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A B S T R A C T   

Reducing the shipping sector’s contribution to climate change requires urgent emission reductions this decade. 
Both weather routing and wind propulsion offer immediate solutions, where combining sails with efficient 
routing amplifies the performance of each technology. However, while large emission savings are theoretically 
available, the impact of stochastic uncertainty from wind forecasts is unknown. Here, we present a novel 
approach that exploits fuel consumption calculations from over a thousand departures across three routes to 
characterise stochastic uncertainty. We show that routes with ideal wind conditions and long voyage times are 
most sensitive to uncertain forecast inputs, reducing savings from Flettner rotors and weather routing by up to 
44% when a priori weather routing strategies are used. This paper further shows how an adaptive weather 
routing strategy can be used as an accurate prediction tool to reduce uncertainty on all routes investigated, 
reliably amplifying carbon savings from Flettner rotors by between 1.16 and 2.48 times typical great circle route 
savings. Overall, this paper provides greater assurance around the previously estimated carbon savings that 
serves to strengthen confidence in a wind-assisted decarbonisation strategy and its potential to provide essential 
emission reductions this decade.   

1. Introduction 

The climate emergency requires all sectors to urgently reduce their 
carbon emissions to avoid dangerous levels of climate change. The in-
ternational shipping sector contributes to 2–3% of global carbon emis-
sions annually (IMO, 2020) and existing industry targets aim to cut 
carbon by 50% relative to 2008 levels by 2050 (IMO, 2018). Studies 
show that this target falls short of the deep and urgent cuts required to 
avoid a 1.5 ◦C global temperature rise in line with the Paris Climate 
Agreement. According to Bullock et al. (2022), the sector must accel-
erate its ambition and shift focus towards urgent short-term action to cut 
CO2 by 34% by 2030 with full decarbonisation by 2050. Moreover, the 
existing shipping fleet could consume 135% of a 1.5 ◦C Paris compatible 
carbon budget if the sector implements no mitigation measures, as the 
long lifetime of ships commits the industry to carbon emissions for de-
cades into the future (Bullock et al., 2020). Urgent action that targets 
retrofit technologies on existing ships is therefore an essential compo-
nent of a Paris-aligned emission trajectory for international shipping. 

Wind propulsion technology aligns with this short-term focus, where 

sails such as Flettner rotors, wing sails and suction wings produce direct 
energy from the wind to reduce the power consumed by a ship’s engine. 
Over twenty installations across the last decade show emerging interest 
in the technology as stakeholders in the sector attempt to decarbonise 
and reduce operational expenditure (IMO, 2022). While wind propul-
sion could generate some of the urgent short-term carbon savings 
needed to keep the sector within the scientific interpretation of the Paris 
Climate Agreement, the technology also reduces the long-term risk 
posed by uncertain low-carbon shipping fuels and could partially shield 
ship owners from risks such as fuel cost volatility and bunkering avail-
ability (Ampah et al., 2021). Furthermore, ship owners can install wind 
propulsion to meet the sector’s energy efficiency existing index (EEXI) 
and the carbon intensity indicator (CII) target introduced in 2023, to 
combat rising emissions in the sector. 

Studies demonstrate a synergistic benefit from combining wind 
propulsion technology with weather routing software (Marie and 
Courteille, 2014; Mason, 2021). Weather routing facilitates greater 
carbon savings from wind propulsion by allowing a ship to deviate from 
standard shipping routes to search for advantageous wind profiles. 
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Mason (2021) shows that weather routing can substantially increase the 
carbon savings from a wind-assisted Panamax bulk carrier to over 30% 
on particularly favourable routes. While such large carbon savings 
would likely be very attractive to the shipping sector if realised in 
practice, theoretical savings may differ from reality due to idealised 
parameters assumed within weather routing methods in the literature. 
Studies optimise shipping routes using idealised reanalysis wind data 
(Zhang et al., 2013; Bentin et al., 2016), which assumes a perfect his-
torical foresight of future weather. While this is useful to understand the 
maximum benefits available from the technology, only wind forecast 
data is available to ships operating in real-time, which introduces 
uncertainties. 

All studies that integrate wind forecast data to calculate weather 
routing use a priori optimisation strategies (Ueno et al., 2004; Marie and 
Courteille, 2014; Yoshimura et al., 2016). In vehicle routing problems, a 
priori strategies use information that is available at the start of the 
journey only (Manseur et al., 2018). For ships, this involves utilising the 
weather forecast that is available to the ship as it departs. While a priori 
methods are not used in practice, they are useful in theory to estimate 
the potential benefits of weather routing. However, a priori methods are 
limited, as wind conditions could deviate from the forecast as the ship 
moves along its journey due to stochastic uncertainty. Wind that de-
viates from the initial forecast prediction could detrimentally reduce the 
carbon savings from weather routing as the ship travels along an un-
certain optimum route. There remains a knowledge gap around the 
sensitivity of a priori weather routing to wind forecast data in existing 
scientific studies. 

In this regard, Yoshimura et al. (2016) investigate how forecast un-
certainties impact ships with wind propulsion when using a priori 
weather routing strategies. By using 21 ensemble forecast members on a 
case study departure in the Pacific Ocean, the authors demonstrate that 
stochastic wind forecasts can generate substantial uncertainty, as fuel 
savings vary from 32% to 92%. Moreover, Rosander and Bloch (2000) 
show that stochastic uncertainty removes all benefits from weather 
routing when a priori optimum routes are sailed in practice. However, 
wind conditions vary over different departure dates and studies are yet 
to quantify a statistically robust estimate of stochastic uncertainty across 
many departures. Furthermore, the variability of wind conditions 
changes on routes around the globe and for different route lengths. 
However, no study yet links route attributes to stochastic uncertainty to 
characterise which routes are most affected by forecast uncertainty and 
why. Understanding these dominant attributes would provide a deeper 
understanding of which routes may require more detailed methods than 
a priori strategies to provide accurate estimations in future studies. 

The analysis in this paper develops an a priori optimisation strategy 
to investigate how stochastic uncertainty impacts methods in the 
existing scientific literature. For 1080 departures across the eastbound 
and westbound journeys relating to three case study routes in the North 
Sea, South Atlantic Ocean and North Atlantic Ocean, the optimum 
shipping voyage is calculated using a priori forecast data. The resulting 
optimum route is then retracked with historical data to calculate the 
savings that would be realised from this strategy in practice by operating 
ships. By simulating over 1000 departures, this novel approach extends 
the work of Rosander and Bloch (2000) and Yoshimura et al. (2016), 
which simulate only a handful of departures, to provide the first statis-
tically robust estimates of a priori weather routing. This approach 
deepens the understanding of how theoretical savings presented in the 
scientific literature would play out in practice on average over a year. 
Furthermore, fuel consumption data is correlated with route attributes 
to provide the first characterisation in the literature on which routes are 
most sensitive to stochastic uncertainty when using wind propulsion and 
why. Ultimately, this new approach identifies which routes require 
modelling with methods that more accurately reflect industry practices 
to investigate whether the theoretical savings presented in the literature 
are achievable in practice, or whether they represent idealised values. 

Finally, while methods exist to reduce uncertainty in the wider field 

of ship and vehicle routing problems (Hinnethal and Clauss, 2010; 
Deyemer et al., 2013; Vettor et al., 2021), Rosander and Bloch (2000) 
develop the only method to reduce uncertainty for ships with wind 
propulsion by producing an adaptive weather routing strategy. The 
adaptive method mirrors standard routing procedures in the shipping 
industry, where the routing system uploads new weather forecast data 
every 24 h and reruns the weather routing procedure to reduce uncer-
tainty. Unlike a priori methods, adaptive strategies reflect practices used 
in the industry and results from this method more reliably depict the 
carbon savings available from weather routing in practice. Rosander and 
Bloch (2000) find that stochastic uncertainty removes all benefits from 
weather routing when optimal adaptive routes are sailed in practice. 
While this result highlights potential limitations in the applicability of 
standard shipping practices, weather forecast predictions have 
improved in accuracy since this study and the impact of these advances 
is unknown. To understand how advances in wind forecast predictions 
affect the results presented in Rosander and Bloch (2000), this study 
additionally develops an adaptive optimisation strategy that in-
corporates the latest wind forecast prediction data across a wider range 
of departures. By updating wind forecast data every 12 h to recursively 
acquire the most accurate forecast data available, the analysis deepens 
the understanding of whether existing weather routing practices in the 
sector are suitable to reduce the risk from stochastic wind forecasts, and 
whether existing practices can achieve the theoretical carbon savings 
presented by a priori estimates in the existing scientific literature. 
Overall, these results update and extend the work from Rosander and 
Bloch (2000) to provide further insights into the scale of carbon re-
ductions available from wind propulsion when coupled with weather 
routing and how these solutions can combine to form a short-term 
decarbonisation strategy for shipping that provides the best chance of 
aligning emissions trajectories with Paris-compliant goals. 

This article is divided into seven main parts. Section 2 outlines the 
wind-assisted ship propulsion (WASP) model that is used to calculate the 
performance of a wind-assisted ship with four Flettner rotors installed. 
Section 3 describes the ship routing model that calculates carbon 
emissions on the great circle route and the optimised voyage with 
weather routing. Section 4 discusses the three case study routes that this 
study simulates. Sections 5 and 6 discuss the results of the a priori and 
adaptive strategies. Section 7 highlights the limitations of the study, and 
finally, Section 8 presents the conclusions. 

2. The wind-assisted ship propulsion (WASP) model 

This study uses a wind-assisted ship propulsion (WASP) model 
sourced through a collaboration with Delft University of Technology. 
The model is developed independently of the work carried out in this 
analysis and a full description can be found in Bordogna et al. (2019), 
van der Kolk et al. (2019), Bordogna et al. (2020) and van der Kolk et al. 
(2020). 

The WASP model calculates the fuel consumption of an 80,000 DWT 
Panamax bulk carrier ship with four Flettner rotors installed. Each rotor 
has a height of 35 m and a diameter of 5 m, matching the maximum size 
of Flettner rotors currently available. The ship has a design speed of 14.5 
knots and a fully loaded draft of 14 m. Panamax bulk carrier ships 
represent ideal candidates for wind propulsion technology due to their 
ample deck space, and the Panamax fleet contributed to around 6% of 
the shipping sector’s carbon emissions in 2018 (IMO, 2020). 

The model calculates forces acting on the wind-assisted ship in four 
degrees of motion to estimate the power required by the engine to 
maintain a predefined ship speed. The ship is assumed to be in fully 
laden condition. The model is split into two parts: aerodynamic 
modelling and hydrodynamic modelling. Aerodynamic modelling com-
putes the forces produced by the Flettner rotor sails. Results from wind 
tunnel experiments are used to validate a mathematical model that 
calculates the lift, drag and heel forces produced by the Flettner rotors, 
and interactions between multiple Flettner rotors and wind perturbation 
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effects from the ship’s hull are included (Bordogna et al., 2019, 2020). 
Additionally, the rotation speed of the Flettner rotors is configured to 
provide the maximum forward thrust for each wind speed and wind 
angle, which allows the system to turn off in strong headwinds to 
mitigate detrimental forces. Hydrodynamic modelling uses full-scale 
simulation data from the Delft Wind Assist series to calculate the resis-
tance of the ship. Modelling includes the added resistance induced by 
the heel and leeway angles, which are created by the additional Flettner 
rotor forces. Hulls of this data series are analysed using a 
Reynolds-Averages Navier Stokes computational fluid dynamics 
(RANS-CFD) method (van der Kolk et al., 2019, 2020). An increased 
rudder angle is modelled to counteract the ship’s oblique motion 
through the water and a maximum limit of ten degrees is set to ensure 
the ship can suitably operate. 

The power from the Flettner rotors, FFlettner, and the resulting ship 
resistance Fresistance, are used to calculate the engine power of the ship 
using: 

PB =

(
vship

ηT
(Fresistance − FFlettner) +

Pinput

ηGen

)

(1) 

Here, vship is the ship’s speed and Pinput is the power required to spin 
the Flettner rotors. ηT represents efficiency losses from the ship’s drive 
train and propeller and is set here as 0.7 as suggested by IMO guidance 
documents (IMO, 2021), while ηGen represents the conversion efficiency 
to power the Flettner rotors and is set here as 0.85 (Smith et al., 2013). 
Finally, engine power is converted to fuel consumption by multiplying 
by a variable specific fuel consumption (SFC) defined in IMO (2014). 
The performance polar diagrams for the wind-assisted Panamax bulk 
carrier can be found in Supplementary Fig. 1 for ship speeds between 8 
and 14 knots. 

Added resistance in waves is calculated using the Gerritsma- 
Beukelman method (Gerritsma and Beukelman, 1972), which has been 
shown to be a good approximation (Lu et al., 2015; Kim et al., 2017). 
Wave direction is assumed to coincide with wind direction, and the 

wave height is calculated using the Pierson-Moskowitz method (Pierson 
and Moskowitz, 1964). While the Gerritsma-Beukelman method can 
underestimate ship resistance in the short-wave region, this study cal-
culates the performance of both a wind-assisted ship and a standard ship 
with no sails using this method. Here we calculate the percentage carbon 
savings between these two ship types to reduce the impact of this error. 

3. Ship routing 

This study develops a ship routing model to quantify the impact of 
stochastic wind forecasts on weather routing for ships with wind pro-
pulsion. An overview of the model is shown in Fig. 1. The model can be 
broken down into the following steps.  

1. Load simulation inputs for route and departure date.  
2. Create graphs for the optimisation procedure.  
3. Run great circle route and weather routing simulations, including a 

priori and adaptive strategy simulations.  
4. Calculate carbon savings and other performance indicators. 

This section describes the method that is used to calculate ship 
routing in steps 2–4 of the model, including great circle routing and 
weather routing. Further details on the simulation inputs in Step 1 can 
be found in the case study descriptions in Section 4. 

3.1. Great circle route 

Automatic identification system (AIS) ship routing data is used here 
to represent the typical great circle route of three case study routes. The 
data consists of both the positional points (longitude and latitude) and 
the speed over ground of the ship. The fuel consumption between 
adjacent positional points, defined here as a stage, is then calculated 
through the following steps. 

First, the ship bearing is calculated for each stage of the route and is 

Fig. 1. An overview of the weather routing method used in this study.  
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combined with ocean current data to calculate the ship’s speed through 
water. Here, ocean current data is obtained from the Earth Space 
Research’s (ESR) Ocean Surface Current Analysis Real-time (OSCAR) 
dataset (ESR, 2009), which contains reanalysis current data with a 
third-degree spatial resolution and a 5-day time resolution. Historical 
reanalysis ocean current data is used here, which assumes the ocean 
current is known exactly with no uncertainty, as ocean current forecast 
data is more stable than wind forecast data and exhibits less stochastic 
uncertainty (Kristensen, 2010). At each stage, the true ocean current 
speed (TCS) and true ocean current angle (TCA) are calculated, and the 
ship’s bearing is used to determine the ocean current speed in the di-
rection of motion of the ship. The ocean current speed in the direction of 
motion of the ship is then combined with the ship’s speed over ground to 
calculate the speed through water at each stage. 

Finally, wind data is loaded into the model, which is used alongside 
the ship’s speed through water as inputs into the WASP model to 
calculate the fuel consumption of the ship along the route. Here, rean-
alysis wind data is obtained from the European Centre for Medium-range 
Weather Forecasts (ECMWF) ERA5 dataset with a 0.5-degree spatial 
resolution and a 6-h time resolution (ECMWF, 2022). At each stage, the 
true wind speed (TWS) and true wind angle (TWA) are calculated, and 
the ship’s bearing and speed over ground are used to calculate the 
apparent wind speed (AWS) and apparent wind angle (AWA). The WASP 
model then uses these inputs to calculate the fuel consumption of the 
ship at the specified speed through water for each stage. The fuel con-
sumption along each stage is then summed to calculate the total fuel 
consumed along the journey. Here, the model calculates the fuel con-
sumption of the reference ship and the wind-assisted ship, and the car-
bon savings, ΔE, are calculated using: 

ΔE =
FCR − FCWA

FCR
(2)  

where FC represents fuel consumption, R represents the reference ship 
and WA represents the wind-assisted ship. 

3.2. The voyage optimisation for the international decarbonisation of 
ships (VOIDS) weather routing model 

In the face of the imminent climate crisis, weather routing technol-
ogy represents an operational solution that enables ship operators to 
reduce their carbon emissions by optimising their route and speed 
profile along a journey. Weather routing can also amplify the carbon 

savings of wind propulsion technology, as optimal routing facilitates 
beneficial wind speeds and wind angles to produce synergistic benefits. 
The analysis in this study uses the VOIDS weather routing model, 
developed and presented for the first time in Mason (2021), to calculate 
the carbon savings from weather routing technology. This section dis-
cusses the method used to develop the VOIDS weather routing model. 

3.2.1. Spatial optimisation graph 
The VOIDS model uses a graph-based approach to optimise the route 

and speed of a ship on a route. To do this, first, a spatial optimisation 
graph and a ship speed-based graph are created (step 2 in the model 
outline of Fig. 1). 

The spatial graph is created by transforming the great circle route to 
create a stage-based search space (Fig. 2a), which allows the optimisa-
tion to search over many possible combinations of routes. At each great 
circle point, new waypoints are created perpendicular to the direction of 
motion of the ship using lines of constant bearing, known as ‘rhumb 
lines’, using the method outlined in Morgas and Kopacz (2013). The 
great circle route and rhumb line points combine to form the nodes of 
the spatial optimisation graph. Movement is allowed between the 
nearest seven neighbouring nodes on the next stage by setting a 
maximum travel distance limit. 

3.2.2. Ship speed graph 
A ship speed-based graph is then created by predefining all possible 

ship speeds (Fig. 2b). The Panamax bulk carrier fleet had an average 
shipping speed of 12 knots between 2012 and 2018 (IMO, 2020) with 
the majority of the operating speed profiles falling in the 8 to 14 knots 
region (DNV GL, 2018). Therefore, this study sets possible ship speeds 
between 8 and 14 knots in 0.5-knot intervals. The ship can change its 
speed between each stage of the route to all other possible speeds. This 
forms thirteen neighbouring nodes on the speed-based graph. While 
ships typically sail at a constant engine power when travelling at sea, 
this study sets a constant speed between each stage, which aligns with 
many studies within the wind propulsion literature (Traut et al., 2014; 
Bentin et al., 2016; Seddiek and Ammar, 2021). A case study analysis by 
Wang et al. (2017) concludes that there are no significant differences 
between each method when they calculate optimal fuel savings for a 
ship without wind propulsion. 

The positional and speed-based graphs combine to form a three- 
dimensional graph, G, with n vertices and a maximum of 91 neigh-
bouring nodes between each stage. The weights, w, along the edges of 

Fig. 2. The spatial graph (a) and the speed-based graph (b) used with the dynamic programming algorithm.  
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the graph that connect node i with neighbouring node j are set as the fuel 
consumption, FC, of the ship between the position of the two nodes 
(xi, yi) and (xj,yj), at a given ship speed vship, where: 

wij = FC
(
xi, yi, xj, yj, vship

)
(3)  

FC
(
xi, yi, xj, yj, vship

)
= FCrate(PB) ∗

d
(
xi, yi, xj, yj

)

vship
(4) 

Here, FCrate(PB) is the rate of fuel consumption of the ship at a given 
ship speed, which is dependent on engine power (Equation (1)) and 
measured in kilograms of fuel per hour, and d(xi, yi, xj, yj) is the distance 
between the positional points of node i and node j. Fuel consumption is 
used as the value along the graph’s edges to ensure that minimum fuel 
consumption is calculated as the optimisation objective. 

3.2.3. Three-dimensional dynamic programming 
The VOIDS model uses a three-dimensional dynamic programming 

algorithm to calculate the optimum voyage of the ship and optimises 
fuel consumption as the single optimisation objective. While many 
weather routing studies optimise two or more objectives, including 
voyage time and passenger comfort, this study solely targets fuel con-
sumption to reduce carbon emissions in the face of the imminent climate 
crisis. A time constraint equal to existing shipping practices is included, 
which ensures no detrimental impacts to supply chains. 

Dynamic programming is a graph-based algorithm that uses Bell-
man’s principle of optimality to find an optimum solution (Bellman, 
1957). The algorithm is three-dimensional and incorporates three opti-
misation variables to find a fuel-optimum voyage: the position ((i) 
latitude and (ii) longitude) and (iii) speed profile of the ship. The al-
gorithm calculates an optimum ship route and speed profile by searching 
across all possible solutions within the optimisation graph’s search 
space. At the start node, the ship travels along the edges of the graph to 
all neighbouring nodes on the next stage, which includes the seven 
closest spatial points (Fig. 2a) and all speeds from 8 to 14 knots (Fig. 2b). 
The fuel consumption of the ship is calculated and stored. Once com-
plete, each arrival point becomes the new departure point, and the ship 
again travels along the edges of the graph to all neighbouring nodes on 
the next stage. This process repeats until the destination of the ship is 
reached and the optimised voyage is selected as the route with the 
lowest fuel consumption. Finally, this fuel-optimal voyage is retracked 
using a retracking algorithm to obtain the route and speed profile of the 
ship along the voyage. Pseudocode for the algorithm is shown in Algo-
rithm 1. 

3.2.4. Local optimisation strategy 
As dynamic programming is a graph-based algorithm, the compu-

tation time increases exponentially with the size of the graph. To reduce 
computation time, here we implement a local optimisation strategy. 
During the optimisation procedure, the ship will arrive at the same 
positional node with many possible previous route and speed combi-
nations. Some of these potential voyages will arrive at the same time, but 
the ship will have consumed different volumes of fuel. In this study, if 
the ship arrives at the same positional node with the same arrival time, 
then only the voyage with the lowest fuel consumption is stored in 
memory. This requires the VOIDS model to round the arrival time of the 
ship. Rounding the arrival time to reduce the granularity of stored re-
sults leads to fewer potential routes stored in memory, subsequently 
reducing the computation time of the optimisation algorithm. Here, the 
local optimisation strategy is set to increments that allow the algorithm 
to run within a computation time of approximately 15 min for each 
simulation. 

Algorithm 1. Three-dimensional dynamic programming algorithm  

3.3. Model constraints 

Nodes on the spatial graph are filtered using bathymetry data from 
the General Bathymetric Chart of the Oceans (GEBCO) assuming a ship 
draught of 14 m (GEBCO, 2022). The filter reduces the size of the spatial 
graph and removes positional nodes that are either too shallow or land 
points (Fig. 3a). Similarly, during the optimisation procedure, the 
VOIDS model performs a land avoidance check to ensure that no land 
masses are crossed when the ship travels between any two neighbouring 
positional nodes. The land avoidance check uses shoreline data from the 
Global Self-consistent, Hierarchical, High-resolution Geography 
(GSHHG) database (NOAA, 2017). 

When performing weather routing, the VOIDS model also sets an 
estimated time of arrival limit that is equal to the great circle route 
sailing time. This arrival time limit allows the optimised voyage to arrive 
at its destination with no delay. However, this practice can lead to ships 
spending a significant amount of time in port queues waiting to access a 
terminal. Bulk carriers spend around 9% of their time at anchorage 
(Merkel et al., 2022) and large carbon savings could be realised if ships 
spend this time slow steaming. While this is outside of the scope of this 
work, future studies should investigate how an optimised arrival time 
strategy combines with a weather routing system for ships with wind 
propulsion. 

The optimisation parameters are also constrained to facilitate real-
istic and navigable routes, as the model limits the spatial movement of 
the ship to a maximum of seven closest grid points when travelling be-
tween each stage. 

Furthermore, the wind-assisted ship propulsion (WASP) model sets a 
maximum engine power limit of 9.5 MW, which activates when the ship 
cannot achieve a given speed in adverse weather conditions. The VOIDS 
weather routing model filters any voyages that breach this maximum 
engine power limit. 

Finally, weather-related safety constraints are not included in this 
study. Typically, when encountering a weather-related safety constraint, 
a ship will change its route or slow down to avoid adverse weather, 
which ensures safe navigation. While these situations occur in practice, 
Larsson and Simonsen (2014) find that the IMO proposed recommen-
dations for the avoidance of potentially detrimental situations (IMO, 
2007) are breached rarely and only in the most adverse weather con-
ditions. As this study simulates thousands of departures, weather-related 
safety constraints will not significantly influence the results. Moreover, 
this analysis aims to investigate the influence of the stochastic behaviour 
of this wind. Including weather constraints will not influence this 
behaviour, and they are therefore excluded. 
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4. Case studies 

4.1. Routes 

To understand the impact of stochastic uncertainty on routes with 
different voyage times and wind profiles, eastbound and westbound 
journeys for three case study routes that represent contrasting route 
lengths are investigated. As the uncertainty in weather forecasts in-
creases for predictions further into the future, this facilitates insights 
into this potentially key variable. The routes span different areas of the 
globe, including the South Atlantic Ocean, North Atlantic Ocean and 
North Sea (Fig. 3), and vary in total length from between 771 and 6400 
km (Table 1). This corresponds to a total journey time of between 1.5 
and 12.1 days. 

All three great circle routes are generated using automatic identifi-
cation system (AIS) ship data. However, as the computation time of 
weather routing simulations increases exponentially with grid size, the 
VOIDS model adapts the stage distance for each route, which varies 

between 65 and 400 km. Up to twenty perpendicular waypoints are 
generated for each stage to create the spatial graph, increasing in in-
crements of four waypoints from the departure point and decreasing in 
increments of four waypoints to the arrival point, which forms the 
optimisation search space (Fig. 3). The distance between perpendicular 
waypoints is 50 km on Route 1 and 100 km on Routes 2 and 3. Route 1 
requires a finer grid due to the smaller total voyage length. 

The three case study routes also represent contrasting wind charac-
teristics (Fig. 3). Route 1 experiences westerly winds with an average 
wind speed of 11.9 knots (Table 1). Route 2 experiences an amalgam-
ation of light south-easterly trade winds to the north, alongside strong 
westerlies to the south, with an average wind speed of 14.2 knots. 
Finally, Route 3 experiences light north-easterly trade winds to the 
south, alongside strong westerlies to the north, with an average wind 
speed of 13.4 knots. Ultimately, wind characteristics are a particularly 
important factor for ships with wind propulsion, as Mason (2021) show 
that the carbon savings from Flettner rotors with and without weather 
routing vary from 4% to over 30% across fourteen global routes. The 

Fig. 3. A map of the automatic identification system (AIS) generated shipping route (blue line) and spatial graph points for the three case study routes in the North 
Sea (a), South Atlantic Ocean (b) and North Atlantic Ocean (c). Red points indicate filtered graph points, while the green points form the sailable region. Wind rose 
maps are also shown, depicting the wind speeds and wind angles in 2018, 2019 and 2020 in the Earth reference frame. 
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prevailing wind speed and wind angle profiles of these routes are found 
to be the two dominant factors in this variation in performance. 
Therefore, the novel and contrasting nature of the wind profiles on both 
the eastbound and westbound journeys of these routes allow this anal-
ysis to additionally understand how wind characteristics impact sto-
chastic uncertainty for weather routing. 

4.2. Departure dates 

A departure is simulated every 6 days from the start of each month 
for 2018, 2019 and 2020, generating a total of 180 departure date 
simulations. Each route is then simulated on the eastbound and west-
bound journey, forming a total of 1080 simulations. This accounts for 
the variable nature of weather conditions to facilitate statistically sig-
nificant conclusions surrounding the annual propulsion performance of 
the technology when used as a carbon mitigation tool. 

4.3. High-performance computer simulations 

Due to the computationally intensive nature of the optimisation al-
gorithm developed in this study, here we split the simulations into 
batches and run each batch simultaneously on a high-performance 
computer. The simulations are separated into individual departure 
dates, and on each, the forecast and realised carbon savings are calcu-
lated from wind propulsion on the great circle route, a priori optimum 
and adaptive optimum. The high-performance computer comprises high 
memory nodes of 32 GB RAM, with around 60 nodes available simul-
taneously. As each departure simulation has an average computation 
time of 2.6 h, this reduces the total computation time from 118 days to 
around 2 days for the 1080 total departure simulations. 

5. Quantifying uncertainty in a priori weather routing strategies 

A priori optimisation strategies in vehicle routing problems use in-
formation that is available at the start of the journey only (Manseur 
et al., 2018). For ships, an a priori strategy calculates optimum voyages 
using weather forecast data that is available when the ship initially 
leaves its departure point. On long shipping routes, a priori strategies 
can therefore calculate optimal voyages that are based on uncertain 
weather forecast predictions many days into the future. If weather 
conditions deviate from the predictions, fuel savings on the optimal 
voyage could reduce from the estimated value. 

In real-time, ship operators do not use a priori methods, but update 
the forecasts as they travel deeper into their journey. Although a priori 
strategies are not used in practice, all studies in the weather routing 
literature for ships with wind propulsion implement this method (Ueno 
et al., 2004; Marie and Courteille, 2014; Yoshimura et al., 2016). As a 

priori strategies ignore forecast uncertainty, this study quantifies the 
strategy’s sensitivity to stochastic wind forecasts to understand if the 
estimated carbon savings are achievable in practice. 

5.1. Weather data 

Here, we integrate three types of wind data into the VOIDS model to 
quantify the strategy’s sensitivity to forecast uncertainty: 1) wind fore-
cast data available at the start of the ship’s journey, 2) historical rean-
alysis wind data and 3) ensemble wind forecast data. Fig. 4 shows an 
overview of how these data types are incorporated into the strategy’s 
workflow. 

5.1.1. Forecast wind data 
First, the VOIDS weather routing model calculates an optimal voyage 

using the wind forecast available at the start of the ship’s voyage. This 
voyage is termed the forecast optimum. Here, wind data is obtained 
from The Observing System Research and Predictability Experiment’s 
(THORPEX) control forecast from the TIGGE dataset (Bougeault et al., 
2010), which contains data with a 1◦ × 1◦ spatial resolution and a 6-h 
time resolution for a total forecast prediction time of 360 h. Carbon 
savings of the wind-assisted ship on the forecast-optimum (FO) voyage, 
ΔEFO, relative to the reference ship (R) on the great circle route, are 
calculated using: 

ΔEFO =
FCR − FCFO

FCR
(5)  

5.1.2. Reanalysis wind data 
Second, the forecast-optimum’s route and speed profile is retracked 

using reanalysis wind data. Here, reanalysis wind data is obtained from 
ECMWF’s ERA5 dataset with a 1◦ × 1◦ spatial resolution and a 6-h time 
resolution. This retracked route represents the weather and fuel con-
sumption that the ship realises in practice and is termed here the realised 
forecast optimum. Carbon savings of the wind-assisted ship on the 
realised forecast optimum (FOrealised) voyage, ΔEFOrealised , are calculated 
using: 

ΔEFOrealised =
FCR − FCFOrealised

FCR
(6) 

The difference in carbon savings between the forecast optimum and 
the realised forecast optimum represents the impact of stochastic 
weather uncertainty for a priori optimal routing decisions for ships with 
wind propulsion. 

5.1.3. Ensemble forecast wind data 
Finally, the VOIDS model integrates ensemble forecast wind data to 

quantify the potential risk from the weather conditions changing as the 
ship progresses along its voyage (Hoffschildt et al., 1999). Rather than 
estimating one deterministic value, ensemble data accounts for the small 
error at the start of the weather forecast prediction to generate many 
ensemble members that each describe one scenario of how the weather 
may change in the future. Each ensemble member is equally likely to 
occur, and the spread of the ensemble members characterises the un-
certainty of the forecast. This analysis uses fifty ensemble members from 
THORPEX’s TIGGE dataset, with a 1◦ × 1◦ spatial resolution and a 6-h 
time resolution. Fifty members represent the maximum number of en-
sembles offered by ECMWF and is larger than the number that other 
studies use in the weather routing literature for ships with wind pro-
pulsion (Yoshimura et al., 2016). Furthermore, this is the maximum 
number of members used in the standard ship routing literature (Hin-
nethal and Clauss, 2010; Skoglund et al., 2015; Vettor et al., 2021) and 
in yacht-routing studies (Treby, 2002; Kristensen, 2010). The 
forecast-optimum voyage is retracked with all 50 ensemble members to 
calculate the potential spread in fuel savings when combining weather 
routing with wind propulsion. 

Table 1 
Route characteristics for the three case study routes investigated.  

Area Route 1 Route 2 Route 3 

North Sea South Atlantic North Atlantic 

Departure destination Denmark South Africa The Caribbean 
Departure point (57.4◦N, 

8.05◦E) 
(34.0◦S, 
13.3◦E) 

(26.8◦N, 
74.5◦W) 

Arrival destination The UK Brazil Gibraltar 
Arrival point (51.4◦N, 

1.95◦E) 
(25.5◦S, 
38.7◦W) 

(35.9◦N, 
6.80◦W) 

Total distance (km) 771 5100 6400 
Average stage distance (km) 64.3 268 399 
Number of stages 

(waypoints) 
12 19 16 

Total voyage time (days) 1.46 9.23 12.1 
Average speed (knots) 11.9 12.4 11.9 
Perpendicular grid distance 

(km) 
50 100 100 

Average wind speed (knots) 11.9 14.2 13.4  
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5.2. Uncertainty in wind forecasts 

Fig. 5 shows an example of the fuel consumption of the wind-assisted 
ship when calculated with all three wind data types. The variation in fuel 
consumption along the journey can be substantial, and carbon savings 
from the ensemble members range from a maximum of 93.4% to a 
minimum of − 18.1% across all departure dates. The large spread agrees 
with findings from Yoshimura et al. (2016), who find a similarly large 
ensemble range of between 92% and 32%. The ensemble minimum is 
greater than that found here, as Yoshimura et al. (2016) only simulate a 
wind ship for one departure date. The large range highlights the po-
tential for the wind to change as the ship travels along its route, fostering 
uncertainty in the fuel consumption that the ship realises in practice. 
Moreover, and as expected, the induced uncertainty from the forecast 
increases over time, and retracking with ensemble data can identify the 
point at which the uncertainty starts to increase substantially for specific 
departures. 

While the winds on some departures demonstrate high uncertainty, 
investigating all 180 departure dates provides statistically significant 
results (Fig. 6). As the weather routing software optimises the ship’s 
voyage for one specific wind forecast, the estimated fuel consumption on 
this voyage is lower than the ensemble mean. This highlights a critical 
risk in a priori weather routing; if the weather changes and follows any 

other trajectory described by the ensemble spread, the realised fuel 
consumption on the optimum route will likely increase. This can reduce 
the potential carbon benefits of weather routing for ships with wind 
propulsion, particularly on routes that observe large carbon savings 
from the technology. On some departures, wind on the optimum route 
can change favourably for the ship and carbon savings increase relative 
to the predicted value. However, as the ship’s fuel consumption aver-
aged across all 180 departures is lower than the ensemble mean (Fig. 6), 
fuel consumption is more likely to increase, subsequently reducing 
carbon savings. 

5.3. Carbon savings: forecast estimates vs realised savings 

Averaging the carbon savings across all departures provides insights 
into the annual performance of the sails (Fig. 7). On the routes analysed 
here, we show that four Flettner rotors on a Panamax bulk carrier cut 
annual carbon emissions by 6.95%–16.7% on standard great circle 
routes. This agrees with other studies in the literature that investigate 
Flettner rotors for a similar ship type. Ammar and Seddiek (2022) find 
that four Flettner rotors reduce fuel use of a Panamax bulk carrier by 
8.5%–16.2% on three case study routes, while Tillig and Ringsberg 
(2020) find that four Flettner rotors on a smaller tanker save over 25% 
on routes in the Pacific Ocean and Baltic Sea with beneficial winds. 

Fig. 4. An overview of the workflows for the a priori and adaptive strategies used in this study.  

Fig. 5. Fuel consumption (FC) of the wind-assisted ship along the eastbound journey of Route 3 between the Caribbean and Gibraltar when using weather routing for 
a departure on February 7, 2018. The fuel consumption of the forecast-optimum route (green), the realised fuel consumption (red) and the spread in fuel consumption 
when retracking the fuel-optimised route with ensemble data (grey) are all shown. 
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Introducing a priori weather routing increases estimated carbon 
savings from the Flettner rotors to 10.2%–28.7%, representing a 
1.17–2.81 times increase from the great circle route. Similarly, Bentin 
et al. (2016) find a 1.5–2.0 times increase when weather routing a ship 
with Flettner rotors, Yoshimura et al. (2016) demonstrate a 1.5 times 
increase and Zhang et al. (2013) find a 2.7 times increase. In this study, 
weather routing also increases the distance travelled by the ship by a 
maximum of 3.12% on average, while the arrival time limit in the VOIDS 
optimisation procedure constraints the voyage time of the ship, which 
decreases by less than 0.06%. Fig. 8 shows the carbon savings from the a 
priori strategy for each departure date. The savings display a large range 

between a maximum of 93.0% to a minimum of − 9.62%, which high-
lights the Flettner rotor’s critical dependency on the wind conditions 
experienced on each journey of operation. 6.85% of total departures on 
the great circle route generated negative savings across all routes, but 
this drops when using weather routing to 2.44% and 3.57% for the a 
priori forecast and realised routes respectively. 

Weather routing optimises both the route and speed profile of the 
ship on all case study routes to produce these carbon savings (Fig. 9). 
The eastbound journeys of Routes 2 and 3 generate the largest benefits, 
as weather routing increases wind speeds and fine-tunes wind angles to 
tend towards the optimum angle for Flettner rotor sailing (Fig. 10), 
which occurs at around a southwest and southeast angle in the ship 
reference frame. Weather routing delivers less benefit on the westbound 
journeys of these routes but still generates notable savings, as optimi-
sation reduces detrimental headwinds and partially increases ideal wind 
angles (see Supplementary Material). On Route 2 and Route 3, weather 
routing also delivers benefits from optimising ocean currents by 
increasing both the occurrence and strength of currents from behind the 
ship (Fig. 10 and Supplementary Material). Wind propulsion generates 
some of the largest great circle route savings on Route 1 due to the 
presence of beneficial wind angles, particularly on the eastbound 
journey (see Supplementary Material). This agrees with the findings of 
Mason (2021). However, the addition of weather routing produces less 
benefit on this route relative to Routes 2 and 3. 

Retracking with historical weather data highlights the detrimental 
impact of stochastic uncertainty. The forecasted wind conditions change 
unfavourably to reduce the realised carbon savings across all routes 
(Fig. 7). Unfavourable wind changes have the greatest effect on the 
eastbound journey of Route 3, which has the longest journey, and car-
bon savings reduce from a theoretical 2.50 times increase to a realised 
1.84 times increase, representing a 44% reduction in additional savings 
from the technology. Here, stochastic uncertainty in the initial wind 
forecast changes the realised wind conditions (Fig. 10), which reduces 
both the realised wind speeds and the occurrence of ideal wind angles. 

This study is the first in the field to show that two dominant factors 
determine the influence of stochastic uncertainty across the routes 
analysed here. First, route length plays a key role, as the spread in un-
certainty between the forecast and realised fuel consumption of the 

Fig. 6. Monthly averaged fuel consumption of the wind-assisted ship on the a 
priori forecast optimum voyage of Route 3 travelling in the eastbound direction. 

Fig. 7. Annual carbon savings from weather routing with wind propulsion when using the a priori strategy. Annual carbon savings on the great circle route (brown), 
the a priori forecast route (orange) and the a priori realised route (red) are shown. 

J. Mason et al.                                                                                                                                                                                                                                  



Ocean Engineering 281 (2023) 114674

10

wind-assisted ship increases over time across all 180 departures 
(Fig. 11). This is as expected, as weather forecast predictions become 
less accurate as time increases. This factor influences the findings here, 
as routes with a longer total voyage time experience greater uncertainty 
and, therefore, observe greater reductions in realised carbon savings 
(Fig. 7). 

Second, the occurrence of high wind speeds at ideal angles for sailing 
influences the impact of stochastic uncertainty. The large impact at 
these specific wind conditions arises as Flettner rotor sails are most 
effective in this regime. Here, the sails can reduce the fuel consumption 
of the ship substantially. If the realised wind speed reduces or if the wind 
angle deviates from the ideal regime due to uncertain wind inputs, it can 
produce large and detrimental increases to the realised fuel consump-
tion of the ship (Fig. 12). Therefore, optimum routes that produce sav-
ings by changing the wind regime to high wind speeds at ideal sail angles 
are most at risk from stochastic uncertainty. This occurs the most on the 
eastbound journeys of Route 2 and Route 3, which explains the larger 
reduction in carbon savings found on these routes. Similarly, departures 
that occur in higher wind speed winter months experience more un-
certainty than in lower wind speed summer months due to the same 
effect. 

Ultimately, the reduction in carbon savings from a priori weather 
routing found here challenges the suitability of existing optimisation 
methods in the wind-assist literature. While a priori methods are not 
used by ship operators in real time, questions remain around how 
achievable these theoretical savings are in practice. Results suggest that 
existing methods do not accurately predict the carbon savings that 
weather routing can realise in practice, particularly for longer shipping 
routes. However, while carbon savings reduce by some degree, a priori 
weather routing still provides benefits for ships with wind propulsion on 
the case study routes investigated, as the strength of wind speeds and the 
occurrence of ideal wind angles on the optimum route improve relative 
to standard routes. This result challenges other studies in the literature, 
as Rosander and Bloch (2000) find that high levels of forecast uncer-
tainty remove all benefits of a priori weather routing for wind-assisted 
ships, reducing the carbon savings from weather routing with their 
novel sail design from 21.3% to − 6.5%. Recent advances in wind fore-
cast predictions are therefore sufficient to reduce uncertainty to a level 
that provides some carbon benefits. However, more advanced methods 
may be required to realise the theoretically maximum carbon savings 
from the technology. 

Fig. 8. A box and whisker plot showing the carbon savings from weather routing with wind propulsion using the a priori strategy on the routes assessed in this study. 
Each data point shows the carbon savings on each departure date for the great circle route (GCR) (brown), the a priori forecast route (orange) and the a priori realised 
route (red). 

Fig. 9. Optimum routes for all 180 departures on the eastbound journey of 
Route 3 (a). Routes are calculated using a priori weather routing for a wind- 
assisted Panamax bulk carrier with four Flettner rotors. An example speed 
profile for the January 1, 2018 on the same route (b) showing both the speed 
over ground (SOG) (solid line) and speed through water (STW) (dashed line) on 
the great circle route (GCR) (blue) and optimised route (green). 
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6. Reducing stochastic uncertainty: an adaptive optimisation 
strategy 

This study develops an adaptive optimisation strategy, which is the 
standard routing procedure for ships in real-time, to understand if 
existing strategies can reduce the impact of forecast uncertainty when 

wind-assisted ships use weather routing. This provides insights into 
whether the theoretical a priori savings estimated in the literature are 
achievable in practice or whether they represent idealised values. 

Adaptive optimisation strategies in vehicle routing problems adapt 

Fig. 10. Wind and current rose diagrams for the eastbound journey of Route 3 showing the wind speed and wind angle experienced by the ship on the great circle 
route (GCR) a priori forecast optimum and a priori realised optimum across all 180 departures. Wind angle is shown in the reference from of the ship, where north 
represents headwind and south represents tailwind. 

Fig. 11. The cumulative difference in the forecast and realised fuel consump-
tion (FC) in kg estimated using the a priori optimisation strategy for all 180 
departures on the eastbound journey of Routes 1, 2 and 3. The difference 
represents the discrepancy between the estimated fuel consumption and the 
fuel consumption realised in practice, where a negative value indicates a larger 
amount of fuel consumed in practice than initially estimated. 

Fig. 12. A three-dimensional projection of how the forecasted wind speed and 
wind angle affects the difference in the forecast and realised fuel consumption 
(FC) in kg between each stage. The figure is estimated using the a priori opti-
misation strategy for all 180 departures on the eastbound journey of Route 2. 
Red indicates that the ship consumes a large amount of fuel in reality relative to 
the forecast prediction as it travels between a stage, while blue indicates that 
the ship consumes less fuel than the forecast prediction. 
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the optimum solution based on information that becomes available 
along a journey (Manseur et al., 2018). In the same way, here the VOIDS 
weather routing model develops an adaptive strategy by uploading new 
wind forecast data in 12-h intervals as the ship moves along its voyage. 
This continually updates the optimisation procedure with the latest 
weather forecasts to reduce the influence of uncertain and stochastic 
weather forecast inputs. The following sections describe how the 
weather data is integrated into the model to achieve this aim, alongside 
a discussion of the results. 

6.1. Weather data 

6.1.1. Forecast updates 
An overview of the adaptive strategy’s workflow can be seen in 

Fig. 4. In this adaptive method, the VOIDS weather routing model first 
calculates an optimum voyage using the wind forecast available at the 
start of the journey. Here, the adaptive method again uses the control 
forecast from the TIGGE dataset from THORPEX. The data has a 1◦× 1◦

spatial resolution and a 6-h time resolution for a total forecast prediction 
time of 360 h. The ship then moves along this optimum route and speed 
path until the voyage time exceeds the 12-h upload increment. Once this 
time is exceeded and new weather forecast data is available for the ship 
operators to use, the VOIDS model uploads the latest TIGGE control 
forecast. Here, a new great circle route is generated using the average 
stage distance to split the route into a total of NT stages and NT+ 1 total 
waypoints. The longitude and latitude of each great circle route way-
point are calculated using a method based on rotational transformation 
developed by Chen et al. (2015). 

Once the VOIDS model has created an updated great circle route and 
has uploaded the latest wind forecast data, the model reruns the optimal 
voyage calculations with the position of the latest node as the starting 
point. This procedure recursively iterates every 12 h until the ship’s 
destination point is reached. A retracking algorithm then retracks the 
optimal adaptive voyage, which is termed here as the adaptive optimum 
(AO), and the estimated fuel savings, ΔEAO, are calculated using: 

ΔEAO =
FCR − FCAO

FCR
(7) 

As the adaptive optimisation strategy progresses, the total voyage 
time and graph size reduce for each new weather routing simulation. 
Therefore, this analysis updates the local optimisation strategy to 
maintain the computation time to around 15 min for each run. This 
facilitates a dense search space for the optimisation algorithm for each 
simulation. However, as the adaptive optimisation strategy requires 
additional runs of the optimisation algorithm in its recursive procedure, 
the total computation time of the strategy increases by around a factor of 
four relative to standard a priori strategies. 

6.1.2. Reanalysis retrack 
The adaptive optimum is retracked with ECMWF’s ERA5 reanalysis 

wind data. This retracked voyage represents the weather and fuel con-
sumption that the ship realises in practice and is termed here as the 
realised adaptive optimum (AOrealised). Carbon savings of the wind- 
assisted ship on the realised adaptive optimum voyage, ΔERAO, are 
calculated using: 

ΔEAOrealised =
FCR − FCAOrealised

FCR
(8) 

The difference in carbon savings between the adaptive optimum and 
the realised adaptive optimum represents the impact of stochastic 
weather uncertainty for adaptive optimal routing decisions for ships 
with wind propulsion. 

6.2. Carbon savings: forecast estimates vs realised savings 

Results show that optimum voyages calculated using an adaptive 

optimisation strategy accurately reflect the realised performance of 
weather routing technology on all case study routes investigated 
(Fig. 13). By uploading the most recent and accurate wind forecasts in 
12-h intervals, adaptive optimisation reduces the discrepancies between 
the forecast and realised wind speed and wind angle data as the ship 
travels along its route. This more accurately aligns the ship’s predicted 
fuel consumption with the fuel consumption realised in practice relative 
to the a priori strategy (Fig. 14). 

The adaptive strategy has the greatest impact on the eastbound 
journey of Route 3, which previously displayed the largest risk from 
uncertain weather due to it having the longest 12-day voyage time. By 
investigating all 180 departure dates, we show that this translates to a 
substantially reduced spread in the difference between the ship’s fore-
cast and realised cumulative fuel consumption (Fig. 15). Ultimately, this 
reduced spread enables the adaptive optimum voyage to be more robust 
to stochastic changes in uncertain wind inputs. 

As the adaptive strategy is part of standard routing procedures in the 
shipping sector, this result suggests that existing methods are suitable to 
reduce stochastic uncertainty for ships with wind propulsion. However, 
current practices may present a critical barrier, as optimum route cal-
culations are typically rerun based on the user’s judgement onboard the 
ship, which creates additional work for ship operators. As ships with 
wind propulsion are more susceptible to the impacts of uncertainty in 
wind forecasts, users may need to update weather forecasts more 
frequently than for standard ships, which occur around once per day. 
Failing to do so could detrimentally reduce the effectiveness of the 
adaptive strategy. Therefore, further work is necessary to understand 
the relationship between the forecast upload interval and the level of 
accuracy between estimated and realised carbon savings for ships with 
wind propulsion. 

While the adaptive strategy reduces the risk from unfavourable 
changes to uncertain wind forecasts, the strategy detrimentally reduces 
the overall performance of the technology relative to a priori estimates. 
The adaptive optimal route is more robust to changes in wind, but the 
strategy fails to find the true global optimum solution, as forecast un-
certainty alters the wind conditions in the optimisation search space 
leading to less-optimal results as the strategy iterates. When comparing 
the a priori forecast optimum (orange bar in Fig. 7), which contains no 
uncertainty, with the realised adaptive optimum (red bar in Fig. 13), the 
addition of uncertainty contributes to a reduction in the performance of 
weather routing by 0.794–0.879 times the maximum potential of the 
technology for Routes 2 and 3, the two longest routes analysed here. 
However, the shortest Route 1 reduces by only 0.983 to 1.00 times, 
achieving the maximum potential due to the shorter route length. For 
routes that are particularly sensitive to stochastic uncertainty, these 
results suggest that existing real-time weather routing methods are not 
suitable to achieve the maximum potential of the technology high-
lighted in a priori methods in the literature. 

Although carbon savings reduce for longer route lengths relative to 
the maximum potential, the adaptive strategy amplifies the performance 
of the Flettner rotors significantly by between 1.16 and 2.48 times 
standard shipping routes. This challenges the conclusions from Rosander 
and Bloch (2000), who present the only other adaptive strategy for ships 
with wind propulsion and find that uncertain wind forecasts reduce the 
benefits from weather routing software enough to remove all motivation 
to use the technology. This suggests that advances in the accuracy of 
wind forecast predictions over the last two decades have directly 
reduced uncertainty from the combination of technologies studied here. 

7. Limitations 

Findings in this study show large uncertainty when wind-assisted 
ships use a priori weather routing. While carbon savings reduce by up 
to 44% using this method, weather routing is calculated here using a 
generic a priori route planning method. More advanced methods exist in 
the ship routing literature that are specifically designed to handle 
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uncertainty, such as by including ensemble weather forecasts in the 
optimisation procedure. Vettor et al. (2020) describe one such approach, 
where the optimisation algorithm handles all ensemble members in a 
single run. Here, the fuel consumption of the ship can be calculated for 
all ensemble members at each route waypoint and could only be 
considered safe if the spread is suitably small. Hinnethal and Clauss 
(2010) develop a method that integrates ensemble forecasts to calculate 
the robustness of a route, where a route is considered robust if it doesn’t 
breach specified constraints across many ensemble members. Similarly, 
other studies in the wider field of vehicle routing use ensemble forecasts 
to handle uncertainty by calculating the expected value of the members 
at each waypoint (Sheng and Mei, 2020; Gendreau et al., 2015; Huang 
and Gao, 2012). 

Including ensemble members in the optimisation procedure would 

increase computation time substantially and is therefore not a suitable 
solution for this study due to the prohibitive number of departures 
analysed. However, integrating these methods into the field of ship 
routing for wind-assisted ships would likely reduce the discrepancy 
found in this paper between expected and achieved carbon savings and 
should be considered an important area of future research. While 
existing studies present viable methods, effectively handling uncertainty 
while simultaneously maximising the performance of the sails may 
present a more challenging problem than in other fields. Existing 
methods, in particular those surrounding robustness, would likely 
calculate solutions with carbon savings that are more achievable in 
practice, but may compromise the strength of the optimal solution 
leading to lower carbon savings overall. In this regard, Philpott and 
Mason (2001) criticise the existing form of ensemble weather data and 

Fig. 13. The forecast (green) and realised (red) annual carbon savings from weather routing with wind propulsion achieved on all routes using the adaptive 
optimisation strategy. Carbon savings on the great circle route (GCR) (brown) are shown for reference. 

Fig. 14. The forecast (green) and achieved (red) fuel consumption (FC) of the wind-assisted Panamax bulk carrier ship on the adaptive optimum voyage for a 
departure on the January 1, 2018 on the eastbound journey of Route 3. New forecast upload times (grey) are shown to demonstrate when the adaptive optimisation 
strategy reuploads the latest wind forecast data and reruns the weather routing algorithm. 
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show that a new structure for ensemble forecasts would be more suitable 
to this challenge. Rather than forming fifty individual ensemble 
branches, this new structure creates sub-branches within the individual 
members, which provides the optimisation algorithm with more infor-
mation as the ship travels along its journey. However, this form of 
ensemble data does not currently exist. 

Finally, the conclusions drawn here are for Panamax bulk carrier 
ships with Flettner rotors. Other ship types, sail types and sail configu-
rations could change these results. In particular, ships with fewer or 
smaller rotors would produce less sail power and would therefore 
experience less impact from stochastic wind forecasts, as the ship be-
comes less dependent on the wind. Findings may also change for 
different sail types, such as wing sails, which demonstrate a different 
performance profile to Flettner rotors. 

8. Conclusion 

This study provides new insights into the stochastic variability of 
wind forecasts when weather routing technology amplifies the carbon 
savings from ships with wind propulsion. By running over 1000 simu-
lated departures across three routes using multiple weather data types, 
we produce the first statistically robust assessment to show that sto-
chastic uncertainty can substantially reduce the benefits of a priori 
weather routing by up to 44% on particularly impacted routes. This 
result challenges both the accuracy and suitability of the weather 
routing methods in the scientific literature when employed in real-time 
for ships with wind propulsion. 

When a priori weather routing is exploited on different routes, sto-
chastic uncertainty has the greatest impact when coupled with longer 
voyage times. Moreover, this study correlates fuel consumption uncer-
tainty with wind speed and wind angle data from over a thousand de-
partures to show that optimum routes that encounter high wind speeds 
and ideal wind angles simultaneously experience the greatest risk from 
forecast uncertainty. As the shipping sector requires urgent global action 
to reduce carbon emissions, this novel finding provides a deeper un-
derstanding of which routes may demand advanced optimisation 
methods to reduce forecast uncertainty and drive carbon savings closer 
to the theoretical estimates presented in the scientific literature. 

Finally, by re-uploading new wind forecast data in 12-h intervals, 
this study finds that adaptive optimisation strategies can effectively 
mitigate stochastic uncertainty. The adaptive strategy not only calcu-
lates achievable optimal routes but also amplifies carbon savings from 
Flettner rotors substantially by between 1.16 and 2.48 times typical 
great circle route savings. While more advanced methods will be 
required to drive savings closer to the theoretical maximum on partic-
ularly impacted routes, weather routing systems can implement adap-
tive strategies to accurately estimate carbon savings for ships with wind 

propulsion and reduce the financial risk for ship operators and sail in-
vestors. Overall, as the shipping sector requires rapid action this decade 
to align emission trajectories with Paris-compliant objectives (Bullock 
et al., 2022), our findings provide the much-needed deeper under-
standing into the scale of carbon mitigation offered by combining wind 
propulsion with weather routing when stochastic uncertainty is 
addressed. Accounting for the impact of these real-time factors high-
lights the suitability of an alternative short-term decarbonisation strat-
egy for shipping that complements long-term investment in alternative 
fuels. 
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