
The University of Manchester Research

Scaling Up Performance of Managed Applications on
NUMA Systems

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Papadakis, O., Andronikakis, A., Foutris, N., Papadimitriou, M., Stratikopoulos, A., Zakkak, F., Xekalakis, P., &
Kotselidis, C-E. (Accepted/In press). Scaling Up Performance of Managed Applications on NUMA Systems. Paper
presented at The 2023 ACM SIGPLAN International Symposium on Memory Management (ISMM 2023), Florida,
United States.
Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:18. Jul. 2023

https://research.manchester.ac.uk/en/publications/a5a7f61d-3122-4798-a22a-73278f994da6


Scaling Up Performance of Managed Applications on
NUMA Systems

Orion Papadakis†, Andreas Andronikakis†, Nikos Foutris†, Michail Papadimitriou†, Athanasios
Stratikopoulos†, Foivos Zakkak±, Polychronis Xekalakis⊺, Christos Kotselidis†

†The University of Manchester, ±Red Hat, ⊺NVIDIA
first.last@manchester.ac.uk,fzakkak@redhat.com,pxekalakis@nvidia.com

Abstract
Scaling up the performance of managed applications on Non-
Uniform Memory Access (NUMA) architectures has been a
challenging task, as it requires a good understanding of the
underlying architecture and managed runtime environments
(MRE). Prior work has studied this problem from the scope
of specific components of the managed runtimes, such as
the Garbage Collectors, as a means to increase the NUMA
awareness in MREs.
In this paper, we follow a different approach that com-

plements prior work by studying the behavior of managed
applications on NUMA architectures during mutation time.
At first, we perform a characterization study that classifies
several Dacapo and Renaissance applications as per their
scalability-critical properties. Based on this study, we pro-
pose a novel lightweight mechanism in MREs for optimizing
the scalability of managed applications on NUMA systems,
in an application-agnostic way. Our experimental results
show that the proposed mechanism can result in relative per-
formance ranging from 0.66x up to 3.29x, with a geometric
mean of 1.11x, against a NUMA-agnostic execution.

CCS Concepts: • Computer systems organization →
Multicore architectures; • Software and its engineering
→ Object oriented languages; Runtime environments;
Software design engineering.

Keywords: NUMA, Scalability, Optimization, JVM, Managed
Runtimes, Dacapo, Renaissance, MaxineVM

1 Introduction
The advent of Non-Uniform Memory Access (NUMA) ar-
chitectures has posed significant challenges with regard to
the performance scalability of managed applications. The
primary reason is that those applications are running on top
of a managed runtime environment (MRE) which is typically
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oblivious of the NUMA characteristics. Therefore, two re-
search questions that arise are:Which are the limiting factors
of MREs in the context of NUMA systems?Which parts of MREs
should be enriched with NUMA awareness?

In recent years, several studies have attempted to address
the aforementioned questions in the context of the Java Vir-
tual Machine (JVM) [2, 9, 10, 22]. These research studies have
mainly focused on specific characteristics of the Garbage
Collector (GC) towards enhancing its scalability. However,
the performance of Java applications on NUMA architectures
is not only a subject of GC scalability. To comprehend this,
we have compared the NUMA performance (excluding GC
time) of the Dacapo [3] and Renaissance [24] benchmark
suites against their non-NUMA execution, when running on
top of MaxineVM [15]. As shown in Figure 1, the mutation
execution time can be significantly penalized up to 133%.
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Figure 1. NUMA effect on Dacapo & Renaissance.

In addition, other studies have shown that a number of
Dacapo benchmarks (e.g., fop, jython, luindex) lacks prop-
erties (i.e., parallelism/concurrency) that are prerequisites
for scalability [7, 14]. Thus, those applications may not bene-
fit from NUMA architectures, and they may be significantly
penalized even in the optimal case of having a linearly scal-
able GC. As a result, it is of utmost importance to have an
in-depth understanding of the circumstances under which
the performance of managed applications can scale up on
NUMA systems.
In this paper, we follow a complementary approach that

studies the behavior of Java applications on NUMA archi-
tectures during mutation time. In particular, we perform a
study that characterizes the NUMA scalability of several
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Dacapo and Renaissance applications. Our study is under-
taken in MaxineVM [15]; an open-source research VM for
Java that encapsulates two tools: the i) NUMAProfiler [20]
for application-layer profiling, and ii) PerfUtil [20, 21] for
microarchitectural profiling. In our study, we employ those
tools to obtain an effective profile for the application prop-
erties that relate to scalability (e.g., shared object accesses,
workload parallelism, data dependencies, data locality, etc.)
in the context of a NUMA system. The profiling of the prop-
erties enables the classification of a Java application into
discrete categories. The resulting classification augments our
understanding of the application characteristics, and enables
us to draw a conclusion regarding the circumstances inwhich
NUMA can be beneficial. Then, the findings of our study
along with the drawn conclusions are amalgamated into
the prototyping of a novel, dynamic, application-agnostic
optimization mechanism for scaling up the performance of
managed applications on NUMA systems.

This paper makes the following contributions:

• It conducts a study that characterizes the NUMA scalability
of several Dacapo and Renaissance applications, and it
classifies them into discrete categories.

• It proposes a novel, dynamic, and application-agnostic opti-
mization mechanism for MREs. The proposed mechanism
is lightweight as it capitalizes on the devised classifica-
tion to: i) assess whether the performance of a running
application can scale on a NUMA machine; and ii) adapt
the execution of a running application based on the most
suitable configuration.

• It presents a detailed performance evaluation of the pro-
posed mechanism, showcasing that 26 out of 30 studied
applications from Dacapo and Renaissance either gain
speedup or avoid penalization. Additionally, the relative
performance of the studied applications ranges from 0.66x
up to 3.29x with a geometric mean of 1.11x, against a
NUMA-agnostic execution.

2 Factors that Impact NUMA Performance
Several memory-related factors can impact the overall per-
formance as well as the scalability of applications on NUMA
systems [6, 10, 18]. One of those factors is the data depen-
dency among the working threads of an application as it can
potentially undermine the distribution of the application’s
workload across the NUMA system. Additionally, cache co-
herency is a key requirement formodernNUMA implementa-
tions that aim to provide a shared memory environment. The
reason is that a program running on top of modern NUMA
distributed architectures would tentatively place multiple
replicas of its data in the cache memories which reside in
the distributed nodes [23].
This section describes the MESIF protocol [11] (Sec-

tion 2.1), a protocol introduced by Intel, and can be found in
several commodity NUMA systems, as the one used in this

work. Additionally, Sections 2.2 and 2.3 present two cases in
which the data dependencies in the context of NUMA hinder
data locality, and subsequently undermine scalability.

2.1 MESIF Cache Coherency Protocol
TheMESIF protocol contains the following states that a cache
line can be marked with:

• Modified: the data is cached only on the current cache
and its value has already been modified (dirty). Note that
main memory should be firstly updated (write-back) upon
a read request for the outdated main memory data. Then
the Modified cache line transits to the Shared state.

• Exclusive: the cached data matches the value in main
memory (clean). It may transit to Modified upon a write
request or to Shared upon a read request.

• Shared: the cache line is clean but it is also present in
other cache memories.

• Invalid: the cache line is currently outdated (unused).
• Forwarding: this state is a “special” Shared state, and it is
used tomark that a nodewill be responsible for responding
with the data upon a request. Considering that a Shared
cache line is allowed to be present in multiple nodes, the
MESIF protocol nominates one of those nodes to be respon-
sible for responding with the data upon a request instead
of the main memory [11].

Essentially, MESIF is a protocol that aims to take advantage
of the fact that data can always be fetched faster from a cache
memory than main memory - even from a remote node.

2.2 “Ping-Pong”: Remote Write-After-Write
Ideally, multiple threads across NUMA nodes should process
their “own” data without sharing any data with other threads;
especially with those running on a remote NUMA node.
However, the unfortunate case of an object that is being
consecutively written by thread(s) from remote node(s) (we
name this case as “Remote WAW”) will not only increase
the expensive memory accesses in the remote node, but
also the invalidation of the cached data. Moreover, it will
increase the pressure on the main memory, the interconnect
traffic, and will contaminate the Last Level Cache (LLC).
For instance, the data of a hot (consecutively written) Java
object are written into the LLC of a NUMA node (home
NUMA node). For each consecutive remote write access to
the same object (Remote WAW), the following three steps
will be performed: 1 the data will be fetched to the LLC of
the remote node (remote node access, interconnect traffic)
which is now the new home node; 2 the old home LLC
will be invalidated (LLC pollution); and 3 the data will be
written back to main memory, thereby resulting in additional
pressure to main memory.
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2.3 “Write Conflicts”: Remote Write-After-Read
As explained in Section 2.1, the F state of the MESIF protocol
aims to mitigate contention for shared read data, because it
allows a clean/unmodified cache line to be shared for reads
among the nodes by providing a “copy” to the requesting
node in order to avoid a main memory access [11]. However,
local write accesses can still invalidate cached data across
the system and retain contention. More specifically, in case
a local write access is performed by a writing thread to an
object that is read by remote node threads, the cache lines
of the reader(s) will be invalidated. This will result in more
LLC misses and remote node accesses, while it might also
increase the main memory accesses. Moreover, the updated
value is cached in the node of the writing thread, potentially
by overwriting other cache lines, thereby resulting in more
capacity cache misses.

3 Experimental Methodology
This section describes the platform (Section 3.1) that we
used to prototype our research contributions, as well as the
employed profiling tools. Additionally, Section 3.2 presents
the characteristics of our experimental testbed. Finally, Sec-
tion 3.3 gives an overview of the studied Java applications.

3.1 MaxineVM: A Research VM
Our characterization study and the proposed mechanism are
performed in MaxineVM, a research VM written in and for
Java. The modular design and ease in programming of this
VM make it a suitable environment for research and experi-
mentation. Additionally, MaxineVM provides multiple pro-
filing tools, such as PerfUtil [20, 21] and NUMAProfiler [20],
which can facilitate a study in the context of NUMA.

3.1.1 Java Profiling Tools for NUMA. PerfUtil [20, 21] is
a MaxineVM profiler that interfaces with the Linux kernel’s
perf functionality and equips the VM itself with fine-grain
utilization of the Hardware Performance Counters (HPC).
It offers flexible utilization by enabling the monitoring of
HPCs per-thread, per-core, or both. In addition, PerfUtil has
the capability of time-multiplexing that allows for the con-
current measurement of a wide range of HPCs and operates
with low overhead. PerfUtil is effective in the context of a
NUMA system since it can be configured to monitor NUMA-
related events (i.e., remote node accesses). Nevertheless, Per-
fUtil metrics lack correlation with application characteris-
tics, such as data dependencies between application threads,
despite being closely linked to overall performance observa-
tions. Scalability and performance in NUMA are impacted by
higher-level factors, such as serial code segments, contention
on shared resources, data locality and load balancing [23].

To capture metrics related to the aforementioned proper-
ties, we used NUMAProfiler. NUMAProfiler is a Java object

Table 1. Hardware and Software Configurations.

HW

Processor 2 x Intel Xeon E5-2690
Sockets 2

NUMA nodes 2
Num of Cores 16 (32 threads)

LLC Size 40MB
Memory Controllers 8

DRAM 384GB

SW
OS Ubuntu 16.04

Kernel Linux 4.15.0-112-generic
JVM MaxineVM 2.9

Single Node Dual Node All Nodes
# of CPUs 1 2 2

# of Utilized Cores 8 8 16
LLC Size (MB) 20 40 40

Mem. Controllers 4 8 8
DRAM Size (GB) 192 384 384

Java Heap Size (GB) 100 100 100
HyperThreading off off off
Page migration off off off

profiler for MaxineVM that provides a higher-level perspec-
tive of object allocations and accesses per thread. NUMAPro-
filer can classify the shared object accesses, which can spot-
light any inter-thread data dependencies. To facilitate the
classification of the shared object accesses, MaxineVM stores
the ID of the “owner” thread for each object in the misc
word of the object header. If a thread that is not the “owner”
thread accesses an object, the access is classified as shared. It
is important to note that the concept of the “owner” thread
is abstract and context-dependent. This work defines the
last writer thread as the “owner” thread. In the context of a
NUMA system, where the distribution of a workload across
the system is crucial, this definition seems more reasonable,
as it takes into account the effects of Remote WAW and Re-
mote WAR dependencies, as discussed in Sections 2.2 and 2.3.

3.2 Testbed: Hardware & Software Characteristics
Table 1 presents the characteristics of the testbed which is
a 2-node NUMA machine. Additionally, it describes three
running configurations: Single Node, Dual Node, All Nodes.
The Single Node configuration models a Uniform Memory
Access (UMA) machine as it deploys one NUMA node. On
the other hand the Dual Node configuration models a Non-
Uniform Memory Access (NUMA) machine. Note that both
configurations use an equal number of cores and differ in the
number of active NUMA nodes. A comparison between Sin-
gle Node and Dual Node excludes potential scalability effects
(Section 4.3), thereby simplifying the observation of the re-
mote LLC regarding the impact in the memory behavior and
data locality. Lastly, the All Nodes configuration deploys all
system resources and is used in Section 4.4 (NUMA scalabil-
ity assessment) and in Section 5 (optimization mechanism).
To prevent additional performance and behavior variations,
HyperThreading (HT) and Page Migration (PM) are disabled
while the CPU frequency is fixed to 2.9 GHz via the ACPI
CPU frequency driver. Note that, PM is not always beneficial
due to the higher cost of a migration compared to the cost
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of a remote node access [21]. MaxineVM is deployed with
the (default) SemiSpace GC while the OS operates with the
default NUMA allocation policy (MPOL_DEFAULT).

3.3 Java Benchmarks Overview
A collection of 30 Dacapo [3] and Renaissance [24] ap-
plications is utilized for both the scalability study and
the optimization mechanism evaluation. More specifically,
we use the latest pre-built maintenance version of Da-
capo (dacapo 9.12 MR1) [5], and the pre-built 0.11.0
release of Renaissance (https://github.com/renaissance-
benchmarks/renaissance/tree/v0.11.0). The number of itera-
tions to reach a steady state is selected following best prac-
tices for Dacapo [16] and Renaissance [24]. To ensure ade-
quate steady state iterations, we add ten additional iterations
beyond the recommended number for each benchmark. The
largest input size is used along with eight threads, wherever
possible. Note that the Dacapo applications allow the user to
configure both the input size and the deployed threads with
some exceptions (i.e. avrora) where the thread number is
determined by the input size. On the contrary, the Renais-
sance benchmarks have a small and a default/large input size,
while most of the benchmarks automatically deploy worker
threads equal to the number of available cores.

4 NUMA Scalability Study
This section presents a characterization study of the Dacapo
and Renaissance benchmark suites with respect to NUMA
scalability. The performance of Java applications in a NUMA
system can be penalized for reasons related to the remote
memory hierarchy (i.e., exhaustive remote accesses, repeti-
tive invalidation of cached data, etc. - Section 2). However,
even compute-bound applications (such as als - Figure 1)
can be penalized in a NUMA system. Therefore, a character-
ization that not only considers memory but also scalability
properties is necessary. Towards that objective, several appli-
cation properties are examined in our study, as follows: the
degree of parallelism and balance of a workload (Section 4.1),
the data dependencies of a workload (Section 4.2), and the
data locality (Section 4.3).

4.1 Workload Parallelism & Balance
Table 2 presents a collection of metrics per application to
evaluate workload parallelism and balance. The C and I met-
rics derive from PerfUtil, whereas the OAmetric derives from
NUMAProfiler. All metrics are obtained using the “Single
Node” run configuration as the objective is to evaluate the
application properties. The threads of each application are
classified to “Workers” (those which process the workload),
“Auxiliary” (non-worker threads i.e., timers, finalizers, etc.),
and the “Main” thread. The workload of a thread is quanti-
fied as the number of hardware instructions it retires. The
workload of each type is expressed as a percentage over the

Table 2. Workload Parallelism and Balance of applications.

Benchmarks Main Aux Workers Imbalance
I % # I % # C [%] I [%] OA [%]

avrora 1 0 0 26 30 67 92
fop 100 1 0 0 0 0 0
h2 29 1 0 8 2 1 1
jython 100 3-4 0 0 0 0 0
luindex 85 1-2 15 0 0 0 0
lusearch 7 0 0 8 2 2 0
lusearch-fix 7 0 0 8 2 2 0
pmd 1 1 0 8 65 69 75
sunflow 0 10 0 8 2 2 1
xalan 0 0 0 8 0 1 0
akka-uct 0 12 0 184-200 72 118 44
reactors 5 3-4 0 8 26 28 46
als 1 80-84 1 4 6 6 12
chi-square 2 77-79 0 2 1 1 0
gauss-mix 2 75 0 2 1 0 0
log-regression 6 75-80 1 2 0 0 0
movie-lens 8 109-147 4 4-5 21 21 0
naive-bayes 1 75 0 9 25 25 30
db-shootout 0 2-3 0 48 75 88 79
fj-kmeans 1 1 0 25-412 106 109 135
future-genetic 0 1 0 10-12 50 48 87
mnemonics 100 1 0 0 0 0 0
par-mnemonics 22 1 0 7-8 265 265 226
scrabble 13 1 0 7 4 2 2
neo4j-analytics 0 27-28 0 4 68 67 60
rx-scrabble 3 2 0 8 149 153 222
dotty 100 1 0 0 0 0 0
scala-doku 100 1 0 0 0 0 0
scala-kmeans 100 1 0 0 0 0 0
philosophers 0 1 0 9 34 35 23
scala-stm-bench7 1 1 0 9 56 108 90

total retired hardware instructions. The workload carried
out by worker threads is further analyzed under the scope of
balance (Table 2 -Workers Imbalance). The variables C, I, and
OA refer to the imbalance of CPU cycles, retired hardware
instructions, and object accesses respectively, between the
worker threads. For example, the worker threads of avrora
show 30% imbalance in CPU cycles (C), 67% in hardware in-
structions (I), and 92% in object accesses (OA). To assess the
balance of a variable X (i.e., the retired hardware instructions)
between N threads, the Equation (1) is used. The Equation (1)
calculates the imbalance in X between the N threads [6]. A
high number of standard deviations can yield in a high imbal-
ance, assuming that the average value is constant (Imbalance
= 0% means “totally balanced”).

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑖𝑛 𝑋 =
𝑠𝑡𝑑𝑒𝑣 (𝑋𝑡ℎ𝑟𝑒𝑎𝑑1, ..., 𝑋𝑡ℎ𝑟𝑒𝑎𝑑𝑁 )

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑋𝑡ℎ𝑟𝑒𝑎𝑑1, ..., 𝑋𝑡ℎ𝑟𝑒𝑎𝑑𝑁 )
(1)

An assessment of the memory contribution to the work-
load imbalance is necessary because the imbalance of hard-
ware instructions does not sufficiently reflect the overall im-
balance of the workload (due to variations in complexity and
latency among hardware instructions i.e., arithmetic vs mem-
ory instructions). Therefore, the imbalance of object accesses
is examined as it effectively reflects the computations-versus-
memory heterogeneity of the worker threads. Hereafter, we
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Figure 2. NUMA Scalability Characterization: Workload Parallelism & Balance.

will use the term “computation-memory heterogeneity” to re-
fer to the computations-versus-memory heterogeneity. Nev-
ertheless, the imbalance of hardware instructions and object
accesses might not imply that the workload is performance-
wise imbalanced, because the memory-derived stalls might
offset the observed computations-memory heterogeneity in
terms of CPU cycles. Therefore, we also examine the impact
of this heterogeneity on performance through the imbalance
of an application in terms of the CPU cycles.
Considering the aforementioned metrics, we can clas-

sify the applications in five discrete categories (“Single-
Threaded”, “TLP-Bound”, “Embarrassingly Imbalanced”, “Im-
balanced”, and “Explicitly Parallel”). Figure 2 illustrates a
flow chart of the aforementioned categories along with the
examined metrics. All the categories, but the “Explicitly Par-
allel”, indicate that the applications do not exhibit the degree
of parallelism that is needed to efficiently scale on a NUMA
system; hence are very likely to be parallelism-bound.

4.1.1 Single-Threaded: This category includes applica-
tions that do not spawn parallel threads, thereby being un-
able to scale. The workload of those applications is either
driven exclusively by the main VM thread (fop and luindex)
or by up to two auxiliary threads, such as a Finalizer
(dotty), and a LogManagerCleaner (jython, mnemonics,
scala-doku, and scala-kmeans).

4.1.2 TLP-Bound: In case an application deploys fewer
threads than the available CPU cores, its scalability is bound
because the exhibited Thread Level Parallelism (TLP) is be-
low the capacity of the system. Among the studied applica-
tions, those that are classified as “TLP-Bound” spawn 2-4
worker threads. Note that the imbalance in hardware instruc-
tions of als and movie-lens is directly reflected to imbal-
ance in CPU cycles (als: C=6%, I=6%, OA=12%, movie-lens:
C=21%, I=21%, OA=0%). Such a fact indicates that thememory
operations do not significantly affect performance, thereby
revealing the compute-bound nature of those applications.

4.1.3 Embarrassingly Imbalanced: Applications that be-
long to that category show extreme imbalance in hardware
instructions. This fact is justified by the observation that only
oneworker thread carries out the 80% of the overall workload

(even though that 7-8 workers are spawned). This observa-
tion was revealed by examining the total retired hardware
instructions per worker thread. Additionally, the imbalance
in object accesses indicates that the workers of those applica-
tions are imbalanced also in terms of memory. The imbalance
of CPU cycles cross-validates that the worker threads are
indeed imbalanced, and they follow the asymmetric trends
of hardware instructions and object accesses.

4.1.4 Imbalanced: Considerable but lower imbalance in
hardware instructions is also observed in other parallel ap-
plications. There is a strong positive linear correlation (0.8)
between the imbalance in hardware instructions and the im-
balance in CPU cycles even though there are two outliers:
avrora and scala-stm-bench7. However, the correlation is
lower (0.66) between the imbalance in CPU cycles and the
imbalance in object accesses. This denotes that the effect of
memory in the imbalance of CPU cycles varies across the
applications. To assess whether the observed computational
and/or memory imbalance is harmful, we have inspected
some additional characteristics of the applications.

Avrora is composed of 11 individual workloads that are
processed in parallel. The first 4 workloads utilize 7, 3, 7 and
2 threads respectively, while the remaining 7 deploy only one
thread; hence, they are single-threaded (26 worker threads
in total). This discrepancy between the different workloads
can explain the observed computation-memory heterogene-
ity of worker threads. The imbalance of CPU cycles which
is lower than the imbalance of hardware instructions and
object accesses, denotes that the computation-memory het-
erogeneity has little effect on performance probably due to
good memory locality (∼1% LLC Miss Rate in “Single Node”).

Pmd analyzes multiple source code files in an imbalanced
manner due to the unequal sizes of the input files [7]. This
fact probably causes the observed computation-memory het-
erogeneity of worker threads. In contrast to avrora, the
computation-memory heterogeneity of worker threads in
pmd is directly reflected in the imbalance of CPU cycles. More-
over, it is noteworthy that the work-stealing strategy that
pmd deploys to maintain workload balance, fails to effectively
counterbalance small and large jobs.

Akka-uct implements the Unbalanced Cobwebbed Tree
(UCT) algorithm [28] in the Akka actors framework. UCT
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Table 3. Summary of the Root Causes of Imbalance.

Root cause Applications
Non-uniform workload distribution

across the deployed workers
avrora, pmd,

akka-uct, fj-kmeans
Dominant single-threaded/serial algorithm/code sections

along with minor explicitly parallel sections reactors, scala-stm-bench7

Synthetic incorporation of different workloads avrora, reactors
db-shootout

Outlier special-cause threads among balanced workers naive-bayes,
philosophers

processes a tree of tasks with variable size which are assigned
to workers by the Akka dispatchers via a shared task queue
structure [28]. Rosa et al. [25] report non-uniform task dis-
tribution across actors which is also confirmed by the imbal-
ance in hardware instructions of the worker threads (Table 2).
Lower imbalance in object accesses (compared to hardware
instructions) seems to counterbalance performance, thereby
leading to milder imbalance in CPU cycles.

Reactors incorporates ten individual message passing
Savina [12] benchmarks that are implemented into the Reac-
tors.IO framework [13]. They are of diverse message passing
counts, processed sequentially by an eight-worker fork-join
pool and all are single-threaded but two. This workload dis-
crepancy can explain the observed imbalance of object ac-
cesses; however, this gap is diminished in respect to hardware
instructions and CPU cycles imbalance.
The workload of naive-bayes is equally distributed to

eight out of the nine deployedworkers. Therefore, one thread
has a different role than the rest. However, the workload is
dominated by the eight homogeneous workers because the
imbalance is maintained in low levels. Therefore, this applica-
tion is an exception and fits better to the “Explicitly Parallel”
category. Philosophers includes one special thread (“cam-
era”) along with eight balanced workers. This diversity in
the roles of the deployed threads can explain the observed
imbalance similarly to the naive-bayes case; hence, this
application is also classified as “Explicitly Parallel”.

Db-shootout incorporates three synthetic Lmdb work-
loads. They are implemented in the MapDB, ChronicleMap,
and MvStore frameworks and are executed sequentially. Al-
though each workload deploys eight workers and performs
the same amount of DB operations (500k reads + 500k writes),
they differ regarding the amount of object accesses that each
one performs. This results in the observed imbalance of
hardware instructions and object accesses because each sub-
workload itself is quite balanced (MapDB - 5%, ChronicleMap -
25%, MvStore 36%). Consequently, the observed imbalance of
db-shootout is illusional, hence this application fits better
to the “Explicitly Parallel” category.

Fj-kmeans implements the k-means algorithm using an
8-worker Fork-Join thread pool. The observed imbalance in
CPU cycles that is also reported by Rosales et al. [26] proba-
bly denotes either computation-memory heterogeneous sub-
tasks or/and sub-tasks of unequal size. The imbalance in hard-
ware instructions and object accesses in Table 2 indicate both.

Shared  
Accesses 

Data-Parallel
log-regression, naive-bayes

Read-Only Dependencies
lusearch, pmd, sunflow, als, chi-square,

gauss-mix, movie-lens, fj-kmeans,
future-genetic, par-mnemonics, rx-
scrabble, scrabble, neo4j-analytics,
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Read-Write Dependencies
avrora, h2, xalan, akka-uct, reactors,
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Figure 3. NUMA Characterization: Data Dependencies.

Sub-tasks of unequal size and the ineffectiveness of the work
stealing in preserving the balance are rather counterintuitive
findings for a Fork-Join application. Scala-stm-bench7 is
single-threaded for ∼80% of the execution time. Eight bal-
anced workers are deployed only for the remaining 20% of
the total execution time. This explains the low imbalance
of CPU cycles in comparison to the hardware instructions.
Consequently, this application can be split into two phases:
a) single-threaded alike, and b) explicitly parallel.
The analysis of the “Imbalanced” applications above re-

veals that the observed imbalance arises from multiple un-
derlying reasons and root causes (summarized in Table 3). It
should be noted that the last two root causes may suggest
that an application is not actually “Imbalanced”.

4.1.5 Explicitly Parallel: Applications that deploy multi-
ple (equal or greater than the available CPU cores) and bal-
anced workers are considered as “Explicitly Parallel”. Even
though all the deployed worker threads of h2 are balanced,
almost 30% of its workload is carried out by the main thread.
Such a fact indicates that h2 has extensively serial phases.

4.2 Data Dependencies
This section discusses the data dependencies between the
worker threads by examining the metric of shared object ac-
cesses via NUMAProfiler (Section 3.1.1). The measurements
are performed in the “Single Node” run configuration be-
cause this metric is not affected by the underlying hardware.
A high number of shared reads or writes is a strong indi-
cation that an application contains shared resources. These
resources, particularly if they contain Remote WAW and
WAR dependencies (Section 2.2 and Section 2.3), can impede
the distribution of a workload across the NUMA system. Ta-
ble 4 lists the percentage of shared accesses over total object
accesses. Three major categories are observed: “Data Parallel
(DP)”, “Read &Write Dependencies (RWD)”, and “Read-Only
Dependencies (RD)”. The following paragraphs discuss the
classification that is illustrated in Figure 3.

4.2.1 Data-Parallel: Having neither considerable shared
reads nor shared writes, this category denotes that it proba-
bly is free of data dependencies. The absence of shared data

6



Scaling Up Performance of Managed Applications on NUMA Systems ISMM ’23, June 18, 2023, Orlando, FL, USA

Table 4. Shared Accesses. “Owner” = Last Writer.

TLP Bound Embarrassingly Imbalanced Imbalanced Explicitly Parallel
Sh R Sh W Sh R Sh W Sh R Sh W Sh R Sh W

als 7.7% 0.1% par-mnemonics 47.9% 0% avrora 62.3% 2.5% h2 36.5% 1.7%
chi-square 27.1% 0% rx-scrabble 48.2% 0% pmd 34.9% 0.2% lusearch 22.8% 0.2%
gauss-mix 35.8% 0% akka-uct 67.2% 0.9% sunflow 83.8% 0%
log-regression 1.7% 0.2% reactors 57.1% 5.3% xalan 15.9% 3.1%
novie-lens 29.9% 0.4% fj-kmeans 59% 0.1% naive-bayes 3.2% 0.2%
neo4j-analytics 38.1% 0% future-genetic 35.3% 0.9% db-shootout 22.9% 2.0%

stm-bench7 35% 0% scrabble 47.2% 0%
philosophers 51.5% 2.5%

among threads is a sufficient condition for maintaining lo-
cality of data even if threads are naively scheduled to run
across NUMA nodes. The scalability of those applications
on a NUMA system is not affected by data dependencies.

4.2.2 Read & Write Dependencies: Those applications
have a considerable amount of shared read and shared
write accesses. Such a fact indicates strong dependencies
among theworking data. Objects updated bymultiple worker
threads in a NUMA system harm locality in case those
threads are scheduled on different NUMA nodes (Sections 2.2
and 2.3). Such a phenomenon inevitably increases the pres-
sure on LLC/Memory, and the interconnect traffic. Conse-
quently, this kind of data dependencies is very likely to pre-
vent those applications from scaling.

4.2.3 Read-Only Dependencies: A considerable amount
of shared reads with negligible or even zero shared writes
indicates the existence of shared data. However, such a fact
might not lead to increased pressure on the LLC/memory
and the interconnect; thus, might not prevent scalability
(i.e., sunflow). The impact of “Read-Only Dependencies” is
tightly related to the amount of “write conflicts” (Section 2.3).

4.3 Data Locality
This section assesses the data locality of the applications by
comparing the LLC miss rate of the “Dual Node” configu-
ration with the equivalent of “Single Node”. As explained
in Section 3.2, this comparison aims to reveal how the mem-
ory behavior of an application is affected by the remote LLC
and memory. Table 5 presents the Read (R) and Write (W)
LLC Miss Rate (%) per application. The metrics are obtained
via PerfUtil using the “Single Node” (S) and “Dual Node”
(D) configurations (excluding the “Single-Threaded” applica-
tions). The objective is to highlight the effect of NUMAon the
data locality by observing the difference in the LLCMiss Rate
between the configurations. In addition, Figure 4 illustrates
the percentage of LLC misses in Read (grey) & Write (black)
that are served by the main memory of a remote node. The
metrics reported in this figure are obtained with the “Dual
Node” configuration, and they indicate whether the observed
difference in the LLC Miss rate is related to “write-conflicts”
(Section 2.3). The following paragraphs discuss data locality
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Figure 4. Read & Write LLC Misses of a Remote Node.

in association with the categories introduced in Sections 4.1
and 4.2, with the exclusion of the “Single-Threaded” category.

4.3.1 TLP-Bound: The data locality of these applications
is negligibly affected by NUMA. This is because the “TLP-
Bound” applications usually deploy few workers, and conse-
quently the Linux kernel that aims to maintain the locality of
data is very likely to reside the threads and the working data
in the same NUMA node. Nevertheless, some counterintu-
itive cases exist. For example, als and movie-lens present
a considerable increase (+13%, +5% accordingly) in the ob-
served LLC read miss rate and neo4j-analytics presents a
slight decrease in LLC read misses (-1%). Those three applica-
tions deploy four workers each, along with multiple auxiliary
threads of the Spark and Neo4j engines respectively (Table 2).
As a result, this amount of threads can force the OS to spread
the threads in multiple NUMA nodes. The percentage of
remote memory reads that those applications show is the
highest among the “TLP-bound” (57%, 59%, and 52%) and
indicates that the worker threads were indeed scheduled to
run on both NUMA nodes of the system. In addition, the
“Read-Only Dependencies” that these applications have (Sec-
tion 4.2) imply that the spread threads communicate and
share data. However, those applications are differentiated re-
garding the data locality from Single to Dual Node. The fact
that the the high number of remote memory reads is accom-
panied by more LLC read misses in Dual Node for als and
movie-lens but not for neo4j-analytics implies that the
latter does not suffer from “write-conflicts”, while als and
movie-lens do. More specifically, the als and movie-lens
apparently have objects that are repetitively read by threads
that run on a remote node, written/updated by the owner
thread and inevitably lead to more LLC misses. On the other
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Table 5. LLC Miss Rates per “Workload Parallelism & Balance” and “Data Dependencies” Classification.

TLP
Bound

R W Embarrassingly
Imbalanced

R W Imbalanced R W Explicitly
Parallel

R W
S D S D S D S D S D S D S D S D

R
D

als 6 19 44 50 par-mnemonics 8 9 55 55 pmd 2 2 58 56 lusearch 0 2 54 56
chi-square 10 13 60 59 rx-scrabble 4 7 59 61 fj-kmeans 70 71 44 63 sunflow 2 2 64 62
gauss-mix 3 3 60 60 future-genetic 0 14 48 58 scrabble 2 22 33 72
movie-lens 4 9 51 54 stm-bench7 16 31 68 63
neo4j-analytics 24 23 63 61

R
W

D

avrora 0 9 6 34 h2 35 36 48 49
akka-uct 21 32 59 64 xalan 0 4 47 51
reactors 3 23 29 47 db-shootout 10 29 60 64

philosophers 0 21 28 50

D
P log-regression 54 56 57 57 naive-bayes 17 22 59 58

hand, neo4j-analytics does not suffer from that effect.
This observation confirms the intuitive expectation that the
“Read-Only Dependencies” can behave either like “Data Par-
allel” (as in the case of neo4j-analytics) or like having
“Read & Write Dependencies” (as in the case of als, and
movie-lens) due to the effect of “write conflicts”. Moreover,
als and movie-lens show the highest performance degra-
dation among all “TLP-Bound” (Figure 1). In particular, als
is a compute-bound application [24] which turns out to be
memory-bound when run in a NUMA system due to the data
dependencies that harm locality.

4.3.2 Embarrassingly Imbalanced: The negligible dif-
ference in the LLC Miss Rate and the low number of remote
node accesses reveal the main characteristics of these ap-
plications. The multiple workers that an “Embarrassingly
Imbalanced” application spawns are not concurrently active,
hence it essentially behaves similarly to a “Single-Threaded”
application. As a result, the OS settles up the application
on only one NUMA node and no significant difference is
observed in the locality of data and performance. Therefore,
the offering of multiple NUMA nodes in such an application
even though it is not harmful, it is not likely to be beneficial.

4.3.3 Imbalanced: Future-genetic and scala-stm-be-
nch7 show a considerable increase in the LLC Miss Rate
of read operations, probably due to the number of “write
conflicts” over the shared read objects (similarly to als and
movie-lens). These applications deploy enough workers in
order to force the OS to schedule them across the NUMA
nodes but contain only read dependencies.

Pmd is not bound by data locality since its LLC Miss Rate
is not affected. Such an observation is expected consider-
ing that each worker processes an individual file. Note that,
pmd is one more example of an application with “Read-Only
Dependencies” which behaves as being “Data Parallel”.

The LLCWrite Miss Rate of fj-kmeans is heavily affected
in Dual Node, but data locality of Reads is not. However,
the LLC Read Miss Rate of fj-kmeans is already high (70%)
even in the Single Node configuration. This fact indicates

that locality is harmed due to limited LLC capacity and/or ir-
regular memory access patterns which is attributed to the ap-
plication implementation. More specifically, the fj-kmeans
recursively splits the working data (data points) into smaller
chunks until a chunk of desired size is (randomly) assigned
to the first available worker from a Fork/Join thread pool in
order to perform the centroid calculations. Therefore, each
worker processes non “neighboring” data chunks, hence it
cannot benefit from spatial locality and hardware prefetch-
ing. This essentially is an irregular data pattern because a
worker can process data chunks from any segment of the
working dataset. This practice can explain the very high LLC
Read Miss Rate, even in Single Node. The increase in LLC
Read Miss Rate for Dual Node is avoided though due to the
read-only nature of this phase. Moreover, the k-means algo-
rithm updates the calculated centroids after processing all
forked subtasks. Therefore, the LLC write miss rate increase
in Dual Node (+19%) can be attributed to the impact of the
“ping-pong“ effect on this update phase (that the workers are
spread in both NUMA nodes and repetitively invalidate al-
ready cached data which is about to be written/updated). As
a result, it is clear that the data locality bounds the scalability
of fj-kmeans on a NUMA machine.

The “Imbalanced” applications with “Read &Write Depen-
dencies” (avrora, akka-uct, reactors) show high increase
in LLC Miss Rate for both reads and writes. Such an observa-
tion is expected because those applications deploy enough
workers in order to force the OS scheduler to spread them
in all NUMA nodes, while also they contain strong read and
write dependencies between the workers. For example, the
Miss Rates of avrora in the Single Node configuration (R
= 0.1%, W = 6%) imply that this application has good data
locality and does not suffer from capacity misses even in the
smaller LLC of the Single Node. As a result, the observed
increase of the LLC Miss Rates in Dual Node is attributed
only to the data dependencies between the workers that run
in both NUMA nodes. This conclusion is also supported by
the number of remote node memory accesses (R = 58%, W =
81%) and the increase in LLC Miss Rates (R: +9%, W: +28%).
It becomes apparent that spreading the workers of this ap-
plication across NUMA nodes without considering the data
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dependencies breaks the locality by invalidating the already
cached data, and consequently leads to more LLCMisses. The
akka-uct application seems to be affected mostly by write-
conflicts over shared read data (similarly to future-genetic
and scala-stm-bench7). Finally, the reactors application
has the highest percentage of shared write object accesses
(5.3%, see Table 4) among all applications. The shared writes
imply that the workers write/update objects that are owned
by other workers. In case the writer resides in a different
NUMA node than the object, a remote node access occurs,
the data is updated and transferred in the LLC of the node of
the writer, and the cached data (if any) of any other node is
invalidated (“ping-pong” effect, see Section 2.2). Therefore,
this situation will lead to additional accesses to the remote
nodes upon the occurrence of any read or write operation by
a remote node worker. Moreover, it will lead to more cache
misses because the transfer will overwrite already cached
data. The latter is confirmed by the observed increase in LLC
Miss Rates (R: +20%, W: +18%). Consequently, the shared
write dependencies seem to harm data locality of reactors.

4.3.4 Explicitly Parallel: The data locality of
db-shootout and philosophers seems to be affected
the most among the “Explicitly Parallel” applications
with “Read & Write Dependencies”. The LLC Miss Rates
of philosophers for reads and writes are significantly
increased from Single to Dual Node (R: +21%, W: +22%).
However, this application has a considerable amount
of shared writes (2.5%) and the implemented dining
philosophers algorithm is a well known synchronization
problem over shared resources [27]. Consequently, the
lack of data locality in Dual Node for this application
is attributed to the data dependencies. On the contrary,
h2 and xalan maintain locality in Dual Node, thereby
indicating that the observed data dependencies probably
do not concern the same objects. The data locality of the
applications with “Read-Only Dependencies” is less likely to
be harmed in NUMA compared to those that have “Read
& Write Dependencies”; however, there are such cases.
For instance, scrabble shows considerable increase in
the LLC Miss Rate (R: +20%, W: +38%), denoting clearly
that its locality is heavily harmed by NUMA. In addition,
after inspecting the Branch Prediction Unit Misses per Kilo
Instructions (BPU MPKI), it turns out that scrabble has
one of the highest BPU MPKI (scrabble = 4.11, geomean =
1.35). Such a fact along with the observed LLC Miss Rate
increase in Dual node is very likely to reflect irregularities
in the memory access pattern. Scrabble is structured
around a centralized HashSet which acts as a reference
dictionary for the scrabble game. Consecutive read and/or
write operations on a HashSet can create irregular memory
access patterns because two semantically neighbor buckets
do not necessarily neighbor into the HashSet. Moreover,
bucket manipulation does not require serial traversal of

the data structure, hence a typical HashSet cannot benefit
from cache and prefetching mechanisms. As a result,
scrabble is very likely to get its buckets accessed in a
random order. To verify this assumption, we replaced the
HashSet data structure with an ArrayList and observed
mild increase in LLC Read Miss Rate (S:14%, D:19%) and
decrease in LLC Write Misses (S:69%, D:63%). Even though
the ArrayList is a locality friendly data structure, it is
more resource-consuming than the HashSet. For example,
the ArrayList version of scrabble executes 124x more
instructions and 120x more L1 accesses than the HashSet
version, thereby leading to a trade-of between data locality
and performance. Consequently, it is clear that scrabble
suffers from irregular memory access patterns that are
related to the HashSet. As a result, the irregularity in
memory access patterns heavily damages data locality
and can also explain the heavy performance degradation
observed in Figure 1. Naive-bayes is the only application
that belongs to the “Explicitly Parallel” and “Data Parallel”
categories. The data locality of this application is negligibly
affected which is expected because it belongs to a category
without data dependencies. The only potential menace
regarding data locality for applications that belong to these
categories (“Explicitly Parallel” and “Data Parallel”) is the
irregular memory access pattern. Naive-bayes does not
exhibit such a pattern since no extreme increase in LLC Miss
Rate is observed. However, such a corner-case application
would be an interesting addition to the benchmark suites.

4.4 Discussion on Performance Scalability
To attest the findings of the characterization study as dis-
cussed in previous paragraphs, we measured the perfor-
mance of each application running with two different config-
urations, “All Nodes” against “Single Node” (Table 1). Table 6
presents the relative performance of the execution with the
“All Nodes” configuration against the “Single Node” configu-
ration. The most scalable applications belong to the “Explic-
itly Parallel” category since they exhibit no shared writes
(RD or DP). Another observation is the significant perfor-
mance degradation of the “Locality-Bound” applications (i.e.,
fj-kmeans, scrabble) which are illustrated using a grey
background. None of the “Imbalanced” applications can scale
its performance, thereby validating that data dependencies
in combination with the lack of workload parallelism and
balance can impact scalability. Furthermore, the observed
performance of the “TLP-Bound” and “Embarrassingly Im-
balanced” applications confirms that the best-case scenario
for these categories is only to avoid any performance loss.
However, this scenario can be achieved only if there are
no data dependencies, and consequently, it might be more
efficient to run those applications on one NUMA Node.
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Table 6. NUMA Characterization of Dacapo & Renaissance.

TLP
Bound Perf. Embarrassingly

Imbalanced Perf. Imbalanced Perf. Explicitly
Parallel Perf.

R
D

als 0.87x par-mnemonics 0.89x pmd 0.96x lusearch 1.29x
chi-square 1.01x rx-scrabble 0.98x fj-kmeans 0.64x sunflow 1.87x
gauss-mix 1.01x future-genetic 0.83x scrabble 0.39x
movie-lens 0.86x stm-bench7 0.90x
neo4j-analytics 0.93x

R
W

D

avrora 0.86x h2 0.83x
akka-uct 0.85x xalan 1.62x
reactors 0.79x db-shootout 0.73x

philosophers 0.59x

D
P log-regression 1.00x naive-bayes 1.86x
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Figure 5. Overview of the Optimization Mechanism.

5 Optimization Mechanism
The previous section analyzed our characterization study
that resulted in classifying several Dacapo and Renais-
sance applications into four categories. However, to per-
form the classification we had to employ two profiling tools
and observe several low-level and high-level metrics using
NUMAProfiler and PerfUtil, respectively. Such an approach
is not transferable in the context of an online optimization
due to the high overhead of the detailed profiling.
Therefore, we designed a novel mechanism that is proto-

typed in MaxineVM to detect whether the performance of
JVM applications can scale on NUMA systems, and adapt
their execution configuration online. The proposed mecha-
nism utilizes exclusively the low-overhead profiling capabil-
ities of PerfUtil for a running application, and it capitalizes
on the findings of our characterization study (Section 4) to
apply the most suitable running configuration. In particular,
Section 5.1 presents the design and implementation of the
proposed mechanism. Section 5.2 discusses the overhead of
the proposed mechanism, whereas Section 5.3 analyzes the
end-to-end performance of the studied applications.

5.1 Design and Implementation
MaxineVM is equipped with an optimization mechanism
(-XX:+NUMAOpts option) that can dynamically and iteratively
profile and classify a running application, and finally ap-
plies the proper run configuration. The mechanism is imple-
mented as a new daemon VM-internal background thread
(named “Awareness Thread”) that implements all the ac-
tions performed within the mechanism, as shown in Figure 5.
All actions in the workflow are depicted in red, while the

main components of the mechanism are depicted in grey.
The “Awareness Thread” is initialized along with the other
VM-internal threads (i.e., main, VmOperations, etc.) during
the starting phase of MaxineVM. Once it is initialized, the
“Awareness Thread” becomes a daemon, and iterates over
a set of actions (Sleep, Collect Data, Process Data, Decide,
Act); each of those encloses a fragment of logic of the mecha-
nism. The “Awareness Thread” dynamically coordinates the
process of profiling and decision-making; hence it does not
involve the application threads to additional duties. Any iter-
ation of the “Awareness Thread” starts after a sleep time in-
terval which regulates the operation frequency of the mech-
anism and subsequently how often a new decision is taken.
The time interval is set to 200ms after experimentation. The
“Collect Data” action obtains and stores the profiling data
into buffers. Thereafter, the raw profiling data are processed
during the “Process Data” action in order to calculate the fol-
lowing metrics: the percentage of main thread instructions
over total retired instructions, the number of worker threads,
the worker threads instructions imbalance, and the Cycles
per Instruction (CPI). The aforementioned metrics are used
to decide the application state as well as the most suitable
running configuration for the application.
The mechanism is implemented to operate on a sepa-

rate thread to offload any extra duties from the applica-
tion threads. However, an increase of the number of context
switches is expected due to the deployment of an additional
thread. Section 5.2 analyzes the overhead of the mechanism.

5.1.1 Decision-Making Logic. The goal of the “Decide”
action is to decide in which state the application currently
is. An application is considered as SINGLE_THREADED if
the main thread significantly dominates the retired hard-
ware instructions (>80%). If it deploys equal or fewer work-
ers than the number of available cores it is considered
as TLP_BOUND. Additionally, an application is attributed as
EMBARRASSINGLY_IMBALANCED if its imbalance in hardware
instructions of worker threads exceeds 90%. In case an ap-
plication has not fallen into one of the aforementioned cate-
gories, it is considered as “Parallel” (“Imbalanced” or “Explic-
itly Parallel”). However, it is not certain whether a “Parallel”
application would be benefited by a NUMA system. The
mechanism takes such a decision based on the following
conservative strategy: Firstly, the application is temporarily
forced to remain on a single NUMA node for one time inter-
val. At the next interval the application is forced to run on all
NUMA nodes. After those two time intervals, the mechanism
has measured the singleNodeCPI and the allNodeCPI. The
frequency of the system is fixed, therefore the CPI value is
directly related to performance. Consequently, a reasonable
decision can be taken by comparing the two CPI values. The
application is classified as PARALLEL_ON_ALL_NODES, and
therefore, it is allowed to continue running on all NUMA
nodes if the allNodeCPI is lower (better) or equal to the
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singleNodeCPI + cpiMargin. Otherwise, the application
is classified as PARALLEL_ON_SINGLE_NODE, thus it should
settle back to a single node.
To eliminate the frequency based on which the mecha-

nism takes a decision, we introduced a dynamic “stabiliza-
tion” strategy. This strategy works, as follows. As long as
the mechanism takes the same decision for a “Parallel” appli-
cation, the optimization interval is increased by 200ms. The
increase in the optimization interval aims to stabilize the de-
cision mechanism and avoid unnecessary interruptions and
ineffective migrations. Essentially, the “stabilization” strat-
egy is based on a heuristic that assumes that a repetitive
decision is less likely to be a coincidence. In case the deci-
sion of the mechanism alters at any point, the optimization
interval is adapted to reset to its initial value (200ms).
Finally, the “Act” action is responsible for applying the

proper run configuration according to a classification. The
PARALLEL_ON_ALL_NODES classification leads to the “All-
Nodes” configuration, while the rest lead to the “Single-Node”
one. Note that, the aforementioned workflow was designed
with the aim of being easily extensible towards further and
more complex NUMA configurations.

5.2 The Overhead of the Mechanism
To evaluate the overhead of the proposed mechanism,
we employed two builds that execute the applications
on one node; MaxineVM_vanilla and MaxineVM_fakeOpts.
MaxineVM_vanilla is an unmodified build of MaxineVM
which is used as the baseline, whereas MaxineVM_fakeOpts
is a MaxineVM build with the mechanism modified to al-
ways deploy the “Single Node” configuration (even in case
the application is classified as PARALLEL_ON_ALL_NODES).
We have measured and compared the average execution
time of five runs with both builds for all applications.
MaxineVM_vanilla in the “Single Node” configuration,
MaxineVM_fakeOpts in the “All Nodes” configuration, while
the applications are configured to deploy 16 threads, wher-
ever possible. This comparison reveals the overall overhead
of the proposed mechanism because MaxineVM_fakeOpts
eliminates all NUMA-related factors that cause performance
variations, and its performance is solely affected by the mech-
anism itself. Our experiments show that the geometric mean
of the overall overhead for all studied applications is 0.9%.

5.3 Performance Evaluation
To measure the efficiency of the applications running
with the optimization mechanism, we have used the
MaxineVM_vanilla build with the “All Nodes” configura-
tion as the baseline. Table 7 presents the relative perfor-
mance of the execution with the optimization mechanism
against the baseline execution for all applications. The re-
ported relative performance is calculated using the aver-
age of five executions. As shown in Table 7, the proposed

Table 7. Relative Performance of the Optimization Mecha-
nism against MaxineVM_vanilla.

Application Speedup Application Speedup
scrabble 3.29x chi-square 1.02x
f-kmeans 2.55x log-regression 1.01x
philosophers 1.38x luindex 1.01x
reactors 1.24x naive-bayes 1.01x
akka-uct 1.16x dotty 1.01x
future-genetic 1.15x scala-doku 1.01x
als 1.15x scala-kmeans 1.01x
db-shootout 1.14x neo4j-analytics 1.00x
par-mnemonics 1.13x mnemonics 1.00x
movie-lens 1.11x jython 1.00x
avrora 1.07x fop 1.00x
rx-scrabble 1.03x sunflow 0.98x
pmd 1.03x lusearch 0.97x
h2 1.02x scala-stm-bench7 0.86x
gauss-mix 1.02x xalan 0.66x

Geomean 1.11x

mechanism improves performance by 11% using the geomet-
ric mean of all applications. Overall, some applications (i.e.,
scrabble, fj-kmeans, reactors, db-shootout and more)
exploit the optimization mechanism, while others (i.e., xalan
and scala-stm-bench7) are penalized by the mechanism.
The most benefited applications are those which do not scale
on a NUMA system, such as scrabble and fj-kmeans. Both
benchmarks have been classified as “Locality Bound” in Ta-
ble 6, hence they cannot scale on aNUMA system. In this case,
both applications exploit the fact that the proposed mecha-
nism has decided to deploy them on a single node. Therefore,
the results confirm that the optimization mechanism can
detect and prevent such a performance degradation.

An additional finding is the impact of the adaptive nature
of the mechanism that is achieved through the dynamic “sta-
bilization” strategy (Section 5.1.1). To evaluate the impact of
this strategy, we have counted the number of “migrations”
which corresponds to how many times the mechanism al-
ters its previous decision/classification (“𝑆𝑖𝑛𝑔𝑙𝑒𝑁𝑜𝑑𝑒” →
“𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠”, or “𝐴𝑙𝑙𝑁𝑜𝑑𝑒𝑠” → “𝑆𝑖𝑛𝑔𝑙𝑒𝑁𝑜𝑑𝑒”). The number
of migrations is then compared against a non-adaptive (NA)
version of the mechanism along with the impact in perfor-
mance (Table 8). The “stabilization” strategy significantly
benefits the naive-bayes (+0.35x) and sunflow (+0.26x) ap-
plications. It does not boost the performance of the penalized
applications (i.e., lusearch and scala-stm-bench7), while
it further penalizes xalan (-0.15x).

The variation in performance is also reflected in the num-
ber of migrations. More specifically, the “stabilization” strat-
egy reduces the migrations for the benefited naive-bayes
and sunflow applications (from 42 to 1, and from 31 to 7
respectively), while it has no significant impact in the migra-
tions of the unaffected lusearch and scala-stm-bench7.
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Table 8. Impact of the “stabilization” Strategy in Perfor-
mance and the number of Migrations.

Performance MigrationsApplication Speedup NA Stable
avrora -0.05x 35 32
pmd 0x 0 0
akka-uct +0.01x 192 122
reactors +0.02x 0 0
fj-kmeans 0x 3 2
future-genetic 0x 718 689
scala-stm-bench7 -0.01x 71 72
h2 -0.01x 115 24
lusearch +0.01x 30 22
sunflow +0.26x 31 7
xalan -0.15x 28 3
naive-bayes +0.35x 42 1
db-shootout -0.03x 177 21
scrabble -0.01x 62 3
philosophers -0.04x 41 3
GEOMEAN +0.03x

However, the migrations are also reduced for the penalized
xalan (from 28 to 3) which is counterintuitive.

These observations lead to the following conclusion. The
scalability of naive-bayes and sunflow is penalized by the
frequent migrations. By reducing the frequency that the
mechanism operates, the migrations are avoided. Hence,
those applications can benefit from the deployment on two
NUMA nodes. Nevertheless, this decision does not apply to
all applications. A cause for that differentiation can be the
fact that some applications do not have uniform behavior
(i.e., their algorithm has multiple and different phases). Such
an example is the scala-stm-bench7 which is driven by a
single thread for∼80% and ismultithreaded for the remaining
∼20%. Consequently, a trade-off between potential scalability
benefits and precise decisions arises. Finally, it is noted that
the geometric mean (+0.03x) of all applications confirms that
the “stabilization” strategy is beneficial in general.

6 Related Work
The literature on achieving NUMA scalability [1, 4, 6, 8, 18,
19, 29, 30] has identified various limiting factors, including
the memory contention over shared resources, congestion
on memory controllers and interconnect, and inefficiencies
related to page-tables. Numerous works have studied opti-
mizations for the OS scheduling and memory management
to increase performance on NUMA systems. However, most
of these works have focused on non-managed environments
and applications, hence, they study the effect of NUMA ar-
chitectures in a more direct manner.
Gidra et al. [9] have evaluated the scalability of Parallel

Scavenge GC for the JVM and identified memory access

imbalance, lack of memory access locality, and contention
over shared resources as the main bottlenecks. This work
has proposed GC and object placement optimizations to
address these issues [9, 10]. Alnowaiser et al.[2] have en-
hanced GC thread locality, while Patrou et al. [22] have
considered thread affinity along with GC to improve the
NUMA-awareness of the JVM. Nonetheless, these studies
have overlooked the relationship between the properties
of the running application and NUMA-related bottlenecks,
resulting in a limited understanding of the impact of applica-
tion properties on memory behavior, scalability, and perfor-
mance. MacGregor et al. [17] have characterized the mem-
ory behavior of GHC and Haskell applications. Papadakis
et al. [21] have proposed PerfUtil for low-level NUMA pro-
filing using hardware performance counters, which lacks
correlation with high-level application properties.

Thus, the work in this paper aims to complement prior re-
lated work by studying the behavior of managed applications
on NUMA architectures during mutation time. Additionally,
our study is the springboard for the development of a novel
optimization mechanism that can increase the performance
of Java applications on NUMA systems.

7 Conclusion
In this paper, we studied the behavior of managed applica-
tions onNUMAarchitecture as ameans to understand how to
scale up their performance. Our study characterized several
Dacapo and Renaissance applications during mutation time
from both the application and the microarchitectural points
of view. The characterization findings resulted in a classi-
fication of the running applications into several categories.
Then, we capitalized on those findings to implement a novel
lightweight and dynamic mechanism in MREs for optimizing
the scalability of managed applications on NUMA systems.
Our experiments showcased that the proposed mechanism
can assess with negligible overhead and in an application-
agnostic way, whether an application should scale up on
multiple NUMA nodes or it should be deployed on a sin-
gle node. Finally, the proposed mechanism has yielded in
end-to-end performance improvement of up to 3.29x, with a
geometric mean of 1.11x, against the vanilla performance of
a managed application on a NUMA system.
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