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Abstract
A measurement of the Standard Model Higgs boson decaying to a pair of bottom

quarks (𝐻 → 𝑏�̄�) and produced in association with a vector boson, 𝑉 𝐻, at a centre-

of-mass energy of
√
𝑠 = 13 TeV is presented. The measurement is performed on

data corresponding to an integrated luminosity of 139 fb−1 that was collected using

the ATLAS detector during Run-2 of the Large Hadron Collider. Studies have been

conducted to improve the multivariate analysis, which is used to separate the 𝐻 → 𝑏�̄�

signal from the background. Uncertainties in the statistical fit used to measure the

signal strength are explored. The observed significance of the 𝑉 𝐻,𝐻 → 𝑏�̄� signal is

6.7𝜎. The observed signal significances of the 𝑊𝐻 and 𝑍𝐻 production processes are

4.0𝜎 and 5.3𝜎, respectively, indicating strong evidence of 𝑊𝐻 production and the first

observation of 𝑍𝐻 production. In addition, measurements of the cross-sections of the

𝑊𝐻 and 𝑍𝐻 production processes with 𝐻 → 𝑏�̄� decay as a function of the gauge boson

transverse momentum are consistent with Standard Model predictions. Studies involving

enhancements to tracking and 𝑏-jet identification, which are key components of the

𝐻 → 𝑏�̄� analysis, are also presented. These enhancements include investigating different

track reconstruction improvements, enhancing the machine learning algorithms used to

identify the different jet flavours, and exploring various automation techniques in the

calibration of the 𝑏-jet identification efficiency.
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Chapter 1

Introduction
The discovery of the Higgs boson in 2012 by the ATLAS [1] and CMS [2] experiments

at the Large Hadron Collider (LHC) [3] was a major achievement in particle physics

that completed the Standard Model (SM). Since the discovery, measurements of the

properties of the Higgs boson have been conducted with increasing precision, which is

crucial to finding potential divergences from the SM in the search for new physics. By

the end of Run-1 of the LHC (2009 - 2013), the Higgs boson decaying to pairs of 𝑊

bosons [4], 𝑍 bosons [5, 6], photons [7, 8], and 𝜏 -leptons [9] have been observed and

were found to be consistent with SM predictions. Due to the higher luminosity achieved

during Run-2 (2015-2018), it was possible to directly measure the coupling of the Higgs

boson to the top quark, which is an up-type quark, in the observation of the Higgs

boson produced in association with a pair of top quarks [10, 11].

The decay of the Higgs boson to a pair of bottom quarks (𝐻 → 𝑏�̄�) can also be used

to directly probe the coupling of the Higgs boson to down-type quarks. Furthermore, the

𝐻 → 𝑏�̄� decay mode has a predicted branching ratio of 58%, hence it is the dominant

decay mode of the Higgs boson and plays an important part in determining the extent

to which the SM is accurate. The dominant production mode of the Higgs boson is

via gluon fusion, however, for the 𝐻 → 𝑏�̄� final state, the extremely large multi-jet 𝑏�̄�

background results in this production channel not being best suited to observe this

decay. The associated production of the Higgs boson with a vector boson (𝑉 𝐻) is used

in the search for 𝐻 → 𝑏�̄� as the leptonic channels of the vector boson provide clean

signatures that can be used to reject the large hadronic background. As 𝑏-quarks do not

exist as free particles and undergo fragmentation to form jets, the identification of jets

that originated from 𝑏-quarks, known as 𝑏-tagging, is important in reconstructing the

pair of quarks in the final state of Higgs boson decay.

The leptonic signatures of the 𝑉 𝐻,𝐻 → 𝑏�̄� channel were exploited at the Teva-
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tron [12], where the results from the CDF and DØ experiments were combined to give the

first evidence of the 𝑉 𝐻,𝐻 → 𝑏�̄� signal. At the LHC, the first evidence of 𝑉 𝐻,𝐻 → 𝑏�̄�

was provided in 2017 and 2018 by the ATLAS [13] and CMS [14] experiments, respec-

tively. The 𝑉 𝐻,𝐻 → 𝑏�̄� signal was first observed in 2018 by both experiments [15, 16]

using Run-1 and Run-2 (up to 2017) data. For the observation by ATLAS, the total

integrated luminosity of the data used was 79.8 fb−1. For the full Run-2 period, the

total integrated luminosity of the data recorded by ATLAS is 139 fb−1, which was used

to analyse the 𝑉 𝐻,𝐻 → 𝑏�̄� channel [17] in this thesis.

As the instantaneous luminosity produced by the LHC increases, the amount of data

at the LHC is rapidly growing, which requires big data techniques to ensure that data

is efficiently processed and analysed. These big data techniques include the application

of machine learning in 𝑏-tagging and signal-background discrimination in analyses to

benefit from the predictive power of classification algorithms. In addition, improving

software algorithms and incorporating software engineering practices, such as in the

form of automation, can improve performance and reproducibility, and provide a time-

saving solution to scientific research, especially within large experimental collaborations.

Improvements to the tracking algorithms have been studied in the tracking group,

automation techniques have been implemented in the flavour tagging group, and machine

learning tools have been studied in both the 𝑉 𝐻,𝐻 → 𝑏�̄� analysis and flavour tagging

groups.

The author’s direct contribution to the full Run-2 𝑉 𝐻,𝐻 → 𝑏�̄� analysis results

include producing the 𝑉 𝐻,𝐻 → 𝑏�̄� 1-lepton samples, maintaining the analysis software

framework and produced the 1-lepton inputs to the statistical fit. The author was

also the Electron ‘Combined Performance’ contact for the software framework for two

years. The author conducted several multivariate analysis (MVA) studies in the 1-lepton

channel, which are documented in Chapter 11, and proposed improvements that resulted

in the final configuration of the Run-2 MVA that was adopted for the full results in

all the analysis channels. The author investigated uncertainties relating to a dominant

background, 𝑡𝑡, resulting in the final systematic scheme, and conducted numerous studies

into the robustness of the statistical fit, some of which are presented in Chapter 13.

The author automated the 𝑏-tagging efficiency calibration software, which is detailed
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in Chapter 9 and helped other analysis groups automate their calibration software.

Furthermore, the author analysed the effect of different track collections on a low-level

𝑏-tagging algorithm, as discussed in Chapter 7, and conducted optimisation studies for

a high-level 𝑏-tagging algorithm, which are presented in Chapter 8.
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Theoretical and experimental

framework
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Chapter 2

Theoretical framework
The Standard Model (SM) [18, 19] describes the fundamental particles of the Universe

and their interactions. The model has been studied extensively in experiments with

particle accelerators, such as the Large Hadron Collider (LHC), and is considered one

of the triumphs of modern physics due to its remarkable agreement with experimental

data.

2.1 The Standard Model

The fundamental particles of the SM are illustrated in Fig. 2.1. The interaction of

particles is governed by the fundamental forces: strong, weak, electromagnetic, and

gravitational. As the mathematical framework has not been developed to include the

effect of the gravitational force in the SM, the SM only involves the strong, weak, and

electromagnetic forces.

The mathematical framework of the SM is provided by quantum field theory, in

which particles are described in terms of dynamical quantum fields and interactions are

governed by the local 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge symmetry. Furthermore, the

SM is established from Lagrangian formalism.

Starting from the Lagrangian for the Dirac equation:

ℒ𝐷𝑖𝑟𝑎𝑐 = 𝜓(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓, (2.1)

where 𝜓 is the Dirac spinor field, 𝛾𝜇 is the Dirac 𝛾-matrices, 𝑚 is the mass of the fermion,

and 𝜓 = 𝜓†𝛾0. The symmetry of the Dirac Lagrangian is required to be invariant under
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Figure 2.1: Infographic of the Standard Model particles [20]. The mediators of the different
interactions are denoted by force particles. It can be seen that neutrinos interact only through
the weak force, charged leptons interact via the electromagnetic and weak forces, and quarks
can interact through all three of the fundamental forces in the Standard Model.

the 𝑈(1) gauge transformation, which is defined as

𝜓(𝑥) → 𝑒𝑖𝛼(𝑥)𝜓(𝑥), (2.2)

where 𝛼(𝑥) is an arbitrary phase that is a function of space-time 𝑥. As 𝜕𝜇𝜓 does not

respect the 𝑈(1) symmetry, 𝜕𝜇 is replaced with the covariant derivative:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇, (2.3)

where 𝐴𝜇 is a vector field, to ensure the requirement of the 𝑈(1) gauge invariance.
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By incorporating the electromagnetic field strength tensor, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇,

into the Dirac Lagrangian, an additional term that represents the kinetic energy of the

photon is defined, resulting in the Lagrangian of quantum electrodynamics (QED):

ℒ𝑄𝐸𝐷 = 𝜓(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 + 𝑒𝜓𝛾𝜇𝐴𝜇𝜓 − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 , (2.4)

where 𝐴𝜇 can now be regarded as the field of the massless photon.

The weak and electromagnetic (EM) forces are unified as the electroweak (EW)

interaction through the invariance of the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge transformation in the

Glashow-Salam-Weinberg model [21–23]. The weak isospin, 𝑇 = 1
2
𝜎, which is expressed

in terms of the three Pauli matrices 𝜎, are the generators of the 𝑆𝑈(2)𝐿 transformation.

Fermions with total weak isopin of 𝑇 = 1
2

are known as left-handed fermions, while

right-handed fermions have total weak isospin of 𝑇 = 0. For the 𝑈(1)𝑌 transformation,

the generator is the weak hypercharge, 𝑌 = 2(𝑄 − 𝑇 ), where 𝑄 is the EM charge.

The gauge field 𝐵𝜇 is required to satisfy the 𝑈(1)𝑌 gauge symmetry. To impose the

𝑆𝑈(2)𝐿 gauge invariance, three gauge fields, 𝑊 𝑖
𝜇 for 𝑖 = 1, 2, 3, are introduced. Linear

combinations of the fields:

𝑊±
𝜇 =

1√
2
(𝑊 1

𝜇 ∓ 𝑖𝑊 2
𝜇) (2.5)

give rise to the charged bosons 𝑊±, which leaves the weak neutral field 𝑊 3
𝜇 to be

accounted for. Out of the observed bosons in QED and the weak interaction, the photon

and 𝑍 boson are both neutral. As the subscript 𝐿 of the 𝑆𝑈(2)𝐿 transformation indicates

that the coupling of these gauge fields is only to left-handed fermions, 𝑊 3
𝜇 cannot be

associated to the 𝑍 boson, which couples to both left-handed and right-handed fermions.

Therefore, the 𝑊 3
𝜇 and 𝐵𝜇 fields are combined to produce the corresponding fields of

the photon:

𝐴𝜇 = 𝐵𝜇 cos 𝜃𝑊 +𝑊 3
𝜇 sin 𝜃𝑊 , (2.6)

and the 𝑍 boson:

𝑍𝜇 = −𝐵𝜇 sin 𝜃𝑊 +𝑊 3
𝜇 cos 𝜃𝑊 , (2.7)

where 𝜃𝑊 is the weak mixing angle.

The description of the strong interaction, quantum chromodynamics (QCD), can be
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deduced from its local gauge invariance by replacing the 𝑈(1) transformation with its

𝑆𝑈(3)𝐶 gauge transformation of the three quark colour fields, which represent the three

colour changes. The 𝑆𝑈(3) transformation contains eight generators, each of which

is a 3 × 3 matrix. Local gauge invariance on the QCD Lagrangian is applied by the

introduction of eight gauge fields (one for each generator), which correspond to the eight

massless gluons that mediate the strong force.

Due to the local gauge invariance of the SM Lagrangian, the addition of mass terms

for gauge bosons is forbidden, meaning that all gauge bosons are massless. While this is

in agreement with the gauge bosons of QED and QCD, it is in contradiction to the gauge

bosons of the electroweak interaction, where experimental observations have revealed

large masses of 𝑊 and 𝑍 bosons. Hence, a mechanism to explain the generation of mass

for gauge bosons is introduced.

2.1.1 The Higgs Mechanism

In the Brout-Englert-Higgs mechanism [24, 25], spontaneous symmetry breaking is

induced through particle interactions with the Higgs field, resulting in the masses

of particles. Specifically, the gauge boson masses are generated from spontaneously

breaking the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 symmetry in the EW sector.

The Higgs field is constructed from four real scalar fields, 𝜑𝑖 for 𝑖 = 1, 2, 3, 4, which

are arranged in an isospin doublet with 𝑇 = 1
2

and 𝑌 = 1, known as the Higgs doublet:

𝜑 =

⎛⎝𝜑+

𝜑0

⎞⎠ =
1√
2

⎛⎝𝜑1 + 𝑖𝜑2

𝜑3 + 𝑖𝜑4

⎞⎠ . (2.8)

The Lagrangian associated with the Higgs field is

ℒ = (𝜕𝜇𝜑)
†(𝜕𝜇𝜑)− 𝑉 (𝜑) (2.9)

with the Higgs potential,

𝑉 (𝜑) = 𝜇2𝜑†𝜑+ 𝜆(𝜑†𝜑)2, (2.10)

where 𝜇 and 𝜆 are constants, and 𝜆 > 0. The vacuum state corresponds to the minimum

of the potential and is the lowest energy state of the field 𝜑. If 𝜇2 > 0, the potential has
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a minimum at 𝜑 = 0. If 𝜇2 < 0, the potential has minima at

𝜑 = ±𝑣 = ±

⃒⃒⃒⃒
⃒
√︂

−𝜇2

𝜆

⃒⃒⃒⃒
⃒, (2.11)

indicating that the field has a non-zero vacuum expectation value 𝑣 with two possible

degenerate vacuum states. The symmetry of the Lagrangian is broken by the choice of

the vacuum state, in the process known as spontaneous symmetry breaking. Setting 𝜑1

= 𝜑2 = 𝜑4 = 0 and 𝜑2
3 = −𝜇2

𝜆
= 𝑣2 yields the vacuum:

𝜑0 =
1√
2

⎛⎝0

𝑣

⎞⎠ . (2.12)

Fields can be expanded around this vacuum state as

𝜑(𝑥) =
1√
2

⎛⎝ 𝜑1(𝑥) + 𝑖𝜑2(𝑥)

𝑣 + 𝜂(𝑥) + 𝑖𝜑4(𝑥)

⎞⎠ . (2.13)

Spontaneous symmetry breaking leads to a massive scalar boson and three massless

Goldstone bosons associated to 𝜂(𝑥) and 𝜑1(𝑥), 𝜑2(𝑥), 𝜑4(𝑥), respectively. In the unitary

gauge, the fields are transformed such that the three degrees of freedom associated with

the Goldstone bosons are absorbed by the 𝑊/𝑍 bosons and the only scalar field that

remains is the Higgs field ℎ(𝑥) associated to the massive scalar boson, the Higgs boson

𝐻, giving the Higgs doublet:

𝜑(𝑥) =
1√
2

⎛⎝ 0

𝑣 + ℎ(𝑥)

⎞⎠ . (2.14)

The mass terms can be determined by replacing the partial derivative in the La-

grangian of (2.10) by the covariant derivative:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑇 ·𝑊𝜇 + 𝑖𝑔′
𝑌

2
𝐵𝜇, (2.15)

where 𝑊𝜇 = (𝑊 1
𝜇 ,𝑊

2
𝜇 ,𝑊

3
𝜇), 𝑔 and 𝑔′ are the coupling constants of 𝑇 to 𝑊𝜇 and 𝑌 to

𝐵𝜇, respectively. The gauge bosons masses are obtained by terms that are quadratic
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in the gauge boson fields (𝑊±, 𝑍 and ℎ) in the Lagrangian evaluated with the Higgs

doublet in the unitary gauge and the covariant derivative:

ℒ𝐻𝑖𝑔𝑔𝑠 =
1

2
(𝜕𝜇ℎ)(𝜕

𝜇ℎ) +
𝑔2

4
(𝑊+

𝜇 𝑊
−𝜇)(𝑣 + ℎ)2

+
𝑔2 + 𝑔′2

8
(𝑍𝜇𝑍

𝜇)(𝑣 + ℎ)2 +
𝜇2

2
(𝑣 + ℎ)2 +

𝜆

16
(𝑣 + ℎ)4,

(2.16)

where the field of the 𝑍 boson is defined as

𝑍𝜇 =
𝑔𝑊 3

𝜇 − 𝑔′𝐵𝜇√︀
𝑔2 + 𝑔′2

, (2.17)

yielding the mass terms of the 𝑊 boson:

𝑚𝑊 =
𝑔𝑣

2
, (2.18)

𝑍 boson:

𝑚𝑍 =
𝑣
√︀
𝑔2 + 𝑔′2

2
, (2.19)

and the Higgs boson:

𝑚𝐻 =
√︀

2𝜇2, (2.20)

and the photon remains massless.

2.1.1.1 Yukawa interaction

Fermions can also interact with the Higgs field through the Yukawa interaction, giving rise

to the masses of fermions. The Lagrangian for fermions that satisfies the 𝑆𝑈(2)𝐿×𝑈(1)𝑌
symmetry is

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = −𝑔𝑓 (�̄�𝜑𝑅 + �̄�𝜑†𝐿), (2.21)

where 𝑔𝑓 is the Yukawa coupling of the fermion 𝑓 to the Higgs field, 𝐿 is a left-handed

fermion doublet, 𝑅 is a right-handed fermion singlet, and 𝜑 is the Higgs doublet. For

leptons 𝑙 = 𝑒, 𝜇, 𝜏 with neutrinos 𝜈𝑙, the Lagrangian is expanded as

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = −𝑔𝑙

⎡⎣(︁𝜈𝑙 �̄�
)︁
𝐿

⎛⎝𝜑+

𝜑0

⎞⎠ 𝑙𝑅 + 𝑙𝑅

(︁
𝜑+* 𝜑0*

)︁⎛⎝𝜈𝑙
𝑙

⎞⎠
𝐿

⎤⎦ . (2.22)
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After spontaneously symmetry breaking, the Lagrangian can be evaluated with the

Higgs doublet in the unitary gauge:

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = − 𝑔𝑙√
2
𝑣(𝑙𝐿𝑙𝑅 + 𝑙𝑅𝑙𝐿)−

𝑔𝑙√
2
ℎ(𝑙𝐿𝑙𝑅 + 𝑙𝑅𝑙𝐿). (2.23)

Defining the Yukawa coupling between the lepton and the Higgs field as

𝑔𝑙 =
√
2
𝑚𝑙

𝑣
, (2.24)

where 𝑚𝑙 is the mass of the lepton, the Lagrangian becomes

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠 = −𝑚𝑙 �̄� 𝑙 −
𝑚𝑙

𝑣
�̄� 𝑙 ℎ, (2.25)

where the first term provides the mass of the lepton and the second term represents the

coupling between the lepton and the Higgs boson.

The masses of quarks are generated similarly with the left-handed quark doublets:⎛⎝𝑢
𝑑

⎞⎠
𝐿

,

⎛⎝𝑐
𝑠

⎞⎠
𝐿

,

⎛⎝𝑡
𝑏

⎞⎠
𝐿

. (2.26)

However, as the non-zero vacuum expectation value occurs in the lower component

of the Higgs doublet, only the masses for the lower component of the quark doublets,

known as down-type quarks, can be generated using (2.21). To acquire the masses for

the upper component of the quark doublets, up-type quarks, a conjugate doublet in the

unitary gauge is derived:

𝜑𝑐 =

⎛⎝−𝜑0*

𝜑−

⎞⎠ = − 1√
2

⎛⎝𝑣 + ℎ(𝑥)

0

⎞⎠ . (2.27)

The Lagrangian for up-type quarks is expressed as

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠,𝑢𝑝 = 𝑔𝑓 (�̄�𝜑𝑐𝑅 + �̄�𝜑†
𝑐𝐿), (2.28)
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and is expanded for the 𝑢𝑑 doublet as

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠,𝑢𝑝 = −𝑔𝑢

⎡⎣(︁�̄� 𝑑
)︁
𝐿

⎛⎝−𝜑0*

𝜑−

⎞⎠𝑢𝑅 + 𝑢𝑅

(︁
−𝜑0 𝜑−*

)︁⎛⎝𝑢
𝑑

⎞⎠
𝐿

⎤⎦ . (2.29)

After symmetry breaking, the Lagrangian becomes

ℒ𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠,𝑢𝑝 = − 𝑔𝑢√
2
𝑣(𝑢𝐿𝑢𝑅 + 𝑢𝑅𝑢𝐿)−

𝑔𝑢√
2
ℎ(𝑢𝐿𝑢𝑅 + 𝑢𝑅𝑢𝐿), (2.30)

with the Yukawa coupling 𝑔𝑢 =
√
2𝑚𝑢/𝑣, where 𝑚𝑢 is the mass of the up quark.

Therefore, the Yukawa coupling of fermions to the Higgs field is generally given by

𝑔𝑓 =
√
2
𝑚𝑓

𝑣
, (2.31)

indicating that the coupling strength of fermions to the Higgs boson is proportional to

the mass of the fermion 𝑚𝑓 .

2.2 𝑝𝑝 collisions at the Large Hadron Collider

Proton-proton (𝑝𝑝) collisions at the LHC [26, 27] occur at the TeV energy scale to probe

the SM by inducing hard scattering processes, which allows the partons (quarks and

gluons) within the protons to interact and produce high mass particles, such as the Higgs

boson. Due to asymptotic freedom, the coupling constant of the strong interaction, 𝛼𝑠,

decreasing at high energy scales, perturbation theory can be used to calculate the cross

section for these processes. However, perturbative corrections could result in integrals

that are infinite. These integrals are treated using renormalisation, which introduces

the renormalisation scale 𝜇𝑅.

The cross section of a hard scattering process initiated by two protons with momenta

𝑃1 and 𝑃2 to give final state 𝑋, i.e. 𝑝𝑝→ 𝑋, is

𝜎(𝑝𝑝→ 𝑋) =
∑︁
𝑖,𝑗

∫︁
𝑑𝑥1𝑑𝑥2 𝑓𝑖,𝑝(𝑥1, 𝜇

2
𝐹 )𝑓𝑗,𝑝(𝑥2, 𝜇

2
𝐹 ) �̂�𝑖𝑗→𝑋(𝑝1, 𝑝2, 𝜇

2
𝑅, 𝜇

2
𝐹 ), (2.32)

where 𝑝1 = 𝑥1𝑃1 and 𝑝2 = 𝑥2𝑃2 are the momenta of the partons, expressed in terms
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of the momentum fractions of the protons, 𝑥1 and 𝑥2, respectively. The functions 𝑓𝑖,𝑝

and 𝑓𝑗,𝑝 are the parton distribution functions (PDFs) that correspond to the probability

of partons 𝑖 and 𝑗 with 𝑥1 and 𝑥2 to participate in the hard scattering process. The

PDFs are fixed at the factorisation scale 𝜇𝐹 , which is the point of separation between

perturbative and non-perturbative scales, i.e. hard and soft (low momentum transfer)

processes. The partonic cross section of the process from the initial state of partons 𝑖

and 𝑗 to the final state 𝑋 is denoted by �̂�𝑖𝑗→𝑋 .

2.2.1 Higgs boson production and decay

The SM Higgs boson is produced from the different hard scattering processes of quarks

(𝑞) or gluons (𝑔) in the 𝑝𝑝 collision. Fig. 2.2 illustrates the four main production modes

at the LHC [28], which are summarised as follows:

• Gluon fusion (𝑔𝑔F): The 𝑔𝑔F process proceeds through a loop diagram involving a

virtual top quark as the Higgs boson does not couple with massless particles, such

as gluons. The production channel has the largest cross section but in some decay

channels is subject to significant background from multijet production, which

makes it challenging to access.

• Vector boson fusion (VBF): The VBF production mode has the second largest

cross-section and is associated with the scattering of two quarks that is mediated

by the exchange of a 𝑊 or 𝑍 boson, which emit the Higgs boson. Features of

the VBF processes, including the strong suppression of QCD radiation in the

centre of the detector, are exploited to distinguish them from the large multijet

backgrounds.

• Associated production with a vector boson (𝑉 𝐻): The 𝑉 𝐻 production channel,

where 𝑉 = 𝑊,𝑍, is also known as Higgsstrahlung. The decays of the 𝑊 or 𝑍

bosons are used to produce a more distinct signature for triggering and QCD

rejection. This production channel is analysed in Part III.

• Associated production with a pair of top quarks (𝑡𝑡𝐻): The 𝑡𝑡𝐻 production

mechanism involves a Higgs boson being produced from the fusion of a pair of top

13



quarks 𝑡𝑡, and can be used to directly access the coupling of the Higgs boson to

the top quark. However, the cross section of the 𝑡𝑡𝐻 production mode is smaller

than the other three production mechanisms, meaning that 𝑡𝑡𝐻 processes are rarer

and challenging to measure.

Figure 2.2: Feynman diagrams of main production modes of the Higgs boson at the LHC [29]:
a) gluon fusion, b) vector boson fusion, c) associated production with a vector boson, d)
associated production with a pair of top quarks.

The Higgs boson couples to all massive SM particles, as illustrated in Fig. 2.3, but

as the coupling strength of the Higgs boson to another particle increases with the mass

of the particle, the Higgs boson is likely to decay into more massive particles. The

probability of the Higgs boson decaying into a certain final state 𝑋 can be specified by

the branching ratio (BR):

𝐵𝑅(𝐻 → 𝑋) =
Γ(𝐻 → 𝑋)

Γ𝐻

, (2.33)

where Γ(𝐻 → 𝑋) is the width of the 𝐻 → 𝑋 decay mode, known as the partial decay

width, and Γ𝐻 is the total width of all possible decay modes of the Higgs boson. The

predicted BRs for a SM Higgs boson with 𝑚𝐻 = 125 GeV are displayed in Table 2.1,
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where the largest BR is that of 𝐻 → 𝑏�̄�, which is the focus of the work presented in

Part III.

Decay mode Branching ratio
𝐻 → 𝑏�̄� 57.8%

𝐻 → 𝑊𝑊 * 21.6%
𝐻 → 𝑔𝑔 8.6%
𝐻 → 𝜏+𝜏− 6.4%
𝐻 → 𝑐𝑐 2.9%
𝐻 → 𝑍𝑍* 2.7%
𝐻 → 𝛾𝛾 0.2%

Table 2.1: Predicted branching ratios for the a Higgs boson mass of 125 GeV.
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Figure 2.3: Expected production cross sections (left) and decay branching ratios (right) of the
Standard Model Higgs boson at

√
𝑠 = 13 TeV as a function of the Higgs boson mass [30].

2.2.2 𝑉 𝐻,𝐻 → 𝑏�̄� channel

The search for the 𝐻 → 𝑏�̄� decay has been conducted in the VBF [31], 𝑉 𝐻 [32],

and 𝑡𝑡𝐻 [33] production modes at the LHC. Although the 𝑉 𝐻 and 𝑡𝑡𝐻 production

modes have much lower cross sections, their leptonic decay channels are exploited to

provide clean signatures for triggering and to aid the rejection of the overwhelming QCD

background. The cross sections of the leptonic channels in the 𝑉 𝐻 mode are higher

than those in the 𝑡𝑡𝐻 mode, hence the 𝑉 𝐻 mode is preferred in the search for 𝐻 → 𝑏�̄�.
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The leptonic decay of the vector bosons results in three different signatures that can be

favourably targeted at the LHC, as demonstrated in Fig. 2.4.

Figure 2.4: Feynman diagrams of the leptonic decay channels of the Higgs boson produced in
association with a 𝑊 or 𝑍 boson [34].

2.2.3 Monte Carlo simulations

The evolution of 𝑝𝑝 collisions, which is presented in Fig. 2.5, is simulated by Monte

Carlo (MC) generators [35, 36] to model the processes generated in the collisions.

The processes in a 𝑝𝑝 collision start with incoming protons that are characterised by

PDFs. A collision between the partons within the protons result in the hard scattering

process at parton level that is described by matrix element (ME) calculations. Incoming

and outgoing partons of the hard scattering process can emit radiation, known as initial

state radiation (ISR) and final state radiation (FSR), respectively. These radiations

can be in the form of gluons, which can radiate further emissions, generating parton

showers of the incoming and outgoing partons. As the collision evolves, the distance

between the partons increases until the strength of the strong interaction becomes large
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Figure 2.5: Processes in a 𝑝𝑝 collision [37]. Hard scattering is denoted by red, parton shower
by blue, hadronisation by light green, underlying event by purple, and hadrons by dark green.

enough to confine the partons into colourless hadrons in the hadronisation process. So

far, the processes in the evolution have been discussed using one parton from each of

the two incoming protons, but as protons are composed of many partons, interactions

between other parton pairs can occur. Partons that do not participate in the hard

scattering process are considered as remnants of the scattering, which are represented

by the underlying event (UE).
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Chapter 3

The Large Hadron Collider and the AT-

LAS detector
The Large Hadron Collider (LHC) [3] at the European Organisation for Nuclear

Research (CERN) in Switzerland is the world’s largest particle accelerator. The LHC

was designed to accelerate protons in opposite directions and collide them at a specific

centre-of-mass energy that depends on the running period of the accelerator. The LHC

operated at
√
𝑠 = 7 TeV and

√
𝑠 = 8 TeV for the 2010-2012 data-taking period, known

as Run-1. During the shutdown from 2013 to 2015, the LHC was upgraded to reach

a higher centre-of-mass energy. The LHC operated at
√
𝑠 = 13 TeV for the 2015-2018

running period, known as Run-2, and is currently being upgraded to achieve up to
√
𝑠 = 13.6 TeV for Run-3, which is expected to start in 2022.

3.1 The Large Hadron Collider

The LHC is part of the CERN accelerator complex, which is illustrated in Fig. 3.1,

and consists of a 27 km ring of superconducting magnets, and is located approximately

100 m underground.

Prior to entering the LHC ring, the protons are produced from the ionisation of

hydrogen gas by an electric field. To ensure that the protons achieve their final energy

of 6.5 TeV, the energy of the protons is gradually increased in a series of accelerators:

Linear Accelerator to 50 MeV, Proton Synchrotron Booster (PSB) to 1.4 GeV, Proton

Synchrotron (PS) to 25 GeV, and SPS (Super Proton Synchrotron) to 450 GeV.

The protons are then split and enter the two beam pipes of the LHC ring, where they

circulate in opposite directions and are accelerated to their final energy. The protons

collide at four interaction points around the LHC ring corresponding to the ALICE [39],
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Figure 3.1: A diagram of the CERN accelerator complex [38].

ATLAS [40], CMS [41] and LHCb [42] detectors.

3.1.1 Luminosity and pile-up

Protons are formed into bunches with each bunch containing approximately 1.1× 1011

protons. The separation of the bunches result in beams crossing at 25 ns intervals.

These beam properties can be used to define the instantaneous luminosity given by

ℒ =
𝑓𝑛𝑏𝑁1𝑁2

2𝜋𝜎𝑥𝜎𝑦
, (3.1)

where 𝑓 is the beam revolution frequency, 𝑛𝑏 is the number of bunches in one beam, 𝑁1

and 𝑁2 are the respective numbers of protons in bunch 1 and 2, and 𝜎𝑥 and 𝜎𝑦 are the

mean beam width in the 𝑥 and 𝑦 direction, respectively. The integrated luminosity over

a certain time period, 𝐿, is used to define how much data has been delivered.
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An event corresponds to the two bunches crossing within a detector. However, in

the same or adjacent bunch crossing, a significant number of collisions can occur, which

is referred to as pile-up. Pile-up can be categorised as in-time and out-of-time. In-time

pile-up is additional 𝑝𝑝 collisions occurring in the same bunch crossing as the collision of

interest, while out-of-time pile-up is additional 𝑝𝑝 collisions occurring in bunch crossings

just before and after the collisions of interest. The amount of pile-up is quantified by

the mean number of interactions per bunch crossing,

𝜇 =
ℒ𝜎
𝑓𝑛𝑏

, (3.2)

where ℒ is the instantaneous luminosity, 𝜎 is the inelastic cross section, 𝑓 is the beam

revolution frequency, and 𝑛𝑏 is the number of bunches. Fig. 3.2 shows the mean number

of interactions per bunch crossing and the integrated luminosity collected by the ATLAS

detector during Run-2 of the LHC.
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Figure 3.2: Mean number of interactions per bunch crossing collected by the ATLAS detector
during Run-2 of the LHC [43]

.
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3.2 The ATLAS Detector

The ATLAS (A Torodial LHC ApparatuS) [40] detector, as illustrated in Fig. 3.3,

is formed of a cylindrical barrel around the beam pipe with the proton-proton (𝑝𝑝)

collisions occurring at the centre of the detector. The detector is composed of three

main components. The innermost component is the Inner Detector, which is surrounded

by the electromagnetic and hadronic calorimeters, which are surrounded by the muon

spectrometer.

Figure 3.3: Cut-away view of the ATLAS detector [44].

A right-handed coordinate system is employed by the detector with the interaction

point, which is at the centre of the detector, as the origin. The 𝑥-axis increases towards

the centre of the LHC ring, the positive 𝑦-axis points upwards, and the 𝑧-axis is along

the beam pipe. The transverse (𝑥− 𝑦) plane uses spherical coordinates to describe the

angle around the beam axis, 𝜑, and angle from the beam axis to the 𝑦-axis, 𝜃. A more
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commonly used quantity involving 𝜃 is the pseudorapidity:

𝜂 = − log

(︂
tan

(︂
𝜃

2

)︂)︂
. (3.3)

Distances between objects are defined in the 𝜂 − 𝜑 plane and are given by the angular

separation:

Δ𝑅 =
√︀
Δ𝜂2 +Δ𝜑2 (3.4)

3.2.1 Inner Detector

The Inner Detector [45] (ID) is submerged in a magnetic field of 2T to measure the

trajectories (tracks), charge, and momenta of charged particles within |𝜂| < 2.5. The

expected tracking momentum resolution of the ID as a function of the transverse

momentum (𝑝𝑇 in GeV) of the track is

𝜎𝑝𝑇
𝑝𝑇

= 0.05% 𝑝𝑇 ⊕ 1%. (3.5)

Fig. 3.4 illustrates the ID, which is composed of three sub-detector layers at different

distances to the beam axis.

• Pixel detector: The pixel detector is positioned closest to interaction point to

provide high precision measurements close to the primary vertex (PV), which is the

point of a hard scattering event. Thus, this sub-detector is vital to reconstruction

of vertices and track impact parameters (IPs), which are defined as the signed

distance of closest approach of the track to the interaction point in the transverse

(𝑑0) and longitudinal (𝑧0) plane. The sign of the IP is positive if the track crosses

the jet axis in front of the PV, otherwise the sign is negative. The transverse and

longitudinal IP significances are defined with respect to their uncertainties (𝜎) as

|𝑑0|/𝜎𝑑 and |𝑧0|/𝜎𝑧, respectively. The pixel detector is formed of four layers of

silicon pixels in the barrel and three disks of sensors in the end-caps. These layers

typically provides four hits per track in the barrel region. The pixel sizes in these

layers are 50× 400 𝜇𝑚2, offering a resolution of 10 𝜇𝑚 and 115 𝜇𝑚 in the 𝑟 − 𝜑

and 𝑧 direction, respectively.
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Figure 3.4: A 𝑟 − 𝑧 cross-section view of the whole layout (top) of the Inner Detector [45],
with a magnified view of the pixel detector (bottom).

During the shutdown before Run-2, the innermost layer of silicon pixels, known as

the Insertable B-Layer (IBL) [46], was added between the beam pipe and the first

layer to increase tracking robustness against data loss in the first layer, preserve

tracking performance in the case of higher pile-up as a consequence of higher

luminosity, and improve the quality of impact parameter reconstruction for tracks.

The pixel sizes in the IBL are slightly smaller at 50× 250 𝜇𝑚2, giving a higher

resolution of 8 𝜇𝑚 in the 𝑟 − 𝜑 direction and 40 𝜇𝑚 in the 𝑧 direction.

• Semiconductor Tracker (SCT): The SCT is formed of four double-sided layers

of silicon microstrips in the barrel region and two sets of nine disk layers in the

end-caps, typically providing eight hits per track in the barrel region. The overall

intrinsic resolution of the SCT is 17 𝜇𝑚 in the 𝑟− 𝜑 direction, and 580 𝜇𝑚 in the

𝑟 direction for the disks and 𝑧 direction for the barrel.
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• Transition Radiation Tracker (TRT): The TRT covers |𝜂| < 2.0 and is

composed of straw tubes filled with xenon and argon gas and a tungsten wire

in the centre of the tubes. Charged particles traversing the TRT ionise the gas

mixture and this produces electrons, which are collected by the wire. This tracker

provides up to 33 hits in the barrel and 38 in the end-caps. The TRT has an

intrinsic resolution of 130 𝜇𝑚 per straw tube, providing information only in the

𝑟 − 𝜑 direction.

The space between the straw tubes are filled with polymer fibres and foils to provide

different refractive indices, therefore particles passing through can radiate photons

that are absorbed by the xenon gas to give a larger signal. As lighter particles,

such as electrons, are more likely to radiate photons than heavier hadrons and

pions, the transition radiation helps to distinguish electrons from other particles.

This also provides electron ID information based on the number of hits above a

higher energy deposit threshold corresponding to transition radiation.

3.2.2 Calorimeters

Calorimeters [40] absorb particles to measure the energy deposition and direction. The

calorimeters are composed of alternating layers of an absorber material and an active

material. Signals are created in the layers of the active material. Through interactions

with the absorber material, particles lose energy and create secondary particles.

The average length that a particle can travel through the material before losing a

characteristic amount of energy depends on the material type and energy of the particle,

but is generally much larger for hadrons than for electrons and photons. Hence, the

absorber material and thickness of the calorimeters are chosen such that electrons and

photons deposit all their energy in the electromagnetic calorimeters (ECAL) and hadrons

in the hadronic calorimeters (HCAL). Fig. 3.5 shows the inside of the calorimeter system.

• Electromagnetic calorimeters: Electrons interact primarily via Bremsstrahlung

and photons interact via pair production, producing a shower of electrons and

photons. Liquid argon is used as the active material, which is ionised to measure

the energy of the shower. Lead is used for the absorber material. The active and

absorber material are layered in accordion geometry to provide full 𝜑 coverage.
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Figure 3.5: A cut-away view of the calorimeter system [47].

The evolution of an electromagnetic (EM) shower is characterised by the material’s

radiation length, 𝑋0, which is the distance an EM interacting particle travels before

losing all but 1/𝑒 of its energy, To obtain a large fraction of EM showers, ECAL

(|𝜂| < 3.2) is at least 22 𝑋0 thick and at least 24 𝑋0 thick in the barrel (|𝜂| < 1.475)

and end-caps (1.375 < |𝜂| < 3.2) regions, respectively. The design energy resolution

of the ECAL as a function of energy (𝐸 in GeV) and its uncertainty 𝜎𝐸 is

𝜎𝐸
𝐸

=
10%√
𝐸

⊕ 0.7%. (3.6)

• Hadronic calorimeters: Hadrons can interact with the absorber material by the

strong force as well as the EM force, resulting in a mixture of electrons, photons

and hadrons in the showers. The barrel has polystyrene scintillating tiles as the

active medium and uses steel for the absorber material. The hadronic end-cap

calorimeter (HEC) and forward calorimeter (FCal) cover 1.5 < |𝜂| < 3.2 and

3.1 < |𝜂| < 4.9, respectively. The HEC has a copper absorber and the FCal has

three layers of absorber composed of copper and tungsten, with both calorimeters
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adopting LAr as the active material.

The average distance travelled by a hadron before undergoing an inelastic nuclear

interaction is defined by the interaction length of the material, 𝜆. The total

thickness of HCAL is at least 9.7 𝜆 thick in the barrel and at least 10 𝜆 thick in

the end-caps. The expected energy resolution of the HEC as a function of energy

(𝐸 in GeV) is
𝜎𝐸
𝐸

=
50%√
𝐸

⊕ 3%, (3.7)

and of the FCal is
𝜎𝐸
𝐸

=
100%√
𝐸

⊕ 10%. (3.8)

3.2.3 Muon Spectrometer

Muons are able to pass through the calorimeters with minimal interactions, which allows

them to be detected and their properties to be measured in the Muon Spectrometer

(MS) [40], which covers |𝜂| < 2.7. The MS, as illustrated in Fig. 3.6 is immersed in a

strong magnetic field to measure muon tracks, charge, and momentum. In addition, parts

of the MS are used as a hardware-based trigger, where the Resistive Plate Chambers

(RPCs) and Thin Gap Chambers (TGCs) are installed in the barrel and end-cap regions,

respectively.

The MS consists of Monitored Drift Tubes (MDTs) in the barrel and Cathode Strip

Chambers (CSCs) in the innermost end-cap layer for precision tracking. MDTs work

similarly to the straw tubes in the TRT of the ID, except the tubes are filled with argon

gas, and the time taken for the electrons to be collected by the wire is used to determine

the position of the muon. CSCs are composed of argon gas and numerous tungsten

wires between two copper strips, and work similarly to the MDTs, except positive ions

are produced from the ionisation and are collected by the copper strips. The CSCs

are used instead of MDTs due to their higher rate capability. The expected tracking

momentum resolution of the MS as a function of the track 𝑝𝑇 , at 𝑝𝑇 = 1 TeV, is

𝜎𝑝𝑇
𝑝𝑇

= 10%. (3.9)
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Figure 3.6: A cut-away view of the muon spectrometer [48].

3.2.4 Trigger and Data Acquisition System

At
√
𝑠 = 13 TeV, collisions happen at a rate of 40 MHz, which is too high to record

every event. Therefore, a trigger system [49] is used to select events of interest, whilst

maintaining an acceptable trigger rate to reduce the recording rate from 40 MHz to 1

kHz. The trigger system employs a Level 1 (L1) hardware trigger and a Higher Level

Trigger (HLT) software trigger, with a trigger menu to define the selection criteria for

the L1 and HLT triggers.

The L1 trigger only uses information from the calorimeters and the muon spectrometer

to identify objects with high transverse momentum or events with a large energy

imbalance in the total transverse momentum. The HLT trigger uses a farm of computers

to run offline-like algorithms to reconstruct events. The L1 trigger reduces the event

rate from 40 MHz to 100 kHz, while the HLT trigger reduces the event rate from 100

kHz to 1 kHz.
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Chapter 4

Object reconstruction
During event reconstruction, physics objects are identified and reconstructed from

the signals recorded by the detector. Following the reconstruction of objects, it is

possible that the same signature in the detector can be used for reconstructing different

objects, therefore overlap removal [50] is undertaken between objects, similar to the

procedure discussed in Ref. [50].

4.1 Tracks and Primary Vertices

Tracks are reconstructed from the energy deposits produced by charged particles travers-

ing the ID [51]. The energy deposits are clustered independently in the pixel detector and

SCT layers forming space-points in each layer, which are measurements corresponding

to hits in the sub-detectors.

Track reconstruction starts with the formation of a track seed using three space-points

from the pixel and/or SCT layers. A combinatorial Kalman filter is used to create track

candidates by adding space-points that are consistent with the initial trajectory from

the seed. However, ambiguities arise from the possibility of the additional space-points

being associated to multiple track candidates. To solve this ambiguity, a base score

is assigned to each track based on the 𝑝𝑇 of the track candidate and 𝜒2 of its fit. If

clusters are assigned to a track, then its score is increased by a weight to reflect the

expected cluster multiplicities in the sub-detectors and their resolution. The number of

expected hits which are missing, known as holes, reduces the track score as it represents

poorly reconstructed tracks. The scores are used to rank the tracks, then the descending

ordered list is fed into the ambiguity solver, which imposes the following requirements

on the tracks: 𝑝𝑇 > 400 MeV, |𝜂| < 2.5, minimum of 7 hits, maximum of one hole in

the pixel detector, maximum of two holes in the combined pixel and SCT detectors.

29



Another requirement is that clusters can be shared by a maximum of two tracks, with

preference given to higher scored tracks, and a track can have a maximum of two share

clusters. Tracks that have too many shared clusters are used to create stripped-down

track candidates, which then re-enter the track reconstruction procedure as new inputs

to the ambiguity solver. Accepted track candidates are combined with measurements

from the TRT to give the reconstructed track. The tracking reconstruction efficiency is

dependent on a number of factors including the type of particle, pseudorapidity, and

𝑝𝑇 of the particle. For example, at 𝑝𝑇 = 5 GeV and |𝜂| < 2.5, the track reconstruction

efficiency ranges from 97-99% for muons, 80-95% for pions, and 70-95% for electrons [52].

Alternatively, in MC, tracks can be reconstructed using truth information to identify

the hits a particle created in the detector, and using them to directly fit the particle

trajectories without the track finding and ambiguity solving stages. These tracks are

referred to as pseudo tracks, and they represent the best tracking possible within the

ATLAS detector given the minimum hit requirements. The quality of matching to a

given truth particle is quantified by the truth match probability [53]:

𝑇𝑀𝑃 =
10×𝑁𝑃𝑖𝑥𝑒𝑙

𝑐𝑜𝑚𝑚𝑜𝑛 + 5×𝑁𝑆𝐶𝑇
𝑐𝑜𝑚𝑚𝑜𝑛 + 1×𝑁𝑇𝑅𝑇

𝑐𝑜𝑚𝑚𝑜𝑛

10×𝑁𝑃𝑖𝑥𝑒𝑙
𝑟𝑒𝑐𝑜 + 5×𝑁𝑆𝐶𝑇

𝑟𝑒𝑐𝑜 + 1×𝑁𝑇𝑅𝑇
𝑟𝑒𝑐𝑜

, (4.1)

where, for a given sub-detector layer 𝑖, 𝑁 𝑖
𝑐𝑜𝑚𝑚𝑜𝑛 is the number of hits created by the

truth particle in the detector that are common to the reconstructed track and 𝑁 𝑖
𝑟𝑒𝑐𝑜 is

the number of hits on the reconstructed track.

A set of the reconstructed tracks combined with information about the position

of the beam spot in the detector are used to reconstruct PVs [54]. The 𝑥- and 𝑦-

coordinates of the vertex seeds are determined from the centre of the beam spot, while

the 𝑧-coordinate of the vertex seeds is calculated as the mode of the 𝑧-coordinates of the

points of closest approach of the tracks in the vicinity of the seed. Then, an iterative 𝜒2

minimisation is conducted to find the optimal vertex position. In each iteration, the

tracks are weighted based on their compatibility with the vertex seed and the vertex

position is recomputed using the weighted tracks. Tracks that are incompatible with the

vertex at more than seven standard deviations are removed from the vertex candidate.

The iterative procedure is repeated until all reconstructed tracks are associated to a

vertex. The primary vertex is given by the reconstructed vertex with highest 𝑝2𝑇 sum of
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all associated track. Other reconstructed vertices are considered as pile-up vertices. To

ensure tracks selected are consistent with the PV, further requirements are enforced on

the tracks: 𝑑0 < 2mm and |𝑧0 sin 𝜃| < 3 mm, where 𝜃 is the polar angle of the track.

The primary vertex reconstruction efficiency is expected to exceed 99%.

4.2 Leptons

As neutrinos are not directly detected and 𝜏 -leptons are not used for the work presented

in Parts II and III, leptons referred to in this thesis consists of only electrons and muons

and are represented by the ℓ symbol.

4.2.1 Electrons

Signals in the ID and ECAL are used to reconstruct electrons [55]. Seed clusters of size

equivalent to 3× 5 cells in 𝜂 × 𝜑 in the ECAL are identified by requiring energy of the

seed cluster to be greater than 2.5 GeV. Reconstructed tracks are matched to the ECAL

clusters. If no match is found, then the ECAL cluster is considered a photon candidate.

If several tracks are matched to the EM cluster, tracks are ranked based on the angular

separation between the track and cluster, the number of pixel hits, and the number

of holes. The highest ranked track corresponds to the electron track. The electron

track also has to be consistent with the PV by requiring 𝑑0/𝜎𝑑 < 5 (Section 3.2.1) and

Δ𝑧0 sin 𝜃 < 0.5 mm, where Δ𝑧0 is the longitudinal IP corrected for the reconstructed

PV.

An identification procedure is conducted by combining the electron track and cluster

information, such as the number of hits in the ID layers and the ratio of the cluster

energy to the 𝑝𝑇 of the track, in a multivariate analysis to reduce the background from

fake prompt electrons, which can originate from the conversion of a photon to an electron-

positron pair, semi-leptonic decays of heavy-flavour hadrons, and jets misidentified as

electrons. The discriminant is used to define different quality working points based

on the electron efficiency and the hadron jet rejection. The different working points

are Loose, Medium, and Tight, corresponding to approximately 95%, 92%, and 87%

electron efficiencies with hadron jet rejections of 99.7%, 99.8%, and 99.9%, respectively,
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in the [60, 80] 𝑝𝑇 range.

To further suppress the fake prompt electrons background, the isolation working

points are defined with respect to the 𝑝𝑇 of the electron candidate using the following

two variables:

• 𝑝𝑣𝑎𝑟𝑐𝑜𝑛𝑒0.2𝑇 corresponds to the sum of the 𝑝𝑇 of all tracks within a varying cone of

Δ𝑅 = min(0.2, 10 GeV/𝑝𝑇 ) around the electron track candidate,

• 𝐸𝑡𝑜𝑝𝑜𝑐𝑜𝑛𝑒0.2
𝑇 refers to the sum of the 𝑝𝑇 of the EM clusters within a cone of Δ𝑅 = 0.2

around the cluster corresponding to the electron candidate.

The isolation working points relevant for work presented in this thesis are:

• LooseTrack uses 𝑝𝑣𝑎𝑟𝑐𝑜𝑛𝑒0.2𝑇 to target a fixed 99% efficiency across the entire electron

𝑝𝑇 range,

• HighPtCalo obtains a 𝑝𝑇 dependent efficiency of around 95% by requiring 𝐸𝑡𝑜𝑝𝑜𝑐𝑜𝑛𝑒0.2
𝑇

< max(0.015𝑝𝑇 , 3.5 GeV).

Electron efficiencies in simulation are compared to those in data for 𝑍 → 𝑒+𝑒−

and 𝐽𝜓 → 𝑒+𝑒− samples to derive scale factors for the reconstruction, isolation and

identification procedures described above. The calibration accounts for the imperfect

detector simulation and physics modelling of the electron.

4.2.2 Muons

Muon tracks are reconstructed independently from the signals in the ID and the MS.

In the ID, the muon tracks are reconstructed using the same procedure described in

Section 4.1, while in the MS, the tracks are reconstructed using a 𝜒2 fit on the hits in

the muon chambers [56]. Additionally, muon tracks have to be consistent with the PV

by the requirement of 𝑑0/𝜎𝑑 < 3 and Δ𝑧0 sin 𝜃 < 0.5 mm. Four types of reconstructed

muons are formed from the tracks, along with information from the calorimeter:

• Combined muons are formed from a fit combining the muon tracks that were

reconstructed separately in the ID and MS.

• Segment-tagged muons have a track in the ID extrapolated to the MS that matches

at least one track segment in the MDT or CSC chambers. These muons arise

when muons cross only one layer of the MS chambers, which is either due to low

𝑝𝑇 or as they fall in regions with reduced MS acceptance.
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• Calorimeter-tagged muons have a muon track in the ID that is matched to an

energy deposit in the calorimeter. These muons are used to recover acceptance in

the MS regions that are only use for cabling to the ID and calorimeters.

• Extrapolated muons have a muon track reconstructed from the MS only, but whose

estimated energy loss and IPs are consistent with a track originating from the

interaction point.

An identification procedure is performed to distinguish prompt muons from fake

prompt muons, which can arise from the semi-leptonic decay of a heavy-flavour hadron

and the in-flight decays of a hadron. Cuts on several discriminating variables, such as

the 𝜒2 of the combined fit and the charge and momentum of the muon, are used to define

quality working points: Loose, Medium, and Tight with approximate efficiencies of 98%,

96%, and 92% with fake muon rejections of 99.2%, 99.8%, and 99.9%, respectively, in

the 20 GeV < 𝑝𝑇 < 100 GeV range.

Similar to electrons, isolation working points are defined with respect to the 𝑝𝑇 of

the muon candidate to discriminate muons from the fake prompt muons. For muons,

the following isolation variables are defined:

• 𝑝𝑣𝑎𝑟𝑐𝑜𝑛𝑒0.3𝑇 corresponds to the sum of the 𝑝𝑇 of all tracks within a varying cone of

Δ𝑅 = min(0.3, 10 GeV/𝑝𝑇 ) around the muon track candidate,

• 𝐸𝑡𝑜𝑝𝑜𝑐𝑜𝑛𝑒0.2
𝑇 refers to the sum of the 𝑝𝑇 of the calorimeter clusters within a cone of

Δ𝑅 = 0.2 around the cluster corresponding to the muon candidate,

• 𝑝𝑐𝑜𝑛𝑒0.2𝑇 corresponds to the sum of the 𝑝𝑇 of tracks within a cone of Δ𝑅 = 0.2

around the muon track candidate.

The isolation working points [57] relevant to the thesis are:

• LooseTrack uses 𝑝𝑣𝑎𝑟𝑐𝑜𝑛𝑒0.3𝑇 to ensure a fixed 99% efficiency across the whole muon

𝑝𝑇 range,

• HighPtTrack imposes a requirement of 𝑝𝑐𝑜𝑛𝑒0.2𝑇 < 1.25 GeV to provide around 95%

efficiency, depending on the 𝑝𝑇 of the muon.

Scale factors are obtained from the evaluation of muon efficiencies in simulation and

data using 𝑍 → 𝑒+𝑒− and 𝐽𝜓 → 𝑒+𝑒− samples to correct mismodelling in simulation.
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4.3 Jets

Jets are collimated streams of hadrons produced by the hadronisation of quarks and

gluons, which cannot exist as free particles due to colour confinement.

The reconstruction of jets starts with the formation of clusters with calorimeter cell

signals that are topologically connected [58]. The energy significance, 𝑆, of a cell is

defined as the ratio of the energy deposit to the background noise of the cell. If a cell

registers 𝑆 > 4, it is clustered together with its neighbouring cells. If a neighbouring cell

has 𝑆 > 2, then its neighbours are also added to the cluster. The merging of the cells

are applied to further neighbours until there are no more neighbouring cells with 𝑆 > 0.

Jets are reconstructed from the clusters with the anti-𝑘𝑇 algorithm [59], which uses

the distance measures:

𝑑𝑖𝑗 = min

(︃
1

𝑘2𝑇,𝑖
,

1

𝑘2𝑇,𝑗

)︃
Δ𝑅(𝑖, 𝑗)2

𝑅2
, (4.2)

𝑑𝑖𝐵 =
1

𝑘2𝑇,𝑖
, (4.3)

where Δ𝑅(𝑖, 𝑗) is the angular distance between two reconstructed clusters 𝑖 and 𝑗, 𝑅

is the radius parameter defining the size of the resulting jet, and 𝑘𝑇,𝑖 and 𝑘𝑇,𝑗 are the

transverse momentum of clusters 𝑖 and 𝑗, respectively. The algorithm compares the

distance between the two clusters (𝑑𝑖𝑗) to the distance between cluster 𝑖 and the beam

(𝑑𝑖𝐵). If 𝑑𝑖𝑗 < 𝑑𝑖𝐵, the clusters are combined. The combined cluster becomes cluster 𝑖

in the next iteration to be compared to another cluster 𝑗. The iteration stops when 𝑑𝑖𝑗

>= 𝑑𝑖𝐵 with the final cluster used as the reconstructed jet.

Reconstructed jets are calibrated to have the same jet energy scale (JES) as truth

jets, which are jets that are reconstructed from stable truth particles produced in the

scatter [60]. Several corrections are applied in the calibration, which include changing

the origin of the jet to the PV and subtracting the average 𝑝𝑇 contribution from pile-up.

The final stage of the JES calibration accounts for the remaining differences between data

and MC, where the corrections are derived by comparing the 𝑝𝑇 of the reconstructed jet

in data to a balancing object whose 𝑝𝑇 is determined to a better resolution, such as a

𝑍-boson or a photon. The jet energy resolution (JER) of the calibrated jet, defined as
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𝜎𝑝𝑇 /𝑝𝑇 , is determined using the width of the Gaussian fit of the asymmetry between

transverse momentum of the 𝑍+jet or 𝛾+jet and that of the reconstructed jet [61].

Jets produced in pile-up interactions can also be reconstructed. These pile-up jets

are suppressed using cuts on the Jet Vertex Tagger (JVT) [62] discriminant, which is a

multivariate combination of two variables related to the 𝑝𝑇 fraction of tracks associated

to the jet that comes from the PV. The JVT discriminant > 0.59 selection, which is

used for the analysis in Part III, is 92% pure in hard-scatter jets and has a 2% fake rate

from pile-up jets.

The flavour of a jet is defined by the hadrons and leptons inside the jet. If a 𝑏-hadron

(but no 𝑐-hadron) is found inside the jet, then it is labelled as a 𝑏-jet. If 𝑐-hadron (but

no 𝑏-hadron) is found inside the jet, then it is labelled as a 𝑐-jet. If a 𝜏 -lepton is found

(but no 𝑏- and 𝑐-hadrons) is found inside the jet, then it is labelled as a 𝜏 -jet. If neither

𝑏- or 𝑐-hadrons or 𝜏 -leptons are found, then it is labelled as a light-jet.

4.4 Missing transverse momentum

The conservation of momentum requires the vectorial sum of the momentum in the

transverse plane of an event to be zero. However, this assumption does not hold if

neutrinos are produced as they only interact weakly, hence the probability of them

interacting with the detector is negligible. An energy imbalance attributed to the

neutrinos defines the missing transverse momentum, 𝐸𝑚𝑖𝑠𝑠
𝑇 , which is calculated from its

components in the transverse plane [63]:

𝐸𝑚𝑖𝑠𝑠
𝑥(𝑦) = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝑥(𝑦) +𝐸𝑝ℎ𝑜𝑡𝑜𝑛
𝑥(𝑦) +𝐸𝑡𝑎𝑢

𝑥(𝑦) +𝐸𝑚𝑢𝑜𝑛
𝑥(𝑦) +𝐸𝑗𝑒𝑡

𝑥(𝑦) +𝐸𝑠𝑜𝑓𝑡
𝑥(𝑦) , (4.4)

where 𝐸𝑜𝑏𝑗𝑒𝑐𝑡
𝑥(𝑦) is the 𝑥 (𝑦) component of the contributions from the reconstructed objects.

The soft term contribution, 𝐸𝑠𝑜𝑓𝑡
𝑥(𝑦) , includes the 𝑝𝑇 sum of all tracks matched to a PV but

not associated to any of the reconstructed objects. The scalar total missing transverse

momentum is given by

𝐸𝑚𝑖𝑠𝑠
𝑇 =

√︁
(𝐸𝑚𝑖𝑠𝑠

𝑥 )2 + (𝐸𝑚𝑖𝑠𝑠
𝑦 )2. (4.5)
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Chapter 5

Machine Learning at the LHC
Machine learning (ML) can be broadly defined as the study of computational

algorithms that learn from data and improve with experience without explicitly being

programmed. As the growth of data increases rapidly, the use of ML to extract

information is crucial in many fields including high energy physics, where ML is an

established tool in many physics analyses [64].

The two main types of ML systems are supervised and unsupervised learning. In

supervised learning, the training data provided to the algorithm includes both the inputs

and the desired outputs, which the training attempts to replicate. The training typically

involves an optimisation problem in which the objective is to minimise a loss function. In

unsupervised learning, only the inputs are known, hence the algorithm draws inference

from the data. As only supervised learning is used for the work presented in this thesis,

only this type of learning will be detailed in this chapter.

Problems within supervised learning are categorised into classification if the output

is discrete or regression if output is continuous. The type of classification can be

binary, such as in the distinction of signal and background, or multiclass, such as in

discriminating between 𝑏-, 𝑐-, or light-flavour jets.

5.1 Boosted decision trees

A boosted decision tree (BDT) [65] is a forest of decision trees with boosting algorithms.

BDTs are widely used in physics analyses to separate signal from background in a

supervised classification configuration, and are described in more detail below.

In decision trees, as illustrated in Fig. 5.1, the tree structure starts at the initial

node, known as the root node. Each node in the tree recursively splits the data into

two branches using a threshold value on an event variable until a stopping criterion is
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fulfilled. The terminal nodes, known as leaves, determine the outputs. The predicted

class of an event is determined by the signal purity in a leaf, 𝑝𝑠 = 𝑝 = 𝑠/(𝑠+ 𝑏), where 𝑠

and 𝑏 are the sums of weights of signal and background events, respectively. The events

in a leaf with 𝑝 > 0.5 are predicted as signal events.

Figure 5.1: Decision tree [66].

The stopping criterion can be defined by any of the following:

• Minimum leaf size: Number of events of each node has to be above a certain

proportion, e.g. 5%, of the total number of training events to ensure sufficient

statistics in each leaf.

• Maximum tree depth: Number of layers of nodes from the root node to the furthest

leaf node is set to a maximum, e.g. 4, to ensure the tree is not computationally

expensive and to reduce overtraining.

• Perfect separation: If all events in a node belong to one class.

As all variables and their threshold values are considered at each node, the algorithm

has to choose a variable for splitting that provides the best separation between the two

classes. A splitting measure to describe the impurity of a node is minimised to determine

the optimal variable and threshold value for splitting at that node. A commonly used

impurity function is the Gini index:

Gini = 1−
∑︁
𝑖=𝑠,𝑏

𝑝2𝑖 = 2𝑝(1− 𝑝), (5.1)

which involves the subtraction of the sum of squared probabilities of each class 𝑖, 𝑝𝑖,

from unity.
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5.1.1 Boosting algorithms

Classifiers that are error-prone and unstable are known as weak learners, such as decision

trees. Boosting algorithms [67] are used to combine a sequence of weak learners into a

more stable classifier with a smaller variance. Each weak learner in boosting learns from

the mistakes made by a previous weak learner, thus giving rise to a gradual improvement

in the performance of the weak learners, which will result in a strong learner. The

boosting techniques explored in this thesis are adaptive and gradient boosting.

5.1.1.1 AdaBoost

In adaptive boosting (AdaBoost) [65, 67, 68], the objective is to minimise the exponential

loss function. The exponential loss function can be minimised analytically, which gives

rise to the weighted misclassification rate, such that events that were misclassified in

iteration 𝑚, or the 𝑚𝑡ℎ weak learner, have their weights increased in the subsequent

iteration 𝑚+ 1 using a boost weight.

The boost weight is specific to each iteration and is defined as

𝛼𝑚 = 𝛽 log

(︂
1− 𝜖𝑚
𝜖𝑚

)︂
(5.2)

using the weighted misclassification rate of the iteration:

𝜖𝑚 =

∑︀
𝑗 𝑤

𝑚
𝑗∑︀

𝑖𝑤
𝑚
𝑖

, (5.3)

where 𝑗 is restricted to the list of misclassified events and the sum over 𝑖 covers all events.

The learning rate of the AdaBoost algorithm, 𝛽, controls the strength of the boosting.

Hence, for each event 𝑖 with weight 𝑤𝑖 that was misclassified in a given iteration 𝑚, its

weight in the next iteration is

𝑤𝑚+1
𝑖 = 𝑤𝑚

𝑖 exp(𝛼𝑚𝜖𝑚). (5.4)

As the iterations proceed, the weights of misclassified events increase and subsequent

trees focus their training on the events that are difficult to classify.
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The output of the BDT for an event 𝑖 is given by

𝑦𝑖(𝑥𝑖) =
1

𝑀

𝑀∑︁
𝑚=1

𝛼𝑚ℎ𝑚(𝑥𝑖) (5.5)

for 𝑀 total number of iterations, i.e. trees, a set of input variables 𝑥 and the prediction

of a tree ℎ𝑚(𝑥), which has values of +1 and -1 for signal and background, respectively.

5.1.1.2 GradBoost

In gradient boosting (GradBoost) [67], a numerical method involving gradient descent

is used to minimise any loss function. TMVA [68], which is used for the work in this

thesis, uses a binominal log-likelihood loss function:

𝐿(𝐹, 𝑦) = log(1 + 𝑒−2𝐹 (𝑥)𝑦), (5.6)

where 𝐹 (𝑥) is the response of the classifier, and 𝑦 represents the set of true class values.

The gradient descent procedure involves minimising the loss by updating a set of

parameters in each iteration. In gradient boosting, the procedure involves updating the

weak learners in each iteration instead, such that each weak learner that is added to the

classifier minimises the residual loss, which is defined as 𝑦 − 𝐹 (𝑥).

The algorithm is initialised by fitting the first weak learner to the training set

{(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1. In each iteration 𝑚 and for each event 𝑖, the gradient is calculated as

𝛿𝑖𝑚 = −
[︂
𝜕𝐿(𝐹 (𝑥𝑖), 𝑦𝑖)

𝜕𝐹 (𝑥𝑖)

]︂
𝐹=𝐹𝑚−1

, (5.7)

where each weak learner ℎ𝑚(𝑥), apart from the first, is fitted to the residuals of the

previous overall classifier 𝐹𝑚−1, i.e. the weak learner is trained on the set {(𝑥𝑖, 𝛿𝑖𝑚)}𝑛𝑖=1.

The classifier is updated as

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈ℎ𝑚(𝑥), (5.8)

where 𝜈 is the learning rate of GradBoost, also known as shrinkage. The final classifier

response 𝐹𝑀(𝑥) yields the predicted class values for all events.
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5.2 Deep neural networks

Neural networks [67] are composed of layers of artificial neurons, or nodes, with nodes in

each layer linked to nodes in other layers via connection weights, 𝑤. A neural network

(NN) typically consists of an input layer, one or more hidden layers, and an output layer,

as illustrated in Fig. 5.2. An NN is described as shallow if it has one hidden layer, and

deep if it has more than one hidden layer.

Figure 5.2: Deep neural network with three input variables corresponding to three input
nodes [69].

Each node in the input layer corresponds to an input variable 𝑑. A hidden layer is

formed of nodes that are not directly observed and is created from linear combinations

of nodes from the previous layer, and represents derived features. If the previous layer

is the input layer defined by 𝐷 nodes (corresponding to the number of input variables)

and the current hidden layer contains 𝑀 nodes, then the value of each node in the

current layer can be obtained from the elements of the matrix

𝑍 = 𝑋𝑊, (5.9)

where 𝑋 is an 𝑁 ×𝐷 matrix for 𝑁 total number of events, 𝑊 is the weight matrix of
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size 𝐷 ×𝑀 that contains the connection weights between two nodes. With 𝑙 = 1 as the

input layer and 𝑙 = 𝑡 as the output layer, the value of node 𝑗 in a certain layer 𝑙 can be

expressed as

𝑧𝑙𝑗 =

𝑀𝑙−1∑︁
𝑚=1

𝑤𝑙
𝑚𝑗𝑎

𝑙−1
𝑚 + 𝑏𝑙𝑗, (5.10)

where 𝑤𝑙
𝑖𝑗 is the weight between the incoming node 𝑖 and node 𝑗, 𝑏𝑙𝑗 is the bias with

an input value of 1 for node 𝑗 that is included to add flexibility to the NN model, and

𝑎𝑖 = 𝜎(𝑧𝑖) where 𝜎(𝑧) is the activation function that is applied to every hidden layer. By

defining 𝑏𝑙𝑗 as 𝑤𝑙
0𝑗 corresponding to the fixed activation value of 𝑎𝑙−1

0 = 1, the equation

becomes

𝑧𝑙𝑗 =

𝑀𝑙−1∑︁
𝑚=0

𝑤𝑙
𝑚𝑗𝑎

𝑙−1
𝑚 . (5.11)

An output function, 𝑔(𝑇 ), transforms the nodes in the output layer space, 𝑇 , for

𝑘 = 1, . . . , 𝐾 in K-class classification. For 𝐾 > 2, such as in the case of 𝑏-, 𝑐- and

light-jet classes, the softmax function:

𝑔𝑗(𝑇 ) =
𝑒𝑇𝑗∑︀𝐾
𝑘=1 𝑒

𝑇𝑘

(5.12)

is applied to each node 𝑗 in the output layer to obtain the probability of each class.

To optimise the weight parameters of the NN, the quality of the model fit to the

training data is quantified using a loss function. For classification, the loss function is

typically defined by the cross-entropy loss:

ℒ = −
𝐾∑︁
𝑘=1

𝑦𝑘 log(𝑦𝑘), (5.13)

where 𝑦 is the actual output class and 𝑦𝑘 is the computed probability of class 𝑘 from

the function 𝑔𝑘. Due to the high cost of training the NN, the loss function is minimised

using stochastic gradient descent (SGD), which updates the weight of a random subset

of the data (minibatch) as

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
𝜕ℒ
𝜕𝑤𝑡

, (5.14)

where 𝑡 is the current time step and 𝛼 is the learning rate. Variations of SGD involve

adapting the gradient and the learning rate to speed up the convergence of the NN. For
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example, the Adam [70] optimiser uses the exponential moving averages of the gradient

(i.e. the momentum) and of the squared gradient to adapt the gradient and the learning

rate, respectively.

In a training epoch of the NN, all training events are passed forward once and passed

backward once. The backward pass stems from the backpropagation algorithm [71],

which provides an analytical solution to calculating the gradients used to update the

weights. By implementing the chain rule, the gradient of the loss function is written as

𝜕ℒ
𝜕𝑤𝑙

𝑖𝑗

=
𝜕ℒ
𝜕𝑧𝑙𝑗

𝜕𝑧𝑙𝑗
𝜕𝑤𝑙

𝑖𝑗

, (5.15)

where
𝜕𝑧𝑙𝑗
𝜕𝑤𝑙

𝑖𝑗

= 𝑎𝑙−1
𝑖 . (5.16)

As 𝑧𝑙+1
𝑗 = 𝑧𝑙+1

𝑗 (𝑧𝑙𝑗), the multivariate chain rule can be applied to the hidden layers to

give
𝜕ℒ
𝜕𝑧𝑙𝑗

=

𝑀𝑙+1∑︁
𝑚=1

𝜕ℒ
𝜕𝑧𝑙+1

𝑚

𝜕𝑧𝑙+1
𝑚

𝜕𝑧𝑙𝑗
, (5.17)

which shows that the gradient in layer 𝑙 is dependent on the gradient in the next layer

𝑙 + 1. Each node in layer 𝑙 + 1 is given by

𝑧𝑙+1
𝑚 =

𝑀𝑙∑︁
𝑛=0

𝑤𝑙+1
𝑛𝑚𝜎(𝑧

𝑙
𝑛), (5.18)

which leads to the derivative:

𝜕𝑧𝑙+1
𝑚

𝜕𝑧𝑙𝑗
= 𝑤𝑙+1

𝑗𝑚 𝜎
′(𝑧𝑙𝑗). (5.19)

Therefore, the gradient can flow backwards in the hidden layers by calculating the

gradient of the activation function, with the algorithm initialised by computing the

gradient of the loss function for the output layer. Overall, backpropagation provides an

efficient way of minimising the loss function in an NN.
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5.2.1 Activation functions

Activation functions are applied to introduce nonlinearity between the hidden layers,

allowing the NN to learn complex patterns in the data. The activation functions typically

used in NNs are the ReLU and Leaky ReLU functions, which are shown in Fig. 5.3.

Figure 5.3: ReLU (left) and Leaky ReLU (right) functions [72].

The ReLU function 𝑓(𝑦) = max(0, 𝑦) is the most common activation function of

choice in NNs as it has a much larger range of non-zero gradients and its derivatives are

much faster to compute compared to those of the sigmoid function 𝑓(𝑦) = 1/(1 + 𝑒−𝑦),

which is the historical default activation function of choice.

However, the ReLU function can lead to the ‘dying ReLU’ problem, in which some

nodes of the NN effectively die in the sense that they can only output zero due to the

zero gradients for 𝑦 < 0. To deal with this problem, a variation of the ReLU function,

the leaky ReLU function 𝑓(𝑦) = max(𝛼𝑦, 𝑦), is used. The leaky ReLU function contains

a hyperparameter 𝛼 that defines the slope of the function for 𝑦 < 0, which can also be

conceptualised as how much the function ‘leaks’, allowing non-zero gradients for 𝑦 < 0.
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Part II

𝑏-jet identification
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Chapter 6

𝑏-jet identification
The identification of jets originating from 𝑏-quarks, known as 𝑏-tagging, is crucial in

the majority of ATLAS analyses, such as the 𝑉 𝐻(𝐻 → 𝑏�̄�) analysis, since 𝑏-jets, which

are jets that contain 𝑏-hadrons, are present in many interesting physics signatures.

An important property of 𝑏-hadrons is the relatively long lifetime (most common

lifetime is approximately 1.5 ×10−12 s [73]), which allows it to travel far enough to

form the displacement of a decay point, i.e. a displaced vertex, with respect to the

primary vertex (PV). Other properties of a 𝑏-hadron include a large mass of around 5

GeV and a large fraction of momentum retained from the initial 𝑏-quark. Due to the

CKM transition matrix values, the decay of a 𝑏-quark into a 𝑐-quark is highly favoured.

As 𝑐-hadrons can also have a relatively long lifetime, this results in a distinctive decay

chain. These properties are illustrated in Fig. 6.1.

In ATLAS, there are low-level and high-level 𝑏-tagging algorithms [75], which are

designed to discriminate 𝑏-jets against the much larger 𝑐-jets and light-flavoured jets

(light-jets), which arise from gluons and 𝑢, 𝑑, and 𝑠 quarks, background. The efficiency

to tag jets of flavour 𝑗 is defined as

𝜖𝑗 =
Number of jets of flavour 𝑗 tagged by the algorithm

Total number of jets of flavour 𝑗
, (6.1)

which is used to quantify the performance of the algorithms used in the identification

of the flavour quark 𝑗 that the jet originated from. Specifically, the performance of

𝑏-tagging algorithms is quantified by the 𝑏-jet tagging (𝑏-tagging) efficiency, 𝜖𝑏. The

rejection, 1/𝜖𝑗, of 𝑐- or light-jets is often compared against the 𝑏-jet tagging efficiency

to evaluate the overall performance of the 𝑏-tagging algorithm, in the form of receiver

operating characteristics (ROC) curves [76].

The performance of the high-level algorithms is also evaluated using 𝑏-tagging
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Figure 6.1: The properties of 𝑏-jets that are used in 𝑏-tagging [74].

efficiency working points (WPs), which are selections applied on the 𝑏-tagging algorithm

discriminant to target specific 𝑏-tagging efficiencies. The single-cut WPs corresponding to

60%, 70%, 77%, and 85% 𝑏-tagging efficiencies form the binned distribution of the output

of the 𝑏-tagging algorithm, known as the pseudo-continuous 𝑏-tagging discriminant. The

probability density of each bin is known as the 𝑏-jet tagging probability, which is used

to determine the 𝑏-tagging efficiency for any single-cut WP, i.e. 𝜖𝑏 = 𝑋%, by summing

the 𝑏-jet tagging probabilities in the range [𝑋%, 0%].
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6.1 Low-level algorithms

Low-level 𝑏-tagging algorithms (𝑏-taggers) are designed to distinguish 𝑏-jets from 𝑐- and

light-jets by exploiting the distinct properties of 𝑏-jets.

6.1.1 Impact Parameter based

Due to the long lifetime of 𝑏-hadrons, the tracks produced from 𝑏-hadron decay products

tend to have large IPs (Section 3.2.1), and hence can be separated from the tracks

originating from the PV. This property is employed by the impact parameter based

𝑏-taggers [77], IP2D and IP3D. The transverse IP is used by IP2D, while both the

transverse and longitudinal IPs are used by IP3D.

While tracks from 𝑏- and 𝑐-hadrons tend to have positive IPs, tracks associated with

light-jets tend to have an approximately symmetrical distribution of IPs centred around

zero. The transverse and longitudinal IP significances are defined with respect to their

uncertainties (𝜎) as 𝑑0/𝜎𝑑 and 𝑧0/𝜎𝑧, respectively. Probability density functions (PDFs)

of the signed IP significance for 𝑏-, 𝑐-, and light-jets are evaluated. These PDFs are used

to compute the log-likehood ratio (LLR) discriminants between the different jet flavours.

6.1.2 Secondary Vertex based

Secondary vertex (SV) based algorithms [78] aims to reconstruct the SV of the 𝑏-hadron

decay. First, two-track vertices in a jet are reconstructed, then the algorithms combine

all tracks from these vertices, excluding vertices that are likely to have come from

long-leved particles, such as 𝐾𝑠 and Λ, photon conversions, or hadronic interactions with

the detector material. An iterative procedure is used to reconstruct the SV by removing

the least compatible tracks until a good 𝜒2 of the vertex fit is achieved. Discriminating

variables constructed from the properties of the reconstructed SV, such as the invariant

mass of the reconstructed SV, are used to distinguish 𝑏-jets from 𝑐- and light-jets.
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6.1.3 Decay chain multi-vertex reconstruction (JetFitter)

As |𝑉𝑐𝑏|2 ≫ |𝑉𝑢𝑏|2 [73], the preferred full 𝑏-hadron decay chain starts from the PV to the

SV of the 𝑏-hadron decay then to the tertiary vertex of the 𝑐-hadron decay. The decay

chain multi-vertex reconstruction algorithm, known as JetFitter [79, 80], attempts to

reconstruct this 𝑏-hadron decay chain by assuming that the three vertices lie on the

same flight path.

JetFitter is initialised with a PV and a 𝑏-hadron flight axis, initially represented

by the jet axis, with each track that crosses the flight axis representing a displaced

vertex. A Kalman filter is used to reconstruct the flight path on which the primary,

secondary, and tertiary vertices lie. A set of discriminating variables are derived from

the reconstructed secondary and tertiary vertices, such as the mass, number of tracks,

and fraction of the jet energy in both types of vertices.

6.2 High-level algorithms

High-level 𝑏-taggers combine the output from low-level 𝑏-taggers to make use of the

correlations between the different variables to further discriminate 𝑏-jets against the

backgrounds.

6.2.1 Multivariate (MV2)

The first category of multivariate algorithms, MV2 [75], uses boosted decision trees

(BDTs) trained on jets from 𝑡𝑡 events to output a single 𝑏-tagging discriminant that

separates 𝑏-jets (signal) from 𝑐- and light-jets (background). In addition to the output

variables from the low-level 𝑏-taggers, the jet 𝑝𝑇 and 𝜂 are provided to the BDT to take

advantage of their correlations with the output variables. The performance of the 𝑐-jet

rejection versus the light-jet rejection can be varied by changing the fractions of 𝑐- and

light-jets in the background training sample. The name of the MV2 taggers are defined

to indicate the 𝑐-jet and light-jet fractions, for example in MV2c10, the background is

composed of approximately 10% 𝑐-jets and 90% light-jets, which is used in the analysis

in Part III.
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6.2.2 Deep learning (DL1)

A deep neural network, known as DL1 [75], is used as the new default flavour identification

algorithm in ATLAS. The algorithm treats the jet flavours equally in training, and

hence the algorithm can be used for both 𝑏- and 𝑐-tagging. In addition to the MV2

input variables, DL1 uses JetFitter 𝑐-jet tagging variables to enhance its 𝑐-jet rejection

power. The algorithm has three class outputs corresponding to probabilities of the 𝑏, 𝑐

and light jet flavours, denoted by 𝑝𝑏, 𝑝𝑐, and 𝑝𝑢, respectively. The final discriminant for

𝑏-tagging is determined by the combining the three outputs into a single discriminant

that is defined as a function of the effective fraction of 𝑐-jets in the background training

sample (𝑓𝑐):

DL1(𝑓𝑐) = log

(︂
𝑝𝑏

𝑓𝑐 · 𝑝𝑐 + (1− 𝑓𝑐) · 𝑝𝑢

)︂
(6.2)

which allows the 𝑐-jet fraction to be tuned.
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Chapter 7

Track reconstruction improvements
Track reconstruction, as detailed in Section 4.1, is a key component in 𝑏-tagging

algorithms, as well as being crucial for the reconstruction of all objects in the detector.

As the centre-of-mass energy increases at the LHC, an increasingly large amount of

events with dense environments are generated. These events involve high 𝑝𝑇 jets and

are interesting in the searches for new physics, including probing high 𝑝𝑇 Higgs bosons.

In the core of high 𝑝𝑇 jets, the separation between the particles becomes comparable to

the size of the clusters in the ID layers, which can reduce the reconstruction efficiency

of tracks. Therefore, enhancing the tracking performance in dense environments is vital.

However, how such improvements are fed through to flavour tagging is unclear, hence it

is important to understand which elements of the tracking have the biggest impact on

𝑏-tagging, thus efforts can be focused on improving those elements.

Different track collections are defined to study various elements of the tracking, so

their impact upon flavour tagging can be studied:

• Nominal: Standard ATLAS reconstructed tracks.

• Pseudo: Tracks are reconstructed using reconstructed hits assigned to each track

using truth information from simulation (i.e. ideal pattern recognition), which

replaces all steps of the track reconstruction procedure except for the final track

fit.

• Ideal: Tracks that are created from pseudo tracks but using reconstructed hits

that have their positions altered to the true position in simulation. Thus, these

tracks are expected to have the same reconstruction efficiency as pseudo tracks,

but with more precisely reconstructed parameters.

• Fakes-removed (FR): Same as the nominal collection, but fake-tracks are

removed. A fake-track is a track that corresponds to a random combination of hits
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in the detector, which do not correspond to the trajectory of a truth particle. For

the results presented in this chapter, tracks with truth match probability (TMP)

< 0.75 are removed.

• Pseudo-replaced (PR): Replace tracks in the nominal collection with the

corresponding pseudo track. This collection has the same tracking efficiency as

the nominal collection, but the reconstruction will be improved by the correct

assignment of all hits to the track.

To compare the performance of the different tracking improvements and understand

their impact on 𝑏-tagging, the track collections were evaluated on 𝑏-tagging algorithms.

The effects of the improvements were tested on low-level 𝑏-taggers, such as JetFitter, to

ensure that the different track collections are performing as expected.

7.1 Simulated samples

The different track collections were generated using simulated samples, which were

passed through the full ATLAS detector simulation [81] with GEANT4 [82] for the

interaction of particles and Evtgen [83] for the decay of heavy-flavour hadrons. The

samples used for the studies in this chapter are

• 𝑍′: The 𝑍 ′ sample involves a hypothetical BSM gauge boson with the following

artificial BRs: 𝑏-jets (30%), 𝑐-jets (30%), light-jets (30%), 𝜏 (5%), and 𝑒 (5%).

The samples are simulated using Pythia 8 [35] for the underlying event with the

NNPDF2.3LO [84] PDF set.

• 𝑡𝑡: The MC samples for the non-all hadronic (semi-leptonic and di-leptonic) 𝑡𝑡

processes are generated using Powheg [85] with the top-quark mass set at 172.5

GeV, interfaced to Pythia 8 with the NNPDF3.0NNLO [86] and NNPDF2.3LO

PDF sets for the matrix element calculation and the simulation of parton shower,

respectively.
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7.2 JetFitter

The impact of the different track collections was investigated to ascertain the elements

in tracking that cause the largest improvements in JetFitter. Pseudo track replacement

was applied separately to heavy-flavour tracks (HF), fragmentation (FRAG) tracks and

both types of tracks to further deduce how JetFitter responds to the tracking. The HF

and FRAG tracks are nominal tracks that have an associated truth track with TMP >

0.75. If a track originates from a 𝑏- or 𝑐-hadron, then it is labelled as a HF track, else

it is labelled as a FRAG track. The overall impact of the different track collections is

determined from the ROC curves of JetFitter.

7.2.1 Distributions of output variables

The set of output variables from the JetFitter algorithm [80] (Section 6.1.3) is summarised

in Table 7.1. These variables are also used as input variables by DL1.

Variable Description
𝑚 Invariant mass of tracks from displaced vertices
𝑓𝐸 Fraction of the charged jet energy in the SVs
Δ𝑅(𝑝jet, 𝑝vtx) Δ𝑅 between jet axis and vectorial sum of momenta of all tracks

attached to displaced vertices
𝑆𝑥𝑦𝑧 Significance of the average distance between PV and displaced vertices
𝑁TrkAtVtx Number of tracks from multi-track displaced vertices
𝑁2TrkVtx Number of two-track vertex candidates prior to decay chain fit
𝑁1-trk vertices Number of single-track displaced vertices
𝑁≥2-trk vertices Number of multi-track displaced vertices

Table 7.1: Output variables of the JetFitter algorithm.

Distributions of the most important output variables between the different track

collections for different jet flavours are demonstrated in Fig. 7.1, 7.2, and 7.3. In all

distributions, the FR collection displayed the most similar behaviour to the nominal

collection, which is expected as the two track collections are the same except for the

removal of fake tracks, which make up only approximately 8.2% of the tracks. It can be

seen from the distribution of 𝑚 that as the track collections change from nominal to

pseudo to ideal that the mass of 𝑏-jets increases and the mass of light-jets decreases,

providing a better discrimination between the two jet flavours. From the 𝑓𝐸 distribution,
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pseudo and ideal collections result in lower jet energy fraction in the SVs for 𝑐- and

light-jets, and for 𝑏-jets, but to a lower extent. While the number of multi-track displaced

vertices in the pseudo and ideal collections decreases for 𝑐- and light-jets, and increases

for 𝑏-jets. These observations imply that pseudo and ideal collections are less likely to

contain fake displaced vertices, and more accurately reconstruct the attributes of the

𝑏-jets, which will help improve the 𝑏-tagging performance. Based upon how the different

track collections impact the distributions of the variables, it suggests that replacing the

reconstructed tracks with pseudo tracks (PR collection) has a bigger impact than either

removing the fake tracks (FR collection) or enhancing the efficiency (pseudo collection).

7.2.2 Performance

The effect of the different track collections on the performance of JetFitter is presented in

Fig. 7.4. As expected, the ideal track collection offered the best performance for both 𝑐-jet

and light-jet rejections, which is closely followed by the pseudo collection, demonstrating

that the correct hit assignment is vital for 𝑏-tagging performance, although using the

ideal hit positions is less important as the performance between the pseudo and ideal

collections is not much different. The PR and FR + PR collections yielded similar

performance to the pseudo collection, suggesting that the correct reconstruction of tracks

is more important than obtaining the maximum possible tracking efficiency. PR does

not suffer from the lower efficiency of 𝑏-tracks compared to the pseudo collection. The

FR collection also showed similar performance to the nominal collection, indicating that

JetFitter is not very sensitive to the presence of fake tracks.

Further investigation into applying pseudo tracks separately to heavy-flavour tracks

(HF), fragmentation (FRAG) tracks and both types of tracks in Fig. 7.5 revealed that

applying pseudo tracks to FRAG only yielded nearly the same performance in light-jet

rejection compared to applying pseudo tracks to HF + FRAG, signalling that the quality

of FRAG tracks is essential for light-jet rejection. This is likely a consequence of HF

tracks being tagged irrespective of the quality of the 𝑏-decay tracks, implying that the

dominant mechanism for the worse performance stems from misreconstructed tracks in

light-jets appearing to have lifetimes and consequently being used to construct displaced

decay vertices. In 𝑐-jet rejection, the quality of both HF and FRAG tracks are important,
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Figure 7.1: Distributions of the invariant mass of tracks from displaced vertices evaluated on
the 𝑍 ′ sample using JetFitter with replacing the nominal tracking with ideal track collections
(left) and altering the nominal tracking with enhanced tracking (right), separated into 𝑏- (top),
𝑐- (middle) and light- (bottom) jets.
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Figure 7.2: Distributions of the jet energy fraction in secondary vertices evaluated on the 𝑍 ′

sample using JetFitter with replacing the nominal tracking with ideal track collections (left)
and altering the nominal tracking with enhanced tracking (right), separated into 𝑏- (top), 𝑐-
(middle) and light- (bottom) jets.
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Figure 7.3: Distributions of the number of multi-track displaced vertices evaluated on the 𝑍 ′

sample using JetFitter with replacing the nominal tracking with ideal track collections (left)
and altering the nominal tracking with enhanced tracking (right), separated into 𝑏- (top), 𝑐-
(middle) and light- (bottom) jets.
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Figure 7.4: ROC curves of JetFitter evaluated on the 𝑍 ′ sample using different track collections
for 𝑐-jet rejection (top) and light-jet rejection (bottom).

which is expected as 𝑐-jets are also categorised as HF tracks. This indicates that 𝑐-jets

are being incorrectly tagged due to poorly reconstructed FRAG tracks as well as poorly

reconstructed 𝑐-tracks, therefore it is important to improve both types of tracks.

The results revealed that reducing the number of fake displaced vertices from 𝑐-

and light-jets will improve 𝑏-tagging from the perspective of the JetFitter performance,

while removing fake tracks based on the TMP criterion does not affect the JetFitter

performance. In addition, it is clear that the quality of FRAG tracks is important

to light-jet rejection in JetFitter, as it is crucial to improve the performance of the

reconstruction of light-jets, which appears to be more important than improving the

efficiency to reconstruct tracks from 𝑏-hadron decays in terms of the performance of

JetFitter. Whereas the quality of both HF and FRAG tracks are important in 𝑐-jet

rejection, thus having better reconstructed 𝑐-tracks and FRAG tracks should improve

the performance of JetFitter. Overall, this suggests, based upon the JetFitter 𝑏-tagging

tool, that the largest impact upon 𝑏-tagging will come from enhancing the hit selection
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Figure 7.5: ROC curves of JetFitter evaluated on the 𝑍 ′ sample from applying pseudo tracks
to tracks with (left) and without (right) fake tracks for 𝑐-jet rejection (top) and light-jet
rejection (bottom). The pseudo tracks were applied separately to heavy-flavour tracks (HF),
fragmentation tracks (FRAG), and both types of tracks.

for fragmentation tracks.

7.3 Conclusion

Different track collections were evaluated on the JetFitter 𝑏-tagging algorithm. In general,

the results were consistent with the expectation that pseudo and ideal collections will

offer better performance than the nominal collection.

The performance of the nominal and FR collections showed that JetFitter was

not sensitive to fake tracks as defined by the TMP criterion. Applying pseudo tracks

separately to HF, FRAG, and HF + FRAG tracks revealed that the quality of FRAG

tracks is important in light-jet rejection, while the quality of both HF and FRAG

tracks are crucial in 𝑐-jet rejection. These findings imply that, for this version of

these algorithms, improving the efficiency with which we reconstruct tracks from 𝑏-
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hadron decays is not that important, although further studies should be undertaken to

understand if retuning the low-level taggers to use the additional reconstructed tracks

could alter this conclusion. Other potential future work involves verifying on retuned

higher-level taggers, such as DL1, if the same conclusions hold.
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Chapter 8

Improving multivariate 𝑏-tagging algo-

rithms
Optimisation studies into DL1 were conducted to see if further improvements to

𝑏-tagging can be achieved. As the activation functions and learning rate can have a

significant impact on the training performance of neural network (NN) models, these

were explored in the optimisation of DL1.

8.1 Activation functions

Activation functions are essentially components that allow NNs to learn, and thus are

crucial to the accuracy and convergence of NNs [87]. The default activation function

used in the DL1 architecture is the ReLU function. This was compared to the Leaky

ReLU function, which aims to solve the ‘dying ReLU’ problem (Section 5.2.1).

The impact of the different activation functions on the training and validation

accuracy and loss of DL1 is illustrated in Fig. 8.1. It can be observed that the validation

accuracy and loss reach an optimum at around 87 epochs for both activation functions,

hence the training of DL1 was stopped at this number of epoch to prevent overtraining.

The models were evaluated to obtain the 𝑏-jet, 𝑐-jet, and light-jet efficiencies. Fig. 8.1

compares the ROC curves from the models, and shows that using the Leaky ReLU

function did not offer an improvement over the default ReLU function. However, this

could be due to the choice of the hyperparameter 𝛼 in the Leaky ReLU function, which

was set to 0.3 in this optimisation study. Thus, an optimisation of 𝛼 could result in a

better performance over the ReLU function.
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Figure 8.1: Training and validation accuracy (top) and loss (bottom) during training of DL1
using the ReLU (left) and Leaky ReLU (right) activation functions. The training sample is a
hybrid of the 𝑡𝑡 and 𝑍 ′ samples.

8.2 Cyclical learning rate

The cyclical learning rate [88] involves increasing and decreasing the learning rate over a

number of cycles. It aims to improve the generalisation and performance of NN models

by taking advantage of the loss function topology. The difficulty in minimising the

loss is often due to saddle points rather than poor local minima, which slows down the

convergence of the NN. Furthermore, sharp minima can often lead to poor generalisation.

Hence, increasing the learning rate occasionally allows the model to move out of sharp

minima. While this temporarily decreases the loss, ultimately it allows for the model to

converge to a better minimum.
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Figure 8.2: ROC curves of DL1 using the ReLU and Leaky ReLU activation functions for
𝑐-jet rejection (left) and light-jet rejection (right).

The cycle length is determined by a multiple of the number of iterations in an epoch,

which is equivalent to the training set size divided by the batch size. The triangular

policy, where the learning rate varies linearly between the maximum and minimum

learning rate boundary, and the exponential range policy, which is the triangular policy

with boundary values declining by an exponential factor, were tested on DL1. The

policies are presented in Fig. 8.3.
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Figure 8.3: Learning rate over one epoch of DL1 using a cyclical learning rate with the
triangular (left) and the exponential range (right) policies.

Fig. 8.4 demonstrates the impact of the different policies on the accuracy and loss,

and reveals that an optimum is achieved for the validation accuracy and loss at around

48 and 15 epochs for the triangular policy and the exponential range policy, respectively.
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The ROC curves from the different policies compared to the default constant learning

rate of 0.01 are displayed in Fig. 8.5. Overall, the exponential range policy resulted in a

comparable performance to DL1, with the triangular policy resulting in a slightly worse

performance.
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(a) Triangular
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Figure 8.4: Training and validation accuracy (top) and loss (bottom) during training of DL1
using a cyclical learning rate with the triangular (left) and exponential range (right) policies.
The training sample is a hybrid of the 𝑡𝑡 and 𝑍 ′ samples.

8.3 Summary

Activation functions and cyclical learning rates were explored in the optimisation of

DL1, however both investigations offered very similar performance to the default DL1

model. Though, both studies involved hyperparameters, which may significantly affect

the results.
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Figure 8.5: ROC curves of DL1 using a cyclical learning rate with the triangular and exponential
range policies for 𝑐-jet rejection (left) and light-jet rejection (right).
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Chapter 9

Automation of the 𝑏-tagging efficiency

calibration
Due to imperfect physics and detector modelling in simulation, the 𝑏-jet tagging

efficiency predicted by 𝑏-tagging algorithms in simulation does not fully represent the

performance of 𝑏-tagging algorithms in data. Consequently, data-to-simulation scale

factors are determined using measurements of the 𝑏-tagging performance in data, referred

to as calibrations, to correct the 𝑏-tagging efficiency in simulated samples.

The calibration software was automated to reduce the person-power needs for 𝑏-

tagging calibration and to improve the reproducibility [89] of the calibration results.

Large collaborations in particle physics, such as CERN, commonly involve many different

institutions who use their own high-performance computing clusters to develop software

for analyses. While code sharing has been made easier with collaborative version control

software, such as GitLab [90], these codes are often inherited from past analyses and come

with undocumented assumptions and dependencies [91], making the reproducibility of

results hard to achieve. Automation can address these issues by packaging computational

environments and ensure that results are robust to changes by enforcing the frequent

testing of new versions of the software.

9.1 Calibration of the 𝑏-tagging efficiency

The 𝑏-jet tagging efficiency is calibrated using di-leptonic top-quark (𝑡𝑡) events [75]

as the branching fraction of 𝑡 → 𝑊𝑏 is close to 1 [92], indicating that a sample of

high 𝑏-jet purity can be obtained. Events with two different flavour oppositely-charged

leptons (𝑒𝜇) are selected as the non-𝑡𝑡 contributions in the 𝑒𝜇 channel are small (∼15%).

Furthermore, exactly two reconstructed jets are required in the event selection to greatly
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reduce 𝑡𝑡 events with additional light-jets.

Events are classified according to the 𝑝𝑇 of the jets to measure the 𝑏-tagging efficiency

as a function of 𝑝𝑇 . In addition, events were further classified as a function of the

𝑏-tagging discriminant of the two jets (𝑤1, 𝑤2).

A binned log-likelihood function is used to extract the conditional probabilities for a

𝑏-jet with a certain 𝑝𝑇 to obtain a 𝑏-tagging discriminant 𝑤 that falls within a certain

pseudo-continuous 𝑏-tagging discriminant bin 𝑊 , i.e. 𝒫𝑤∈𝑊 |𝑓=𝑏,𝑝𝑇 . The conditional

probability is related to to the 𝑏-tagging efficiency (𝜖𝑏) of a given 𝑝𝑇 and working point

(WP) by

𝜖𝑏 (𝑝𝑇 ,WP) =
∑︁

𝑤∈WP

𝒫𝑤∈𝑊 |𝑓=𝑏,𝑝𝑇 . (9.1)

For each working point corresponding to the target efficiencies in simulation 𝜖𝑀𝐶
𝑏 =

60%, 70%, 77%, and 85%, the 𝑏-tagging efficiency as a function of jet 𝑝𝑇 is calibrated

by scaling the efficiency of each 𝑝𝑇 bin in simulation to that in data.

9.2 Automation techniques

Several automation techniques involving the use of container technology (e.g. Docker [93]

and Singularity [94]) and automated pipelines (e.g. GitLab continuous integration and

delivery (CI/CD) pipeline) were investigated to determine the best approach to achieve

the automation of the calibration.

A container holds packaged, self-contained and deployable parts of the software,

such as libraries and configurations [95]. Since containers share the kernel with the

host machine, this allows them to be more lightweight than virtual machines [96]. Both

Docker and Singularity are built on Linux Containers [94], which enables the running of

a set of processes to be isolated from the rest of the system. An automated pipeline

automates the execution of a chain of jobs and can be constructed using CI/CD software,

such as GitLab CI/CD, or by defining workflows in containers.
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9.2.1 Docker

Docker is an open source platform for developing, deploying and running applications

within containers. A Docker image is made up of a series of layers. The image is

built by Docker using instructions from a Dockerfile, which contains all the commands,

dependencies, libraries, tools and other files needed to execute the code. A running

instance of a Docker image is known as a Docker container. When a new container is

created, a new writable layer is added on top of the underlying layers. All changes made

to the running container are stored to this writable top layer.

However, there are security concerns surrounding Docker. To use Docker, root access

is required, which can lead to privilege escalation in the running of the containers [94].

From a computing security perspective, a machine is considered to be compromised

if any user is able to run arbitrary code as the root user. As a result, Docker is not

supported by large collaborations, such as CERN.

9.2.2 Singularity

Singularity was developed by the Lawrence Berkeley National Laboratory as an open

source initiative to provide containers and reproducibility in scientific computing,

bringing a secure means to create and deploy reproducible environments across high-

performance computing (HPC) clusters [94]. Similar to Docker, Singularity uses

containers to encapsulate computational environments and all software dependencies

needed to run a defined workflow. These containers can also run without root access

and can address the security concerns of Docker. Singularity also allows Docker images

to be pulled from a Docker registry, therefore enabling the use of Docker indirectly.

9.2.3 GitLab CI/CD

GitLab is a web-based platform developed on the Git version control system to help

organisations manage Git repositories collaboratively. Recently, GitLab has become

a platform that provides a single application for the entire software development and

operations lifecycle.

One of the key features of GitLab is their CI/CD pipelines, which allows the
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ATLAS software stack to adopt these two software engineering best practices [97].

While CI is a practice in which software is built and tested each time a developer

pushes code to the version control repository, CD is an approach in which CI and

automated deployment capabilities allow the software to be developed and deployed

rapidly. Pipelines incorporating these practices provide a means of testing code and

ensuring code changes are reliable, and can therefore be made frequently in a robust

manner. While these pipelines can be built using Docker and Singularity, GitLab offers

a simple way of constructing these pipelines through configuring a YAML [98] file and a

Runner, which is an isolated virtual machine that communicates with GitLab through

an application programming interface. The YAML file contains a set of instructions

that informs the Runner on how to run the pipeline.

9.3 Pipeline for calibration

After investigating the various automation techniques, it was decided that GitLab CI/CD

pipelines would provide the best approach to automating the calibration software. These

pipelines are well-supported at CERN, and unlike Docker, there are no major security

concerns. While Singularity would provide a good way of automating software with

complex workflows and large files, it is not as developed at CERN and has configuration

settings that will require root access. GitLab CI/CD pipelines mainly require one file to

setup the automation, making it easy to manage the implementation of the automation.

Due to the usability and support of this platform, it is generally the best approach to

automating software in ATLAS.

To construct the GitLab CI/CD pipeline, the calibration software was broken down

into the following stages:

1. Selection: This stage corresponded to the event selection of the 𝑏-tagging efficiency

calibration measurement. The final selection was applied on lists containing the

locations of the data and simulated samples and their systematic uncertainties to

produce histograms for each sample.

2. Combine histograms: The histograms of the selection stage were merged

according to the event categorisation procedure.
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3. Likelihood fit: The fitting procedure using the binned log-likelihood function

was performed on the combined histograms to calculate the 𝑏-tagging efficiencies

as a function of jet 𝑝𝑇 for the data and simulated samples, which were used to

obtain the data-to-MC scale factors.

4. Validation: A 𝜒2 goodness-of-fit comparison to reference histograms was used to

validate the histograms from the likelihood fit.

5. Website: Once the histograms were validated, a website was produced to present

the results in a readable format, to provide an easily accessible record of the result.

However, the selection stage required accessing files on the Worldwide LHC Computing

Grid (WLCG) [99], which could be not integrated into GitLab CI/CD pipeline at present,

hence this stage was not included in the automation of the software.

9.4 Results

The pipeline was implemented successfully, as shown by the status of the GitLab CI/CD

pipeline in Fig. 9.1.

Figure 9.1: GitLab CI/CD pipeline for the calibration of 𝑏-tagging efficiency software for data
recorded in 2017 (d17).

The data-to-MC scale factors of the 𝑏-tagging efficiency for the MV2c10 tagger and

70% efficiency WP, since this is used for the 𝑉 𝐻 → 𝑏𝑏 analysis, are presented in Fig. 9.2.

The results produced were consistent with the official results at the time [100] that the

work in this chapter was undertaken.

9.5 Summary

Different automation techniques were studied to determine the best method to automate

the calibration of the 𝑏-jet tagging efficiency. The GitLab CI/CD pipelines were chosen

as the best approach to automating the calibration software due to reasons relating

73



to security, support, and usability. The automation of the calibration software was

implemented successfully, and helped inform the automation of other calibration software.

This will improve the robustness and reproducibility of these calibrations in the future,

reducing person-power needs, facilitating rapid testing of any code changes, and allowing

new people to easily carry out these calibrations.

74



Figure 9.2: Data-to-MC scale factors for the MV2c10 𝑏-tagging efficiency at the 70% working
point for the 2015+2016 (top), 2017 (middle), and 2015+2016+2017 (bottom) datasets. The
green band corresponds to the MC statistical and systematic uncertainties using summation in
quadrature. The vertical error bars represent data statistical uncertainties only.
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Part III

𝑉 𝐻,𝐻 → 𝑏𝑏 analysis
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Preamble
The work in the following chapters relates to the full Run-2 𝑉 𝐻,𝐻 → 𝑏�̄� analysis

that is documented in Ref. [17], where some of the tables and figures in this part have

originated from.
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Chapter 10

Event selection and categorisation
Events are categorised into the 0-, 1- and 2-lepton channels corresponding to the

𝑍𝐻 → 𝜈𝜈𝑏�̄�, 𝑊𝐻 → ℓ𝜈𝑏�̄� and 𝑍𝐻 → ℓℓ𝑏�̄� signatures, respectively. The categorisation

depends on the number of electrons and muons that pass the object selection detailed

in this chapter. In all lepton channels, the Higgs boson candidate is formed by requiring

events to have two b-tagged jets, giving rise to the 2-jet and 3-jet categories.

Monte Carlo (MC) simulations are used to model most signal and background events

except for the 𝑡𝑡 background in the 2-lepton channel (Section 10.4.1), and the multi-jet

background in the 1-lepton channel (Section 10.4.2).

10.1 Simulated samples

All simulated processes are normalised using the most accurate theoretical cross section

predictions available and are produced using the ATLAS detector simulation [81] with

GEANT4 [82] simulating the interactions of particles within the detector. The different

processes simulated using MC generators are described in Section 2.2.3.

• Signal: All 𝑞𝑞-initiated production processes are simulated using the

Powheg [85] generator with the MinLO [101] procedure and the

NNPDF3.0NLO [86] PDF set applied for the matrix element (ME) calculation.

This generator is interfaced to the Pythia 8 [102] for the parton shower (PS),

hadronisation, and underlying event (UE) modelling.

The simulated samples for the 𝑔𝑔-initiated 𝑍𝐻 contribution are generated by

Powheg with the NNPDF3.0NLO PDF set applied for the ME calculation,

interfaced to Pythia 8 for the simulation of PS, hadronisation, and UE.

Next-to-leading order (NLO) EW corrections are expected to have a substantial
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impact on the 𝑝𝑉𝑇 distribution, hence the 𝑉 𝐻 differential cross section is computed

for EW corrections at NLO as a function of 𝑝𝑉𝑇 , which is applied to the simulated

sample.

• 𝑉+ jets: The 𝑉+jets simulated samples are produced with Sherpa 2.2.1 [103]

interfaced to the NNPDF3.0NNLO PDF set for both the ME calculation. The PS,

hadronisation, and UE processes are also modelled by Sherpa 2.2.1.

The 𝑉+jets events are classified based on the flavour components of the two jets

used to reconstruct the Higgs boson candidate, giving the 𝑉+𝑏𝑏, 𝑉+𝑏𝑐, 𝑉+𝑏𝑙,

𝑉+𝑐𝑐, 𝑉+𝑐𝑙 and 𝑉+𝑙𝑙 categories. The main background contribution is 𝑉+hf,

which is composed of the 𝑉+𝑏𝑏, 𝑉+𝑏𝑐, 𝑉+𝑏𝑙 and 𝑉+𝑐𝑐 events.

• 𝑡𝑡: The simulated samples for the 𝑡𝑡 processes are generated using Powheg

with the NNPDF3.0NLO PDF set applied for the ME calculation, interfaced to

Pythia 8 for the simulation of PS, hadronisation, and UE.

• Single-top: The simulated samples for the single-top processes are produced

independently for the 𝑡-, 𝑠-, and 𝑊𝑡-channels using Powheg with the

NNPDF3.0NLO PDF set applied for the ME calculation, which is interfaced to

Pythia 8 for the PS, hadronisation, and UE modelling.

A diagram removal (DR) [104] scheme is used to remove all diagrams in the

𝑊𝑡-channel that overlap with 𝑡𝑡 production.

• Diboson: The diboson processes are simulated using Sherpa 2.2.1 interfaced

with the NNPDF3.0NNLO PDF set for the ME calculation. The PS, hadronisation,

and UE are generated using Sherpa 2.2.1 as well.

10.2 Object selection

Data used in the 𝑉 𝐻,𝐻 → 𝑏𝑏 analysis were collected at a centre-of-mass energy of

13 TeV during Run-2 of the LHC, corresponding to a total integrated luminosity of

139 fb−1. Events are selected only if they are of good quality and all relevant detector

components were known to be operating as expected.
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• Leptons: Lepton candidates are selected using the identification and isolation

quality working points, outlined in Sections 4.2.1 and 4.2.2.

Electron candidates are selected with the Loose identification and LooseTrack

isolation working points, which are referred to as loose electrons. Tight electrons

are selected with Tight identification and HighPtCalo isolation working points.

Selected electrons are required to have 𝑝𝑇 > 7 GeV and to be within the ID

acceptance (|𝜂| < 2.47).

Similarly, loose muons are selected with Loose identification and LooseTrack

isolation working points. For tight muons, Medium identification and HighPtTrack

isolation working points. Selected muons are required to have 𝑝𝑇 > 7 GeV and to

be within the MS acceptance (|𝜂| < 2.7).

• Jets: Jets are reconstructed using the anti-𝑘𝑇 algorithm with 𝑅 = 0.4 (Section 4.3).

Jet candidates with 𝑝𝑇 < 120 GeV and |𝜂| < 2.5 that are not associated with

the PV of the hard interaction are required to have a JVT discriminant > 0.59

to suppress pile-up jets. Additional requirements on jets to maximise the signal

sensitivity are 𝑝𝑇 > 20 GeV in the central region (|𝜂| < 2.5) and 𝑝𝑇 > 30 GeV in

the forward region (2.5 <|𝜂| < 4.5).

• 𝑏-tagging: The 70% working point on the MV2c10 discriminant (Section 6.2.1)

is used to 𝑏-tag exactly two jets in the central region (|𝜂| < 2.5) to maximise the

expected signal significance. At least one 𝑏-tagged jet is required to have 𝑝𝑇 > 45

GeV.

Due to the 𝑏-tagging requirement, a substantial amount of selected events are

rejected, which significantly increases the statistical uncertainty of the simulated

datasets. Hence, a probability weighting method (truth-tagging) is used, in which

events are weighted according to the 𝑏-tagging efficiency of all jets in the event.

10.3 Event categorisation

Events without and with additional non-𝑏-tagged jets are split into the 2-jet and 3-

jet categories, respectively. In the 0-lepton (0L) and 1-lepton (1L) channels, only
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one additional untagged jet is allowed. In the 2-lepton (2L) channel, any number of

additional untagged jets is allowed as this increases the expected signal significance.

The full event selection for the three lepton channels is summarised in Table 10.1.

The transverse momentum of the reconstructed 𝑉 -boson (𝑝𝑉𝑇 ) corresponds to 𝐸𝑚𝑖𝑠𝑠
𝑇

in 0L, the vectorial sum of 𝐸𝑚𝑖𝑠𝑠
𝑇 and the 𝑝𝑇 of the charged lepton in 1L, and the

transverse momenta of the two lepton system in 2L. The analysis focusses on the two

high-𝑝𝑉𝑇 regions defined by 150 GeV < 𝑝𝑉𝑇 < 250 GeV and 𝑝𝑉𝑇 > 250 GeV, as the

signal-to-background ratio increases for large 𝑝𝑉𝑇 values. In the 2L channel, there is an

additional medium-𝑝𝑉𝑇 region defined by 75 GeV < 𝑝𝑉𝑇 < 150 GeV.

Single lepton triggers are used for the electron sub-channel in 1L and for both the

electron and muon sub-channels in 2L. In the electron sub-channels, the single electron

trigger threshold increased from 24 GeV in 2015 to 26 GeV in 2016-2018. In the muon

sub-channel, the single muon trigger threshold increased from 20 GeV in 2015 to 26 GeV

in 2016-2018.

For the 0L and the 1L muon sub-channel, the same 𝐸𝑚𝑖𝑠𝑠
𝑇 trigger is used, whose

threshold varied from 70 to 110 GeV during the 2015-2018 data-taking period. The

𝐸𝑚𝑖𝑠𝑠
𝑇 trigger is used in the 1L muon sub-channel because the 𝐸𝑚𝑖𝑠𝑠

𝑇 trigger works more

efficiently than single muon triggers in this analysis phase space, due to the limited

coverage of the muon trigger system in |𝜂| < 2.5.

Events with loose leptons are rejected in 0L. Additional requirements in 0L are

imposed on the scalar sum of the transverse momenta of jets (𝐻𝑇 ), which removes a

small part of the phase space where the trigger efficiency depends slightly on the number

of jets in the event. Cuts on the azimuthal angular separation of 𝐸𝑚𝑖𝑠𝑠
𝑇 , jets and the

missing transverse momentum that only considers reconstructed tracks in the ID and

matched to the PV (𝑝𝑚𝑖𝑠𝑠
𝑇 ) are applied to reject multi-jet events with a large 𝐸𝑚𝑖𝑠𝑠

𝑇 ,

which originate from mismeasured jets that are aligned with the fake 𝐸𝑚𝑖𝑠𝑠
𝑇 .

In 1L, events are required to have one tight electron with 𝑝𝑇 > 27 GeV, one tight

muon with 𝑝𝑇 > 25 GeV, and no loose leptons. An additional selection of 𝐸𝑚𝑖𝑠𝑠
𝑇 > 30

GeV is applied in the electron sub-channel to reduce the background from multi-jet

production.

In 2L, events are required to have two same-flavour loose leptons, where one of the
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leptons must have 𝑝𝑇 > 27 GeV and |𝜂| < 2.4. The requirement of the invariant mass

of the lepton pair (𝑚𝑙𝑙) to be compatible with that of the 𝑍-boson further suppresses

the multi-jet and 𝑡𝑡 backgrounds in this channel. As the charge misidentification rate is

negligible in the electron sub-channel, 𝑒𝑒 events are not required to have opposite-sign

charges.

10.3.1 Signal and control regions

Events are further categorised into signal regions and control regions. During the Run-2

analysis, the signal and control regions were redefined by selecting on the Δ𝑅 between

the two 𝑏-tagged jets (Δ𝑅(𝑏1, 𝑏2)) as a function of 𝑝𝑉𝑇 . Lower and upper selections on

Δ𝑅(𝑏1, 𝑏2) are applied to give two control regions (CRs), known as the low and high

CRs. The high CR is defined from the 1L signal samples using cuts at 95% and 85%

of the signal for the 2-jet and 3-jet events, respectively, to create a region enriched in

𝑡𝑡 and single top events in the 1L channel and in 𝑍+hf events in the 2L channel. The

low CR is defined from the 1L diboson samples, as the same regions are used for the

diboson cross-check analysis, using cuts at 10% of the diboson background for both 2-jet

and 3-jet events, resulting in a region enriched in 𝑊+hf events in the 1L channel and in

𝑍+hf in the 2L channel.

10.4 Data-driven background estimations

10.4.1 𝑡𝑡 in the 2-lepton channel

The dominant contribution to the 𝑡𝑡 background in this channel is the di-leptonic decay

channel, which is separated into the same-flavour (𝑒𝑒/𝜇𝜇) and opposite-flavour (𝑒𝜇)

categories. While the same-flavour region has a large 𝑍+jets background, the 𝑒𝜇 region

has a very high purity of top background (99.5-99.9% depending on the jet categories)

and therefore provides a very pure top CR, referred to as the 𝑒𝜇CR.

By deriving a scale factor between the number of events (𝒩 ) in the signal region

(SR) and the 𝑒𝜇CR (CR) using simulation predictions (MC), distributions of a variable
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from data in the 𝑒𝜇CR can be directly used to model the top background within the SR:

𝒩 (SR𝑑𝑎𝑡𝑎
𝑡𝑜𝑝 )

𝒩 (CR𝑑𝑎𝑡𝑎
𝑡𝑜𝑝 )

=
𝒩 (SR𝑀𝐶

𝑡𝑜𝑝 )

𝒩 (CR𝑀𝐶
𝑡𝑜𝑝 )

⇒ 𝒩 (SR𝑑𝑎𝑡𝑎
𝑡𝑜𝑝 ) =

𝒩 (SR𝑀𝐶
𝑡𝑜𝑝 )

𝒩 (CR𝑀𝐶
𝑡𝑜𝑝 )

×𝒩 (CR𝑑𝑎𝑡𝑎
𝑡𝑜𝑝 ). (10.1)

This derivation is possible because the same kinematic selections are applied to both the

SRs and 𝑒𝜇CRs. In addition, due to the flavour-symmetric nature of the 𝑡𝑡 background

and the very pure nature of the CR, there is very little difference between the two

regions. The scale factor,
𝒩 (SR𝑀𝐶

𝑡𝑜𝑝 )

𝒩 (CR𝑀𝐶
𝑡𝑜𝑝 )

, is calculated to be 1.00 ± 0.01 and 1.01 ± 0.01

for the 2-jet and 3-jet categories [17], respectively, consistent with unity within the MC

statistical uncertainty.

10.4.2 Multi-jet in the 1-lepton channel

Multi-jet (MJ) events can pass the event selection due to the reconstruction of fake

isolated leptons. As MJ events are produced with a large cross section, it is likely that

these events could contribute a sizeable amount to the background, even if the fake

isolated lepton rate is very low. The MJ enriched control region (CR) is defined by

inverting the lepton isolation requirement. Due to the limited number of events in the

CR, only one 𝑏-tagged jet is required instead of two to increase the statistical precision

of the background precision. The MJ template is derived from data in the CR after the

subtraction of all simulated electroweak (EW) backgrounds.

A fit to the 𝑚𝑊
𝑇 distribution in data is performed to simultaneously extract the

normalisation factors for the MJ and EW components. The 𝑚𝑊
𝑇 variable is chosen

because it offers the best discrimination between the MJ and EW processes. After

the normalisation factors are obtained, they are used in the CR to extract the shape

template of a variable, which is used as the MJ background of the variable in the signal

region.

10.5 Simplified Template Cross Sections regions

The main aim of the Simplified Template Cross Sections (STXS) framework [105] is to

maximise the sensitivity of Higgs coupling measurements while minimising their theory
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dependence. In the STXS framework, the cross sections (instead of signal strengths)

are measured for each Higgs boson production mode in mutually exclusive regions of

phase space, referred to as bins. The kinematic template for each bin is estimated

from the particles produced in the hard scattering event in simulation, known as truth

information.

For the 𝑉 𝐻 production mode, the STXS regions are defined by splitting the 𝑉 𝐻

production into the 𝑊𝐻 and 𝑍𝐻 processes. Each production process is split into 𝑝𝑉𝑇
bins. As the STXS regions are split using truth information, these regions are denoted

in terms of 𝑝𝑉,𝑡𝑇 in the summary of the regions in Table 10.2.

STXS region Corresponding reconstructed analysis regions
Process 𝑝𝑉,𝑡𝑇 interval Number of leptons 𝑝𝑉𝑇 interval Number of jets
𝑊𝐻 150–250 GeV 1 150–250 GeV 2, 3
𝑊𝐻 > 250 GeV 1 > 250 GeV 2, 3
𝑍𝐻 75–150 GeV 2 75–150 GeV 2, ≥ 3

𝑍𝐻 150–250 GeV 0 150–250 GeV 2, 3
2 150–250 GeV 2, ≥3

𝑍𝐻 > 250 GeV 0 > 250 GeV 2, 3
2 > 250 GeV 2, ≥3

Table 10.2: The simplified template cross section regions and their corresponding reconstructed
analysis regions [17].
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Chapter 11

Multivariate analysis
A multivariate analysis (MVA) technique was trained on simulated Monte Carlo

(MC) samples to improve the separation between the signal and background processes,

to improve the sensitivity of the analysis. Individual boosted decision trees (BDTs), as

detailed in Section 5.1, were trained for each jet category within each lepton channel.

Two versions of these BDTs with the same input variables and parameters were used.

One is 𝐵𝐷𝑇𝑉 𝐻 , which is used in the nominal analysis to extract the 𝑉 𝐻,𝐻 → 𝑏𝑏 signal

from all background processes. The other is 𝐵𝐷𝑇𝑉 𝑍 , which is designed to validate

the analysis by separating the diboson 𝑉 𝑍,𝑍 → 𝑏𝑏 process from other background

processes and the 𝑉 𝐻 signal. The BDTs were implemented in TMVA [68], which is a

toolkit integrated in ROOT and contains a large variety of multivariate classification

algorithms.

Variables describing the kinematics and topology of the events were used as inputs to

the BDTs. The baseline selection of variables, which were all verified to be well-modelled,

was optimised in Ref. [13], and is summarised in Table 11.1 for the different lepton

channels. The variables were chosen based on their discriminating power between signal

and background, with the most discriminating variables being the di-jet mass (𝑚𝑏𝑏),

the angular separation between the two tagged 𝑏-jets (Δ𝑅(𝑏, 𝑏)) and the transverse

momentum of the reconstructed vector boson (𝑝𝑉𝑇 ).

A 2-fold cross-validation was used to avoid bias in training and to make full use of the

MC events for BDT training and in the analysis, given that the statistical uncertainty

on the number of simulated events is one of the dominant uncertainties. The events

were split into two subsets, depending on whether their event number was odd or even,

to ensure that they were orthogonal to each other. The BDTs were trained on events

with odd event numbers and tested on events with even event numbers, and vice versa.

A good agreement of the ROC curves of the BDT outputs between training and test
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data indicated no overfitting was present in the training.

Variable Label 0-lepton 1-lepton 2-lepton
𝑝𝑉𝑇 pTV ≡ 𝐸miss

𝑇 × ×
𝐸miss

𝑇 MET × × ×
𝑝𝑏1𝑇 pTB1 × × ×
𝑝𝑏2𝑇 pTB2 × × ×
𝑚𝑏𝑏 mBB × × ×

Δ𝑅(𝑏1, 𝑏2) dRBB × × ×
|Δ𝜂(𝑏1, 𝑏2)| dEtaBB ×
Δ𝜑(𝑉, 𝑏𝑏) dPhiVBB × × ×
|Δ𝜂(𝑉, 𝑏𝑏)| dEtaVBB ×

𝑚eff HT ×
min(𝜑(𝑙, 𝑏)) dPhiLBmin ×

𝑚𝑊
𝑇 mTW × ×

𝑚𝑙𝑙 mLL ×
𝑚top Mtop ×

|Δ𝑌 (𝑉, 𝑏𝑏)| dYWH ×
3-jet events only

𝑝
jet3
𝑇 PTJ3 × × ×
𝑚𝑏𝑏𝑗 mBBJ × × ×

Table 11.1: Input variables used for the multivariate analysis in the different lepton channels.
The missing transverse energy is 𝐸miss

𝑇 . The invariant mass of the dijet system is 𝑚𝑏𝑏. The
azimuthal angle, pseudorapidity and rapidity separations between the vector boson and the dijet
system are Δ𝜑(𝑉, 𝑏𝑏), |Δ𝜂(𝑉, 𝑏𝑏)|, and |Δ𝑌 (𝑉, 𝑏𝑏)|, respectively. The leading and sub-leading
𝑏-tagged jets are denoted by 𝑏1 and 𝑏2. The distance in 𝜂 and 𝜑 between the 2 𝑏-jets is
Δ𝑅(𝑏1, 𝑏2). The angle between the lepton and the closest 𝑏-tagged jet in the transverse plane
is denoted by min(𝜑(𝑙, 𝑏)). The scalar sum of the transverse momenta of 𝐸miss

𝑇 and all jets is
𝑚eff. The transverse mass of the reconstructed W boson is 𝑚𝑊

𝑇 . The transverse momentum of
an additional non-𝑏-tagged jet is 𝑝

jet3
𝑇 .

Distributions of the BDT outputs were transformed using a rebinning procedure [32]

to maximise the sensitivity of the analysis, while minimising the number of bins to

reduce statistical uncertainty on the simulated samples to a reasonable level. This

procedure also allowed for better comparisons of the different BDT trainings. The

rebinning procedure conducted was based on a transformation quantity:

𝑍 = 𝑧𝑆
𝑛𝑆

𝑁𝑆

+ 𝑧𝐵
𝑛𝐵

𝑁𝐵

, (11.1)

where 𝑛𝑆 and 𝑛𝐵 are the number of signal and background events in a given bin interval,

𝑁𝑆 and 𝑁𝐵 are the total number of signal and background events, 𝑧𝑆 and 𝑧𝐵 are the
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signal and background transformation parameters. The merging is conducted on an

initial distribution with a large number of bins and starts from high to low BDT-output

values, where 𝑍 is calculated for each bin that is added. The merging continues to

form a new bin until 𝑍 > 1. 𝑍 is then reset to 0 and the procedure restarts with the

remaining unmerged bins. Optimal values for the parameters were 𝑧𝑆 = 10 and 𝑧𝐵 = 5

for 𝐵𝐷𝑇𝑉 𝐻 , and 𝑧𝑆 = 5 and 𝑧𝐵 = 5 for 𝐵𝐷𝑇𝑉 𝑍 due to lower MC statistics in diboson.

These values also ensured that the expected statistical uncertainty on the simulated

samples in each merged bin is smaller than 20%.

To evaluate the performance of a BDT training, the statistical sensitivity was

calculated using the expected binned significance of the BDT output distribution:

𝑆 =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=0

2

(︂
(𝑛𝑖

𝑆 + 𝑛𝑖
𝐵) ln

(︂
1 +

𝑛𝑖
𝑆

𝑛𝑖
𝐵

− 𝑛𝑖
𝑆

)︂)︂
, (11.2)

where 𝑁 is the total number of bins in the distribution, and 𝑛𝑖
𝑆 and 𝑛𝑖

𝐵 are the number

of signal and background events in bin 𝑖, respectively. The overall performance of

each training was assessed by the quadrature sum of the transformed BDT statistical

sensitivity for the 2-jet and 3-jet categories.

The studies in this chapter were performed in the 1-lepton channel, but where

relevant were also applied to the other lepton channels.

11.1 𝑉 𝐻,𝐻 → 𝑏�̄� high 𝑝𝑉𝑇 region

The optimised configuration of the 𝐵𝐷𝑇𝑉 𝐻 hyperparameters for the Run-1 analysis is

summarised in Table 11.2. This was also used to train the baseline MVA for the Run-2

analysis [15] in the high 𝑝𝑉𝑇 region (𝑝𝑉𝑇 > 150 GeV).

11.1.1 Hyperparameter optimisation and boosting algorithms

Due to an updated event selection and increased training statistics in the MC samples for

the Run-2 analysis, a scan of several BDT hyperparameters and optimisation algorithms

was performed to determine if these values were still optimal.

The boosting algorithm used for the Run-1 results and thus used to train the baseline
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TMVA Option Definition Value
NTrees Number of trees in forest 200

MaxDepth Maximum depth of the trees 4
MinNodeSize Minimum percentage of training events required in a node 5%

nCuts Number of evenly spaced cuts per variable per node 100
BoostType Boosting algorithm for trees in forest AdaBoost

AdaBoostBeta Learning rate for AdaBoost algorithm 0.15
SeparationType Separation criterion for node splitting GiniIndex
PruneMethod Method for removing statistically insignificant branches NoPruning

Table 11.2: Configuration of the 𝐵𝐷𝑇𝑉 𝐻 hyperparameters used to train the optimised MVA
for the Run-1 analysis and the baseline MVA for the Run-2 analysis.

MVA was adaptive boosting (AdaBoost). An alternative boosting algorithm available

in TMVA is gradient boosting (GradBoost), as described in Section 5.1.1.2, and this

was tested as an alternative. To ensure a fair comparison, the hyperparameters for both

boosting algorithms were optimised. This motivated a 2D scan of the number of trees

(NTrees) and the learning rates for AdaBoost and GradBoost.

The results are displayed in Fig. 11.1, where it can be observed that for both

algorithms the performance generally increases with the number of trees and the

learning rate until an optimal learning rate and number of trees is reached, which for

both algorithms is around a learning rate of 0.5 to 0.55 and 600 to 800 trees, where

the performance for both algorithms appeared to have reached a plateau. In addition,

GradBoost generally performed better than AdaBoost for the different combinations of

NTrees and learning rates tested, with the best GradBoost configuration (NTrees = 600,

learning rate = 0.50) offering an improvement of 4.1% over the baseline configuration

compared to 3.3% offered by the best AdaBoost configuration (NTrees = 800, learning

rate = 0.55). Consequently, GradBoost was chosen as the optimal boosting algorithm

and AdaBoost was not investigated further.

Since GradBoost with a learning rate of 0.50 showed a promising improvement in

the sensitivity, further studies involving a 2D scan of the number of trees and the

maximum depth of the trees (MaxDepth) was conducted using this configuration. The

statistical sensitivity for each configuration is presented in Fig. 11.2 where it can be

seen that the sensitivity increases with the MaxDepth value and plateaus at around

600 to 800 trees for the higher MaxDepth values of 4 and 5. As the improvement in

the sensitivity was negligible when increasing NTrees from 600 to 800 and MaxDepth
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Figure 11.1: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for AdaBoost (top) and GradBoost
(bottom) in the high 𝑝𝑉𝑇 region using the parameters of Table 11.2 except for different combi-
nations of learning rates and number of trees (and boosting algorithm).

from 4 to 5, and that bigger trees are more computationally expensive and more prone

to overfitting, it was decided that NTrees = 600 and MaxDepth = 4 was the optimal

number of trees and MaxDepth combination for the learning rate of 0.50. The ROC

curves in Fig. 11.3 revealed no signs of overtraining in both jet categories for the optimal
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GradBoost configuration.
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Figure 11.2: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for GradBoost with a learning rate of
0.50 with different combinations of number of trees and maximum tree depths in the high 𝑝𝑉𝑇
region.
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Figure 11.3: ROC curves as overtraining checks for the optimal 𝐵𝐷𝑇𝑉 𝐻 GradBoost configu-
ration for the 2-jet (left) and 3-jet (right) categories in the high 𝑝𝑉𝑇 region.

To better understand the differences in the performance of the algorithms, the

structure of the trees from the different trainings were analysed. Fig. 11.4 demonstrates

how often each input variable is used at each depth for each algorithm and at learning

rates of 0.10 and 0.50. It can be seen that GradBoost uses the input variables more

equally, whereas AdaBoost mainly focuses on 𝑚𝑏𝑏, Δ𝑅(𝑏, 𝑏) and the reconstructed top

mass (𝑚top) to make decisions. In addition, increasing the learning rate generally
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resulted in a small increase in the more equal use of the input variables. Thus, it can be

concluded that the improvement in the performance was likely due to a better use of

the available information.
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Figure 11.4: Frequencies of the usage of each input variable as a function of the tree depth for
the 2 jet category for different boosting algorithms and learning rates. The values in the legend
represent the overall proportional usage of each input variable in the training. GradBoost uses
the input variables more equally than AdaBoost, which mainly uses 𝑚𝑏𝑏, Δ𝑅(𝑏, 𝑏), and 𝑚top
to make the decisions. A more equal use of the input variables at higher tree depth is observed
when increasing the learning rate from 0.10 to 0.50.

The effect of increasing the number of trees on how the BDT uses the input variables

was also investigated. Fig. 11.5 compares the tree structures from increasing the number

of trees from the default value of 200 to 600 for the baseline configuration. While a more

equal use of the input variables at higher tree depth is also observed with increasing

the number of trees, the effect is not as prominent compared to increasing the learning
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rate. A further examination into the tree structure from combining the change in the

boosting algorithm and the increases in the learning rate and the number of trees was

conducted. It can be seen from Fig. 11.6 that combining all the changes resulted in a

more equal use of the input variables across all tree depths, suggesting that the increase

in the sensitivity from the optimal GradBoost configuration could be linked to the BDT

using input variables more equally in every tree depth. However, drawing conclusions

from the frequency alone does not give the full perspective of how the BDT works, since

it is possible that a variable can be used frequently but not impact the performance

significantly.
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Figure 11.5: Frequencies of the usage of each input variable as a function of the tree depth
for the 2 jet category for different number of trees. The values in the legend represent the
overall proportional usage of each input variable in the training. A more equal use of the input
variables at higher tree depth is observed with increasing the number of trees from 200 to 600.

Before the optimal GradBoost configuration was adapted into the analysis framework,

a check was performed to ensure that GradBoost uses a similar phase space selection as

AdaBoost to ascertain if this would result in significant differences in the events being

probed. To study this, the region of the BDT which contained the top 20% of signal

events was used to study the corresponding signal and background events for the most

important input variables, 𝑚𝑏𝑏, Δ𝑅(𝑏, 𝑏), 𝑝𝑉𝑇 , and 𝑚top. Comparison between the signal

and background distributions of these input variables at high BDT for the two MVAs in

Fig. 11.7 indicates that they are very similar, confirming that GradBoost uses a similar

phase space selection as AdaBoost, and therefore can be used in the analysis without

potential significant changes in the modelling and associated uncertainties.
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Figure 11.6: Frequencies of the usage of each input variable as a function of the tree depth for
the 2 jet category for the baseline and for the optimal GradBoost configuration. The values
in the legend represent the overall proportional usage of each input variable in the training.
A more equal use of the input variables across all tree depths is observed with the optimal
GradBoost configuration.

A summary of the optimised 𝐵𝐷𝑇𝑉 𝐻 hyperparameters in the high 𝑝𝑉𝑇 region of the 1-

lepton channel for the Run-2 analysis is shown in Table 11.3. The optimised configuration

yielded an improvement of 4.1% in the sensitivity over the baseline configuration.

TMVA Option Value
Baseline MVA Optimised MVA

NTrees 200 600
MaxDepth 4 4

MinNodeSize 5% 5%
nCuts 100 100

BoostType AdaBoost GradBoost
AdaBoostBeta/Shrinkage 0.10 0.50

SeparationType GiniIndex GiniIndex
PruneMethod NoPruning NoPruning

Performance
Sensitivity 5.28 5.50

Improvement - 4.1%

Table 11.3: Comparison of the optimised 𝐵𝐷𝑇𝑉 𝐻 hyperparameters in the high 𝑝𝑉𝑇 region of
the 1-lepton channel for the Run-1 (Baseline MVA) and Run-2 (Optimised MVA) analysis.
Shrinkage is the TMVA option for the learning rate of the GradBoost algorithm.
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Figure 11.7: Signal and background distributions of key input variables at high BDT scores
for the baseline AdaBoost and the optimised GradBoost configurations in the combined 2-jet
and 3-jet categories. From top to bottom: 𝑚𝑏𝑏, Δ𝑅(𝑏, 𝑏), 𝑝𝑉𝑇 , and 𝑚top. The distributions are
very similar between the algorithms, suggesting that they use a similar phase space.
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11.1.2 Range of input variables

Generally, each input variable distribution extends over a large range of values and can

expand over several orders of magnitude, hence a default range that encompasses 99%

of all signal events is used to find a threshold for each variable, above which all events

are artificially set to the threshold value. This avoids wasting degrees of freedom in the

BDT to categorise the small number of events in the tails of the distributions. Although

it is not known whether this input variables range restriction can distort the correlations

between the variables or lessen the performance of the BDT, therefore a training with

no restriction was performed.

Removing the restriction revealed that some variables have ranges that can extend up

to 1 million GeV. The correlation matrices in Fig. 11.8 demonstrate that the correlation

between the input variables decreases for some variables in the no restriction case, which

can be caused by a significant increase of statistical fluctuations originating from the

tails of the distributions. The sensitivity from training with no restrictions in Table 11.4

signaled a deterioration in the performance of the BDT which was to be expected given

the presence of some events at extreme values. As such, the default range of input

variables was kept in the MVA training.

Input variables range Sensitivity Improvement
99% signal 5.28 -

No restriction 5.17 -2.1%

Table 11.4: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for trainings using different input
variables range restriction.

11.1.3 Polarisation and other related variables

In the 2-lepton channel, it was discovered that the addition of variables relating to the

polarisation of the 𝑍-boson resulted in an improvement of up to 9.0% in the 𝐵𝐷𝑇𝑉 𝐻

sensitivity [17, 106]. Consequently, the addition of variables relating to the 𝑊 -boson

polarisation was studied to see if a similar improvement can be achieved in the 1-lepton

channel.

The 2-lepton polarisation variable used in the 𝑉 𝐻,𝐻 → 𝑏�̄� analysis was cosThetaLep,
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Figure 11.8: Matrices of the correlation coefficients between the input variables for the default
input variable range restriction (top) and no restriction (bottom).

which is the cosine of the angle between the vector boson and negatively charged lepton

in the rest frame. Since the transverse momenta of the leptons, 𝑝𝑇ℓ1 and 𝑝𝑇ℓ2, and the

differences in the 𝑝𝑇ℓ1(2) distributions are affected by the differences in the 𝑍-polarisation,

variables related to the 𝑍-polarisation were added. The polarisation-related variables

used in the 2-lepton channel were:

• pTL1: leading lepton transverse momentum,
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• pTL1: sub-leading lepton transverse momentum,

• pTL1minusPTL2: difference between the lepton transverse momenta,

• pTL1minusPTL2divPTV: ratio of the pTL1minusPTL2 and the transverse mo-

mentum of the 𝑍-boson i.e. (𝑝𝑇ℓ1 − 𝑝𝑇ℓ2)/𝑝
𝑉
𝑇 .

Similar variables are available in 1-lepton by replacing a lepton with 𝐸𝑚𝑖𝑠𝑠
𝑇 (MET), which

represents the neutrino in 𝑊 → ℓ𝜈. As cosThetaLep in the 1-lepton channel was not

computed in time for the analysis deadline, only variables related to the 𝑊 -polarisation

were studied:

• pTL: lepton transverse momentum,

• METminusPTL: difference between the lepton transverse momentum and MET,

• METminusPTLdivPTV: ratio of the METminusPTL and the transverse momen-

tum of the 𝑊 -boson i.e. (𝐸𝑚𝑖𝑠𝑠
𝑇 − 𝑝𝐿𝑇 )/𝑝

𝑉
𝑇 .

The signal and background distributions for the three polarisation variables are shown

in Fig. 11.9, where it can be observed that some degree of signal and background

discrimination is provided by all three polarisation variables. The sensitivities from

the trainings involving each of these variables are presented in Table 11.5. A training

including all the polarisation variables was also conducted to determine if this could

improve the performance of the BDT from exploiting correlations between them. Overall,

the inclusion of the polarisation variables delivered negligible improvements of less than

1%. The studies were later repeated with GradBoost, which found the same results.

Polarisation variable added Sensitivity Improvement
None 5.28 -
pTL 5.30 0.38%

METminusPTL 5.28 0%
METminusPTLdivPTV 5.31 0.57%

All 5.32 0.76%

Table 11.5: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for the addition of different polarisation
variables as input variables in the baseline MVA training.

The small improvements from the polarisation variables can be further understood

from the high correlation between the polarisation variables and the existing input

variables, as illustrated in Fig. 11.10. The polarisation variables are also highly correlated

with each other, and hence explains the small improvement from adding all of them.
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Figure 11.9: Signal and background distributions for variables associated to the 𝑊 -boson
polarisation in the 2-jet category. Clockwise from top-left: pTL, METminusPTL, METmi-
nusPTLdivPTV.

From these findings, it can be assumed that the polarisation information is already

indirectly contained in the default input variables and therefore brought no improvement

in sensitivity, thus the polarisation variables were not included in the 1-lepton channel.

11.1.4 Pseudo-continuous 𝑏-tagging variables

The two Higgs boson candidate jets are selected using a 70% 𝑏-tagging efficiency working

point. Thus, the output distribution of the MV2c10 𝑏-tagging algorithm for each

candidate jet contains two bins corresponding to 70%-60% and 60%-0% 𝑏-tagging

efficiencies, by definition of the pseudo-continuous 𝑏-tagging discriminant, as detailed in

Chapter 6. Due to the large 𝑏𝑐 component in the background of the 1-lepton channel

(85% of the 𝑡𝑡 background), these binned distributions are expected to provide further

separation power between signal and background. This is because the 70%-60% bin

is enriched in 𝑐- and light-jets, while the 60%-0% is enhanced in 𝑏-jets. The binned
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Figure 11.10: Matrices of the correlation coefficients between the input variables with the
addition of polarisation variables for the 2 jet category. For both signal and background, the
polarisation variables (pTL, METminusPTL, METminuspTLdivPTV) are strongly correlated
with each other and the existing input variables, especially MET. This suggests that the
existing input variables already contain sufficient information related to the polarisation.
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MV2c10 output distributions for the leading and sub-leading Higgs candidate jets were

incorporated into the MVA as two additional variables:

• bin_MV2c10B1: binned MV2c10 distribution of the leading 𝑏-tagged jet,

• bin_MV2c10B2: binned MV2c10 distribution of the sub-leading 𝑏-tagged jet.

The signal and background distributions for the additional variables are presented in

Fig. 11.11
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Figure 11.11: Signal and background distributions for the pseudo-continuous 𝑏-tagging
variables, each with 6 pseudo-continuous 𝑏-tagging bins, in the 2-jet category.

The sensitivities of the trainings using the optimised Run-2 𝐵𝐷𝑇𝑉 𝐻 hyperparameters

with and without pseudo-continuous 𝑏-tagging variables (PCBT) variables are displayed

in Table 11.6, which demonstrates that the sensitivity gain from exploiting information

on the flavour of jets was 9.3%.

Configuration Sensitivity Improvement
Without PCBT 5.50 -

With PCBT 6.01 9.3%

Table 11.6: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for MVA trainings using the optimised
Run-2 𝐵𝐷𝑇𝑉 𝐻 hyperparameters with and without pseudo-continuous 𝑏-tagging (PCBT) vari-
ables.

11.1.5 Events in signal and control regions

During the Run-2 analysis, the introduction of new control regions (CR) redefined the

signal region (SR), as detailed in Section 10.3.1. As a consequence, a training with events

in SR only was tested to see if this can increase signal purity and therefore performance.
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Events in both SR and CRs (SR+CR) were also used in a separate training to examine

the effect of the new definitions on the BDT. These trainings were performed using the

optimal GradBoost MVA configuration.

The sensitivities of the trainings are shown in Table 11.7, where it can be observed

that there was negligible difference between the two configurations. In addition, using

SR only events led to the removal of over 50% of background events, resulting in more

significant overtraining, as shown in Fig. 11.12. As worse performance and overtraining

was observed with SR only trainings, it was decided that SR+CR trainings would be

used for subsequent studies.

Training Sensitivity
Signal region only 5.53

Signal and control regions 5.54

Table 11.7: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for trainings with events in the signal
region only and the combined signal and control regions using the optimal GradBoost configu-
ration.
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Figure 11.12: ROC curves as overtraining checks from 𝐵𝐷𝑇𝑉 𝐻 trainings with SR only (left)
and SR+CR (right) events for the 2-jet category.

11.1.6 Final configuration

Table 11.8 summarises the optimised 𝐵𝐷𝑇𝑉 𝐻 hyperparameters used in the high 𝑝𝑉𝑇

region for the Run-2 analysis. This optimised configuration with the addition of pseudo-

continuous 𝑏-tagging variables was adopted as the default 1-lepton MVA in the high 𝑝𝑉𝑇
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region for the Run-2 analysis. The new default 1-lepton MVA yielded an improvement of

12.3% over the baseline MVA, with similar improvements also adopted in other channels.

TMVA Option Value
Baseline MVA New default MVA

NTrees 200 600
MaxDepth 4 4

MinNodeSize 5% 5%
nCuts 100 100

BoostType AdaBoost GradBoost
AdaBoostBeta/Shrinkage 0.10 0.50

SeparationType GiniIndex GiniIndex
PruneMethod NoPruning NoPruning

Other configurations
Restrict range Yes Yes

Signal and control regions Both Both
Variables Nominal Nominal+PCBT

Performance
Sensitivity 5.28 6.01

Improvement - 12.3%

Table 11.8: Comparison of 𝐵𝐷𝑇𝑉 𝐻 hyperparameters used to train the baseline and new
default 1-lepton MVA in the high 𝑝𝑉𝑇 region for the Run-2 analysis. Shrinkage is the TMVA
option for the learning rate of the GradBoost algorithm.

11.2 𝑉 𝐻,𝐻 → 𝑏�̄� medium 𝑝𝑉𝑇 region

As GradBoost performed better than AdaBoost in the high 𝑝𝑉𝑇 region, only this algorithm

was considered in the optimisation of the MVA for the medium 𝑝𝑉𝑇 region (75 GeV

< 𝑝𝑉𝑇 < 150 GeV). A 2D scan using the same combinations of the number of trees

and the learning rates was conducted. Similar to the high 𝑝𝑉𝑇 region, the performance

plateaued at around 600 trees as shown in Fig. 11.13. As the improvement from 600

to 800 number of trees was not deemed significant compared to the variation observed

when training multiple identical BDTs for the best performing learning rates of 0.45

and 0.5, it was decided that NTrees = 600 was the best choice in terms of performance

and computational efficiency.

For NTrees = 600, the best performing learning rate was 0.5, hence this learning rate

was also used for a 2D scan of the number of trees and MaxDepth. The performance
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Figure 11.13: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for GradBoost trainings with different
combinations of learning rates and number of trees in the medium 𝑝𝑉𝑇 region.

for the different combinations is illustrated in Fig. 11.14, where it can be seen that the

sensitivity plateaus at 600 to 1000 trees for MaxDepth = 4. As the improvement from 600

to 1000 trees is not significant, and as larger trees are more computationally expensive

and more prone to overtraining, GradBoost with a learning rate of 0.5, 600 trees, and

MaxDepth=4 was also chosen to be the optimised configuration for the medium 𝑝𝑉𝑇

region. ROC curves in Fig 11.15 showed that there was no overtraining present in

either jet categories for the optimal configuration. The optimised hyperparameter and

boosting algorithm configuration provided an increase of 6.0% in the sensitivity with

respect to that of the baseline MVA.

A summary of the optimised 𝐵𝐷𝑇𝑉 𝐻 hyperparameters used in the medium 𝑝𝑉𝑇 region

for the Run-2 analysis is displayed in Table 11.9. Similarly to the high 𝑝𝑉𝑇 region, a

substantial improvement was seen from adding the pseudo-continuous 𝑏-tagging (PCBT)

variables. Therefore, the new configuration with PCBT variables was used as the new

default 1-lepton MVA in the medium 𝑝𝑉𝑇 region for the Run-2 analysis, which offered an

improvement of 10.7% compared to the baseline MVA.
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Figure 11.14: Combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for GradBoost with a learning rate of
0.50 with different combinations of number of trees and maximum tree depths in the medium
𝑝𝑉𝑇 region.
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Figure 11.15: ROC curves as overtraining checks for the optimal GradBoost configuration for
the 2-jet (left) and 3-jet (right) categories in the medium 𝑝𝑉𝑇 region.

11.3 Combined 𝑉 𝐻,𝐻 → 𝑏�̄� performance

The sensitivities from the medium 𝑝𝑉𝑇 and high 𝑝𝑉𝑇 regions were summed in quadrature

to ascertain the overall improvement in the combined 𝑉 𝐻,𝐻 → 𝑏�̄� MVA performance

using the new default 1-lepton MVA for the Run-2 analysis. The comparison of the

performance of the former and new default MVA is presented in Table 11.10.

106



TMVA Option Value
Baseline MVA New default MVA

NTrees 200 600
MaxDepth 4 4

MinNodeSize 5% 5%
nCuts 100 100

BoostType AdaBoost GradBoost
AdaBoostBeta/Shrinkage 0.10 0.50

SeparationType GiniIndex GiniIndex
PruneMethod NoPruning NoPruning

Other configurations
Variables Nominal Nominal+PCBT

Performance
Sensitivity 2.34 2.59

Improvement - 10.7%

Table 11.9: Comparison of 𝐵𝐷𝑇𝑉 𝐻 hyperparameters used to train the baseline and new
default 1-lepton MVA in the medium 𝑝𝑉𝑇 region for the Run-2 analysis. Shrinkage is the TMVA
option for the learning rate of the GradBoost algorithm.

Configuration Sensitivity Improvement
Baseline (without PCBT) 5.78 -

Optimal GradBoost 6.54 11.7%

Table 11.10: Comparison of the combined 𝐵𝐷𝑇𝑉 𝐻 statistical sensitivities for trainings in
the medium 𝑝𝑉𝑇 and high 𝑝𝑉𝑇 regions between the default Run-1 MVA (Baseline) and the new
default Run-2 MVA (Optimal GradBoost) in the 1-lepton channel.
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11.4 𝑉 𝑍,𝑍 → 𝑏𝑏

The new default 1-lepton 𝐵𝐷𝑇𝑉 𝐻 hyperparameters and additional PCBT variables

were used to train the MVA diboson cross-check, 𝐵𝐷𝑇𝑉 𝑍 , but there was significant

overtraining present due to lower training statistics for the 𝑉 𝑍 signal (1,513,174 events

in 2-jet and 1,479,709 events in 3-jet for 𝑉 𝐻 versus 928,875 events in 2-jet and 1,174,354

events in 3-jet for 𝑉 𝑍).
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Figure 11.16: ROC curves as overtraining checks for GradBoost 𝐵𝐷𝑇𝑉 𝑍 trainings with a
learning rate of 0.50 for the 2-jet (left) and 3-jet (right) categories. Decreasing the number of
trees from 600 to 200 reduced overtraining significantly.

To investigate if overtraining can be reduced, the number of trees was decreased

from 600 to 200 and lower maximum tree depths were explored. While overtraining

decreased with maximum tree depth, performance also decreased as indicated by the

ROC integral in Fig. 11.17. However, the sensitivities in Table 11.11 revealed that the
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performance for MaxDepth = 2, 3, 4 were comparable, which was also reflected by their

ROC integral for test data. For MaxDepth = 2, there were no signs of overtraining

in the 2-jet case but there were still some overtraining in the 3-jet case, which further

indicated that it was the 𝑉 𝑍 signal training statistics that was causing overtraining as

there are a lot more background events in 3-jet than 2-jet. Although MaxDepth = 1

had the least overtraining, it was decided that MaxDepth = 2 would be the optimal

choice because it gave a comparable performance to MaxDepth = 4 without significant

overtraining and ideally the 𝐵𝐷𝑇𝑉 𝐻 and 𝐵𝐷𝑇𝑉 𝑍 hyperparameters should be as close

as possible.

Maximum tree depth Sensitivity
1 8.35
2 9.04
3 9.01
4 9.07

Table 11.11: Combined 𝐵𝐷𝑇𝑉 𝑍 statistical sensitivities for GradBoost trainings with a learning
rate of 0.50, 200 trees and different maximum tree depths.

The optimised 𝐵𝐷𝑇𝑉 𝑍 hyperparameters for the Run-2 analysis are summarised

in Table 11.12. The optimal configuration with the inclusion of pseudo-continuous

𝑏-tagging variables was used to train the new default 𝑉 𝑍 MVA in the 1-lepton channel

for the Run-2 analysis.

11.5 Summary

The 𝐵𝐷𝑇𝑉 𝐻 hyperparameters were optimised in the 1-lepton channel for the Run-2

analysis. The optimisation involved changing the boosting algorithm to GradBoost

and increasing the learning rate to 0.50 and the number of trees to 600. The optimal

configuration provided an improvement of 5.6% and 4.1% in the medium and high 𝑝𝑉𝑇
regions, respectively, when compared to the baseline configuration, which was optimised

for the Run-1 analysis.

The addition of pseudo-continuous 𝑏-tagging (PCBT) variables to the optimal

configuration in the medium and high 𝑝𝑉𝑇 regions yielded a larger improvement of 10.7%

and 12.3%, respectively, over the baseline MVA. As a result, the optimal configuration
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Figure 11.17: ROC curves as overtraining checks for GradBoost 𝐵𝐷𝑇𝑉 𝑍 trainings with a
learning rate of 0.50, 200 trees and maximum tree depths of between 1 and 3 for the 2-jet
(left) and 3-jet (right) categories. Overtraining is observed to decrease with maximum tree
depth, but performance also decreases, as denoted by the ROC integrals. Furthermore, more
overtraining is present in 3-jet than 2-jet.

with PCBT variables was chosen as the new default 1-lepton MVA for both 𝑝𝑉𝑇 regions.

Overall, the combined improvement in performance from both regions was 11.7%.

The new default 1-lepton MVA was used to train the diboson cross-check MVA,
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TMVA Option Value
Baseline MVA New default MVA

NTrees 200 200
MaxDepth 4 2

MinNodeSize 5% 5%
nCuts 100 100

BoostType AdaBoost GradBoost
AdaBoostBeta/Shrinkage 0.10 0.50

SeparationType GiniIndex GiniIndex
PruneMethod NoPruning NoPruning

Other configurations
Variables Nominal Nominal+PCBT

Performance
Sensitivity 8.51 9.04

Improvement - 6.2%

Table 11.12: Comparison of 𝐵𝐷𝑇𝑉 𝑍 hyperparameters used to train the baseline and new
default 1-lepton 𝑉 𝑍 MVA for the Run-2 analysis. Shrinkage is the TMVA option for the
learning rate of the GradBoost algorithm.

𝐵𝐷𝑇𝑉 𝑍 . However, due to the presence of significant overtraining, the number of trees

was reduced from 600 to 200 trees and MaxDepth value was decreased from 4 to 2

for the optimised 𝐵𝐷𝑇𝑉 𝑍 hyperparameters for the Run-2 analysis. The new default

1-lepton 𝐵𝐷𝑇𝑉 𝑍 resulted in an improvement of 6.2% in the 𝐵𝐷𝑇𝑉 𝑍 sensitivity.

Due to the improvements shown in the sensitivities, the new default 1-lepton 𝐵𝐷𝑇𝑉 𝐻

and 𝐵𝐷𝑇𝑉 𝑍 were adopted as the default configurations in other lepton channels.
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Chapter 12

Systematic uncertainties
Uncertainties affecting the 𝑉 𝐻,𝐻 → 𝑏�̄� analysis are separated into categories

depending on the source of the uncertainty. The two main categories are experimental

and modelling uncertainties. While experimental uncertainties are generally attributed

to the simulation of detector related quantities and the reconstruction of objects,

the modelling uncertainties are related to how well the simulated and data-driven

backgrounds are modelled.

12.1 Experimental uncertainties

Experimental uncertainties are associated to the modelling of the detector-related

quantities. The dominant uncertainties affecting the results are those related to the

𝑏-tagging efficiency, followed by the uncertainties in the jet energy scale and resolution.

The main experimental uncertainties are summarised as follows:

• Luminosity: The uncertainty on the combined integrated luminosity for the

2015-2018 period is 1.7% [107], which is derived using the LUCID-2 detector [108]

for the luminosity measurements.

• Pile-up reweighting: The pile-up in simulation is rescaled by a correction factor

of 1.03 to describe the pile-up in data. The uncertainty is evaluated by varying the

correction factor from 1.00 to 1.18 to obtain the respective up and down variations.

• Leptons: Uncertainties arise from the reconstruction, identification, isolation and

trigger efficiencies of leptons. In addition, uncertainties relating to their energy

scale and resolution are considered. The uncertainties are determined separately

for electrons [55] and muons [56].

• Emiss
T : The uncertainties on the jet and lepton scales and resolutions are propagated

113



to the 𝐸𝑚𝑖𝑠𝑠
𝑇 calculation. Additional uncertainties on the reconstruction efficiency,

scale, and resolution of the tracks used to calculate the soft term [63] also enter

the 𝐸𝑚𝑖𝑠𝑠
𝑇 calculation.

• Jets: Uncertainties associated to jets are divided into jet energy scale (JES) and

jet energy resolution (JER) categories. The different sources of uncertainty in

the calibration form a set of 30 independent NPs for the JES [60], while the

uncertainty on JER is characterised by 8 NPs [61]. A dedicated uncertainty of

2%, corresponding to the modelling of the jet-vertex-tagger (JVT) discriminant, is

assigned to the jets that were required to pass this selection.

• b-tagging: Uncertainties originate from the different sources related to the deriva-

tion of the data-to-MC scale factors, which are used to correct the mismodelling of

𝑏-tagging algorithms. As the scale factors are derived separately for the different

jet flavours, a set of independent NPs, which incorporate the various uncertainties

in each calibration, is assigned for each jet flavour, resulting in 29, 18 and 10 NPs

for 𝑏-[75], 𝑐-[109] and light-flavour jets [110], respectively.

12.2 Modelling uncertainties

Modelling uncertainties are systematic uncertainties that originate from the approxima-

tions made in the descriptions of the MC simulations of signal and background processes.

These uncertainties are determined by comparing a nominal model that uses a baseline

set of approximations to an alternative model that uses alternative approximations.

The alternative model is either created from an alternative generator or by varying the

values of certain parameters of the generator used to simulate the nominal sample. For

each process, there is often more than one systematic effect to consider, hence there

is generally more than one alternative model. The modelling uncertainties are divided

into normalisation, acceptance and shape uncertainties.

Normalisation uncertainties are calculated as an overall uncertainty on the total

cross section of the process in the regions considered. Acceptance uncertainties account

for the relative difference in the number of events predicted in each analysis region

by different models. To control the correlations between the regions, the acceptance
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uncertainties are calculated as double ratios between the yields in the different regions

as
Yield(Region𝑛𝑜𝑚

𝐴 )

Yield(Region𝑛𝑜𝑚
𝐵 )

⧸︂
Yield(Region𝑎𝑙𝑡

𝐴 )

Yield(Region𝑎𝑙𝑡
𝐵 )

, (12.1)

where Region𝐴 is the region with the highest purity and Region𝐵 is the region to which

the normalisation that is derived in the higher purity region is propagated, and the

superscripts 𝑛𝑜𝑚 and 𝑎𝑙𝑡 denote the nominal and alternative MC models, respectively.

Shape uncertainties are determined for the most discriminant variables (𝑚𝑏𝑏 and 𝑝𝑉𝑇 )

that enter the MVA as the variations in these variables are sufficiently large to account

for the shape variations of the other input variables. In addition, 𝑚𝑏𝑏 and 𝑝𝑉𝑇 are weakly

correlated and this avoids the effect of double counting the variations. The standard

procedure of deriving shape uncertainties is to obtain the distribution of a given variable

for the nominal and alternative models. A ratio between the distributions of the nominal

and alternative models is calculated, which corresponds to the uncertainty. As the

nominal model is generally compared to more than one alternative model, the comparison

resulting in the largest shape uncertainty is assigned as the overall uncertainty for the

variable.

A BDT-reweighting (BDTr) approach [17] was introduced in the Run-2 analysis to

improve the consideration of any differences that might occur in the other variables input

to the MVA. In this approach, the phase space of the nominal model is reweighted using

the 𝑝𝑉𝑇 shape uncertainty to remove any difference, so this can be treated separately

to 𝑚𝑏𝑏 and the other input variables. A BDT classifier is trained using all the MVA

input variables except for 𝑝𝑉𝑇 on the reweighted nominal sample and the alternative

sample, separately, to produce the nominal and alternative output BDT distributions.

The nominal BDT distribution is mapped onto the alternative BDT distribution to

obtain a ratio, which is taken as a modelling uncertainty along with the 𝑝𝑉𝑇 ratio.

The overall normalisation uncertainties for the main backgrounds (𝑊+jets, 𝑍+jets

and 𝑡𝑡) are left unconstrained in the profile likelihood fit and are directly determined

by data. Other background processes have prior normalisation uncertainties derived

from cross section calculations as the data is less able to constrain the normalisation for

these processes. The uncertainties in this section are obtained from Ref. [17].
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12.2.1 Signal

The alternative models used to derive the signal modelling uncertainties are:

* Powheg [85] + MinLo [101] + Herwig 7 [111] for the PS/UE variations.

* Altering the renormalisation and factorisation scales of the nominal model for the
scale variations.

* Varying the uncertainties related to the PDF4LHC set [112] for the PDF+𝛼𝑆

variations.

Normalisation uncertainties are implemented for the 𝑉 𝐻 cross section and the

𝐻 → 𝑏�̄� branching ratio. Acceptance uncertainties are considered for the scale, PS/UE,

and PDF+𝛼𝑆 variations. The 𝑚𝑏𝑏 shape uncertainties are evaluated for the scale

and PS/UE variations. Uncertainties relating to the production cross section and

the 𝐻 → 𝑏�̄� branching ratio follow the LHC Higgs Cross Section Working Group

recommendations [113–115], while an uncertainty from the EW corrections at NLO is

derived from the shape variation of the 𝑝𝑉𝑇 distribution for the 𝑞𝑞 → 𝑉 𝐻 process.

A summary of the signal modelling uncertainties is presented in Table 12.1.

Signal
𝐻 → 𝑏�̄� branching ratio 1.7%
𝑚𝑏𝑏 from scale variations Shape only

𝑚𝑏𝑏 from PDF+𝛼𝑆 variations Shape only
𝑚𝑏𝑏 from PS/UE variations Shape only
𝑝𝑉𝑇 from NLO EW correction Shape only

𝑞𝑞
Cross section from scale variations 0.7%
Acceptance from scale variations 3-3.9% (𝑊𝐻), 6.7-12% (𝑍𝐻)

Acceptance from PDF+𝛼𝑆 variations 1.8-2.2% (𝑊𝐻), 1.4-1.7% (𝑍𝐻)
Acceptance from PS/UE variations 1-5%

𝑔𝑔
Cross section from scale variations 25%
Acceptance from scale variations 37-100%

Acceptance from PDF+𝛼𝑆 variations 2.9-3.3%
Acceptance from PS/UE variations 5-20%

Table 12.1: Summary of the systematic uncertainties in the background modelling for the
signal process.
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12.2.2 𝑉+ jets

For 𝑉+jets, the main background contributions are 𝑉+𝑏𝑏, 𝑉+𝑏𝑐, 𝑉+𝑏𝑙 and 𝑉+𝑐𝑐, and

are considered overall as the 𝑉+hf background. The alternative MC model is generated

by MadGraph 5 [116] + Pythia 8 [102], where ‘+’ denotes ‘interfaced to’, for the

matrix element (ME), parton shower (PS), and underlying event (UE) variations. The

NPs described in this section are implemented separately for 𝑊+ and 𝑍+jets, with

V = W or Z for the corresponding background process.

Due to the large uncertainty on the jet multiplicity distribution of the 𝑉+hf pro-

cesses, the overall normalisation is separated for the 2-jet (norm_Vbb_J2) and 3-jet

(norm_Vbb_J3) categories. The 1-lepton and 2-lepton channels have regions of high

purity in 𝑊+hf and 𝑍+hf, respectively, resulting in dedicated control regions (CRs)

in each channel. These CRs are used to obtain constraints on the 𝑊+hf and 𝑍+hf

backgrounds, which are extrapolated to the 0-lepton channel. Therefore, acceptance

uncertainties (VbbNorm_L0) are applied in the 0-lepton channel to account for these

extrapolations.

The flavour composition uncertainties of the 𝑉+hf backgrounds are implemented as

the ratio of the 𝑏𝑐 (VbcVbbRatio), 𝑏𝑙 (VblVbbRatio) and 𝑐𝑐 (VccVbbRatio) components

relative to the dominant 𝑏𝑏 component. Due to the strong suppression of 𝑉+𝑙 and 𝑉+𝑐𝑙

processes by the requirement of 2 𝑏-tags, they compose less than 1% of the background

in any region, hence it is sufficient to apply a normalisation uncertainty for each of the

processes, named VlNorm and VclNorm, respectively.

Shape uncertainties are derived differently for 𝑊+ jets and 𝑍+ jets:

• 𝑊+jets: The largest shape variation for 𝑝𝑉𝑇 is due to the ME comparison between

Sherpa 2.2.1 [103] and MadGraph 5 + Pythia 8, and is implemented as the

NP, WPtV_BDTr. BDTr is included in the name of the NP to indicate that the

𝑝𝑉𝑇 shape systematic is used along with the BDTr approach for all other input

variables, as described in Section 12.2. The BDTr approach is used to compute

the shape ratio between the BDT distributions of Sherpa 2.2.1 and MadGraph

to obtain the BDTr-based shape uncertainty, BDTr_W_SHtoMG5.

• 𝑍+jets: Shape uncertainties for 𝑚𝑏𝑏 and 𝑝𝑉𝑇 are determined from comparisons
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between data and the nominal model from simulation, Sherpa 2.2.1, excluding the

events in the Higgs mass window (110 GeV < 𝑚𝑏𝑏 < 140 GeV). The data-driven

modelling comparisons involve subtracting non-𝑍+jets backgrounds from the data

in the 2-lepton signal and control regions. The discrepancies in the distributions

of the non-𝑍+jets background subtracted data and the nominal model for 𝑚𝑏𝑏

and 𝑝𝑉𝑇 correspond to the shape uncertainties, ZMbb and ZPtV, respectively.

Table 12.2 summarises the uncertainties for 𝑉+jets background modelling.

𝑊+jets
𝑊+ℎ𝑓 normalisation Unconstrained (2-jet, 3-jet)
𝑊+𝑙𝑙 normalisation 32%
𝑊+𝑐𝑙 normalisation 37%
𝑊+𝑏𝑐-to-𝑊+𝑏𝑏 ratio 15% (0-lepton), 30% (1-lepton)
𝑊+𝑐𝑐-to-𝑊+𝑏𝑏 ratio 10% (0-lepton), 30% (1-lepton)
𝑊+𝑙𝑙-to-𝑊+𝑏𝑏 ratio 26% (0-lepton), 23% (1-lepton)

1-to-0 lepton extrapolation 5%
𝑝𝑉𝑇 Shape only

BDTr Shape only
𝑍+jets

𝑍+ℎ𝑓 normalisation Unconstrained (2-jet, 3-jet)
𝑍+𝑙𝑙 normalisation 18%
𝑍+𝑐𝑙 normalisation 23%
𝑍+𝑏𝑐-to-𝑍+𝑏𝑏 ratio 30-40%
𝑍+𝑐𝑐-to-𝑍+𝑏𝑏 ratio 13-16%
𝑍+𝑙𝑙-to-𝑍+𝑏𝑏 ratio 20-28%

2-to-0 lepton extrapolation 7%
𝑝𝑉𝑇 Shape only
𝑚𝑏𝑏 Shape only

Table 12.2: Summary of the systematic uncertainties in the background modelling for 𝑊+jets
and 𝑍+jets production.

12.2.3 𝑡𝑡

As the modelling of the 𝑡𝑡 background differs for the 0+1-lepton (Section 10.1) and

2-lepton (Section 10.4.1) channels, the uncertainties are considered separately in the

0+1-lepton and 2-lepton channels.

• 0+1-lepton: The unconstrained normalisation is separated for the 2-jet

(norm_ttbar_J2) and 3-jet (norm_ttbar_J3) categories. As the 1-lepton chan-

nel has a better constraining power on the 𝑡𝑡 normalisation, the constraint is
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extrapolated from 1-lepton to 0-lepton. Therefore, an extrapolation uncertainty

(TTbarNorm_L0) is applied in 0-lepton to represent the uncertainty in the prediction

of the relative normalisations between the two regions.

Different variations arise from the comparison between the nominal Powheg [85]

+ Pythia 8 [102] and the following alternative MC models:

* Powheg + Herwig 7 [111] for the PS variation.

* MadGraph 5_aMC@NLO [117] + Pythia 8 for the ME variation.

* Doubling or halving the renormalisation and factorisation scales of the nominal

model for the scale variations.

Flavour composition uncertainties are separated into 𝑏𝑏, 𝑏𝑐, and 𝑂𝑡ℎ (𝑏𝑙, 𝑐𝑐, 𝑐𝑙, 𝑙𝑙)

components. Based upon the studies in Section 13.2, the flavour composition

uncertainties are applied in the fit as the ratio of the 𝑏𝑐 and 𝑂𝑡ℎ components

relative to the 𝑏𝑏 component separated into its ME and PS variations, resulting in

the NPs: TTbarbcMEACC, TTbarbcPSACC, TTbarOthMEACC, and TTbarOthPSACC.

The largest shape variation for 𝑝𝑉𝑇 originates from the ME variation, and is

implemented as the NP, TTbarPtV_BDTr. BDTr is included in the name of the

NP as it is used to reweight the nominal model prior to BDT training for the

ME variation. Section 13.1 examined the NP, and due to the different behaviour

observed between the jet categories, the NP was decorrelated between the 2-jet

(TTbarPtV_BDTr_J2) and 3-jet (TTbarPtV_BDTr_J3) categories.

As the systematic effects of the ME and PS variations are dominant in the 𝑡𝑡

uncertainties, a BDT is trained for each variation to separate the nominal model

from the alternative models. In each BDT, the nominal model is reweighted

by the shape ratio from the comparison of the nominal model to its respective

alternative model. The shape ratios of the BDT outputs of the nominal and the

alternative ME and PS models enter the profile likelihood fit as BDTr_ttbar_ME

and BDTr_ttbar_PS, respectively.

• 2-lepton: As systematic uncertainties evaluated on the extrapolation from the

𝑒𝜇CR to the SR are negligible, the limited statistics in the 𝑒𝜇CR data and the

MC statistical uncertainty on the scale factor are assigned as the main sources of
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uncertainty in the data-driven estimation of the top background.

Table 12.3 presents a summary of the 𝑡𝑡 modelling uncertainties in 0- and 1-lepton.

𝑡𝑡
𝑡𝑡 normalisation Unconstrained (2-jet, 3-jet)

1-to-0 lepton extrapolation 8%
𝑡𝑡 𝑏𝑐-to-𝑏𝑏 ratio (ME variation) 7.6-8.2% (0-lepton), 1.3-3.8% (1-lepton)
𝑡𝑡 𝑏𝑐-to-𝑏𝑏 ratio (PS variation) 2.1-3.2% (0-lepton), 1.5-7.1% (1-lepton)
𝑡𝑡 𝑂𝑡ℎ-to-𝑏𝑏 ratio (ME variation) 2.8-6.4% (0-lepton), 3.3-5.7% (1-lepton)
𝑡𝑡 𝑂𝑡ℎ-to-𝑏𝑏 ratio (PS variation) 5.6-13.2% (0-lepton), 0.3-2.1% (1-lepton)

𝑝𝑉𝑇 Shape only
BDTr ME variation Shape only
BDTr PS variation Shape only

Table 12.3: Summary of the systematic uncertainties in the background modelling for the 𝑡𝑡
production.

12.2.4 Single-top

The single top-quark (single-top) production arises from three different channels, and nor-

malisation uncertainties are adopted separately for the 𝑡- (stoptNorm), 𝑠- (stopsNorm),

and 𝑊𝑡- (stopWtNorm) channels. As there are negligible contributions to the background

in the 0- and 2-lepton channels, the uncertainties are determined in 1-lepton, and applied

to 0-/2-lepton. The single-top contribution in the 1-lepton is dominated by the 𝑡- and

𝑊𝑡-channels, and due to its very minor contribution, acceptance and shape uncertainties

are not considered for the 𝑠-channel.

The variations from the comparisons of the nominal Powheg [85] + Pythia 8 [102]

using the DR scheme in the 𝑊𝑡-channel (Section 10.1) to the alternative MC models

are as follows:

* Powheg + Herwig++ [118] for the PS variation.

* MadGraph 5_aMC@NLO [117] + Herwig++ for the ME variation.

* Doubling or halving the renormalisation and factorisation scales of the nominal
model for the scale variations.

* Powheg + Pythia 8 using the diagram subtraction (DS) [104] scheme, which

involves a subtraction term in the ME to cancel events that overlap with single-top

events in the 𝑊𝑡-channel.
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The topology significantly differs between the decays of 𝑊𝑡 → 𝑏�̄� and 𝑊𝑡 → 𝑂𝑡ℎ,

where 𝑂𝑡ℎ represents events with one or fewer 𝑏-jets present, and hence the sub-processes

are considered separately. Acceptance uncertainties for the 𝑊𝑡- (stopWtbbACC and

stopWtOthACC) and 𝑡- (stoptACC) channels are calculated between the 2-jet and 3-jet

categories.

In the 𝑊𝑡-channel, the largest variation in the 𝑝𝑉𝑇 shape (StopWtPTV) originated

from the ME comparison for both sub-processes, and the largest 𝑚𝑏𝑏 shape variation

(StopWtMBB) was from the ME comparison for the 𝑊𝑡→ 𝑏�̄� process. In the 𝑡-channel,

the scale variations and PS comparison provided the largest shape variations in 𝑚𝑏𝑏

(StoptMBB) and 𝑝𝑉𝑇 (StoptPTV), respectively.

A summary of the single-top modelling uncertainties is shown in Table 12.4.

Single-top
Normalisation 4.6% (𝑠-), 4.4% (𝑡-), 6.2% (𝑊𝑡-)

Acceptance in 2-jet 17% (𝑡-), 55% (𝑊𝑡→ 𝑏𝑏), 24% (𝑊𝑡→ 𝑂𝑡ℎ)
Acceptance in 3-jet 20% (𝑡-), 51% (𝑊𝑡→ 𝑏𝑏), 21% (𝑊𝑡→ 𝑂𝑡ℎ)

𝑚𝑏𝑏 Shape only (𝑡-, 𝑊𝑡→ 𝑏𝑏, 𝑊𝑡→ 𝑂𝑡ℎ)
𝑝𝑉𝑇 Shape only (𝑡-, 𝑊𝑡→ 𝑏𝑏, 𝑊𝑡→ 𝑂𝑡ℎ)

Table 12.4: Summary of the systematic uncertainties in the background modelling for the 𝑡-,
𝑠-, and 𝑊𝑡-channels of the single-top process.

12.2.5 Diboson

Three different contributions (𝑊𝑊 , 𝑊𝑍, 𝑍𝑍) are considered for the diboson background,

giving rise to the normalisation uncertainties, WWNorm, WZNorm, and ZZNorm, respectively.

Only the normalisation uncertainty is evaluated for 𝑊𝑊 due to its minor contribution

(<1%) to the background.

Alternative comparisons to the nominal Sherpa 2.2.1 [103] include

* Powheg + Herwig++ [118] for the PS/UE variations.

* Powheg + Pythia 8 [102] for the ME variation.

* Changing the renormalisation and factorisation scales of the nominal model for

the scale variations.

The PS/UE variations give rise to the NP, VZ_UEPS_Acc, with an acceptance

uncertainty (VZ_UEPS_J3) added to account for the relative yields between the jet
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categories. Additional uncertainties are included in the fit to account for the resid-

ual effects of the PS/UE variations in the 0-lepton channel relative to the 1-lepton

(WZUEPSResid_L0) and 2-lepton (ZZUEPSResid_L0) channels.

Scale variations in inclusive jet multiplicity bins are used to compute an overall

acceptance uncertainty in the 2-jet category (VZ_QCDscale_J2), an uncertainty for

the migration of events between the 2-jet and 3-jet categories (VZ_QCDscale_J3), and

an uncertainty due to the veto of events with 4 jets in the 0- and 1-lepton channels

(VZ_QCDscale_JVeto).

Shape uncertainties for 𝑚𝑏𝑏 and 𝑝𝑉𝑇 are considered for the ME (VZMbbME and VZPTVME,

respectively) and PS/UE variations (VZMbbPSUE and VVPTVPSUE, respectively).

Table 12.5 summarises the diboson modelling uncertainties.

𝑊𝑊
Normalisation 25%

𝑊𝑍
Normalisation 26%

Acceptance from PS/UE variations in 2-jet 4%
Acceptance from PS/UE variations for 2- to 3-jet 11%

1-to-0 lepton residual effect 11%
Acceptance from scale variations 13-21%
𝑚𝑏𝑏, 𝑝𝑉𝑇 from scale variations Shape only
𝑚𝑏𝑏, 𝑝𝑉𝑇 from PS/UE variations Shape only
𝑚𝑏𝑏, 𝑝𝑉𝑇 from ME variations Shape only

𝑍𝑍
Normalisation 20%

Acceptance from PS/UE variations in 2-jet 6%
Acceptance from PS/UE variations for 2- to 3-jet 7% (0-lepton), 3% (2-lepton)

2-to-0 lepton residual effect 6%
Acceptance from scale variations 10-18%
𝑚𝑏𝑏, 𝑝𝑉𝑇 from scale variations Shape only
𝑚𝑏𝑏, 𝑝𝑉𝑇 from PS/UE variations Shape only
𝑚𝑏𝑏, 𝑝𝑉𝑇 from ME variations Shape only

Table 12.5: Summary of the systematic uncertainties in the background modelling for the
diboson process. The shape only uncertainties are correlated between 𝑊𝑍 and 𝑍𝑍 uncertainties.

12.2.6 Multi-jet

The multi-jet background is negligible in the 0- and 2-lepton channels, thus the uncer-

tainties are only considered in the 1-lepton channel, where the background is obtained
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using a data-driven estimation, as described in Section 10.4.2.

Normalisation uncertainties are uncorrelated between the electron and muon sub-

channels in the 2-jet (MJNorm_2J_El and MJNorm_2J_Mu) and 3-jet (MJNorm_3J_El and

MJNorm_3J_Mu) categories. The uncertainties are estimated from variations in the 𝑚𝑊
𝑇

template distribution, arising from the use of an alternative variable that also provides

good discrimination between multi-jet and electroweak processes in the template fit,

and from including the 𝐸𝑚𝑖𝑠𝑠
𝑇 < 30 GeV region in the electron sub-channel fit, which

also increases the multi-jet contribution.

Shape uncertainties are determined from changing the definition of the multi-jet

control region by tightening the isolation requirements, resulting in the MJReduced

nuisance parameter. An additional shape uncertainty (MJSFsCR) originates from the

discrepancy in the nominal multi-jet template evaluated with and without applying the

fitted normalisation of the top and 𝑊+jet backgrounds in the multi-jet CR.
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Chapter 13

Statistical analysis
The 𝑉 𝐻,𝐻 → 𝑏𝑏 fitting procedure employs a profile likelihood formalism to extract

the significance and signal strength, which is defined as

𝜇 =
𝜎 ×𝐵

𝜎𝑆𝑀 ×𝐵𝑆𝑀

, (13.1)

where 𝜎 is the cross section of the production process and 𝐵 is the branching ratio of

the decay channel, the subscript 𝑆𝑀 denotes the SM prediction, and the numerator

refers to the experimental measurements.

The profile likelihood formalism is implemented to extract the parameter of interest,

𝜇, by maximising a likelihood function for binned distributions, which is defined using

the Poisson probabilities of the bins:

ℒ(𝜇) =
𝑁𝑏𝑖𝑛𝑠∏︁
𝑖=1

(𝜇𝑠𝑖 + 𝑏𝑖)𝑛𝑖

𝑛𝑖!
𝑒−(𝜇𝑠𝑖+𝑏𝑖), (13.2)

where 𝑁𝑏𝑖𝑛𝑠 is the total number of bins, 𝑛𝑖 is the number of observed data events in

bin 𝑖, and 𝑠𝑖 and 𝑏𝑖 are the expected number of signal and background events in bin

𝑖, respectively. The effects of the systematic uncertainties on the signal and back-

ground predictions are incorporated into the likelihood function as a vector of nuisance

parameters (NPs), 𝜃, which are constrained by Gaussian or log-normal probability

distribution functions, with each NP corresponding to a systematic uncertainty, such

that Equation (2.1) becomes

ℒ(𝜇,𝜃) =
𝑁𝑏𝑖𝑛𝑠∏︁
𝑖=1

(𝜇𝑠𝑖(𝜃) + 𝑏𝑖(𝜃))𝑛𝑖

𝑛𝑖!
𝑒−(𝜇𝑠𝑖(𝜃)+𝑏𝑖(𝜃)) × ℒ𝑎𝑢𝑥(𝜃), (13.3)

where ℒ𝑎𝑢𝑥(𝜃) is a penalty term.
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For a number of systematic uncertainties, 𝑁𝑠𝑦𝑠𝑡, the penalty term is defined as

ℒ𝑎𝑢𝑥(𝜃) =

𝑁𝑠𝑦𝑠𝑡∏︁
𝑗=1

1√
2𝜋𝜎𝑗

𝑒

−(𝜃𝑗−𝜃𝑗)
2

2𝜎2
𝑗 , (13.4)

where, for systematic uncertainty 𝑗, 𝜃𝑗 is the central value of the Gaussian, 𝜃𝑗 is the best

fit value, and 𝜎𝑗 is the prior uncertainty of 𝜃𝑗 . The central values and prior uncertainties

are estimated from data or external measurements. This term penalises NPs that

have large deviations from their central values. Through maximising the likelihood

function, the NPs can be shifted or "pulled" away from their prior estimate to improve

the agreement between MC simulation and data and their uncertainties "constrained".

The pulls and constraints of the NPs can be visualised in a ‘pulls comparison’ plot.

Nuisance parameters that are completely determined from the fit, known as free floating

normalisations, have no prior uncertainties and hence no penalty is set for them. In

addition, the statistical uncertainties of the MC simulations are considered in the

likelihood function by introducing Poissonian priors in each bin of the fitted distribution

by applying the Beeston-Barlow technique [119].

The test statistic, 𝑞𝜇, is defined using a profile likelihood ratio as

𝑞𝜇 = −2 ln
ℒ(𝜇, ^̂𝜃(𝜇))
ℒ(�̂�,𝜃)

, (13.5)

where �̂� and 𝜃 are parameters that maximise the likelihood fit, known as the uncondi-

tional fit, and ^̂𝜃(𝜇) are the nuisance parameter values that maximise the likelihood fit

for a given 𝜇 value, known as the conditional fit.

Discrepancies between the hypothesis (𝜇𝑠+𝑏) and the observed data can be quantified

using the test statistic

𝑝𝜇 =

∫︁ ∞

𝑞𝜇,𝑜𝑏𝑠

𝑓(𝑞𝜇, 𝜇)𝑑𝑞𝜇, (13.6)

where 𝑞𝜇,𝑜𝑏𝑠 is the observed test statistic and 𝑓(𝑞𝜇, 𝜇) is the probability density function

of 𝑞𝜇.

For testing the background-only hypothesis, where 𝜇 = 0, the value of 𝑝0 is used.

If 𝑝0 is small, this indicates that the probability of the background-only hypothesis is

small, and hence the excess is significant. By converting 𝑝0 into standard deviations of
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a Gaussian distribution using the normal inverse cumulative distribution function [120],

the observed significance becomes

𝑍0 = Φ−1(1− 𝑝0) =
√
𝑞0. (13.7)

The measured signal strength is given by �̂�± 𝜎𝜇, where 𝜎𝜇 is obtained from shifting

𝑞𝜇 by one unit of its variance. Individual NPs can be ranked depending on their impact

on the posterior uncertainty on 𝜇. The ranking is performed by fixing each NP to its

best fit value, 𝜃, and varying a single NP by one unit of its fitted uncertainty. Then the

estimated impact of the systematic uncertainty is quantified by the difference between

�̂� and the varied 𝜇 value, Δ𝜇. The higher the Δ𝜇 value for a given NP, the higher

the impact of the NP, and hence its position in the ranking. The impact of a group

of systematic uncertainties can also be evaluated and presented in a breakdown table,

where each entry is calculated from the difference in the quadrature of the error on 𝜇

from a fit with all NPs and the error on 𝜇 from a fit excluding the NPs of interest.

Expected ‘prefit’ results involve an Asimov dataset, which is a representative dataset

where the best fit values of 𝜇 and 𝜃 are set to their generated values (i.e. 𝜇 = 1) and

the expected event yields from simulation are used. The expected ‘postfit’ results are

derived by applying the fit procedure to an Asimov dataset. Distributions obtained from

the expected ‘postfit’ results are used to ascertain the agreement between data and MC.

The nominal fit uses the 𝐵𝐷𝑇𝑉 𝐻 as the distribution input to the fit in the signal

regions. This is referred to as the 𝑉 𝐻 MVA analysis. To cross-check and validate the

𝑉 𝐻 MVA analysis, two other versions of the analysis are constructed. As 𝑚𝑏𝑏 is the

most important variable in the fit, it is used to check the 𝑉 𝐻 MVA results. The 𝑉 𝑍

process contains a 𝑏�̄� resonance, hence it is used to validate the analysis process. The

𝐵𝐷𝑇𝑉 𝑍 discriminant and the 𝑚𝑏𝑏 distribution are used as the input distribution in

the signal region for the 𝑉 𝑍 MVA fit and the di-jet mass fit, respectively, giving rise

to the corresponding diboson validation analysis and di-jet mass cross-check analysis.

As the fitting procedure produces a large amount of information, the results of the

studies in this chapter are separated into pulls comparison, rankings, breakdowns, and

significances.

As 𝑡𝑡 is one of the dominant backgrounds and the uncertainties associated with it are
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some of the leading systematics, it is crucial that the uncertainties are correctly treated

with the optimal correlation scheme in the fit, since the pull and constraint of a correlated

NP are propagated across all regions. Hence, it is important that the propagation of

the pull and constraint of a NP is justified, otherwise the NP should be decorrelated

into its components corresponding to different regions, which are represented by suffixes

in the NP names. The impact of the different correlation schemes on 𝑡𝑡 uncertainties

are presented in this chapter.

13.1 Understanding the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty

To study the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty in the 0+1-lepton channels, which is derived from

shape variations between different simulated MC samples, the effect of decorrelating this

uncertainty between the jet categories and the signal and control regions was investigated

in the 0-lepton, 1-lepton and combined (0-, 1- and 2-lepton) 𝑉 𝐻 MVA fits, but as similar

conclusions were drawn from the results from all fits for each type of decorrelation, only

the 1-lepton MVA fit results are presented in this section. The uncertainty, correlated

across all regions, is denoted by the nuisance parameter, TTbarPtV_BDTr.

13.1.1 Decorrelation between jet categories

The uncertainty was decorrelated into its 2-jet and 3-jet components, creating two

nuisance parameters, TTbarPtV_BDTr_J2 and TTbarPtV_BDTr_J3.

• Pulls comparison: It can be observed from Fig. 13.1 that the correlated NP

(TTbarPtV_BDTr) is significantly constrained and pulled upwards. The 3-jet com-

ponent is also pulled upwards and constrained whereas the 2-jet component is not

affected, showing that the pull and constraint of TTbarPtV_BDTr originates in the

3-jet region only, which is expected as the 3-jet region is dominated by 𝑡𝑡.

• Rankings: Table 13.1 reveals that the 3-jet component ranked higher than the 2-

jet component in the decorrelated case, but both ranks are very similar suggesting

that they have a similar impact on the signal strength. In the correlated case, the

𝑝𝑉𝑇 shape uncertainty ranks lower than the separated components, suggesting that

the impact of the uncertainty on the signal strength is reduced from correlating.
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Figure 13.1: Fitted nuisance parameters for the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty from correlating
(black) and decorrelating (red) the uncertainty between jet categories. The number of 𝜎 the
central value of each nuisance parameter has shifted by in the fit is shown by the pull (𝑦-axis)
and the relative constraint on the original prior is shown by the size of the uncertainty on
the data point. The exact values of the pull and constraint for each nuisance parameter are
indicated along the 𝑥-axis. The green and yellow bands show that the NP is within ±1𝜎 and
±2𝜎 of its central value, respectively.

Nuisance parameter Ranking
Correlated

TTbarPtV_BDTr 36
Decorrelated

TTbarPtV_BDTr_J2 24
TTbarPtV_BDTr_J3 22

Table 13.1: Rankings of the NPs from correlating and decorrelating the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty
between jet categories based on their impact on the signal strength.

• Breakdowns: The total impact of the uncertainties on the signal strength is

increased slightly by the decorrelation and the 𝑡𝑡 contribution increases from 0.049

to 0.061, as presented in Table 13.2. The W+jets contribution also increases

slightly, which is likely due to a new correlation between the 3-jet components of

the W+jets 𝑝𝑉𝑇 shape uncertainty and the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty which results

from decorrelating.

• Significances: Comparison of the expected significances in Table 13.3 revealed
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Set of uncertainties Uncertainty on 𝜇
Correlated Decorrelated

Total ±0.286 ±0.288
Statistical ±0.192 ±0.192
Systematic ±0.212 ±0.215

Floating normalisations ±0.093 ±0.098
Theoretical and modelling uncertainties
𝑉 𝐻 Signal ±0.054 ±0.054
Multi-jet ±0.025 ±0.021
Single-top ±0.057 ±0.056

𝑡𝑡 ±0.049 ±0.061
𝑊+jets ±0.089 ±0.096
𝑍+jets ±0.003 ±0.002
Diboson ±0.042 ±0.044

MC statistical ±0.058 ±0.058

Table 13.2: Breakdown of the sources of uncertainties from correlating and decorrelating the
𝑡𝑡 𝑝𝑉𝑇 shape uncertainty between jet categories.

that the sensitivity in both cases are very similar, although there is a slight decrease

of around 1% in the significances from decorrelating.

Expected significances
Prefit Difference Postfit Difference

Correlated 3.776 - 4.022 -
Decorrelated 3.743 -0.87% 4.005 -0.42%

Table 13.3: Expected significances from a fit to an Asimov dataset (prefit) and a conditional
fit to data with 𝜇 = 1 (postfit) from correlating and decorrelating the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty
between jet categories.

The similarity of the different metrics demonstrates that the results were not very

sensitive to the correlation scheme for the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty. As there was no strong

motivation to propagate the constraint from the 3-jet component to 2-jet component

and the contribution of the uncertainties from 𝑡𝑡 was reduced when correlating, it was

more conservative and desirable to have the jet components decorrelated, hence the

decision was made to decorrelate the uncertainty.

13.1.2 Decorrelation between signal and control regions

The nuisance parameters, TTbarPtV_BDTr_DSR, TTbarPtV_BDTr_DCRHigh and

TTbarPtV_BDTr_DCRLow were introduced from decorrelating the uncertainty into its
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signal region (SR) and control regions (CRHigh and CRLow) components. The jet

components of the uncertainty were kept correlated for this study.

• Pulls comparison: Fig. 13.2 illustrates that the SR and CRHigh components

pull in the same direction as TTbarPtV_BDTr, indicating that they are compatible

with each other. The SR and CRHigh components are constrained but this is

expected as these regions have large 𝑡𝑡 background components. The CRLow

component is not pulled or constrained, suggesting that this region is insensitive

to TTbarPtV_BDTr.
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Figure 13.2: Fitted nuisance parameters for the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty from correlating
(black) and decorrelating (red) the uncertainty between signal (SR) and control (CRHigh and
CRLow) regions. The number of 𝜎 the central value of the each nuisance parameter has shifted
by in the fit is shown by the pull (𝑦-axis) and the relative constraint on the original prior
is shown by the size of the uncertainty on the data point. The exact values of the pull and
constraint for each nuisance parameter are indicated along the 𝑥-axis. The green and yellow
bands show that the NP is within ±1𝜎 and ±2𝜎 of its central value, respectively.

• Rankings: Table 13.4 shows that the SR and CRLow components in the decorre-

lated case are ranked low, indicating that they have an insignificant impact on
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the signal strength. The CRHigh component in the decorrelated case is ranked

one higher than the correlated 𝑝𝑉𝑇 shape uncertainty, suggesting that most of

the impact of the uncertainty on the signal strength comes from the CRHigh

component.

Nuisance parameter Ranking
Correlated

TTbarPtV_BDTr 36
Decorrelated

TTbarPtV_BDTr_DCRHigh 35
TTbarPtV_BDTr_DSR 91

TTbarPtV_BDTr_DCRLow 124

Table 13.4: Rankings of the NPs from correlating and decorrelating the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty
between signal and control regions based on their impact on the signal strength.

• Breakdown: A breakdown of the sources of uncertainties in Table 13.5 showed

that the contributions between the correlated and decorrelated cases were very

similar.

Set of uncertainties Uncertainty on 𝜇
Correlated Decorrelated

Total ±0.286 ±0.286
Statistical ±0.192 ±0.192
Systematic ±0.212 ±0.212

Floating normalisations ±0.093 ±0.093
Theoretical and modelling uncertainties
𝑉 𝐻 Signal ±0.054 ±0.054
Multi-jet ±0.025 ±0.025
Single-top ±0.057 ±0.058

𝑡𝑡 ±0.049 ±0.049
𝑊+jets ±0.089 ±0.089
𝑍+jets ±0.003 ±0.003
Diboson ±0.042 ±0.041

MC statistical ±0.058 ±0.058

Table 13.5: Breakdown of the sources of uncertainties from correlating and decorrelating the
𝑡𝑡 𝑝𝑉𝑇 shape uncertainty between signal and control regions.

• Significances: The significances between the correlated and decorrelated cases

were consistent, as in Table 13.6.

Since there was good compatibility between the NPs of the two cases and there

were trivial changes in the significances, rankings, and breakdown, the simpler approach
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Expected significances
Prefit Difference Postfit Difference

Correlated 3.776 - 4.022 -
Decorrelated 3.775 -0.3% 4.022 0%

Table 13.6: Expected significances from a fit to an Asimov dataset (prefit) and a conditional
fit to data with 𝜇 = 1 (postfit) from correlating and decorrelating the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty
between signal and control regions.

was taken to keep the 𝑡𝑡 𝑝𝑉𝑇 shape uncertainty correlated between its SR and CRs

components.

13.2 𝑡𝑡 flavour composition uncertainty

The 𝑡𝑡 background process can be broken down into 6 flavour categories: 𝑏𝑏, 𝑏𝑐, 𝑏𝑙, 𝑐𝑐, 𝑐𝑙,

and 𝑙𝑙. As 𝑡→ 𝑊𝑏 has a branching fraction of approximately 1 [92] and a 70% 𝑏-tagging

efficiency is employed in the analysis, only the 𝑏𝑏 and 𝑏𝑐 components are non-negligible.

Hence the 𝑡𝑡 background is classified using a reduced set of flavour categories: 𝑏𝑏, 𝑏𝑐,

𝑂𝑡ℎ, where 𝑂𝑡ℎ represents the 𝑏𝑙, 𝑐𝑐, 𝑐𝑙, and 𝑙𝑙 components. The flavour composition of

the nominal 𝑡𝑡 sample is presented in Table 13.7.

Flavour 2-jet 3-jet
Number of events Percentage Number of events Percentage

𝑏𝑏 96092 93.3% 374874 91.5%
𝑏𝑐 5798 5.6% 29869 7.3%
𝑂𝑡ℎ 1096 1.1% 5003 1.2%

Table 13.7: Events of the nominal 𝑡𝑡 sample weighted using truth-tagging and decomposed
into the 𝑡𝑡 flavour categories.

Flavour composition uncertainties enter the profile likelihood fit as acceptance ratios

of the non-𝑏𝑏 components of the background processes relative to the dominant 𝑏𝑏

component. The flavour composition priors from the matrix element (ME) and parton

shower (PS) variations are presented in Table 13.8 for each jet category in the 0+1-lepton

channels. Initially, the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties were applied in

the combined (0-, 1- and 2-lepton) MVA fit as TTbarbcACC and TTbarOthACC in the

‘Total(ME, PS)’ systematic scheme, where the NPs correspond to the quadratic sum of

the ME and PS variations. Fig. 13.3 shows that neither NP was constrained. While
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Systematic uncertainty
Priors

0-lepton 1-lepton
2-jet 3-jet 2-jet 3-jet

TTbarbcACC
Matrix element +8.2% +7.6% +1.3% +3.8%
Parton shower -2.1% -3.2% +7.1% +1.5%

Total ±8.5% ±8.2% ±7.2% ±4.1%

TTbarOthACC
Matrix element -6.36% -2.8% +3.3% +5.7%
Parton shower -13.2% -5.6% +0.3% +2.1%

Total ±14.7% ±6.3% ±3.3% ±6.1%

Table 13.8: Priors of the 𝑡𝑡 acceptance ratios of 𝑏𝑐 and 𝑂𝑡ℎ relative to 𝑏𝑏 from the matrix
element and parton shower variations in each jet category for the 0- and 1-lepton channels.
The total is given by the quadratic sum of the variations.

TTbarOthACC exhibited no pull, TTbarbcACC was pulled down.

To further probe the impact of this uncertainty, given the importance of the 𝑏𝑐

background and the difference in behaviour between the ME, PS and total uncertainties

in Table 13.8, a systematic scheme known as ‘ME+PS’, which involved the uncertainties

separated into its ME and PS variations, was studied. Decorrelation of the NPs in both

schemes between the 0-lepton (0L) and 1-lepton (1L) channels was also investigated.

The systematic and correlation schemes and their associated nuisance parameters are

summarised in Table 13.9.

13.2.1 Combined MVA fit

The correlated and decorrelated cases of the systematic schemes were first applied in

the combined (0-, 1- and 2-lepton) MVA fit.

• Pulls comparison: Fig. 13.3 shows that all components of the 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏 ac-

ceptance uncertainty have no significant pulls or constraints. In the decorrelated

Total(ME, PS) scheme, the 0L component of (TTbarbcACC) is pulled down whereas

the 1L component is not pulled, which suggests that the fit prefers less 𝑡𝑡 𝑏𝑐 flavour

in 0L compared to the prediction in MC. It can be seen that this 0L pull is

dominated by ME because the 0L component of TTbarbcMEACC is pulled down but

the 0L component of TTbarbcPSACC is not pulled. There is also tension between

the NPs relating to the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty in the decorrelated ME+PS

scheme as the 0L and 1L components of both TTbarbcMEACC and TTbarbcPSACC
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Systematic scheme Nuisance parameters

Total(ME, PS)

Correlated TTbarbcACC
TTbarOthACC

Decorrelated

TTbarbcACC_L0
TTbarbcACC_L1
TTbarOthACC_L0
TTbarOthACC_L1

ME+PS

Correlated

TTbarbcMEACC
TTbarbcPSACC
TTbarOthMEACC
TTbarOthPSACC

Decorrelated

TTbarbcMEACC_L0
TTbarbcMEACC_L1
TTbarbcPSACC_L0
TTbarbcPSACC_L1
TTbarOthMEACC_L0
TTbarOthMEACC_L1
TTbarOthPSACC_L0
TTbarOthPSACC_L1

Table 13.9: Nuisance parameters of the correlated and decorrelated 0L/1L cases of the
systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties. The 0L and 1L
components are denoted by L0 and L1, respectively.

pull in opposite directions. Though some of the NPs related to the 𝑡𝑡 𝑏𝑐/𝑏𝑏

acceptance uncertainty are pulled significantly, all NPs from the correlated and

decorrelated cases of both schemes were not constrained, suggesting that the fit

is not sensitive to the NPs and was using the pulled components to fix some

discrepancies between data and MC.

• Rankings: In the correlated and decorrelated cases of both schemes, the NPs

corresponding to the 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainty are all ranked very low,

as displayed in Table 13.10, indicating that this uncertainty has trivial impact

on the results. In the decorrelated cases, the 1L component of TTbarbcACC and

TTbarbcMEACC are all ranked significantly lower than the 0L component, implying

that 𝑡𝑡 𝑏𝑐 in 0L has a much higher impact on the signal strength. The correlated

𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty ranks higher than the separated components,

suggesting that the impact of the uncertainty on the signal strength is increased

from correlating.

• Breakdowns: Breakdowns of the sources of uncertainties in Table 13.11 demon-
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Figure 13.3: Fitted nuisance parameters from the correlated and decorrelated 0L/1L cases of
the systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 (TTbarbcACC) and 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏 (TTbarOthACC) acceptance
uncertainties in the combined MVA fit. The separation of the uncertainties into their matrix
element and parton shower variations are denoted by the addition of ME and PS, respectively,
in the nuisance parameter name. The correlated cases are shown in black and blue, while the
decorrelated cases correspond to red and pink. The 0-lepton component is denoted by L0,
whereas the 1-lepton component is not explicitly stated. The number of 𝜎 the central value
of the each nuisance parameter has shifted by in the fit is shown by the pull (𝑦-axis) and the
relative constraint on the original prior is shown by the size of the uncertainty on the data
point. The exact values of the pull and constraint for each nuisance parameter are indicated
along the 𝑥-axis. The green and yellow bands show that the NP is within ±1𝜎 and ±2𝜎 of its
central value, respectively.
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Nuisance parameter Ranking
Total(ME, PS) scheme

Correlated TTbarbcACC 16
TTbarOthACC 290

Decorrelated

TTbarbcACC_L0 20
TTbarbcACC_L1 60
TTbarOthACC_L0 274
TTbarOthACC_L1 416

ME+PS scheme

Correlated

TTbarbcMEACC 25
TTbarbcPSACC 163
TTbarOthMEACC 210
TTbarOthPSACC 326

Decorrelated

TTbarbcMEACC_L0 20
TTbarbcMEACC_L1 273
TTbarbcPSACC_L0 77
TTbarbcPSACC_L1 41
TTbarOthMEACC_L0 422
TTbarOthMEACC_L1 243
TTbarOthPSACC_L0 354
TTbarOthPSACC_L1 238

Table 13.10: Rankings of the NPs from the correlated and decorrelated 0L/1L cases of the
systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties based on their impact
on the signal strength in the combined MVA fit. The 0L and 1L components are denoted by
L0 and L1, respectively.

strated that the contributions from different groups of uncertainties are very similar

between the correlated and decorrelated cases of both schemes.

• Significances: Comparison of the expected significances between both schemes

and from a nominal fit without the uncertainties in Table 13.12 illustrates that

the significances are very similar.

Due to the tension demonstrated by the NPs related to the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance

uncertainty in the decorrelated ME+PS scheme and the pulls exhibited by the 0L

components, further studies were carried out to explore the behaviour of this uncertainty

in the combined di-jet mass fit. As the combined MVA fit revealed that the 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏

acceptance uncertainty has little impact on the results, which can be understood by the

size of the 𝑡𝑡 𝑂𝑡ℎ contribution, only NPs related to the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty

will be discussed in the combined di-jet mass fit.
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Set of uncertainties
Uncertainty on 𝜇

Total(ME, PS) ME+PS
Correlated Decorrelated Correlated Decorrelated

Total ±0.177 ±0.177 ±0.178 ±0.178
Statistical ±0.115 ±0.115 ±0.115 ±0.115
Systematic ±0.135 ±0.134 ±0.136 ±0.136

Floating normalisations ±0.038 ±0.038 ±0.037 ±0.036
Theoretical and modelling uncertainties

𝑉 𝐻 Signal ±0.055 ±0.055 ±0.059 ±0.059
Multi-jet ±0.008 ±0.008 ±0.008 ±0.008
Single-top ±0.019 ±0.020 ±0.022 ±0.021

𝑡𝑡 ±0.024 ±0.023 ±0.022 ±0.023
𝑊+jets ±0.035 ±0.036 ±0.037 ±0.037
𝑍+jets ±0.016 ±0.016 ±0.016 ±0.016
Diboson ±0.040 ±0.040 ±0.040 ±0.040

MC statistical ±0.028 ±0.028 ±0.028 ±0.028

Table 13.11: Breakdown of the sources of uncertainties from the correlated and decorrelated
0L/1L cases of the systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑡𝑡 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties
in the combined MVA fit.

Systematic scheme Expected significances
Prefit Difference Postfit Difference

Nominal 6.932 - 6.749 -

Total(ME, PS) Correlated 6.910 -0.31% 6.751 -0.03%
Decorrelated 6.915 -0.25% 6.769 -0.30%

ME+PS Correlated 6.918 -0.20% 6.752 0.04%
Decorrelated 6.905 -0.38% 6.760 0.16%

Table 13.12: Expected significances from a fit to an Asimov dataset (prefit) and a conditional fit
to data with 𝜇 = 1 (postfit) from the correlated and decorrelated 0L/1L cases of the systematic
schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties in the combined MVA fit. The
significances are compared to those of a nominal fit without the acceptance uncertainties.

13.2.2 Combined di-jet mass fit

As di-jet mass is the most discriminating variable that contributes to the output 𝑉 𝐻

MVA discriminant, it is likely that uncertainties with the most impact on the signal

strength in the di-jet mass fit will have some effect on the signal strength in the combined

MVA fit. Hence, the correlated and decorrelated cases of both schemes were studied in

the combined (0-, 1-, and 2-lepton) di-jet mass fit.

• Rankings: The correlated 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty ranked second, and the

0L and ME components of the uncertainty are all ranked very highly, with the 0L
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Figure 13.4: Shapes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty in the Total(ME,PS) scheme (top)
and the ME component in the ME+PS scheme (bottom) for the 3-jet category in the 0-lepton
channel of the combined di-jet mass fit for 150 GeV < 𝑝𝑉𝑇 < 250 GeV. The yellow shaded
area is the uncertainty. The up and down variations of the uncertainty are the red and blue
solid lines, respectively, and are quantified by the y-axis on the left. The di-jet mass signal is
denoted by the blue markers and is quantified by the y-axis on the right. The impact of the
uncertainty on the normalisation is given by "NormEff".
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components ranking second, suggesting that most of the impact of the uncertainty

comes from these components. This is evident from the shape variations of

TTbarbcACC and TTbarbcMEACC in Fig. 13.4, which are identical and very signal-

like, indicating that uncertainty has a substantial impact on the signal strength in

this fit, in agreement with the rankings. The 1L component of the ME variation

of the uncertainty is also ranked much lower than the 0L component, which

likely caused the correlated TTbarbcMEACC to rank lower than its 0L component

and reduced the impact of the ME variation on the signal strength slightly by

correlating.

Nuisance parameter Ranking
Total(ME, PS) scheme

Correlated TTbarbcACC 2

Decorrelated TTbarbcACC_L0 2
TTbarbcACC_L1 35

ME+PS scheme

Correlated TTbarbcMEACC 5
TTbarbcPSACC 99

Decorrelated

TTbarbcMEACC_L0 2
TTbarbcMEACC_L1 308
TTbarbcPSACC_L0 50
TTbarbcPSACC_L1 25

Table 13.13: Rankings of the NPs from the correlated and decorrelated 0L/1L cases of the
systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty based on their impact on the signal
strength in the combined di-jet mass fit. The 0L and 1L components are denoted by L0 and
L1, respectively.

• Breakdowns: Breakdowns of the sources of uncertainties in Table 13.14 showed

that the contributions from different groups of uncertainties between the correlated

and decorrelated cases of both schemes are very similar. However, the correlated

Total(ME, PS) scheme has the largest 𝑡𝑡 contribution while the correlated ME+PS

scheme has the lowest 𝑡𝑡 contribution, indicating that the impact of 𝑡𝑡 on the error

of the fit is reduced slightly by separating the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty into

its ME and PS variations.

• Significances: Table 13.15 illustrates that the differences in the significances are

negligible between the correlated and decorrelated cases of both schemes.
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Set of uncertainties
Uncertainty on 𝜇

Total(ME, PS) ME+PS
Correlated Decorrelated Correlated Decorrelated

Total ±0.221 ±0.221 ±0.220 ±0.221
Statistical ±0.157 ±0.157 ±0.157 ±0.157
Systematic ±0.152 ±0.156 ±0.154 ±0.155

Floating normalisations ±0.027 ±0.026 ±0.028 ±0.025
Theoretical and modelling uncertainties

𝑉 𝐻 Signal ±0.057 ±0.056 ±0.058 ±0.058
Multi-jet ±0.008 ±0.010 ±0.011 ±0.010
Single-top ±0.034 ±0.038 ±0.040 ±0.039

𝑡𝑡 ±0.040 ±0.036 ±0.031 ±0.036
𝑊𝑗𝑒𝑡𝑠 ±0.025 ±0.026 ±0.027 ±0.025
𝑍𝑗𝑒𝑡𝑠 ±0.030 ±0.029 ±0.027 ±0.028

Diboson ±0.062 ±0.062 ±0.062 ±0.061
MC statistical ±0.041 ±0.040 ±0.040 ±0.040

Table 13.14: Breakdown of the sources of uncertainties from the correlated and decorrelated
0L/1L cases of the systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties in
the di-jet mass fit.

Systematic scheme Expected significances
Prefit Difference Postfit Difference

Nominal 5.164 - 5.091 -

Total(ME, PS) Correlated 5.082 -1.59% 5.119 0.55%
Decorrelated 5.098 -1.28% 5.096 0.10%

ME+PS Correlated 5.119 -0.87% 5.074 -0.39%
Decorrelated 5.096 -1.31% 5.087 -0.14%

Table 13.15: Expected significances from a fit to an Asimov dataset (prefit) and a conditional
fit to data with 𝜇 = 1 (postfit) from the correlated and decorrelated 0L/1L cases of the
systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties in the combined di-jet
mass fit. The significances are compared to those of a nominal fit without the acceptance
uncertainties.

13.2.3 Summary

The correlated and decorrelated 0L/1L cases of the systematic schemes of the 𝑡𝑡 𝑏𝑐/𝑏𝑏

and 𝑂𝑡ℎ/𝑏𝑏 acceptance uncertainties (Table 13.9) all yielded similar breakdowns and

significances, demonstrating that the results are not sensitive to the correlation cases

and systematic schemes of these uncertainties.

However, from the priors and the pulls comparison of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 and 𝑂𝑡ℎ/𝑏𝑏

acceptance uncertainties, it is clear that the 0L component of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance
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uncertainty is dominated by its ME variation, while its PS variation is slightly more

dominant in the 1L component. In addition, the rankings of all fits revealed that most

of the impact of the 𝑡𝑡 𝑏𝑐/𝑏𝑏 acceptance uncertainty comes from its ME variation in 0L.

It is evident from pulls comparison, priors, and rankings, that the ME and PS variations

should be separated.

In the 𝑉 𝐻 MVA fit, the differences between the correlated and uncorrelated cases

of the ME+PS scheme are not obviously clear, hence the di-jet mass fit was used to

decide on a correlation case as it is the most discriminating variable in the 𝑉 𝐻 MVA

discriminant. As the shape variations TTbarbcACC and TTbarbcMEACC in Fig. 13.4 are

very signal-like in the di-jet mass fit, it is likely to cause a larger uncertainty in the fit,

which is reflected in the rankings. As the behaviour of the correlated/decorrelated NPs

in the fit and the overall impact of the different correlation schemes on the expected

significances are similar, the NPs of the ME+PS scheme were kept correlated to reduce

the number of NPs in the fit, and therefore improve the stability.
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Chapter 14

Results
The results from the profile likelihood fit of the 𝑉 𝐻,𝐻 → 𝑏𝑏 analysis conducted

using the full Run-2 dataset is presented in this chapter.

14.1 Signal strength measurements

For the fit with one parameter of interest, related to the 𝑉 𝐻 signal strength, Table 14.1

presents the postfit normalisation factors for the unconstrained backgrounds in the

profile likelihood fit, while the postfit signal and background yields for the 0-, 1- and

2-lepton channels are shown in Tables 14.2, 14.3 and 14.4, respectively. The postfit

𝐵𝐷𝑇𝑉 𝐻 output distributions illustrated in Fig. 14.1 for the high 𝑝𝑉𝑇 signal regions in

the 2-jet category, which have the highest sensitivity, demonstrates a good agreement

between data and simulated predictions.

Process and category Normalisation factor
𝑡𝑡 2-jet 0.98± 0.09
𝑡𝑡 3-jet 0.93± 0.06

𝑊+ℎ𝑓 2-jet 1.06± 0.11
𝑊+ℎ𝑓 3-jet 1.15± 0.09

𝑍+ℎ𝑓 2-jet, 75 GeV < 𝑝𝑉𝑇 < 150 GeV 1.28± 0.08
𝑍+ℎ𝑓 3-jet, 75 GeV < 𝑝𝑉𝑇 < 150 GeV 1.17± 0.05

𝑍+ℎ𝑓 2-jet, 𝑝𝑉𝑇 > 150 GeV 1.16± 0.07
𝑍+ℎ𝑓 3-jet, 𝑝𝑉𝑇 > 150 GeV 1.09± 0.04

Table 14.1: The postfit normalisation factors applied to the unconstrained backgrounds, 𝑡𝑡,
𝑊+ℎ𝑓 , and 𝑍+ℎ𝑓 [17]. The errors are composed of the combined statistical and systematic
uncertainties.

The measured 𝑉 𝐻 signal strength for a Higgs boson with a mass of 125 GeV from a
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Signal region 150 GeV < 𝑝𝑉𝑇 < 250 GeV 𝑝𝑉𝑇 > 250 GeV
Sample 2-jet 3-jet 2-jet 3-jet
𝑍+jets 2846 ± 80 3830 ± 160 338 ± 13 533 ± 23
𝑊+jets 634 ± 63 1500 ± 110 83 ± 9 220 ± 19

Single-top 237 ± 35 770 ± 130 9 ± 2 36 ± 8
𝑡𝑡 1157 ± 76 5470 ± 220 39 ± 5 151 ± 16

Diboson 360 ± 55 333 ± 79 86 ± 13 70 ± 17
Total bkg. 5234 ± 63 11910 ± 100 554 ± 15 1011 ± 21

Signal (𝜇 = 1.02) 147 ± 24 130 ± 22 40 ± 6 33 ± 6
Data 5397 11875 578 1046

Table 14.2: The postfit signal and background yields for each signal region in the 0-lepton
channel [17]. The yields after the full event selection are normalised to the results of the profile
likelihood fit. The errors include all systematic uncertainties.

Signal region 150 GeV < 𝑝𝑉𝑇 < 250 GeV 𝑝𝑉𝑇 > 250 GeV
Sample 2-jet 3-jet 2-jet 3-jet
𝑍+jets 102 ± 5 207 ± 11 10 ± 1 25 ± 2
𝑊+jets 1850 ± 160 4080 ± 270 353 ± 33 935 ± 69

Single-top 990 ± 160 3570 ± 600 70 ± 15 313 ± 66
𝑡𝑡 4600 ± 210 21030 ± 620 188 ± 19 970 ± 58

Diboson 229 ± 57 264 ± 83 57 ± 15 68 ± 22
Multi-jet 130 ± 47 24 ± 14 16 ± 10 7 ± 8
Total bkg. 7899 ± 82 29170 ± 170 694 ± 23 2318 ± 42

Signal (𝜇 = 1.02) 148 ± 24 125 ± 21 52 ± 9 44 ± 7
Data 8044 29316 727 2378

Table 14.3: The postfit signal and background yields for each signal region in the 1-lepton
channel [17]. The yields after the full event selection are normalised to the results of the profile
likelihood fit. The uncertainties include all systematic uncertainties.

Signal region 75 GeV < 𝑝𝑉𝑇 < 150 GeV 150 GeV < 𝑝𝑉𝑇 < 250 GeV 𝑝𝑉𝑇 > 250 GeV
Sample 2-jet ≥ 3-jet 2-jet ≥ 3-jet 2-jet ≥ 3-jet
𝑍+jets 5900 ± 100 11630 ± 160 716 ± 19 2499 ± 52 84 ± 3 537 ± 16
𝑊+jets 1 ± 0 6 ± 0 < 1 2 ± 0 < 1 < 1

Top 3193 ± 57 8796 ± 87 52 ± 7 389 ± 19 1 ± 1 15 ± 4
Diboson 283 ± 47 443 ± 78 83 ± 14 169 ± 30 20 ± 4 52 ± 10

Total bkg. 9378 ± 86 20880 ± 130 851 ± 19 3058 ± 44 106 ± 4 605 ± 14
Signal (𝜇 = 1.02) 78 ± 14 106 ± 21 34 ± 6 59 ± 12 10 ± 12 17.6 ± 3

Data 9463 20927 881 3148 123 614

Table 14.4: The postfit signal and background yields for each signal region in the 2-lepton
channel [17]. The yields after the full event selection are normalised to the results of the profile
likelihood fit. The uncertainties include all systematic uncertainties.
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Figure 14.1: The postfit BDT𝑉 𝐻 output distributions of 2-𝑏-tag events in the 2-jet category
for the 150 < 𝑝𝑉𝑇 < 250 GeV (left) and 𝑝𝑉𝑇 > 250 GeV (right) regions in the 0- (top), 1- (middle)
and 2- (bottom) lepton channels [17]. The filled histograms represent the fitted signal and
background distributions. The 𝑉 𝐻 → 𝑏�̄� signal is also shown as an unstacked histogram that
is scaled by the factor indicated in the legend.
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combined (0-, 1-, and 2-lepton) fit is

𝜇𝑏𝑏
𝑉 𝐻 = 1.02+0.18

−0.17 = 1.02+0.12
−0.11(stat.)+0.14

−0.13(syst.). (14.1)

The measured 𝑉 𝐻 signal strength indicates that the experimental results are consistent

with the SM prediction. The background-only hypothesis is rejected with an observed

signal significance of 6.7 standard deviations (𝜎), compared to an expected significance

of 6.7𝜎.

A combined fit including separate signal strength measurements for the 𝑊𝐻 and

𝑍𝐻 production processes is also performed. The measured signal strength for the 𝑊𝐻

production process is

𝜇𝑏𝑏
𝑊𝐻 = 0.95+0.27

−0.25 = 0.95± 0.18(stat.)+0.19
−0.18(syst.), (14.2)

while the fitted signal strength for the 𝑍𝐻 production process is

𝜇𝑏𝑏
𝑍𝐻 = 1.08+0.25

−0.23 = 1.08± 0.17(stat.)+0.18
−0.15(syst.). (14.3)

The observed significances of 4.0𝜎 and 5.3𝜎 for the 𝑊𝐻 and 𝑍𝐻 processes, respectively,

are compared to their corresponding expected significances of 4.1𝜎 and 5.3𝜎. The signal

strengths are displayed in Fig. 14.2, and are compatible with the SM predictions.

Breakdowns of the different contributions to the uncertainties on the measured signal

strengths of 𝑉 𝐻, 𝑊𝐻, and 𝑍𝐻 are listed in Table 14.5. For the 𝑊𝐻 and 𝑍𝐻 processes,

the contributions from the total statistical and systematic uncertainties are similar. The

dominant contributions to the uncertainties on the measured signal strengths originate

from the systematic uncertainties on 𝑏-tagging, jets, 𝐸𝑚𝑖𝑠𝑠
𝑇 and modelling.

14.1.1 Di-jet mass cross-check analysis

As di-jet mass is the most important input variable in the MVA classifier, it is used to

cross-check the 𝑉 𝐻 fit, which is nominally obtained using the 𝑉 𝐻 MVA distribution.

Fig 14.3 shows the postfit 𝑚𝑏𝑏 output distributions for the 1-lepton channel, and indicates

that the simulated predictions are consistent with data.
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Source of uncertainty 𝜎𝜇
𝑉 𝐻 𝑊𝐻 𝑍𝐻

Total 0.177 0.260 0.240
Statistical 0.115 0.182 0.171
Systematic 0.134 0.186 0.168
Statistical uncertainties
Data statistical 0.108 0.171 0.157
𝑡𝑡 𝑒𝜇 control region 0.014 0.003 0.026
Floating normalisations 0.034 0.061 0.045
Experimental uncertainties
Jets 0.043 0.050 0.057
𝐸𝑚𝑖𝑠𝑠

𝑇 0.015 0.045 0.013
Leptons 0.004 0.015 0.005

𝑏-tagging
𝑏-jets 0.045 0.025 0.064
𝑐-jets 0.035 0.068 0.010
light-flavour jets 0.009 0.004 0.014

Pile-up 0.003 0.002 0.007
Luminosity 0.016 0.016 0.016
Theoretical and modelling uncertainties
Signal 0.072 0.060 0.107

𝑍 + jets 0.032 0.013 0.059
𝑊 + jets 0.040 0.079 0.009
𝑡𝑡 0.021 0.046 0.029
Single top quark 0.019 0.048 0.015
Diboson 0.033 0.033 0.039
Multi-jet 0.005 0.017 0.005

MC statistical 0.031 0.055 0.038

Table 14.5: Breakdown of the contributions to the uncertainty on the measured signal strengths
for 𝑉 𝐻, 𝑊𝐻 and 𝑍𝐻 [17].
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Figure 14.2: Measured signal strengths of the 𝑊𝐻 and 𝑍𝐻 production processes, and their
combination [17]. The signal strengths of the 𝑊𝐻 and 𝑍𝐻 are independently unconstrained
in a fit across all lepton channels to simultaneously extract their values.

The fitted signal strength from a combined fit to the di-jet mass distribution is

𝜇𝑏𝑏
𝑉 𝐻 = 1.17+0.25

−0.23 = 1.17± 0.16(stat.)+0.19
−0.16(syst.). (14.4)

The observed significance is 5.5 𝜎, compared to an expected significance of 4.9 𝜎. The

compatibility between the nominal fit and the di-jet mass fit was checked using the

bootstrap method [122], which showed that the fits were in agreement at the level of

1.1 𝜎.

The di-jet mass distribution, after subtraction of all backgrounds except for the

𝑊𝑍 and 𝑍𝑍 processes, is shown in Fig. 14.4. The distribution is obtained by summing

the di-jet mass contributions from each 𝑝𝑉𝑇 region in each jet category across all lepton

channels, with each contribution weighted by the ratio of the fitted Higgs boson signal

to the background yield in that region.

14.1.2 Diboson cross-check analysis

Since the 𝑉 𝑍,𝑍 → 𝑏�̄� process contains a 𝑏𝑏 resonance, it is used as a standard reference

to validate the 𝑉 𝐻 fit. The postfit 𝐵𝐷𝑇𝑉 𝑍 output distributions for the 1-lepton channel

are shown in Fig. 14.5, which illustrate a good agreement between data and simulated
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Figure 14.3: The postfit 𝑚𝑏𝑏 output distributions of 2-𝑏-tag events in the 2-jet (left) and 3-jet
(right) categories for the 150 < 𝑝𝑉𝑇 < 250 GeV (top) and 𝑝𝑉𝑇 > 250 GeV (bottom) regions in
the 1-lepton channel [121]. The filled histograms represent the fitted signal and background
distributions. The 𝑉 𝐻 → 𝑏�̄� signal is also shown as an unstacked histogram that is scaled by
the factor indicated in the legend.

149



40 60 80 100 120 140 160 180 200

 [GeV]bbm

0

5

10

15

20

25

30

35

40

E
ve

nt
s 

/ 1
0 

G
eV

 (
W

ei
gh

te
d,

 B
-s

ub
tr

ac
te

d)

Data 
=1.17)µ (b b→VH, H 

Diboson
B-only uncertainty

ATLAS
 -1 = 13 TeV, 139 fbs

0+1+2 leptons

2+3 jets, 2 b-tags

Dijet mass analysis

Weighted by Higgs S/B

Figure 14.4: The di-jet mass distribution after subtraction of all backgrounds except for the
𝑊𝑍 and 𝑍𝑍 diboson processes, weighted by the ratio of the fitted Higgs boson signal (𝑆) to
background (𝐵) yields [17]. The expected 𝑉 𝐻,𝐻 → 𝑏𝑏 signal is scaled by the measured signal
strength (𝜇 = 1.17). The shaded area indicates the total uncertainty on the fitted background.

predictions.

The measured signal strength from a combined fit to 𝐵𝐷𝑇𝑉 𝑍 is

𝜇𝑏𝑏
𝑉 𝑍 = 0.93+0.16

−0.13 = 0.93+0.07
−0.06(stat.)+0.14

−0.12(syst.), (14.5)

which demonstrates a good agreement between experiment and SM predictions.

Similarly to the nominal analysis, a combined fit in which signal strengths are

measured independently for 𝑊𝑍 and 𝑍𝑍 was conducted. The fitted signal strengths

are illustrated in Fig. 14.6.

14.2 Simplified template cross section measurements

For the STXS (Section 10.5) measurements, the likelihood fit is performed simultaneously

in all STXS regions, as each region has its own signal template. The fitting procedure

is similar to those performed to provide the results in the previous section except the
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Figure 14.5: The postfit BDT𝑉 𝑍 output distributions of 2-𝑏-tag events in the 2-jet (left) and
3-jet (right) categories for the 150 < 𝑝𝑉𝑇 < 250 GeV (top) and 𝑝𝑉𝑇 > 250 GeV (bottom) regions
in the 1-lepton channel [121]. The filled histograms represent the fitted signal and background
distributions. The 𝑉 𝑍 → 𝑏�̄� signal is also shown as an unstacked histogram that is scaled by
the factor indicated in the legend.
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Figure 14.6: Measured signal strengths of the 𝑊𝑍 and 𝑍𝑍 production processes, and their
combination [17]. The signal strengths of the 𝑊𝑍 and 𝑍𝑍 are independently unconstrained in
a fit across all lepton channels to simultaneously extract their values.

nuisance parameters relating to the prediction of the production cross-section for each

of the STXS regions are not included in the fit. In addition, compared to a fit used

to derive the 𝑉 𝐻 signal strength where one parameter of interest, i.e. 𝜇, is extracted,

multiple parameters of interest corresponding to the signal strength in each STXS 𝑝𝑉𝑇
region are extracted in the likelihood fit for STXS measurements.

The measurement of the product of the 𝑉 𝐻 cross section and the 𝐻 → 𝑏�̄� and

𝑉 → leptons branching ratios, 𝜎 × 𝐵, in the STXS regions is compared to the SM

predictions in Table 14.6 and Fig. 14.7, which both indicate that the experimental

values are in agreement with theoretical predictions. It can be seen from Table 14.6 that

the dominant contribution to the total uncertainty in all regions stems from the data

statistical uncertainty. In the lower 𝑝𝑉𝑇 regions, there is also a noticeable contribution to

the total uncertainty from systematic uncertainties.
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STXS region SM prediction Result Stat. unc. Syst. unc. [fb]
Process 𝑝𝑉 , t

T interval [fb] [fb] [fb] Th. sig. Th. bkg. Exp.

𝑊 (ℓ𝜈)𝐻 150–250 GeV 24.0 ± 1.1 19.0 ± 12.1 ± 7.7 ± 0.9 ± 5.5 ± 6.0
𝑊 (ℓ𝜈)𝐻 > 250 GeV 7.1 ± 0.3 7.2 ± 2.2 ± 1.9 ± 0.4 ± 0.8 ± 0.7
𝑍(ℓℓ/𝜈𝜈)𝐻 75–150 GeV 50.6 ± 4.1 42.5 ± 35.9 ± 25.3 ± 5.6 ± 17.2 ± 19.7
𝑍(ℓℓ/𝜈𝜈)𝐻 150–250 GeV 18.8 ± 2.4 20.5 ± 6.2 ± 5.0 ± 2.3 ± 2.4 ± 2.3
𝑍(ℓℓ/𝜈𝜈)𝐻 >250 GeV 4.9 ± 0.5 5.4 ± 1.7 ± 1.5 ± 0.5 ± 0.5 ± 0.3

Table 14.6: The product of the 𝑉 𝐻 cross section and the 𝐻 → 𝑏�̄� and 𝑉 → leptons branching
ratios, 𝜎×𝐵, from experimental results and Standard Model predictions in the STXS regions [17].
The contributions to the total uncertainty in the measurements are from statistical (Stat. unc.)
and systematic uncertainties (Syst. unc.) from signal (Th. sig.) and background (Th. bkg.)
predictions and experimental performance (Exp.).
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Figure 14.7: The measurement of the product of the 𝑉 𝐻 cross section and the 𝐻 → 𝑏�̄� and
𝑉 → leptons branching ratios, 𝜎 ×𝐵, in the STXS regions [17].
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Chapter 15

Conclusion
A measurement of the 𝑉 𝐻,𝐻 → 𝑏�̄� final state was undertaken using the full Run-2

dataset collected at a centre-of-mass energy of
√
𝑠 = 13 TeV, which corresponds to a

total integrated luminosity of 139 fb−1.

A key component of the 𝑉 𝐻,𝐻 → 𝑏�̄� analysis involves the identification of jets

originating from 𝑏-quarks (𝑏-tagging). As the reconstruction of tracks directly impact

𝑏-tagging, the quality of the track collections is critical to the performance of 𝑏-tagging.

To ascertain which aspects of the tracking algorithms impacts the flavour-tagging

efficiency the most, so future studies can focus on improving these aspects, different

track collections were constructed and their impact upon 𝑏-tagging were studied. This

identified that for the currents algorithms, the largest impact upon 𝑏-tagging could be

realised by improving the pattern recognition of the tracks not from 𝑏-hadron decays, to

reduce mis-measurements and thereby reduce the fake-rate. This had a bigger impact

than improving the efficiency with which the tracking algorithm reconstructed tracks

from 𝑏-hadron decays. However, there is the possibility that if the lower-level algorithms

were retuned better use could be made of any additional tracks that are reconstructed.

Optimisation studies were also conducted on a higher-level 𝑏-tagging algorithm, which

revealed similar performances to the default algorithm.

The 𝑏-jet tagging efficiency, which is one of the dominant uncertainties in the 𝑉 𝐻

analysis, is calibrated to data using di-leptonic top-quark events. Several techniques were

explored to automate the calibration software to provide a more robust procedure that

saves both time and manpower. This is especially important within large experiments,

where contributions of work often rely on inherited code and frequent updates to most

aspects of a calibration are undertaken. These can pose common issues in reproducing

results, which the automation aims to solve by increasing the ability to reproduce

and validate results for all updates and changes to the calibration methods. It was
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also demonstrated that this procedure could reproduce the latest calibration results

when triggered by updated data or code changes, demonstrating the feasibility of this

approach.

A multivariate analysis (MVA) technique involving boosted decision trees in the

𝑉 𝐻,𝐻 → 𝑏�̄� analysis was used to classify signal and background events. Studies includ-

ing optimisation of the hyperparameters and different input variables were conducted in

the 1-lepton channel, which yielded significant improvements in the sensitivity of above

10%. These improvements were also adopted in the other lepton channels, resulting

in an improvement of 7% and 6% in the sensitivity of the 0- and 2-lepton channels,

respectively. The effects of the uncertainties related to one of the dominant backgrounds

in the analysis were also tested to ensure the statistical fit is robust.

The observed significance of the 𝑉 𝐻,𝐻 → 𝑏�̄� signal is 6.7𝜎, which corresponds

to a measured signal strength of 𝜇𝑏𝑏
𝑉 𝐻 = 1.02+0.18

−0.17 = 1.02+0.12
−0.11(stat.)+0.14

−0.13(syst.). The

observed significances and measured signal strengths of the 𝑊𝐻 and 𝑍𝐻 production

processes are 4.0𝜎 with 𝜇𝑏𝑏
𝑊𝐻 = 0.95+0.27

−0.25 = 0.95± 0.18(stat.)+0.19
−0.18(syst.) and 5.3𝜎 with

𝜇𝑏𝑏
𝑍𝐻 = 1.08+0.25

−0.23 = 1.08± 0.17(stat.)+0.18
−0.15(syst.), respectively. These results all indicate

that the experimental result is consistent with the Standard Model prediction. This

result is the first single analysis observation of 𝑉 𝐻 production and 𝐻 → 𝑏�̄� decay. In

addition, 𝑍𝐻 production was observed for the first time and strong evidence for 𝑊𝐻

production was found. Furthermore, the measurement of the product of the 𝑉 𝐻 cross

section and the 𝐻 → 𝑏�̄� and 𝑉 → leptons branching ratios in the simplified cross section

template regions between experiment and prediction across all regions was conducted,

allowing the behaviour of the Higgs boson to be more probed as a function of 𝑝𝑇 , which

has since been used to place constraints upon Effective Field Theory [123] models [17].
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