
EDUCATION

Ten simple rules for working with other

people’s code

Charlie PilgrimID
1,2*, Paul Kent1, Kasra HosseiniID

3, Ed Chalstrey3

1 The Mathematics of Systems CDT, Mathematics Department, The University of Warwick, Coventry, United

Kingdom, 2 Experimental Psychology, University College London, London, United Kingdom, 3 Research

Engineering Group, The Alan Turing Institute, London, United Kingdom

* charlie.pilgrim@warwick.ac.uk

This is a PLOS Computational Biology Methods paper.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Every time that you use a computer, you are using someone else’s code, whether that be an

operating system, a word processor, a web application, research tools, or simply code snippets.

Almost all code has some bugs and errors. In day to day life, these bugs are usually not too

important or at least obvious when they do happen (think of an operating system crashing).

However, in research, there is a perfect storm that makes working with other people’s code

particularly challenging—research needs to be correct and accurate, researchers often use

niche and non-commercial tools that are not built with best software practices, bugs can be

subtle and hard to detect, and researchers have time pressures to get things done quickly. It is

no surprise then that working with other people’s code is a common frustration for researchers

and is even considered a rite of passage [1].

There are a wealth of resources addressing how to write better code in academia, including

PLOS ONE “Ten Simple Rules” articles on reproducibility [2], documentation [3], and writing

open-source software [4,5]. And there are calls for improving research reproducibility by pub-

lishing code [6] and ensuring it is reusable [7]. However, the inverse problem—working with

other people’s code in research—does not receive as much attention. In industry, there are

some resources for working with legacy code [8] (“legacy code” essentially translates to “other

people’s code”). While industry software development practices are useful, they often cannot

be applied blindly to research software development and instead need to be adapted [9]. There-

fore, our approach is to bring together and integrate lessons from industry, existing literature,

and the research experiences of the authors and their colleagues.

The rules in this article will be useful for academic researchers at all levels, from students to

professors. Our focus is on pragmatic research efficiency, as opposed to absolute best practices

that may introduce unrealistic time burdens. The rules are informed but opinionated, and as

such, we encourage readers to use the rules as a starting point to think for themselves and do

what works for them. Overall, if the reader can take one useful idea or thought from this arti-

cle, then we will consider it successful.

Rule 1: Clarify your goals

Before jumping in, it is a good idea to think about what you actually want to achieve. It might

be that you just need to compute something or you might need to add some functionality that

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pilgrim C, Kent P, Hosseini K, Chalstrey E

(2023) Ten simple rules for working with other

people’s code. PLoS Comput Biol 19(4): e1011031.

https://doi.org/10.1371/journal.pcbi.1011031

Editor: Russell Schwartz, Carnegie Mellon

University, UNITED STATES

Published: April 20, 2023

Copyright: © 2023 Pilgrim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: CP and PK were supported on this work

by the EPSRC grant for the Mathematics for Real-

World Systems CDT at Warwick (grant number EP/

L015374/1). CP was supported by the PhD

Enrichment scheme at the Alan Turing Institute. KH

and EC received a salary from the Alan Turing

Institute. The Alan Turing Institute is funded by

EPSRC (grant number EP/N510129/1). EPSRC can

be found at https://www.ukri.org/councils/epsrc/.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors disclose no

competing interests.

https://orcid.org/0000-0002-3800-677X
https://orcid.org/0000-0003-4396-6019
https://doi.org/10.1371/journal.pcbi.1011031
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011031&domain=pdf&date_stamp=2023-04-20
https://doi.org/10.1371/journal.pcbi.1011031
http://creativecommons.org/licenses/by/4.0/
https://www.ukri.org/councils/epsrc/


doesn’t currently exist in the code. Different aims require different approaches. For example, if

you need to compute something, then the key requirement is to be confident that the compu-

tation is correct, while for adding functionality you will probably need to understand the code

a bit more. Clarifying your goals can prevent you from doing more than you need to. At one

extreme, you can almost always achieve your goals by going through the entire codebase and

understanding every line of code, but this will usually be overkill and inefficient.

Clarifying your goals is a useful practice to do before jumping into a new codebase. Addi-

tionally, it is also useful to keep coming back to this question as you get to grips with the code

(Fig 1). You may find that your original goal will take too much time, or more optimistically

(if not realistically) perhaps you will find some shortcut that allows you to make progress with

less work than you expected.

Rule 2: Choose your codebase

Sometimes you will have little choice in which code you will have to work with, for example, if

you have inherited an existing project. But often you will have a choice of which codebase to

use to achieve your goals. It is therefore worthwhile searching on the internet for different

options. To judge which codebase to use, you can look at the quality of the Documentation

(see Rule 3: Read the documentation), how well maintained it is (e.g., the commit history on

GitHub, see Rule 9: Use version control), and how active the community is (see Rule 7: Ask for

help). You could also consider how accessible the codebase seems to be—can you make sense

of the code? Relatedly, you might be able to choose between projects in different programming

languages of which you have varying levels of familiarity.

A common dilemma is whether to rewrite the code from scratch or not. An astrophysicist

colleague of the authors tells the story of FORTRAN code written in the 1970s that controls

the positioning of telescopes and the problem of adding a new feature to this code. The ques-

tion arises as to whether to (a) rewrite the entire thing in Python; or to (b) learn FORTRAN,

get to grips with the codebase, and then, add the feature. This kind of choice involves many

considerations that may only indirectly relate to the problem at hand, including whether it will

be more desirable to (a) have the telescope control in Python for future changes; or to (b)

know FORTRAN well enough to be able to work with other legacy systems. And while modern

programming languages may make previously complicated tasks easier, it is usually unclear at

the outset just how much work will be involved with starting again.

A key benefit of starting again is that by the end of the process, you will fully understand

the code and how it works. This will give you a depth of knowledge that will be hard to develop

while using someone else’s code. Perhaps ironically, the process of writing your own version

will sometimes help you understand the old code to the point where you no longer need the

new version. A computer science PhD colleague of ours tells us that they prefer to write their

own version of algorithms to fully understand them, and then, once they have finished they

use the existing libraries.

The main downside of writing your own version is that you are replicating work that has

already been done, which may be time consuming and unnecessary. However, you are not

starting completely from scratch as you have the existing codebase(s) to give you clues as to

how to go about achieving what you need. You can read through the existing code and docu-

mentation to get insights about how to build your own version. And you can use the old code

to test your new code and check that it works the same.

Overall, which codebase to use and whether to start again or not can be a difficult choice.

When looking through an old or confusing codebase, it is tempting to throw it all out and start

again. It is useful to consider Rule 1 and clarify your goals—what do you really need from the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 2 / 11

https://doi.org/10.1371/journal.pcbi.1011031


PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 3 / 11

https://doi.org/10.1371/journal.pcbi.1011031


code? What would be the advantages, and disadvantages, of using each codebase or starting

again? And you don’t need to decide right away, you can always come back to this decision

after spending some time getting to grips with other people’s code.

Rule 3: Read the documentation

The purpose of documentation is to help people understand the code, so it is worth taking a

look. We are not suggesting that you read through all the documentation like a novel, instead

use it as a reference. When first starting working with someone else’s code, it can be useful to

give the documentation a quick overview to see what is there. And when stuck on a problem, it

is worth referring to the documentation to see if your problem is covered. Any particularly

important or confusing parts of the code are more likely to be covered. Checking the docu-

mentation is useful even if it is wrong or sparse; if there is very little documentation, then, this

is an indication that the code probably wasn’t written according to good practices and may not

be very reliable.

Documentation includes obvious things like README files or online APIs. And it also

includes code comments, docstrings, variable and function names, and any tests that are writ-

ten. Often good projects will have online documentation that includes tutorials such as a “get-

ting started” section, which is a great place to start.

In the case where documentation does not exist or is incorrect, it can be useful to add your

own documentation. This can be very helpful not only for yourself, but also potentially other

people working with the code in the future. This does not have to be perfect or too formal.

Documentation is essentially just a set of notes about the code, which you will probably find

useful to make anyway as you are exploring the codebase. Saving these notes as documentation

means that it will be easier to come back to the code after weeks or months and refresh your

memory and jump right back in.

Adding to the documentation can be as simple as creating or adding to a README file,

which typically explains the functionality at a high level, but may also include installation steps

or highlight how to call specific functions via the API. In addition, you could add or change

comments within the code itself that explain how specific parts (functions, classes, or individ-

ual lines of code) work (or should work). A good rule of thumb is to imagine yourself coming

back to the code in a year’s time having forgotten everything and add documentation to help

your future self.

Rule 4: Work out how to run it

A foundational issue when working with other people’s code is to get it to run in the first

place. This may seem trivial but in fact can be a very difficult step. Software runs in an environ-

ment that includes the operating system, programming language, dependencies, and even

hardware. Code that works on one computer might not work on another. This is especially a

problem with older code—a recent Nature article challenged researchers with the question of

whether they could run research code from 10 years hence, finding issues related to obsolete

environments coupled with incomplete documentation [7].

Often the main issue with running other people’s code is using the correct version of the

programming language and the code dependencies. Programming languages and individual

packages are often updated to add new features and functionality. Sometimes these changes

Fig 1. The 10 rules can be broken down into the categories of planning, understanding, changes, and publishing.

Working with other people’s code is not a step by step process. As you build your understanding of the code, your

goals may change and that will influence how, and whether, you make changes.

https://doi.org/10.1371/journal.pcbi.1011031.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 4 / 11

https://doi.org/10.1371/journal.pcbi.1011031.g001
https://doi.org/10.1371/journal.pcbi.1011031


are made with backwards compatibility in mind, so that older code should still work in the

new version, but other times this is not the case. Beyond programming languages and depen-

dencies, there may be issues with using a specific operating system, having a specific database

installed, or hardware such as graphics cards, sensors, or even requiring a floppy disk drive.

In order to work out how to run the code, a good first step is to simply try and run it as it is

in your current environment. If it doesn’t work, then the computer will likely raise an error

message that should give you a clue about what is going wrong. You can also look in the docu-

mentation. Good documentation will clearly state the intended environment including the

programming language and package versions required. Unfortunately, this is not always

included. Another option is to use internet searches to work out what versions of the software

were the latest releases when the code was written and work backwards from there.

As you work out the specific environment that the code needs to run, you can start replicat-

ing that environment on your computer. This might be as simple as using an older version of a

programming language and installing specific versions of dependencies. If you do not want to

change the environment on your computer, then you can instead create a sandbox to run the

code in. A virtual environment allows you to run code with specific versions of a programming

language and packages. Beyond that, a virtual machine can emulate an entire computer system

(e.g., running a virtual Windows instance on a Mac). There are many options for virtualisa-

tion, and the best option will depend on your current computer and the system that you want

to virtualise.

It may be that someone else has already worked out a virtualisation setup to run the code.

For example, Conda has templates for virtual environments for programming language and

package versions that are designed to run specific code. And DockerHub includes Docker tem-

plates to set up entire virtual machines. Conda and DockerHub are both community-driven

platforms and you can also contribute your own virtualisation setups to help others (and your

future self). Even with all this, it might actually be impossible to run the code on your machine.

For example, code written to run on a high performance computer such as a supercomputer

might simply not be compatible with your laptop.

It may be that you run into issues that are not simply about finding the right environment.

For example, it might not be clear what kind of input is required. And some functionality may

work okay while other parts of the code raise errors. To confound these issues, the error mes-

sages themselves may not give good clues to the problem. In these cases, you will probably

need to dig more deeply into parts of the code and try and work out exactly how it works. This

can be time consuming and requires patience and persistence. Debugging tools can be a help

here, which allow you to track the execution of code step by step and see what kind of

resources and data are being used. Of course, there is always the possibility that parts of the

code are simply broken, and you may need to do more rigorous testing (Rule 5: Test it does

what you expect) or make changes (Rule 8: Think before making changes).

Rule 5: Test it does what you expect

In 2006, Geoffrey Chang, a rising academic star, retracted several high profile papers in Science

due to a software bug [10]. In these papers, Chang had used some code to compute the struc-

tures of proteins. Unfortunately this code, which was inherited from another lab, included a

small bug that meant that the resulting protein structures were not correct. This problem

might have been caught earlier with better software testing. Everyone agreed that the error was

unintentional, and fortunately, Chang went on to have a successful academic career, but never-

theless this should serve as a cautionary tale.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 5 / 11

https://doi.org/10.1371/journal.pcbi.1011031


When working with someone else’s code, testing is a great way to check what the code does

(and doesn’t do) and verify that it actually works. Often a project will already have tests, and

finding and running these should be the starting point. These are usually found in a folder sim-

ply called “tests” or similar and ideally the documentation will include instructions for running

those. Running the tests will further familiarise you with the codebase, and the existence (or

lack of) tests also gives you a way to gauge the quality of someone else’s code. You may even

find tests that fail—in which case, you could consider making changes to fix the code (Rule 8:

Think before making changes).

Beyond the existing tests, you might want to write your own. A good place to start is with a

sanity check, a simple example where you can verify that the code gives you the correct answer.

For example, one colleague was working with a function to extract words and counts from

large pieces of text. They could check this worked in a simple case by passing in the sentence

“the quick brown fox jumps over the lazy dog.”

While sanity checks are worthwhile, automated tests are more thorough. This can be as sim-

ple as automating a sanity check by writing a test to check that the output of a function is cor-

rect. Commonly, this is achieved by using an “assert” statement that raises an error if the

output is not what is expected. This is a form of unit test, which checks that a specific unit of

the software, in this case a function, works as expected. Most programming languages include

unit testing functionality or libraries, which include assert statements as well as ways to run

many tests quickly and easily.

Another common type of test is a functional test—in this case, you can check that the soft-

ware as a whole does what you expect. For example, you may aim to replicate a figure from a

paper, which will act as a kind of test on the software used to generate the analysis for the fig-

ure. Functional tests can be a good way to check that the code does what it should do without

having to know too much about how the code works.

With both unit and functional tests, you will need some data to check the results with. The

codebase may already include some demo data, which is a good first place to start, and also

serves as a good example of the data format that the code requires. You may want to add your

own testing data, which could be real data, e.g., in the case of replicating a figure. Or you could

simulate data, e.g., you could simulate data with known parameters in order to check that a fit-

ting algorithm gives reasonable results. With real or simulated data sets you may not know the

“correct” answers and so it is common to use another existing tool to verify the results, where

possible.

Overall, the depth and type of testing that you need will depend on your specific goals (see

Rule 1: Clarify your goals). In many cases, a few simple sanity checks will be enough to verify

that the code is working as expected. More rigorous testing is needed when there are question

marks over the quality of the code and when the correct performance of the code is critical.

Rule 6: Break it down and sketch it out

In software engineering, it is often a good strategy to decompose a problem down into smaller

units or modules, and then, put those units together to solve a complex problem. The same

thing applies to working with other people’s code. Breaking the code down and working out

what each part of it does is often much easier than trying to do it all at once.

A good approach to this method is to draw out how the code works and how the parts inter-

act [8]. This doesn’t need to be perfect and can simply be a quick sketch with a pen and paper

or a blackboard (see Fig 2 for an example). You may want to visualise how the code is struc-

tured, how data is passed around, which functions call other functions, etc. Just getting some-

thing down on paper can help to visualise the system.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 6 / 11

https://doi.org/10.1371/journal.pcbi.1011031


Depending on the project and your aims, you may decide to formalise these drawings by

designing a figure using visualisation software. You could include this in a write up of a project

or add it to the documentation for the codebase. For those interested, you can even use the

Unified Modelling Language [11], a generalised way of visualising software systems.

Rule 7: Ask for help

Research is a collaborative endeavour and it can be easy to forget that help is available—you

don’t have to do this on your own. Collaboration is especially useful when working with code,

as people have widely varying levels of knowledge and skills in a variety of programming lan-

guages and paradigms. Leveraging existing knowledge is a great tactic to increase your own

research efficiency. There are many avenues for getting help:

• Google (or other search engines). Software developers rely on search engines to help them

code, with 1 study finding that developers spent around 20% of their time searching the web

[12]. When it comes to working with other people’s code, Google searches including the

name of the project can reveal online resources such as code repositories, tutorials, forums,

and more. More generally, Google is a great resource for finding code snippets, short expla-

nations, and diagnosing errors—a good search strategy is to copy and paste error messages

directly into Google.

• StackOverflow is a useful resource and is often found in Google search results. This online

portal allows users to ask and answer specific coding questions. Almost all of our colleagues

use StackOverflow to search for problems they have with code—often someone has already

asked and answered a question that you have. If you cannot find a solution through search-

ing, it is also worthwhile asking your own question, and you will often get answers immedi-

ately. It might be that the codebase you are working on is too obscure to reference directly.

Even then, you can post blocks of code or ask more general questions and get help. Other

useful portals include W3Schools and Quora, and there are forums that specialise in specific

research fields such as BioStars for bioinformatics.

• GitHub. Many projects will have code hosted on GitHub (see Rule 9: Use version control),

which is the industry and academic standard for hosting and sharing code repositories. If

you have an issue with the code such as a bug, a suggested new feature, or just a question,

then you can raise this on the repository using GitHub Issues, which can then be answered

or fixed by the project developers. This is best practice and the preferred way of raising issues

for many developers. Before raising an issue, it is worth checking through past issues to see if

your problem has been addressed.

Fig 2. An example rough sketch for a text analysis project. The project involved programmatically downloading

data, cleaning that data, analysing it using specific metrics, and producing plots. By sketching it out, you are able to see

the general workflow and how different parts of the code can be thought of independently.

https://doi.org/10.1371/journal.pcbi.1011031.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 7 / 11

https://doi.org/10.1371/journal.pcbi.1011031.g002
https://doi.org/10.1371/journal.pcbi.1011031


• Other project portals. Ongoing software projects often have various online resources to get

help. This could include chat platforms such as Slack, Gitter, Discord, and forums. These

may be linked from the GitHub page or you can find them by Googling.

• Collaborators. If you have collaborators then ask them. They may be willing to help or may

even have used the code before in the past.

• Other researchers. There is a good chance that other people have also worked with the code

before. You can check papers that cited the software or associated research articles. If the

code is hosted on GitHub, you can check the issues on the repository page or see if it has

been forked (see Rule 9: Use version control). Or you can search GitHub for the repository

name and look for other versions. If you get lucky, someone might have already done the

work of getting to grips with the codebase. They might be happy to send you resources or

even come on board as a collaborator.

• The original authors. There is one group of people who, at one point, fully understood the

code (hopefully). It is worth getting in touch with the original authors. They might be willing

to answer specific questions, they might have some documentation that they haven’t pub-

lished online, or they might want to collaborate. They will probably be happy that you are

using their code. If the code is an ongoing project, then they may even be willing to add func-

tionality that you request or fix a bug.

• Research software engineers. Depending on your institutional affiliations, you may have

access to help from a team of research software engineers. This could be in the form of gen-

eral advice or support or they might be willing to take on a project related to the codebase

and work with you.

The act of articulating the problem itself can often lead to the insight that can solve the

problem; there are quite a few StackOverflow posts where the accepted answer comes from the

original poster! This is sometimes called rubber ducking, named after a programmer who

would explain problems to a small yellow rubber duck that they carried with them—just

explaining the problem often made the solution more obvious [13].

It may be that you feel so lost that you cannot even articulate the problem. In this case, you

can still reach out for help—it is perfectly acceptable to get in touch with someone and simply

say that you do not know where to start. If nothing else, they can offer emotional support.

Rule 8: Think before making changes

When we think about using other people’s code, or software development in general, we think

about hacking away and writing code. The temptation is to jump in and start “improving” the

code, especially if it is poorly written. But ask if you actually need to make changes. The most

efficient way of completing a task is to realise that you don’t need to do it at all. Often changes

are necessary but take a second to think first before jumping in.

Making changes can have unintended consequences, with those consequences becoming

more likely the less that you understand what the code is doing. What appears to be badly writ-

ten code may have been written in that way for some important reason. As soon as you change

code, you change the ground truth of what the code does and you can no longer be sure if its

behaviour is as was intended or was instead caused by your changes.

The book “Working effectively with Legacy Code” [8] identifies four reasons to change

code:

• Fixing a bug. Fixing something that is broken.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 8 / 11

https://doi.org/10.1371/journal.pcbi.1011031


• Adding a feature. Extending the functionality.

• Refactoring. Changing the design without changing the functionality.

• Optimising. Changing the performance without changing the functionality.

When making a change, the aim is not to break things and to make the change efficiently.

For this reason, it is useful to specify exactly what the aim of the change is, and do only that.

For example, while fixing a bug you might notice a loop that could be easily optimised—resist

the temptation! The efficiency of this loop is probably not important, and every change that

you make could cause a serious problem. As renowned computer scientist Donald Knuth says,

“We should forget about small efficiencies, say about 97% of the time: premature optimization

is the root of all evil” [14].

The best practice when making changes is to write some unit tests before you change any-

thing that cover the existing functionality, as well as tests that will cover any new functionality

that you want to add (see Rule 5: Test it does what you expect). Then, once you make the

changes you can run those tests to check that you didn’t break anything and that your changes

have worked. This can be relatively simple. For example, if you are refactoring a specific func-

tion then you can write some automated tests beforehand based on the current outputs of the

function (this is called a characterisation test). After you make the changes, you can then run

the tests to make sure that the refactoring has not changed the functionality. It is also helpful

to describe any changes that you make in the documentation, including what was changed and

why (see Rule 3: Read the documentation and Rule 9: Use version control).

Rule 9: Use version control

Version control is by far the best way to backup, share, collaborate, and track changes with

code. In spite of this, we know plenty of colleagues who email each other code, use a shared

Dropbox or Google Drive, or do not backup their code at all. If you do not regularly use ver-

sion control, then this is the most important rule for you.

When we say version control, we usually think of Git and GitHub. GitHub has free

accounts that include unlimited code repositories that can be private or public. Other options

are available such as BitBucket. If code (or data) is sensitive and cannot be sent to GitHub’s

servers, then there are options such as GitLab that allow you to run your own private Git

server.

Learning to use Git can feel intimidating but it is actually very simple to get started. You do

not need to be an expert and just being able to push and pull changes is all you need to be effec-

tive. We will not reproduce here a guide to using Git as there are a wealth of existing resources.

For beginners, we recommend working through the PLOS article, “A Quick Introduction to

Version Control with Git and GitHub” [15], which should take about an hour. For those more

interested, the Pro Git book [16] is a useful resource, alongside many other online guides and

tutorials.

You may find yourself in a situation where the code you have inherited is not already stored

in a version controlled repository. You could start by moving the existing code into a Git

repository and create a starting commit which adds all of the files. Any changes that you your-

self make can then be tracked in the usual way with subsequent commits. Doing this ensures it

will always be possible to move the code back to a previous state, even when mistakes are intro-

duced, leaving you free to modify the code without fear of losing the original version of the

code you inherited.

For advanced users, Git also gives access to a range of useful tools such as GitHub Actions,

which allows you to automate parts of your workflow. This can include automated testing to

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 9 / 11

https://doi.org/10.1371/journal.pcbi.1011031


check that code changes have not broken anything and that the tests in the project still pass.

Git also allows for easy versioning of code, so that you can rewind a codebase to a specific ver-

sion or time, which is important for research reproducibility.

Rule 10: Publish

Depending on your goals, you may have made changes to the code and/or documentation.

Why not share those changes? It is often the case that other people will have the same goals

from using the code as you had, and your changes could save them a lot of time and difficulty.

The standard for sharing code in both research and industry is GitHub (see Rule 9: Use ver-

sion control). If the code is already published as an existing GitHub repository, then you can

“fork” it to create a copy of the repository with your changes. Depending on what those

changes are, you may even make a “pull request” to the existing repository to incorporate your

changes in the original codebase. If there is no existing repository, then you can always create a

new one.

A small note of caution: Before publishing changes to someone else’s code, it is a good idea

to check that this is allowed in the software licence. The licence will often be in the main direct

project directory as “LICENSE.txt” or similar. While much of research software is published

under permissive open source licences, this is not always the case and should be checked. And

even open source licenses may have conditions such as attribution to the original author.

Beyond selflessly contributing to the research community, sharing changes can help your

own career. Publishing code online will build your online profile and reputation, which can be

helpful when applying for jobs or other opportunities. Other researchers who see your code

may reach out to collaborate. And you may even have other people contribute to and improve

your codebase, or even just identify bugs that you missed.

Publishing code is a good practice to get into. Often if we know that code will be published,

then we write it to a higher standard, and avoid lazy shortcuts that can cause problems down

the line for ourselves and others. There is an increasing movement in research to publish code

alongside research projects [6], and this is much easier if you are already in the habit. Publish-

ing code will also make it easier for others, and yourself, to replicate your work at a future date.

One of our colleagues tells a story of being contacted several years after a paper was published

to collaborate on a similar project, a great opportunity which they almost had to turn down—

they couldn’t find their code because it was written on an old laptop that they no longer had

access to. Luckily, they realised that they had published the code on GitHub and as such the

collaboration was possible.

Conclusion

Reflecting on working with other people’s code can help you to write better code too. Being

exposed to different coding practices, design patterns, tools, etc., will broaden your program-

ming knowledge. And importantly, negative experiences and frustrations can act as visceral

lessons in what not to do.

Working with other people’s code is an important part of modern academic life in many

fields and will continue to be so. It can be a frustrating, difficult, and challenging experience. It

is worth spending some time thinking about how best to approach this common problem. We

hope that this article has served this purpose and that the reader has taken away at least some

small tip about working with other people’s code.

Author Contributions

Conceptualization: Charlie Pilgrim, Paul Kent, Kasra Hosseini, Ed Chalstrey.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 10 / 11

https://doi.org/10.1371/journal.pcbi.1011031


Project administration: Charlie Pilgrim.

Visualization: Charlie Pilgrim.

Writing – original draft: Charlie Pilgrim, Paul Kent, Kasra Hosseini, Ed Chalstrey.

Writing – review & editing: Charlie Pilgrim, Paul Kent, Kasra Hosseini, Ed Chalstrey.

References
1. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533 (7604). https://doi.org/10.1038/

533452a PMID: 27225100

2. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research.

PLoS Comput Biol. 2013; 9(10):e1003285. https://doi.org/10.1371/journal.pcbi.1003285 PMID:

24204232

3. Lee BD. Ten simple rules for documenting scientific software. PLoS Comput Biol. 2018; 14(12):

e1006561. https://doi.org/10.1371/journal.pcbi.1006561 PMID: 30571677

4. Prlić A, Procter JB. Ten simple rules for the open development of scientific software. PLoS Comput Biol.

2012; 8(12):e1002802. https://doi.org/10.1371/journal.pcbi.1002802 PMID: 23236269

5. Hunter-Zinck H, de Siqueira AF, Vásquez VN, Barnes R, Martinez CC. Ten simple rules on writing

clean and reliable open-source scientific software. PLoS Comput Biol. 2021; 17(11):e1009481. https://

doi.org/10.1371/journal.pcbi.1009481 PMID: 34762641

6. Peng RD. Reproducible research in computational science. Science. 2011; 334(6060):1226–1227.

https://doi.org/10.1126/science.1213847 PMID: 22144613

7. Perkel JM. Challenge to scientists: does your ten-year-old code still run? Nature. 2020; 584(7822):656–

659. https://doi.org/10.1038/d41586-020-02462-7 PMID: 32839567

8. Feathers M. Working Effectively with Legacy Code. Prentice Hall Professional; 2004.

9. Balaban G, Grytten I, Rand KD, Scheffer L, Sandve GK. Ten simple rules for quick and dirty scientific

programming; 2021.

10. Miller G. A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science. 2006; 314

(5807):1856–1857. https://doi.org/10.1126/science.314.5807.1856 PMID: 17185570

11. Pooley R, King P. The unified modelling language and performance engineering. IEE Proc Softw. 1999;

146(1):2–10.

12. Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR. Two studies of opportunistic program-

ming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems; 2009. p. 1589–1598.

13. Thomas D, Hunt A. The Pragmatic Programmer: your journey to mastery. Addison-Wesley Profes-

sional; 2019.

14. Knuth DE. Structured programming with go to statements. ACM Comput Surv (CSUR). 1974; 6(4):261–

301.

15. Blischak JD, Davenport ER, Wilson G. A quick introduction to version control with Git and GitHub. PLoS

Comput Biol. 2016; 12(1):e1004668. https://doi.org/10.1371/journal.pcbi.1004668 PMID: 26785377

16. Chacon S, Straub B. Pro git. Springer Nature; 2014.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011031 April 20, 2023 11 / 11

https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/27225100
https://doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pubmed/24204232
https://doi.org/10.1371/journal.pcbi.1006561
http://www.ncbi.nlm.nih.gov/pubmed/30571677
https://doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pubmed/23236269
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1371/journal.pcbi.1009481
http://www.ncbi.nlm.nih.gov/pubmed/34762641
https://doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pubmed/22144613
https://doi.org/10.1038/d41586-020-02462-7
http://www.ncbi.nlm.nih.gov/pubmed/32839567
https://doi.org/10.1126/science.314.5807.1856
http://www.ncbi.nlm.nih.gov/pubmed/17185570
https://doi.org/10.1371/journal.pcbi.1004668
http://www.ncbi.nlm.nih.gov/pubmed/26785377
https://doi.org/10.1371/journal.pcbi.1011031

