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ABSTRACT 
The increasing adoption of Digital Assets (DAs), such as Bitcoin 
(BTC), raises the need for accurate option pricing models. Yet, ex-
isting methodologies fail to cope with the volatile nature of the 
emerging DAs. Many models have been proposed to address the 
unorthodox market dynamics and frequent disruptions in the mi-
crostructure caused by the non-stationarity, and peculiar statistics, 
in DA markets. However, they are either prone to the curse of 
dimensionality, as additional complexity is required to employ tra-
ditional theories, or they overft historical patterns that may never 
repeat. Instead, we leverage recent advances in market regime (MR) 
clustering with the Implied Stochastic Volatility Model (ISVM) on 
a very recent dataset covering BTC options on the popular trad-
ing platform Deribit. Time-regime clustering is a temporal cluster-
ing method, that clusters the historic evolution of a market into 
diferent volatility periods accounting for non-stationarity. ISVM 
can incorporate investor expectations in each of the sentiment-
driven periods by using implied volatility (IV) data. In this paper, 
we apply this integrated time-regime clustering and ISVM method 
(termed MR-ISVM) to high-frequency data on BTC options. We 
demonstrate that MR-ISVM contributes to overcome the burden 
of complex adaption to jumps in higher order characteristics of 
option pricing models. This allows us to price the market based 
on the expectations of its participants in an adaptive fashion and 
put the procedure to action on a new dataset covering previously 
unexplored DA dynamics. 

CCS CONCEPTS 
• Computing methodologies → Machine learning; • Mathe-
matics of computing → Nonparametric statistics. 
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1 INTRODUCTION 
Digital Assets have gained massive attention, but research on op-
tion pricing in the feld is only slowly gaining traction. Their highly 
volatile nature raises the need for a better understanding of their 
statistical properties. This is necessary for ftting meaningful mod-
els e.g. for option pricing. Most commonly, such models are ftted 
based on historic return data. However, this approach requires that 
future movements can be explained at least partially by past pat-
terns, which is questionable for the new, highly speculative class of 
DAs. Moving away from the reliance on historic patterns, [5] show 
how the implied volatility (IV) surface can be used to ft Implied 
Stochastic Volatility (ISV) Models. Using IV allows us to ft option 
pricing models based on market expectations, which gives us the 
unique opportunity to incorporate the aggregated knowledge of 
informed traders. [2] fnd that buying pressure in DA option mar-
kets is largely driven by informed traders. Their buying pressure, 
along with speculation and sentiment causes frequent jumps as 
pointed out by [33]. While including jumps in ISV models is possi-
ble, such jumps are limited to the return dynamics, and accounting 
for other factors would require substantially altering the procedure 
and extending the theory behind them. The current procedure re-
quires extremely high frequency data that is impossible to obtain 
due to liquidity constraints in DA option markets. Additionally, 
jumps in DA are still not well defned due to the unique market 
microstructure of DA markets. Since jumps change the properties 
of the observed time series it is crucial to account for them. To 
overcome these empirical and theoretical challenges, we instead 
propose ftting multiple models under various volatility regimes 
where the subset of time-series has a stable characteristic. The im-
plied volatility regimes are characterised in a multivariate setup of 
options with diferent strike prices and maturities. Our approach 
extends previous approaches such as [21] who have clustered difer-
ent regimes for Stochastic Volatility (SV) models but in a univariate 
setup using k-means clustering. 

Moreover, jumps, no matter if in volatility or price, require mod-
eling their appearance and frequency. While there are models for 
jumps in traditional assets, these models are difcult to adapt to 
DAs, because of the diferent market microstructure. Figure 1 shows 
the dynamics of Bitcoin prices, trading volume, and realized volatil-
ity from 2011-2022. Price and volume have risen exponentially and 
are subject to extreme fuctuations as of May 2022, while realized 
volatility has risen and decreased heavily since 2012. It is more-
over remarkable that trading volume has been historically high 
during the crypto bubble in 2018, that in retrospective looks like 
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only a precursor to the most recent all-time-highs that Bitcoin 
prices have reached. This very unusual behavior raises two major 
concerns. First, the post-hoc analytical nature of many fnancial 
theories is prone to retardation, especially in the fast-changing 
DA markets. Undergoing research might still fail to address future 
market developments, as they might have already changed. Second, 
it is questionable how much explanatory power historical prices 
have. Regimes seem to change constantly, and it is in May 2022 
impossible to predict where prices are headed. Models like Stochas-
tic Volatility with Correlated Jumps (SVCJ) as introduced by [13] 
generally work well using e.g. historical return data. However in 
light of the behavior of BTC the question arises whether historical 
data is still efective to build data-driven models. 

Figure 1: Bitcoin price, volume and realized volatility from 
2011 to 2022. (Source: Quandl). icc.isvm 

We use Bitcoin option data from Deribit, which is the most 
popular platform for derivative trading and particularly popular 
with market makers. We obtain the data from the Blockchain 
Research Center (BRC). We evaluate data from April 13, 2021 -
March 7, 2022 and take a rolling window of 5 days. At a frequency 
of 20 minutes this maintains a balance between having enough 
data while keeping it recent enough to be meaningful in a high 
frequency setup. 

The main results are that by accounting for the sentiment-driven 
nature of DAs, we introduce a market regimes-based Implied Sto-
chastic Volatility model, termed MR-ISVM to Bitcoin options in an 
efort to increase the accuracy of existing option pricing models. 
This is achieved by using common shape characteristics of the IV 
surface, more specifcally moments of the moneyness and time-
to-maturity dimension. By additionally using clustering, we avoid 
the need for incorporating the unique market microstructure of 
cryptocurrencies, where jumps in prices or volatility are a common 
feature. We also avoid making complex model extensions to the 
overall well working ISVM framework. To the best of our knowl-
edge, this is the frst approach of adapting such a model to the digital 
asset space. The choice of number of clusters and the stability of 
this selection is well refected by the ftting of the resulting model. 
The distribution of the Root Mean Squared Error (RMSE) over all 
datasets is signifcantly narrower and lower in mean when using 
clustering. Finally, the interpretation of clusters is achieved by the 
comparison of no-clustered, 2-clustered and 3-clustered models 
with ICC by [31]. The interpretation of the cluster outcomes has 
proven to be difcult when the data is complex or the number of 
clusters is high. Investigating how an unclustered model behaves 
against models with multiple clusters thus sheds some light on 
what these clusters really mean in the context of implied volatility. 

2 RELATED WORK 
This work relates closely to previous research on DAs, picks up on 
research areas outlined by [20], and extends the growing research 
body on pricing cryptocurrency options. There exists a large branch 
of literature on option pricing models, [19] have laid a foundation 
for pricing cryptocurrency options. [30] studied volatility and trade 
volume patterns in cryptocurrencies. [34] fnd that Bitcoin is jump-
ing signifcantly more than traditional assets. [33] show that jumps 
are a feature of all large cryptos and that option pricing models 
need to account for them. [21] conclude that crypto option prices 
are largely driven by jumps in returns and volatility. However, 
incorporating jumps into any volatility model is non-trivial and 
convoluted. 

2.1 Volatility Modeling 
Researchers have shown that DA prices are largely infuenced by 
intra-day jumps caused by news and sentiment instead of histor-
ical returns or standard risk factors [25]. In addition, approaches 
employing the SVCJ usually focus on daily data [19], such that the 
behavior of the model in a high frequency (HF) setup is yet to be ex-
plored, whereas we argue that the HF setup is especially interesting 
as DA markets seem to move exponentially faster than traditional 
markets. Additionally, ftting such models over long time horizons 
with non-stationarity is prone to modeling present dynamics based 
on outdated information. The valuation of cryptocurrencies also 
remains an open question [10], as those assets are driven by senti-
ment that is difcult to valuate. While there is no unique defnition 
of what comprises sentiment, [6] defne it as beliefs about future 
cash fows and investment risks that are not backed by facts. In the 
DA world it is usually represented by observing whether people in 
online communities such as Twitter or Reddit are majorly bullish 
or bearish based on specifc vocabulary used, see e.g. [29]. 
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[4] have shown that ISV models can theoretically recover the 
parameters of models such as SVCJ. However, due to empirical chal-
lenges it is currently impossible to incorporate a jump component. 
This reduces researchers to replicating SV type models when using 
IV data. To overcome this limitation, we propose using a clustering 
approach to identify diferent regimes in the data and use it as a 
pre-flter to ft several models that produce more accurate results 
than an unfltered model. The proposed approach works for any 
number of clusters and without strong assumptions on the number 
and nature of clusters. The clustering approach follows [31] and 
[37] closely. This is a time series clustering algorithm based on 
IV, but with specifc modifcation to serve this project. Diferent 
volatility states exist, and they can be inferred by the associated 
sparse inverse covariance matrix at each point in time as in [7]. 

[24] shows that forward-looking information extracted from 
option-implied equity risk premia can improve regime detection 
compared to models based on historical return data. Using the IV 
surface to obtain a model instead thus allows us to incorporate 
investor expectation as a proxy for the current sentiment. We use 
close to maturity (one week or less) options to cluster the market 
in an attempt to capture investor expectation. Previous literature 
suggests that close to maturity options refect current beliefs about 
the market most accurately [15]. Especially long maturity option 
prices are unjustifably variable as investors seem to have a ten-
dency to overemphasize the value of recent data while ignoring 
other possibly relevant information when establishing their beliefs 
about the future [35]. 

2.2 Market Regime Clustering 
Over the past decade, stochastic regime switching models like [18] 
have proven to be an efective approach for volatility forecasting 
with regime awareness based on low-frequency fnancial and eco-
nomical data. Later, the generalized autoregressive conditionally 
heteroscedastic (GARCH) [9] was introduced for efcient and accu-
rate volatility prediction, researcher have also attempted to combine 
it with regime switching models in order to address structured mar-
ket movements [11]. Previous literature has extensively studied 
market regimes, and proposed methods for modelling and fore-
casting. Markov decision processes have been proposed to model 
the transition probability between diferent market regimes, e.g. 
with the Hidden Markov Model (HMM) [17]. Therefore, the Markov 
Regime-switching GARCH (MR-GARCH) has been extensively ex-
plored [26]. MR-GARCH leverages HMM to estimate two regimes 
with diferent levels of volatility, and makes forecasting individu-
ally on each regime. This convenient multi-period-ahead volatility 
recursive procedure forecasting has been proven to be signifcantly 
efective in out-of-sample prediction compared to single-regime 
GARCH, which is usually overly smooth and high in volatility 
forecasting. 

However, this approach is limited by the curse of dimensionality, 
as the dimensionality of the hidden states is linear to the number of 
assets considered [8]. On the other hand, some researchers believe 
that the market can be expressed as mixed multivariate distribu-
tions, and each state efectively corresponds to a distribution. Hence, 
temporal clustering methods such as Gaussian Mixture [32], and 
K-Nearest Neighbors (KNN) [23] have been applied for this purpose. 

Yet, these methods are often based on strong assumptions and they 
are not originally designed for time-series problems, which results 
in both theoretical and practical issues. E.g., Gaussian Mixture as-
sumes Gaussian nature in all base distributions, and KNN overlooks 
temporal consistency between single data points. An alternative 
are nonparametric kernel regression approaches as in e.g. [14]. For 
estimating the IV surface, we will later rely on these techniques. 

In addition, previous literature has started to look for alternative 
methods to cluster similar temporal data points into the same group 
based on certain comparison criteria. Subsequent clustering uses 
a sliding window to capture a period of data points and analyze it 
for recurrent patterns [1]. Alternatively, point clustering, instead 
of measuring spatial similarity between two slices of time-series, 
looks at each temporal point individually, and assigns this multi-
variate observation to an appropriate cluster based on a distance 
metrics [22]. [16] proposed the Toeplitz Inverse Covariance Clus-
tering (TICC) algorithm, originally devised for electric vehicles 
action sensor. It classifes states based on the likelihood measures 
of short subsequences of observations and a corresponding sparse 
precision matrix under a Toeplitz constraint. Inspired by TICC, [31] 
proposed a closely related methodology named Inverse Covariance 
Clustering (ICC), which is used as a main clustering methodology 
in this paper. This approach provides a point clustering of observa-
tions while enforcing temporal consistency by penalizing switching 
between states. The main advantages of ICC compared to TICC 
are its fexibility in the selection of similarity measures, and the 
use of sparse precision matrices via information fltering networks 
[3, 27, 28, 36] to reduce noise in fnancial time-series data. Hence, 
in this paper, we replace HNN with ICC as the main methodology 
for market regime clustering. 

3 METHODOLOGY 
The goal of this section is to describe how we use ICC to ft ISV 
models. The main diference between ISV and classical SV models 
is that we use some shape characteristics (moneyness and time-
to-maturity) of the IV surface instead of historical return data. 
Nevertheless, there are jumps in returns and volatility that need 
to be accounted for. We will therefore use the clusters obtained by 
ICC and ft an ISVM for each cluster individually. 

3.1 Implied Stochastic Volatility Modeling 
The setup of the ISVM as introduced by Ait-Sahalia, Li, and Li in 
[5] is a generic continuous bi-variate SV model with jumps. Under 
an assumed risk-neutral measure, we have �� the asset price and �� 
the corresponding volatility. They jointly follow a difusion process 

��� 
= (� − � − � (�� )�̄) �� + �� ��1� + (exp (�� ) − 1)��� , (1a)

�� − 
��� = � (�� )�� + � (�� )��1� + � (�� )�2� . (1b) 

The variables � and � denote the risk-free rate and the dividend yield 
of the underlying. They are assumed to be constant and observable. 
�1� and �2� are standard Brownian motions and independent of 
each other. �� is a doubly stochastic Poisson or Cox process with 
stochastic intensity � (�� ). Denote �� as the size of the log-price 
jump. It is assumed to be independent of the asset price �� . Once 
a jump occurs, �� changes according to log �� − log �� − = �� , or 
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�� − �� − = (exp (�� ) − 1)�� − . �� − represents the asset price before 
a jump. 

In every step in time � we observe �� implied volatilities Σ���� 

(�) (�)as well as time-to-maturity � and log-moneyness � for � = 
� � 

1, 2, . . . , �� . Absent of jumps, the scalar functions �, � , and � can 
be ftted from the implied volatility surface through the bivariate 
regression: 

Σ���� (� (�) 
, � (�) ) = � (0,0) + � (1,0)� (�) + � (2,0) (� (�) )2 + � (0,1)� (�)

� � � � � � � � � 
(1,1) (�) (�) (2,1) (�) (�)+ � � � + � (� )2� 
� � � � � � 
(0,2) (�) (�)+ � (� )2 + � .
� � � 

(2) 

However, if we want to additionally ft the jump terms there are 
some empirical challenges. It is practically impossible to observe 
third order characteristics of the IV surface, which are necessary for 
estimating the ISVM with jumps. We would require extremely high 
frequency data that is with the current liquidity of BTC options 
not available. Additionally, very short maturity options would have 
to be accurately observed. This is difcult due to the presence of 
negative powers that let the out-of-money IV possibly go to infnity 
as time-to-maturity shrinks to zero [12]. 

Since jumps efectively represent a regime change in the charac-
teristics of the data that we seek to estimate, we propose a clustering 
algorithm as a pre-fltering mechanism to circumvent the empirical 
challenges that come with trying to estimate an SV model in the 
presence of jumps. 

3.2 Inverse Covariance Clustering 
ICC is a penalized temporal clustering method, originated from 
the TICC algorithm proposed by [16]. This multivariate clustering 
method depends on the choice of a gain function, which incorpo-
rates the mean value of variables as well as the covariance matrix 
addressing the interdependent temporal co-variation. For a multi-
variate time-series of � assets with r� ∈ R1×� the vector of returns 
at time � . The corresponding vector of their expected values can be 
expressed as � = E[r� ] ∈ R1×� and accordingly, their covariance � � 

∈ R�×� matrix is expressed � = E (r� − �)⊤(r� − �) . 
The gain function of the ICC is a measure that qualifes the 

gain when the time � returns, r� , are associated with cluster � . ICC 
gathers in cluster � observations that have the largest gain in such 
a cluster with respect to any other cluster: ��,� > ��,ℎ for all ℎ ≠ � . 
Two distance associated gain functions have been proposed in [31]. 
��� is minus the square of the euclidean distance between the
�,�

observation and the centroid of cluster � , which is expressed as: 

��� = −(r� − b�� ) (r� − b�� )⊤ (3)
�,� 

where b�� is the sample mean return computed from the observa-
tions in cluster � . In this paper, we use a distance associated with the 
likelihood for multivariate normal distributions, which is instead 

�2 

��� = 
1 log |b� 

−1 | − � 
�,� 
, (4)

�,� � 2 2 

with 
−1 

�2 = (r� − b�� )⊤b
�� (r� − b�� ) (5)

�,� 

the Mahalanobis distance where b�� is the sample covariance com-
puted form the observations in cluster � . 

The ICC approach uses the sparse inverse covariance that was 
shown to improve results considerably over the full covariance, as 
it is less sensitive to noise especially in fnancial time-series data. 
We use a TMFG information fltering graph proposed by [28] for 
sparsifcation, where the local-global (LoGo) inversion procedure 
is described in [7]. 

A fnal key element of the ICC methodology is the temporal 
consistency penalization of the cluster that is imposed by penalizing 
frequent switches between clusters. The assignment of the temporal 
instance � to a cluster number, �� , is performed iteratively starting 
from an initial random cluster assignment. Specifcally we evaluate 
the penalized gain 

�̃�,�� = ��,�� − ���� −1,�� , (6) 

and assign observation � to the cluster with largest penalized gain. 
The scalar � ∈ R represents a penalty for switching between clus-
ters. In the previous expression, ��� −1,�� is the Kronecker delta 
returning one if �� −1 = �� and zero otherwise. After the assign-
ment of the time-� observation to a given cluster �� , all cluster 
parameters (means and covariances) are recomputed with the new 
cluster assignments. 

3.3 The MR-ISVM approach 
Recall that we would like to estimate the jump components in (1a), 
which is infeasible empirically. It is thus natural to try to estimate 
the parameters from a statistical approximation of the surface. Un-
fortunately, applying any regression to the full dataset does not 
result in realistic or accurate predictions due to the efect of jumps 
and nonstationarity. Jumps constitute temporary regime changes, 
which signifcantly alter the parameters we aim to estimate. We 
seek to overcome this problem by using the sketched clustering 
algorithm. 

The methodology hinges on the assumption that there is a fnite 
number of regimes �1, . . . , �� with correspondingly diferent re-
gression parameters (� (�,� )�, 1, . . . , � (�,� )�,�)1≤� ≤� . Here, � (�,� ) is 
the estimate of coefcient � (�,� ) with (�, �) a nonnegative integer 
pair for the order of the respective coefcient. Further, we assume 
that our observation period can be subdivided into fnite intervals 
in which the observed process stays in one regime. Phrased dif-
ferently, there are time points 0 = �0 < �1 < · · · < �� = � such 
that �� is in some fxed regime � for all � ∈ [�� , ��+1]. Now, given a 
temporally ordered data set � , we attempt to partitionÄ 

� = �� , 

into a disjoint union of clusters �� = {� (� � ) ∈ � : � (� � ) ∈ �� }. 
Given an accurate such clustering, we can use the data points 

in each cluster �� to obtain a faithful estimate of the bivariate re-
gression 2. The ftted surfaces are then used to nonparametrically 
estimate the functions � (�� ), � (�� ), and � (�� ). The chosen cluster-
ing method is particularly well-suited to the outlined task by both 
penalizing spatial and temporal distance. Ideally, for data of suc-
cessively higher frequencies in the same time period, the number 
of clusters should stabilize. Frequent switches between clusters 
indicate either a highly volatile process, an unsuitable clustering 
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method or that our assumptions regarding the observability of 
diferent regimes are erroneous. 

4 DATA 
We extract the most recent Deribit order book data from the BRC at 
the highest frequency of 20 minutes. The data ranges from April 13, 
2021 to March 7, 2022 and consists of 9,116,870 observations from a 
total of 12,274 observed BTC options with diferent maturities and 
strike prices over the whole observation period. We conduct the 
experiment in two steps. First, we use ICC for obtaining clusters 
based on close to maturity options with a maturity of one week or 
less. Then, we ft an ISV model for each cluster separately on options 
with a maturity of 5 to 60 days. As outlined in the previous chapters, 
this approach resembles a SV model, however based on IV data, 
and with accounting for diferent IV regimes through employing 
ICC beforehand. An alternative approach would be using models 
that include jumps such as the SVCJ. A comparison between the 
two approaches at hand would be interesting. We leave this open 
for future research as it exceeds the scope of this publication. 

Unlike previous approaches, we extend the lower maturity thresh-
old from 15 to 5 days to account for the 24/7 trading of Bitcoin and 
adapt to our high frequency data set. The intuition behind choosing 
close to maturity for clustering the market is that these options 
refect current beliefs about the market most accurately. Any op-
tions that are further from the money are only likely to be traded if 
market participants in the short term believe that Bitcoin is volatile 
enough for reaching distant price levels. In other words, we seek to 
take advantage of the fact that the knowledge of informed traders is 
priced into Deribit options, and that IV movements are an indicator 
of short-term movements in the market. 

During clustering, we consider only those options that have a 
moneyness between 0.8 and 1.2 to exclude highly illiquid options, 
and flter out any options that have less than 66% of data points, as 
we impute missing data points in the frst step. The threshold can be 
altered if needed, however due to clustering based on the sparsifed 
covariance matrix of implied volatilities, the imputation has little 
efect on the fnal result. By setting a threshold we therefore merely 
ensure that only liquid options are included in our dataset. � and � 
strongly infuence the ftted ISV models, as the number of clusters, 
and how stable we seek to keep them has a direct infuence on 
each model’s input data. In general, � should be kept small for 
the sake of simplicity, but especially longer time series require a 
higher number of clusters. Assuming that diferent regimes exist, 
the choice is mostly between 2 and 3 empirically. � can be treated 
as a typical tuning parameter such that it’s size depends on the 
data and controls for the balance between stability and number 
of observations per cluster. To make sure that clustering can be 
achieved, we tested diferent values of � ranging from −5 to 5 
and ended up at value of � = 0.5. We initiate the procedure by 
verifying that at least one iteration � can be performed with � = 0. 
This makes sure that the dataset actually has diferent clusters. In 
general, � should be kept as closely as possible to 0 if the data 
allows for it. When choosing large positive values of �, the data 
seems to become more homogeneous in terms of cluster association, 
s.t. at some threshold value all data points will belong to a single 
cluster. When choosing very large negative values, the assignment 

to the diferent clusters seems indistinguishable from randomly 
assigning the points to the clusters. For each value of � ≠ 0 in case 
no iteration was successful, we scale the threshold down to 75% of 
its previous value until the data can be clustered. Thanks to this 
iterative procedure, we can start at a relatively large threshold and 
stop once convergence is achieved. This both saves computation 
time and prevents biased results. 

We consider only options with a maturity between 5 and 60 days 
for the ISV model. As in [5] we apply preprocessing to our data, such 
that we additionally restrict log-moneyness to be within ±�� 

√ 
� , 

where, � is the annualized time-to-maturity and �� is the instanta-
neous volatility. The instantaneous volatility is estimated by that 
observed IV where both time-to-maturity � and log-moneyness 
� are the closest to 0 at each observation. Additionally, to guar-
antee stability in the nonparametric regression, we only evaluate 
those time periods where each cluster has at least 25 observations. 
Eventually, we ft a total of 21,277 IV surfaces at a frequency of 
20 minutes on 83 rolling window data sets in the observed time 
period. We replicate the bootstrap estimator for the standard errors 
as in the original paper and generate 500 bootstrap samples, where 
we sample an IV surface for each day with the same number of IV 
observations as in the original data. 

5 RESULTS 

Figure 2: Bitcoin price and implied volatility with detected 
clusters. icc.isvm 

Remember that our goal is to ft an ISV model that helps us 
incorporate investor expectation through using IV data in the model. 
As an illustrative example, we randomly select the period of January 
23 - 28, 2022 throughout this chapter. Figure 2 shows the identifed 
clusters in the data. The upper plot shows the price evolution of 
the BTC/USD exchange rate during the observed time frame, and 
the lower plot shows the observed IV of all options considered for 
clustering. In the plot with � = 2, the majority of observations 
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belong to the frst cluster (red) during a period of larger volatility 
and price movements, whereas the second cluster (green) contains 
those observations where the price and IV remain relatively stable. 
Next, we will investigate the efects of clustering on the ISVM ft. 

(a) � (�) 

(b) � (�)2 

(c) � (�) 

Figure 3: ISVM on data ftted on the whole dataset (frst col-
umn) and on each cluster individually. icc.isvm 

Figure 3 shows a comparison of the nonparametric estimation of 
the functions �, � , and �2 from the data, based on the whole dataset 
against a ft with � = 2. Every panel represents the ft of one of the 
functions. In each panel, the plot on the very left shows the ft on 
the whole data as a comparison, and the remaining plots show the 
fts for each cluster individually. The dots in each plot represent 
the data of the underlying function. The solid red lines are the 
mean estimates based on local regression and the dashed lines are 
the two standard deviation confdence intervals obtained from the 
Bootstrap. The model ft with clustering matches the data more 
closely due to less biased estimates and lower variance. Moreover, 
the model fts for �1 and �2 are distinct enough to conclude that 
at least some of the patterns within the data have been captured. 
Consider b� (.), which for whole dataset is negative. When � = 2, in 
�1, as long as the input argument is small the values remain positive. 
However, as the input argument grows larger the values become 
negative. In �2, the direction is similar, but all values are negative. 
This indicates a diferent regime within the data that is consistent 
with the visual exploration of the clusters w.r.t. the data. �b(.) is 
approximately linear, and the slope of the estimate difers between 

clusters. �b2 (.) is always positive and also approximately linear, 
however with very diferent levels across clusters. We conducted 
the same experiment with � = 3. Since the conclusions are largely 
similar, we refrain from discussing that case further. 

The efects we observe are largely similar to those in the original 
ISVM paper, especially when we introduce clustering, which indi-
cates an overall well ftted model. MR-ISVM has allowed us to ft 
the IV surface of Bitcoin options during diferent volatility regimes. 

Consequently, we can use the stochastic volatility for pricing op-
tions based on the valuable information of informed traders that 
the implied volatility surface on Deribit contains. 

Table 1 shows the root mean squared error (RMSE) of the non-
parametric regression estimates of �2, � , and � when � = 1, and 
�1
2 is the function estimated in cluster 1 when � = 2, �2

2 the func-
tion in cluster 2, etc. Note that while the table says � = 1, this 
merely refers to the case where no clustering is performed and 
we will denote � = 1 as the unclustered case from here on. The 
frst column shows the function, the second to fourth columns the 
mean, 5th, and the 95th percentile values. The fnal column shows 
the diference between the 95th and 5th percentile values as an 
indicator of how spread out the distribution of RMSE values is. For 
the unclustered case, we see that �2 has the highest spread, and � 
the lowest. 

The table shows that the clustering approach is efective in cap-
turing diferent patterns in the data that are a result of nonstation-
arity, which is refected by the heterogeneity of RMSE values across 
functions and between clusters. Even though in mean, all RMSE are 
lower than the benchmark values, there seems to be a diference in 
stability of RMSE between clusters. Consider �2

2, the spread between 
percentiles is signifcantly lower than in �1

2, and when � = 1, while 
the spread for �1

2 is approximately similar to the spread when � = 1. 
The results for � show a similar pattern when comparing �1 (lower 
mean, lower spread) and �2 (higher mean, higher spread). �����1 
and �����2 seem to slightly deviate from this pattern. While the 
spread for �����1 is lower than the benchmark, the spread for 
�����2 is signifcantly higher. These results are not surprising as 
the basic idea of the MR-ISVM is to capture periods with diferent 
volatility regimes. In the case of � = 2, it is apparent that there is 
always one regime with lower (higher) variation. Accordingly, the 
variation of RMSE values is also lower (higher). 

We also computed the mean absolute error (MAE) as an alterna-
tive metric, as well as the both error measures for � = 3. For the 
sake of conciseness we do not discuss these results as the outcome 
was largely similar to the RMSE results with � = 2. The results 
show that using clustering signifcantly reduces the estimation 
error. For one of the clusters the MR based method additionally 
reduces the variation of RMSE values. This demonstrates that the 
MR-ISVM approach is well suited for handling the nonstationarity 
that is prevalent in BTC option data. That is, without having to 
explicitly ft a jump component which is theoretically possible, but 
infeasible empirically, we can nevertheless ft models that account 
for nonstationarity and jumps in the data in an efcient way. 
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Table 1: Comparison of RMSE statistics with � = 1 and � = 2. 

func Mean Pctile[5] Pctile[95] Dif Pctile[95]-[5] 
�2 0.49 0.18 1.23 1.05 
�1
2 0.42 0.16 1.14 0.98 
�2
2 0.37 0.13 0.93 0.80 

� 
�1 
�2 

0.19 
0.16 
0.17 

0.10 
0.09 
0.06 

0.33 
0.29 
0.39 

0.23 
0.20 
0.33 

� 0.66 0.30 1.22 0.92 
�1 
�2 

0.57 
0.58 

0.28 
0.18 

1.02 
1.13 

0.74 
0.95 

6 CONCLUSION 
We proposed the MR-ISVM approach and discussed in details an ex-
ample of Bitcoin options with diferent volatility regimes. Through 
replicating and extending the ISVM approach with a market regime 
component on a new dataset, this work addressed three major gaps 
in the literature. First, cryptocurrencies are highly sentiment-driven 
which makes the usage of historical data for option pricing mod-
els inaccurate. We circumvented this by using implied volatility 
instead to include investor expectations and accounting for the buy-
ing pressure caused by informed traders. Second, the underlying 
data is nonstationary and subject to frequent jumps, which makes 
any model without jumps inaccurate. The identifcation of difer-
ent regimes through clustering has the advantage that we do not 
need to explicitly account for the unique market microstructure of 
cryptocurrencies when accounting for jumps in prices or volatility, 
or make complex model extensions to overcome the empirical and 
theoretical challenges in including a jump component. Third, we 
add more interpretability to the ICC approach by exploring the 
efect on a series of nonparametrically estimated functions. The in-
terpretation of the cluster outcomes has proven to be difcult when 
the data is complex or the number of clusters is high. The cluster 
outcomes shed additional light on the fact that the IV surface is 
non-stationary even in high frequency. 

Overall, we have demonstrated that by using temporal clus-
tering can successfully separate the data into diferent volatility 
regimes, where the ftting of pricing model has signifcant lower 
estimation errors than ftting with the entire period. This efect is 
illustrated by the consistently reduced mean estimation errors in 
the clusters. Moreover, the signifcantly reduced variation in the 
estimation errors suggests that clustering also helps to stabilize the 
previously inaccurate regression estimates that could not capture 
jumps. Therefore, the proposed MR-ISVM approach allows us to ft 
option pricing models based on the ISVM when the data contains 
jumps, even when jumps can not be explicitly addressed in the 
underlying model. This has been demonstrated on a new data set 
covering very recent BTC options on the popular trading platform 
Deribit. We argued that ftting any SV models based on a daily 
or lower frequency can cause the inclusion of outdated informa-
tion into a current model in the crypto world. This is owed to the 
rapidly changing dynamics and large volatility of DAs such as BTC 
as discussed in the introduction. In that sense, using the expecta-
tion of informed traders as a data source for option pricing models 
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and demonstrating the presence of clusters in high frequency IV 
dynamics aims at animating researchers to shift their attention to 
new, previously unexplored HF setups in the DA space. 

While we have shown an example of how these methods can 
be combined, future work could more systematically examine the 
efect of � , the number of cluster, and �, the temporal consistency 
penalty, for maximizing the model ft. Future work is also planned 
to benchmark other commonly used models in the literature and 
industry, e.g., SVCJ. Additionally, while we have shown the benefts 
of the MR-ISVM within the provided sample, future work will check 
if the MR-ISVM generalizes with other DAs and assess its out-of-
sample performance. 

ACKNOWLEDGMENTS 
We thank the two anonymous reviewers for their helpful comments 
that have signifcantly improved the quality of this work. Danial 
Saef acknowledges support from the German Research Founda-
tion [IRTG 1792]; the European Union’s Horizon 2020 “FIN-TECH” 
Project [825215, Topic ICT-35-2018, Type of actions: CSA]; the 
European Cooperation in Science & Technology COST Action 
[CA19130]; the Czech Science Foundation [19-28231X, CAS: XDA 
23020303]; and the Yushan Scholar Program of Taiwan. 

REFERENCES 
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-

series clustering – A decade review. Information Systems 53 (2015), 16–38. https: 
//doi.org/10.1016/j.is.2015.04.007 

[2] Carol Alexander, Jun Deng, Jianfen Feng, and Huning Wan. 2022. Net buying 
pressure and the information in bitcoin option trades. Journal of Financial Markets 
(July 2022), 100764. https://doi.org/10.1016/j.fnmar.2022.100764 

[3] Tomaso Aste and T. Di Matteo. 2017. Sparse Causality Network Retrieval from 
Short Time Series. Complexity 2017 (2017). https://doi.org/10.1155/2017/4518429 

[4] Yacine Aït-Sahalia, Chenxu Li, and Chen Xu Li. 2021. Closed-form implied volatil-
ity surfaces for stochastic volatility models with jumps. Journal of Econometrics 
222, 1, Part B (2021), 364–392. https://doi.org/10.1016/j.jeconom.2020.07.006 

[5] Yacine Aït-Sahalia, Chenxu Li, and Chen Xu Li. 2021. Implied Stochastic Volatility 
Models. The Review of Financial Studies 34, 1 (2021), 394–450. https://doi.org/10. 
1093/rfs/hhaa041 

[6] Malcolm Baker and Jefrey Wurgler. 2007. Investor Sentiment in the Stock Market. 
Journal of Economic Perspectives 21, 2 (2007), 129–152. https://doi.org/10.1257/ 
jep.21.2.129 

[7] Wolfram Barfuss, Guido Previde Massara, T. Di Matteo, and Tomaso Aste. 2016. 
Parsimonious modeling with information fltering networks. Physical Review E 
94, 6 (2016), 062306. https://doi.org/10.1103/PhysRevE.94.062306 

[8] Geert Bekaert and Andrew Ang. 2002. How Do Regimes Afect Asset Allocation? 
Financial Analysts Journal 60 (2002). https://papers.ssrn.com/abstract=310626 

[9] Tim Bollerslev. 1986. Generalized autoregressive conditional heteroskedasticity. 
Journal of Econometrics 31, 3 (1986), 307–327. https://doi.org/10.1016/0304-
4076(86)90063-1 

[10] Michael C. Burda. 2021. Valuing cryptocurrencies: Three easy pieces. IRTG 1792 
Discussion Papers (2021). https://ideas.repec.org/p/zbw/irtgdp/2021011.html 

[11] Jun Cai. 1994. A Markov Model of Switching-Regime ARCH. Journal of Business 
& Economic Statistics 12, 3 (1994), 309–316. https://doi.org/10.2307/1392087 

[12] Peter Carr and Liuren Wu. 2003. What Type of Process Underlies Options? A 
Simple Robust Test. Journal of Finance 58, 6 (2003), 2581–2610. https://econpapers. 
repec.org/article/blajfnan/v_3a58_3ay_3a2003_3ai_3a6_3ap_3a2581-2610.htm 

[13] Darrell Dufe, Jun Pan, and Kenneth Singleton. 2000. Transform Analysis and 
Asset Pricing for Afne Jump-difusions. Econometrica 68, 6 (2000), 1343–1376. 
https://doi.org/10.1111/1468-0262.00164 

[14] Jürgen Franke, Wolfgang Karl Härdle, and Christian Hafner. 2019. Statistics of 
fnancial markets. An introduction. (5 ed.). Springer Berlin, Heidelberg. 

[15] Stefano Giglio and Bryan Kelly. 2018. Excess Volatility: Beyond Discount Rates. 
The Quarterly Journal of Economics 133, 1 (2018), 71–127. https://doi.org/10.1093/ 
qje/qjx034 

[16] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. 2017. Toeplitz Inverse 
Covariance-Based Clustering of Multivariate Time Series Data. In Proceedings of 
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (KDD ’17). Association for Computing Machinery, New York, NY, USA, 

1109

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.finmar.2022.100764
https://doi.org/10.1155/2017/4518429
https://doi.org/10.1016/j.jeconom.2020.07.006
https://doi.org/10.1093/rfs/hhaa041
https://doi.org/10.1093/rfs/hhaa041
https://doi.org/10.1257/jep.21.2.129
https://doi.org/10.1257/jep.21.2.129
https://doi.org/10.1103/PhysRevE.94.062306
https://papers.ssrn.com/abstract=310626
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/0304-4076(86)90063-1
https://ideas.repec.org/p/zbw/irtgdp/2021011.html
https://doi.org/10.2307/1392087
https://econpapers.repec.org/article/blajfinan/v_3a58_3ay_3a2003_3ai_3a6_3ap_3a2581-2610.htm
https://econpapers.repec.org/article/blajfinan/v_3a58_3ay_3a2003_3ai_3a6_3ap_3a2581-2610.htm
https://doi.org/10.1111/1468-0262.00164
https://doi.org/10.1093/qje/qjx034
https://doi.org/10.1093/qje/qjx034


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

215–223. https://doi.org/10.1145/3097983.3098060 
[17] James D. Hamilton. 1989. A New Approach to the Economic Analysis of Nonsta-

tionary Time Series and the Business Cycle. Econometrica 57, 2 (1989), 357–384. 
https://doi.org/10.2307/1912559 

[18] James D. Hamilton. 1990. Analysis of time series subject to changes in regime. 
Journal of Econometrics 45, 1 (1990), 39–70. https://doi.org/10.1016/0304-4076(90) 
90093-9 

[19] Ai Jun Hou, Weining Wang, Cathy Y H Chen, and Wolfgang Karl Härdle. 2020. 
Pricing Cryptocurrency Options. Journal of Financial Econometrics 18, 2 (2020), 
250–279. https://doi.org/10.1093/jjfnec/nbaa006 

[20] Wolfgang Karl Härdle, Campbell R Harvey, and Raphael C G Reule. 2020. Un-
derstanding Cryptocurrencies. Journal of Financial Econometrics 18, 2 (2020), 
181–208. https://doi.org/10.1093/jjfnec/nbz033 

[21] Konstantin Häusler and Wolfgang K. Härdle. 2021. Cryptocurrency Dynamics: 
Rodeo or Ascot? arXiv preprint arXiv:2103.12461 (2021). https://papers.ssrn.com/ 
abstract=3817729 

[22] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. 
2002. An efcient k-means clustering algorithm: analysis and implementation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 7 (2002), 881– 
892. https://doi.org/10.1109/TPAMI.2002.1017616 

[23] Indu Kumar, Kiran Dogra, Chetna Utreja, and Premlata Yadav. 2018. A Compara-
tive Study of Supervised Machine Learning Algorithms for Stock Market Trend 
Prediction. In 2018 Second International Conference on Inventive Communication 
and Computational Technologies (ICICCT). 1003–1007. https://doi.org/10.1109/ 
ICICCT.2018.8473214 

[24] Wan Ni Lai. 2022. Detecting stock market regimes from option prices. Operations 
Research Letters 50, 3 (2022), 260–267. https://doi.org/10.1016/j.orl.2022.02.006 

[25] Yukun Liu and Aleh Tsyvinski. 2021. Risks and Returns of Cryptocurrency. The 
Review of Financial Studies 34, 6 (2021), 2689–2727. https://doi.org/10.1093/rfs/ 
hhaa113 

[26] Juri Marcucci. 2005. Forecasting Stock Market Volatility with Regime-Switching 
GARCH Models. Studies in Nonlinear Dynamics & Econometrics 9, 4 (2005). 
https://doi.org/10.2202/1558-3708.1145 

Saef et al. 

[27] Guido Previde Massara and Tomaso Aste. 2019. Learning Clique Forests. arXiv 
preprint arXiv:1905.02266 (2019). https://doi.org/10.48550/arXiv.1905.02266 

[28] Guido Previde Massara, T. Di Matteo, and Tomaso Aste. 2017. Network Filtering 
for Big Data: Triangulated Maximally Filtered Graph. Journal of Complex Networks 
5, 2 (2017), 161–178. https://doi.org/10.1093/comnet/cnw015 

[29] Sergey Nasekin and Cathy Yi-Hsuan Chen. 2020. Deep learning-based cryp-
tocurrency sentiment construction. Digital Finance 2, 1 (Sept. 2020), 39–67. 
https://doi.org/10.1007/s42521-020-00018-y 

[30] Alla A. Petukhina, Raphael C. G. Reule, and Wolfgang Karl Härdle. 2021. Rise 
of the machines? Intraday high-frequency trading patterns of cryptocurrencies. 
The European Journal of Finance 27, 1-2 (2021), 8–30. https://doi.org/10.1080/ 
1351847X.2020.1789684 

[31] Pier Francesco Procacci and Tomaso Aste. 2019. Forecasting market states. 
Quantitative Finance 19, 9 (2019), 1491–1498. https://doi.org/10.1080/14697688. 
2019.1622313 

[32] Douglas Reynolds. 2015. Gaussian Mixture Models. In Encyclopedia of Biometrics, 
Stan Z. Li and Anil K. Jain (Eds.). Springer US, Boston, MA, 827–832. https: 
//doi.org/10.1007/978-1-4899-7488-4_196 

[33] Danial Saef, Odett Nagy, Sergej Sizov, and Wolfgang K. Härdle. 2021. Un-
derstanding Jumps in High Frequency Digital Asset Markets. arXiv preprint 
arXiv:2110.09429 (2021). 10.2139/ssrn.3944865 

[34] Olivier Scaillet, Adrien Treccani, and Christopher Trevisan. 2020. High-Frequency 
Jump Analysis of the Bitcoin Market. Journal of Financial Econometrics 18, 2 
(2020), 209–232. https://doi.org/10.1093/jjfnec/nby013 

[35] Jeremy Stein. 1989. Overreactions in the Options Market. The Journal of Finance 
44, 4 (1989), 1011–1023. https://doi.org/10.1111/j.1540-6261.1989.tb02635.x 

[36] M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna. 2005. A tool for 
fltering information in complex systems. Proceedings of the National Academy of 
Sciences 102, 30 (2005), 10421–10426. https://doi.org/10.1073/pnas.0500298102 

[37] Yuanrong Wang and Tomaso Aste. 2022. Dynamic portfolio optimization with 
inverse covariance clustering. Expert Systems with Applications (Sept. 2022), 
118739. https://doi.org/10.1016/j.eswa.2022.118739 

1110

https://doi.org/10.1145/3097983.3098060
https://doi.org/10.2307/1912559
https://doi.org/10.1016/0304-4076(90)90093-9
https://doi.org/10.1016/0304-4076(90)90093-9
https://doi.org/10.1093/jjfinec/nbaa006
https://doi.org/10.1093/jjfinec/nbz033
https://papers.ssrn.com/abstract=3817729
https://papers.ssrn.com/abstract=3817729
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/ICICCT.2018.8473214
https://doi.org/10.1109/ICICCT.2018.8473214
https://doi.org/10.1016/j.orl.2022.02.006
https://doi.org/10.1093/rfs/hhaa113
https://doi.org/10.1093/rfs/hhaa113
https://doi.org/10.2202/1558-3708.1145
https://doi.org/10.48550/arXiv.1905.02266
https://doi.org/10.1093/comnet/cnw015
https://doi.org/10.1007/s42521-020-00018-y
https://doi.org/10.1080/1351847X.2020.1789684
https://doi.org/10.1080/1351847X.2020.1789684
https://doi.org/10.1080/14697688.2019.1622313
https://doi.org/10.1080/14697688.2019.1622313
https://doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1007/978-1-4899-7488-4_196
10.2139/ssrn.3944865
https://doi.org/10.1093/jjfinec/nby013
https://doi.org/10.1111/j.1540-6261.1989.tb02635.x
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1016/j.eswa.2022.118739

	Abstract
	1 Introduction
	2 Related work
	2.1 Volatility Modeling
	2.2 Market Regime Clustering

	3 Methodology
	3.1 Implied Stochastic Volatility Modeling
	3.2 Inverse Covariance Clustering
	3.3 The MR-ISVM approach

	4 Data
	5 Results
	6 Conclusion
	Acknowledgments
	References



