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THEORETICAL NOTE

Causal Inference Methods for Intergenerational Research Using
Observational Data
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Identifying early causal factors leading to the development of poor mental health and behavioral outcomes is
essential to design efficient preventive interventions. The substantial associations observed between
parental risk factors (e.g., maternal stress in pregnancy, parental education, parental psychopathology,
parent–child relationship) and child outcomes point toward the importance of parents in shaping child
outcomes. However, such associations may also reflect confounding, including genetic transmission—that
is, the child inherits genetic risk common to the parental risk factor and the child outcome. This can generate
associations in the absence of a causal effect. As randomized trials and experiments are often not feasible
or ethical, observational studies can help to infer causality under specific assumptions. This review aims to
provide a comprehensive summary of current causal inference methods using observational data in
intergenerational settings. We present the rich causal inference toolbox currently available to researchers,
including genetically informed and analytical methods, and discuss their application to child mental health
and related outcomes. We outline promising research areas and discuss how existing approaches can be
combined or extended to probe the causal nature of intergenerational effects.

Keywords: causal inference, genetically informed methods, intergenerational effects, quasi-experimental
studies, within-family designs

Understanding the role of parents in shaping their children’s
outcomes has been a major focus of influential theories across
psychology, psychiatry, and behavioral genetics. Delineating the
nature of intergenerational effects is however challenging. Random-
ized controlled trials (RCTs) and experiments are often seen as the
gold standard of causal inference but have limited application to
intergenerational research due to feasibility and ethical concerns, for
example, it would be unethical to design randomized cross-fostering
experiments to examine whether environmental or genetic factors
explain the intergenerational transmission of risk for schizophrenia.
However, observational studies are prone to a variety of biases,

including reverse causation, selection biases, or confounding (see
Delgado-Rodríguez & Llorca, 2004, for definitions). For example,
the outdated theory of the “schizophrenogenic mother” claimed that
schizophrenia was caused by an “overprotective but subtly rejecting
mother” (Seeman, 2016), which led to social stigma, with maternal
behavior being blamed as the cause of their offspring’s psychopa-
thology (Harrington, 2012). Research on the “schizophrenogenic”
mother was however, distorted by selection and information biases,
reverse causation (e.g., using case-only studies and neglecting
offspring effects on maternal behavior) and did not account for
genetic factors (Parker, 1982). Today, schizophrenia is known to be a
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highly heritable disorder with hundreds of common and rare genetic
variants identified and studies point toward neurobiological under-
pinnings linked to synaptic processes and brain maturation starting
in fetal life (Birnbaum & Weinberger, 2017; Singh et al., 2022;
Trubetskoy et al., 2022). Taken together, those findings suggest that
exposure to parental behavior is unlikely to cause development of
schizophrenia in the offspring.
Despite the presence of confounding and other biases in obser-

vational research like that on “schizophrenogenic mothers,” these
biases can be addressed by applying causal inference methods.
Resolving the questions of causal effects in turn has fundamental
implications not only for preventing adverse and promoting favor-
able child outcomes, but also for the way we conceive the role of
parents in shaping their offspring’s development. For example,
mistakenly attributing a specific (parental) exposure as the cause
of child mental health difficulties would likely result in ineffective
interventions due to targeting noncausal factors, thus wasting
resources and delaying the development and implementation of
more suitable interventions. Furthermore, stigmatizing and blaming
either parents or children for being responsible for existing mental
health problems could increase mental health problems and nega-
tively impact the parent–child relation.
This review provides a summary of causal inference methods for

intergenerational settings that are needed to disentangle putative
causal effects from confounded associations, including recent de-
signs using measured genetic variants. For our review, we define
exposures as specific parental traits or behaviors with potential
effects on a child phenotype. These exposures can either occur
prenatally (e.g., maternal stress or drug use during pregnancy),
perinatally (e.g., birth complications), or postnatally (e.g., parental
education, parent–child relationship quality, parental psychopa-
thology). We draw on empirical examples from the fields of child
development, child and adolescent psychology and psychiatry,
and allied disciplines, highlighting the multidisciplinary nature
of intergenerational research and the broad applicability of such
methods beyond those disciplines. We do not offer an extensive
background to theories of causal inference and mathematical
notation of specific estimands but provide key references. A brief
conceptualization of causation is followed by a presentation of
existing methods applied to intergenerational settings, where we
outline the advantages and limitations of each method and provide
references for further readings. Finally, we make suggestions for
combining and extending existing approaches to strengthen causal
inference.

Causal Inference

Research on the etiology of mental health and behaviors often
aims to identify causal effects. An exposure can be considered as a
cause for an outcome if changing this exposure results in a change
in the outcome of interest, while holding everything else constant.
Confounding is a major challenge for causal inference. In the
simpler setting of a point-exposure X (i.e., time-fixed exposure),
this occurs when a third variable (Z ) has a causal effect on both the
exposure (X ) and the outcome (Y ), leading to a spurious association
between X and Y (Figure 1a). For example, the effect of smoking
during pregnancy on offspring behavioral problems may be entirely
confounded by genetic factors predisposing to both smoking behav-
ior and psychopathology (Figure 1b).

Exchangeability

A key assumption of causal inference methods is exchangeability,
that is, the same outcome distribution would be observed if exposed
and unexposed individuals were exchanged (Greenland & Robins,
1986). Consider the example of smoking during pregnancy as a
dichotomous exposure and offspring attention deficit hyperactivity
disorder (ADHD) as a dichotomous outcome, where exposure
to smoking in utero is assumed to lead to ADHD in childhood.
In the counterfactual framework, an individual can be considered as
exposed and unexposed at the same time, resulting in two counter-
factual outcomes (also termed potential outcomes), for example,
developing ADHD or not. The counterfactual outcomes for an
individual can be compared to estimate the causal effect of the
exposure, for example, a child developing ADHD when exposed to
maternal smoking versus not developing ADHD when not exposed
(Little & Rubin, 2000).

However, the assumption of exchangeability is not testable in
practice, where each individual cannot be exposed and unexposed at
the same time. Hence, causal effects cannot be estimated at the
individual level due to missing data (Hernán & Robins, 2020).
Causal inference methods therefore aim to approximate the coun-
terfactual scenario to meet the exchangeability assumption at the
group level. In our example, exchangeability is fulfilled when the
distribution of ADHD diagnoses of individuals exposed to smoking
during pregnancy would equal the distribution of ADHD in the
unexposed individuals if the latter had been exposed to smoking
during pregnancy, and vice versa. Concretely, this means that
confounders are balanced in the exposed and unexposed groups,
so that the treatment is the only meaningful difference. Note that
although we present an example with a dichotomous exposure and
outcome, the potential outcomes can also be compared for non-
dichotomous exposures and outcomes (Hernán, 2004).

Exchangeability is achieved in RCTs or randomized experiments
by random assignment to the exposed and unexposed groups, result-
ing in balanced confounders at the group level (Cornfield, 1976). Note
that exchangeability may not be present even in RCTs, for example if
the randomization was not successful (e.g., small sample size) or
because of differential attrition between the groups. Exchangeability

Figure 1
Confounding

(a) (b)

Note. (a) Visualizlation of confounding, where X has no causal effect on Y.
A confounder Z has a causal effect on bothX and Y. Not adjusting for Zwould
result in a spurious association between X and Y. Note that there could also be
a real effect (X→ Y ), which is only partly confounded by Z. (b) Example of
the association between smoking during pregnancy (SDP) and attention
deficit hyperactivity disorder (ADHD) which is confounded by shared
genetic effects (G), influencing both maternal smoking and child ADHD.
For simplification, we assume continuous variables.
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is assumed in other causal inference methods which approximate
the counterfactual framework to derive an average causal effect for
a given population (Hernán & Robins, 2020). Essentially, designs
without random assignment assume exchangeability or conditional
exchangeability, that is, individuals are exchangeable after condition-
ing on a sufficient set of confounders (invoking the strong assumption
of no unmeasured confounding). For example, offspring of mothers
who smoke during pregnancy and of those who do not may be
exchangeable after conditioning on the genetic risk for smoking and
ADHD, assuming no other common factors of X and Y (Figure 1b).
There are several ways to account for genetic risk in such examples,
which are discussed later in this article. Of note is that in general,
different causal effects of an exposure can be estimated, for example,
average causal effect for the population or the average causal effect
for the exposed. Goetghebeur et al. (2020) highlight the importance of
defining the population of interest for which the causal effect should
be tested to choose the right method for estimation. This is further
discussed elsewhere (Goetghebeur et al., 2020; Hernán, 2004; Hernán
& Robins, 2020). Other assumptions for causal inference include
positivity, that is, a positive probability for an individual of being
exposed and unexposed and consistency, that is, the observed
outcome of an individual being exposed equals the counterfactual
outcome of being exposed (Hernán & Robins, 2020).
In the current review, we distinguish between causal inference

methods that approximate the counterfactual framework and rely on
exchangeability by either (a) using random variation induced in the
exposure or (b) by implementing statistical or design-based methods
that adjust for confounding resulting from nonrandom variation in
the exposure (Table 1). Similar distinctions of “instrument-based”
and “confounder-control” methods have been used by others (e.g.,
Matthay et al., 2020), but to distinguish the methods in our review,
we introduce a second dimension, that is, natural versus artificial
occurrence. “Natural occurrence” in this case means not created for
research purposes, for example, a natural disaster, the introduction
of a new policy or the twin design. An overview of methods and key
limitations are shown in Table 2.

Causal Inference by Using Random
Variation in the Exposure

There are numerous quasi-experimental designs which rely on
random variation in the exposure to study causal intergenerational
effects. As we focus on observational research in this review, we only
present such methods that try to achieve exchangeability by naturally
occurring means.

Natural Experiments

Naturally occurring events like policy changes or natural disasters
can be employed by researchers as quasi-experiments that randomly
allocate individuals to given circumstances (Rutter, 2007), which are
accompanied by differential exposure to the changing factors (e.g.,
stress or education). For example, exposed and unexposed individuals
can be compared before and after the events. Therefore, comparable
to RCTs, natural experiments do not require researchers to identify
and control for multiple confounders, although further adjustment
for confounders by matching or regression has been recommended
(Dunning, 2008).

Natural experiments have also been used to study intergenerational
effects. For example, a study examining pregnant mothers and their
future offspring following a strong earthquake in Chile reported a
negative effect of the prenatal exposure on cognitive outcomes of
offspring from disadvantaged families (Torche, 2018). The authors
used a difference-in-differences design, which allowed them to com-
pare the difference in outcomes of exposed and unexposed mother–
child dyads over time (change/difference over time), suggesting a
causal effect of stress induced during the prenatal development of the
offspring on cognitive outcomes. Another study used a casino opening
in the United States as a natural experiment to study the effect of
boosted income in an indigenous population. The study found inter-
generational effects, in that a reduction in parental poverty improved
some mental health outcomes of their children (Costello et al., 2003).

A major strength of natural experiments is that they allow the study
of causal effects of exposures that cannot be administered in an
experimental setting. However, the application of natural experiments
is limited in that only specific naturally occurring exposures can be
studied.Generalizability offindings is also limited (O’Connor, 2003)—
for example, the effects of a policy change may be specific for a certain
country or certain events might be unique, making similar follow-up
research difficult. Not least, the choice of adequate control groups is
challenging, as compared groups should closely resemble the exposed
group and they should only differ because of the “naturally occurring”
exposure. For example, the effect of a specific policy change may be
difficult to isolate if other changes occurred around that time.

Regression Discontinuity

Originally introduced as an alternative to RCTs, the regression
discontinuity design involves individuals that are assigned to different
groups based on a predefined cutoff for an assignment variable
(Thistlethwaite & Campbell, 1960), for example based on date of

Table 1
Classification of Causal Inference Methods

Means

Exchangeability

(a) Capitalizing on random variation induced
in the exposure

(b) Adjusting for confounding resulting from
nonrandom variation in the exposure

Naturally occurring Natural experiments, instrumental variable analysis,
Mendelian randomization, regression discontinuity

In vitro fertilization, adoption, twin, sibling, and
other family designs

Artificially occurring Randomized controlled trials, randomized experiments Doubly robust methods, generalized (g) methods

Note. Broader definitions of natural experiments often include twin studies and other within-family designs (Rutter, 2007), which are also
classified as naturally occurring here but in a separate column. In contrast to the other design-based methods, doubly robust and g-methods
are analytical methods that statistically control for confounding.
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Table 2
Causal Inference Methods, Their Rationale to Meet the Exchangeability Assumption, and Important Limitations

Type Design Rationale Limitations

Random variation
in the exposure

Natural experiments As-if random natural variation in the exposure, for
example, following a natural disaster or policy
changes. Affected individuals are often compared
with one or more control groups. Resembles a
random experiment and does not require specific
control for confounders.

• limited generalizability of findings
• no available data for many exposures and
outcomes

• choice of adequate control group(s) is a
challenge

Regression
discontinuity

Comparing two groups of individuals that are “on the
edge” of belonging to the other group, so that
compared individuals are very similar to each other
but differ in group status (e.g., in treatment status).

• sensitive to misspecification
• choice of bandwidth around the cutoff is
challenging

• treatment assignment based on more than one
indicator can be problematic

Instrumental variable IV is an unconfounded proxy for the exposure, so that
associations of the IV with the outcome are more
likely to reflect causal effects of the exposure.

• IV estimation with small sample sizes is
imprecise, and with large sample sizes, bias is
introduced when assumptions are slightly
violated

• less useful for cases of strong confounding
• adequate instruments may be hard to find for
most exposures

Intergenerational MR Using genetic instruments, taking advantage of random
allocation of genetic variants at birth within families.

• requires large sample sizes and good IVs
(strong and robust associations with exposure)

• requires genotypes of parents and offspring
Control-based
methods

Adoption design Effects from genetically unrelated adoptive parents on
the offspring are free from genetic confounding.

• limited generalizability of findings
• adoption at birth necessary to exclude any
postnatal nurturing effects of biological parents

Assisted conception Comparing effects between genetically related
parent–child and genetically unrelated
parent–child dyads/trios.

• limited generalizability of findings
• small sample sizes

Parent comparison Risk factor is specific for one parent and the other one
is used as a negative control. This might strengthen
causal inference (e.g., intrauterine effects like
smoking, BMI, etc.), because other familial
confounding is controlled.

• cannot entirely rule out genetic confounding
• similarities between parents due to assortative
mating or other effects complicate the
comparison

Multiple relationships Comparing relations in nonnuclear families, including
stepparents. Associations between stepparent and
child are not genetically confounded, whereas
associations between the child and the biological
parent with whom the child does not live with mostly
reflect genetic effects.

• rearing effects can be underestimated, as time
lived with the stepparent can substantially differ
from time lived with the biological parent

• nurturing effects of not-lived-with biological
parents may not be ruled out (e.g., perinatal
effects).

Sibling comparison Comparing an affected child (e.g., mother smoked
during pregnancy) with their unaffected sibling, thus
adjusting for familial confounding (shared
environment and shared genetics).

• confounders that vary between children are not
adjusted for

• carryover effects (e.g., birth order) may be
present

Control-based
methods

Twin comparison For DZ twins, this design is equivalent to the sibling
comparison, but shared effects are better controlled
for as twins are the same age. For MZ twins, all
genetic effects are accounted for.

• confounders that vary between children, such as
nonshared environment are not controlled

• direction of causation can only be tested in
longitudinal designs

• parental exposures that do not vary within
families (e.g., parental education) cannot be
studied

Children-of-siblings/
children-of-twins

For MZ twins, this design compares associations in
parent-offspring dyad versus uncle-offspring or aunt-
offspring dyads (who share the same amount of genes
with their niece/nephew as the parent, but not the
family environment). Further, avuncular correlations
can be compared between MZ and DZ twin families.

• Dyadic parental effects (e.g., divorce) cannot be
studied

• age differences between siblings and cousins
need to be considered for age-dependent
outcomes (e.g., cognitive performance)

G-methods Generalized methods to study time-varying exposures
and to account for time-varying confounding.

• unobserved time-varying confounding cannot
be controlled

• feedback between time-varying prenatal expo-
sures and outcome examined after birth cannot
be accounted

Doubly robust
methods

Methods that include an exposure model (e.g., propensity
score) and an outcome model to adjust for confounding.
Doubly robust, in that it would be sufficient if one
of the two models is correctly specified.

• if both the exposure and the outcome models
are mis-specified, results will be biased

• when the two models are mis-specified, bias is
potentially higher compared to other methods

Note. IV = instrumental variable; MR = mendelian randomization; BMI = body mass index; DZ = dizygotic; MZ = monozygotic. In contrast to the
other design-based methods, doubly robust and g-methods are analytical methods that statistically control for confounding.
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birth as the cutoff for school eligibility, or based on a level of a
biomarker as treatment eligibility. By doing this, a selection bias is
created, but one that is perfectly controlled. As individuals just below
and above the threshold are quasirandomly allocated to the exposed
and unexposed groups due to random variability (e.g., measurement
error) in the assignment variable, those individuals are expected to
have similar levels regarding all observed and unobserved confoun-
ders (Bor et al., 2014). The regression discontinuity design is also
commonly used to analyze natural experiments, for example, to test
causal effects of altered exposures due to policy changes.
Regression discontinuity designs using predefined cutoffs for

kindergarten eligibility showed an effect of being relatively young
for their grade on elevated risk of children’s ADHD diagnoses (Elder,
2010; Evans et al., 2010). To our knowledge, regression discontinuity
designs have not been applied to intergenerational effects on psy-
chological outcomes. However, Ali and Elsayed (2018) used the
regression discontinuity design to examine the effects of parental
education on child health. The authors compared families including
parents that started school just before and after an education reform
that resulted in a reduction of compulsory schooling by 1 year. They
found little evidence for a causal effect of higher paternal education on
offspring’s nutritional status and no evidence for an effect on child
mortality or other measures (Ali & Elsayed, 2018).
The regression discontinuity design assumes exchangeability or

continuity—that is, continuous variation of the assignment variable
around the cutoff (Oldenburg et al., 2016). This design allows the
study of exposures that are closer to “real life” than by using RCTs,
but require larger sample sizes than RCTs (Bloom, 2012). Other
limitations, which include the potential bias arising from misspe-
cification of the functional form around the cutoff (e.g., assuming a
linear form whereas the “true” functional form might be nonlinear),
are addressed in more detail elsewhere together with arguments for
the generalizability of the effects (Bloom, 2012).

Instrumental Variables Analysis

Instrumental variable (IV) analyses use an IV associated with an
exposure of interest as a proxy to study the exposure’s effect on an
outcome, and account for both observed and unobserved confound-
ing in the exposure-outcome association (Figure 2a).
For example, educational attainment of parents was shown to

influence their offspring’s educational attainment using cohorts’
finishing school during a period of unrest in France in 1968 as the
instrumental variable (Maurin & McNally, 2008). The conflicts
between students and universities led to a simplification of the
national exams, which subsequently allowedmore students to attend
higher education. The authors first found increased educational
attainment of this generation compared to cohorts’ finishing school
before and after 1968. Strikingly, these effects were transmitted to
the next generation, resulting in higher educational attainment of
the students’ offspring, and providing evidence for a causal effect
(Maurin & McNally, 2008).
Notably, IV analysis requires strong assumptions in addition to

exchangeability (exchangeability here would mean that the IV is
not associated with any confounders of the exposure-outcome
association). The exclusion restriction assumption requires that
there should not be any direct association between the IV and
the outcome, and that the observed effect should result from
the pathway through the exposure (i.e., no other pathways from

the exposure to the outcome via other potential mediators). Another
assumption is the relevance of the IV to the exposure, which can be
tested by examining the magnitude of the association between the IV
and the exposure. IV analysis is generally robust against unobserved
confounding of the exposure-outcome association, but larger
degrees of unobserved confounding reduce the strength of the IV
and thus likely violate the assumptions of IV analysis, that is, the
relevance assumption (Martens et al., 2006). Inferences from IV
analysis can be biased even when assumptions are only slightly
violated, or when using small sample sizes (Bound et al., 1995;
Martens et al., 2006). Furthermore, it may be challenging to find
appropriate instruments for most exposures, as the IV needs to be
strongly associated with the exposure and exclusively associated
with the outcome through the exposure of interest.

Intergenerational Mendelian Randomization

Mendelian randomization (MR) is similar to IV analysis and
make use of measured genetic variants as a proxy for an exposure of
interest (Didelez & Sheehan, 2007; Smith & Ebrahim, 2003; see
Figure 2b). Individuals inherit one of two copies of each genetic
variant randomly from both parents, thus enabling the use of genetic
variants with established associations with an exposure as instru-
ments for such exposure. Mendelian randomization has been widely
used for causal inference and was recently extended to intergenera-
tional settings (Davies et al., 2019; Zhang et al., 2015).

MR was applied using a genetic variant strongly associated with
heaviness of smoking as proxy for maternal smoking during preg-
nancy, to examine the effect of maternal genotype on autism
spectrum disorder and related traits of the offspring (Caramaschi
et al., 2018). Consistent with other causal inference methods, the
MR analysis did not support a causal effect of smoking during
pregnancy on the examined outcomes (Caramaschi et al., 2018).

An advantage of MR is that the association between the genetic
instrument and the outcome is largely free from environmental
confounding but can be influenced by population effects including
population stratification or assortative mating. Population stratifica-
tion describes the fact that certain effect alleles vary in frequency
between (sub-)populations, whereas assortative mating indicates
that individual mating choices are not random but influenced by
phenotypic similarities, for example, tall individuals choosing tall
mates (Freedman et al., 2004; Yengo et al., 2018). These biases can
be better accounted for in within-family MR analyses (Hwang et al.,
2020). For valid inference from intergenerational MR analyses, one
needs to include parental genotypes as instruments for the parental
exposure and further control for the offspring’s genotype (thus
requiring data from trios) to block the pathway of genetic transmis-
sion (Figure 2b; Davies et al., 2019). Intergenerational MR requires
large samples, which are still rare for intergenerational settings.
Further limitations include selection bias (Hwang et al., 2020) as
well as general limitations of MR and IV analysis such as weak
instrument bias (Burgess & Thompson, 2011).

Causal Inference by Using Naturally
Occurring Adjustment Methods

As many exposures are not randomly distributed (e.g., whether a
child’s parents are highly educated or not is usually not random),
there is a need for causal inference methods to study potential effects

CAUSAL INFERENCE METHODS FOR INTERGENERATIONAL RESEARCH 5



of these exposures using observational data. This can be achieved
by confounder control, including methods that control by matching
or blocking. Within-family designs are of specific interest when
investigating both genetic and environmental effects. Examples of
different familial constellations and genetic relatedness in different
study designs are shown in Figure 3 and described below.

Adoption Studies

Associations between biological parents’ traits or behaviors and
the outcomes of their biological offspring might be biased by genetic
factors, as parents provide both their genes and the rearing environ-
ment for their children. If both the parental exposure and the child
outcome are genetically influenced, the association between them
can be genetically confounded (e.g., Figure 1b). Adoption designs
allow researchers to explore parent–child associations in the absence
of potentially confounding effects arising from genetic relatedness.
Associations between adoptive parents’ traits and the phenotype of
the genetically unrelated offspring cannot result from genetic trans-
mission and are thus more likely to reflect environmental transmis-
sion (Figure 3a).
A prospective adoption study found no effect of maternal anxiety

in the adoptive mother on the anxiety symptoms of the adopted child
(Ahmadzadeh et al., 2019), suggesting that previous findings of
observational associations between anxiety of biological mothers
and anxiety in their biological children (e.g., McClure et al., 2001)
may not reflect a causal environmental effect. In contrast, adoption
studies support the role of maternal depression as environmental risk
factor for offspring internalizing and externalizing problems, as well
as for their neurobiological development (reviewed by Natsuaki
et al., 2014).
Similar to other designs, the possibility of reverse causation—that

is, effects from the child on parental behavior—is a major limitation
of this design unless a longitudinal approach is adopted. A specific

limitation of adoption studies is that samples may not be represen-
tative of the general population, resulting in limited generalizability
of findings. Furthermore, although genetic confounding can be ruled
out, the design does not control for shared or nonshared environ-
mental confounders (Thapar & Rice, 2020). Previous environmental
effects from the biological parents on the offspring’s outcomes
cannot be ruled out (e.g., during pregnancy or prior to adoption),
which also restricts the variety of exposures that can be studied (i.e.,
only postnatal). However, if additional information on birth mothers
and fathers prior to adoption is available (e.g., prenatal environ-
ment), maternal effects can also be examined and distinguished from
the postnatal rearing environment provided by the adoptive parents.
If data on both birth parents are available, prenatal environmental
effects can be further distinguished from genetic effects (Loehlin,
2016), which we discuss in the section on parent comparisons.

Assisted Conception

Assisted conception or in vitro fertilization (IVF) can be carried out
in multiple ways, so that either both parents are biologically unrelated
to the child, only one parent is biologically related to the child or both
parents are (Figure 3b). Similar to adoption designs, genetic con-
founding can be ruled out in biologically unrelated parent–child
dyads or trios. If the child is carried during pregnancy by the future
rearing mother, prenatal effects can be examined in addition to peri-
and postnatal effects, which expands the applicability of this design
in comparison to the adoption design (e.g., information on the
birth mothers may not be available in adoption studies).

Studies using the IVF design showed that maternal smoking
during pregnancy is only associated with child ADHD and antisocial
behavior in genetically related but not in unrelated families, sug-
gesting genetic confounding of the association between smoking
during pregnancy and child psychopathology (Rice et al., 2009;
Thapar et al., 2009).

Figure 2
Instrumental Variable Analysis

(a) (b)

Note. (a) General instrumental variable design, where the instrument Z is used as a proxy for the
exposure X. Observed associations between the instrument and the outcome (bZY) are tested to
infer the causal effect β, assuming that the observed association bZY comes exclusively from the
pathway Z→ X→ Y (exclusion restriction). Conceptually, the exclusion restriction is similar to a
mediation analysis, that is, X can be seen as mediator of the association between Z and Y, and this
would correspond to a full mediation, where bZY= γ × β and thus the causal effect is β= bZY/γ. The
absence of an arrow between Z andU corresponds to the exchangeability assumption, whereas the
assumption of relevance can be tested by the magnitude of γ. (b) Intergenerational Mendelian
randomization, using the parental genetic instrument(s)GP as a proxy for the parental exposure XP

while controlling for the child’s genetic variantsGC, as genetic transmission violates the exclusion
restriction assumption through the mediating pathway from GP on YC via GC. C = child; G =
genetic instrument; P = parent; U = unmeasured confounder(s); X = exposure; Y = outcome; Z =
instrumental variable.
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Limitations of the assisted conception design are similar to the
adoption design, mainly the extent of generalizability, as families
using IVF might differ from families conceiving naturally, for
example, showing higher rates of perinatal complications or lower
degrees of prenatal risk exposure (Thapar & Rice, 2020). However,
comparing both biologically related and unrelated families using
IVF may control for confounding that might be specific for families
using assisted conception. Like adoption studies, present IVF
studies are limited by small sample sizes.

Parent Comparison

This design is usually employed for pregnancy exposures, using
the father as a negative control to test for a causal intrauterine effect
during pregnancy (Figure 3c), but applications to other exposures
that are specific to only one parent may be conceivable.
A prospective longitudinal study examined the effect of maternal

cannabis use during pregnancy on emotional and behavioral problems
of the offspring (El Marroun et al., 2019). They found associations of
similar size for maternal and paternal cannabis use during pregnancy
with elevated child externalizing problems, providing evidence
against a causal intrauterine effect and indicating a role of genetic
or other residual confounding (El Marroun et al., 2019).
In the example above, 80% of mothers who used cannabis during

pregnancy also had a spouse consuming cannabis, thus maternal
cannabis use could not be examined independently (El Marroun
et al., 2019). When parental risk factors are highly correlated—
reflecting assortative mating or spousal interaction effects—the paren-
tal comparison might not be capable of drawing causal inferences.

Another limitation of this design is that genetic confounding may not
be entirely excluded, as for some disorders sex-specific and sex-
dependent genetic effects (Goldstein et al., 2013; Kang et al., 2020) or
parent-of-origin effects have been reported. In case of prenatal ex-
posures, results can further be confounded by offspring’s larger
exposure to maternal versus paternal postnatal environment.

Multiple Relationship Designs

Multiple relationship designs investigate not only nuclear fami-
lies but focus on families including related individuals not living
together, and both related and unrelated individuals living together.
Therefore, these designs allow researchers to disentangle genetic
and environmental effects and can either be parent-focused—that
is, multiple parenting relationships of one (step)parent—or child-
focused, that is, multiple relationships between a child and their
(step)parents (Figure 3d).

A study examined triparental families comprising children, their
biological mother, stepfather and biological father with whom they
did not live (Kendler et al., 2015). In investigating parental trans-
mission of different externalizing behaviors, the authors found that
maternal effects were largest, followed by effects of not-lived-with
biological fathers and then stepfathers, indicating that both environ-
mental and genetic transmission were present (Kendler et al., 2015).
Using a similar design, positive effects of higher quality relation-
ships of both stepfather–child and nonresident (biological) father–
child relations on child educational attainment were found (King
et al., 2020), supporting an environmental effect of parent–child
relationships on child education.

Figure 3
Genetic Relatedness in Different Family Designs

(a)

(d) (e) (f)

(b) (c)

Note. (a) Adoption design; (b) Assisted conception where (i) the sperm is donated (thus the lived-with father is genetically unrelated), (ii) the ovum is donated,
(iii) both sperm and ovum are donated, (iv) both sperm and ovum come from the parents seeking IVF; (c) parent comparison; (d) multiple relations; (e) sibling
and twin comparisons; (f) children-of-siblings designs, where siblings share either 50% (siblings or DZ twins) or 100% of their genes (MZ twins). Single-
headed arrows indicate a directed effect, assuming that a biological parent transmits 50% of their deoxyribonucleic acid to their child, whereas crossed arrows
indicate a blocked pathway. Genetic relatedness for the offspring generation can be inferred by path tracing, for example, for Figure 3e, the relatedness between
the child and the sibling is equal to the paths via the mother (GS←GM→GC) and father (GS←GF→GC), resulting in a genetic relatedness coefficient of 0.5 ×
0.5+ 0.5× 0.5= 0.5. Similarly, in Figure 3f the correlation betweenGC1 andGC2 is 0.5× 1× 0.5= 0.25 when the parents areMZ twins, similar to half-siblings,
and 0.5 × 0.5 × 0.5 = 0.125 when the parents are DZ twins or siblings; similar to typical cousins. C = child; F = father; G = genotype;M = mother; P1/P2 =
Partner 1/Partner 2; S = sibling; SC = stepchild; SP = stepparent; IVF = in vitro fertilization; DZ = dizygotic; MZ = monozygotic.
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These designs are limited—somewhat similar to adoption
designs—in that not-lived-with biological parents may in fact
live with their offspring in early sensitive stages of their develop-
ment or often have contact with their child, thus, environmental
effects of those parents cannot be ruled out (Kendler et al., 2015,
2019). Furthermore, as stepparents may spend less time with the
offspring (e.g., joined the family some years after the child was
born), using stepparents as an index for environmental parent-
offspring effects can lead to substantial underestimation of rearing
effects (Kendler et al., 2015).

Sibling and Twin Comparisons

The sibling comparison contrasts an affected child with their
unaffected sibling (i.e., discordant siblings in case of binary expo-
sure), thus controlling for familial confounding including shared
genetic and environmental effects (Figure 3e). For instance, siblings
may be differentially exposed to risk or protective factors like parental
age, parental education, and also parenting behavior. If the outcomes
of both siblings are similar, a causal effect of the specific exposure is
not likely. A recent article proposed a counterfactual-based frame-
work for the sibling comparison design and describes how a causal
effect can be estimated and interpreted (Petersen & Lange, 2020).
Consistent with findings from the IVF design, studies using sibling

comparisons suggest that maternal smoking during pregnancy does
not causally affect child internalizing and externalizing problems,
but that observed associations reflect familial confounding instead
(Meier et al., 2017; Obel et al., 2016). Other studies use twin
comparisons to examine the associations of differential parent–child
relationships with differences in behavioral outcomes of monozy-
gotic twins, which can rule out all genetic and shared environmental
confounding (Asbury et al., 2003; Burt et al., 2006). In twin
comparison studies, differential parenting behaviors such as harsh
discipline have been associated with differences in externalizing and
other maladaptive behaviors of the twins (Asbury et al., 2003).
Limitations of these designs are that unobserved nonshared

genetic and environmental confounders (i.e., factors that are specific
for each child) are not controlled for. Furthermore, the assumption
that the direction of effects in parent–child associations is from the
parent to the child is not always reasonable (Bell, 1968). Many
studies have shown that children can influence their parents (e.g.,
Ahmadzadeh et al., 2019; Lifford et al., 2008; McAdams et al.,
2015). The possibility of reverse causation is therefore something
which should be considered, and which can make it more difficult to
accurately estimate the effect of the parent on the child. However,
this limitation is not unique to the sibling comparisons, but also
applies for example, to the adoption design or other designs.
Exploiting a longitudinal approach for example, could help to
disentangle associations and provide insights in the direction of
effects or potential bidirectional effects. Sibling comparisons can
also be biased by carryover effects, that is, the exposure of an
individual affects the outcome or the exposure of the sibling, but
these can be tested (e.g., birth order effects; Sjölander et al., 2016).
Furthermore, sibling comparisons cannot be used to study shared
parental exposures, for example, household income or parental
education, unless such factors vary over time and siblings are
differentially affected at a specific age (Sariaslan et al., 2021). In
contrast, twin comparisons control for more shared confounding but
are even more limited in terms of the exposures that can be studied,

for example, precluding the ability to study effects of the prenatal
environment or of parental age at birth (D’Onofrio et al., 2014).

Children-of-Siblings Designs

These designs use parents who are related to one another (e.g.,
twins, siblings, half-siblings) and their children to study associations
between parental characteristics and child outcomes, using the cosi-
bling as a matched control to enable causal inference (Figure 3f;
Latvala et al., 2015; Rodgers et al., 2008). A special case of this
design is the children-of-twins design (D’Onofrio et al., 2003), which
we outline here in more detail. Because MZ twins are genetically
identical, they are related to their cotwin’s child (their niece/nephew)
to the same degree as to their own child (sharing 50% of their genes).
As a result, children of MZ twins (who are cousins) are biologically
half-siblings (they share 25% of their genes on average). In contrast,
children of dizygotic (DZ) twins or of siblings share 12.5% of their
genes on average. Genetic and environmental effects can be estimated
in different ways by comparing associations between twins discor-
dant for a phenotype and their children’s phenotype, and associations
can be contrasted for children of MZ and DZ twins (D’Onofrio et al.,
2003). Using structural equation modeling or other methods, the
association between parental and child phenotype can be estimated,
while controlling for shared environmental and genetic confounding
(McAdams et al., 2018).

The children-of-twins design has been used to examine effects of
parental depression on offspring psychopathology. Studies report
effects of exposure to parental depression in childhood and adoles-
cence on offspring’s depressive symptoms that remain after account-
ing for shared environment and genetics (McAdams et al., 2015;
Silberg et al., 2010; Singh et al., 2011). However, the association
between prenatal depression and subsequent child psychopathology,
which has been reported in previous observational studies (Barker
et al., 2011), does not remain in the children-of-twins design and
might be attributable to genetic confounding (Hannigan et al., 2018).

This design does not allow causal inference when studying dyadic
effects that cannot be examined for the twins independently but also
involve their partners (e.g., divorce or parental conflicts; Eaves et al.,
2005). Further limitations and considerations are discussed elsewhere
in more detail (D’Onofrio et al., 2003; McAdams et al., 2018).

Genetic Nurture Effects

The concept of genetic nurture describes indirect genetic effects
of parental genes on child phenotypes that are assumed to work
through environmental pathways, such as parental nurturing (Kong
et al., 2018). Polygenic scores—summary scores that capture the
genetic predisposition for a trait and include weighted effects from
many genetic variants associated with that trait—can be used to infer
genetic nurture effects from associations between parental genetic
scores and the offspring’s outcome (Pingault, Allegrini, et al., 2022).
If parental nontransmitted genes are associated with the child
phenotype (i.e., ruling out genetic transmission), this effect may
occur through the parental environment (Bates et al., 2018; Kong
et al., 2018). Genetic nurture effects have been examined recently
to investigate associations between parental genotype and offspring
educational and mental health outcomes (Jami et al., 2020;
Pingault, Barkhuizen, et al., 2022; Wang et al., 2021). Figure 4 is
an extension of Figure 3 and additionally includes environmental
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parent-to-offspring effects. Furthermore, indirect genetic effects from
parental genotype to the offspring’s outcome via parental phenotype
can be traced in Figure 4 (e.g., GM → PM → GC). Studies designed to
test for genetic nurture effects are not prone to reverse causation,
as the child cannot influence parental genotypes. However, causal
inference from such indirect genetic effects needs to be treated with
caution, as one often cannot distinguish between population effects
such as population stratification or assortative mating and genetic
nurture effects (Young et al., 2019), although new methods can
control for some population effects (Balbona et al., 2021; Kim
et al., 2021). Furthermore, as genetic nurture effects typically index
a global effect without measurement of any specific parental traits
(usually only a proportion of genetic variants that are associated with
a specific trait are measured), research should be conducted to further
characterize genetic nurture effects and to identify environmental
mediators. In fact, parental phenotypic data can be integrated in novel
approaches to test specific environmental pathways (Balbona et al.,
2021; Kim et al., 2021), and a study following up genetic nurture
effects on child depression showed partial environmental mediation
of these effects by maternal anxiety and depression symptoms
(Cheesman et al., 2020). Additionally, specific associations may
be followed up using intergenerationalMR to examine a causal effect.

Causal Inference Using Control-Based
Statistical Methods

In contrast to the above-described methods, which control
for unmeasured genetic and familial confounding by study design,
many statistical methods aim to control for measured confounders.
Among existingmethods, some causal inferencemethods are available
that have explicit assumptions for interpreting a causal effect. As
mentioned, control-based statistical methods usually assume no unob-
served confounding, a strong assumption that can be easily violated.
Here we present some exemplar control-based causal inference meth-
ods using statistical modeling. Other methods exist such as propensity
score methods (i.e., combining measured covariates into one score
that captures the propensity of being exposed and adjusting for this
score, e.g., by matching or weighting, Austin, 2011), which we did
not address here, as they can be more biased or less efficient than
g-methods or doubly robust methods (Chatton et al., 2020; Gruber &
van der Laan, 2010).

G-Methods

Robins’ generalized methods (g-methods) are dedicated to
the analysis of longitudinal data with multiple measurements of

Figure 4
Genetic and Environmental Effects in Different Family Designs

(a)

(d) (e)

(b) (c)

Note. (a) Adoption design; (b) assisted conception where (i) the sperm is donated (thus the lived-with father is genetically unrelated), (ii) the ovum is donated,
(iii) both sperm and ovum come from the parents seeking IVF (excluding the example where offspring is genetically unrelated to both mother and father as it is
identical to Figure 4a); (c) Sibling and twin comparisons; (d) multiple relationships which are either child-focused (left) or parent-focused (right), comparing
parent–child relations based on providing either genetics only, environment only or genetics + environment; and (e) children-of-siblings designs. The parent
comparison design is not illustrated as it is identical to the third example of Figure 4b. Unlike Figure 3, no (genetic) relation between two individuals is indicated
by a missing arrow connecting the two. For simplification, phenotypic effects within a generation (e.g., between siblings or between parents) and effects from
child to parent are omitted here.C= child;F= father;G= genotype;M=mother;P= phenotype;P1/P2= Partner 1/Partner 2; S= sibling; SC= stepchild; SP=
stepparent; IVF = in vitro fertilization.
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(time-varying) exposures. The g-methods include the g-formula,
g-estimation of structural nested models, and inverse probability
weight estimation of marginal structural models (Robins & Hernán,
2009). Mathematically, these methods use different formulae to
estimate the probability densities of outcomes in the exposed and
unexposed individuals, given a set of measured confounders
(described in detail elsewhere, Robins & Hernán, 2009). In longi-
tudinal designs, individuals can be compared with themselves over
time, thus differences between individuals (including differences in
confounders) are better accounted for. Other conventional methods,
such as fixed effect models, which control for unobserved time-
invariant confounding (Gunasekara et al., 2014) are likely to be
insufficient to estimate an unbiased causal effect of a time-varying
exposure (Robins & Hernán, 2009) as many (parental) exposures
and potential confounders are not stable over time, for example,
smoking status or income. G-methods can enable estimation of a
causal effect of an exposure that varies over time while controlling
for time-varying confounding.
For example, a recent study used g-methods (marginal structural

models) to examine the effect of maternal smoking during preg-
nancy on offspring’s risk of depression in a sibling design and found
similar results compared to generalized estimating equations, re-
porting an association between maternal smoking and offspring’s
depression beyond confounding (Shenassa et al., 2023).
Each of the g-methods has specific limitations and one or the other

may be favored depending on the data structure and model of interest
(Daniel et al., 2013). In general, inverse probability weighting and
g-estimation are more robust than the g-formula, although it is
possible that all methods converge in some scenarios (Robins &
Hernán, 2009). A brief example of g-methods can be found elsewhere
(Naimi et al., 2017), including references for more detailed back-
ground (e.g., Daniel et al., 2013; Robins&Hernán, 2009). G-methods
can also be applied to nonvarying (time-fixed) exposures. However, it
may be limited when studying time-varying prenatal exposures on
child outcomes that are assessed after birth, as the feedback between
exposure and outcome at different stages cannot be examined.

Doubly Robust Methods

Doubly robust methods combine two approaches to control for
observed confounding, making them more robust against model
misspecification (Funk et al., 2011). Confounders are included in
the specification of the outcome-regression model (e.g., as covariates)
and of an exposure model, for example, by using propensity scores
that describe the probability of being exposed given the observed
confounders (Funk et al., 2011). Both the exposure model and the
outcome-regression model are prone to misspecification, but com-
bining the two approaches enables a reliable estimation even when
one of the two models is mis-specified (Bang & Robins, 2005). A
commonly used doubly robust estimator is the targeted maximum
likelihood estimator (van der Laan & Rubin, 2006). This method
combines maximum likelihood estimation with function-based esti-
mation, where an initial (targeted) density estimator can be updated
to maximize the log-likelihood fit (van der Laan & Rubin, 2006).
A study used targeted maximum likelihood estimation to study

effects of childhood adversity, providing evidence for an effect of low
parental education, neglect and several other forms of adversity on
lower fluid intelligence of adolescents (Platt et al., 2018). Recently, a
doubly robust method has been introduced to control for confounding

by cluster (Zetterqvist et al., 2016), which occurs in family designs
due to shared genetics and environment. Applying this method to an
existing data confirmed the results from the original study (Kuja-
Halkola et al., 2014), providing no evidence of a causal effect of
smoking during pregnancy on child cognitive outcomes.

In general, doubly robust methods are limited in that, under
correct model specification, they can be less efficient than maximum
likelihood estimation and more biased when both models are mis-
specified (Funk et al., 2011; Kang & Schafer, 2007). Hence expert
knowledge and careful model design (including the choice of
confounders) is essential.

Sensitivity Analysis

In general, sensitivity analysis is an umbrella term for various post
hoc analyses to test the robustness of observed findings. Here we
define sensitivity analysis—also termed bias analysis—as a method
that specifically tests for potential effects of unmeasured confound-
ing (e.g., Cornfield et al., 1959; Ding & VanderWeele, 2016; Lash
et al., 2009). Control-based statistical methods, including the ones
described above (g-methods and doubly robust methods), assume no
unobserved confounding; however, this assumption cannot be tested
and is often unrealistic. The rationale of sensitivity analysis is to test
how strong the effect of an unmeasured confounder must be to
change the observed finding. Combined with knowledge about
effect sizes of existing confounders, one can assess the robustness
of the observed association and could draw conclusions about the
causal nature of the association.

A study detected an effect of higher prenatal exposure to airborne
particles with a diameter <2.5 μm on worsened children’s mental
and psychomotor development (Tozzi et al., 2019). A sensitivity
analysis showed that findings were robust, as effects of unmeasured
confounders had to be unrealistically large to erase the observed
effect (Tozzi et al., 2019).

Sensitivity analyses may be limited in that they often have strong
and untestable assumptions about the frequency or the distribution of
the unobserved confounders, albeit some more flexible approaches
exist (Ding & VanderWeele, 2016; Shen et al., 2011). Sensitivity
analysis still constitutes a valuable tool and complements the above-
described methods to strengthen causal inference.

Discussion

Confounding remains a major issue in observational research,
including genetic confounding which might partly or fully explain
observational associations in intergenerational research, highlight-
ing the importance of causal inference methods. We have described
a broad range of methods for causal inference in intergenerational
settings, which aim to achieve exchangeability by either (a) capital-
izing on random variation in the exposure or (b) adjusting for
confounding resulting from nonrandom variation in the exposure.
We elaborated on the advantages and limitations of each design and
provided an overview of existing methods with references to
potential designs for specific research questions.

As each method described here has its own limitations, we
advocate combiningmore than one approach to infer causality.Where
feasible, different approaches should be combined in the same study
(Caramaschi et al., 2018; Liu et al., 2021), for example, using designs
with random variation in the exposure and control-based methods,
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performing sensitivity analyses and including negative controls (e.g.,
pseudo-outcomes; Imbens, 2015). Triangulating evidence from inde-
pendent studies, that is, using different methods with distinct assump-
tions to test the same hypothesis, is pivotal to infer causal effects
(Lawlor et al., 2016; Munafò et al., 2021; Munafò & Smith, 2018),
and no method should be seen as sufficient on its own. Coming back
to an example from the introduction (Figure 1b) highlights how a
variety of different methods jointly provide insights into the causal
relations between intergenerational risk factors and psychopathology.
For example, within-family designs using IVF (Thapar et al., 2009),
parent (Gustavson et al., 2017; Langley et al., 2012), or sibling
comparisons (Knopik et al., 2016; Kuja-Halkola et al., 2014;
Skoglund et al., 2014), as well as studies using genetic instruments
(Haan et al., 2021) showed that smoking during pregnancy seems to
not causally affect child ADHD, but rather reflects familial confound-
ing. Triangulation can also be obtained via systematic reviews and
meta-analyses of various genetically informed methods with different
assumptions, which have provided evidence for environmental effects
of parental anxiety on child internalizing problems (Ahmadzadeh
et al., 2021), of prenatal alcohol exposure on child cognitive outcomes
(Mamluk et al., 2020), and of several parental risk factors on child
mental health and related outcomes (Jami et al., 2021) beyond genetic
confounding.

Outlook

The multidisciplinary nature of intergenerational research holds
promise for the development of novel methods to further strengthen
causal inference. In general, cooperative research efforts are crucial to
maximize insights by increasing sample sizes, and by gathering
collective expertise across disciplines. However, smaller but more
nuanced studies, which include detailed and harmonized phenotyping
and longitudinally examine the samples, are also of importance and
constitute a large part of the research cited here. In this review, we
only focused on studies and methods that test direct effects of parental
exposures on child outcomes and did not address mediating or
moderating factors, which is a limitation. Identifying mediating
pathways from parental (risk) factors to child outcomes or moderating
factors of parental effects is clearly important. For example, mediating
factors can be examined using causalmediation analysis (Daniel et al.,
2015; Imai et al., 2010), and moderators could be tested using a
recently proposed framework for causal moderator analysis based on
potential outcomes (Dong et al., 2022). In the following sections, we
outline some future directions and promising, potential methodologi-
cal advances for intergenerational causal inference.

New Data for Intergenerational Research

Valuable data for intergenerational research are increasingly evolv-
ing, withmultigenerational data on a national scale becoming available
in terms of birth registries (Van DerWel et al., 2019), electronic health
records (Friedman et al., 2013), or data on education or criminal
records. Combining these data provides a tremendous opportunity to
gather information about parental characteristics and child outcomes.
Furthermore, new data (e.g., through genotyping) are emerging and
could be matched with other registries, providing an important basis
for the application of MR or the estimation of genetic nurture effects.
Other collaborative efforts using large within-family cohorts will
result in publicly available summary statistics that can be used for

such purposes (Howe et al., 2022). Combining different registry data
implies that comprehensive data in a “natural setting” can be used,
which is precisely timed and documented, while being representative
of the target population. Hence, these data can further be linked to
certain events or time periods, such as policy changes, natural disasters
such as flooding or pandemics such as COVID-19. However, such
detailed data on individuals raise important questions of data privacy,
which have to be carefully addressed (e.g., Behrendt et al., 2018).

Spillover From Related Fields

We have seen that certain causal inference methods are under-
represented in intergenerational psychiatry and psychology, such as
regression discontinuity or instrumental variable designs, although
both are strong designs for causal inference (Kim & Steiner, 2016).
This may result from a cautious attitude of researchers in psychology
and psychiatry toward causal inference (Grosz et al., 2020; Rutter,
2007), potentially coupled with a lack of statistical training in such
methods. It has been argued that causal relations are often implicitly
assumed by researchers but not explicitly expressed; however, the
expression of such assumptions is essential to choose adequate
methods and to address their specific biases (Goetghebeur et al.,
2020; Grosz et al., 2020; Pingault, Richmond, & Smith, 2022). As
mentioned, applying these designs can also be challenging as
appropriate instruments might not be available for certain research
questions.

Regression discontinuity designs following policy changes were
used to examine causal effects of education or alcohol consumption
on mental health outcomes (Courtin et al., 2019; Ertan Yörük &
Yörük, 2012). Future studies could expand the analysis to the
offspring generation of those individuals to study causal effects of
parental characteristics on child psychological outcomes as in other
designs (Costello et al., 2003; Maurin & McNally, 2008).

Blurring Boundaries Between Classifications

Although in this review we described methods based on distinct
categories (Table 1), such categories are not exclusive. First, methods
capitalizing on random variation in the exposure (Column 1 of
Table 1) may further statistically adjust for confounders (Row 2,
Column 2). This has been suggested, for example, for natural
experiments (Dunning, 2008) and is common in research using
instrumental variables (Vansteelandt & Didelez, 2018). For example,
multivariate MR can also be seen as a method to control explicitly for
suspected pleiotropic pathways (Burgess & Thompson, 2015). Sec-
ond, methods using naturally occurring settings to control for con-
founding (Row 1) may further adjust for confounders to approach
conditional exchangeability. This can be done, for example to control
for measured nonshared environmental confounders in twin compar-
ison studies, in addition to the adjustment permitted by the natural
design (Row 1, Column 2). Furthermore, researchers may be involved
more tightly in the planning phase of policy changes (Column 1) to
assess data on potential confounders of individuals likely to be
affected by the “natural experiment” in a pre–post design.

Advances in Genetically Informed Designs

There is growing interest in and potential of using genetic data in
observational studies to strengthen causal inference (Pingault et al.,
2018). For instance, a sensitivity analysis has been introduced which
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controls for genetic confounding in observational studies with
available genotype information of the participants (Pingault et
al., 2021). Causal inference methods like the regression discontinu-
ity design could be used to study causal effects of selective
prevention programs for children, using parental risk factors as
assignment variable (e.g., indexed by genetic instruments). Com-
paring individuals whose parents score just above or below the
threshold (say, “mean genetic risk”) would allow us to infer a causal
effect of the preventive intervention. Unlike in an RCT, individuals
of higher risk would thus all be eligible for the program, instead of
using a random assignment.
Alternatively, instead of contrasting individuals with similar

values on the assignment variable, recall-by-genotype designs
compare individuals at the extreme ends of low versus high genetic
risk for a disease. Similar to MR, these designs exploit the random
allocation of genetic variants at conception for causal inference
(Corbin et al., 2018). Unlike MR, recall-by-genotype studies only
focus on a smaller subsample, which can be examined in detail
to understand the causal pathway to disease. A translation to the
intergenerational setting could be to screen parents regarding their
genetic risk toward a particular disorder, and to follow up on their
children’s outcomes. Thus, one could examine the effects of parental
risk factors on the offspring’s outcomes in a smaller subpopulation,
allowing deep phenotyping of parents and offspring. Similar to
intergenerational MR, adjusting for offspring genotype would be
necessary to exclude genetic transmission.
There is a large variety of possible methodological extensions

using genetic data to study causal environmental effects. However,
as genetics represent sensitive individual data, recall-by-genotype,
and other designs using genetic screening need careful study design,
high transparency, and good communication of the study aims,
the meaning of genetic risk, and consequences for the individuals
(Beskow et al., 2010; Corbin et al., 2018), especially when children
are involved.

Conclusion

The rich toolbox of causal inference methods for observational
studies can also be leveraged in intergenerational settings and so far,
has successfully contributed to distinctions between putative causal
risk factors and confounded associations. Researchers should con-
sider the numerous available designs and methods when conceiving
studies to investigate parental factors in observational research
and exploit methods from related fields beyond their current reper-
toire. Besides the broad range of existing methods, promising
new approaches to strengthen causal inference are to be expected.
Eventually, observational research on intergenerational effects may
inform the design of appropriate preventive interventions. Converg-
ing evidence suggesting that observed effects of putative parental
risk factors are explained by confounding will have practical im-
plications, for example, redesigning interventions to target factors
other than those previously considered.
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