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B.5 U(DOTA): Löwdin atomic charges and spin densities. . . . . . . . . . . 221
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The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing
heavy atoms presents a significant challenge to computational quantum chemistry. The
importance of meeting this challenge lies in the central role that NMR plays in the
structural characterisation of chemical systems. Hence there is a need for reliable
assignment and prediction of chemical shifts. We have developed code in MATLAB
that facilitates this, based on the decomposition of the magnetic moment matrices
by irreducible tensor operators (ITO) as outlined in the work of van den Heuvel and
Soncini.1

This work firstly presents a published paper2 that studies the effect of zero-field-
splitting (ZFS). It is shown that the inclusion of ZFS can produce substantial shifts
in the predicted chemical shifts. The computations presented are typically sufficient
to enable assignment of experimental spectra. However for one case, in which the
peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making
assignment quite difficult. We also observe, and echo, the previously reported im-
portance of including the paramagnetic spin-orbit hyperfine interaction for 13C and
29Si atoms, when these are directly bound to a heavy element and thus subject to
heavy-atom-light-atom (HALA) effects.

Then we study the magnetic properties of U(DOTA), where DOTA =
1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetate and three axially substituted vari-
ants, [U(DOTA)H2O], [U(DOTA)OH]− and [U(DOTA)F]−. This is achieved by calcu-
lating the main magnetic matrices and paramagnetic NMR (pNMR) spectra. U(DOTA)
has two suggested assignments for its 1H spectra,3,4 and our calculations allow a defini-
tive assignment. The complications due to large spin-orbit coupling (SOC) and the
interchange between the square antiprism (SAP) and twisted square antiprism (TSA)
conformers are discussed. The axial symmetry of the molecule allows the tensor de-
composition technique to be used to model the Zeeman contribution, and this results in
strong correlation between calculated and experimental results. Experimental assign-
ments for the axially substituted variants do not distinguish between protons attached
to the same carbon atom,5 and we are able to separate these. The binding of a wa-
ter ligand has little effect on the calculated spectra, but binding an anionic ligand
results in a compression of the spectral range which our results duplicate. Binding
an anionic ligand also causes the anisotropy axis to rotate by 90◦. These effects are
examined with reference to spin density. Finally 13C spectra are predicted for future
experimental verification.

The applicability of the new method of calculating paramagnetic NMR shifts is
extended to another class of very heavy element compounds — some substituted
actinocene complexes. The initial results aimed at assigning published experimen-
tal NMR data are presented and our implementation of the ITO model is considered
as promising.
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Chapter 1

Introduction

Actinide chemistry remains an interesting and relatively unexplored area of chemistry,

and the use of actinides for energy production and in radiotherapy provides consid-

erable incentive to understand their chemistry better. Due to the commonality of

unpaired electrons, paramagnetic NMR (pNMR) is a valuable probe of their chemi-

cal nature. However, the radioactive nature of actinides can confound more complex

NMR experiments and thereby make assignment of their spectra challenging. While

computational chemistry can be utilised to achieve such assignments, the rich elec-

tronic structure and the importance of relativistic effects in such compounds present

profound computational problems.

This work focuses on the assignment and prediction of pNMR spectra for a number

of actinide and lanthanide compounds and on probing their magnetochemistry and

electronic structure. Chapters 2 and 3 build the general and magnetic theory necessary

to achieve this. Chapter 4 contains a published exploration of the pNMR of six spin

3/2 compounds and highlights the importance of including zero-field splitting (ZFS)

effects, Chapter 5 performs a similar study for the U(DOTA) complex [DOTA is a

tetraazadodecane tetraacetate ligand] and some axially substituted variants (F−, OH−,

H2O). Chapter 6 looks at a set of substituted actinocenes and assesses the use of higher

order Zeeman correction terms. The final chapter summaries the limitations of this

work, and outlines future possibilities to improve the accuracy of the assignments that

we have made.

6
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1.1 Notation

The notation used in this work is shown below.

η Primitive gaussian type function. N The natural numbers, 1, 2, 3, ...

ϕ Atomic orbital. N0 Non negative integers, 0, 1, 2, 3, ...

ψ Molecular orbital. Z Integers.

Ψ Single determinant function. R Real numbers.

Φ Multiple determinant function. C Complex numbers.

Φ(n) The nth order correction to Φ.

Ĥ Hamiltonian. kB Boltzmann constant.

L̂ Angular momentum operator. µB Bohr magneton.

Ŝ Spin operator. µn Nuclear magneton.

T̂ Kinetic energy operator. ge Free electron g-factor.

V̂ Potential energy operator. gn Nuclear g-factor.

P̂ Momentum operator. α Fine structure constant.

Î Identity operator. c Speed of light.

p̂ 1-electron momentum operator. r Spatial coordinates.

l̂ 1-electron angular momentum. σ Spinor.

ŝ 1-electron spin. x Combined coordinates (r, σ).

ρ Electron density. ZA Atomic number of nucleus A.

ρ Density matrix. Aκ κth co-ordinate of nucleus A.

σκ Pauli matrix. riA Distance: electron i to nucleus A.

i, j Iterator, electrons. E Energy.

A,B Iterator, atoms, eigenvectors. S2 Expectation value of Ŝ2.

κ, υ Iterator, cartesian coordinates. ms Expectation value of Ŝz.

σ Orbital shielding matrix. NCM Binomial coefficient.

g Zeeman matrix. In n× n identity matrix.

A Hyperfine coupling matrix. 0n n× n zero matrix.

D Zero-field splitting tensor. ∇̂
(

∂
∂x
, ∂

∂y
, ∂

∂z

)
.

G Abragam-Bleaney tensor, g · gT ∇̂2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

µκ Magnetic moment. f (n)(a) The nth derivative of f at a.
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1.2 Abbreviations

The abbreviations used in this work are shown below.

AO Atomic Orbital.

aZORA Atomic Zeroth-Order Regular Approximation.

BSE Basis Set Exchange.

CASCI Complete Active Space Configuration Interaction.

CASPT2 Complete Active Space Perturbation Theory (2nd order).

CASSCF Complete Active Space, Self-Consistent Field (theory).

CF Crystal Field.

CI Configuration Interaction.

CISD CI Single and Double (excitations).

CIPSI CI by Perturbation with multiconfigurational zeroth-order

wavefunctions Selected by Iterative process.

COT 1,3,5,7-Cyclooctatetraene

CSF Configuration State Functions.

DFT Density Functional Theory.

DKH Douglas-Kroll-Hess (theory).

DOTA tetraazadodecane tetraacetic acetate

EPR Electron Paramagnetic Resonance.

FCI Full Configuration Interaction.

GGA Generalized Gradient Approximation (functional).

GTO Gaussian Type Orbital.

HALA Heavy-Atom Light-Atom (effect).

HF Hartree-Fock (theory).

HOMO Highest Occupied Molecular Orbital.

ITO Irreducible Tensor Operator

LSDA Local Spin Density Approximation.

LUMO Lowest Unoccupied Molecular Orbital.

LYP Lee-Yang-Parr (functional).

MO Molecular Orbital.
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NEVPT N-Electron Valence State Perturbation Theory.

NMR Nuclear Magnetic Resonance.

NRBO Non-Relativistic Born-Oppenheimer (approximation).

ODE Ordinary Differential Equation.

PAS Principal Axis System.

PBE Perdew-Burke-Ernzerhof (functional).

PBE0 Hybrid Perdew-Burke-Ernzerhof (functional).

PDE Partial Differential Equation.

pNMR Paramagnetic Nuclear Magnetic Resonance.

PSO Paramagnetic Spin-Orbit.

QDPT Quasi-Degenerate Perturbation Theory.

QRO Quasi-Restricted Orbital.

RASSCF Restricted Active Space, Self-Consistent Field (theory).

RHF Restricted Hartree Fock (theory).

RI Resolution of the Identity.

ROHF Restricted Open-shell Hartree Fock (theory).

RME Reduced Matrix Element.

SA-CASSCF State-Averaged Complete Active Space Self-Consistent Field (theory).

SARC Segmented All-electron Relativistically Contracted (basis).

SCF Self-Consistent Field (theory).

SOC Spin-Orbit Coupling.

SOMF Spin-Orbit Mean Field.

STO Slater Type Orbital.

TISE Time-Independent Schrödinger Equation.

TPSS Tao-Perdew-Staroverov-Scuseria (functional).

UHF Unrestricted Hartree Fock.

UKS Unrestricted Kohn-Sham.

UNO Unrestricted Natural Orbital.

ZFS Zero-Field Splitting.

ZORA Zeroth-Order Regular Approximation.



Chapter 2

Theory

2.1 The wavefunction

Wave-particle duality is based on the observation that very small objects behave either

as particles or as waves depending on experimental context. Consider a molecule

comprising of M atoms and N electrons. Chemistry is dominated by the behaviour of

electrons, so the corresponding N -electron system can be mathematically modelled by

the electronic wavefunction, Ψ(r1σ1...rNσN ,R1Z1...RMZM), which is a function of the

spatial, ri = (xi yi zi)T , and spin, σi, coordinates of each electron, and also the spatial

coordinates, Rj, and charges, Zj of each nucleus. The nuclei are fixed for the following

discussion. Typically the electronic coordinates are combined as xi = {ri,σi}. While

the spatial coordinates are from the well-known Euclidean three-dimensional vector

space, R3, the spin coordinate is more abstract. The spinors α = (1 0)T and β = (0 1)T

relate to a two-dimensional vector space referred to as the special unitary∗ group of

degree two, SU(2), which maps to the group of 2 × 2 unitary matrices with determinant

+ 1. Unlike R3, a 2π rotation of this space changes the sign of the spinor, while a 4π

rotation is needed to return the spinor to its original orientation.

For an electronic wavefunction to be physically plausible it must satisfy a number of

boundary conditions, for example, the wavefunction must be continuous. Considering

a spinless one-electron wavefunction, then the electron probability density is ρ(r) =

|Ψ(r)|2 = Ψ(r)∗Ψ(r). The Born interpretation,6 implies that ρ(r)δr represents the

probability of an electron being in the cube δr = δxδyδz centred on r = (x, y, z) as
∗A unitary matrix satisfies U∗U = UU∗ = UU−1 = I3 where U∗ is the conjugate transpose of

U and I3 is the 3 × 3 identity matrix.

10



2.2. LAGRANGIAN MECHANICS 11

δr becomes arbitrarily small. The integral of ρ must equal the probability of finding

an electron in the region of integration, so, for a valid one-electron wavefunction, the

integral over all space must equal one, i.e.
∫
R3

Ψ∗(x, y, z)Ψ(x, y, z) dx dy dz =
∫
R3
ρ(r) dr = 1 < ∞. (2.1)

Similarly for an N -electron wavefunction, the corresponding integral (for all electronic

co-ordinates) must equal N . This implies that the radial part of the wavefunction

must tend to zero as the radial distance becomes arbitrarily large. It is the imposition

of these boundary conditions that lead to quantisation.

2.2 Lagrangian mechanics

Lagrangian mechanics was introduced in 1788 by Joseph-Louis Lagrange as a refor-

mulation of classical mechanics7 to facilitate solving problems that were difficult to

solve in cartesian coordinates. The abstract concept of an action functional L̂[L] was

introduced describing the evolution of a system (a functional is an operator that takes

a function and maps it to a scalar), and so the action of the system is given by the

functional

L̂[L] =
∫ t=b

t=a
L(t, s(t), ṡ(t)) dt, . (2.2)

where s is a set of generalised coordinates (e.g. the distance along a bent string),

the overdot notation indicates differentiation with respect to time, and t is a time

coordinate. While an abstract quantity, the action is defined as a scalar to allow for

the evolution of a system to be measurable, and can be used to model the effect of small

changes to s and ṡ, and most importantly allows these functions to be optimised.8 The

function, L, is called the Lagrangian and for systems of particles it is defined by

L(t,x(t), ẋ(t)) = T (t,x(t), ẋ(t)) − V (t,x(t), ẋ(t)), (2.3)

where T and V represent the potential and kinetic energy of the system. The principle

of least action states8 that the solutions to the equations of motion for such a system

are the ones that minimise this action functional,† and as a result the functional can
†Strictly speaking the solutions only need to be stationary points.
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be minimised by solving the associated Euler-Lagrange equation. This approach can

be mirrored for quantum systems with the wavefunction Ψ(t) representing the state

of the system.6,9

2.2.1 Noether’s theorem

Noether’s theorem10 was a landmark theorem for theoretical physics. Essentially it

implies that if a physical system has a continuous symmetry, there must be a cor-

responding quantity that is conserved. This remarkable theorem implies that in a

system that is time-symmetric (does not change with time) energy must be conserved

as a mathematical consequence of this symmetry. Similarly translational and rota-

tional symmetries imply that linear and angular momentum must be conserved. Of

significance for this work is that the underlying mathematics of magnetism involves

the definition of an electrostatic and vector potential, and a magnetic system is not

affected by a change of reference potential providing the underlying field does not

change. This is called gauge invariance and implies that the charge of the system

must be conserved. Unfortunately modelling magnetic properties may include ap-

proximations that break this physical requirement, and require additional work to

counteract the resulting gauge dependence.

2.3 The Schrödinger equation

Considering an electron with constant momentum, p. The corresponding one-dimensional

wavefunction, as a function of position x along the axis of motion, and time t, can be

written as

Ψ(x, t) = ei(κx−ωt−ϕ), κ = 2π/λ (2.4)
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where λ is the wavelength, κ is the (angular) wavenumber, ω is the angular frequency,

and ϕ is a phase factor which can be ignored for the following discussion. Note that if

the wavefunction is smooth and continuous it can be represented as a Fourier series,

i.e. a linear combination of functions of Eq. 2.4, so this approach can be generalised.

The energy of the wave, E, is given by E = ℏω where ℏ = h/(2π) and h is the

Planck constant. The momentum of the electron is given by the de Broglie relation,11

p = h/λ = ℏκ. Form these relations Eq. 2.4 can be rewritten as

Ψ(x, t) = ei(px−Et)/ℏ. (2.5)

Partially differentiating Eq. 2.5 with respect to time gives

∂

∂t
Ψ(x, t) = −iE

ℏ
ei(px−Et)/ℏ = 1

iℏ
EΨ(x, t), (2.6)

and from this, the one-dimensional time dependent Schrödinger equation is given by

iℏ
∂

∂t
Ψ(x, t) = EΨ(x, t). (2.7)

If the underlying system does not change in time, then Noether’s theorem implies that

energy is constant and therefore a time independent wavefunction, Ψ(x), can be built

from Eq. 2.5, i.e.

Ψ(x, t) = Ψ(x)e−iEt/ℏ (2.8)

and the time independent Schrödinger equation (TISE) is written as

ĤΨ(x) = EΨ(x), (2.9)

where Ĥ is the Hamiltonian operator which can be formed using the correspondence

principle. This principle was introduced by Bohr12 and implies that any quantum

mechanical system must produce the same results as a classical mechanical system

when the system becomes macroscopic, and as in classical mechanics, the total energy

is given by the sum of kinetic and potential energy operators. That is

ĤΨ = T̂ Ψ + V̂Ψ. (2.10)

Applying this to a hydrogen atom, again we concentrate on electronic part of the sys-

tem, and for simplicity, the following discussion ignores the purely nuclear components
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of the Hamiltonian, treating the nuclei as static. This approximation is justified by

noting that the proton is 1836 times more massive than the electron and moves much

more slowly. This is known as the Born-Oppenheimer approximation.

For an isolated and static hydrogen atom at the origin of a coordinate system, the

electronic Hamiltonian operator can be expressed in SI units as

ĤΨ = ℏ2

2me

p̂Ψ · p̂Ψ − qeqn

4πϵ0re

Ψ, (2.11)

where we introduce an electronic momentum operator p̂. The quantities me, qe and re

are the electron’s mass, charge‡ and distance from the proton respectively, qn is proton’s

charge the and ϵ0 is the electric permittivity of a vacuum. To simplify this equation we

introduce a system of atomic units; this system defines the reduced Planck constant

(ℏ), the mass and charge of an electron, and the expectation value of the electron-

proton distance as one,13 the latter quantity is called the Bohr radius, a0 = ⟨re⟩.

From this it follows that 4πϵ0 = 1. The atomic unit of energy, the hartree (Eh),

is given by the Coulombic energy of two electrons separated by the Bohr radius,

1Eh = q2
e/(4πϵ0a0) = 27.2 eV. In this system, Eq. 2.11 becomes

ĤΨ = 1
2 p̂Ψ · p̂Ψ − 1

re

Ψ. (2.12)

Partially differentiating Eq. 2.5 with respect to x (in atomic units) gives

∂

∂x
Ψ(x, t) = ipei(px−Et) = ipΨ, (2.13)

and since the electronic momentum operator is defined by p̂Ψ = pΨ it follows that it

is given by

p̂ = −i ∂
∂x
. (2.14)

In three dimensions this generalises to the vector differential operator, ∇̂, which is

the sum of the partial derivatives with respect to each dimension. Therefore, the

Schrödinger equation for the hydrogen atom (Eq. 2.12) can be written as

ĤΨ = −1
2∇̂2Ψ − 1

re

Ψ, (2.15)

where ∇̂2 = ∇̂ · ∇̂.

‡Strictly the magnitude of the charge, for simplicity the sign is contained in Eq. 2.11.
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For a N -electron atom, these one-electron terms are summed over all N electrons,

but the potential energy operator has two terms, the above one-electron nuclear-

attraction energy operator, V̂n and a two-electron electron-repulsion energy operator,

V̂e. The corresponding Schrödinger equation is given by

ĤΨ = −1
2

electrons∑
i

∇̂2
i Ψ −

electrons∑
i

Z

ri

Ψ + V̂eΨ (2.16)

= −1
2

electrons∑
i

∇̂2
i Ψ −

electrons∑
i

Z

ri

Ψ +
electrons∑

i,
j>i

1
rij

Ψ, (2.17)

where the ∇̂2
i operator acts on electron i, Z is the charge on the nucleus (i.e. the

atomic number), ri is the distance between the nucleus and electron and rij is the

distance between electrons, i and j. For a molecule it is necessary to additionally sum

the nuclear-attraction term over all nuclei, in which case the Schrödinger equation is

ĤΨ = −1
2

electrons∑
i

∇̂2Ψ −
nuclei∑

A

electrons∑
i

ZA

rAi

Ψ +
electrons∑

i,
j>i

1
rij

Ψ, (2.18)

where ZA is the charge on the nucleus A, and rAi is the distance between nucleus A

and electron i.

2.4 The variational principle

Because the Hamiltonian is a transformed Lagrangian,14 the Schrödinger equation

is a transformed Euler-Lagrange equation. This means that solving the Schrödinger

is equivalent to minimising the action functional equation and acts as a strict lower

bound for the associated energy, Eexact. This is an attractive property: Any valid

normalised trial wavefunction Ψt must have an energy Et that is necessarily equal to

or above this lower bound, i.e.

Et = ⟨Ψt|Ĥ|Ψt⟩ ⩾ Eexact. (2.19)

Furthermore, if Et = Eexact, then the trial wavefunction is one of the lowest energy

eigenstates of the Hamiltonian. This implies that the TISE can be minimised itera-

tively to find an appropriate solution. This is referred to as the variational principle

and is a cornerstone of computational quantum chemistry. However, the most accurate

models of all but the simplest chemical systems produce mathematically intractable
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equations, so approximations must be used. Many of these obey the variational prin-

ciple, but the solution only represents the lowest bound of the model used.

2.5 Basis sets

It is considerably easier to think of the complicated and unknown wavefunction as a

linear combination built from a set of known, simple functions. This section briefly dis-

cusses the underlying mathematics required to achieve this and the following sections

discuss the construction of a trial wavefunction.

A group is a set of objects {G} combined with a binary operation, ◦, which together

satisfy four properties:

• Closure: Combining two elements produces a member of the group, ∀g, h ∈ G :

g ◦ h ∈ G.

• Associativity: The outcome of combining three elements is independent of the

order in which the operation is applied, ∀f, g, h ∈ G : (f ◦ g) ◦ h = f ◦ (g ◦ h).

• Identity element: There is an identity element, 0, that when combined with any

other element produces the other element. ∃0 ∈ G : ∀g ∈ G : g ◦ 0 = g.

• Inverse element: For every element, there exists an inverse element that when

the two are combined produces the identity element, ∀g,∃g−1 : g ◦ g−1 = 0

A vector space takes a group with the binary operation of addition and also includes

an additional binary operation, multiplication by a complex scalar, a ∈ C. This

multiplication must also satisfy the closure, associativity and identity relationships,§

and must also satisfy the following two distributivity relationships.

• ∀a ∈ C,∀g, h ∈ G : a(g + h) = ag + ah.

• ∀a, b ∈ C,∀g ∈ G : (a+ b)g = ag + bg,

Often a ‘distance’ or measure of the space is added. A basis {e} is a set of linearly

independent elements from the vector space that can generate any member of the
§0 is a scalar so the inverse property does not hold.
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group; it is said to span the vector space. Elements are linearly independent if and only

if they cannot be linearly combined to form the identity element (without multiplying

by 0): this implies that no one element of the basis can be constructed from the others.

The simplest example of a vector space is the set of two-dimensional vectors from

a fixed point. The group identity element is the origin and a basis is any pair of

position vectors, e1, e2 that are not parallel (or anti-parallel); parallel vectors are

linearly dependent. Note the underlying basis is not unique. The appropriate measure

of such a space is the dot product. If these two vectors are perpendicular, then

e1 · e2 = 0 and this is an example of an orthogonal basis. If unit vectors are used, then

e1 · e1 = e2 · e2 = 1 and the basis is said to be normalised. An orthonormal basis has

both these properties, and often an orthonormal basis is considerably simpler to use.

The idea can be expanded to a vector space of functions. For instance any peri-

odic sequence can be expressed as a Fourier series, that is a linear combination of a

potentially infinite set of sine and cosine functions. Hence this infinite set of functions

forms a basis for the vector space of all periodic functions. Quantum chemistry relates

to spaces with a defined inner product, analogous to the dot product, an example of

which is shown below for a set of functions g, h ∈ G of one dimension,

⟨g|h⟩ =
∫ ∞

−∞
g∗h dx (2.20)

From this the same concepts of orthogonality and normalisation follow. A vector space

with an inner product measure is called a Hilbert space.

2.6 Orbitals: one-electron-functions

The electronic TISE in spherical co-ordinates can be exactly solved for the hydrogen

atom. The imposition of boundary conditions results in an infinite discrete set of

eigenstates that are labelledby a set of quantum numbers; n, the principal quantum

number, l, the orbital angular momentum quantum number and m, the magnetic

quantum number. The addition of a spin quantum number, s is needed to fully

describe an electronic state and account for the Zeeman effect (see Section 3.1). Studies

of atomic spectra can be rationalised using these quantum numbers, however it is also

necessary to introduce the Pauli principle which states that:6 “The total wavefunction
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must be antisymmetric under the interchange of any pair of identical fermions and

symmetrical under the interchange of any pair of identical bosons.” This further implies

the Pauli exclusion principle, that is:6 “no two electrons can occupy the same state.”

Hence no two electrons can have the same set of quantum numbers.

The TISE is solved by separating the equation into two partial differential equations

(PDE), one radial, one angular. The angular PDE also needs to separated into polar

and azimuthal angle PDEs. The resulting three PDEs can be solved by treating

them as ordinary differential equations (ODEs). The radial PDE can be solved using

the Frobenius method15 and the solutions, Rn,l(r) can be written as a product of a

polynomial and a real exponential term. After a change of variable, the polar PDE

produces a series of associated Legendre polynomials in the cosine of the polar angle.

The azimuthal PDE trivially integrates to an imaginary exponential function. The

combination of the angular components are the spherical harmonics Yl,m. Rn,l(r) and

Yl,m are orthogonal over a one-dimensional line and the surface of a sphere respectively.

They are commonly normalised, i.e.
∫ ∞

−∞
Yl,l′(θ, ϕ)Y ∗

m,m′(θ, ϕ) dr = δll′δmm′ , (2.21)

where δij is the Kronecker delta. The normalised product of these, Rn,l(r)Yl,m are the

beautiful atomic orbitals that all chemists are familiar with (Figure 2.1).

The hydrogen atomic orbitals (AOs) are orthonormal functions of R3. They are

linearly independent and span the L2 (complex) vector space of three-dimensional

square-integrable functions,¶ and can therefore be used as a basis for all such functions.

From Eq. 2.1, any physical one-electron wavefunction is a L2 function, so can be

represented by a potentially infinite linear combination of the infinite set of atomic

orbitals on a single centre. This justifies the use of such a combination to form atomic

orbitals, ϕi(r). Obviously, in practice a truncated set is used.

Molecular bonding is represented by the linear combination of atomic orbitals

model, that is, by constructing the one-electron molecular orbitals (MOs), ψa(r), via

ψa(r) =
AO∑

i

cMO
ai ϕi(r), (2.22)

where cMO
ij are the MO coefficients of the linear expansion. The practical use of such

¶∀f ∈ L2,
√

⟨f |f⟩ exists. This quantity is referred to as its norm.
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Figure 2.1: Atomic orbitals of the hydrogen atom.

orbitals is discussed below. For an infinite set of AOs on each nucleus, the resulting

infinite set of MOs still spans L2.

However an MO is an one-electron function. For an N -electron wavefunction it is

necessary to combine the orbitals in product form. The simplest method is to form a

Hartree product, |ΨHP⟩, multiplying molecular orbitals together, i.e.

ΨHP =
MOs∏

a

ψa. (2.23)

Each orbital has an independent set of coordinates, so it follows that these products

can be integrated sequentially, hence a Hartree product formed from N independent

infinite sets of AOs or MOs spans L2 over 3N -dimensional space. This mathematically

justifies using Hartree products to represent an N -electron wavefunction.

As real quantity and an observable, the electron (probability) density, ρ(r) =

|Ψ(r)|2 can be more easily discussed than the wavefunction. It can be obtained from
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Figure 2.2: The Slater and STO-1G17 1s orbitals for hydrogen, plotted along an axis
through the nucleus.

a N -electronic wavefunction using the corresponding ρ̂ operator, i.e.

⟨Ψ|ρ̂|Ψ⟩ =
〈

Ψ
∣∣∣∣ electrons∑

i=1
δ(r − ri)

∣∣∣∣Ψ〉, δ(r) =


1 r = (0 0 0)T

0 otherwise.
(2.24)

δ is called a Dirac delta function. Considering only the spatial part of the wavefunction,

the above equation can be explicitly written as

ρ(r) =
∫
R3

· · ·
∫
R3

Ψ∗(r1 . . . rN)
electrons∑

i=1
δ(r − ri)Ψ(r1 . . . rN) dr1 · · · drN , (2.25)

and, since electrons are indistinguishable particles, this can be simplified to

ρ(r) = N
∫
R3

· · ·
∫
R3

Ψ∗(r1 . . . rN)Ψ(r1 . . . rN) dr2 · · · drN . (2.26)

The electron density has a cusp, a discontinuous derivative, at any nucleus. Consider-

ing a hydrogenic atom with nuclear charge Z, then the electron density must satisfy

Kato’s cusp condition;16

Z = −
[

1
2ρ(r)

dρ(r)
dr

]
r→0

. (2.27)

The electron density of, for example, a 1s orbital, ϕ1s, is simply given by ρ1s(r) =

|ϕ1s(r)|2, since orbitals are one-electron functions. Similar results follow for all other

orbitals.
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Slater type orbitals (STOs) are based on a radial function of rn−1e−αr where α

is a constant called the exponent, in this case, the effective nuclear charge. Such

functions satisfy the cusp condition and correctly model the exponential decay of

the electron density (Figure 2.2), but the evaluation of their multi-centre integrals is

computationally expensive.18,19 This led to the introduction20 of Gaussian type orbitals

(GTOs), η(r). These can be linear combinations of Gaussian functions, or primitives,

of the electronic position r = {x, y, z} with the latter functions defined by

η(r; R, l, α) = xlx
Ay

ly
Az

lz
Ae

−α|rA|2 , (2.28)

where rA = r − RA = {xA, yA, zA} = {x−XA, y − YA, z − ZA}. (2.29)

The parameters are, α, the exponent, RA = {XA, YA, ZA}, the centre of the Gaussian

(normally at a nucleus, here labelled A), and l = {lx, ly, lz}, the angular momentum

components (with |l| = l). The main advantage of using Gaussian functions comes

from the “Gaussian product rule”: The product of two Gaussian functions is itself a

Gaussian.17 This makes evaluating multi-centre integrals considerably simpler. How-

ever a single Gaussian function is a poor model for a hydrogenic atomic orbital because

it does not have a cusp at the nucleus and its asymptotic behaviour is qualitatively

incorrect. To attenuate this problem, linear combinations are used to form atomic

orbitals (AOs), ϕi, where the exponents vary but, in most cases, the other parameters

are the same. i.e.

ϕi(r; R, l,α) =
Gaussian∑

j

cAO
ij ηj(r; R, l, αj). (2.30)

where cAO
ij are the AO coefficients of the linear expansion. A further linear combination

is often necessary for l ⩾ 2, i.e. for d,f ,g,... orbitals to convert these cartesian AOs

to a spherical form, e.g. to reduce six cartesian d-orbitals, dx2 , dy2 , dz2 , dxy, dxz, dyz, to

five spherical d-orbitals, dx2−y2 , dz2 , dxy, dxz, dyz.

The spherical orbitals are the smallest basis that spans L2. Mathematically this

is called a minimal basis, but the common unrelated term, minimal basis set, refers

to a basis with enough orbitals to represent each occupied shell (e.g. the 1s and 2sp

shells for carbon). Cartesian orbitals remain a valid basis, but use a larger number of

functions so are not mathematically minimal. STOs produce more accurate results,

but using additional GTO based AOs in a basis set dramatically improves basis set



2.6. ORBITALS 22

performance: parity in accuracy between a STO or GTO calculation can be achieved

with a surprisingly small proportional increase of GTO functions.19

2.6.1 The taxonomy of basis sets

A minimal basis set is one that that has enough AOs to represent each occupied shell.

The simplest minimal basis sets are the STO-nG family. These fit n Gaussian functions

to the corresponding STO. These sets are limited in both the representation of the

AO and in flexibility to respond to neighbouring atoms when involved in bonding.

One method of increasing flexibility in the atomic basis is to add an additional

set of AOs, leading to a ‘double-zeta’ or DZ basis set, so a double-zeta carbon basis

set would have ten functions instead of five. A compromise can be made where only

the valence shell is doubled leading to ‘split-valence’ basis sets with SV indicating a

double valence shell. This can be extended to triple, quadruple, quintuple basis sets

(TZ,QZ,5Z respectively) as far as necessary. However to model the polarisation of the

electron density due to neighbouring atoms, it is typical to add polarisation functions

in the form of a shell of higher angular momentum orbitals, so for carbon d orbitals

are added. Such a basis set is represented by adding a P to their shorthand form, or

PP if two polarisation shells are used. Additionally it is sometimes useful to improve

the modelling of the long tail of the orbitals to better represent long-range behaviour.

This is done by adding small exponent or diffuse shells, and this is represented by a D

suffix. Combining these labels gives a large number of possible basis sets, and as an

example, TZVPPD is a triple-zeta valence atomic basis set with two polarisation shells

and a diffuse shell. Although much less common, sometimes it is useful to improve the

nuclear cusp representation of the s orbitals, especially when properties that explicitly

depend on the electron density close to the nucleus are being modelled, such as the

hyperfine matrix. This can be done by introducing a simple geometrical progression

of s functions based on the set of largest exponent s functions in the underlying basis,

referred to as adding sharp functions. This can be done manually as in this work.

There has been decades of work on improving basis sets, and we cannot possibly

do the subject justice, so only directly relevant sets are discussed further. Basis Set

Exchange (BSE)21 is an invaluable online repository of basis sets and has an open-

source github repository.
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On a sample 61 day period,21 Karlsruhe group’s def2-TZVP basis set22,23 was the

most popularly downloaded set from the BSE and the ‘def2’ family was reported to

show improved performance in density functional theory and post-Hartree-Fock meth-

ods,22 and analysis of the calculations of geometries and relative energies demonstrate

that these basis sets to provide “reasonable options that balance calculational cost

and accuracy.”24 Bursch et al. consider def2-TZVP as “sufficient” for calculations of

molecular geometry,25 although note that larger basis sets may be useful for study-

ing conformational change. Pankratyev et al. estimated the error inherent in closed

shell NMR calculations using TZVP-based gauge-including atomic orbitals (GIAO)

and DFT (PBE functional):26 Over 263 1H shifts and 308 13H shifts the estimated

error was ±0.35 ppm and ±6.05 ppm respectively for a 95% confidence interval. The

estimated basis error for 1H shifts is an order of magnitude smaller than the errors for

open-shell molecules presented in this thesis. Finally the basis set was used to inves-

tigate our inhouse aZORA scalar-relativistic model27 and the calculation of a number

of Zeeman matrices.28 Due to these considerations, this is the basis set we favour for

lighter atoms.

Relativistic effects make the construction of basis sets for heavy atoms increas-

ingly difficult as they must also have the flexibility to model such effects. We pre-

fer the segmented all-electron relativistically contracted (SARC) basis sets,29–31 in-

cluding the published single polarisation functions (g shell). These are also VTZP

basis sets. Designed for the scalar-relativistic ZORA and DKH Hamiltonians dis-

cussed at the end of this chapter, this set was reported to have improved performance

in DFT and CCSD(T) calculations and is recommended for electron paramagnetic

resonance (EPR) calculations.32 Segmented basis sets do not share primitive func-

tions between basis functions, and this reduces the computational effort in generating

electron-repulsion integrals.
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Gauge-including atomic orbitals (GIAO)

This thesis focuses on the calculation of magnetic properties, and due to the approx-

imations that we are forced to employ, the calculation of these properties is often

unphysically dependent on the definition of the co-ordinate system, i.e. do not obey

gauge invariance. In particular the orbitals that are defined in this section are explicitly

centred on an atomic nucleus.

To resolve this issue, gauge-including atomic orbitals (GIAOs) where developed,

sometimes called London orbitals.33 This orbitals include the gauge as a phase term,

e.g. the London form of a the gaussian primitive, η(r; R, l, α) centred on a nucleus at

R is given by

ηLondon(r; R, l, α)) = e−iA(R)·(r−R)η(r; R, l, α) (2.31)

where A(R) is the value of a defined vector field at the nucleus. These orbitals are

sometimes (incorrectly) called gauge-invariant atomic orbitals, but contain the gauge in

the definition of A(R), and as such are gauge-variant. However, all chemical properties

calculated with these functions involve integrals (i.e. are the expectation values of

operators), and it can be shown that integrals of these orbitals are gauge-invariant,

hence all properties calculated using London orbitals are also gauge-invariant.

2.7 Slater determinants: N-electron functions

A Hartree product cannot satisfy the antisymmetry principle — exchanging two elec-

trons does not produce a change in the sign of the Hartree product. Models of multi-

electron behaviour must address this constraint. A common assumption for closed shell

systems is that the spatial form of the MOs is independent of their spin-coordinate,

so only N spatial orbitals are needed to model a 2N -electron wavefunction, this is the

case for the restricted Hartree-Fock model discussed later. The necessary antisymme-

try is typically accounted for by using a determinant constructed from all occupied
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molecular orbitals over all 2N electrons i.e.

|Ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, α) ψ2(r1, α) . . . ψN(r1, α) ψ1(r1, β) . . . ψN(r1, β)

ψ1(r2, α) ψ2(r2, α) . . . ψN(r2, α) ψ1(r2, β) . . . ψN(r2, β)

. . . . . . . . . . . . . . . . . . . . .

ψ1(r2N , α) ψ2(r2N , α) . . . ψN(r2N , α) ψ1(r2N , β) . . . ψN(r2N , β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ψi(rj, α) refers to the ith spin-orbital, occupied by the jth electron and having

spin α. This is equivalent to building an antisymmetrised linear combination of all

Hartree products, e.g. Considering the above determinant; if row 1 and row 2 of the

determinant are exchanged, then this is equivalent to exchanging two electrons (with

positions r1 and r2), and the new determinant has the same functional form as the

original determinant, but the opposite sign.

Slater determinants can also be built for open-shell systems, however while these

are eigenfunctions of Ŝz, they are not necessarily eigenfunctions of Ŝ2; this effect is

called spin contamination. To solve this issue the wavefunction can be represented

by a linear combination of Slater determinants, and such a construction is called a

configuration state function (CSF).

A simple example of a CSF is given by the open-shell singlet form of the excited

state of the helium atom, 1s12s1, where the two electrons are spin-paired but are in

different spatial orbitals. An appropriate antisymmetric wavefunction is given by34

Ψ1He, 1s12s1 = 1
2 [ψ1s(r1)ψ2s(r2) − ψ2s(r1)ψ1s(r2)][α(σ1)β(σ2) − α(σ2)β(σ1)]. (2.32)

This wavefunction cannot be represented by a single determinant built from spin-

orbitals, but can be represented by a linear combination of determinants, i.e. a CSF.

2.8 Hartree-Fock theory

Within the non-relativistic, Born-Oppenheimer approximation of the time-independent

Schrödinger equation and considering a single determinant wavefunction, Ψ, then the

variational principle implies that we want to determine the constituent molecular or-

bitals that minimise the electronic energy, E0.

E0 =
〈
Ψ|Ĥ|Ψ

〉
=

electrons∑
i

〈
Ψ|ĥ(i)|Ψ

〉
+

electrons∑
i,j<i

〈
Ψ|ĝ(i, j)|Ψ

〉
, (2.33)
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where ĥ(i) gathers the one-electron operators for electron i, representing the kinetic

and nuclear-electron attraction energies.

ĥ(i) = −1
2∇̂2 −

nuclei∑
a

Za

|ri − Ra|
, (2.34)

and ĝ(i, j) is the two-electron operator representing electron-electron repulsion ener-

gies.

ĝ(i, j) = 1
|ri − rj|

= 1
rij

(2.35)

Electrons are indistinguishable particles, so without loss of generality we only need to

consider ĥ(1) and ĝ(1, 2) explicitly. Applying the Slater determinant to Eq. 2.33 leads

to a set of one-electron integro-differential eigenvalue equations

f̂i(1)ψi(1) =
ĥi(1) +

orbitals∑
j ̸=i

ĝij(1, 2)
ψi(1) = ϵiψi(1) (2.36)

where subscripts relate to the molecular orbitals. The overall one-electron operator

f̂i is called the Fock operator. The energy of the ith solution, ϵi is called the orbital

energy. The two-electron operator is transformed into a pair of averaged one-electron

operators, the Coulomb, ĵj, and exchange k̂j operators,

ĝij(1, 2)ψi(1) = ĵj(1)ψi(1) + k̂j(1)ψi(1). (2.37)

These result from an integration over the second electron in R3 and spin space;

ĵj(1)ψi(1) =
[∫ ψ∗

j (2)ψj(2)
r12

dx2

]
ψi(1) (2.38)

k̂j(1)ψi(1) =
[∫ ψ∗

j (2)ψi(2)
r12

dx2

]
ψj(1) (2.39)

the exchange operator switches the orbital labels within and outside the integral

(shown in red) and is a result of the spin antisymmetry of the electron. Electron

labels can now be safely omitted.

Considering Eq. 2.36 and expanding the Slater determinant wavefunction in its

finite orbital basis allows the Hartree-Fock equations to relate the variational param-

eters, the MO coefficients, Caj to the set of molecular orbital eigenvalue equations

f̂j

AOs∑
a

Cajϕj = ϵj

AOs∑
a

Cajϕj. (2.40)



2.8. HARTREE-FOCK THEORY 27

Integrating these equations over the AOs allows the Hartree-Fock equations to be

written in matrix form, as the Roothaan-Hall35,36 equations

FC = SCϵ, (2.41)

where

Fij =
∫
ϕif̂jϕj dr, (2.42)

Sij =
∫
ϕiϕj dr, (2.43)

ϵ = δijϵj (2.44)

and C is the matrix of MO coefficients. The orbitals are typically orthogonalised by

a unitary transform, so that the overlap matrix S becomes an identity matrix. The

Roothaan-Hall matrix formulation has the form of an eigenvalue equation, but it is

non-linear because of the dependence of the Coulomb and exchange operators on the

MO coefficients. It is necessary to use an iterative process to find the eigenvectors that

produce a self-consistent solution. By finding the lowest energy solution, the “best”

non-relativistic Hartree-Fock wavefunction is produced as constrained by the atomic

orbital basis set. The finite nature of the basis set is another approximation of this

method. In principle, as the basis set is expanded and improved, the wavefunction

evolves towards a better approximation of the true wavefunction, within the model.

This change can be studied, and the convergence of the wavefunction towards that of

the infinite basis set is called the basis set limit.

For a closed shell system, it is often assumed that the spatial parts of the spin-

orbitals are independent of their spin coordinate, and therefore only one set of orbitals

is needed to represent alpha and beta spin-orbitals. This is called restricted Hartree-

Fock theory.

If this assumption is relaxed, then two sets of orbitals are needed, one for each spin

coordinate. This is called unrestricted Hartree-Fock theory (UHF). In UHF theory

orbital energies can differ with spin coordinate and typically the lower energy orbitals

are considered to have alpha spin.

For an open shell system, there is a further possibility that replaces RHF theory.

In this, restricted open shell Hartree-Fock (ROHF) theory, a single set of M orbitals is

used and for a system with N electrons with spin, S, the first (N − 2S)/2 are doubly
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Figure 2.3: ROHF (left) and UHF (right) molecular orbital energies (not to scale).

filled, the next 2S are singly filled and the remaining orbitals are vacant. These two

schemes are shown in Figure 2.3.

Unfortunately ROHF molecular orbital energies are poorly defined37 and unlike

UHF do not obey Koopmans’ theorem.38 Koopmans’ theorem states that the first

ionisation energy of a molecule should be equal to the negative value of the highest

occupied molecular orbital (HOMO) energy. Furthermore using the same set of orbitals

for α and β spin state results in the exchange interactions of these spin states to be

identical. Hence ROHF is typically unsuitable for spin-dependent properties.39

Conversely UHF is a single determinant method where the spatial form of an orbital

is explicitly linked to its spin-coordinate. This means that a construction separating

spatial and spin coordinates (e.g. as shown in Eq. 2.32) is not possible, hence CSFs

cannot be used, and UHF wavefunctions are not eigenfunctions of Ŝ2.



2.8. HARTREE-FOCK THEORY 29

2.8.1 Canonical and natural orbitals

Orbitals can present a valuable qualitative insight into chemistry, but because the

orbitals form a basis for the wavefunction, any linear combination of these orbitals

that remains a valid basis will recover the same wavefunction.40 As a result, their

physical interpretation is highly dependent on the context. The canonical orbitals are

eigenfunctions of the Fock operator, and as such satisfy Koopmans’ theorem. They

therefore can relate orbital energies to ionisation energies. However, they may be de-

localised and can be poor representations of the bonding in the molecule. Natural

orbitals diagonalise (and thereby represent) the electron density. For an unrestricted

calculation, they can be used to quantify the average electron distribution of degen-

erate and nearly degenerate orbitals and tend to be qualitatively more valuable in

understanding bonding. However the corresponding orbital energies have less physical

significance, because they are not eigenfunctions of an energy (i.e. the Fock) opera-

tor. Natural orbitals from an unrestricted calculation are called unrestricted natural

orbitals (UNOs).

The spin-contamination present in canonical or natural orbitals from an unre-

stricted calculation can cause convergence problems and cause inaccuracies in single-

reference calculations on spin-dependent properties.32 To address this, Neese developed

quasi-restricted orbitals (QROs).41 These are formed from three sets of orbitals, firstly

a set of UNOs with occupations close to 2.0 which are set to be doubly occupied, then

the set of UNOs with an exact occupation of 1. These are set to be singly occupied.

Finally orbitals with an occupation close to 0. These are considered to be virtual or-

bitals. Determinants built from this set of wavefunctions are spin-eigenfunctions, and

represent a state that is a close approximation to the restricted solution. Furthermore

these orbitals can be assigned well defined orbital energies via the Fock operator.
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2.9 Electron correlation

Beyond the limitations of the finite one-electron basis, the Hartree-Fock approximation

of the wavefunction suffers from two additional problems.

Firstly, the approximation assumes that the N -electron wavefunction can be rep-

resented by a single determinant built from the MOs. This is referred to as static

correlation. The simplest example of the importance of static correlation occurs when

attempting to model the dissociation of the hydrogen molecule via RHF. In this case,

using a single determinant results in an ionic dissociation where both of the electrons

are on one of the two hydrogen atoms. This is clearly unphysical; RHF cannot model

bond breaking.42

Secondly, the approximation represents the electron-electron interaction as an in-

teraction between a single electron and the mean field due to the other electrons,

however electrons repel each other locally, so if one electron is considered to be at r1,

all other electrons are less likely to be at (or close to) r1, and an averaged field cannot

capture this behaviour. This is called dynamic correlation. Some dynamic correla-

tion is recovered by the exchange operator, since using an antisymmetric wavefunction

means that electrons with the same spin function cannot have the same spatial function

(Fermi correlation).

In practice, both types of correlation are present and a simple separation into static

and dynamic effects may not be possible.43 The non-relativistic correlation energy Ecorr

is defined as

Ecorr = Eexact − E∞
HF (2.45)

where Eexact is the exact non-relativistic energy within the Born-Oppenheimer approx-

imation, and E∞
HF is the Hartree-Fock energy that would result from using an infinite

basis set. This represents the largest-source of error in computational chemistry for

many species only consisting of lighter nuclei, however relativistic effects scale with

atomic number and also become critical to model for heavier elements (see Section

2.16).
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2.10 Density functional theory

The electronic Schrödinger equation (Eq. 2.17) for a N -electron molecule can be

written as

ĤΨ = T̂ Ψ + V̂nΨ + V̂eΨ. (2.46)

The only operator within this which is explicitly dependent on the arrangement of the

nuclei is the nuclear-attraction potential energy operator, V̂n. This operator can be

represented by the summation of one-electron operators, v̂ext(ri),44 corresponding to

the electrons experiencing an “external potential,” V̂ext(r). Explicitly this is written

as

ĤΨ = T̂ Ψ +
electrons∑

i

∫
R

dri v̂ext(ri)Ψ + V̂eΨ. (2.47)

or

ĤΨ = T̂ Ψ +
∫
R

dr V̂ext(r)Ψ + V̂eΨ. (2.48)

The N -electron wavefunction is an unknown function of 3N -spatial and N -spin coordi-

nates, and as such rapidly becomes more complex as the number of electrons increases.

The spinless one-electron density (Eq. 2.26) is always a three-dimensional function,

and as such is simpler and conceptually more intuitive.

Density functional theory45 (DFT) is based on two Hohenberg-Kohn theorems.

The first Hohenberg-Kohn theorem establishes that there is a one-to-one mapping

between a non-degenerate ground-state wavefunction and the corresponding external

potential, v̂ext(ri). Similarly there is a one-to-one mapping between a non-degenerate

ground-state wavefunction and the ground-state electron density. Together this implies

that the external potential energy is a unique functional of the ground-state electronic

density (to within a constant). This implies that the true density must be representable

by the external potential, this property is called v-representability.46 A similar property

of the true density, N -representability, is that the density must equal the number of

electrons when it is integrated over all space (as in Eq. 2.1).

The second Hohenberg-Kohn theorem proves that there exists a universal functional

of the density, E[ρ], which can be used variationally to find the exact energy minimum

and density.47
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In principle, this energy functional can be divided into functionals representing the

kinetic energy, T [ρ], the nuclear-attraction potential energy, Vn[ρ] and the electron-

attraction potential energy, Vn[ρ]; that is, the universal functional can be written as

E[ρ] = T [ρ] + Vn[ρ] + Ve[ρ], (2.49)

or

E[ρ] = T [ρ] +
∫
R

dr ρ(r)V̂ext(r) + Ve[ρ], (2.50)

however this form is intractable. Kohn-Sham theory48 starts by modelling an auxiliary

system of non-interacting atoms. This can be written as

E[ρ] = Ts[ρ] +
∫
R

dr ρ(r)V̂ext(r) + Ve[ρ] + Exc[ρ], (2.51)

where the non-interacting kinetic energy functional, Ts[ρ], is given by

Ts[ρ] = −
∫
R

dr ∇̂2ρ(r), (2.52)

and the non-interacting electron-electron repulsion energy functional, Ee[ρ], is given

by

Ee[ρ] = 1
2

∫
R

dr1

∫
R

dr2
ρ(r1)ρ(r2)
|r1 − r2|

. (2.53)

The remaining functional, Exc[ρ], is called the exchange-correlation functional which is

defined by Eq. 2.51. The theory is typically used in a single determinant form similar

to that used for Hartree-Fock theory, and the above equations can be converted, using

variational methods,44 to the one-electron Kohn-Sham equations shown below. The

one-electron equations can be used in a similar way to the Roothaan-Hall equations

(Eq. 2.44). [
−∇2 + V̂ext(r) +

∫
dr2

ρ(r2)
|r1 − r2|

+ ∂Exc

∂ρ(r)

]
ϕi(r1) = ϵiϕi(r1). (2.54)

where the eigenvalues ϵi represent the Kohn-Sham orbital ‘energies.’

The exchange-correlation functional corrects three sources of error in the non-

interacting model, these are:

1. The difference between the interacting and the non-interacting kinetic energy

(i.e. T [ρ] − Ts[ρ]).
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2. The Ee[ρ] term only models the coulombic part of electronic repulsion (cf. Eq.

2.37). The exchange term, due to Pauli repulsion must be modelled.

3. Like Hartree-Fock theory, DFT is a mean field theory, and therefore dynamic

correlation must be modelled.

Like Hartree-Fock theory, restricted, restricted-open and unrestricted Kohn-Sham ap-

proaches exist. In principle, density functional theory scales with the cube of the num-

ber of electrons O(n3) which compares favourably with other correlated techniques and

accounts for its popularity.

A large number of functionals has been developed. The first functionals developed

started from the local spin density approximation (LSDA),48 which takes the known49

exchange-correlation functional, ϵUEG
xc , of the uniform electron gas as applied to a pair

of spin-densities, ρα, ρβ applied locally in infinitesimal regions, so the corresponding

DFT exchange-correlation energy, ELSDA
xc is represented by

ELSDA
xc [ρα, ρβ] =

∫
R3
ϵUEG

xc [ρα, ρβ] dr (2.55)

In practice, the infinitesimal regions are often approximated by splitting space (to

a finite limit) into a three-dimensional (radial and angular) grid, i.e. by numeri-

cal quadrature,32 with each region representing a uniform density. LSDA functionals

were found to represent regular solid surfaces well, and benefit from a fortunate can-

cellation of errors; it tends to underestimate the exchange-energy and overestimate the

correlation-energy. However it was insufficient for the calculation of many properties,

e.g. it tends to overestimate atomisation energies. One solution was to introduce

a functional dependence on the gradient of the density, referred to as a generalised

gradient (GGA) functional. An early exchange functional developed by Becke,50 was

parameterised using a set of exact Hartree-Fock exchange-energies. A similar parame-

terised functional is the correlation LYP51 functional. The combined BPE52 functional

is an example of a functional that is not parameterised. A possible refinement of the

functional is to include a dependence on the Laplacian of the density (or the kinetic

energy) such as the TPSS53 functional. The increasing sophistication of the function-

als is sometimes referred to climbing a “Jacob’s ladder” of functionals to the dream of

a perfect functional.53,54



2.10. DENSITY FUNCTIONAL THEORY 34

A final refinement to the functional is based on the observation that it is possible to

define a parameterised many-body Hamiltonian that bridges Kohn-Sham and Hartree-

Fock theory. This is written as44

Ĥλ =
electrons∑

i

[
−1

2∇̂2
i + vλ

]
+ λ

electrons∑
i=1,
j>i

ĝ(i, j). (2.56)

Note that Ĥλ is dependent on a single parameter, λ ∈ [0, 1], which is sometimes called

the coupling constant. ĝ(i, j) is the two-electron electron-repulsion energy operator

defined in Eq. 2.35 for Hartree-Fock theory.

When λ = 1 then the one-electron potential, vλ = v̂ext(ri), and Ĥ1 is the Hartee-

Fock Hamiltonian; this Hamiltonian applied to a Slater determinant will have an ‘ex-

act’ exchange energy, EHF
x , due to the determinant’s antisymmetry. When λ = 0 then

the one-electron potential is the Kohn-Sham non-interacting one-electron potential

and Ĥ0 is the Kohn-Sham Hamiltonian.

It follows that for every values of λ on the continuous interval [0, 1], by the first

Hohenberg-Kohn theorem, we can establish a mapping between vλ and the electron

density, such that the eigenfunction of the Hamiltonian produces the ground-state

density. In principle we can consider starting at the Kohn-Sham density and infinites-

imally (adiabatically) reducing λ so that the ground-state density does not change.

This is sometimes called the “adiabatic connection” and it is exploited in hybrid func-

tionals that have been developed such as PBE0.55 The PBE0 functional is based on

the PBE functional and defines λ = 1/4. It has been shown to reproduce the molecular

properties of heavy metals more effectively than many competing functionals56–58 and

it is the functional that this work favours.

In general, the exchange-correlation energy, Ehybrid
xc for a hybrid functional is

Ehybrid
xc = EGGA

xc + λ(EHF
x − EGGA

x ), (2.57)

where EGGA
xc and EGGA

x is the exchange-correlation and the exchange energy of the

GGA.
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2.11 Second quantisation

Second quantisation presents a more efficient technique for directly including the effects

of the antisymmetry principle in the generation of wavefunctions. It is equivalent to

building a Slater determinant, but allows a more concise notation for modifying such

determinants. Defining a creation operator α̂†
i that adds an occupied spin-orbital

to the N -electron determinant, and can thereby create any determinant of a set of

spin-orbitals from a vacuum state, |vac⟩ = 1, i.e.

α̂†
i |vac⟩ = |αi⟩ (2.58)

This operator has the property that if it attempts to create a spin-orbital that is

already present in the determinant, then the wavefunction is destroyed and no future

operations are possible. similarly, a destruction operator αi is defined that eliminates

a spin-orbital from the determinant, e.g.

α̂1|α1α2 · · ·αN⟩ = |α2 · · ·αN⟩ (2.59)

similarly if the destruction operator attempts to delete a spin-orbital that is not

present, then the wavefunction is destroyed. The two operators only affect the first

column of the determinant, so the columns must be exchanged to allow their operation

and maintain parity. Each column exchange switches the sign of the determinant, e.g.

α̂3|α1α2α3⟩ = −α̂3|α1α3α2⟩ = α̂3|α3α1α2⟩ = |α1α2⟩ (2.60)

An excited determinant, Ψa
r , can be generated from the original state, Ψ0, by exciting

an electron from the (occupied) ath orbital to the (virtual) rth orbital, i.e.

Ψa
r = (−1)r−aα̂†

rα̂aΨ0 (2.61)

the parity term preserves the ordering of the determinant. This can be extended

to produce doubly excited determinants, Ψab
rs, triply excited determinants, Ψabc

rst , and

higher excited terms only limited by the number of electrons and orbitals.
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2.12 Configuration interaction (CI)

A fully correlated wavefunction, ΦF CI , can be produced by forming a linear combina-

tion of the reference determinant and a series of excited determinants, to form the full

configuration interaction (FCI) wavefunction:

ΦF CI = c0Ψ0 +
orbitals∑

r>a

cr
aΨr

a +
orbitals∑

r>a,
s>b

crs
abΨrs

ab +
orbitals∑

r>a,
s>b,
t>c

crst
abcΨrst

abc + . . . (2.62)

where c0, c
r
a, c

rs
ab, c

rst
abc are the CI coefficients, constrained so the resultant wavefunction

is normalised. This wavefunction can be modified variationally in these coefficients,

so the lowest energy solution corresponds to the best wavefunction. The addition

of excited states allows more correlation to be recovered via the exchange term, and

in principle for an infinite basis set, the resulting wavefunction is exact within the

non-relativistic Born-Oppenheimer approximation.17

Obviously this is not practical. Within a finite basis, using a fully expanded ansatz

is referred to as a full CI calculation. Unfortunately, the number of determinants

scales factorially; the number of determinants, ndet(N,M) that can be formed from

N electrons in M orbitals (that allow double occupation) is given by the binomial

theorem as;

ndet(N,M) = (2M)!
N !(2M −N)! . M ⩽ N (2.63)

this is also clearly impractical for all but the smallest molecules. To combat this,

the expansion is typically truncated. For example, the CI single and double (CISD)

technique uses the expansion to second order (only single and double excitations). It

is not possible to only include the single excitations due to Brillouin’s theorem: Singly

excited determinants do not mix with the ground state Hartree-Fock wavefunction.17

One issue with truncated CI methods is that they are not size consistent (or exten-

sive), i.e. the CI energy of a set of infinitely separated (and therefore non-interacting)

molecules is not the same as the sum of their individual energies, and by extension, the

CI energy does not scale with a number of identical non-interacting molecules. This

is an artifact of the truncation; not all excitations in a single molecule are represented

in the expanded system.
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2.13 Perturbation theory

Perturbation theory offers a systematic method of improving the wavefunction and

unlike configuration interaction it is size consistent, but it is no longer variational.

The central idea is derived from the concept of a Taylor series. Consider a function,

f(x), that is perfectly smooth† at a point a. Then the Taylor series of this function

about a is given by

f(x) = f(a) +
∞∑

n=1

1
n!

dnf(x)
dxn

∣∣∣∣∣
x=a

(x− a)n (2.64)

For conciseness, the nth derivative of f(x) at a is denoted by f (n)(a). Consider a

perturbation operator ∆Ĥ, with corresponding TISE given by

ĤλΦλ = [Ĥ + λ∆Ĥ]Φλ = EλΦλ, λ ∈ (0, 1) (2.65)

where λ is a continuous parameter used to control the perturbation. Provided the

perturbation is sufficiently small, that is less than the radius of convergence for the

series, a convergent Taylor series can be formed about λ;

Φλ = Φ(0)(0) +
∞∑

n=1
Φ(n)(0)λ

n

n! . (2.66)

By convention, the notation is simplified to

Φλ = Φ(0) +
∞∑

n=1
Φ(n)λn, (2.67)

(where the n! factorial terms have been absorbed). Similarly the energy of the per-

turbed system is

Eλ = E(0) +
∞∑

n=1
E(n)λn (2.68)

The next technique exploits the resolution of the identity (RI) property that applies

to any finite orthonormal basis, {ϕ}, that spans a Hilbert space. This is

basis∑
n=1

|ϕn⟩⟨ϕn| = Î (2.69)

†A function’s smoothness at a point is measured by the number of continuous derivatives it has,

a perfectly smooth function is infinitely differentiable.
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where Î is an identity operator. Any observable must be representable by a Hermitian

matrix, and the eigenvalues of a Hermitian‡ matrix are always orthogonal. From this

it can be shown that the infinite set of eigenfunctions from a Hartree-Fock calculation

are orthonormal, and span L2. Therefore
[
Ĥ + ∆Ĥ

]
|Φ(0)⟩ = E(0)

∣∣∣Ψ(0)
0

〉
+

Excited states∑
n=1

|Ψ(n)⟩⟨Ψ(n)|∆Ĥ|Φ(0)⟩. (2.70)

From this the first order corrections can be derived

|Φ(1)⟩ =
Excited states∑

n=1

〈
Ψ(0)

0

∣∣∣∣∆H∣∣∣∣Ψ(0)
n

〉
En − E

(0)
0

, (2.71)

E
(1)
0 =

〈
Ψ(0)

0

∣∣∣∣∆H∣∣∣∣Ψ(0)
0

〉
, (2.72)

and higher order corrections can similarly be formed.

The Hellmann-Feynman theorem states that the first-order derivative of the energy

with respect to a small, continuous perturbation is given by

E(1) =
[
∂Eλ

∂λ

]
=
〈

Φλ

∣∣∣∣dĤλ

dλ

∣∣∣∣Φλ

〉
. (2.73)

This theorem has the significant advantage that it is not dependent on derivatives

of the wavefunction and allows perturbation theory to model external perturbations,

such as a magnetic field, B. When there are two separate perturbations involved the

technique can be further extended and this is called double perturbation theory, which

is typically restricted to first order. The time independent sum-over-states expression

for the contribution resulting from the first-order application of two perturbations is;59

E(1,1) = 2 Real

Excited states∑
n=1

〈
Φ(0)

n

∣∣∣∣B̂∣∣∣∣Φ(0)
0

〉〈
Φ(0)

n

∣∣∣∣Â∣∣∣∣Φ(0)
0

〉
En − E

(0)
0

 (2.74)

Where Â and B̂ are the perturbing operators. This is equivalent to calculating a

mixed derivative. One mixed derivative of particular interest is the Zeeman matrix

(see Section 3.3) and it is given by the partial derivative of the energy with respect to

the magnetic field and electronic spin in each cardinal direction, i.e. the kth element

of the matrix, gκυ is

gκυ = 1
µB

[
∂2E

∂Bκ ∂Sυ

]
. (2.75)

‡The ijth and jith elements of a Hermitian matrix satisfy σij = σ∗
ji where z∗ is the conjugate of

z.
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2.13.1 Quasi-degenerate perturbation theory (QDPT)

A major drawback of using perturbation theory occurs when two states are degenerate

(or nearly degenerate), i.e. En ≈ E
(0)
0 . The corresponding term in the Taylor series be-

comes unphysically large (or singular) and the calculation diverges. Quasi-degenerate

perturbation theory (QDPT) addresses this by taking a manifold of states and con-

structing a matrix of their interactions. Consider a Hamiltonian, ĤS, that contains

a spin dependent operator and its operation on the following electronic states; two

singlet states written as

|A; S = 0 ms = 0⟩, |B; S = 0 ms = 0⟩,

and two sets of triplet states written as

|A; S = 1 ms = −1⟩, |A; S = 1 ms = 0⟩, |A; S = 1 ms = 1⟩,

|B; S = 1 ms = −1⟩, |B; S = 1 ms = 0⟩, |B; S = 1 ms = 1⟩.

Then introducing the notation for the matrix element between the Ath and Bth state

with the labelled spin state:

⟨A; S = SA ms = mSA
| ĤS |B; S = SB ms = mSB

⟩ =
[

SA
mSA

∣∣∣A
B

∣∣∣SB
mSB

]
. (2.76)

If the Hamiltonian has the selection rule |δms| ⩽ 1, then the resulting matrix is

partitioned as

[00 | A
A |00 ] 0 [00 | A

A |11 ] [00 | A
B |11 ] [00 | A

A |10 ] [00 | A
B |10 ] [00 | A

A | 1
–1 ] [00 | A

B | 1
–1 ]

0 [00 | B
B |00 ] [00 | B

A |11 ] [00 | B
B |11 ] [00 | B

A |10 ] [00 | B
B |10 ] [00 | B

A | 1
–1 ] [00 | B

B | 1
–1 ]

[11 | A
A |00 ] [11 | A

B |00 ] [11 | A
A |11 ] 0 [11 | A

A |10 ] [11 | A
B |10 ] 0 0

[11 | B
A |00 ] [11 | B

B |00 ] 0 [11 | B
B |11 ] [11 | B

A |10 ] [11 | B
B |10 ] 0 0

[10 | A
A |00 ] [10 | A

B |00 ] [10 | A
A |11 ] [10 | A

B |11 ] [10 | A
A |10 ] 0 [10 | A

A | 1
–1 ] [10 | A

B | 1
–1 ]

[10 | B
A |00 ] [10 | B

B |00 ] [10 | B
A |11 ] [10 | B

B |11 ] 0 [10 | B
B |10 ] [10 | B

A | 1
–1 ] [10 | B

B | 1
–1 ]

[ 1
–1 | A

A | 1
–1 ] [ 1

–1 | A
B | 1

–1 ] 0 0 [ 1
–1 | A

A |10 ] [ 1
–1 | A

B |10 ] [ 1
–1 | A

A | 1
–1 ] 0

[ 1
–1 | B

A | 1
–1 ] [ 1

–1 | B
B | 1

–1 ] 0 0 [ 1
–1 | B

A |10 ] [ 1
–1 | B

B |10 ] 0 [ 1
–1 | B

B | 1
–1 ]


Note that that in the absence of a spin operator, the states are orthonormal so matrix

elements with the same spin are non-zero if and only if they are between the same state

(i.e. on the diagonal), and its value is unchanged by the spin-dependent operator. The

zero 2 × 2 blocks result from the selection rule.
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2.14 The complete active space self-consistent field

method

Figure 2.4: CASSCF partition

The complete active space SCF (CASSCF)

method60,61 is based on partitioning molecular or-

bitals into three sets (see Figure 2.4). Two sets

are non-active orbitals, the inactive orbitals (black)

and the virtual orbitals (red). The inactive or-

bitals are always doubly occupied and present in

all determinants, the virtual orbitals are always

unoccupied and absent in all determinants. The

CASSCF wavefunction is built by combining the

inactive orbitals, with every possible combination

of the remaining nact active electrons in the mact

active orbitals (blue). This is commonly referred

to as a CASSCF(nact, mact) calculation.

The CASSCF wavefunction is a truncated full

CI wavefunction, with only determinants that sat-

isfy the prescribed orbital partition remaining.

Like full CI, the calculation scales factorially, but

with respect to the number of active electrons and

orbitals instead of the full set, and therefore allows calculation for much larger sys-

tems. Nevertheless the number of determinants ndet involved can be very large, and

the resulting CASSCF matrix is a ndet × ndet real symmetric matrix. Instead of di-

agonalising the full matrix, iterative techniques such as the Davidson method62 exist

to find a smaller set of the lowest eigenvalues and corresponding eigenvectors. These

are commonly referred to as roots. As a further complication, determinants may not

match the space/spin symmetry of the system under investigation, and a set of con-

figuration state functions, each formed from a linear combination of determinants, is

used as a basis for the CI expansion.
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The most important and subtle part of a CASSCF calculation is the selection of

the active space. The simplest approach is to perform a UHF/UKS calculation and

form the natural orbitals (by diagonalising the density matrix). From this occupation

numbers can be calculated. As a rule of thumb, occupation numbers below 0.02 imply

an unoccupied virtual orbital and above 1.98 imply a doubly occupied inactive orbital,

so the remaining orbitals form the active space. However for multiconfigurational

systems, single reference occupation numbers may be misleading and additional active

orbitals may be needed.63

During the calculation both the molecular orbital coefficients and the CI coefficients

are variationally optimised. It is necessary to choose which roots are used in this

process. The natural choice is to use the lowest root (the ground CAS state), however

often a set of degenerate (or near degenerate) roots more properly represent the ground

state of the molecule, and as such the orbitals need to be optimised over these states.

Such an approach is called state averaging. Furthermore many chemical properties,

including the magnetic properties this work is interested in, depend on state energies

and interactions; optimising for the ground state may lead to a poor description of

important excited states. To account for this it is necessary to expand state averaging

to include significant excited states. For a state-averaged calculation there is trade-off

between the quality of orbital description of all included roots and the description of

the ground state. It is possible to include weighting functions in the calculation to

favour or exclude roots in the orbital optimisation process.

Because of its subtleties, CASSCF is not a black box technique and has some

important disadvantages. It only includes dynamic correlation within the active space.

This must be corrected perturbationally as discussed in the following section, it is

highly dependent on the active space used, and because the optimisation process is

inherently non-linear, it may optimise to a local energy minimum.64 Furthermore SA-

CASSCF is not necessarily size intensive.65

A CASSCF calculation without orbital optimisation is termed a CASCI (complete

active space configuration interaction) calculation and can be useful to generate excited

states without changing the optimised orbitals.
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The RASSCF method

CASSCF is based on full CI and as such scales factorially with the size of the active

space. This presents a significant barrier in the study of f -element compounds due to

the increased number of orbitals that have canonical energies close together and may

therefore be partially occupied and involved in multiconfigurational behaviour. Real-

istically either a truncated active space must be used, or the configurations produced

during the CI process must be reduced. A compromise that features both approaches

is called RASSCF (Restricted Active Space Self-Consistent Field). This technique

partitions a larger active space into three smaller subsets. The lowest energy subset

(RAS1) represents an extension of the active orbitals into the CASSCF inactive space,

and consists of mostly doubly occupied orbitals. A fixed number of excitations are

allowed out of this space. The next subset (RAS2) corresponds to the active orbitals

of a CASSCF calculation. The final subset (RAS3) consists of largely vacant orbitals

with a fixed number of electrons allowed into this space. This has the benefit of ex-

panding the active space, but like CASSCF, this is not a black box technique. The

additional partition of the active space into three subspaces introduces a further, sub-

jective decision on the relative importance of orbitals that may hide unusual chemical

behaviour.

2.14.1 ICE theory

Assessing the orbitals for inclusion in an active space requires chemical intuition, how-

ever such intuition is necessarily fallible. As a result we would like to assess and

improve the quality of our active space. Ideally using an approach that concentrates

on safely truncating the CI expansion without constraints on active orbital occupa-

tions. Such an approach is available in ORCA using the ICE (Iterative-Configuration

Expansion) approach,32 itself based on the CIPSI† technique.66 This process scales

polynomially instead of factorially with the size of active space.

ICE is based upon a partition of configuration space (here configurations can be

thought of as a set of occupation numbers and maps to CSFs32) into a dominant (or
†Configuration Interaction by Perturbation with multiconfigurational zeroth-order wavefunctions

Selected by Iterative process
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generator) subspace, an interacting subspace and the remaining subspace. The latter

does not significantly interact with the dominant subspace and is absent from the

calculation.

It is also based on the observation that, for the non-relativistic Hamiltonian, states

can only interact if they differ in orbital occupations by two electrons or less. The

implication being that single and double excitations from the configurations of the

dominant subspace can be used to form an interacting subspace covering the most

important components of the wavefunction. Furthermore, any configuration that does

not interact with the dominant subspace can safely be removed. Hence the ICE pro-

cedure can be described as follows:

1. A starting subspace of configurations subspace is formed.

2. Single and double excitations form the interacting subspace.

3. The interacting subspace is truncated using second order perturbation theory

and the interaction with the starting dominant subspace.

4. The configuration interaction problem is solved using the dominant and interact-

ing subspaces. This step is repeated until the energy converges using iteratively

generated subspaces. i.e.

(a) The new dominant subspace is formed (using the CI coefficients).

(b) The new interacting subspace is formed from single and double excitations.

(c) The interacting subspace is truncated (using the interaction with the dom-

inant subspace).

The partition of the configuration space is iteratively defined by two thresholds. The

first controls the cut-off for the CI coefficients to find the generators. The second

controls the cut-off for the interaction with the dominant subspace to truncate the

interacting subspace. The cut-offs that this work uses are discussed in the relevant

chapter.
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2.15 N-electron valence state perturbation theory

Unlike single reference perturbation theories such as MP2, N -electron valence state

perturbation theory (NEVPT) starts from a multireference zero-order wavefunction

such as that supplied by a CASSCF calculation, such as that represented by

∣∣∣Ψ(0)
〉

=
states∑

i

Ci |Ψi⟩ . (2.77)

Directly applying QDPT to a CAS wavefunction produces divergent behaviour due

to intruder state problems, and other perturbation approaches do not preserve size

consistency; even CASPT2 only partially resolves the former by introducing shift

techniques.67 Thus NEVPT theory was developed to resolve this problem, preserving

size consistency and ensuring that the wavefunction remains invariant to rotations of

the active space.68

For simplicity, we’ll consider single determinant reference states. If
∣∣∣Ψ(0)

〉
comes

from a CAS calculation, it follows that this wavefunction already fully models the

second-order interactions between electrons in the active space, i.e. those based on
active∑
r>a,
s>b

α̂†
rα̂

†
sα̂aα̂b|Ψ0⟩. (2.78)

However, consider two single reference states from the CAS calculation, |Ψ1⟩, |Ψ2⟩

which differ by two orbitals in the active space. Labelling the different orbitals, κi, υi,

where i indicates which wavefunction contains the orbital, we can define a common

determinant, |l⟩ such that

|Ψ1⟩ = α̂†
κ1α̂

†
υ1 |l⟩, |Ψ2⟩ = α̂†

κ2α̂
†
υ2|l⟩ (2.79)

It follows that if both states experience the same double excitation from the doubly

occupied inactive (or core for clarity) orbitals in |l⟩ to the active space‖ then the in-

teraction between the resulting pair of states will still differ by the same two active

orbitals. These additional second-order interactions are not considered in CASSCF,68

and the Slater-Condon rules17 imply that two-electron operators acting on determi-

nants differing by two orbitals may have non-zero integrals, so such interactions are
‖or experience the same double excitation from the active space to the virtual orbitals
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potentially important. The aim of NEVPT is to represent the effect of these interac-

tions on the CASSCF wavefunction.

NEVPT introduces a “perturber function”68–70 that is classified by the number

of electrons exchanged from the non active space (i.e. doubly occupied and virtual

orbitals) and the active space orbitals and a set of common determinants. For a single

reference state, |Ψsingle⟩, S(2)
l is the set of determinants which have had two electrons

excited from the doubly occupied core orbitals to the active space, i.e.

S
(2)
l = {α†

rα
†
sαaαb|Ψsingle⟩} = {α†

rα
†
s{|l⟩}}


∀a > b, core orbital

∀r > s, active space orbital
(2.80)

and S
(−2)
l is the corresponding set of determinants where two electrons are excited

from the active space to the virtual space. If the full CASCSF wavefunction is then

taken, then S
(2)
l represents a subspace of the full CI wavefunction, based on a set

of common determinants, {|l⟩}, and all possible double excitations from the core to

the active space. This can be generalised to S(k)
l for k ⩾ 2, but the commonly used

approach, NEVPT2, limits the excitations to second order.

A full explanation of NEVPT2 is beyond the scope of this work, and details vary

depending on the treatment of the zero-order Hamiltonian71 and the truncation of

the NEVPT2 space. Figure 2.568,72 shows the matrix representation of the NEVPT2

Hamiltonian used in three common approaches, differentiated by the level of trunca-

tion used: The totally uncontracted approach (UC-NEVPT) diagonalises the Hamil-

tonian over the entire space, while the most efficient “strongly-contracted” approach

(SC-NEVPT) only produces a single representative function for each perturbation op-

erator’s action on each function in |Ψ(0)⟩, producing a subspace of Sk
l labelled S̃k

l . Due

to the resulting improved efficiency, this is the approach that is used in this work.

Partially contracted approaches (PC-NEVPT) lie between these extremes.

|Ψ(0)
m ⟩

Sk
l

|Ψ(0)
m ⟩

S̄k
l

Sk
l

− S̄k
l

|Ψ(0)
m ⟩

S̃k
l

Sk
l

− S̃k
l

0

0

0

0

0

0

0

0

UC-NEVPT PC-NEVPT SC-NEVPT

Figure 2.5: Truncation of the NEVPT2 matrix.68
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2.16 Relativistic quantum chemistry

Considering an atom with nuclear charge, Z, and a single bound electron. The virial

theorem states that two isolated particles bound only by a spherical potential with an

inverse square dependence on their distance must satisfy

⟨T ⟩ = −1
2⟨V ⟩, (2.81)

where ⟨T ⟩ and ⟨V ⟩ are the average kinetic and potential energy respectively. The

average total energy, ⟨E⟩, is therefore39

⟨E⟩ = ⟨T ⟩ + ⟨V ⟩ = ⟨T ⟩ − 2⟨T ⟩ = −⟨T ⟩. (2.82)

The energy of the nth state is given by

En = − Z2

2n2µred, µred = memn

me +mn

≈ 1, (2.83)

where mn is the mass of the nucleus and µred is the reduced mass of the system. The

latter can be approximated by unity since mn ⩾ 1836me; the nucleus must contain

at least one proton and the mass of the proton is 1836me. It follows that since

⟨T ⟩ = 1
2me⟨ṙ2⟩, the energy of the 1s orbital is given by

E1 = 1
2⟨ṙ2⟩ ≈ −1

2Z
2. (2.84)

This implies that, in the non-relativistic limit, the root-mean-square speed of this

electron scales with the atomic number. The speed of light, c, is ≈ 137 (a.u.), hence

for U91+, the electron is predicted to be moving at 67% of the speed of light. This

implies that the unshielded 1s electron in uranium is moving at an appreciable fraction

of the speed of light.

Naively, chemistry seems to be determined by shielded valence electrons that expe-

rience weaker potential fields and move considerably more slowly than light, implying

that relativistic effects can be safely neglected.73 However relativistic effects on the

innermost electrons of the actinides have a profound effect on their properties.
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The relativistic mass of an electron, mrel, is given by

mrel = me√
1 − ṙ2c−2

= 1√
1 − ṙ2α2

, (2.85)

where α = c−1 is the fine structure constant, originally introduced while studying

atomic hydrogen spectra.74 An electron moving at 0.67c would experience a 35% in-

crease in mass. The average electron-nucleus distance is inversely proportional to its

mass, which implies that the size of the uranium 1s orbital is reduced by 26%. This

is in addition to the normal reduction due to the increased atomic charge: the non-

relativistic expectation value of the nucleus-electron distance for a hydrogenic orbital

with quantum numbers n, l,m is given by75

⟨r⟩ = 1
2Z (2n2 − l(l + 1)). (2.86)

Due to electron-electron repulsion, electrons in valence orbitals of a N -electron atom

(N ⩾ 3) experience a smaller electrostatic potential from the nucleus, hence these

electrons are said to be ‘shielded’ by the electrons in the core orbitals from the nucleus.

An effective nuclear charge is often used to empirically model this effect.

All spherical hydrogenic AOs are orthogonal by construction, so they do not inter-

act under the hydrogenic one-electron Hamiltonian. However the additional electron-

electron repulsion term in the Hamiltonian for N -electron atoms means that the

commonly used hydrogenic AOs are only a very good approximation to electronic

behaviour. It is precisely this term that leads to screening and prevents analytic

solutions.

The potency of the screening effect can be qualitatively assessed by examining the

AO’s radial distribution. Figure 2.6 shows the radial probability densities of the first

four s orbitals of the hydrogen atom. Note all four orbitals have electronic density

within 1 a.u. of the nucleus. The radial component of a ns orbital, Rns, has the form76

Rns = Z3/2e−Zr
n−1∑
i=0

ai(Zr)i, (2.87)

where ai( ̸= 0) are coefficients dependent on the orbital. This implies that, for all s

orbitals, the electron density at the nucleus is non-zero (the angular component is

isotropic). An orbital of angular momentum l has radial component, Rnl, with the

form76

Rnl = Z3/2e−Zr
n−l−1∑

i=0
ai(Zr)i+l. (2.88)
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Figure 2.6: Radial probability density functions for the first four s orbitals of the
hydrogen atom.

All terms are powers of rl or higher, so for l ⩾ 1 there is no electron density at

the nucleus. Therefore s orbitals penetrate the atom more deeply than orbitals with

higher angular momentum, and shield electrons more effectively. The penetration and

screening efficiency of orbitals decreases with increasing angular momentum. Overall

s and p orbitals experience a relativistic contraction corresponding to a stabilisation

of these orbitals. Conversely d and f orbitals experience increased screening from the

contracted s and p orbitals,77 leading to a relativistic expansion and are destabilised.

The relativistic stabilisation/destabilisation of AOs has profound effects on the

later transition metals, the actinides and the lanthanides. As an example, gold has the

electronic structure configuration [Xe] 4f 145d106s1. The 6s orbitals are stabilised, but

the 5d orbitals are destabilised. Therefore the 5d → 6s transition energy is reduced

and gold absorbs visible light. Relativistic effects are responsible for gold’s unique

colour.

A further complication of relativistic calculations is that the nature of linear trans-

formations between reference frames (space/time coordinate systems) must be modi-

fied. Intuitively we are familiar with the Galilean framework where linear transforma-

tions between a starting reference frame (r, t) to a new reference frame (r′, t′) preserves

relative motion. Such transformations are composed of up to three components, a

translation, a rotation and a boost:78
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Translation (r, t) → (r + a, t+ δt) where a is a real constant vector

and δt is a constant.

Rotation (r, t) → (Rr, t) where R is a fixed rotation matrix.

Boost (r, t) → (r + vt, t) where v is a constant velocity.

General (r, t) → (Rr + vt+ a, t+ δt).

The progression of time is always the same, only the starting time changes. Classical

mechanics implicitly uses this reference frame and the metric for this space is simply

the distance, r.

As an example, consider two observers in a vacuum each defining a reference frame,

the first static and the second reference frame moving away from the first by a constant

speed, v along the x-axis, i.e. a boost transformation exists between the two frames.

Then consider a photon, observed from the static frame, moving at the speed of light,

c, along the negative x-axis. According to the Galilean framework, the second observer

should observe this photon moving at c+ v.

The special theory of relativity implies that the speed of light in a vacuum is a

constant and that this speed cannot be exceeded, so the second observation is impos-

sible; it can only be accommodated if the progression of time is no longer the same

in all reference frames. A transform consistent with this constraint is called a Lorentz

transform and the quantity (r2 − c2t2) is constant through all frames, and acts as

the measure of distance. Defining s = {x, y, z, t} the general transform is given by

(s) → (Rs + s1) where R is a constant and real 4 × 4 matrix and s1 is a constant and

real (x, y, z, t) vector. This implicitly puts the time coordinate on the same footing as

the spatial coordinates.

The time dependent Schrödinger equation has a first-order derivative with respect

to time, but second-order derivatives with respect to spatial coordinates. This implies

that it is not invariant to a Lorentz transform,78 which is required by the special theory

of relativity. It is not Lorentz covariant.∗∗ Hence it cannot be used for relativistic

calculations.
∗∗covariance implies that it varies in correlation with a change in basis and contravariance implies

a transformation in correlation with change of coordinates, the inverse of covariance.
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The relativistic free electron energy, Erel, of an electron with momentum, p, is given

by the energy-momentum equation78

Erel =
√
m4

ec
4 + c2p2. (2.89)

This represented a major development in physics since the square root term implies

that there are two solutions, one positive and one negative, introducing the concept

of ‘anti-particles.’ For the time-dependent Schrödinger equation, the energy operator

is −i∂/∂t and applying this gives the Klein-Gordon equation.78

i
∂

∂t
Ψrel =

[√
−m2

ec
2∇2 + c4

]
Ψrel (2.90)

This equation can be written in Lorentz covariant form, but unfortunately applying

this equation results in a wavefunction that cannot model probability density due to

the second-order derivative with respect to time. Correcting this creates a symmetric

wavefunction that does not obey the Pauli principle.14,78–80 Feynmann showed that

the equation could be employed to represent a spinless particle.81

The relativistic momentum of an electron is given by

p = ṙ√
1 − ṙ2

, (2.91)

and the energy of an electron in a potential V , in atomic units (me = 1), is

E = V + c2
[√

1 + p2/c2
]
. (2.92)

The form of this equation suggests that a Taylor series (See Eq. 2.64) may be used

provided that p2/c2 is sufficiently small.†† Rearranging Eq. 2.91 implies that provided

that ṙ2 < 1
2c

2, p2/c2 < 1. Qualitatively, from Eq. 2.84 this is true for the expected

momentum of the 1s orbitals of all known atoms (since we need Z < c ≈ 137), although

there will always be a small region around the nucleus where this does not apply.82

Assuming this condition is met, the series is convergent and applying this gives

E = V + 1
2p

2 − p4

8c2 + c2
∞∑

n=3
(−1)n−1 (2n− 3)!!

2nn!
p2n

c2n
. (2.93)

By inspection the first two terms are equivalent to the potential and non-relativistic

kinetic energy respectively. The next term is called the mass-velocity term.82 Provided
††The radius of convergence for the Taylor series of the generalised binomial expression, (1 + x)r

is well known15 to be |x| < 1, r ∈ R.
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that p/c is small the remaining terms can be ignored. Furthermore, the p4 term can

produce non- L2 functions, i.e. unphysical wavefunctions, so it is a poorly defined

operator.82

2.16.1 The Dirac equation

The Lorentz covariance requirement and the difficulty of forming a physically suitable

wavefunction prompted Dirac to explore a relativistic equation that was first order

in both space and time coordinates.14 The approach needed to find an operator Â

equivalent to the square root operator, i.e.[
Â ·

{
∂

∂x
,
∂

∂y
,
∂

∂z
,
i

c

∂

∂t

}]2

≡ ∇̂2 − 1
c2
∂2

∂t2
= c2. (2.94)

The four-dimensional nature of the problem implied that the operator could be repre-

sented by a set of 4 × 4 matrices which can be expressed in terms of the 2 × 2 Pauli

matrices, i.e.

σx =

0 1

1 0

 , σy = i

0 −1

1 0

 , σz =

1 0

0 −1

 . (2.95)

The Pauli matrices are a minimal basis of the SU(2) group (half-spin space). From

the definition of the SU(2) group as the set of all complex unitary matrices with

determinant +1, i.e.
 aeiθ1 beiθ2

−be−iθ2 ae−iθ1

 : a, b ∈ [−1, 1], θ1, θ2 ∈ [−π, π), a2 + b2 = +1

 , (2.96)

it follows that each member has three independent parameters (four parameters, one

constraint) so it follows that their basis needs at least three elements. The spinors for

a single electron are eigenvectors of the spin-squared matrix s2 = 1
2σ · 1

2σ, and spin-z

matrix sz = 1
2σz and behave as members of SU(2), but are not a basis for it. Rotation

in this space is complex and represented by e−iθ/2, so a 4π rotation is needed to return

the spinor to its original orientation (see Section 2.1).

Dirac derived the following equation14 that satisfies the covariance requirement:78

EΨ = i
∂Ψ
∂t

=
Bc2 + c

{x,y,z}∑
k

Aκ
∂

∂κ

Ψ = [Bc2 + cA · ∇̂]Ψ, (2.97)
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where A and B are built from the Pauli matrices and a combination of identity and

zero matrices

Ak =

02 σk

σk 02

 , B =

I2 02

02 −I2

 . (2.98)

This implies that the wavefunction has a vector form, referred to as a 4-spinor, and can

be split into two components, each consisting of a two component vector. The most

significant part, Ψ+, corresponds to the positive energy solutions, the other part, Ψ−

corresponds to negative energy solutions. Early theories postulated the existence of

an (infinite) sea of electrons in the negative energy levels which were unobservable.83

However, it was a major advance in physics as it accurately predicted the existence of

anti-matter, in this case positrons, the anti-particle equivalent of electrons. This suc-

cess comes at a price, attempting to solve Dirac’s equation variationally fails as it finds

positronic solutions, of which there are infinitely many. Therefore the Dirac equation

does not have a lower bound. This effect is called variational collapse. Restricting the

wavefunction can alleviate this39 but at significant computational expense.

For quantum chemistry the components of the positive energy solutions had pro-

found implications: they represent α and β spin solutions and this was the first

rationalisation of electron spin, previously only added to the Schrödinger ansatz to

accommodate observations. Spin is a natural consequence of the Dirac formulation.

Ultimately it is the positive energy solutions that are of interest to chemists and

the structure of the matrix as consisting of blocks of submatrices suggest that it might

be possible to approximate the calculation by factorising the matrices into the electron

and positron solutions, called the Pauli approximation. Furthermore for consistency it

is necessary to reflect that the energy datum for the electron in a relativistic framework

is given by Einstein’s mass-energy equivalence equation,84 E = mec
2, which is achieved

by subtracting 1 from the diagonal elements of B (Eq. 2.98). Adding a nuclear-

attraction operator and factorising the Dirac equation gives two coupled equations39

V̂nuc.att.

1 0

0 1

+ c2

0 0

0 −2

+ icσκ · ∇̂κ

0 1

1 0



Ψ+

Ψ−

 = E

Ψ+

Ψ−

 , (2.99)
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solving this gives the Pauli Hamiltonian expressible as a combination of a non-relativistic

Hamiltonian, Ĥnon.rel., and three relativistic corrections

ĤPauli = Ĥnon.rel. +
electrons∑

i

ĤMV
i +

[nuclei∑
A

ĤDarwin
iA + ĤSOC

iA

]
. (2.100)

The ĤMV term is the mass-velocity correction (see Eq. 2.93). The ĤDarwin term is a

correction for the very rapidly moving electrons near the nucleus, called the Darwin

term, and is proportional to the Dirac delta function, which can make its use problem-

atic.82 Finally the ĤSOC term is the spin-orbit coupling correction and is proportional

to the cube of the inverse distance 1/r3
A and l · s. Due to these additional terms

the Pauli approximation is not variational and becomes ineffective when spin-orbit

coupling is strong.

Unfortunately the Dirac equation is limited to one-electron systems. Adding the

standard non-relativistic electron-electron repulsion term, V̂e.rep. to the Dirac equation

gives the Dirac-Coulomb equation.

[
V̂nuc.att. + V̂e.rep. + Bc2 + icA · ∇̂

]
Ψ = EΨ. (2.101)

The repulsion term is simply the sum of the two electron repulsion operator, ĝij = r−1
ij

(see Eq. 2.35), over all unique electron pairs. Unfortunately this term is not correct in

a relativistic framework, since electron-electron interaction is not instantaneous, the

repulsion cannot exceed the speed of light and is therefore delayed in a relativistic

framework. An additional operator derived by Darwin85 was adjusted leading to the

Breit operator,39 V̂Breit, which acts as a relativistic correction to the two-electron

energy. The overall equation is called the Dirac-Coulomb-Breit equation:

[
V̂nuc.att. + V̂e.rep. + V̂Breit + Bc2 + icA · ∇̂

]
Ψ = EΨ. (2.102)

An alternative approach to reducing the four-component Dirac equation to two com-

ponent form is to try to find a unitary transformation, U, that converts the Dirac

equation to block diagonal form, i.e. representing the matrix form of the Dirac oper-

ator as D, then the transformation must satisfy

DBD = UDU† =

D+ 02

02 D−

 UU† = I2. (2.103)
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The Foldy-Wouthuysen transformation,86 which when applied to the Dirac-Coulomb-

Breit Hamiltonian, allows the formation of the Breit-Pauli equation.87

ĤPauli +
Unique electron pairs∑

i,j

ĝ BP2
ij

Ψ = EΨ. (2.104)

where ĝ BP2 is a combination of additional operators that represent spin/same orbital,

spin/other orbital, spin/spin and orbital/orbital angular momentum interactions and

an additional, two electron Darwin term proportional to δ(rij). The majority of the

coupling terms have an inverse-cube dependent term (r−3
ij ), however the spin-spin cou-

pling term has a δ(rij) and shorter-range (r−5
ij ) term, and the orbital/orbital term has a

longer range δ(r−1
ij ) term. In practice the spin-orbit terms are the most significant,88,89

so a truncated form of the operator that only includes these terms is often used.

2.16.2 The zeroth order regular approximation (ZORA)

The divergence of the expansion (Eq. 2.93) for electrons that are very close to the

nucleus led to the development of an alternative ‘regular’ approximation (ZORA),

valid for any momentum, and in particular to the zeroth order regular approximation.

Introducing a shorthand K = 2c2 − V , the new expansion assumes that the energy is

less than K which is true in all Coulombic potentials82 and rearranges Eq. 2.92, with

a change of datum, from

E =
√
c4 + p2c2 + V − c2 =

√
c4 + p2c2 −K + c2 (2.105)

to

E = p2c2

K(1 + E/K + V ) . (2.106)

This quadratic form gives an additional negative energy solution which can be dis-

carded.82 Expanding this in K/E < 1 gives a zeroth order expression

E0 = p2c2

2c2 − V
+ V, (2.107)

and an improved expression can be obtained by expanding in (2c2 − 2V )/E < 1,

representing a reduced perturbation. The four component form can then be reduced

to a two-component form via the Foldy-Wouthuysen transformation.

ĤZORA = V + σ · p̂
(
c2

K

)
σ · p̂. (2.108)
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Despite being zeroth order this Hamiltonian is relativistic and efficiently corrects for

the regions close to nucleus78 without containing the problematic singularity intro-

duced by the Darwin term. The approximation can also be used variationally. How-

ever by introducing a non-linear dependence on the potential, it is not gauge-invariant.

Atomic ZORA (aZORA)27 is a version of ZORA that transforms the one-electron

Hamiltonian in atomic blocks, minimising this problem. It is used for all geometry

optimisations in this work.

2.16.3 Douglas-Kroll-Hess theory

The block diagonal form of the Dirac equation (Eq. 2.78) can be expressed as an

infinite expansion of terms of the Coulomb potential, V ,78 Douglas-Kroll-Hess theory

is based on performing a potentially infinite series of unitary transforms of the Dirac

equation, each of which is designed to sequentially reduce off-diagonal terms in the

potential. In principle, for an infinite series of these transformations, the technique is

exact. The first order DKH Hamiltonian is given by90

Ĥ(1)
DKH =

∑
i

Ep − c2 + ApV̂Ap + ApRP (σ · p)V̂(σ · p)ApRP (2.109)

where Ep is the relativistic kinetic energy and Ap and Rp are kinetic operators. To

correctly model these terms the matrix elements need to be transformed into momen-

tum space. This is achieved by diagonalising the non-relativistic kinetic energy to

obtain the momentum eigenvalues. Following the evaluation of the DKH Hamiltonian

in momentum space, the operators are back transformed to position space. The tech-

nique has the virtue of collecting all spin-free relativistic correction terms and unlike

ZORA, as it starts from a linear potential, it is gauge-invariant. It has been described

as “much cleaner” than the regular Hamiltonian.32 For this reason it is our preferred

scalar-relativistic Hamiltonian.



Chapter 3

Magnetism

The force, F, on a charge, q, moving at velocity, ṙ, in an electric field, E, and a

magnetic field, B, is called the Lorentz force. In SI units it is given by

F = q (E + ṙ × B) , (3.1)

and this acts as a practical definition for the two fields. The underlying mathematical

basis for magnetism can be derived from the charge continuity equation (Eq. 3.2) in

conjunction with the four Maxwell equations (Eqs. 3.3–3.6), which are briefly stated

below.91 The continuity equation states that in the absence of an electric current

density, J, (defined over a surface), charge is conserved, i.e.

∇̂ · J = −∂q

∂t
. (3.2)

Gauss’s two laws imply that charge is the monopolar source of electric fields, but no

monopolar source of magnetism exists. These equations are

∇̂ · E = q

ϵ0
, (3.3)

∇̂ · B = 0. (3.4)

Faraday’s Law and the Ampère-Maxwell law quantify the interaction between changing

electric and magnetic fields. These equations are

∇̂ × E = −∂B
∂t
, (3.5)

∇̂ × B = µ0J + ϵ0µ0
∂E
∂t
. (3.6)

56
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where ϵ0 and µ0 are the dielectric permittivity and magnetic permeability (of a vacuum)

respectively. From these it can be shown that both the electric and magnetic field can

be uniquely defined by the scalar potential, ϕscalar, and the vector potential Avector =

(Ax, Ay, Az), encapsulating magnetic behaviour within these four functions of position

and time,

E = −∇̂ϕscalar − 1
c

∂Avector

∂t
, B = ∇̂ × Avector. (3.7)

Because these are differential equations, both E and B are defined with respect to the

position of a gauge, this being conceptually equivalent to a constant of integration.

The scalar and vector potentials are examples of gauge potentials.78

Current is the motion of charged particles, and the motion of protons and electrons

in an electric field generates a magnetic field. In all molecules, the application of

an external magnetic field induces an opposing magnetic field. This correlates with

the macroscale effect of inducing a current by moving a magnet near a coil. This

diamagnetic effect causes the molecule to be weakly repelled from the field.

However, the spin angular momentum of an unpaired electron generates a magnetic

field as does any overall orbital angular momentum. As a result, most molecules with

unpaired electrons have a magnetic dipole moment that will align with an applied field.

This paramagnetic effect causes the molecule to be weakly attracted to the field.∗

In a closed shell molecule, the paring of electrons results in no net magnetic dipole

so there is no paramagnetic effect. Such compounds are called diamagnetic. While

most open shell molecules experience both effects, the paramagnetic effect dominates.

This work studies these paramagnetic molecules.

∗Ferromagnetism is a macroscopic effect creating a permanent magnetic field and results from a

field-free alignment of these dipoles. It is associated with materials consisting of atoms or molecules

with multiple unpaired electrons and having large Pauli-exchange energies.
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3.1 Angular momentum and irreducible tensor

operators (ITOs)

Considering the spin-operator, Ŝ2 and the set of first-order cartesian spin-operators

Ŝ̂ŜS = {Ŝx, Ŝy, Ŝz}, then a spin-eigenfunction, |S,mS⟩, must satisfy

Ŝ2|S,mS⟩ = S(S + 1)|S,mS⟩, and (3.8)

Ŝz|S,mS⟩ = ms|S,mS⟩. (3.9)

The spin-operators Ŝx and Ŝy do not commute with Ŝz. The commutators of the

cartesian spin-operators are

[
Ŝx, Ŝy

]
= iŜz,

[
Ŝy, Ŝz

]
= iŜx,

[
Ŝz, Ŝx

]
= iŜy (3.10)

For a given S, the spin matrices in a basis of {|S,ms = −S⟩, ..., |S,ms = −S⟩}

eigenfunctions can be constructed via the equations92

〈
ms = m1|Ŝx|ms = m2

〉
= 1

2 (δm1,m2+1 + δm1+1,m2)
√
S(S + 1) −m1m2 (3.11)〈

ms = m1|Ŝy|ms = m2
〉

= 1
2i

(δm1,m2+1 − δm1+!,m2)
√
S(S + 1) −m1m2 (3.12)〈

ms = m1|Ŝy|ms = m2
〉

= δm1,m2m1 (3.13)

where the S label has been dropped for conciseness. The cartesian spin operators are

related to the first order spherical spin-operators {Ŝ(1)
κ : κ = −1, 0, 1}, via

Ŝ(1)
1 = Ŝx + iŜy, (3.14)

Ŝ(1)
0 = Ŝz, (3.15)

Ŝ(1)
−1 = Ŝx + iŜy. (3.16)

Ŝ(1)
1 and Ŝ(1)

−1 are sometimes called ladder operators. The spherical spin operators

are examples of irreducible tensor operators which are discussed in the following sec-

tion. There are differing definitions of these operators, largely based on whether the

underlying Wigner-Eckart theorem (section 3.1.1) uses Wigner-3j or Clebsch-Gordon

coefficients; readers are advised to check which convention is being used.
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3.1.1 Tensors and tensor operators

The effect of applying a rotation matrix to any three-dimensional vector is equivalent

to rotating a position vector.93† This idea can be extended to multi-index arrays,

such as a matrix with two-indices and to N -dimensional vectors. A rank k tensor of

dimension N is a k-index array which transforms under rotation according to the rules

corresponding to the transformation of a position vector in real space.94 A scalar is a

rank 0 tensor, and all vectors are rank 1 tensors, however not all matrices are tensors

because of the rotational transformation requirement.

The underlying basis for the N -dimensional vector space determines the form a

given tensor.95 This work will assume for simplicity that the basis is orthonormal. By

definition, a rank-one tensor T, upon rotation represented by orthogonal matrix R

must satisfy

T′
κ =

∑
i

RκiTi, (3.17)

and a rank-two tensor T must satisfy

T′
κυ =

∑
ij

RκiRυjTij =
[
RT TR

]
κυ

(3.18)

A rank-k tensor operator T (k) is an operator that obeys the same transformation

rules.96 Tensors using a cartesian basis are called cartesian tensors, and tensors using

a spherical basis are called spherical tensors. An important distinction is that a rank

2 cartesian tensor has nine elements (i.e. xx, xy, xz, yx, yy, xz, yz, zz), six of which

are unique, allowing it to be represented by a symmetric 3 × 3 matrix, whereas a rank

2 spherical tensor has five elements (i.e. −2,−1, 0, 1, 2). It must be possible to form

a tensor in either basis, so it follows that cartesian tensors of rank ⩾ 2 are reducible.

It can be shown that spherical tensors are not, and as a result they are a common

form of irreducible tensor operators (ITOs). The spin-operator can be thought of as

a rank-1 spherical tensor operator.

There are many different forms that have been used for the spin-operators, and

large numbers of notational forms exist.97 This work will use angular momentum

operators which transform in the same way as spherical tensors, as first suggested by

Buckmaster98 and codified by Smith and Thornley.99

†A earlier version of section 3.1.1 and 3.1.2 appeared in the Author’s MPhil Thesis.



3.1. ANGULAR MOMENTUM AND ITOS 60

Generating higher order tensors can be achieved using Theorem (3.10.27) of Saku-

rai’s work,96 specifically

T̂ (k)
q =

−k1...k1∑
q1

−k2...k2∑
q−q1

⟨k1, k2; q1, q2|kq⟩T̂ (k1)
q1 T̂ (k1)

q2

where ⟨k1k2; q1q2|kq⟩ is a Clebsh-Gordon coefficient. This coefficient is zero if k ̸=

k1+k2 or q ̸= q1+q2. By using this relationship and other properties of the coefficients,

it can be shown that T̂ (k)
k = ⟨k − 1, 1; q − 1, 1|kq⟩T̂ (k−1)

k−1 T̂ (1)
1 . In this work we are

interested in rank k spin tensors. Using S(k) as the matrix representation of the spin

tensor Ŝ(k) for a spin S in the basis |S,−S⟩ . . . |S, S⟩. then for k > 2S, S(k)
q = 0.

However for all other k, the S(k)
k matrix can be calculated. This enables the remaining

S(k)
q matrix representations to be calculated using the Wigner-Eckhart theorem as

outlined in the following subsection.

3.1.2 The Wigner-Eckart theorem

The Wigner-Eckart theorem allows the expression of individual matrix elements of

rank k spherical tensor operators T̂ k
q in a space-spin eigenfunction basis, (i.e. the

CI wavefunctions) as a product of a spin-independent term called the reduced matrix

element (RME) and an operator-independent term. It is expressed as87

〈
A(SA,MA)|T̂ k

q |B(SB,MB)
〉

= (−1)SA−MAωSA,k,SB
−MA,q,MB

⟨A(SA)∥T k∥B(SB)⟩ (3.19)

where ωSA,k,SB
MA,q,MB

is a Wigner-3j symbol, an operator-independent term that only de-

pends on the quantum numbers. It is more commonly written in the less compact

notation

ωSA,k,SB
−MA,q,MB

≡

 SA k SB

−MA q MB

 (3.20)

The Wigner-3j selection rules and associated symmetries100 make the computational

use of Wigner-Eckart theory easier to implement and use than the more commonly

known Clebsch-Gordon coefficients ⟨SAkMAq|SAkSBMB⟩, which they are related to

via

⟨SAkMAq|SAkSBMB⟩ = (−1)SA−k−MB

√
1 + 2SB

 SA k SB

−MA q MB

 (3.21)
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3.2 The Zeeman effect

The spectral lines from a sodium flame split when that flame is exposed to an external

field.101 This effect results from interactions between the field and the atom’s magnetic

dipole moment, the latter split into orbital and spin moments and it can be used to

study the coupling between the two.

Considering the ground state of the sodium atom. In the absence of a magnetic

field, this consists of two degenerate states, ms = {| − 1
2⟩, |1

2⟩}. This is consistent

with Kramers’ theorem which states that the energy levels of any system with an odd

number of fermions are at least doubly degenerate in the absence of a magnetic field.

Such a pair of states is called a Kramers’ pair.78 When a magnetic field, B, is applied

to this atom, the degeneracy is lifted, and the effect on the energy levels is given by

the Hamiltonian,

ĤZeeman|1
2⟩ = −B · µ̂|1

2⟩, (3.22)

where µ̂ is the electronic magnetic moment operator for the atom. For a system with

total angular momentum operator, Ĵ , the magnetic moment operator is given by102

µ̂ = µBgĴ̂ĴJ , (3.23)

where µB = eℏ/me = 1
2 is the Bohr magneton and g is called the g-factor, a dimen-

sionless constant of proportionality. The g-factor for an isolated electron, denoted

ge, is predicted via Dirac’s equation to be 2, however extremely precise experiments

showed the actual value to be 2.0023193043617(152)103,104 The deviation from two

corresponds to quantum electrodynamics corrections. For a system where there is no

orbital angular momentum, the Hamiltonian can be explicitly written as

ĤZeeman = −µBB · g · Ŝ̂ŜS = −µB

[
Bx By Bz

]

gxx gxy gxz

gyx gyy gyz

gzx gzy gzz




Ŝx

Ŝy

Ŝz

 , (3.24)

where the matrix that couples the spin to the magnetic field is often called the “g-

tensor.” This unfortunate terminology is discussed in Section 3.7.1, and it will be

referred to as the Zeeman matrix from this point forward.

For a bound electron, the magnetic moment operator is given by

µ̂ = µB(glL̂̂L̂L + geŜ̂ŜS), (3.25)
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Figure 3.1: Spin-orbit coupling and the Zeeman effect on a sodium atom (not to
scale).87

where the orbital g-factor, gl = 1.102 Note that spin-orbit coupling implies that µ̂ is

not a scalar multiple of Ŝ. The Zeeman Hamiltonian can be written in terms of the

Zeeman matrix as

ĤZeeman = −B · µ̂ ≈ −µBB · g · ˆ̃Ŝ̃Ŝ̃S, (3.26)

where ˆ̃Ŝ̃Ŝ̃S is the effective spin, or pseudospin operator. This is discussed in Section 3.8,

Figure 3.1 demonstrates the effect further. For a theoretical atom of sodium, in the

absence of spin orbit coupling (SOC), the atom can exist in two states, the 2S state,

where the valence electron is in the 3s orbital, and the 2P state where it is in a 3p

orbital. This would result in a single emission line for sodium (2P → 2S). However,

due to SOC, in the 2P state, the orbital angular momentum, l = 1, couples with the

spin angular momentum, s = 1
2 .

The total angular momentum quantum number for a single electron, j, must be an

integer or half-integer that satisfies the inequality

|l − s| ⩽ j ⩽ |l + s| : 2j ∈ N0. (3.27)

This inequality allows two values for the 2P state, j ∈ {1
2 ,

3
2}, resulting in the 2P state

splitting into two states; in the lowest state,2P1/2, the spin opposes the orbital angular

momentum, j = l− s, whereas in the other state, 2P3/2, the two are aligned, j = l+ s.

This leads to the two ‘D-lines’observed in sodium’s emission spectra at 589.2 and

589.8 nm, this split being evidence of spin-orbit coupling.11



3.3. THE ZEEMAN EFFECT ON NUCLEI 63

When a static magnetic field is applied, this doublet is further split into a doublet

and quartet; the 2P1/2 state is split into a set of mj = {−1
2 ,

1
2} levels and the 2P3/2

state is split into a set of mj ∈ {−3
2 ,−

1
2 ,

1
2 ,

3
2} levels, and the 2S1/2 state is similarly

split into a doublet.†

Applying a strong magnetic field overcomes the spin-orbit coupling, so that the

orbital and spin dipoles are affected separately. This is called the Paschen-Back effect.

This leads to a set of six energy levels corresponding to the three possible values of ml

and two possible values of ms. The ml = −1, ms = 1
2 and ml = 1, ms = −1

2 levels are

degenerate.‡

3.3 The Zeeman effect on nuclei

Like electrons, protons and neutrons have their spin quantised as I = 1
2 . The overall

spin of a nucleus depends on its composition and each particular isotope has a fixed

spin, I = n/2 : n ∈ N0. If the nuclear spin is not zero, then the nucleus will also

experience a Zeeman effect, governed by the equation

Ĥnuclear
Zeeman|I = n/2⟩ = µNgN Î̂ÎI|I = n/2⟩ = γN Î̂ÎI|I = n/2⟩, (3.28)

where Î̂ÎI is the nuclear spin operator and µN is the nuclear magneton. This is commonly

combined with nucleus’ g-factor, gN , to give the nucleus’ gyromagnetic ratio, γN , and

it is this phenomenon that is the basis for nuclear magnetic resonance spectroscopy

(NMR). The surrounding electrons are also affected by the magnetic field and are

induced to oppose or reinforce it. Diamagnetic induction is associated with spherical

charge distributions,105 while the paramagnetic reinforcement effect is associated with

charge distributions from orbitals of higher angular momentum (l ⩾ 1). Both effects

are present in diamagnetic (S = 0) and paramagnetic (S ⩾ 1
2) molecules, but the NMR

shift in paramagnetic molecules is also affected by the unpaired spin, meaning that

both the electronic Zeeman effect and spin-orbit-coupling must be considered. The

nuclear and electronic spin also interact (hyperfine coupling, Section 3.4) and for a
†Selection rules imply that each 2P state has one allowed transition to 2S1/2. The energy-level

separation is proportional to the magnetic field strength, i.e. there are degenerate emissions from
2P3/2 to 2S1/2, and only four spectral lines are observed.87

‡Strictly speaking they are only nearly degenerate since ge ≈ 2gl.
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molecule with multiple unpaired electrons, the individual electronic spin dipoles couple

(zero-field splitting, Section 3.5). These effects typically have the largest influence on

paramagnetic NMR (pNMR) shifts. Higher-order terms are not considered in this

work.

This orbital shielding effect has a corresponding Hamiltonian given by

γnucB · σorb · Î̂ÎI, (3.29)

where σorb is called the chemical shielding (or orbital) matrix. Experimentally the

resulting isotropic shielding effect σ is typically measured as a shift, δ, from that of a

reference molecule, σref , i.e.

δ = σref − σ. (3.30)

Shielding effects shift the resonance signal either ‘upfield’ or to higher frequencies,

deshielding shifts ‘downfield’ or to lower frequencies. Since the shielding is subtracted

from the reference, the reported shift is in the opposite direction and as a result, NMR

spectra are often presented on a reversed frequency axis.

3.4 Hyperfine coupling

The magnetic moment of the nucleus also couples with that of the electron and the

total angular momentum quantum number for the atom, K, must be an integer or

half-integer number that satisfies the inequality

|J − I| ⩽ K ⩽ |J + I| : 2K ∈ N0. (3.31)

A full description of the nuclear shell model is beyond the scope of this work, but a

cursory outline is described below. The nuclear shell model for a static nucleus in a

vacuum is similar to the electron shell model for a hydrogenic atom, but has a different

central potential, V (rN), called the Saxon-Woods model,106 which is given by

V (rN) ∝ 1
1 − earN

, (3.32)

where rN is the distance from the centre of the nucleus and a is a constant. The

resulting solutions are similar to the hydrogenic model (each solution is a product of

a radial solution and a spherical harmonic), and can be labelled by a principal quan-

tum number, n, an orbital angular momentum, l, a the magnetic quantum number,
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m. However but the orbital angular momentum is not constrained to be less than

the principal quantum number. Protons and neutrons have different sets of energy

levels, and as fermions obey the Pauli exclusion principle. Considering the sodium-23

nucleus, then this has a proton configuration of 1s21p61d3 and a neutron configuration

of 1s21p61d4.

All of the neutrons, and all but one of the protons are spin paired. Hence only the

third 1d proton is magnetically active. Applying spin-orbit coupling, this proton is in

1d5/2 orbital. There are three 1d5/2 orbitals corresponding to m5/2 = {±5
2 ,±

3
2 ,±

1
2}.

In this case the energy increases with decreasing |m5/2|, so the m5/2 = ±5
2 proton level

is doubly occupied. This implies that the magnetically active proton is in a m5/2 = 3
2

orbital, which corresponds to the observed “spin” quantum number, I = 3
2 .106

An idealised energy-level splitting for sodium is shown in Figure 3.2. Starting

with the 2S1/2 state, then there are two possible atomic angular momentum quantum

numbers, K ∈ {1, 2}, which can be thought as the electronic spin being opposed to

or aligned with the nuclear spin respectively. These are split by approximately 0.3

microhartree,107 smaller than the SOC splitting (over 200 hartree), but significant for

magnetic radiofrequency experiments. A similar analysis holds for the 2P1/2 state.

The coupling for the 2P3/2 state is more complex and there are four possible atomic

angular momentum quantum numbers, K ∈ {0, 1, 2, 3}. Hence the state is split into

four levels with the gaps between them increasing as K increases.

The Hamiltonian for the sodium-23 hyperfine interaction is given by107

Ĥ = 2πA
[
Î · Ĵ

]
+ 2πB

3(Î · Ĵ )2 + 3
2 Î · Ĵ − (Î · Î)(Ĵ · Ĵ )

2I(2I − 1)(2J − 1)

 , (3.33)

where A and B are the magnetic dipole and electronic quadrupole coupling constants

in atomic units. The latter term is only present for nuclei with two or more unpaired

protons/neutrons,(i.e. I ⩾ 1). This work focuses on nuclei with I = 1/2, so the

quadrupole term is not present from this point forward.
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Figure 3.2: Hyperfine coupling in the sodium atom, I = 3/2. (not to scale). J is given
in the term symbol subscript.

3.5 Zero-field splitting

Consider an isolated atom, with two active electrons that can occupy one of two non-

degenerate spin-orbitals of different symmetry. This system can adopt one possible

singlet and three possible triplet configurations as shown below

S0
0 = 1√

2
(| ↑↓⟩ + | ↓↑⟩)

T1
1 = | ↑↑⟩

T1
0 = 1√

2
(| ↑↓⟩ − | ↓↑⟩)

T1
−1 = | ↓↓⟩

So for T1
0 exchanging two electrons has the effect of switching the sign of spatial part

of the wavefunction, without changing the spin-part of the wavefunction.

In the absence of a magnetic field, the three triplet configurations are degenerate.

Assuming that the three states are polarised along the x,y,z directions only, and

labelled, Tx, Ty, Tz, then applying a spherical field affects the electron density equally;

the triplet states remain degenerate.

If an axial field is applied then the state polarised in the direction of the field will
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Figure 3.3: Energy levels of three isolated orbitals Tx, Ty, Tz resulting from zero-field
splitting. For this example D is negative.

be either raised or lowered (labelled Tz), while the other two states remain degenerate

but are lowered/raised respectively. If a further orthogonal (or rhombic) field is present

than the remaining degeneracy is broken. One possible case is shown in Figure 3.3.

When this phenomenon occurs due to an internal field (e.g. a metal complex) this

is referred to as zero-field splitting. This splitting is modelled by the dipolar ZFS

Hamiltonian given by

ĤZFS = Ŝ · D · Ŝ, (3.34)

where D is the zero-field splitting tensor. This tensor is symmetric and traceless and

it is commonly reported using the parameters shown in Figure 3.3 (D and E) and the

ratio E/D. The above Hamiltonian can be written as

ĤZFS = D
[
Ŝ2

z − S(S + 1)/3
]

+ E
[
Ŝ2

x − Ŝ2
y

]
. (3.35)

It is therefore possible to verify a calculated ZFS tensor from the experimental split-

tings obtained via electron paramagnetic resonance (EPR) spectroscopy.
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3.6 The spin Hamiltonian

The Hamiltonian corresponding to the nuclear Zeeman effect is given by

ĤNuclear Zeeman = −γKB ·
[nuclei∑

K

(13 − σorb
K ) · Î̂ÎIK

]
, (3.36)

where σorb
K is the chemical shielding matrix for the Kth nuclei. For a diamagnetic

molecule additional interactions exist including direct nuclear dipole-dipole coupling

and indirect nuclear spin-spin coupling. For nuclei with spin ⩾ 1, there are quadrupole

coupling interactions. In this work these higher order terms are ignored.

For a paramagnetic system, typically the most important interactions are the Zee-

man interaction, the hyperfine coupling between the electronic and nuclear spin, and

where there are two or more unpaired electrons, the electron dipole-dipole coupling

modelled by the ZFS tensor. The corresponding paramagnetic NMR spin Hamiltonian

is given by102,108–110

ĤpNMR = µBB · g · ˆ̃Ŝ̃Ŝ̃S− γK

nuclei∑
K

B · (13 − σorb
K ) · Î̂ÎIK + ˆ̃Ŝ̃Ŝ̃S · D · ˆ̃Ŝ̃Ŝ̃S+

nuclei∑
K

ˆ̃Ŝ̃Ŝ̃S · AK · Î̂ÎIK . (3.37)

where the magnetic matrices are further discussed below and also in Section 4.3.§

3.6.1 The chemical shielding matrix

The κυth (κ, υ ∈ {x, y, z}, i.e. cartesian components) matrix element of the chemical

shielding matrix for a nucleus K is formally defined by the partial derivative of the

electronic energy, E, with respect to κth component of the magnetic moment of the

nucleus and υth component of the magnetic field,111 i.e. ,

[
σorb

K

]
κυ

= ∂2E

∂[µK ]κ ∂Bυ

∣∣∣∣∣
δµK ,δB=0

. (3.38)

This matrix is asymmetric since its left side refers to the three components of the

magnetic moment whereas the right side refers to the magnetic field, however the dia-

magnetic contribution is symmetric. Diagonalising the symmetric part of the chemical

shielding matrix gives the principal axis system (PAS) of the matrix with three eigen-

values, σorb
K,i and the corresponding three orthonormal eigenvectors.

§In this thesis we follow the BgS, BσI and SAI convention for the ordering of cartesian indices.32
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The matrix can be decomposed into a diamagnetic, i.e. shielding and paramag-

netic, i.e. deshielding parts. It can be shown105 that the diamagnetic part of the

shielding matrix, σd
K , is solely dependent on the ground-state wavefunction, |Ψ0⟩, and

its components are given by

[σd
K ]κυ = 1

2c2

〈
Ψ0| (r · rKδκυ − rκrKυ) r−3|Ψ0

〉
. (3.39)

where rK is the vector from the Kth nucleus to the electron.

The paramagnetic part of the shielding matrix, σp
K , and its components are given

by a sum over states (SOS) formulism between the ground state and the set of electronic

excited states, {|Ψn⟩}, i.e.

[σp
K ]κυ = − 1

2c2

excited states∑
{|Ψn⟩}

⟨Ψ0|Lκ|Ψn⟩
〈
Ψn|r−3

K LK,υ|Ψ0
〉

En − E0
, (3.40)

where L and LK are the angular momentum matrices of the electron with respect to

the origin and to the nucleus respectively.

3.7 The Zeeman matrix

The κυth matrix elements of the Zeeman matrix and the ZFS-tensor are defined by

the partial derivatives

gκυ = ∂2E

∂µκ ∂Bυ

∣∣∣∣∣
δµ,δB=0

. and Dκυ = ∂2E

∂µκ ∂µυ

.

∣∣∣∣∣
δµ=0

. (3.41)

One approach to calculating this property uses effective Hamiltonian theory. For the

calculation of the g matrix from a set of multiconfigurational states 0, A,B..., it can

be shown from perturbation theory59 that the κυth component of the shift of the g

matrix ∆gκυ = gκυ − geδκυ for a non-degenerate spin-free ground state is given by112

∆gκυ = 1
2S0

∑
A ̸=0

L0A
κ ΩA0

υ + LA0
κ Ω0A

υ

∆EA

δS0,SA
, (3.42)

LAB
κ =

〈
A| electrons∑

i

l̂κ(i)|B
〉

ΩAB
κ =

〈
A| electrons∑

i

ĥSO
κ (i)sz(i)|B

〉
. (3.43)

In the above formulae, SA is the total spin of state A, ∆EA is the energy difference

between state A and the ground state. l̂ ,̂s and ĥSO are the one electron angular
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momentum, spin and spin-orbit operators respectively. Extensions exist to handle

degenerate states, and spin-orbit adapted states can be modelled via a unitary trans-

form. A similar technique exists for the zero-field splitting tensor. The advantage of

this method is that it can produce a uniquely defined Zeeman matrix, however nearly

degenerate states can result in numerical issues due to the correspondingly small value

of ∆EA.

For light atoms the spin-orbit operator113,114 can be modelled by ls-coupling. Fur-

thermore the one-electron and two-electron contributions are opposite in sign, so the

full operator can be modelled as an effective one-electron operator,115–117 using a fit-

ted effective nuclear charge, Zeff
K . The resulting one-electron spin-orbit operator can

be written as

ĥSO = α2

2

nuclei∑
K

Zeff
K

r3
k

l̂k · ŝ (3.44)

where α is the fine structure constant (α = c−2 ≈ 1/137), and in general the spin-orbit

operator scales in energetic contribution as a α2 term. This scaling can be used to

gauge relative contributions to the energy.

The Zeeman matrix can be split into terms that scale as α0 and α2, i.e. as powers

of the spin-orbit operator. The α0 component is simply the isotropic interaction of a

free electron with a magnetic field, i.e. geI3, the remaining α2 is the Zeeman shift,

∆g, and is defined as

∆g = g − geI3 = ∆gisoI3 + ∆g̃ (3.45)

And the Zeeman shift can be broken into an isotropic term, ∆giso = 1
3trace(∆g) and

an anisotropic term, ∆g̃. This separation can give insight into the covalent nature of

bonding in actinides.2

3.7.1 The Zeeman matrix is not a cartesian tensor

A cartesian covariant tensor (of the second rank) is defined as an object with 32

components, typically written as a 3 × 3 matrix, whose components must transform

as a vector product (i.e. is as R ⊗ R or SO(3) ⊗ SO(3)) when the object is subject

to Galilean transformations. As an example for a rotation R of the underlying space
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such a tensor, A must satisfy118

ATransformed = RAR−1. (3.46)

Such a tensor reflects physical world coordinates and is the default type of tensor in

modern physics. Contravariant tensors transform with the basis of the vector space

which is the inverse transformation.

For a S = 1/2 hydrogen atom, the second index of the Zeeman matrix g relates to

spin space (SU(2)) not Euclidean space which has different rotational behaviour. The

corresponding right-hand-side relates to the set of (2S+1)×(2S+1) complex true spin

matrices {Sx,Sy,Sz}. Even more problematically, for molecules where SOC is present,

then the right hand side of the Zeeman matrix relates to the (2S̃+1)× (2S̃+1) set¶ of

pseudospin matrices {S̃x, S̃y, S̃z}, the PAS system of which is typically rotated relative

to the true spin matrices. Hence it is not a true tensor as commonly presented. As a

result the object’s transformational nature is molecule dependent.

This problem was recognised in Abragam and Bleaney’s seminal 1970 work102

“Electronic Paramagnetic Resonance of Transition Ions” (p.171, 650-652) and the work

identifies the difference between the true spin and the fictitious pseudospin as a major

source of confusion. Furthermore, the work emphasises that manipulations in the

following sections exploit the fact that we have six degrees of freedom to diagonalise

g (and A), not the three degrees of freedom for a true 3 × 3 tensor. Because of this

we will refer to the g-tensor as the Zeeman matrix.

Similar concerns are true for the orbital shielding and hyperfine matrices discussed

in the following sections. Both sides of the zero-field splitting (ZFS) tensor relate to the

complex pseudospin matrices, so it is a true tensor, but its transformational behaviour

is molecule dependent. Because of this it does not have to reflect the symmetry of the

molecule. For instance in Chapter 5, we calculate that the orientation of the primary-

axis of the ZFS-tensor of the 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic complex

with uranium, U(DOTA), to be along the molecular C4 axis, but by adding a fluoride

ligand along the molecular axis, the primary axis rotates by 90◦.
¶Note that in practice S̃ is an empirical number related to the energy levels of the post-SOC

wavefunction, and not an eigenfunction of ˆ̃Sz or ˆ̃Ŝ̃Ŝ̃S2.
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3.7.2 Alternative approaches to calculating the Zeeman

matrix

An alternative approach to the using the SOS formulism to form the Zeeman ma-

trix exists. The idea is to form a diagonalisable Zeeman matrix, based on forming

the determinant of the matrix elements of the Zeeman Hamiltonian in a Kramers’

pair basis.119 This is based on the observation that the Zeeman Hamiltonian has two

definitions.

ĤZeeman = −B · µ̂, (3.47)

ĤZeeman = µBB · g · ˆ̃Ŝ̃Ŝ̃S. (3.48)

It follows that for a Kramers’ pair of states {Φ1/2,Φ−1/2} the Zeeman splitting energy

is given by

∆E =
〈
Φ1/2| − B · µ̂|Φ1/2

〉
−
〈
Φ−1/2| − B · µ̂|Φ−1/2

〉
, (3.49)

∆E =
〈

Φ1/2|µBB · g · ˆ̃Ŝ̃Ŝ̃S|Φ1/2

〉
−
〈

Φ−1/2|µBB · g · ˆ̃Ŝ̃Ŝ̃S|Φ−1/2

〉
. (3.50)

squaring these expressions and comparing gives

(∆E)2 =
∑

κυ∈{x,y,z}
BκBυ

∑
κ′υ′∈{x,y,z}

[
µ2

Bgκκ′gυυ′

]
= µ2

B

∑
κ1υ2∈{x,y,z}

BκBυGκυ. (3.51)

The rightmost term G = ggT is a true tensor and is called the Abragam-Bleaney

tensor.120 Diagonalising this gives a field-independent tensor form of the square of

the g matrix, which can be diagonalised. The corresponding principal values of the

(symmetrised) g matrix are therefore simply the square roots of eigenvalues of the

Abragam-Bleaney tensor, and the principal directions are the eigenvectors. Due to

the square root the sign of the principal values is not explicitly determined, but can

be infered from the magnetic moment matrices.

Chibotaru121 recommends building (g+gT )/2 and using a rotation matrix to relate

the eigenvectors to the original coordinate frame. This relates to B ⊗ S̃ and does not

introduce the sign indeterminacy. Chibotaru also demonstrated that the pseudospin

matrices in a basis of 2S̃ + 1 functions, {|ms = −|S̃⟩...|S̃⟩}, can be related to the true

spin matrices by a coordinate rotation, e.g. for Sz
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S̃z = Sz +
∑

κ∈{x,y,z}

gzκ − gκz

2ge

Sx. (3.52)

Hence the PAS of the pseudospin matrices do not ‘typically coincide’ with the PAS

of the true spin matrices,121 i.e. the PAS of S̃z and Sz are in rotated coordinate

frames. The angle between the principal direction of the true spin of the molecule in

a magnetic field, SB, and the pseudospin, S̃B, θS,S̃ is dependent on the orientation of

the applied magnetic field and is given by (in radians)

θS,S̃ = 1
2ge

√ ∑
κυ∈{x,y,x}

ϵ2
κ(gκυ − gυκ)2, (3.53)

where ϵκ are the applied field’s direction cosines (cosines of the angle of the vector and

each coordinate axis).

3.8 The determination of pseudospin

Bulk paramagnetic materials have no net magnetism in the absence of a magnetic

field, but will exhibit a magnetic moment when a field is applied.102 The nature and

anisotropy of this moment is mediated by the interplay of spin-orbit coupling (SOC)

and electrostatic interactions such as crystal field (CF) effects.‖ For a system of spin S,

in the limit of no spin-orbit-coupling, both interactions can be mapped to a manifold

of 2S+ 1 states that correspond both to the eigenfunctions of a spin Hamiltonian and

to the full wavefunction87 However, once spin-orbit coupling is included, spin is no

longer a conserved quantity and an effective spin, or pseudospin must be introduced

to restore this correspondence. Establishing the correct pseudospin becomes more

difficult as the electronic structure becomes more complicated and SOC effects in-

crease. Chibotaru reviewed the use of pseudospin Hamiltonians, describing the theory

as “controversial” and established guidelines on their use,122 considering several com-

mon cases and establishing the interplay between SOC and the crystal field. Firstly

considering when SOC is small compared to the crystal field, such as in 3d transition

metals, i.e. ĤSOC << ĤCF, the former can safely be applied as a perturbation on the
‖The literature refers to these as crystal and ligand field effects interchangably, however since the

effect is conceptually treated as electrostatic, this work prefers the former term.
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latter; this implies the observed degeneracy adopts the same form as the spin degen-

eracy, so S̃ = S. Typically for the lanthanides, the crystal field is much weaker, so

the spin-orbit effect dominates, i.e. ĤSOC >> ĤCF so the crystal-field operator can

be safely applied as a perturbation. The resulting observed degeneracy is therefore

related to the combination of L̂ and Ŝ angular momenta and so as a result S̃ = J .

However, if the crystal field is strong enough to isolate the lowest energy state(s) en-

ergetically, this is no longer the case, and a traditional spin Hamiltonian formulation

would not be appropriate; since only these isolated states influence the paramagnetism

of the molecule.

An example is the [Zn3Dy(L)(NO3)(MeOH)3] complex,121 where L is a hexaimine

macrocyclic ligand. Dysprosium has the electronic configuration [Xe] 4f 106s2, so an

isolated Dy3+ ion has nine f electrons. By Hund’s rules, maximising the possible

multiplicity and orbital angular momentum gives S = 5/2 and L = 5, and the largest

possible total angular momentum, J = 15/2, so the corresponding term symbol is
6H15/2 for the ground state, and will therefore form eight Kramers’ pairs.

The complex’s crystal field splits these doublets so the lowest pair is energetically

isolated. A single Kramers’ doublet has a pseudospin of 1/2, and Chibotaru showed

that the experimental properties could be emulated using only the lowest Kramers’

pair to calculate magnetic properties, such as the g-matrix.122 Such situations are

more common in actinide species since the increased size of the 5f orbitals leads to

larger crystal fields. Furthermore, SOC effects are even more pronounced leading

to greater interaction and mixing of states with different formal spin compared to

4f species. It follows that modelling such systems requires a multi-reference approach

and a pseudospin assignment based on the calculated multiplicity of the resulting state

energies; there are magnetic subtleties that “will not be adequately described by any

crystal field approach.”121

3.9 The hyperfine coupling matrix

The κυth matrix element of the hyperfine coupling matrix is defined by the following

partial derivative of the electronic energy, E,

Aκυ = ∂2E

∂µκ ∂µK
υ

∣∣∣∣∣
δµ,δµK=0

. (3.54)
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This is typically split into two terms, the Fermi-contact isotropic term, Aiso, and the

anisotropic spin-dipolar term, ASD, which are summed as (cf. Eq. 3.45)

A = AisoI3 + ASD. (3.55)

The isotropic term is given by

Aiso = 4cnuc

3⟨ŜZ⟩

〈
Ψ
∣∣∣∣δ(rN)ŜZ

∣∣∣∣Ψ〉, (3.56)

where cnuc = µBµNgegN is a constant defined for brevity and δ(rN) is the Dirac delta

function (x = 0 =⇒ δ(x) = 1, otherwise δ(x) = 0). The resulting matrix element

is therefore proportional to the spin-density at the nucleus. This is associated with

covalency since the effect is transfered through bonding.

The anisotropic term is associated with spin-dipolar interactions and it is given by

ASD
κυ = cnuc

⟨ŜZ⟩ r−5
N

〈
Ψ
∣∣∣∣r2

Nδκυ − 3rNκrNυ

∣∣∣∣Ψ〉. (3.57)

This does not include SOC effects, and the scalar-relativistic hyperfine energies scales

as α2. The leading SOC effect is second order, referred to as the paramagnetic spin-

orbit (PSO) effect and results from nuclear-spin and electron-orbital interactions. For

light atoms this can often be ignored, but is much more significant for heavy atoms

or light atoms directly bonded to heavier atoms; the latter is called the heavy-atom

light-atom (HALA) effect. This PSO contribution, A∆SO
κυ , can be written as32

A∆SO
κυ = −cnuc

2S

orbitals∑
kl

∂Pkl

∂Iυ

〈
ψυ|ĥso

κ |ψl

〉
(3.58)

where P = CT C is the molecular orbital density matrix formed from the molecular

orbital coefficients C. In principle the corresponding shift in energy scales as α4,

However the magnitude of this effect is not always intuitive, and PSO corrections are

needed to ameliorate any doubts.

As an example, the experimentally obtained negative sign of Aiso for the protons in

the η-bonded bis(cycloheptatrienyl)uranium complex, U(C7H7)−
2 appears to be largely

due to a spin-orbit induced PSO mechanism.123,124 The uranium atom in this complex

has a formal assignment of UV, i.e. a f 1 configuration, but the strong covalency of

the metal-ligand η bond can imply that the compound has significant UIII, i.e. f 3

character.124



3.10. MODELLING ZERO-FIELD SPLITTING 76

As with the Zeeman matrix, the hyperfine matrix is not necessarily symmetrical.

The principal values for this matrix can be calculated by defining an auxiliary set

of three cartesian generalised hyperfine operators F̂̂F̂F I = Â · Î = {F̂ I
x , F̂ I

y , F̂ I
z } which

represents the part of the magnetic dipole operator of the nucleus that is fully inde-

pendent of the applied magnetic field. Considering the following two Hamiltonians

over an electronic and protonic Kramers’ pair {ΦI
1/2,ΦI

−1/2}, then the energy is given

by

∆E = ⟨Φ1/2ΦI
1/2|Ŝ · F̂̂F̂F I |Φ1/2ΦI

1/2⟩ − ⟨Φ−1/2ΦI
−1/2|Ŝ · F̂̂F̂F I |Φ−1/2ΦI

−1/2⟩, (3.59)

∆E = ⟨Φ1/2ΦI
1/2|Ŝ · A · Î|Φ1/2ΦI

1/2⟩ − ⟨Φ−1/2ΦI
−1/2|Ŝ · A · Î|Φ−1/2ΦI

−1/2⟩. (3.60)

The matrix representation of the F̂̂F̂F I operators in a {|mI = −I⟩...|mI = I⟩} basis is

squared via F = A′T A′ to form a true tensor,. The principal values of the hyperfine

matrix are the square root of the eigenvalues of A′T A′.

3.10 Modelling zero-field splitting

Ramsey125–127 posited that because nuclear motion is much slower than electronic mo-

tion, the nuclear magnetic moment µnuc changes much more slowly than the electronic

magnetic moment µ, and can be treated as time-independent, effectively as a param-

eter. Assuming equilibrium is reached within experimental time scales, the observed

NMR shielding tensor can be shown128 to be given by the second derivative of the

electronic energy with respect to the components of the magnetic field and the nuclear

magnetic moment at the limit of zero field and magnetic moment

σκυ = ∂2E

∂Bκ ∂µnuc,ν

∣∣∣∣∣ B→0
µnuc→0

. (3.61)

The resulting energy levels are often close enough to have significant occupation above

the ground state, so Boltzmann averaging of observables is required. The Boltzmann

average ⟨A⟩0 of a set of observables {An} with n energy levels, {Wn} is given by:

⟨A⟩0 =
∑

n Ane
−Wn/kBT∑

n e−Wn/kBT
. (3.62)

Following Moon and Patchkovskii’s summary128 the approach we use is based on Kur-

land and McGarvey’s work,129 which allows the pNMR Hamiltonian to be split into
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Zeeman and hyperfine terms. The field-independent form of the shielding tensor128

can be decomposed into diamagnetic and paramagnetic shielding tensors, σorb and σp

respectively

σorb
κυ =

〈
∂2E

∂Bκ ∂µnuc,ν

〉
0

σp
κυ = − 1

kBT

〈
∂E

∂Bκ

· ∂E

∂µnuc,υ

〉
0
.

Taking g and A as the following partial derivatives

gκυ = ∂2E

∂Bκ ∂Sν

∣∣∣∣∣
B→0

Aκυ = γnuc
∂2E

∂Sκ ∂µnuc,ν

∣∣∣∣∣
µnuc→0

(3.63)

it can be shown that, in the low spin-orbit coupling limit130–132

σp
ab = − 1

kBT

〈
∂E

∂Ba

· ∂E

∂µnuc,b

〉
0

(3.64)

= − 1
γnuckBT

⟨(g · S)a(S · A)b⟩0 (3.65)

= − 1
γnuckBT

g · Z · A = − 1
γnuckBT

{x,y,z}∑
κυ

gaκZκυAυb , (3.66)

where Z is a 3 × 3 coupling matrix, the κυth element of which can be thought of as

the expectation value of a Boltzmann averaged combination of transformed Ŝκ and Ŝυ

operators, i.e. a spin-spin interaction;130

Zκυ =
〈∫ 1/(kBT )

0
dβ eβĤ0Ŝκ e

−βĤ0Ŝυ

〉
0

(3.67)

In the absence of zero-field splitting, Zκυ = 1
3S(S + 1)δκυ, where δκυ is the Kronecker

delta and the resulting matrix is diagonal.

Pennanen and Vaara133 formulated a practical approach to modelling ZFS in the

context of modern quantum chemistry, the “no coupling approximation.” This requires

the formation of the (2S+1)×(2S+1) matrix, ST ·D ·S, which is then diagonalised to

obtain eigenvalues En and eigenstates |n⟩, the latter being linear combinations of pure

spin states |SmS⟩. Soncini and van den Heuvel130 presented a fully coupled approach,

which can be expressed as

Zκυ = ω−1
eigenstates∑

nm

qnm⟨n|Ŝκ|m⟩⟨m|Ŝυ|n⟩ where ω =
∑

n

e−En/kBT , (3.68)

with qnm being a Boltzmann weighting term

qnm =


e−En/kBT Em = En

− kBT
En−Em

(e−En/kBT − e−Em/kBT ) otherwise.
(3.69)
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3.10.1 Extending the approach to states with arbitrary de-

generacy

In 2012 Van den Heuvel and Soncini1 presented an extended approach to handle cases

with arbitrary degeneracy. It is based, in part, on the observation that the set of

spin tensors {S(k)
q : k ⩽ 2S̃} form a complete basis for the set of all complex square

matrices of dimension 2S̃+ 1. For instance, the z component of the magnetic moment

µ can be decomposed via

µz =
k⩽2S̃∑
k odd

q=−k∑
k

(−1)qg(k)
qz Sk

−q, where g(k)
qz = 2k + 1

⟨S||S(k)||S⟩
Tr

(
S(k)

q µz

)
, (3.70)

and the coefficient g(k)
qz is referred to as a generalised Zeeman “tensor”. In the absence

of ZFS, the pNMR contribution to the shift is given by

σκυ = − µB

gnkBT
· 1
S + 1

2S∑
k=1

k∑
q=−k

g(k)
qκ (a(k)

qυ )∗ ⟨S||Sk||S⟩2

2K + 1 . (3.71)

ZFS is accounted for via a spin projection P0 of the ZFS Hamiltonian

P̂0 ĤZF S P̂0 =
K≤2S̃∑
k even

q=−k∑
k

D2k
q S

2k
−q, where P̂0 =

∑
q=|S,−S⟩...|S,S⟩

|q⟩⟨q| (3.72)

Forming the P̂0ĤZF SP̂0 matrix in the {|mS̃ = | − S̃⟩...|mS̃ = −S̃⟩} basis and diagonal-

ising it gives (2S̃+1) eigenfunctions |λ⟩. which can be used to build the spin projector

and from these it can be shown that

σκυ = σorb
κυ − µB

µN

.
1
gN

2S̃∑
k,k′=1

k∑
q=−k

k′∑
q′=−k′

g(k)
qκ Qkq

k′q′ a
(k′)
q′υ ,where

Qkq
k′q′(λ, λ′) =

deg.St.∑
{λ},{λ′}

·


e−Eλ/kBT

ωkBT

{λ}∑
λ

⟨λ|Sk
q |λ⟩⟨λ|Sk

q |λ⟩ Eλ = Eλ′

−2e−Eλ/kBT

ω(Eλ−Eλ′ ) ℜ

{λ},{λ}∑
λ

λ|Sk
q |λ′⟩⟨λ′|Sk

q |λ⟩

 otherwise,

and ω is the sum of Boltzmann weights, a are the hyperfine coefficients.
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3.10.2 Practical implementation

We have produced three programs that form the paramagnetic contribution to the

NMR shift.

Non ITO-based approach

The first was a C++ program using the formulation in Section 3.10, i.e. Eqs. 3.68–

3.69, which was then used for all calculations in Chapter 4. This agreed with, and

was superseded by a faster program made available by Autschbach’s group, PNMR-

Shift.131,134,135

Main ITO-based approach

The second is a family of Matlab scripts∗∗ that use the full ITO approach for a system

with axial symmetry. That is they implement Eqs. 3.70–3.71. They take the ORCA

output of the spin and orbital ar momentum matrices of the spin-orbit-free (SOF)

states calculated at NEVPT2 level. Then the program forms the electronic magnetic

dipole moments, {µx,µy,µz} in the SOF basis and parses the QDPT-SOC state de-

scription to transform each of these into the SOC basis. These are then truncated

to (2S̃ + 1) × (2S̃ + 1) submatrices which are used to form the corresponding coeffi-

cients, g(k)
κ0 : k = 1, 3, 5, ..., κ ∈ {x, y, z}, from the S(k)

0 ITO. The remaining Zeeman

coefficients can be formed similarly, using Wigner-Eckart theory to build the ITOs.136

The ZFS operator is time even, so its decomposition only includes even terms,

and the zeroth term only shifts the energy (and can therefore be ignored). The λ

eigenvectors and energies can be inferred by diagonalising the NEVPT2 S̃T · D · S̃

matrix. This introduces no new approximations over the standard approach provided

that S̃ ⩽ 3/2. The pseudospin matrices S̃x, S̃y, S̃z are built from the Zeeman matrix

via Eq. 3.52.

∗∗and a parallel C++ program
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This leaves the hyperfine ITO coefficients, e.g. a
(1)
0z . It can be shown1 that the

paramagnetic shielding matrix, σI
κυ, for a system with a ω-fold degenerate state is

given by

σp
κυ = − 1

ωkBT
Tr(P0µκP0F̂̂F̂F I

υP0), (3.73)

where F̂ I
υ represents the contact, pseudocontact and paramagnetic-spin-orbit compo-

nents of the hyperfine interaction in the υth direction, conceptually this is the applied

field-independent part of the magnetic response of the nucleus (i.e. f I in Eq. 3.50).

It is this matrix that, when decomposed via Eq. 3.52, gives the hyperfine ITO coeffi-

cients. For S = 1, the a(1)
iκ : i = −1, 0, 1, κ = {x, y, z} terms are an ITO representation

of the standard hyperfine matrix.1

For an axial system, only the SzDzzSz term survives and only {a(1)
iz } is non-zero.

Provided that S̃z ≈ Sz (i.e. from Eq. 3.35, gxz ≈ gzx and gyz ≈ gzy) then it follows

that the decomposition of F̂ I
z by the ITOs S(1)

0 approximates to a decomposition by S̃z.

Therefore a(1)
0z is approximately the square root of the AT A tensor.†† This introduces

a sign indetermancy for a(1)
0z , but due to the restriction on the off-diagonal elements,

in most cases, the sign of a(1)
0z is the same as that of the zz-component of the normal

hyperfine matrix. For this simple case, a calculation using the methods of Section 3.9

should give the direction of the paramagnetic component and by extension the sign of

a
(1)
0z .

Since µκ and F̂ I
υ are time-odd operators their decomposition only involves odd

terms. This means that for S̃ = 1 only first order terms appear. For S = 3/2, third

order terms are present. While g(3)
ik is built from µ, there is no ITO approach to build

a
(3)
0z from a

(1)
0z . For an axial system, the ratio a(3)

0z /a(1)
0z is approximately1 the same as

g
(3)
0z /g(1)

0z , so the approach can be approximated by such scaling,

For S̃ = 2, the decompostion of ĤZF S has fourth-order terms that are not included

in the ST · D · S approximation. For S̃ > 2, additional scaling approximations are

needed, e.g. for a(5)
0z . Hence the quality of the approximation rapidly degrades as S̃

increases.

††The pseudospin for A is the same as that of g, but ideally A and g should be in the same frame.

For an axial system, the diagonalisation is equivalent to a rotation of the coordinate system about

the z-axis, and for a
(1)
0x and a

(1)
0y , this needs to be accounted for.
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For an axially symmetric system, there are often atoms that are chemically equiva-

lent but the imposition of a coordinate system creates atoms that are computationally

different. This is usually handled by taking the average hyperfine matrix for each

set of chemically equivalent atoms. This averaged hyperfine matrix is typically more

symmetric, and as a result the FI tensor is typically a better approximation for the

hyperfine interaction.

Experimental ITO-based approach

The third, most recent Matlab development is an experimental fork of the second

and uses the full ITO approach for systems with S̃ = 1. This follows the above

formulation, but constructs the hyperfine interaction F̂ I
κ̂F I
κ̂F I
κ from S̃κAT A to account for

a general pseudospin rotation, and decomposes this by the ITOs (as for µx). This

approach is only valid for S̃ = 1 since for other pseudospins, the resulting complex

matrix is not square. Due to time constraints we used the NEVPT2-SOC Zeeman

matrix, but since the hyperfine matrices in this work are calculated at the DFT level,

the pseudospin matrices should be constructed from DFT Zeeman matrices.



Chapter 4

Modelling the effect of zero-field

splitting on the chemical shifts of

lanthanide and actinide

compounds.

This chapter presents a slightly improved version of the a paper published in magne-

tochemistry,2 references have been merged with those in this thesis.

The project started from the work of Helen Moylan as presented in her PhD thesis,

“Computational Prediction of Paramagnetic NMR Chemical Shifts in f-Element Com-

plexes”137 which established the in-house atomic ZORA (aZORA) gaussian link which

was used for all geometry optimisations in this thesis. Moylan’s thesis examined pNMR

spectra for 14 lanthanide and actinide species, which were f 1 and f 3 species.28 For

the former group a correlation coefficient between experiment and theory of R2 = 0.89

was obtained showing strong correlation. However, for the f 3 species, “the consistency

and reliability of the results wavers in comparison with those obtained for f1.”28 The

thesis identifies three opportunities to improve our process.

• Zero-field field splitting (ZFS) was not modelled.

• Paramagnetic spin-orbit corrections to the hyperfine matrices were not added.

• The Zeeman matrix was calculated at CASSCF level, ignoring dynamic correla-

tion.

82
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This paper focuses on modelling ZFS, with a view to establishing its relative impor-

tance and in the hope of approaching quantitative results. Using ZFS it successfully

qualitatively assigns the 1H, 13C and 29Si shifts of the six f 3 compounds shown in

Figure 4.1 and shows that the correlation between calculated and experimental results

where ZFS is applied across the five compounds where the experimental shifts have

been assigned improves from R2 = 0.86 to R2 = 0.90. Of particular note is that the

change due to ZFS for 1H spectra is of the order of ppm and can therefore be very

important in correctly assigning closely spaced spectra (see Section 4.5.7).

Figure 4.1: The molecules studied in this work, numbered in order of appearance in

the main text.

,

In compounds where heavy-atom-light-atom (HALA) effects are important, such

as tris(pentamethylcyclopentadienyl)uranium (III), U(C5Me5)3, the hyperfine coupling

coefficient matrices were also calculated. These were shown to have profound effects

on the 13C pNMR shifts of the U(C5Me5)3 molecule, with the shift for the ring carbons

improving from 182.59 ppm to 341.23 ppm. (Experimental value 324.80 ppm)
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Establishing the optimum state averaging

The paper does not give full details of the approach used to establish the optimal state

averaging, a topic that is discussed more fully in the following chapter. As an example

of this, we consider the procedure used for the second molecule in the study, further

discussed in Section 4.5, UIII(MeBTP)3+
3 , where MeBTP is the 2,6-bis(5,6-dialkyl-

1,2,4-triazin-3-yl)pyridine ligand. Figure 4.2 shows the behaviour of the predicted
1H shielding (without ZFS) against the number of quartet states used in the state-

averaging for the calculation of the Zeeman matrix, using the state averaging data from

reference 137. As can be seen from the figure, after adding 14 quartet states to the

SA-CASSCF calculation, the variation in the predicted shift after adding additional

quartet states is small. Hence the optimal number of roots was predicted to be 14. A

similar process was used to reach the optimal state averaging of 14 quartets and 25

doublets for this molecule, and for all the molecules in this chapter.
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Figure 4.2: 1H Chemical shielding of tris(2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine)
uranium(III) against number of quartet states included in the state-averaging for the
Zeeman matrix. The MeBTP ligand is shown and the markers for the four chemically
equivalent types of hydrogen atom are included. The blue lines show the experimental
shielding (δ−σref)). for each equivalence group. The dotted red line shows the number
of states that were chosen to be included in the final state averaging. Figure based on
data from reference 137.
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Modelling the effect of zero-field splitting on the 1H,
13C and 29Si chemical shifts of lanthanide and ac-
tinide compounds.

Authors:

A. W. Lloyd, H. M. Moylan, J. J. W. McDouall,

Affiliation:

Department of Chemistry, The University of Manchester,

Oxford Road, Manchester, UK

Author contributions:

Original draft preparation AWL, reviewing and editing AWL and JJWM, geometry

optimisation HMM, orbital and Zeeman matrix calibration and calculation HMM, ap-

plication of ZFS AWL, spin-orbit corrected hyperfine calculations JJWM and AWL.

4.1 Abstract

The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing

heavy atoms presents a significant challenge to computational quantum chemistry.

The importance of meeting this challenge lies in the central role that NMR plays

in the structural characterisation of chemical systems. Hence there is a need for

reliable assignment and prediction of chemical shifts. In a previous study28 we looked

at the computation of pNMR chemical shifts in lanthanide and actinide complexes

using a spin Hamiltonian approach. In that study we were principally concerned with

molecules with S=1/2 ground states. In the present work we extend that study by

looking at the effect of zero-field splitting (ZFS) for six complexes with S=3/2 ground

states. It is shown that the inclusion of ZFS can produce substantial shifts in the

predicted chemical shifts. The computations presented are typically sufficient to enable

assignment of experimental spectra. However for one case, in which the peaks are

closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment

quite difficult. We also observe, and echo, the previously reported importance of

including the paramagnetic spin-orbit hyperfine interaction for 13C and 29Si atoms,
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when these are directly bound to a heavy element and thus subject to heavy-atom-

light-atom effects. The necessary computations are very demanding, and more work is

needed to find theoretical and computational approaches that simplify the evaluation of

this term. We discuss the computation of each term required in the spin Hamiltonian.

The systems we study in this work are restricted to a single heavy atom ion (one

Nd(III) and five U(III) complexes), but typify some of the computational complexity

encountered in lanthanide and actinide containing molecules.

4.2 Introduction

Interest in lanthanide and actinide chemistry continues to expand as new applica-

tions are found and existing areas of research are developed. Examples include novel

synthetic techniques, such as the development of reusable reagents in the synthesis

of cyclic oxycarbon compounds,138 and the investigation into the nature of actinide

containing single molecule magnets.139

Radioactivity is the most exploited property of the actinides, as they potentially

offer an efficient and low carbon alternative to fossil fuels for large scale energy genera-

tion. At the opposite end of the scale, nuclear powered batteries are used for powering

small devices such as heart pacemakers.140 Because of their industrial use, the re-

processing of nuclear waste to extract fissile material and reduce waste volumes is of

paramount importance. This leads directly to a demand for better extractants, which

in turn needs a better understanding of metal-ligand selectivity for actinide over lan-

thanide ions.141 This is an area that benefits from improved and reliable computational

modelling techniques.

Nuclear magnetic resonance spectroscopy (NMR) is a well-established and much

used analytical tool for characterising molecules and providing insight into their con-

stituent chemical bonds. Many experimental techniques exist for obtaining NMR

spectra in diverse chemical and physical situations. The analysis and interpretation of

complex spectra for most diamagnetic molecules, that lack heavy nuclei, are routine.

Complementary to this experimental work, the development of computational tools

for predicting NMR chemical shifts has also become common.142
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NMR studies of actinide species provide significant challenges to computational

techniques. Firstly, for light atoms the effects of relativity are small, and the represen-

tation of electron correlation is significantly more important. However the relativistic

correction to the energy of an atomic system approximately scales as (Zc−1)2.77 For

heavy elements relativistic effects have a profound influence on the ordering of energy

levels within their atoms and molecules, and a concomitant effect on the molecular

properties of such systems. The computational treatment of relativistic effects begins

with scalar relativistic corrections and these are often sufficient for the prediction of

molecular geometries. For paramagnetic molecules the presence of the unpaired elec-

tronic spin requires that the coupling between orbital and spin angular momenta are

treated reliably. This can also have a significant effect on the splitting of electronic

energy levels. Equally, spin-dependent properties such as the Zeeman interaction,

the hyperfine interaction and the spin-spin interaction will depend on the theoretical

method used for their evaluation and require calibration against reliable experimental

data. These considerations provide significant challenges for the theoretical formula-

tion of paramagnetic NMR (pNMR) chemical shifts, as well as for their computational

realisation. Calculating pNMR shifts of paramagnetic molecules remains a challenging

problem that is still under much investigation.143,144

Experimental spectra are normally reported as δ shifts. The δ shift is obtained

with respect to a reference chemical shift, σref. It is conventional to separate the ex-

perimental paramagnetic chemical shift σexp into three terms: the orbital contribution

σorb, which is approximated as the shift that would be observed if the species was dia-

magnetic, and the contact σc and pseudocontact σpc shifts arising from the unpaired

electronic spin:

δ = σref − σexp (4.1)

σexp = σorb + σc + σpc. (4.2)

For simple systems, the contact term relates to the interaction of the unpaired electron

spin density and the nuclear magnetic moment at the nucleus. The contact interaction

is isotropic. The pseudocontact shift is the residual long range interaction of the spin-

dipoles and is anisotropic.145 Qualitatively the contact shift is traditionally interpreted

as arising from the transfer of spin density through bonds and may be associated
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with covalent interactions. The pseudocontact shift is interpreted as acting through

space and is a dipole-dipole type interaction.131 The theoretical justification for the

decomposition into these terms weakens when relativistic treatments are included.132

The theoretical framework of pNMR shifts can be formulated in a number of ways.

The full pNMR shielding expression in a sum over states (SOS) formalism was derived

in references 127 and 130. In reference 146, multireference wavefunction calculations

of pNMR shifts were performed, for the first time, directly employing the SOS formal-

ism without reference to the spin Hamiltonian formalism. This study was extended to

carbonate complexes of U, Np and Pu.147 In references146,147 the wavefunction code

used was implemented as part of the OpenMolcas code but has not yet been released.

Accordingly, in this work we shall adopt the spin Hamiltonian approach, which repre-

sents each of the three paramagnetic operators with a coupling matrix and is detailed

in the next section. This approach has the advantage that the necessary components

are readily available in many quantum chemistry packages, however the main disad-

vantage is that the computational framework that is used to calculate each component

has a significant effect on the results obtained. To achieve reliable results it is necessary

to assess each component, and calibrate the most effective approach against an often

limited set of experimental values for similar chemical species. Detailed overviews of

the evaluation of spin Hamiltonian parameters in the context of modern computational

chemistry are available from Vaara,148 Bolvin149 and Autschbach.150 We shall mostly

be concerned with studying the effect of zero-field splitting (ZFS) on the predicted
1H, 13C, 29Si shifts of six compounds. We will illustrate situations where the inclu-

sion of ZFS causes a reordering in the predicted 1H shifts, and where the inclusion

of spin-orbit effects on the hyperfine term for the 13C shifts of nuclei involved in a

η-coordinated C-U bond dominate the hyperfine interaction. With the exception of

the first example, our results are accurate enough to enable qualitative assignment of

observed shifts.
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4.3 The spin Hamiltonian approach to paramag-

netic NMR

Applying a magnetic field B to an isolated atom with nuclear spin Inuc results in each

energy level splitting by 2γnuc|B|, where γnuc is the magnetogyric ratio of the nucleus

under investigation. In any electronic system, the circulation of electrons induced

by the applied magnetic field generates an opposing magnetic field. This effect is

represented by σorb, the chemical shift or orbital shielding tensor. For a diamagnetic

molecule, the Hamiltonian corresponding to the energy shift, in atomic units, is given

by

ĤNMR = −γnucB · (I3 − σorb) · Înuc, (4.3)

However for a system with unpaired electrons, there is a permanent magnetic moment

associated with the electronic spin. It is energetically favourable for this to align with

an applied magnetic field and the resulting (thermally averaged) dipole must be ac-

counted for. The corresponding paramagnetic NMR Hamiltonian is given by:108–110,133

ĤpNMR = −γnucB · (I3 − σorb) · Înuc + µB B · g · ˆ̃S + ˆ̃S · D · ˆ̃S + ˆ̃S · A · Înuc. (4.4)

The Zeeman coupling matrix, g, represents the interaction of the electronic spin-dipole

with the applied magnetic field. An effective parameter, referred to as the pseudospin

S̃, is introduced. In the absence of spin-orbit coupling S̃ = S, which is an often used

approximation. For molecules where the spin-orbit interaction is strong, the effective

degeneracy of the molecule is reduced so a smaller effective spin S̃ is chosen based on

the splitting pattern of the electronic states.149 The interaction between the nuclear

and electronic spin-dipoles is represented by the hyperfine coupling matrix, A. In a

system with more than one unpaired electron, the interaction of the electron spin-

dipoles is represented by the ZFS or D tensor.
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4.3.1 The orbital shielding tensor, σorb

For a diamagnetic molecule the orbital, or Ramsey, shielding matrix126 is the only

contribution to the observed chemical shift and as such, its isotropic value is readily

extractable from NMR spectra. For a paramagnetic molecule it is not possible to di-

rectly extract this term and as a result, the reliability of any computational method

must be assessed on diamagnetic analogues of the species under investigation. Be-

cause magnetic fields are defined by the action of an infinitesimal rotation of a vector

potential and this operation is independent of the origin of the co-ordinate system

used, the calculation of magnetic properties has an artificial dependence on the choice

of origin, known as gauge dependence. The gauge dependence vanishes in the limit

of the exact wavefunction. It has been demonstrated that for calculations targeting a

single nucleus, the dependence is minimised by setting the origin at the nucleus. For

molecules in general, choosing the centre of electronic charge as the origin minimises

gauge dependence,105 but the most reliable approach is to employ gauge-including

atomic orbitals (GIAO),151,152 which remove the gauge dependence.

For actinide compounds, modelling relativistic effects is essential and many frame-

works can be used. The relativistic Dirac equation can be satisfied by a four component

wavefunction, partitioned into pairs of electronic and positronic spinors. The presence

of the positronic solution hinders a variational approach, since simply minimising

the energy is no longer possible due to an unbounded and infinite set of negative

positronic states. For four component methods, this issue must be addressed, e.g. by

kinetic balance.39 However, since the positronic component is much smaller, efficient

two component techniques have been developed to eliminate it. These techniques pro-

duce a spin-free (scalar) and a spin-dependent component. Observables in the Dirac

framework are implicitly dependent on all four components, and the corresponding

two component operator erroneously does not involve the full solution. This effect is

called the picture change error150 and can be addressed using a transformation of the

operator equivalent to that used to transform the four component wavefunction to a

two component wavefunction.
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Scalar relativistic approaches such as the zero-order regular approximation

(ZORA),153 and the Douglas-Kroll Hamiltonian (DKH)154 are implemented in a num-

ber of quantum chemistry packages. In principle, the non-linear dependence of the

ZORA electrostatic potential that is used as a perturbation is inherently gauge de-

pendent,153 and this is not resolved by using GIAOs, although in practice the error

introduced is small for large basis sets.135,155

4.3.2 The Zeeman coupling matrix, g

The Zeeman coupling matrix, g, more commonly referred to as the “g tensor”,∗ rep-

resents the effect of the magnetic field on the average electronic spin-dipole. With

the addition of spin-orbit coupling, the electronic spin of a molecule is no longer well

defined and the pseudospin parameter is introduced to describe the observed splitting

of spin multiplets.108 The theory and computation of spin-orbit coupling has a detailed

review by Marian.87 Because spin-orbit coupling has such a large effect on the effective

spin-dipole, the reliable evaluation of the g tensor is directly dependent on how well

this effect is modelled.

For cases of a weak spin-orbit interaction, density functional theory (DFT) and

linear response theory (DFT-LRT) can successfully be used.156 However DFT-LRT

is unable to produce reliable results where degeneracies or low-lying excited states

exist, or where the ground state is multiconfigurational in nature. Instead we have

used a multiconfigurational approach that can describe the ground and excited states

equally well, i.e. state-averaged complete active-space self-consistent field theory (SA-

CASSCF). It is possible to include spin-orbit effects at a variational level. This type of

approach is available in the SPOCK-CI program,157 which is a spin-orbit configuration

interaction (CI) package. While this would be the preferred approach it is demanding

and perturbation techniques can be used to represent the interaction more efficiently.

One multiconfigurational approach is to use double perturbation theory and a sum

over states (SOS) formalism to generate the g tensor directly. The double perturbation

theory approach can be modified for degenerate systems, but for nearly degenerate

systems, individual contributions to the SOS depend inversely on the energy difference
∗Since it relates two quantities defined in space and spin coordinate frames respectively it is not

a true tensor.
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between states, if this energy difference is small the resulting perturbation theory

can be divergent. The spin-orbit term can also be applied using a quasi-degenerate

perturbation theory (QDPT) approach which constructs a matrix over the manifold of

spin states. The diagonal elements are taken as the energies of the spin pure states (e.g.

from a SA-CASSCF calculation), and the off-diagonal elements couple the spin free

states under the action of the spin-orbit operator. Diagonalisation gives the spin-orbit

energy levels and wavefunctions.

In the case of a molecule with spin S = 1
2 , the lowest energy pair of spin-orbit

wavefunctions must be degenerate in the absence of an applied magnetic field due to

Kramers theorem,158 which states that the degeneracy of a state with half-integer spin

must be at least two in the absence of a magnetic field. The energy splitting ∆EZeeman

upon application of a magnetic field is given by the difference in expectation values

of the Kramers pair, represented by |Φ±1/2⟩, the subscript indicating the sign of the

associated pseudospin, that is,

∆EZeeman = µB

〈
Φ1/2| − B · µ̂|Φ1/2

〉
− µB

〈
Φ−1/2| − B · µ̂|Φ−1/2

〉
. (4.5)

= µB

〈
Φ1/2|B · g · ˆ̃S|Φ1/2

〉
− µB

〈
Φ−1/2|B · g · ˆ̃S|Φ−1/2

〉
. (4.6)

In the above equation, the magnetic moment operator µ̂ is related to the magnetogyric

ratio for the electron, ge = 2.0023193 and the spin, Ŝ, and angular momentum, L̂,

operators by µ̂ = −µB(L̂+geŜ). Squaring Eqs. 4.5 and 4.6 gives a relationship between

the related tensor G = g · gT , called the Abragam-Bleaney tensor,120 and the matrix

elements of µ in the Kramers pair basis. The principal values of the Zeeman matrix

are the square roots of the eigenvalues of the Abragam-Bleaney tensor.159 While this

relationship is only valid for S = 1
2 , similar ones have been derived for S > 1

2 .122

This process has two drawbacks, the resulting g matrix is necessarily symmetric, and

because of the use of a square root precursor matrix, there is a sign indeterminacy for

the principal values of g. For weak spin coupling, the principal values must be close to

the free electron value, and therefore positive. Otherwise, the signs can be inferred by

exploiting relationships between the sign of combinations of the principal values and

the sign of combinations of the eigenvalues of the µκ matrices (where κ represents a

cartesian direction).122
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The final consideration is the treatment of the spin-orbit operator. It is possible

to use the full two electron form of the operator, but as with two-electron repulsion

integrals, this results in a considerable computational cost. It is often preferable

to use a one-electron operator. Three operators are in common use, the first an

empirical operator based on an effective nuclear charge calibrated against calculations

on small molecules as developed by Kosekii.115–117 The second is the spin-orbit mean

field (SOMF) operator which forms an effective one-electron operator, similar to the

Fock operator in Hartree-Fock theory. Finally the atomic mean-field approximation

(AMFI) to the spin–orbit operator forms a similar one-electron operator, but discards

the multicentre two-electron spin-orbit integrals, exploiting the short range of the

two-electron spin-orbit operator while retaining the simpler one-centre, two-electron

integrals.114,160

4.3.3 The zero-field splitting (ZFS) tensor, D

The ZFS interaction primarily represents the interelectronic dipolar interaction, and

can be split into a first order term, directly corresponding to spin-spin interaction

and a second order term representing corrections due to spin-orbit coupling.161 When

represented over a manifold of spin states S,MS, the first order term is diagonal.

It is evaluated over the ground state eigenfunction. The second order term includes

off-diagonal elements with selection rule −1 ⩽ ∆S,∆MS ⩽ 1. This term must be eval-

uated over ground and excited states. Available computational approaches are similar

to those used for the Zeeman matrix. Single reference wavefunction methods include a

modified DFT coupled-perturbed approach to handle the spin-orbit perturbation.162 In

multireference approaches, the spin-spin contribution can be obtained from first-order

perturbation theory, while the spin-orbit contribution requires second-order pertur-

bation theory. However, as for the Zeeman matrix, near degeneracy often produces

spurious results. A QDPT effective Hamiltonian approach gives more reliable ZFS

tensors in such cases,32 and it is the latter approach that we have adopted. We shall

outline below for each molecule the choice of active space used and states averaged in

producing the ZFS tensor.
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4.3.4 The hyperfine coupling (HFCC) matrix, A

A set of generalised hyperfine operators for a nucleus, K, F̂̂F̂FS
κ (where κ represents a

cartesian direction), can be defined by its relation to the Hamiltonian for the hyperfine

interaction, ĤHFC
K , and the nuclear magnetic moment operator, µ̂K via

ĤHFC
K = F̂̂F̂FS

K · µ̂K = gKµBF̂̂F̂FS
K · ÎK , (4.7)

where gK is the g-factor for the target nucleus. Like the Abragam-Bleaney tensor, this

is a real tensor.

The more commonly reported hyperfine coupling constant (HFCC) matrix, AK ,

represents the interaction between the nuclear and the electronic spin-dipoles. Like

the Zeeman matrix, the HFCC matrix can be recovered by forming the AT ·A product.

e.g. For an electronic Kramers’ doublet, the HFCC matrix is given by149

[
AT

KAK

]
κυ

= g2
Kµ

2
B

∑
S=±1/2

∑
S′=±1/2

〈
ΦS|F̂̂F̂FS

K,κ|ΦS′

〉 〈
ΦS′ |F̂̂F̂FS

K,υ|ΦS

〉
(4.8)

A wide range of approaches are available, such as DFT linear response and SOS double

perturbation methods. However, the hyperfine interaction has strong inverse depen-

dence on electron-nucleus separation and is strongly influenced by relativistic effects.77

Relativistic corrections cannot be ignored, at least scalar relativistic treatments are

needed for a reliable approach.135 However additional corrections for spin-orbit cou-

pling are computationally demanding, since three sets of coupled-perturbed equations

must be solved for each nucleus. In principle, it is possible to avoid the solution of the

CP-SCF equations by adopting a 4-component approach,163,164 although this has an

associated computational overhead in performing the 4-component calculation. For a

light target nucleus the corrections are small and often can be safely ignored, except

when the target nucleus is bonded to a heavy nucleus; the latter can have a substan-

tial effect on the electronic structure of its neighbour, a phenomenon referred to as

the “heavy atom-light atom” (HALA) effect,165 and the spin-orbit correction to the

hyperfine interaction must be included for reliable results.

A remaining issue in predicting isotropic chemical shifts is due to our calculations

being based on a single geometry, ignoring vibrational and rotational motion. This is

a valid approach for electronic transitions which operate on a much faster timescale

than significant nuclear motion, but nuclear transitions are slow enough for the motion
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to be significant. The pNMR measurement is an average over nuclear motion. It is

necessary to calculate the orbital shielding and hyperfine matrices for all nuclei and

then group them by chemically equivalent nuclei, and generate the averaged hyperfine

matrices over these groups.

4.3.5 Zero-field splitting — theory†

Ramsey125–127 posited that because nuclear motion is much slower than electronic mo-

tion, the nuclear magnetic moment µnuc changes much more slowly than the electronic

magnetic moment µ, and can be treated as time-independent, effectively as a param-

eter. Assuming equilibrium is reached within experimental time scales, the observed

NMR shielding tensor can be shown128 to be given by the second derivative of the

electronic energy with respect to the components of the magnetic field and the nuclear

magnetic moment at the limit of zero field and magnetic moment

σκυ = ∂2E

∂Bκ ∂µnuc,ν

∣∣∣∣∣ B→0
µnuc→0

. (4.9)

The resulting energy levels are often close enough to have significant occupation above

the ground state, so Boltzmann averaging of observables is required. The Boltzmann

average ⟨A⟩0 of a set of observables {An} with n energy levels, {Wn} is given by:

⟨A⟩0 =
∑

n Ane
−Wn/kBT∑

n e−Wn/kBT
. (4.10)

Following Moon and Patchkovskii’s summary128 the approach we use is based on Kur-

land and McGarvey’s work,129 which allows the pNMR Hamiltonian to be split into

Zeeman and hyperfine terms. The field-independent form of the shielding tensor128

can be decomposed into diamagnetic and paramagnetic shielding tensors, σorb and σp

respectively

σorb
κυ =

〈
∂2E

∂Bκ ∂µnuc,ν

〉
0

σp
κυ = − 1

kBT

〈
∂E

∂Bκ

· ∂E

∂µnuc,υ

〉
0
.

Taking g and A as the following partial derivatives

gκυ = ∂2E

∂Bκ ∂Sν

∣∣∣∣∣
B→0

Aκυ = γnuc
∂2E

∂Sκ ∂µnuc,ν

∣∣∣∣∣
µnuc→0

(4.11)

†This subsection (up to Eq 4.15) is a repeat of Section 3.10 and is included for completeness.
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it can be shown that, in the low spin-orbit coupling limit130–132

σp
ab = − 1

kBT

〈
∂E

∂Ba

· ∂E

∂µnuc,b

〉
0

(4.12)

= − 1
γnuckBT

⟨(g · S)a(S · A)b⟩0 (4.13)

= − 1
γnuckBT

g · Z · A = − 1
γnuckBT

{x,y,z}∑
κυ

gaκZκυAυb , (4.14)

where Z is a 3 × 3 coupling matrix, the κυth element of which can be thought of as

the expectation value of a Boltzmann averaged combination of transformed Ŝκ and Ŝυ

operators, i.e. a spin-spin interaction;130

Zκυ =
〈∫ 1/(kBT )

0
dβ eβĤ0Ŝκ e

−βĤ0Ŝυ

〉
0

(4.15)

In the absence of zero-field splitting, Zκυ = 1
3S(S + 1)δκυ, where δκυ is the Kronecker

delta and the resulting matrix is diagonal.

Pennanen and Vaara133 formulated a practical approach to modelling ZFS in the

context of modern quantum chemistry, the “no coupling approximation.” This requires

the formation of the (2S+1)×(2S+1) matrix, ST ·D ·S, which is then diagonalised to

obtain eigenvalues En and eigenstates |n⟩, the latter being linear combinations of pure

spin states |SmS⟩. Soncini and van den Heuvel130 presented a fully coupled approach,

which can be expressed as

Zκυ = ω−1
eigenstates∑

nm

qnm⟨n|Ŝκ|m⟩⟨m|Ŝυ|n⟩ where ω =
∑

n

e−En/kBT , (4.16)

with qnm being a Boltzmann weighting term

qnm =


e−En/kBT Em = En

− kBT
En−Em

(e−En/kBT − e−Em/kBT ) otherwise.
(4.17)

Pierre Curie observed that the magnetisation of a paramagnetic material is approx-

imately inversely proportional to the temperature. If the occupation of the ground

state (i.e. its Boltzmann weight) is nearly one, this is observed for a doublet and in

the no coupling approximation. In the coupling described in Eqs. 4.16 and 4.17, the

collection of terms corresponding to Em = En have approximate 1/T dependence and

the combined contribution is referred to as the Curie term. The remaining terms have

an approximate 1/T 2 dependence.
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The derivation used for both approaches assumes weak spin-orbit coupling. Van

den Heuvel and Soncini presented an extended approach1 which is valid for strong

spin-orbit coupling. Because of its potential as an improved treatment, an outline of

the approach is presented in appendix A. The approach depends on using Eq. 3.70

to form irreducible tensor operator (ITO) representations of the µ and FK matrices

introduced in sections 3.10.1‡ respectively.

4.3.6 Contact and pseudocontact shifts

The separation of the paramagnetic chemical shift into contact and pseudocontact

shifts provides insight into the chemical environment of the target nucleus, however

as additional effects are included in the model, the separation becomes increasingly

difficult and debatable. The simplest approach is to decompose the Zeeman and

hyperfine coupling matrices into isotropic and anisotropic components, and evaluate

their nature and relative sizes in terms of their scaling with respect to the fine structure

constant α.133,166

The spin-orbit operator is multiplied by α2, where α = 1/137 a.u. is the fine

structure constant, (i.e. the reciprocal of the speed of light). The typical relative

energetic contribution of the terms in the decomposition of the Zeeman matrix can be

assessed by ordering them in terms of their dependence on α2. The only zeroth-order

term corresponds to the magnetogyric ratio of the free electron, the remaining terms

relate the g-shift, ∆g = g − geI3 which is decomposed into an isotropic scalar g-shift,

∆giso = 1
3trace (∆g), and the remaining anisotropic matrix, ∆g̃ = ∆g − ∆gisoI3.

‡This was published as an appendix that was an earlier version of 3.10.1.
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The hyperfine matrix has no first order terms, but is entirely second order in the

absence of relativistic corrections and we will denote the scalar relativistic§ matrix

as ASR. This is decomposed into its isotropic scalar Aiso = 1
3trace

(
ASR

)
and an

anisotropic spin-dipolar matrix ASD = ASR − AisoI3, which is symmetric. The rela-

tivistic corrections are entirely fourth order, and are separated into an isotropic scalar

A∆SO
iso and an anisotropic A∆SO

aniso matrix. The anisotropic component is further split

into a symmetric matrix A∆SO,SYM = 1
2

(
A∆SO

aniso +
(
A∆SO

aniso

)T
)

and an asymmetric ma-

trix A∆SO,AS = A∆SO
aniso − A∆SO,SYM. These decompositions are outlined in Table 4.1.

Table 4.1: Decomposition of the components of the Zeeman and hyperfine coupling
matrices by isotropic and anisotropic components, I3 indicates a 3×3 identity matrix.

Matrix O(1) component O(α2) components O(α4) components
g geI3 ∆gisoI3, ∆g̃
A AisoI3, ASD A∆SO

iso I3, A∆SO,SYM, A∆SO,AS

In the absence of ZFS, σp is directly proportional to g · A, and the decomposition of

product of the matrices, g · A provides useful insight into the covalency of the metal-

ligand bond. This decomposition has fifteen terms, six of which are sixth order in α.

In this work we use two methods to qualitatively divide the paramagnetic chemical

shift into contact and pseudocontact contributions.128 The first method is to relate

the terms derived from isotropic scalars of the hyperfine matrix to the contact shift

and those from the anisotropic matrices to the pseudocontact shift.131,135 The second

is to truncate the expansion to fourth order, resulting in nine remaining terms. The

remaining difference is that all contributions with an anisotropic component, most

notably the term Aiso∆g̃ (a contact term in scheme 1) are considered to relate to

the pseudospin.132,167,168 We will refer to these decompositions as methods 1 and 2

respectively, as outlined in Table 4.2.

Method 2 is elaborated on by Kaupp,143 who presents a separation of terms for

a doublet. In EPR terminology, A∆SO
iso is sometimes referred to as the pseudocontact

term.
§Strictly the scalar relativistic corrections implicitly include O(α4) terms, but to simplify the

analysis we will consider ASR to be a O(α2) term.
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Table 4.2: Classification of components of the g · A matrix.
Order Decomposition

Hyperfine Zeeman in α Method 1 Method 2

Isotropic Aiso Free electron ge 2nd Contact Contact1

Scalar Iso. g-shift ∆giso 4th Contact Contact1

Relativistic Aniso. g-shift ∆g̃ 4th Contact Pseudocontact2

Isotropic A∆SO
iso Free electron ge 4th Contact Contact1

SO Correction Iso. g-shift ∆giso 6th Contact —

Aniso. g-shift ∆g̃ 6th Contact —

Anisotropic ASD Free electron ge 2nd Pseudocontact Pseudocontact2

Scalar Iso. g-shift ∆giso 4th Pseudocontact Pseudocontact2

Relativistic Aniso. g-shift ∆g̃ 4th Pseudocontact Pseudocontact3

Symmetric A∆SO,SYM Free electron ge 4th Pseudocontact Pseudocontact2

Anisotropic Iso. g-shift ∆giso 6th Pseudocontact —

SO Correction Aniso. g-shift ∆g̃ 6th Pseudocontact —

Asymmetric A∆SO,AS Free electron ge 4th Pseudocontact Pseudocontact

Anisotropic Iso. g-shift ∆giso 6th Pseudocontact —

SO Correction Aniso. g-shift ∆g̃ 6th Pseudocontact —
1 For a doublet is a pure contact term, relates isotropic spin density at the atom.143

2 For a doublet is a pure spin-dipolar term.
3 For a doublet relates to spin density in p orbitals.

The anisotropic matrices are traceless, so without ZFS, Z is diagonal, so only

the isotropic hyperfine/isotropic Zeeman and the anisotropic hyperfine/anisotropic

Zeeman terms produce an interaction with a non-zero trace. In the absence of spin-

orbit coupling these interactions can unambiguously be related to the contact and

pseudocontact terms, respectively. However the nature of the fourth order spin-orbit

corrections to the hyperfine is unclear and the application of zero-field splitting results

in non-diagonal elements in Z which couple isotropic and anisotropic terms. As a

result, the separation of magnetic chemical shifts into contact, bond mediated, effects

and pseudocontact, dipolar-interaction, effects is not strictly consistent. With this in

mind, we will use both methods to analyse our results.
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The truncation to fourth order terms used in the second method is based on the

assumption that the order in α determines the size of the contributions. This implies

that the spin-orbit corrections to the hyperfine are small compared to the scalar rela-

tivistic hyperfine. If these, computationally demanding, corrections are not included,

no sixth-order terms are present, so the final shift is the same for both decompositions.

However in cases of hyperfine calculations on heavy nuclei or on nuclei that are bonded

to heavy nuclei, this assumption is not valid: spin-orbit corrections typically scale in

terms of the atomic number to the fourth power (Z4) making the spin-orbit correction

considerably larger. In such cases, the isotropic spin-orbit correction may be larger

than the isotropic value of the uncorrected hyperfine matrix.149

4.3.7 An example of a spin-orbit description of a molecular

ground state

Our calculations allow for mixing of electronic states under the action of the spin-orbit

operator. The number of electronic states included in each calculation was motivated

by the quality of the Zeeman matrix produced, as discussed in our previous paper.28 As

an example, for our first actinide molecule (section 4.5.1) we performed state-averaged

CASSCF calculations over 14 quartet and 25 doublet states¶ to generate the Zeeman

and ZFS matrices. The resulting ground state wavefunction, corrected for spin-orbit

coupling is detailed in Table 4.3.

Chibotaru states that the spin Hamiltonian approach is applicable when a QDPT-

SOC calculation is convergent for a manifold of spin states,122 and later he discusses the

differences between the fictitious pseudospin and the spin. In the limiting cases of weak

SOC the pseudospin can be set equal to the spin. In the limiting case of strong SOC,

the degeneracy of the states is broken in low symmetry molecules, and the pseudospin

mirrors a doublet, S̃ = 1/2.149 Chibotaru considers actinide ionic complexes to fall in

the intermediate range,122 where the model Hamiltonian cannot be defined by the total

angular momentum because of the mixture of states that we describe above, however

he does still associate the pseudospin with a manifold of electronic states, and so this

is the approach we employ. Furthermore, in systems for which S ⩾ 3/2 the calculation
¶i.e. being a subset of the 35 quartet and 112 doublet states implicitly included in the

CASSCF(7,3) configuration state function (CSF) expansion.
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ideally should include third order tensorial spin, Zeeman and Hyperfine matrices,1 as

we summarise in the appendix. However, it must be noted that to implement this

scheme would require generalised hyperfine tensors that are not currently generally

available. We are not aware of the use of the generalised hyperfine operators by any

other researchers.

In Table 4.3 we list the relative energies of the first five Kramers pairs for all

molecules studied in this work.

Table 4.3: One of the Kramers’ pair wavefunctions of U(MeBTP)3+
3 , spin-orbit cor-

rected, SA-CASSCF(3,7) wavefunction, with 14 quartet and 25 doublet states. The
second state can be inferred, via Kramers degeneracy, exchanging the weights of each
+MS state with that of the corresponding −MS state. States with weight less than
0.01 are omitted.

Quartet(a) Doublet(b)

|3
2 , 3

2⟩ |3
2 , 1

2⟩ |3
2 , −1

2⟩ |3
2 , −3

2⟩ |1
2 , 1

2⟩ |1
2 , −1

2⟩
Weight Root Weight Root Weight Root Weight Root Weight Root Weight Root
0.076 1 0.068 2 0.021 1 0.048 1 0.012 5 0.011 3
0.048 2 0.020 3 0.024 2 0.089 3 0.017 7 0.019 6
0.064 3 0.042 4 0.019 3 0.021 4 0.030 10 0.012 9
0.018 5 0.014 9 0.051 5 0.017 10
0.017 6 0.012 12 0.011 11

(a) Energies of first 12 quartet spin-free SA-CASSCF states, measured from lowest
root are (1) 0 cm−1, (2) 447 cm−1, (3) 448.1 cm−1, (4) 671.4 cm−1, (5) 684.7 cm−1, (6)
773.7 cm−1, (7) 1457.9 cm−1, (8) 1712.7 cm−1, (9) 1784.5 cm−1, (10) 1985.8 cm−1, (11)
2121.2 cm−1, (12) 2164.9 cm−1.
(b) Energies of first 10 doublet states, measured from lowest root in (a) are (1)
2971.7 cm−1, (2) 3022.4 cm−1, (3) 3079.2 cm−1, (4) 3124.8 cm−1, (5) 3766.2 cm−1, (6)
3788.9 cm−1, (7) 4100.9 cm−1, (8) 4174.8 cm−1, (9) 4421.0 cm−1, (10) 4439.1 cm−1,

Table 4.4: Relative energies (cm−1) for the 10 lowest spin-orbit states of the six com-
pounds studied here, showing the increased gap between first and second excited pairs
compared to that of the first pair and the ground state pair.

1–2 3–4 5–6 7–8 9–10
[ Nd Lpy ]3+ 0 41 139 218 265
U(MeBTP)3+

3 0 44 260 387 464
U(C5Me5)3 0 580 1365 2495 2552
U(N(SiMetBu2)2)3 0 190 432 1101 1269
U(C5Me4SiMe3)3 0 61 144 1034 1183
U(η-C5Me4Et)(η-(1,4-C8H6(SiiPr3)2) 0 374 841 1190 1255
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4.4 Previous work and the ZFS tensor

In a recent study we looked at the pNMR shifts of 14 f -element compounds.28 The

present work studies the effects of zero-field splitting on the six f 3 compounds from

that study. One compound contains neodymium as a sample lanthanide, detailed in

section 4.5.1 and shown in Figure 4.3. The remaining five are uranium compounds

detailed in sections 4.5.2–4.5.6. Equation 4.4 shows that the pNMR shift depends

explicitly on the four magnetic interactions ( σorb,g,D and A) and implicitly on the

geometry at which the various terms are evaluated. We summarise the findings of our

previous study in justifying the approach we have adopted in evaluating each of the

necessary terms. More details can be found in the aforementioned paper.

4.4.1 Geometry optimisation

Geometry optimisation was performed using GAUSSIAN 09.169 Since geometries largely

depend on the ground state electronic structure, it was considered reasonable to use

DFT with the PBE055 functional. Due to the presence of uranium, relativistic effects

are important, but it is sufficient to only consider scalar relativistic effects. We prefer

an all-electron approach and previously created a program in which implements the ze-

roth order regular approach (ZORA),27,39 and applies the correction to the one-electron

Hamiltonian in atomic blocks, removing the gauge dependence issue. This program

was interfaced to the GAUSSIAN programs and used in all geometry optimisations.

We used the segmented all-electron relativistically corrected (SARC) basis set30,31 for

the heavy atoms† with Def2-SVP23 for the remaining atoms. This approach showed

reliable agreement against a test set of crystal structure data for a set of 11 molecules,

producing correlation coefficients of R2 = 1.00 for bond length and R2 = 0.99 for bond

angles.28

†TVZP quality with 29s20p16d12f1g/21s13p10d7f1g uncontracted/contracted gaussian func-

tions for a uranium atom and 23s16p12d6f1g/18s12p9d3f1g uncontracted/contracted gaussian func-

tions for a neodymium atom.
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4.4.2 Orbital shielding, σorb

The orbital component of the chemical shifts were obtained using GAUSSIAN 09, DFT

linear response theory (PBE0), the ZORA relativistic treatment outlined above, and

gauge- including atomic orbitals (GIAO).151,170 A Def2-TZVP basis was used for 1H

chemical shifts, and an uncontracted Def2-SVP basis for the 13C, otherwise the basis

used was as in the previous section. This approach was calibrated against 20 1H and

32 13C chemical shifts of four diamagnetic molecules, producing correlation coefficients

for 1H and 13C of R2 = 0.99 and R2 = 0.98 respectively.28 Deviations were noted when

a light atom under investigation was directly bonded to a heavy atom. These cases

are subject to the HALA effect working through the chemical bond and as such, need

a more elaborate relativistic treatment.165

4.4.3 Hyperfine coupling matrix, A

The reported A tensors were calculated using the ORCA 3.0.3 program171 , DFT

(PBE0), the Douglas-Kroll-Hess transformation to second-order (DKH2).172,173 Anal-

ysis of the effect that picture change has on these hyperfine coupling coefficients (with-

out spin-orbit correction) was performed in our previous paper,28 and except for 1H

calculations, picture change effects were found to be significant. Therefore they were

included as implemented in ORCA and documented by Sandhoefer et al.174 The second

order DKH transformation is applied to the Fermi contact, spin-dipole and Zeeman

operators. The transformation of the paramagnetic spin-orbit term was treated to

first order only. Relevant experimental results are extremely scarce, but the approach

has been calibrated against [U(C7H7)2]− for increasing sizes of basis set, and density

functional, and the most accurate functional (PBE0) was employed as used below.137

For the nuclei of interest, a Def2-TZVP basis was used with three additional un-

contracted s orbitals with large exponents added to allow improved description of the

electronic environment close to the nucleus, otherwise the basis used was as in the pre-

vious section. The exponents were derived using a geometric progression starting from

the largest s function exponents of the existing basis, following the requirements of

basis set design for hyperfine coupling calculations outlined by Chipman.175 Because

of the high computational cost, the calculation generally did not include spin-orbit
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corrections to the hyperfine calculation. We indicate in the text the two molecules for

which this term was evaluated. In these cases the calculation used the same methods

as detailed above for the other hyperfine terms but included solution of the relevant

coupled perturbed Kohn-Sham equations to obtain the derivative of the spin density,

followed by contraction with the nuclear (spin) - electron (orbit) integrals.

4.4.4 Zeeman coupling matrix, g

It is possible to calculate g tensors with DFT and use linear response theory to include

spin-orbit coupling as a first-order perturbation,149,176 however this approach is only

effective for weak spin-orbit coupling and in the absence of low-lying excited states. For

the molecules under investigation here neither condition is true, and the ground states

are all clearly degenerate. As a result a multiconfigurational approach is necessary.

ORCA 3.0.3 was used to perform a series of State-Averaged Complete Active Space Self

Consistent Field (SA-CASSCF) calculations, using an active space of three electrons

and seven orbitals, i.e. the f electrons of the heavy element distributed in the relevant

manifold of f orbitals. Relativistic effects were added using DKH2. Spin-orbit coupling

was included by utilising the SOMF operator,177 using the centre of electronic charge

as the origin of the molecule to minimise gauge dependence.178 A SARC basis set

was used for uranium, with a Def2-SVP for hydrogen and the remainder using a

Def2-TZVP. The g tensor was evaluated within the effective Hamiltonian approach.

The number of states included in the SA-CASSCF-SOC calculations were explored

empirically, by increasing the number of states, until adding additional states did not

significantly change the principal values of the g tensor.27,149

4.4.5 The ZFS tensor, D

For efficiency, the D tensor was calculated at the same level of theory as detailed in

the previous section to obtain g.

We have written a MATLAB script that uses the approaches detailed in section

4.3.5 to model the effect of zero-field splitting on pNMR shifts. We have separated the

results into contact and pseudocontact components as outlined in section 4.3.6. This
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script was validated with test data† and a generally available program‡ provided by

Autschbach.131,135

4.5 Results

4.5.1 1H pNMR shifts of a neodymium tetrapyridyl appended

cyclen

The first molecule under investigation is a neodymium 1,4,7,10-tetrakis(2-pyridylmethyl)-

1,4,7,10-tetraazacyclododecane complex [ Nd Lpy ]3+ with a triflate CF3SO−
3 counte-

rion. This was synthesised and studied by Natrajan et al.,179 who produced 500Mz
1H NMR spectra of the species in a D2O solvent at room temperature. The molecule

is shown in Figure 4.3. The observed shifts were −0.2, 2.4, 4.6, 5.2, 6, 8, 8.3, 8.4, 10.8

and 12.4 ppm and were not assigned in the paper. In our previous work,28 we found

that inclusion of the triflate counterion produced a significant change in the geometry

of the complex and so needs to be included in modelling this structure.

Figure 4.3: Structure of the cyclen complex [ Nd Lpy ]3+. Labels refer to the 10
chemically distinct H atoms, with 1,3,5 representing equatorial CH2 protons and 2,4,6
representing axial protons.

†http://www.ens-lyon.fr/crmn/pnmr/wp-content/uploads/2013/12/2014-02-Mariapfarr-

presentation-Juha-Vaara.pdf
‡http://ja01.chem.buffalo.edu/ jochena/downloads/downloads.html
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The calculation of the g and D matrices used 21 quartet and 40 doublet states

from a SA-CASSCF-SOC(3,7) calculation. The matrices are listed in Table A1 of

the appendix. The resulting isotropic g value is negative, a phenomenon observed for

states with significant spin-orbit coupling as discussed in references 180 and 122.

We find in the absence of ZFS corrections from our calculations a range of shifts

spanning −2.56 – 16.51 ppm. Inclusion of ZFS produces a wider spread of values which

are compared in Figure 4.4. Table 4.5 outlines the details of the components.‖

It is noticeable that adding ZFS has very little effect on the contact part of

the shielding, but the size (and composition) of the pseudocontact term significantly

changes. Examining the pseudocontact components, the term derived from the isotropic

hyperfine changes only slightly and the interaction between the anisotropic Zeeman

and the spin-dipole hyperfine term is negligible. The change derives from the interac-

tion of the spin-dipole part of the hyperfine and the isotropic g term (decomposed into

the free electron part and the shift). While the predicted chemical shift changes by

only a few ppm, it is sufficient to shift the predicted order of the peaks and as a result

assignment of all ten 1H shifts is not possible. We have omitted the spin-orbit cor-

rection to the hyperfine coupling matrix as the calculations are extremely demanding.

However it is unlikely that these 1H shifts will be strongly influenced by this omission

since the protons are well removed from the heavy atom.

Figure 4.4: Experimental and computed pNMR spectra for [ Nd Lpy ]3+ with and
without ZFS at 298.15 K. For numbering of protons see Figure 4.3.

‖In the following tables, the results are given to 2.dp. so that the variation in smaller components

is visible, this should not be taken as a measure of accuracy of the method.
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4.5.2 1H pNMR shifts of tris(2,6-bis(5,6-dialkyl-1,2,4-triazin-

3-yl)pyridine) uranium(III), U(MeBTP)3+
3

2,6-Bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) is an effective chelating agent and

has been investigated as a reagent for processing waste containing uranium (III)

species,141,181 with the family of ligands showing preference for coordinating selectively

with trivalent actinides over trivalent lanthanides due to the “much softer character

of the N atoms in this weakly basic ligand”.141 It is thought that actinide/lanthanide

selectivity results from the difference in the nature of the f orbitals, the lanthanide 4f

orbitals displaying “core-like” behaviour and participating weakly in bonding, whereas

the more extended 5f orbitals of actinide species participate more in covalent bond-

ing.182 As such there is much interest in better understanding the nature of this U-N

bond. The experimental results that we are using for comparision are 200 MHz 1H

NMR spectra taken at 30◦C in deuterated pyridine.141 The molecule has four chemi-

cally equivalent types of hydrogen atoms. The numbering used to refer to these sets

of protons is shown in Figure 4.5 and the stereochemistry in Figure 4.6. All hydrogen

atoms are relatively distant from the U-N bond, and as such we expect that spin-orbit

component of the hyperfine interaction is not significant, hence they have not been

included here.

Figure 4.5: a) The MeBTP ligand, labels identify the four types of chemically equiv-

alent 1H, b) The full structure of tris(2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine)

uranium(III).
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Figure 4.6: Stereochemistry of U(MeBTP)3+
3 , showing the three planar ligands, stag-

gered with approximate 3-fold rotational symmetry.

The SA-CASSCF-SOC(3,7) calculation of the g and D matrices used 14 quartet

and 25 doublet states. The matrices are listed in the Supporting Information (Table

A2). Our results are shown in Tables 4.6 and 4.7. For each distinct type of hydrogen

we show the effect of the ZFS correction. We list the contribution to the paramagnetic

shift from each component of g · Z · A and a qualitative partition of contact and

pseudocontact terms. Overall the paramagnetic shift is calculated to be slightly larger

than the orbital contribution, except for the H(2) atoms. In the absence of the ZFS

correction H(1) and H(3) proton chemical shifts are predicted to be larger in magnitude

that the observed shifts, although the signs of the shifts are predicted correctly. The

ZFS correction reduces the magnitudes in the direction of the experimental values. In

this system including the ZFS produces shifts that are closer to the observed values

but are still too large in magnitude. The experimental shifts span a range of about 52

ppm, while the neglect of ZFS altogether gives a span of calculated values of 117 ppm.

The ZFS correction reduces the range to 90 ppm. This is shown in Figure 4.7. The

contact and pseudocontact terms vary according to the method of partitioning them,

but the contact shift is consistently predicted to be larger than the pseudocontact shift

in all cases. However for H(2) and H(3) the values are much closer in magnitude.
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Figure 4.7: Experimental and predicted pNMR shifts of U(MeBTP)3+
3 with and with-

out ZFS at 303 K. For numbering of protons see Figure 4.5. The order is consistent

in all cases.

Table 4.6: Calculated 1H pNMR shifts for the methyl H atoms of U(MeBTP)3+
3 in

ppm at 303K. For numbering of protons see Figure 4.3.
Component methyl H(1) methyl H(2)

A g Order No ZFS ZFS No ZFS ZFS

Aiso ge 2 −113.43 −69.47 28.79 17.63

∆giso 4 166.55 102.00 −42.28 −25.89

∆g̃ 4 −0.00 8.85 0.00 −2.25

ASD ge 2 0.00 2.26 0.00 6.82

∆giso 4 0.00 −3.32 −0.00 −10.01

∆g̃ 4 −2.12 −0.85 −6.27 −2.54

Ave. Calc. U-H distance, Angstrom 7.16 6.15

Orbital Contribution 28.96 29.88

Reference shift 31.58 31.58

Contact Method 1 53.12 41.38 −13.48 −10.51

Method 2 53.12 32.53 −13.48 −8.26

Pseudocontact Method 1 −2.12 −1.91 −6.27 −5.73

Method 2 −2.12 6.94 −6.27 −7.98

Total isotropic shielding 79.96 68.43 10.13 13.65

Delta −48.38 −36.85 21.45 17.93

Experimental δ shift141 −18.04 4.59



4.5. RESULTS 112

Table 4.7: Calculated 1H pNMR shifts for the ring H atoms of U(MeBTP)3 in ppm at

303 K. For numbering see Figure 4.5.
Component ortho-pyridine H(3) para-pyridine H(4)

A g Order No ZFS ZFS No ZFS ZFS

Aiso ge 2 −49.74 −30.46 155.85 95.45

∆giso 4 73.03 44.72 −228.84 −140.15

∆g̃ 4 −0.00 3.88 0.00 −12.16

ASD ge 2 0.00 −10.72 0.00 −15.21

∆giso 4 0.00 15.73 0.00 22.34

∆g̃ 4 10.01 4.03 14.48 5.83

Calculated U-H distance, Å 5.52 6.38

Orbital Contribution 21.75 22.56

Reference shift 31.58 31.58

Contact Method 1 23.29 18.14 −72.99 −56.86

Method 2 23.29 14.26 −72.99 −44.70

Pseudocontact Method 1 10.01 9.04 14.48 12.96

Method 2 10.01 12.92 14.48 0.80

Total isotropic shielding 55.05 48.94 −35.95 −21.35

Delta −23.47 −17.36 67.53 52.92

Experimental δ shift141 5.64 33.95
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4.5.3 1H and 13C pNMR shifts of tris(pentamethylcyclopenta-

dienyl) uranium (III), U(C5Me5)3

It was originally thought impossible to synthesise an organometallic complex consisting

of a single atom and three η5-bonded pentamethylcyclopentadienyl rings due to the

steric hindrance presented by the methyl groups. However a samarium complex was

synthesised in 1991 followed by a uranium complex shortly after. The optimised

geometry of the complex is shown in Figure 4.8, with the methyl carbons residing

above the plane of the ring due to steric effects. The paper reporting the synthesis183

also reported the chemical shifts observed in 1H and 13C spectra taken at 500 MHz,

25◦C in a deuterated benzene solvent and these act as our baseline for comparision.

Figure 4.8: The structure and stereochemistry of U(C5Me5)3.

The SA-CASSCF-SOC(3,7) calculation of the g and D matrices used 28 quartet

and 55 doublet states. The matrices are listed in the Supporting Information (Table

A3). Our results for the methyl hydrogen atoms are shown in Tables 4.8, again reflect-

ing the treatment of ZFS, the individual contributions to the paramagnetic shift and

the qualitative partition of contact and pseudocontact terms. Overall the paramagnetic

shift is calculated to be significantly smaller (14-17%) than the orbital contribution.
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Table 4.8: Calculated 1H pNMR shifts for U(C5Me5)3 in ppm at 298 K.
A g Order No ZFS ZFS

Aiso ge 2 −6.02 −5.13
∆giso 4 7.83 6.68
∆g̃ 4 −0.00 1.12

ASD ge 2 −0.00 −2.36
∆giso 4 0.00 3.07
∆g̃ 4 2.83 1.61

Orbital Contribution 29.95
Contact Method 1 1.82 2.67

Method 2 1.82 1.55
Pseudocontact Method 1 2.83 2.32

Method 2 2.83 3.44
Total isotropic shielding 34.60 34.94
Reference shift, 31.58 ppm (TMS)
Delta −3.02 −3.36
Experimental δ shift183 −0.90

In the absence of the ZFS correction, the predicted chemical shift was −3.02 ppm,

with the correction the predicted chemical shift was −3.36 ppm, hence the full ZFS

correction only contributes −0.34 ppm to the final computed shift. This is unlikely

to be significant compared to the errors associated with the approximations used to

generate the pNMR matrices, and this result remains a good match for the experimen-

tal value. Both the contact and pseudocontact shielding terms are positive, although

the two decompositions used disagree with respect to the relative magnitudes of the

contact and pseudocontact shifts. It must be noted that the hyperfine couplings have

been evaluated using a DFT method. The choice of exchange-correlation functional

can introduce a variation in the predicted hyperfine matrices. It is difficult currently

to deal with this property using purely wavefunctional techniques, which would in

principle would allow a degree of systematic refinement. Given the size and complex-

ity of the systems studied here, the approach is a suitable starting point. However, as

wavefunction methods become more available for these operators further refinements

of the computations can and should be sought59
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Table 4.9 presents the shifts for 13C pNMR shifts for the ring and methyl carbon

atoms. Due to the computational expense of calculating the spin-orbit corrections to

the hyperfine coupling matrix and the fact that 13C is a light atom, we initially did not

apply this correction to our calculations. However this complex contains a set of η-

coordinated carbon–uranium bonds, and the HALA effects alluded to earlier are likely

to be in operation. Additionally, in the work of Autschbach et al. on actinide carbonate

molecules,146,147 it was noted that the spin-orbit correction dominated the hyperfine

interaction. Accordingly, we computed the spin-orbit correction to the hyperfine tensor

using the methodology detailed in Section 4.4.3, and report our findings in Table 4.10.

Table 4.9: Calculated 13C pNMR shifts for U(C5Me5)3 in ppm with no spin-orbit
corrections to the hyperfine term at 298 K.

Component Cyclopentadienyl Methyl
A g Order No ZFS ZFS No ZFS ZFS

Aiso ge 2 256.34 218.66 −343.69 −293.18
∆giso 4 −333.83 −284.76 447.59 381.80
∆g̃ 4 −0.00 −47.79 0.00 64.07

ASD ge 2 −0.01 −64.23 −0.01 −11.63
∆giso 4 0.01 83.65 0.01 15.14
∆g̃ 4 77.50 43.90 13.76 7.88

Orbital Contribution 57.01 173.62
Reference shift 189.03 189.03
Contact Method 1 −77.49 −113.89 103.89 152.69

Method 2 −77.49 −66.10 103.89 88.62
Pseudocontact Method 1 77.51 63.31 13.76 11.39

Method 2 77.51 15.53 13.76 75.46
Total isotropic shielding 57.02 6.44 291.27 337.70
Delta 132.00 182.59 −102.25 −148.68
Experimental δ shift183 324.80 −86.70
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The format of this table is similar to the previous ones, but the individual contribu-

tions have been expanded. The table includes a comparison with the values before the

spin-orbit correction to the hyperfine matrix was added and the bottom section high-

lights the two decomposition methods. Table 4.10 shows that the predicted isotropic

chemical shielding (and chemical shift) of the two decomposition methods is different.

This is due to the neglect of the O(α6) terms that method 2 uses, which is not valid

when spin-orbit effects are significant. With reference to the method 1 decomposition,

we note that the effect of the inclusion of the spin-orbit hyperfine term is less marked

on the methyl carbon atoms than for the ring carbons. There is now qualitative agree-

ment with experiment for the latter. For the methyl carbons, the effect is smaller,

perhaps due to their being further removed from the heavy nucleus.
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Table 4.10: Calculated 13C pNMR shifts for U(C5Me5)3 in ppm with spin-orbit cor-

rections to the hyperfine term at 298 K.
Component Cyclopentadienyl Methyl

A g Order No ZFS ZFS No ZFS ZFS

Isotropic Hyperfine Contribution

Aiso ge 2 256.34 218.66 −343.69 −293.18

∆giso 4 −333.83 −284.76 447.59 381.80

∆g̃ 4 −0.00 −47.79 0.00 64.07

A∆SO
iso ge 4 74.44 63.50 −5.38 −4.59

∆giso 6 −96.94 −82.69 7.00 5.97

∆g̃ 6 −0.00 −13.88 0.00 1.00

Anisotropic Hyperfine Contribution

ASD ge 2 −0.01 −64.23 −0.01 −11.63

∆giso 4 0.01 83.65 0.01 15.14

∆g̃ 4 77.50 43.90 13.76 7.88

A∆SO,SYM ge 4 0.00 127.76 0.00 10.78

∆giso 6 −0.00 −166.38 −0.00 −14.04

∆g̃ 6 −152.63 −86.94 −12.76 −7.31

A∆SO,AS ge 4 −0.00 0.00 −0.00 −0.00

∆giso 6 −0.00 −0.00 −0.00 0.00

∆g̃ 6 −0.00 −0.01 0.00 0.00

Orbital Contribution 57.01 73.62

Reference shift 189.03 189.03

Method 1

Contact* A – no PSO −77.49 −113.89 103.89 152.69

A + PSO 99.99 −146.96 105.52 155.08

Pseudocontact A – no PSO 77.51 63.31 13.76 11.39

A + PSO −75.13 −62.25 1.00 0.82

Isotropic shielding A – no PSO 57.02 6.44 291.27 337.70

A + PSO −118.11 −133.18 280.14 329.52

Delta A – no PSO 132.00 182.59 −102.25 −148.68

A + PSO 307.14 341.23 −91.11 −140.50
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Table 4.10 — cont.

Component Cyclopentadienyl Methyl

No ZFS ZFS No ZFS ZFS

Method 2

Contact A – no PSO −77.49 −66.10 103.89 88.62

A + PSO −3.05 −2.61 137.46 84.04

Pseudocontact A – no PSO 77.51 15.53 13.76 75.46

A + PSO 77.51 143.29 13.76 86.24

Isotropic shielding A – no PSO 57.02 6.44 291.27 337.70

A + PSO 131.47 197.69 324.84 343.90

Delta A – no PSO 132.00 182.59 −102.25 −148.68

A + PSO 57.57 −8.66 −135.81 −154.87

Experimental δ shift.183 324.80 −86.70

* Rows marked “A — no PSO” refer to the results before the hyperfine matrix has

been corrected with spin-orbit effects, “A + PSO” are results including this

correction.

Figure 4.9 shows the deviation from the averaged value for the isotropic paramag-

netic shielding of the ring and methyl 13C nuclei. Overall the ring 13C range from −63

to 92 ppm and the methyl 13C range from −74 to 94 ppm. Note that the experimental

values of the shifts lies within both ranges.

Figure 4.9: Difference of the predicted isotropic shielding of individual 13C nuclei from

the averaged value at 298 K.
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4.5.4 29Si pNMR shifts of the Uranium(III) compound,

U( N(SiMetBu2 )2)3

Our next molecule is a single molecule magnet which, unusually, has a trigonal planar

coordination around the uranium atom when in the solid state, instead of the more

common trigonal pyramidal geometry that is seen in other three-coordinate actinide

compounds. This is due to the large steric hindrance introduced by the t-butyl groups.

Steric hindrance is a commonly used tool to prevent the molecules oligomerising, and

there is much interest in understanding how the magnetic properties of the molecule

are affected by the ligand. For comparison with experiment, we use the 73 Hz 29Si

chemical shift of −296.04 ppm taken at 25◦C in a solution with deuterated benzene.139

Our calculation refers to an optimised gas phase structure,28 and is shown in Figure

4.10.

The SA-CASSCF-SOC(3,7) calculation of the g and D matrices used 21 quartet

and 39 doublet states. The matrices are listed in the supporting information (Table

A4). Table 4.11 shows the resulting ZFS calculations. The orbital and paramagnetic

contributions are predicted to have a similar size, and the contact interaction is posi-

tive and much larger than the pseudocontact, so the paramagnetic shift is largely due

to increased spin-density at the nucleus. Without applying ZFS, the chemical shift

predicted was 18.54 ppm less than the experimental value. Using the full coupling

method, the predicted chemical shift reduced by 46.19 ppm, which is further from the

experimental value. Given our findings for the 13C shifts in U(C5Me5)3, the spin-orbit

correction to the hyperfine tensor cannot be neglected. Due to computational cost we

have only obtained the corrected tensors for two silicon nuclei. The hyperfine matrices

of the two silicon atoms considered result in very different isotropic shielding, specifi-

cally 559 and 371 ppm. We note that in our optimised structure, the uranium-silicon

distance of two atoms we applied PSO corrections was 3.31 and 3.66 Å (see Figure

4.10). The asymmetry of the optimised molecule is unusual, but mirrors previous

calculations by Goodwin et al., who believe that the experimentally determined solid-

state trigonal planar structure is enforced by the lattice; in the gas phase, partial relief

of the very large steric hinderance in the molecule leads to an asymmetric equilibrium

geometry.
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The magnitude of the change in the isotropic shielding for the silicon atoms that

we have computed clearly indicates that it is essential to carry out the average over

the full set of silicon atoms to obtain a reliable estimate of the shifts. This remains

to be done and we are exploring more computationally efficient ways to obtain the

spin-orbit hyperfine interaction.

Figure 4.10: Geometry of U( N(SiMetBu2 )2)3 : a) Chemical structure, b) Stereochem-

istry with uranium and silicon nuclei shown as spheres and the remaining non-hydrogen

nuclei in wireframe. Stated distances are in Angstroms.
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Table 4.11: Calculated 29Si pNMR shifts of U(N(SiMetBu2)2)3 in ppm at 298 K.
A g Order No ZFS ZFS

Aiso ge 2 −624.79 −608.68

∆giso 4 889.64 866.71

∆g̃ 4 −0.00 48.19

ASD ge 2 −0.00 −6.14

∆giso 4 −0.00 8.74

∆g̃ 4 37.26 39.49

Contact Method 1 264.85 306.22

Method 2 264.85 258.03

Pseudocontact Method 1 37.26 42.09

Method 2 37.26 90.28

Orbital Contribution 344.04

Reference shift 331.60

Total isotropic shielding 646.15 692.34

Delta −314.54 −360.74

Experimental δ shift139 −296.00



4.5. RESULTS 122

4.5.5 29Si pNMR shifts of tris(trimethylsilyltetramethylcyclo-

pentadienyl)uranium(lll), U(C5Me4SiMe3)3.

Tris(trimethylsilyltetramethylcyclopentadienyl)uranium(lll) demonstrates even more

steric crowding than the pentamethylcyclopentadienyl ring studied in section 4.5.3,

and was part of a systematic study of 29Si shifts of similar compounds, focused on

discovering trends184 in the chemical shifts of uranium-silicon compounds. The SI for

reference 184 includes a graph that may indicate very weak correlation (R2 = 0.678)

between UIII-Si distance and 29Si pNMR chemical shift, but cautions against treating

their results as definitive, citing the complexity involved when studying paramagnetic

species and effects that are in opposition. That study reported an experimental value

of −155 ppm (99.2 MHz spectra, taken at 298 K in deuterated benzene with an iodide

counter anion). The SA-CASSCF-SOC(3,7) calculation of the g and D matrices used

21 quartet and 39 doublet states. The matrices are listed in the supporting information

(Table A5). Our calculated value before splitting was +18.92 ppm from the observed

value, applying ZFS using the full coupling approach resulted in a small correction

of +1.73 ppm, so in this case ZFS has very little effect on the total shift. For silicon

nuclei, the implication of our results presented in Section 4.5.3 is that spin-orbit effects

must also be important here. Further investigation by including spin-orbit corrections

to the hyperfine matrices is needed to clarify if this is the case. Although the situation

is slightly different in that the silicon atoms are not directly bound to the heavy atom

and this may ameliorate the relative importance of including the spin-orbit part of the

hyperfine interaction.

Figure 4.11: Structure of tris(trimethylsilylcyclopentadienyl)uranium(lll) ,

U(C5Me4SiMe3)3.
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Table 4.12: Calculated 29Si pNMR shifts of U(C5Me4SiMe3)3 in ppm at 298 K.
A g Order No ZFS ZFS

Aiso ge 2 −389.29 −376.21

∆giso 4 532.93 515.02

∆g̃ 4 0.00 4.55

ASD ge 2 0.00 0.99

∆giso 4 0.00 −1.36

∆g̃ 4 −19.09 −20.19

Ave. Calc. U-H distance, Angstrom 4.16

Contact Method 1 143.64 143.36

Method 2 143.64 138.81

Pseudocontact Method 1 −19.09 −20.56

Method 2 −19.09 −16.01

Orbital Contribution 358.12

Reference shift 346.58

Total isotropic shielding 482.66 480.93

Delta −136.08 −134.35

Experimental δ shift184,185 −155.00
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4.5.6 29Si pNMR shifts of the mixed-sandwich uranium(III)

compound, U(η-C5Me4Et)(η-(1,4-C8H6(SiiPr3)2)

Mixed-sandwich organo-uranium complexes have been used for more environmentally

friendly synthesis of oxocarbo rings from carbon dioxide and carbon monoxide with

the ability to reform the complex after use. Similar uses for olefin processing exist,

and there is interest in understanding this process better.138 That study reported an

experimental value of −136.70 ppm (99.2 MHz spectra, taken at 298 K in deuterated

benzene with an iodide counter anion).

Figure 4.12: Structure of the asymmetric186 mixed-sandwich uranium(III) compound,

U(η-C5Me4Et)(η-(1,4-C8H6(SiiPr3)2)

The SA-CASSCF-SOC(3,7) calculation of the g and D matrices used 13 quartet and

32 doublet states. The matrices are listed in Table A6 of the appendix. Inspection of

our results in Table 4.13 shows that the contact term is substantially larger than the

pseudocontact, and as for the example in Section 4.5, we interpret this as implying a

strong interaction through the C–Si bond.
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Table 4.13: Calculated 29Si pNMR shifts of U(C5Me5Et)(1,4-C8H6(SiiPr) in ppm at

298 K.
A g Order No ZFS ZFS

Aiso ge 2 −324.51 −298.57

∆giso 4 512.84 471.85

∆g̃ 4 0.00 30.66

ASD ge 2 0.00 −6.60

∆giso 4 −0.00 10.43

∆g̃ 4 5.66 6.25

Contact Method 1 188.33 203.95

Method 2 188.33 173.28

Pseudocontact Method 1 5.66 10.08

Method 2 5.66 40.74

Orbital Contribution 326.64

Reference shift 346.34

Total isotropic shielding 520.64 540.66

Delta −174.29 −194.32

Experimental δ shift138 −136.70
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4.5.7 Summary

Considering our six examples as a whole, Figure 4.13 shows the calculated values of

pNMR shifts of the five uranium molecules plotted against the experimental values.

Since this is a small sample, firm conclusions are not possible but, perhaps not sur-

prisingly, the correlation coefficients improve as the treatment of ZFS improves; from

R2 = 0.86 for the treatment without ZFS to R2 = 0.90 with of ZFS.

Figure 4.13: Calculated results against experimental results.

4.6 Conclusions

In this paper we have demonstrated the importance of including ZFS for assigning

and predicting the pNMR chemical shifts of the lanthanide and actinide f3 species.

With the exception of the first example, our results are accurate enough to assign the

observed shifts, and the first example demonstrates that applying ZFS can reorder

shifts that are tightly grouped. However we have also demonstrated the importance of

including spin-orbit coupling corrections to the hyperfine coupling matrix, especially
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when studying the chemical shifts of nuclei directly bonded to heavy nuclei. These

necessary corrections are computationally demanding, and more work is needed to

find theoretical and computational approaches that simplify applying this correction

without sacrificing accuracy. The systems we have used as examples in this work typify

the complexity of lanthanide and actinide containing molecules and the difficulties

they pose for the computational predictions of their magnetic spectra. The modelling

remains challenging and incomplete and requires further refinement as theoretical and

computational progress is made.
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4.7 Afterword

Some time for reflection has passed since this paper was published, and while it

achieved its principal objective of qualitatively assigning the pNMR shifts for the

actinide complexes, and showed that unambiguous assignment of experimental shifts

is possible provided the separation between shifts is sufficient (e.g. larger than a couple

of ppm for 1H pNMR).

There follow further opportunities to improve both the methodology, and the

model, and thereby potentially expand the qualitative power of the approach, with

aim, albeit in the longer term, to progress towards quantitative results.

Improving the wavefunction

The most obvious improvement is to to add dynamic correlation to the SA-CASSCF

wavefunction, e.g. via NEVPT2, as is the case in the remainder of the thesis. A

further refinement is possible by noting that while in this study the number of states

used to calculate the Zeeman matrix and ZFS tensor is the same as those used the

state-averaging step, as discussed in the next chapter, it is possible to use the orbitals

from a state-averaged calculation to perform an additional CASCI-SOC calculation

(or a CASCI/NEVPT2-SOC calculation), and thereby represent small higher energy

state contributions to the Zeeman matrix and ZFS tensor without unduly changing

the one-electron description. This allows for the possibility of the establishment of a

more robust cut-off, e.g. by both NEVPT2 energy and Zeeman-matrix contribution.

Modelling the pseudospin

This paper was written with the expectation that the pseudospin could be empiri-

cally modelled by S̃ = 3/2. This was a very useful approximation for demonstrating

the importance of the inclusion of ZFS, and of empathising the importance of PSO

corrections to hyperfine matrices, especially where HALA effects are present.

However, while the paper met its stated aim, it could be improved, and one avenue

of improvement becomes clear when examining the following energy level diagram

(Figure 4.14) for the six molecules in this study, following the order set out in Figure

4.1. From the Boltzmann coefficients in the rightmost plot, it can be seen that for the
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first molecule, Nd[ Lpy ]3+, the first four states will dominate, but higher order states

are thermally accessible (at 300 K). By Hund’s rules the lowest energy term symbol

for NdIII is 4I9/2 (assuming that J = |L−S|) and the observed splitting may be more

appropriately considered to correspond to a pseudospin of S̃ = J = 9/2. A similar

issue can be seen with the fifth molecule, U(C5Me4SiMe3)3 , where in retrospect an

exploration of an empirical pseudospin of S̃ = 5/2 may have been fruitful.

For the second and fourth molecule, U(MeBTP)3+
3 and U(N(SiMetBu2)2)3 respec-

tively, the assigned pseudospin, S̃ = 3/2, seems somewhat more reasonable as the

CASSSF-SOC states are less thermally available, although a more robust treatment

of pseudospin may well improve the result. Finally the third and sixth molecules,

U(C5Me5)3 and U(η-C5Me4Et)(η-(1,4-C8H6(SiiPr3)2), show only two accessible Kramers’

doublet, so assigning a pseudospin of 3/2 seems more reasonable.

This implies that using S = 3/2 as an empirical pseudospin improves the correlation

between the calculated and experimental shifts, but it is not the best possible approach.

The following chapter presents a more refined study.

Figure 4.14: Left: CASSCF-SOC state energies for the six molecules in this chapter,
measured from the lowest SOC state in each case. Numbering is as in Figure 4.1. Right:
The Boltzmann coefficient at 300 K (x-axis) for corresponding energy separation for
the previous four energy level diagrams (y-axis).



Chapter 5

Computational study of the

magnetic properties of U(DOTA)

This chapter presents the text from a paper in preparation. References have been

merged with those in this thesis. The corresponding supplementary information is

presented in appendix B, and references to the tables contained therein reflect this.

The paper is concerned with U(DOTA), where DOTA is the ligand 1,4,7,10-tetraaza-

cyclododecane-1,4,7,10-tetraacetate. As discussed in the Section 5.2, the complex ex-

ists in two conformers, described by the arrangement of the eight donor atoms of the

DOTA ligand, the main conformer has a square antiprism (SAP) arrangement and

the minor conformer has a twisted square antiprism (TSA), differentiated by the twist

angle between two parallel squares. We performed partial geometry optimisations for

a range of twist angles, but NEVPT2 calculations for the ground state of the TSA

conformer implied that the minor conformer was largely absent at 300 K, so the minor

conformer and intermediate geometries were deprioritised. However, SOC effects have

an important role in stabilising U(DOTA), and the full SA-NEVPT2-SOC calcula-

tions implied there was an energy difference of 0.0018 hartree between the conformers,

and a Boltzmann population of 15% for the TSA conformer. Further calculations on

these intermediate geometries should allow for closer results to be calculated for the

equatorial hydrogen atoms of the cyclen ring.

130
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This chapter also presents a series of values for the Zeeman matrix and the ZFS

tensor. Because the former matrix is not symmetrical, it is often symmetrised before

analysis and diagonalised to obtain the principle coefficients, i.e. the g-factors, and the

corresponding eigenvectors define the principal axis system (PAS) for the calculated

quantity. It should be noted that doing so looses information and should be considered

carefully as an approximated model.

There are two methods of symmetrising the Zeeman matrix.

1. Average the Zeeman-matrix and its transpose. This has the virtue of preserving

the matrix’s physical meaning, i.e. the matrix representation of the interaction

of the magnetic field and the (pseudo)spin of the molecule, but it is not a tensor.

2. Multiply the Zeeman-matrix and its transpose, i.e. form the Abragam-Bleaney

tensor. Then decompose the resulting 3 × 3 matrix into a set of eigenvalues

and eigenvectors, the latter can then be used to define the PAS, the former are

the square of the g-factors. This has the virtue of producing a true tensor, and

because of this it is the preferred method for ORCA,32 but it introduces a sign

indeterminacy for the g-values.

The following four figures present the PAS for the Zeeman matrix and the ZFS

tensor for the four molecules. The anionic species show the PAS of the Zeeman matrix

assigned via the averaged matrix is rotated relative to those of the Abragam-Bleaney

tensor system (The U(DOTA) eigenvectors only differ by sign). They are included

to highlight that the symmetrisation, while conceptually valuable, becomes in the

author’s opinion, increasingly difficult to justify for molecules with large spin-orbit

coupling due to the large asymmetry of the parent matrix. This is why this work

prefers the irreducible tensor operator (ITO) approach.
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5.1 Abstract

This work studies the magnetic properties of U(DOTA) and three axially substituted

variants, [U(DOTA)H2O], [U(DOTA)OH]− and [U(DOTA)F]−. This is achieved by

calculating the main magnetic matrices and paramagnetic NMR (pNMR) spectra.

U(DOTA) has two suggested assignments for its 1H spectra,3,4 and our calculations

allow a definitive assignment. The complications due to large spin-orbit coupling

(SOC) and the interchange between the square antiprism (SAP) and twisted square

antiprism (TSA) conformers are discussed. The axial symmetry of the molecule allows

a tensor decomposition technique to be used to model the Zeeman contribution, and

this results in strong correlation between calculated and experimental results. Exper-

imental assignments for the axially substituted variants do not distinguish between

protons attached to the same carbon atom,5 and we are able to separate these. The

binding of a water ligand has little effect on the calculated spectra, but binding an

anionic ligand results in a compression of the spectral range which our results dupli-

cate. Binding an anionic ligand also causes the anisotropy axis to rotate by 90◦. These

effects are examined with reference to spin density. Finally 13C spectra are predicted

for future experimental verification.
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5.2 Introduction.

Paramagnetic NMR (pNMR) is a useful probe into the nature and bonding of param-

agnetic compounds, however actinide compounds challenge experimental pNMR tech-

niques and computational models. Experimentally, radioactive nuclides require pre-

cautions to protect personnel and equipment; these become more significant for more

radioactive nuclei, and decay processes also produce heat that interferes with exper-

iments. Heat production can be slowed by reducing concentrations, but multidimen-

sional approaches often need larger concentrations. Peak broadening and bleaching

by paramagnetic relaxation enhancement (PRE) are also common.187 Finally, nuclear

decay processes can create other nuclei. As a result of these difficulties, paramagnetic

spectra of actinides are uncommon and often unassigned.3

Computationally, actinide species require demanding calculations due to their

open-shell, typically multiconfigurational nature along with the necessity of includ-

ing scalar and spin-orbit relativistic effects and dynamic electron correlation2,27,28,39

Furthermore, while the contracted nature of the lanthanide 4f orbitals implies that

the unpaired electrons of lanthanide nuclei are not involved in bonding and the crystal

field interaction energy is small, this is not true for the larger 5f orbitals. Actinide

nuclei can form complexes with significant covalent nature.188 This prevents the use

of parameterised methods such as those discussed in the next section.

This paper studies the pNMR spectra of the uranium(IV) compound U(DOTA),

[DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, Figure 5.5], and three

axially substituted variants (F−, OH−, H2O). DOTA is a modified cyclen, with the

number of binding sites used dependent on the metal. Typically, it forms an octaden-

tate structure with actinides, as in U(DOTA), with a C4 symmetry axis. The oxygen

and nitrogen atoms lie on separate parallel planes and form squares. This allows a

twist angle to be defined (Figure 5.6). The dominant conformer has a twist angle

of 39◦ and forms an approximate square antiprism (SAP) geometry,5,179 the remain-

ing significant conformer (twisted square antiprism, TSA) has a twist angle of 24◦

(geometry optimisations for this paper). Calculated geometries are presented in the

Supplementary Information (SI), Table B1. An axial ligand can bind on the oxygen

side of the molecule, but the nitrogen side is sterically blocked. Finally, U(IV) has an
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Figure 5.5: 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) and
U(DOTA). Uranium is represented by the blue sphere, oxygen atoms are in red, ni-
trogen in blue, carbon in grey, hydrogen in white. Viewed from the oxygen side.

Figure 5.6: Conformers of U(DOTA). Colouring scheme as above. Viewed from the
oxygen side.
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f 2 electronic configuration and therefore has spin S = 1, so zero-field-splitting (ZFS)

is a further complication that needs to be considered when assigning pNMR spectra.

Industrially the separation of nuclear waste products and recovery of fissile mate-

rial is dependent on extractants exploiting differences in ligand binding.189 Improving

our understanding of this could lead to more efficient and effective separation allowing

more tailored storage. Modified DOTA complexes are used extensively in magnetic

resonance imaging (MRI) and radiological medical imaging due to their “high thermo-

dynamic stability and kinetic inertness”190 leading to high in vivo stability.191 Further

developments in chemotherapy are also being investigated.192

5.3 Theoretical approach

Experimental NMR signals, δexp, are reported as a shift from a reference signal, σref,

i.e.

δexp = σref − σexp. (5.1)

where σref and σexp are the isotropic chemical shielding of the reference molecule and

the target molecule. These shifts are proportional to the spectrometer frequency and

are reported in parts per million (ppm) of that frequency.

For a diamagnetic molecule, the orbital or Ramsey shielding, σorb
126 present in

δexp, is split into two terms; the first term being a response purely from the ground

state of the system labelled as the “diamagnetic” component, while the second term

arises due to interactions between ground and excited states and is labelled as the

“paramagnetic” component. Both terms exist in all molecules and the labels used for

the orbital shielding do not relate to the presence or absence of unpaired electrons.193

For a paramagnetic molecule two additional terms must be considered and the

total chemical shielding is given by

σexp = σorb + σc + σpc. (5.2)

The contact term, σc, is caused by non-zero spin-density at the atomic nucleus. This is

only possible in the presence of s orbitals and is interpreted as an interaction through

bonds; the size of the contact shift acts as a qualitative measure of covalency. It

relates to the isotropic part of the hyperfine matrix. The pseudocontact term, σpc,

represents the effect of spin-dipole interactions between the nuclear and electronic
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spins that are mediated through space. A common approach to calculating pNMR

shifts for lanthanide complexes is based on the assumption that the ligand interaction

is primarily electrostatic, and the contact term is small. Ligand field effects on the

unpaired f electrons are typically small and considerably less than electronic correla-

tion and spin-orbit coupling (SOC); this implies that the nature of transitions between

electronic energy levels are similar for a range of ligands, so the ligand interaction can

be modelled perturbationally, with crystal field theory applied to split a (2J+1) man-

ifold of mj states of fixed J = L+S. This typically exploits a tensorial decomposition

to give a model Hamiltonian,194

ĤLigand Field =
∑

k=2,4,6
θk

k∑
q=−k

Bk
q Ô

q
k, (5.3)

where Bk
q are crystal field parameters which can be tabulated for lanthanide systems,

Ôq
k are the Stevens’ operators195 and θk are operator equivalent coefficients. Bleaney’s

theory of magnetic anisotropy196 gives an approach to predicting lanthanide pNMR

shifts based on the magnetic susceptibility tensor, χ, and its eigenvalues {χx, χy, χz}.

This approach assumes that the spin interaction is largely mediated through space

(pseudocontact or spin-dipolar interaction) and not through bonds (contact, implying

spin density at the nucleus). The paramagnetic shift in spherical coordinates (r, θ, ϕ),

with the paramagnetic centre at the origin is given by194,197

δp(r, θ, ϕ) = 1
12πr3

[
χax

(
3 cos2 θ − 1

)
+ 3χrh sin2 θ cos 2ϕ

]
. (5.4)

The axial and rhombic components of the susceptibility tensor are defined as χax = 3
2χz

and χrh = 1
2(χx − χy) respectively. These are related to the crystal field parameters

by

χax = − µ0µ
2
B

10(kBT )2CJB
0
2 , χrh = − µ0µ

2
B

30(kBT )2CJB
2
2 , (5.5)

where µ0 is the magnetic permeability of a vacuum, µB is the Bohr magneton, kB is

the Boltzmann constant, T is the temperature, and CJ is Bleaney’s constant. This

approach allows the parametrisation of B2
0 and B2

2 for many lanthanide systems. Fur-

thermore, for a molecule with a n-fold (n > 2) symmetry axis, then χx = χy, so only

the χax term survives. Hence the predicted Bleaney pseudocontact shift, δp(r, θ, ϕ), has

a similar shape to a dz2 orbital, with areas of paramagnetic shielding and deshielding,

split by a magic angle of cos−1(±
√

1/3) = {70.5◦, 109.5◦}. Unfortunately, this theory
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makes several assumptions that make it unsuitable for predicting actinide paramag-

netic shifts, and these are listed below.

• The crystal field splitting is much less than the thermal energy, kBT ,197 so the

J manifold energy levels are equally populated.

• Most of the crystal field parameters can be neglected.198

• The electron is a point charge, and it relaxes from an excited state instantly.

• The susceptibility tensor aligns with the principal symmetry axis

• J is a good quantum number; in cases where this is not true the concept of

“J-mixing” is used,199 for example in some lanthanide(III) species.

We prefer a more direct approach. Consider a diamagnetic atom with nuclear spin

Inuc within a magnetic field B. If there were no electrons, the atomic energy levels

would be symmetrically split by 2γnuc|B|, where γnuc is the magnetogyric ratio of the

nucleus. However, the field induces an electronic current reducing the field experienced

by the nucleus. This effect is modelled by the chemical shift matrix, σorb. The resulting

Hamiltonian in atomic units is given by ĤNMR = −γnucB · (I3 − σorb) · Inuc, where I3 is

a 3 × 3 identity matrix. If, however, the atom is paramagnetic, the magnetic moment

aligns with the field. The three dominant interactions are the Zeeman interaction

between the field and the electronic spin-dipole, the hyperfine interaction between the

nuclear and electronic spin-dipoles, and, if there are two or more unpaired electrons

present, the interaction between electronic spin-dipoles, resulting in a further splitting

between different ms states (zero field splitting, ZFS). These are represented by the

Zeeman coupling matrix, g, the hyperfine coupling matrix, A and the ZFS tensor D

respectively. The corresponding pNMR Hamiltonian is given by,108–110,133

ĤNMR = −γnucB · (I3 − σorb)nuc + µBB · g · S̃ + S̃ · D · S̃, (5.6)

where S̃ is an effective parameter referred to as the pseudospin.122,149 In the absence

of SOC the pseudospin is simply the electronic spin. The corresponding paramagnetic

shielding matrix σp at temperature T , can be written as127,130–133

σp = − 1
γnuckBT

g · Z · A, (5.7)
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where Z is a 3×3 coupling matrix with trace always equal to S(S+1). In the absence of

ZFS this matrix is diagonal with equal elements. When modelling ZFS, a second order

approximation can be made by forming and diagonalising the S · D · S matrix.130,133

The resulting eigenstates |n⟩ are linear combinations of pure spin states, and we label

the eigenvalues En. The coupling matrix is then formed via

Zxy = 1
ω

eigenstates∑
nm

qnm ⟨n|Sx|m⟩ ⟨m|Sy|n⟩

 , (5.8)

where qnm =


e

En
kBT En = Em

− kBT
En−Em

(qnn − qmm) En ̸= Em,

(5.9)

and ω is the sum of the Boltzmann coefficients, qn. Higher order methods are reliant

on matrices that are not currently available,1 however for an axially symmetric system

an irreducible tensor operator (ITO) approach is possible. This method improves the

description of the Zeeman component, but because the corresponding hyperfine matrix

is unavailable, approximates the hyperfine component by diagonalising AAT . This

is suitable for U(DOTA), but because of the reduced symmetry of [U(DOTA)H2O]

and the non-axial behaviour of the magnetic anisotropy axis for [U(DOTA)OH]− and

[U(DOTA)F]−, this hyperfine approximation is not appropriate.

5.3.1 The ITO approach∗

In 2012 Van den Heuvel and Soncini1 presented an extended approach to handle cases

with arbitrary degeneracy. It is based, in part, on the observation that the set of

spin tensors {S(k)
q : k ⩽ 2S̃} form a complete basis for the set of all complex square

matrices of dimension 2S̃+ 1. For instance, the z component of the magnetic moment

µ can be decomposed via

µz =
k⩽2S̃∑
k odd

q=−k∑
k

(−1)qg(k)
qz Sk

−q, where g(k)
qz = 2k + 1

⟨S||S(k)||S⟩
Tr

(
S(k)

q µz

)
, (5.10)

and the coefficient g(k)
qz is referred to as a generalised Zeeman “tensor”. In the absence

of ZFS, the pNMR contribution to the shift is given by

σκυ = − µB

gnkBT
· 1
S + 1

2S∑
k=1

k∑
q=−k

g(k)
qκ (a(k)

qυ )∗ ⟨S||S(k)||S⟩2

2K + 1 . (5.11)

∗This subsection is a repeat of Section 3.10.1 and included for completeness.
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where ⟨S||S(k)||S⟩ is the reduced matrix element of the tensor operator Ŝ(k) in a basis

of 2S + 1 spin states, i.e. {|S,−S⟩...|S, S⟩}, being derived via Wigner-Eckhart theory

ZFS is accounted for via a spin projection P̂0 of the ZFS Hamiltonian

P̂0 ĤZF S P̂0 =
K⩽2S̃∑
k even

q=−k∑
k

D2k
q S

2k
−q, where P̂0 =

∑
q=|S,−S⟩...|S,S⟩

|q⟩⟨q| (5.12)

Forming the P̂0ĤZF SP̂0 matrix in the {|mS̃ = | − S̃⟩...|mS̃ = −S̃⟩} basis and diagonal-

ising it gives (2S̃+ 1) eigenfunctions |λ⟩ which can be used to build the spin projector

and from these it can be shown that

σκυ = σorb
κυ − µB

µN

.
1
gN

2S̃∑
k,k′=1

k∑
q=−k

k′∑
q′=−k′

g(k)
qκ Qkq

k′q′ a
(k′)
q′υ ,where

Qkq
k′q′(λ, λ′) =

deg.St.∑
{λ},{λ′}

·


e−Eλ/kBT

ωkBT

{λ}∑
λ

⟨λ|Sk
q |λ⟩⟨λ|Sk

q |λ⟩ Eλ = Eλ′

−2e−Eλ/kBT

ω(Eλ−Eλ′ ) ℜ

{λ},{λ}∑
λ

λ|Sk
q |λ′⟩⟨λ′|Sk

q |λ⟩

 otherwise,

and ω is the sum of Boltzmann weights, a are the hyperfine coefficients.

5.4 Methodology

Figure 5.7 outlines the basic methodology, which is similar to our previous work.2

Unless stated all calculations were performed using ORCA 4.2.1 and a SARC basis

set with a g polarisation function† on the uranium atom30 and a def2-TZVP basis

set on the lighter atoms. Geometries were generated using Gaussian09169 at the DFT

level with the PBE055 functional. An in-house atomic ZORA procedure was used to

represent scalar relativistic effects.27,28 This procedure ensures gauge independence.

Orbital shielding and hyperfine matrices were obtained using DFT and the Douglas-

Kroll Hamiltonian (DKH)154 to represent scalar relativistic effects. Additional tight

s functions on the active nuclei were added for hyperfine calculations; these better

represent the nuclear cusp. The nuclear spin – electron orbit contributions were also

included in the hyperfine calculation. The latter is the most computationally expensive

part of the process.

The starting orbitals for the CASSCF(2,7) calculation were the f manifold from

a DFT/LDA calculation, obtained using a smaller basis set (def2-SVP) on the light
†TVZP quality with 29s20p16d12f1g/21s13p10d7f1g uncontracted/contracted gaussian func-

tions for a uranium atom.
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Figure 5.7: Computational methodology. See text for details of individual steps /
terms.

atoms and optimised over the ground state. The resulting orbitals were used to es-

tablish the optimal state-averaging (SA) as discussed below, and reoptimised with a

SA-CASSCF calculation with the default basis. These optimised orbitals were used to

generate the Zeeman and ZFS matrices via CASCI/NEVPT2-SOC over all available

states.

The use of CASSCF requires the selection of an active space of orbitals.63 One

approach is to consider the occupation numbers from the natural orbitals formed from

a unrestricted DFT calculation and select orbitals within a range of orbital occupan-

cies (e.g. 0.02–1.98). This is necessarily flawed as they are derived from a single

Kohn-Sham configuration. We exploited a more representative multiconfigurational

approach, the iterative configuration expansion (ICE)200 method to assess the active

space. The ICE method uses a truncated expansion of the CI wavefunction and per-

turbationally selects the most important components and improves them iteratively.

Figure 5.8 shows the orbital occupations that result from a CASCI-ICE(22,60), with

the f -orbitals (151-157) indicated. From this we conclude that the f -shell provides

good coverage of the multiconfigurational states since the other orbitals have occupa-

tion numbers that differ from fully occupied (i.e. 2) or unoccupied (i.e. 0) by less
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than 0.02. Figure 5.9 shows the active space orbitals and their energies from the final

SA-NEVPT2 calculation.

Figure 5.8: Orbital occupation numbers from a CASCI-ICE(22,60) calculation on
U(DOTA), using the unrestricted natural orbitals from a DFT/LDA calculation (basis
as in text).

.

The state-averaged CASSCF process optimises the one-electron molecular orbitals

and the CI expansion coefficients for the ground and excited electronic states; the

Zeeman and ZFS matrices depend on the interaction between these states. Ideally

the MOs should be individually optimised for each state, but this produces sets of

non-orthogonal orbitals which are computationally challenging to use and are not

implemented for magnetic property calculations. Instead a single set of MOs is used

for all electronic states. This implies that the MOs need to be optimised over a set of

states, a technique known as state averaging. This creates a trade-off: as more states

are added to the state-averaging process, the one-electron representation of a given

state becomes less accurate.

The D parameter of the ZFS tensor is sensitive to changes in state-averaging and

can be used to establish the most appropriate states to be include in the process.

Figure 5.10 shows the D parameter obtained from a CASSCF(2,7) calculation on

U(DOTA) with all 21 triplet and singlet states included in the calculation, but with

the number of states included in the averaging process being systematically increased

(states 19 and 20 are degenerate and the calculation will not converge if only state 19

is included).

The flattening of this graph implies that state-averaging over 18 triplet states re-

sults in suitable orbitals for calculating the triplet contributions to D. Continuing this
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Figure 5.9: U(DOTA) active space orbitals (left) and qualitative SA-CASSCF natural
orbital energies (right). Colouring as in Figure 5.12, viewed from the oxygen side.

approach by including singlet states indicates that only the first 4 singlet states should

be included. Figure 5.11 shows that NEVPT2 state energies from the resulting state-

averaged calculation, and implies that this approach is consistent with introducing a

1 eV cut-off for the state energies. The figure also shows the contribution of each state

to the D parameter of the ZFS tensor confirming that the states with the largest con-

tributions are included in the state averaging process. This cut-off was adopted for the

substituted species based on their fully state-averaged energies. Similar plots for the

substituted species, U(DOTA)OH2, [U(DOTA)OH]− and [U(DOTA)F]− are shown in

the supplementary information (SI: Figures B.1–B.3) and indicate the state-averaging

used.
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Figure 5.10: Variation of ZFS parameter D for U(DOTA) as state-averaging increases.
ZFS matrix is formed over 21 triplet and singlet states, the indicated number of triplet
states are included in the averaging.

Figure 5.11: 18 triplet, 4 singlet SA-NEVPT2 individual state energies (eV from lowest
state) for U(DOTA) and their contributions to the D tensor (SARC/def-TZVP basis).

.

5.5 U(DOTA)

Figure 5.12 shows the labelling scheme for the chemically distinct hydrogen and carbon

atoms. The scheme defines the oxygen plane to be above the nitrogen plane and labels

the staggered carbon atoms in the cyclen ring closer to the oxygen plane as C↑; C↓ is

defined as further away. The cyclen protons inherit the attached carbon arrow label

and are labelled A and E for axial and equatorial respectively. The acetate carbon

atoms are labelled Carm (methylene) and Ccarboxyl, and the pendent protons on Carm are

labelled H↑ and H↓. The averaged uranium-atom distances for U(DOTA) are shown in

Table 5.1, the pendent carbon-uranium distances are shorter than for all distances to

cyclen carbon atoms, and both axial protons are closer to the metal than the equatorial

ones. The optimised geometries of all species are given in the SI (Tables B.1 to B.4).
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Figure 5.12: Labelling scheme for carbon and hydrogen atoms in U(DOTA), colour
scheme as in Figure 5.1.

Table 5.1: Selected U–atom distances (Å) in U(DOTA).
U-A↑ 3.72 U-E↑ 4.51 U-H↓ 3.68 U-C↑ 3.49 U-Carm 3.36
U-A↓ 3.79 U-E↓ 4.50 U-H↓ 4.42 U-C↓ 3.50 U-Ccarboxyl 3.23

5.5.1 Comparison of calculated and experimental spectra

Figures 5.13 and 5.14 show the experimental 1H NMR and 1H-1H COSY spectra for

U(DOTA).3 The resonance positions and their assignments from the work of Timmer-

mann3 are in Table 5.2, and the assignments follow the labelling given in Figure 5.8.

The 2D COSY result implies that the signals at 18.39 and 37.86 ppm are due to the

protons on Carm, and this means that the signals at −0.61 and −6.00, −54.53 and

20.40 ppm are from the cyclen ring.

Timmermann’s assignment of particular resonances to H atoms in the SAP struc-

ture of U(DOTA) was made through a Bleaney analysis (see Section 5.2) and using

geometric data from [Eu(DOTA)]−. That assignment was supported by the results
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Table 5.2: Experimental and calculated 1H NMR chemical shifts (ppm) for U(DOTA).
Expt.3∗ Expt.4† DFT3‡ CASSCF3‡ This worka This workb

A↑ 20.40 38.54/5.77 -11.25 -16.87 19.29 22.09
A↓ -54.53 38.54/5.77 44.83 -15.57 -43.02 -54.50
E↑ -0.61 19.32/0.76 14.26 21.80 7.94 10.94
E↓ -6.42 19.32/0.76 16.02 4.57 7.87 12.06
H↑ 37.86 21.74/-55.61 -30.30 -45.00 29.42 38.67
H↓ 18.39 21.74/-55.61 -9.82 -15.57 14.44 14.56

∗ assignment as in reference 3 and supported by this work.
† assignment as in reference 4, at variance with this work.
‡ calculations using DFT/CASSCF Zeeman matrix, respectively.
a calculation using NEVPT2-SOC matrices as in Section 5.3, S̃ = 1, SAP.
b calculation using NEVPT2-SOC ITOs as in Section 5.3.1.

of some DFT and CASSCF calculations, which poorly reproduced the experimental

chemical shifts, see Table 5.2.

Figure 5.15 compares the experimental results with the calculated 1H pNMR shifts

(including ZFS and PSO corrections) for the SAP conformer, by using the methods

described in Section 5.3. The calculated 13C pNMR shifts are also given, but no

experimental data have yet been reported. These calculations correctly predict the

sign of the 1H pNMR shifts, and they confirm the assignment of the resonances at

37.86 and 18.39 ppm to the two H atoms, H↑ and H↓, bonded to Carm, respectively.

Experimental resonances at 20.40 and −54.53 ppm are also unambiguously assigned

to the axial H atoms on the cyclen ring, A↑ and A↓, respectively. The remaining pair

of resonances at −6.42 and −0.61 ppm are assigned to the equatorial positions, but

the results of this calculation do not allow a clear distinction between E↑ and E↓.
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Figure 5.13: 1H NMR spectrum3 (400 MHz, 297 K) of the in situ complexation of
UCl4 with K4DOTA in DMSO-d6. Unnumbered resonances are from solvent or minor
isomers, relative integrals are given above the chemical shift scale. Assignment shows
the cyclen backbone signals in blue and the methylene unit of the acetate arms in
orange, labelling scheme is as given in Figure 5.12.

Figure 5.14: 1H–1H COSY3 (400 MHz, 297 K) of U(DOTA) in DMSO-d6 with its
assignment showing the cyclen backbone signals in blue and the methylene unit of the
acetate arms in orange, labelling scheme is as given in Figure 5.12.
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Figure 5.15: Left: Calculated 1H pNMR shifts (ppm) vs. experimental shifts for
U(DOTA), from reference3 and given in Table 5.2. The line of best fit is indicated
in red, and the dotted line indicates perfect correspondence. Right: Calculated 13C
pNMR shifts (ppm) for U(DOTA). Shifts are averaged over each set of chemically
equivalent atoms, and the plotted error bars show 1 standard deviation in the averaging
process. In this case the error bars are hidden by the marker.
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Our assignments agree with Timmermann’s work and are at variance with previ-

ously published competing assignments,4 indicating the difficulty of assigning actinide

pNMR results and the need for computational validation.

When considering the six resonances in Figure 5.11, the gradient of the line of best

fit is only 0.77. We believe this scaling is due to three effects: Firstly, while the ground-

state NEVPT2 spin-orbit free energies of the TSA conformer imply that it is barely

present at 300 K, the SA-NEVPT2-SOC energies implies a Boltzmann population of

15%. Figure B.5 shows the calculated pNMR results for the TSA conformer. Calcu-

lating a Boltzmann weighted mix of the two conformers does not improve the gradient

of the line of best fit, but it does allow the equatorial atoms to be distinguished.

This is possible since, depending on both energetics and a lack of steric hinderance,

NMR relaxation times can be relatively long compared to rapid interchange between

conformers,201,202 so the magnetic field experienced by the nuclei varies and is best

represented by a Boltzmann average. This is similar to the NMR spectrum of cyclo-

hexane which has a single signal for both conformers at temperatures about −70◦C.203

Spectra taken at lower temperatures should resolve the conformers.

Secondly the orbital shielding and hyperfine matrices are calculated at DFT level,

and hence neglect the effects of static correlation. One approach to tackle the difficulty

of obtaining accurate σorb is to substitute the results for a diamagnetic analogue. This

is presented in Figure B.4, for Th(DOTA), this implies the same assignment however

the gradient of the line of best fit is further reduced, implying that the correlation may

be spurious. MP2 or CASSCF calculations on the orbital shielding term and/or fully

repeating the analysis with a conductor-like polarizable continuum (CPCM) model204

to represent solvent effects did not improve the correlation.

Thirdly, the method explicitly uses pseudospin, S̃ = 1 as a parameter to calculate

the paramagnetic shielding, and Figure 5.16 shows the NEVPT2-SOC energies for

U(DOTA). The third excited state has a Boltzmann population of 4.3% at 300 K, and

as such is energetically accessible. Calculations with a pseudospin of S̃ = 3/2 were

performed, and these generally overestimate the gradient of the line of best fit. From

this we conclude that the magnetic behaviour of U(DOTA) cannot fully be captured

with a single pseudospin value.
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This led us to exploit the irreducible tensor operator method as described in Section

5.3.1. The revised values are shown in Figure 5.17. This figure shows the calculated

values for the pure SAP conformer on the left, and the Boltzmann weighted values on

the right. The correlation and the gradient of the line of best fit is 0.95, however the

equatorial hydrogen values show poorer agreement with experiment. The right plot

also shows the results for the TSA conformer (small symbols), as can be seen the con-

former interconversion has a dramatic effect on the shifts of the equatorial hydrogen

values (and on H↑). From this we believe that the variance of these computational

results come from conformational interchange. The improved description of the Zee-

man component built directly from the magnetic moment matrices is the main reason

for better correlation, however the hyperfine coefficients are necessarily approximated.

The method, whilst currently limited, shows considerable promise for quantitative use.

Figure 5.16: Left: NEVPT2-SOC state energies for U(DOTA) and the indicated sub-
stituted variant measured from the lowest SOC state in each case. Blue text shows the
calculated D value in cm−1 (eV value in brackets). Right: The Boltzmann coefficient
at 300 K (x-axis) for corresponding energy separation for the previous four energy
level diagrams (y-axis).
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Figure 5.17: Left: Calculated ITO 1H pNMR shifts (ppm) vs. experimental shifts for
U(DOTA), from reference3 and given in Table 5.2. The line of best fit is indicated in
red, and the dotted line indicates perfect correspondence.
Right: Large symbols and line of best fit are the calculated 1H pNMR shifts vs.
experimental shifts (ppm) for U(DOTA), Boltzmann weighted (85% SAP, 15% TSA),
small symbols indicate the TSA result.)

The method is accurate enough to confirm the disputed assignment of the remaining

protons. The axial protons are the closest protons to the spin centre (3.8 and 3.7 Å for

A↑ and A↓ respectively) and A↓ has the largest angle (157.5◦) to the symmetry axis,

as such the inverse square and cos2 θ relationships used by Bleaney analysis would

suggest that it has the largest pseudocontact contribution, as is the case here.

5.5.2 Unpaired electron spin density

Figure 5.18 shows contour plots of the spin density for U(DOTA) from the final

CASCI/NEVPT2 calculation. The spherical distribution that occurs when the two

unpaired electrons are evenly distributed is distorted by the ligands producing inden-

tations facing the ligands and an axial indent on the nitrogen side of the molecule.

This reflects a reduction in spatial density due to same-spin electron repulsion. Table

B.5 shows the Löwdin atomic charges and spin densities.17 The spin density of the

uranium atom is transferred to the ligand oxygen (0.0034 Bohr−3) and nitrogen atoms

(0.0008 Bohr−3). The larger U-O spin density has a combination of σ and π symme-

try, whereas the U-N spin density is purely σ. Hence, the spin density is transferred

through the carboxylic π-system, resulting in an increased spin density on the carboxyl



5.5. U(DOTA) 155

carbons (0.0008) compared to the other carbon atoms and this leads to a significantly

increased contact contribution. Overall the spin density around the uranium atom

resembles that of an inverted apple.

Figure 5.18: SA-NEVPT2(2,7) Spin density contour plots for U(DOTA).

5.5.3 Components of the pNMR shift.

Figure 5.19 shows a breakdown of the components of the total chemical shielding.

Except for A↓ and the carboxyl carbon, the orbital contribution is dominant. The

pseudocontact shifts are much smaller (1H: –0.3 to 0.7 ppm. Unsaturated 13C: 0.3

to 1.5 ppm, carboxyl 13C: –11 ppm). As a consistency check, Figure 5.20 shows a

comparison between the pseudocontact values obtained using the calculated magnetic

susceptibility tensor (298 K) and geometrical parameters, i.e. Eq. 5.4, and the main

calculation, i.e. Eq. 5.8.

Figure 5.19: Calculated 1H and 13C pNMR components for U(DOTA). Shifts are
averaged over each set of chemically equivalent atoms, and error bars show 1 standard
deviation in these results, the error bars have similar thickness to the marker.
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Figure 5.20: Calculated U(DOTA) pseudocontact shifts compared with those calcu-
lated using the Bleaney relationship and the susceptibility tensor (Eq. 5.4).

5.6 Axially substituted U(DOTA) complexes

Dovrat et al. reported5 a series of spectrophotometric and NMR titrations of U(DOTA),

alongside an electrospray induced mass spectrometric study of selected solutions and

the single crystal X-ray diffraction structure of [U(DOTA)F]− co-crystallised with

LiOH and [Na(OH2)]+. The 1H chemical shifts for the axial adducts with H2O, F−

and OH− are in Table 5.4. The authors support their assignments with 1H-1H COSY

data (SI of ref. 5), and they claim to identify both the SAP and TSA isomers of

[U(DOTA)H2O].

Figure 5.21 shows the changes in selected geometrical parameters following axial

substitution. For the water ligand, there is a very slight contraction of the DOTA

ligand (the angle of the constituent atoms to the C4 axis decreases by 0-2◦), but the

substitution of the anionic ligands cause a larger expansion of the DOTA ligand (corre-

sponding increase is 2-6◦). The axial substitution of water breaks the symmetry of the

molecule, but the C4 symmetry is maintained for [U(DOTA)OH]− and [U(DOTA)F]−,

with the former hydroxyl ligand lying on the symmetry axis. As a check of the geom-

etry optimisation process, a series of SA-CASSCF(2,7)/NEVPT2 single point calcu-

lations were performed over a range of U–F− distances. The resulting NEVPT2-SOC

energies are shown in Figure 5.22. The minimum distance was determined by fitting
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the distances from the single point calculations to a sixth order polynomial and the

fitted value, 2.056 Å was consistent with the optimised value of 2.043 Å.

Figure 5.21: Change in geometrical parameters of the DOTA ligand from those of
U(DOTA) with axial ligand binding.

From the spectrochemical series205 the strength of ligand binding can be ordered

as F− < OH− < H2O, mirroring the decreasing polarisation of a dative bond from F−

to H2O to a transition metal, however the strength of purely ionic bonding is reversed.

We will adopt the order H2O, OH−, F−, and this discussion will focus on the effect

of adding increasingly polarising ligands, which should have increasing charge density

Figure 5.22: Potential energy curve for U–F− separation for [U(DOTA)F]−. SA-
NEVPT2-SOC energies (17 triplet, 8 singlet states included) presented. Red line
indicates line of best fit to a sixth-order polynomial.
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on the ligand atom, i.e. starting from the unsubstituted U(DOTA), then adding H2O,

OH− and finally the F− ligand.

Zeeman and ZFS parameters from these calculations are presented in Table 5.3.

The principal values of the g matrix (i.e. the square roots of the eigenvalues of the

Abragam-Bleaney tensor,120 ggT ), are presented as a parallel and perpendicular com-

ponents, g∥ and g⊥. Excepting [U(DOTA)OH]− , where the eigenvalues are all differ-

ent, the Abragam-Bleaney tensor is oblate (i.e. g∥ < g⊥), but becomes less oblate as

increasingly electronegative ligands are added along the C4 symmetry axis, with the

exception of the hydroxyl ligand which has an anomalously low g⊥ and significantly

unequal g⊥ components. ZFS increases as the ligand becomes more polarising as seen

by the increasing D value. The addition of the neutral water ligand increases D from

205 to 281 cm−1 and the tensor is more rhombic (E/D increases from 0.00 to 0.15). In

both cases the anisotropy axis (the axis of easy magnetisation) lies along the symmetry

axis.

The addition of the negative ligands has a profound effect on the PAS of the

Zeeman tensor. Figure 5.23 shows the principal components of the ZFS tensor for

U(DOTA) and [U(DOTA)F]−, with the anisotropy axis labelled D3. The anisotropy

axis is given by eigenvectors of the largest eigenvalue of the ZFS tensor. As can be seen

the anisotropy axis of [U(DOTA)F]− is rotated by 90◦ relative to the symmetry axis

(this is also the case for [U(DOTA)OH]−). This corresponds to the effect of SOC on

the model spin. The principal axis of the pseudospin is dependent on the direction of

the magnetic field.121 For U(DOTA), if a magnetic field is applied along the symmetry

axis the angle between the principal axis of the pseudospin and the true spin is 0.01◦,

whereas for [U(DOTA)F]− this angle is 18.95◦. The rotation of the pseudospin results

in the rotation of the ZFS tensor. A similar effect has been observed experimentally

for Na[DyDOTA(H2O)]·4H2O.206
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Table 5.3: Magnetic parameters for U(DOTA) and its substituted variants.
Zeeman g∥ g⊥1 g⊥2 g∥ |g⊥|
U(DOTA) 0.467 2.115 2.115 0.467 2.115
[U(DOTA)H2O] 0.472 1.984 2.173 0.472 2.081
[U(DOTA)OH]−‡ 0.094 0.173 2.726 N/A N/A
[U(DOTA)F]− 0.492 1.806 1.966 0.492 1.887
ZFS D (cm−1) E E/D anisotropy axis
U(DOTA) 204.56 0.08† 0.0004 C4 axis
[U(DOTA)H2O] 281.14 42.24 0.1503 C4 axis
[U(DOTA)OH]− 540.72 66.76 0.1235 90◦ to C4 axis
[U(DOTA)F]− 713.22 63.62 0.0892 90◦ to C4 axis
g⊥1 and g⊥2 represent the ’x’ and ’y’ principal values. The perpendicular is the average
of the two.
† This is not zero as would be expected for a purely C4 molecule due to a combination
of the slight rotation of the pseudospin due to SOC shifting the anisotropy axis slightly
off center and computational errors due to the precision of the model geometry.
‡ The anomalous asymmetry for the [U(DOTA)OH]− g-values is an artifact of the
Abragam-Bleaney symmetrisation of the g-matrix, gOH− . Due to spin-orbit coupling
there are large asymmetric components, e.g. the difference in the off-diagonal elements
gOH−

21 −gOH−

12 = 0.9020 > gOH−

33 . Therefore, in this case the symmetrisation fails. These
PAS values are illustrative, and the methods used in this work do not rely on these
values.
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Spin density surfaces for [U(DOTA)X], where X is the axial ligand (X = none, H2O,

OH−, F−) are presented in Figure 5.24. The effect of substitution on the spin density

is to invert the observed apple shape. Löwdin atomic charges and spin populations

from the NEVPT2 calculation are given in the supplementary information Tables B.7-

B.8). All axial ligands donate beta spin density from the molecule (i.e. the ligand

atom has overall alpha spin density), however while the water ligand transfers electron

density to the uranium atom (ligand metal charge transfer, LMCT), the alpha spin

density of the DOTA ligand atoms is almost unchanged (the largest changes are to the

ligand nitrogen, 0.0014 to 0.0013 Bohr−3 and C↓, 0.0024 to 0.0020 Bohr−3). This is

consistent with the similarity between the 1H pNMR of U(DOTA)and [U(DOTA)H2O].

The charge transfer is greatest for the neutral water ligand, where the Löwdin charge

on the uranium atom is −0.02 (U(DOTA) 0.17 ), and least for the more polar U-F

bond, where the Löwdin charge is 0.09.

The addition of the anionic axial ligands has a more profound effect on the uranium

atom’s Löwdin spin density, with the donation of the beta spin density reducing the

(alpha) spin density from 1.60 to 1.33 Bohr−3 for both the hydroxyl and fluoride ligand.

This also reduces the spin density, and thereby the contact shift for these molecules,

and the contraction of the experimental 1H pNMR shifts as shown in the following

section. Figure 5.25 shows a contour plot of the spin density for [U(DOTA)F]−.



5.6. AXIALLY SUBSTITUTED U(DOTA) COMPLEXES 162

Figure 5.24: SA-NEVPT2(2,7)-SOC Spin density surfaces for [U(DOTA)X], where X
= none, H2O, OH− and F−, isovalue 0.0001 a.u.

Figure 5.25: SA-NEVPT2(2,7)-SOC Spin density contour plots for [U(DOTA)F]−,
isovalue = 0.0001 a.u.
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5.6.1 1H pNMR shifts

Table 5.4 summarises our main results for U(DOTA) and the three axially substituted

complexes. The calculated components of the 1H and 13C chemical shifts, i.e. orbital,

contact and pseudocontact components, the corresponding chemical shielding and the

resulting chemical shift relative to TMS (tetramethylsilane) are presented in the SI

(Tables B.11 to B.12).

Table 5.4: Experimental and calculated 1H NMR chemical shifts (ppm) for axially
substituted U(DOTA). ∆δ indicates the spread of values.

H↑ A↑ H↓ E↓ E↑ A↓ ∆δ
U(DOTA)
Experiment3 37.86 20.40 18.39 −0.61 −6.42 −54.53 93.39
Calc., S̃ = 1, SAP 26.52 19.00 14.00 −9.00 −8.00 −43.00 69.54
Calc., S̃ = 1, 85% SAP† 29.07 19.97 13.54 5.59 6.14 −43.56 72.67
Calc., S̃ = 3/2 49.76 32.99 23.71 15.64 15.17 −82.67 132.43
Calc., ITO, SAP 38.00 22.09 14.56 12.06 10.94 −54.50 92.50
Calc., ITO, 85% SAP† 34.94 22.88 14.43 8.42 9.56 −52.44 87.38
[U(DOTA)H2O]
Experiment5 38.40 21.70 19.30 0.70 −5.80 −56.70 95
Calc., S̃ = 1 37.15 17.16 12.75 7.76 6.75 -39.42 66.57
Calc., S̃ = 3/2 45.50 28.83 20.54 14.65 12.94 -75.28 120.78
[U(DOTA)OH]−

Experiment5 −1.40 1.80 3.30 7.80 8.70 5.4 10.00
Calc., S̃ = 1 −2.10 3.40 5.02 5.40 6.21 6.28 8.38
Calc., S̃ = 3/2 −12.58 4.42 8.54 9.34 13.10 40.46 53.04
[U(DOTA)F]−

Experiment5 9.90 10.20 16.60 4.40 1.80 −22.0 39.00
Calc., S̃ = 1 4.95 5.12 5.48 4.72 4.09 −2.28 7.23
Calc., S̃ = 2 12.30 11.69 14.95 10.80 9.13 −21.21 36.16

The assignment of protons for U(DOTA) follows reference 3. Reference 5 does not
distinguish between the three pairs, so the assignment of substituted U(DOTA)
species follows reference 5, but uses the calculated values to split pairs. † Boltzmann
weighted, 85% SAP, 15% TSA.

Figure 5.26 shows the calculated result for the pNMR of [U(DOTA)H2O] assuming

a pseudospin of S̃ = 1, however the NEVPT2-SOC state energies (Figure 5.16) shows

that there are four levels within 0.1 eV with a Boltzmann population at 300 K exceed-

ing 2%, therefore there are four levels that are energetically accessible. Figure 5.27

shows the corresponding qualitative plot for S̃ = 3/2.
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Similarly for [U(DOTA)F]− there are five levels within 0.15 eV, implying a pseu-

dospin S̃ = 2 may be more appropriate. Figure 5.28 shows the corresponding plot.

This produces a much improved correlation, but the improved result may derive from a

fortuitous cancellation of errors. It is also noticeable that the large magnetic anisotropy

perpendicular to the C4 axis causes considerable differences in predicted pNMR for

formally equivalent centres, assuming a C4 symmetry and this effect is averaged out.

For [U(DOTA)OH]− the experimental pNMR was recorded at a pH of 12.7, and

the effect of such an environment is beyond the scope of this work, however the con-

siderably smaller g-value along the symmetry axis (0.094) when compared to the other

species results in a much smaller calculated range (8.8 ppm), which is in accordance to

the experimental value of 10 ppm, and this reduced range means the approximations

used in this approach are proportionally much more significant, the calculated and

experimental values are within a few ppm of each other, but the correlation is reduced

to R2 = 0.70.

All assignments are consistent with published COSY data (SI of reference 5), and

are able to reliably distinguish between A↑/A↓, E↑/E↓ and H↑/H↓.

Figure 5.29 shows the qualitative effect of the 1H pNMR shifts for the axial substi-

tution of the fluorine ligand. Due to the increased spin, the calculated contact shifts

and pseudocontact shifts increase, however these are in opposition. The net effect is

the contraction in the range of the pNMR results that is seen experimentally.
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Figure 5.26: Left: Calculated vs. experimental 1H pNMR shifts (ppm) for axially
substituted [U(DOTA)H2O]. The line of best fit is indicated in red, and the dotted
line indicates perfect correspondence.
Right: Calculated 13C pNMR shifts (ppm) for [U(DOTA)H2O]. Shifts are averaged
over each set of chemically equivalent atoms, and error bars show 1 standard deviation
in these results.

Figure 5.27: Left: Calculated (qualitative) vs. experimental 1H pNMR shifts (ppm)
for axially substituted [U(DOTA)H2O], assuming S̃ = 3/2. The line of best fit is
indicated in red, and the dotted line indicates perfect correspondence.
Right: Calculated 13C pNMR shifts (ppm) for [U(DOTA)H2O], S̃ = 3/2. Shifts are
averaged over each set of chemically equivalent atoms, and error bars show 1 standard
deviation in these results.
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Figure 5.28: Left: Calculated (qualitative) vs. experimental 1H pNMR shifts (ppm)
for axially substituted [U(DOTA)F]−, assuming S̃ = 2. The line of best fit is indicated
in red, and the dotted line indicates perfect correspondence.
Right: Calculated 13C pNMR shifts (ppm) for [U(DOTA)F]−, S̃ = 2. Shifts are
averaged over each set of chemically equivalent atoms, and error bars show 1 standard
deviation in these results.



5.7. CALCULATED 13C SHIFTS 167

Figure 5.29: Effect of axial substitution of a F− ligand on the calculated 1H shifts
(ppm) of U(DOTA). +F− indicates the [U(DOTA)F]− , S̃ = 2, result. Green arrows
indicate an increase in shielding (shift decreases) following axial substitution, red ar-
rows indicate a decrease in shielding.

5.7 Calculated 13C shifts
Figures 5.15, 5.22 and 5.24 shows the predicted 13C pNMR shifts for the SAP con-

formers and the CH2 link (Carm) is predicted to be the most deshielded (highest), as

the contact shift is deshielding, whereas the remaining three carbon centres are ad-

jacent to ligand atoms with increased spin density. The drop in orbital shielding for

the carboxyl group is balanced by the larger spin density in the carboxyl π-system

producing a large contact shift.

Figure 5.30 shows the effect of axial substitution on the components of the cal-

culated 13C shifts of U(DOTA). The effect on the orbital shielding is minor, and the

effect of the pseudocontact contribution is dominated by the rotation of the anisotropy

axis, causing a sign change for the carboxyl carbon as they dip below the magic angle.
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Figure 5.30: Effect of axial substitution of a F− ligand on the components of the
calculated 13C shifts of U(DOTA), using the [U(DOTA)F]− , S̃ = 2, result. Triangles
indicate C↑, C↓, circles indicate Carm and squares indicate Ccarboxyl.

The contact contributions of C↑ and C↓ are decreased when the fluoride ligand

binds, and as the uranium - carbon distance increases (see Figure 5.17), with a stronger

effect on the former (distance increase is slightly larger), weakening the alpha spin on

the adjacent ligand nitrogen from 14.02 to 9.17 ×10−4 Bohr−3. This results in a

reduction in the Löwdin alpha spin density from 2.21 to 1.31 ×10−4 Bohr−3 for C↑

and 2.04 to 1.41 ×10−3 Bohr−3 for C↑. Since this is a probe of covalency, it indicates

the covalency of the uranium - nitrogen ligand bond is reduced. This in addition to the

reduction of other interactions due to distance increase implies an overall weakening

of this bond. Conversely the significantly increased contact contribution of Ccarboxyl

does not correlate with a reduction in the Löwdin alpha spin density. This may reflect

the need to consider the TSA conformer and model the motion of the molecule, and

for the group of four chemically equivalent carboxyl carbon atoms, It could also be the

flawed separation of the contact and pseudocontact components from σp, by labelling

the former as resulting from the isotropic part of the hyperfine interaction.
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The majority of the uncertainty in the shift averaging for formally equivalent chem-

ical shifts in [U(DOTA)F]− is from the pseudocontact contribution. For instance for

the C↑ shift the single standard deviation for the four signals is 0.50 ppm for the or-

bital shift (128.96 ppm), 1.93 ppm for the contact shift (42.70 ppm) and 36.65 ppm for

the pseudocontact shift (25.77 ppm). This is consistent with the geometrical variation

caused by the anisotropy axis being at right angles to the symmetry axis. This is not

the case with U(DOTA) which has an anisotropy axis along the symmetry axis: The

largest standard deviation is 0.52 ppm (contact shift of Carm ) with the pseudocontact

uncertainty only 0.02 (the shifts are too small to be visible in Figure 5.15).

5.8 Conclusions and future work

In this paper we have assigned the 1H pNMR shifts for U(DOTA) and for a range of

axially substituted derivatives and explored the magnetic effects of such a substitution.

Of particular interest was the observed 90◦ shift in the anisotropy axis following axial

substitution by the anionic ligands and this causes formally equivalent protons to not

be magnetically equivalent in a static frame. We have also been able to qualitatively

predict the corresponding 13C pNMR shifts and look forward to comparing these to

future experiments.

Because of the magnetic subtleties of U(DOTA) and its derivatives, we believe that

development needs to be done on more elaborate computational approaches combining

static and dynamic correlation corrections for calculating magnetic matrices and to

explicitly calculate the matrices necessary to build the higher order terms in the ZFS

expansion.



Chapter 6

Computational assignment of
pNMR shifts for a selection of
substituted actinocenes

6.1 Preface

For simplicity, this project was originally conceived to avoid the use of symmetry. Ge-

ometry optimisation was performed for 20 actinocenes and lanthanocenes, M(COT)2

and [M(COT)2]−, { M = Nd–Gd, U–Cm }, at a density functional theory (DFT) level,

with the in-house aZORA scalar relativistic correction.27,28 These formulae correspond

to formal oxidation states of +3 and +4.∗

The optimised structures were approximately D8h, but density functional the-

ory (DFT) was found to poorly correspond to the experimental ring separations for

U(COT)2 and Np(COT)2 due to the highly multi-configurational nature of the ground

state. From this we concluded that the deviation from the eclipsed structure was

an artifact, and adopted a Z-matrix formulation for the molecules, which locked the

molecule in the eclipsed configuration, and was controlled by four parameters. Defin-

ing the COT centroid as a dummy atom, X, the four geometrical parameters were: the

centroid-metal distance, rMX , the centroid-carbon distance rXC , the centroid-hydrogen

distance, rXH , and the metal-centroid-hydrogen angle AMXH .

CASSCF calculations without the use of symmetry produced excessive mixing of

the fπ and fϕ which are formally orthogonal in D8h, and we concluded that using

symmetry would produce better starting orbitals and resulting in a more physically

representative wavefunction.
∗The formal oxidation state is often poorly defined for complexes with strong multi-configurational

nature. For instance, cerrocene, Ce(COT)2 has a formal oxidation state of +4, but forms a molecular
Kondo state with significant donation to the metal fδ orbital, and is better represented as a mixture
of states, dominated by a +3 oxidation state.207,208

170
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Computational packages such as ORCA only implement a small range of typically

abelian symmetry groups, and as discussed in Section 6.3.2, the highest symmetry

available to represent uranocene is the D2h group. This has eight irreducible repre-

sentations, four of which are gerade ag, b1g, b2g, b3g and the remaining four have the

corresponding ungerade symmetries. For uranocene, in practice the four lowest energy

states all have overall gerade symmetry, corresponding to the product of two unger-

ade f orbitals. Similarly the four lowest states of neptunacene have overall ungerade

symmetry, corresponding to the product of three ungerade f orbitals. This pattern

continues for species with odd/even numbers of electrons. Hence only four states need

to be considered for single point calculations.

Partial optimisations in D8h symmetry were performed for a range of fixed centroid-

metal distances at the DFT/aZORA level (i.e. rXC , rXH and AMXH were allowed to

vary) for each of the metallocenes, and NEVPT2 single point energies for the first

eight states were calculated for each geometry and each of the four relevant irreducible

representations. This was necessary because the ground state of the NEVPT2 calcula-

tion is not necessarily the ground state of the CASSCF calculation due to the dynamic

correlation correction. The results of these optimisations are shown in the appendix

(Table C.1) as is a sample potential energy curve for the 5Agg states of [Np(COT)2]−

(Figure C1). From this we concluded that the symmetric DFT/aZORA full opti-

misation ring-metal separations were accurate (within 0.02 Å) in all cases except for

U(COT)2, [U(COT)2]−, and Np(COT)2.

On reflection, the lack of experimental data for these species was concerning; the

methods that we are using are correct to within a few ppm in most cases, but as the

previous chapter showed, there are exceptions, especially when strong spin-orbit cou-

pling (SOC) causes the pseudospin to be poorly represented by a single value. Hence

modelling pNMR remains qualitative, although the ITO approach shows considerable

promise for quantitative prediction.

For now, we felt that it was more appropriate to focus on a range of substi-

tuted uranocenes and neptunocenes where experimental data exist, Hence the paper

largely focuses on calculating the 1H pNMR for U(COT)2, Np(COT)2, [U(COT)2]− and

[Np(COT)2]− and the substituted analogues with a single substituent (either methyl,

tert-butyl or trimethylsilyl) on each ring. These have C2h symmetry, but this was
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not exploited for the substituted species, because it did not significantly reduce the

unwanted orbital mixing.

As an operational note, when projecting a smaller basis to a larger basis, as pre-

sented in the methodology used in the previous chapter (Figure 5.3), ORCA does not

reliably preserve the symmetry of the orbitals. Furthermore ORCA is limited by the

number of states that can be included in the QDPT-SOC calculation.

The CASSCF states of uranocene are unstable to state-averaging,209 and mixing

spin states exacerbates this, hence only triplet states were included in the state av-

eraging process. Higher spin-states are included in the NEVPT2 QDPT-SOC. The

state-averaging is done in two halves. Firstly, in the symmetric form for a constrained

number of states,† then using these orbitals as the starting point, then for the unsym-

metric form, for all states with NEVPT2 energies below 0.5 eV and with level shifting

to protect the active space.32

Less problematic, but of note, when determining the symmetry group of a molecule,

ORCA counts dummy atoms, so the cartesian geometry form of the optimised Z-matrix

is used.

This chapter presents the text from a paper in very early preparation. References

have been merged with those in this thesis.

†Figure A3 shows an excerpt from an earlier calculation based on a 1eV cut-off.
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6.2 Abstract

This work studies and predicts the 1H paramagnetic nuclear magnetic resonance spec-

tra (pNMR) of a range of actinocenes and substituted actinocenes, based on the

1,3,5,7-cyclooctatetraene, (COT)2− ligand. We partially optimised the geometry of

these molecules by keeping the ring-metal separation at the experimental value of

the unsubstituted molecule, where available, or at the minimum of a NEVPT2 po-

tential energy curve (PEC) where not. The PEC is formed from the single-point

NEVPT2-SOC energies for a series of partially optimised geometries, each with a

fixed ring-metal separation. Orbital and hyperfine matrices were generated via DFT,

and we used state-averaged NEVPT2-SOC calculations to produce the Zeeman and

ZFS matrices. Symmetry is exploited for the three unsubstituted species, but not for

the disubstituted ones.

Previous published assignments were made using a Bleaney model of the pseudo-

contact and assuming a completely flat COT ring. Our calculations show that there

is a small (6.7◦) bend of the hydrogen atoms towards the uranium atom which im-

proves the overlap in the ηf and ηd bonding system, and this result is confirmed by

a NEVPT2 PEC. A third order decomposition of the magnetic moment matrices by

irreducible tensor operators (ITOs) allows a more accurate result for the 1H shift for

the UIII complex, [U(COT)2]− to be made. For the disubstituted species, the rotation
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of the zero-field-splitting (ZFS) tensor to the new symmetry axis casts doubt on the

previous assumption that the addition of alkyl groups is only a slight perturbation of

the chemical shifts.

6.3 Introduction

The radioactivity and toxicity of many actinide species can make them difficult to

study experimentally, especially in cases of short lived species and/or highly penetrat-

ing radiation. However the wide range of applications that exploit actinides, such as

the use of 227Ac compounds in radiotherapy210 or in industrial, low carbon, nuclear

energy production coupled with the need to process and to safely contain waste prod-

ucts drives commercial interest. Furthermore a large and potentially fertile area of

chemistry is relatively unexplored. In principle, computational chemistry not only of-

fers exploration and prediction of chemical species that are otherwise difficult to study,

but can improve our understanding of their nature and properties. For instance, 95%

of the radioactivity of waste from nuclear power occurs from 3% of its volume.211

This waste consists of radionuclides with very different half-lives and decay processes.

Different radionuclides present different storage challenges. Improving chemical ex-

traction methods would lead to more recycling of fissile material and better waste

separation and management. Many extraction processes exploit metal-ligand selectiv-

ity, i.e. for lanthanide and actinide species, this selectivity is dependent on the nature

of the metal-ligand bond and is a matter of considerable research interest.

The computational study of actinides presents considerable challenges. The high

atomic number of actinide nuclei implies that core electrons must move more quickly

than in lighter atoms. For a hydrogenic atom, the virial theorem implies that the mag-

nitude of the root-mean square of the speed of the electron equals the atomic number

(in atomic units).39 The speed of light being approximately 137 a.u (or 1/α where α is

the fine-structure constant). Hence the core electrons in the actinides move at speeds

that are a significant fraction of that of light and relativistic effects in actinides must

be modelled suitably. Relativistic effects can be split into spin-free effects and spin-

orbit effects. The preponderance of unpaired electrons in f element species leads to a

complex open shell structure (and significant paramagnetic nature) and results in the

occurrence of many degenerate or near-degenerate low lying excited states. This latter
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concern means that multi-configurational approaches must be employed to model the

electronic structure appropriately. Finally, dynamic correlation must also be modelled

to achieve chemical accuracy. As ever the complexity of any approach must be bal-

anced by its computational cost, and this requires compromises to make calculations

tractable. Improving the efficiency of high-level techniques is ongoing, but currently

available approaches allow semi-quantitative results to be produced on a reasonable

timescale.

Spectroscopy has always provided a valuable analytical tool for probing the nature

of chemical systems, and for diamagnetic species, decades of developments have made

nuclear magnetic resonance spectroscopy almost routine for non-biological species.

Conventionally to minimise environmental effects the chemical resonance shift δ of a

chemically distinct atom is reported in terms of the observed shift σexp from a reference

shift, σref:

δ = σref − σexp, (6.1)

where all quantities are measured in ppm (parts per million). By definition, a para-

magnetic molecule has a spin-dipole. In the absence of an external magnetic field,

the overall dipole of a macroscopic ensemble is zero, however the dipole interacts with

the field used in the NMR experiment. The resulting observed shift is typically split

into two components, the orbital shift that would be observed in the absence of the

unpaired electron(s), σorb, and a correction for the effect of the spin-dipole, σpara. So

we can write:

σexp = σorb + σpara. (6.2)

The latter correction is the more difficult to model computationally. The nature of the

paramagnetic correction can give valuable insight into the chemical environment of the

nucleus probed and in recent times there has been significant interest and advances in

the calculation of σpara. σpara can be further split into a contact term σc that derives

from spin polarisation at the nucleus and a pseudocontact term σpc that results from

interactions between spin-dipoles.

σpara = σc + σpc (6.3)

σc and σpc are often associated with through-bond and through-space interactions,

respectively. In the context of f element compounds the relative magnitudes of these
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quantities can be used to motivate a discussion of relative covalency in 4f and 5f

systems.

This study compares the predicted 1H pNMR values from nine actinocene species

to published spectra212–214 and furthermore predicts 13C values. This will support fu-

ture studies of the actinocenes as well as a comparison with their formally isoelectronic

lanthanocenes. Figure 6.1 shows the 1,3,5,7-cyclooctatetraene dianion, (COT)2−, and

uranocene, the first molecule in this study. Figure 6.2 shows the species under inves-

tigation. With the exception of the uranocene molecule and its anion, all species in

this study have a single substituent group that is identical on both rings.

Figure 6.1: Left: the 1,3,5,7-cyclooctatetraene (COT2−) dianion, Right: Uranocene.
The blue sphere is the central uranium atom, carbon atoms are in grey, hydrogen
atoms are in white.

The four conformers of disubstituted uranocenes are shown in Figure 6.3 and la-

belled by the lower position, i.e. 1:5’ has the upper substituent diametrically opposed

to the lower one. Following a study of the pNMR of 1,1’-ditert-butyluranocene, Luke

et al. considered the 1:5’ conformer to have the highest population213 based on the

presence of an alkyl group having a deshielding effect on a proton on the opposite

ring, and further supported by the pNMR spectra having four aromatic signals with

one signal of half-intensity, which would preclude the 1:2’ and 1:4’ conformers from

dominating. As a result, this study focuses on the 1:5’ conformer, but a more thorough

investigation would consider the remaining three conformers, and ideally consider the

rotation of the ring between conformers.
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Figure 6.2: The molecules studied in this work, Actinide is in blue, colour scheme is
otherwise as in Figure 6.1.

Figure 6.3: The four conformers of disubstituted uranocenes, top view. Top sub-
stituent shown by filled circle (and static), lower substituent shown by hollow blue
circle.

6.3.1 Uranocene

1,3,5,7-Cyclooctatetraene (COT) is the first even annulene after benzene, i.e. [8]-

annulene, and its planar form is predicted to be anti-aromatic, forming a triplet state

with its two non-bonding π-orbitals singly occupied. However the species adopts a

D2d boat conformation215 so no π-conjugation occurs. The addition of two electrons

to form a dianion (C8H8)2− results in a D8h planar configuration216 and the 4n + 2

Hückel rule implies aromatic character. The dianion can be prepared directly and can

also act as an organometallic ligand.217

Figure 6.4 shows a molecular π-orbital energy level diagram for the COT dianion.

The progression of the MOs from having zero to four vertical nodal planes mirrors the

MOs of benzene: The lowest π orbital is a delocalised double torus (a2u), the vertical

planes of the highest b1u orbital separate each pair of ring atoms. The two degenerate
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Figure 6.4: π MO energy level diagram for COT2−. Canonical orbitals from an
RKS/PBE0/def2-tzvp calculation. Dashed lines show nodal planes. The symme-
try labels are given in black for D8h, and in red for two stacked eclipsed rings (as in
uranocene).

highest occupied molecular orbitals (HOMOs, e2u) have two perpendicular vertical

planes, and it is the interaction of these ligand orbitals with the metal dδ and fδ

orbitals that characterise the η bond that stabilises the molecules under investigation.

Figure 6.5 shows the symmetry labels for the d and f orbitals, so that the overlap

between these and the ligand orbitals can be assessed.

The planar dianion is a common ligand in the organometallic chemistry of f -

block elements and the nature of its bonding has been debated for some years.218 The

archetypal actinocene, uranocene U(COT)2 was prepared by Strietwieser in 1968.219

Synthesis of Np(COT)2 and Pu(COT)2 by Karraker followed,220 along with Th(COT)2

and Pa(COT)2 by Streitwieser a few years later221,222 The electronic structure of

Th(COT)2, U(COT)2, Pu(COT)2 and Cm(COT)2 (5f 0, 5f 2, 5f 4 and 5f 6 respectively)
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Figure 6.5: Symmetry labels for D8h, d and f orbitals.

have been studied extensively,208,209,218 species with an even number of f electrons hav-

ing more representation in computational and experimental studies,218,223 and to our

knowledge, no computational predictions of pNMR results have been made.

6.3.2 Symmetry

Symmetry is only exploitable in a small percentage of molecules – most polyatomic

molecules have no symmetry elements. Available electronic structure packages are not

able to fully exploit the rare D8h point group. In practice, subduction to a lower

point group is used (D8h → D4h → D2h, Altmann and Herzig, p. 46)224 and this is

the approach seen in much of the literature.208,209,218,225 The D2h point group has a

relativity simple character table (see Appendix Table C.3) which is an Abelian group

with eight irreducible representations that are all non-degenerate. For comparison

the D8h point group‡ is a non-Abelian group with 14 irreducible representations, six

of which are doubly degenerate, this presents a much more significant challenge for

computation.

The use of lower point group allows mixing of orbitals that are formally orthogonal

in D8h.209 In practice, the actual symmetry of the system should force most integrals

to be zero, and as such, a calculation with a lower symmetry (or without symmetry)
‡http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=608&option=4
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often produces the same result as one that exploits the full symmetry (or a subgroup

of said symmetry).

Figure 6.6 shows the subduction from D8h to D2h for the gerade symmetries, con-

structed from the tables in reference 224.

Figure 6.6: Descent of symmetry from D8h to D2h via D4h for the gerade symmetry
elements. ungerade elements follow the same pattern. Both the D8h and D4h groups
have two possible descents and correlations consistent with both are shown in black.
Red and blue lines show correlations unique to a single subduction.

6.4 The pseudospin approach to paramagnetic NMR

If a magnetic field B is applied to an isolated nucleus with nuclear spin I and mag-

netogyric ratio γnuc, then it is energetically favourable for the associated permanent

magnetic moment to align with the field. This results in the nuclear energy level being

lowered by γnucI|B|. A similar effect occurs when a magnetic field is applied to an

isolated electron where the energy is lowered by geµB|B|; where µB = eℏ/2me = 1
2a.u.

is the Bohr magneton.

For an isolated closed shell atom, the applied magnetic field induces an effective

current via circulating electrons that produces an opposing magnetic field. This effect

is represented by σorb, the chemical shift tensor. This effect is the orbital shielding,

and the Hamiltonian corresponding to this interaction is given by γnucB · σorb · Inuc.

For a diamagnetic molecule, there are additional interactions, such as the direct nu-

clear dipole-dipole coupling, indirect nuclear spin-spin coupling and for nuclei with



6.4. THE PSEUDOSPIN APPROACH TO PARAMAGNETIC NMR 181

spin > 1/2, the quadrupole coupling interactions represented by the tensors DKL,JKL

and QK respectively, leading to a spin Hamiltonian of the form:

HNMR = −γK

nuclei∑
K

B · (1 − σK) · IK +
nuclei∑

K

IK · QK +
nuclei∑

K,L<K

IK · (DKL + KKL) · IL. (6.4)

In this work higher order effects DKL,JKL and QK are ignored. For a system with un-

paired electrons, there is a permanent magnetic moment associated with the electronic

spin. It is energetically favourable for the associated (reversed) magnetic moment to

align with an applied magnetic field and the resulting (thermally averaged) dipole

must be accounted for. The corresponding paramagnetic NMR spin Hamiltonian is

given by:102,108–110

HpNMR = −γK

nuclei∑
K

B · (1 − σK) · IK + µBB · g · S̃ +
nuclei∑

K

S̃ · AK · IK + S̃ · D · S̃, (6.5)

where S̃ is the effective spin, or pseudospin which is discussed in the previous section.

The Zeeman coupling matrix (often referred to as the g tensor, although it is not a

true tensor) represents the interaction between the effective spin and the magnetic

field. The zero-field-splitting (ZFS) tensor D represents the interaction between elec-

tronic spin dipoles, and is only non-zero when the electronic spin is greater than 1/2.

Spin-orbit coupling (SOC) has a significant effect on these quantities. The hyper-

fine coupling constant matrix A represents the interaction between the nuclear and

electronic spin dipoles. The leading SOC effect is second order, referred to as the

paramagnetic spin-orbit (PSO) effect and results from nuclear-spin and electron-orbit

interactions. For light atoms this can often be ignored, but is much more significant for

heavy atoms or light atoms directly bonded to heavier atoms; the heavy-atom light-

atom (HALA) effect. The magnitude of this effect is not always intuitive, so PSO

corrections are needed in such cases. As an example the sign of Aiso for the protons

of the closely related molecule [U(CHT)2]−, where CHT is the 1,3,5-cycloheptatriene

trianion has been experimentally determined to be negative,123,124 and this appears to

be due to a spin-orbit induced PSO mechanism. While the formal oxidation state of

the central atom is +5, i.e. U(V), the covalency of the metal-ligand η bond means

that the compound has significant f 3 character corresponding to an oxidation state of

+3.124
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6.4.1 Orbital shielding, σ

We calculated the orbital shielding matrices using the ORCA 4.2.1 package, using un-

restricted Kohn-Sham DFT and the PBE0 functional. We also utilised gauge-including

atomic orbitals (GIAO).33,142,226 Scalar relativistic effects were modelled using the Dou-

glas–Kroll–Hess approach to second-order (DKH2)172,173 with picture change transfor-

mations included. In all cases def-TZVP basis sets where used for light atoms and a

segmented all-electron relativistically corrected (SARC) basis set30,31 with a g polari-

sation function on the uranium atom for the metal.†

6.4.2 Hyperfine coupling matrix, A

Hyperfine parameters were calculated using ORCA 4.2.1, UKS/PBE0 and the zero-

order regular approximation (ZORA) for the scalar relativistic correction. For the

nuclei of interest, the basis was extended by three additional large exponent s func-

tions to better model the nuclear cusp following the methodology described in reference

2. Picture change transformations were applied. We have previously used the DKH2

approach for the calculation of hyperfine parameters, but the second-order PSO cor-

rection is a computationally expensive quantity and applying these corrections was

faster using the ZORA method than the DKH2 method.

6.4.3 CASSCF and active space selection

For a multiconfigurational system with low lying excited states of differing multiplic-

ity and significant spin-orbit coupling, there is no reliable single reference approach

to calculate the Zeeman coupling and ZFS matrices. A multi-reference technique is

essential, such as the CASSCF method.60,61

Unfortunately there is no prescriptive procedure to selecting the active space, so

we will discuss and justify the selection process that we adopted in this work. In the

following discussion a CASSCF calculation with Ne active electrons and No active

orbitals is abbreviated CASSCF(Ne, No). One approach is to perform an unrestricted

Kohn-Sham (UKS) calculation and form the corresponding natural orbitals.227 As a

first step, we may select the orbitals with UNO occupation numbers lying between

0.02–1.98; this approach can produce very small active spaces,63 and this approach
†TVZP quality with 29s20p16d12f1g/

21s13p10d7f1g uncontracted/contracted gaussian functions for a uranium atom.
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would imply a CASSCF(2,2) calculation, i.e. two singly occupied f orbitals, with

only a single configuration for S = 1 and no S = 2 configuration possible, this clearly

is not suitable for studying properties dependent on interactions between electronic

states, such as the Zeeman matrix.

Figure 6.7 shows the crystal field splitting for an uranium atom in a D8h field and

reference 209 presents a combination of this with the energy levels of the two COT2−

rings. The energy of the f orbitals are between the π2 bonding and π3 antibonding

orbitals, and the d orbitals straddle the π3 orbitals (dσ below, dπ and dδ above ).

Figure 6.8 shows the candidate orbitals for the active space from a CASSCF(10,13)

calculation using quasi-restricted orbitals (QROs)41 from the UKS/UNO calculation

with symmetry labels for D2h, QROs were more suitable starting orbitals than UNOs

due to reduced mixing between formally orthogonal orbitals and less delocalisation:

most notably fπ and fϕ orbitals which have e1u and e3u symmetry respectively in D8h

but have b2u, (l = −1 or l = −3) or b3u, (l = 1 or l = 3) symmetry in D2h. The

gerade and ungerade π0 molecular orbitals can interact with the dσ and fσ, but the

ring orbitals are very low lying, so the interaction is limited, and the π0 orbitals can

be excluded from the active space. A similar argument holds for the π4 orbitals. The

interactions between the π1 orbitals with dπ or fπ,§ and π3 with fϕ or fϕ molecular

orbitals are marginally stronger.

As previously stated, the π2g orbitals interact strongly with the dδ orbitals and

the π2u orbitals interact strongly with the fδ. This results in the η-bonding that

stabilises the molecule, The first bonding pair represents a weak η : π−dδ bond, with

the electron density primarily on the ring orbitals. The orbitals on the ring are similar

to those predicted for the two HOMOs for the two planar COT dianions. The second

bonding pair represents a weak η : π−fδ bond, again with the electron density residing

primarily on the ring orbitals. The corresponding antibonding orbitals are dominated

by the metallic orbitals and are labelled as η∗
d and η∗

f orbitals respectively. These along

with the remaining d and f orbitals are candidates for a (10,16) active space.

§Some studies include one of the the pairs of π1
209
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Figure 6.7: Crystal field splitting of a f -block element induced by a D8h field. (D2h

labels are in green.)

This active space was sufficient to build the metal-centroid potential energy curve

(PEC) for UCOT2, but SA-NEVPT2-SOC(10,16) calculations proved to be too expen-

sive. However looking at the excited states of this calculation showed that very few

CSFs contained dσ and dπ orbitals. These corresponded to high energy excitations,

and as a result these were removed to give the main active space. Removing these

leaves b2g and b3g unrepresented in the one-electron orbitals, but studies that include

b2g and b3g in the active space orbitals imply minimal involvement.209 This leaves a

thirteen orbital active space (the eight η orbitals, fσ, fπ and fπ orbitals). This is the

active space that this work uses.
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Figure 6.8: Candidate orbitals for the active space of uranocene taken from a
CASSCF(10,13) calculation. The active space used in this work was the eight ηd

and ηf bonding and antibonding orbitals, and the five remaining f orbitals (fσ, fπ

and fϕ). Symmetry labels are for D2h.
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To further justify our selection, we used the iterative configuration expansion

(ICE)200 method. This method uses a truncated form of the CI wavefunction, selects

the most important components and iteratively improves the wavefunction. Figure 6.9

shows the orbital occupation that results from a CASSCI-ICE(22,60) with the active

space coloured; blue for the ηd orbitals, red for the ηf orbitals and green for the re-

maining f orbitals. As can be seen, orbitals outside the active space have occupations

below 0.02 (unoccupied) or above 1.92 (occupied).

Kerridge has studied a number of lanthanocene and actinocene compounds under

D2h symmetry208,209,228 and varies the active space according to computational de-

mands of the species. All calculations assume that the carbon and hydrogen atoms

are in the same plane and exploit symmetry to ensure that the eight irreps are spanned.

For uranocene, the inclusion of the fσ orbital creates an unphysical imbalance in the or-

bital energies because it can mix with the b1u ηf orbital in D2h (but not inD8h). Similar

comments are the case for the dσ orbital which can mix with the ag η0 orbital, how-

ever the former orbital is present in some of the excited states in the CASSCF(10,16)

calculations, and may be magnetically important, so it is retained. This means that

the D2h CASSCF orbital energies differ from that which would be present in the true

D8h symmetry.

Figure 6.9: Orbital occupation numbers from a CASCI-ICE(22,60) calculation on
U(COT)2, using the QROs from a DFT/PBE0 calculation (basis as in text).

.
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6.4.4 The Zeeman matrix and the ZFS tensor

Single reference approaches to calculating the g matrix149,176 are only effective in

systems that lack near degeneracies and where spin-orbit coupling is weak enough

that it can be applied as a first-order perturbation. This is typically not true for f

element species. We used a multiconfigurational approach, specifically state-averaged

CASSCF (SA-CASSCF) calculations described in the following section, with DKH2

used to model scalar relativistic effects. Again the heavy elements used a SARC basis

set and the remaining elements use def2-TZVP basis.

The best SA-CASSCF state averaging over the three interacting spin states (since

the SOC operator can couple states with ∆S = 0,±1) and most appropriate pseu-

dospin was obtained via the following process:

1. A series of SA-CASSCF calculations at the dominant spin state to establish the

optimum number of these states to include. This is typically gauged by the

convergence of the g-matrix, and an energy cut-off. This study originally used

a cut-off of 2 eV, but this was adjusted to a cut-off of 0.5 eV from the ground

state due to the known state-averaging instability of actinocenes.209

2. A CASCI calculation using the orbitals from the optimum number of SA roots

(single spin), but including additional ∆S = 0,±1 roots. From this, we establish

which ∆S = ±1 to include in the calculation from the relative energies. Figure

6.10 shows an example for U(COT)2, with the red line showing the 2 eV cut-off

for SOC inclusion. The first S = 2 root occurs 4 eV above the first S = 1 root,

so these are excluded.

3. A CASCI/NEVPT2-SOC calculation using the orbitals in the previous calcula-

tion with additional roots.

Dynamic correlation was modelled using a final NEVPT2 calculation.69 The effec-

tive Hamiltonian approach32,59 was used for both matrices.

In an attempt to make the pseudospin choice more quantitative, we are using

Boltzmann populations (at 300 K) to assess the energy level separations, implying

that the effective pseudospin is temperature dependent (increasing the temperature

makes more states accessible).
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CASCI, Relative Energy (eV)
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S = 0

S = 1

Figure 6.10: Example of (unsymmetrical) CASSCF state selection for U(COT)2. This
shows a CASCI/NEVPT2 calculation following a SA-CASSCF calculation with 18
S = 1 roots. Red dotted line shows the 2 eV energy level cut-off for SOC inclusion.
Symmetrical root selection diagrams are given in Appendix C.

6.5 Results
6.5.1 Geometry optimisation

Following our previous work,2,28 we initially attempted to optimise the geometry of

uranocene using GAUSSIAN 09169 via unrestricted density functional theory with the

PBE0 functional55 and a SARC basis set with a single set of g polarisation functions on

the uranium atom30 and a def2-TZVP basis set on the lighter atoms. Scalar relativistic

effects were included by using an in-house program interfaced to GAUSSIAN that

implements an atomic (one centre) form of the zeroth-order regular approach in its

analytic form (aZORA).27 This has the advantage of removing the gauge dependence

issue and enables the use of analytic gradients.

The optimisation produced a ring-metal separation of 1.85 Å, which compared un-

favourably with the experimentally measured result of 1.926 Å. CASPT2 calculations

by Kerridge218 produce a much closer result of 1.907 Å. This could imply that single-

reference techniques cannot be used to fully optimise the geometry. To investigate this

we optimised a series of seven actinocenes (AnCOT2: An = Th–Cm).

Figure 6.11 shows the calculated DFT/aZORA ring-metal separations compared

to the aforementioned paper’s CASPT2 data. We judged that excluding uranocene

and neptunacene, the DFT/aZORA results were competitive. The considerable multi-

configurational nature of the ground-state of uranocene and neptunacene means that

they cannot be fully optimised by DFT.
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Figure 6.11: Performance of DFT/aZORA for optimising An(COT)2, An = Th-Cm,
compared against CASPT2 results,218 black line shows perfect correlation, red line
shows line of best fit (including U(COT)2 and Np(COT)2.

Hence partial optimisations using D8h symmetry were performed for each complex,

fixing the experimental ring-metal separation (i.e. ring centroid to metal distance) and

allowing the distance between the ring-centroid and the carbon and hydrogen atoms to

vary along with the metal-centroid-hydrogen angle. Equivalent partial optimisations

at the DFT/aZORA level were performed for a range of fixed centroid-metal distances

for [U(COT)2]− (1.85 − 2.05 Å, in increments of 0.01Å). The NEVPT2 single point

energies for the first eight states for each of the Au, B1u, B2u, B3u irreducible represen-

tations of the molecule were calculated for an 11 electron, 13 orbital active space (the

choice of active space is discussed in Section 6.4.3). The ground spin-free state had Au

symmetry and the corresponding potential energy curve is plotted in Figure 6.12. The

minimum of the line of best fit (sixth-order polynomial) was found to occur at centroid-

metal distance 1.9980 Å. The corresponding DFT/aZORA optimisation gave a value

of 1.9486 Å, was considered insufficently accurate and all following optimisations for

U(III) are partial DFT/aZORA optimisations with our NEVPT2 centroid-metal dis-

tance. A similar calculation for [Np(COT)2]− (S.I. Figure C.1) produces a value of

1.9310 Å (NEVPT2), while the DFT/aZORA result was 1.9486 Å (DFT): this DFT

result was considered trustworthy.
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The geometry of all species were optimised via a constrained Z-matrix enforcing

the D8h symmetry of the ring carbon atoms. Parallel optimisations excluding sym-

metry led to eclipsed conformations in all cases, with the ring carbons showing only

minor deviations from D8h, plausibly a single-determinant artifact. We also observed

a bending of the C-H bond towards the metal. Similar bending has been observed for

substituents, and this is speculated to increase η overlap with the ring π system and

d and f orbitals without compromising the aromaticity of the ring.223

A NEVPT2 potential energy curve for U(COT)2 against the angle was constructed

to confirm the accuracy of the partial optimisation, and to confirm that it was not an

artifact of using DFT. This is shown in Figure 6.13. The partially optimised X-C-H

angle was 6.7◦, while the NEVPT2 fitted value was 6.5◦, so we judged that the partial

optimisation was reliable.

Substituted species typically have the same eclipsed C-H conformation as the un-

substituted analogues, but the substituted groups do not face each other, hence the

symmetry is reduced to C2h. Experimental measurements imply that the uranium-ring

distance is invariant to substitution,213 justifying the partial optimisation strategy.

The spin multiplicity for all single-reference calculations corresponds to the electronic

configuration of the free ion, i.e. AnIV.

For 1,1’-dimethyluranocene, each methyl group is known to bend towards the ura-

nium atom, and it is explained that “the change in hybridization of the ring car-

bons” achieves better overlap with the uranium fδ and dδ orbitals.223 For 1,1’-ditert-

butyluranocene, the tert-butyl group bends away from the uranium due to van der

Waals repulsion between the bulky group and the opposite annulene-H atom.223 The

partially optimised geometries agree with this result, the X-C-C angle bends 2.0◦

towards the uranium atom for the methyl substituent and 2.8◦ away from the ura-

nium atom for the tert-butyl group (the experimental range for this bending was es-

timated as between 0.5-6.5◦ for the staggered four-fold methyl substituted uranocene

(1,1’,3,3’,5,5’,7’,’8)-octamethyl uranocene.223)
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Figure 6.12: Potential energy curve for variation in U-X distance for , where X indicates
the centroid of the COT ring. Ground state NEVPT2 energies with a (10,13) active
space. Red line indicates line of best fit to a sixth-order polynomial.

Figure 6.13: Potential energy curve for variation in X-C-H angle for uranocene, where
X indicates the centroid of the COT ring. Ground state NEVPT2 energies for ura-
nocene with a (10,13) active space. Red line indicates line of best fit to a sixth-order
polynomial.
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6.5.2 pNMR of neutral uranocenes

Edelstein212 et al. measured the NMR spectral resonance of uranocene in deuterated

tetrahydrofuran (THF-d8) sealed under argon over temperatures ranging from 198 to

353 K, using the dianion (COT2−) as the reference. Restandardising to tetramethyl-

silane (TMS), the single shift was measured to occur at −36.63 ppm (30◦C), while

we calculated a shift of -38.66 ppm (30◦C). The paper used the Bleaney formula194,197

to estimate the pseudocontact shift at 302 K to be 8.6 ppm, with the contact and

pseudocontact shifts acting to shield the proton. The Bleaney relationship gives an

angular dependence of the pseudocontact contact shift as proportional to (3cos2θ−1),

where θ is the angle of the proton to the anisotropy axis. Due to the assumption

that the protons were coplanar with the carbon ring, this result was flawed and we

calculated a pseudocontact shift of 12.86 ppm. The contact shift (32.69 ppm) is larger

than the pseudocontact , which corresponds to the significant alpha spin density on

the ring protons (Löwdin alpha spin density of 0.000059 Bohr−3).

Figure 6.14 compares the calculated temperature dependence for the 1H pNMR

of uranocene against the experimental temperature dependence. In both cases the

relationship is nearly linear with respect to reciprocal temperature, although the cal-

culated gradient is larger than the experimental one. This difference may be a result

of the single reference calculation of the hyperfine matrices not fully representing the

spin-orbit mediated interaction, or due to conformational interchange. The magnetic

susceptibility of uranocene follows213 the Curie–Weiss law (i.e. it is inversely propor-

tional to (T−Tc) where T is the temperature and Tc is the curie temperature), and the

proton NMR shows a corresponding linear relationship with the inverse temperature.

Paramagnetic NMR of substituted uranocenes are well documented in Luke and

Streitwieser’s summary of NMR studies of neutral uranocenes.213 The 1,1’-substituted

methyl and tert-butyl uranocene compounds were prepared in d8-toluene and measured

against tetramethylsilane (TMS). Both spectra produced five singlet peaks, with the

six methyl protons and the two 5’- protons identified by integration. Tentative as-

signments were made by assuming that the central uranium atom locally experiences

C8 symmetry, and the differences in chemical shifts are entirely due to differences in

contact shift. Further deuterium labelling studies were able to identify the 4’ proton,
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Figure 6.14: Calculated temperature dependence of the 1H pNMR resonance for
U(COT)2 vs. the experimental temperature dependence. Shift is measured from that
of COT2−.212

but argues the 2’,3’ ordering on kinetic studies and the likely populations of the con-

formers. However the principal axis of the ZFS tensor is predicted to lie along the C2h

axis, hence the pseudocontact term, while smaller in magnitude oscillates. Figure 6.15

compares the calculated proton NMR with the experimental NMR. Assignments are

from the calculation, and correctly identify the methyl and 5’- protons. Our results

agree with the assignment of the 4’ protons, but swap the 2’ and 3’ protons.
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Figure 6.15: Left: Calculated qualitative 1H pNMR shifts (ppm) vs. experimental
shifts (ppm) for U(COTMe)2, assuming S̃ = 3/2. The line of best fit is indicated in
red, and the dotted line indicates perfect correspondence. Black square indicates the
methyl hydrogen, numbers indicate position relative to substituent.
Right: Calculated qualitative 1H pNMR shifts (ppm) vs. experimental shifts (ppm)
for U(COTtBu)2, assuming S̃ = 3/2. The line of best fit is indicated in red, and
the dotted line indicates perfect correspondence. Black square indicates the methyl
hydrogen, numbers indicate position relative to substituent.
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6.5.3 pNMR of anionic uranocenes

Eisenberg214 et al. prepared potassium bis([8]annulenediyl)uranate(III), K+[U(COT)2]−

and obtained the 1H NMR spectrum from a solution in d8-THF, obtaining a single

peak at −31.80 ppm relative to TMS (20◦). We calculated this paramagnetic NMR

shift using the PNMRshift program made available from Autschbach’s group,131,134,135

however because the calculated ZFS tensor was nearly axial, the SOC states were a

pair of Kramers’ doublets separated by 0.08 eV, indicating a perfect model pseudospin

of 3/2 (in this case equal to the true spin), this provided our first opportunity to use

the van den Heuvel and Soncini ITO approach1 to third order in a real molecule. This

was achieved in Matlab by combining the {Lx,Ly,Lz} and {Sx,Sy,Sz} to form the

corresponding µ matrix in the spin-orbit free (SOF) CASSCF states, parsing the spin-

orbit state descriptions to rotate µ into the NEVPT2-SOC basis and truncating the

result into a 4×4 complex matrix. This was then used to generate first- and third-order

Zeeman ITO coefficients (g(1)
z0 the g(3)

z0 ) and the first-order hyperfine analogue, with the

remaining third order coefficient obtained by assuming that the ratio of the Zeeman

coefficients is the same as that of the hyperfine coefficients. This process is described

in ref 1. Autschbach’s PNMRshift program gives a predicted shift of −27.06 ppm,

while the ITO decomposition gave a result of −29.86 ppm. The latter is clearly closer

to the experimental value. As a technical note, the ZFS tensor was only recovered at

the NEVPT2-SOC level, the corresponding state-averaged CASSCF-SOC calculation

returns a zero ZFS tensor due to orbital degeneracies.

6.6 Conclusions

In this paper we have studied four molecules, and made qualitative predictions of their
1H pNMR shifts. These predictions only slightly differ from earlier models, which used

the Bleaney model and an assumption that the hydrogen atoms are coplanar with the

carbon atoms. Nonetheless due to the small differences in shifts, our predictions remain

tentative. The ITO model of van den Heuvel and Soncini shows considerable promise

if higher order hyperfine terms can be produced.



Chapter 7

Conclusions and future work

The main purpose of this work, was to facilitate the qualitative assignment and predic-

tion of pNMR shifts in actinide complexes and to move towards quantitative prediction.

Chapter 4 successfully assigned the 1H, 13C and 28Si pNMR of five f 3 actinide

complexes. It also demonstrated and measured the importance of modelling zero-

field splitting (ZFS) by a simple zero-field splitting model, using an empirical pseu-

dospin of S̃ = S = 3/2. The only lanthanide compound that is detailed in this

thesis presented a more significant challenge due to its closely spaced shifts. A sim-

ple approach to modelling ZFS was implemented, however it has been superseded by

an open source package from Autschbach’s group, pNMRShift, freely available from

https://github.com/jautschbach/pnmr-shift.

In Chapter 5 we improved our approach and resolved the 1H pNMR shifts for

U(DOTA) which have had competing suggested assignments. A complication was

the effects of conformer interchange, especially on the assignment of the equatorial

protons in U(DOTA) and its derivatives. Of particular interest was the observed 90◦

shift in the anisotropy axis following axial substitution by the anionic ligands and this

causes formally equivalent protons to not be magnetically equivalent in a static frame.

We have also been able to qualitatively predict the corresponding 13C pNMR shifts

and look forward to comparing these to future experiments. This included the first

use of our new MATLAB (and C++) code that uses the Irreducible Tensor Operator

(ITO) approach. This approach is limited due to the lack of availability for the matrix

representations of the three F̂̂F̂F I operators, and attempts to generalise the approach are

ongoing.

196
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The final research chapter started working on actinocenes, with the uranium atom

existing in a highly symmetrical environment. Four actinocenes were briefly studied

and assigned with the first use of an improved variant of our ITO program. While the

program is currently limited, it is, in principle an exact decomposition of paramagnetic

NMR shift contribution, since it has no theoretical limit on the order of operators used.

Other than the application of ZFS, it would be considerably better to generate

orbital and hyperfine matrices that explicitly include both static and dynamic corre-

lation, e.g. SC-NEVPT2, and we believe that once the ITO approach is generalised,

in many cases, this will be the largest remaining source of error. However, it must

be noted that the factorial scaling of the CASSCF approach greatly limits the size of

the active space, and this is a further constraint on the quality of the wavefunction

used. To generalise pNMR prediction to more complex actinide species will need to

use approaches that allow more flexibility, such as RASSCF, and the application of

dynamic correlation via perturbation theory.
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Appendix B: Supplementary Information for Chapter 5

Figure B.1: 18 triplet, 4 singlet SA-NEVPT2 individual state energies (eV from
lowest state) for [U(DOTA)H2O] and their contributions to the ZFS D parameter
(SARC/def-TZVP basis).

.

Figure B.2: 17 triplet, 8 singlet SA-NEVPT2 individual state energies (eV from
lowest state) for [U(DOTA)OH]− and their contributions to the ZFS D parameter
(SARC/def-TZVP basis).

.
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Figure B.3: 17 triplet, 8 singlet SA-NEVPT2 individual state energies (eV from lowest
state) for [U(DOTA)F]− and their contributions to the ZFS D parameter (SARC/def-
TZVP basis).

.

Figure B.4: Calculated 1H pNMR results vs. experimental3 results for U(DOTA)
using σorb from Th(DOTA). The line of best fit is indicated in red, and the dotted
line indicates perfect correspondence. Labelling as in Figure 5.12.
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Figure B.5: Calculated 1H pNMR results for TSA conformer vs. experimental3 results
for U(DOTA). The line of best fit is indicated in red, and the dotted line indicates
perfect correspondence. Labelling as in Figure 5.12.

Figure B.6: Calculated 1H pNMR results vs. experimental results for [U(DOTA)OH]−.
The line of best fit is indicated in red, and the dotted line indicates perfect correspon-
dence.
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Figure B.7: U(DOTA). Temperature dependence of proton shifts, calculated (right)
and experimental (left).
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Table B.1: Geometry of U(DOTA)
SAP TSA
U -0.001818 -0.001439 -0.590939 U 4.843922 1.704684 1.807434
N 0.568505 -2.044395 1.071704 N 2.530238 0.999585 2.511674
N 2.052954 0.571406 1.056681 N 3.712394 3.629222 3.000229
N -0.563167 2.056342 1.056577 N 4.666983 3.690293 0.242712
N -2.047809 -0.559580 1.072123 N 3.492860 1.092090 -0.244277
O -2.979972 -3.131542 -1.211890 O 4.070888 -1.216027 4.869891
O 1.723293 -1.231943 -1.247155 O 4.840440 0.570294 3.772208
O 1.224208 1.722476 -1.258198 O 6.681666 4.071985 4.945053
O -1.730228 1.223471 -1.248691 O 6.299042 2.921519 3.086352
O -1.231219 -1.731126 -1.236908 O 8.172130 3.301416 -0.402432
O 3.124843 -2.979871 -1.228105 O 6.673057 1.923730 0.468199
O 2.973322 3.122669 -1.255204 O 5.210809 -0.433782 1.099249
O -3.131064 2.972049 -1.238408 O 5.940485 -1.528566 -0.718740
C 1.197840 -3.038889 0.184705 C 2.725269 -0.320622 3.156817
H 1.737653 -3.814468 0.755175 H 2.767841 -1.032815 2.442775
H 0.402087 -3.525231 -0.399753 H 2.043736 -0.619689 3.648504
C 2.135022 -2.408046 -0.847290 C 1.993703 1.947979 3.543589
C 1.497813 -1.610401 2.125810 H 2.495221 1.706390 4.337491
H 1.977175 -2.490729 2.596344 H 0.865324 1.688428 3.695480
H 0.911622 -1.124508 2.920547 C 2.254558 3.379550 3.186569
C 2.586654 -0.665445 1.649328 H 1.743851 3.520552 2.254869
H 3.216114 -1.162287 0.900130 H 1.989073 3.870811 3.946021
H 3.252064 -0.437051 2.504129 C 4.421482 3.745975 4.288949
C 2.403593 2.134127 -0.868026 H 4.282481 3.062521 4.775938
C 3.041310 1.198921 0.161571 H 4.264017 4.625215 4.619350
H 3.523651 0.402006 -0.424626 C 3.922958 4.909015 2.251737
H 3.820847 1.739806 0.725603 H 4.866073 5.199999 2.474093
C 1.626004 1.503047 2.111599 H 3.227267 5.586182 2.536728
H 2.509524 1.983342 2.575140 C 3.757069 4.738376 0.773545
H 1.145385 0.918738 2.910922 H 3.980336 5.568220 0.360153
C 0.678051 2.591010 1.639092 H 2.822827 4.436614 0.469764
H 1.169730 3.218533 0.884867 C 6.053547 4.200414 0.133100
H 0.455904 3.258528 2.493894 H 6.423908 4.652158 0.829917
C -1.196994 3.043076 0.164127 H 6.163199 4.768911 -0.626353
H -1.733817 3.823700 0.730530 C 4.216723 3.260103 -1.100815
H -0.404237 3.524216 -0.428654 H 5.055868 2.837996 -1.581540
C -2.139497 2.403345 -0.857494 H 4.012636 3.951640 -1.534564
C -1.487202 1.631620 2.119103 C 3.090768 2.272193 -1.035048
H -0.897068 1.152773 2.915207 H 2.740313 1.975820 -1.847740
H -1.964245 2.516072 2.584223 H 2.290981 2.739205 -0.595035
C -2.578425 0.682522 1.656487 C 4.387304 0.215544 -1.039745
H -3.211687 1.172708 0.906111 H 5.000046 0.763385 -1.456270
H -3.239482 0.461763 2.516658 H 3.927084 -0.224525 -1.565881
C -2.408324 -2.139530 -0.836572 C 2.285961 0.311641 0.155022
C -3.040780 -1.195077 0.187824 H 1.662425 0.458031 -0.610694
H -3.526215 -0.403463 -0.402977 H 2.592457 -0.664594 0.375812
H -3.817339 -1.730875 0.760746 C 1.613954 0.906183 1.371712
C -1.615257 -1.481829 2.132998 H 0.872619 0.565803 1.534564
H -2.496303 -1.958004 2.605409 H 1.196171 1.877029 1.221387
H -1.130456 -0.890434 2.924544 C 3.963460 -0.338584 4.018052
C -0.669753 -2.573922 1.665116 C 5.915138 3.584317 4.104175
H -1.165292 -3.207891 0.918847 C 7.045135 3.056234 0.036015
H -0.443288 -3.234030 2.524524 C 5.238583 -0.671779 -0.180076
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Table B.2: Geometry of [U(DOTA)H2O]
U 0.000000 0.000000 0.000000
N -0.209497 2.134615 -1.696036
N -2.196393 -0.118634 -1.627409
N 0.051013 -2.117855 -1.725451
N 2.049781 0.137295 -1.787873
C -1.240608 1.904954 -2.716633
C -2.483075 1.205481 -2.199342
C -2.000450 -1.102405 -2.701799
C -1.290801 -2.371731 -2.268808
C 1.007628 -1.878293 -2.815528
C 2.288288 -1.182466 -2.389406
C 1.771773 1.133832 -2.831526
C 1.089473 2.395999 -2.334652
C -0.588860 3.239597 -0.802048
C -3.274347 -0.538850 -0.719667
C 0.493574 -3.230461 -0.871160
C 3.184290 0.551741 -0.947566
C -1.602476 2.833676 0.268646
C -2.836163 -1.600412 0.289665
C 1.588340 -2.820942 0.115314
C 2.798508 1.620451 0.077445
O -1.451397 1.601330 0.676073
O -1.587253 -1.476318 0.647785
O 1.456730 -1.587864 0.528009
O 1.574586 1.478967 0.512615
O -2.418637 3.619014 0.685162
O -3.615034 -2.422220 0.707916
O 2.446921 -3.595649 0.456377
O 3.578980 2.473601 0.419312
H -0.794753 1.309421 -3.527434
H -1.543109 2.866059 -3.176759
H -3.213575 1.126484 -3.027949
H -2.966943 1.817229 -1.427360
H -1.427012 -0.619989 -3.507406
H -2.976460 -1.378610 -3.146833
H -1.242676 -3.059286 -3.135703
H -1.879891 -2.892348 -1.503171
H 0.504139 -1.276678 -3.587141
H 1.274740 -2.835859 -3.304054
H 2.951022 -1.099818 -3.272912
H 2.830758 -1.799710 -1.661991
H 1.144670 0.658268 -3.600652
H 2.711603 1.422292 -3.342028
H 0.973713 3.089029 -3.190682
H 1.731884 2.914373 -1.611968
H -0.971771 4.110419 -1.362464
H 0.309500 3.550243 -0.247276
H -4.163317 -0.893655 -1.270178
H -3.567398 0.333075 -0.115256
H 0.832248 -4.097853 -1.464484
H -0.360135 -3.544613 -0.251714
H 4.038035 0.905819 -1.551572
H 3.509336 -0.320198 -0.359598
O -0.199962 0.007842 2.497951
H -0.790985 0.765561 2.633880
H -0.740608 -0.773507 2.689482
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Table B.3: Geometry of [U(DOTA)OH]−
U 0.000000 0.000000 0.000000
N -0.847288 -1.954069 1.984299
N -1.968398 0.849416 1.998631
N 0.852808 1.954328 1.983288
N 1.973965 -0.849526 1.994577
C -1.685475 -1.389942 3.040049
C -2.644479 -0.301319 2.590933
C -1.387751 1.693230 3.039373
C -0.296922 2.640335 2.569102
C 1.693193 1.389807 3.036916
C 2.651174 0.301222 2.585711
C 1.395432 -1.693736 3.036176
C 0.303592 -2.640653 2.567691
C -1.617220 -2.853905 1.122995
C -2.873975 1.612572 1.139828
C 1.620127 2.854248 1.120060
C 2.878111 -1.612281 1.133947
C -2.570900 -2.101392 0.185896
C -2.124505 2.543212 0.181897
C 2.569974 2.102360 0.178536
C 2.127042 -2.541903 0.176411
O -2.074573 -1.011014 -0.280454
O -1.043818 2.020458 -0.288257
O 2.071537 1.012476 -0.286536
O 1.044039 -2.019876 -0.289411
O -3.676103 -2.558494 -0.047876
O -2.566527 3.647282 -0.074990
O 3.674990 2.558597 -0.058033
O 2.565205 -3.648254 -0.077054
H -1.025296 -0.985907 3.822895
H -2.277367 -2.193053 3.529157
H -3.252774 0.002082 3.470128
H -3.355327 -0.704069 1.859185
H -0.980554 1.038202 3.824895
H -2.180300 2.297095 3.531624
H 0.012361 3.262171 3.436524
H -0.699916 3.341269 1.827936
H 1.034597 0.985769 3.821116
H 2.286381 2.192610 3.525059
H 3.261372 -0.002392 3.463498
H 3.360481 0.704077 1.852533
H 0.989891 -1.039073 3.822876
H 2.188921 -2.297931 3.526467
H -0.004438 -3.262677 3.435387
H 0.704959 -3.341365 1.825463
H -2.191688 -3.594924 1.711423
H -0.905014 -3.388065 0.475283
H -3.604962 2.201111 1.727270
H -3.417115 0.894998 0.505641
H 2.197214 3.594712 1.706717
H 0.905734 3.389051 0.475316
H 3.609957 -2.201213 1.719943
H 3.420442 -0.894583 0.499212
O -0.010643 -0.005154 -2.036829
H -0.052840 -0.015506 -2.988644
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Table B.4: Geometry of [U(DOTA)F]−
U 0.000000 0.000000 0.000000
N -0.142886 2.154488 -1.948747
N -2.155633 -0.106961 -1.920088
N 0.081676 -2.127874 -1.981325
N 2.095459 0.132501 -1.986507
C -1.152740 1.912528 -2.976765
C -2.411855 1.214067 -2.492433
C -1.936887 -1.083336 -2.986141
C -1.241313 -2.362547 -2.555062
C 1.058700 -1.873054 -3.037535
C 2.332743 -1.180668 -2.584334
C 1.842373 1.123244 -3.031474
C 1.161526 2.396449 -2.560852
C -0.531466 3.260309 -1.072072
C -3.250578 -0.522753 -1.039683
C 0.497765 -3.244680 -1.131460
C 3.218015 0.536764 -1.136196
C -1.646483 2.864982 -0.100180
C -2.852398 -1.680834 -0.115603
C 1.643555 -2.861589 -0.190921
C 2.849255 1.680853 -0.183052
O -1.511393 1.664808 0.358114
O -1.650744 -1.580657 0.336126
O 1.523892 -1.667261 0.286434
O 1.662407 1.573019 0.304662
O -2.535912 3.646837 0.172150
O -3.647455 -2.571597 0.121062
O 2.540866 -3.646923 0.042925
O 3.650974 2.568708 0.041551
H -0.691918 1.309399 -3.773968
H -1.450430 2.869669 -3.455884
H -3.115490 1.144538 -3.349131
H -2.919062 1.828889 -1.738917
H -1.341900 -0.599773 -3.776003
H -2.903927 -1.356084 -3.459661
H -1.179703 -3.033562 -3.438272
H -1.853843 -2.894162 -1.816656
H 0.573210 -1.260609 -3.812716
H 1.341063 -2.824244 -3.537336
H 3.008870 -1.099878 -3.461961
H 2.863264 -1.805474 -1.855443
H 1.222008 0.650420 -3.808196
H 2.793588 1.402718 -3.532414
H 1.072383 3.079664 -3.432294
H 1.797483 2.917714 -1.834936
H -0.842067 4.154488 -1.645637
H 0.339756 3.516713 -0.449685
H -4.154222 -0.804781 -1.612892
H -3.494846 0.326880 -0.383634
H 0.789612 -4.131504 -1.725919
H -0.353147 -3.508966 -0.484793
H 4.102538 0.827973 -1.734137
H 3.483889 -0.321841 -0.500571
F 0.032130 -0.015450 2.042523
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Table B.5: U(DOTA) Löwdin atomic charges and spin densities from a
18 triplet, 4 singlet SA-NEVPT2 calculation. Labelling as in Figure 5.12.

Atomic Spin Atomic Spin Atomic Spin
charge density C charge density H charge density

U 0.1672 1.599327 C↑ -0.2227 0.000221 A↑ 0.1553 0.000006
O† 0.0294 0.005396 C↓ -0.2315 0.000237 A↓ 0.1311 0.000012
O 0.0386 0.001402 Carm -0.1767 0.000284 E↑ 0.1366 0.000025
N 0.1341 0.000356 Ccarboxyl -0.4796 0.001253 E↓ 0.1389 0.000032

H↑ 0.1661 0.000014
H↓ 0.1388 0.000020

† DOTA ligand.

Table B.6: [U(DOTA)H2O] Löwdin atomic charges and spin densities from a
17 triplet, 8 singlet SA-NEVPT2 calculation. Labelling as in Figure 5.12.

Atomic Spin Atomic Spin Atomic Spin
charge density C charge density H charge density

U -0.0219 1.599328 C↑ -0.2332 0.000228 A↑ 0.1543 0.000007
O† 0.0209 0.005112 C↓ -0.2252 0.000204 A↓ 0.1306 0.000013
O 0.0309 0.000356 Carm -0.1807 0.000283 E↑ 0.1356 0.000023
N 0.1135 0.001297 Ccarboxyl -0.4866 0.001226 E↓ 0.1378 0.000029
O‡ -0.0837 0.001420 H↑ 0.1649 0.000016
H‡ 0.2105 0.000180 H↓ 0.1382 0.000022

† DOTA ligand, ‡ axial ligand.
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Table B.7: [U(DOTA)OH]− Löwdin atomic charges and spin densities from a
17 triplet, 8 singlet SA-NEVPT2 calculation. Labelling as in Figure 5.12.

Atomic Spin Atomic Spin Atomic Spin
charge density C charge density H charge density

U 0.0376 1.329279 C↑ -0.2398 0.000131 A↑ 0.1526 0.000005
O† 0.0389 0.003260 C↓ -0.2452 0.000140 A↓ 0.1247 0.000004
O -0.0265 0.000235 Carm -0.5086 0.000199 E↑ 0.1237 0.000016
N 0.1279 0.000924 Ccarboxyl 0.0389 0.000843 E↓ 0.1272 0.000019
O‡ -0.2540 0.006934 H↑ 0.1611 0.000013
H‡ 0.1584 0.000550 H↓ 0.1254 0.000020

† DOTA ligand, ‡ axial ligand.

Table B.8: ]
[U(DOTA)F]− Löwdin atomic charges and spin densities from a
17 triplet, 8 singlet SA-NEVPT2 calculation. Labelling as in Figure 5.12.

Atomic Spin Atomic Spin Atomic Spin
charge density C charge density H charge density

U 0.0929 1.330255 C↑ -0.2384 0.000131 A↑ 0.1531 0.000005
O† 0.0388 0.003439 C↓ -0.2441 0.000141 A↓ 0.1251 0.000005
O -0.0190 0.000245 Carm -0.5040 0.000203 E↑ 0.1247 0.000015
N 0.1284 0.000917 Ccarboxyl 0.0388 0.000878 E↓ 0.1281 0.000018
F -0.2382 0.005628 H↑ 0.1619 0.000014

H↓ 0.1263 0.000020
† DOTA ligand.
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Table B.9: Calculated pNMR shifts (ppm) for U(DOTA).
1H results A↑ A↓ E↑ E↓ H↑ H↓
Orbital shielding, σorb 25.34 36.84 30.61 30.88 21.37 26.07
S̃ = 1
Contact term, σc −12.74 37.04 −7.10 −7.68 −19.93 −8.10
Pseudocontact term, σpc −0.31 0.71 0.21 0.44 0.72 −0.82
Total shielding 12.29 74.60 23.71 23.64 2.16 17.14
Predicted shift† 19.29 −43.02 7.87 7.94 29.42 14.44
S̃ = 3/2
Contact term, σc 26.15 76.07 −14.60 −15.78 −40.92 −16.64
Pseudocontact term, σpc −0.60 1.34 0.40 0.83 1.37 −1.56
Total shielding −1.41 114.25 16.41 15.93 −18.18 7.87
Predicted shift† 32.99 −82.67 15.17 15.65 49.76 23.71
ITO Method
Pseudocontact term, σpc −15.85 48.21 −9.97 −11.36 −28.46 −9.05
Total shielding 9.49 85.05 20.64 19.52 −2.39 12.32
Predicted shift† 22.09 −53.47 10.94 12.06 38.67 14.56
Experimental shift 20.00 −54.50 −6.00 −0.60 38.00 18.00
†Shift from TMS reference.

13C results C↑ C↓ Carm Ccarboxyl

Orbital shielding, σorb 136.51 130.34 106.96 0.39
S̃ = 1
Contact term, σc 87.82 64.43 −29.29 205.98
Pseudocontact term, σpc 0.28 1.39 1.50 −10.96
Total shielding 224.61 196.16 79.17 195.41
Predicted shift† 193.03 −164.58 −47.59 −163.83
S̃ = 3/2
Contact term, σc 180.30 132.25 −60.15 422.91
Pseudocontact term, σpc 0.56 2.66 2.86 −20.61
Total shielding 317.37 265.25 49.67 402.68
Predicted shift† −128.34 −76.22 139.36 −213.65
†Shift from TMS reference.

Table B.10: Calculated pNMR shifts (ppm) for [U(DOTA)H2O].
1H results A↑ A↓ E↑ E↓ H↑ H↓
Orbital shielding, σorb 25.89 35.81 30.87 30.59 22.32 35.55
S̃ = 1
Contact term, σc −21.14 64.79 −13.90 −14.70 −34.27 −12.93
Pseudocontact term, σpc −2.00 6.26 1.67 1.04 −1.97 −2.58
Total shielding 2.75 106.86 18.64 16.93 −13.92 11.04
Predicted shift† 28.83 −75.28 12.94 14.65 45.50 20.54
S̃ = 3/2
Contact term, σc −26.15 76.07 −14.60 −15.78 −40.92 −16.64
Pseudocontact term, σpc −0.60 1.34 0.40 0.83 1.37 −1.56
Total shielding −1.41 114.25 16.41 15.93 −18.18 7.87
Predicted shift† 32.99 −82.67 15.17 15.65 49.76 23.71
Experimental shift 21.70 −56.70 −5.80 0.70 38.40 19.30
†Shift from TMS reference.
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Table B.11: Calculated pNMR shifts (ppm) for [U(DOTA)OH]−.
1H results A↑ A↓ E↑ E↓ H↑ H↓
Orbital shielding, σorb 28.59 26.31 29.33 29.22 33.00 29.75
S̃ = 1
Contact term, σc 0.92 −5.10 −7.14 −4.70 4.86 −0.08
Pseudocontact term, σpc −3.23 12.47 3.11 3.65 −9.49 −3.11
Total shielding 26.29 33.69 25.30 28.18 25.37 26.56
Predicted shift† 5.29 −2.11 6.28 3.40 6.21 5.02
S̃ = 3/2
Contact term, σc 2.09 −11.56 −16.20 −10.66 11.02 −0.18
Pseudocontact term, σpc −7.64 29.42 7.32 8.60 −22.54 −7.33
Total shielding 23.04 44.16 −8.88 27.16 18.48 22.24
Predicted shift† 8.54 −12.58 40.46 4.42 13.10 9.34
Experimental shift 3.30 −1.40 5.40 1.80 8.70 7.80
†Shift from TMS reference.

Table B.12: Calculated pNMR shifts (ppm) for [U(DOTA)F]−.
1H results A↑ A↓ E↑ E↓ H↑ H↓
Orbital shielding, σorb 29.43 26.81 28.50 29.35 29.44 29.61
S̃ = 1
Contact term, σc −4.86 −2.74 0.34 −4.56 4.93 −1.18
Pseudocontact term, σpc 2.28 9.79 −2.41 2.70 −7.75 −2.34
Total shielding 26.85 33.86 26.43 27.49 26.63 26.10
Predicted shift† 4.73 −2.28 5.15 4.09 4.95 5.48
S̃ = 2
Contact term, σc −17.99 −10.15 1.24 16.90 18.26 −4.36
Pseudocontact term, σpc 8.45 36.10 −8.96 10.00 28.42 −8.63
Total shielding 19.89 52.76 20.78 22.45 19.28 16.63
Predicted shift† 11.69 −21.18 10.80 9.13 12.30 14.95
Experimental shift 10.02 −22.00 4.4 1.8 9.9 16.60

13C results C↑ C↓ Carm Ccarboxyl

Orbital shielding, σorb 128.96 127.64 116.43 8.60
S̃ = 1
Contact term, σc 11.53 14.90 3.04 88.53
Pseudocontact term, σpc 6.95 5.26 −5.72 −16.21
Total shielding 147.44 147.80 113.75 80.92
Predicted shift† 41.59 41.23 75.28 108.11
S̃ = 2
Contact term, σc 42.70 55.19 11.24 327.82
Pseudocontact term, σpc 25.77 19.50 −21.19 −54.77
Total shielding 197.43 202.33 106.48 281.65
Predicted shift† −8.40 −13.30 82.55 −92.62
†Shift from TMS reference.



Appendix C: Supplementary Information for Chapter 6

These are provisional results for the DFT/aZORA optimised geometries, with the

original state averaging based on CASSCF (1 eV state averaging, 2 eV included in

the Zeeman/ZFS calculation). NEVPT2 analogues with a more conservative scheme

is progressing.

Table C.1: Geometrical parameters for the neutral and anionic actinocenes M(COT)2
and [M(COT)2]−, showing the centroid-metal distance, rMX , the centroid-carbon dis-
tance rXC , the centroid-hydrogen distance, rXH , and the metal-centroid-hydrogen an-
gle AMXH . Distances are in Angstrom, angles are in degrees.

Neutral Anion
M rMX rXC rXH AMXH rMX rXC rXH AMXH
Nd 1.9637 1.8436 2.9347 178.38 1.9959 1.8452 2.9372 178.18
Pm 1.9297 1.8429 2.9342 178.41 1.9770 1.8444 2.9362 178.10
Sm 1.9397 1.8431 2.9347 178.53 1.9656 1.8441 2.9357 178.03
Eu 1.9386 1.8437 2.9354 178.57 1.9786 1.8447 2.9367 178.16
Gd 1.9047 1.8448 2.9358 178.39 1.9376 1.8453 2.9364 177.89
U 1.9240† 1.8422 2.9304 177.53 1.9980‡ 1.8458 2.9364 177.77
Np 1.8900† 1.8412 2.9291 177.43 1.9486 1.8464 2.9375 177.89
Pu 1.8581 1.8423 2.9306 177.55 1.9290 1.8453 2.9364 177.86
Am 1.8578 1.8428 2.9321 177.79 1.9521 1.8457 2.9371 177.97
Cm 1.8982 1.8452 2.9354 178.14 1.9622 1.8466 2.9379 178.00
† Partial optimisation with experimental ring separation.
‡ Partial optimisation with NEVPT2 ring separation.
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Table C.2: Metallocene Z-matrix. Parameters as in Table C1.
M Constants
X1 1 0.1 ninety 90.0
X2 1 rUX 2 ninety a0 0.0
X3 1 rUX 2 ninety 3 line a1 45.0
C 3 rXC 1 ninety 2 a1 a2 90.0
C 3 rXC 1 ninety 2 a3 a3 135.0
C 3 rXC 1 ninety 2 a4 a4 180.0
C 3 rXC 1 ninety 2 a5 a5 225.0
C 3 rXC 1 ninety 2 a6 a6 270.0
C 3 rXC 1 ninety 2 a7 a7 315.0
H 3 rXH 1 aXCH 2 a0 line 180.0
H 3 rXH 1 aXCH 2 a1
H 3 rXH 1 aXCH 2 a2 Variables
H 3 rXH 1 aXCH 2 a3 rUX Distance metal to centroid, X2, X3
H 3 rXH 1 aXCH 2 a4 rXC Distance centroid to carbon atom
H 3 rXH 1 aXCH 2 a5 rXH Distance centroid to hydrogen atom
H 3 rXH 1 aXCH 2 a6 aXCH Angle metal-centroid-hydrogen
H 3 rXH 1 aXCH 2 a7
C 4 rXC 1 ninety 2 a0
C 4 rXC 1 ninety 2 a1
C 4 rXC 1 ninety 2 a2
C 4 rXC 1 ninety 2 a3
C 4 rXC 1 ninety 2 a4
C 4 rXC 1 ninety 2 a5
C 4 rXC 1 ninety 2 a6
C 4 rXC 1 ninety 2 a7
H 4 rXH 1 aXCH 2 a0
H 4 rXH 1 aXCH 2 a1
H 4 rXH 1 aXCH 2 a2
H 4 rXH 1 aXCH 2 a3
H 4 rXH 1 aXCH 2 a4
H 4 rXH 1 aXCH 2 a5
H 4 rXH 1 aXCH 2 a6
H 4 rXH 1 aXCH 2 a7
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Table C.3: Character table for point group D2h.
Function order

D2h E C2(z) C2h(y) C2h(x) i σxy σxz σyz 1 2 3
Ag +1 +1 +1 +1 +1 +1 +1 +1 - x2, y2, z2 -
B1g +1 +1 -1 -1 +1 +1 -1 -1 Rz xy -
B2g +1 -1 +1 -1 +1 -1 +1 -1 Ry xz -
B3g +1 -1 -1 +1 +1 -1 -1 +1 Rx yz -
Au +1 +1 +1 +1 -1 -1 -1 -1 - - xyz
B1u +1 +1 -1 -1 -1 -1 +1 +1 z - z3, y2z, x2z
B2u +1 -1 +1 -1 -1 +1 -1 +1 y - yz2, y3, x2y
B3u +1 -1 -1 +1 -1 +1 +1 -1 x - xz2, xy2, x3



APPENDIX C. SI FOR CHAPTER 6 234

Figure C.1: 5Ag Potential energy curve for the neptunium-centroid (of either COT
ring) separation of [Np(COT)2]− NEVPT2(11,13).


