
Nature Human Behaviour

nature human behaviour

https://doi.org/10.1038/s41562-023-01579-9Article

Participation bias in the UK Biobank  
distorts genetic associations and 
downstream analyses

Tabea Schoeler    1,2  , Doug Speed    3, Eleonora Porcu4, Nicola Pirastu5, 
Jean-Baptiste Pingault2,6 & Zoltán Kutalik    1,7,8 

While volunteer-based studies such as the UK Biobank have become the 
cornerstone of genetic epidemiology, the participating individuals are 
rarely representative of their target population. To evaluate the impact 
of selective participation, here we derived UK Biobank participation 
probabilities on the basis of 14 variables harmonized across the UK Biobank 
and a representative sample. We then conducted weighted genome-wide 
association analyses on 19 traits. Comparing the output from weighted 
genome-wide association analyses (neffective = 94,643 to 102,215) with that 
from standard genome-wide association analyses (n = 263,464 to 283,749), 
we found that increasing representativeness led to changes in SNP effect 
sizes and identified novel SNP associations for 12 traits. While heritability 
estimates were less impacted by weighting (maximum change in h2, 5%), 
we found substantial discrepancies for genetic correlations (maximum 
change in rg, 0.31) and Mendelian randomization estimates (maximum 
change in βSTD, 0.15) for socio-behavioural traits. We urge the field to increase 
representativeness in biobank samples, especially when studying genetic 
correlates of behaviour, lifestyles and social outcomes.

The overarching aim of genetic epidemiology is to elucidate the 
genetic underpinning of health and disease. To maximize power for 
genome-wide discovery, researchers curate large biobanks with rich 
genetic and phenotypic data. To ensure the validity of findings in 
genome-wide association (GWA) studies, researchers aim to eliminate 
potential sources of bias, such as population stratification, assortative 
mating, measurement error and indirect genetic effects1–4.

A particularly challenging bias that is typically not considered in 
genetic studies can occur when biobanks collect data from individuals 
that are not representative of their target population5–7. Under certain 
conditions, research on non-representative samples can lead to valid 

conclusions—for example, when study participation is unrelated to both 
the independent and dependent variables. However, many commonly 
studied factors influence study participation. These may include mental 
and physical health, substance use (such as cigarettes and alcohol), 
income, and educational attainment8–12, where study participants are 
typically healthier than the target population. Such ‘healthy-volunteer 
bias’ is well documented in the UK Biobank (UKBB), one of the most 
widely used resources for biomedical research. Of the nine million peo-
ple invited to take part in the UKBB, only 5.5% (~500,000) participated 
in the study—a sample of volunteers with healthier lifestyles, higher 
levels of education and better health than the general UK population13,14.
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available in the UK Census Microdata (n = 895,649) shows that the 
profile of the HSE sample closely matches that of the Census sample 
(Supplementary Table 1). More specifically, proportions were com-
parable between the HSE and Census but deviated in the UKBB for 
most of the selected variables, such as proportion (P) of female gender  
(PCENSUS = 51%, PHSE = 51%, PUKBB = 54%), proportion of individuals of age 
≥65 (PCENSUS = 13%, PHSE = 13%, PUKBB = 19%), mean (M) age when indi-
viduals completed full-time education (MCENSUS = 16.6, MHSE = 16.4, 
MUKBB = 17.2) and proportion of retired individuals (PCENSUS = 19%, 
PHSE = 19%, PUKBB = 34%). Further inspection of the associations between 
variables available in the HSE and UK Census (Supplementary Fig. 1) 
highlights that the HSE captures the characteristics of the population 
residing in England well.

Of the initial UKBB sample (502,645 participants), we excluded 
individuals of age >69 and <40 (n = 2463), individuals from Scotland 
or Wales (n = 56,483), individuals who self-identify as non-white 
(n = 28,371) and individuals withdrawing consent (n = 161). We further 
removed 21,868 (5.27%) individuals with missing data for any of the 
auxiliary variables. Since these individuals can be considered a special 
case of missingness due to non-participation, which the probability 
weights were designed to compensate for, we did not impute missing 
data for the auxiliary variables. The sampling weights were generated 
for n = 393,299 UKBB individuals, of which 109,550 were removed after 
we applied quality control steps for genome-wide analyses (Methods).

Performance of the UKBB probability weights
We derived a model for participation probability by comparing 14 
harmonized characteristics of UKBB participants with those of a rep-
resentative sample (HSE). The application of the resulting probability 
weights then facilitates the creation of a (weighted) pseudo-sample 
of the UKBB that is more representative of its (representative) target 
population (HSE). Figure 2a shows the distribution of the normalized 
probability weights (win) for UKBB individuals. We obtained the prob-
abilities used to construct the weights from a LASSO regression model 
retaining 454 of the 903 initially included predictors. Figure 2b illus-
trates which auxiliary variables were the most strongly linked to UKBB 
participation (UKBB = 1; HSE = 0), highlighting that older (retired), 
more educated and non-smoking people were particularly likely  
to participate.

To evaluate the performance of the weights, we first assessed 
whether probability weighting recovered the reference (HSE) popu-
lation distributions. We included the generated weights in a univari-
ate logistic regression model predicting UKBB participation, where 
UKBB individuals were given their normalized weight (win) and HSE 

Given the growing reliance on non-representative biobanks, it is 
paramount to assess the extent to which study participation induces bias 
in genome-wide studies and downstream analyses. In observational stud-
ies using UKBB data, participation bias has already been shown to distort 
phenotypic exposure–outcome associations12,13,15. If study participation 
includes a genetic component, biased estimates are also expected in 
genetic studies16. In gene-discovery studies, non-random participation 
may distort the association between a genetic variant and the outcome 
(Fig. 1a). In Mendelian randomization (MR) (a causal inference technique 
using single nucleotide polymorphisms (SNPs) as instrumental vari-
ables), participation bias could induce an association between genetic 
instruments and unmeasured confounders of the exposure–outcome 
relationship, thereby violating a key assumption of the method (Fig. 1b,c). 
Recent genome-wide studies investigating proxies of participation bias 
have already described genetic variation associated with participation 
and questionnaire responding17–24, indicating that genetic studies are 
not immune to bias. While much of the recent GWA output has been 
produced by non-representative biobanks (for example, UKBB, Million 
Veteran Program and 23andMe), the extent to which participation bias 
affects gene discovery and downstream analyses is currently unknown.

Researchers can correct for participation bias by the use of sam-
ples that are representative of their target population—a broader 
group from which a study sample is drawn and to which the study 
results should generalize. In case of the UKBB, the target population is 
middle-aged to older adults of recent European ancestry living in the 
United Kingdom, which is not the same as the general UK population 
(Supplementary Information). Here we derive a model for participa-
tion probability and create a pseudo-sample of the UKBB matching its 
target population with respect to 14 variables. We can thereby evaluate 
how a shift towards representativeness impacts genome-wide findings 
and downstream analyses. We anticipate that these findings will help 
characterize the impact of participation bias in large volunteer-based 
samples used for biomedical research and help pin down areas of 
research that might be particularly susceptible to bias when relying 
on non-representative samples.

Results
Samples
From the five Health Survey England (HSE) cohorts comprising 
a total sample of n = 81,118, we retained n = 22,646 after applying 
the same inclusion criteria used for UKBB recruitment (Methods). 
After further exclusion of HSE individuals with missing data on 
the 14 auxiliary variables, we included a final sample of n = 21,816. 
Comparing the distribution of a subset of auxiliary variables also 
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Fig. 1 | The impact of participation bias in genetic studies. a–c, The 
relationships between a genetic variant (G), an exposure (X) or outcome (Y), 
and study participation (Z). Panel a illustrates the effect of participation bias 
in GWA studies, where Z is a common consequence of G and Y (red dotted 
line). Conditioning on a common consequence (Z) induces a non-causal 
association between G and Y. Panels b,c illustrate the effect of participation 

bias in MR studies, where bias occurs if Z is a consequence of either X (b) or Y 
(c). Conditioning on Z induces an association between the genetic variant and 
confounders, thereby violating the MR assumption of exchangeability. This 
figure is a simplified illustration of how participation bias can impact results 
obtained from two commonly employed methods in genomic studies. For 
further examples illustrating the impact of selection bias, see Hernán et al.7.
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participants were given a weight of 1. When we applied probability 
weighting (shown on the right side of Fig. 2b), previously significant 
predictors became non-significant. All means and proportions in the 
HSE, UKBB (unweighted) and UKBB (weighted) are provided in Sup-
plementary Table 2.

Next, we estimated the degree of bias reduction in our 14 variables 
following probability weighting. Here we quantified participation bias 
as the difference between an estimate of association obtained in the 
UKBB (rUKBB) and the reference sample (rHSE). The largest differences 
(rdiff = |rHSE − rUKBB|) were for employment status with overall health 
(rdiff = 0.19; rHSE = −0.25; rUKBB = −0.06), overall health with age (rdiff = 0.12; 
rHSE = −0.13; rUKBB = −0.01), household size with income (rdiff = 0.10; 
rHSE = 0.20; rUKBB = 0.31) and employment status with income (rdiff = 0.10; 
rHSE = −0.25; rUKBB = −0.35) (Fig. 2c). The application of probability 
weighting reduced bias induced by selective participation (median 
bias reduction, 0.97; mean, 0.91; range, 0.58–0.998). The estimates 
were very similar to the cross-validated model (median bias reduction, 
0.96; mean, 0.90; range, 0.50–0.998), highlighting that overfitting was 
unlikely to be a problem.

Finally, Fig. 2d summarizes the changes in means and propor-
tions following probability weighting, estimated for the auxiliary 
variables (in blue) as well as other UKBB variables (in orange) not used 
to construct the weights. Weighting resulted in a pseudo-sample with 
less favourable health outcomes and demographics, including more 
frequent mental illness (higher rates of schizophrenia and alcohol 
addiction) and poorer socio-economic status (higher deprivation 
index and lower job class).

In summary, using probability weighting, we created a 
pseudo-sample of the UKBB population achieving higher levels of 
representativeness along the 14 variables used in the weighting model. 
As a consequence, the weighting also changed the distributions of some 
variables not used in the weighting model (for example, an increased 
level of deprivation). Probability weighting thus provides a useful tool 
for examining bias due to selective participation in genomic stud-
ies, by evaluating how reweighting affects genome-wide results and 
downstream analyses.

Probability-weighted GWA analyses
We next studied how the results of GWA analyses differ between 
weighted GWA (wGWA) (neffective = 94,643 to 102,215, depending on the 
trait) and standard GWA analyses ( β̂, n = 263,464 to 283,749, depending 
on a trait). Reductions in the effective sample size in wGWA result from 
variability among the probability weights: when the weights are nor-
malized to have a mean of one, the effective sample size simplifies to 
n × {1/[Var(win) + 1]}. This quantity thus depends on the unweighted 
study sample size and on the variance of the normalized weights across 
study participants (win).

We assessed the impact of probability weighting on genome-wide 
findings in terms of changes in effect sizes across SNPs (contrasting 
weighted SNP effects, β̂w, to standard SNP effects, β̂) and the number 
of significant SNP associations for 19 UKBB health-related traits col-
lected at baseline (Fig. 3). First, Fig. 3a highlights the number of SNPs 
where weighting reduced ((|β̂| − |β̂w|)/ ||β̂|| ≥ 0.2 ) or increased 
((|β̂| − |β̂w|)/ ||β̂|| ≤ −0.2) SNP effect sizes. Among all genome-wide hits 
(1,690, with P < 5 × 10−8), effect size reduction following weighting was 

more common (420 SNPs, 24.85% of all genome-wide SNPs) than 
increase (290 SNPs, 17.16% of SNPs). More specifically, effect size 
increase was the most common for cancer (57% of SNPs), loneliness 
(50%), education (33%) and reaction time (33%), whereas reduction was 
present for depression/anxiety (67%), coffee intake (63%) and smoking 
status (58% of SNPs). While a shift towards more representativeness 
led to both effect size increases and decreases, we found no evidence 
of changes in the direction of effects (Supplementary Section 3.2).

Second, with respect to genome-wide discovery (Fig. 3b), we found 
that of all SNPs identified in either wGWA or GWA analyses (n = 1,690 
across all phenotypes), 25 SNPs (1.48%) reached significance only in 
the weighted analyses. We found new SNPs for 12 of the 19 included 
traits, most notably for depression and anxiety (50% new genome-wide 
SNPs), cancer (29%) and loneliness (25%). The detailed results are listed 
in Supplementary Table 3 and plotted in Supplementary Figs. 2 and 3.

Probability-weighted GWA analysis on sex
The UKBB included proportionally more women (femaleUKBB = 54.38%) 
than its target population (femaleHSE = 50.74%; femaleCENSUS = 50.62%). 
Probability weighting recovered the target population prevalence in the 
UKBB (weighted femaleUKBB = 50.36%). SNP heritability estimates (h2) 
(Supplementary Fig. 4a) using wGWA led to almost half of that of the 
standard GWA (h2 on liability scale, 1.2%, P = 0.1 in wGWA versus 2.1%, 
P = 5.4 × 10−11 in standard GWA). Supplementary Fig. 4b and Supplemen-
tary Table 4 display the SNP effects of 49 variants previously associ-
ated with sex (P < 5 × 10−8, in an independent sample of >2,400,000 
volunteers) to estimates obtained from standard GWA and wGWA. 
Of those, 18 SNPs (36.73%) showed significantly lower sex-associated 
effects in wGWA. In contrast, only 3 SNPs (6.12%) had significantly lower 
sex-associated effects in standard GWA.

GWA study on UKBB participation
We conducted a wGWA on UKBB participation in neffective = 102,215 
participants. A total of 28 SNPs reached genome-wide signifi-
cance (P < 5 × 10−8), of which we selected 23 linkage disequilibrium 
(LD)-independent SNPs after clumping. Supplementary figures (Man-
hattan and QQ plots) and information (gene and phenotype annota-
tion) for these SNPs are available in Supplementary Figs. 5 and 6 and 
Supplementary Tables 5 and 6.

SNP heritability for UKBB participation was h2 = 0.009 
(s.e. = 0.005; LD-score intercept, 1.055). LD-score regression analyses 
(Fig. 4b and Supplementary Table 7) implicated substantial genetic 
correlations between UKBB participation and phenotypes related to 
socio-economic factors and previously assessed participatory behav-
iour, including educational attainment (rg = 0.85), income (rg = 0.77), 
participation (provided e-mail address for recontact and mental health 
survey completion) (rg = 0.69 and rg = 0.61, respectively), intelligence 
(rg = 0.62) and cigarette use (age of onset) (rg = −0.70).

Weighted SNP heritability and genetic correlation estimates
We next assessed differences in SNP heritability (h2DIFF = h

2 − h2w) and 
genetic correlations (rg,DIFF = rg − rg,w) between standard GWA and wGWA 
analyses (Fig. 5). On average, heritability estimates differed by 1.5% 
(liability scale |h2DIFF|, 0.015; range, 0 to 0.05). h2DIFF was the highest for 
BMI (h2 = 0.24; h2w = 0.19), education (h2 = 0.21; h2w = 0.24) and diabetes 

Fig. 2 | Performance of the UKBB probability weights. a, Truncated (*) density 
curves of the normalized probability weights (win) for UKBB participants, ranging 
from 0.02 to 50.01. b, Standardized coefficients (and 95% confidence intervals) of 
variables predicting UKBB participation (HSE = 0; UKBB = 1) in univariate logistic 
regression models. Coefficients are provided for all UKBB participants and for 
males and females separately. c, Correlation coefficients among all auxiliary 
variables within the UKBB (obtained from weighted and unweighted analyses) 
and within the HSE. Highlighted in blue are results where the coefficients 
between the UKBB (rUKBB) and the reference sample (rHSE) deviated (rdiff > 0.05, 

where rdiff = |rHSE − rUKBB|). d, Percentage change (for categorical variables) and 
change in means as a function of weighting, obtained for a number of health-
related UKBB phenotypes, including the auxiliary variables (blue) and variables 
not used to construct the weights. Percentage change was estimated as the 
difference between the weighted (pw) and unweighted proportion (p), divided 
by the unweighted value ((pw − p) / p × 100). Change in means was expressed 
as a standardized mean difference, estimated as the difference between the 
unweighted mean (m) and the weighted mean (mw), divided by the unweighted 
standard deviation (mw − m/s.d.).
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(h2 = 0.19; h2w  = 0.16). Of all assessed traits included in the LD-score 
regression (n = 18), five showed significant (PFDR < 0.05) h2DIFF, of which 
four (80%) were lower and one (education) was higher in the more 
representative (weighted) sample. The weighted and unweighted her-
itability estimates are plotted in Supplementary Fig. 7, and additional 
statistics (for example, LD-score intercepts) are provided in Supple-
mentary Table 8.

Concerning estimates of genetic correlations, we found an average 
difference of |rg,DIFF| = 0.07 (range, 0 to 0.31) between results obtained 
from standard GWA and wGWA analyses. rg decreased the most nota-
bly for rg(BMI, smoking status) (rg = 0.27; rg,w = 0.13), rg(fruit intake, 
physical activity) (rg = 0.32; rg,w = 0.18) and rg(alcohol use frequency, 
smoking status) (rg = 0.35; rg,w = 0.21). The increase in rg after weight-
ing was the most prominent for rg(insomnia, risk taking) (rg = 0.02; 
rg,w = 0.31), rg(vegetable intake, physical activity) (rg = 0.3; rg,w = 0.58) 
and rg(depression/anxiety, risk taking) (rg = 0.27; rg,w = 0.47). For five 
(3.27%) of the assessed trait pairs (n = 153) the weighted and standard 

genetic correlations were significantly (PFDR < 0.05) different, of which 
education was the most implicated trait (Supplementary Fig. 8 and 
Supplementary Table 9). Change in the sign of genetic correlations 
because of participation bias was less common (17 of the 153 assessed 
trait pairs, but none of these rg,DIFF were significant (PFDR > 0.05), Sup-
plementary Section 3.3).

Weighted MR estimates
Figure 6 summarizes MR estimates with differences between the stand-
ard and weighted MR estimates (αDIFF = α̂ − α̂w).

On average, increasing sample representativeness led to an abso-
lute change of 0.038 in standardized MR estimates (range, 0 to 0.15). 
Associations between lifestyle choices, including coffee intake on BMI 
(α̂  = 0.8; α̂w = 0.65), fruit consumption on LDL cholesterol (α̂  = 0.03; 
α̂w = −0.12) and fruit consumption on coffee intake (α̂ = 0.15; α̂w = 0.01) 
(Supplementary Fig. 9 and Supplementary Table 10), were the most 
affected. Of all exposure–outcome associations tested (k = 234), 14 
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Fig. 3 | SNP estimates from weighted and unweighted genome-wide analyses. 
a,b, Summary of the comparison between SNP effects obtained from wGWA 
and standard GWA analyses on 19 traits. Panel a summarizes the proportions of 
overestimated and underestimated SNP effects as a result of participation bias. 

Shown in b are the numbers and proportions of SNPs reaching genome-wide 
significance in standard GWA, wGWA or both (GWA and wGWA). The scatter plots 
to the right plot the weighted (|𝛽w|) against the unweighted (|𝛽|) SNP effects for 
four selected traits.
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(6%) estimates were either decreased (2%, |α̂| − |α̂w| > 0.1) or increased 
(4%, |α̂| − |α̂w| < −0.1) after weighting. We found significant (PFDR < 0.05) 
differential effects for two exposure–outcome associations (education 
on BMI and smoking status on fruit consumption). There was little 
evidence of changes in the direction of MR estimates as a result of 
weighting, which occurred for only two exposure–outcome pairs, 
neither of which was significant (αDIFF PFDR > 0.05) (Supplementary 
Section 3.4).

Discussion
While large volunteer-based biobanks are key to advancing genetic 
epidemiology, it is unclear to what extent selective participation 
impacts genotype–phenotype associations obtained from their data. 
In this work, we derived probability weights for the UKBB (based on 
14 variables harmonized with data from a representative sample) and 
conducted inverse-probability-weighted GWA analyses on 19 traits. 
Conducting genome-wide analyses in a more representative (weighted) 
sample of the UKBB, we found that selective participation can distort 
genome-wide findings and downstream analyses.

Overall, increasing representativeness mostly affected the magni-
tude of effects rather than their direction. We found several differences 
in estimates in all sets of genome-wide analyses, in both directions 
(for example, a decrease in SNP effects after weighting for cancer and 
education and an increase in SNP effects for coffee intake and depres-
sion/anxiety). Of note, although effect size estimates can increase with 
the use of more representative samples, the increased standard errors 
of the inverse probability weighting (due to reduced effective sample 
size) make new SNP discovery difficult. Despite this caveat, using wGWA 
revealed new loci for 12 traits. Reweighting also changed heritability 
estimates, genetic correlations and MR estimates, most notably for 
socio-behavioural traits including education, diet, smoking and BMI.

In contrast, we observed smaller changes between wGWA and 
GWA estimates for molecular and physical traits (for example, 
low-density lipoproteins and systolic blood pressure). This pat-
tern is in line with existing studies23,24, as well as our findings of high 
genetic correlations between the liability to UKBB participation and 
socio-behavioural traits (particularly education, income and substance 
use). More broadly, different sources of bias probably affect similar 
phenotypes in genome-wide studies, in that genome-wide findings on 
socio-behavioural phenotypes are biased by selective participation23,24, 
indirect genetic effects3, assortative mating4, error in measurements25 
and population stratification26.

Our work builds on and extends recent efforts evaluating bias due 
to selective participation. We replicate findings showing that pheno-
typic exposure–outcome associations in the UKBB differ from those 
estimated in probability samples13,15: participation bias, defined as the 
difference in exposure–outcome associations in the UKBB and the 
reference sample (HSE), was substantial for several associations. For 
example, phenotypically, participation bias distorted the association 
of overall health with age and employment status. The application of 
probability weighting eliminated a significant proportion (>90%) of 
bias due to selective participation in the UKBB.

We highlight patterns of bias and point to areas of research that 
are the most impacted by this bias. Since GWA summary statistics are 
increasingly used in epidemiological research to study causal questions 
concerning education, diet and behaviour, greater care should be taken 
when relying on data obtained from non-random samples. If research-
ers cannot assess participation bias in biobank data (for example, in 
self-selected samples without a defined target population), their data 
may be of only limited use when scrutinizing genotype–phenotype 
relationships. As part of this work, we provide software to perform 
wGWA, which allows researchers to conduct sensitivity checks when 
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Fig. 4 | GWA study on the liability to UKBB participation. Shown are the 
genetic correlations (rg) and corresponding 95% confidence intervals of UKBB 
participation (n standard GWA = 283,749) with traits indexing participatory 

behaviour (in green) and other traits (in blue) (including publically available 
summary statistics generated using standard GWA. SBP, systolic blood pressure; 
IR,: Item-response theory.
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relying on non-representative samples. Alternatively, recruitment 
schemes incorporating probability sampling can help reduce bias, 
but samples are typically small given the substantial costs associated 
with recruitment.

Our results should be interpreted with caution. First, while the 
application of probability weighting successfully reduced bias result-
ing from selective participation in the UKBB based on our 14 variables, 
residual bias still exists. We may have missed important factors inde-
pendently predicting UKBB participation when modelling participa-
tion probability, as we chose our auxiliary variables on the basis of the 
availability of variables that could be harmonized between the UKBB 
and the reference sample. Still, some of these omitted variables may 
be proxied by (the combination of) some of the 14 variables, hence 
not compromising the probability weights. Probability weighing 
would not correct bias in situations where the exposure and the out-
come of interest both link to an aspect of study participation that is 
unrelated to the auxiliary variables. This also means that wGWA for 
outcome traits such as education level is expected to be accurate, 
since this trait has been used when modelling participation prob-
ability. Finally, even for outcome traits completely unrelated to the 
14 auxiliary variables but linked to traits influencing study participa-
tion, it is extremely unlikely that wGWA would be more biased than 
unweighted GWA. Hence, when substantial differences are observed 
between wGWA and standard GWA results, it is likely that the latter 
is (more) biased. Still, weighting—like any other method of adjusting 
for non-representativeness—should therefore be considered as only 
the second-best option when tackling participation bias, as only the 
implementation of probability sampling at the recruitment stage can 
ensure full elimination of this type of bias.

Second, when choosing a reference population, there is a trade-off 
between the representativeness of the reference sample and the num-
ber of available variables to match the samples. We chose to use the HSE 
as a reference sample to strike a balance between these two factors, but 
biases can remain if the reference sample is not representative enough. 
Third, genome-wide analyses were restricted to phenotypes with little 
missing data. This is a shortcoming since traits with substantial missing 
data are perfect candidates for characteristics influencing participa-
tion. We therefore did not evaluate the impact of participation bias on 
variables collected at follow-up.

Finally, the UKBB probability weights are sample-specific, con-
structed for a sample that is better educated, healthier and older and 
includes more women than the target population. Bias due to selective 
participation will differ across study contexts, and the participation 
mechanisms evaluated in this study are therefore not generalizable 
to other cohorts. For example, large health-registry-based biobanks, 
where older individuals with poorer health tend to be over-represented, 
do not have the healthy-volunteer bias but have different kinds of 
selection biases27. Similarly, the genome-wide results discussed here 
can be generalized only to adults of European genetic ancestry who 
also self-identify as white. Future work should also assess the impact 
of participation bias in more diverse samples, notably other ancestries 
and racial and ethnic groups, as well as younger individuals.

In conclusion, our results highlight that GWA and downstream 
analyses are sensitive to bias resulting from selective participation, 
most visibly for socio-behavioural traits. Moving forward, more efforts 
ensuring either sample representativeness or methods correcting for 
participation bias are paramount, especially when studying the genetic 
underpinnings of behaviour, lifestyles and educational outcomes.
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Fig. 5 | Weighted SNP heritability and genetic correlation estimates.  
a, Differences in SNP heritability (h2DIFF = h2 − h2w) and genetic correlations 
(rg,DIFF = |rg| − |rg,w|) obtained from weighted and standard GWA analyses. The 
diagonal shows the differences in SNP heritability, where biases leading to 
overestimation (h2DIFF > 0.02) are plotted in orange and biases leading to 
underestimation (h2DIFF < −0.02) are plotted in yellow. The off-diagonal highlights 
overestimated genetic correlations (rg,DIFF > 0.1) in blue and underestimated 

genetic correlations (rg,DIFF < −0.1) in green. Tiles coloured in turquoise index 
genetic correlations where rg and rg,w show opposite directions (with rg printed at 
the top and rg,w printed at the bottom of the tile). b, Estimates of genetic 
correlations (rg shown as circles; rg,w shown as triangles) and the corresponding 
95% confidence intervals for two selected traits. The asterisks indicate estimates 
showing significant differences (PFDR < 0.05). All P values are from two-sided tests 
and are corrected for multiple testing using FDR correction (controlled at 5%).
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Methods
We first derived a model for participation probability by comparing 
14 harmonized characteristics of the UKBB sample with those of a 
representative sample. Using the estimated participation probabilities, 
we conducted wGWA analyses on 19 UKBB traits. Second, to explore 
the genetic basis of UKBB participation, we conducted a GWA on the 
participation probability and evaluated the genetic findings. Finally, 
comparing wGWA results with those obtained from standard GWA 
analyses, we assessed the impact of participation bias on the estimation 
of three frequently studied quantities: (1) the effect of genetic markers 
on complex traits, (2) heritability and genetic correlation estimates, 
and (3) exposure–outcome associations obtained from MR.

Samples
UKBB. The UKBB is a large-scale prospective population-based 
research resource focusing on the role of genetic, environmental 
and lifestyle factors in health outcomes in middle age and later life. 
More than 9,000,000 men and women between 40 and 69 registered 
with the UK National Health Service were invited to take part. Of those, 
5.4% (~500,000 individuals) were recruited in 22 assessment centres 
across England, Wales and Scotland between 2006 and 201028,29. 
Included in this study were data from UKBB participants of European 
genetic ancestry who also identify as white and passed standard GWA 
analysis quality control measures30. We further filtered the sample 
according to geographic region (excluding individuals from Scotland 
and Wales) to match the geographic regions included in the reference 
sample (HSE), and we removed individuals with missing data in the 
auxiliary variables used to generate the propensity scores (further 
described below). The UKBB resource was approved by the UKBB 
Research Ethics Committee, and all participants provided written 
informed consent to participate.

HSE. The HSE is an annual probability sample set out to measure health 
and related behaviours in a nationally representative sample of adults 
and children living in private households in England31. In our study, 
we included data from five cohorts recruiting a sample of more than 
80,000 individuals between 2006 and 2010 (that is, the UKBB recruit-
ment period). We applied the same inclusion criteria to the HSE data as 
used for UKBB recruitment, retaining only individuals aged between 
40 and 69 years who self-identify as white. HSE response rates ranged 
between 64% and 68%31. HSE sample weights are supplied to account 
for the unequal probabilities of selection and non-response32, weighing 
individuals as a function of sex, household type, region and social class. 
In this study, the HSE weights were incorporated in LASSO regression 
predicting UKBB participation (described below).

UK Census data. We also exploited data from the 2011 Census Micro-
data, a 5% sample of anonymized individual-level Census records33, 
which runs every ten years to collect basic demographic variables (for 
example, educational attainment, age and general health) through 
a paper-based or online questionnaire. With a 95% response rate, 
the UK Census Microdata is highly representative of the UK popula-
tion. We applied the same selection criteria to the Census data as to 
the UKBB and HSE (that is, filtered according to geographic region, 
ethnic group and age), resulting in a relevant sample of n = 895,649. 
We extracted all variables that could be harmonized with the UKBB 
and HSE data (further described in the Supplementary Information). 
The Census data were solely used to assess the level of representa-
tiveness of the HSE, by comparing the distributions and associations 
between variables present in both the HSE and the Census sample. 
For the generation of UKBB probability weights, we used the HSE 
sample, given its richer phenotypic data, which are critical for accu-
rate weight estimation.
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Fig. 6 | Effect of participation bias on MR estimates of exposure–outcome 
associations. a,b, Summary of results obtained from weighted (α̂w) and standard 
(α̂) MR. MR estimates subject to overestimation (|α̂| − |α̂w| > 0.1) as a result of 
participation bias are highlighted in violet. MR estimates subject to 
underestimation (|α̂| − |α̂w| < −0.1) are highlighted in cyan. The asterisks 

highlight results where α̂  and α̂w  showed significant (PFDR < 0.05) differences. The 
error bars (b) indicate the 95% confidence intervals corresponding to α̂  and α̂w. 
All P values are from two-sided tests and are corrected for multiple testing using 
FDR correction (controlled at 5%).
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Analysis
Auxiliary variables. We adjusted for participation bias in the UKBB 
using probability weighting34. This approach adjusts for non-response 
bias by weighting over-represented and under-represented individu-
als, thereby creating a pseudo-population that is more representative 
of its target population35. Probability weighting relies on auxiliary 
variables available for both a selected (non-representative) and a 
representative reference sample. In this study, we selected auxiliary 
variables tapping into dimensions related to health, lifestyle, educa-
tion and basic demographics. We included all variables that could 
be harmonized across the two datasets (HSE and UKBB) with few 
missing observations (that is, <50,000 in the UKBB and <500 in the 
HSE). Fourteen variables derived from 12 measures were included 
and harmonized across the two datasets. The five continuous vari-
ables included age, BMI, weight, height and education (age when 
the individual completed full-time education). The nine categorical 
variables included household size (1, 2, 3, 4, 5, 6, or 7 or more), sex 
(male or female), alcohol consumption frequency (never, a few times 
per year, monthly, once or twice weekly, three or four times weekly, 
or daily), smoking status (never, previous or current), employment 
status (employed, economically inactive, retired or unemployed), 
income (<18k, 18k–31k, 31k–52k, 52k–100k or >100k), obesity status 
(underweight, healthy weight, overweight or obese), overall health 
(poor, fair or good) and degree of urbanisation (village/hamlet, town/
fringe, urban). Further details of the coding of the variables in each 
dataset are provided in the Supplementary Information.

Construction and evaluation of UKBB probability weights. To derive 
the model for participation probability, we first combined the harmo-
nized UKBB data with the data from the reference sample (HSE). We 
then used LASSO regression in glmnet36 to predict UKBB participation 
(Pi, with UKBB = 1; HSE = 0), conditional on the harmonized auxiliary 
variables described above. We included 14 main effects (5 continuous 
variables and 9 binary/categorical variables) in the model. All categori-
cal and binary variables were entered as dummy variables, indexing 
each possible level of the variable. In addition, we included all possible 
two-way interaction terms among the dummy and continuous vari-
ables, resulting in 903 included predictors. LASSO performs variable 
selection by shrinking the coefficients for variables that contribute the 
least to prediction accuracy. The shrinkage is controlled by the tuning 
parameter (λ), which was obtained using fivefold cross-validation that 
minimizes the cross-validated error.

The predicted probabilities (Pi) were then used to build the indi-
vidual sampling weights (wi). The weights were calculated as an exten-
sion of standard inverse probability weights (wi = (1 − Pi)/Pi), designed 
to make the weighted sample estimates conform to the population 
estimates35. To assess the performance of the generated weights, we 
evaluated the extent to which the weighting recovered means (for 
continuous variables) and prevalences (for binary traits) in the UKBB 
and hence mitigated participation bias. We also quantified participa-
tion bias as the differences between the correlations among all auxiliary 
variables within the UKBB (rUKBB) and the HSE (rHSE). The degree to which 
the weighted correlations (rUKBB,w) reduced bias was estimated as  
(|rHSE − rUKBB| − |rHSE − rUKBB,w|)/(|rHSE − rUKBB|), where a value of one indicates 
that weighting fully eliminated bias. The weighted means (and propor-
tions) for a given variable (Xi) were estimated using the weights (wi), 
with the expression 1

W
∑N
i=1 wiXi, where W = ∑N

i=1 wi.
We further evaluated whether overfitting was a problem by rerun-

ning LASSO in train–test splits of the data (fivefold leave-one-out 
cross-validation, with a split ratio of 80:20). Here we used the training 
sample (80% of the data) for model estimation and the test sample 
(20% of the data) to generate the out-of-sample predicted probabili-
ties. The degree of participation bias reduction was then compared 
between the out-of-sample predicted probabilities and the full-sample  
probabilities.

Probability-weighted GWA analyses. To evaluate the extent to 
which SNP effects were distorted by participation bias in the UKBB, 
we conducted wGWA analyses. wGWA was performed for 19 UKBB 
health-related traits collected at baseline with few missing observa-
tions (nmissing < 50,000). Some of these traits (education, frequency 
of alcohol use, weight, height and smoking status) were used in the 
model deriving the probability weights. The coding of all variables, 
genotyping, imputation and quality control procedures are described 
in the Supplementary Information. Additional quality control filters 
for genome-wide analyses were applied to select participants (that is, 
restricting the sample to unrelated individuals of European genetic 
ancestry and excluding individuals with high missing rate and high 
heterozygosity on autosomes) and genetic variants (Hardy–Wein-
berg disequilibrium P > 1 × 10−6, minor allele frequency > 1% and call 
rate > 90%).

We obtained unweighted SNP estimates (β̂) from a standard ordi-
nary least squares linear regression model. The weighted SNP estimates 
(β̂w) were obtained from weighted least squares regression. All GWA 
analyses were conducted in LDAK (version 5.2)37,38, which was extended 
to accommodate sampling weights in a linear weighted least squares 
model (linear; sample-weights). The standard least squares estimate 
of the variance is based on the assumption of homoskedasticity (that 
is, that the residual variance is constant across individuals). Since the 
use of sampling weights violates this assumption, we used the Huber–
White estimator39 to estimate the variance of the coefficients:

β̂w = (X′WX)−1 (X′WY)

Var (β̂w) = (X′WX)−1 (X′WDWX) (X′WX)−1

with

D = diag [(Y − Xβ̂w)
2
]

where Y denotes the phenotypic outcome vector, W is a diagonal matrix 
with the probability weights sitting on the diagonal and X is a column 
vector of the genotype values.

Both models included the same covariates (PC1–PC5, sex, age and 
batch effect). We applied a linear model to all outcomes (continuous 
and binary traits). This was done to allow for the standardization of 
SNP estimates and to ensure the comparability of effect sizes. A more 
detailed discussion on the advantages and disadvantages of using a 
linear over a logistic model for binary outcomes is provided by von 
Hippel40,41, as well as the Neale Lab42 discussing its application specifi-
cally when using UKBB data.

Two additional sets of analyses were conducted to explore the 
genetic basis of UKBB participation. First, we conducted autosomal 
wGWA and standard GWA on biological sex and evaluated whether 
wGWA reduced sex-differential participation bias. As previously sug-
gested23, autosomal heritability linked to biological sex could result 
from sex-differential participation. As such, reduced heritability esti-
mates in wGWA compared with GWA would provide evidence for the 
utility of wGWA for participation bias correction. In addition, we com-
pared the resulting SNP effects with the effects of previously identified 
sex-associated variants (P < 5 × 10−8). Here 49 variants assessed in an 
independent sample of >2,400,000 volunteers curated by 23andMe23 
were selected.

Second, we conducted a genome-wide analysis on the liability to 
UKBB participation, by including the individual participation probabili-
ties as the outcome of interest in wGWA. The application of standard 
GWA analysis is not possible in this context, as this approach stratifies 
for the outcome of interest by selecting a subset of the population 
willing to participate. LD-independent SNPs reaching genome-wide 
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significance (P < 5 × 10−8) were selected via clumping (clump-kb, 250; 
clump-r2, 0.1; following standard recommendations43). PhenoScan-
ner44, a database of genotype–phenotype associations from existing 
GWA studies, was used to explore previously identified associations of 
lead SNPs with other phenotypes. Genetic correlations with other traits 
were estimated using LD-score regression45 as implemented in the R 
package GenomicSEM46. The summary statistic files used in LD-score 
regression were obtained for 49 health and behavioural phenotypes, 
using publicly available summary statistic files accessible via consortia 
websites or the MRC-IEU OpenGWAS project (https://gwas.mrcieu.
ac.uk)47 (see Supplementary Table 11 for the details).

LD score regression and heritability estimates. SNP heritability 
estimates were obtained for both the standard GWA and wGWA output 
(h2 and h2w, respectively) using LD score regression as implemented in 
GenomicSEM. We applied the default settings (restricted SNPs to minor 
allele frequency > 0.01, LD scores from the European-ancestry sample 
in the 1000 Genomes Project48). For binary phenotypes, the observed 
scale was converted to the liability scale49, where the population preva-
lence was set to be equal to the weighted prevalence in the UKBB. We 
also estimated bivariate genetic correlations among all phenotypes 
included in standard GWA and wGWA (rg and rg,w, respectively). To 
compare the estimates obtained from wGWA and standard GWA, we 
calculated the difference (rg,DIFF = rg − rg,w and h2DIFF = h

2 − h2w) and used 
the following test statistic (here exemplified for rg,DIFF):

Zrg =
rg,DIFF

s.e.(rg,DIFF)

s.e. (rg,DIFF) = √s.e.(rg)2 + s.e.(rg,w)2 − 2r s.e. (rg) s.e.(rg,w)

The correlation coefficients r(h2,h2w) and r(rg, rg,w) were obtained 
from 200-block jackknife analysis. For this, we split the genome into 
200 equal blocks of SNPs and removed one block at a time to perform 
jackknife estimation.

MR analyses. To evaluate the impact of selection bias when using MR, 
we assessed whether sample weighting altered MR estimates. As 
genetic instruments, we selected LD-independent (clump-kb, 10,000; 
clump-r2, 0.001; adhering to standard MR protocols50) SNPs reaching 
genome-wide significance (P < 5 × 10−8) in either wGWA or standard 
GWA for a given phenotype. Phenotypes with few (<10) genetic instru-
ments were not included in the MR analyses. We used the 
inverse-variance weighted (IVW) MR estimator, which combines the 
ratio estimates of the individual genetic variants Gj to derive the causal 
effect (α̂IVW). The ratio estimate is α̂j = β̂OUTj /β̂EXPj , where β̂EXPj  corresponds 

to the SNP–exposure association and β̂OUTj  corresponds to the SNP–
outcome association. Since the IVW estimator assumes that the uncer-
tainty in the genetic association with the exposure is zero, we used  
the following correction51 to account for selected genetic variants  
(β̂EXPj ) that were genome-wide significant in one analysis (for example, 

standard GWA) but not the other (for example, wGWA) for the  

same trait: α̂IVW,corrected = α̂IVW
S2

σ̂
, where S2 = 1

m−1
∑m
j=1 (β̂

EXP
j − β̂EXP )

2
 and 

σ̂2 = S2 − 1
m
∑m
j=1 Var (β̂

EXP
j ) , where m refers to the number of SNPs  

selected as instruments. The corresponding variance was estimated 
as Var(α̂IVW,corrected) = Var(α̂IVW)

S2

σ̂2
.

For each exposure–outcome association, we obtained (1) an MR 
estimate using the SNP effects from standard GWA analyses and (2) an 
MR estimate using the SNP effects from wGWA analyses. We included 
in MR the standardized SNP effects and standard errors (that is, the 
effect of the genotype on the standardized outcome), which were 
derived using the following formula52: βSTD = Z/√2p(1 − p)(n + Z2)  and 

s.e.(βSTD) = 1/√2p(1 − p)(n + Z2), where n is the sample size, p is the minor 
allele frequency and Z is the SNP effect β̂ divided by its standard error 
(Z = β̂/s.e.(β̂)). Of note, when standardizing the weighted estimates (β̂w), 
n was replaced by the effective sample size (neffective = W2/∑N

i=1 w
2
in) to 

account for the unequal contribution per observation. win refers to the 
normalized probability weights, obtained by dividing wi by its mean 
(win = wi/wi ).

To compare the standard (α̂) to the weighted MR (α̂w) estimates, 
we estimated αDIFF (α̂ − α̂w) and the corresponding test statistic as 
Z = αDIFF/s.e.(αDIFF), where

s.e. (αDIFF) = √s.e.(α̂)2 + s.e.(α̂w)2 − 2r s.e. (α̂) s.e.(α̂w).

The correlation coefficient was derived using a jackknife procedure, 
where we performed MR leaving out each SNP in turn to then calculate 
the correlation r (α̂, α̂w) from these results. The results were corrected 
for multiple testing using FDR correction (controlled at 5%), correcting 
for the total number of conducted MR analyses.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All summary statistic files generated using standard and weighted 
genome-wide analyses are accessible on the GWAS catalogue (https://
www.ebi.ac.uk/gwas/) at the accession numbers GCST90267266 to 
GCST90267307. The UKBB probability weights generated as part of 
this study are available via the UK Biobank repositories.

Code availability
The following software was used to run the analyses: LDAK (http://
dougspeed.com/downloads/; a tutorial on how to perform stand-
ard and weighted genome-wide analyses is available at https://
tabeaschoeler.github.io/TS2021_UKBBweighting/wGWA.html), 
TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/) and 
GenomicSEM (https://github.com/GenomicSEM/GenomicSEM). All 
analytical scripts are available at https://github.com/TabeaSchoeler/
TS2021_UKBBweighting.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection This research has been conducted with the UK Biobank Resource under application number 16389.

Data analysis We used the following software to conduct the analyses: LD Score Regression as implemented in GenomicSEM (https://github.com/
GenomicSEM/GenomicSEM), LDAK (http://dougspeed.com/downloads/), TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/). All 
analytical scripts are available at https://github.com/TabeaSchoeler/TS2021_UKBBweighting

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data availability: Standard and probability weighted UK Biobank association statistics, computed using LDAK version 5.2, will be made available through the GWAS 
catalog.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We used self-reported sex (biological attribute) in our study. 

Population characteristics In genome-wide analyses, we included UK Biobank participants of European ancestry passing standard GWA analysis quality 
control measures. All analyses were adjusted for batch, principal components (PC1-PC5), age and sex. Exclusions during QC 
process (phenotypic and genetic) are detailed in the Methods. Demographic information about the sample is provided in 
Supplementary Table 3.

Recruitment The UK Biobank (UKBB) is a prospective population-based research resource focusing on the role of genetic, environmental 
and lifestyle factors in health outcomes in middle age and later life. More than 9,000,000 men and women between 40 and 
69 registered with the UK NHS were invited to take part. Of those, 5.4% (~500,000 individuals) were recruited in 22 
assessment centres across England, Wales and Scotland between 2006 and 2010.

Ethics oversight The UK Biobank resource was approved by the UK Biobank Research Ethics Committee and all participants provided written 
informed consent to participate.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We conducted inverse probability weighted genome-wide association analyses (Neffective=94,643 – 102,215) and standard GWA (N=263,464 
– 283,749) in UKBB participants selected for genome-wide analyses (UK Biobank participants of European ancestry passing standard GWA 
analysis quality control measures). 
Quality control filters for genome-wide analyses were applied to select participants (i.e., exclusion of related individuals, exclusion of non-
White British ancestry based on principal components, high missing rate and high heterozygosity on autosomes) and genetic variants (Hardy–
Weinberg disequilibrium P > 1 × 10−6, minor allele frequency > 1% and call rate > 90%).

Data exclusions We filtered the sample according to geographical region (excluding individuals from Scotland and Wales) to match the geographical regions 
included in the reference sample (HSE), and removed individuals with missing data in auxiliary variables used to generate the propensity 
scores.

Replication We used the UK Biobank as it is the currently largest sample where participation bias correction through inverse weighted genome-wide 
association analyses can be performed. Our findings replicate previous genome-wide findings and highlight the extend to which these findings 
may be biased by selective participation. We did not select an independent replication sample. There are no genotype datasets of similar size 
in the UK for which sampling weights could be computed, making replication currently not feasible.

Randomization Not applicable

Blinding Not applicable

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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