝑘B𝑇 and, when comparing

simulation results on single point-dipole cubes to those on multiple point-dipole cubes,

they did not observe any notable difference in cubes alignment for field intensities below

𝛾 = 30. Moreover, Kwaadgras et al. applied the Couple Dipole Method to estimate the

exact self-consistent dipolar interaction between two axis-aligned cubes polarised by an

external field, as a function of their relative position in space, and compared it to the

two aforementioned models [79]. Both single and multiple point-dipole approximations

showed similar discrepancies with respect to the exact model of interaction, underesti-

mating attraction and overestimating repulsion. In conclusion, according to the findings

reported in these works, the point-dipole approximation used here is not expected to

be determinant in the formation of chains, at least for the field strength investigated in

this work. Nonetheless, a more detailed description of the potential may highlight in-

triguing anisotropic phenomena occurring in the dynamics of cubes, especially at short

distances, that cannot be observed when modelling the polarisation as a point-dipole.

5.3.2 Structural properties at equilibrium

The structural organisation of nanocubes in suspension is inferred from the pair correla-

tion functions parallel (𝑔∥(𝑟)) and perpendicular (𝑔⟂(𝑟)) to the electric field. In Fig. 5.4, we

present 𝑔∥(𝑟) and 𝑔⟂(𝑟). For comparison, we also include the radial distribution function,

𝑔(𝑟), of the nanocubes in the isotropic phase, that is when the electric field is off. The

peaks observed in 𝑔∥(𝑟) indicate a strong ordering of particles at short distances, aris-

ing from the piling of nanocubes on top of each other and the subsequent formation of
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Figure 5.4: Pair correlation functions of nanocubes in the presence of an external field, in
the direction parallel (blue line) and perpendicular (red line) to the field. For comparison,
the radial distribution function when the field is off is also shown in the inset.

string-like structures oriented along �̂�. This order vanishes for 𝑟 > 6𝜎, suggesting that

the occurrence of strings comprising more than 6 nanocubes is very unlikely. Moreover,

we confirm that the string-like clusters do not percolate through the box boundaries,

as 𝑔∥(𝑟) decays at distances 𝑟 < 𝑙𝑏𝑜𝑥/2, with 𝑙𝑏𝑜𝑥 ∼ 42.2𝜎 the box length. By contrast,

no structural order is observed in the perpendicular direction. Since 𝑔⟂(𝑟) < 1 at short

distances, the chains are usually separated from each other and from isolated nanocubes

by a long distance. Consequently, at 𝜂 = 0.02 and 𝛾 = 13 the suspension is characterised

by strong density heterogeneities that are not found in the isotropic phase, as illustrated

by 𝑔(𝑟) in the inset of Fig. 5.4.

5.3.3 Dynamics of chain formation in transitory state

In this section, we study the kinetics of string formation. To this end, we estimate the 2-

particle connectivity with the aid of an energy threshold parameter, 𝛽𝑢𝑚𝑎𝑥 = −3.2. More

specifically, two nanocubes 𝑖 and 𝑗 are considered to be connected if 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 < 𝛽𝑢𝑚𝑎𝑥 . The

cluster parameter 𝛽𝑢𝑚𝑎𝑥 has been calculated by applying a density-based cluster analysis

(DBSCAN) [80, 81] on equilibrated configurations of strings of nanocubes. Details of

these calculations are given in Section 5.S1 of Supporting information.

Fig. 5.5 reports the results obtained from the cluster analysis in suspensions of nano-

cubes at 𝜂 = 0.02 starting from an isotropic phase (field off) and ending into a phase of

string-like clusters (field on). Numerical (Eq. 5.13) and weighted (Eq. 5.14) averaged chain

lengths are reported in Fig. 5.5(a). Similarly, Fig. 5.5(b) presents the time dependence of

the molar fraction of chains whose length ranges between 𝑙 = 2 and 𝑙 = 7. At short

128



2.0

2.5

3.0

3.5

4.0

4.5

5.0

⟨l⟩
n
(t
),
⟨l⟩

w
(t
)

X
(l
,t
)

t/τ

(a)

0.00

0.02

0.04

0.06

0.08

0.10

1 10 100

(b)

10−6

10−5

10−4

10−3

10−2

10−1

1

1 5 10 15 20 25

X
e
q
(l
)

l

(c)

∝ 10−0.2 l

1

5

10

15

20

25

1 5 10 15 20 25

t = 16 τ

l(
c′
)

l(c)

(d)

1

5

10

15

20

25

1 5 10 15 20 25

t = 300 τ

(e)

l(
c′
)

l(c)

      

      

   

   

   

   

   

   

⟨l⟩n
⟨l⟩w

l = 2

l = 3

l = 4

l = 5

l = 6

l = 7

10−6

10−5

10−4

10−3

10−2

10−1

1

10−6

10−5

10−4

10−3

10−2

10−1

1

Figure 5.5: (a) Profiles of numerical (⟨𝑙⟩𝑛(𝑡)) and weighted (⟨𝑙⟩𝑤(𝑡)) average chain lengths
over time, for the isotropic (field off) to string-like (field on) phase. (b) Time dependent
profiles of molar fractions of chains of length 2 ≤ 𝑙 ≤ 7, starting from the isotropic phase
and switching the field on. (c) Equilibrium distribution of molar fraction of chain lengths
in the string-like state from simulations (red points), together with the exponential decay
obtained by nonlinear regression of data (black solid line). (d, e) Probability transition
matrix of a nanocube moving from an initial cluster 𝑐 of size 𝑙(𝑐) to a cluster 𝑐′ of size
𝑙(𝑐′) after 0.3 𝜏, (d) at time 16 𝜏, corresponding to the maximum of 𝑋 (2, 𝑡) and (e) at 300 𝜏,
when the system reaches the string-like state. Transition probabilities lower than 10−6
are in white.

times (𝑡/𝜏 < 1), strings of sizes 2 and 3 are more likely to form. While the concentration

of these short strings displays a local maximum at intermediate times (10 < 𝑡/𝜏 < 50),

that of longer strings, with 𝑙 ≥ 4, is smoothly increasing until a plateau at times 𝑡 > 𝑡𝑟

is achieved. Interestingly, although the molar fraction, 𝑋𝑐, of cubes in chains reaches a

steady value at 𝑡𝑟 ∼ 150 𝜏, numerical (⟨𝑙⟩𝑛) and weighted (⟨𝑙⟩𝑤) lengths are still relaxing

at this time. This suggests that strings of different sizes are continuously breaking and

merging while reaching the equilibrium distribution regardless the fact that the percent-

age of nanocubes in chains remains basically constant for 𝑡 > 𝑡𝑟 (see Fig. 5.2).
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Fig. 5.5(c) contains the resulting equilibrium distribution of fraction of strings of

length 𝑙, 𝑋𝑒𝑞(𝑙), for the different sizes of the string-like clusters. Our simulation results

(red circles) are compared to a fitting model (black line) that assumes an exponential de-

cay of 𝑋𝑒𝑞(𝑙). According to the first-order Wertheim’s perturbation theory of associating

fluids, if the probability of two particles to be connected is constant and equal to 𝑝𝑏, a

probability distribution of clusters at equilibrium can be defined as follows [82, 83, 84, 43]

𝑋𝑒𝑞(𝑙) = (1 − 𝑝𝑏)2𝑝𝑙−1
𝑏 . (5.18)

From Eq. 5.18, the linear dependence ln(𝑋𝑒𝑞) ∝ 𝑙 can be recovered. In our case, however,

concentrations of free nanocubes and chains of 2 and 3 particles are significantly larger

than those predicted by Wertheim’s theory. We hypothesise that this discrepancy may

arise from the crucial assumption underlying Wertheim’s theory that considers particle

connectivity to be independent from the cluster size. This approximation is not directly

applicable to our system as dipolar interactions are long-ranged. Indeed, the mechanisms

involved in the formation of string-like clusters of polarised particles are more complex

than those in simple associating fluids. More specifically, the kinetics of formation of

chains consisting of polarised nanoparticles is governed by the dipole moment of each

particle, excluded-volume interactions and thermal fluctuations.

To gain better insights into the kinetics of formation of string-like clusters of nano-

cubes, we compute the transition probability matrix of a cubic particle to belong to chain

𝑐 of size 𝑙(𝑐) at time 𝑡1 and be in chain 𝑐′ of size 𝑙(𝑐′) at time 𝑡2 = 𝑡1 + 𝛿𝑡, where 𝛿𝑡 is

set to 0.3 𝜏 [85]. Fig. 5.5(d) and (e) present the transition matrices computed at times

𝑡 = 16 𝜏 and 𝑡 = 300 𝜏, corresponding, respectively, to the maximum and stationary

values of 𝑋 (2, 𝑡) in Fig. 5.5(b). Since the largest probabilities have a tendency to lie on

the diagonal (𝑙(𝑐) = 𝑙(𝑐′)), at long and short times most nanocubes prefer to remain in

chain 𝑐 rather than diffusing to chain 𝑐′. At short times, strings contain no more than 10

nanocubes, while they grow up to 𝑙 ∼ 20 at longer times. Nonetheless, at the stationary

state (𝑡 = 300 𝜏), clusters with more than 25 nanocubes have been occasionally seen,

with 𝑋𝑒𝑞(𝑙 ≥ 25) < 10−6 (Fig. 5.5(c)). It is interesting to note that, at both short and long

time scales, a smooth decay of the transition probabilities is observed from short to long

strings along the diagonal elements of the matrix, i.e., where 𝑙(𝑐) = 𝑙(𝑐′), and also where

|𝑙(𝑐) − 𝑙(𝑐′)| gradually becomes larger. It has to be pointed out, however, that the transi-
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tion matrices are not weighted by the size of the chains since their individual elements

are computed tracking the single nanocubes rather than the cluster themselves. Never-

theless, a wide variety of transitions between chains of different lengths is still observed.

We would expect that the kinetic rates characterising these transitions were string-size

dependent and, what we actually observe is that aggregation and disaggregation mech-

anisms involving individual cubes or small clusters are more likely to occur rather than

those involving larger strings. Equally interesting is the change of the mechanical prop-

erties of ER fluids upon switching the electric field on/off. The change in the viscoelastic

behaviour of nanocubes in the presence of the external field is analysed in the following

section by applying passive microrheology.

5.3.4 DMC microrheology of ER fluids

In passive MR, one can obtain the viscoelastic response of a soft material from the mean

square displacement (MSD) of a tracer particle embedded in it. By estimating the com-

plex shear modulus 𝐺∗, where 𝜔 is the frequency of interest, it is possible to identify

the viscous (𝐺′′) and elastic (𝐺′) moduli of the system from 𝐺∗(𝜔) = 𝐺′(𝜔) + 𝑖𝐺′′(𝜔). A

number of methods have been proposed to determine 𝐺∗ from the dynamics of a tracer

particle [70, 71, 72, 73, 74]. In this work, we apply the method developed by Mason [72]

where the Fourier transform of tracer’s MSD serves to estimate the viscoelastic proper-

ties of the bath.

A preliminary MR analysis of a bath of nanocubes at a packing fraction 𝜂 = 0.02

revealed that the very low concentration of bath particles does not affect the mobility

of the tracer when the field is off, as the MSD reported in the Supporting information

appears to be linear with time in the entire timescale investigated. Consequently, we

have increased the system packing by one order of magnitude. In Fig. 5.6, we report

the viscous and elastic moduli for a system of nanocubes containing a spherical tracer

of size 3𝜎 at packing fraction 𝜂 = 0.20. The Figure reports 𝐺′ and 𝐺′′ calculated from

the tracer’s total MSD when the field is off. In these conditions, the system exhibits

a dominant viscous response as expected from a typical colloidal suspension of purely

repulsive particles.

These preliminary results show how passive microrheology techniques can be em-

ployed to shed light on the viscoelastic behaviour of ER fluid by means of dynamic Monte
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Figure 5.6: Viscous 𝐺′′ (dashed line) and elastic 𝐺′ (solid line) moduli of a suspension of
hard cubes at a packing fraction 𝜂 = 0.2 containing a spherical tracer of diameter 3𝜎
when the external field is off.

Carlo simulations. The application of MR on the suspension with the field on will re-

quire a mindful and appropriate choice of the tracer, taking into considerations not only

interactions of the tracer with the bath, but also between the tracer and the external

field.

5.4 Conclusions

In summary, we employed DMC simulation to model the behaviour of colloidal sus-

pensions of dielectric nanocubes upon application of an electric field. We also applied

machine learning techniques to define a robust cluster criterion for the study of strings

aggregation and breaking over time. Our results show that, at a volume fraction 𝜂 = 0.02

and field strength 𝛾 = 13, the suspension reaches a steady state where ∼ 50% of parti-

cles are organized in aligned string-like clusters, with steady lengths and dispersity, or

in individual cubes with no preferential orientation. Over the isotropic-to-string-like

transition, one first observes the formation of relatively short strings, comprising 2 or 3

nanocubes. Subsequently, while clusters are still breaking and merging, the fraction of

particles in chains converges to a steady-state value, which is fully achieved at 𝑡𝑟 ∼ 150 𝜏.

By contrast, the concentration of chains with more than 3 nanocubes increases mono-

tonically until equilibrium is reached.

The kinetics of formation of clusters has been further investigated by analysing

the transition probability of a nanocube to move from one cluster to another. Most

nanocubes remain attached to a string over times shorter than the elementary time step

and only a few of them move to clusters of different sizes. In fact, the larger the differ-

ence in size between the cluster a nanocube leaves and the cluster it joins, the lower the
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transition probability. This suggests that any aggregation and fragmentation mechanism

can potentially occur, with larger probabilities for mechanisms that involve string-like

clusters of similar sizes.

Finally, we incorporated a spherical tracer into the system to recover the viscoelastic

response of the suspension in the field-off scenario, by means of passive microrheology

techniques. While in the very dilute system at 𝜂 = 0.02, the motion of the selected

tracer is completely unaffected by the presence of nanocubes, at higher concentration,

specifically at 𝜂 = 0.2, MR analysis showed a predominant viscous behaviour of the bath

at all frequencies. These analysis can be used as a reference for further investigation of

the microrheological behaviour of the same suspension when the field is applied.

All the simulation results reported in this work have been obtained neglecting the

fluid-mediated hydrodynamic interactions (HI) between the nanocubes in suspension.

Different works investigating the dynamics of colloids have shown quantitative dis-

crepancies between simulations with and without HI, while retaining similar qualita-

tive features [86, 87, 88]. The same characteristics have been observed in the analysis

of rheological properties of electrorheological [89] and magnetorheological [75] fluids

of spherical particles. HI have also been found to play a non-negligible role in active

microrheology [90, 91] and their inclusion in simulation generally results into a better

agreement with experiments [92]. Currently, a study on how HI can be incorporated

into DMC simulation is in progress. Models of ER fluids can be further improved also by

(i) incorporating mutual polarisation of bath particles and (ii) studying their behaviour

under confinement to better reproduce an experimental setup.
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Supporting information

5.S1 Cluster criterion optimisation via density-based cluster analysis

Defining a criterion to recognize when cubes belong to chains is fundamental for the

analysis of all the properties of chain-like structures. Due to the cylindrical symmetry

of the chains and considering that their formation is driven only by dipolar interactions

between the centers of mass of the particles, we characterized the connectivity between

two particles 𝑖 and 𝑗 using their relative dipolar interaction energy: 𝑖 and 𝑗 are connected

if 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 < 𝛽𝑢𝑚𝑎𝑥 , where 𝛽𝑢𝑚𝑎𝑥 is the cluster parameter. Since 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 depends only on

the relative distance between particles and the alignment of 𝐫𝑖𝑗 with the external field,

we optimized 𝛽𝑢𝑚𝑎𝑥 from the analysis of the distribution of the first two smallest values

of ‖𝐫𝑖𝑗 ‖ for each particle, named 𝐫𝑖𝑗 ,1 and 𝐫𝑖𝑗 ,2, extrapolated from an equilibrated string-like

configuration of cubes, where 𝐫𝑖𝑗 ,1 and 𝐫𝑖𝑗 ,2 are decomposed in the direction parallel (𝑟𝑖𝑗 ,∥)

and perpendicular (𝑟𝑖𝑗 ,⟂) to the orientation of the field. Most of the points of the data

set are found in the proximity of the minimum of the interaction potential between two

cubes, as expected for particles disposed one on top of the other and aligned with the

external field (see Fig. 5.7(a) for a plot of one sample data set).

Figure 5.7: (a) Plot of the first and second closest particles 𝑗 with respect to reference
particle 𝑖, decomposed in the direction parallel and perpendicular to the external field,
taken from a configuration of an equilibrated string-like phase of nanocubes. (b) Result-
ing clusters obtained from the application of DBSCAN algorithm to the points plotted in
panel (a); points of the same color belong to a cluster according to DBSCAN. (c) Plot of
the points of the cluster closest to the minimum of energy (black points), together with
the contour line in which 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 = 𝛽𝑢𝑚𝑎𝑥 . The background of each plot shows the value
of the dipolar interaction energy 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 in color gradient, as a function of 𝑟𝑖𝑗 ,⟂ and 𝑟𝑖𝑗 ,∥.
The patterned areas in black and white contain all the points for which ‖𝐫𝑖𝑗 ‖ < 𝜎, which
are inaccessible due to hard core interactions between nanocubes.
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In order to obtain an optimal value of 𝛽𝑢𝑚𝑎𝑥 for the analysis of the connectivity,

we applied the DBSCAN clustering algorithm to the data set of the distances 𝐫𝑖𝑗 . The

DBSCAN algorithm analyses the local density of the data set, and assigns elements of the

data set to a cluster if their density is higher than a threshold value [93]. It requires the

definition of two parameters: 𝐸𝑝𝑠, which is the radius of the 𝑛-ball centered at element

𝑝; 𝑀𝑖𝑛𝑃𝑡𝑠, which is the minimum number of elements 𝑞 contained in the 𝑛-ball with

radius 𝐸𝑝𝑠 and center 𝑝. By definition, the set of points 𝑞 found in the 𝑛-ball centered

at 𝑝 with radius 𝐸𝑝𝑠 is called "𝐸𝑝𝑠-neighbourhood" of 𝑝, and the number of elements of

this set is 𝑁𝐸𝑝𝑠:

𝑁𝐸𝑝𝑠(𝑝) = #{𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠} (5.19)

where 𝐷 is the data set. The algorithm starts from a random element 𝑝0 and com-

putes all the neighbouring elements 𝑞. If 𝑁𝐸𝑝𝑠 ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, a new cluster is found and is

made of 𝑝0 plus all the neighbouring elements 𝑞. At this point, DBSCAN reiterates the

computation of the "𝐸𝑝𝑠-neighbourhood" for each element 𝑞, as long as new neighbor

elements are found. The set of all the "𝐸𝑝𝑠-neighbourhoods" found starting from 𝑝0 is a

cluster. When the iteration stops, the algorithm restarts the analysis from a random ele-

ment left of the data set, until the entire data set is covered. A schematic representation

of one step of the algorithm is shown in Fig. 5.8.

We performed density-based cluster analysis using the library DBSCAN available

in R [80]. The algorithm was applied to 44 independent data sets, where each data

set is extracted from uncorrelated configurations of an equilibrated chain-like phase

of nanocubes. From each configuration, we computed the first (𝐫𝑖𝑗 ,1) and second (𝐫𝑖𝑗 ,2)

closest distances between the centres of mass of two particles, with periodic boundary

conditions, for all the particles of the configuration. Doubles of the distances 𝐫𝑖𝑗 were dis-

carded. All the distances computed were saved as a 2D vector with components (𝑟𝑖𝑗 ,∥, 𝑟𝑖𝑗 ,⟂).

Since we were interested only in a portion of space were the energy reaches a minimum,

we limited the data sets only to the points within the range 0 ≤ 𝑟𝑖𝑗 ,∥,, 𝑟𝑖𝑗 ,⊥ ≤ 2. An example

of resulting data set extrapolated from a configuration is shown in Fig. 5.7(a). We then

applied DBSCAN to each data set independently, from which recovered only the points

belonging to the cluster closest to the minimum of the energy. An example of applica-

tion of the clustering algorithm to a data set is shown in Fig. 5.7(b), where the cluster of
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Figure 5.8: Representation of "𝐸𝑝𝑠-neighbourhood" of 𝑝. All the points are elements of
the data set. 𝑝 is the initial element, 𝐸𝑝𝑠 is the radius of the area in which we analyse the
neighbourhood of 𝑝. Green points are elements that belong to the "𝐸𝑝𝑠-neighbourhood"
of 𝑝, while red points are outsiders. In one iteration, if the number of green points is
≥ 𝑀𝑖𝑛𝑃𝑡𝑠, then the green points plus 𝑝 form a cluster, and the green points are chosen
as new starting points 𝑝 from which the cluster can be extended.

interest is highlighted in black. We finally computed the maximum value of the energy

𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 for the points of each recovered cluster: all the points of each cluster belong to a

portion of the (𝑟𝑖𝑗 ,⟂,𝑟𝑖𝑗 ,∥) plot delimited by a contour line in which the energy is constant.

We finally set the average of all contour energies of each data set as our threshold energy

parameter 𝛽𝑢𝑚𝑎𝑥 = ⟨𝛽𝑢𝑚𝑎𝑥⟩𝑠𝑒𝑡 = −3.20. Fig. 5.7(c) shows the the elements of the desired

cluster extrapolated with DBSCAN, contained in the area delimited by the contour line

in which 𝛽𝑢𝑖𝑗 ,𝑑𝑖𝑝 = 𝛽𝑢𝑚𝑎𝑥 .
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5.S2 Renormalisation of the uniaxial order parameter for particles

with cubic symmetry

The most favoured configuration of two polarised nanocubes is for their two centers of

mass to be relatively aligned with the external field and to be as close as possible, thus

having one of their faces in contact with each other, and with these faces orthogonal to

the orientation of the field �̂�. For this reason, the orientational order of the cubic par-

ticles with respect to the external field, which can be evaluated with the uniaxial order

parameter 𝑈 = ⟨𝑃2(�̂� ⋅ �̂�𝑖)⟩ (𝑃2 is the second Legendre polynomial), can indirectly give

information on the formation of chain-like structures. However, due to the geometry of

cubes, each of the three axes of orientation �̂�1, �̂�2, �̂�3 of every particle can be equivalently

aligned with �̂�when they organise in chains. To overcome this issue, Batten et al. [31], in

their work on the investigation of the phase behaviour of colloidal superballs, suggested

to "relabel" particles axes of orientation according to their best alignment with the refer-

ence axes, hence for a reference axis �̂� they computed ⟨𝑃2(max((|�̂�⋅𝑒𝑘 |), 𝑘 = 1, 2, 3)⟩. Since

in our case the director along which particles should be aligned is known and it is the

orientation of the external field �̂�, we computed the average of the alignment between

�̂� and the most aligned axis �̂�𝑘 of each cube, for �̂� = �̂�

⟨max ((�̂� ⋅ �̂�𝑘)2), 𝑖 = {1, 2, 3}⟩ (5.20)

Here we report the formal proof developed to normalize the order parameter in Eq. 5.20.

Fig. 5.9 shows one cube, with its axes of orientation, here taken as reference axes,

and the director �̂� with one possible orientation with respect to �̂�1, �̂�2, and �̂�3. The pro-

longation of �̂� intersects always the surface of the cube. Due to the symmetry of the

cube, for each possible direction of �̂�, the most aligned axis of orientation �̂�𝑘 with �̂� will

always be the one orthogonal to the face whom the prolongation of �̂� intersects. This

means that Eq. 5.20 can be normalised integrating only over the possible orientations of

�̂�with respect to one of the faces of the cube: this normalisation corresponds to integrate

(�̂� ⋅ �̂�𝑘)2 over one sixth of the surface of a unit sphere, which is schematically represented

in Fig. 5.9 with blue lines, and all the angles between �̂� and one �̂�𝑘, for which the exten-

sion of �̂� intersects the edges of one face of the cube, are boundaries of the integral. We

can define �̂� in spherical coordinates as a function of two angles 𝜃 and 𝜙 with respect
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Figure 5.9: Cubic particle (black lines) topped with a portion of a sphere with surface
𝑆 (in blue). �̂�1, �̂�2, �̂�3 are the three axes of orientation of the cube, originated from the
center of mass. Red arrow shows one possible direction of the director �̂� and the red
dot line is its extension up to surface 𝑆. 𝑆 is the area in which integrate (�̂� ⋅ �̂�3)2 for
normalisation of the order parameter, where �̂�3 is here the most aligned axis with �̂�.

to the axes of orientation of the cube and recover the following definitions, according to

the geometric representation in Fig. 5.10 and assuming that the cube has unit length

𝐴𝑂′𝐻 = 𝜙

𝐻𝑂𝑂′ = 𝜃

𝐴𝑂′𝐵 =
𝜋
4

𝐻𝐵𝑂 = 𝐵𝑂′𝑂 = 𝐴𝐵𝑂′ =
𝜋
2

𝑂𝐻 = 𝑥

𝐻𝐵 = 𝑦

𝐴𝑂′ = 𝑂𝐵 =
1√
2

𝑂′𝐵 = 𝑂𝑂′ =
1
2

Thanks to geometry, we can recover the link between 𝜃 and 𝜙 for the case when

�̂� intersect the edges of one of the faces of the cube. If 0 ≤ 𝜙 < 𝜋/4, the following
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Figure 5.10: Geometric representation of the cube with the director �̂�. Panel (a, left)
shows the cube and all the projections in 3D; panel (b, right) shows the view from the
top face of the cube. 𝑂 is the center of mass of the cube. 𝑂′ is the projection of 𝑂 on
the top face of the cube. 𝐴 and 𝐶 are two of the vertices of the cube. 𝐴𝐶 is one edge of
the top face of the cube. 𝐵 is the midpoint of 𝐴𝐶. Dashed blue line connects the origin
𝑂 with the midpoint 𝐵, and straight blue line is the projection of 𝑂𝐵 on the top face of
the cube. Both 𝑂𝐵 and 𝐴𝑂′ are half of the diagonal of one face of the cube. Both 𝑂′𝐵
and 𝑂𝑂′ are half of the length of one edge of the cube. Red arrow and dashed red line
are, respectively, the unit vector �̂� and its extension 𝑂𝐻 to the edge 𝐴𝐶; the extension
of �̂� intersect 𝐴𝐶 at 𝐻 . Straight red line is the projection of 𝑂𝐻 on the top face of the
cube. 𝜃 is the angle between �̂� and �̂�𝑘. 𝜙 is the angle between the projection 𝐴𝑂′ and the
projection 𝑂′𝐻 .

equations hold

cos(𝜃) =
𝑂𝑂′

𝑂𝐻
=

1
2𝑥

𝑥 = 𝑂𝐻 =
√
𝑂𝐵2 + 𝐻𝐵2 =

√

(
1√
2)

2

+ 𝑦2

𝑦 = 𝐻𝐵 = 𝑂′𝐵 tan(𝐻𝑂′𝐵) =
tan(

𝜋
4
− 𝜙)

2

cos(𝜃) =
1√

2 + tan2
(
𝜋
4
− 𝜙)

= 𝑓 (+)(𝜙) (5.21)

For 𝜋/4 ≤ 𝜙 < 𝜋/2, Eq. 5.21 holds since tan2(𝑥) is an even function. For 𝜋/2 ≤ 𝜙 < 3𝜋/4,

we obtain

𝑦 =
tan(𝜙 −

𝜋
4
−
𝜋
2)

2
=

− cot(𝜙 −
𝜋
4)

2
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cos(𝜃) =
1√

2 + cot2(
𝜋
4
− 𝜙)

= 𝑓 (−)(𝜙) (5.22)

The validity of Eq. 5.22 is extended to 3𝜋/4 ≤ 𝜙 < 𝜋 for the same reason as Eq. 5.21.

Since both Eqs. 5.21 and 5.22 are periodic to 𝜋, we can define the link between 𝜃 and 𝜙

along the border of one face of the cube as follows

cos(𝜃) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑓 (+)(𝜙) 𝑖𝑓 0 ≤ 𝜙 <
𝜋
2
∪ 𝜋 ≤ 𝜙 <

3𝜋
2

𝑓 (−)(𝜙) 𝑖𝑓
𝜋
2
≤ 𝜙 < 𝜋 ∪

3𝜋
2

≤ 𝜙 < 2𝜋
(5.23)

The average value of the order parameter for a uniform distribution of �̂� can be estimated

according to the following integral

⟨max((�̂� ⋅ �̂�𝑘)2)⟩ =
∫ ∫

𝑆
cos2(𝜃) sin(𝜃)𝑑𝜃𝑑𝜙

∫ ∫
𝑆
sin(𝜃)𝑑𝜃𝑑𝜙

(5.24)

where the limits of 𝑆 depend on Eq. 5.23. We first compute the integral in the denomi-

nator of Eq. 5.24

∫ ∫
𝑆
sin(𝜃)𝑑𝜃𝑑𝜙 = ∫

arccos(𝑓 (+)(𝜙))

0
∫

𝜋/2

0
sin(𝜃)𝑑𝜃𝑑𝜙 + ∫

arccos(𝑓 (−)(𝜙))

0
∫

𝜋

𝜋/2
sin(𝜃)𝑑𝜃𝑑𝜙+

+∫
arccos(𝑓 (+)(𝜙))

0
∫

3𝜋/2

𝜋
sin(𝜃)𝑑𝜃𝑑𝜙 + ∫

arccos(𝑓 (−)(𝜙))

0
∫

2𝜋

3𝜋/2
sin(𝜃)𝑑𝜃𝑑𝜙

We substitute ∫ sin(𝜃)𝑑𝜃 = − cos(𝜃), cos(0) = 1 and cos(arccos(𝑓 (𝜙))) = 𝑓 (𝜙) in the

integral

∫ ∫
𝑆
sin(𝜃)𝑑𝜃𝑑𝜙 = ∫

𝜋/2

0 [1 − 𝑓 (+)(𝜙)]𝑑𝜙 + ∫
𝜋

𝜋/2 [
1 − 𝑓 (−)(𝜙)]𝑑𝜙+

+∫
3𝜋/2

𝜋 [1 − 𝑓 (+)(𝜙)]𝑑𝜙 + ∫
2𝜋

3𝜋/2 [
1 − 𝑓 (−)(𝜙)]𝑑𝜙 (5.25)

Since both 𝑓 (+) and 𝑓 (−) are periodic with period 𝜋 and tan2(𝑥) = cot2(𝑥 − 𝜋/2), the

following equalities hold

∫
𝜋/2

0
𝑓 (+)(𝜙)𝑑𝜙 = ∫

𝜋

𝜋/2
𝑓 (−)(𝜙)𝑑𝜙 = ∫

3𝜋/2

𝜋
𝑓 (+)(𝜙)𝑑𝜙 = ∫

2𝜋

3𝜋/2
𝑓 (−)(𝜙)𝑑𝜙 (5.26)
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Hence, integral in Eq. 5.25 simplifies

∫ ∫
𝑆
sin(𝜃)𝑑𝜃𝑑𝜙 = 2𝜋 − 4∫

𝜋/2

0
𝑓 (+)𝑑𝜙

It can be proved that

∫
𝜋/2

0
𝑓 (+)𝑑𝜙 = ∫

𝜋/4

−𝜋/4

cos(𝜙)√
2 − sin2(𝜙)

𝑑𝜙 =
𝜋
3

The solution of the integral is

∫ ∫
𝑆
sin(𝜃)𝑑𝜃𝑑𝜙 = 2𝜋 − 4

𝜋
3
=

2𝜋
3

(5.27)

This is what we should expect for this geometry: the surface we integrated over is

exactly one sixth of the surface of a unit sphere (since we have integrated the surface of a

unit sphere only for those angles of 𝜃 and 𝜙 for which the intersection of the prolongation

of �̂� with the surface of the cube is contained in one face of the cube).

In order to solve the integral in the numerator of Eq. 5.24, we use the equality

∫ cos2(𝜃) sin(𝜃)𝑑𝑥 = − cos3(𝜃)/3 and we obtain an equation similar to Eq. 5.25, with

[𝑓 (+)]3 instead of 𝑓 (+), and [𝑓 (−)]3 instead of 𝑓 (−). Since the equalities in Eq. 5.26 hold

also in this case, the desired integral can be simplified as follows

∫ ∫
𝑆
cos2(𝜃) sin(𝜃)𝑑𝜃𝑑𝜙 =

2𝜋
3

−
4
3 ∫

𝜋/2

0 [𝑓
(+)(𝜙)]

3
𝑑𝜙

It can be proved that

∫
𝜋/2

0 [𝑓
(+)(𝜙)]

3
𝑑𝜙 = ∫

𝜋/4

−𝜋/4

1 − sin2(𝜙)

[2 − sin2(𝜙)]
3/2 cos(𝜙)𝑑𝜙 =

𝜋
3
−

1√
3

(5.28)

In conclusion, the integral in the numerator of Eq. 5.24 is

∫ ∫
𝑆
cos2(𝜃) sin(𝜃)𝑑𝜃𝑑𝜙 =

2𝜋
3

−
4
3(

𝜋
3
−

1√
3)

=
2𝜋 + 4

√
3

9
(5.29)

Finally, we substitute Eq. 5.27 and Eq. 5.29 into Eq.5.24 to recover the expected value of
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max((�̂� ⋅ �̂�𝑘)2) for a uniform distribution of orientations of �̂�

⟨max((�̂� ⋅ �̂�𝑘)2)⟩ =

2𝜋 + 4
√
3

9
2𝜋
3

=
𝜋 + 2

√
3

3𝜋
(5.30)

As a proof that this value is indeed correct, we remark that Batten et al. noticed that,

for an isotropic phase of superballs, ⟨𝑃2(max(�̂� ⋅ �̂�𝑘))⟩ ≈ 0.55, which is exactly what we

obtain:

⟨𝑃2(max (|�̂� ⋅ �̂�𝑘 |))⟩ =
1
2⟨

3max((�̂� ⋅ �̂�𝑘)2) − 1⟩ =

1
2(

3
𝜋 + 2

√
3

3𝜋
− 1

)
=

√
3
𝜋

≈ 0.55

Normalising max((�̂� ⋅ �̂�𝑘)2) with the result in Eq. 5.30 and imposing that the parameter

goes to 1 when max((�̂� ⋅ �̂�𝑘)2) = 1, i.e., when the cube is perfectly aligned with �̂�, we can

finally obtain a renormalised uniaxial order parameter for particles with cubic symmetry

𝑆 =
1
𝑁

𝑁

∑
𝑖=1

𝑆𝑖 =
1
𝑁

𝑁

∑
𝑖=1

𝜋(3max ((�̂� ⋅ �̂�𝑘,𝑖)2, 𝑘 = 1, 2, 3) − 1) − 2
√
3

2𝜋 − 2
√
3

(5.31)
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5.S3 Mean square displacement of a spherical tracer immersed in a

bath of nanocubes

Fig. 5.11 depicts the mean square displacement (MSD) of a spherical tracer immersed in

a bath of nanocubes with side 𝜎 at packing fractions 𝜂 = 0.02 and 𝜂 = 0.2, respectively.

The MSD is estimated when the external field is off. The MSD of the tracer particle can

be defined from the tracer’s position r𝑑(𝑡) at time 𝑡 as follows

⟨Δr2𝑑(𝑡)⟩ = ⟨(r2𝑑(𝑡) − r2𝑑(0))
2⟩ (5.32)

where the brackets refer to the averages over independent trajectories, and 𝑑 is the di-

mensionality of the displacements of the tracer, in this case 𝑑 = 3. To calculate the MSDs

we have run 1000 uncorrelated trajectories to simulate the motion of the tracer and bath

particles.
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Figure 5.11: Total mean square displacement of a spherical tracer of size 3𝜎 diffusing
across a bath of nanocubes of side 𝜎 at a packing fraction 𝜂 = 0.02 (red line) and 𝜂 = 0.2
(purple line), in the field-off scenario.
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5.S4 Benchmarking between the Fourier and compliance-based meth-

ods to calculate the elastic and viscous moduli of a bath of nanocubes

The compliance methods [73, 74] intend to transform the time dependent compliance

(𝐽 (𝑡)) of the material to estimate its corresponding complex modulus (𝐺∗(𝜔)) in the fre-

quency domain. The compliance can be expressed as

𝐽 (𝑡) = (
𝜋𝑎𝑠𝑝ℎ
𝑘B𝑇 ) ⟨Δ𝑟2(𝑡)⟩, (5.33)

where 𝑎𝑠𝑝ℎ indicates the radius of the tracer, 𝑘B the Boltzmann’s constant, 𝑇 the temper-

ature, and ⟨Δ𝑟2(𝑡)⟩ the tracer’s mean square displacement (MSD). According to Evans et

al. [73], 𝐽 (𝑡) can be related to 𝐺∗(𝜔) by

𝑖𝜔
𝐺∗(𝜔)

= (1 − 𝑒−1𝜔𝑡1)
𝐽 (𝑡1)
𝑡1

+ 6𝐷𝑒−𝑖𝜔𝑡𝑁𝑡 +
𝑁𝑡

∑
𝑘=2

𝐽𝑘 − 𝐽𝑘−1
𝑡𝑘 − 𝑡𝑘−1

(𝑒−𝑖𝜔𝑡𝑘−1 − 𝑒−𝑖𝜔𝑡𝑘) , (5.34)

where 𝑁𝑡 denotes the number of points within the time window where the MSD was

computed, 𝐷 is linked to the inverse of the system’s viscosity, and 𝐽𝑘 refers to 𝐽 (𝑡) at

time 𝑡𝑘. The solution of Eq. 5.34 results in the viscous (𝐺′′(𝜔)) and elastic (𝐺′(𝜔)) moduli

since 𝐺∗(𝜔) = 𝐺′(𝜔) + 𝑖𝐺′′(𝜔).

The comparison between 𝐺′′(𝜔) and 𝐺′(𝜔) calculated by the Fourier approach by

Mason [72] and the compliance method proposed by Evans et al. [73] is presented in

Fig. 5.12. In both cases, the MSD of a spherical tracer with size 3𝜎 diffusing in a bath of

nanocubes is calculated when the external field is off.
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Figure 5.12: Viscous𝐺′′(𝜔) (empty circles, dashed lines) and elastic𝐺′(𝜔) (empty squares,
solid lines) moduli obtained by the Fourier approach [72] (lines) and the compliance-
based method [73] (symbols) for a bath of nanocubes containing a spherical tracer of
size 3𝜎, in the field-off scenario.
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Chapter 6

Dynamics of Uniaxial-to-Biaxial
Nematics Switching in Suspensions of
Hard Cuboids

The content of this Chapter has been published as an article in Physics of Fluids. My

contributions are listed as follows: Luca Tonti provided coding support for dynamical

property calculations; Effran Mirzad Rafael, Luca Tonti, Daniel Corbett, Alejandro Cue-

tos and Alessandro Patti performed the investigation; Effran Mirzad Rafael, Luca Tonti,

Daniel Corbett, Alejandro Cuetos and Alessandro Patti reviewed and edited the draft.

Abstract

Field-induced reorientation of colloidal particles is especially relevant to manipulate the

optical properties of a nanomaterial for target applications. We have recently shown that

surprisingly feeble external stimuli are able to transform uniaxial nematic liquid crystals

(LCs) of cuboidal particles into biaxial nematic LCs. In the light of these results, here we

apply an external field that forces the reorientation of colloidal cuboids in nematic LCs and

sparks a uniaxial-to-biaxial texture switching. By Dynamic Monte Carlo simulation, we

investigate the unsteady-state reorientation dynamics at the particle scale when the field

is applied (uniaxial-to-biaxial switching) and then removed (biaxial-to-uniaxial switch-

ing). We detect a strong correlation between the response time, being the time taken for the

system to reorient, and particle anisotropy, which spans from rod-like to plate-like geome-

tries. Interestingly, self-dual shaped cuboids, theoretically considered as the most suitable to

promote phase biaxiality for being exactly in between prolate and oblate particles, exhibit

surprisingly slow response times, especially if compared to prolate cuboids.
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6.1 Introduction

Colloids are biphasic systems comprising particles homogeneously dispersed in a me-

dium. In colloidal suspensions, the dispersed phase consists of solid particles, while the

continuous phase is a liquid. In particular, the dispersed particles should have at least

in one direction a dimension roughly between 1 nm and 1 𝜇m, so that gravitational and

thermal forces compensate each other [1]. This balance allows the dispersed particles

to remain suspended and to diffuse randomly via Brownian motion, named after the

Scottish botanist Robert Brown who, in 1827, described the persistent and casual jumpy

moves of organelles suspended in water [2]. If the suspended particles are anisotropic,

under certain conditions, they can self-assemble into liquid-crystalline phases. Liquid

crystals (LCs) are mesophases that flow like liquids but, exhibit a significant degree of

internal ordering like crystals. A common LC morphology is the uniaxial nematic (NU)

phase where particles have one axis pointing collectively in the same direction, but their

centres of mass are randomly distributed. This merely orientational ordering allows ne-

matic LCs to exhibit optical birefringence while maintaining mechanical fluidity. In the

engineering of commercial displays, uniaxial and chiral nematic LCs are widely em-

ployed [3, 4]. Very recently, there has been reignited interest in the biaxial nematic

phase (NB) and its potential to be incorporated into display technology. In contrast to

the NU phase, the NB phase possesses two optical axes due to the alignment of the three

directors, making it very appealing for the design of nanomaterials with novel optical

properties [5]. Equally important, the NB phase is also foreseen to realise faster switch-

ing through its minor axis switching mode, an aspect that could potentially improve

refresh rates in displays [6, 7, 8]. Despite these promising features, the existence of sta-

ble molecular NB phases is still an ongoing debate within the LC community. While a

biaxial geometry is indeed necessary to observe NB phases, it has been shown that this

requirement might not be sufficient as the NB phase tends to be metastable with respect

to other phases, including NU and smectic (Sm) LCs [9]. This is for instance the case

of colloidal cuboids, which can only form NB phases at sufficiently large size dispersity

[10, 11], extreme anisotropy [12], in the presence of depletants [13] or upon application

of an external field [14, 15]. Unless at least one of these conditions are met, systems of

monodispersed or bidispersed cuboids cannot form NB phases [16, 17]. Research efforts

have also been made to ascertain, by theory, simulation and experiments, the existence
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of NB phases in systems of other biaxial particles [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] or

mixtures of uniaxial particles [28].

Despite such a widespread interest in mapping the phase behaviour of colloidal sus-

pensions of biaxial particles, including cuboids, the study of their dynamics is still at an

embryonic stage, especially for the difficulty of finding suitable interaction potentials

that could describe exotic geometries and still be framed within a simulation technique.

Exotic shapes are commonly described by hard-core potentials, but these cannot be di-

rectly employed in Brownian dynamics (BD) or Molecular Dynamics (MD) simulations.

Nevertheless, it is only by assessing the dynamics that one will be able to draw relevant

conclusions on the potential use of nematic or other LC phases in specific applications.

With this in mind, over the last years, our group has developed a stochastic method that

can qualitatively and quantitatively mimic the Brownian motion of colloids as obtained

by BD simulations [29, 30, 31, 32]. This method, referred to as Dynamic Monte Carlo

(DMC), has become an established simulation technique not only for the study of the

dynamics of biaxial particles, such as cuboids and curved rods [33, 34], but also for the

dynamics of uniaxial particles, like rods, for which soft potentials are indeed available

[35, 36].

With regards to the equilibrium dynamics of cuboids, we found that the system long-

time relaxation dramatically depends on particle anisotropy, being slower at the self-dual

shape, the geometry that would preferentially stabilise biaxial nematics [34]. Our simu-

lations also confirmed the occurrence of a Fickian and Gaussian dynamics at both short

and long times, thus providing an alternative picture to the claimed universality of Fick-

ian yet non-Gaussian dynamics in soft-matter systems [37]. For its potential impact in

nanotechnology, equally intriguing is the out-of-equilibrium dynamics of cuboids, espe-

cially because it can spark phase switching and new material properties. In general, the

reorientation dynamics of biaxial particles induced by an external stimulus has received

very limited attention. At the molecular scale, Lee and co-workers studied the reorienta-

tion dynamics ofNB phases of bent-core mesogens and measured primary and secondary

axis switching, finding the latter either 3 or 100 times faster than the former depending

on the mesogen [6]. Although this study was met with some scepticism [38], Zannoni

and co-workers later on performed MD simulations on NB phases of biaxial Gay-Berne

ellipsoids and confirmed that the rotation of minor axes is indeed faster, although only
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up to one order of magnitude, than the rotation of the main axis, both in the bulk [7] and

under confinement [8]. Following our recent findings on the field-induced stability of the

NB phase [15], here we explore the field-induced dynamics of switching from uniaxial to

biaxial nematics of colloidal cuboids, with special interest in the particle reorientation

dynamics and associated response time. More specifically, we are interested to study the

kinetics of reorientation of LCs transitioning between two different nematic textures,

namely an NU → NB transition under an external field, and an NB → NU relaxation when

the field is switched off, and estimate the associated response times. To gain an insight

into the impact of particle anisotropy on the dynamics of phase switching, we consider

monodispersed systems of prolate, oblate and self-dual shaped cuboids. Their ability of

reorienting under the effect of an external field is assessed by employing a DMC algo-

rithm specifically designed to track the dynamics of out-of-equilibrium colloidal systems

[31].

This paper is organised as follows. We first introduce the methodology to simulate

our systems and characterise the dynamics. We then discuss the results of our simula-

tions by analysing the effect of particle anisotropy on the out-of-equilibrium dynamics

in NU → NB and NB → NU switching before finally drawing our conclusions.

6.2 Model and simulation methodology

We modelled monodispersed colloidal cuboids as hard board-like particles (HBPs) con-

strained in a cubic box with periodic boundaries. The behaviour of hard-core systems is

basically determined by the packing fraction, which is given by:

𝜂 ≡
𝑁𝑣𝑜
𝑉

(6.1)

where 𝑁 is the number of particles, 𝑣𝑜 the volume of an individual HBP and 𝑉 the vol-

ume of the simulation box. The particle thickness, 𝑇 , is set as the system unit length.

Consequently, particle length and width are given in units of 𝑇 , and read 𝐿∗ ≡ 𝐿/𝑇 and

𝑊 ∗ ≡ 𝑊/𝑇 , respectively. In particular, 𝐿∗ = 12 for all systems studied, while𝑊 ∗ assumed

values between 1 (rod-like HBPs) and 12 (plate-like HBPs) and included 𝑊 ∗ =
√
𝐿∗ at

the self-dual shape. Similar to our previous work [15], we apply an external field that

promotes alignment of the particle intermediate axis, defined by:
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𝑈ext = −
𝜀𝑓
2 [

3 ⋅ (x̂i ⋅ ê)2 − 1] (6.2)

where 𝜀𝑓 is the field strength, x̂ is the unit vector associated with the width of particle

𝑖, while ê is the field direction. We have set the reduced field strength, 𝜀∗𝑓 ≡ 𝜀𝑓 𝛽 = 3,

with 𝛽 the inverse temperature. The unit vectors ŷ and ẑ are associated with thickness

and length, respectively. The orientation of the particle unit vectors before and after

application of the field is schematically displayed in Fig. 6.1.
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(a) Rotation of a rod-like particle around axis Ƹ𝑧

(b) Rotation of a plate-like particle around axis ො𝑦

Field applied
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Figure 6.1: Reorientation of a prolate (a) and oblate (b) HBP due to external field ê coupled
to the particle intermediate axis x̂.

The focus of this work is on the reorientation dynamics of HBPs in an external field.
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We first performed standard Monte Carlo (MC) simulations in the canonical ensemble

in a cubic box containing 𝑁 = 2000 HBPs to equilibrate N+
U and N−

U phases at 𝜂 = 0.34,

where N+
U and N−

U refer, respectively to prolate and oblate nematic LCs. At this packing

fraction, the NU phases (either prolate or oblate) are stable across all anisotropies [16].

Each MC cycle consists of𝑁 attempts to displace and/or rotate HBPs, which are accepted

if no overlaps are detected. To determine the occurrence of overlaps between pairs of

HBPs, we implemented the separating axes theorem by Gottschalk et al. [39], adapted by

John and Escobedo to study tetragonal parallelepipeds [40, 41]. To quantify the system

long-range orientational order, we calculated the nematic order parameter and direc-

tor associated to each particle axis. To this end, we performed the diagonalisation of a

second-rank symmetric tensor of the form:

Q𝜆𝜆 =
1
2𝑁⟨

𝑁

∑
𝑖=1

(3�̂�𝑖 ⋅ �̂�𝑖 − I)⟩
(6.3)

where �̂�𝑖 = x̂, ŷ, ẑ are unit vectors aligned with W, T and L respectively, while I is the

identity tensor. The diagonalisation of Q𝜆𝜆 results in three eigenvalues (𝑆2,𝑊 , 𝑆2,𝑇 , 𝑆2,𝐿)

and their corresponding eigenvectors (m̂, l̂, n̂). The nematic director of anNU phase is the

eigenvector with the largest eigenvalue. For instance, if the largest positive eigenvalue

is 𝑆2,𝐿, then the nematic director is n̂, indicating high degree of orientational order along

the ẑ axis of the particles. The biaxial order parameters can also be evaluated using the

same symmetric tensor. For example, the biaxial order parameter that quantifies the

fluctuations of particles’ axes x̂ and ŷ respectively along the directors m̂ and l̂ reads [16]

𝐵2,𝐿 =
1
3
(�̂� ⋅ Q𝑥𝑥 ⋅ �̂� + �̂� ⋅ Q𝑦𝑦 ⋅ �̂� − �̂� ⋅ Q𝑦𝑦 ⋅ �̂� − �̂� ⋅ Q𝑥𝑥 ⋅ �̂�) (6.4)

The values of 𝐵2,𝑊 and 𝐵2,𝑇 can be calculated using similar expressions. Following the

definition introduced in our former work, a phase is considered to be biaxial if 𝐵2 ≥ 0.35,

although weak biaxial phases can already be observed for 𝐵2 ≥ 0.20 [15, 11]. We monitor

the evolution of uniaxial and biaxial order parameters until they have plateaued and

fluctuate in a bounded range. The equilibrated configurations are then used for external

field application in DMC simulations.

To study the dynamics, we performed DMC simulations in the canonical ensem-

ble. Because our goal is producing realistic time trajectories, unphysical moves, such
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as cluster moves, swaps, jumps and changes in box dimension (which would result in

centres of mass rescaling) are not implemented. The position of the particle centre

of mass is updated by decoupling the displacement 𝛿r𝑖 into three contributions, with

𝛿r𝑖 = 𝑋𝑊 x̂ + 𝑋𝑇 ŷ + 𝑋𝐿ẑ. Rotational moves are performed by three consecutive reorien-

tations around �̂�, �̂� and �̂�, with maximum rotations of 𝑌𝐿, 𝑌𝑊 and 𝑌𝑇 , respectively. The

extent of particle displacement and rotation are picked from uniform distributions that

depend on the particle translational, 𝐷𝑡𝑟𝑎
𝛼,𝑖 , and rotational, 𝐷𝑟𝑜𝑡

𝛼,𝑖 , diffusion coefficients at

infinite dilution, with 𝛼 = 𝐿,𝑊 , 𝑇 . Maximum displacements and rotations are given by:

|𝑋𝛼 | ≤
√
2𝐷𝑡𝑟𝑎

𝛼,𝑖𝛿𝑡𝑀𝐶 (6.5)

|𝑌𝛼 | ≤
√
2𝐷𝑟𝑜𝑡

𝛼,𝑖𝛿𝑡𝑀𝐶 (6.6)

where 𝛿𝑡𝑀𝐶 is the DMC timescale for one cycle, and is set to 𝛿𝑡𝑀𝐶 = 10−2𝜏 for all sim-

ulations, with 𝜏 the time unit. The coefficients 𝐷𝑡𝑟𝑎
𝛼,𝑖 and 𝐷𝑟𝑜𝑡

𝛼,𝑖 have been estimated by

using the open-source software HYDRO++ [42, 43]. The interested reader is referred to

our previous work [34] for the specific values of these translational and rotational dif-

fusivities in units of 𝐷𝑜 ≡ 𝑇 2𝜏−1 and 𝐷𝑟 ≡ rad2𝜏−1 respectively. For a monodispersed

out-of-equilibrium system, the Brownian dynamics timescale, 𝛿𝑡𝐵𝐷, can be obtained by

rescaling the MC time scale as follows

𝛿𝑡𝐵𝐷 =
𝑐

3
𝛿𝑡𝑀𝐶 (6.7)

where 𝑐 is the time-dependent acceptance rate calculated at the 𝑐th MC cycle over the

transitory unsteady state [31]. We determine 𝑐 by performing an MC cycle at a fixed

𝛿𝑡𝑀𝐶 and integrating the above equation numerically:

𝑡BD(MC) = 𝛿𝑡MC

MC

∑
𝑐=0

𝑐

3
(6.8)

where 𝑡BD(𝑀𝐶) is the Brownian time after MC MC cycles.

To characterise the dynamics, we estimated (i) the response times, (ii) the mean

square angular displacement (MSAD), and (iii) the angular self-part of the van-Hove

function (s-VHF). We refer to the field-on (𝑡ON) and field-off (𝑡OFF) response times as the
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Figure 6.2: (a) Uniaxial and biaxial order parameters of a system with HBPs of 𝑊 ∗ = 1
undergoing equilibration with an external field with 𝜀∗𝑓 = 3. The field is switched on at
𝑡/𝜏 ≈ 280 and switched off at 𝑡/𝜏 ≈ 550. The shaded orange area corresponds to 𝑡ON
while the green shaded area corresponds to 𝑡OFF. (b) Response times (𝑡ON and 𝑡OFF) as a
function of 𝑊 ∗ with 𝜀∗𝑓 = 3. The dashed vertical line in (b) represents the self-dual shape
that separates the prolate and oblate geometries.

time taken for the biaxial order parameter to reach, respectively, 95% (field-on) and 105%

(field-off) of its equilibrium value. In particular, when a field is applied to anN+
U phase, 𝑡ON

is the time taken for 𝐵2,𝐿 to reach 95% of its equilibrium value in the field-on steady state.

A schematic illustration of how we performed this evaluation is reported in Fig. 6.2(a).

Both sets of response times have been calculated from an average over 50 independent

trajectories per system. Approximately 2% of these trajectories have given response

times that were very different from those generally observed. Since these anomalies tend

to distort averages and give misleadingly large error bars, we have considered them as

outliers and excluded them from the average. To this end, we employed the Modified

Z-score method, a multiple outlier rejection technique to identify statistical anomalies

[44]. In particular, the Modified Z-score, 𝑀𝑗 , is given by the expression:

𝑀𝑗 =
0.6745 × (𝑡𝑗 − 𝑡)

𝑀𝐴𝐷
(6.9)

where 𝑡𝑗 is the response time of trajectory 𝑗 , 𝑡 is the median response time of the 50

trajectories and 𝑀𝐴𝐷 stands for median absolute deviation. An observable is considered

an outlier only if 𝑀𝑗 > 3.5 [44].

The MSAD provides the ensemble average of the particle angular displacements over

time. To compute the MSAD, we employ a definition of an unbounded MSAD akin to the

translational mean square displacement. To this end, we first introduce the definition of
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a rotational displacement vector which takes the form [45, 46]:

−→𝜑 (𝑡) = ∫
𝑡

0
𝛿−→𝜑 (𝑡′)𝑑𝑡′ (6.10)

where 𝛿−→𝜑 (𝑡′) is a vector with direction �̂�𝑖(𝑡′) × �̂�𝑖(𝑡′ + 𝑑𝑡′) and magnitude |𝛿−→𝜑 (𝑡′)| =

cos−1[�̂�𝑖(𝑡′) ⋅ �̂�𝑖(𝑡′ + 𝑑𝑡′)]. From this, we can define the MSAD, which is mathematically

expressed as:

⟨𝜑2(𝑡)⟩ =
1
𝑁⟨

𝑁

∑
𝑖=1

|−→𝜑 𝑖(𝑡) −
−→𝜑 𝑖(0)|

2

⟩
(6.11)

where −→𝜑 𝑖 is the rotational displacement vector of particle 𝑖 defined in Eq. 6.10. Angular

brackets denote average over different trajectories. Finally, the so-defined rotational

displacements are employed to compute the angular s-VHF [45, 46]:

𝐺(𝜑, 𝑡) =
1
𝑁⟨

𝑁

∑
𝑖=1

𝛿(𝜑 − |−→𝜑 𝑖(𝑡 + 𝑡0) − −→𝜑 𝑖(𝑡0)|)⟩
(6.12)

where the symbol 𝛿 is the Dirac delta function. Basically, 𝐺(𝜑, 𝑡) provides the probability

distribution of angular displacements of particles within a time 𝑡+ 𝑡0 given their position

at time 𝑡0.

6.3 Results

NU

NU → NB

NB

NB → NU

NU

Figure 6.3: Schematic illustration of a field-induced NU →NB and a free NB →NU switch-
ing.

Upon application of a sufficiently strong external field, an NU phase can be trans-
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formed into an NB phase [15]. This transformation is not permanent, and, when the field

is removed, uniaxiality is restored. The time taken by the particles to reorient along the

field director measures the system’s ability of switching to a more ordered configuration.

Vice-versa, when the field is removed, the particles are left free to rotate and the system

recovers its original uniaxial state. A schematic illustration of both transitory states is

given in Fig. 6.3. We have measured the response time associated to both NU → NB and

NB →NU transitions upon application of the field 𝑈ext with 𝜀∗𝑓 = 3. The effect of changing

field intensity between 𝜀∗𝑓 = 1.5 and 3 on the NU → NB response time has also been as-

sessed and is available, for the interested reader, in Appendix A. The resulting response

times, 𝑡ON and 𝑡OFF, are reported in Fig. 6.2(b). Since the formation of a field-induced NB

phase is dependent on the alignment of the particle intermediate axis �̂� with the external

field, the discussion that follows is relative to this axis, unless otherwise stated. To start

with, we notice that 𝑡ON < 𝑡OFF across the complete set of anisotropies (see Fig. 6.2(b)). In

other words, at a given particle width, the NU → NB switching is faster than the NB →

NU switching. To understand the origin of this behaviour, we calculated the MSADs of

our systems and compared the field-on and field-off profiles for each anisotropy.

The MSAD of systems with 𝑊 ∗ = 2.5 and 6 are shown, respectively, in the top and

bottom frames of Fig. 6.4. At very short times, the field-on and field-off MSADs are very

similar to each other, with the former becoming larger immediately after and up to rel-

atively long time scales. Over this period of time, field-induced rotation is faster than

free rotation. However, on time scales comparable to 𝑡ON, a crossover between the two

MSADs is observed. On these time scales and beyond, free rotation grows significantly

much faster with time than field-induced rotation. We therefore conclude that the pres-

ence of the external field accelerates the system orientational dynamics by forcing the

reorientation of the particle �̂� axis along the field director. As more and more HBPs

are oriented, the field-on MSAD grows less and less with time and would eventually

saturate to a plateau if the field strength was sufficiently large to offset and overcome

thermal forces. By contrast, the field-off MSAD practically shows the same behaviour

with time over the full time scale, as expected in free rotational diffusion. As for the

effect of anisotropy on the response time, we first discuss the case of the field-induced

uniaxial-to-biaxial transitory state.

In Fig. 6.2(b), 𝑡ON increases with 𝑊 ∗, implying that the reorientation is slower for
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oblate than for prolate particles. More specifically, for rod-like HBPs (𝑊 ∗ = 1), we ob-

serve a rapid switching with 𝑡ON/𝜏 ≈ 41, whereas for plate-like HBPs (𝑊 ∗ = 12), it is

significantly slower, with 𝑡ON/𝜏 ≈ 4200. Consequently, making HBPs more oblate leads

to a slower field-induced NU → NB transition. To confirm these preliminary tendencies,

we compare the MSADs of the field-on regimes of each anisotropy along the three axes.

The top frames of Fig. 6.5 display the field-on MSADs of systems containing HBPs with

𝑊 ∗ = 1, 3.46 and 12. We notice that the MSAD of the particle axis oriented as the ne-

matic director of the original NU phase is the smallest across all the geometries. More

specifically, the MSAD of rod-like particles in Fig. 6.5(a) exhibits a strong rotational cou-

pling between �̂� and �̂� particle axes, while �̂� is practically unaffected by the application

of the field. Such a strong angular correlation between �̂� and �̂�, with ⟨𝜑2
𝑊 ⟩ = ⟨𝜑2

𝑇 ⟩ over

time, is due to the square cross-sectional area of this specific set of HBPs, where 𝑊 = 𝑇 .

For similar reasons, plate-like HBPs with 𝑊 = 𝐿 exhibit strong rotational correlations

between their axes �̂� and �̂�, with ⟨𝜑2
𝑊 ⟩ = ⟨𝜑2

𝐿⟩ (see Fig. 6.5(c)), while ⟨𝜑2
𝑇 ⟩, slightly increas-

ing over time for mere thermal fluctuations, remains very small, practically insensible

to the external field. In systems of self-dual shaped HBPs (𝑊 ∗ = 3.46), we observe that

the MSADs of 𝑊 and 𝑇 are initially coupled, but then diverge over time. This behaviour

is observed for all anisotropies that are not perfectly rod-like or plate-like and agrees

very well with the tendencies reported in our recent work on the equilibrium dynamics

of HBPs [34].

When analysing the field-on MSADs of the particle axes perpendicular to the origi-

nal nematic director, we also notice an initially linear, rather steep dependence on time,

followed by an intermediate non-linear behaviour and subsequently by a second linear

regime at times comparable to 𝑡ON. Such a long-time linear regime suggests that HBPs’

angular displacements are gradually reducing, due to the system approaching a new

equilibrium state. Under these conditions, further rotations of the particle intermediate

axis �̂� , which is already aligned with the field, are suppressed, and only small angu-

lar fluctuations are detected. At much larger field strengths, with thermal fluctuations

completely inhibited, we expect this second linear regime to plateau at long times. In

agreement with Fig. 6.2(b), we also observe that systems with rod-like HBPs (𝑊 ∗ = 1)

only take 𝑡/𝜏 ≈ 17 to reach ⟨𝜑2
𝑊 ⟩ = 0.6 rad2, whereas systems with self-dual shaped

(𝑊 ∗ = 3.46) or plate-like (𝑊 ∗ = 12) HBPs take, respectively, 𝑡/𝜏 ≈ 250 and 𝑡/𝜏 ≈ 1600 to
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Figure 6.4: MSAD in field-on and field-off scenarios of a system of HBPs with reduced
width (a) 𝑊 ∗ = 2.5 and (b) 𝑊 ∗ = 6. The field-on simulations apply an external field of
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Figure 6.5: MSAD of the �̂� , �̂� and �̂� axes of HBPs for systems undergoing NU → NB
transition with 𝜀∗𝑓 = 3 for (a) prolate; (b) self-dual and (c) oblate HBPs, and NB → NU
transition when the field is switched off for a (d) prolate; (e) self-dual and (f) oblate HBPs.
The dashed vertical lines in each Figure represent the 𝑡ON for (a)-(c) and 𝑡OFF for (d)-(f).
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achieve the same MSAD value. This suggests that prolate HBPs tend to reorient signifi-

cantly faster when an external field is applied, leading to a relatively rapid equilibration.

(b)

Field-OFF

NB NU
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Figure 6.6: (a) Angular s-VHFs of (a) field-on reorientation at time 𝑡/𝜏 = 35 and (b) field-
off reorientation at time 𝑡/𝜏 = 100.

To gain a better insight into the dynamics of reorientation during this first transitory

unsteady state, we calculated the s-VHFs of all anisotropies at 𝑡/𝜏 = 35, corresponding to

a time when all field-on cases are still undergoing equilibration. As the MSAD for field-

off scenarios are linear, we arbitrarily picked 𝑡/𝜏 = 100 to show the field-off s-VHFs. The

s-VHFs shown in Fig. 6.6 refer to the intermediate axis and have been normalised such

that ∫ ∞
0 4𝜋𝜑2𝐺(𝜑, 𝑡)𝑑𝜑 = 1. The first evident conclusion, confirming the results discussed

so far, is that prolate HBPs rotate faster than oblate HBPs. This can be appreciated in

Fig. 6.6(a) by pinpointing the location of the peak of 𝐺(𝜑𝑊 , 𝑡), which indicates the most

probable rotation achieved by particles of a given geometry at 𝑡/𝜏 = 35. In particular,

the peak of 𝐺(𝜑𝑊=𝑇 , 𝑡) and 𝐺(𝜑𝑊=𝐿, 𝑡) suggests that rod-like and plate-like particles have

rotated, respectively, by 𝜑𝑊 ≈ 1.4 rad and 𝜑𝑊 ≈ 0.2 rad. By increasing particle width

from 𝑊 ∗ = 1 to 12, the peak of the angular s-VHFs gradually displaces towards lower

rotations. Not only does the particle anisotropy determine the location of the peak of
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these distributions at a given time, but also their broadness. In other words, the angular

s-VHFs provide relevant information on the most probable rotation performed by HBPs

and on the existence of HBPs that rotate faster or slower than the average. In particular,

the presence of fast- and slow-responsive HBPs is evinced by the tails of the distributions

in Fig. 6.6(a), especially broad at 𝑊 ∗ = 1 and then narrower and narrower up to 𝑊 ∗ =

12. Therefore, rod-like HBPs rotate relatively fast, but heterogeneously (broad 𝐺(𝜑𝑊 , 𝑡)

peaked at large distances), whereas plate-like HBPs are significantly slower, but rotate

much more homogeneously (narrow 𝐺(𝜑𝑊 , 𝑡) peaked at short distances).

W* = 3.46

W* = 4

(b)

(a)
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Figure 6.7: (a) Angular s-VHFs at various times, expressed as percentage of 𝑡OFF, in sys-
tems of HBPs with (a) 𝑊 ∗ = 3.46 and (b) 𝑊 ∗ = 4.

When the field is switched off, the system recovers its original uniaxial symmetry

with the particles free to reorient under the mere effect of thermal fluctuations. The

time 𝑡OFF taken by this field-off reorientation to re-establish the NU phase is again much

shorter in nematics of prolate HBPs (see Fig. 6.2(b)). In particular, 𝑡OFF shows a tendency

to increase with particle width up to 𝑊 ∗ = 4, where 𝑡OFF/𝜏 ≈ 15 ⋅103. When HBPs acquire

a modest oblate geometry, such as from 𝑊 ∗ = 6 to 𝑊 ∗ = 8, 𝑡OFF drastically decreases to

around 𝑡OFF/𝜏 ≈ 6 ⋅ 103, before increasing again at 𝑊 ∗ = 12. We also notice that the free
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reorientation at 𝑊 ∗ = 3.46 and 4 is particularly slower than that of other anisotropies

and deserves an explanation. The MSADs in the field-off scenarios, shown in Fig. 6.5(d)-

(f), exhibit a linear profile throughout the simulation due to the absence of an external

field and decrease upon increasing 𝑊 ∗. This tendency is also detected in the field-off

s-VHFs of Fig. 6.6(b), where, similarly to the field-on case, the angular displacement

decreases at increasing particle width. These elements would suggest a scenario where

𝑡OFF increases and free rotation becomes slower upon increasing 𝑊 ∗. Because 𝑡OFF is

peaked for approximately self-dual shaped particles and then decreases (see Fig. 6.2(b)),

there must be an additional element contributing to the field-free reorientation from the

NB to the NU phase. We believe that this element is related to the ability of self-dual

shaped HBPs of retaining phase biaxiality when the field is switched off. In our recent

work on the field-induced phase behaviour of HBPs, we found that the self-dual shape

requires a surprisingly weak external field, compared to prolate and oblate geometries, to

spark an NU → NB transition [15]. In particular, the minimum field strength to stabilise

NB LCs was found to be 𝜀∗𝑓 = 0.1 and 0.25 at 𝑊 ∗ = 3.46 and 4, respectively, and then

increasing to 𝜀∗𝑓 = 0.5 at 𝑊 ∗ = 3 and to 𝜀∗𝑓 = 1 at 𝑊 ∗ = 6. Therefore, we believe that the

field-free NB → NU transition at or very close to the self-dual shape is affected by such a

modest energy barrier between the two nematic phases that the system tends to retain

biaxiality over a longer time window as compared to nematics of oblate or prolate HBPs.

In Fig. 6.7, we show the evolution of the s-VHFs of 𝑊 ∗ = 3.46 and 𝑊 ∗ = 4 at different

times up to 𝑡OFF. At short to intermediate time scales, after having switched the field

off, these s-VHFs exhibit a double peak that suggests the presence of two populations

of HBPs. Because these two populations rotate at sufficiently different rates, we can

label them as slow and fast. The first peak survives over a relatively long period of time,

between 0.2𝑡OFF and 0.7𝑡OFF, turning gradually into a shoulder that disappears at longer

times. These peaks and subsequent shoulders are especially pronounced in the case of

𝑊 ∗ = 4 (Fig. 6.7(b)), explaining why 𝑡OFF at 𝑊 ∗ = 4 is significantly slower than 𝑡OFF

at 𝑊 ∗ = 3.46. Double peaks and shoulders are not observed at other anisotropies or

in field-on transitions (not shown here), indicating that these tendencies are especially

relevant only in the field-off relaxation of self-dual shaped particles. In addition to their

propensity towards biaxiality retention, HBPs with 𝑊 ∗ = 4 rotate more slowly than

perfectly self-dual shaped particles, as shown in Fig. 6.6(b) and in agreement with the

169



tendencies observed in NU phase in the absence of external fields [34]. The resulting

large value of 𝑡OFF is therefore determined by the interplay between the particle’s ability

to rotate and the system’s tendency of retaining phase biaxiality. This interplay explains

the non-monotonic trend of 𝑡OFF with particle shape in Fig. 6.2(b)) and provides, along

with 𝑡ON, a useful guideline to select the most suitable particle anisotropy for the design

of field-responsive nanomaterials.

6.4 Conclusions

In summary, by Dynamic Monte Carlo simulation, we studied the field-induced dynam-

ics in uniaxial nematic LCs of colloidal HBPs. By forcing the particles to reorient around

the nematic director, the external field induces an NU → NB phase transition that takes

the system to a new steady state. When the field is switched off, the biaxiality is gradually

lost and the NU phase is restored. The time taken for the system to reorient, also referred

to as response time, strongly depends on the particle anisotropy. The response times in

NU → NB and NB → NU switching were calculated and compared across all anisotropies

studied. Despite being the optimal shape to promote phase biaxiality, the switching

dynamics of self-dual shape HBPs is less satisfactory compared to prolate HBPs. In par-

ticular, rod-like HBPs with 𝑊 ∗ = 1 exhibit the fastest reorientation times in both the

field-on and field-off cases. The analysis of MSADs and s-VHFs show that the response

time is a result of a trade-off between particle rotational diffusion and phase biaxiality re-

tention, being both determined by shape anisotropy. Prolate HBPs were found to rotate

faster than self-dual shaped or oblate HBPs, allowing rapid phase switching between the

two nematic phases. Systems of HBPs with geometry equal or very close to the self-dual

shape exhibit a particularly slow field-free reorientation, most likely due to relatively

low field strength required to transform NU into NB phases and favouring the former

in absence of an external field [15]. The ability of retaining biaxiality over a longer pe-

riod of time is corroborated by the existence of a double peak in the angular s-VHFs of

NB → NU transition at short-to-intermediate time scales. This double peak suggests the

existence of two populations of (quasi) self-dual shaped HBPs whose reorientation is

not uniform and delays the system relaxation. While prolate HBPs are especially field-

responsive and exhibit a rapid field-free reorientation, when one analyse the distribution
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of their angular displacements over time, this appears to be very broad, with particles

exhibiting a very heterogeneous ability of rotating. By contrast, oblate HBPs, while sig-

nificantly less responsive, are characterised by a very narrow distribution of angular

displacements. All these elements offer a fundamental understanding of the impact of

shape anisotropy on the dynamics of uniaxial-to-biaxial switching and a guidance to

formulate nanomaterials with specific switching dynamics for target applications.
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Appendices

6.A1 Effect of field strength

In this appendix, we briefly discuss the effect of altering field intensity on the field-on

response times, 𝑡ON of HBPs. Here, we report the response times for the field-on case for

all anisotropies studied at field strengths from 𝜀∗𝑓 = 1.5 to 𝜀∗𝑓 = 3. These field intensities

result in the formation of strong NB phases with 𝐵2 ≥ 0.35 [15]. The results are shown

in Fig. 6.8.

At constant 𝜀∗𝑓 , we observe that 𝑡ON generally increases with 𝑊 ∗ and this increment

is significant. For instance, at 𝜀∗𝑓 = 2, the response time increases by two orders of

magnitude from 𝑡ON ≈ 57 at 𝑊 ∗ = 1 to 𝑡ON ≈ 5700 at 𝑊 ∗ = 12. We conclude that

prolate particles tend to rotate faster than oblate particles, regardless the field strength.

Upon increasing field strength, the reorientation becomes faster as suggested by the

gradual decrease of 𝑡ON with 𝜀∗𝑓 . In addition, we note that the statistical errors in 𝑡ON

decrease with 𝜀∗𝑓 , most likely due to a stronger suppression of rotational fluctuations.

This tendency is consistent with the works by Zannoni and co-workers [7]. For rod-
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Figure 6.8: Changes in field-on response time, 𝑡ON as a function of 𝜀∗𝑓 across different
anisotropies.

like HBPs (𝑊 ∗ = 1), increasing 𝜀𝑓 does not significantly affect 𝑡ON, probably because the

reorientation capability of these HBPs is very close to its saturation value.

6.A2 Response times

In Table I, we report 𝑡ON for 𝜀∗𝑓 = 1.5, 2, 2.5 and 3, and 𝑡OFF for 𝜀∗𝑓 = 3.

𝑊 ∗ 𝑡ON 𝑡OFF

𝜀∗𝑓 = 1.5 𝜀∗𝑓 = 2 𝜀∗𝑓 = 2.5 𝜀∗𝑓 = 3 𝜀∗𝑓 = 3

1 60.7 ± 10.0 56.8 ± 2.9 52.1 ± 5.2 40.7 ± 3.6 75.0 ± 12.4
2.5 545.2 ± 100.9 422.0 ± 64.4 332.9 ± 40.7 258.3 ± 29.4 878.6 ± 160.1
3 1057.5 ± 243.0 746.4 ± 118.2 548.4 ± 106.8 420.9 ± 59.2 2181.0 ± 434.8

3.46 1764.9 ± 365.6 1416.6 ± 247.5 1130.0 ± 205.6 837.6 ± 160.0 7552.2 ± 2758.4
4 4247.8 ± 683.3 3012.6 ± 403.6 2461.8 ± 273.4 1948.8 ± 200.5 15004.6 ± 2011.0
6 3844.7 ± 641.8 3380.6 ± 546.0 2681.7 ± 345.7 2272.2 ± 310.4 5975.5 ± 1200.2
8 4151.4 ± 846.8 3728.3 ± 636.6 3055.4 ± 272.5 2700.0 ± 340.2 5602.0 ± 877.4
12 6084.4±1376.9 5700.9 ± 777.0 4849.0 ± 598.6 4175.5 ± 487.5 6906.0 ± 733.8

Table 6.1: Table of response times for 𝑡ON (𝜀∗𝑓 = 1.5 to 3) and 𝑡OFF (𝜀∗𝑓 = 3) with associated
statistical errors.
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Chapter 7

Active Microrheology of Colloidal
Suspensions of Hard Cuboids

The content of this Chapter has been published as an article in Physical Review E. My

contributions are listed as follows: Luca Tonti and Fabián Garcia-Daza developed the

software; Effran Mirzad Rafael, Luca Tonti, Fabián A. García Daza, and Alessandro Patti

performed the investigation; Effran Mirzad Rafael, Luca Tonti, Fabián A. García Daza,

and Alessandro Patti reviewed and edited the draft.

Abstract

By performing dynamic Monte Carlo simulations, we investigate the microrheology of iso-

tropic suspensions of hard-core colloidal cuboids. In particular, we infer the local viscoelastic

behaviour of these fluids by studying the dynamics of a probe spherical particle that is

incorporated in the host phase and is dragged by an external force. This technique, known

as active microrheology, allows one to characterise the microscopic response of soft materials

upon application of a constant force, whose intensity spans here three orders of magnitude.

By tuning the geometry of cuboids from oblate to prolate as well as the system density, we

observe different responses that are quantified by measuring the effective friction perceived

by the probe particle. The resulting friction coefficient exhibits a linear regime at forces that

are much weaker and larger than the thermal forces, whereas a non-linear, force-thinning

regime is observed at intermediate force intensities.
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7.1 Introduction

Complex fluids are present in a wide variety of day-to-day consumables, including cos-

metics, pharmaceuticals, paints and foods. A common thread shared by these families

of products is the correlation between the interactions established at the sub-micron

scale and their macroscopic response as well as the ability of their microscopic domains

to rearrange upon the application of external stimuli [1]. When flow is imposed, com-

plex fluids tend to display behaviours characteristic of non-Newtonian fluids, such as

viscoelasticity [2]. Traditionally, the rheology of fluids has been studied with mechan-

ical rheometers, providing information mainly on their bulk flow behaviour. However,

advances in rheological techniques have enabled the assessment of the viscoelastic be-

haviour of soft materials through a technique referred to as microrheology (MR) [1].

MR operates under the mechanism of embedding a colloidal tracer in a host fluid, whose

flow properties can be inferred by analysing the tracer’s dynamics. This technique has

been applied to study a wide spectrum of systems including chromonic liquid crystals

[3], DNA [4, 5], actin networks [6], biofluids [7, 8], hard [9] and soft [10] spheres. More

specifically, passive MR involves monitoring the response of the tracer merely due to the

thermal fluctuations of the host fluid (or bath) - this will probe the linear response of the

complex fluid. By contrast, active MR unveils the fluid’s nonlinear response by applying

an external force to the tracer - active MR can be performed at fixed force or fixed veloc-

ity. In fixed-forced active MR, the tracer is pulled with a constant force through the bath

and, by applying the Stoke’s drag law, the effective friction coefficient (or microviscosity)

of the bath can then be obtained [11].

Among complex fluids, colloidal suspensions of anisotropic particles are especially

attractive for their rich phase behaviour and ability to self-assemble in a wide spec-

trum of mesophases, such as nematic and smectic liquid crystals (LCs). In particu-

lar, biaxial particles, such as boards, ellipsoids, rhombuses and bent-core particles, are

able to form exotic LC phases [12, 13, 14, 15, 16], including the biaxial nematic (NB)

phase, whose existence at molecular scale is still object of discussions [17]. As far as

nanoboards are concerned, the first experimental evidence of the existence of stable

NB phases was reported about a decade ago in dispersions of mineral goethite particles

[18]. This discovery has inspired further works on the phase behaviour of board-like

particles, which has been extensively studied by experiments, theory and simulations
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[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Nevertheless, less attention has

been given to the study of their dynamics, so far mostly limited to the long-time struc-

tural relaxation of uniaxial nematic LCs [35], field-driven uniaxial-to-biaxial nematic

switching [36] and in cylindrical confinement [37]. Generally speaking, it was found that

the dynamics of board-like particles strongly depends on their geometry, which spans

prolate (rod-like) to oblate (disk-like) shapes, and interesting behaviours are observed

at the self-dual shape, where oblate and prolate geometries fuse into one. In particular,

the self-dual nanoboards were found to exhibit the lowest overall translational diffusiv-

ity in equilibrium uniaxial nematic phases; and show the slowest overall response time

in field-induced uniaxial-biaxial nematic switching due to biaxial retention tendencies,

when compared to other geometries. These findings highlight the importance of shape

anisotropy to control the dynamics of board-like particles. Currently, state-of-the-art

commercial displays are engineered with molecular LCs, and colloidal LCs serve mainly

as model systems to understand the behaviour of their molecular counterparts. How-

ever, colloidal LCs are regarded as potential candidates for next-generation displays, as

these systems are athermal, relatively cheap and highly susceptible to external fields

[38, 39, 40, 41]. As such, understanding the dynamics and rheology of these systems is

as relevant as mapping their phase behaviour.

To this end, in this work, we employ the dynamic Monte Carlo (DMC) simulation

technique to investigate the viscoelastic response of suspensions of hard cuboids by ac-

tive MR. The DMC method has been recently shown to reproduce MR results of Langevin

Dynamics in systems of spherical and rod-like particles to an excellent degree of qual-

itative and quantitative agreement [42]. In particular, we are interested in the nonlin-

ear response of board-like particles, as application and manufacturing processes require

complex fluids to flow and be driven out-of-equilibrium. More specifically, we investi-

gate the effective friction of a bath of board-like particles in the isotropic phase through

fixed-force active MR. The investigation will be framed within the effects of altering the

packing fraction of the bath and the particle geometry (board-like particles are morphed

from prolate to oblate). The present paper is arranged as follows: we first discuss the

details of our model systems and simulation methods, referring the reader to our recent

work for details on how DMC has been adapted to study active MR [42], then we analyse

the results at different Péclet numbers when varying either the system packing or the
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geometry of the bath particles, and, in the final section, we draw our conclusions.

7.2 Model and simulation methodology

Our systems consist of 𝑁𝑐 = 1000 hard board-like particles (HBP) and 𝑁𝑠 = 1 hard spheri-

cal tracer, constrained in an elongated box with volume 𝑉𝑏𝑜𝑥 = 𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧, where 𝐿𝑥 = 𝐿𝑦

and 𝐿𝑧 = 3𝐿𝑥 . HBPs are cuboids of thickness 𝑇 , length 𝐿 and width 𝑊 , with 𝑇 the sys-

tem unit length. In this work, all HBPs have a reduced length given by 𝐿∗ ≡ 𝐿/𝑇 = 12,

while the reduced width, 𝑊 ∗ ≡ 𝑊/𝑇 , is a simulation parameter that takes the values

𝑊 ∗ = {1,
√
𝐿∗ ≈ 3.46, 8}, providing respectively prolate, self-dual shaped and oblate ge-

ometries. The spherical tracer has a diameter 𝜎 = 𝑇 . A schematic representation of

these particles is given in Fig. 7.1. Given the hard-core nature of the particles, the phase

behaviour of the systems is fully characterised by the particle geometry and system

packing fraction, which can be approximated to

𝜙 ≈
𝑁𝑐𝑣0
𝑉

(7.1)

where 𝑣0 = 𝑇𝑊𝐿 is the volume of one HBP and the contribution of the spherical tracer

has been disregarded [43]. In the first part of this work, we will assess the impact of 𝜙 on

the effective friction of the bath. In this part, we employ isotropic (I) phases consisting

of HBPs at a fixed width, 𝑊 ∗ = 3.46, and comparisons are made across three packing

fractions, namely 𝜙 = 0.20, 0.25 and 0.30. The reason why we selected the self-dual shape

to ponder the effect of density is due to the relatively large stability range of the I phase

at this specific particle geometry [29]. In the second part, we are interested in altering

the HBP’s geometry from prolate to oblate at a fixed packing fraction. In this case, we

will keep the packing fraction constant at 𝜙 = 0.20 and increase the particle width from

𝑊 ∗ = 1 to 8.

To equilibrate the systems we employed standard MC simulations in the canonical

ensemble, reproducing the I phases from our previous work [29]. Because the interac-

tions between particles are modelled by a hard-core potential, moves are always accepted

unless an overlap is produced. Overlaps between cuboids are checked with the separat-

ing axes theorem proposed by Gottschalk and coworkers [44] and later adapted by John

and Escobedo to study the phase behaviour of HBPs with square cross section [45]. To
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Figure 7.1: Model HBPs studied in this work. Length, width and thickness are respec-
tively labelled as 𝐿 = 12𝑇 , 𝑊 and 𝑇 , with 𝑇 the system unit length. The reduced width,
𝑊 ∗ ≡ 𝑊/𝑇 , assumes three different values to reproduce prolate, self-dual and oblate
geometries.

check the occurrence of overlaps between the spherical tracer and cubes, we employed

the OCSI algorithm [46]. Equilibration was considered achieved when the uniaxial order

parameters showed a steady value within moderate statistical fluctuations. Because we

are only investigating MR in I phases, equilibration was relatively fast, usually taking no

more than 1×106 MC cycles, with each cycle consisting of𝑁 = 𝑁𝑐+𝑁𝑠 attempts of displac-

ing or rotating a randomly selected particle. In particular, the uniaxial order parameters

have been obtained from the diagonalisation of the following symmetric tensor:

Q𝜆𝜆 =
1
2𝑁⟨

𝑁

∑
𝑖=1

(3�̂�𝑖 ⋅ �̂�𝑖 − I)⟩
(7.2)

where �̂�𝑖 = x̂, ŷ, ẑ are unit vectors respectively aligned with W, T and L, while I is the

identity tensor. The diagonalisation of Q𝜆𝜆 results in three eigenvalues (𝑆2,𝑊 , 𝑆2,𝑇 , 𝑆2,𝐿) and

their corresponding eigenvectors (m̂, l̂, n̂). A phase is considered nematic if at least one

of the eigenvalues is larger than 0.40. In our equilibrated phases, all the uniaxial order

parameters are below the threshold required to be classified as nematics. The resulting

I phases are then used as initial configurations in the DMC production runs.

The DMC method produces Brownian Dynamics (BD) trajectories by rescaling an ar-

bitrarily set MC time step, 𝛿𝑡MC,m, with the acceptance rate, 𝑚, where 𝑚 = 𝑐, 𝑠 refers to

the cuboidal bath particles and spherical tracer, respectively. The interested reader is re-

ferred to our past works for further details on the DMC technique [47, 48, 49, 50, 51, 42].
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Here, we only review the most relevant aspects that are instrumental to the present work.

Essentially, we set 𝛿𝑡MC,s within values between 10−2𝜏 and 10−7𝜏, where 𝜏 = 𝜂𝑇 3/(𝑘𝐵𝑇𝑏)

is the time unit, while 𝑇𝑏 and 𝜂 are, respectively, the bath temperature and viscosity. As a

result, the MC time step of the tracer is obtained through the corresponding acceptance

rates (see Supporting information for details). More specifically, when the tracer is sub-

jected to a one-dimensional external force in the positive direction of ẑ, taking the form

Fext = 𝐹extẑ, the time step 𝛿tMC,s is obtained from the following relationship [50]:

(
3
2
𝑠 −

1
2)

𝛿𝑡MC,s = 𝑐𝛿𝑡MC,c (7.3)

where 𝑠 and 𝑐 are the acceptance rates of spherical tracer and cubes, respectively. It

should be noted that the external force is considered in the above equation by means

of 𝑠. According to our previous work, 𝑠 ∼ 1 − 𝛽𝐹𝑒𝑥𝑡𝛿𝑥𝑧/4 [50]. In active MR-DMC

simulations, we stress that in order to produce the most reliable approximations, the

following condition should be satisfied:

𝛽𝐹ext𝛿𝑥𝑧 ≪ 1 (7.4)

where 𝛽 = 1/𝑘𝐵𝑇𝑏, with 𝑘𝐵 the Boltzmann’s constant and 𝛿𝑥𝑧 the maximum displacement

of the tracer in the direction of the force. The so-equilibrated 𝛿𝑡MC,s, along with 𝛿𝑡MC,c,

are then used to produce the time trajectories by DMC simulations. We applied periodic

boundary conditions to our elongated simulation boxes and do not perform unphysical

moves such as jumps, swaps and cluster moves in order to produce the correct dynamics.

The tracer is pulled by an external force Fext parallel to the z-axis that takes the form:

𝛽Fext =
Pe
𝑎

ẑ (7.5)

where 𝑎 = 𝜎/2 is the tracer radius, and Pe is the Péclet number which gives the ratio

of advection to thermal forces. The displacement of the HBPs’ centres of mass, 𝛿r𝑖, is

decoupled into three terms: 𝛿r𝑐,𝑖 = 𝑋𝑊 û+𝑋𝑇 v̂+𝑋𝐿ŵ, where 𝑋𝛼 , with 𝛼 = 𝑊 , 𝑇 , 𝐿, is the

maximum displacement allowed to a generic HBP. These displacements are set by the

following Einstein relations:

|𝑋𝛼 | ≤
√
2𝐷tra

𝛼,𝑖𝛿𝑡MC,c, (7.6)
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where 𝐷tra
𝛼,𝑖 are the translational diffusion coefficients at infinite dilution along the three

particle direction. Similarly, the rotation of the HBPs are performed via three consecutive

rotations with maximum rotation 𝑌𝑊 , 𝑌𝑇 and 𝑌𝐿 around û, v̂ and ŵ, respectively. These

maximum rotations read

|𝑌𝛼 | ≤
√
2𝐷rot

𝛼,𝑖 𝛿𝑡MC,c, (7.7)

where 𝐷rot
𝛼,𝑖 are the rotational diffusion coefficients at infinite dilution. Both translational

and rotational diffusion coefficients have been calculated with the open-source software

HYDRO++ [52, 53]. For the specific values of 𝐷tra
𝛼,𝑖 and 𝐷rot

𝛼,𝑖 , readers are referred to our

previous work on the equilibrium dynamics of HBPs [35], where values are reported in

units of 𝐷0 ≡ 𝑇 2𝜏−1 (translational) and 𝐷𝑟 ≡ rad2𝜏−1 (rotational).

As far as the spherical tracer is concerned, we disregard rotations and only consider

translational moves. In particular, the displacement of the tracer’s centre of mass reads

𝛿r𝑠 = 𝑍∥î + 𝑍⟂ĵ + 𝑍⟂k̂, where î is the displacement vector parallel to the external force

Fext while ĵ and k̂ are vectors orthogonal to î and to each other. Due to the presence of

the force, the resulting maximum displacement of the spherical tracers incorporates the

inertial contribution and reads

||𝑍∥|| ≤
√
2𝐷𝑠𝛿𝑡MC,s + (𝐷𝑠𝛽𝐹ext𝛿𝑡MC,s)2 (7.8)

while the maximum displacement in planes perpendicular to Fext is similar to that of

HBPs:

|𝑍⟂| ≤
√
2𝐷𝑠𝛿𝑡MC,s (7.9)

The tracer diffusion coefficient at infinite dilution, 𝐷𝑠, is obtained from the Stokes-

Einstein relation:

𝐷𝑠

𝐷0
=

1
3𝜋

(7.10)

In this paper, we are interested in the rheology of HBPs in the I phase. To evaluate this,

we computed the effective friction coefficient derived from the Stokes-drag expression:
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𝛾eff
𝛾0

=
𝐹ext

6𝜋𝜂𝑎⟨𝑣𝑠⟩
(7.11)

where 𝛾0 = 6𝜋𝜂𝑎 is the friction coefficient of the medium and ⟨𝑣𝑠⟩ is the mean velocity

of the tracer at long times. The initial I phases were equilibrated in a way to ensure

that all configurations were mutually uncorrelated. Following equilibration, in the DMC

production run, we applied an external force of magnitude (0, 0, 𝐹ext) = (0, 0, Pe 𝑘𝐵𝑇𝑏/𝑎)

to the tracer and allowed it to displace a distance of at least 𝐿𝑧/2 (half of the longest box

length). We set between 2 × 105 to 4 × 106 MC cycles for our simulations, depending on

the values of 𝜙 and Pe. All data points are averaged from 750 independent trajectories.

7.3 Results

Pe

(a) (b) Low Pe

High Pe

= 0.20

= 0.25

= 0.30

eff /0 eff /0 

Figure 7.2: (a) Dependence of the friction coefficient with Pe in I phases of HBPs with
𝐿∗ = 12 and 𝑊 ∗ = 3.46 at 𝜙 = 0.20, 0.25 and 0.30. (b) Variation of 𝛾eff/𝛾0 at high and low
Pe at different 𝜙. The lines are guides for the eye.

We first report the effect of increasing the system packing fraction on the effective

friction coefficient in I phases of self-dual-shaped HBPs. At this particular geometry,

where𝑊 =
√
𝐿𝑇 ≈ 3.46𝑇 , the I phase is stable up to 𝜙 = 0.30. At any other particle width,

within the range 1 ≤ 𝑊 ∗ ≤ 12 and 𝜙 = 0.30, oblate or prolate nematic LCs are observed

[29]. The dependence of the friction coefficient on the Pe number for this family of HBPs

is reported in Fig. 7.2(a) for 𝜙 = 0.20, 0.25 and 0.30. While the friction experienced by the

probe particle increases with the system density, its qualitative behaviour is very similar

and characterised by the presence of three separate regimes.

At Pe < 0.5, corresponding to relatively weak external forces, a plateau is observed,

with 𝛾eff/𝛾0 ≈ 1.6, 1.7 at 1.85 and 𝜙 = 0.20, 0.25, and 0.30, respectively. At such small
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Pe numbers, the advection force exerted by the tracer is too weak to significantly per-

turb the local particle distribution of the host HBPs, merely leading to weakly distorted

microstructures in the bath [54]. Basically, the thermal fluctuations of the surrounding

fluid dominate on the external force applied, leading to an essentially symmetric dis-

tribution of HBPs around the tracer. This can be clearly observed by calculating the

local changes in density 𝜌 of bath particles within volumes 𝑣 around the tracer. Since

the external force induces an axially symmetrical distribution of host particles near the

tracer, the volumes 𝑣 are defined by virtually dividing the space into an arbitrary set

of concentric rings centered on the tracer axis. We have calculated the local densities

as 𝜌(𝑣) = ⟨𝑁 (𝑡)/𝑣⟩ where 𝑁 (𝑡) refers to the number of particles in volume 𝑣 at time 𝑡,

and ⟨…⟩ indicates time average. As shown in Fig. 7.3, at Pe = 0.1 the density distribu-

tion of HBPs around the tracer is uniform at both 𝜙 = 0.20 (left column) and 𝜙 = 0.30

(right column). When the advection force is increased slightly to Pe = 0.5, the density

of HBPs surrounding the tracer is still relatively uniform, and we expect the effective

friction coefficient to be similar to Pe = 0.1. This low-Pe linear regime approaches the

passive microrheology limit [55, 54]. We also note that the presence of the probe par-

ticle does not have a tangible effect on the orientation of the cuboids around it, which

maintain their random orientation, similarly to the rest of the bath particles. This does

not exclude that some of them change orientation while the tracer is close enough, but

the global effect does not indicate substantial alignment. We have recently investigated

this scenario in I phases of hard spherocylinders by calculating a local orientational cor-

relation function and found a very weak, negligible ordering at low Pe numbers, which

fades out as soon as the applied force increases and the non-linear regime is approached

[42]. We indeed see an increase in density around the tracer as revealed by the density

maps shown in Fig. 7.3, that agree well with our findings in the I phase of hard sphero-

cylinders. However, this increase in local density is not accompanied by an increase in

ordering: the cuboids around the tracer basically remain randomly oriented.

At Pe ≥ 1, advection forces begin to dominate over thermal forces and a force-

thinning regime, with the friction coefficient decreasing with increasing the intensity of

the force applied, develops. This non-linear regime closely reminds the shear-thinning

observed in non-Newtonian fluids, whose viscosity decreases as the shear rate increases.

It spans over 1 ≤ Pe ≤ 5 for 𝜙 = 0.20 and 0.25, and over 1 ≤ Pe ≤ 20 for 𝜙 = 0.30.
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Figure 7.3: Density maps of self-dual shaped HBPs at 𝜙 = 0.20 (left) and 𝜙 = 0.30 (right)
and at the Pe numbers indicated in each frame. The colour palette is shown at the bottom
of the figure and refers to the ratio between the local density and the bath density. Yellow
regions indicate low bath particle density, while the dark red regions indicate high bath
particle density.
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Our results can be compared with what has been reported by theoretical predictions

[54, 55, 56, 57], simulations [58, 11, 50] and experiments [59, 60] on suspensions of spher-

ical particles. To the best of our knowledge, our investigation proves for the first time

that similar force-thinning behaviour at increasing Pe can be observed also in suspen-

sions of particles with cuboidal shape. In this regime, the tracer has sufficient driving

force to induce stronger microstructural distortions and cause a symmetry breaking of

the HBPs surrounding the tracer. In the density maps shown in Fig. 7.3, at both 𝜙 = 0.20

and 0.30, we can see the onset of accumulation of bath particles, represented by a dark

blue cap in the upstream face of the tracer. The same density maps reveal the existence

of a low-density trail (or wake) that forms behind the tracer, indicating that HBPs need

some time to heal the distortions caused by the forced displacement of the tracer. In

agreement with past theoretical, simulation and experimental works, this depletion trail

increases in length as Pe increases [57, 60, 11]. In this regime, the tracer’s mobility in-

creases as the reduction in the effective friction coefficient suggests. It is also noted that

the force-thinning regime in I phases of self-dual HBPs spans a much smaller range, espe-

cially when compared to systems of (quasi-)hard spheres [58, 11] or hard spherocylinders

[42]. For instance, at 𝜙 = 0.30, the force-thinning regime for hard spherocylinders spans

2 ≤ Pe ≤ 50 while for (quasi-)hard spheres, it is 2 ≤ Pe ≤ 100. This trend seems to indi-

cate that as the host particles become more anisotropic, the force-thinning regime tends

to span a smaller range with the effective friction coefficients also generally becoming

smaller. This can be expected as host particles that are more anisotropic are larger and

harder to distort; therefore, the tracer’s mobility becomes more hindered.

Finally, at larger Pe numbers, the effective friction coefficient exhibits a second pla-

teau. This plateau corresponds to the high-Pe regime, where the advection force dom-

inates thermal forces [55, 54]. When analysing the density distribution in Fig. 7.3, at

Pe = 50 (bottom row), the trail of depleted particles is longer for a system that is less

packed. More specifically, at 𝜙 = 0.20, the trail’s length is approximately 5𝜎, whereas at

𝜙 = 0.30, it is about 3𝜎. This phenomenon is most likely due to the concentration gradi-

ent of the bath that forms around the tracer. At 𝜙 = 0.30, this concentration gradient is

larger than that at 𝜙 = 0.20 and hence drives particles back into the depleted trail faster

than the concentration gradient forming at 𝜙 = 0.20. [56]. We stress, however, that we

have neglected hydrodynamic interactions (HI). The theoretical formalism developed by
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Khair and Brady suggested that if HI effects are significant, force-thickening may occur

at high Pe, and the effective friction coefficient may experience an increase [55, 2].

Low Pe

High Pe

(a) (b)

Pe W*

W* = 1

W* = 3.46

W* = 8

eff /0 eff /0 

Figure 7.4: (a) Plot of 𝛾eff/𝛾0 vs. Pe for I phases at 𝜙 = 0.20 at 𝑊 ∗ = 1, 3.46 and 𝑊 ∗ = 8 (b)
Variation of 𝛾eff/𝛾0 at high and low Pe at different 𝑊 ∗ with 𝜙 = 0.20. The dotted vertical
line indicates the self-dual shape at 𝑊 ∗ = 3.46. The lines are guides for the eye.

In Fig. 7.2(b), we show the dependence of the averaged effective friction coefficient,

𝛾eff/𝛾0, on the packing fraction. The upper curve has been obtained by averaging the fric-

tion coefficients calculated at Pe ≤ 0.5, whereas the lower curve results from the average

of friction coefficients measured in the high-Pe regime. In agreement with past works

[58, 50], 𝛾eff/𝛾0 tends to be larger in denser systems at both high and low Pe. This is some-

how expected as the structure of denser systems is less prone to be distorted, hampering

the tracer’s mobility and resulting in larger effective frictions. Since HI are disregarded,

the effect of 𝜙 on the effective friction coefficient of dual-shaped HBPs agrees well with

the tendencies observed in past works that made similar assumptions [11].

In light of these considerations, we now examine the effect of altering the shape

anisotropy of HBPs on the effective friction induced by a tracer with diameter 𝜎 = 𝑇 at

𝜙 = 0.20. In particular, we investigate the impact of particle anisotropy in baths of prolate

(𝑊 ∗ = 1), self-dual-shaped (𝑊 ∗ = 3.46) and oblate (𝑊 ∗ = 8) HBPs. In Fig. 7.4(a), we

report the 𝛾eff/𝛾0 vs Pe profile of different geometries. In all geometries studied, we once

again observe three regimes associated with the effective friction: two plateau regimes

corresponding to low and high Pe numbers, and a force-thinning regime at intermediate

Pe numbers. In the low Pe range (0.1 ≤ Pe ≤ 0.5), the effective friction coefficients

for all 𝑊 ∗ are substantially constant, within statistical uncertainty. In this regime, the

force applied to the tracer is too weak to perturb the microstructure of the HBP bath,

so a symmetrical distribution of HBPs is found around the tracer. This tendency can be
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appreciated by looking at the density maps in Fig. 7.5, particularly at Pe = 0.1 for both

𝑊 ∗ = 1 and 8. At Pe = 1, all three systems enter a force-thinning regime, which is

characterised by a reduction in the effective friction coefficient. The nonlinear regime

of prolate HBPs (𝑊 ∗ = 1) spans in the range of 1 ≤ Pe ≤ 20, while that of self-dual-

shaped and oblate HBPs spans 1 ≤ Pe ≤ 5 and 1 ≤ Pe ≤ 10, respectively. Force-thinning

occurs because inertial forces are strong enough to induce a microstructural distortion

of the bath of HBPs, increasing its mobility. In the density maps of Fig. 7.5, we can see an

asymmetry of the HBPs’ density around the tracer with a region of high-density of HBPs

in front of the tracer and low-density trail behind it for Pe ≥ 1. At large Pe, the effective

friction coefficients achieve a second plateau, which is due to a balance between the

advection force from the tracer and a retarding force from the thin layer of very dense

HBPs in front of the tracer that tends to scale proportionally with increasing Pe. As we

can see clearly in Fig. 7.4(a), at large values of Pe, the effective friction coefficients of all

geometries have very similar values.

Fig. 7.4(b) reports how the average effective friction coefficients vary with particle

geometry. The low-Pe effective friction coefficients are averaged across 0.1 ≤ Pe ≤ 0.5

for all geometries. For high Pe, it is averaged from Pe ≥ 20 for prolate HBPs, Pe ≥ 5 for

self-dual HBPs and Pe ≥ 10 for oblate HBPs. From both Fig. 7.4(a) and Fig. 7.4(b), it is

clear that the effective friction coefficient has a dependence on the geometry of the bath

HBPs. At low Pe, we observe that 𝛾eff/𝛾0,W∗=1 > 𝛾eff/𝛾0,W∗=8 > 𝛾eff/𝛾0,W∗=3.46. At inter-

mediate Pe numbers, we observe crossovers between the effective friction coefficients at

𝑊 ∗ = 1 and 8. Finally, in the high-Pe regime, the effective friction coefficients have rel-

atively similar values for the three particle geometries. We believe that these variations

are due to an interplay between two factors: (i) the relative size of the tracer with respect

to that of HBPs and (ii) the presence of nematic-like clusters at 𝜙 = 0.20. The relative

HBP/tracer size sets to what extent the tracer can perturb the microstructure of the bath.

Due to the smaller surface area of prolate HBPs, one can assume that it is easier for the

tracer to push away prolate HBPs and gain more mobility as compared to oblate HBPs.

We note that our model particles do not possess an explicit mass. However, a measure of

their inertia to move can still be inferred from their diffusion coefficients at infinite di-

lution, whose magnitude goes with the inverse of a relevant characteristic length of the

particle, which is related to its volume and thus to its mass. Oblate particles diffuse gen-
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Figure 7.5: Density maps of HBPs with 𝜙 = 0.20 at 𝑊 ∗ = 1 (left) and 𝑊 ∗ = 8 (right) and
at the Pe numbers indicated in each frame. The colour palette is shown at the bottom of
the figure and refers to the ratio between the local density and the bath density. Yellow
regions indicate low bath particle density, while the dark red regions indicate high bath
particle density.

190



erally slower than prolate particles, except along the vector x̂, as in this case the relevant

surface area is 𝐿𝑇 , being the same for both oblate and prolate HBPs. The resistance to

flow offered by larger surface areas can explain why the force-thinning of prolate HBPs

is much more drastic in Fig. 7.4(a). When the HBPs have an oblate anisotropy (𝑊 ∗ = 8),

it is harder for the tracer to push them away, so the tracer’s mobility is only mildly en-

hanced with increasing Pe and a relatively soft force-thinning is detected. In the density

map of Fig. 7.5, one can observe that the low-density wake of 𝑊 ∗ = 1 at Pe = 50 is

approximately as large as the tracer diameter. This might be due to the rod-like shape of

the bath particles, which can better accommodate around the tracer when perturbed, in

contrast to suspensions of plate-like bath particles, whose low-density wake appears to

be much larger than the tracer diameter. Since the cross-sectional area of the oblate par-

ticles is larger, there is a high likelihood for the tracer to be pushing the broader surface

of the HBP, and this creates a larger low-density wake. The aforementioned consider-

ations on the effect of tracer/HBPs size ratio can give an interpretation exclusively on

the values of 𝛾𝑒𝑓 𝑓 /𝛾0 at high Pe numbers, where the external force acting on the probe

particle is strong enough to distort the microstructure of the bath. The same arguments

can not explain the results obtained at low Pe: in these conditions, we do not observe

any relevant differences in the structure of HBPs in the proximity of the tracer and in

bulk, because the forces that determine the motion of the tracer (in this case thermal

fluctuations of the medium) are too weak to cause any distortion.

In addition to relative tracer/HBP size, also the phase behaviour of each system at

𝜙 = 0.20 plays a role in determining the effective friction coefficient of the bath. Al-

though all systems at this packing fraction are in the I phase, the features of their phase

behaviour are different due to how far they are from their respective I-N phase boundary.

In particular, at 𝜙 = 0.20, the systems with prolate (𝑊 ∗ = 1) and oblate (𝑊 ∗ = 8) HBPs

are closer to their respective I-N phase boundary than those made of self-dual-shaped

HBPs (𝑊 ∗ = 3.46) [29]. The packing fraction at which the I phase first transforms into a

N phase is reported in Table 7.1 for each value of the particle width [29]. We also report

the difference, Δ𝜙I−N ≡ 𝜙I−N − 𝜙, between this transition point and the actual system

packing, which is 𝜙 = 0.20 for the three geometries. We stress that the I-N transition in

systems of hard cuboids has a strong first-order signature and what we are reporting in

Table 7.1 is the packing fraction at which the I phase must be compressed to transform
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into a N phase.

𝑊 ∗ 𝜙I−N Δ𝜙I−N

1.00 0.235 0.035
3.46 0.319 0.119
8.00 0.222 0.022

Table 7.1: Difference in packing fraction of HBPs (Δ𝜙I−N) with 𝑊 ∗ = 1, 3.46 and 8 at
𝜙 = 0.20 with their packing at their respective I-N phase boundary (𝜙I−N). Here, Δ𝜙I−N ≡
𝜙I−N − 𝜙 where the values of 𝜙I−N are selected at the point where the I phase transitions
into the N phase for each geometry.

We also notice that recent simulations in our group reported the formation of nema-

tic-like clusters in systems of HBPs with 𝑊 ∗ = 1 and 8 at 𝜙 = 0.20, that is sufficiently

close to the I-N phase transition [43]. The presence of clusters of oriented cuboids, whose

local packing can be larger than that of the surrounding I fluid, can slow down the tracer

mobility and ultimately determine the MR of the whole system. In support of these argu-

ments, the MR experiments by Paladugu and co-workers showed that N phases of bent-

core mesogens exhibit unusual properties due to the presence of cybotactic (smectic)

clusters [61]. These authors found that the viscosity anisotropy, defined as the difference

between the viscosity measured along the nematic director and that perpendicular to it,

is negative in cluster-free N phases and positive in the presence of cybotactic clusters.

The increase of viscosity in the direction of the director, and the consequent reduction in

particle self-diffusion, is most likely due to the compactness and packing of the oriented

clusters.

7.4 Conclusions

In summary, we performed fixed-force active microrheology DMC simulations [50] to

study the rheology of I fluids of colloidal cuboids. To gain an insight into their microrhe-

ological response, we computed the effective friction coefficient at increasing values of

the Pe number, a dimensionless quantity that sets the advection-to-thermal force ratio.

In particular, at very small Pe, thermal forces dominate and the tracer’s motion is essen-

tially Brownian, whereas at very large Pe, inertial forces dominate and the tracer’s mo-

tion is basically unaffected by the thermal fluctuations of the surrounding bath. Tuning

the system packing fraction, from 𝜙 = 0.20 to 0.30, and the particle width, from 𝑊 ∗ = 1
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to 𝑊 ∗ = 8, dramatically influences the morphology, phase behaviour and dynamics of

these fluids and, ultimately, their microrheological response. To clarify the effect of vary-

ing the packing fraction, we studied self-dual shaped HBPs, whose width, thickness and

length are such that 𝑊 =
√
𝐿𝑇 . These systems have been selected as they exhibit stable

I phases up to 𝜙 = 0.30 [29]. We found that the effective friction coefficients exhibit two

linear regimes at low and high Pe numbers and a force-thinning regime at intermediate

Pe, a characteristic observed in colloidal systems when HI are neglected [11, 54]. We

found that increasing system density causes an enhanced friction experienced by the

tracer since denser systems tend to have stronger local rigidity that is harder to disrupt.

When varying the particle geometry from prolate (𝑊 ∗ = 1) to oblate (𝑊 ∗ = 8) at a fixed

𝜙, we found that the effective friction coefficients tend to show non-monotonic trends

in all detected regimes. We believe that this behaviour could result from an interplay

between the relative tracer/HBP size, and the presence of nematic-like clusters. At the

moment, how these effects come into play is not fully clear, and more work is currently

under consideration to fully understand these preliminary observations.
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We present the details of the systems studied in this paper, consisting of 𝑁𝑐 = 1000 hard

board-like particles (HBPs) with thickness 𝑇 , length 𝐿 and width 𝑊 , and 𝑁𝑠 = 1 spherical

tracer with diameter 𝑇 . For comparison, we report the Péclet number Pe, reduced width

𝑊 ∗ ≡ 𝑊/𝑇 , the bath volume fraction 𝜙 ≈ 𝑁𝑐𝑣0/𝑉 with 𝑣0 = 𝑇𝑊𝐿 the single cuboid
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volume, elementary time steps 𝛿𝑡MC,𝑠 and 𝛿𝑡MC,𝑐 in units of 𝜏, and acceptance rates 𝑐

and 𝑠.

Pe 𝛿𝑡MC,s/𝜏 𝛿𝑡MC,c/𝜏 𝑐 𝑠

0.1 1.00 × 10−1 1.25 × 10−1 0.6802 0.8965
0.2 1.00 × 10−1 1.20 × 10−1 0.6855 0.8889
0.5 1.00 × 10−1 1.24 × 10−1 0.6812 0.8649
1 1.00 × 10−2 1.04 × 10−2 0.8940 0.9386
2 1.00 × 10−3 9.95 × 10−4 0.9659 0.9694
5 1.00 × 10−3 9.72 × 10−4 0.9662 0.9401
10 1.00 × 10−4 9.63 × 10−5 0.9892 0.9647
20 1.00 × 10−4 9.45 × 10−5 0.9893 0.9347
50 1.50 × 10−5 1.42 × 10−5 0.9958 0.9390

Table 7.2: Details of system with HBPs with 𝑊 ∗ = 1 at 𝜙 = 0.20.

Pe 𝛿𝑡MC,s/𝜏 𝛿𝑡MC,c/𝜏 𝑐 𝑠

0.1 1.00 × 10−1 1.11 × 10−1 0.8513 0.9465
0.2 1.00 × 10−1 1.09 × 10−1 0.8525 0.9387
0.5 1.00 × 10−1 1.06 × 10−1 0.8544 0.9140
1 1.00 × 10−2 1.00 × 10−2 0.9527 0.9564
2 1.00 × 10−3 9.90 × 10−4 0.9848 0.9761
5 1.00 × 10−3 9.68 × 10−4 0.9850 0.9482
10 1.00 × 10−4 9.75 × 10−5 0.9952 0.9684
20 1.00 × 10−4 9.48 × 10−5 0.9951 0.9400
50 1.50 × 10−5 1.43 × 10−5 0.9981 0.9427

Table 7.3: Details of system with HBPs with 𝑊 ∗ = 3.46 at 𝜙 = 0.20.

Pe 𝛿𝑡MC,s/𝜏 𝛿𝑡MC,c/𝜏 𝑐 𝑠

0.1 1.00 × 10−1 1.19 × 10−1 0.7810 0.9265
0.2 1.00 × 10−1 1.11 × 10−1 0.7832 0.9124
0.5 1.00 × 10−1 1.14 × 10−1 0.7853 0.8975
1 1.00 × 10−2 1.01 × 10−2 0.9303 0.9492
2 1.00 × 10−3 9.87 × 10−4 0.9776 0.9733
5 1.00 × 10−3 9.65 × 10−4 0.9778 0.9437
10 1.00 × 10−4 9.67 × 10−5 0.9929 0.9663
20 1.00 × 10−4 9.35 × 10−5 0.9930 0.9366
50 1.50 × 10−5 1.40 × 10−5 0.9973 0.9398

Table 7.4: Details of system with HBPs with 𝑊 ∗ = 3.46 at 𝜙 = 0.25.
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Pe 𝛿𝑡MC,s/𝜏 𝛿𝑡MC,c/𝜏 𝑐 𝑠

0.1 1.00 × 10−1 1.29 × 10−1 0.7065 0.9105
0.2 1.00 × 10−1 1.20 × 10−1 0.7084 0.9026
0.5 1.00 × 10−1 1.24 × 10−1 0.7142 0.8760
1 1.00 × 10−2 1.04 × 10−2 0.9055 0.9410
2 1.00 × 10−3 1.00 × 10−3 0.9696 0.9692
5 1.00 × 10−3 9.62 × 10−4 0.9703 0.9375
10 1.00 × 10−4 9.81 × 10−5 0.9903 0.9628
20 1.00 × 10−4 9.55 × 10−5 0.9904 0.9305
50 1.50 × 10−5 1.42 × 10−5 0.9963 0.9345

Table 7.5: Details of system with HBPs with 𝑊 ∗ = 3.46 at 𝜙 = 0.30.

Pe 𝛿𝑡MC,s/𝜏 𝛿𝑡MC,c/𝜏 𝑐 𝑠

0.1 1.00 × 10−1 1.07 × 10−1 0.8968 0.9583
0.2 1.00 × 10−1 1.05 × 10−1 0.8978 0.9500
0.5 1.00 × 10−1 1.02 × 10−1 0.8991 0.9249
1 1.00 × 10−2 9.95 × 10−3 0.9672 0.9596
2 1.00 × 10−3 9.90 × 10−4 0.9895 0.9770
5 1.00 × 10−3 9.48 × 10−4 0.9897 0.9485
10 1.00 × 10−4 9.71 × 10−5 0.9966 0.9680
20 1.00 × 10−4 9.38 × 10−5 0.9975 0.9381
50 1.50 × 10−5 1.41 × 10−5 0.9987 0.9409

Table 7.6: Details of system with HBPs with 𝑊 ∗ = 8 at 𝜙 = 0.20.
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Chapter 8

Conclusion and Future Work

This thesis focused on the dynamical properties of colloidal particles. In the context of

Brownian motion, we aimed to deepen our understanding of colloidal particles diffu-

sion in systems that show a degree of long-range ordering. Instead of studying different

phenomena separately, we focused on the intertwined correlations between thermody-

namical, dynamical and mechanical properties of suspensions. Despite we know from

decades that entropy is sufficient to spark self-assembly of particles, and we enlightened

the nature of the peculiar non-deterministic motion of colloids, we still need to better

comprehend what happens when both mechanisms come into play, and if and how they

relate to each other. In this thesis we wanted to explore how particles self-organisation

in ordered systems determines their dynamics, and how particles dynamics itself deter-

mines the formation of organised structures, all of this by examining such phenomena in

different soft matter systems, consequently showing their sometimes counter-intuitive

consequences on particle and suspension properties. These complex mechanisms stem

from one simple characteristic of the particles: their topology. Nanoparticles tend to nat-

urally organise in different structures solely because of their shape. Molecules of a fluid

interact with the available surface of a colloidal particle, hence, the random motion of

the colloid depends on both its surface and its volume, i.e., its shape. When particles tend

to diffuse along specific directions, they will naturally organise depending on how they

display; their mutual interaction further influences their motion. While every different

system requires a focused investigation on different length and time scales to properly

understand them, in this thesis we instead chose to fix our attention on particle shape,

dynamics and naturally occurring ordering, by modelling our systems as compositions
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of hard board-like and spherical particles, and by simulating their diffusive motion with

dynamic Monte Carlo methods.

In order to perform Monte Carlo simulations of our model systems, we first needed

a collision detection algorithm between cuboids and spheres. To this end, in Chapter 3

we investigated the computational efficiency of different collision detection algorithms

available in literature, and we proposed a few improvements that concluded with the

Oriented Cuboid Sphere Intersection (OCSI) algorithm that we proposed in our scien-

tific publication. We showed that, aiming to the application of collision detection algo-

rithms in particle simulations, the run-time of some of the algorithms tested is strongly

dependent on the size of the colliding particles. The best performance and stability was

observed when applying Single Instruction Multiple Data parallelism. Our algorithm

OCSI is easy to implement both in C/C++ and FORTRAN existing codes, while being

geometry-independent and time efficient, thanks to the use of specific OpenMP direc-

tives to generate automatic SIMD vectorization of the code during compilation time.

After we implemented OCSI in the software for DMC simulations, we studied how

structural organisation affects the diffusion of globular macromolecules, modelling the

system with small hard spheres in a bath of hard board-like particles. The analysis

of the dynamics of all the particles, whose results are reported in Chapter 4, showed

strong anisotropic diffusion of both cuboidal and spherical particles when the system is

assembled in a uniaxial nematic phase. More specifically, the modelled globular macro-

molecules diffuse preferentially parallel to the nematic phase in prolate nematic systems,

and perpendicular to the nematic director in oblate nematics, with deviation from ex-

pected Gaussian distribution of particle positions at intermediate times. Variation of the

non-Gaussian parameter has been observed also for prolate cuboids in isotropic phases,

with increasing deviation from zero at increasing density. We expect this behaviour to

be correlated to the formation of nematic-like cluster of cuboids at these densities; a

more detailed analysis of the lifetime of these clusters is needed to further clarify this

point.

In Chapter 5 we implemented Ewald summation for dipolar interaction into the soft-

ware to model suspensions of polarisable cubic particles. We first investigated the tran-

sition of the electrorheological fluid at low packing fraction 0.02, and we studied the

kinetics of formation of chain-like structures commonly observed in these kind of flu-
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ids. We used machine learning analysis to optimise the parameters needed for the cluster

analysis; we then followed the formation of cluster and the particle relative orientation

over time, with a uniaxial order parameter specifically renormalised for particles with

cubic symmetry. For a specific strength of the external field, the diluted system of po-

larised cubes manages to reach the same steady state with an equilibrium chain length

distribution, regardless of the initial conditions, with kinetic rates of aggregation and

disruption dependent on the size of the clusters involved. Then, we added one spherical

tracer to the suspension of cubes and used passive microrheology techniques to inves-

tigate the linear viscoelastic response of the fluid at equilibrium with the field on and

off. While at low dilution we did not observe any difference in microrheology upon the

application of the field, at higher packing fraction 0.20 the system showed anisotropic

frequency-dependent viscoelasticity, when splitting the analysis of tracer diffusion in

the direction parallel and perpendicular to the field.

In Chapter 6 we studied systems of hard-board like particles in out-of-equilibrium

conditions, transitioning from a uniaxial to a biaxial nematic phase induced by an exter-

nal field, spanning the analysis to particles from prolate to oblate geometries. Self-dual

shaped cuboids give the slowest response times, especially for the on-to-off transition,

in link with their capability to retain biaxial orientation. In this work, we highlight the

non-trivial characteristics of this system when we move from an analysis at equilibrium

to out-of-equilibrium conditions: the pros and cons of promoting biaxiality with specific

particle shape must be carefully considered in the design of possible future applications

in optical instruments. All these results have been observed with a simple model ex-

ternal field; more detailed description of particle polarisation due to an external field is

required for a clearer analysis of these systems.

In Chapter 7 we investigated mechanical properties of suspensions of cuboids in the

isotropic phase by means of active microrheology DMC simulations. While observing a

decay of friction coefficient when changing the magnitude of the force on the tracer from

low to high Pe numbers, with a force-thinning behaviour in all cases, the microviscosity

of the suspensions resulted dependent on the shape of the cuboids. From the results

obtained, such dependency seems to be influenced by the size of the tracer with respect

to the size of the cuboids, and the possible formation of nematic-like cluster, which have

been previously observed in these systems at the same concentration in Chapter 4. To

205



further corroborate these observations, more simulations with different tracer size, and

the implementation of hydrodynamic interactions between particles are necessary.

Finally, in the last period of the PhD, we started to investigate the effect of confine-

ment in isotropic suspensions of cuboids. More specifically, we are performing MC and

DMC simulations of hard board-like particles in the same conditions of particle shape

and packing fraction previously investigated and presented in Chapter 7, but now con-

fined between two parallel impenetrable walls, at three selected distances between the

walls, namely 𝑧 = {25𝑇 , 37𝑇 , 49𝑇 }, for 𝑇 the thickness of the cuboids and the unit length

of the system. Snapshots of these systems for the case with 𝑧 = 49𝑇 are shown in Fig-

ure 8.1.

(a) (b)

(c)

Figure 8.1: Snapshots of 𝑁 = 2400 HBPs in I phase with packing fraction 𝜂 = 0.150,
confined between parallel walls (in red) at distance 𝑧 = 49𝑇 . (a) HBPs with geometry
{1, 1, 12}, (b) HBPs with geometry {1, 3.46, 12} (c) HBPs with geometry {1, 8, 12}.

At the moment we investigated the relative particle orientation and their space distri-

bution as a function of the distance between the walls. We observed that prolate HBPs

tend to concentrate in contact with the walls, with their longest extent parallel to them,

while dual-shaped and oblate particles showed lower local densities in proximity of the

walls, with respect to the bulk density. In all cases, except oblate HBPs at smallest con-
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finement 𝑧 = 25𝑇 , all the systems manage to reach the average bulk density halfway

between the upper and lower walls. At the same time, also uniaxial and biaxial order pa-

rameters, computed for particles in slabs parallel to the confinement, show an increase

for particles close to the wall, suggesting the local reorientation of the HBPs due to the

confinement and neighbouring particles. We are performing DMC simulations of these

systems with one added hard spherical tracer of diameter equal to 𝑇 , the thickness of the

cuboids. We are interested in analysing the dynamical properties of the cuboids, and we

are planning to apply passive microrheology techniques to investigate the viscoelastic

response of the fluid of HBPs in these conditions, letting the spherical tracer diffuse from

the center of the simulation box. The analysis of the tracer trajectory should give us an

insight of the different local distribution of the cuboids, from the center (in bulk-like

conditions) to close to the walls (where strong deviation from I phase has been observed

so far).
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