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Abstract

Machine learning classifiers are designed with the underlying assumption of a

roughly balanced number of instances per class. However, in many real-world

applications this is far from true. This thesis explores adaptations of neural networks

which are robust to class imbalanced datasets, do not involve data manipulation,

and are flexible enough to be used with any model architecture or framework. The

thesis explores two complementary approaches to the problem of class imbalance.

The first exchanges conventional choices of classification loss function, which are

fundamentally measures of how far network outputs are from desired ones, for ones

that instead primarily register whether outputs are right or wrong. The construction of

these novel loss functions involves the concept of an approximated confusion matrix,

another use of which is to generate new performance metrics, especially useful

for monitoring validation behaviour for imbalanced datasets. The second approach

changes the form of the output layer activation function to one with a threshold which

can be learned so as to more easily classify the more difficult minority class. These

two approaches can be used together or separately, with the combined technique

being a promising approach for cases of extreme class imbalance. While the methods

are developed primarily for binary classification scenarios, as these are the most

numerous in the applications literature, the novel loss functions introduced here are

also demonstrated to be extensible to a multi-class scenario.



Impact Statement

Classification is arguably the most common current application area of machine

learning. While in many cases, such as recommender systems (“is this movie going

to appeal to the subscriber, or not?”), errors are not of much importance, there are

other, such as medical diagnosis and screening, where errors, in particular ones

in which a positive (in general, having the property that the classifier seeks to

identify) instance that is missed (referred to as a false negative or Type-II error) may

have serious consequences. However, classifier systems tend to frequently display

these types of errors when the number of positive cases is small compared to the

number of negative ones. This thesis addresses the problem of classification in such

imbalanced scenarios, and presents novel methods that help avoid false negatives

in these situations. The novel methods of this thesis are of two kinds: the first

changes the representation of the classification problem so that learning is more

aggressively directed toward the correct classification of both negative (majority)

and positive (minority) examples, and the second helps the system to more easily

correctly classify the minority type. Taken together, these novel tools are a significant

extension to the current toolkit for classification in machine learning that has also, as

has been emphasised above, the potential for a substantial practical value.
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Chapter 1

Introduction

This chapter provides an overview of the thesis. First a framing of the topic and the

motivations for its research are introduced. Next, the objectives of the research are

discussed and a high-level overview of the research and scientific contributions are

established. It concludes with a summary of the structure of the subsequent sections.

1.1 Research Motivation

Effective classification with imbalanced data is an important area of research, as

high class imbalance is naturally inherent in many real-world applications, such as

medical imaging [9], seismology [10] and fraud detection [11]. However, machine

learning classifiers are designed with the underlying assumption that the dataset

under study has a roughly balanced number of instances per available class, and

if trained to minimise a standard loss such as cross entropy will typically fall into

the trap of achieving a low error by focusing primarily on the majority class, with

many minority examples misclassified. This can give rise to large problems given

that the minority class is usually the one of interest, the one in which errors are

least acceptable (for example, the misclassification of a tumour image as healthy,

the majority class, is likely to be far more problematic than the converse, a false

alarm). The issues surrounding imbalanced classification were in the early years of
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machine learning less well appreciated, in part due to the dominance of the accuracy

performance measure, which can be extremely deceptive in cases of class imbalance

(for example, a classifier that predicted all examples to be of the majority type, and

was therefore in practical terms useless, would, if the majority comprised 95% of the

data, be even so termed “95% accurate”).

Performance measures such as the F1-Score [12] and Matthews Correlation

Coefficient (MCC) [13], are far less deceptive (both would return a value of zero for

the previous example), and the now-widespread use of these in results reporting has

clarified the extent of the problem. But there is a difference between acknowledging

a problem and solving it. While the number of papers dealing with imbalanced

classification has grown very quickly in recent years, as highlighted in Figure 1.1,
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Figure 1.1: Number of publications on ‘class imbalance’ by year. Data from [1].

the problem is far from solved, and many applications papers handle the problem

by largely ignoring it, reporting results on artificially balanced datasets with no

guarantee that their results will extend to the imbalanced data found in reality (for

example, [10] comments on such issues in relation to the problem of detecting

earthquake signals in seismic waveforms). In addition, popular methods for handling

class imbalance, such as those that artificially augment the minority class examples,
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have been criticised as introducing potentially deceptive bias and/or being difficult

to implement, changing the model architecture to one with which the user may be

less familiar (a potential barrier to adoption in applications-focused work). Hence,

there is room for new work in this field, especially interventions that do not require

any manipulation of data or large changes to familiar machine learning models.

In addition, there is room for work that tackles the challenge of the extreme class

imbalances that can be found, for example, in the area of fraud detection.

In summary, this thesis is motivated by the requirement for methods to address

the class imbalance problem that are:

• Flexible, intuitive, easy to implement, and do not require data manipulation or

the pre- or post-specification of numerous parameters.

• Able to demonstrate performance improvements on real-world datasets which

either match or improve on the current state of the art.

• Extensible to application areas of extreme class imbalance, where the ratio of

majority to minority examples is of the order of 100s or 1000s.

1.2 Research Contributions

This thesis explores adaptations of neural networks which are robust to class im-

balanced datasets and flexible enough to be used with any model architecture or

framework. A key advantage of the approaches taken here is that researchers can

develop classifiers without manipulating the data or changing the model architecture,

two disadvantages within existing approaches that were noted above. The work

presented here considers two complementary approaches to the problem of class

imbalance. The first approach replaces traditional classification loss functions, like

cross-entropy, which primarily focus on measuring the error between network out-
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puts and desired outputs, with loss functions that mainly determine if the outputs are

correct or incorrect based on a predefined threshold (typically 0.5 for classifiers with

outputs between 0 and 1). The construction of these novel loss functions involves

the concept of an approximated confusion matrix; an additional use of this matrix

is to generate metrics for performance measurement that give a more complete pic-

ture of the progress of training for imbalanced datasets, and are especially valuable

for monitoring validation behaviour. The second approach changes the form of

the output layer activation function to one with a trainable asymmetry, so that the

classification threshold is no longer necessarily 0.5 but can now be learned so as to

favour the classification of the minority class, examples of which might otherwise

tend to be misclassified as belonging to the majority. These two approaches can be

used together or separately, with a combined technique being a promising approach

for instances of extreme class imbalance, where the ratio of negative to positive

examples is of the order of 1000s. These two complementary methods are developed

primarily for binary classification scenarios, as these are the most numerous in the

applications literature; however, the novel loss functions introduced here are also

demonstrated to be extensible to a multi-class scenario.

In summary, the contributions of this thesis are:

• Novel classification-focused loss functions that are parameter-free and demon-

strated to be effective across a range of problems and domains.

• The use of an approximated confusion matrix as a source of valuable metrics

for monitoring training behaviour for imbalanced datasets.

• Demonstration that these loss functions can additionally be generalised for

effective use in multi-class scenarios.

• A novel output layer activation function that can complement the use of the
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above loss functions by making it easier to classify minority examples.

1.3 Related Publications

Parts of this thesis have been published in the European Symposium on Artificial

Neural Networks (ESANN):

D. Twomey and D.Gorse (2018), A neural-network cost function for highly

class-imbalanced data sets, Proceedings of the 26th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning,

Bruges, Belgium, April 25-27, 2018,

and submitted to the International Conference on Artificial Neural Networks

(ICANN):

D. Twomey and D.Gorse (2022), ASTra: A Novel Algorithm-Level Approach to

Imbalanced Classification, Proceedings of the 31st International Conference on

Artificial Neural Networks, Bristol, United Kingdom, September 6-9, 2022.

1.4 Thesis Outline

The structure of the remaining parts of this thesis is as follows:

• Chapter 2 (Background) provides the necessary background to this work

and a survey of related literature. The background section first introduces

the problem of class imbalance, then covers the substantial topic of how

performance should best be measured in situations of class imbalance. This

chapter concludes with a literature survey reviewing existing approaches to the

problem of class imbalance, gradually focusing on the main area of this thesis:

algorithm-level adaptations which focus on the loss objective and final-layer

activation.
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• Chapter 3 (Geometric Mean as a Classification-Focused Training Loss) ex-

plains how, by looking at a confusion matrix of model predictions, it is possible

to understand the difficulties in using standard (regression-focused) loss func-

tions as a proxy for training classifiers. This motivates the presentation of

an approximated form of the confusion matrix, from which differentiable

forms of well known class-imbalance-robust performance measures such as

the geometric mean (G-Mean) can be defined. The outperformance of this new

approximated G-Mean loss against standard loss functions is demonstrated

on a wide set of common class-imbalanced UCI datasets, and on a challeng-

ing real-world dataset relating to a specific, and regularly occurring, form of

manipulation of cryptocurrency markets.

• Chapter 4 (Classification-Focused Training Metrics: Alternatives & Extension

to Multi-Class Scenarios) considers alternatives to the G-mean loss of the

previous chapter, introducing further novel loss functions based on the F1-

Score and the MCC. These, together with the G-Mean loss, are then applied

to the problem of image segmentation (classification at the pixel-level), for

two publically available medical image datasets, with results that are at least

competitive with the state of the art. The use of novel loss functions is then

extended to the multi-class domain, specifically the problem of Long Tailed

Recognition (LTR), with results in this instance significantly better than the

current state of the art.

• Chapter 5 (Boosting Performance for Extreme IR: ASTra, a Complementary

Approach to Imbalanced Classification) introduces a novel output layer activa-

tion function to facilitate the classification of minority examples in scenarios of

high class imbalance. ASTra is applied to the most imbalanced datasets from
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a recent extensive study of ensemble classifiers and achieves performances

comparable to the state of the art, despite restricting the models to very simple

single hidden layer networks with a small number of neurons (between three

and 12 hidden neurons). ASTra can be used on its own; however it is shown

that its combination with the G-Mean from Chapter 3 can provide performance

benefits on the most extreme class-imbalanced problems.

• Chapter 6 (Summary & Conclusions) discusses the research presented in this

thesis, reflecting on the aims outlined in the first chapter and the solutions

subsequently found to address them. Future research possibilities are provided,

along with concluding remarks.



Chapter 2

Background

This chapter introduces the necessary domain and technical background relevant

to themes present in this research. This begins with an introduction to the class

imbalance problem and why it is of such importance in real-world settings, then

introduces necessary machine learning concepts used in subsequent chapters, with a

focus on classification under class imbalance. Lastly, we explore the literature for

clues as to how others have attempted to solve the problem categorising approaches

into that of data-level, algorithm-level, and hybrid approaches.

2.1 The Class Imbalance Problem

Supervised learning methods require labelled training data, and in a classification

task, each data sample belongs to a known class or category [14]. In a binary

classification setup, where data samples belong to one of two classes, class imbalance

is said to occur when one class, the minority class, contains significantly fewer

samples than the other class, known as the majority class. Typically, the minority

group is the class of interest (i.e. the positive class) [15]. This form of imbalance is

referred to as between-class imbalance, which is measured as a ratio between the

majority and minority class. For example, a dataset with 100,000 examples with just

1,000 labelled as the minority class is described as having a class imbalance of 100:1.
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It is not uncommon for datasets to contain class imbalances of the order of 100:1,

1,000:1, or even 10,000:1, where in each case, one class severely out-represents

another [16, 17].

The class imbalance problem can be generalised to multi-class data, where the

number of majority classes or minority classes may be one or more [18]. This chapter

focuses primarily on class imbalance in the two-class binary setting, with a more

specific examination of multi-class class imbalance found in Chapter 4. However,

for either the binary (number of classes K=2) or multi-class (K > 2) cases, class

imbalance is generally represented as the maximum between-class imbalance level,

defined by the Imbalance Ratio (IR) ratio, given by

IR =
maxi |Ci|
mini |Ci|

, i = 1..K, (2.1)

where Ci is the set of all examples in class i, and maxi |Ci| and mini |Ci| return the

maximum and minimum class size over all i, respectively [15].

Class-imbalanced problems naturally arise in many applications, examples of

which include the medical diagnosis task of detecting disease [19, 20, 21, 22, 23],

where the majority of patients are healthy but detecting those with the disease is

of greater interest, and fraud detection [24, 25, 26] where the detection of rare, but

costly, fraudulent transactions in a payments network is desirable. Other examples

include computer security [27, 28], fault detection [29, 30], oil-spill detection [16],

and earthquake prediction [31, 32]. Furthermore, new class-imbalanced problems

appear all the time, for example the recent rise in fake job descriptions appearing on

online social networks [33].

When the imbalance is a result of naturally occurring frequencies of data (e.g.

medical diagnoses where the majority of patients are healthy), this is referred to as

intrinsic imbalance. In contrast, extrinsic imbalance occurs when class imbalance
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is introduced through external factors such as data collection or storage procedures

[34].

An imbalance in the data distribution, whether intrinsic or extrinsic, can present

challenges for classification. It is often the case that when class imbalance exists

within training, models will typically learn to over-classify the majority group due to

its increased prior probability. As a result, the instances belonging to the minority

group are more often misclassified than those belonging to the majority group

increasing the chance of Type-II errors also known as false negatives. Furthermore,

some evaluation metrics, such as accuracy, may produce misleading results that

indicate good performance under such circumstances: a naive model which always

predicts the majority (negative) class on a dataset with only one positive sample

for every 100 will achieve a 99% accuracy, even though it has no real discretionary

power.

This having been said, some studies have asserted that class imbalance is

not always the primary factor that hinders learning, showing that for certain class-

imbalanced datasets the minority concept is accurately learned with little disturbance

from the imbalance [35, 36]. Indeed, some conclude that the primary determining

factor of classification deterioration is in fact dataset complexity, which, in turn, is

amplified by the addition of relative imbalance [37]. Data complexity is a broad

term that comprises issues such as overlapping, lack of representative data, small

disjuncts and others [34]. Japkowicz [38] examined the effect of class imbalance on

artificial datasets with various levels of complexity, training set size and degrees of

imbalance and concluded that sensitivity to imbalance increases as the complexity

increases, and that non-complex, linearly separable problems are unaffected by

any level of class imbalance. In fact, [39] argue that good results can be obtained,

regardless of class disproportion, if all groups are well represented and come from
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non-overlapping distributions.

It should also be noted that the number of minority samples is generally more

important than class imbalance per se. In other words, it is important to consider

the difference between relative imbalance and imbalance due to rare instances,

(also known as ‘absolute rarity’) [34]. In some domains, there exists a high class

imbalance but a reasonably large set of examples, in absolute terms, of the minority

class. This is referred to as relative imbalance. Unfortunately however, in other

domains, there may be a genuine lack of data due to the low frequency with which

events occur (e.g. detecting earthquakes or oil spills [16]), yet it is the minority

class which remains the class of interest. This is referred to as the imbalance due

to rare instances. For example, given a dataset with 10,000 examples and a 100:1

between-class imbalance, you would expect to see 100 minority class examples;

clearly, the majority class dominates the minority class. However, if you were to

double the sample size of the dataset, (for example in a biomedical study doubling

the number of trial participants), and the distribution remained the same, you would

have 200 examples of the minority class but the minority class is not now necessarily

rare in its own right, but only relative to the majority class. There is again an

emphasis on the quality of representation, and cases where the minority class is rare

or under-represented are where performance is more likely to be compromised [40].

[41] discusses the difficulties of learning from these rare events and explores various

machine learning techniques for addressing these challenges.

2.2 Measuring Performance Under Class Imbalance

The are two fundamental approaches to measuring classifier performance, applicable

both to balanced and imbalanced scenarios. The first is a threshold-based approach,

discussed in subsection 2.2.1, which revolves around a so-called confusion matrix
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(in some domains referred to as a contingency matrix), in which the count in a

given matrix cell is ultimately dependent on the choice of a threshold to which

the output of a classifier can be compared (for simplicity, we will consider in this

section only binary classification, the primary focus of this thesis). The second

approach to performance measurement allows this threshold to be varied, looking at

the performance of the model over all thresholds, in this way deriving a classification

threshold invariant measure, the best-known such measure being the Area Under the

ROC Curve (AUROC), which will be discussed in subsection 2.2.2.

2.2.1 Threshold Based Approach

The confusion matrix, referred to above, is defined as the matrix that tabulates

predicted vs. actual class instances. An element of the confusion matrix at row i and

column j represents the number of instances for which the predicted class is j and

the actual class is i. The confusion matrix in this way shows the ways in which the

classification model is ‘confused’ when it makes predictions [42].

Figure 2.1: Binary confusion matrix

Predicted Class

Negative Positive Total

Actual Class
Negative T N FP T N +FP

Positive FN T P FN +T P

Total T N +FN FP+T P N

For a binary problem, in which columns refer to the prediction labels and

rows to the actual labels (targets), the confusion matrix (CM) can be represented

by four quadrants, as in Figure 2.1, where T P denotes the true positives (correctly

predicted positive examples), T N denotes the true negatives (correctly predicted

negative examples), FN denotes the false negatives (positive instances predicted to

be negative), and FP the false positives (negative instances predicted to be positive).
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Often one of the best descriptors of classification performance that can be

derived from the confusion matrix is the matrix itself: it provides an insight not

only into the errors being made by a classifier, but more importantly the type of

the resulting errors. However, it is often more helpful to be able to describe a

model’s performance via a single performance measure, and it is possible to derive

a wide range of performance measures from the confusion matrix. This said, a

single metric can never even in principle be an ideal judge of the performance of

an algorithm and therefore several complementary measures should be taken into

account. Furthermore, in the presence of class imbalance, some metrics, such as

Accuracy, may provide a misleading picture [42], as will be emphasised below.

One of the most commonly used metrics used when evaluating classification

results is the Accuracy (Equation 2.2) and Error Rate (Equation 2.3):

Accuracy =
T P+T N

T P+T N +FP+FN
(2.2)

Error Rate = 1−Accuracy (2.3)

These measures provide a simple way of describing a classifier’s performance on a

given dataset. However, on class imbalanced datasets, both can be dominated by the

majority group (i.e. the negative class) and are therefore no longer reliable measures,

because they provide an over-optimistic estimation of the classifier ability on the

majority class [43]. For example, on a dataset whose positive group distribution is

just 1% of the dataset, a naive classifier can achieve a 99% Accuracy score simply

by labelling all examples as negative. Of course, such a model provides no real

discretionary power and thus no real value [15]. In other words, the Accuracy and

Error Rate metrics in this case do not provide adequate information on a classifier’s

functionality with respect to the type of classification required. Many works exist
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which examine the ineffectiveness of Accuracy for class-imbalanced problems, for

example [44, 45, 46], but the fundamental issue can be explained by inspecting the

confusion matrix (Figure 2.1). The first row represents negative instances of the

dataset and the last row represents positive instances. Therefore, any metric that

uses values from both rows will be inherently sensitive to imbalances.1 As can be

seen from Equation 2.2, Accuracy uses both rows’ information; therefore, as the

class distribution varies, measures of the performance will change even though the

underlying fundamental performance of the classifier does not [34]. This can be very

problematic when comparing the performance of different learning algorithms over

different datasets because of the inconsistency of performance representation.

Evaluation metrics commonly used in the research community to provide better

assessments of performance on imbalanced data problems include the Precision, also

known as the Positive Predictive Value (PPV) and Recall, also known as the True

Positive Rate (TPR):

Precision = PPV =
T P

T P+FP
(2.4)

Recall = TPR =
T P

T P+FN
(2.5)

However, taken individually, Precision or Recall are not necessarily a good indicator

of performance since one can arbitrarily improve the Precision if there is no con-

straint on the Recall (and vice-versa). This said, between them they capture some

information about the rates and kinds of errors made. However, these two measures

and their combinations, such as the F-measure defined below, only focus on the

positive examples and predictions, neither of them capturing any information about

1Some choose to represent the confusion matrix differently, for example with rows representing
the predictions and columns the actual classes, or swapping the Negative & Positive positions, but
this does not change anything provided the quadrants remain correctly labelled.
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how well the model handles negative cases since neither of them take into account

the True Negatives (TNs).

Despite the above caveats, the F-measure [12], defined by

F-Measure =
(1+β 2)×Recall×Precision

β 2 ×Recall+Precision
, (2.6)

is a well-known, and commonly recommended, metric for evaluating performance

under class imbalance, where the coefficient β can be adjusted to reflect the relative

importance of Precision vs. Recall. Compared to measures like Error Rate in binary

classification, the F-measure enforces a better balance between performance on the

minority and the majority class, respectively, though again it should be emphasised

that it does not address performance on negative examples. It is possible to generalize

the F-measure to a weighted harmonic average of the Precision and Recall, but for the

sake of simplicity, it is common to stick to the unweighted mean, which is referred

to as the F1-Score (where β = 1).

F1-Score =
2×Precision×Recall

Precision+Recall
(2.7)

In order to address performance on the negative class, we need other metrics

such as the Specificity, also known as the True Negative Rate (TNR),

Specificity = TNR =
T N

T N +FP
, (2.8)

and the Negative Predictive Value,

NPV =
T N

T N +FN
, (2.9)

A key metric used in the work of this thesis, the G-Mean, which evaluates the
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degree of inductive bias in terms of a ratio of positive accuracy and negative accuracy

[34], combines measures that evaluate performance on both positive and negative

examples, namely Recall and Specificity,

G-Mean =
√

Recall×Specificity

=
√

TPR×TNR

=

√
T P

T P+FN
× T N

T N +FP

(2.10)

However, the Matthews Correlation Coefficient (MCC) combines information

about positive and negative performance in a more complete way, and as such is

considered one of the most reliable metrics for measuring performance on class-

imbalanced datasets. It is a reliable statistical measure which only produces a high

score if predictions give good results in all of the four confusion matrix (see Figure

2.1) categories, proportionally to both the number of the positive elements and the

number of the negative elements in the dataset [47]. The MCC, which is a special

case of the φ (Phi) Coefficient [48], was originally developed by Matthews in 1975

for a comparison of chemical structures [13] and re-proposed by Baldi et al. [49] as

a standard performance metric for machine learning with natural extensions to the

multi-class setting. The MCC is in essence a correlation coefficient: an MCC score

of +1 represents a perfect prediction, 0 either no better than random or all assigned

to one class, and -1 an inverse prediction.

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
, (2.11)

Both the F1-measure and the MCC have been widely used in the classification

literature (the use of the G-Mean has been in comparison quite limited). The MCC



2.2. Measuring Performance Under Class Imbalance 32

has clear advantages over the F1 Measure. Firstly, in binary classification, the

MCC is invariant to positive and negative class labels being swapped, whereas the

F1 produces different results. While this issue can be overcome by extending a

macro/micro averaging procedure to make the F1 invariant to class swapping [50],

the procedure is biased and is still far from being accepted as standard practice by

the community [47, 51]. Secondly, unlike the MCC, the F1 score is independent of

the number of samples correctly classified as negative, since it does not examine the

number of true negatives (TNs). This obvious drawback/conceptual flaw has been

highlighted by [52], but the F1 still remains as one of the most widespread metrics

among researchers [47].

Aside from the above-discussed, many other metrics can be constructed from

the confusion matrix. This number is vast; as such, some less common or peripheral

metrics have been omitted from this discussion in the interest of space. In addition,

the same underlying metric is often referred to by different names across different

subject-domains. For completeness, Figure 2.2 illustrates the relationship between

different metrics, including some other metrics not covered previously in this chapter.

2.2.2 Classification Threshold Invariant Measures

The above subsection described approaches to measuring binary classification suc-

cess that were ultimately dependent on the choice of a threshold, with model outputs

above this threshold being assigned to the positive class, and conversely for the

negative class. While it is possible to consider threshold-modifying models, as in

Chapter 5, which allow the choice of a threshold to be largely circumvented, it is

also possible to construct performance metrics that are entirely independent of the

threshold, though these may not always be appropriate for use with imbalanced data,

as was noted in [53].

Receiver Operator Curves (ROC) and Precision-Recall (PR) curves provide
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Figure 2.2: Relationship diagram of different performance metrics which can be constructed
from the binary confusion matrix. Reproduced from [2]

such a diagnostic tool for binary classification models. They are constructed by

adjusting the decision threshold, (which by default for any classifier with outputs

in the range ∈ [0,1] would be set at 0.5, halfway between each outcome) between 0

and 1. The figure below (Figure 2.3) shows both a ROC and PR curve:

Figure 2.3: AUC calculation for the ROC curve-(left) and PR-curve (right). The ROC-curve
is composed of the false positive rate (x-axis) and true positive rate (y-axis). The
PR-curve is composed of the true positive rate (x-axis) and Precision (y-axis).

The ROC curve, the most common, allows a trade-off between the TPR and
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FPR: changing the threshold of classification will change the balance of predictions

towards improving the TPR, at the expense of the FPR, or vice versa, and the ROC

curve is constructed from the collection of points this generated. However, it can be

challenging to compare two or more classifiers based on their ROC curves. Instead

the “Area Under the Curve” (AUC) can be calculated to give a single score for a

classifier across all classification threshold values. This is called the ROC Area Under

the Curve or AUCROC (sometimes AUROC or ROCAUC). The score is between 0

(inverse prediction) and 1 (a perfect classifier), with a value of 0.5, appearing as a

diagonal line on the TPR-FPR plot, corresponding to a random output, and thus to

the worst performance one might expect to usually observe. The AUCROC can be

interpreted as the probability that the scores given by a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one [54].

Equivalently to the ROC case, the Precision-Recall AUC can be used as a sum-

mary statistic for the PR curve. AUCPR does not have a probabilistic interpretation

as the AUCROC does. The AUCPR of the random classifier varies with the prevalence

of the positive class, and its expected value is close to the proportion of positive

instances in the test set [55]. In the case of severe class imbalance these curves may

tell different stories, given that the PR curve focuses on the minority class alone,

whereas the ROC curve covers both classes. Davis & Goadrich [56] argue that when

dealing with highly skewed datasets PR curves are more informative, and better able

to distinguish models, than ROC curves, since Precision is directly influenced by

class imbalance, though noting that the calculation of AUC for PR curves is neces-

sarily more complex and time-consuming, given that the use of methods suitable for

ROC curves may for PR curves be prone to yielding an overly-optimistic estimate of

performance.

However, there have been some arguments raised against the use of either
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AUCROC or AUCPR. When taking classification costs into account, the model must

be fine-tuned to achieve optimal results, ultimately converging to a single point on

both the ROC and PR curves. Thus, a classifier with a higher AUC, which considers

the whole ROC or PR curve, does not necessarily give a better result [57]. Some

researchers suggest incorporating misclassification costs in conjunction with ROC

curves for model selection. For instance, [58] argue that optimal solutions can be

found as cut points on the ROC curves using tangents with specific slopes determined

by misclassification costs. However, this approach is not widely adopted, and

most academic studies examining classifier performance overlook the importance of

misclassification costs. In practice, these costs can be significant, with false negatives

often being more concerning than false positives. Consequently, basing judgments

on AUCs might lead to misleading evaluations of classification performance and

unwise choices of models in real-world applications.

2.3 Existing Approaches and Solutions to

Imbalanced Classification

Having discussed the various ways in which one can measure performance reliably

for imbalanced data classification tasks, the focus now shifts to ways in which

researchers have attempted to address and alleviate the problem. Hundreds of

algorithms have been proposed which can be broadly grouped into three categories:

data-level, algorithm-level, and hybrid approaches [15].

2.3.1 Data-Level Approaches

Data-level techniques aim to reduce the level of class imbalance through some form

of pre-processing which modify the training class distribution, the most common

data-level technique being re-sampling [4], in the form of either under-sampling or
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over-sampling. Under-sampling methods eliminate the potential harm of skewed

data distributions by discarding a number of instances from the majority class, which

also has the benefit of reducing the overall size of the training data, consequently

increasing the speed of classifier learning. The simplest, yet most effective, method

is Random Under-Sampling (RUS) which selects the instances to be removed in

a random fashion [59]. In contrast, over-sampling methods create and add new

minority class instances into training, with random over-sampling being the simplest

of these approaches; this randomly duplicates a certain number of samples from the

minority class and adds these back into the original data set [60].

Both under-sampling and over-sampling are very easy to implement; however

they introduce different trade-offs. Under-sampling can lead to a loss of important

information, while over-sampling can lead to over-fitting on the minority class.

Over-sampling, aside from causing and increase in training time due to an enlarged

training set, can suffer from over-fitting.

More complex over-sampling methods such as the Synthetic Minority Over-

sampling Technique (SMOTE) [61] have been developed to alleviate issues with

over-fitting. SMOTE and its variants [62, 63, 64] create artificial data based on the

similarities between existing minority samples, and have demonstrated a degree of

success on several applications [61, 65]. However, SMOTE draws criticism for ignor-

ing the original distribution of the dataset, leading to the possibility of erroneously

expanding the minority region producing a high variance in results and suffering

from over-generalisation [34, 66]. Other researchers have attempted to produce

alternatives to SMOTE that can generate high-quality synthetic instances, though

these tend to be domain-specific in application. For example, [67] used GANs to

generate synthetic seismic waveform data, while more recently [68] used an ap-

proach they called ”DeepSMOTE” to augment several benchmark image datasets.
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Other researchers have explored alternatives to SMOTE for generating high-quality

synthetic instances, although these approaches are often domain-specific in their

application. For example, [67] used GANs to generate synthetic seismic waveform

data, while more recently, [68] employed an approach called ”DeepSMOTE” to aug-

ment several benchmark image datasets. In addition, [69] proposed using Variational

Autoencoders (VAEs) for synthetic data generation in the context of imbalanced

learning.

2.3.2 Algorithm-Level Approaches

Algorithm-level approaches involve performing specific modifications on the algo-

rithms dedicated to improving a given classifier. The most common modification

involves cost-sensitive learning, which seeks to re-balance classes by adjusting the

loss for different classes during training [4]. The method tackles the imbalanced

learning problem by using different cost matrices that describe the costs of misclas-

sifying any particular data example. Some argue that there is a strong relationship

between cost-sensitive learning and learning from imbalanced data, and that conse-

quently the theoretical foundations and algorithms for cost-sensitive methods can

naturally be applied to imbalanced learning problems [70, 41, 45]. Cost sensitive

learning is often more computationally efficient than data-level approaches, but re-

mains less popular [8]. [71] conclude that the unpopularity of cost sensitive learning

is caused by both the difficulty in determining the appropriate misclassification costs

a priori, as this requires domain knowledge, and the lack of support provided in

many machine learning packages.

The form of cost-sensitive adaptation that best matches the approach employed

in Chapters 3 and 4 is to replace a loss function based on distance of an output from

its target with one based on classification success. For class-imbalanced datasets,

such a loss function may be able to avoid the trap of decreasing the loss by merely
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driving already-correct majority outputs closer and closer to their target values. The

earliest (known) work dates back to 2013, when [72] proposed a loss function based

on the F1-score and used this for the enhancement of document images. Several

works appeared between 2017-18, the current author’s proposal of an approximated

G-Mean [73] (see Chapter 3) a new F1-score based loss function [74] and the Focal

Loss [75]. In 2019, two further variants of the F1-Score were proposed, the first [76]

used to train a CNN to classify emotions in tweets, and the second [77] proposed

specifically for linear models, applied to synthetic and image data. Also in 2019, [78]

used a CNN and a multi-class variant of the F1-score to perform cell segmentation.

Most recently, in 2021, [79] used a CNN, trained this time with an approximated

MCC, to classify skin lesions. Notably, most of the above work has used loss

functions derived from the F1-Score. However, as already discussed in subsection

2.2, this measure has been criticised for insufficiently addressing false negatives, and

thus may not be optimal in areas such as medical diagnosis, where the cost of these

category of errors can be very high.

An alternative to the proposal of a new loss is the adaptation of an existing one

to incorporate class weights. The Focal Loss (FL), proposed by [75], and discussed

in more detail in Chapter 4, reformulates the cross-entropy (CE) loss to dynami-

cally down-weight the correctly classified samples. [80] propose a modification

of the FL, down-weighting samples with either very large gradients or small gra-

dients, as samples with either very large or very small gradients tend to be well

classified. [6] introduce an approach, which they call the class-balanced loss (CB),

which assigns costs to different classes based on the number of samples within the

neighbouring region rather than the number of samples for each class. [7] propose

a label-distribution-aware margin loss (LDAM), a regularisation that extends the

soft-margin loss by encouraging the minority classes to have larger margins.
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Threshold adjustment, also called threshold moving or post-scaling, is a post-

processing approach (and thus to be clearly distinguished from the ASTra method

proposed in Chapter 5) which adjusts the decision threshold of a classifier in the

out-of-sample stage. The most basic version simply divides the network outputs

for each class by its estimated prior probability [81], while similar ideas have been

incorporated into deep learning in [82].

2.3.3 Hybrid Approaches

Hybrid methods typically combine one or more of the above-mentioned types of ap-

proach in various ways to handle the class imbalance problem. In addition, ensemble

architectures which support class weighting (an algorithm-level intervention) can be

considered to be a hybrid approach when augmented by a data-level technique such

as undersampling.

Beginning with non-ensemble hybrid approaches, [83] blend elements of under-

sampling, over-sampling, and a novel loss function they name the class rectification

loss (CRL) to address class imbalance on computer vision datasets, obtaining state-

of-the-art results on several large multi-label, multi-class datasets with extreme

levels of class imbalance. [84] introduce the large margin local embedding (LMLE)

method, which involves combining a newly-designed quintuplet sampling method

and novel triple-header hinge loss function; they demonstrate this combination can

learn an effective representation of minority classes on imbalanced image data. [85]

propose an improved version of the LMLE methods using clustering techniques they

call cluster-based large margin local embedding (CLMLE).

Turning now to ensemble hybrid approaches, these include RUSBoost [86]

and the recently proposed HD-Ensemble [8]. RUSBoost is a boosted ensemble

of classifiers trained on under-sampled data. [87] propose an improved form of

RUSBoost, replacing random undersampling with evolutionary under-sampling,
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which they call EUSBoost. The HD-Ensemble of [8] is an emphatically hybrid

method, being a combination of ensemble learners with a hybrid data-level approach;

the members of the ensemble are designed to be diverse and complementary to each

other, allowing their combination with more aggressive strategies of class balancing.

However, ensembles require increased computational resources and an increase in

training duration, which often make ensembling an infeasible approach for most

practical applications, particularly for deep learning. Indeed, only a limited number

of computational packages [88, 89, 90] have incorporated the idea of ensemble

learning. Furthermore, and perhaps more importantly, ensemble methods per se are

also not designed specifically for situations of class imbalance and can still suffer

from the over-fitting to the majority class and a loss of generalisation.

2.4 Summary

This chapter has introduced the class imbalance problem, methods to measure model

performance under conditions of class imbalance, and a range of existing solutions to

the class imbalance problem, encompassing data-level, algorithm-level, and hybrid

solutions. Of these three approaches, the algorithm-level appears most promising on

the basis that it neither discards data of potential value, nor does it create data that

could be potentially misrepresentative of the problem.

Of the various algorithm-level interventions, one of the most elegant, and

potentially fruitful, approaches is to create novel loss functions that specifically

target the problematic imbalance, by being based on measures that are sensitive

to class imbalance. Chapters 3 & 4 of this thesis will primarily create novel loss

functions from measures that address both Type I and Type II errors, such as the G-

Mean (Chapter 3) and the MCC (Chapter 4), though work with novel loss functions

will also give consideration to an approximated F1-measure as the basis for a loss
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function, due to the popularity in the literature of the F1 as a performance measure.

However, it should be noted that the existing algorithm-level approaches de-

scribed in this chapter are not the only possibilities, and that another algorithm-level

approach could be to modify the way that components of the classifier behave, for

example changing the form of the activation function for the output layer of a neural

network to facilitate minority classification, an approach that will be explored in

Chapter 5.



Chapter 3

Geometric Mean as a

Classification-Focused Training Loss

This chapter introduces a new loss function for the training of a neural network

classifier in a class-imbalanced classification setting. This function, based on a

differentiable approximation to the G-Mean, represents a balance of sensitivity

(recall) and specificity and is thus well suited to problems where other loss functions

such as the mean squared error (MSE) and binary cross entropy (BCE) are prone to

over-predicting the majority class. Using an approximated confusion matrix in which

all elements are differentiable, we show that this new loss function has a relatively

simple derivative form.

3.1 Background

As discussed in Chapter 2, datasets with high class imbalance are extremely common

in many real-world machine learning problems. When working with these datasets,

the training set is composed of a few positive examples and a large number of

negative examples. Standard classification algorithms struggle to learn on these

datasets since their calibration is typically based on the minimisation of an MSE or

BCE loss. Often, the trivial solution consists in assigning the majority label to any
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test query, leading to a high performance from an accuracy perspective but missing

the (positive) examples of interest. For this reason, simple accuracy is not ideal

as a performance measure, since it does not distinguish between a classifier which

is simply always predicting the majority class and one which has learned actual

discriminatory power on the class problem.

Rather than using a conventional MSE or BCE loss, it would be desirable to

optimise one of the more class-imbalance robust measures directly, as these provide

a more holistic evaluation over the entire data; for example, one could choose to

use the G-Mean (Equation 2.10), the Matthews Correlation Coefficient (Equation

2.11), or the F-Score (Equation 2.7) introduced in Chapter 2. However, when derived

from a usually-constructed confusion matrix in which each matrix element gives a

simple count of examples, these measures are not differentiable, so it is necessary

move from a conventional confusion matrix to an approximated form in which the

accumulated entries are essentially probabilities rather than counts. This is not a

difficult construction and has potential value even outside of the context of novel

loss functions, as measures derived from it can give more finely-tuned information

about training and validation progress.

When using the approximated confusion matrix to create a novel loss function,

however, another issue needs to be addressed, which is that measures derived from it

in their raw forms are non-decomposable over the dataset and cannot be expressed as

a sum of errors on individual data points [91]. As such, others who have considered

loss functions that might be better measures of classification performance have

resorted to surrogates of their ideal measures like the hinge loss (in Support Vector

Machines), logistic loss (in logistic regression), or the exponential loss (in boosting)

all of which are convex functions. The constructions of this chapter, and elsewhere

in this thesis, stand in contrast to this, as they provide not surrogates but direct
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approximations. The issue of non-decomposability is not a substantial one, as it can

be overcome by doing two passes through each batch.

3.2 A Motivating Preliminary Example

The aim of this simple example is to demonstrate the difficulties created by class

imbalance. Two sample datasets are constructed with different levels of class imbal-

ance by sampling from two clusters of points normally distributed about vertices of

an 2-dimensional hypercube. The first, balanced, dataset has an equal distribution

between majority and minority classes. The second, imbalanced dataset is con-

structed to have a class imbalance of 100:1 (i.e. IR = 100). Figure 3.1 plots the two

datasets side-by-side. It should be noted that there is a degree of overlap between

the datasets, so even in the balanced case it would not be possible to separate the

examples perfectly and achieve an MCC value of 1.0. In order to best illustrate the

essential points, stratified sampling is used, so that the IR of the train and test sets are

identical (a validation set is not needed here due to the simplicity of the example).
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Figure 3.1: Two-dimensional balanced (left) and imbalanced (right) sample binary-
classification datasets.

For each dataset, a logistic regression model is trained using the binary cross
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entropy (BCE) loss objective, and train and test errors, together with key statistics

derived from the confusion matrix (MCC and G-Mean for train and test set; Recall,

Precision, and Specificity for test set) are plotted, as a function of training epoch, in

Figure 3.2, which provides a side-by-side comparison of train and test performance.

It can be seen that for the balanced dataset, train and validation MCCs converge

to a relatively high value of around 0.8, while for the imbalanced case the MCC is

much lower, with a converged value of around 0.4. A similar observation can be

made about the G-Mean behaviours. The lowest row of figures in Figure 3.2 provides

an explanation for this: in the imbalanced case, Recall is much less than Precision,

indicating an unwanted focus on the majority negative class, with a large proportion

of the minority positive class being wrongly predicted.

This example has been sufficient to demonstrate that the difficulties connected to

class imbalance manifest very quickly in classification problems, as the example was

a simple two-dimensional one, in which - setting aside the overlap - the examples

could have been separated easily by a linear model. However the behaviour of

the BCE loss function does not make these difficulties clear; the loss in fact drops

faster in the imbalanced case, as the model is solving a simpler - but erroneously

constructed - problem, in which it is satisfactory to assign many minority examples

to the majority class. The most obvious solution is to use a loss that in contrast does

register clearly when a model is heading toward the trivial solution of assigning

many, or all, minority examples to be majority class, such as loss function built from

a classification measure such as the G-Mean or MCC, which would heavily penalise

this kind of behaviour.
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Figure 3.2: Train and test model performance as a function of training epoch for the bal-
anced (left column) and imbalanced (right column) sample binary-classification
datasets.
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3.3 A New Training Metric for Classification

This section introduces the approximated G-Mean, the first of the novel loss functions

proposed by this thesis, which will be used in the experiments of the current chapter.

3.3.1 The Approximated Confusion Matrix

As has already been explained, traditional measures derived from the confusion

matrix are non-differentiable and thus not suitable for direct optimisation using

gradient backpropagation. However, as was noted in the introduction to this chapter,

if we replace the predicted class-labels of the model (which are used to construct

the traditional confusion matrix) with their probabilistic equivalents, we obtain an

‘approximated’ confusion matrix which is in fact differentiable with respect to the

predictions and model parameters. This approximated confusion matrix can be

expressed as:

CMapx =

T Napx FPapx

FNapx T Papx

=

∑
n
i (1− ŷi) · (1− yi) ∑

n
i ŷi · (1− yi)

∑
n
i (1− ŷi) · yi ∑

n
i ŷi · yi

 ,

(3.1)

in which ŷi and yi are the predicted and target values for the ith example, and the

sums are over the set of examples for which the approximated matrix is required.

(The above form of the approximated confusion matrix assumes that outputs and

targets are in the range ∈ [0,1]; other constructions are possible, for example using

the range ∈ [−1,1], and are a straightforward adaptation.)

From CMapx one can generate a plethora of ‘approximated’ performance mea-

sures including all those based on a confusion matrix introduced in Chapter 2. This

chapter, however, will focus on the approximated G-Mean, one of the simplest of

these measures, and show how it can be effectively used as a loss function for a set
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of benchmark problems, outperforming both the MSE and BCE losses.

3.3.2 The Approximated G-Mean Loss Function

The G-Mean, the simplest of the measures introduced in Chapter 2, and the choice

for this chapter’s experiments, tries to maximise the accuracy on each of the classes

while keeping these accuracies balanced.

At first, the arithmetic mean (Balanced Accuracy) of each class-specific ac-

curacy might have appeared an even simpler and better choice, but the G-mean

is preferred here because it is a more pessimistic measure and handles extreme

scenarios better. From the Arithmetic Mean-Geometric mean theory (AM - GM

inequality), the balanced accuracy is always greater than or equal to the G-Mean:

x+ y
2

≥
√

x× y (3.2)

Balanced-Accuracy ≥ G-Mean (3.3)

Hence when the specificity and sensitivity are equal, the Balanced Accuracy and

the G-mean are equal. However, the measures diverge the bigger is the difference

between sensitivity and specificity, due to the fact that the geometric mean is affected

more by the lower value. The G-mean is also chosen since, unlike other possible

choices such as the MCC and F-Measure, its approximated form has a relatively

simple derivative. In practice, we choose in this chapter to optimise the square of

the G-Mean, on the basis that this choice will have the same effect as optimising the

G-Mean itself while resulting in a simpler derivative. The necessary expression is

JGMN2 = 1−G-Mean2
apx = 1− ∑i (1− ŷi)(1− yi) ·∑i ŷiyi

m0 ·m1
, (3.4)

in which m0, m1 are the numbers of negative, positive examples, respectively. The
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simplicity of the denominator in this instance arises from the fact that the denomi-

nators of the expressions for Recall (Sensitivity) and Specificity simply count the

numbers of positive and negative examples, respectively. The necessary derivatives

with respect to network outputs can then be either derived algebraically or obtained

via automatic differentiation, and are given below

δJGMN2

δ ŷi
=

(1− yi) ·∑ j ŷ jy j − yi ·∑ j (1− ŷ j)(1− y j)

m0 ·m1
. (3.5)

This derivative can be used to calculate derivatives with respect to weights, and

hence weight changes, via the chain rule of differentiation. We note that while the

form of the derivative above is relatively simple, it does still imply a pre-computation

of the ŷp values in order to know the values of the summations:

T Papx = ∑
j

ŷ j · y j,

T Napx = ∑
j
(1− ŷ j) · (1− y j).

(3.6)

(Note: In the original presentation of this work [73], a tanh activation function was

used in the output layer of the neural networks, rather than the more usual sigmoid.

The presentation here has been adapted to better match that of the loss functions

used elsewhere in the thesis; transformation of equations 3.5, 3.4 and 3.6 to use tanh

is straightforward.)

3.4 UCI Dataset Experiment

This section will demonstrate the effectiveness of the new loss function over a wide

range of benchmark binary classification datasets from the UCI repository [92] which

contain varying degrees of class imbalance.
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3.4.1 Datasets

The 30 chosen datasets were downloaded from the UCI repository [92], with class

imbalance ratios ranging from 5.55 (dermatology-6) to 129.44 (abalone19), feature

dimensions ranging from 6 (e.g. car-good) to 41 (e.g. kddcup-guess-passwd-vs-

satan), and numbers of examples ranging from 148 (lymphography-normal-fibrosis)

to 2935 (abalone19). A more detailed summary of each dataset is provided in Table

3.1.

3.4.2 Experiment Design

The experimental design was kept as simple as possible, in order to focus on the key

question of whether a confusion matrix based loss function would be more effective,

for higher IRs, than a traditional one; it was not the intention of this work to solve

each problem maximally well, per se.

Prior to training, the following procedure was conducted on each dataset:

1. Initial train-test k-fold split. Each dataset was first shuffled and then divided

into 5 cross folds, each allocating 20% of the examples to testing.

2. Training-validation split. For each fold, the remaining 80% of the data was

subdivided into 75% training and 25% validation, using stratified sampling to

ensure similar class distributions for training and validation.1 (Note that the

separations for constructing the test sets were not stratified).

3. Standardisation. All inputs were standardised by subtracting the mean and

dividing by the standard deviation for that input (feature) in the training set.

For each fold (independent test experiment), three networks were trained: one

using the G-Mean loss, one using the standard binary cross entropy (BCE) loss, and

1The number of chosen folds was arbitrary, but the size of the validation set was selected so that
the validation and test sets were of the same size.
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Dataset Name #Features #Examples Class Imbalance

abalone-17 vs 7-8-9-10 8 2338 39.31
abalone19 8 4174 129.44
abalone-19 vs 10-11-12-13 8 1622 49.69
abalone-20 vs 8-9-10 8 1916 72.69
abalone-3 vs 11 8 502 32.50
car-good 6 1728 24.04
car-vgood 6 1728 25.58
cleveland-0 vs 4 13 177 12.60
dermatology-6 34 366 5.55
ecoli3 7 336 8.60
flare-F 11 1066 23.79
glass2 7 214 11.60
glass6 9 214 6.40
kddcup-guess passwd vs satan 41 1642 29.98
kr-vs-k-one vs fifteen 6 2244 27.77
kr-vs-k-three vs eleven 6 2935 35.23
kr-vs-k-zero vs eight 6 1460 53.07
kr-vs-k-zero vs fifteen 6 2244 80.22
kr-vs-k-zero-one vs draw 6 2901 26.63
lymphography-normal-fibrosis 18 148 23.67
segment0 19 2308 6.00
shuttle-2 vs 5 9 3316 66.67
shuttle-6 vs 2-3 9 230 22.00
vowel0 13 988 10.00
winequality-red-4 11 1599 29.17
winequality-red-8 vs 6 11 656 35.44
winequality-red-8 vs 6-7 11 855 46.50
winequality-white-3-9 vs 5 11 1482 58.28
yeast5 8 1484 32.73
yeast6 8 1484 41.40

Table 3.1: Summary of the 30 chosen UCI datasets used for the G-Mean experiment.

one using the mean squared error (MSE) loss. Both the hidden and output activations

were set as tanh and the output binarised with a decision threshold of 0 (since the

tanh produces an output in the range [-1,1]). The architecture of the network was
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constrained to a single hidden layer with the number of nodes equal to the average

of the number of inputs and output dimensions.

The weights of the network were trained using a bold-driver backpropagation

technique similar to that of [93]. For each epoch, this algorithm attempts to adjust

the weights in the direction minimising the error. Within an epoch the learning rate

can be reduced if the initially attempted step resulted in an increase in error. After a

successful reduction in error, the learning rate is conversely increased. The training

process was run for a fixed 1,000 epochs but at each epoch the error was evaluated

on the validation set and weights of the best performing epoch were stored as the

final weights. After training, the model is fed the test examples and its out-of-sample

classification performance evaluated using the Matthews Correlation Coefficient

(MCC, equation 2.11), the MCC being chosen as an independent (from the G-Mean-

based loss function) measure that like the G-Mean would penalise over-assignment

to the majority class.

MCCs for the competitor methods were compared to those for G-Mean-based

training using their relative underperformance to the GMN-trained net, calculated

as:

ξALT =
MCCALT −MCCG-Mean

|MCCG-Mean|
(3.7)

where the subscript refers to the network’s cost function and ALT ∈ {RMSE,BCE}.

Underperformance was chosen instead of outperformance in order to avoid divide-

by-zero errors, as for several datasets the ALT cost functions gave zero MCC scores

as all instances were assigned to the same class. In our observation the working

range of ξALT was from -1 (ALT score zero, GMN score > 0) to slightly above zero

(ALT score slightly exceeding GMN score). An underperformance value of -1 will

represent the strongest evidence in our test set for the superiority of GMN.
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3.4.3 Results

Figure 3.3 shows the average competitor underperformances ξALT across five dif-

ferent (dataset shuffling and weight) initialisations as a function of IR. (An MCC

score for a run is for these experiments based on the combined confusion matrix of

all five folds, not on an average of each fold). For IR < 20 all three cost functions

behave similarly, but as the IR becomes more extreme there are more examples of

the clear superiority of the G-Mean. In the most extreme example (abalone19), with

an IR of 129.44, both the MSE and BCE trained networks make no attempt to predict

the minority class and thus achieve zero MCC scores, while in contrast the G-Mean

attains a positive MCC of 0.09 ± 0.04.

Figure 3.3: Underperformance (measured by MCC) of both MSE and BCE relative to GMN,
plotted against imbalance ratio (IR). GMN outperforms the competitor cost
functions everywhere in the shaded region

Though increasing IR generally leads to better relative performance of the

G-Mean loss, there are exceptions. One such is abalone-20-vs-8-9-10 (IR=72.69),

for which both ALTs marginally outperform the G-Mean. This case was investigated

with an additional 55 runs, discovering that even in such an apparently unfavourable

case there may be benefits to the use of the G-Mean loss, as evidenced in Figure 3.3.
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It can be seen there that while the two ALT MCC scores have a higher average, there

is much more variance, and more instances for which both ALTs have an MCC of

zero (all cases assigned to the majority class), and thus no discretionary power.

Figure 3.4: Distribution of out-of-sample scores across all random seeds/k-folds (300 total)
for GMN, BCE, and MSE cost functions, for the exceptional dataset abalone-
20-vs-8-9-10.

In summary, the advantage of the G-Mean loss over the conventional binary

cross entropy (BCE) and MSE losses has been demonstrated on 30 imbalanced UCI

datasets (IRs from 5.55 to 129.44). For IRs less than 20, the three cost functions

performed similarly, but higher imbalances showed a clear benefit of using GMN.

The GMN scores were also found to be less sensitive to initial conditions

3.5 Comparison to Data-Level Approaches: Pump &

Dump

The results of Section 3.4 were encouraging regarding the use of an approximated

G-Mean-based loss to address the challenge of class imbalance. However, changing
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the loss function is just one of several possible approaches; as mentioned in Section 2,

data-level re-sampling approaches such as undersampling and SMOTE have become

extremely popular tools for imbalanced learning given their documented successes,

and that they are generally very simple procedures to implement. Therefore, it is

useful to compare the performance of the G-Mean loss (and standard loss functions)

against the most common data-level approaches. For this experiments of this section,

a more complex real-world is selected for benchmarking, connected to the problem

of ‘pump and dump’ events in finance.

3.5.1 Pump & Dump

A ‘pump and dump’ scheme is a type of financial trading exploitation which involves

an entity accumulating a large amount of a target currency, stock or, in this case,

cryptocurrency (referred to here also as a crypto-asset, or simply crypto), with a low

market capitalisation and a low unit price, and subsequently promoting its purchase

as an opportunity for substantial future returns. (In some cases of pump and dumps,

promotions may claim to have inside information of future events that are expected

to cause price increases.) The promotion is designed to create a significant buying

demand which increases the price (i.e. the ‘pump’). The promotion continues,

and while others are still trying to enter, the initial position is fully unwound for a

considerable profit. The promotion is then halted, and the price then crashes (i.e. the

‘dump’), often incurring significant losses for those slow to react.

Within cryptocurrency markets, a variation of the above has become popular.

Groups are formed on social chat platforms where low market capitalisation coins

are selected and advertised by administrators. Members of the group then engage

in intensive purchasing within a short time span (within a couple of minutes). The

group’s mutual buying pressure causes a sudden rise in the price of the asset. Unlike

in more traditional markets, where those purchasing are doing so on false information
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(being duped by the promoter), members in these cryptocurrency groups are aware

of what is occurring and are willing to participate in the belief they can sell to others

who have been slower to act on the information.

Numerous cryptocurrency pump and dump groups have been established with

member counts ranging into the tens of thousands. The groups are advertised widely

within the crypto social media ecosystem - across Twitter, Slack, Discord and Reddit

– to attract new members. Most pump and dump groups follow a similar process:

the coordinating entity sends out one (or many) messages advertising the time and

trading exchange upon which the “pump” will occur, but not which coin is being

chosen. At the specified time, the coordinating entity informs the group of which

target cryptocurrency to buy. People are willing to complete a purchase (even at a

premium compared to a few minutes before) based on their belief they can sell at a

higher price while the coin is being pumped. If members do make money, it is likely

that they have done so at the expense of someone else in the group who has been

slower at buying into the cryptocurrency. Some groups have tried to address this by

prolonging price increases. One mechanism to do this is encouraging their members

to promote the chosen cryptocurrency on social media platforms after it has been

announced.

3.5.2 Dataset

A pump and dump raw dataset, constructed from historical cryptocurrency pump

and dump events, was generously provided by Jiahua Xu & Benjamin Livshits,

the authors of [94]. In this paper, Xu & Livshits present a case study of a group

of pump and dump events that occurred within cryptocurrency markets between

2018-19. Telegram message history from over 300 channels from June 17th 2018

to February 26th 2019 was collected (via the Telegram API) and used to identify

412 announced pump events. Telegram is the most common mobile chat platform
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that pump and dump groups are formed on; due to its high level of anonymity

and encryption, perpetrators are difficult to identify. The format of these Telegram

messages announcing a pump would include both the exchange venue and scheduled

time but not the target coin itself (for example, ’Binance @ 11CEST’). As such, the

target coin could be one of any traded on the target venue. The chosen coin is instead

announced immediately before the event.

The authors of [94] frame a classification problem as follows: for a specific

pump event, they group the available tokens actively trading on the target exchange

and assign all of them a negative label (0), except for the target token which is given

a positive label (1). (Of course, the identity of this target token is only known after

the event.) Features of the coins and their recent market activity are constructed.

Repeating this process across all pump events, a dataset can then be constructed

which can be used to train a classifier. In [94] this dataset is used to demonstrate

how an ensemble decision tree classifier could be trained to predict these events and,

consequently, form a trading strategy. However, since the problem is highly-class-

imbalanced, which created difficulties for learning, a profitable strategy required a

post-hoc threshold adjustment of the classifier output. The dataset is thus of clear

interest as a proving ground for the G-Mean loss function, which should be better

able to handle the class imbalance.

The dataset used here was partitioned in a manner similar to that of the original

authors, but it was decided to combine the authors’ train (Jul 21 - Oct 10) and

validation (Oct 10 - Oct 29) periods, leaving just one train dataset (which was,

however, during hyperparameter optimisation divided into five folds), and one test

dataset. Detailed information about the features, which are kept the same as in the

cited paper, can be found in [94]. Both training and test features are pre-processed

by removing the median and dividing the inter-quartile range (IQR) exhibited in the
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training set. Table 3.2 provides a summary of the final training and test dataset; the

natural class imbalance is extremely high at 500+ for both subsets.

Table 3.2: Pump & Dump dataset train and test partitions

#Total #Features #No Pump #Pump Class Imbalance

Train 37,819 54 37,759 60 630.31

Test 9,747 54 9,728 19 513.00

3.5.3 Experiment Design

Given the high level of class imbalance present in the dataset, it is theorised that

the G-Mean may be a better loss function to use than other, standard, functions.

However, the expanded aim of this section is to examine whether a change of loss

function to the G-Mean can produce competitive results when compared to data-level

approaches. The experiment is therefore split into three phases:

• Baseline Experiment. The first setup is designed to evaluate the performance

of networks trained using the G-Mean loss function against the two most

commonly used alternatives: Binary Cross Entropy (BCE) and Mean Squared

Error (MSE) - as in the UCI work - on the original, unadjusted dataset.

• Comparison with Undersampling. The second setup explores the use of

undersampling, a data-level strategy to reduce the level of class imbalance.

The training set is progressively undersampled and the results for the resulting

models compared on the original test set.

• Comparison with SMOTE. The final setup uses a SMOTE resampling tech-

nique, (first introduced in Chapter 2), to create new synthetic training samples

of the minority class. Again, the results, this time for a single model, are

evaluated with respect to the original, unmanipulated, test set.
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3.5.4 Results

3.5.4.1 Part I: Baseline Experiment

The first phase involves no competitor data-level approaches and is intended to serve

as a baseline, comparing the performance of networks trained using the G-Mean

loss function against two commonly used alternatives, the Binary Cross Entropy

loss (BCE) and Mean Squared Loss (MSE). Using the train-test partition described

previously, three single hidden-layer neural networks are trained; one for each

candidate loss function.

To establish the best stopping epoch for training, the training set is first par-

titioned into five folds and the stopping epoch taken to be the average of the best

epoch (in terms of MCC validation score) across each fold. The final model is trained

on the entire training dataset for the number of epochs determined using the k-fold

splits. The experiment is repeated 25 times with different weight initialisations and

the out-of-sample test results for each model is shown in Table 3.3.

Table 3.3: Test classification results for the original pump and dump dataset. Performance is
averaged over 25 runs, with standard deviations shown in brackets.

BCE Training MSE Training G-Mean Training

Accuracy 0.998 (0.001) 0.952 (0.078) 0.999 (0.000)

Precision 0.594 (0.486) 0.018 (0.046) 0.673 (0.026)

Recall 0.095 (0.146) 0.184 (0.243) 0.474 (0.000)

MCC 0.181 (0.137) 0.040 (0.080) 0.564 (0.011)

If you were to examine the results on out-of-sample accuracy alone, all three

candidates appear to perform very well, with > 95% accuracy. However, there is a

big difference in the Recall and MCC scores, all of which consider how errors are

distributed across classes, rather than the overall number of errors: GMN Training

very clearly outperforms BCE and MSE for these measures, and this out-performance
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is statistically significant using a one-sided t-test, with a p-value < 0.01 when

comparing GMN training to both BCE and MSE training. The null hypothesis for

the one-sided t-test in this context would be that there is no significant difference in

the performance (in this case in terms of Recall and MCC scores) between the GMN

training and the BCE/MSE training. In other words, any difference observed in the

sample data could be due to chance alone and not a true difference in the populations

being compared.

In relation to Precision, GMN training again statistically significantly (using the

same test) outperforms MSE training. However, it does not outperform BCE training.

This is because BCE training is very effective here on the majority class, though

it achieves its accuracy on the majority at the expense of misclassifying minority

examples, as can be clearly seen, for example, in the quoted MCC values.

3.5.4.2 Part II: Comparison with Undersampling

The outperformance of models trained with the GMN loss versus standard loss

functions on the pump and pump dataset fits with the premise that the GMN is

well-suited to highly class-imbalanced datasets. However, instead of using the GMN,

a data-resampling technique could instead be employed. One such obvious example

is undersampling.

To compare the GMN against undersampling, the training data is progressively

undersampled, creating new training datasets, each with a lower degree of class

imbalance, but smaller in size. Independent neural networks are fitted on each of

these undersampled training datasets for each of the two candidate competitor loss

functions (MSE and BCE), and their results compared to GMN training on the

original test set. Starting from an undersample ratio of 0.002 (corresponding to a

near-original level of 500:1 class imbalance) and increasing this to 1, a total of 28

distinct synthetic datasets are produced, which are summarised in Table 3.4.
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The goal is to determine if the superior performance of the GMN loss function,

demonstrated in the baseline experiment, declines as the class imbalance in the

training data becomes less pronounced.

Undersample Ratio CI #Non-Pump #Pump #Total

0.00 500.00 30,000 60 30,060
0.02 45.45 2,727 60 2,787
0.04 23.80 1,428 60 1,488
0.06 16.12 967 60 1,027
0.08 12.18 731 60 791
0.10 9.80 588 60 648
0.12 8.18 491 60 551
0.14 7.03 422 60 482
0.16 6.17 370 60 430
0.18 5.48 329 60 389
0.20 4.95 297 60 357
0.25 3.97 238 60 298
0.30 3.30 198 60 258
0.35 2.83 170 60 230
0.40 2.48 149 60 209
0.45 2.20 132 60 192
0.50 1.98 119 60 179
0.55 1.80 108 60 168
0.60 1.65 99 60 159
0.65 1.53 92 60 152
0.70 1.42 85 60 145
0.75 1.32 79 60 139
0.80 1.23 74 60 134
0.85 1.17 70 60 130
0.90 1.10 66 60 126
0.95 1.05 63 60 123
1.00 1.00 60 60 120

Table 3.4: Pump & Dump datasets resulting from majority-class (non-pump) under-
sampling.

Figure 3.5 plots the under-sample ratio against the Matthews Correlation Co-
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efficient on the test set, averaged over 25 runs. It is very clear from this figure that

in relation to the MCC value, widely considered a ’gold standard’ for measuring

performance under class imbalance, that GMN training is superior to using a standard

loss function and random-undersampling the training set, as this can lead to loss of

useful information, as is evidently the case here for any but a very small level of

majority class undersampling.

While a small amount of undersampling, from Figure 3.5, is clearly of benefit

to BCE and MSE training, and could also have benefited GMN training, this was

not used with the GMN as the purpose of using such a novel loss function was

specifically to avoid the need for manipulation of the data.
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Figure 3.5: Test MCC scores on pump and dump data for models trained with BCE and MSE
losses, for progressively undersampled train sets, and for GMN loss without
undersampling (dotted line).

3.5.4.3 Part III: Comparison with SMOTE

The final experiment is to see whether the GMN loss function can compete with

more complex data-level approaches for dealing with class imbalance; in this case

the Synthetic-Minority Oversampling (SMOTE) algorithm, which was discussed in
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Chapter 2. For the MSE and BCE loss functions, SMOTE is applied to the training

dataset while keeping the test set unaltered, and these results are compared for the

test those obtained from GMN training with an unaltered train set.

In order to assess whether the results are statistically significant, we formulate a

hypothesis test framework to evaluate the performance differences. The results are

from different random initialisations on the same testing set, and a one-sided t-test

is used to determine if a given metric for GMN training is, on average, statistically

significantly superior to that for a competitor.

Such testing evidences that GMN is statistically significantly better than both

MSE+SMOTE and BCE+SMOTE in relation to the key measure of MCC and in

relation, also, to Precision (with p-values ¡ 0.01). GMN does not outperform its

SMOTE-augmented competitors in relation to Recall (p ¿ 0.05). However, the

practical consequences of the quoted results need to be considered: the superiority of

the SMOTE-augmented competitors in relation to Recall would be of value only if

there was a very low penalty associated with acting on an incorrect model prediction

(i.e. low false positive error cost), as the Precision of such predictions are below

1.5% for both MSE+SMOTE and BCE+SMOTE; given the high cost of executing the

necessary trading strategy this would in fact represent an unacceptable level of risk.

Overall, it can be concluded that GMN training is superior to SMOTE-augmented

standard training.

3.6 Discussion

GMN training has in this chapter shown itself to be a highly competitive training

algorithm when compared to training based on standard loss functions, both for a

wide range of UCI benchmark datasets, and for data relating to a certain kind of

cryptocurrency market manipulation, referred to as a ‘pump and dump’. In the case
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BCE (+ SMOTE) MSE (+ SMOTE) GMN

Accuracy 0.898 (0.023) 0.879 (0.032) 0.999 (0.000)

Precision 0.013 (0.001) 0.012 (0.002) 0.673 (0.026)

Recall 0.695 (0.065) 0.726 (0.092) 0.474 (0.000)

MCC 0.087 (0.004) 0.083 (0.003) 0.564 (0.011)

Table 3.5: Test classification results for the SMOTE versus GMN pump and dump dataset
experiment. Performance is averaged over 25 runs, with standard deviations
shown in brackets.

of this latter dataset, with a challenging IR > 500, the competitive advantage of the

GMN loss was evident even when the standard loss functions were augmented by

data-level interventions (random undersampling and SMOTE).

Moving forward from the promising results of this chapter, two avenues of work

would immediately suggest themselves. Firstly, given that GMN training has here

shown its largest benefits in cases of high IR (the highest-IR datasets in the UCI

collection, plus the even higher IR pump and dump dataset), it would of clear interest

to consider datasets with still higher imbalance ratios; results using the GMN loss

function on datasets with IRs up to 4,000 can be seen in Chapter 5. Secondly, the

extension of the GMN from binary classification problems to multi-class problem

could be examined, especially as [95] have shown that existing approaches, such as

data resampling, formerly believed to be effective for addressing the multi-class class

imbalance problem, may in fact only be effective for two-class datasets. In addition

to introducing new classification-focused loss functions, namely the F1-Score and

MCC, Chapter 4 will also focus on extending the GMN loss function, introduced in

this chapter, to accommodate multi-class scenarios.



Chapter 4

Classification-Focused Training

Metrics: Alternatives & Extension to

Multi-Class Scenarios

This chapter extends the work of the previous chapter in two ways. First, it explores

alternative classification-based loss functions to the approximated Geometric Mean

(GMN), introduced in Chapter 3. The G-Mean loss performed well under situations

of high class-imbalance; however, it is possible that loss functions based on other

valuable measures of imbalanced performance, such as the Matthews Correlation

Coefficient (MCC), might perform even better. The performance of these alternatives

will be assessed here on two public medical image segmentation datasets. These

are larger and more complex datasets than those considered in the previous chapter,

and chosen here as good candidates because of their relatively high pixel-level class

imbalance. Notably, these experiments implement two other loss functions which

have received recent attention in deep learning and computer vision literature for

their out-performance on class-imbalanced datasets, the Dice Loss and Focal Loss,

with results demonstrating that the approximated confusion matrix based losses
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outperform even these current state-of-the-art losses. Second, this chapter broadens

the application of novel, confusion matrix-based methods to multi-class situations,

utilizing them for long-tailed recognition problems in the image domain. Unlike

the medical image segmentation problems, these have labels assigned at the image

level rather than the pixel level. The results demonstrate improved performance over

the current state of the art, with the superior performance of the new loss functions

becoming more pronounced as class imbalances increase.

4.1 Alternatives to the Geometric Mean

In Chapter 3, Equation 3.1 introduced the concept of an approximated confusion

matrix, a differentiable variant of the normal confusion matrix which replaces

predicted class-labels with the underlying model’s probabilistic outputs. It was

shown that the components of this approximated confusion matrix, (T Napx, FPapx,

FNapx and T Papx) could be used both to create performance metrics that give more

precise information about the progress of training, and also, being now differentiable,

be used as a classification-focused loss training objective in the optimisation of a

neural network model. The performance measure chosen in the previous chapter

as the basis for a novel loss function was the G-Mean (Equation 2.10), with the

resulting GMN loss function (Equation 3.4) being shown empirically to produce

good results on many datasets of varying class imbalance. The G-Mean was initially

chosen for two reasons. Firstly, because it is a measure which tries to maximise

the accuracy on each class while keeping these accuracies balanced, and hence

is regarded as a good measure for assessing performance under class imbalance.

Secondly, because its (approximated) derivative form reduces to something relatively

simple and thus might lead to a better gradient loss surface, less prone to getting stuck

in local minima than other, more complicated, measures. However, it was noted in
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the previous chapter that it is in fact possible to construct many other loss functions,

based on a plethora of other confusion-matrix based performance measures, and

it is thus at least possible that some of these might outperform the G-Mean loss,

rendering them worthy of the investigation which is the topic of this section. These

comparison experiments will focus on two medical image segmentation problems,

with data, methods, and results to follow in later subsections.

4.1.1 The F1 Score and MCC Loss Functions

Two new loss functions will be considered, based on the F1-score and the Matthews

Correlation Coefficient (MCC), the former due to its popularity and common recom-

mendation for performance assessment under class imbalance, and the latter because,

particularly in recent years, it has received recognition as the ‘gold standard’ for

model performance and comparison [47].

From Equation 2.7, the approximated F1-score can be expressed as

F1-Scoreapx =
T Papx

T Papx +
1
2(FPapx +FNapx)

=
2T Papx

2T Papx +FPapx +FNapx

=
2∑i ŷi · yi

2∑i ŷi · yi +∑i ŷi · (1− yi)+∑i (1− ŷi) · yi
,

(4.1)

and we can thus easily create a new F1-Score loss function,

JF1 = 1−F1-Scoreapx, (4.2)

where the derivatives with respect to network outputs can, in a similar manner to

the G-Mean approximated loss, be obtained via automatic differentiation or derived

analytically:
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∂JF1

∂ ŷi

=−
[2∑ j ŷ j · y j +∑ j ŷ j(1− y j)+∑ j (1− ŷ j)y j]2yi − [2∑ j ŷ j · y j][2yi +(1− yi)− yi]

[2∑ j ŷ j · y j +∑ j ŷ j(1− y j)+∑ j (1− ŷ j)y j]2

=−
[2∑ j ŷ j · y j +∑ j ŷ j(1− y j)+∑ j (1− ŷ j)y j]2yi −2∑ j ŷ j · y j

[2∑ j ŷ j · y j +∑ j ŷ j(1− y j)+∑ j (1− ŷ j)y j]2
. (4.3)

Similarly, the approximated Matthews Correlation Coefficient (MCC) can be

be derived to be

MCCapx =
T Papx ×T Napx −FPapx ×FNapx√

(T Papx +FPapx)(T Papx +FNapx)(T Napx +FPapx)(T Napx +FNapx)

=
T Papx ×T Napx −FPapx ×FNapx√

m0 ·m1[(T Papx +FPapx)(T Napx +FNapx)]1/2

,

(4.4)

in which m0, m1 are the numbers of negative, positive examples, respectively. Hence

the corresponding novel loss function can be derived as:

JMCC = 1−MCCapx. (4.5)

Again, the derivatives with respect to model outputs can be obtained either via

automatic differentiation or derived analytically:

∂JMCC

∂ ŷp
=−

[
−(1− y) ·m1 + y ·m0

(m0 ·m1 ·∑ j ŷ j)1/2

−1
2

(
∑i (1− ŷi)(1− yi) ·∑i ŷiyi −∑i (1− ŷi)yi ·∑ j ŷ j(1− y j)

√
m0 ·m1(∑ j ŷ j ·∑ j (1− ŷ j)3/2

×[(m0 +m1)−2∑
j

ŷ j]

)]
(4.6)



4.1. Alternatives to the Geometric Mean 69

4.1.2 Image Segmentation

Image segmentation is a technique where a pixel-wise mask is formed around an

object contained in a given image, and represents an extension of image classification

[96]. Put simply, it is the task of assigning labels to pixels. All pixels belonging to

the same category have a common label assigned to them, which is referred to as

the mask. There are different types of image segmentation, with the type relevant to

the experiments carried out here being semantic segmentation (specifically, binary

semantic segmentation). Semantic segmentation refers to the classification of pixels

in an image into semantic classes (for example, in Figure 4.1b, belonging to a human

figure, to sky, to sea, or to land) with no other information or context taken into

consideration.

Figure 4.1: Types of image segmentation task. The datasets used here are examples of a
binary form of semantic segmentation (b). Images reproduced from [3]

There are other forms of image segmentation, which are not explored in this

work, but which are illustrated in Figure 4.1, such as instance segmentation, which

instead classifies pixels into categories on the basis of instances rather than classes

(in Figure 4.1c, belonging to one of a number - an instance - of a set of human
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figures), or panoptic segmentation, which combines both semantic and instance

segmentation so that each object in an image is segregated and identified.

The experiments here focus specifically on binary semantic segmentation within

medical imaging. The confusion matrix based loss functions presented in the previous

section will be compared to standard binary cross entropy and two of the most popular

loss functions used for image segmentation, which will be described below.

The Dice-Sørensen coefficient (DSC) [97] is a statistic which gauges the

similarities between two samples. It has become one of the most popular measures

of region overlap in medical image analysis [98]. Given two datasets, X and Y , it

can be defined as

DSC =
2|X ∩Y |
|X |+ |Y |

, (4.7)

where |X | and |Y | are the cardinalities of the two sets. However, in a binary classifi-

cation setting, it can be re-written as

DSC =
2T P

2T P+FP+FN
. (4.8)

Milletari et al. [99] were the first to use the Dice coefficient as a loss objective,

defining it as the maximisation of

JDice =
2∑i ŷi · yi

∑i ŷi
2 +∑i yi2

, (4.9)

and demonstrating that CNNs trained on imbalanced 3D image segmentation datasets

using this loss function achieved good performance, requiring only a fraction of

the processing time needed by other previous methods. By effectively reducing the

number of measurements to the number of labels, the Dice loss has a lesser sensitivity

to class imbalance. However, some authors, including [100], argue the Dice Loss
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is not well suited to practical image segmentation, particularly in a medical setting,

because it weights all regions of misplaced delineation equally and independently of

their distance from the surface. For example, two inaccurate segmentations could

have a similar DSC score if one were to deviate from the correct surface boundary by

a small amount in many places while the other had a large deviation at a single point.

Correcting the former would likely take a considerable amount of time as it would

require redrawing almost all of the boundary while the latter could be corrected

much faster, potentially with a single edit action.

The Focal Loss (FL) [75] is another type of loss objective that was introduced

as a means of combatting extremely imbalanced datasets where positive cases were

relatively rare. It can be seen as a dynamically weighted extension of the cross

entropy loss,

JFocal =−(1− pt)
γ log(pt), (4.10)

where pt is the estimated probability for the ground truth class pt = ŷ · y+(1− ŷ) · y.

Since a lower ps implies a larger error, Equation 4.10 gives more attention to

harder examples. When γ = 0, the focal loss is actually the same as the vanilla

cross entropy loss (BCE). One drawback is that γ needs to be pre-specified or tuned;

following Lin et al. [75], a fixed γ = 2 is chosen for all the experiments of this

subsection, as they find this value to be a good trade-off between hard and easy

samples.

4.1.3 IRCAD & HuBMAP Datasets

Two public medical image segmentation datasets were chosen. The IRCADb01

(IRCAD) dataset [101] is composed of 3D CT scans containing hepatic tumours in

75% of cases; however, it should be emphasised that the problem here is to identify



4.1. Alternatives to the Geometric Mean 72

pixels belonging to the tumour class, so that even when a tumour is somewhere

present, most of the pixels will be non-tumour labelled. Tumour pixels account for

just 6.71% of total pixels, creating an imbalance ratio of 14.897. The HuBMAP

kidney image segmentation dataset is obtained from the Human BioMolecular Atlas

Program (HuBMAP) [102], which is a project for the development of a framework

to map the human body at single-cell resolution. It contains high-resolution images

of PAS-stained kidney images with accompanying pixel-level masks of glomeruli.

There can be over 600,000 glomeruli in each human kidney, each with a size range

from 100-350um. The task is train a pixel-wise image segmentation model that

can identify glomeruli regions of the images. Overall the dataset has a pixel-level

imbalance ratio (IR) of 31.65 between glomeruli (minority) and non-glomeruli

(majority) pixel masks.

Since both datasets are comprised of 20 very large image files (recall again

that these experiments are being performed at the pixel level, and that these 20 files

therefore represent a very large amount of data), a common image preprocessing

technique known as tiling is used to cut up the images into smaller size images

of a uniform size that can be better handled in memory. For both the IRCAD and

HuBMAP datasets, tiles of size of 256 × 256 pixels are constructed, on the dual

basis that the tile dimensions need to be divisible by 32 and that 256 × 256 is a

common choice for work in this area. (Optimising the tile size is a research topic

in its own right and so is beyond the scope of this experiment.) Also note that, in

the case of the IRCAD dataset, the images are three dimensional and masks are

first converted to two dimensional slices, by performing axial cuts along the z-axis,

before tiling. Figure 4.2 provides an example of a single tile and its corresponding

mask for each dataset.
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Figure 4.2: Examples of 256 × 256 tiles and the corresponding masks for the IRCAD and
HuBMAP image segmentation datasets.
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4.1.4 Experiment Setup & Evaluation

The experimental design was, in keeping with Chapter 3, kept relatively simple, with

a focus on the question of whether the three confusion matrix based losses, the GMN,

F1 and MCC, would be more effective than the three competitor loss functions used

in this subsection: the binary cross entropy, on the basis that this is the standard loss

used for classification, and the Dice and Focal losses, the two domain-specific losses

introduced earlier.

The datasets were split into five folds, using a 20% validation and 20% test size

(so that 60% of the data was used for training in each fold). However, care was taken

to ensure tiles belonging to each original image were kept together. Given that both

datasets contained 20 original (before tiling) images, a single fold, for either dataset,

consists of 12 images for training, four for validation and four for testing. The U-Net

model, a type of fully convolutional neural network, was chosen to be optimised

since it was designed specifically for image segmentation [103].

For each fold and candidate loss function, a U-Net model with an encoder

depth of four and a sigmoid activation function was trained with stochastic gradient

descent with a batch size of 10, learning rate of 0.001 and momentum rate of 0.9

for a maximum of 300 epochs. After each training epoch, the model was assessed

using the validation dataset. The weights from the epoch that achieved the highest

validation MCC were then used for testing. The experiment is repeated 10 times

with different initial model weights for each fold producing a total of 50 models

trained with each loss.

Final testing performance was compared for the different training losses using

accuracy, F1-Score, MCC, and the Intersection over Union (IoU) measure. The IoU,

also know as the Jaccard index (J),
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J(A,B) =
|A∩B|
|A∪B|

, (4.11)

is commonly used to compare the similarity between two arbitrary shapes. The IoU

considers the shape properties of the objects under comparison (e.g. the widths,

heights, and localisations of two bounding boxes) and then calculates a normalised

measure of overlap that focuses on their areas (or volumes) [104]. This makes the

IoU invariant to the scale of the problem under consideration, an appealing property

that has led to its popularity in the evaluation of image segmentation algorithms

[105, 106].

4.1.5 Results & Discussion

Results: IRCAD Dataset. The average and standard deviations of the IoU, F1-

Score, MCC and accuracy test scores are displayed in Table 4.1. The approximated

GMN, F1 and MCC show a statistically significant improvement over the BCE,

Dice and Focal competitor losses in terms of IoU, F1 and MCC at the 5% level.

However, it is not possible in this experiment to distinguish the best-performing

among the novel loss functions, as the results for GMN, F1, and MCC in Table

4.1 are not statistically significantly distinguishable, in spite of the F1-Score being

less sensitive to the misclassification of negative examples. The explanation for

better-than-expected performance of the F1 loss is likely to be that the asymmetry

of the F1-Score with respect to positive and negative examples, which was noted in

[52] as being disadvantageous for a performance measure, might in fact be beneficial

for the loss derived from it. This is because the F1 loss would tend to focus more

strongly on the minority class, rather than, as is the case for both the GMN and MCC

losses, giving the two classes the same attention. Interestingly, it can be seen that the

IoU (Figure 4.3) more clearly distinguishes between results obtained by the various
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training losses than does the MCC (Figure 4.4); while the MCC can be used to derive

a very effective loss function, and is a generally highly regarded metric, it may not

be the best performance measure for the specific problem of image segmentation,

with the domain-specific IoU being preferable. It can be easily seen from Table

4.1 that the binary cross entropy is the worst performing loss, perhaps highlighting

that a vanilla loss function, without specific adaptations (as in Chapter 5) to handle

class imbalance, cannot in general be expected to perform well in situations with

challenging IRs. As a final note on this experiment, the results for the different loss

functions are not statistically significantly distinguishable in terms of accuracy, but

it is well known that this is a poor metric for evaluating performance under class

imbalance, so an uninformative result might be expected.

Table 4.1: IRCAD test results.

Loss IoU F1-Score MCC Accuracy

BCE 0.492 (0.23) 0.598 (0.23) 0.637 (0.22) 0.969 (0.02)

Dice 0.577 (0.35) 0.633 (0.38) 0.636 (0.38) 0.972 (0.02)

Focal 0.589 (0.22) 0.676 (0.20) 0.685 (0.18) 0.953 (0.05)

GMN 0.692 (0.13) 0.742 (0.12) 0.747 (0.13) 0.975 (0.01)

F1 0.696 (0.14) 0.762 (0.14) 0.766 (0.14) 0.978 (0.01)

MCC 0.697 (0.17) 0.763 (0.16) 0.769 (0.16) 0.978 (0.02)

Results: HuBMAP Dataset. In relation to this dataset, in can be seen in

Table 4.2, and in Figures 4.5 and 4.6, that results for the three novel loss functions

unfortunately do not appear to be, and on investigation can be shown to be, statisti-

cally significantly better for the non-trivial performance measures (accuracy again

being uninformative) than for the Dice and Focal losses. The performances of the

five more classification-focused loss functions are equivalent up to 5% significance

(using a paired t-test), with the only strong conclusion about them that can be drawn

being that all five are statistically significantly better performing (as evidenced by



4.1. Alternatives to the Geometric Mean 77

0.0 0.2 0.4 0.6 0.8 1.0
IoU

MCC

F1

GMN

Focal

Dice

BCE
Lo

ss

Metric: IoU

Figure 4.3: IRCAD Intersection over Union (IoU) test results. Scores are averaged across
the 5 k-fold splits; standard deviations are shown in black bars.
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Figure 4.4: IRCAD Matthews Correlation Coefficient (MCC) test results. Scores are aver-
aged across the 5 k-fold splits; standard deviations are shown in black bars.

a one-sided t-test) than binary cross entropy. The lack of superiority of the three

novel loss functions, expected to outperform more substantially at higher IRs, was

a surprise, as the HuBMAP dataset has an IR more than twice that of the IRCAD

dataset, where the preferability of these three loss functions over the Dice and Focal

losses had been demonstrated. However, there is more involved in assessing the

difficulty of a classification problem than its IR, and it is possible that the HuBMAP
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Table 4.2: HuBMAP test results.

Loss IoU F1-Score MCC Accuracy

BCE 0.550 (0.13) 0.618 (0.15) 0.653 (0.15) 0.995 (0.00)

Dice 0.663 (0.09) 0.725 (0.10) 0.726 (0.10) 0.994 (0.00)

Focal 0.665 (0.10) 0.728 (0.10) 0.729 (0.10) 0.993 (0.00)

GMN 0.68 (0.03) 0.721 (0.05) 0.715 (0.09) 0.992 (0.01)

F1 0.691 (0.02) 0.756 (0.02) 0.719 (0.09) 0.993 (0.00)

MCC 0.677 (0.09) 0.734 (0.09) 0.737 (0.09) 0.995 (0.00)

dataset had some unusual aspects. Notably, the standard deviation in HuBMAP

scores compared to the IRCAD scores is in general much lower, for training using

any of the loss functions considered. This implies initial weight settings have less

effect on test performance, which was a surprise given the complexity of the U-Net

model. Because of the possibility that there were issues with HuBMAP that went

beyond the question of class imbalance, it would have been desirable to experiment

with further image segmentation datasets, a topic which will be returned to in the

discussion below.
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Figure 4.5: HuBMAP Intersection over Union (IoU) test results. Scores are averaged across
the 5 k-fold splits; standard deviations are shown in black bars.
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Figure 4.6: HuBMAP Matthews Correlation Coefficient (MCC) test results. Scores are
averaged across the 5 k-fold splits; standard deviations are shown in black bars.

Conclusions. In summary, this section has demonstrated on two recent image

segmentation datasets that loss functions such as the GMN, F1 and MCC, derived

from approximated confusion matrix based performance measures, are at least

competitive with, and for the case of the IRCAD dataset superior to, domain-specific

losses (as evidenced in Tables 4.1 and 4.2). It has in addition been discovered

that while the F1-Score has undesirable features for use as a performance measure

(asymmetry between positive and negative examples, with correct classification

of the former being deemed the more important), as was noted in Chapter 2, the

loss function derived from it may work well precisely because of this asymmetry.

However, it should be noted that it would not in Chapter 3 have been possible, unless

one made a lucky choice of datasets, to have demonstrated the superiority of the

GMN over the MSE and BCE using only two datasets, as were used in this chapter.

Indeed, there were in Chapter 3 - at least until IRs higher than 50 were reached

- isolated instances where one or other of the simpler loss functions produced a

better result than the GMN. Clearly, therefore, the conclusions of this current section

could be strengthened by experimentation on further image segmentation datasets,



4.2. Multi-Class Classification 80

especially ones with much higher IRs. This, however, would demand both a large

number of additional very large datasets, and was not computationally feasible at

the time of this work. Further investigations into extensions of the confusion matrix

based loss function therefore took the route of considering multi-class extensions,

this being also a much broader area of application than the very specialised area of

image segmentation.

4.2 Multi-Class Classification

All of the previous work on classification-focused training metrics has so far focused

on the binary classification problem (i.e. when there are just two classes, the majority

and minority, typically with the minority class the one of interest). However, there

are many examples of multi-class datasets which also present a form of the class-

imbalance problem.

4.2.1 Class Imbalance in the Multi-Class Case

There would be many potentially complex ways to measure class imbalance in

the multi-class setting, that attempt to characterise multiple aspects of the class

distribution. However, the most common approach is to compare the ratio of the

sizes of the smallest and largest sets, equivalent to the definition of the Imbalance

Ratio (IR) for the binary case in equation 2.1; this definition will be repeated below

for clarity,

IR =
maxi |Ci|
mini |Ci|

, i = 1..K, (4.12)

where for Ci is the number of examples of class i.
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4.2.2 Extension of Performance Measures to Multi-Class

Classification

As discussed in Chapter 2, the confusion matrix is an excellent tool for assessing a

classifier’s performance as it can provide insight not only into the errors being made

by a classifier, but, more importantly, the type of the resulting errors.

The 2×2 confusion matrix illustrated in Figure 2.1, however, considers only

binary classification, where one of the labels is considered to be ‘positive’ and the

other ‘negative’. In the case of multi-class classification (i.e. the number of classes

is greater than two), the dimension of the confusion matrix needs to be extended to

K ×K, where K is the number of different classes, C1,C2, ...,CK . Each column of

the matrix represents the instances of a predicted class, while each row represents

the instances of an actual class. An element M(i, j) of the K ×K confusion matrix

M at row i and column j provides the number of instances for which the predicted

class is j and the actual class is i. Such a multi-class confusion matrix is illustrated

in Figure 4.7.

Figure 4.7: Multi-class classification problem confusion matrix

Predicted Class
C1 C2 ... CK

C1 M1,1 M1,2 ... M1,K
Actual Class C2 M2,1 M2,2 ... M2,K

... ... ... ... ...
CK MK,1 MK,2 ... MK,K

Clearly, the characterisation of T P, T N, FP, and FN instances needs to be

extended. This can be done by decomposing the multi-class confusion matrix into

set of binary confusion matrices (or contingency tables) with respect to each class

Ci. Let C+ be Ci and let C− be all classes except for Ci, i.e. C− = {C j}−Ci (for all

classes except i). A binary confusion matrix can then be constructed from C+ and

C−, from which T Ni, FNi, FPi and T Pi can be calculated as below:
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T Pk = M(k,k),

T Nk = ∑
i̸=k

∑
j ̸=k

M(i, j),

FPk = ∑
i̸=k

M(i,k),

FNk = ∑
j ̸=k

M(k, j).

(4.13)

Performance metrics for each class Ci can then be constructed in the exact

fashion described in Chapter 2. However, since these measures are calculated for

each class separately, they need to be combined in some way to order to create a

single-number performance measure. There are two approaches to this, referred to

as micro and macro averaging.

When using micro-averaging, each sample is weighted equally and the TP, FN,

FP, TP contributions for each class are combined globally, as

T P =
K

∑
k=1

T Pk,

FP =
K

∑
k=1

FPk,

FN =
K

∑
k=1

FNk,

T N =
K

∑
k=1

T Nk,

(4.14)

with the desired measure then computed from these summed terms. Micro-averaging

then aggregates the contributions of all classes to compute an average metric. The

micro-averaged Precision and Recall can be expressed as

Recallmicro =
T P

T P+FP
=

∑k T Pk

∑k T Pk +∑k FPk
, (4.15)
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Precisionmicro =
T P

T P+FN
=

∑k T Pk

∑k T Pk +∑k FNk
. (4.16)

Micro-averaged approximations for the G-Mean, F1 and MCC can be equivalently

constructed as:

G-Meanmicro =

√
∑k T Pk

∑k T Pk +∑k FNk
× ∑k T Pk

∑k T Pk +∑k FPk
, (4.17)

F1-Scoremicro =
2∑k T Pk

2∑k T Pk +∑k FPk +∑k FNk
, (4.18)

MCCmicro =

∑k T Pk ×∑k T Nk −∑k FPk ×∑k FNk√
(∑k T Pk +∑k FPk)(∑k T Pk +∑k FNk)(∑k T Nk +∑k FPk)(∑k T Nk +∑k FNk)

.

(4.19)

Macro-averaging, in contrast, is similar to the ‘one-vs-all’ classification tech-

nique. The chosen metric is first computed independently, for each Ci, and then

averaged, weighting each class equally. To compute the macro-averaged Precision

and Recall, local metrics are calculated first for each class and then averaged:

Recallk =
T Pk

T Pk +FPk
, (4.20)

Precisionk =
T Pk

T Pk +FNk
, (4.21)

Recallmacro =
1
K ∑

i
Recalli, (4.22)
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Precisionmacro =
1
K ∑

i
Precisioni. (4.23)

Similarly, macro-averaged approximations for the G-Mean, F1 and MCC can be

constructed:

G-Meanmacro =
1
K

K

∑
k=1

√
T Pk

T Pk +FNk
× T Pk

T Pk +FPk
, (4.24)

F1-Scoremacro =
1
K

K

∑
k=1

2T Pk

2T Pk +FPk +FNk
, (4.25)

MCCmacro =
1
K

K

∑
k=1

T Pk ×T Nk −FPk ×FNk√
(T Pk +FPk)(T Pk +FNk)(T Nk +FPk)(T Nk +FNk)

.

(4.26)

If there are an equal number of samples for each class i = 1..K, then macro and

micro averaging will result in the same score. However, in the current context, this

will plainly not be the case, and hence it would be expected that micro and macro

averaging would here behave quite differently and could give different results.

A further definition of the Matthews Correlation Coefficient (MCC) for use in a

multi-class scenario was proposed by [107]. It is the most frequently used form of

the multi-class MCC in machine learning, and is built into many packages. However,

it is intended for performance measurement, not as the basis for a loss function, for

which it would be disadvantageous due to the complexity of the derivatives. It is

used here only to compare the performance of the various models in the experiments

to follow, on the basis that it is the most common scoring metric in the literature.

This form of the MCC is constructed as the discretised form of the RK coefficient,

which itself is a generalisation of the Pearson’s correlation coefficient, This form of
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the MCC is constructed as the discretised form of the RK coefficient [108], which

captures the relationship between two variables, similar to Pearson’s correlation, but

extends its applicability to ordinal and categorical data,

MCC =
c× s−∑

K
k pk × tk√

(s2 −∑
K
k p2

k)× (s2 −∑
K
k t2

k )
, (4.27)

where we define

tk =
K

∑
i

Cik,

pk =
K

∑
i

Cki,

c =
K

∑
k

Ckk,

s =
K

∑
i

K

∑
j

Ci j.

(4.28)

4.2.3 Construction of Approximated Multi-Class Training

Metrics

In order to construct an approximated version of the multi-class confusion matrix

M, it is required that labels are one-hot encoded and model outputs are kept as class

probabilities (i.e. by applying softmax). Then we have

Mapx = ŷT ·y, (4.29)

where ŷ is the matrix of class probabilities and y is the one-hot encoded targets,

respectively. Subsequently, approximated equivalents to all of the previously defined

multi-class measures can be defined, and suitable novel loss functions derived from

approximated multi-class performance metrics.

Considering the choice between micro- and macro-averaged forms of the ap-
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proximated loss functions, after initial experimentation the macro-averaged variants

were preferred. For macro-averaging, averaging approaches other than the arithmetic

mean, such as the geometric or harmonic mean, were also explored, although were

found both to be overly pessimistic and so were not pursued further.

4.2.4 Long-Tailed Recognition

A multi-class dataset where a few classes have significantly more data than many

other classes is said to follow a long-tailed class distribution. Numerous applications

require or even prioritise good performance on these rare classes. For example, for

reasons of driving safety, autonomous vehicles should recognize not only common

objects such as cars and pedestrians, but also rare ones like baby strollers and animals

[109]. Other examples include species classification [110], facial recognition [111],

medical image diagnosis [19] and unmanned aerial vehicle detection [4]. However,

classifier models trained using standard approaches on these types of long-tailed

datasets can become easily biased towards the majority classes, in the same way that

binary classifiers can make over-assignments to the larger of the two classes, leading

to poor model performance and a real difficulty in obtaining performance on the tail

classes that have limited data.

The challenge of training a model on a long-tailed dataset with many classes,

which achieves high accuracy when averaged across all classes, is known as the

long-tailed recognition (LTR) problem [7]. LTR can be considered as a more

specific and challenging sub-task within class-imbalanced learning, where there are

a large number of classes and the tail-class samples are often very scarce [4]. Being

relevant to many practical areas, including various computer vision tasks such as

image classification, detection and segmentation [4], the LTR problem has attracted

increasing attention, with researchers in recent years proposing many approaches to

alleviate the issue and improve performance, particularly using deep neural networks.
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Long-tailed recognition is challenging due to two main difficulties. Firstly, data

imbalance across classes makes deep models biased toward head (frequently seen)

classes so they consequently perform poorly on tail classes; and, secondly, a lack

of tail-class samples makes it even more challenging to train models for tail-class

classification [4]. It should also be noted that while LTR is related to few-shot-

learning [112, 113], which aims to train models with a limited number of labelled

samples (e.g. 1 or 5), few-shot learning can be regarded as a sub-task of long-tailed

learning, in which the tail classes generally have a very small number of samples [4].

Figure 4.8: Label distribution of a long-tailed image dataset. Original image from [4]
.

The proposed methods for handling LTR can be grouped into five main cat-

egories, each of which will be explained below: data manipulation, loss function

engineering (which will be the core approach of this chapter), two-stage methods,

ensembling, and parameter regularisation. It should be noted that the literature

relating to long-tailed recognition is large and that there is some overlap of these
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approaches with those discussed for binary problems in Chapter 2. As such, the

following brief review of standard methodologies for LTR is limited only to those

used for comparison purposes in this section of this chapter.

Data manipulation (re-balancing) approaches encompass methods such as

the under- and over sampling described for the case of binary class imbalance in

Chapter 2. Another form of re-balancing technique is to generate augmented samples

to supplement tail classes. Examples include SMOTE (again, introduced in Chapter

2) and major-to-minor translation (M2m) [114]. However, these approaches to LTR

suffer from the same issues as in the binary case, when imbalance is high, namely

that over-sampling degrades performance on the majority classes, under-sampling

methods degrade the generalisation of models and data augmentation methods are

expensive to develop [4].

Loss manipulation (re-weighting) involves a change of the loss function used

for training from one that is generic (for example, cross entropy (CE), to one that

is better suited to LTR, either by adapting existing losses with a weighting scheme

or by proposing entirely novel loss functions. The assignment of weights to classes

or training examples aims to modify their gradients to make class-imbalanced data

contribute more equally to training [4]. Examples of adaptations to existing loss

functions include the class balanced loss (CB) [6], logit-adjusted loss [115], focal

loss [99], and label-distribution-aware margin (LDAM) loss [7]. Novel losses already

proposed in the literature include the equalisation loss (EQ) [116], distributional

robustness loss (DRO) [117] and the parametric contrastive loss (PaCo) [6].

Two-stage methods have found benefits for LTR in de-coupling the training

process into feature and classifier learning [118]. In the first stage, the feature

learning stage, the model is trained with a standard loss, and in the second stage

the model is re-trained (while freezing deeper layers in the architecture) with a
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class-balancing loss. These methods assume that the bias towards the majority

classes is significant only in the classifier (i.e. the last fully connected layer of the

network), or that tweaking the classifier layer can correct the underlying biases in the

feature representation. Examples of two-stage approaches include self-supervised to

distillation (SSD) [119] and bilateral-branch networks (BBN) [120].

Ensembling methods focus on generating a balanced model by assembling and

grouping models that may individually be focused on subsets of classes. Typically,

classes are separated into groups, either automatically within the algorithm, or as

a pre-training decision, where classes that contain similar training instances are

grouped together. Individual models are then allowed to focus on each such group

and combined to form a multi-expert framework [117]. Ensemble methods have been

shown to improve generalisation on the long tailed recognition problem. Examples

include approaches such as RIDE [121] and ACE [122].

Parameter regularisation is primarily a technique to help with overfitting and

improve generalisation, usually by adding extra terms to the loss function to solve an

ill-posed training problem, though it can also be done post-hoc. Reduction of the

sizes of weights can help to avoid an unwanted developing (or developed, in the post-

hoc case) focus on the majority class, manifested by large weights. It is arguably less

explored in the literature for LTR as a method for handling class imbalance than those

methods previously listed; however, recent work by [5] demonstrated that the use of

weight decay [123] and MaxNorm constraints [124] during training, as well L2- and

τ normalisation [118] (here used as a post-hoc approach that after training reduces

the sizes of the weights in the outer layers), can significantly improve performance.

From recent work in LTR, the most relevant observations for the LTR experi-

ments conducted in this chapter are that LTR can be better addressed by de-coupling

feature learning and classifier learning, rather than training them jointly [118], and
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the use of parameter regularisation during training to prevent model weights from

growing too fast and developing a bias to (training) majority classes [5].

4.2.5 CIFAR100-LT Dataset

The benefit of using the novel multi-class approximated confusion matrix based

training metrics introduced earlier in this section will now be explored on long-tailed

versions of the popular CIFAR100 dataset [125].

In line with the literature and following [126], we modify the CIFAR100 dataset,

a balanced 100-class image classification dataset, by downsampling per-class training

examples using an exponential decay function to create a long-tailed version. The

resulting downsampled datasets, referred to as CIFAR100-LT, maintain 100 classes

and a balanced validation set for evaluation. However, they feature distinct long-

tailed training sets depending on the chosen imbalance ratio (IR) for downsampling.

In this experiment, two IR levels are selected: 100 and 500, yielding two different

long-tailed training sets, as illustrated in Figure 4.9.

It is important to note that an explicit out-of-sample test set is not used, as

CIFAR100 only contains a single train/val split. Using the validation set during

training is a standard approach in the literature [127]. The balanced validation/test

dataset is adopted to ensure that 1) top-1 accuracy serves as a reliable evaluation

metric, and 2) minority training examples are adequately represented. Furthermore,

no hyperparameter optimization is conducted on the validation set in the current

experiment, allowing it to be legitimately considered and referred to as the test set

from this point onward.

4.2.6 Experiment Setup & Evaluation

On the basis of the earlier discussion of the long-tailed learning literature, which

recommended a two-stage training process, such a process will be adopted in this



4.2. Multi-Class Classification 91

0 20 40 60 80 100
Class ID Sorted By Cardinality

0

100

200

300

400

500

# 
Tr

ai
ni

ng
 E

xa
m

pl
es Head Middle Tail

CIFAR100-LT
IR = 100 IR = 500

Figure 4.9: CIFAR100-LT train set frequency distributions for allocated class cardinalities
for the different target imbalance ratios (IRs), showing also the division of
classes into Head, Middle, and Tail class frequencies.

work, with the goal of decoupling feature learning and classifier learning, as first

suggested by Kang et al. [118]. Feature learning, the first stage of the two-stage

process, is here performed using a standard cross entropy (CE) loss function, with

the addition of weight decay, as used in [5]. Weight decay is a well-studied technique

[128, 129] used to constrain a network by limiting the growth of the network weights,

in this case adding an L2 penalty to the loss function, which decreases the complexity

of the network, effectively mitigating over-fitting and improving generalisation by

encouraging weights to grow within a norm ball and, conversely, discouraging them

when their norms exceed the radius. The behaviour of the model can then modified

in one of two ways, the first being subsequent training with a classification-focused

loss, the second - for the purpose of comparison, as it is a well-regarded method in

the LTR community - being post-hoc weight regularisation; these will be discussed

further below.

Performance assessment in this experiment is performed in line with the lit-

erature on long-tailed recognition. In line, again, with usual practices in LTR, we
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train on the long-tailed class-imbalanced training set and evaluate on its (balanced)

test set. To allow comparison to other benchmark studies, test set evaluation is

performed using the Top-1 classification accuracy, which is essentially the equivalent

of standard accuracy for a binary problem and, as such, is potentially subject to the

same criticism of being misleading in instances of high IR. However, it should be

noted that, although the training set is class-imbalanced (deliberately undersampled),

the test set is balanced, so in this case the accuracy is in fact a reasonable measure

of overall performance. As well as the Top-1 Accuracy, per-class accuracy is mea-

sured on three disjoint subsets - Head classes (classes each with over 100 training

samples), Middle classes (classes with between 20 to 100 training samples), and

Tail classes (classes with under 20 training examples). This helps to understand the

detailed characteristics of each method in the presence of class imbalance. As well

as using Top-1 Accuracy to assess test performance, this study will additionally use

the Matthews Correlation Coefficient, using the third of the multi-class versions of

the MCC, that form given by Equation 4.27, as this provides a simple, single-number

performance assessment for multi-class problems, as such being implemented, for

example, in the scikit-learn and PyTorch packages.

In line with other studies [5, 4] (noting that these are available only for the

lower IRs used in this study) the network architecture chosen for these experiments

is ResNet32 [130]. Stochastic Gradient Descent (SGD) is used for optimisation,

with batch size 64, momentum 0.9, and a cosine learning rate scheduler [131] which

gradually decays learning rates from 0.01 to 0. The baseline first-stage model is

trained in a similar fashion to [5], the ResNet32 model being trained from scratch for

200 epochs, using weight decay (WD) regularisation (as noted above). The baseline

model (naive model, trained using a cross entropy (CE) loss, plus weight decay) is

then, again as noted above, augmented by one method, selected from one of two
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categories of intervention. The first category is post-hoc and comprises of L2 or τ

normalisation. The second category, used alternatively, rather than additionally, to

methods from the first, modifies the training process for the unfrozen outer layer,

and comprises of a selection from one three confusion matrix based loss functions

(GMN, MCC, or F1), or the use of one competitor loss, namely the class-balanced

cross entropy loss (CB) [6], label-distribution-aware margin (LDAM) loss [7] and

the focal loss with (Focal+CB) and without (Focal) class-balancing.

The primary goal is to evaluate the benefit of using a novel multi class confusion

matrix based loss function for classifier (i.e. second stage) learning over a number

of other proposed second-stage loss functions. However, it is important also to

benchmark the results against the recent work of others, as summarised in Table

4.3. Among the results cited in this table, those of one work will be of particular

significance for comparison, this work being the recent paper of [5], whose results

using a hybrid methodology (bottom line in Table 4.3) represent the current state of

the art.

4.2.7 Results & Discussion

The results discussion is divided into two parts based on the IRs of the two CIFAR100-

LT datasets considered, their imbalance ratios of 100 and 500, respectively. For

the IR=100 dataset, test performances can be compared to other LTR studies (their

results are shown in Table 4.3); however this cannot be done for the higher imbalance

ratio, since results for an IR of 500 are not, to the author’s knowledge, available in

any other works. Results using competitor loss functions given in Tables 4.4 and 4.5

are generated here for the purpose of comparison, rather than being reproduced from

elsewhere (which, as noted, would in any case not be possible for the higher IR).

CIFAR100-LT (IR = 100). Table 4.4 gives the test Top-1 Accuracies for the

CIFAR100 dataset with an IR of 100. In order to give a deeper insight into the results,
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Table 4.3: Benchmark CIFAR100-LT (IR = 100) test Top-1 Accuracies.

CIFAR100-LT IR: 100

Approach Top-1
Acc. (%) Description

CE 38.32 Cross entropy loss [6]

Data re-balancing

ReSample 33.44 Oversampling [6]

SMOTE 34.01 Synthetic minority oversampling technique [114]

M2m 42.90 Major to minor translation (M2m) [114]

Loss manipulation

CE+CB 39.60 Class balanced cross entropy loss [6]

Focal 38.41 Focal loss [75]

Focal+CB 39.60 Class-balanced focal loss [6]

LogitAdjust 42.01 Logit-adjusted cross entropy loss [115]

LDAM 42.04 Label-distribution-aware margin (LDAM) loss [7]

EQLoss 43.38 Equalisation loss [116]

DRO-LT 47.31 Distributional-robustness loss [117]

PaCo 52.00 Parametric contrastive learning [132]

Two-stage/de-coupling methods

BBN 42.56 Bilateral branch network [120]

DiVE 45.35 Distill the virtual examples [133]

SSD 46.00 Self-supervised to distillation [119]

Ensembling

ACE (4-expert) 49.60 Ally complementary experts [122]

RIDE (4-expert) 49.10 Routing diverse distribution-aware experts [121]

Regularisation

τ-norm 47.73 (Post-hoc) τ normalisation [118]

WD+L2-norm 49.60 WD + (post-hoc) L2 normalisation [5]

WD+τ-norm 51.31 WD + (post-hoc) τ normalisation [5]

Loss manipulation, de-coupling, regularisation

Hybrid 53.35 CB + WD + MaxNorm ( [5]

the test accuracies are separated into the Head, Middle and Tail class frequencies

described in the previous section, and ‘All’ which represents the Top-1 Accuracy over
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the whole dataset (as the standard metric that is quoted in the LTR literature). It is

clear from this table that two-stage training is preferable, as an addition to the baseline

model, to the use of regularisation. It is also clearly evident that for the lower class

frequencies (Middle and Tail) the three novel loss functions represent a significant

improvement on the state of the art. For the Head class frequency, however, the most

effective second-stage loss function is standard cross entropy (CE); this result is not

unexpected given that focus on minority classes inevitably impacts classification of

the majority, such that for more balanced datasets a conventional choice of loss may

be preferred. It should also be noted that the outperformance of CE for the Head

class does not impact on the conclusion that the overall (final column of Table 4.4)

winning second-stage loss functions are the three novel ones of this chapter (these

three not being statistically significantly distinguishable, when all class frequencies

are combined). Figure 4.11 provides a visual summary of the results; while the

(CE+CB) method does well, and appears to come close to the performance of the

(GMN, F1, MCC) group, it is even so statistically significantly beaten by use of

this group of novel loss functions, due mostly to the relative underperformance

of (CE+CB) on the Head class. Finally, Figure 4.12 looks in detail at the Top-1

Accuracies for all the classes considered, rather than grouping them into (Head,

Middle, Tail). comparing the baseline model (CE+WD, no second-stage training)

with second-stage training using the MCC loss. It is evident from this figure that

while performance drops off very noticeably for the baseline model as class ID

increases (class frequency decreases), this degradation of performance is much less

obvious for the model with second-stage MCC training.
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Test Top-1 Accuracy: IR=100

Train Class Frequency

Model Head Middle Tail All

First-stage (feature) training, method as in [5]

CE 77.30 46.80 14.80 47.90

As above, plus post-hoc regularisation [5] (one choice from the below)

L2-norm 76.09 47.74 20.87 49.60

τ-norm 73.11 47.69 30.10 51.31

As first line, plus second-stage (classifier) training (one choice from the below)

CE 78.13 (0.17) 41.49 (0.50) 4.04 (0.94) 43.08 (0.22)

Focal 77.52 (0.22) 44.08 (0.50) 9.56 (1.07) 45.43 (0.24)

LDAM 77.07 (0.14) 47.47 (1.47) 18.47 (0.47) 49.13 (0.61)

Focal+CB 75.84 (0.30) 50.76 (0.39) 26.48 (0.92) 52.25 (0.25)

CE+CB 69.81 (0.65) 50.23 (0.58) 37.57 (0.64) 53.29 (0.18)

GMN 71.45 (0.61) 52.35 (0.84) 38.35 (0.96) 54.18 (0.33)

F1 72.60 (0.55) 52.14 (0.66) 37.71 (1.13) 54.27 (0.32)

MCC 73.44 (2.68) 52.14 (0.85) 41.34 (3.04) 54.28 (0.42)

Table 4.4: Top-1 Accuracy on CIFAR100-LT (IR=100) test set, for baseline model plus
weight decay (as in [5]), with various choices of subsequent intervention, broken
down into regularisation (as in [5]) and second-stage classifier training, the
latter including both a loss used in [5] (CE+CB) and three novel loss functions
of this thesis (GMN, F1, MCC). “CB”: class-balancing [6]; “LDAM” label-
distribution-aware margin (LDAM) loss [7]. Results are split vertically by training
methodology and horizontally by train class frequency, with standard deviations
in brackets, and bolding indicating a win or tie at 5% statistical significance
among the second-stage classifier models.
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Figure 4.10: CIFAR100-LT (IR=100): Comparison of average Top-1 Accuracies of the
confusion matrix based loss functions used in this chapter (GMN, F1 & MCC
losses, displayed in bold) to recent state-of-the art results for this dataset.
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Figure 4.11: Comparison of Top-1 Accuracies on CIFAR100-LT (IR=100) across the second-
stage losses considered, for differing train class frequencies.
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trained with MCC loss compared to per-class test Top-1 Accuracy for baseline
model with CE loss and no second-stage training. Red line indicates class
count of training dataset (test dataset is balanced).
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CIFAR100-LT (IR = 500). Table 4.5 gives equivalent results to Table 4.4 for

the IR=500 dataset. Comparing the performances of the different second-stage loss

functions, the results are broadly similar to those for IR=100, except that for the

Middle and Tail classes F1 and GMN outperform (to 5% significance) the MCC loss,

as well as all other considered losses. It is, however, the MCC that is the overall

winner, as the underperformance for the Head class of the MCC loss, relative to that

of the Head class winner, CE, is less than for the F1 and GMN losses. Equivalently

to Figure 4.11, Figure 4.13 gives a visual presentation of the results, where it can be

seen that the relative outperformance of (F1, GMN) on the Tail class, compared to

the worst-performing second-stage loss function, Focal, is even more striking.
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Figure 4.13: Comparison of Top-1 Accuracies on CIFAR100-LT (IR=500) across the second-
stage losses considered, for differing train class frequencies.

Comparison of Results for IRs of 100 and 500. Table 4.6 compares the

performance of the difference methods, now across the two IRs considered, using the

MCC of 4.27 as a performance measure. Again, it is clear that two-stage training is

a better-performing methodology than the use of post-hoc regularisation. Comparing

the different second-stage loss functions, for IR = 100, GMN, F1, and MCC tie (to

5% significance), and for IR = 500 the winner is the MCC loss.
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Test Top-1 Accuracy: IR=500

Train Class Frequency

Model Head Middle Tail All

First-stage (feature) training, method as in [5]

CE 73.90 30.3 1.40 36.90

As above, plus post-hoc regularisation [5] (one choice from the below)

L2-norm 73.61 34.60 3.9 39.01

τ-norm 54.10 24.72 13.51 31.70

As first line, plus second-stage (classifier) training (one choice from the below)

CE 73.30 (0.14) 23.39 (0.49) 0.05 (0.09) 33.86 (0.20)

Focal 72.26 (0.56) 17.20 (0.91) 0.03 (0.07) 31.32 (0.47)

LDAM-DRW 72.62 (0.95) 32.49 (0.80) 3.07 (0.72) 37.71 (0.76)

Focal+CB 72.78 (0.55) 39.57 (0.41) 5.19 (0.36) 40.88 (0.09)

CE+CB 71.44 (0.77) 40.87 (0.30) 5.99 (0.63) 41.11 (0.25)

F1 66.26 (1.07) 46.20 (0.75) 9.22 (0.82) 41.27 (0.23)

GMN 68.48 (1.75) 46.29 (1.63) 9.22 (0.71) 41.37 (0.26)

MCC 70.12 (1.10) 44.12 (0.40) 8.05 (0.77) 41.86 (0.30)

Table 4.5: Top-1 Accuracy on CIFAR100-LT (IR=500) test set, for baseline model plus
weight decay (as in [5]), with various choices of subsequent intervention, broken
down into regularisation (as in [5]) and second-stage classifier training, the
latter including both a loss used in [5] (CE+CB) and three novel loss functions
of this thesis (GMN, F1, MCC). “CB”: class-balancing [6]; “LDAM” label-
distribution-aware margin (LDAM) loss [7]. Results are split vertically by training
methodology and horizontally by train class frequency, with standard deviations
in brackets, and bolding indicating a win or tie at 5% statistical significance
among the second-stage classifier models.
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Table 4.6: Overall (all class frequencies) Matthews Correlation Coefficient (MCC) scores
on CIFAR100-LT for the two imbalance ratios (IRs).

Imbalance Ratio (IR) 100 500

First-stage (feature) training, method as in [5]

CE 46.78 36.25

As above, plus post-hoc regularisation [5] (one choice from the below)

L2-norm 50.04 38.32

τ-norm 51.77 31.04

As first line, plus second-stage (classifier) training (one choice from the below)

CE 42.76 (0.23) 33.56 (0.20)

Focal 45.11 (0.25) 31.02 (0.47)

LDAM-DRW 48.91 (0.40) 37.33 (0.78)

Focal+CB 51.87 (0.24) 40.42 (0.08)

CE+CB 52.87 (0.18) 40.63 (0.25)

GMN 53.74 (0.34) 40.88 (0.27)

F1 53.85 (0.32) 40.77 (0.23)

MCC 53.85 (0.41) 41.38 (0.30)
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4.3 Discussion

This chapter examined alternatives (F1 and MCC losses) to the GMN loss introduced

in Chapter 3.4, and the extension of the classification focused loss methodology to

the case of multi-class problems.

Firstly, it was demonstrated that, with the underlying concept of the approx-

imated confusion matrix, a differential approximation to the standard confusion

matrix, any confusion matrix-oriented performance metric can, in principle, be con-

verted into a loss function suitable for gradient based neural network training. Two

such new losses were introduced: the F1 loss, based on the approximated F1-Score,

and the MCC loss, based on the approximated Matthews Correlation Coefficient.

The MCC, F1 and the (previously introduced) GMN loss were applied to two recent

image segmentation datasets. Image segmentation, a sub-task of the broader field of

computer vision, allows the practical demonstration of novel loss functions using

deep network architectures, in this case applying a U-Net architecture, a commonly

used model for image segmentation tasks. The relative benefits of the approximated

measures were clear when they were compared to the use of a standard loss (binary

cross entropy), but they also outperformed the use of two recently introduced image-

classification-focused losses, the Dice loss [99] and the Focal loss [75], relative

to both domain-specific measures such as the Intersection over Union (IoU) and

traditional class-imbalance measures such as the MCC and F1-Score.

Secondly, having demonstrated convincing results on (real-world) binary class-

imbalanced datasets, the concept of the approximated confusion matrix was extended

to the multi-class setting, having first considered the different ways in which clas-

sification performance can be measured when working with multiple class labels,

including the concept of micro and macro averaging. Both micro and macro forms

of approximated performance measures, such as the G-Mean or F1, are possible,
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but as initial investigations indicated that macro averaging was the more tractable

approach, and so the macro-averaged forms of the measures were therefore adopted

for the remainder of the multi-class work. Three macro-averaged approximated loss

functions, the GMNmacro, F1macro, and MCCmacro were then used as candidate loss

functions for the second stage, or classifier learning stage, of a two-stage approach to

a common multi-class class-imbalanced task known as the Long Tailed Recognition

(LTR) problem. State-of-the art results were achieved overall (across all categories

of class frequency), with the (GMN, F1, MCC) losses outperforming a recent work

[5] that had represented a considerable advance, with the predominant advantage

being seen, as might be expected, for the least frequent (Tail) classes.

It has thus been shown, in this and the previous chapter, that classification

focused loss functions are potentially very powerful for both binary and multi-class

problems. However, the IRs so far considered (up to IR = 500), while substantial,

and well beyond those typically addressed in other works, are even so not as high

as might be encountered in certain specialist applications, such as cheminformatics

[134]. For such extreme scenarios, with IRs up to 1000s, it would be worthwhile

to consider other potential avenues to explore. One such approach, to generalise

the form of the activation function for a network’s output layer in order to ease the

difficulty of classification of the minority type, will be the topic of the next chapter,

where it will be shown that this new approach can be used effectively both alongside,

and separately from, a classification-focused loss.



Chapter 5

Boosting Performance for Extreme

IR: ASTra, a Complementary

Approach to Imbalanced

Classification

While the results of the previous chapter were highly encouraging, it is possible in

extreme scenarios (IRs in the 1000s) that classification-focused loss functions alone

might not be enough. An alternative approach to handling high IRs would be to

look at making the classification of the minority class intrinsically easier. This can

be done, in the binary case, by modifying the form of the activation function in a

neural network’s output layer. This chapter will motivate, describe, and demonstrate a

specific modification for binary classification known as ASTra (Asymmetric Sigmoid

Transfer function). ASTra will be used both alone, with a conventional binary cross-

entropy (BCE) loss function, and in combination with the G-Mean loss function of

Chapter 3. The G-Mean is chosen over more the advanced loss function variants

introduced in Chapter 4 because it had already, in Chapter 3, been demonstrated to
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be workable and advantageous for both the UCI and Pump & Dump datasets and is,

therefore, (arguably) the simplest choice.

The proposed approach is tested on datasets with IRs from 588.24 to 4000

which, in particular, contain very few minority examples (in some datasets, as

few as five). Problems with such extreme levels of class imbalance are not in

fact uncommon, and arise in application areas already discussed such as fraud

detection [135] and cheminformatics [134]. The results for these test datasets, using

neural networks with 2 to 12 hidden units, are demonstrated to be comparable to,

or better than, equivalent results obtained in a recent study that examined a wide

range of complex, hybrid data-level ensemble classifiers [8]. It will be seen that

ASTra alone is a powerful intervention for high-IR problems, though the results

of this chapter contain some evidence that at even higher levels of IR it could be

combination of ASTra with a classification-based loss function that would prove

optimal. In addition, this chapter also presents a new means of monitoring training

and validation performance, especially valuable in cases of high class imbalance,

that could potentially be used in any training regime, independently of the proposed

methods.

5.1 Origin and Derivation of the ASTra Transform

The origin of the ASTra transform lies in fact entirely outside of machine learning,

in the fields of botany and ecology. The ASTra transform is based on the integrated

form of the Richards Growth Equation [136]. The Richards Growth Equation

has been used, for example, to model vegetation growth and the growth of young

mammals and birds, and is given by

∂y
∂ t

= ay[1− y
K

b
], (5.1)
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in which t represents time, a is a constant equal to the relative growth rate at very

low values of y, K is the maximum observable value of y, and b is a constant that

allows the shape of the sigmoid curve to be varied (for b > 1 the maximum slope of

the curve is when y > K/2, for b = 1 it is when y = K/2 and when b < 1 it is when

y < K/2).

The appeal of the Richards equation in the current context is that its integrated

form is an asymmetric sigmoid curve whose maximum gradient is at a variable

position τ within the function’s output range. This point of maximum slope can in

machine learning can be identified with the activation function’s threshold parameter.

This is a more substantial modification of the concept of threshold than models

which simply apply an offset within the conventional sigmoid.

The constant a within the original form of the Richards equation is here set

to a = 1, since outside of a biological context there is no reason to treat the lower

asymptote of the ‘growth curve’ differently to the upper one. Furthermore, since

the range of an activation function should be ∈ [0,1] if it is to define a probability, it

is obvious to take K = 1. Now also replacing the input variable t which originally

represented time, to x, the Richards equation becomes

∂y
∂x

= y[1− yb]. (5.2)

With the further assumption that b > 0 (since a negative decision threshold

would not make sense), the integrated form of the above equation becomes

y = (1+ e(d−bx))
−1
b , (5.3)

where d is a parameter that indirectly defines the value of x at which y = 0.5. For

d = 0 and b = 1, the integrated Richards equation plainly recovers the regular
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sigmoid function. The maximum slope, obtained at b(1+ b)−
1+b

b , for b = 1 is

2−2 = 1
4 . The value of y corresponding to the maximum slope is (1+ b)−

1
b (for

b = 1, y = 2−1 = 1/2, and the value of x corresponding to the maximum slope is

d−lnb
b .

From this point, there are two possible ways to go. If the value of x that

corresponds to the maximum slope (threshold) is not of concern, then d can be set as

d = 0, and therefore

y(x) = (1+ e−bx)(−1/b). (5.4)

However, if the value of x for the maximum slope is desired to be when x = 0, then

it is required that d = lnb and therefore that

y(x) = (1+be−bx)(−1/b). (5.5)

In either case the implied threshold is

τ = (1+b)(−1/b). (5.6)

(It should be noted that the threshold equation cannot be algebraically inverted to

give b(τ); if this is needed, e.g. for initial threshold setting, a numerical solver

is required). In the end, the second choice, Equation 5.5, was selected because

it generated a form that most closely resembled the original sigmoid. The only

difference was that the maximum slope occurred at a y value greater or lesser than

0.5, as shown in Figure 5.1.

Turning now to potential constraints on the value of the parameter b, it quickly

became apparent that
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f (x,b) = (1+be−bx)(−1/b) (5.7)

did not give a useful result for 0 < b < 1; only values of b ≥ 1 (where b = 1 recovers

the original sigmoid) provide the desired range of shapes as shown in Figure 5.1.

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Threshold Can be Raised
b=1 b=1.5 b=2 b=3 b=5 b=10 b=20

Figure 5.1: Activation profile for f (x,b) = (1+be−bx)(−1/b) for different values of b. At
b = 1 this is equivalent to the standard sigmoid function. However as b increases,
the threshold (i.e. point of maximum slope) increases. This setup, the one
derived most directly from the Richards equation, works effectively for minority-
0 labels but for a conventional minority-1 requires adjustment.

Figure 5.1 also shows that, as b increases, the threshold increases. This is

actually the opposite of what is desired for the standard situation where the minority

class label is equal to 1 and the majority equal to 0 (also known as the minority-1

setup), since the idea would then be to lower the threshold to reduce the number

of false negatives. This output transform could in principle still be used for a

conventional minority-1 scenario if the class labels were flipped. However, given that

the ability to retain conventional class labels might be an important consideration

for the user, it was felt an extension should be found that is compatible with the
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more common setup of minority-1 labels. Therefore, f (x,b) was adapted so that

the threshold can now be lowered to achieve easier classification of the minority,

via a simple geometric transformation: g(x,b) = 1− f (−x,b). Either setup can be

employed, depending on what way round labels are applied (minority-1 vs. minority-

0), and whether the key objective is to reduce false negatives, (the more common

task), or false positives. However, care should be taken in the changes required,

these being highlighted in Table 5.1: although the equations for z(y,τ), ∂

∂yz(y, t) and

∂

∂τ
z(y,τ) (the need for, and form of, the z-transform is explained later in subsection

5.2) remain the same, everything else requires an important change.

Table 5.1: Summary of ASTra equations based on target setup. The ASTra formulation
varies depending on whether targets are labelled as minority-0 or minority-1.
z(y,τ), ∂

∂y z(y, t) and ∂

∂τ
z(y,τ) remain the same for both.

Label Convention

Function Minority-0 Minority-1

y(x,b) (1+be−bx)−
1
b 1− (1+bebx)−

1
b

∂

∂xy(x,b) y(1− yb) (1− y)(1− (1− y)b)

τ(b) (1+b)(−1/b) 1− (1+b)(−1/b)

z(y,τ) y(1−τ)
y(1−τ)+(1−y)τ

∂

∂yz(y,τ) z2τ

y2(1−τ)

∂

∂by(x,b) − y
b [logy+ 1

b(1− yb)(1− xb)]
(1−y)

b [log(1− y)+
1
b(1− (1− y)b)(1+ xb)]

∂

∂τ
z(y,τ) − z2(1−y)

y(1−τ)2

∂τ

∂b − τ

b [logτ + τb] τ

b [logτ + τb]

The activation profile for a minority-1 setup is shown in Figure 5.2, with further

examples (this time labelled by threshold τ , for τ = 0.5,0.25,0.05, rather than

parameter b, and showing both (a) the activation function, and (b) its derivative) in

Figure 5.3. As a sidenote, it has so far been found that 0.05 is the lowest workable



5.2. Adaptation of Loss Functions to Accommodate ASTra 110

value for τ (attempts to compress all majority examples into < 5% of the output

range having led to numerical instabilities), and that therefore no values of τ less

than 0.05 will be used in the experiments to follow.
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Figure 5.2: Activation profile for g(x,b) = 1− f (−x,b) for different values of b. At b = 1
this is equivalent to the standard sigmoid function. In this case, as b increases,
the threshold (i.e. point of maximum slope) decreases. This setup is best for
reducing false negatives in the conventional minority-1 setup.

5.2 Adaptation of Loss Functions to Accommodate

ASTra

At first sight, this looks easy: simply replace the usual sigmoid output, in the selected

loss function, by (assuming, from hereon, a conventional minority-1 setup)

ASTra(x,b) = 1− f (−x,b) = 1− (1+bebx)(−1/b) (5.8)

However, it is not always so straightforward, as an examination of ASTra’s effect of

the computation of a binary cross-entropy (BCE) loss will show.
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Figure 5.3: (a) Activation function ASTra(x,b) and (b) its first derivative, for τ(b) =
0.5,0.25,0.05.
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Consider the contribution JBCE(ŷ,y) =−y log ŷ− (1− y) log(1− ŷ) of a single

example, with prediction ŷ = ASTra(x,b) and target y ∈ {0,1}, to the train set

loss. As is apparent in Figure 5.4 a), for b = 1 (τ = 0.5), for any input x > 0.0,

JBCE(ŷ,0)> JBCE(ŷ,1), correctly, since ŷ will be on the ‘correct side’ of the threshold

and so closer to target 1 than to 0, with the converse also correctly being true for

inputs x < 0.0. However, for b > 1 this is not true for all values of the input x; there

will be a range of x, specifically, 0 < x < (log[(2b −1)/b])/b, within which the loss

contributions are wrongly ordered. Fig. 2(b) shows an example of this for τ = 0.25

(b = 7.396); within the shaded band it is the case that JBCE(ŷ,0) < JBCE(ŷ,1), so

outputs which are ‘more right than wrong’ are instead being informed that the

opposite is the case.

The fundamental problem is that currently JBCE(ŷ,0) and JBCE(ŷ,1) cross at

0.5, not at τ , and the solution is to use within the BCE loss not ŷ but a transform

z(ŷ,τ), given by

z(ŷ,τ) =
ŷ(1− τ)

ŷ(1− τ)+(1− ŷ)τ
, (5.9)

such that z, 1− z will now cross at τ , as can be seen in Figure 5.5, for τ = 0.5,0.25,

and 0.05, and hence the loss contributions JBCE(z,0) and JBCE(z,1) will do so, also.

For some loss functions, such as mean squared error, it is unnecessary to transform ŷ

in this way. However, the z-transform should be carried out for any classification loss

function that implicitly pivots around a threshold of 0.5, including all loss functions,

such as GMN, derived from the confusion matrix.

5.3 Learning the Threshold Value

It would in principle be possible to use a fixed value of τ and set this via hyperpa-

rameter optimisation. However, in experiments so far, it has appeared that a fixed
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Figure 5.4: Loss functions for targets 0 and 1 for (a) τ(b) = 0.5 and (b) τ(b) = 0.25

τ < 0.5 during weights-learning is non-optimal, and that it is better to begin with a

somewhat larger threshold value that then decreases during the network’s learning

process. There is necessarily therefore a question of how τ should be decreased.

While it would be possible to experiment with a schedule of decrease, for example,

exponential or linear, a more attractive option is to learn the value of the underlying

‘slope’ parameter, b, alongside the network’s weights.

For a conventional minority target of 1, the relevant values of b should be
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Figure 5.5: z-transforms for τ = 0.5,0.25,0.05

constrained to be ≥ 1(corresponding to a threshold τ ≤ 0.5). Given this, it is useful

to express b in terms of an unconstrained underlying parameter β :

b =


2+β β > 0

1+ eβ otherwise

. (5.10)

It is preferable to begin with b(β ) in its linear range, i.e., b ≥ 2, so that the threshold

can change sufficiently quickly at the start of the learning process. The value τinit =

0.25 (b = 7.396) is used here, around halfway between the achievable threshold

maximum of 0.5 and the recommended (on stability grounds) minimum of 0.05, but

clearly this is a value that could be treated as a hyperparameter and optimised.
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5.4 Data, Experimental Process, and Performance

Measurement

5.4.1 Data

There are not many easily available datasets with the high level of imbalance required

for this work. However, a recent study [8] has looked at data with IRs ranging

from 9.08 to 970.6, with data made available online [137]. It was also useful that

these data were used in [8] to compare HD-Ensemble, a high-performing hybrid,

data-level ensemble classifier devised by that study’s authors, to seven other state-of-

the-art ensemble classifiers, including RUSBoost [86]. The three most imbalanced

datasets from [8], named there as skinnonskin, cod-rna, and ijcnn1 (IR = 970.6) were

downloaded from [137].1 In addition to the original files, the two largest datasets

from [137] were minority-undersampled to create more challenging problems (IRs of

3500, 4000, with one positive example in each of five folds), extracting five positive

samples randomly at each run, to eliminate bias created by ‘good’ or ‘bad’ subset

picks.

Table 5.2: Datasets used in this work. The shaded bars correspond to the original datasets
of [8] and the unshaded bars to our additional minority-undersampled datasets

Dataset IR Abb. nx mtot m1

skinnonskin 588.24 skin-588 3 20034 34

above, undersampled 4000 skin-4000 3 20005 5

cod-rna 763.27 cod-763 8 19871 26

above, undersampled 3500 cod-3500 8 17505 5

ijcnn1 970.60 ijcnn-971 22 4858 5

The properties of the datasets used here are summarised in Table 5.2, in which

nx is the number of input features, mtot the total number of examples in the dataset,

1Modified, where necessary, to record target-1 for the minority class and target-0 for the majority,
a requirement for the application of the ASTra activation function.
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and m1 the number of minority-positive examples. It should be noted that while a

similar process to [8] was followed in creating stratified test folds, 10×5CV testing

rather than 5× 10CV was used, using three folds for training, and one each for

validation and testing, as it was unclear how tenfold stratified sampling had been

done in [8] in the case of ijcnn1, with only five positive examples.

5.4.2 Details of the Experimental Process

The focus of this work is not the test problems of Table 5.2, per se, but a comparison

of methodologies, and therefore simple choices were made for network architectures,

with no attempt to optimise learning rates, etc., in order to get the best solution in each

case. For each test problem, four candidates were compared: training with a binary

cross-entropy loss (referred to as BCE); training with a binary cross-entropy loss

and ASTra transform (BCE-ASTra); training with the GMN loss function (GMN);

and training with the GMN loss function and ASTra transform (GMN-ASTra). The

architecture for each test problem consisted of a neural network with one hidden

layer of Leaky ReLU neurons (having a negative slope coefficient of 0.3) and a single

ASTra output (which can be converted to the standard sigmoid when b = 1). The

number of hidden units nh, was determined using the formula nh = ceil((nx+ny)/2),

where nx is the number of input features and ny denotes the number of output units

(in this case, consistently set to 1 to represent the single ASTra output). Network

weights used He initialisation in the hidden layer and Glorot initialisation in the

output layer. All models were trained using Adam, with a training rate of η = 0.001

for the network weights. ηb, the training rate associated with the slope parameter b,

was set according to the adaptive rule of Equation 5.11,
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ηb =



min(kmult ·ηb,ηbmax) if e-ratio > 1.0

max(kdec ·ηb,ηbmin) if e-ratio < 1.0

ηb otherwise

, (5.11)

the objective of which was to allow the threshold adjustment to proceed more quickly

when the model is struggling to handle its train set class imbalance, but slow down

when conditions are less taxing, as measured by the e-ratio of Section 5.4.3. Here,

ηbmin (also the starting value of ηb ) is chosen to be 0.01, ηbmax, kmult = 1.1, and

kdec = 0.99. These values were not optimised, in line with a focus on comparison of

training methods, rather than on outright performance.

The one form of problem-specific optimisation performed was the extraction

of the best weights (and b value, where relevant) with respect to a validation set.

However, it was unfeasible to use early stopping as best validation performance could

in some cases occur late, after an early setback. Therefore, training was conducted

for a fixed 10,000 epochs, extracting a ‘best-on-val’ set of parameters, for whatever

epoch this occurred, with respect to the chosen validation performance measure

(FNRapx, for the reasons discussed in the following section).

5.4.3 Performance Measurement

Two aspects of performance measurement need to be considered, that which is

carried out during the training process, and that which is used to assess the results

on the test sets. For the latter, the G-Mean is used, as it is the basis of one of our

considered loss functions, and one of the two performance measures quoted in [8].

However, AUROC is not included, as in [8], as this metric has been criticised in the

case of imbalanced data [53], and we found it to distinguish very poorly between the

methods of this paper. Instead, MCC is substituted as the second measure, due to its
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high regard as a performance metric for imbalanced data.

Turning to in-training performance monitoring, another innovation is introduced

in that we retain the explanatory value, for this purpose, of confusion matrix based

metrics, but exchange the usual, counting-measure forms for ones based on the

approximated matrix—i.e., we use standard formulae for G-Mean, etc., but base the

calculation on the matrix elements of the approximated confusion matrix rather than

confusion matrix. Metrics derived from CMapx re-introduce the ‘by how much?’ that

counting-measure classification metrics lose. This is particularly important when

monitoring validation performance, for which, in this work, we select to monitor

FNRapx, the approximated false negative rate, rather than MCCapx, for example, as

in these extreme scenarios it is test set FNR that largely determines classification

(in terms of MCC, G-Mean) success. The other element of in-training performance

monitoring relates to the train set itself, rather than to validation. We record

e-ratio =
FNRapx

FPRapx
(5.12)

for the train set as a way to measure the difficulty a model has with the train set

class imbalance; this ratio is used in Equation 5.11 but also of intrinsic interest in

understanding how the methods deal with class imbalance, with a large difference

being discovered between BCE loss and GMN loss training, as will be seen later.

5.5 Results

The results of the 10× 5CV study are summarised in Table 5.3, below, in which

averages and standard deviations (in brackets) are quoted for both G-Mean and MCC,

and where BCE, GMN refer to the loss functions (JBCE , JGMN) used.

The large standard deviations, apparent also in the results of [8], are a conse-

quence of fold-based aggregation of results in a situation where a small number of
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Table 5.3: Mean fold-aggregated test performance (10× 5CV), with standard deviations
bracketed. Cells with bold type and shading denote winners or ties, where to be
deemed a winner a method needs to outperform its competitors with p ≤ 0.05 .

Without ASTra With ASTra
BCE GMN BCE GMN

skin-588
G-Mean 0.892 (0.273) 0.966 (0.051) 0.981 (0.041) 0.946 (0.126)
MCC 0.892 (0.273) 0.966 (0.051) 0.976 (0.042) 0.763 (0.273)

skin-4000
G-Mean 0.760 (0.436) 0.879 (0.331) 0.800 (0.408) 0.840 (0.374)
MCC 0.760 (0.436) 0.843 (0.368) 0.800 (0.408) 0.688 (0.382)

cod-763
G-Mean 0.449 (0.396) 0.768 (0.206) 0.862 (0.208) 0.843 (0.206)
MCC 0.433 (0.391) 0.419 (0.301) 0.760 (0.229) 0.542 (0.291)

cod-3500
G-Mean 0.240 (0.436) 0.357 (0.486) 0.640 (0.490) 0.519 (0.509)
MCC 0.240 (0.436) 0.255 (0.397) 0.421 (0.369) 0.206 (0.225)

ijcnn-971
G-Mean 0.000 (0.000) 0.120 (0.331) 0.478 (0.508) 0.596 (0.497)
MCC -0.000 (0.001) 0.072 (0.208) 0.162 (0.179) 0.179 (0.162)

false negatives (in the case of the skin-4000, cod-3500, and ijcnn-971 datasets, a

single false negative) on an individual fold can cause its G-Mean or MCC to drop

from near-unity to zero. This in turn causes some results, with a sample size of 50

(10CV), to be not statistically significantly distinguishable; e.g., in the case of the

skin-588 dataset, the G-Means of the four methods cannot be separated at p ≤ 0.05

in spite of an apparent-win by BCE with ASTra (BCE-ASTra). Nevertheless, despite

the necessity of a registering a proportion of the results as ‘ties’, a pattern emerges,

with the problems forming a hierarchy of difficulty, at each level of which different

methods will be appropriate:

• skin-588 is an example of a problem for which no additional measures to

address IR need to be taken, since vanilla BCE training can do as well (subject

to the above note on statistical significance testing) as any of the more advanced
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methods.

• skin-4000, the minority-undersampled version of skin-588, is a more difficult

problem, for which BCE training falls behind with respect to MCC. For this

problem, adopting the principle that a minimal intervention is to be preferred,

GMN training, without the ASTra transform, would be recommended.

• cod-763, cod-3500, and ijcnn-971 are examples of problems that appear to

clearly benefit from the ASTra transform. For the cod variants it is BCE-

ASTra that does best with respect to both G-Mean and MCC, having fewer

false positives for these problems, while for ijcnn-971 BCE-ASTra and GMN-

ASTra tie.

The above list does not include a problem for which GMN-ASTra does best.

However, we would expect such problems to exist. GMN-ASTra attacks false

negatives at the expense of a somewhat increased number of false positives, and if

it is possible to avoid this by using BCE-ASTra, that is desirable. But it is likely

there are problems that require an increase in false positives to be tolerated in order

to have any chance of recognising instances of the minority class (i.e., of having

G-Means and MCCs above zero), and in such cases we would expect GMN-ASTra

to be preferred.

For the three datasets we have in common with [8] it is possible to draw

performance comparisons with that work, though retaining our concerns about the

use of AUROC for highly imbalanced data, which we found did not distinguish

well between the methods. The two best-performing methods of [8], in relation to

G-Mean and AUROC, were the HD-Ensemble method of [8] and RUSBoost [86].

For skin-588, GMN, BCE-ASTra, and GMN-ASTra all had statistically significantly

indistinguishable performance from RUSBoost, with respect to both metrics. For
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cod-763, the two ASTra variants tied with RUSBoost on AUROC, but beat RUSBoost

on G-Mean, while on ijcnn-971 they achieved a better G-Mean than state-of-the-art

HD-Ensemble. Given especially that we used small, single-layer neural networks,

with that used for skin-588 having only three neurons, we consider these results

encouraging.

As a means of illuminating the difference between our four considered methods,

Figure 5.6 shows the e-ratio (as defined in Equation 5.12), for the skin-4000 (most

highly imbalanced) problem. The GMN variants find handling the imbalance much

easier, with e-ratio values up to five orders of magnitude lower; also, while ASTra

is taxing in terms of e-ratio, this can be offset by the use of GMN. While extreme

scenarios will likely require ASTra, this figure is indicative as to why, for some

imbalanced problems, GMN alone would be sufficient.
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Figure 5.6: Fold-averaged training behaviour for skin-4000, in terms of the (logged) e-ratio
for each considered method.
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5.6 Discussion

This chapter proposed a novel output layer activation function, named ASTra (Asym-

metric Sigmoid Transfer function), which makes the classification of minority exam-

ples in scenarios of high imbalance more tractable. While this new activation can be

used on its own, it can also be combined with any of the classification-focused loss

functions introduced in the previous chapters.

The proposed methods were applied to the most imbalanced datasets in a recent

extensive study of ensemble classifiers [8] and achieved performances compara-

ble to those reported in [8] for RUSBoost [86], despite our restricting this initial

investigation to the use of neural networks with 3–12 neurons in a single hidden

layer. It should be emphasised, however, that for complex problems it is essential

to explore the space of model architectures, since even in the case of a high IR

the main difficulties may in fact lie in an insufficient model architecture. It is also

recommended that a progressive exploration of the methods is conducted, beginning

with the GMN loss alone, then advancing to the addition of the ASTra output layer

activation function, as needed.

It was notable that in a number of instance ASTra with the BCE loss function

did better in terms of MCC than both the G-Mean loss and the G-Mean loss with

ASTra. Does this mean that the combination of the G-Mean (or other classification-

based loss function) with ASTra is not, after all, likely to be effective for very high

IRs? The answer to this question is found in a consideration of two topics. First,

the contribution of, and importance of, false positives, and second the the definition

of “high” - which an IR of 3000 is certainly extremely high in comparison to the

IRs handled in the current ML literature, IRs in some fields, such as fraud detection

[135], potentially even higher.

BCE training, precisely because it is less biased, tends to handle false positives
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better than G-Mean training. A higher IR also means a higher potential for false posi-

tives simply because there are so many more negative examples, and this can depress

measures like the MCC substantially even if all of the minority class are categorised

perfectly. While false positives tend to be less important in their implications than

false negatives, they are at least a nuisance and so should be eliminated if possible -

provided this can be done without creating more false negatives. This is what ASTra

appears to be able to do, for most of the levels of IR so far considered. However,

for even higher IRs, it is likely that BCE training, even augmented by ASTra, will

begin to fail on the minority class. In such instances, it would be expected that a

combination of ASTra with a classification-based loss, such as the MCC loss, could

prove optimal, and experiments with even higher IRs will therefore be a component

in future work.

Moving on to other potential avenues of exploration, it is not currently obvious

how to extend ASTra to the multi-class case. It should be noted that it would not in

fact be easy to deduce the form of a conventional sigmoid from examining the form

of softmax for a two-class problem - for one thing, the output layer for two-class

softmax has two times the number of weight parameters that the sigmoid would have,

and thus an element of redundancy in its representation. The extension of ASTra to

the multi-class case, which will be the subject of future work, is likely to require

embedding some of the key ASTra concepts in a framework that does not rely on

the idea of a neuron threshold function, and is thus likely to go considerably beyond

ASTra’s original inspiration in the Richards Growth Equation.

Finally, a novel use of metrics based on an approximated confusion matrix

for performance monitoring during training was introduced. This is of potential

interest entirely outside of frameworks introduced in this thesis, as it relates to the

more effective monitoring of training performance for any classification problem,
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addressed using any algorithm that would give rise to a confusion matrix.



Chapter 6

Summary & Conclusions

The work of this thesis focused on algorithm-level approaches to the difficulties

caused by class imbalance in classification problems. As explained in Chapter

2, algorithm-level approaches are one category of solution proposed for class im-

balance, the others being data-level manipulation of the underlying datasets, and

hybrid approaches which combine multiple techniques or use ensembling approaches.

Algorithm-level approaches have the benefit of not requiring manipulations of the

data that may introduce bias or error, and the specific algorithm-level approaches

proposed in this thesis have the additional advantage of being easy to implement,

not requiring a machine learning applications developer to adopt an entirely new

category of model with many parameters to be set or learned. In this final chapter,

the contributions of this thesis are discussed, future work is then proposed, and

concluding remarks finally made.

6.1 Discussion of Contributions

In Chapter 3, the concept of an approximated confusion matrix was introduced. This

matrix is a continuous representation of a confusion matrix, which can be constructed

from model predictions and true class labels of any batch-based backpropagation

training approach. Using this approximated confusion matrix, it was demonstrated
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that differentiable approximations of commonly used (non-differentiable) classifi-

cation scoring metrics, such as the G-Mean, were possible, allowing their use as

loss function in training. This form of algorithm-level approach satisfies the aim of

developing a simple and easily adoptable methodology for handling class imbalance,

as it requires only that a user switch from a conventional loss function to one such as

the G-Mean; no changes to the model itself are required. This general approach, that

of deriving loss functions from an approximated confusion matrix, was introduced in

this chapter via the example of the approximated G-mean (GMN) loss. The G-Mean

is a balanced metric of true positive rate and true negative rate, and was chosen for

these first experiments as its approximated form has a simple derivative. Two experi-

ments were performed to demonstrate the value of the new GMN loss. Firstly, its

outperformance over traditional losses (mean squared error and binary cross entropy)

was demonstrated on a set of class-imbalanced UCI datasets. Secondly, a more

challenging dataset, ‘pump and dump‘ was explored, with the GMN loss remaining

highly competitive when compared to standard loss approaches augmented with

popular data-level interventions (random undersampling and SMOTE).

In Chapter 4, the work of the previous chapter was extended in two ways,

while also moving into deep learning application domain. In the first contribution

of this chapter, two novel confusion matrix based losses, the F1 loss, based on the

approximated F1-Score, and the MCC loss, based on the approximated Matthews

Correlation Coefficient, were introduced, and these losses, together with the GMN

loss from Chapter 3 were applied to two image segmentation datasets. Results from

this experiment showed their relative benefit compared with the use of a standard

loss (binary cross entropy) and two recently used domain-specific losses, the Dice

loss and Focal loss. This experiment demonstrated first that a range of novel loss

functions can be constructed, and second that such loss functions can be used to
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address challenging problems requiring deep learning networks, in this way going

beyond the work of Chapter 3, which required only the use of relatively shallow

multilayer perceptron networks. The second contribution of this chapter was to

demonstrate that novel loss functions derived from an approximated confusion

matrix can be extended to a multi-class problems. Multi-class macro-averaged

versions of the GMN, F1 and MCC loss were constructed and used as loss functions

for the second (classifier) learning stage of a two-stage approach to a common multi-

class class-imbalanced task known as the Long Tailed Recognition (LTR) problem.

State-of-the-art results were achieved on overall accuracy, with the GMN, F1, and

MCC losses outperforming all recent work, and representing a considerable advance,

with the predominant advantage being seen, as might be expected, for the least

frequent classes.

In Chapter 5, another, complementary algorithm-level approach to imbalanced

classification was introduced. A new output layer activation function, named ASTra

(Asymmetric Sigmoid Transfer function), was proposed, which can make the classi-

fication of minority examples in scenarios of high class imbalance more tractable.

ASTra can be used with any loss objective, but for extremely challenging cases, it

appears best to combine it with an imbalance-robust loss such as the G-Mean from

Chapter 3. ASTra was tested on datasets with imbalance ratios from 588.24 to 4000

and with very few minority examples (in some datasets, as few as five). Results using

neural networks with from 2 to 12 hidden units were demonstrated to be comparable

to, or better than, equivalent results obtained in a recent study that deployed a wide

range of complex hybrid data-level classifiers. In addition to this, it was noted that

a novel use of metrics based on the approximated confusion matrix was possible,

namely their use for performance monitoring during training, independently of the

choice of loss function, in order to ensure that apparent improvements in classifica-
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tion performance (in terms of a reduction, for example, in cross entropy loss) were

genuine, i.e., were not merely the result of a progressively improving performance

on the majority class alone.

6.2 Future Work

A number of areas for future work are apparent:

• The newly proposed methods could be applied to a larger variety of data sets

and class imbalance levels, in both binary and multi-class scenarios, including

experiments with data having even higher IRs than those seen in Chapter 5.

• While the novel loss functions were extended to a multi-class framework, this

has not yet been done for the ASTra activation function, and this would appear

to be a potentially fruitful area for further work.

• Some authors [138] have suggested feature selection may be important in

addressing class imbalance; this could be investigated, as a potential further

complement to the approaches of this thesis.

• The work of this thesis has applied the proposed methods only in a neural

network context. Novel differentiable losses could also be integrated with

gradient-boosted decision tree ensembles (e.g. XGBoost [139]), which are

more commonly used for tabular datasets, and are considered easier to work

with (since they are less sensitive to initial conditions).

• The use of more complicated loss functions means a higher likelihood of

complex and non-convex training loss landscapes, with a multiplicity of local

and global minima, with different global minima yielding models with different

generalization abilities. Thus, it may be very valuable to combine novel loss

functions with the SAM (Sharpness Aware Minimisation) framework [140];
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SAM is a method to smooth loss landscapes in the vicinity of minima, and

in this way improve generalisation, and is a technique that has shown recent

strong uptake and a lot of promise across a variety of benchmark datasets (e.g.,

CIFAR-10, CIFAR-100, ImageNet).

• The use of regularisation is an increasingly strong theme in work with class-

imbalanced datasets. The state of the art results of Chapter 4 incorporated

regularisation in the first stage of the two-stage training process (that part that

used a conventional cross entropy loss). However, a very recent work [141]

has proposed a novel regularisation method for class imbalanced problems for

which a more complex loss function has been chosen. This method has not yet

been used in combination with any of the novel loss functions of this thesis,

hence would clearly be a valuable avenue of work to pursue.

• Deep learning networks (DNNs) suggest a number of areas of future work, and

experiments with deep learning methods for addressing class imbalance in the

context of big data and class rarity will prove valuable to the future of big data

analytics. It has been commented that deep learning research exploring the

effect of class imbalance on non-image data is limited and should be expanded

upon [15] ; in the context of this thesis, which has looked only at CNNs for

image problems, more work would be required with non-convolutional DNNs

to determine if the methods presented in the thesis will generalise well to

alternative DNN architectures, e.g. RNNs.

• Current research on imbalanced data recognises that class imbalance is ag-

gravated by other data-intrinsic characteristics, among which class overlap

stands out as one of the most harmful [142]. Further experiments that allow

the manipulation of both IR and the level of class overlap could address the
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degree to which the methods of this thesis are compatible with the presence of

high overlap as well as high IR.

• While data manipulations such as oversampling are in general best avoided,

there may be some datasets, with very few examples of the minority class,

for which it would be favourable to combine advanced data oversampling

techniques (e.g. GANs, DeepSMOTE [68]), with the novel losses and/or

ASTra transform proposed here.

6.3 Concluding Remarks

This thesis has demonstrated that relatively simple interventions - the use of a

classification-focused loss function, and the generalisation of the sigmoid output

layer activation function to an asymmetric forms with an adaptive threshold - can

be very effective means to address the class imbalance problem, competitive with

far more complex methodologies, and in some cases achieving results that outstrip

the state of the art. However, as noted in the list of possible topics of future work,

there are a number of places in which the proposed novel loss function and/or the

ASTra function could potentially be combined with other methodologies, both simple

and complex, to achieve even better results. It would arguably be of great value to

develop a generic toolkit for imbalanced data, allowing the combination of multiple

approaches as needed, and on the basis of the results presented here it would appear

that the proposed methods might be a valuable addition to such a toolkit.



Appendix A

Second-Order Derivatives

All the work in this thesis uses first order gradient based optimisation for training

classifier models. In theory, however, second order optimisation methods such as

Newton, Gauss-Newton and Quasi-Newton approaches could also be used with the

approximated loss functions such as the G-Mean, but they would require estimation

of second order partial derivatives.

Given the approximated confusion matrix

CMapx =

∑
n
i (1− ŷi) · (1− yi) ∑

n
i ŷi · (1− yi)

∑
n
i (1− ŷi) · yi ∑

n
i ŷi · yi

 , (A.1)

in which ŷi and yi are the predicted and target values for the ith example, then the

approximated square of the G-mean is given by

GMN2
apx =

1
m0 ·m1

[T Napx ·T Papx], (A.2)

where m0 and m1 are the numbers of negative and positive examples, respectively

and the approximated true negatives and true positives are given by:
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T Napx = ∑
i
(1− ŷi) · (1− yi),

T Papx = ∑
i

ŷi · yi.

(A.3)

From Chapter 3 that its first partial derivative with respect to the network output ŷ

for input pattern q is:

δGMN2
apx

δ ŷq
=

1
m0 ·m1

[(
∂

∂ ŷq
T Napx) ·T Papx +T Napx · (

∂

∂ ŷq
T Papx)]. (A.4)

If it is assumed that it is known how to calculate

∂ ŷq

∂w
, (A.5)

for some parameter w that is relevant to the model’s output ŷ, then for pattern q:

∂GMN2
apx

∂w
=

∂ ŷq

∂w
·

∂GMN2
apx

∂ ŷq

=
1

m0 ·m1

∂ ŷq

∂w
[−(1− yq) ·T Papx +T Napx · (1− yq)]

(A.6)

Assuming it is also known how to calculate

∂ 2ŷq

∂v∂w
, (A.7)

for any two output-relevant parameters v and w, the second partial derivative (of the

approximated G-Mean squared GMN2) with respect to these parameters is:
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∂ 2GMN2
apx

∂v∂w
=

1
m0 ·m1

[
∂ 2ŷq

∂v∂w
[−(1− yq) ·T Papx +T Napx · yq]

−2
∂ ŷq

∂v
·

∂ ŷq

∂w
[(1− yq) · yq]

]
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