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Bose-Einstein condensation happens as a gas of bosons is cooled below its transition temperature, and the
ground state becomes macroscopically occupied. The phase transition occurs in the thermodynamic limit of
many particles. However, recent experimental progress has made it possible to assemble quantum many-body
systems from the bottom up, for example, by adding single atoms to an optical lattice one at a time. Here,
we show how one can predict the condensation temperature of a Bose gas from the energy fluctuations of a
small number of bosons. To this end, we make use of recent advances in Lee-Yang theories of phase transitions,
which allow us to determine the zeros and the poles of the partition function in the complex plane of the inverse
temperature from the high cumulants of the energy fluctuations. By increasing the number of bosons in the
trapping potential, we can predict the convergence point of the partition-function zeros in the thermodynamic
limit, where they reach the inverse critical temperature on the real axis. Using fewer than 100 bosons, we can
estimate the condensation temperature for a Bose gas in a harmonic potential in two and three dimensions, and
we also find that there is no phase transition in one dimension as one would expect.
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I. INTRODUCTION

Bose-Einstein condensation is a remarkable physical phe-
nomenon by which a gas of bosons abruptly condenses into
its ground state as it is cooled below its transition tempera-
ture [1,2]. Bose-Einstein condensation was first observed with
dilute atomic vapors that were cooled below their transition
temperature of a few hundred nanokelvins [3,4]. These results
spurred a wide range of developments that seek to explore how
Bose-Einstein condensates can be exploited for technological
applications, e.g., for quantum computing [5], sensing [6], or
thermal machines [7,8]. At its core, Bose-Einstein condensa-
tion can be understood using basic arguments which relate the
critical temperature of a gas solely to the density of bosons ρ,
the thermal de Broglie wavelength λth = h/

√
2πmkBT , and

the geometry and dimension of the confining potential. For
example, for free bosons in three dimensions, the transition
temperature can be found from the relation ρλ3

th = ζ (3/2) �
2.61, where ζ (x) is Riemann’s zeta function [9]. Typically, to
observe Bose-Einstein condensation, the gas must be dilute,
and the temperature must be ultralow. However, in recent
years, Bose-Einstein condensation has also been observed at
room temperature with quasiparticles, such as surface plas-
mons [10,11] or magnons [12,13]. To this end, a large de
Broglie wavelength can be obtained by using bosons with a
very low effective mass, rather than cooling them to subkelvin
temperatures.

Bose-Einstein condensation is a prime example of a phase
transition, which can be analyzed within the framework of
equilibrium statistical physics [14–16]. Phase transitions oc-
cur in the thermodynamic limit of many particles and large
system sizes, and they are signaled by a nonanalytic be-
havior of the free-energy density at the critical value of
the external control parameter, for example, temperature,

pressure, or magnetic field. Early on, Lee and Yang realized
that this nonanalytic behavior can be understood by consid-
ering the zeros of the partition function in the complex plane

FIG. 1. Lee-Yang theory of Bose-Einstein condensation. (a) A
two-dimensional harmonic potential V (x, y) containing a gas of
bosons. (b) Fraction of bosons in the ground state of a two-
dimensional potential as a function of the temperature T . Below the
critical temperature Tc, the ground state becomes macroscopically
occupied. (c) Zeros of the canonical partition function in the complex
plane of the inverse temperature, β = 1/(kBT ), for different dimen-
sions. The zeros correspond to N = 20 bosons and were obtained
with a high-temperature expansion of the partition function. The red
dots illustrate potential convergence points βc in the thermodynamic
limit.
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of the control parameter [17–20]. In the case that a system
exhibits a phase transition, the complex partition-function
zeros will approach the critical value on the real axis in the
thermodynamic limit and thereby give rise to a nonanalytic
behavior of the free-energy density [21–35]. Lee and Yang
thereby provided a rigorous foundation of phase transitions.
Moreover, in recent years, it has been realized that partition-
function zeros are not only a theoretical concept. They can
also be determined in experiments [36–40]. In the approach
that we follow here, the partition-function zeros can be found
from the fluctuations of the thermodynamic observable that
couples to the control parameter; for example, energy is cou-
pled to the inverse temperature, while the magnetization of
a spin lattice couples to the magnetic field [39–44]. Thus,
from these fluctuations, one can find the partition-function
zeros for a given system size, and by gradually increas-
ing the system size, one may determine the thermodynamic
convergence point by extrapolation. This methodology has
already been realized experimentally [40], and it has also
been applied in theory to a variety of equilibrium problems,
including simple models of DNA unfolding [41] and spon-
taneous magnetization in spin lattices [42–44]. Surprisingly,
in many cases, the critical value of the control parameter
can be found using rather small system sizes. The frame-
work is not restricted to equilibrium settings and can also
be applied to nonequilibrium phase transitions [39,45]. In
addition, it was recently extended to the quantum realm to
describe quantum phase transitions in the many-body ground
state of interacting quantum systems [46–48] and to dynam-
ical quantum phase transitions in spin lattices following a
quench [49,50].

The purpose of the present work is to apply the Lee-Yang
methodology to predict the condensation temperature of a
Bose gas from the fluctuations of the energy in a harmonic
potential in one, two, and three dimensions, as illustrated in
Fig. 1(a). Below the condensation temperature, the fraction
of particles in the single-particle ground state grows alge-
braically as the temperature is reduced, as shown in Fig. 1(b)
for a two-dimensional trapping potential. The abrupt change
in the ground state population occurs in the thermodynamic
limit of many particles. By contrast, we here consider fewer
than 100 bosons, and we determine the partition-function
zeros in the complex plane of the inverse temperature from
the high cumulants of the energy fluctuations. Examples are
provided in Fig. 1(c), where we show the complex partition-
function zeros obtained with a high-temperature expansion
of the partition function in one, two, and three dimensions.
In two and three dimensions, the zeros converge towards the
inverse transition temperature on the real axis as the number
of particles is increased. On the other hand, for the one-
dimensional potential, there is no phase transition, and the
zeros remain complex.

This paper is organized as follows. In Sec. II, we provide a
brief overview of the standard approach to Bose-Einstein con-
densation based on the grand-canonical ensemble. We then
turn to the canonical ensemble, which we will use through-
out this work, and where the number of particles is fixed.
In Sec. III, we discuss the Lee-Yang theory that we will be
using, which considers the zeros of the canonical partition
function in the complex plane of the inverse temperature.

We show how the partition-function zeros can be determined
from the energy fluctuations of the Bose gas and how we
can predict the transition temperature in the thermodynamic
limit using fewer than 100 bosons. In Sec. IV, we show
results for bosons in a harmonic trap in one, two, and three
dimensions, for which we predict the transition temperature
by extrapolation to the thermodynamic limit. In Sec. V, we
then simulate the energy fluctuations in a Bose gas to demon-
strate how the partition-function zeros in principle could be
determined experimentally. Finally, in Sec. VI, we present our
conclusions and provide an outlook on possible developments
for the future. Additional technical details are provided in
Appendixes A and B.

II. BOSE-EINSTEIN CONDENSATION

A. Grand-canonical ensemble

The simplest approach to Bose-Einstein condensation is
provided by the grand-canonical ensemble as discussed in
most textbooks [9]. The equilibrium properties of the gas are
encoded in the grand-canonical partition function,

Z (β,μ) = Tr{e−β(Ĥ−μN̂ )}, (1)

where Ĥ is the many-body Hamiltonian of the confined
bosons, the number operator is denoted by N̂ , and μ is the
chemical potential, while β = 1/kBT is the inverse tempera-
ture. The grand potential correspondingly reads

�(β,μ) = −β−1 lnZ (β,μ)

� −β−1
∫ ∞

0
dEgd (E ) ln{1 − e−β(E−μ)}, (2)

where

gd (E ) = 1

(d − 1)!

E (d−1)

(h̄ω0)d
(3)

is the density of states of the potential with frequency ω0 in d
dimensions. The mean number of bosons reads

N = −∂μ�(β,μ) =
∫ ∞

0
dE

gd (E )

1 − zeβE
= Lid (z)

(β h̄ω0)d
, (4)

where z = eβμ is the fugacity and Lid (z) is the polyloga-
rithmic function. At high temperatures, the contribution from
the single-particle ground state can be included in the inte-
grals above. On the other hand, at lower temperatures, the
ground-state population becomes macroscopic and must be
treated separately. When this happens, the chemical potential
approaches the ground-state energy, which is set to zero, and
we can thus find the condensation temperature from Eq. (4)
in the limit z → 1. In this limit, the polylogarithmic function
is given by Riemann’s zeta function, Lid (1) = ζ (d ), with
ζ (2) = π2/6 and ζ (3) � 1.2, while it diverges for d = 1. We
then find the known expression for the transition temperature
in d = 2, 3 dimensions,

Tc = h̄ω0

kB

(
N

ζ (d )

)1/d

. (5)

By contrast, there is no phase transition for the one-
dimensional harmonic potential. (See, however, Refs. [51,52]
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and Appendix A for a discussion of Bose-Einstein condensa-
tion of a finite number of trapped bosons in one dimension,
which is not an actual phase transition in the thermodynamic
limit.) The transition temperature in Eq. (5) appears at first
to diverge with the number of particles. However, in the ther-
modynamic limit, the particle density should be fixed, and to
this end one weakens the potential, so that ωd

0 × N is kept
constant [52].

B. Canonical ensemble

In the approach that we pursue in the following, we con-
sider the canonical ensemble, where the number of particles
is fixed, and the partition function is defined as

ZN (β ) = TrN {e−βĤN } (6)

in terms of the Hamiltonian ĤN for N particles. Importantly,
for an ideal Bose gas, the partition function can be found from
the recursive expression [53–58]

ZN (β ) = 1

N

N∑
k=1

Z1(kβ )ZN−k (β ), (7)

which starts with the partition function for a single particle
together with Z0(β ) = 1. For a single particle in a harmonic
trapping potential, we readily find

Z1(β ) =
( ∞∑

n=0

e−β h̄ω0(n+1/2)

)d

=
(

e−β h̄ω0/2

1 − e−β h̄ω0

)d

, (8)

and we can then obtain the partition function for N particles
using Eq. (7). At high temperatures, the partition function for
a single particle simplifies to

Z1(β ) � 1

(β h̄ω0)d
, β h̄ω0 � 1, (9)

which will be useful for some of our calculations.

C. Moments and cumulants of the energy

From the partition function and the associated free energy,
we can obtain various thermodynamic observables and their
moments and cumulants. In particular, we can obtain the mo-
ments of the total energy as

〈U n〉 = (−1)n
∂n
βZN (β )

ZN (β )
= TrN

{
Ĥn

N

e−βĤN

ZN (β )

}
. (10)

Similarly, the cumulants of the energy are defined as

〈〈U n〉〉 = (−1)n∂n
β ln ZN (β ), (11)

and they can be directly expressed in terms of the moments
via the standard relation

〈〈U n〉〉 = 〈U n〉 −
n−1∑
m=1

(
n − 1

m − 1

)
〈〈U m〉〉〈U n−m〉. (12)

Moreover, differentiating Eq. (7) with respect to the inverse
temperature and using the general Leibniz rule for the nth

derivative of a product of functions, we arrive at

Z (n)
N (β ) = 1

N

N∑
k=1

N∑
l=0

(
n

l

)
kl Z (l )

1 (kβ )Z (n−l )
N−k (β ), (13)

where we have introduced the notation Z (n)
N (β ) = ∂n

βZN (β ).
Using this expression, we can recursively evaluate the high
derivatives of the partition function and the corresponding
moments and cumulants using only the derivatives of the
one-particle partition function.

III. LEE-YANG THEORY

A. Partition-function zeros and poles

In the works by Lee and Yang, they analyzed the nonana-
lytic behavior of the free-energy density at a phase transition
in terms of the complex partition-function zeros [17,18]. In
particular, they showed how a phase transition occurs as the
zeros approach the real axis in the thermodynamic limit.
In the case of Bose-Einstein condensation, the zeros will
converge towards the value of the inverse temperature for
which the phase transition occurs. In Ref. [58], the complex
partition-function zeros of a Bose gas in a three-dimensional
trapping potential were found numerically. Here, by contrast,
we consider trapped bosons in one, two, and three dimensions,
and we use a cumulant method to determine the partition-
function zeros from the fluctuations of the energy, which,
in principle, are measurable. We also discuss the fact that
the partition function does not have only complex zeros.
It also has poles, which is already clear from the single-
particle partition function in Eq. (8), which has poles along
the imaginary axis, including one at the origin. These poles
appear because of the infinitely many oscillator states in
the sum in Eq. (8) [45,59]. As an illustration, we show in
Fig. 1(c) the partition-function zeros in the complex plane of
the inverse temperature, calculated numerically based on the
recursive relation in Eq. (7) for N = 20 particles together with
the high-temperature expansion in Eq. (9). These results al-
ready indicate that Bose-Einstein condensation happens in the
thermodynamic limit for two- and three-dimensional trapping
potentials, while the zeros stay off of the positive real axis
for a one-dimensional trap. More accurate results are shown
in Figs. 2(a) and 3(a), where we show the partition-function
zeros for N = 2, . . . , 20 particles in two and three dimensions
obtained with the exact expression for the single-particle par-
tition function in Eq. (8). These results are also indicative of
a phase transition, although it is hard to reach larger system
sizes as the calculations become increasingly cumbersome
with increasing particle number. Instead, we make use of a
cumulant method that allows us to determine the partition-
function zeros from the fluctuations of the energy. Here, the
starting point is a formal product expansion of the canonical
partition function reading [60]

ZN (β ) = c0eβc1

∏
i (β − βi )∏
j (β − β j )

, (14)

where c0 and c1 are constants and βi and β j are the zeros
and poles of the partition function, respectively. For a finite
number of particles, the zeros and the poles come in complex
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FIG. 2. Three-dimensional harmonic potential. (a) Partition-function zeros in the complex plane of the inverse temperature obtained
numerically for N = 2, . . . , 20 bosons. (b) Partition-function zeros closest to the inverse temperature β = 1.15βc, marked with a cross,
obtained with the cumulant method for N = 2, . . . , 100 bosons. Here, we have used m = 7 different cumulant orders up to order 17. (c) The
real and (negative) imaginary parts of the zeros as a function of 1/N . The red dots are the extrapolated convergence points in the thermodynamic
limit, which we determine based on the scaling ansatz in Eq. (25).

conjugate pairs since the partition function is real valued for
real values of β.

B. Cumulant method

We now describe the cumulant method for extracting sev-
eral of the partition-function zeros from the fluctuations of the
energy. To this end, we use the definition of the cumulants in
Eq. (11) together with the product expansion in Eq. (14) to
express the cumulants as

〈〈U n〉〉 = (n − 1)!
∑

k

(−1)pk

(β − βk )n
, n > 1, (15)

where the sum runs over all zeros (pk = 1) and poles (pk = 0),
which we collectively denote by βk . Importantly, the contri-
bution from each zero or pole decreases with the distance to
the actual inverse temperature β to the power of the cumulant
order. Thus, for high cumulant orders, we can truncate the sum
as

〈〈U n〉〉 � (n − 1)!
M∑

k=1

(−1)pk

(β − βk )n
, n 	 1, (16)

where we have included only the M zeros and poles that are
closest to the actual inverse temperature. In the case with M =
2, only the pair of zeros that are closest to the actual inverse
temperature is included, and using the method developed in

Refs. [39–44], one may extract these zeros from the high
cumulants of the energy fluctuations. Recently, this approach
was extended, so that more zeros and poles can be included in
the sum and determined from the energy fluctuations [49]. To
simplify the notation, we define the normalized cumulants as

un = 〈〈U n〉〉
(n − 1)!

(17)

and then rewrite the truncated sum in Eq. (16) as

un � −
m∑

k=1

dkλ
n
k, (18)

with

λk = 1

β − βk
(19)

and dk being the multiplicity of each zero or pole (a sim-
ple pole has dk = −1). To determine the zeros and poles in
Eq. (19), we note that expression (18) for the normalized
cumulants can be regarded as the general solution of a ho-
mogeneous recurrence relation of the form

un = a1un−1 + a2un−2 + · · · + amun−m, (20)

where the coefficients ak are still undetermined. To find them,
we formulate a linear system of m equations, using Eq. (20),
which reads

⎛
⎜⎜⎜⎜⎝

un−1 un−2 . . . un−m+1 un−m

un un−1 . . . un−m+2 un−m+1
...

...
. . .

...
...

un+m−3 un+m−4 . . . un−1 un−2

un+m−2 un+m−3 . . . un un−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1

a2
...

am−1

am

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

un

un+1
...

un+m−2

un+m−1

⎞
⎟⎟⎟⎟⎠. (21)

Recalling that the normalized cumulants uk are known, we may now solve for the coefficients ak by inverting the matrix on the
left-hand side of this equation. Afterwards, we may find λk as the roots of the equation

λm − a1λ
m−1 − a2λ

m−2 − · · · − am−1λ − am = 0, (22)
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which is the characteristic equation obtained from the recurrence relation in Eq. (20). As the last step, we obtain the multiplicities
dk as the solutions to the matrix equation

−

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
λ0 λ1 . . . λm−2 λm−1
...

...
. . .

...
...

λm−2
0 λm−2

1 . . . λm−2
m−2 λm−2

m−1

λm−1
0 λm−1

1 . . . λm−1
m−2 λm−1

m−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d0λ
n
0

d1λ
n
1

...

dm−2λ
n
m−2

dm−1λ
n
m−1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

un

un+1
...

un+m−2

un+m−1

⎞
⎟⎟⎟⎟⎠ , (23)

which follows directly from Eq. (18).
From the roots, we immediately find the zeros and poles

as βk = β − 1/λk together with their multiplicities dk from
the last matrix equation. Importantly, the accuracy of the
method can be gauged by the multiplicities, which should be
integers. Thus, deviations from integer values indicate that
the truncation in Eq. (16) is not a good approximation. One
can then include more cumulants or increase the cumulant
order to ensure convergence. For the following results, we
have carefully checked that the position of the zeros and the
poles have converged with respect to the number of cumulants
and their order. Also, we consider only zeros and poles whose
multiplicity coefficients dk deviate from an integer value by
less than a tolerance threshold of 0.3.

IV. CONDENSATION TEMPERATURE

A. Three-dimensional trapping potential

In Fig. 2, we show partition-function zeros in the complex
plane of the inverse temperature for the three-dimensional
harmonic trapping potential. In Fig. 2(a), we show numerical
results for the partition-function zeros using system sizes in
the range N = 2, . . . , 20. By contrast, in Fig. 2(b), we show
results obtained using the cumulant method, which allows us
to extract the conjugate pair of zeros that are closest to the
inverse temperature at which the cumulants are evaluated,
marked with a cross on the real axis. Thus, from the energy
fluctuations of the Bose gas at this inverse temperature, we
can determine the closest partition-function zeros and monitor
their motion as the system size is gradually increased in the

range N = 2, . . . , 100. From the analysis of Bose-Einstein
condensation in the grand-canonical ensemble, we know that
the critical inverse temperature depends on the number of
particles according to Eq. (5). For this reason, we use di-
mensionless units on the axes, where βc = 1/(kBTc) is the
expected inverse transition temperature. Here, we note that
there are finite-size corrections to the predicted transition
temperature, which can be obtained from the equation (see
Appendix B for details)

Tc = h̄ω0

kB

(
N

ζ (3)

)1/3[
1 + 3

2

ζ (2)

ζ (3)

h̄ω0

kBTc

]−1/3

. (24)

However, in the thermodynamic limit, where ω3
0N is kept con-

stant by weakening the potential, we see that this expression
reduces to the one in Eq. (5) for d = 3.

To determine the convergence point in the thermodynamic
limit, we show in Fig. 2(c) the real and (negative) imaginary
parts of the zeros as a function of the inverse particle number.
We then use the scaling ansatz [42–44]

|β0 − β̃c| ∝ N−α, (25)

from which we find α and the prediction for the critical point
β̃c, marked with red circles, with the method of least squares.
These results show how the extrapolated convergence points
come close to the expected inverse transition temperature with
only a small imaginary part. Thus, we see how the transition
temperature in the thermodynamic limit can be rather pre-
cisely estimated from the energy fluctuations of a gas with
fewer than 100 bosons.

FIG. 3. Two-dimensional harmonic potential. (a) Partition-function zeros in the complex plane of the inverse temperature obtained
numerically for N = 2, . . . , 20 bosons. (b) Partition-function zeros closest to the inverse temperature β = 1.15βc, marked with a cross,
obtained with the cumulant method for N = 2, . . . , 100 bosons. Here, we have used m = 7 different cumulant orders up to order 17. (c) The
real and (negative) imaginary parts of the zeros as a function of 1/N . The red dots are the extrapolated convergence points in the thermodynamic
limit, which we determine based on the scaling ansatz in Eq. (25).
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FIG. 4. One-dimensional harmonic potential. (a) Poles of the partition function according to Eq. (27) for N = 6 bosons with β0 = 1/(h̄ω0).
(b) Poles closest to the origin obtained with the cumulant method for N = 2, . . . , 6 bosons. Here, we have used m = 6 different cumulant orders
up to order 25, with a tolerance threshold of 0.25. (c) The real and (negative) imaginary parts of the poles as a function of 1/N together with a
linear extrapolation, shown by a dashed line.

B. Two-dimensional trapping potential

In Fig. 3, we show results for the two-dimensional
harmonic trapping potential. In Fig. 3(a), we again show nu-
merical results for the partition-function zeros using system
sizes in the range N = 2, . . . , 20. In addition, we show in
Fig. 3(b) results obtained using the cumulant method based
on cumulants of the energy evaluated at the inverse temper-
ature marked with a cross on the real axis. To determine the
convergence points of the partition-function zeros, we again
use the scaling ansatz in Eq. (25) and find the extrapolated
values indicated with red circles in Figs. 3(b) and 3(c). Similar
to the three-dimensional trapping potential, the extrapolated
convergence point is in good agreement with the expected
inverse transition temperature. However, we notice that the
convergence of the zeros to the real axis is slower than for
the three-dimensional case. Thus, the estimation of the critical
temperature is not as accurate for the two-dimensional case as
for the three-dimensional case.

C. One-dimensional trapping potential

The results for the harmonic potential in two and three
dimensions illustrate how the transition temperature can
be determined from the energy fluctuations of fewer than
100 particles. As our last application, we consider a one-
dimensional trapping potential for which no phase transition
is expected in the thermodynamic limit. In particular, the
partition function takes on the simple form [53]

ZN (β ) = eβ h̄ω0N (N−1)/4
N∏

k=1

Z1(βk), (26)

where Z1(β ) is the partition function for a single particle in
Eq. (8). We then see that the partition function for N particles
only has poles along the imaginary axis at

βk,n = 2π

h̄ω0

n

k
i, n = . . . ,−1, 0, 1, . . . , k = 1, . . . , N,

(27)
as shown in Fig. 4(a).

In Fig. 4(b), we show the poles that are closest to the origin
obtained with the cumulant method for N = 2, . . . , 6 bosons.
We focus on the poles that are not exactly at the origin and

have thus multiplied the partition function in Eq. (8) by β to
eliminate the pole at β = 0. As expected, we find no zeros
or poles away from the imaginary axis in the complex plane
of the inverse temperature, which implies that there is no
phase transition in the thermodynamic limit. In Fig. 4(c), we
investigate the real and (negative) imaginary parts of the poles
as a function of the inverse particle number to extrapolate
their position in the thermodynamic limit. In agreement with
Eq. (27), we find that the pair of poles that are closest to the
origin converge towards the origin as the number of bosons
is increased. With this example we see that the cumulant
method correctly predicts that there is no phase transition in
the thermodynamic limit.

V. ENERGY FLUCTUATIONS

Finally, we show how the zeros can be determined from
simulated fluctuations of the energy, which we generate using
a Monte Carlo method (and which, in principle, are measur-
able). For the simulations, we need the probability PN (Um)
that N bosons in d dimensions have the energy Um = (m +
Nd/2)h̄ω0, with m = 0, 1, 2, . . . . To this end, we write the
partition function as

ZN (β ) =
∞∑

m=0

Gme−βUm , (28)

where the degeneracy Gm enters the probabilities as

PN (Um) = Gme−βUm

ZN (β )
. (29)

We also renormalize the partition function as

zN (β ) = eβ h̄ω0Nd/2ZN (β ) (30)

and can then define the probability-generating function

GN (v) = zN (β − ln v/h̄ω0)

zN (β )
=

∑
m

PN (Um)vm, (31)

having introduced the variable v = e−β h̄ω0 . The generating
function can be inverted for the probabilities as

PN (Um) = 1

2π i

∮
C

dv
GN (v)

vm+1
, (32)
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FIG. 5. Partition-function zeros from energy fluctuations. (a) Distributions PN (U ) of the energy for a three-dimensional harmonic potential
with N = 10, 20, 30 particles. (b) Energy cumulants of orders n = 1, . . . , 14, obtained from 107 Monte Carlo simulations. (c) Partition-function
zeros obtained by averaging over 1000 sets of Monte Carlo simulations are shown by solid circles. The exact zeros are shown with open circles.
For all of these calculations, the inverse temperature is β = 1.15βc.

where C is a positively oriented circle that is centered around
the origin with a radius that is smaller than 1. To find the prob-
abilities in a numerically stable manner, we use the scheme
from Refs. [61,62] for the inversion of probability-generating
functions. We then have

PN (Um) � 1

2mrm
{r[GN (r) − (−1)mGN (−r)]

+ 2
m−1∑
j=1

(−1) jRe[rei jπ/mGN (rei jπ/m)]}, (33)

where 0 < r < 1 is a small parameter, which ensures
that deviations from the exact values are smaller than
r2m/(1 − r2m) [61]. We use r = 10−10/(2m) in all calculations,
so that the deviations are smaller than 10−10.

In Fig. 5(a), we show energy distributions for different
numbers of particles in a three-dimensional trapping potential.
As one would expect, the distributions shift towards higher
energies as the number of particles is increased. We use these
distributions as the starting point for our Monte Carlo simu-
lations, where we simulate 107 measurements of the energy.
From these simulations, we then obtain the high cumulants
in Fig. 5(b). Next, using the cumulant method, we extract the
partition-function zeros, shown with solid circles in Fig. 5(c).
These zeros were obtained by averaging over 1000 sets of
simulations. For the sake of comparison, we also show the
exact zeros with open circles, and we see that the Monte
Carlo simulations agree well with the exact results. We note
that cumulants of very high orders have been measured for
electron tunneling through quantum dots [40,63].

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented a Lee-Yang theory of
Bose-Einstein condensation and used a cumulant method to
predict the condensation temperature from the energy fluc-
tuations of fewer than 100 bosons. For harmonic trapping
potentials in two and three dimensions, we obtained predic-
tions of the condensation temperature in the thermodynamic
limit of many particles and large volumes, which agree well
with known results. Moreover, for a one-dimensional trapping
potential, we found no phase transition in the thermodynamic

limit, as one would expect. Our approach is directly related
to observables that, in principle, are measurable, namely, the
fluctuations of the energy, and it thereby provides a link be-
tween experimental observations and the Lee-Yang theory of
phase transitions. We have illustrated our methodology with
noninteracting particles. However, our approach would work
equally well for interacting particles as long the fluctuations
of the energy are accessible. Potentially, with further refine-
ments, our method could also be applied to nonequilibrium
Bose-Einstein condensates [64–66]. The cumulant method
has already been realized in experiments on electron tunnel-
ing [40], and one may hope that it can also be implemented for
cold atoms with a small and controllable number of bosons.
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APPENDIX A: BOSE-EINSTEIN CONDENSATION
OF A FINITE NUMBER OF PARTICLES

Typically, phase transitions are associated with a nonana-
lytic behavior of the free energy, which emerges in the ther-
modynamic limit of many particles and large volumes. While
Bose-Einstein condensation in two- and three-dimensional
harmonic potentials is consistent with this picture, the case
of a one-dimensional harmonic trapping potential is different,
and no singularities appear in the thermodynamic limit. Nev-
ertheless, as discussed in Refs. [51,52], for a finite number of
particles the ground state may still become macroscopically
occupied below a certain temperature, which resembles the
behavior of the two- and three-dimensional potentials. To see
this, we consider the grand-canonical ensemble and relate the
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FIG. 6. Bose-Einstein condensation of a finite number of particles. We show the fraction of particles in the ground state as a function of
the temperature and with different numbers of particles in the trapping potential. The three panels correspond to different dimensions, and the
temperature Tc depends on the number of particles according to Eqs. (5), (24), and (A4). The black lines are given by Eq. (A3), which holds
in the thermodynamic limit. For all three dimensions, the fraction of particles in the ground state can become large with a finite number of
particles. However, for the one-dimensional trapping potential, the transition temperature Tc goes to zero in the thermodynamic limit, and there
is no phase transition.

average number of particles to the fugacity as

N = z

1 − z
+ Lid (z)

(β h̄ω0)d
, (A1)

where the first term is the occupation of the ground state. The
fraction of particles in the ground state then becomes

N0

N
= 1

N

z

1 − z
, (A2)

where the fugacity is obtained by solving Eq. (A1) for the
fugacity in terms of the particle number N . Moreover, in the
thermodynamic limit, the fraction can be written as

N0

N
= 1 − (T/Tc)d , T � Tc, (A3)

where Tc for d = 2, 3 is given by Eq. (5) and for d = 1,

Tc = h̄ω0

kB

N

ln N
. (A4)

Equation (A4) follows from the assumption that the ground-
state population N0 is macroscopic, i.e., on the order of N ,
which leads to the chemical potential approaching the ground-
state energy. Hence, we can expand Eqs. (A1) and (A2) around
small values of βμ � 1 and take the limit of large N to arrive
at Eqs. (A3) and (A4).

Importantly, the transition temperature remains finite in
two and three dimensions since the product ωd

0 × N is kept
constant in the thermodynamic limit. By contrast, the tran-
sition temperature goes to zero for the one-dimensional
potential because of the logarithmic term in the denominator.
For this reason, there is no Bose-Einstein condensation for
the one-dimensional harmonic potential in the thermodynamic
limit. On the other hand, for a finite number of particles, the
temperature in Eq. (A4) is finite, and the fraction of particles
in the ground state can become large, as illustrated in Fig. 6.
We note that similar figures can be found in Refs. [51,52].

APPENDIX B: FINITE-SIZE CORRECTION TO
THE TRANSITION TEMPERATURE FOR THE

THREE-DIMENSIONAL TRAP

The condensation temperature in Eq. (5) can be modified
to account for the system having a finite number of particles.
To this end, we note that the energy levels,

E = h̄ω0(nx + ny + nz + 3/2), ni = 0, 1, 2 . . . , (B1)

of the three-dimensional harmonic potential are degenerate,
with the degeneracy factors

gn = 1
2 (n + 1)(n + 2), (B2)

where n = nx + ny + nz. The average particle number can
then be expressed as

N =
∞∑

n=0

gnNn � N0 +
∫ ∞

0
dn gnNn, (B3)

where Nn = (eβ h̄ω0n − 1)−1 is a Bose-Einstein factor and N0 =
Li0(z) is the ground-state population. Evaluating the integral,
we find

N = Li0(z) + Li1(z)

(β h̄ω0)
+ 3

2

Li2(z)

(β h̄ω0)2
+ Li3(z)

(β h̄ω0)3
, (B4)

where the last two terms, which involve only contributions
from the excited states in the integral of Eq. (B3), dominate
above the critical temperature. Ignoring the first two terms in
Eq. (B4) and taking the limit z → 1 as was done in Sec. II
to find the condensation temperature in the thermodynamic
limit, we find an equation for Tc, which can be rearranged to
arrive at Eq. (24). We note that there is not a similar correction
to the transition temperature for the two-dimensional trapping
potential.
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