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Abstract—Partition function and thermodynamic parameters of the system open with respect to energy E,
volume ¥ and number of particles N, whereas temperature 7, chemical potential p and pressure P were kept
constant, were considered by the procedure proposed by Gibbs. The mean values of variable energy, volume
and number of particles were obtained by universal expression for such values. The entropy was determined
by its general statistical definition. The thermodynamic potential and other thermodynamic quantities were

also turned out naturally.
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INTRODUCTION

The aim of this paper is to derive the partition func-
tion and thermodynamic quantities for a system that
exchanges energy E, volume Vand number of particles
N with the reservoir, the system which we shall call
henceforth totally open system. The analysed system is
in thermal, chemical and mechanical equilibrium with
the environment. That means to take temperature 7,
chemical potential p and pressure P constant. In the
literature available to the authors, the consideration of
such system from statistical thermodynamic point of
view is not found, whereas the analogue analysis of a
system open with respect to energy, energy and vol-
ume, or, energy and number of particles is widespread
[1-30].

RESULTS

The Partition Function
of an Imaginary Totally Open System

To define the expression for the partition function
of the system, we shall start from the expression for the
probability that the analyzed system has the energy £,
the volume V}, and the number of particles N,, W(E,,
V;, Ny). This system is in equilibrium with the reservoir

with the energy E;, the volume V; and the number of

particles N,. The total energy of the reservoir and the
system E°, the total volume #° and the total number of

! The article is published in the original.
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particles N° are constant (figure):

E
%

E,+ E; = const,

ey

N
+
N

const,

N = N +N,.

In other words, the whole system (reservoir + con-
sidered system) is isolated from the surrounding and in
a state of mutual equilibrium. Therefore, if g(£, V,,
N,) is the number of different states of the considered
system with energy £, the volume ¥}, and the number

of particles N,, and g(E;, V;, N,) is the number of dif-
ferent states of the reservoir with the energy E;, the

volume ¥} and the number of particles N,, the proba-

E,V

i V)

N

E, V), Ny

The system in the thermodynamic equilibrium with the
reservoir.
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bility W(E,, V;
product:

W(En J Nk) - Ag(Et

’» INp) is directly proportional to their

k)g(Ei’ Vja Nk) (2)

The system is much smaller than the reservoir, its
energy, volume and the number of particles contained
in it is small in comparison with the energy volume and
number of particles in the reservoir:

V>V,

s> Vs

E>E, and N> N,. 3)

-, N}) in
a Taylor series in a neighbourhood of the point (E; =
E—E~E,V,=V—V,x 1, N, =N — N,~N) and

lock up ourselves to the linear terms of the expansion.
In the obtained expression:

Hence, we can expand the function lng(E,,

Ing(E, V; g N, =~ lng(Eﬂ, VO, NO) —E,(MI’;/O’NO)
(4)
alng(E° V', N N, olng(E’, V', N’y _
av’ oN’
we can introduce indefinite multipliers o, B and y:
olng(E", V', N /0E’ = B,
81ng(EO, v, NO)/(?V0 =y, Q)
olng(E’, V", N°)/oN’ =
and easily obtain W(E;, V;, N,) in the form:
W(En 7 Nk) Ag(Eu J Nk)g(an VO, NO) (6)

x exp(~ BE; 7V, — aNy).

Since, each partial derivative of any quantity with
respect to one parameter implies that all other
parameters of which the quantity depends on are
constant, we can drop the indication what is constant
in expressions (4) and (5), for brevity. The value of
the constant A can be determined from the normal-
ization condition:

ZZZW(EH Vja Nk) =
i j ok

The probability distribution of the states of a system
with variable energy, volume and number of particles
can finally be written in the form:

W(ED J° Nk)
— g(E,V, N)exp(-BE,—yV,—aN,)
S S &(E, V, Nexp(-BE vV, - aN,)
k

i

(7

- (8)

Taking into account physical meaning of the indefinite
multipliers o, B and y (Appendix) the probability that
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the system has the energy E;, the volume V), and the
number of particles N, is:

W(En J° Nk)

uN,— E,— PV,
kBT )
E,— PV,

Zzzg(En J Nk)exp(” L T

Here, the number of different states with same energy,
volume and number of particles g(E;, Ny, V)) is the well
known degeneracy or the statistical weight of this sys-
tem [6]. The expression in the denominator (9) is the
corresponding partition function or statistical sum,
i.e. the total number of different states of the system
under consideration:

(T, P, 1)

g(E,V, Nk)exp(

- E,—- PV,

_ zzzgw,, Vi Noyep (Bt

(10)

The summation in the denominator goes over all the
states accessible to the system. However, the probability
to find a system in all states with the energy E,, the
volume V), and the number of particles N, differs from the
probabilily that the system will be in one state with energy
E,, the volume V,, and the number of particles N, for the

statistical wait g.

Thermodynamic Functions

The evaluation of thermodynamic quantities for
totally open system has been done in analogy with the
deriving of corresponding expressions for the thermo-
dynamic quantities of other types of systems that are
common in literature which exchange less than three
quantities with the environment: isolated, closed,
open and isothermal-isobaric system.

@Mean values of energy, volume and number of
particles.@ Knowing the probability distribution
WA(E,, V,, N;) we can find the mean values of energy,
volume and number of particles by definition for mean
values of any quantity. Thus,

E= ZZZE,W(E,-, V, Ny

(11)
- lzzzEgexp( ET 7,
V= Zzz V.W(E, V, N,)
i (12)
- 1zszgexp( ET 7,
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‘:ZZZMm&nM)
lzzzmexp(“ D L

Bl

Let us start with the expression for the mean num-
ber of particles in terms of the partition function and
parameters of the system (7, i, P = const). It can be
easily obtained by differentiating the partition func-
tion with respect to chemical potential only:

(13)

E,— PV,
(5, = T T e
oW 1 p kT ; kgT (14)
_ 0N
kg T

Thus, the expression for the mean number of parti-
cles is:
N = kg T(0InIl/0pn) 7 p. (15)
The expression for the mean volume of the system
in terms of the partition function and the parameters
of the system (7, 1, P = const) can be obtained by dif-
ferentiating the partition function with respect to the
pressure:

@_g{)T o zzzgexp(“ 2
' ' (16)

and the expression for the mean volume of the system is:

7)

The mean energy of this system in terms of the
partition function and the parameters of the system
(T, u, P = const) can be obtained by differentiating
the partition function with respect to the tempera-
ture:

- E,— PV,
(3, =R EETsen(* g
T/, ks T
’ (18)
x(MW—E—P%)z—-”(uN—E—P%.
B
Thus, the mean energy of the system is:
E = uN- PP+ k7 200]) (19
oT 7, »
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Using the expressions for the mean values of the num-
ber of particles (15) and the volume (17) we can easily
obtain:

élnﬂ) + Pk, 8lnH)
oP W
’ ’ (20)
N kBTz(ﬁlnH)
T/,

Entropy. Using the general definition of entropy
given by Gibbs [6]:

S = —kzzz W(Ei, V;‘: Nk)ln W(Ei’ Vjv Nk)
k

i

21

= —kg(InW),

and the probability that system will be in a state with
the energy E;, the volume V), and the number of parti-
cles N;:

P-Nk

WE, V, N = exp( B2, 22)
we can easily obtain expression:
S = —kBZZZ W(E, Vp Ny
. (23)
(M_Nk _E PV, n)
kyT kgT kgT
which directly gives the relation:
S= BN E PV I (24)
T T T

Thermodynamic potential. From the last equation
we can see that

E-TS = uN— PV —kyTInIl. (25)

The expression £ — TS is equal to the Helmoltz free
energy A. The total differential of the Helmholtz free
energy A:

dA = ndN + Ndp — PdV —VdP — kyd(TInIl) (26)

can be compared with the corresponding thermody-
namic expression where V=V and N = N:

dA = —SdT— PdV+ ndN
resulting in:
—kgd(TInIl) = — SdT + VdP— Nd. (28)

In general, the thermodynamic potential is defined
as X = —kgTIn Y, where Y is the partition function of
any considered system. In this case, X = —kgTInII
such that:

dX = —SdT+ VdP— Ndy.

(27)

(29)
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The partition functions, thermodynamic potential and thermodynamic functions derived under different conditions

Isolated system, Microcanonical ensemble

g(E,V,N)
S=klng

ds=Lap+Lay —Ean
T T

(&), ~ ), -
T \OE/ny OFE Iny
EZ(G_S) :k(alng) = ky
T \oVIiNeE oV InE
e o IR s IR
T ON/Ey ON /gy

Closed system, open system with

Z(T,V,N)

=3 gEye "M
i

A=—-kTInZ

dA = -SdT — PdV — uNd

respect to £, canonical ensemble

S=—(6—A) =k1nZ+kT(a]nZ)
oTlv.n oT v,
Pz_(é‘_A) _ T(aan)

ovVir,n ov Jr.n
w8 s

ON/v,T ON Jv,r

Open system with respect to F a

E(T,V,w

E= zzg(Eist)eXp(p-Nk _Ei/kT)
ik
O =-PV =-kTInZE

d® = -SdT — PdV — Ndp

[x

nd N, grand canonical ensemble

S:—(@) :klnE+kT(alnE)

aT V,u T V.

p:_(@) :kT(M) —yrInE
oV)r., v )y %

[el)
ou

Oln=

{5, .,

Open system with respect to E and V, isothermal-isobaric canonical ensemble

AT, P,N)
~E~PV,
A= g(E, Ve *T
i
G=-kTInA

dG =-8dT +VdP + pdN

S:—(a—G) :klnA+kT(alnA)
oT/w,p oT /w,p
V:(G_G) :_kT(alnA)

OP/r N oP Jr.n
M:(G_G) :_kT(ﬁlnE)

ON/r.p ON Jr,p

Open system with respect to £, Vand N

TN(T, P, )

n=>%
[

X =—kTInIl

dX = -SdT +VdP — Ndy

> 8(E;, Ni,Vy)exp(uNy — E; — PV; /kT)
k

S:—(a—X) :klnH+kT(61nH)
aT WP aT wP
],

0P/t OP 1y

OlnIl

),
T.P op

oX
on

v )

From the last expression directly follows:

S = —(S—QM _ —aiT(—kBTlnH)

GlnH)
oT " P’

(30)
= kBll’lH + kB
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8/\’) 0
== = —(—kgTInII
(aP L~ ap e TintD o
OInIl
=k
B aP )T,“a
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N = (g— - _ai(_kBTmn)
Worp M (32)
=k, alnﬂ) .
ol /7 p

Other thermodynamic functions of the system, as
the Helmholtz free energy, the Gibbs free energy,
enthalpy and heat capacity, can be expressed simply by
substituting the obtained expressions for the entropy,
the mean number of particles and the mean volume
into the classical thermodynamic expressions. Thus,
we get for the Gibbs energy:

G = ukgr(alnn) — ky TInTI; (33)
on PT
for the Helmholtz free energy:
A= “dealnn) + Pk, 61111_1)
ou P,T op wT (34)
— kg TInIT;
for enthalpy:
H = uk, T(alnH) +hy Ta(@lnﬂ) : (35)
o pr oT 7\ »
for isochoric heat capacity:
¢y = 2y () g (20D 36
6 T u P GTZ u, P
for isobaric heat capacity:
dInIl &’ InIl
ot G0, (557
P
P, T (37)

2% T(alnl'l) ok 72(621n1'[) ,
’ or u, P ’ 87’2 p,P,

and for the difference of the isochoric and isobaric
heat capacities:

Oln H)

2
C,-C, = Hk( 0 lnH)
op

4 OInIl) - 3g)
o B\ Guar/,

DISCUSSION

The obtained thermodynamic functions are com-
pared with the corresponding ones evaluated when the
system is isolated or open with respect to energy,
energy and volume, or, energy and number of particles
(table). In table are given common names of ensem-
bles, their partition functions with the constant
parameters denoted in brackets and expression for
corresponding thermodynamic potential as the basic
relation for calculation of thermodynamic functions.

All derived thermodynamic quantities are the same
functions of the partition function; the only difference
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is that the partition function has different value for dif-
ferent systems. If the partition function is labelled as Y,
the entropy for every system with variable energy is in
the following form:

S = kylnY+ kBT(%PT—y)

For systems with variable number of particles, the
mean number of particles is:

Gln)’)
on’p r

while for systems with variable volume, the mean vol-
ume is:

(39)

u, P

N = ky (40)

- Oln
V = —kg ——-—Z) . 41
oP/ , r
CONCLUSION

Thermodynamic quantities of the totally open sys-
tem in terms of the partition function I'T and parame-
ters of the system 7, p and P are derived in analogy
with other systems in literature. For this purpose, ther-
modynamic potential of the form X = —kzg7InII is
defined. As considered system is open with respect to
energy, volume and number of particles, their mean
values are also obtained directly by universal expres-
sion for such values. Moreover, the entropy is deter-
mined by its general statistical definition. Thus, it is
shown that the hypothetic system with variable energy,
volume and number of particles is the best one for nat-
ural evaluation of all thermodynamic quantities.

APPENDIX 1. THE PHYSICAL MEANING
OF PARAMETERS A, B AND I'

There are different manners to find the physical
meaning of parameters o,  and v, that is, to express
them in function of well known quantities in classical
thermodynamics. With aim to complete the derivation
of probability distribution of the states of a system with
variable energy, volume and number of particles, we
shall briefly present one of them [9].

Since the partition function of isolated system
known as statistical weight or degeneracy g(E, V, N) is
a function of energy, volume and number of particles,
the total differential of Ing can be expressed as:
dlng(E, V, N)

dE
0,

N (alng(aE;/V, N)) i NdV+ (alng(aE[,vV, N)) ) Va’N(Al)

= BdE+ydV+ odN,

ding(E, V. V) =

No. 13 2011
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where parameters o,  and y are equal to the ones
defined in equation (5). Therefore, the last expression
can be rewritten in the form:

dE = Laing—Yav-%an.

p BB

and compared to the classical one which correlate dE,
dVand dN

dE = TdS— PdV + pdN.

(A2)

(A3)

If §' = kglng, it follows that the parameters o,  and y
are equal to:

N
*= p

e (Ad)

= L, and y =

kg T

With aim to show that S = kgzIng, we need to con-
sider a system A°, made of two subsystems such that
A’ = A, + A,, each of which in equilibrium, and apply
on them one by one statistical and classical thermody-
namic knowledge. From statistical point of view, the
number of microstates for the total system g°(E,, E,) is
equal to the product of the numbers of microstates for
the two initial systems g,(E,) and g,(E,):

§UEy, Ey) = g(E)g(Ey).

If they are in a thermal contact exchanging the energy,
the equilibrium will be achieved when the number of
microstates for the total system is maximal:

(A5)

0g"(E\)/9E, = 0. (A6)

Since E’ = E, + E, = const, we can easily obtain the
relation:

0g'(Ey, Ey) _ 0g,(E))

OF, OE, 8(5) (A7)
ea(E) B
which ensues:
Olng,(E))/0E, = 0lng,(FE,)/0FE,. (A8)
Taking into account expression:
Olng(E)/0FE = B, (A9)

we obtain that all subsystems in thermal equilibrium
must satisfy the following condition:

B, = B, = P = const.

Furthermore, considering the entropy of the com-
bined subsystem A°, one comes to the physical mean-
ing of parameter [3. Its entropy is the sum of entropies
of two subsystems:

(A10)

S'(E\, E,) = S\(E)) + Sy(E,). (A11)
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Since the entropy of the total system is maximal in
equilibrium, we obtain:
O0S\(E\) _ 0S,(E,) _ oS

= = — = const.

(A12)

The entropy of the system with a constant volume and
number of particles, in classical thermodynamics is:

dS = dE/T, (A13)
such that:
(0S/0E)y,, = 1/T. (A14)

It follows that the systems are in thermal equilibrium
when their temperatures are equal and constant. Since
the parameters 3 have same characteristics for the sys-
tems in thermal equilibrium (A10), it follows that
there must be direct relation between 7°and 3. Consid-
ering (A9) and (A14) it follows that:

ding/dS = BT. (A15)

Since both  and T are constants, their product will
also be a constant:

BT = 1/T, (A16)

where k is the Boltzmann’s constant. It follows that
the parameter B is equal to:

B = 1/k,T. (A17)
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