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Abstract 
Human decision-making is the flexible way people respond to their 

environment, take actions, and plan toward long-term goals. It is commonly 

thought that humans rely on distinct decision-making systems, which are either 

more habitual and reflexive or deliberate and calculated. How we make 

decisions can provide insight into our social functioning, mental health and 

underlying psychopathology, and ability to consider the consequences of our 

actions. Notably, the ability to make appropriate, habitual or deliberate 

decisions depending on the context, here referred to as metacontrol, remains 

underexplored in developmental samples. This thesis aims to investigate the 

development of different decision-making mechanisms in middle childhood 

(ages 5-13) and to illuminate the potential neurocognitive mechanisms 

underlying value-based decision-making. Using a novel sequential decision-

making task, the first experimental chapter presents robust markers of model-

based decision-making in childhood (N = 85), which reflects the ability to plan 

through a sequential task structure, contrary to previous developmental studies. 

Using the same paradigm, in a new sample via both behavioral (N = 69) and 

MRI-based measures (N = 44), the second experimental chapter explores the 

neurocognitive mechanisms that may underlie model-based decision-making 

and its metacontrol in childhood and links individual differences in inhibition and 

cortical thickness to metacontrol. The third experimental chapter explores the 

potential plasticity of social and intertemporal decision-making in a longitudinal 

executive function training paradigm (N = 205) and initial relationships with 

executive functions. Finally, I critically discuss the results presented in this 
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thesis and their implications and outline directions for future research in the 

neurocognitive underpinnings of decision-making during development.  
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Impact Statement 
One’s ability to make good decisions is essential in all facets of society. For 

example, understanding that one might need to forego small gains now in favor 

of security and larger gains in the future – for example, via the sacrifice of a 

portion of salary towards a pension contribution – allows individuals to plan for 

their future security and wellbeing. Throughout decision-making research, 

scientists have sought to uncover the facets that underlie human decision-

making in the face of uncertainty and how these might be explained by 

normative, descriptive, and prescriptive theories. Crucially, through 

experimental research into human decision-making, researchers have come to 

understand that human decision-making is not purely rational or even 

consistent and susceptible to manipulations. An influential theory that sought to 

explain this perceived absence of rational decision-making discusses this from 

the perspective of bounded rationality. This concept states that human 

decision-making is rational, but it is constrained by the limits of the human mind, 

which potentially lie in individual differences in working memory capacity, 

attention, or cognitive control, abilities that are often captured under the 

umbrella term of executive functions.  

Importantly, substantial changes in decision-making occur in childhood, 

where developmental studies observe that with age, we become more social, 

patient, and deliberate decision-makers. Coupled with significant changes in 

decision-making are changes in executive functions. From childhood to 

adolescence and adulthood, executive functioning generally improves, such 

that individuals become able to maintain and manipulate more information in 

working memory, have better impulse control over prepotent responses, and 
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are better to switch between different tasks flexibly. Alongside this, critical 

structural changes occur in brain development, reflected in changes in cortical 

thickness. Thus, childhood is an ideal developmental period to investigate 

human decision-making and how this may be coupled to executive functioning 

improvements and brain anatomy changes. While the underlying 

neurocognitive mechanisms underlying reinforcement learning and social and 

intertemporal decision-making remain primarily unknown, inspecting these from 

a developmental lens provides us the opportunity to investigate the potential 

underlying relationships. 

           This thesis reports three key findings of decision-making in childhood. 

First, using a novel paradigm, I show that children are capable of using 

sophisticated goal-oriented decision-making strategies and can use the 

environment to their advantage, while previous studies suggested this skill only 

emerged in late adolescence. Second, I show that the ability to control when to 

flexibly exert effort in a reinforcement learning task for reward is linked to 

individual differences in cortical thickness and performance in inhibition tasks 

in childhood. Third, I investigate the plasticity of social and intertemporal 

decision-making in childhood via an executive functioning training paradigm 

and find that it did not lead to short-term or long-term training-related changes. 

           These findings make a significant contribution to the field of decision-

making in development by carefully examining decision-making and linking it to 

individual differences in executive functions and brain anatomy. 
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Chapter 1. General introduction 
1.1 A brief history of decision-making research: from rational 

to irrational creatures 

In 2008, at the brink of the 2010 financial crisis, Wall Street guru Michael Burry 

realized that several subprime home loans in the US were in danger of 

defaulting. This information caused Burry to use over $1 billion of his investors’ 

money to bet against the housing market, so-called “shorting”, and to eventually 

make a fortune by taking full advantage of the impending economic collapse in 

America (Figure 1). A famous proverb in fiction and non-fiction applications is 

“Hindsight is 20/20”, which means that it always seems easy to predict an event 

after it has occurred. Economists, researchers, and historians often claim to be 

able to predict the market. However, if the uncertainty of an event is 

immeasurable, it is nigh impossible to predict any event with certainty. 

 

Figure 1. Christian Bale as Michael Burry in Paramount Pictures' The Big 
Short, 2015. 
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Despite this uncertainty regarding the future, people must make daily 

decisions that affect various domains of life. Some choices may have significant 

and long-term implications (e.g., deciding on a field of study, deciding to buy a 

house, deciding to have children, whom to marry). In contrast, other choices 

may be more short-term but still carry the potential for later implications (e.g., 

having unprotected sex, buying holiday insurance, or passing a vehicle on a 

two-way road). Therefore, understanding how we make decisions in uncertain 

contexts is crucial.  

The emergence of decision-making as a formal field of study was 

intertwined with the birth of modern probability theory in the 17th century and 

has evolved significantly since then (Erez & Reyna, 2019). In the field 

of judgment and decision-making, choices listed above, whose outcomes are 

contingent upon whichever state of the world transpires, are classified 

as decision-making under uncertainty (Erez & Reyna, 2019). However, it should 

be noted that uncertainty about future events can sometimes be measurable 

and other times immeasurable. Thus, in some cases, we can calculate the 

available information into numbers that express the likelihood of observing 

certain events. For example, when rolling a die, we cannot say which number it 

will land on, but we can instead calculate the probability of obtaining the number 

six or an even number. However, the likelihood of uncertain events is 

incalculable in most real-life cases. For example, what is the probability of an 

economic crisis transpiring next year? Or what is our probability of being 

involved in a traffic accident in the next decade? 

Decision-making research up until now has broadly fallen under three 

branches: normative, descriptive, and prescriptive analyses (Erez & Reyna, 
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2019). Traditional normative and descriptive decision-making models focused 

mainly on logic and cognition when modeling and predicting human choice 

behavior. Before the 1950s, normative theories led the way, where scientists 

believed that decision-making in the mind took place on a purely rational and 

mathematical basis, with the key assumption that the decision-maker was a 

logical, deliberative creature that obeyed basic rules of sound behavior (Elliott, 

2019; Kacelnik, 1997). In short, normative theories draw from philosophical 

standpoints about how the ideal decision-maker ought to choose. This period 

gave rise to the Expected Value (EV) and the Expected Utility Theory (EUV), 

which introduced new and fundamental principles in probability theory and were 

pioneered by Pascal, Fermat, Cramer, and Bernoulli (Machina, 1987). EV 

captures the average across all possible outcomes weighted by their 

probabilities. For example, if we would roll a six-sided die six thousand times 

and average across all numbers, the EV would be close to 3.5 (Figure 2). The 

EV provided the ability to predict the average outcome of uncertain events 

accurately and was therefore seen as a guiding principle for rational-choice 

behavior. However, it soon became apparent that people do not consistently 

follow the EV principle in their decision-making. Thus, other factors must be at 

play in human decision-making.  
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Figure 2. Expected Value of a six-sided die. 
 

After normative theories of decision-making, which assume that the 

decision maker is a logical and deliberative creature, descriptive theories of 

decision-making became more pervasive. Descriptive analyses focus on how 

real, imperfect human beings make choices in practice, how they reason, and 

why they behave the way they do (Chandler, 2017; Kacelnik, 1997). In 

particular, it examines how human behavior differs from rational axioms derived 

from normative decision-making theories (Slavic et al., 1977). This field is, 

therefore, primarily based on empirical methods and statistical analysis 

conducted on choice behavior (Erez & Reyna, 2019). For example, it 

investigates how people’s behavior and choices can be influenced and 

manipulated by introducing other factors in the decision-making context. 

Descriptive analyses are thus concerned with how real people do make 

choices.  

Finally, the field of prescriptive decision-making can be seen as a 

mixture of both normative and descriptive analyses, with the primary goal to 

help people make better and more coherent choices (Slavic et al., 1977). Thus, 

prescriptive analyses offer decision-aiding tools in the form of rules and step-
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by-step guidelines to help people navigate their choices in a normative fashion, 

i.e., more rational and less biased by inconsistency, illogical decisions, or other 

biases (Erez & Reyna, 2019).  

A pervasive theory for why humans did not adhere to rational, normative 

decision-making theories was introduced with the concept of “bounded 

rationality” (Simon, 1957). Herbert Simon was one of the first scientists to 

recognize that people’s rationality is limited and that the ideal decision-maker, 

as portrayed in normative models, thus could not replicate human decision-

making. He argued that people utilize heuristics, which significantly simplify the 

decision-making process. Shortly before the conception of Simon’s theory, 

George Miller published his influential paper “The magical number seven, plus 

or minus two: Some limits on our capacity for processing information”, where 

he identified substantial limitations in human information processing (G. A. 

Miller, 1956). In short, he claimed that people could not exhaustively think about 

alternatives. Instead, decision-makers can remember and think about only a 

few chunks of information at a time (seven according to Miller, four according 

to some recent theorists (Erez & Reyna, 2019)), which limits or bounds their 

ability to make decisions.  

Importantly, this links the ability to make rational decisions to other 

cognitive processes. This idea still holds today, and cognitive processes named 

executive functions (EFs) are thought to be critical to supporting flexible goal-

directed behavior (Diamond, 2013). EFs capture cognitive abilities 

encompassing working memory, cognitive flexibility, and cognitive control in 

suppressing prepotent impulses. According to the concept of bounded 
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rationality, rather than maximizing across all available alternatives, decision-

makers aim at reaching a “good enough” criteria and then choosing the first 

option that reaches the threshold set by these criteria, so-called “satisficing”. 

Thus, people are limited but still rational and choose satisfactory but not 

necessarily optimal options.  

As an example of this concept, imagine you are looking for a pub to have 

drinks in with four friends in London tomorrow. Clearly, the number of options 

to choose from is enormous, and the amount of relevant information to consider 

is exponentially higher: which location works for everyone? Do you want 

outdoor seating? How expansive is their drinks selection? Their food selection? 

Until what time do they serve food? Do they host pub quizzes? Many variables 

can be optimized (e.g., equidistant travel distance for all involved friends or 

multiple vegan food and drink options if a person in your group is vegan), and 

if you would attempt to pick the ultimate pub by solving this optimization 

problem, you might miss the proposed date and time for the drinks altogether. 

Thus, a common tactic used by people is to reduce the complexity of the 

problem, for example, focusing on familiarity and simply picking the pub you 

went to last week, which might cause some of your friends to travel for longer 

but allow you to come to a decision and propose a pub within an appropriate 

time limit.  

In later works, deviations from rational decision-making (such as 

inconsistent choice behavior) were often attributed to humans’ bounded 

rationality (the brain's limited capacity to process information and perform 

complex calculations needed to maximize our well-being), as introduced by 
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Miller and Simon. The concept of bounded rationality, therefore, lays the 

groundwork for the link between decision-making and EFs.  

1.2 A revolution in computation: formalized reinforcement 

learning models 

Reinforcement learning is another branch of decision-related research 

formalized in the 1950s and has since experienced a dynamic history. Initially, 

two approaches to reinforcement learning existed independently; one started in 

animal psychology and trial-and-error learning. The other was rooted in 

engineering in the optimal control problem and how to solve this using value 

functions and dynamic programming. In the 1980s, both these approaches 

combined to constitute what we now know as modern reinforcement learning 

(Sutton & Barto, 2018). 

 Arguably the most crucial pioneer in trial-and-error reinforcement 

learning research in the early 1900s was Edward Thorndike, who coined the 

“Law of Effect”. In his own words: 

“Of several responses made to the same situation, those which are 

accompanied or closely followed by satisfaction [to the animal] will, other things 

being equal, be more firmly connected with the situation so that, when it recurs, 

they will be more likely to recur; those which are accompanied or closely 

followed by discomfort [to the animal] will, other things being equal, have their 

connections with that situation weakened, so that, when it recurs, they will be 

less likely to occur. The greater the satisfaction or discomfort, the greater the 

strengthening or weakening of the bond.” (Thorndike, 1911, p. 244) 
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Thorndike came to these conclusions via his experimental work, where 

he used puzzle boxes to study how animals learned. Thorndike placed a cat 

inside a puzzle box and then put a piece of meat outside the box. The boxes 

were enclosed but contained a small lever that, when pressed, allowed the cat 

to escape. He then observed the animal’s approaches to escaping and 

obtaining the food, recording how long it took each cat to learn how to get out 

of the box. Eventually, the cats pressed the lever and opened the door so that 

they could eat the piece of meat. Even though the first interaction with the lever 

occurred by accident, the cats became likely to interact with it again in repeat 

experiments because they had received a reward immediately after performing 

the action. Thorndike observed that with each trial, the cats became faster at 

pressing the lever, opening the door, and obtaining the reward. Because 

pushing the lever had a favorable outcome, the cats were likelier to repeat the 

action (Thorndike, 1911).1 

 

Figure 3. Thorndike's puzzle box. 
Schematic (left) and photo (right) of Thorndike’s puzzle box (Burnham, 1972). 

This stipulation was coined the Law of Effect because it describes 

positive reinforcement on the tendency to select actions (Sutton & Barto, 2018). 

 
1 This research is similar to later work conducted by B. F. Skinner in operant conditioning. 
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This law describes two of the most important aspects of what is meant by trial-

and-error learning. First, it is selectional, meaning that it involves trying 

alternatives, observing the outcomes, and selecting the most favorable option. 

Second, it is associative, meaning that the alternatives found by selection are 

associated with particular situations (Sutton & Barto, 2018). It is thus a simple 

way of combining search and memory; search by trying and selecting among 

many actions in each situation, and memory in the form of remembering what 

actions worked best and associating them with the situations in which they were 

the best option (Sutton & Barto, 2018). Importantly, this again links the field of 

decision-making research to EFs as supporting mechanisms to learn from 

previous rewards and punishments and to plan toward the subsequent 

desirable outcome.  

In the other branch of reinforcement learning, scientists were concerned 

with the problem of “optimal control”, which posits the problem of designing a 

controller to minimize a measure of a dynamic system’s behavior over time 

(Sutton & Barto, 2018). It is concerned with finding the optimal path of all paths 

feasible for a system, for example, sending a rocket to the moon with minimal 

fuel consumption due to an optimized trajectory. One of the most influential 

approaches to this problem was developed in the mid-1950s by Richard 

Bellman and colleagues by applying the Hamilton-Jacobi equation from 

classical physics (R. Bellman, 1954; R. Bellman & Dreyfus, 1959; R. E. 

Bellman, 1957b). This approach used the concepts of a dynamical system’s 

state and a value function or “optimal return function” to define a functional 

equation, which is now often referred to as the Bellman equation (Bellman, 
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1957). Dynamic programming became known as the class of methods that uses 

these equations to solve the optimal control problem. 

The Bellman equation shows up everywhere in the field of reinforcement 

learning, being a central element of many reinforcement learning algorithms. In 

essence, the Bellman equation allows a value function to be decomposed in 

two parts, the immediate reward and the discounted future rewards. Thus, this 

equation allows a simplification of the computation of the value function, so that 

rather than summing over multiple time steps, the optimal solution of a complex 

problem can be found by breaking it down into simpler recursive subproblems 

and finding their optimal solutions (Figure 4). In simpler terms, the Bellman 

equation allows us to determine the value of the current state of the world and 

our action, and the next state of the world and action we might take. 

Later stages of reinforcement learning research started merging the two 

branches of the trial-and-error learning approach rooted in animal psychology 

and engineering. This merging led to new computational models that assessed 

how an artificial agent could learn from the environment through trial-and-error 

and introduced new problems, such as the credit assignment problem (Sutton 

& Barto, 2018). This problem revolves around crediting success to the right 

actions when many different decisions were made that eventually led to 

success, which is essential to learning the right decisions to make to repeat that 

success (Minsky, 1961).  

A basic reinforcement learning model revolves around an agent (an 

animal, human, or artificial agent) who takes certain actions in an environment 

and, depending on the state, receives an outcome, which could be a reward or 
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punishment (Figure 4). The agent’s goal in this problem is to find a sequence 

of actions that will provide them with a reward. Almost all reinforcement learning 

problems work by estimating value functions, which can be functions of a 

particular state of the world, or of a specific action while in a particular state 

(state-action pairs) (Sutton & Barto, 2018). A value function estimates how good 

it is for the agent to be in a given state (also written as V(s), where V represents 

the value and s the state) or how good a specific action is in a particular state 

(also written as Q(s, a) where Q represents the value, s the state and a the 

action). In short, the value of a particular state reflects the expected total reward 

that is obtainable while being in this state.  

Besides the value function, another important function is that of state-

action pairs, also called the action-value function or the Q-function (or just by 

Q). The Q-function defines the value of taking action a in state s, which can be 

written as Q(s, a) (or R(s, a)) (Sutton & Barto, 2018).  

 

Figure 4. Reinforcement learning schematic. 
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To apply this to a real-world situation, let’s use a contextual multi-armed 

bandit problem as an example2. Say we have a human agent, a boy named 

Timmy. Timmy is eight years old and visits his aunt Edna every month. Edna is 

generally happy, and when she is happy and Timmy shows her his grades, she 

sometimes gives Timmy extra pocket money. However, when she’s not happy, 

she never gives Timmy extra pocket money. Over the years, Timmy learns that 

Edna is happy when it’s sunny but becomes sad when it rains. Every time 

Timmy visits Edna, he has the choice to show her his grades or not. From his 

experience, Edna is happy when it’s sunny, so the value of being at his aunt’s 

when it’s sunny has a higher value than being at his aunt’s when it’s raining. 

This reflects the value function, or the value Timmy has learned to associate 

with sunny weather. Now, Timmy has the option to show his grades or not. 

Thus, the Q-function for this situation can be written as +pocket money (sunny, 

show grades), which is positive because there is a probability he will receive a 

reward. In short, in this example, Timmy learns to take a certain action 

depending on the current state of the world that transpires, based on the 

previous reward he experienced.  

 
2 In a multi-armed bandit problem, the agent must maximize the sum of their rewards through 
a sequence of actions. It is so named after slot machines in a casino, where a gambler seeks 
to find the most rewarding slot machine to play on. In essence, the agent must learn what the 
optimal action is (e.g., in this example, whether to take the action (show the grades) or not 
(don’t show the grades)). 
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Figure 5. Contextual bandit example. 
Depending on the context (weather: sunny, rainy), Timmy has to decide which 
action to take (show grades to aunt Edna, don’t show grades to aunt Edna) to 
attain the reward (+pocket money, -pocket money). 

Reinforcement learning models are pervasive because they allow 

researchers to capture and quantify specific components of (human) behavior. 

For example, in the above example, if we had logged all of Timmy’s and Edna’s 

interactions, the weather, and their outcomes, we could have fitted a model to 

capture how fast Timmy learned from his previous actions. In addition, we could 

have predicted which decision Timmy would be likely to make the next time he 

visited his aunt. In this thesis, I will use this approach to determine how children 

and adults rely on different strategies to learn from their past actions and make 

new decisions. The types of decision-making that are able to be dissociated 

with this approach will be discussed in the next section.  

1.3 The theory of two minds: model-free and model-based 
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decision-making 

The decision heuristics discussed in the first section of the introduction are 

colloquially referred to as habits. Habits are extremely important and effortless 

policies that can dictate our decision-making, which seemingly require little 

conscious thought and can be executed as if on autopilot (Dezfouli & Balleine, 

2013; Dickinson, 1985; Dolan & Dayan, 2013). Let us consider the following 

example: 

 When commuting to work, you know which route to take without having 

to think about it consciously. You automatically walk to the tube station, 

habitually get off at the same stop, and walk to your workplace while your mind 

wanders. This is an effortless process. However, there is a tube strike today. 

 While your usual route to the tube was intuitive, you now find yourself 

spending some time planning alternative routes to work to select the quickest 

one. Are the buses still running? Which bus lines may get too crowded? Can 

you perhaps take a bike, or e-scooter, or walk there? How much will an Uber 

cost? 

 Our different responses to these processes demonstrate the distinctions 

between quick, intuitive, and habitual decisions and slower, goal-directed 

decisions, in short, a dualistic approach to decision-making (Daw et al. 2011). 

This dual-systems approach referred not only to decision-making but was also 

tied to the idea of cognitive abilities by psychologists Michael Posner and 

Charles Snyder in the 1970s in their book Attention and Cognitive Control 

(Posner & Snyder, 1975). They dissociated between cognitive processes which 
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were either automatic or controlled, where automatic processes were 

characterized by four conditions: 

1. They are elicited unintentionally 

2. They only require a small number of cognitive resources 

3. They cannot be stopped voluntarily, and 

4. They happen unconsciously 

Controlled processes were likewise characterized by four conditions: 

1. They are elicited intentionally 

2. They require a considerable amount of cognitive resources 

3. They can be stopped voluntarily  

4. They happen consciously  

Similar to automatic processes, habits, and heuristics are both forms of 

model-free learning, where decisions are made based on experience and 

learned associations, rather than on a conscious understanding of the 

environment. Habits are actions performed automatically in response to specific 

stimuli, without conscious thought. Heuristics, on the other hand, are simple 

rules-of-thumb or mental shortcuts that allow for quick decisions in situations 

where a more deliberate, model-based approach would take too much time or 

mental effort. Model-based learning, in contrast, involves using a more explicit 

understanding of the environment and the relationships between actions and 

outcomes to make decisions. This approach is more flexible and adaptive than 

model-free learning, but also requires more computational resources and 

mental effort.  
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Importantly, the developmental aspect of the dualistic approach is 

extremely interesting. For example, do we start as quick, habitual individuals 

but progressively become able to “think slow”? Some current developmental 

studies seem to suggest that this is, in fact, the case and that we start as 

automatic, habitual decision-makers and only slowly develop to become 

controlled, goal-directed decision-makers (Davidow et al., 2018; Decker et al., 

2016). This idea is supported by the fact that EFs that allow us to provide 

controlled responses, store and manipulate more information in our minds, and 

switch flexibly between tasks increase strongly throughout childhood (Buss & 

Spencer, 2014; Fiske & Holmboe, 2019; Ganesan & Steinbeis, 2022; Prencipe 

et al., 2011; Satterthwaite et al., 2013; Wiebe & Karbach, 2017). This, then 

again, leads us to the concept of bounded rationality. Is it the ongoing 

development of abilities that controls how many alternatives we can consider in 

our minds and how normative our decisions can become? Is childhood merely 

a period where we are unable to engage in what will become our peak rational 

decision-making once we have attained full brain maturation and executive 

control? 

The theorized dichotomy between habitual and goal-directed forms of 

decision-making inspired a new blend of neuroscience-based reinforcement 

learning models. From a neuroscientific perspective, habits and goal-directed 

action systems appear to coexist in different corticostriatal circuits (Daw et al., 

2011). While I mentioned in the previous section that these systems are thought 

to learn concurrently, they lead to different decisions as they link different 

rewards to different actions, as can be determined via q-learning reinforcement 

learning models (Balleine & O’Doherty, 2010; Dickinson, 1985; Kool et al., 
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2016; Lockwood et al., 2020). Computational approaches interpret these 

systems as two complementary mechanisms for reinforcement learning. The 

temporal-difference learning mechanism is associated with dopamine and 

reward prediction errors (RPE) and is model-free in the sense that it works by 

directly reinforcing successful actions rather than taking any underlying 

structure of the world into account (Daw et al., 2011). The goal-directed 

mechanism depends on a separate model-based reinforcement learning 

system, which works by using an internal model of the task to evaluate 

candidate actions (Beierholm et al., 2011; Daw et al., 2011; Doll et al., 2015; 

Kool et al., 2016). Thus, in theory, the choices recommended by model-free 

and model-based systems depend on their independent calculations. With good 

experimental design and accompanying models, the contributions of each 

system to decision-making are therefore possible to be dissociated. 

If we revisit Timmy and his aunt Edna, Timmy has learned to associate 

the current weather with his aunt’s happiness and, in turn, her happiness with 

his probability of receiving extra pocket money. In essence, Timmy has learned 

to apply a simple model of the world to predict the outcome of his actions. 

However, let’s now consider that Timmy has a little brother, Howard. Howard 

also sometimes receives pocket money from his aunt Edna, but he has failed 

to make the connection between his aunt’s happiness and the probability of 

pocket money. Instead, he only learned that by showing his aunt Edna his 

grades, he might receive pocket money. The next time Timmy and Howard visit 

Edna, it’s raining, so Timmy decides to just enjoy some tea with his aunt and 

not to bother her with his grades. However, Howard confidently shows her his 

grades and solely receives a lukewarm verbal response in turn. Essentially, 
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Howard has made a decision based on model-free decision-making (he only 

learned the action that may lead to reward), while Timmy has applied model-

based decision-making (he used the current state of the world to plan his 

decision).  

In 2011, Daw and his colleagues developed the two-step task, which is 

so named because each trial consists of two distinct steps (Figure 6). In this 

task, participants start in the first stage (pink rectangles) and pick one of the 

two options. If they pick the first option, 70% of the time, they will transition to 

the brown stage, where they will again need to pick between two options. For 

both brown options, they will receive a binary reward (0 or 1) according to a 

drifting probability bounded between 25% and 75% (Figure 6, bottom). 

However, 30% of the time, when selecting the first option in the pink stage, they 

will transition to the yellow stage instead. The yellow stage is otherwise identical 

to the brown stage in that they again need to pick between two options, where 

they will receive a binary reward according to the bounded drifting probability 

rate for reward for the two yellow stage options. However, as we can see from 

the drifting reward rates, sometimes one option is a lot better than the other 

options (in that the probability of receiving reward will be higher). Thus, 

participants need to continually assess how good the previous state and their 

action was. 
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Figure 6. Two-step task structure and drifting reward probabilities. 
Recreated from Kool et al. 2016. 

An attractive feature of this task is the stochastic transition structure, 

meaning that for the same action in the pink stage, 70% of the time (the thick 

brown and yellow arrows) will one action lead to the same second stage 

(common transition), but 30% of the time (the thin brown and yellow arrows) will 

it lead to the other (rare transition). This structure allows assessing how 

participants change their behavior following a rare transition and indicate 

whether they can effectively plan through the task transition structure. The four 

yellow and brown lines at the bottom of the figure represent the changes in 

reward probability (ranging between 25-75%) for the two brown and yellow 

second-state stages.  
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For example, a participant chooses the first pink option, expecting to 

transition to the second brown stage. However, they experience a rare 

transition and transition to the yellow second stage instead. Here they pick one 

of the two options and receive a reward. The difference between a model-free 

and model-based decision maker becomes apparent in their next decision. A 

model-based decision maker would be more likely to change their initial choice 

and instead pick the second pink option because it is more likely to transition to 

the yellow second stage, where they just received a reward (Figure 7b). 

However, a model-free decision maker would be more likely to choose the first 

pink option again because they do not use the internal structure of the task to 

plan their decisions (Figure 7a). Instead, they link their choice “pick the first pink 

option” to having received the reward, although it is transitioning to the yellow 

second stage that led them to the reward. 

Therefore, the utility of the task structure in decisions reflects model-

based decision-making, while ignorance of the task structure reflects model-

free decision-making. The leads to the different systems calculating different 

values and probabilities for taking each action. To capture the extent to which 

participants used one system or the other, the reinforcement learning model 

used in Daw et al. 2011 incorporated a weighting parameter w, which when 

close to 1 reflects contributions from a pure model-based decision maker, and 

when close to 0 reflects contributions from a pure model-free decision maker. 

Empirical data from this task shows that people are hybrid decision makers and 

will display a mixture of the contributions of both these systems in their behavior 

(Figure 7).  
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Figure 7. Probability of repeating the first-stage choice for three types of 
agents in a two-step task. 
For model-free agents (a) the probability of repeating the previous choice is 
dependent only on whether a reward was obtained or not on the previous trial, 
not on the transition structure, or whether the previous transition was common 
or rare. Meanwhile, for model-based agents (b) this is reflected in an interaction 
between the previous transition type (common or rare) and previous reward, 
and the probability of transitioning to the same state (brown or yellow) where 
the reward was obtained. Behavioral performance on this task (c) reflects 
features of both model-based and model-free decision-making. Figure edited 
from Doll et al. 2015. 

The idea of the model-based decision maker goes hand in hand with 

rationality and maturity. Since model-based decision-making was considered 

an advanced ability, it was considered to be an actual late-developing skill, one 

that only became available with finalized brain and behavioral maturation 

(Davidow et al., 2018; Decker et al., 2016; Nussenbaum & Hartley, 2019; 

Palminteri et al., 2016; Potter et al., 2017). In line with this theory, studies found 

that model-based decision-making seemed to be absent in children before 12 

years of age and to become apparent and further increase during adolescence, 

peaking in young adulthood (Decker et al., 2016; Nussenbaum et al., 2020; 

Palminteri et al., 2016; Potter et al., 2017). However, as often found in 

developmental studies, this may not truly be the case (Scott & Baillargeon, 
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2017; Smid et al., 2022). In addition, the exact underpinnings of model-based 

decision-making, although theorized to be supported by EFs, remain unclear.  

In the last few decades, empirical research has pointed out flaws in the 

dual-systems theories and added nuance to the strong dissociation proposed 

between them in earlier works (Dow, 1990; Momennejad et al., 2017). Current 

research suggests that while there may be a distinction between more intuitive 

and more deliberate forms of thinking and decision-making, they happen 

simultaneously, and all decisions are a mix of these systems (Daw et al., 2011; 

Feher & Hare, 2019; Gläscher et al., 2010; S. W. Lee et al., 2014; Sambrook et 

al., 2018). In addition, both systems can be influenced by biases and emotions 

and might not necessarily be rational (Stanovich & West, 2003). Even though 

this dichotomy between habitual, model-free, and goal-directed, model-based 

decision-making is now deemed much less divergent than previously thought, 

this proposed dichotomy fueled ground-breaking research into descriptive 

decision-making and which strategies people may rely on when making 

decisions. Adding to this, the field of reinforcement learning allowed new 

methods of quantifying the contributions of different systems to decision-

making: formal models of habitual and goal-directed decision-making would 

create different reinforcing values for certain actions under different 

circumstances and thus, allow the contribution of either system to decision-

making to be dissociated (Daw et al., 2011; Doll et al., 2015; Kool et al., 2016).  

Prior work on the neural underpinnings of model-free and model-based 

decision-making has sought to uncover distinct signatures of associated 

prediction errors. Some studies suggest distinct regions for model-based 
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decision prediction errors, such as the posterior parietal cortex (O’Doherty et 

al., 2015), the dorsomedial prefrontal cortex (PFC) (Doll et al., 2015), and the 

(dorso) lateral prefrontal cortex (DLPFC) in particular (Beierholm et al., 2011; 

Cremer et al., 2021; Doll et al., 2015; Gläscher et al., 2010; S. W. Lee et al., 

2014; Smittenaar et al., 2013), while model-free prediction errors have been 

mainly localized to the (ventral) striatum (Beierholm et al., 2011; Gläscher et 

al., 2010; O’Doherty et al., 2015) or the putamen (Doll et al., 2015, but see also 

Daw et al., 2011; Sanfey & Chang, 2008). A potential causal role of the DLPFC 

in model-based decision-making was identified via direct manipulation of the 

DLPFC via TMS, which led to a reduction in model-based decision-making 

(Smittenaar et al., 2013).  

In contrast, only a few studies have addressed the neural correlates of 

metacontrol concerning switching between decision-making strategies (S. W. 

Lee et al., 2014; O’Doherty et al., 2015). For example, O'Doherty et al. 

suggested that the arbitration between model-free and model-based systems 

was encoded by bilateral inferior lateral PFC, the right frontopolar cortex, and 

the rostral anterior cingulate cortex (O’Doherty et al., 2015). Meanwhile, Lee et 

al. found that the arbitration between habitual and goal-directed systems 

depended on activity in the bilateral lateral PFC (S. W. Lee et al., 2014). In 

addition, a study on adolescents found that the selective upregulation of 

cognitive control for trials with greater reward in contrast to trials with lesser 

reward was governed by frontostriatal connectivity (Insel et al., 2017). This 

could lead to a similar relationship in the context of stake-based metacontrol 

used in the current study. Taken together, findings from these studies suggest 

that DLPFC, in particular, may be implicated in both model-based decision-
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making and its metacontrol, however, presumably serving different respective 

functions.  

In Chapter 2, I will explore model-based decision-making in childhood 

from the perspective of an adapted sequential decision-making task, where I 

find that it might appear much earlier than previously thought. In Chapter 3, I 

will investigate which EFs and individual differences in brain anatomy may be 

linked to and support model-based decision-making in childhood.  

1.4 A rational or irrational discount: intertemporal decisions 

In the first section of this introduction, I outlined the different schools of decision-

making in terms of normative, descriptive, and prescriptive approaches and the 

type of choices that the field of judgment and decision-making coined as 

decision-making under uncertainty (Erez & Reyna, 2019). Many of the 

decisions that people make daily fall under this category, with some decisions 

having a substantial long-term impact on our life (e.g., choosing a field of study, 

deciding to move abroad, choosing whom to marry). Other decisions are on a 

much shorter term, but may still have a significant impact (e.g., conducting a 

dangerous over-taking maneuver on a busy road, having unprotected 

intercourse). As I stipulated previously, most choices require people to trade off 

costs and benefits at different points in time. Decisions that have consequences 

in multiple periods are referred to as intertemporal choices. Therefore, 

decisions about savings, work, effort, education, nutrition, exercise, avoiding 

climate change, and health care are all intertemporal choices (Chapman, 1996; 

Hamilton & Potenza, 2012; Kacelnik, 1997; Slavic et al., 1977). 
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Understanding how people’s decisions are affected when faced with 

different temporal outcomes is essential and critical in understanding how 

society tends to tackle challenges and how our decisions may be influenced 

and manipulated. For example, environmental policies often require trading 

consequences with a differing time horizon: the immediate loss of gain resulting 

from banning forest cutting against the delayed, long-term loss caused by losing 

biodiversity and atmospheric activity of that forest. To make these types of 

decisions, people must, consciously or unconsciously, combine the magnitude 

of the immediate and future consequences and the time delay until each of 

them, which requires a time-discounting criterion. 

The field of normative decision-making is concerned with defining 

optimal, rational decision-making, free from biases, and stipulated how people 

ought to make rational decisions (Slavic et al., 1977). Inspired by economics, 

scientists were interested in whether people adhered to these logical principles 

in financial decision-making. Normative theories posit that minimal discounting 

with time is a valid normative construct (Elliott, 2019; Kacelnik, 1997). A 

problem with normative approaches to temporal discounting is that it is not 

evident if there is only one way to be rational about discounting. Psychological 

research cannot replace the need for ethical, psychological, and economic input 

for socially meaningful decisions such as environmental or health care policies. 

In the case of a more personal argument, one’s approach to saving is influenced 

by how one feels about postponing immediate gratification and external advice 

about the theoretical expectations of economic performance for the money set 

aside. Another factor is trust and perceived stability in one’s personal life. 

Without trust in financial institutions, one may be less likely to put money aside 
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in savings or investment accounts (Guillou et al., 2020, 2021). If there is 

instability in one’s personal life, for example, a family struggling to make ends 

meet, it may be preferred not to “risk” the uncertainty of time but rather to 

choose a guaranteed pay-off today.  

In descriptive decision-making approaches, which are concerned with 

analyzing how people do make decisions based on empirical approaches, it 

quickly became apparent that people discounted rewards that took place further 

away in the future. Temporal discounting, or the decrease of utility or value of 

a reward over time, has been a consistent finding in decision-making research 

(Keidel et al., 2021; Kirby, 2009). The theory of discounted utility is the most 

widely used framework for analyzing intertemporal choices (Chapman, 1996). 

Frequently, hyperbolic or exponential curves are fitted to choice data, and the 

parameters that dictate the steepness of the downwards curve are used to 

determine a person’s individual tendency to discount a reward with time 

(Kacelnik, 1997). However, recent theories have suggested that fitting these 

curves may not provide a complete descriptive account of the cognitive 

influences on intertemporal decisions in humans (Bos & McClure, 2013).  

Commonly, rewards that are available more immediately are preferred 

over rewards that may be larger but are delayed. This preference is known as 

temporal discounting, and this preference has been demonstrated in 

intertemporal choice studies where individuals are asked to choose between a 

smaller sum of money immediately (e.g., 10 dollars now) or a larger delayed 

sum (50 dollars in a week); the further away the reward, the less the reward is 

valued (Bos & McClure, 2013; Kirby, 2009). However, from a purely economic 
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standpoint, the way we process delay should be constant, and we should not 

devalue a larger reward because it is only available further in the future3. The 

most interesting question, then, becomes what factors predict individual 

differences in tendencies to discount rewards more with time. Reduced 

sensitivity to temporal discounting, which is therefore preferred, may be 

supported by episodic memory (Bulley et al., 2016; Shohamy & Daw, 2015), 

working memory (Wesley & Bickel, 2014; Zhao et al., 2022), intelligence 

(Rustichini, 2015), and cognitive control (Figner et al., 2010; Steinbeis et al., 

2012, 2016). On the other hand, individual variations in how steeply rewards in 

the future are discounted have been linked to psychopathology (Moutoussis et 

al., 2021; Story et al., 2014), problems with processing memory (Mellis et al., 

2019; Wesley & Bickel, 2014), and behavioral disorders such as gambling 

addiction (Bickel et al., 2007, 2014). In children, developmental studies show 

that with age, children become increasingly more patient (Green et al., 1999; 

Prencipe et al., 2011), which translates to them discounting future rewards less 

steeply with time. However, the mechanisms underpinning this development, 

for example, whether improvements in memory or other EFs in childhood may 

be driving this move towards more patient decision-making, remains unclear. 

In Chapter 4, I will explore the associations between EFs and intertemporal 

decision making in childhood.  

1.5 The social aspect in rational decision-making 

In the previous section, I discussed the commonly observed effect with which 

individuals may discount rewards set in the future with progressive time and 

 
3 This is assumed rational in the absence of strong inflation. 
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how this can also impact social decisions, for example, regarding climate 

change and health care policies. Human beings are naturally social creatures, 

and many of our daily decisions also impact the people around us and, 

therefore, take place in a social dimension. 

Our decisions can also affect our social lives and functioning, as daily 

we engage in the social exchange of goods and money (Henrich et al., 2005). 

These exchanges can pose a conflict of interest, where both parties aim to 

maximize their outcomes (Guth et al., 1982). For example, imagine a child at 

school engaging in a popular card trading game. The child may have doubles 

of a card, which they want to exchange for a desired card missing from their 

collection that another child possesses, the goal being to get the best deal 

possible. Therefore, the child needs to make an acceptable offer to the other 

child to meet their goal and, ideally, preserve a friendship so they can potentially 

trade again in the future if needed (Steinbeis et al., 2012). Cooperation thus 

involves a delicate balance of achieving one’s own goal, understanding the 

other person’s goal, and maintaining good standing for future interactions 

(Wang & Liu, 2022). Being known for generosity and sharing fairly with peers 

can help one gain social capital and develop successful ongoing and new 

reciprocal relationships (Bull & Rice, 1991). Instead, making more selfish 

decisions at the expense of the people around us, for example, stealing money 

or items, can make people more cautious or even refuse to interact with us in 

the future (Fehr & Gachter, 2000).  

The human ability to intuitively assess fairness is a critical factor in our 

capacity to cooperate within a larger society of unrelated and often unfamiliar 
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individuals. One of its key components is the ability to divide resources equally 

among members of a society (Rawls, 1971). How individuals respond to 

inequality in the distribution of resources is a useful objective benchmark of 

one’s underlying sensitivity to fairness (McAuliffe et al., 2017). A consistent and 

cross-cultural observation is that adults dislike receiving less than others, and 

adults prefer to receive nothing than accept inequality (Dawes et al., 2007). 

Further, adults have been shown to punish the proposers of unfair distributions 

even at cost to themselves (Dawes et al., 2007; Henrich et al., 2005). When 

participants are put in a situation of control over the division of resources in the 

absence of sanctioning threat, dividing the resources equally has been 

considered a measure of altruism or unconditional fairness (Benenson et al., 

2007; Edele et al., 2013; Hilbig et al., 2015). Pro-social decision-making has 

previously been linked to a better Theory of Mind (Li et al., 2017; Santamaría-

García et al., 2018; Wang & Liu, 2022), empathy (Q. Guo & Feng, 2017; R. Guo 

& Wu, 2021; Herne et al., 2022; Zhang & Wang, 2019), and personality traits 

(Allgaier et al., 2020; Gummerum et al., 2010; Hilbig et al., 2015). Moreover, it 

has also been linked to better EFs, for example, in the context of cognitive 

control (Figner et al., 2010; Steinbeis, 2016; Steinbeis et al., 2012; Steinbeis & 

Over, 2017).  

As previously mentioned, children increasingly make more pro-social 

decisions with age, which may be linked to an increase in inequality aversion 

(Blake & McAuliffe, 2011; Fehr et al., 2008; Gummerum et al., 2008). However, 

even if children understand a situation to be unfair and judge it so, this is not 

necessarily reflected in their subsequent behavior (Blake et al., 2014; Smith et 

al., 2013; Steinbeis et al., 2012) (however, also see (Paulus et al., 2018)). While 
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studies of adults cannot differentiate between the processes acquired through 

society and those with deeper biological roots, studies of children can help 

distinguish between the foundational and malleable components of social 

decision-making (McAuliffe et al., 2017).  

Interesting, there must be intrinsic motivation to engage in pro-social 

behavior as humans invest time, money, and effort in others even without the 

chance of repeated encounters (Steinbeis, 2016). Such altruism, which is 

defined as behaviors which incur a personal cost to benefit another in some 

way (Fehr & Fischbacher, 2003), already occurs early on in development, and 

in addition can be observed in other species, such as chimpanzees (Brosnan 

et al., 2010; Warneken & Tomasello, 2006). Altruistic behaviors can include 

helping, comforting, and sharing of resources (Schmidt & Sommerville, 2011; 

Svetlova et al., 2010; Warneken & Tomasello, 2006). As mentioned before, 

children have been found to become more pro-social with age. However, which 

psychological mechanisms may underlie pro-social sharing of resources 

remains elusive, especially in the middle childhood period. In Chapter 4, I will 

discuss age-related changes in social decision-making, and its relation to EFs 

in childhood. 

1.6 The developmental lens: executive functions and bounded 

rationality in decision-making 

The concept of bounded rationality argues that humans are rational creatures, 

within bounds. How far these bounds stretch is potentially dictated by our 

cognitive abilities, such as our ability to search through different options when 

considering which decision to make or our ability to access previous 
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associations or memories when faced with a similar scenario (Sutton & Barto, 

2018). In psychology, cognitive abilities that encompass our ability to expend 

attention and focus on a task at hand, or our ability to flexibly shift between 

different tasks, are often considered to be executive functions (EFs) (Diamond, 

2013). EFs are broadly defined as functions in the realm of working memory, 

cognitive flexibility, and cognitive control, or the ability to inhibit prepotent 

impulses (Diamond, 2013). Thus, an individual with a large working memory 

span and manipulation ability, good ability to flexibly switch between 

alternatives and contexts, and cognitive control over their actions, may 

therefore make more rational decisions. 

Human decision-making can either be split into quicker, cognitively 

cheap, and habitual decisions or slower, cognitively expensive, and goal-

directed decisions (Daw et al. 2011). While habitual decisions make up most of 

our daily actions (e.g., commuting home via the usual route, putting on the same 

t-shirt, making a morning coffee the same way), when faced with a new or 

difficult scenario, our goal-directed decision-making is prone to taking over 

(Dezfouli & Balleine, 2013; Dickinson, 1985). Using goal-directed decision-

making allows us to approach a problem consciously, consider alternatives, and 

pick the right option (Gillan et al., 2015; Wan Lee et al., 2014). Because this 

reflects a sophisticated way of thinking and approaching decisions, engaging in 

effective goal-directed decision-making is often thought to be a late-developing 

skill that only becomes available after brains have matured (Decker et al., 2016; 

Nussenbaum et al., 2020; Nussenbaum & Hartley, 2019; Palminteri et al., 

2016). Thus, another bound that may be placed on our rationality is the 

constraint of development.  



Chapter 1. General introduction 

59 
 

Research in developmental studies, especially studies that span the 

lifespan from childhood to adulthood, is often concerned with tracking the 

development of the building blocks of reason and rational decision-making. A 

common finding has been that “higher” EFs, such as complex cognitive abilities, 

only become available due to the ongoing maturation of brain regions and 

connections, as childhood is a period of greater plasticity (Buss & Spencer, 

2014; Fiske & Holmboe, 2019; Satterthwaite et al., 2013). Thus, if humans only 

reach their potential with developmental maturity, this means that rational 

decision-making should be developmentally incomplete. 

For example, as previously discussed, research into changes in temporal 

discounting across the lifespan observed that in developmental samples, 

progressive age is linked to less steep temporal discounting (Green et al., 1999; 

Prencipe et al., 2011; Steinbeis et al., 2016). In addition, when we consider pro-

social decision-making, as discussed in the previous section, developmental 

research has found that children’s decisions become progressively more pro-

social with age (Bauer et al., 2014; Chajes et al., 2022; Fehr et al., 2008; 

McAuliffe et al., 2017). In a mirror view of this, when we consider the potential 

factors that may “bound” our rationality, such as working memory, cognitive 

flexibility, and cognitive control, we again observe a consistent increase with 

age (Chevalier, 2015; Davidson et al., 2006; Domenech & Koechlin, 2015; 

Ganesan & Steinbeis, 2022; Garon et al., 2014; Prencipe et al., 2011; 

Satterthwaite et al., 2013; Wiebe & Karbach, 2017). Potentially, our ability to 

expand our bounds may, therefore, underlie our ability to engage in rational 

decision-making.  



Chapter 1. General introduction 

60 
 

While economic decision-making provides insight into how we might 

allocate resources at the moment or how long we can be persuaded to wait for 

a reward, it does not necessarily illuminate how we might learn from our past 

decisions. The field of reinforcement learning has been trying to formalize 

different ways of decision-making for nearly a century, from formalized models 

for animal decision-making to current research on complex decision-making 

strategies. A distinction between habitual and reflexive versus deliberate 

decision-making processes has been proposed in previous literature. This 

distinction ties in with the studies conducted in social and intertemporal 

decision-making, as it might require the ability to deliberate and correctly 

assess the outcomes of an action to see that the larger delayed reward has a 

higher payoff in the end.  

Throughout the experimental chapters, I will explore social and 

intertemporal decision making and reinforcement learning from a 

developmental focus. I will discuss research on the potential underpinnings of 

more pro-social and intertemporal decision making, as well as a higher degree 

of model-based decision making. In Chapter 2, I will discuss the presence of 

model-based decision making in childhood, and that this may emerge much 

earlier than previously thought. In Chapter 3, I will review the potential 

underpinnings of individual differences in model-based decision making in 

childhood. In Chapter 4, I will discuss social and intertemporal decision making 

from a developmental and prescriptive lens.  

1.7 The potential plasticity of social and intertemporal decision-

making 
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Throughout this introduction, I discussed the history of decision-making, and its 

shift from the assumption of human beings as rational decision-makers in 

normative theories, to describing human decision-making, including all its 

inconsistencies and biases in descriptive theories. The third branch of decision-

making research concerns prescribing how human beings should make 

decisions, the so-called prescriptive branch of decision-making research.  

Based on the types of decision-making I have discussed so far, the 

decisions one ought to make seem straightforward. For example, one should 

engage in goal-directed decision-making when it is necessary to solve a 

complex problem. One should generally be pro-social and fair to maintain 

healthy and reciprocal social networks with access to fairly distributed 

resources. Furthermore, one should generally aim not to be swayed to strongly 

discount time but focus on future outcomes almost as readily as immediate 

outcomes so that one can save effectively and lead a successful life by planning 

toward future goals. However, as I reviewed early on, humans are not rational 

decision-makers that normative theories and philosophies can capture. Instead, 

human decision-making is inconsistent, messy, and often irrational. 

When the concept of bounded rationality was introduced, it was a way to 

explain this absence of rationality in human decision-making. If we can only 

maintain so much information in our minds at a time, we can only be rational to 

a certain extent. However, with the introduction of this theory, Miller also hinted 

at individual differences in this regard in the title “The magical number seven, 

plus or minus two: Some limits on our capacity for processing information” (G. 
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A. Miller, 1956). If we could extend the limits, would we, in turn, also see 

increases in our rational decisions? 

These limits may be dictated by our EFs, as they are critical to supporting 

goal-directed behavior (Diamond, 2013). Additionally, childhood executive 

functioning has been shown to predict various social, academic, and mental 

health outcomes later in life (Blair & Razza, 2007; Clark et al., 2010; Moffitt et 

al., 2011). As we mentioned before, EF ability undergoes protracted 

development from childhood into early adulthood (Davidson et al., 2006; Garon 

et al., 2014; Wiebe & Karbach, 2017), likely supported by accompanying 

changes in frontoparietal and frontostriatal anatomy and connectivity (Buss & 

Spencer, 2018; Fiske & Holmboe, 2019; Insel et al., 2017). Given their strong 

links to real-life outcomes and prolonged plasticity throughout development, 

EFs have been primary targets for brain training interventions (Diamond & Lee, 

2011; Wass et al., 2012). While several training paradigms have had successes 

in improving the trained domain, for example, several studies have found that 

training working memory capacity does lead to long-term increases in working 

memory span (Schmiedek et al., 2010), the ultimate goal of these training 

paradigms is to test whether improvement in one cognitive ability also leads to 

improvements in a loosely related domain (Smid et al., 2020; Wass et al., 2012; 

Wilkinson et al., 2019). However, training studies that report robust effects on 

loosely related domains are few and far between, and the current consensus is 

that improvements in a correlated function may not effectively translate further 

than the trained subject (Gobet & Sala, 2022; Sala & Gobet, 2016, 2017, 2019). 

While many studies have investigated how EF training might impact other 

cognitive abilities or academic outcomes, not many studies have investigated 
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whether improvements in EFs via a training paradigm may lead to changes in 

social or intertemporal decision-making (but see (Kable et al., 2017; Steinbeis 

& Over, 2017; Zhao et al., 2022)). Intervention studies in childhood may be 

particularly interesting because this developmental period is marked by 

substantial changes in EFs and decision-making (Wass et al., 2012). Only a 

handful of studies have investigated how training EFs may impact decision-

making in childhood specifically (Steinbeis & Over, 2017; Zhao et al., 2022).4 In 

the final experimental chapter of this thesis, I will investigate if training cognitive 

control led to increases in pro-social decision-making and less steep temporal 

discounting in intertemporal decisions.  

1.8 Summary 

There are three main branches on approaching decision-making research: 

normative, descriptive, or prescriptive theories. Normative theories concern 

itself with how humans ought to decide, while descriptive research investigate 

how humans actually decide. Applying these two concepts, prescriptive 

research seeks to make humans more normative decision-makers. Descriptive 

research has shown that humans do not adhere to normative theories in their 

decision-making. For example, on a daily basis humans make decisions that 

impact their health and social wellbeing. Humans have been shown to strongly 

discount consequences of positive outcomes that are set further away in time. 

A pervasive explanation of why humans do not seem to be rational, 

normative decision-makers, is offered via the theory of bounded rationality 

 
4 Steinbeis & Over, 2017 used a behavioral control priming paradigm, rather than the actual 
training of the ability. 
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which proposes that humans are rational within the limit of their cognitive 

abilities. In addition, the concept of dual-systems theory has led to a pervasive 

theory of human decision making: humans rely on both a quick, intuitive habitual 

system and a slower, deliberate goal-directed system to make decisions. Goal-

directed decision making reflects a conscious and deliberate approach to 

decision making, which more closely aligns to the normative theories. The field 

of reinforcement learning uses computational models to quantify decision-

making behavior and is able to capture how much of each system one relies on 

for their decisions. By quantifying the individual differences in habitual and goal-

directed decision making, these differences can be linked to other cognitive 

abilities. 

Studies investigating the development of decision-making in humans 

report that children make decisions that show a lack of pro-sociality and inability 

to effectively consider intertemporal outcomes for decisions when compared to 

adults. Childhood is marked by substantial changes and increases in decision 

making behavior and cognitive abilities, mirrored by structural and connectivity 

related changes in brain development. From a prescriptive lens, if cognitive 

abilities are a limiting factor in rational, normative decision making, enhancing 

cognitive abilities will potentially translate to improvements in rational decision-

making. With childhood being a critical developmental period marked by greater 

plasticity, or the capacity to undergo substantial changes, it may therefore be a 

particularly effective period for intervention studies to enhance cognitive 

abilities and to impact decision making.  
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This thesis aimed to shed light on learning behavior in the context of 

decision-making in childhood, using an interdisciplinary computational 

approach via reinforcement learning models. Further, it sought to investigate 

whether goal-directed decision-making was linked to individual differences in 

EFs and brain anatomy. In addition, it sought to revisit the relationships between 

EFs and social and intertemporal decision-making, how these relationships 

change across childhood, and whether training EFs may lead to improvements 

in intertemporal decisions and pro-social decision-making. For all three 

experimental chapters, accompanying data and code for the analyses can be 

found on my Github (https://github.com/ClaireSmid). 
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Chapter 2. Model-based decision-making in childhood 
Part of Chapter 2 was published in a research paper in Developmental Science:  

Smid, C. R., Kool, W., Hauser, T. U. & Steinbeis, N. (2022). Computational and 

Behavioral Markers of Model-based Decision-making in Childhood. 

Developmental Science, e13295. https://doi.org/10.1111/desc.13295 

2.1 Abstract 

Human decision-making is underpinned by distinct systems that differ in 

flexibility and their associated cognitive cost. A widely accepted dichotomy 

distinguishes between cheap but rigid model-free and flexible but costly model-

based systems. Typically, humans use a hybrid of both types of decision-

making depending on environmental demands. However, children’s use of a 

model-based system during decision-making has not yet been shown. While 

prior developmental work has identified simple building blocks of model-based 

reasoning in young children (1-4 years old), there has been little evidence of 

this complex cognitive system influencing behavior before adolescence. Here, 

by using a modified task to make engagement in cognitively costly strategies 

more rewarding, I demonstrate that children aged 5 to 11 years (N = 85), 

including the youngest children, displayed multiple indicators of model-based 

decision-making and the degree of its use increased throughout childhood. 

Unlike adults (N = 24), however, children did not display adaptive arbitration 

between model-free and model-based decision-making. My results 

demonstrate that children can engage in highly sophisticated and costly 

decision-making strategies throughout childhood. However, the flexible 
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arbitration between decision-making strategies might be a critically late-

developing component in human development. 

2.2 Introduction 

To navigate our world successfully, we need to learn which of our actions lead 

to desirable outcomes. It is commonly theorized that human reward-related 

learning is guided by at least two decision-making systems competing for 

control (Daw et al., 2005; Gläscher et al., 2010). One is a goal-directed and 

computationally costly model-based system, which can flexibly compare 

actions and their expected outcomes across contexts. The other is a habitual 

and computationally cheaper model-free system that ties rewards to specific 

cues, enabling the repetition of previously reinforced actions (Dickinson et al., 

2002). The field of reinforcement learning provides a practical computational 

framework to dissociate contributions from these two systems to behavior (Daw 

et al., 2005; Dolan & Dayan, 2013; Gläscher et al., 2010). While model-based 

decision-making exploits the underlying hidden structure of an environment and 

matches the rewards attained with the appropriate actions, model-free decision-

making relies entirely on previously learned action-outcome contingencies. 

Although model-based decision-making can be much more accurate, it comes 

at a cognitive cost.  

On the other hand, model-free decisions rely on previously learned 

action-reward outcomes and are, therefore, efficient but cannot quickly adjust 

to environmental changes. Optimally responding to different environmental 

demands within the inherent processing limits of the human cognitive system 

consequently requires dynamic arbitration between the costs and benefits of 
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both decision-making systems (Lieder & Griffiths, 2019). For example, for 

everyday tasks, the efficiency of a model-free system might be preferred, while 

to be successful in novel or complex scenarios might require a more demanding 

but more accurate model-based system. While a wealth of studies show that 

adults use both systems when making decisions, little is known about how these 

systems come to contribute to decision-making during human development.  

Children can make simple value-based decisions from a young age by 

learning which actions lead to positive and negative outcomes. For example, 

even young infants have been shown to link actions and reward through gaze 

following (Ishikawa et al., 2020), to learn the underlying hierarchical structure 

of a sequential decision-making task (Werchan & Amso, 2021), and to 

understand goal-directed movement (Southgate et al., 2014). In addition, in a 

task where children were rewarded with cartoon video clips, preschoolers (3-4 

years old) displayed action-outcome learning by repeating actions that were 

rewarded in the past and stopping certain actions when they no longer led to 

the same reward (Klossek et al., 2008, 2011). In addition, the ability to control 

reflexive responses to stimuli, an executive function named inhibition, is present 

from a young age and continues to improve and develop further through 

childhood (Davidson et al., 2006). While these studies show that children can 

learn the relationship between their actions and subsequent reward, it is unclear 

whether children rely on model-free action-reward contingencies or further 

employ this value-based learning to build an internalized model of the world and 

use it to guide goal-directed behavior. Recent developmental studies using 

sequential decision-making tasks with 8 to 12-year-old children found no 

indication of contributions of a model-based system to choice before the age of 
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12 (Decker et al., 2016; Nussenbaum et al., 2020; Palminteri et al., 2016; Potter 

et al., 2017). Instead, the results from these studies suggest that the use of 

model-based decision-making strategies emerges in and increases through 

adolescence. These findings suggest that model-based decision-making might 

be a late-developing process, similar to other cognitive abilities such as fluid 

reasoning or inhibitory control (Otto et al., 2015; Potter et al., 2017). 

Like many other studies investigating model-based decision-making in 

humans, these prior studies used a common sequential decision-making 

paradigm, often called the “two-step” task. However, crucially, in the traditional 

version of the two-step task (Daw et al., 2011), using model-based decision-

making does not yield more reward than model-free decision-making (Akam et 

al., 2015; Kool et al., 2016). In short, this is because the stochastic nature of 

the rewards and the transitions in the original two-step task make it difficult for 

a model-based system to plan effectively through the task structure (Kool et al., 

2016). Indeed, recent variations of the traditional two-step task that simplified 

the transitional structure, which do allow a model-based system to outperform 

a model-free one, yielded a boost in model-based decision-making in adults 

(Akam et al., 2015; Kool et al., 2016). Thus, the prior work reporting a lack of 

model-based decision-making in 8 to 12-year-old children cannot disentangle 

whether this reflected a general inability or whether the stochastic task structure 

and lack of incentive stopped children from utilizing model-based decision-

making. Therefore, in the current work, I investigated whether children aged 5-

11 years could engage in model-based decision-making when using a 

sequential decision-making task with a deterministic task structure that allowed 

for effective planning and greater incentives for using the model-based system. 
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In addition to a deterministic task structure, I used a further reward 

manipulation in the task to maximally incentivize the use of a model-based 

system. Previously, adults have been shown to increase their model-based 

decision-making when greater rewards could be won (Bolenz et al., 2019; Kool 

et al., 2017; Patzelt et al., 2019). However, whether or not children engage in 

effective and flexible metacontrol over distinct decision-making systems 

remains unclear. Therefore, in addition to investigating whether children of this 

age range could engage in model-based decision-making, I tested whether they 

arbitrated between model-free and model-based decision-making in response 

to changes in the potential magnitude of reward. To this end, I used 

environmental manipulation in the form of “high-stake” trials, where rewards 

were multiplied by a factor of five, and “low-stake” trials, where rewards were 

not multiplied. Optimal metacontrol on this task entails approximating the 

relative costs and benefits of using each system and increasing model-based 

decision-making, which leads to higher rewards for high-stake trials (Bolenz et 

al., 2019; Kool et al., 2017; Patzelt et al., 2019).  

In sum, I address two questions; first, whether children aged 5 to 11 

years can engage in model-based decision-making using a novel sequential 

decision-making task; and second, whether children can demonstrate effective 

metacontrol over distinct decision-making systems. In contrast to previous 

findings, the current results suggest that pre-adolescent children can engage in 

model-based decision-making, which I demonstrate using both behavioral and 

computational methods. However, optimal metacontrol between goal-directed 

and habitual decision-making systems was not yet confidently expressed during 

childhood.   
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2.3 Materials and Methods 

2.3.1 Participants 

Children were tested in pairs at a school in Greater London. Parental consent 

had been obtained prior to the study. Ethical approval for this study was 

obtained from UCL’s Research ethics committee in compliance with UK 

national regulations. The present task was part of a larger battery of tests and 

was administered at the start of the battery. I used an a priori power analysis 

run in G*Power (Faul et al., 2007) to determine the sample size necessary to 

achieve similar power as in previous studies (Decker et al., 2016; Eppinger et 

al., 2013). Eppinger et al. (2013) found large age-related effects in model-based 

decision-making in an adult sample with 60 participants. The information 

entered into the power calculation was an α of .05, a power of 90%, and the 

effect size found by Eppinger et al. (t < 4.04, p <.001, ղ2 = 0.20) (Eppinger et 

al., 2013; Faul et al., 2007). Additionally, Decker et al. (2016) found an age-

related effect of model-based decision-making across their sample with 59 

participants (children, adolescents, and adults), with a medium effect size, 

(X2(1) = 26.00, p <.001, effect-size estimate = 0.27, se = 0.05) (Decker et al., 

2016). Based on this, I determined that with a sample size of at least 60 

children, I would achieve more than 90% power to detect a true age-related 

effect of comparable size. 

A total of 114 children were tested in a classroom locally in a school in 

Greater London. Every experimenter tested two children simultaneously, and 

five experimenters conducted testing in the classroom each day. Children were 

tested in between classes with the help of teaching staff. Due to time 
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constraints, some participants could not complete the entire task. Therefore, I 

included children if they had a) completed at least two-thirds of the task and b) 

fewer than 30% missed trials. This led to the exclusion of 29 children (22 

because the task was cut short and seven because of missed trials). Missed 

trials were excluded from the analysis as participants did not receive rewards 

on these trials and, therefore, could not learn from them. On average, children 

missed 10% of the trials. 

The final sample of children comprised 85 participants (37 girls (44%) 

and 48 boys). The mean age of children was 8.2 years (SD = 1.6), ranging from 

5.0 to 11.4 years, see Table 1. Adult participants were tested at lab facilities at 

University College London. The adult sample consisted of 24 participants (11 

females, (46%), 13 males), with a mean age of 25.2 years (SD = 4.7) ranging 

from 18.7 to 35.3 years. On average, adults missed 3% of the trials, and none 

had to be excluded from the sample based on the two inclusion criteria 

described above.  

Table 1. Ages and gender for the developmental and adult sample 
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2.3.2 Sequential decision-making task 

2.3.2.1 Task design and narrative 

We used a modified version of the novel task developed by Kool et al. (2017), 

which was designed to be more conducive to model-based decision-making 

and to allow testing for the presence of metacontrol via low and high-stake 

manipulation that was more salient for children.  

Participants were told they were space explorers and that their mission 

was to collect as much treasure as possible from the two planets (red and 

purple) they could travel to. Each planet had one alien who gave the participants 

treasure when they visited their planet. To be manageable for the younger 

children in the sample, the current task consisted of 140 trials (compared to 201 

trials in Kool et al. 2017). Therefore, I conducted parameter recovery analyses 

of the current task with 100, 140, and 200 trials to ensure that the model-based 

contribution (w) parameter had good recoverability for the trial numbers 

completed by participants in the sample. For these results, please see 2.6.3 

Parameter recovery. 

Trials consisted of two stages. In the first stage, participants were 

randomly presented with one of two possible pairs of spaceships displayed on 

an earth-like planet background (see Figure 8a). Each spaceship appeared on 

the left and right sides with equal probability. There were four spaceships in 

total, and spaceships were always displayed in the same pairs, of which one 

spaceship always went to the red planet, and one spaceship always went to the 

purple planet (Figure 8a). The choice between the two spaceships had to be 

made by pressing one of two keyboard keys (i.e., “F” or “K”) within a time 
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window of 2 seconds. After a spaceship was selected, it was outlined by a 

border for the remainder of these 2 seconds, meaning trials could not be 

progressed through faster but had a fixed duration. 

 

Figure 8. Sequential decision-making task design. 
a) Schematic of the transition structure with arrows displaying deterministic 
transitions; if a participant chose the dark blue or the orange spaceship, they 
would always transition to the red planet. b) At the planets, participants received 
rewards in the form of space treasure ranging between 0-9 pieces according to 
the drifting reward rate per planet. c) At the start of the trial, participants saw 
the stake amplifier, which either showed "1x" for low-stake trials or “5x” for high-
stake trials. Next, they saw a pair of spaceships and chose one, after which 
they transitioned to either the red or the purple planet, where they had the 
opportunity to win pieces of treasure. During low-stake trials, pieces of treasure 
were displayed in blue with a red “1” on every piece, and participants received 
points equal to the number of treasure pieces shown. d) During high-stake trials, 
the blue treasure was displayed first and then, after a delay, turned into gold 
treasure with a red “5” on top of it, and the number of points received was 
multiplied by five. 

In the second stage, participants transitioned to either a red or a purple 

planet, as determined by their choice in the first stage. Note that both first-stage 

states offered the possibility to visit either planet at the second stage, with one 

spaceship always going to the red planet and the other to the purple planet. 
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When arriving at the planet, they saw an alien and had to press the spacebar 

within 2 seconds to collect “space treasure” from them (e.g., see Figure 8c and 

Figure 8d). The reward distributions between the two planets were initialized 

within a range of 0 to 4 points for one planet and 5 to 9 points for the other. 

Afterward, the reward distributions varied according to a Gaussian random walk 

(standard deviation = 2) with reflecting bounds at 0 and 9 for the rest of the 

experiment. They were told that the aliens slowly moved between the bad and 

good parts of their cave to make the participants aware of this fact. A new set 

of randomly drifting reward distributions was generated for each participant 

(Figure 8b). Such drifting reward rates have been shown to promote learning 

and continuous monitoring of rewards won at each planet, allowing a model-

based system to capitalize on faster changes in rewards compared to the 

traditional two-step task (Kool et al., 2016). 

Importantly, the spaceships in the first states were practically equivalent. 

One spaceship in a pair always led to the red planet, and the other spaceship 

always led to the purple planet. Because of this equivalence, model-free and 

model-based contributions to decisions can be dissociated since only the 

model-based system generalizes across the equivalent starting states. In this 

task, the difference between a model-based agent and a model-free agent is 

that a model-based agent can generalize between the spaceships that go to 

the same planet in each pair. For example, if the dark blue and the orange 

spaceship lead to the red planet, then a model-based agent should assign the 

same value to both spaceships. Thus, if a model-based agent chooses the 

orange spaceship and receives a reward that is higher than expected on the 

red planet, the value of choosing both the dark blue and the orange spaceship 
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increases, while for a purely model-free agent, only the value of the orange 

spaceship increases. In short, the model-based agent generalizes reward 

experiences from one first-stage state (one pair of spaceships) to the other 

(other pair of spaceships) because they both lead to the same goal (the planet), 

whereas a model-free agent does not (Doll et al., 2015; Kool et al., 2016).  

The current task was designed to encourage model-based decision-

making by allowing a model-based agent to outperform the model-free agent in 

terms of reward gained throughout the tasks. This is accomplished due to the 

faster drifting reward rates, which a model-based agent can capitalize on by 

planning through an internal model of the task structure. Thus, this design leads 

to a positive correlation between the degree of model-based decision-making 

and rewards earned, which was absent in previous versions of the task. 

2.3.2.2 Stakes manipulation  

I employed low and high-stake trials to test whether the participants arbitrated 

between employing model-free and model-based systems depending on the 

rewards available. During the trials, participants received rewards in the form of 

pieces of blue space treasure. At the start of each trial, participants were 

randomly presented with one of two “treasure amplifiers” for 2 seconds. These 

treasure amplifiers indicated whether the trial was a low-stake (the amplifier 

showed “1x”, and the number of points they received was the same as pieces 

of treasure shown) or a high-stake trial (the amplifier showed “5x”, meaning that 

it was worth five times more points, see Figure 8c and Figure 8d).  On a low-

stake trial, the pieces of treasure won directly translated to the number of points 
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won on that trial, e.g., four pieces of blue treasure would have a value of four 

points (Figure 8c).  

In contrast, during a high-stake trial, rewards were multiplied by five, e.g., 

four pieces of treasure would have a value of 20 points. To make this difference 

between the stakes more salient for the children, on high-stake trials, the 

treasure turned from blue to gold treasure after a short delay and displayed the 

number “5” in red on top of the gold treasure pieces, as opposed to “1” on the 

blue treasure for the low-stake trials (Figure 8d). High- and low-stake trials were 

at an approximate 50/50 ratio and occurred randomly.  

Metacontrol was calculated as a difference score in the degree of model-

based decision-making expressed during the low- and high-stake trials. The 

degree of model-based decision-making was measured via a weighting 

parameter, whereby a value closer to 1 indicated more model-based control, 

and a value closer to 0 as more model-free control. Using a model with two 

weighing parameters, one for each stake condition, I measured the difference 

in the values between the two parameters. A positive value indicated more 

model-based decision-making for high-stake trials, and a negative value as 

more model-based decision-making for low-stake trials. A higher positive value 

reflects better metacontrol. 

2.3.2.3 Instruction phase 

All participants completed an identical instruction phase, which took 

approximately 20 minutes, and the main task itself took approximately 25 

minutes to complete. The instruction phase was identical for children and 
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adults. No rewards were gained during the instruction phase, and practice trials 

were not used for further analysis.  

During the instruction phase, participants 1) observed a demonstration 

of the drifting reward rates, which showed how fast the amount of treasure could 

change over trials. Participants observed two drifting reward distributions of 5 

examples per planet. This was fixed identically for all participants. Participants 

had to verbally report to the experimenter after each completed demonstration 

whether the treasure increased or decreased over the examples and were 

corrected if wrong and given feedback; 2) then, they completed a training stage 

to practice the transition structure. Here, a criterion of four correct consecutive 

transitions to the red and purple planet, respectively, were required to pass for 

all participants. After ten tries without successfully passing the requirement, 

participants were reminded of which planet they needed to travel to. Therefore, 

the task would only continue after participants had learned to successfully 

deterministically transition to each planet; 3) to familiarize participants with the 

trial sequence; in the third section, they completed six practice trials without 

stakes where they traveled to a planet of their choice and collected treasure 

using the transition structure. Unlike trials in the main task, no stake cue was 

presented, and the trials did not time out, whereas the trials in the main task 

had a 2-second response window. Additionally, treasures won were not kept; 

4) the last phase was a stake instruction where participants saw the stake cue, 

then a picture of one of the planets, randomly chosen, and then the trial 

animation associated with the respective stake together with the stake cue in 

the corner (“1x” or “5x”; see Figure 8c and Figure 8d). Treasure would be 

displayed above the alien with a question mark. Participants then had to 
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verbally state how many points they would receive for the treasure shown, e.g., 

if they saw four pieces of treasure, during low-stake trials, the correct answer 

would be 4, and during high-stake trials, this would be 20. Participants stated 

their answers to the experimenter, who provided feedback and corrected them 

if wrong, and then again explained the stake condition. No full trials were 

played, and no points could be earned.  

At the start of the main task, the drifting reward rates for each planet 

were reset, and any learned associations between rewards and planets during 

the instruction phase were irrelevant for the main task. As a result, none of the 

trials from the task preparation phase were included in the computational 

models. 

After the task preparation phase, all participants (children and adults) 

were asked to report on the transition structure. Participants did this by noting 

on a colored print-out sheet which spaceships they thought traveled to the red 

and the blue planets. Spaceships were presented next to each other and not 

displayed in pairs, as was the case on the computerized task. The transition 

structure differed between participants (e.g., which spaceships traveled to 

which planets), and whether the participants' answers were correct was 

therefore only assessed after testing and had no influence on the further testing 

procedure. However, the practice phase had a criterion of four consecutive 

accurate transitions to both planets to pass; this ensured that all participants 

learned the transition structure. The transition mappings of spaceships to 

planets were random for all children. For the adults, one fixed mapping of 

spaceships to transitions was used. 
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After the instruction phase, participants were told they would go on four 

missions to collect treasure during the main part of the experiment. Children 

were told that the more treasure they gathered in the game, the bigger their 

present would be at the end of the study. Adults were told that for every 200 

points, they would receive 50 cents (GBP).  

We examined participants’ understanding of the task by asking them to 

report the deterministic transition structure of the spaceships to the planets after 

the preparation phase. Due to missing data by tester omission, written 

responses from only 44 children were available. 80% of these children 

accurately reported the task structure. Of the 24 adults, 75% correctly reported 

where the spaceships went after practice. There was no significant difference 

in the understanding of the task structure after the practice phase between 

children and adults, (t(66) = .43, p = .670, 95% CIs [-.17, -.26]), suggesting that 

the majority of the children learned the deterministic structure of the task. 

2.3.3 Statistical analysis and corrections 

All statistical tests were conducted in R. For general effect sizes, I report 95% 

confidence intervals and Cohen’s d, and for regression results, I report the 

standard error of the mean (SEM). Cohen’s d was acquired using the Effectsize 

package (Ben-Shachar et al., 2020). For t-tests, the default R Welch's t-tests 

were used, which do not assume equal variance across groups for an 

independent samples t-test, resulting in fractional degrees of freedom. When 

groups are compared for t-tests, the confidence interval reflects the 95% 

confidence of the mean difference between the groups. For correlations, the 

confidence interval reflects the 95% confidence range of values that contain the 
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population correlation coefficient. For regression analyses, the package lme4 

in R was used (Bates et al., 2015). When p-values are represented as “q”, these 

“q-values” are multiple comparisons (FDR) corrected p-values using the default 

R STATS package. Dependent correlations were assessed using the COCOR 

package (Diedenhofen & Musch, 2015), and partial correlations were evaluated 

using the PPCOR package (S. Kim, 2015). 

We used an established dual-systems reinforcement learning model, 

which has been tested previously (e.g., Daw et al., 2011; Kool et al., 2016, 

2017), to estimate the parameter solutions used to determine the degree of 

model-based decision-making in the behavior of the participants. Model-fitting 

was conducted using the mfit package in Matlab (Gershman, 2018). In 

computational models, priors can be used, which are values used to initialize 

the parameters of a model. Using priors helps with the accuracy of model-fitting.  

If priors are kept “vague”, they do not influence the parameter solution strongly 

and only have a minimal effect on parameter solutions. Therefore, I used the 

same vague priors as used in a previous study investigating age effects in 

model-based decision-making and metacontrol in aging adults (Bolenz et al., 

2019; Gershman, 2016). I used Beta(2,2) priors for all model parameters 

bounded between 0 and 1 (learning rate (a), eligibility trace (λ), and the mixing 

weight(s) w), and a Gamma(3,0.2) prior for the inverse Softmax temperature 

(b), and for the two choice stickiness parameters (π and r) I used Normal(0,1) 

priors (Bolenz et al., 2019).  

The model-fitting procedure I used to acquire the parameter solutions 

has the potential to introduce noise. To avoid this, I used model-free simulations 
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to create a baseline to which I could compare the children (see 2.3.4 Model-

free simulation procedure). For more details on the dual-systems 

reinforcement-learning model see 2.6.1 Dual-reinforcement learning model, for 

the model-fitting procedure see 2.6.2 Model-fitting procedure, for model 

performance and comparisons see 2.6.4 K-fold cross-validation, 2.6.5 Bayesian 

model comparison and 2.6.6 Qualitative model validity. 

For the generalized linear mixed model, the package lme4 and the glmer 

command with family = binomial(link = “logit”) were used (Bates et al., 2015). 

The nested model selection was conducted using the AICcmodAvg package 

(Marc, 2020), and to visualize the plots, I used the ggeffects package (Lüdecke, 

2018). 

2.3.4 Model-free simulation procedure 

An essential aim of this study was to investigate whether children showed 

influences of model-based behavior. However, since the model-based 

weighting parameter is bounded between 0 and 1, estimates of this parameter 

will always be larger (or equal) to zero, which means that noise in either the 

model-fitting procedure or in behavioral performance can only push this 

parameter over the lower bound, and not under. Therefore, I needed a more 

meaningful baseline value for model-free decision-making. I established this 

baseline as the average estimated weighting parameters of simulated data from 

agents that were completely model-free but otherwise matched with the 

sample. 

We simulated 500 iterations of 85 synthetic model-free agents. I 

generated these agents the following way. First, I fitted a 5-parameter model, a 
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reinforcement learning model with w hardcoded to 0, to the decision data from 

the children. Next, I used the parameter solutions from the other parameters in 

this model (inverse temperature, learning rate, etc.), with added noise, and 

again set w to 0 to fit a generative version of the 5-parameter model to simulate 

behavior that would be completely model-free. Next, I fitted the 6-parameter 

model that included a free w-weighting parameter for model-based decision-

making over the whole task to this simulated model-free behavior. I used the w-

value that came from the 6-parameter model as the model-free baseline. These 

simulations provided us with a true null baseline value for model-free decision-

making as determined by the reinforcement learning model that can be used to 

compare data from actual participants meaningfully. 

All data, materials, and code for this chapter are publicly available on 

Github: https://github.com/ClaireSmid/Model-based_Model-

free_Developmental 

2.4 Results 

2.4.1 Children perform above chance level and are not random 

To assess whether children were sufficiently engaged with and capable of doing 

the task, I first compared their performance to chance level. Performance on 

the task was calculated as each individual’s corrected reward rate, which 

reflected the average number of points a participant earned per trial, corrected 

for each participant's possible rewards based on the drifting reward rates 

(Figure 8b). This corrected reward rate tracks task performance against chance 

level (0). Scores lower than 0 indicate performance worse than chance, and 

scores higher than 0 indicate better than chance performance.  
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There was no difference in mean reward rate (the drifting reward rates), 

or, the amount of reward that could be won, between the adults (M = .50, SD = 

.04), and the children (M = .49, SD = .05), (t(1, 107) = -.30, d = -.007, p = .768, 

95% CIs [-.02, .02], Figure 9a).  

The mean corrected reward for children was significantly higher than 

chance (t(84) = 3.20, d = .35, p = .002, 95% CIs [.003, .013]). Performance was 

also significantly correlated with age (r = .32, p = .003, 95% CIs [.12, .50], Figure 

9b). This suggests that the children were meaningfully performing the task and 

that performance improved throughout childhood. 

To compare reaction times between children and adults, I log-

transformed the reaction times. Between children (M = 0.58, SD = 0.23) and 

adults (M = 0.56, SD = 0.17), there was no significant difference in reaction 

time, (t(41.08) = 0.89, d = 0.19, p = .377, 95% CIs [-0.03, 0.07], Figure 9c), 

suggesting that children and adults could both successfully complete the task, 

and children were not at ceiling and therefore not too rushed to make their 

response. The two groups were matched on gender (X2(1, N = 109) = .00, φ = 

.019, p = 1.000). For children, there was no significant correlation between log-

transformed average reaction time and age, (r = .18, p = .098, 95% Cis [-0.03, 

0.38]), Figure 9d). 
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Figure 9. Performance and reaction time measures for children and 
adults. 
a) Mean reward drift rate for all children and adults, plotted as density curves 
overlaid on histograms per group, (b) Performance metric for children plotted 
over ages with adults plotted separately, (c) Log-transformed mean reaction 
times per stake for children and adults, (d) Log-transformed average reaction 
times for children over age with adults plotted separately. Error bars depict 95% 
confidence intervals, and shaded areas around regression lines indicate the 
standard error of the mean. On graph c, distribution is shown as violin plots. 

2.4.2 Computational signatures of model-based decision-making in 

children 

The performance metric shows that children were generally able to perform the 

task. However, this above-chance level performance could arise from 

successfully engaging a model-free or a model-based system. Thus, I 

investigated whether children displayed model-based decision-making by fitting 

their behavior to an established dual-systems reinforcement-learning model 

(Daw et al., 2011; Gläscher et al., 2010). This model outputs several 
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parameters that explain behavior (e.g., inverse temperature and a learning rate) 

and includes a weighting parameter that determines the relative contribution of 

each decision-making system to behavior, with weights close to 1 indicating a 

high degree of model-based decision-making and weights close to 0 as mainly 

being model-free. As a higher value reflects a higher degree of model-based 

decision-making, I will name this parameter “model-based contribution” 

throughout.  

For both children and adults, I conducted a formal model comparison 

where I assessed four computational models, 1) a random model, 2) a simplified 

reinforcement learning model with three parameters (henceforth 3-parameter 

model), 3) a 6-parameter stake-agnostic dual-systems reinforcement learning 

model (henceforth 6-parameter model), 4) a 7-parameter metacontrol dual-

systems reinforcement learning model with a model-based/model-free 

weighting parameter that was allowed to differ across stakes (henceforth 7-

parameter model). I compared the models using k-fold cross-validation, 

Bayesian model selection, delta AICs, and parameter recoverability in two 

separate parameter recovery analyses and a qualitative model assessment. 

From this comparison, the 6-parameter stake-agnostic dual-systems 

reinforcement learning model was the winning model overall. I fit the 6-

parameter model to the data to assess model-based decision-making agnostic 

of stakes, and I use the 7-parameter model to evaluate metacontrol. For the full 

computational model, model comparisons, and parameter recovery analyses, 

see 2.6 Supplementary Materials.  
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First, I investigated whether children displayed model-based decision-

making on the task over all combined trials. Children had an average model-

based contribution of 0.52 (SD = .17) and given that this value is significantly 

larger than 0, (t(84) = 27.40, d = 2.97, p < .001 95% CIs [.48, .56]), it suggests 

that children used a model-based system during the task. However, because 

the model-based contribution parameter is bounded between 0 and 1, there is 

a possibility that noise (introduced during task performance or model fitting) 

could elevate the value of the model-based contribution to be greater than zero, 

even if the children only used model-free decision-making. 

I created model-free simulations based on the children’s data to resolve 

this. This resulted in a mean model-based contribution parameter of 0.28 (SD 

= .02) from these model-free simulations. Thus, a mixing weight value of 0.28 

cannot be distinguished from pure model-free decision-making on the task and 

should be perceived as the baseline for testing the presence of model-based 

control.  

Critically, children’s mean model-based contribution was in the 100th 

percentile of the model-free simulation’s model-based contribution mean (100th 

model-free percentile: w = 0.33). This means that the mean of the children was 

larger than any mean value observed in the model-free simulations indicating 

that children between 5 and 11 years of age show significant model-based 

decision-making, (t(84.22) = 12.47, d = 3.49 p < .001, 95% CIs [.20, .27]).  

Additionally, I investigated whether children's degree of model-based 

decision-making increased with age. I found that there was a positive 
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relationship between the degree of model-based decision-making and age (r = 

.22, p = .042) (Figure 10a). 

Furthermore, I investigated whether the youngest children also showed 

significant model-based decision-making. I conducted t-tests separately for 

each year of age, correcting the p-values for false discovery rate. Every binned 

year of age showed a higher degree of model-based decision-making than the 

model-free simulations, (Figure 10b), (5-year-olds: N = 7, t(6.00) = 4.28, q = 

.005, d = 10.36, 6-year-olds: N = 18, t(17.01) = 6.53, q < .001, d = 7.32 , 7-year-

olds: N = 15, t(14.00) = 5.21, q < .001, d = 7.11, 8-year-olds: N = 15, t(14.00) = 

3.95, q = .002, d = 5.41, 9-year-olds: N = 17, t(16.00) = 4.47, q = .001, d = 5.62, 

10 (N = 11) and 11-year-olds (N = 2): t(12.00) = 8.65, q < .001, d = 13.39).  

I also investigated whether a linear model with a quadratic age term fitted 

the change of model-based decision-making better (e.g., (w ~ Age + Age^2)). 

When comparing a linear model with only age to a model with an additional 

quadratic age term, there was no significant difference between the models 

(F(1,83) = 3.76, p = .056). Thus, I interpret the changes in model-based 

decision-making over age as mainly linear. 

One of the main aspects of the current task design was that a higher 

degree of model-based decision-making leads to higher performance. To 

confirm this, I investigated the relationship between performance (the corrected 

reward rate) and the degree of model-based decision-making for the 

participants. Performance on the task was correlated to the degree of model-

based decision-making for the whole sample (r = .51, p < .001), showing that a 

higher degree of model-based decision-making was significantly related to 
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better performance. This effect remained significant after controlling for age (r 

= .37. p < .001). 

Lastly, I inspected potential gender-based differences in model-based 

decision-making. First, I looked at whether there were overall differences in 

gender for the children. There were no overall differences between males and 

females in the degree of model-based decision-making (F(1,83) = 0.01, p = 

0.923). When I ran a two-way ANOVA with Gender and age as predictors, only 

age was a significant predictor (F(1,81) = 4.24, p = .042), and there was no 

main effect of Gender (F(1,81) = 0.01, p = .921), nor an interaction between 

Gender and Age (F(1,81) = 0.83, p = .365).  

For the adults, there was no overall effect of gender on model-based 

decision-making (F(1,22) = 0.07, p = 0.800). In a two-way ANOVA with gender 

and age as predictors, neither age nor gender were significant (Gender: F(1,20) 

= 0.07, p = 0.800: Age: F(1,20) = 2.36, p = 0.140), and there was no interaction, 

(F(1,20) = 0.05, p = 0.826). 
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Figure 10. Model-based decision-making over age for children with the 
simulated model-free baseline. 
a) The degree of model-based decision-making significantly increased with age 
for the children. The dashed line represents the grand mean of the model-free 
simulations, which acts as the simulated model-free baseline. The shaded area 
around the regression line represents the standard error of the mean. Adults 
are plotted separately. b) Boxplots per rounded year of age for the children. As 
there were only two 11-year-olds, I combined these children with the 10-year-
olds (10+). The dashed line represents the simulated model-free baseline. 
Asterisks indicate significance level, *p<.05; **p < .01; ***p<.001. For panel b, 
significance indicates the highest q-value of each binned year of age against 
the model-free simulations. 

2.4.3 Other computational parameters and age 

We also looked at any other potential correlations with age for the children for 

the other model parameters for the 6-parameter model. The best-fitting 

parameter values are reported in Table 2. 
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Table 2. Best-fitting parameter values for the dual-systems 
reinforcement learning model without stakes (6 parameters) for children 
and adults 

 

None of the other parameters were correlated with age, (inverse 

temperature: r = .005, p = .965, 95% CIs [-.21, .22], Figure S2a; learning rate: 

r = .12, p = .270, 95% CIs [-.09, .33], Figure S2b; eligibility trace: r = .05, p = 

.655, 95% CIs [-.17, .26], Figure S2c; choice stickiness: r = .01, p = .925, 95% 

CIs [-.20, .22] Figure S2d; key stickiness: r = -.18, p = .101, 95% CIs [-.38, .04], 

Figure S2e).  

Regarding correlations with performance for children, inverse 

temperature (r = .37, p < .001, 95% CIs [.18, .54]), learning rate, (r = .33, p = 

.002, 95% CIs [.12, .50]) and choice stickiness (r = .28, p = .009, 95% CIs [.07, 

.47]) were significantly correlated to corrected reward rate, while eligibility trace 

was marginally significant (r = .20, p = .064, 95% CIs [-.01, .40]). There were 

no significant relationships with performance for key stickiness: r = .01, p = .918, 

95% CIs [-.20, .22]).  

For the adults, only model-based decision-making during high stakes 

was significantly negatively correlated to age (r = -0.45, p = .029), showing that 
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older adults had less model-based decision-making for high stake trials. None 

of the other parameters were significantly correlated to age (inverse 

temperature: r = -0.12, p = .579; learning rate: r = -0.03, p = .889; eligibility 

trace: r = -0.09, p = .668; model-based decision-making low stakes: r = -0.07, 

p = .757; choice stickiness: r = -.14, p = .522; key stickiness: r = 0.03, p = .884).  

A high learning rate is optimal for this task since rewards continuously 

change, reflecting how much value participants place on recent information. In 

this task, the most recent information is the most valuable since that is the best 

way to stay updated on both planets' drifting reward rate distributions. 

Meanwhile, the inverse temperature signals how much exploitation and 

exploration participants employ. The eligibility trace reflects how much value is 

being placed on previously attained rewards on the task, or the reinforcement 

learning history, which is not highly important in this task. For the stickiness 

parameters, these would ideally be close to 0 to indicate an absence of bias in 

choices and keys. 

We investigated which parameters differed significantly between the 

children and adults. Inverse temperature (t(24.28) = 3.90, p < .001), learning 

rate (t(45.72) = 5.74, p < .001), eligibility trace (t(33.51) = 3.47, p = .019), model-

based decision-making during low-stake (t(30.16) = 3.36, p = 0.025) and high-

stake trials (t(30.00) = 4.35, p < .001) were significantly higher for the adults 

than for the children. There were no significant differences in choice stickiness 

(t(33.70) = 1.67, p = .104) and response stickiness (t(99.65) = 0.62, p = .535). 
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Figure 11. Other computational parameters over age for children and 
adults. 
(a) inverse temperature, (b) learning rate, (c) eligibility trace, (d) choice 
stickiness, and (e) key stickiness. For all graphs, the shaded areas represent 
the standard error of the mean. The dashed lines in light blue represent the 
mean parameter values of the children.2.4.3 Metacontrol of decision-making for 
children and adults 

2.4.3 Metacontrol of decision-making for children and adults 

In the current task, every trial is preceded by a "treasure amplifier" that indicates 

whether the current trial is a low or high-stake trial (Figure 8c and Figure 8d). 

Any reward obtained on the trial is multiplied by five during high-stake trials, 

while on low-stake trials, the reward is multiplied by one and therefore does not 

change in value. The current task entailed changes to a previously used task 

with adults (Kool et al., 2016, 2017) (see 5.2 On the current and previous 
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contrasting findings of model-based decision-making in childhood for details) in 

the number of trials (140 as opposed to 201), the visualization of the stake 

condition, as well as a different testing environment (Amazon Mechanical Turk 

versus in-person testing, changes to task design (Figure 8c and Figure 8d)). I, 

therefore, first tested whether I could replicate a stakes effect in an in-person 

adult sample. To investigate this, I fitted adult data to a reinforcement-learning 

model that included a model-based contribution parameter that differed for each 

stake condition (Kool et al., 2017). There were thus two model-based 

contribution parameters, one for behavior during the low-stake trials and one 

for behavior during the high-stake trials. I conducted k-fold cross-validation to 

investigate whether both models could reliably predict choices made by children 

and adults. Both models predicted behavior for children and adults significantly 

better than chance, but there was no significant difference in accuracy for either 

model (for details, 2.6.4 K-fold cross-validation). The best-fitting parameter 

values for the 7-parameter model for children and adults are represented in 

Table 3. 

Table 3. Best-fitting parameter estimates for the dual-systems 
reinforcement learning model with stakes (7 parameters) for children 
and adults. 
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Adults showed a higher degree of model-based decision-making during 

high-stake trials (M = .71, SD = 0.19), compared to low-stake trials (M = .61, 

SD = 0.18; t(23) = 2.10, p = .047, d = .43, 95% CIs [.001 .185]) (Figure 12a). 

This replicates previous findings of a stake effect on adult model-based 

decision-making (Bolenz et al., 2019; Kool et al., 2017; Patzelt et al., 2019).  

Next, I assessed whether children's use of model-based decision-

making was also affected by the rewards at stake. To investigate this, same as 

the adults, I fitted children's data to a reinforcement-learning model that 

included separate model-based contribution parameters for each stake 

condition (Kool et al., 2017). 

Accordingly, I found no significant difference in model-based decision-

making between the low-stake (M = .52, SD = .13), and high-stake (M = .52, 

SD = .13) trials (t(84) = -.25, d = -.03, p = .803, 95% CIs [-.03, .03]) for the 

children. This suggests that children did not show a stakes effect like adults 

(Figure 12a). 

When I compared children and adults directly, adults had higher model-

based decision-making than the children both during low-stake (t(30.16) = -

2.36, d = 0.65, p = 0.025, 95% CIs [-.18, -.01]), and high-stake trials (t(30.00) = 

-4.35, d = 1.21, p < .001, 95% CIs [-.27, -.10]). 

I next tested whether an effect of stake on model-based decision-making 

might emerge with age for the children. Therefore, I correlated the model-based 

contribution parameters for the children's low and high-stake trials separately 

with age and controlled the age-related slopes during high and low-stake trials 

for the correlation between the two contribution parameters (Figure 12b). The 
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difference between the slopes was not significant (z = -0.50, p = .616). Thus, a 

stakes effect was not apparent in the children's behavior, suggesting that this 

ability may emerge later during development (Figure 12c). 

 

Figure 12. Model-based decision-making over stakes for adults and 
children. 
a) Adults displayed a significantly higher degree of model-based decision-
making for the high-stake trials. b) While children did not show a difference in 
the degree of model-based decision-making over stakes, this did not change 
over age. The dashed line represents the model-free baseline. c) connecting 
lines for participants’ model-based decision-making across stakes plotted over 
the distributions for children and adults separately.  Error bars depict 95% 
Confidence intervals, and shaded areas indicate SEM. Asterisks indicate 
significance level, *p < .05; **p < .01; ***p < .001. 
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2.4.4 Behavioral signatures of model-based decision-making for children 

and adults  

To complement the computational modeling analyses, I used generalized linear 

mixed models to approximate a behavioral model-based decision-making 

measure, which was the probability of repeating a visit to a planet (stay 

probability) as a function of reward on the previous trial. I used the same 

regression method as in an earlier task version (Kool et al., 2016). Using this 

method, the model-based component consists of a main effect of the previous 

reward on the probability of staying, whereas the reduced effect of previous 

reward when the starting state is different (compared to when it is the same) 

indicates a model-free component (Kool et al., 2016). The previous reward 

refers to the continuous points won by the participant on the previous trial. 

Starting state similarity refers to whether the current starting state (the rocket 

pair) is the same as in the previous trial. The influence of previous reward on 

staying behavior approximates the transfer of experience from one starting 

state to the other. On the other hand, the differential influence of previous 

reward on starting state similarity or difference can reflect a lack of transfer of 

experience between the starting states. Model-free and model-based systems 

should therefore generate different influences of starting state, as only the 

model-based system can effectively generalize over states (Figure 13a). 

First, I fitted an identical model to both children and adults that only 

looked at the influence of starting state similarity (whether participants saw the 

same spaceship pair as on the previous trial or the other pair) and previous 

reward on stay behavior. For children, there was a main effect of previous 

reward on the probability of stay, indicating a model-based component (beta = 
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.12, se = .02, z = 5.56, p < .001). The interaction between previous reward and 

starting state similarity was not significant, showing that previous reward 

increased the probability of staying for both starting states similarly (beta = -

.003, se = .02, z = -.14, p = .892). In addition, there was a main effect of starting 

state (beta = .05, se = .02, z = 2.35, p = .02). Thus, these results suggest that 

children could generalize successfully over starting states and indicated a 

model-based component in their behavior (Figure 13b). 

For adults, there was also a main effect of reward on staying probability 

(beta = 1.09, se = .05, z = 22.81, p < .001). There was no main effect of starting 

state (beta = .06, se = .05, z = 1.44, p = .149), however, there was a small but 

significant interaction between starting state and previous reward (beta = .10, 

se = .05, z = 2.22, p = .026) (Figure 13c). I also included a group term in the 

models to compare children and adults. the model-based predictor, previous 

reward, remains significant for the whole sample (beta = 0.12, se = 0.02, z = 

5.55, p < .001). I found that adults had a stronger effect of the model-based 

predictor on staying probability, indicated by an interaction between group and 

previous reward (beta = 0.98, se = 0.5, z = 18.67, p < .001), as well as a higher 

probability to stay overall, based on a main effect of group (beta = 0.44, se = 

0.10, z = 4.41, p < .001). Adults also had a higher raw behavioral stay probability 

overall than the children (F(1,12631) = 120.9, p < .001). 

Thus, this suggests that adults also successfully generalize over starting 

states and that the effect of the model-based predictor was stronger for the 

adults than the children. The results from the regression models thus mirror the 

computational results.  
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Figure 13. Model-free and model-based contributions to stay probability. 
Stay probability meant repeating a visit to the same planet (red or purple, see 
Figure 1a). a) Examples of influences of pure model-free and model-based 
decision-making on stay probability following previous reward. For a pure 
model-free system, stay probability only increases when the starting state (pair 
of spaceships) is the same. b) Predicted results from a model investigating the 
influence of starting state. For children, across starting states, stay probability 
increased similarly with increasing previous reward, indicating a model-based 
effect. Note that the y-axis for children differs, as children generally showed a 
lower propensity to ‘stay’. c) For adults, across the starting states, the 
probability of staying also increased, indicating a model-based effect. The 
dotted lines for children and adults indicate the chance level of stay probability 
(50%). Continuous predictors in the models have been z-scored (e.g., Previous 
reward). 
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2.4.5 Best-fitting behavioral models for children and adults 

Next, I conducted a nested model selection to find the best model to separately 

predict stay probability for children and adults. In a previous logistic regression 

model, additional predictors were included alongside previous reward (the 

model-based component) and starting state similarity (same or different 

spaceship pairs) to approximate the computational models more closely. 

Namely, the difference in available reward across the two planets on the 

previous trial (a proxy of reward history) and stake (high and low stakes) allows 

for investigating the influence of stake on choice behavior (Kool et al., 2016). 

For the current study, I also included age for the children. For both children and 

adults, I included a null model with only an intercept and no slope; for neither 

children nor adults was this null model the best fit. 

For the children, the best-fitting model included previous reward (the 

model-based component) and age as fixed effects as well as their interaction 

(AIC weight (model probability) = 0.38; Table 4). Previous reward had a 

significant main effect on staying probability (beta = .12, se = .02, z = 5.60, p < 

.001), while age was not a significant main effect (beta = -.00, se = .04, z = -

.04, p = .967), but the interaction between previous reward and age was 

significant (beta = .070, se = .02, z = 3.17, p = .002) (Figure 14a). Thus, previous 

reward had a main effect on staying probability, indicating a significant model-

based effect on the children’s choice behavior. The positive interaction shows 

that the influence of previous reward on staying probability increases with age.  
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Table 4. Generalized linear model for children. 

 

For adults, the best-fitting model included previous reward, starting state, 

and stake, as well as their interactions (AIC weight (model probability) = 0.83, 

Table 5). There were significant fixed effects of previous reward (the model-

based component) (beta = 1.14, se = .05, z = 22.78, p < .001) and stake (beta 

= 0.22, se = .05, z = 4.88, p < .001). Additionally, the interaction between 

previous points and stake were significant, indicating a stakes effect (beta = 

.35, se = .05, z = 7.08, p < .001), (Figure 14b). The interactions between 

previous points and state similarity was also significant (beta = .13, se = .05, z 

= 2.56, p = .010), and the three-way interaction between previous points, 

starting state and stake (beta = .11, se = .05, z = 2.25, p = .025), showed that 

there was a small effect for adults to be more likely to ‘stay’ when the starting 

state was the same (same spaceship pair) during high stake trials.  



Chapter 2. Model-based decision-making in childhood 

102 
 

Table 5. Generalized linear model for adults. 

 

To compare children and adults directly, I ran models that included the whole 

sample of participants and looked at group-based differences. 

First, I assessed group-based differences in the model-based predictor. 

When I include group into the model (stay ~ previous reward * starting state 

similarity * Group + (1|ID)), the model-based predictor, previous reward, 

remains significant for the whole sample (beta = 0.12, se = 0.02, z = 5.55, p < 

.001). I also see a significant main effect of group on the probability to stay (beta 

= 0.44, se = 0.10, z = 4.41, p < .001), with the adults scoring higher overall. In 

addition, there is an interaction between previous reward and group, (beta = 

0.98, se = 0.5, z = 18.67, p < .001), showing that adults show a stronger effect 

of the model-based predictor on stay probability. There is also a main effect of 

starting state on the probability to stay overall, (beta = 0.05, se = 0.02, z = 2.34, 

p = 0.019), and an interaction for previous reward and starting state for the 

adults (beta = 0.11, se = 0.05, z = 2.07, p = 0.039). Based on this analysis, the 
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significant interaction between group and previous reward indicates that the 

model-based predictor had a stronger effect for the adults.  

When I further included stake in the model, I saw that there was a 

significant three-way interaction between previous reward (the model-based 

indicator), stake, and group (beta = 0.34, se = 0.05, z = 6.40, p < .001), 

indicating that adults showed more model-based control during high stake trials. 

There was also a significant interaction of stake and group (beta = 0.17, se = 

0.05, z = 3.47, p = 0.001), and the interaction between previous points and 

groups remained significant (beta = 1.03, se = 0.05, z = 18.89, p < .001), as 

well as the main effect of previous points (beta = 0.12, se = 0.02, z = 5.54, p < 

.001), and the main effect of group (beta = 0.47, se = 0.10, z = 4.64, p < .001), 

indicating that adults showed higher stay probability overall and higher stay 

probability for the model-based predictor, but that the model-based predictor 

was still significant for children and adults alike. Additionally, there was a main 

effect of starting state (beta = 0.05, se = 0.02, z = 2.32, p = 0.020), a three-way 

interaction between previous reward, starting state and group (beta = 0.13, se 

= 0.05, z = 2.39, p = .017), and a four-way interaction between previous reward, 

starting state, stake and group (beta = 0.11, 0.05, z = 2.16, p = .031), indicating 

that adults were more likely to stay if the starting state was the same, especially 

for high-stake trials and after larger previous rewards. Thus, I see a stake effect 

repeated for the adults using the regression methods and an absence of a 

stakes effect for the children.  
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Figure 14. Best-fitting generalized linear mixed models of stay 
probability for children and adults. 
Stay probability meant repeating a visit to the same planet (red or purple, see 
Figure 1a). a) Predicted results from the best-fitting model for children. Previous 
reward -the model-based component- was a significant predictor of stay 
probability, showing that children displayed model-based influences in the 
choice data. In addition, there was an interaction between previous reward and 
age (z-scored), showing that older children (Age z-scored = 1) showed a 
stronger increase in stay probability with reward than the younger children (Age 
z-scored = -1). Note that the y-axis for children differs, as children generally 
showed a lower propensity to ‘stay’. b) For adults, previous reward was also a 
significant predictor and stake. The interaction between previous reward and 
stake was also significant, showing that adults increased their stay probability 
during the high stakes for more reward. The dotted lines for children and adults 
indicate the chance level of stay probability (50%). 

2.5 Discussion 

I investigated the development of model-based decision-making and how this 

is used adaptively across contexts in children aged 5-11. I report that when 

using a two-step task that encourages computationally costly decision-making 

strategies, children aged 5-11 years demonstrated model-based decision-

making. This finding was supported by both computational and behavioral 

measures of model-based decision-making. Crucially, I found that even five-

year-old children showed robust model-based decision-making, while the 
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degree to which it was expressed increased further with age. However, 

whereas adults showed indicators of metacontrol by selectively increasing 

model-based decision-making for higher rewards, children did not. Combined, 

these findings demonstrate that children as young as five can engage in 

sophisticated decision-making strategies on a sequential choice task but that 

the optimal arbitration between strategies undergoes further development.  

The finding that children younger than 12 display model-based decision-

making on a sequential decision-making task contrasts with prior studies 

reporting an absence of markers of model-based decision-making before 

adolescence (Decker et al., 2016; Potter et al., 2017). These studies revealed 

a developmental increase in model-based decision-making from childhood to 

adulthood. However, they also indicated that children consistently showed 

signatures of model-free but not model-based decision-making (Decker et al., 

2016; Palminteri et al., 2016; Potter et al., 2017). In this study, using both 

computational and generalized linear models of choice behavior, the findings 

show that contributions of a model-based system to behavior are present before 

adolescence and in children as young as five years old. I attribute the discrepant 

results between the current and prior work to task differences. 

Compared to the original and commonly used two-step task (Daw et al., 

2011), the present task encourages the use of model-based decision-making 

by allowing a higher certainty in planning due to its deterministic transitions and 

an increased rate of change in reward distributions (for an overview of all 

changes to incentivize model-based decision-making, see the Discussion, 
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section 5.2 On the current and previous contrasting findings of model-based 

decision-making in childhood). 

Thus, the high complexity and uncertainty in tasks in the original two-

step task, combined with the fact that more effortful model-based decision-

making did not lead to more rewards, may have hampered uncovering model-

based decision-making in children aged 8-12 years previously. Indeed, studies 

that employed an alternative two-step task with reduced transition complexity 

found increased model-based decision-making in adults (Akam et al., 2015). It 

is not uncommon in developmental psychology that the removal of confounding 

variables and reduction of task complexity triggers competence shifts to 

younger ages (Scott & Baillargeon, 2017). Furthermore, the current account is 

in line with previous findings of goal-directed behavior in infants and preschool-

aged children in simple decision-making tasks (Klossek et al., 2008, 2011), 

showing that even very young children can engage in sophisticated decision-

making strategies when the task allows for this.  

Contrarily, I found that, unlike adults, children did not prioritize model-

based decision-making during high-stake compared to low-stake trials. 

Potentially, flexibly and swiftly arbitrating between decision-making strategies 

and anticipating which one is best suited to a specific situation might be the 

actual late-developing skill (Nussenbaum & Hartley, 2019). For example, 

previous studies found that younger children are less aware of different 

environmental demands and fail to respond to them proactively, for example, 

by avoiding a more difficult condition (Chevalier, 2015; Niebaum et al., 2019). 

In addition, even up to late adolescence, children might be less able to detect 
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and assign values to relevant environmental cues than adults, leading them to 

respond similarly to rewards of different magnitudes (Davidow et al., 2018; Insel 

et al., 2019). However, while the absence of metacontrol may reflect a genuine 

developmental effect, alternative interpretations are that children did not credit 

the high and low-stake conditions accurately enough or that the incentives used 

were not strong enough to uncover differences between the stakes (Habicht et 

al., 2022; Veselic et al., 2021). Future work may wish to use incentives that are 

even more salient to the present age group to establish whether metacontrol is 

genuinely absent in middle childhood. Another paper investigating the 

development of metacontrol in the form of prioritization of model-based 

decision-making for high stakes over low stakes from adolescence to adulthood 

(ages 12-25) found that metacontrol continued to increase with age (Bolenz & 

Eppinger, 2021), but that in a sample between younger (ages 18-30) and older 

adults (ages 57-80), metacontrol declined for older adults (Bolenz et al., 2019). 

Thus, metacontrol might be particularly sensitive to developmental changes, 

peaking in early adulthood and tapering off with advanced age. Exactly what 

drives this progression, for example, whether metacontrol is a unique stand-

alone ability or whether it is reliant on EFs or memory storage or manipulation, 

remains unclear. 

While model-based decision-making was present throughout the age 

ranges in this sample, the display of model-based decision-making was still 

variable in this group and further increased with age. Individual differences in 

processes linked to model-based decision-making, such as fluid reasoning, 

cognitive control, or working memory, may well be able to account for an 

increase in the display of model-based decision-making (Otto et al., 2015; Otto, 
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Raio, et al., 2013; Potter et al., 2017). Further research investigating such 

individual differences could shed light on the neurocognitive mechanisms 

underlying model-based decision-making in development. However, it remains 

essential to consider the task context in which decision-making and cognitive 

control are studied (Plonsky & Erev, 2021), especially in developmental 

research.  

When investigating the behavioral data, children showed a lower 

propensity overall to repeat a visit to the same planet. However, the behavioral 

data indicated a higher probability of staying with higher previous reward, 

indicating a model-based component in their behavior. The behavioral data 

lends itself to interpreting model-based decision-making as it signals that 

starting state similarity did not lead to different behaviors of stay behavior similar 

to a pure model-free agent. Therefore, in their behavioral data, children also 

displayed that they generalized across starting states in the current task. 

However, the finding that children were less likely to repeat a visit indicates one 

of the most considerable behavioral differences between children and adults. 

This might be due to children being less successful in exploiting highly 

rewarding previous choices or placing less importance on recent information, 

which is also reflected in their lower average values for inverse temperature 

and learning rate compared to adults. Thus, while children showed robust 

markers of model-based decision-making in that their behavior did not differ 

across starting states, their behavior differed from adults, mainly due to being 

less likely to repeat visits to the same planet.  
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Additionally, I observed that children, on average, missed 10% of the 

trials, while adults missed 3%. While there were no differences in average 

reaction time between children and adults (suggesting the children were not at 

ceiling for responding), this could indicate that the 2-second response window 

for the first-stage state was fast for children of this age. Future studies might 

want to increase the response window to limit timed-out trials for younger 

developmental samples. 

Lastly, while the current task is optimized to detect model-based 

decision-making compared to the Daw two-step task, it has less pronounced 

behavioral assessments of model-based decision-making. Future studies 

incorporating younger developmental samples may also want to assess other 

two-step tasks that include a clear behavioral indicator of model-based control, 

for example, by using more conventional binary probabilistic rewards and how 

this may change with age across childhood. 

In summary, this study demonstrates the presence of sophisticated 

value-based decision-making strategies during childhood. I found that in a task 

where model-based decision-making was tied to reward and where the 

transitional structure was deterministic, children aged 5-11 years could engage 

in model-based decision-making. The current study thus provides a crucial link 

between early goal-directed research on preschoolers and the computational 

modeling of model-based decision-making in adolescence. Interestingly, the 

ability to selectively amplify model-based decision-making during contexts with 

increased incentives was absent during childhood, indicating that metacontrol, 

rather than model-based decision-making, might be the cognitive process 
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undergoing delayed development throughout childhood and adolescence. 

Future work spanning a range of paradigms, ages, and methodologies will be 

instrumental in charting the emergence and development of model-based 

control and its arbitration and link this to performance and competency-based 

developmental mechanisms.  

2.6 Supplementary Materials 

2.6.1 Dual-reinforcement learning model 

To estimate the degree of model-based decision-making participants employed 

in this paradigm, I fitted an established dual-system reinforcement learning 

model (Daw et al., 2011; Gläscher et al., 2010; Kool et al., 2016, 2017) to their 

behavior. The paradigms consist of four states across two stages (the two pairs 

of spaceships and the two planets), with two available actions at the first-stage 

states between the spaceships (aA and aB) and one action at the second-stage 

state to collect the treasure (aC). The reinforcement-learning model consists of 

a model-based and a model-free system that both learn different values for 

actions and states, denoted as Q(s, a), which map each state-action pair to its 

expected discounted future return. On trial t, the first-stage state is denoted by 

s1,t, the second-stage state by s2,t, the first and second stage actions by a1,t and 

a2,t, and the first and second stage rewards as r1,t (which is always zero, since 

only on the second stage reward is attained) and r2,t.  

Model-free agent. The model-free agent relies on the state-action-

reward-state-action (SARSA) temporal difference learning algorithm, which 

uses reward prediction errors, the learning rate, and the eligibility trace to 
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update the values for each state-action pair (s, a) at stage i and trial t according 

to:   

  

where  

  

Is the reward prediction error for trial t at stage i, a is the learning rate parameter, 

which determines to which degree new information is incorporated, and ei,t(s,a) 

is an eligibility trace parameter, and which is set equal to 0 at the beginning of 

each trial and updated according to: 

  

before the Q value update. The eligibilities of all state-action pairs are then 

decayed by λ after the update. 

            For the current paradigm, this learning rule applies in the following way. 

The reward prediction error is different for the first two levels of the paradigm. 

Since at the first stage where they choose the spaceships, there is no reward, 

r1,t is always zero. The reward prediction at the first stage is instead driven by 

the value of the selected second stage action QMF(s2,t,a2,t): 

  

This means that the predicted reward from choosing the spaceships is tied to 

the reward attained at the planet stage. Since there is no third stage, the second 

stage prediction error is driven by the reward r2,t: 
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Both the first- and second-stage values are updated at the second stage, with 

the first-stage values receiving a prediction error that is down-weighted by the 

eligibility trace decay lambda. When lambda = 0, only the values of the current 

state get updated, rather than the values in the past.  

Model-based agent. The model-based agent uses the same reward 

prediction errors and learning rate as the model-free agent, but in addition, uses 

the transition map of the paradigm to calculate values of each choice. For this 

paradigm, it means that a model-based agent, but not a model-free agent, can 

generalize over choices in the two different starting states. To get an intuition 

for how this leads to different forms of behavior, say, for example, that a 

participant chooses the blue spaceship, which then transitions to the red planet, 

and this leads to a large reward. In the next trial, the participant is presented 

with the other starting state, the one that does not have the previously chosen 

blue spaceship. Now, the model-based system will realize that the orange 

spaceship also transitions to the red planet, and because it has just learned that 

this planet has become better, it will increase its preference for this choice 

option. A model-free agent is not able to make such generalizations since it 

relies on direct learning from action-reward contingencies. Therefore, it will not 

be more likely to pick the orange spaceship over the light blue spaceship in the 

other starting state. In short, a model-free agent would generate four separate 

values for all the spaceships, while a model-based agent would only generate 

two, correctly learning that two spaceships transition to the same planet. 
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The model-based values are defined in terms of the Bellman’s equation, 

which specifies the expected values of each first-stage action using the 

transition structure P, which means knowing how the spaceships transition to 

the planets, and which is assumed to be known to the agent: 

  

where I have assumed these are recomputed at each trial from the current 

estimates of the transition probabilities and second-stage reward values.  

Decision rule. To connect the model-based and model-free values to 

choices, the Q-values are then mixed according to a weighting parameter w:  

  

Where a value closer to 1 means the agent is more model-based, and a value 

closer to 0 means the agent is more model-free. To accommodate the stake 

manipulation, I defined two different weights that operated on different trial 

types. I set w = wlow on low stake trials and w = whigh on high stake trials. 

In the second stage, the decision is made using only the model-free 

values. I used the Softmax rule to translate the weighted Q-values to actions. 

This rule computes the probability for an action, reflecting the combination of 

the model-based and model-free action values weighted by an inverse 

temperature parameter. At both states, the probability of choosing action a on 

trial t is computed as: 
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where the inverse temperature b determines the randomness of choice or the 

exploitation/exploration trade-off. Specifically, when b approaches infinity, the 

probability of choosing the action with the highest expected value tends to be 

1, whereas, for b approaching 0, the probabilities over actions become equally 

likely across all options. The indicator variable rep(a) is defined as 1 if a is a 

first-stage action (choosing a spaceship) and is the same one as was chosen 

in the previous trial, so the participant chose the same rocket, zero otherwise. 

Multiplied with the ‘stickiness’ parameter p. This captures the degree to which 

participants show perseveration (when p > 0) or switching (p < 0) at the first 

stage. The indicator variable resp(a) is defined as 1 if a is a first-stage action 

selecting the same response key as the key that was pressed on the previous 

trial, zero otherwise. Multiplied with the response stickiness parameter r, this 

captures the degree to which participants repeated (r > 0) or alternated (r < 0) 

key presses at the first stage (e.g., whether they pressed the left key twice in a 

row). These two stickiness parameters were used since the locations of the 

spaceships changed per trial, and participants could therefore show 

perseveration or alternation bias towards the spaceships, button presses, or 

both. 

2.6.2 Model-fitting procedure 

I used maximum a posteriori estimation, implemented using the mfit toolbox 

(Gershman, 2018), to fit the parameters for the 6 (dual-systems reinforcement 

learning model with one mixing weight) and 7-parameter (dual-systems 
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reinforcement learning model with two mixing weights per stake) computational 

models to observed data. To avoid local optima in the estimation solution, the 

optimization was run 100 times for each participant with randomly selected 

initializations for each parameter.  

2.6.3 Parameter recovery 

To test whether the 7-parameter reinforcement learning model could reliably 

identify the contributions of both model-free and model-based decision-making 

on the task, I conducted parameter recovery for the 7-parameter model by 

running the generative version of the model for 500 agents and for 100, 140, 

and 200 trials. For each agent, I randomly sampled the initial parameters from 

uniform distributions: for all parameters bounded between 0 and 1 (learning rate 

a, eligibility trace l, w-low, w-high), I used U(0,1), for inverse temperature b 

U(0,2), and for the stickiness parameters π and r I used U(-0.5,0.5) (Bolenz et 

al., 2019; Kool et al., 2016). Next, I used the same model-fitting procedures as 

for the participant data to estimate the model parameters of the simulated data.  

 For 100 trials, I found substantial correlations between the estimated 

parameters for w-low (r = .61) and w-high (r = .60). For 140 trials, the 

correlations were slightly stronger (w-low: r = .62, w-high: r = .66), similar to the 

estimated parameters for 200 simulated trials (w-low: r = .69, w-high: r = .75). 

This indicates that for the trial ranges present, I could extract meaningful 

parameter estimates for the model-based parameters across stakes.  

 For the other parameters, for 100 trials I found: b: r = .87, a: r = .79, λ: r 

= .45, p: = .44, ρ: = .58. For 140 trials: b: r = .90, a: r = .83, λ: r = .53, p: = .52, 

ρ: = .67, and for 200 trials: b: r = .92, a: r = .87, λ: r = .54, p: = .54, ρ: = .71. 
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2.6.4 K-fold cross-validation 

I used k-fold cross-validation to test how accurate the models predicted 

behavior for children and adults. I conducted the k-fold cross-validation for each 

model separately and assessed model performance in four ways for children 

and adults. First, I evaluated the mean accuracy of each reinforcement learning 

model and tested these against the accuracy of the random model. Second, I 

conducted Bayesian model selection for the four models based on the 

predictive accuracies as established with the k-fold cross-validation. Third, I 

compared model AICs. Lastly, I used an additional parameter recovery analysis 

for the winning model to see if I could recreate human behavior and recover the 

same parameter solutions for the participants.   

The procedure for the k-fold cross-validation was as follows. For the full 

task, trials consisted of four blocks of 35 trials each. For every participant, I 

created four different combinations of training blocks (3) and left-out blocks (1). 

I fitted the model to the three training blocks and then used the parameter 

solutions to predict decisions for the left-out block. I evaluated the likelihood of 

the choice given the model (parameters) to assess the predictive accuracy. This 

provided the model accuracy measure for the four models, 1) the random 

decision model, 2) the simplified reinforcement learning model (henceforth 3-

parameter model), 3) the 6-parameter stake-agnostic dual-systems model 

(henceforth 6-parameter model), and 4) the 7-parameter metacontrol dual-

systems model (henceforth 7-parameter model). To test whether the model 

predicted choice behavior significantly above chance level, I compared the 

model accuracies of the three reinforcement learning models to the accuracy of 

the random model.  
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For the children, both the 6-parameter model (M = .5347, SD = .0868) 

and the 7-parameter model (M = .5345, SD = .0864) explained behavior 

significantly better than the random model (M = 0.5000, SD = 0), (6-parameter 

model: t(84) = 3.68, d = 0.40, p < .001, 95% CIs [.516, .553]; 7-parameter 

model: t(84) = 3.68, d = 0.40, p < .001, 95% CIs [.516, .553]). The 3-parameter 

model (M = 0.4939, SD = 0.0209), predicted behavior significantly worse than 

the random model (t(84) = -2.67, d = 0.29, 95% CIs [0.4894, 0.4985]). There 

was no significant difference in model accuracy between the 6-parameter and 

the 7-parameter models (t(84) = 0.50, d = 0.05, p = .656, 95% CIs [-.0005, 

.0008]), but the 6-parameter model did explain behavior significantly better than 

the 3-parameter model (t(84) = -4.58, d = 0.50, 95% CIs [-0.058, -0.023]), and 

so did the 7-parameter model (t(84) = -4.58, d = 0.50, 95% CIs [-0.058, -0.023]). 

For the adults, I found that the 6-parameter (M = .5442, SD = .0589), the 

7-parameter model (M = .5413, SD = .0572), and the 3-parameter model (M = 

0.5314, SD = 0.0555) explained behavior significantly above chance level (6-

parameter model: t(23) = 3.67, d = 0.75, p = .001, 95% CIs [.519, .569]; 7-

parameter model: t(23) 3.54, d = 0.72, p = .002, 95% CIs [.517, .565]; 3-

parameter model: t(23) = 2.78, d = 0.57, p = .011, 95% CIs [.5080, .5549]). The 

3-parameter model explained behavior significantly worse than both the 6-

parameter (t(23) = -2.61, d = 0.53, 95% CIs [-0.023, -0.003]), and the 7-

parameter model (t(23) = -2.11, d = 0.43, 95% CIs [-0.020, -0.0002]). There was 

a significant difference in model accuracy between the 6-parameter and the 7-

parameter model for the adults (t(23) = 2.85, d = 0.58, p = .009, 95% CIs [0.001, 

.005]). Overall, the 6-parameter model numerically had the highest accuracy, 
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but there was no significant difference between the 6-parameter and the 7-

parameter models for adults. 

2.6.5 Bayesian model comparison 

Next, I conducted Bayesian Model Comparison (BMS) using the bms function 

in the Matlab mfit package (Gershman, 2016, 2018; Stephan et al., 2009). I 

used the predictive accuracy of each model as established via the k-fold cross-

validation and reported the winning model based on the exceedance 

probabilities for the children and adults separately.  

For the children, the 6-parameter model had the highest exceedance 

probability (EP = 0.307), while the 7-parameter model came second (EP = 

0.280), then the 3-parameter model (EP = 0.249), and lastly the random model 

(EP = 0.164).  

For the adults, the 7-parameter model had the highest exceedance 

probability (EP = 0.309), next the 6-parameter model (EP = 0.297), then the 3-

parameter model (EP = 0.226), and lastly the random model (EP = 0.169).  

Next, I compared model AICs for both the children and adults separately. 

First, I assessed the model with the minimum AIC and the delta AIC values with 

the other models. For the children, the model with the lowest AIC was the 6-

parameter model (AIC = 163.04). The 7-parameter model had the second 

lowest (AIC = 164.86), and the delta AIC between them was negligible (ΔAIC = 

1.82). The 3-parameter model had the next lowest (AIC = 172.69), and the delta 

AIC with the 6-parameter model was substantial (ΔAIC = 9.65). Lastly, the 
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random model (AIC = 173.44) had the most considerable AIC difference from 

the 6-parameter model (ΔAIC = 10.40). 

For the adults, the model with the smallest AIC was the 3-parameter 

model (AIC = 149.77). The 6-parameter model had the second-lowest AIC (AIC 

= 151.92). The difference between the 3-parameter and 6-parameter models 

was small (ΔAIC = 2.14). The 7-parameter model was the third model with the 

lowest AIC (AIC = 153.67). The difference between the 7-parameter and 3-

parameter models was small (ΔAIC = 3.89). Lastly, the random model (AIC = 

190.71) had the most considerable AIC difference with the winning 3-parameter 

model (ΔAIC = 40.94). The difference between the 6-parameter model and the 

random model was also substantial (ΔAIC = 38.80). 

Overall, for children and adults, the 6-parameter stake-agnostic dual-

systems model comes out as the best-fitting model for the data. I, therefore, 

use this model as the winning model. The 7-parameter metacontrol dual-

systems model also has a good fit, performing better than the 3-parameter 

simplified reinforcement learning model in the mean accuracy of model 

prediction and the Bayesian model comparison. I, therefore, use both these 

models in the results going forward. 

2.6.6 Qualitative model validity 

To test whether the winning model successfully captured human behavior, I 

also conducted an additional parameter recovery analysis using the participant 

parameter solutions rather than simulated data. This allows us to test whether 

the models can successfully capture human behavior and whether unique 

parameter solutions are recoverable. The current approach to this was as 
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follows; I used the parameter solutions from the participants, children, and 

adults ran separately to simulate new behavior using the 6-parameter stake-

agnostic dual-systems model. Next, I fitted the model to the simulated data and 

extracted the parameter solutions again. I next correlated the initial and final 

parameter solutions to each other. A strong correlation would indicate that the 

model can both recover the unique parameter solutions of participants reliably 

and able to simulate human behavior.  

For the children, all parameter solutions had significant positive 

correlations with the initial and recovered parameter solutions (inverse 

temperature: r = 0.74; learning rate, r = 0.77; eligibility trace: r = 0.27; model-

based decision-making weighting parameter (w): r = 0.55; rocket stickiness 

parameter: r = 0.78; key stickiness parameter: r = 0.78). For the adults, all initial 

and recovered parameters were also significant (inverse temperature: r = 0.90; 

learning rate: r = 0.82; eligibility trace: r = 0.26; model-based decision-making 

weighting parameter (w): r = 0.66; rocket stickiness parameter: r = 0.70; key 

stickiness parameter: r = 0.75). Thus, the winning model could simulate human 

behavior and recover the parameter solutions.  

Lastly, I included a qualitative model assessment of the winning model 

by comparing the human behavior to simulated behavior via the number of 

points won during the task. I (1) used the parameters obtained from the human 

participants to simulate new behavior across ten iterations, and (2) compared 

the behavioral performance of the human participants to the simulated 

participants. Using an ANOVA, I tested whether there was a difference in the 

behavior of the humans and simulated participants across all iterations (where 
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one iteration was data from the human participants, Figure 15), and I found no 

difference between them (F(9,1080) = 0.77, p = .647, η2  = 0.006). I also tested 

this separately for each iteration (we compared the iteration with human 

participants to each simulated iteration separately). Here I find that for nine of 

the iterations there was no significant difference between the humans and 

simulated behavioral performance (it2: F(1,216) = 3.24, p = .073, η2 = 0.015; 

it4: F(1,216) = 3.13, p = .078, η2 = 0.014; it5: F(1,216) = 2.54, p = .112, η2 = 

0.012; it6: F(1,216) = 3.41, p = .066, η2 = 0.015; it7: F(1,216) = 3.24, p = .073, 

η2 = 0.015; it8: F(1,216) = 2.73, p = .100, η2 = 0.012; it9: F(1,216) = 2.82, p = 

.094, η2 = 0.013; it10: F(1,216) = 3.35, p = .069, η2 = 0.015). For one iteration, 

the difference was significant (it3: F(1,216) = 4.34, p = .038, η2 = 0.020). 

Combined with the previous results, I conclude that the model seems capable 

of reproducing human behavior. 

 

Figure 15. Qualitative model comparison. 
Iteration one (the lightest color) indicates human performance on the task. The 
other iterations (2-10) show the performance of the simulated agents based on 
human parameters.   
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2.6.7 Trial-by-trial analyses of reaction time and performance 

2.6.7.1 Reaction Time over Trials 

I conducted regression analyses to investigate whether reaction time changed 

over the course of the task, using reaction time as the outcome variable and 

trial as the predictor with a random intercept per participant for children and 

adults separately (RT ~ Trial + (1|Participant)). For children there was no 

change in reaction time over trials, (b < .0001, se = 0.0001, p = .969, 95% CIs 

[-.02, .02], (Figure 16 top, first plot)), while adults became significantly faster 

over trials, (b = -.001, se = 0.0001, p < .001, 95% CIs [-.12, -.06], (Figure 16 

bottom, first plot)).  

I next ran a model including stakes (RT ~ Trial * Stake + (1|Participant)). 

For children, there was no effect of stake or a trial by stake interaction, (trial: b 

= .0002, se = .0002, p = .301, 95% CIs [-.01, .04], stake: b = .040, se = .022, p 

= .064, 95% CIs [-.01, .05], stake x trial: b = .0004, se = .0003, p = .135, 95% 

CIs [-.06, .01]). For the adults, when including stake, there was also no 

significant effect of stake, or a stake by trial interaction, but the effect of trials 

remained (trial: b = .0006, se = .0002, p = .001, 95% CIs [-.11, -.03], stake: b = 

.0182, se = .021, p = .383, 95% CIs [-.07, .04], stake x trial: b = .0003, se = 

.0003, p = .187, 95% CIs [-.10, .02]).  

Lastly, I investigated whether there was a stake effect on reaction time, 

for example, if participants slowed down on high-stake trials. I conducted a 

regression analysis for reaction time, using stake and trial predictors. There was 

no significant main effect of stake for either children, (b = .04, se = 0.02, p = 

.064), or adults, (b = .02, se = .02, p = .383).  
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Important to note is that the participants also had time to make their 

decision when observing the treasure amplifier, which was always shown for 2 

seconds. Thus, participants could have already made their decision before 

seeing the spaceship pairs.  

2.6.7.2 Performance over trials 

To assess potential training or fatigue effects over trials, I analyzed the 

performance in the form of points won over trials for children and adults. I also 

plot performance over trials separately for children and adults, and I have split 

the two samples into three age quantiles to assess if there were age-related 

changes. I have plotted all trials, which includes the timed-out trials (where 

rewards won = 0), to indicate broader variability in the data (see Figure 16 top, 

the second plot for the children, and Figure 16 bottom, the second plot for the 

adults).  

I ran a linear model investigating whether trial number predicted rewards 

won, indicating that the participants became better at the task over time. There 

was a positive association between trial, and points won for the children, 

showing that with higher trial numbers, children won more rewards (beta = 

0.004, se = 0.001, t = 6.48, p < .001). For the adults, this was also positively 

significant, (beta = 0.003, se 0.002, t = 2.19, p = 0.029). When I ran a model 

including children and adults to see if there was potentially a group interaction, 

both trial and group were significant predictors, but there was no significant 

interaction between them (beta = -0.0008, se 0.2, t = -0.49, p = .623). Increasing 

trial numbers still predicted more rewards won (beta = 0.004, se = 0.001, t = 

6.53, p < .001), and adults won more rewards overall (beta = 0.9, se = 0.1, t = 
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5.68, p < .001). Thus, both groups seemed to perform better over time, with 

children improving more than adults but adults performing better overall. This 

suggests that there are training effects rather than fatigue effects. Do note that 

participants were allowed three breaks throughout the main section of the task 

for as long as they wanted after completing each block of 35 trials. 

 

Figure 16. Reaction time and performance over trials. 
Performance in the form of points won over trials for children (top) and adults 
(bottom). Both groups have been split into three age groups of equal numbers 
of participants for visualization. Error bars depict 95% confidence intervals, and 
shaded areas around regression lines indicate the standard error of the mean. 
Shaded areas represent the 95% confidence intervals of the means. 

2.6.8 Potential model-based effects on reaction time 

I ran two regression models to investigate whether reaction times could serve 

model-based decision-making. First, I ran models where I tried to predict 
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reaction times on the current trial based on whether the previous trial had been 

a “win” (same definition as above), whether the current starting state was the 

same or different and whether they chose to “stay” or “switch” (e.g., lmer(RT ~ 

same * win * stay + (1 | ID)). This model would tell us whether reaction times 

might significantly slow down after large reward prediction errors and if this 

differed by state similarity.  

Next, I ran models where I tried to predict behavioral staying (“stay” or 

“switch”) based on reaction time on the current trial, whether the previous trial 

had been a “win” and whether the current starting state was the same or 

different, (e.g., glmer(stay ~ RT * same * win + (1 | ID)). This model would tell 

us whether reaction times predicted behavioral staying as a function of starting 

state and previous win. I ran both these models for the children and adults 

separately.  

For the children, for the first model, there was no significant effect of 

either starting state (beta = 0.002, se = 0.008, t = 0.23, p = 0.818), behavioral 

staying (beta = -0.006, se = 0.011, t = -0.53, p = 0.595), or previous win (beta 

= -0.011, se = 0.011, t = -0.97, p = 0.330), on reaction time. Thus, reaction time 

during the first stage for children did not seem to be significantly affected by the 

predictors, see Figure S5a, the first plot.  

For the second model, there was a significant interaction between 

reaction time and previous win (beta = 0.36, se = 0.10, z = 3.59, p < .001), 

showing that higher reaction times after a win were associated with a higher 

stay probability, but that this was not affected by starting state (same: beta = 

0.01, se = 0.07, z = 0.19, p = 0.847). Thus, after a win, longer reaction times 
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were associated with a higher probability of staying for the children, see Figure 

S5a, the second plot. 

For the adults, for the first model, there were significant negative main 

effects of starting state (beta = -0.03, se = 0.01, t = -2.77, p = .006), and a 

significant negative three-way interaction between starting state, behavioral 

staying, and a previous win, (beta = -0.06, se = 0.02, t = -2.85, p = 0.003), 

showing that adults responded faster on trials in the same starting state as the 

previous one, especially if they decided to stay after a previous win. There was 

also a positive interaction between starting state similarity and previous win 

(beta = 0.04, se = 0.02, t = 2.32, p = 0.020), showing that adults responded 

slower when they were in the same starting state after a win, which could reflect 

their decision time on whether to stay or switch. 

For the second model, there was a main significant effect of previous 

win, (beta = 2.14, se = 0.22, z = 9.51, p < .001), and a significant interaction 

between starting state and previous win (beta = 0.44, se = 0.22, z = 1.99, p = 

.047). This suggests that adults were more likely to stay after a previous win 

and that they were more likely to stay after a win in the same starting state. 

Thus, there were no significant effects of reaction time on staying probability for 

the adults.  

Thus, there were some indications that reaction times reflected 

processing time after previous wins and depending on starting state, but these 

were not the same between children and adults. 
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Figure 17. Assessing model-based decision-making via reaction times. 
There were some indications that reaction times reflected processing time after 
previous wins and depending on starting state, but these were not the same 
between children and adults. 

2.6.9 Behavioral stay-plots for children and adults 

A limitation of the current task is that there is no obvious behavioral pattern of 

model-based and model-free decision-making. For example, for the 

participants, there is no obvious measure of a reward that is lower than 

expected or higher than expected without going back to the model-derived 

parameters, such as prediction errors. To visualize pure behavioral choices on 

this task, I have created a binary variable that indicates whether the previous 

reward won on a trial was more or less than the participant’s mean reward rate. 

This approximates a higher than expected or lower than expected reward, as 
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participants do not observe all rewards of each action as they progress through 

the trials. 

Using this method, I created par plots of behavioral staying (Figure 18). 

These plots show the behavioral staying percentage as a function of the current 

starting state, whether the previous trial was a “win” or a “loss” over low and 

high stakes for adults. For visualization, I used a median split for children 

showing this for older (N = 43) and younger (N = 42) children in the sample. 

However, I would like to point out that these bar plots can only be 

approximations of behavioral model-based decision-making and do not capture 

the full extent of human behavior and learning on this task. I created these bar 

plots to illustrate how model-free and model-based agents could act on this 

task, disregarding any other learning or behavior.  

This plot indicates that the children do not adhere to the pattern of a pure 

model-free behavioral agent; instead, they show the model-based behavioral 

staying pattern, albeit less strongly than the adults. This is also reflected in 

adults' propensity to show a higher degree of behavioral staying overall 

(F(1,12631) = 120.9, p < .001). For the older children, I see that they more 

closely reflect the model-free pattern during low-stake trials, while during the 

high-stake trials, they more closely reflect the model-based pattern. I see the 

opposite for the younger children in that their behavioral pattern more closely 

resembles a model-based pattern during the low-stake trials.  
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Figure 18. Bar plots of behavioral staying for three age groups and 
example plots of a pure model-free and model-based agent. 
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To create a binary behavioral variable of rewards that are lower or higher than 
expected, I logged whether the previous reward was higher or lower than the 
participant’s mean reward rate. This approximates a higher than expected or 
lower than anticipated reward. These plots show the behavioral staying 
percentage as a function of the current starting state, whether the previous trial 
was a “win” or a “loss” over low and high stakes for adults, and a median split 
for children showing this for older and younger children in the sample. This plot 
indicates that the children do not adhere to a pure model-free behavioral agent; 
instead, they show the model-based behavioral staying pattern, albeit visually 
less strongly than the adults. This is also reflected in adults' propensity to show 
a higher degree of behavioral staying (F(1,12631) = 120.9, p < .001). Older 
children more closely reflect the model-free pattern during low-stake trials, while 
during the high-stake trials, they more closely reflect the model-based pattern. 
For the younger children, the opposite is true, in that their behavioral pattern 
more closely resembles a model-based pattern during the low stakes. 
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Chapter 3. The neurocognitive correlates of model-
based decision-making and metacontrol in childhood 
Part of Chapter 3 is currently under review for publication:  

Smid, C. R., Ganesan, K., Thompson, A., Cañigueral, R., Veselic, S., Royer, J., 

Kool, W., Hauser, T. U., Bernhardt, B & Steinbeis, N. (2022). 

Neurocognitive basis of model-based decision-making and its 

metacontrol in childhood. 

3.1 Abstract 

Human behavior is supported by both goal-directed (model-based) and habitual 

(model-free) decision-making, each differing in its flexibility, accuracy, and 

computational cost. The arbitration between habitual and goal-directed systems 

is thought to be regulated by a process known as metacontrol. However, how 

these systems emerge and develop remains poorly understood. In the previous 

chapter, I found that while children between 5-11 years displayed robust 

signatures of model-based decision-making, which increased during this 

developmental period, there were substantial individual differences in the 

display of metacontrol. Here, I inspect the neurocognitive basis of model-based 

decision-making and metacontrol in childhood and focus this investigation on 

executive functions, fluid reasoning, and brain structure. A total of 69 

participants between the ages of 6-13 completed a two-step decision-making 

task and an extensive behavioral test battery. A subset of 44 participants also 

completed a structural magnetic resonance imaging scan. I find that individual 

differences in metacontrol are specifically associated with performance on an 

inhibition task and individual differences in dorsolateral prefrontal, temporal, 



Chapter 3. The neurocognitive correlates of model-based decision-making and metacontrol in childhood 

132 
 

and superior-parietal cortical thickness. These brain regions likely reflect the 

involvement of cognitive processes crucial to metacontrol, such as cognitive 

control and contextual processing.  

3.2 Introduction 

To engage in optimal decision-making, individuals need to link their actions to 

associated outcomes. Classical learning paradigms propose that this challenge 

is solved through the operation of two distinct systems that differ in their 

flexibility and computational cost, with one operating habitually and the other in 

a goal-directed fashion (Boureau et al., 2015; Daw, 2018; Daw et al., 2005). 

Habitual and goal-directed strategies have been formalized in model-free and 

model-based reinforcement learning algorithms (Daw et al., 2005; Dolan & 

Dayan, 2013; Gläscher et al., 2010). Model-free decision-making engenders 

value-based learning, which relies predominantly on tying actions to previous 

rewards. In contrast, model-based decision-making relies on using an 

internalized model of the world to match the rewards attained with the 

appropriate actions depending on the context (Daw et al., 2011; Kool et al., 

2016).  

Model-free decision-making is not always adequate but is cognitively 

less costly as it relies on looking at cached values of past actions. On the other 

hand, model-based decision-making is more accurate and costly, as new 

values have to be computed continuously (Keramati et al., 2011). Furthermore, 

optimally responding to different environmental demands, with the inherent 

processing limits of human cognition, requires dynamic arbitration between the 

costs and benefits of both decision-making systems (Dubois et al., 2022; Lieder 
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& Griffiths, 2019). For example, for everyday tasks, the efficiency of habitual 

decision-making might be preferred and allows saving of cognitive resources, 

while to be successful in novel or complex scenarios, more goal-directed 

methods may be required. Human decision-making, therefore, continuously 

requires the arbitration of the potential rewards and costs associated with each 

action (Bolenz et al., 2019; Boureau et al., 2015; Ruel et al., 2021), a process 

known as metacontrol.  

Prior work found that the display of model-based decision-making 

emerged only in adolescence and increased through adulthood when using 

decision-making tasks originally designed for adults (Decker et al., 2016; 

Nussenbaum et al., 2020; Palminteri et al., 2016; Potter et al., 2017). Recently, 

it has been shown that children as young as five displayed model-based 

decision-making and that its use continuously increased throughout 

development (Smid et al., 2022). Notably, the dynamic deployment of these 

model-based vs. model-free systems seems to be a process that only emerges 

later in life. By manipulating the reward one could gain, I showed that adults 

dynamically increase their model-based reasoning for bigger rewards in the 

previous chapter, a process termed metacontrol. In contrast to adults, children 

did not display optimal metacontrol, as indicated by prioritizing model-based 

decision-making for high-stake rather than low-stake trials. Instead, children in 

this age range showed substantial individual differences in metacontrol, 

rendering it a critical period to better understand the neurocognitive correlates 

that enable this metacontrol.   
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Cognitive abilities that encompass our ability to expend attention and 

focus on a task at hand, or our ability to flexibly shift between different tasks are 

defined as Executive Functions (EFs) (Diamond, 2013). EFs are broadly 

defined as functions in the realm of working memory, cognitive flexibility, and 

cognitive control, or the ability to inhibit prepotent impulses (Diamond, 2013). 

Correlational evidence and experimental manipulations suggest that working 

memory and inhibition are relevant to model-based decision-making in adults 

and may underlie this process (Otto et al., 2015; Otto, Raio, et al., 2013; Potter 

et al., 2017). Further, in a sample of 9-25-year-olds, it was shown that fluid 

reasoning was linked to model-based decision-making (Potter et al., 2017). In 

contrast, the neurocognitive foundations of efficient metacontrol are much less 

studied (Bolenz et al., 2019; Kool et al., 2017; Kool & Botvinick, 2014). 

Furthermore, while metacontrol appears to be present during adolescence, 

increases into adulthood (Bolenz & Eppinger, 2021), and decreases in older 

age (Bolenz et al., 2019), its cognitive bases are unclear. However, it has been 

proposed that EFs might be relevant (Davidow et al., 2018; Dezfouli & Balleine, 

2013; Keramati et al., 2011, 2016; J. J. Lee & Keramati, 2017; K. J. Miller et al., 

2018; Otto, Gershman, et al., 2013).  

Prior work on the neural correlates of model-free and model-based 

decision-making has sought to uncover distinct signatures of associated 

prediction errors. Some studies suggest distinct regions for model-based 

decision prediction errors, such as the posterior parietal cortex (O’Doherty et 

al., 2015), the dorsomedial prefrontal cortex (PFC) (Doll et al., 2015), and the 

(dorso) lateral prefrontal cortex (DLPFC) in particular (Beierholm et al., 2011; 

Cremer et al., 2021; Doll et al., 2015; Gläscher et al., 2010; S. W. Lee et al., 
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2014; Smittenaar et al., 2013), while model-free prediction errors have been 

mainly localized to the (ventral) striatum (Beierholm et al., 2011; Gläscher et 

al., 2010; O’Doherty et al., 2015) or the putamen (Doll et al., 2015, but see also 

Daw et al., 2011; Sanfey & Chang, 2008). A potential causal role of the DLPFC 

in model-based decision-making was identified via direct manipulation of the 

DLPFC via TMS, which led to a reduction in model-based decision-making 

(Smittenaar et al., 2013).  

In contrast, few studies have addressed the neural correlates of 

metacontrol concerning switching between decision-making strategies (S. W. 

Lee et al., 2014; O’Doherty et al., 2015). For example, O’Doherty et al. 

suggested that the arbitration between model-free and model-based systems 

was encoded by bilateral inferior lateral PFC, the right frontopolar cortex, and 

the rostral anterior cingulate cortex (O’Doherty et al., 2015). Meanwhile, Lee et 

al. found that the arbitration between habitual and goal-directed systems 

depended on activity in the bilateral lateral PFC (S. W. Lee et al., 2014). In 

addition, a study on adolescents found that the selective upregulation of 

cognitive control for trials with greater reward in contrast to trials with lesser 

reward was governed by frontostriatal connectivity (Insel et al., 2017). This 

could lead to a similar relationship in the context of stake-based metacontrol 

used in the current study. Taken together, findings from these studies suggest 

that the DLPFC, in particular, may be implicated in both model-based decision-

making and its metacontrol. In the current study, I used cortical thickness as a 

marker of brain structure and linked these to model-based decision-making and 

metacontrol. To do so, I employed two methods of assessing the potential 

relationship with cortical thickness; (1) whole-brain analysis and (2) ROI 
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analysis of the bilateral DLPFC to see if age-independent differences in brain 

anatomy in 6-13-year-old children are related to model-based decision-making 

and metacontrol. 

In sum, this study aimed to investigate the neurocognitive correlates of 

model-based decision-making and metacontrol in children aged 6-13. I related 

model-based decision-making and metacontrol to performance on an extensive 

task battery comprising several domains of EFs (working memory, inhibition, 

cognitive flexibility) and intelligence. While I found no behavioral or structural 

relationships with model-based decision-making, metacontrol was significantly 

related to individual differences in inhibition and whole-brain cortical thickness 

of the entorhinal cortex, the superior parietal cortex, and the bilateral DLPFC in 

an ROI analysis. 

3.3 Methods 

3.3.1 Participants 

A total of 69 (35 female) participants, with a mean age of 8.99 years (SD = 

1.57), and an age range from 6.19 to 12.61 years, were recruited from 20 

schools in the Greater London area. A subset of the total sample also 

completed an MRI scan. The final MRI sample consisted of 44 (25 female) 

participants with a mean age of 9.37 years (SD = 1.53) and an age range of 

6.19 – 12.61 years. Ethical approval for this study was obtained from UCL’s 

Research ethics committee in compliance with UK national regulations. 

Consent and assent from both parents and children were obtained for all 

participants. Participants took part in a more extensive intervention study that 
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included data collection on three separate occasions. The current data set was 

collected at the first testing time point. 

 Participants visited the UCL testing facilities for their testing session, 

where both behavioral and MRI data was collected. Sessions were conducted 

on the same day and ranged between 3.5-4 hours in duration. Participants took 

multiple breaks during the session where they were supplied with snacks and 

drinks and were allowed to take as many additional breaks as necessary. When 

participants no longer wanted to continue with the session, the session was 

suspended.  

3.3.2 Model-based and model-free measures of decision-making 

Participants completed a sequential decision-making task that allowed 

dissociation of different decision-making strategies (Kool et al., 2016, 2017). 

This task was adapted for a developmental sample and was previously 

conducted with children of a similar age range (Smid et al., 2022). The task 

used in the current chapter is identical to the task used in Chapter 2 (Figure 8), 

except for two changes. First, the trial size was reduced from 140 to 102 trials 

to reduce the time participants spent playing the task while still capturing the 

model-free and model-based parameters robustly, see 2.6.3 Parameter 

recovery. Second, the decision in the second stage was left out, whereas, in 

the previous task version, participants had to press the spacebar to collect the 

reward. In the current task, participants received the reward immediately. The 

same computational model and model-fitting procedure were used, as 

described in 2.6.1 Dual-reinforcement learning model and 2.6.2 Model-fitting 

procedure. 
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I examined participants’ understanding of the task by asking them to 

report the deterministic transition structure of the spaceships to the planets after 

the preparation phase. Understanding of the task structure was high, with 96% 

of the participants correctly reporting the task structure. Missed trials were 

excluded from the analysis as participants did not receive rewards on these 

trials and, therefore, could not learn from them. Similar to Chapter 2, 

participants were excluded if they missed more than 30% of the trials. On 

average, children missed only 0.05% of the trials, and the highest percentage 

of trials missed was 17%. Therefore, no participants were excluded from the 

analysis. 

3.3.3 Cognitive task battery 

3.3.3.1 Inhibition 

Four measures of inhibition were used, a Stop-Signal Task (SST), a Stroop 

task, a Flanker Inhibition Task, and an AX-CPT task.  

SST. In the SST, participants have to press in response to a visual go-cue as 

fast as possible (Figure 19a) but withhold a response when a stop-signal 

appears (Figure 19b) (Matzke et al., 2018). During the task, participants were 

asked to press the left arrow key when seeing the go-signal (i.e., a honey pot) 

on the left side of the screen and the down arrow key when the signal appeared 

on the right side. Ten practice trials were administered before participants 

completed 80 trials of the main task. Each trial started with the presentation of 

a fixation cross of 1250ms. On 25% of the trials, a stop signal (i.e., a picture of 

bees) was presented after the honey pot. Participants were instructed not to 

press any key if they saw the stop signal. The stop signal delay (SSD) started 
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at 200ms, decreased by 50ms after a successful stop trial, and increased by 

50ms after an unsuccessful stop trial. Participants had to respond within 6-

seconds, or the trial timed out. To derive a measure of inhibition, the mean 

Stop-Signal Reaction Time (SSRT) was calculated using the integration method 

(Verbruggen et al., 2019). This measure was summed within participants and 

z-scored. The SSRT was inversely coded for this study to mean that a larger 

score indicates better inhibition (“SSRT”).  

 

Figure 19. Stop Signal Task (SST). 
During a go-trial (a), participants were instructed to react as fast as possible to 
the go-signal (honey pot) by pressing an arrow key depending on whether the 
stimulus was depicted on the left or right side of the screen (left and down arrow 
key). However, during a stop trial (b), the stop-signal was presented after a 
short stop-signal delay (SSD), and participants were instructed to withhold their 
response. 

Stroop task. Another measure of inhibition was a child-adapted Stroop task, 

where participants had to respond to congruent and incongruent trials with an 

auditory cue (Williams et al., 2007). Participants were asked to match animals 
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to where they live (e.g., a frog to a pond). Four animal habitations were 

presented in the four corners of the screen throughout the game, and 

participants had to move their mouse pointer to the habitation of the animal on 

the current trial. At the start of every trial, an animal cartoon was displayed in 

the center of the screen. Participants were told that sometimes the animals 

wore disguises and to only respond to an auditory cue indicating the animal 

type (e.g., frog – “ribbit”). On congruent trials, both auditory cues and visual 

cues matched (e.g., frog presented on screen and “ribbit” sound played) (Figure 

20a). On incongruent trials, auditory cues and visual cues did not match (i.e., 

dog presented on screen and “ribbit” sound played) (Figure 20b). Participants 

completed four practice trials, after which they completed 72 trials in the main 

task, with a 50/50 ratio of congruent and incongruent trials. Participants had to 

respond within three seconds, or the trial timed out. At the start of each trial, the 

mouse pointer location was reset to the center of the screen, and participants 

were presented with a blank screen in the center of the trial for 1000ms. For 

Stroop performance, the difference between reaction time and error rates was 

calculated separately for incongruent and congruent trials. Then the reaction 

time and error rates for each trial type were z-scored and summed. The 

performance measure used was the difference score between the incongruent 

minus the congruent trials, where a positive score indicated higher processing 

costs on the incongruent trials. A lower score indicated less difference in the 

performance between the incongruent and congruent trials (“Stroop”).  
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Figure 20. Animal Stroop task. 
During the congruent trials (a), the animal depicted in the center and the noise 
emitted matched, while during the incongruent trials (b), the sound did not 
match the animal represented. Participants were instructed to ignore the visual 
center stimulus and respond to the auditory stimulus. 

Flanker task (inhibition component). I used an adapted and child-friendly 

Flanker task with an inhibition component. Participants were shown a row of 

five fish in the center of the screen for this component. Participants were told to 

press an arrow key depending on the direction the central visual cue (the middle 

fish) was facing and to ignore the direction of the distractor stimuli (the flanking 

four fish). On congruent trials, the central visual goal cue was facing the same 

direction as the flanking distractor stimuli (Figure 21a), while in incongruent 

trials, the visual cue was facing the opposite direction from the distractor stimuli 

(Figure 21b). Participants first completed six practice trials and 40 trials in the 

inhibition component, with congruent and incongruent trials at a 50/50 ratio. At 

the start of the trial, participants saw a fixation cross for 500ms, and the central 

visual cue and the flanking distractor stimuli were shown simultaneously and 
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for 700ms. After this time, the screen became blank, but participants had up to 

2.5 seconds afterward to make a response—responses made before 100ms 

after stimulus onset were not recorded. The ITI was jittered and ranged from 

800ms to 2400ms. For Flanker inhibition performance, the difference between 

reaction time and error rates were calculated separately for incongruent and 

congruent trials. Then the reaction time and error rates for each trial type were 

z-scored and summed. The performance measure used was the difference 

score between the incongruent minus the congruent trials, where a positive 

score indicated higher processing costs for the incongruent trials. A lower score 

indicated less difference in the performance between the incongruent and 

congruent trials (“Flanker_Inhib”). 

 

Figure 21. Flanker inhibition task. 
During congruent trials (a), the central target stimulus was facing the same 
direction as the flanking distractor stimuli, while during incongruent trials (b), 
the central target stimulus was facing the opposite direction from the flanking 
distractor stimuli. Participants were instructed to always focus on the central 
target stimulus and respond with a key press in the direction the stimulus was 
facing (left or down arrow key).  
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AX-CPT task. Lastly, inhibition was also measured via the AX-CPT task. The 

AX-CPT task measures participant’s tendency to use more reactive or proactive 

control (Cooper et al., 2017). An A or B cue (i.e., dog or cat) was presented in 

the middle of the screen for 500ms, followed by an inter-stimulus interval of 

750ms and then a probe X or Y stimulus (orange or apple) during which 

participants had to make their response. Participants had six seconds to 

respond until the trial timed out. Participants were instructed to press the left 

arrow key whenever an X followed an A (i.e., AX trials) (Figure 22a) and to 

press the down arrow key for the presentation of all other cue-probe 

combinations (Figure 22b). Trials were presented randomly, and 40% of the 

trials were AX trials, and all other trials (i.e., AY, BX, BY trials) were presented 

20% each (Richmond et al., 2015). Participants first completed ten practice 

trials with feedback, followed by 60 main trials. To measure proactive control. I 

measured the difference in error rates and response times for the AY trials and 

the BX trials. I calculated a composite score by deducting the BX trial 

performance from the AY trial performance and dividing that value by the sum 

of the AY and BX performance. I then created a composite score by z-scoring 

these measures and taking the average. When there were zero error rates, 

these error rates were recoded to 1/2N, where N is the number of trials. This 

measure is the Proactive Behavioral Index (PBI). It reflects the degree of 

proactive control displayed during the task, where a higher score reflects more 

proactive control (“AXCPT”) (Gonthier et al., 2016). 
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Figure 22. AX-CPT task. 
During AX trials (a), participants had to respond by pressing the left arrow key. 
In contrast, during BX trials (b) (and all other trial combinations, e.g., AY, BY), 
participants had to respond by pressing the down arrow key. 

3.3.3.2 Cognitive flexibility 

Two measures of cognitive flexibility were used, the cognitive flexibility task and 

a Flanker task that measured cognitive flexibility component. 

Dimensional switching task. This task assessed participants' ability for rule 

switching across dimensions (using sound cues (“animal”, “size”) to respond to 

either the animal (cat or dog) or the size of the animal (big or small) (Karbach 

& Kray, 2009). For every trial, a small or big image of a cat or dog was shown 

in the center of the screen, along with an image of the keys that could be 

pressed (left and down arrow keys), and the audio cue was played. Underneath 

each arrow key, the options for the relevant dimensions for that trial were 

displayed in text (e.g., “small” and “big”, or “cat” and “dog”). Participants had 10 



Chapter 3. The neurocognitive correlates of model-based decision-making and metacontrol in childhood 

145 
 

seconds to respond before the trial timed out, during which the stimuli remained 

on the screen—responses made before 200ms after stimulus onset were not 

recorded. The ITI was jittered and ranged from 1000ms to 1200ms. Stay trials 

were preceded by a trial in the same dimension (i.e., participants had to respond 

to the type of animal twice in a row) (Figure 23a). In contrast, during switch 

trials, the current trial was preceded by a trial in a different dimension (i.e., 

participants had to first respond to the size of the animal but now to the size) 

(Figure 23b). Participants completed 20 single-dimension trials in two blocks 

and 40 mixed trials in one block. They completed separate practice sessions 

for single and mixed trials with four practice trials where three out of four trials 

had to be correct to progress. During the single dimension blocks, participants 

only had to respond to the same dimension (e.g., they only had to respond to 

the size of the animal), while in the mixed blocks, the two dimensions were 

mixed. Switch trials were controlled to only occur after either two or three 

preceding stay trials. Performance on the cognitive flexibility task was captured 

by the difference in speed and accuracy between the switch and stay trials in 

the mixed blocks. The reaction times and accuracy for each trial type were z-

scored and summed (“CogFlex”). A higher positive score indicated greater 

processing costs on the switch trials.  
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Figure 23. Dimensional switching task. 
During stay trials (a), the previous trial was in the same dimension as the current 
trial, i.e., the participants had to respond to the type of animal displayed and not 
the size. During switch trials (b), the previous trial was a different dimension 
than the current trial, i.e., participants had to respond to the size of the animal 
displayed previously but now have to respond to the type of animal. After a 
short delay, an image of arrow keys with the current dimension (i.e., animal or 
size) was displayed under the central target stimulus.  

Flanker task (cognitive flexibility component). Participants completed six 

practice trials before completing 40 trials across two conditions. In the stay 

condition, the participant had to press the arrow key to match the direction the 

visual stimuli were facing (the row of five fish, always facing the same direction) 

(Figure 24a). In the switch condition, as indicated by all five fish changing color, 

participants had to press in the opposite direction from the way the stimuli were 

facing (Figure 24b). Stimuli were presented for 700ms, and all responses made 

before 100ms were not recorded. The ITI was jittered and ranged from 800ms 

to 2400ms, and participants had 2.5 seconds to respond before the trial timed 

out. For switching performance, the difference between reaction time and error 

rates was calculated separately for the switch and stay trials. Then the reaction 
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time and error rates for each trial type were z-scored and summed. The 

performance measure used was the difference score between the switch minus 

the stay trials, where a positive score indicated higher processing costs on the 

switch trials. A lower score indicated less difference in the performance 

between the switch and stay trials (“Flanker_Switch”). 

 

Figure 24. Flanker switching task. 
During stay trials (a), participants had to respond by pressing the direction the 
fishes were facing as fast as possible. In contrast, during switch trials (b), 
participants had to press the opposite direction from which the fish were facing. 
In this task, all fish were always facing the same direction. 

3.3.3.3 Working memory 

Working memory span and manipulation were assessed via two tasks.  

CORSI block-tapping task. This task measured visuospatial working memory 

span with a higher value indicating a higher span (Farrell Pagulayan et al., 

2006). This task consisted of a frog jumping between nine potential locations 

designed as lily pads (Figure 25a). The participants followed the jumps by 
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clicking on the lily pads in a forward sequence (Figure 25b). Participants 

completed three practice trials with feedback, and two had to be correct to 

continue to the main task. The main task had 14 trials, and the difficulty changed 

in a stepwise manner designed as a 1-up, 2-down adaptive staircase. This 

meant one correct answer added one jump, and two wrong answers removed 

one jump. Trials commenced with a count-down from three to one, and then the 

stimulus of the frog jumping was shown for 600ms for every jump. The ISI was 

fixed to 600ms. The final measure of interest was the highest number of 

correctly repeated consecutive jumps, referred to as working memory span 

(“WM_Span”). 

 

Figure 25. Corsi block tapping task. 
For each trial, participants first observed the target stimulus “jumping” between 
lily pads (a); afterward, participants were required to repeat the forward 
sequence of jumping by clicking on the corresponding “lily pads” (b).  

N-back task. In addition, the n-back task was used to measure working memory 

manipulation (Chen et al., 2008). For every trial, participants observed a 

sequence of dinosaurs (center of the screen). In the 1-back condition, 
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participants had to press the spacebar if the current dinosaur on the screen was 

the same as the previous dinosaur (Figure 26a). In the 2-back condition, 

participants had to press the spacebar if the current dinosaur on the screen was 

the same as two dinosaurs previously (Figure 26b). Participants completed 80 

trials in total, 40 for each n-back condition. Each dinosaur was shown for 500ms 

and was followed by a 1500ms Inter-Stimulus-Interval (ISI). Responses made 

before 100ms after stimulus onset were not recorded, and participants had to 

make their response before the onset of the next stimulus presentation to be 

within the response window. The final measures included were the d-prime for 

both the 1-back and 2-back conditions (“WM_1back”, “WM_2back”). 

 

Figure 26. N-back task. 
Participants completed two blocks, a 1-back block and a 2-back block. During 
the 1-back block (a), participants had to respond by pressing the spacebar if 
they saw the same dinosaur twice in a row. Stimuli were presented sequentially, 
and only one dinosaur was visible at the time in the center of the screen. During 
the 2-back block (b), participants had to respond by pressing the spacebar if 
the current dinosaur was the same as two stimuli previously. Participants were 
instructed to press as quickly as possible. 
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3.3.3.4 Intelligence 

In addition to the EF tasks, I used two sub-tests of the WASI-II to measure 

intelligence. 

Fluid reasoning. For the fluid reasoning measure, I used the WASI-II Matrix 

Reasoning subtest (Wechsler, 2011). The Matrix Reasoning subtest was 

conducted offline and one-on-one by a researcher with a participant and a 

WASI-II booklet. However, after the Covid-related lockdown, it was 

administered online via PyschoPy (Peirce, 2007). Participants were asked to 

choose the image from five options to complete the missing picture in a 

sequence of images (Figure 27). The task measured pattern recognition, and 

the correct missing image completed or adhered to the pattern visualized in the 

sequence of images. The task continued until the participant had three 

consecutive incorrect answers or until they attained the maximum number of 

items for their age group. Afterward, their raw scores were converted to 

standardized scores by age as instructed in the WASI-II manual 

(“WASI_Matrix”). 

 

Figure 27. Matrix reasoning example. 
Toy example of a matrix reasoning problem. Participants had to complete the 
sequence by pressing the image that best fits from the five options displayed at 
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the bottom. This example uses a simple rotation rule; the correct answer would 
be 4. 

Crystallized intelligence. The WASI-II vocabulary subtest measured crystallized 

intelligence (Wechsler, 2011). The Vocabulary subtest was only conducted 

offline and one-on-one by a researcher with a participant and a WASI-II booklet. 

This task was not part of the online battery. Participants were asked to describe 

a word, for example, “shirt”, which had several two-point (e.g., “clothing”), one-

point (e.g., “keeps you warm”), and zero-point answers (e.g., “points at shirt”) 

(Figure 28). The task continued until the participant had three consecutive zero-

point answers or until they attained the maximum number of items for their age 

group. Afterward, their raw scores were converted to standardized scores by 

age as instructed in the WASI-II manual (“WASI_Vocab”).  

 

Figure 28. Crystallized intelligence example. 
Participants were asked to explain what a word meant. In this case, the prompt 
was “shirt.” In the text balloons on the left, examples of 2-point, 1-point, and 0-
point answers are depicted.  

Table 6 reflects the main domains for each task, the task name, and the 

abbreviation for the final included measure in brackets. 
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Table 6. Executive function and intelligence tasks 
Domain Task Main measure and label 

Inhibition SST Stop-Signal Reaction Time (SSRT) coded inversely: 

higher values indicated better inhibitory control 

(SSRT) 

Stroop Difference between incongruent and congruent trials 

in composite scores of speed and accuracy (a higher 

value indicated greater processing costs during 

incongruent compared to congruent trials; Stroop) 

Flanker  Difference between incongruent and congruent trials 

in composite scores of speed and accuracy (a higher 

value indicated greater processing costs during 

incongruent compared to congruent trials; 

Flanker_Inhib) 

AX-CPT Difference between the AY and BX trials (PBI Index), 

where a positive value reflected a higher processing 

cost on AY trials, indicating more proactive control, 

and a negative value reflected higher processing cost 

on BX trials, indicating more reactive control; (AX-

CPT) 

Cognitive 

Flexibility 

Dimension-

switching 

Difference between switch and stay trials in 

composite scores of speed and accuracy (a higher 

value indicated greater processing costs during 

switch compared to stay trials; CogFlex) 



Chapter 3. The neurocognitive correlates of model-based decision-making and metacontrol in childhood 

153 
 

Flanker  Difference between switch and stay trials in 

composite scores of speed and accuracy (a higher 

value indicated greater processing costs during 

switch compared to stay trials; Flanker_Switch)  

Working 

Memory 

Corsi Block 

tapping 

The highest number of correctly repeated consecutive 

repetitions referred to here as working memory span 

(WM_Span) 

N-back Composite scores for both the 1-back and 2-back 

condition. A higher score indicated better working 

memory performance for each condition. (WM_1back, 

WM_2back).  

Intelligence Fluid 

reasoning 

Age-standardized measure of fluid reasoning 

(WASI_Matrix) 

Crystallized 

intelligence 

Age-standardized measure of crystallized intelligence 

(WASI_Vocab) 

 

 

3.3.4 MRI acquisition and cortical thickness measurements 

High-resolution T1-weighted images were obtained using a Siemens 3.0 Tesla 

Prisma scanner located at the Birkbeck-UCL Centre for Neuroimaging (BUCNI) 

equipped with a 32-channel whole-head coil. Images were acquired using a 3D-

TFL pulse sequence with a flip angle of 9; Echo Time was set to 0.00298, and 

Repetition Time to 2.3. Two hundred eight slices with a voxel size of 1x1x1 

mm3 were collected, and the acquisition matrix ranged over 256 x 256. To limit 

head motion, children were requested to keep their heads as still as possible, 
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and foam inserts were placed between the head and head coil to ensure the 

head was snug in the coil. Visual stimuli were projected onto a screen in the 

magnet boar that could be viewed via a mirror attached to the head coil. 

Participants watched cartoons without sound during the acquisition of the 

structural scan. 

Structural MRI images were processed with FreeSurfer (Version 6.0.0; 

http://surfer.nmr.mgh.harvard.edu (Fischl et al., 2002), a software that can label 

and segment cortex and white matter. After converting the Dicom files to Nifti 

using dcm2niix (X. Li et al., 2016), scans were run through FreeSurfer. Then, 

all scans were visually inspected for quality, and the segmentation was 

manually corrected in FreeSurfer if not successful. Together with three other 

independent validators I analyzed the scans and corrected them if needed. 

After corrections, scans were re-segmented using FreeSurfer, until, upon visual 

inspection, the segmentation quality was adequate, or if it did not reach the final 

level of acceptance, excluded. As the final validator I performed a final 

inspection of all scans. Using this method, 44 MRI scans were included, while 

one scan was left out of further analysis due to excessive movement and poor 

segmentation. Given the extensive and robust evidence of causal involvement 

of DLPFC in model-based decision-making (Beierholm et al., 2011; Cremer et 

al., 2021; Doll et al., 2015; Gläscher et al., 2010; S. W. Lee et al., 2014; 

Smittenaar et al., 2013), region of interest (ROI) analyses focused exclusively 

on this area. To create a DLPFC ROI, the Desikan-Killiany atlas was used 

(Desikan et al., 2006).  
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After preprocessing, sulcal and gyral features across individual subjects 

were aligned by morphing each subject's brain to an average spherical 

representation that accurately matches cortical thickness measurements 

across participants while minimizing metric distortion. For whole-brain analysis, 

thickness data were smoothed using a 10 mm Gaussian kernel before statistical 

analysis. Selecting a surface-based kernel reduces measurement noise but 

preserves the capacity for anatomical localization, as it respects cortical 

topological features (Bernhardt, Klimecki, et al., 2014; Lerch & Evans, 2005).  

Given the extensive and robust evidence of causal involvement of 

DLPFC in model-based decision-making (Beierholm et al., 2011; Cremer et al., 

2021; Doll et al., 2015; Gläscher et al., 2010; Smittenaar et al., 2013; Wan Lee 

et al., 2014), region of interest (ROI) analyses focused exclusively on this area. 

To create the Region of Interest (ROI) of the DLPFC, the Desikan-Killiany atlas 

was used (Desikan et al., 2006). This atlas allows automatic division of the 

cortex into standard gyral-based neuroanatomical regions. This atlas divides 

the cortex into 34 cortical ROIs into each of the individual hemispheres. I 

extracted the individual cortical thickness of the ROI that most closely matches 

the DLPFC in the Desikan-Killiany atlas (ROIs 28 (left) and 64 (right); the 

Rostral middle frontal cortex) for the ROI analysis.  

Cortical thickness data were analyzed using the SurfStat toolbox for 

Matlab [https://www.math.mcgill.ca/keith/surfstat, (Worsley et al., 2009)]. 

Cortex-wide linear models were used to assess the effects of age, sex, model-

based decision making, and metacontrol on thickness at each vertex. Findings 

from the surface-based analyses were controlled for multiple comparisons 
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(Bernhardt, Klimecki, et al., 2014; Bernhardt, Smallwood, et al., 2014; Steinbeis 

et al., 2012; Worsley et al., 2009). This reduced the chance of reporting a family-

wise error (FWE). The cluster-defining threshold was set to p < 0.01 and the 

FWE to p < 0.05 (Bernhardt, Klimecki, et al., 2014; Bernhardt, Smallwood, et 

al., 2014). Mediation analysis was conducted in Python using the Pingouin 

package (Vallat, 2018). The data and code to run the analyses reported in this 

chapter can be found on my Github: 

https://github.com/ClaireSmid/Neurocognitive_Basis_Metacontrol 

3.4 Results 

3.4.1 Markers of model-based decision-making and metacontrol 

To assess whether children were sufficiently engaged with and able to perform 

the task, I compared their performance to chance level. Task performance was 

calculated as each individual’s corrected reward rate, which reflected the 

average number of points a participant earned per trial, corrected for each 

participant's possible rewards based on the drifting reward rates (Figure 8b). 

Scores lower than zero indicate performance worse than chance, and scores 

higher than zero indicate better than chance performance (The same method 

as used in 2.4.1 Children perform above chance level and are not random). The 

mean corrected reward for children was significantly higher than chance (t(68) 

= 5.10, d = .61, p < .001, 95% CIs [.015, .034]) and performance was 

significantly positively correlated with age (r = .27, p = .023, 95% CIs [.04, .48]). 

This suggests that the children were able to perform the task and that 

performance improved throughout childhood. 
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 Model-based decision-making was positively correlated to age (r = 0.25, 

p = .036, Figure 29a), while metacontrol was again not significantly correlated 

to age (r = 0.07, p = .549, Figure 29b). A higher degree of metacontrol was 

correlated to higher model-based decision-making overall (r = 0.28, p = .020). 

There was also no stakes effect for children as a group (t(132.81) = -1.14, p = 

.255, Figure 29c). The findings in the current paper thus replicate the previous 

computational findings in a new sample in childhood (Smid et al., 2022). 

 

Figure 29. Computational results for model-based decision-making and 
metacontrol. 
(a) model-based decision-making significantly increased with age, (b) while 
metacontrol did not increase over age, but metacontrol shows substantial 
individual differences. (c) there was no significant difference in the amount of 
model-based decision-making over the low- and high-stake trials. 
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3.4.2 Relationships between model-based decision-making, metacontrol, 

and executive functions 

Next, I assessed the relationships between EFs and model-based decision-

making and metacontrol using simple bivariate correlations (Figure 30). Model-

based decision-making was positively correlated with working memory span (r 

= 0.25, 95% CI [0.01, 0.46], p = .039), indicating that a higher working memory 

span was correlated to a higher display of model-based decision-making. 

Model-based decision-making was also negatively related to the cognitive 

flexibility task-switching measure (r = -0.30, 95% CI [-0.50, -0.07], p = .011), 

which indicates that it was related to lower processing costs during the switch 

trials, see Table 6. 

Metacontrol was positively correlated to the Stroop measure (r = 0.24, 

95% CI [-0.004, 0.45], p = .046), indicating higher processing costs on the 

incongruent trials on the Stroop task may be related to better metacontrol. 

Metacontrol was positively correlated with the Flanker inhibition measure (r = 

0.42, 95% CI [0.21, 0.60], p < .001), indicating that metacontrol was related to 

higher processing costs on the incongruent trials. 

Significance was corrected for multiple comparisons using Bonferroni 

(21 tests, threshold at p = .0023). Whereas model-based decision-making did 

not correlate significantly with any measures after correction, metacontrol 

remained positively correlated with the Flanker Inhibition measure.  

To assess this relationship, both the metacontrol and the Flanker 

inhibition measure were split into their separate components, which for 

metacontrol consisted of model-based decision-making for the low- and high-
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stake trials, and for the Flanker measure, processing cost on the congruent and 

incongruent trials, respectively. Model-based decision-making during high-

stake trials was significantly negatively correlated to processing cost on the 

congruent trials (r = -0.29, p = .014), while there was no significant relationship 

with processing cost on the incongruent trials (r = -.05, p = .668). For model-

based decision-making during low-stake trials, there was a significant negative 

relationship between processing cost during the incongruent trials (r = -0.24, p 

= .045), while there was no significant relationship to processing costs on the 

congruent trials (r = -.05, p = .661).  

Thus, a higher degree of model-based decision-making during the high-

stake trials was related to reduced processing cost or improved performance 

on the congruent trials. On the other hand, a higher degree of model-based 

decision-making during the low-stake trials was related to reduced processing 

cost or improved performance on the incongruent trials. Both the metacontrol 

measure (model-based decision-making during the high-stake trials minus 

model-based decision-making during the low-stake trials) and the Flanker 

inhibition measure (processing cost during incongruent trials minus processing 

cost during congruent trials) are difference scores. Thus, this suggests that 

reduced processing cost improved performance on congruent trials is driving 

the relationship between metacontrol and Flanker. 

I also conducted a regression analysis combined with permutation 

importance testing to determine the best-predicting EFs for model-based 

decision-making and metacontrol. While model-based decision-making could 

not effectively be predicted based on EFs, for metacontrol, both Flanker 
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inhibition and Stroop performance were the best predicting features in a non-

linear Support Vector Machine regression. As the cortical thickness analysis is 

based on linear models, these results were not further used in this chapter. For 

the full regression analysis approach and methods, see 3.6.2 Regression 

models exploring the relationship between executive functions, model-based 

decision-making, and metacontrol.  

 

Figure 30. Correlation plot of model-based decision-making, 
metacontrol, executive functions, and intelligence measures. 
For a list of the measures and their acronyms, see Table 6. Executive function 
and intelligence tasks, and for descriptions of the task, see 3.3.3 Cognitive task 
battery. The numbers indicate Pearson’s r values. 
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3.4.3 Cortical thickness, model-based decision-making, and metacontrol 

We assessed the relationship between individual differences in model-based 

decision-making, metacontrol, and cortical thickness. We ran cortex-wide linear 

models correcting for age and sex and corrected the p-values with FWE and 

thresholded for significance at p < 0.01. We also ran a cortical thickness ROI 

analysis using the bilateral DLPFC.  

No relationship was found between cortical thickness and indices of 

model-based decision-making at the whole-brain level. For metacontrol, two 

clusters survived whole-brain correction (Figure 31). Participants with higher 

metacontrol showed greater cortical thickness in the left temporal lobe 

encompassing the fusiform gyrus, entorhinal cortex, parahippocampal gyrus, 

and the right parietal lobe, including the postcentral gyrus and superior parietal 

cortex, as determined using the Desikan-Killiany atlas (Desikan et al., 2006). 

 

Figure 31. Significant whole-brain clusters of cortical thickness 
associated with individual differences in metacontrol corrected by age 
and sex. 
Clusters were corrected by age and sex (thresholded at p < 0.01). 
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3.4.4 DLPFC ROI analysis 

As previous studies have found potential causal links between model-based 

decision-making and metacontrol and DLPFC (Smittenaar et al., 2013), I also 

assessed the relationship between cortical thickness in DLPFC bilaterally 

(Figure 32a). After controlling for age, I ran the ROI analysis with the residual 

cortical thickness of the DLPFC. As I did not find sex-related differences, I did 

not control for sex. While I did not find a relationship between thickness in 

DLPFC and model-based decision-making (p > 0.09), metacontrol was 

significantly related to both cortical thickness in left and right DLPFC (T(42) = 

2.61, p = .012; and T(42) = 3.00, p = .005 respectively; Figure 32b and Figure 

32c). These correlations survived Bonferroni correction (threshold at p = .0125). 

Thus, higher metacontrol was significantly correlated to increased cortical 

thickness in the bilateral DLPFC for 6–12-year-old children. 
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Figure 32. Cortical Thickness of the bilateral PFC and metacontrol. 
(a) the ROI for the DLPFC used in the current study is based on the Desikan-
Killiany atlas. (b) scatterplot of the relation between metacontrol and residual 
cortical thickness of the left DLPFC (c) and right DLPFC after correcting for age. 

3.4.5 A potentially mediating effect of Flanker inhibition on metacontrol 

and cortical thickness 

Finally, I investigated whether the Flanker Inhibition measure mediated the 

relationship between the cortical thickness of the bilateral DLPFC and 

metacontrol. To assess this, I performed a mediation analysis with the Flanker 

inhibition measure as the potential mediating pathway between cortical 

thickness and metacontrol. It is important to note that the current sample is 

small for a mediation analysis, and ideally a much larger developmental sample 

would have been available. Thus, the results from the mediation analysis 

should be interpreted with caution. For neither the left (indirect: beta = 0.11, se 

= 0.09, p = .200, 95% CI [-0.02, 0.24], Figure 33a), nor the right DLPFC 
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(indirect: beta = 0.14, se = 0.13, p = .284, 95% CI [-0.10, 0.43], Figure 33b) was 

there a mediating effect of inhibition performance on the Flanker task.  

I also assessed whether the whole-brain analysis of cortical thickness 

was improved by adding Flanker Inhibition as a term, but it did not improve the 

model fit, see 3.6.4 Flanker inhibition’s potential effect on whole-brain models 

of cortical thickness and metacontrol. 

 

Figure 33. Mediation analysis of the effect of inhibition on the 
relationship between DLPFC cortical thickness and metacontrol. 
(a) Mediation model for the left DLPFC, (b) and the right DLPFC. Cortical 
thickness entered into the mediation analysis was the residual cortical thickness 
after correcting for age. Asterisks indicate significance (p < .05*, p < .01**, p < 
.001***). 

3.5 Discussion 

The current study investigates the neurocognitive correlates of model-based 

decision-making and metacontrol in 6-13-year-old children. To this end, I 

assessed their relationship with an extensive battery of executive functions 

(EFs), intelligence and brain structure. While I find that model-based decision-

making did not show significant relationships with the EF task battery, 

intelligence, or cortical thickness measures, metacontrol showed a specific 

relationship with performance on an inhibition measure and cortical thickness 

in temporal, superior parietal, and prefrontal brain regions. 
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I report a relationship between metacontrol and performance on the 

Flanker task. Specifically, I found that better metacontrol was related to higher 

processing costs in the incongruent trials than in the congruent trials on the 

Flanker task. Previous work has shown that the preferential allocation of 

cognitive resources is in part driven by frontostriatal connectivity (Insel et al., 

2017) and that considerations of allocating cognitive effort are, in turn, linked to 

indices of cognitive control (Kool et al., 2017, 2018; Kool & Botvinick, 2014). 

However, the current findings appear contradictory, where greater metacontrol 

is linked to less inhibitory control. Alternatively, children may have preferentially 

allocated cognitive effort in the measure of inhibition, something they have been 

shown to do from six years onwards (Chevalier, 2018; Ganesan & Steinbeis, 

2021). Thus, participants with higher metacontrol may have prioritized the 

congruent trials as they are easier (Lieder & Griffiths, 2019; Ruel et al., 2021). 

So, in the context of making decisions for reward, the trials where more reward 

can be won are prioritized, and in the absence of increased reward for 

performance, the neutral congruent trials are prioritized at the expense of the 

more difficult incongruent trials, which seems to reflect effort avoidance.  

In an exploratory whole-brain analysis, I found that individual differences 

in metacontrol were significantly related to two distinct clusters, one in the left 

temporal lobe and one in the right superior parietal cortex. The temporal lobe 

cluster spanned areas involved with memory (Druzgal & D’Esposito, 2001; 

Jessen et al., 2006; Mion et al., 2010; Rodrigue & Raz, 2004), as well as 

contextual learning (Aminoff et al., 2007; Coutureau & di Scala, 2009; X. Peng 

& Burwell, 2021). The superior parietal lobe cluster spanned areas that have 

previously been linked to working memory (Koenigs et al., 2009), cognitive 
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control (Loose et al., 2017), and planning (Randerath et al., 2017). Thus, these 

clusters span brain regions previously implicated in cognitive abilities relevant 

to metacontrol. Contextual-based learning is relevant as metacontrol in the 

current study represents the ability to increase computationally effortful 

performance when beneficial selectively. In addition, the previous link between 

the superior parietal cortex with cognitive control and planning is relevant, as 

active prioritization of when to employ model-based decision-making across 

contexts relies on being able to control when to use which decision-making 

strategy and selectively switching between them based on context. Using an 

ROI analysis, I found that the cortical thickness of the bilateral DLPFC was 

positively related to increased metacontrol, a brain region known to be involved 

in cognitive control and computationally effortful decision-making strategies 

(Beierholm et al., 2011; Cremer et al., 2021; Doll et al., 2015; Gläscher et al., 

2010; S. W. Lee et al., 2014; O’Doherty et al., 2015; Smittenaar et al., 2013). 

Attempts to integrate behavioral and neural measures to account for 

metacontrol suggest that these account for distinct portions of variance and 

constitute unique effects.   

Given the previous evidence of a relationship between model-based 

decision-making and EFs and intelligence (Otto et al., 2015; Otto, Raio, et al., 

2013; Potter et al., 2017), the absence of such links in the present sample was 

surprising. At the very least, this finding suggests that the relationship between 

model-based decision-making and performance on EF tasks is not 

straightforward, particularly in the absence of information on how effortful and 

motivating children might have found the EF tasks. Surprisingly, and similarly 

to the behavioral analyses, neither whole-brain nor ROI analyses point to any 



Chapter 3. The neurocognitive correlates of model-based decision-making and metacontrol in childhood 

167 
 

specific relationships with model-based decision-making in the study. Even 

though I collected similar EF measures used in prior work, reporting significant 

relationships with model-based decision-making, such as working memory, 

fluid reasoning, and cognitive control. Differences between previous studies 

(Otto et al., 2015; Otto, Raio, et al., 2013; Potter et al., 2017) and current 

findings presumably relate to differences in measures and samples. At a 

minimum, I conclude that the associations between model-based decision-

making and performance on cognitive control tasks may not be robust.  

A critical difference between the current and previous studies relates to 

the task used to measure model-based decision-making. Previous studies 

relied on the traditional two-step task, which uses stochastic transitions and, 

compared to the presently used two-step task with a deterministic task 

structure, was difficult and cognitively more demanding. In essence, it is simpler 

to employ model-based decision-making on the current task, and a higher 

degree of model-based decision-making is, in turn, coupled with larger rewards 

(Kool et al. 2016; 2017). It may well be that prior findings of associations with 

model-based decision-making and performance on cognitively taxing tasks 

might be related to task complexity, as opposed to true underlying relationships. 

It should also be noted that correlating task performance indicates associations 

at the individual difference level and, not necessarily, whether these processes 

are used in the context of complex decision-making tasks.  

This study has several limitations. While the MRI sample used in the 

current study (N = 44) is relatively large compared to typical developmental 

neuroimaging studies, it has been recently suggested that sampling errors 
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could drive significant associations and that robust effects will require sample 

sizes of the order of hundreds or thousands of participants depending on the 

phenotype in question (Marek et al., 2022). In the present study, the significant 

association with cortical thickness in a priori regions of interest lends greater 

credence to the results. However, it must be noted that all measures are 

correlational. Future research on model-based decision-making and 

metacontrol in development may wish to adopt experimental manipulations 

(i.e., dual-task paradigms) to draw stronger inferences, particularly about the 

role of EFs.  

In sum, the current study investigates the underlying neurocognitive 

mechanisms of model-based decision-making and metacontrol. I could not 

replicate previously reported relationships between model-based decision-

making and EFs, nor any links with markers of brain structure. However, 

metacontrol was linked to worse performance on inhibition trials and increased 

cortical thickness in the temporal and superior parietal lobe and the DLPFC. 

Metacontrol reflects optimal use of limited cognitive resources, and the current 

findings suggest that during childhood, this is supported by several brain 

regions linked to contextual learning and cognitive control. Further, the current 

results suggest that the relationship between model-based decision-making 

and other cognitive functions is presumably task-dependent. More extensive 

investigation with a larger battery of tests, bigger samples, and a better 

characterization of task-specific associations with goals and effort should 

illuminate how sophisticated value-based decision-making strategies change 

during development.  
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3.6 Supplemental material 

3.6.1 Behavioral markers of model-based decision-making 

I also investigated the behavioral markers of model-based decision-making and 

metacontrol. I used generalized linear mixed models to approximate a 

behavioral model-based decision-making measure, which was the probability 

of repeating a visit to a planet (stay probability) as a function of reward on the 

previous trial (Kool et al., 2016; Smid et al., 2022), which is the same method 

used in the previous chapter. Using this method, the model-based component 

consists of a main effect of the previous reward on the probability of staying, 

whereas the reduced effect of previous reward when the starting state is 

different (compared to when it is the same) indicates a model-free component 

(Kool et al., 2016). Previous reward refers to the points won by the participant 

on the previous trial and starting state similarity refers to whether the current 

starting state (the rocket pair) is the same as on the previous trial. The influence 

of previous reward on staying behavior approximates the transfer of experience 

from one starting state to the other, while the differential influence of previous 

reward on starting state similarity or difference can reflect a lack of transfer of 

experience between the starting states. Model-free and model-based systems 

should therefore generate different influences of starting state, as only the 

model-based system can effectively generalize over states (Smid et al., 2022). 

In addition, I included the difference in available reward across the two planets 

on the previous trial (a proxy of reward history) and stake (high and low stakes) 

and age as potential predictors of stay probability. I conducted nested model 

selection to find the best-fitting model to predict stay probability.  
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The winning model consisted of previous reward and starting state, age, 

and stake. There was a significant main effect of previous reward on stay 

probability (b = .36, se = .03, z = 13.20, p < .001), indicating a significant effect 

of the model-based component in the children’s behavior. In addition, there was 

a main effect of stake, meaning that children were more likely to repeat a visit 

to the same planet for high-stake trials (b = .09, se = .03, z = 3.34, p = .001). 

There was a significant interaction between previous reward and age, mirroring 

the computational finding that with age, children showed more influence of 

model-based decision-making (b = .18, se = .03, z = 6.43, p < .001). There was 

a significant interaction between previous reward and stake, indicating that for 

the behavioral marker, there did seem to be more model-based decision-

making for higher stake trials (b = .06, se = .03, z = 2.26, p = .024). Lastly, there 

was a significant interaction between stake and age, indicating that with 

increasing age, children were more likely to repeat a visit to the same planet for 

high-stake trials (b = .07, se = .03, z = 2.72, p = .007). 

Thus, both computational and behavioral markers indicate that overall 

model-based decision-making seems to increase with age. Via computational 

makers, there was no group effect of metacontrol nor an increase with age. 

However, using behavioral measures, I observed markers of metacontrol in the 

children's behavior, which increased with age. 
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Figure 34. Behavioral markers of model-based decision-making via 
regression. 
The model-based component is reflected in a positive relation between 
previous reward and stay probability, regardless of starting state. The predicted 
stay probability is plotted over previous reward, low and high-stake trials, 
starting state similarity, and age. 

3.6.2 Regression models exploring the relationship between executive 

functions, model-based decision-making, and metacontrol 

I also ran a series of regression models to investigate if a combination of EF 

tasks could predict either model-based decision-making or metacontrol. I 

included both linear and non-linear models to find the best models and the best 

predicting EF measures for model-based decision-making and metacontrol. I 

used a machine learning approach to regression in Python. Regression models 

were run using the sklearn (Pedregosa et al., 2011) and eli5 packages.  

Five regression models were tested (Multiple Linear Regression, 

Bayesian Ridge Regression, Support Vector Machine (SVM) Regression, 

Decision Tree, and Random Forest Regression). For each regression model, 

permutation importance was assessed to rank the best performing EF and 
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intelligence features to predict model-based decision-making and metacontrol. 

Permutation importance was evaluated in a repeated k-fold cross-validation, 

using six-folds and 100 repetitions. After finding the best performing features, 

the hyper-parameters of each regression model were tuned with Leave-One-

Out Cross-Validation via grid search. For the k-fold cross-validation and the grid 

search, the variable to optimize was the negative mean squared error (MSE). 

The best hyper-parameters were combined with the best predicting features to 

create the winning model. The performance of the winning model was then 

assessed via MSE, R-squared (R2), and explained variance, which were 

obtained in a final k-fold cross-validation. See Figure 35 for a pipeline overview.   

 

Figure 35. Regression model approach. 
None of the regression models reached adequate fit for the assessment 

of model-based decision-making based on their MSE and R-squared values. 

This suggests that model-based decision-making was not predicted by the 

measures of EFs included in this study. 
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Next, I assessed whether any EF measures were predictive of 

metacontrol in the sample. The best performing regression model was a 

Support Vector Machine (Radial Basis Function (RBF) (Gaussian) kernel, C = 

10, gamma = 0.01, epsilon = 0.1; MSE = 0.030, R2 = 0.06, explained variance 

= 16%), with two EF predictors from the inhibition domain, namely from the 

Flanker and Stroop tasks.  

 

Figure 36. Winning Support Vector Machine (SVM) regression model for 
metacontrol. 
The winning SVM model used a non-linear kernel and two EF measures from 
the inhibition domain. Feature importance (top) for the included EFs as 
determined via Permutation testing; each bar represents one measure. Here, 
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the first bar represents The Flanker inhibition, and Stroop measure which were 
the most predictive features, respectively. Pipeline (bottom) for the winning 
model and model performance estimates. 

3.6.3 Cortical thickness age analyses 

Overall mean thickness significantly decreased with age for the sample (T(42) 

= -2.34, p = .024), showing that older children had overall thinner cortical 

thickness. There was no significant difference in the mean cortical thickness 

between male and female participants (F1,42) = .21, p = .647). 

To investigate whole-brain age-related effects on cortical thickness, I ran 

a principal component analysis (PCA) to investigate overall structural 

connectivity across the sample. A PCA of cortical thickness can provide insight 

into patterns of variations and covariation in the thickness of the cortex across 

participants in the sample (Yoon et al., 2007). PCA is a statistical technique that 

reduces the dimensionality of the data by identifying a set of orthogonal, or 

uncorrelated, components that explain the maximum amount of variation in the 

data, and each component represents a linear combination of the vertices that 

contribute to that pattern (Yoon et al., 2007). Thus, the vertices are connected 

in the PCA based on their similarity in thickness patterns. 

The first component explained 12.9% of the variability in the data, the 

second component explained 5.8%, and the third component 4.8%. Thus, there 

were no majorly significant principal components to explain the variability in the 

data. There was a significant relationship between the first principal component 

and age (t(43) = -2.23, p = .031), which decreased with age. However, there 

was no difference in the first principal component and gender (F(1,43) = .18, p 
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= .670). Thus, the first principal component likely reflects a developmental effect 

in the sample.  

The second principal component explained 5.8% of the variability in the 

data, and this component was also significantly correlated to age. Similarly, to 

the first component, the strength of the component decreased with age (t(43) = 

-2.52, p = .015), thus also reflecting a developmental effect. Likewise, there was 

no difference in the decrease of strength of this component between the 

genders (F(1,43) = .44, p = .510).  

Thus, while I observed changes in cortical thickness with age in the 

sample, I saw fewer differences across the sexes in the current sample.  
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Figure 37. The first principal component of cortical thickness. 
Variability of the first principal component for whole-brain cortical thickness (a) 
and showing the changes in the first principal component over age (b) and sex 
(c).  

3.6.4 Flanker inhibition’s potential effect on whole-brain models of 

cortical thickness and metacontrol 

Since I found a potential relationship between inhibition and metacontrol, I 

sought to investigate how the inhibition measures related to cortical thickness 

and whether the relationship between cortical thickness and metacontrol would 
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hold or disappear when controlling for the effect of inhibition. If it holds, this 

suggests that metacontrol might have a distinct relationship to cortical 

thickness, but if the relationship does not, it suggests that inhibition and 

metacontrol have shared variance and both influence cortical thickness 

similarly. 

When entering performance on the Flanker task as a term in the whole 

brain model testing the unique effect of metacontrol while simultaneously 

controlling for age and sex, all previously reported effects remained significant 

(Figure 38). In addition, I compared a model with metacontrol, controlled for by 

age and sex (main model), and a model with metacontrol, controlled for by age, 

sex, and inhibition (Flanker model), and found that the first model had a 

numerically better fit (MSE main model = 0.0683, MSE Flanker model = 0.0685, 

RMSE main model = 0.1367, RMSE Flanker model = 0.1370). The difference 

in the error sum of squares between the models was significant (t(20483) = 

84.09, 95% CI [0.060, 0.063], p < .001). Thus, adding the Flanker term did not 

improve the accuracy of the model investigating the effect of metacontrol on 

whole-brain cortical thickness, and the previously found effects for metacontrol 

remained significant.  
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Figure 38. Clusters from a linear model assessing the unique effect of 
metacontrol on whole-brain cortical thickness, controlling for age, sex, 
and inhibition. 
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Chapter 4. Cognitive control and social and 
intertemporal decision-making in middle childhood 
Part of Chapter 4 is currently under preparation for publication:  

Smid, C. R., Keertana, G., Thomspon, A., Canigueral, R. & Steinbeis, N. (2022). 

No effects of cognitive control training on decision-making in middle 

childhood.  

4.1 Abstract 

Daily decisions have long-lasting implications for our health, social 

relationships, and ability to reach long-term goals. In childhood, it is typically 

observed that with age, decisions become more pro-social in their decisions 

and discount rewards less with time, indicating that this developmental period 

is marked by plasticity in decision-making. Although, substantial individual 

differences in these decision-making abilities are observed independently from 

pure age-related effects. Alongside improving with age, more pro-social 

decisions and less temporal discounting are often linked to better executive 

functions (EFs). EFs are a set of cognitive abilities that encompass working 

memory, cognitive flexibility, and cognitive control. Thus, individual and non-

age-related changes in pro-social and intertemporal decision-making may be 

reflected in accompanying individual differences in EFs. Furthermore, efforts to 

enhance EFs via training paradigms have found that these abilities can be 

improved via training. Thus, improving EFs via a training paradigm in childhood 

may translate to more pro-social decision-making and less steep temporal 

discounting. In this study, I investigate (i) the relation between EFs and pro-

social and intertemporal decision making in childhood and (ii) whether training 
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cognitive control leads to changes in pro-social and intertemporal decision-

making, using a randomized control trial with a highly variable, adaptive, and 

complex gamified training protocol in a highly powered sample of 205 children 

aged 6-13 years. I find that EFs are not strongly linked to pro-social and 

intertemporal decision-making in this age range and that cognitive control 

training did not lead to short- or long-term training-related changes. 

4.2 Introduction 

Our decisions can have far-reaching consequences, as they embody how we 

interact with others and the world around us. Daily decisions entail different 

scenarios, from choosing our favorite breakfast cereal to a romantic partner. 

Typically, decision-making is studied within broad domains related to (i) time 

(i.e., choosing between rewards of differing magnitude and timescales) (Bickel 

et al., 2014; Bos & McClure, 2013; Chapman, 1996; Peters & Büchel, 2011; 

Story et al., 2014), (ii) risk (i.e., choosing between rewards of differing 

magnitude and likelihood) (Donati et al., 2014; Kacelnik, 1997; S. Li, 2003; 

Machina, 1987; Verbruggen et al., 2012), and (iii) social contexts (i.e., choosing 

between rewards for ourself and others) (Böckler et al., 2016; Lockwood & 

Wittmann, 2018; Lucas et al., 2008). Crucially, our daily decisions can impact 

real-life long-term outcomes, such as health, wealth, and academic and 

workplace success (Daugherty & Brase, 2010; Hamilton & Potenza, 2012; 

Mischel et al., 1988; Silva Castillo, 2017; Story et al., 2014; Tate, 2015; Thaler 

& Benartzi, 2004). When we turn to developmental samples, we see that with 

age, children’s decisions become progressively more patient (Green et al., 

1999; Prencipe et al., 2011; Steinbeis et al., 2016) and more pro-social (Bauer 

et al., 2014; Chajes et al., 2022; Fehr et al., 2008; McAuliffe et al., 2017), 
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however, at young ages, children tend to make more selfish and impatient 

choices.  

Given the importance of prudent decisions, particularly during 

development, understanding their underlying mechanisms and seeking to 

leverage that information to increase it has been a nascent research agenda 

(Kable et al., 2017; Steinbeis, 2016; Steinbeis et al., 2012; Steinbeis & Over, 

2017; Zhao et al., 2022). Childhood is a period of more remarkable plasticity, 

and if the underlying mechanisms are known and understood, this makes it 

possible for training paradigms to intervene and boost desired types of 

decision-making potentially. Here, in a large sample of 6–13-year-old children, 

the link between decisions related to time and social context (henceforth 

intertemporal and social decision-making) and executive functions (EFs) are 

investigated. First, I examine associations between decision-making and latent 

factors based on an extensive battery of tasks measuring different facets of EFs 

(i.e., inhibition, working memory, and cognitive flexibility) (see 3.3.3 Cognitive 

task battery for an overview of the task battery), followed by a considerably 

sized, randomized control training of inhibitory control or response speed, and 

studying its short- and long-term effects on decision-making.  

Intertemporal choice is deciding between a small reward now or a large 

reward later; social decision-making is deciding between outcomes for the self 

or others. EFs reflect a set of processes (e.g., working memory, cognitive 

flexibility, and inhibition), critical for flexible goal-directed behavior, as they 

reflect the ability to hold information in the mind and suppress undesired 

impulses (Diamond, 2013). Childhood EFs have been shown to predict a range 
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of social, academic, and mental health outcomes later in life (Blair & Razza, 

2007; Clark et al., 2010; Moffitt et al., 2011). In particular, better EFs have been 

associated with better personal finances and physical and mental health (Blair 

& Razza, 2007; Clark et al., 2010; Moffitt et al., 2011). In turn, impaired EF 

ability has been linked to later mental health problems and criminality in 

adulthood (Moffitt et al., 2011). EFs undergo protracted development from 

childhood into early adulthood (Davidson et al., 2006; Garon et al., 2014; Wiebe 

& Karbach, 2017), which is likely supported by developmental changes in 

frontoparietal and frontostriatal neural circuitry (Buss & Spencer, 2018; Fiske & 

Holmboe, 2019). Given their critical role in healthy and productive development 

and coupled with prolonged plasticity of underlying neural circuitry, EFs have 

been a primary target for interventions during development (Diamond & Lee, 

2011; Heckman, 2006; Johann & Karbach, 2020; Karbach et al., 2015; Karbach 

& Kray, 2009; Klingberg, 2005; Sala & Gobet, 2017; Wass et al., 2012; Zhao et 

al., 2022).  

EFs are likely crucial in pro-social and intertemporal decision-making, as 

it allows us to forego our immediate gratification for greater returns, either with 

time or by investing resources in others rather than ourselves. For example, 

altruistic behavior entails incurring a cost to oneself (Steinbeis et al., 2012). As 

a result, pro-social decision-making research has been dominated by a debate 

between two competing explanations. Some researchers claim that altruistic 

decisions in adults occur automatically, intuitively, and effortlessly (Rand et al., 

2012; Zaki & Mitchell, 2013), while others argue that pro-social decisions 

require EFs, especially inhibitory control, in the form of self-restraint (Knoch et 

al., 2006; Rachlin, 2002). Since evidence supporting both views has been 
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observed, findings from developmental psychology may be able to weigh in on 

this debate under the assumption that developmental origins of altruism may 

illuminate their presence later in life (Rand et al., 2012; Zaki & Mitchell, 2013). 

Regarding intertemporal decision-making, young children are particularly prone 

to making short-sighted choices (Thompson et al., 1997), but with age, they 

become able to discount rewards less steeply with time (Green et al., 1999; 

Prencipe et al., 2011; Steinbeis et al., 2016). In previous studies, better 

cognitive control has been linked to less steep discounting in intertemporal 

decision-making (Dalley et al., 2011; Figner et al., 2010; Sasse et al., 2017; 

Steinbeis et al., 2016). Thus, one’s EFs may also dictate one’s display of pro-

social and intertemporal decision-making.  

 Previous research into cognitive control training has primarily focused on 

working memory, cognitive flexibility, and to a lesser extent, inhibition (Alloway 

& Alloway, 2009; Calderon & Newburger, 2018; Holmes et al., 2019; Johann & 

Karbach, 2020; Karbach et al., 2015; Karbach & Kray, 2009; Karbach & 

Verhaeghen, 2014; Klingberg, 2005; Zhao et al., 2022), and found that these 

functions are trainable, although usually in a relatively narrow and task-specific 

manner (i.e., near transfer) (Diamond & Ling, 2016; Holmes et al., 2019; Kable 

et al., 2017; Simons et al., 2016). Changes in other distally related domains of 

cognitive functioning and real-world outcomes (i.e., far transfer) have been 

much less consistently observed (Holmes et al., 2019; Judd & Klingberg, 2021; 

Kable et al., 2017; Karbach & Verhaeghen, 2014; Kassai et al., 2019; Sala & 

Gobet, 2016, 2017, 2019; Scionti et al., 2020; Smithers et al., 2018). While 

opinions range in their optimism as to the potential for cognitive training to lead 

to far transfer (Gobet & Sala, 2022; Könen & Karbach, 2015; Sala & Gobet, 



Chapter 4. Cognitive control and social and intertemporal decision-making in middle childhood 

184 
 

2017, 2019), the quality of both training paradigms(Gobet & Sala, 2022; Moreau 

& Conway, 2014; Raviv et al., 2022; Shawn Green et al., 2019; Smid et al., 

2020) and resulting evidence either for or against training-related changes 

(Dienes, 2014; Dougherty et al., 2016) have been consistently questioned.  

There have been previous attempts to influence behavior via cognitive 

control training paradigms. For example, training paradigms targeting inhibition 

have been utilized to promote healthier eating and drinking behavior after 

coupling alcohol or fatty foods stimuli with inhibitory responses (Jones et al., 

2016). Given the above evidence on a clear mechanistic link between pro-social 

and intertemporal decisions and cognitive control, enhancing cognitive control 

would recommend itself as a candidate to impact decision-making positively. 

For example, as reduced temporal discounting is potentially supported by 

working memory, a previous study used working memory training in 

adolescents to reduce temporal discounting (Zhao et al., 2022). This study 

found that a working memory training paradigm focused on working memory 

updating resulted in less steep temporal discounting.  

However, another study using a cognitive control paradigm in adults saw 

no changes in temporal discounting following training (Kable et al., 2017). In 

addition, as pro-social decision-making has been linked to cognitive control, a 

previous study sought to improve this via priming inhibition (Steinbeis & Over, 

2017). This study found that promoting behavioral control via storytelling 

increased pro-social decision-making in children. Thus, these studies provide 

conflicting evidence that enhancements in the executive function domain may 

transfer to behavioral changes in decision-making tasks. Both studies that 
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observed training-based changes were conducted with developmental 

samples; perhaps younger ages are more susceptible to training-induced 

transfer to decision-making tasks (Wass et al., 2012). With previous studies 

suggesting that the cognitive control mechanism may underpin both 

intertemporal and pro-social decision-making, improving this mechanism in 

childhood via training may lead to increases in pro-social and intertemporal 

decision-making (Kable et al., 2017; Steinbeis & Over, 2017).  

Training studies have generally been criticized for lack of effectiveness 

and transferability (Sala & Gobet, 2019). A few critical issues with general 

training paradigms have been a) poor definitions of the training mechanism, b) 

poor design of training protocols as well as c) being relatively underpowered to 

detect small effects (Smid et al., 2020). In the current study, these issues are 

addressed in the training paradigm in several ways; 1) it employed a focused 

training paradigm that targeted the mechanism of interest, inhibition, 2) the 

training employed an adaptive and double-blind randomized control trial, 3) The 

current study was conducted on a relatively large developmental sample. 

In addition, non-significant results in training studies can mean that there 

is evidence for the null hypothesis (training does not affect the measure of 

interest) or that the data are insensitive to providing evidence supporting the 

null hypothesis (Dienes, 2014; Dougherty et al., 2016). It is, therefore, of interest 

in training studies to consider evidence in favor of the null hypothesis in 

particular. To this end, the current study uses the Bayes factor in support of the 

null hypothesis (cognitive control training did not lead to changes in the 

decision-making measures) to assess training-related transfer to decision-
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making tasks. In this case, the Bayes Factor B indicates that the data are B 

times more likely under the null model than the training model. Therefore, the 

Bayes Factor allows three different types of conclusions regarding the potential 

training effects; (i) strong evidence for a null effect (no-training related changes) 

(B much greater than 1), (ii) strong evidence for the training model (B close to 

0); (iii) and the evidence is insensitive (B close to 1) (Dienes, 2014).  

Here, in a large sample of children aged 6 to 12 years (N = 205), I 

research the relationship between latent factors of cognitive control and 

decision-making. In addition, I investigate both short- and long-term effects of 

training EFs in the form of inhibitory control on pro-social and intertemporal 

decision-making. The current training paradigm follows the gold-standard 

approach for a well-powered, rigorous, and double-blind, randomized controlled 

trial (RCT) (Smid et al., 2020). Potentially, younger children may benefit more 

from the training paradigm (Wass et al., 2012), which is why I include age-

related training changes. Nevertheless, the results suggest that cognitive 

control training targeting inhibition does not change pro-social or intertemporal 

decision-making in middle childhood. 

4.3 Methods 

4.3.1 Participants 

A total of 262 typically developing children were recruited for the study from 

schools within Greater London in the United Kingdom (data collection started 

in May 2019 and ended in May 2021). A final sample of 205 participants (mean 

age = 8.97, age range 6.03 – 12.61 years, 53.2% girls) was available who had 

(a) at least completed one decision-making task at any time point (N = 229) and 
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(b) also completed at least one successful valid training session (N = 205). 

Training sessions were valid when participants successfully completed at least 

two of the seven types of training games in a session. This led to the exclusion 

of 24 participants who did not complete a valid training session.  

In-person (offline) testing took place at UCL campus testing facilities, 

and participants completed these tasks as part of a larger test battery. The 

decision-making games included a Dictator Game, an Ultimatum Game, and an 

intertemporal choice and valuation task. For offline testing, participants were 

guided through the battery by an experimenter. Participants completed the 

tasks on a laptop (Lenovo, running Windows 10), which were programmed in 

MATLAB or EPrime. Due to Covid, testing was moved online, which was 

conducted on the Pavlovia platform, and the tasks were coded in Python and 

JavaScript. Participants completed these at home.  

For online testing, the participants' parents were requested to guide them 

through the task's instructions but not interfere with their behavioral 

performance on the task. The online battery consisted of detailed instructions 

recorded via audio and accompanied by slides with information, which 

participants had to listen to in full before performing the tasks. Further, 

comprehension questions ensured that participants had fully understood the 

tasks before taking part. Testing medium (Online / Offline) was included in the 

statistical models to control for potential effects. 

4.3.2 Cognitive control training paradigm 

Participants were randomly assigned to an Experimental Group (training 

inhibition; N = 107) or a Control Group (training response speed; N = 98). The 
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training program consisted of an eight-week intervention where participants 

completed four training sessions per week, each lasting 15 minutes. Within 

each training week, one session took place at the children’s school and was 

supervised by the experimenters, whereas the remaining three sessions took 

place at home. Parents of the participants were encouraged to oversee the 

training (note that, for children who enrolled in the study after the outbreak of 

the COVID-19 pandemic in March 2020, all training sessions took place at 

home). The training was computerized and used a highly motivating and 

gamified interface and narrative. Participants were told that they were a pilot 

that crashed on an island and that they had to navigate through different 

environments to collect parts of their broken airplane, after which they could 

return home. For more details on the training, see 4.6.1 Cognitive control 

training protocol.  

 

Figure 39. Participants in Training Paradigm. 
Participant numbers across training groups (control and experimental groups), 
testing medium (offline testing in purple and online testing in blue) and across 
years of age. 

Moreover, the training was adaptive to each child’s performance to avoid 

ceiling and floor effects and keep children motivated throughout the sessions. 

Seven training games were randomly assigned to the sessions so that 

participants would play a different set of games in each session (around three 
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games per session). The games took place in different settings (e.g., forests, 

deserts, tundra, or mountains) and required participants to gain points by 

collecting treasures, gems, or coins while avoiding a perpetrator (e.g., dragon, 

monster, or ghost) (see Supplementary Figure 50). 

While the training games were presented in the same manner across 

both groups, i.e., the stimuli and appearance of the games were the same, the 

instructions given to each group varied according to the abilities being trained. 

The experimental group underwent response inhibition training, where the stop-

signal was implemented in the context of the training games. Different stimuli 

were used as go- and stop-signals depending on the game (Figure 40d). 

Participants in the experimental group were instructed to react as quickly as 

possible if the go-signal appeared. However, they were instructed to withhold a 

response if the stop-signal appeared (26-47% of total trials depending on the 

game, mean = 32%), thus requiring them to inhibit the go-signal response. The 

stop-signal delay (SSD; i.e., the delay between the presentation of the go-signal 

and the stop-signal) was initially set to 200ms and was adjusted to participants’ 

performance using an adaptive staircase procedure. If participants successfully 

inhibited their response, then the SSD was increased by 50ms to make the task 

more difficult; however, if participants did not inhibit their response, then the 

SSD was decreased by 50ms to make the task easier. This ensured that the 

training was adaptive and avoided floor or ceiling effects. 

The response speed training was identical to the experimental condition 

in all aspects except that a response was required for all signals. Participants 

were instructed to press the spacebar as quickly as possible. To ensure that 
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training was adaptive for this group, participants had to respond within a time 

window that was set based on a rolling average of the response time of the 

previous ten trials plus two standard deviations. This ensured that the training 

was adaptive while minimizing the effect of outliers on the response threshold.

 

Figure 40. Cognitive control training paradigm. 
Both groups were administered the same protocol, comprising a variety of 
adaptive and gamified tasks. (a-c) Children were told they were pilots who had 
crashed their plane on an island and had to navigate the island to earn coins. 
(d) Coins could be earned via seven unique games that operated on the same 
underlying mechanism: ‘ go’ vs. ‘stop trials. (e-f) Two examples of these games. 
Adapted from Ganesan et al. 2022. 

4.3.3 Social and intertemporal decision-making tasks 

Participants completed a cognitive battery with multiple tasks at each time point. 

The first stage of the battery consisted of eight EF tasks (Table 6), after which 

participants completed the decision-making tasks as the final part of the battery. 

For offline testing, participants were guided through the testing battery by an 

experimenter and completed comprehension checks. For the Dictator Game, 

participants were walked through three different scenarios of distributing the 
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MUs; keeping all 6 MUs, giving away all 6 MUs, or splitting the MUs evenly. 

They were prompted to answer the consequences of each scenario (e.g. “If you 

chose to keep all 6 coins, how many do you have? How many does the other 

child have?”). Similar comprehension checks were used for the Ultimatum 

Game and the intertemporal choice tasks (e.g. “If you choose the option with 6 

moons and 6 coins, how long do you have to wait until you get your present?”). 

If they responded incorrectly, they were corrected by the experimenter. For 

online testing, the same comprehension checks were conducted, and the 

children were prompted for their answer, but here they were given the answer, 

after which the answer was briefly explained (e.g. “If you choose to keep 3 coins 

and give 3 coins away, you and the other child will both have 3 coins), but not 

checked for comprehension further as there was no experimenter present. 

4.3.3.1 Dictator Game  

Participants were allocated six monetary units (MUs), visually represented in 

the task as coins, which could be exchanged for gifts at the end of the 

experiment. Participants were told that their collected MUs would go towards 

their present at the end of the testing session and that the more MUs they had 

at the end of all the games, the larger their gift would be. The reward was 

described in this abstract way to appeal to children of all ages and has 

previously been found to be incentivizing for children of this age range (Smid et 

al., 2022; Steinbeis et al., 2016). In the offline sample, two boxes were 

presented, one for the child and one for their “partner.” Children were told that 

they were playing with another child from a different school; in reality, there was 

no other participant. They were instructed to first click on the MU and then the 

boxes to divide them (Figure 41a); they were also informed that once they had 
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put a MU in a box, they could not change their decision. Counters at the side of 

the boxes kept track of the number of MUs in either box. During the task, the 

instructor explicitly informed the participant that they would turn away and not 

look at the screen so that participants were free to decide on distributions 

without judgment. There was no response time limit for the participants. The 

Dictator Game (DG) thus measures pro-social decision-making as indicated by 

how many MUs a participant decided to give away to another unknown child.  

In the online version, children determined their chosen distribution by 

moving a slider (Figure 41b). In this sense, the online task required just one 

move to distribute the MUs. As in the offline version, children were told that they 

were playing with another child from another school whom they did not know 

when in reality, there was no other participant. Unlike in the offline sample, 

however, children could change their minds about their preferred distributions 

indefinitely and submit their final decision by pressing the spacebars on their 

computers. Parents were instructed to be present in the room while testing, 

engaged in an activity such as reading a book, and not to influence their 

children’s participation. 
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Figure 41. Dictator Game (DG) across the offline and online testing 
mediums. 
(a) the offline version of the DG required participants to click on one MU (coin) 
at a time and then on the desired box (depicted as a present), which they 
wanted to deposit the MUs in. Participants had to do this for every MU and were 
given as much time as needed while the experimenter turned around and 
looked away. (b) the online version of the DG differed from the offline version 
in that participants had to click on a slider system to determine how many MUs 
they wanted to keep for themselves. They were allowed as much time as 
possible and could click different options on the slider as often as they wanted. 
As testing took place at home, parents were instructed to look away while the 
participants completed this task. 

4.3.3.2 Ultimatum Game  

The Ultimatum Game (UG) consisted of two parts, a proposer and a responder 

role. Like in the DG, in the UG proposer role, children had to distribute six MUs 

amongst themselves and another unknown child taking part in the study. 

However, this time, they were told that the other child had the option to reject 

their offer. If the other child rejected their offer, the participant and the other 

unknown child would both receive zero MUs. There was again no limit to their 

response time. The second part of the UG was the UG responder role, where 
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children could accept or reject a single offer of an unfair distribution (1/6) of 

MUs made by another unknown child in the study (Figure 42a, b). If they 

rejected the offer, the participant and the unknown other child who made the 

offer (a computer in reality) would receive zero MUs. For this game, there was 

again no response limit for the participants. 

Due to time restrictions, the UG Proposer role was only conducted offline 

and not included in the online version of the battery. Therefore, data from the 

36 online participants was missing. These missing data were imputed; for 

details on the imputation procedure, see 4.6.2 Imputation of missing data. 

 

Figure 42. Ultimatum Game (UG) Responder, across offline and online 
testing mediums. 
(a) for the offline UG, participants had to click either a button with ‘Yes’ to accept 
the offer or ‘No’ to reject the offer. (b) The online version of the UG Responder 
role was nearly identical in that online participants also had to click a button with 
‘Yes’ or ‘No’ to accept or reject the offer. There was no limit to a participant’s 
response time. 

4.3.3.3 Intertemporal choice task 

Intertemporal decision-making was assessed using two tasks, an intertemporal 

choice and an intertemporal valuation task. In the intertemporal choice task, 

participants made choices between immediate and delayed reward options. 

This task measured the extent to which participants would discount via choices 
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between the two options. Participants completed 18 trials (in a fixed order) 

where they were always presented with a choice between either an immediate 

or a delayed option (Figure 43a, b). The value of delay used was days, where 

every moon depicted indicated one additional day of waiting before the 

participant would receive their reward. The reward for the delayed option was 

always eight MUs, and the immediate reward option ranged from two MUs to 

four MUs and then six MUs. Participants’ discounting was measured by 

calculating the percentage of total delayed choices.  

 

Figure 43. Intertemporal choice trials. 
Participants were presented with two choices and had to use the left and down 
arrow keys to decide. (a) the first trial of the task, where the immediate reward 
was small (two MUs), and the largest reward was presented for the shortest 
delay (one day). (b) the last trial of the task, where participants had to choose 
between the largest immediate reward (six MUs) and the large reward for the 
longest delay (six days). 

4.3.3.4 Intertemporal valuation task 

Participants rated all the different delay and immediate reward options for the 

intertemporal valuation task, which continuously measured the explicit valuation 

of delay and reward. Participants completed six trials, one for each delay option 
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ranging from one unit of delay to six units of delay. The reward was always eight 

MUs, which was the highest available reward option. Ratings were indicated on 

a continuous scale which ranged from -5 to +5 (Figure 44a). Afterward, 

participants explicatively rated how much they valued immediate reward, 

ranging from two MUs to four MUs, six MUs, or eight MUs (Figure 44b). For this 

task, a linear slope was fitted to each participant’s continuous ratings for the 

delay and reward trials separately to measure their explicit delay discounting 

and reward valuation. As individual measures of delay discounting, the 

steepness of the linear slopes was extracted for each participant (the 

coefficients of the linear slope), as well as the intercept, which reflects the initial 

valuation of eight MUs for the smallest amount of delay (one day). For the 

reward valuation trials, the steepness of the slope for the valuations (the 

coefficients) was extracted, as well as the initial valuation of the smallest 

immediate offer (two MUs immediately).  

 

Figure 44. Delay devaluation and reward valuation trials. 
(a) valuation trials for delay, where participants rated how much they valued the 
large immediate reward (eight MUs) for increasing delays (one day to six days). 
(b) valuation trials for reward, where participants rated how much they valued 
increasing values of immediate reward (two MUs to eight MUs). 
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The coefficients and intercepts were combined in a weighted average, 

which reflects each participant’s continuous rating of delay and reward. The 

weighted averages for delay and reward were significantly correlated to the 

separate intercept and coefficients, indicating that these measures managed to 

capture both independent measures. For more details on how these measures 

were derived, see 4.6.4 Linear valuation composite measures.  

4.3.4 Cognitive control latent factors 

As participants completed many EF measures, I used latent factors of EFs to 

reduce measurement related variance as well as the number of tests to run. To 

obtain latent factors of EFs, a confirmatory factor analysis (CFA) was conducted 

using Lavaan in R on eight measures from a broad EF battery (see 3.3.3 

Cognitive task battery and Table 6) (Rosseel, 2012). This provided three factors 

that loaded on Inhibition (“I”), Cognitive Flexibility (“S”), and Working Memory 

(“M”). These factors were coded so that when the value of a factor was higher, 

this reflected a better score on the respective EF. For more details on the factor 

structure, see 4.6.3 Confirmatory Factor Analysis for executive measures. 

4.3.5 Statistical methods and imputations 

Missing data were imputed using the MICE package in R (50 datasets created, 

50 maximum iterations), and Quickpred was used to generate the imputation 

model. For details on the missing data and the imputation performance, see 

4.6.2 Imputation of missing data. For all main results in the current chapter, I 

report the results from the pooled models over all imputed datasets. Linear 

mixed models were used to assess training effects with the lme4 package 

(Bates et al., 2015). For the plots involving age and the decision-making 
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measures, the effect of the testing medium was regressed out of these 

relationships, and the residuals were plotted. Reaction times were log-

transformed before analysis, and extreme outliers were removed from the 

reaction time data, leading to the exclusion of one data point for the average 

reaction time for the intertemporal choice task.  

For evidence of null effects, I report the Bayes factor in favor of the null 

model (the model without a group-by-session interaction) over the training 

model (model with a group-by-session interaction) for each measure of interest 

(Dienes, 2014). I isolate this particular interaction as the training effect of 

interest. In this case, the Bayes Factor B indicates that the data are B times 

more likely under the null model than the training model. Therefore, the Bayes 

Factor allows three different types of conclusions regarding the potential 

training effects; (i) strong evidence for a null effect (no-training related changes) 

(B much greater than 1), (ii) strong evidence for the training model (B close to 

0); (iii) and the evidence is insensitive (B close to 1) (Dienes, 2014). To help 

interpretation, I use conventional cut-offs for the Bayes Factor; a B greater than 

3 represents substantial evidence for the null model, a B of 1/3 (0.33) provides 

substantial evidence for the training model, and a B between 3 and 1/3 provides 

support for neither and may indicate data insensitivity (Jeffreys, 1961). 

Bayesian models were run using the BRMS package in R and in parallel 

sessions using the Future package (Bengtsson, 2021; Bürkner, 2017). 

Outcome variables were standardized, and models were run with lazy normal 

priors (mean of 0 and standard deviation of 1), with adapt delta set between 0.8 

and 0.9 and the number of iterations between 10,000 and 20,000 depending on 

convergence. 
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The data and code used to conduct the analyses reported in this chapter 

can be found on my Github: 

https://github.com/ClaireSmid/CogControlTraining_DecisionMaking 

4.4 Results 

4.4.1 Developmental effects in social and intertemporal decision-making 

I corrected the p-values of the age-related effects for multiple comparisons 

using a Bonferroni correction, with the threshold for significance set to p = .006. 

For the mean values and standard deviations, see Table 7. 

Table 7. Social and intertemporal decision-making mean values at pre-
training. 
Task Name Mean Values Standard 

Deviation 

Dictator Game (MUs given (max 6)) 2.12 1.07 

Ultimatum Game (Proposer) (MU’s given 

(max 6)) 

2.78 0.70 

Ultimatum Game (Responder) (probability 

to accept)  

0.41 0.49 

Strategic Decision Making (difference in 

MUs given) 

0.65 1.03 

Percentage of delayed choices 37.95% 32.33% 

Delay valuation (weighted average) 0.67 1.44 

Reward valuation (weighted average) -0.51 1.58 
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4.4.1.1 Social decision-making 

For the Dictator Game (DG), the amount of MUs given was positively correlated 

to age (b = 0.15, se = 0.04, t = 3.41, p = .001), and older children had slower 

reaction times for distributing the DG MUs (b = 0.14, se = 0.02, t = 6.28, p < 

.001). In addition, strategic decision-making (the difference between MUs given 

in the DG and UG) was significantly negatively related to age after correction 

(b = -0.16, se = 0.05, t = -3.46, p = .001). Thus, older children would initially 

offer more MUs during the dictator game and were slower to distribute their 

MUs during the Dictator Game. Their offers stayed more consistent through to 

the Ultimatum Game. 

There was no correlation with age for the probability to accept the UG 

Responder unfair offer (b = -0.03, se = 0.02, t = -1.18, p = .240), however, the 

decision time for responding to the offer was positively correlated to age (b = 

0.12, se = 0.03, t = 3.66, p < .001). Thus, reaction times increased with age for 

both distributing the MUs and deciding how to respond to the unfair offer. 
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Figure 45. Social decision-making measures over age, controlled by 
testing medium. 
(a) the number of MUs given during the DG increased with age, (b) and so did 
the reaction time for the DG. (c) strategic decision-making (the difference 
between offers made in the DG and UG Proposer) decreased with age. (e) the 
probability of accepting the unfair offer in the UG Responder was not 
significantly correlated with age, (f) while the reaction time for this decision 
again increased with age. Note: These plots were based on the first imputed 
dataset only. 
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4.4.1.2 Intertemporal decision-making 

There was no significant relationship between age and the total percentage of 

delayed choices (b = 0.02, se = 0.04, t = 0.45, p = .652), and no significant 

correlation between age and the average reaction time (b = 0.03, se = 0.03, t = 

0.85, p = .396). One outlier in the average reaction time for outliers was found 

and removed. When leaving the outlier in, there was still no significant 

correlation between age and the average reaction time (b = 0.03, se = 0.03, t = 

0.89, p = .377).  

For delay devaluation, there was a significant positive relationship with 

age (b = 0.23, se = 0.05, t = 4.39, p < .001), indicating that with age, children 

valued increases in delay as progressively worse. For reward valuation, there 

was no significant relationship with age (b = 0.08, se = 0.04, t = 1.86, p = .065), 

indicating that children did not value increasing reward more with age.  
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Figure 46. Intertemporal decision-making measures and age controlled 
by testing medium. 
(a) the percentage of delayed choices did not change over age (b), and neither 
did the average reaction time for choices (c); however, delay increased with 
age (d) while there was no significant change in reward valuation over age. 
Note: these plots were based on the first imputed dataset; one outlier was 
removed from the average reaction times for the intertemporal choice task. 

4.4.2 Relationships between executive functions and decision-making 

measures 

First, I investigated whether there were correlations between social and 

intertemporal decision-making and the latent factors of cognitive control at the 

pre-training time point. Next, I corrected these potential relationships for age.  
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4.4.2.1 Inhibition factor 

The latent inhibition factor was significantly positively correlated to the amount 

of MUs given during the Dictator Game (b = 0.65, se = 0.26, t = 2.44, p = .015), 

and negatively correlated to strategic decision-making (b = -0.81, se = 0.30, t = 

-2.71, p = .007). When correcting for age, these relationships were no longer 

significant (Dictator Game Coins: b = 0.34, se = 0.29, t = 1.19, p = .235; 

Strategic Decision-making: b = -0.45, se = 0.32, t = -1.41, p = .162). There were 

no significant relationships between inhibition and the responder behavior 

during the Ultimatum Game (b = -0.08, se = 0.14, t = -0.59, p = .554).  

 For intertemporal decision-making, there was no correlation with delayed 

choices (b = 0.10, se = 0.28, t = 0.37, p = .710). There was a significant 

correlation between the latent inhibition factor and delay valuation (b = 1.10, se 

= 0.34, t = 3.25, p = .001), and no significant relationship with reward valuation 

(b = -0.01, se = 0.28, t = -0.04, p = .970). When correcting for age, the 

relationship between the latent inhibition factor and delay valuation was no 

longer significant (b = 0.51, se = 0.36, t = 1.43, p = .156). 

4.4.2.2 Cognitive flexibility factor 

There was no significant correlation between the latent cognitive flexibility factor 

and the amount of MUs given during the Dictator Game (b = 1.84, se = 1.24, t 

= 1.49, p = .139), but it was significantly negatively correlated to strategic 

decision-making (b = -3.39, se = 1.44, t = -2.36, p = .020), suggesting that worse 

cognitive flexibility was related to more strategic decision-making. When 

correcting for age, the relationship between strategic decision-making and the 

latent cognitive flexibility factor was no longer significant (b = -1.27, se = 1.67, 
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t = -0.76, p = .448). There was no significant relationship with the probability to 

accept the offer during the Ultimatum Game Responder (b = 0.21, se = 0.62, t 

= 0.34, p = .733). 

 For intertemporal decision-making, there was a significant positive 

relationship between the latent cognitive flexibility factor and the percentage of 

delayed choices (b = 3.02, se = 1.24, t = 2.43, p = .016) as well as delay 

valuation (b = 5.13, se = 1.21, t = 4.23, p < .001), indicating that more cognitive 

flexibility was related to a higher percentage of delayed choices and stronger 

delay valuation. When correcting for age, this relationship remained significant 

for both measures (Percentage of delayed choices: b = 3.33, se = 1.45, t = 2.30, 

p = .022; Delay valuation: b = 2.81, se = 1.38, t = 2.04, p = .043). There was no 

significant relationship between reward valuation and the factor (b = 1.75, se = 

1.23, t = 1.42, p = .156). 

4.4.2.3 Working memory factor 

The latent working memory factor was significantly positively correlated to the 

amount of MUs given during the Dictator Game (b = 4.86, se = 2.26, t = 2.15, p 

= .033), and negatively to strategic decision-making (b = -7.20, se = 2.52, t = -

2.86, p = .005). Suggesting that better working memory was related to a higher 

number of MUs given during the dictator game and to less strategic decision-

making. When correcting for age, the relationship between MUs given during 

the Dictator Game and the working memory factor was no longer significant (b 

= 1.41, se = 2.63, t = 0.54, p = .592), or strategic decision-making (b = -3.61, 

se = 2.91, t = -1.24, p = .216). There was no significant relationship between 
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working memory and the probability of accepting the offer during the Ultimatum 

Game Responder (b = -0.53, se = 1.14, t = -0.47, p = .642).  

 For intertemporal decision-making, there was no significant relationship 

between working memory and the percentage of delayed choices (b = 3.05, se 

= 2.32, t = 1.32, p = .189), but there was a significant relationship with delay 

valuation (b = 8.99, se = 2.26, t = 3.98, p < .001). When correcting for age, the 

relationship between delay valuation and the working memory factor was no 

longer significant (b = 4.51, se = 2.56, t = 1.76, p = .080). There was no 

significant relationship between working memory and reward valuation (b = 

1.77, se = 2.28, t = 0.77, p = .440).  

 We also assessed inter correlations between the decision-making task 

measures and whether social and intertemporal decision-making could be 

captured by a single general factor, similar to a previous study with young adults 

that identified a general factor for decision-making (Moutoussis et al., 2021). I 

did not find that a single decision-making factor explained behavior across the 

two decision-making paradigms, and I, therefore, assessed the separate 

measures of the decision-making measures. For the factor analysis and the 

correlation between the decision-making measures, see 4.6.5 Decision-making 

factor analysis. 
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Figure 47. Correlations between EF factors and decision-making 
measures. 
4.4.3 Short-term training effects 

Next, I investigated short-term training effects between the pre-training and 

post-training time points immediately after training completion. Potential training 

effects were assessed with linear mixed models (e.g., (y ~ group * session + 

testing medium + (1|ID)). I focus on the essential decision-making measures, 

which for social decision-making reflect pro-social decision-making (Dictator 

Game MUs given), strategic social decision-making (difference between 

Dictator Game and Ultimatum Proposer Game MUs given), inequality aversion 

(probability to accept the unfair offer in the Ultimatum Responder Game). For 

intertemporal decision-making, I focus on intertemporal choice (percentage of 

delayed choices in the intertemporal choice game), delay valuation (how 

strongly participants devalued the same reward for increasing delay), and 
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reward valuation (how strongly participants valued increases in reward). The 

Bayes Factors for all measures are reported in Table 8. I also report the Bayes 

Factors for the null model (BF01, no interaction between session and group) in 

the text for each measure. 

4.4.3.1 Social decision-making 

For the role of the proposer in the Dictator Game, there was no significant main 

effect of session (beta = 0.03, se = 0.14, t = 0.21, p = .831), nor of group (beta 

= 0.26, se = 0.14, t = 1.86, p = .064). There was also no significant group by 

session interaction (beta = 0.01, se = 0.18, t = 0.08, p = .940, BF01 = 5.44; see 

Figure 6a).  

For strategic social decision-making (i.e., difference in offer between the 

Ultimatum and Dictator Games), there was no significant main effect of session 

(beta = -0.09, se = 0.17, t = -0.50, p = .615), while there was a main significant 

effect of group (beta = -0.34, se = 0.16, t = -2.16, p = .031). There was no group 

by session interaction (beta = 0.04, se = 0.22, t = 0.30, p = .841, BF01 = 1.28, 

see Figure 6b).  

For the role of the responder in the Ultimatum Game, there were no main 

effects of session (beta = -0.40, se = 0.39, z = -1.03, p = .305), or group (beta 

= -0.13, se = 0.38, z = -0.34, p = .733, see Figure 6c). There was also no 

significant interaction between session and group (beta = 0.90, se = 0.54, z = 

1.68, p = .094, BF01 = 6.03).  

4.4.3.2 Intertemporal decision-making 

For the total percentage of delayed choices, there was no main effect of session 

(beta = 0.06, se = 0.14, t = 0.41, p = .677) or group (beta = 0.11, se = 0.14, t = 
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0.76, p = .448), or a session by group interaction (beta = 0.02, se = 0.19, t = 

0.12, p = .901, BF01 = 4.17, see Figure 6d).  

 For delay valuation, there was a significant effect of session (beta = 0.38, 

se = 0.18, t = 2.16, p = .032), but no significant effect of group (beta = 0.02, se 

= 0.16, t = 0.15, p = .880), or a session by group interaction (beta = -0.11, se = 

0.24, t = -0.45, p = .654, BF01 = 3.59, see Figure 6e).  

For reward valuation, there was no significant effect of session (beta = 

0.34, se = 0.18, t = 1.85, p = .066), nor of group (beta = 0.03, se = 0.16, t = 

0.22, p = .829) nor a session by group interaction (beta = -0.13, se = 0.25, t = -

0.53, p = .596, BF01 = 1.49, see Figure 6f).  
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Figure 48. Pre- and post-training related changes in social and 
intertemporal decision-making for experimental and control groups. 
Social decision-making measures include (a) the number of MUs given during 
the Dictator game, (b) strategic decision-making, which is the difference in coins 
given for the Dictator and Ultimatum Proposer Game, and (c) the probability of 
accepting the unfair offer in the Ultimatum Responder Game. Intertemporal 
decision-making measures include (d) the total percentage of delayed choices 
during the intertemporal choice game, (e) the discounting of delay, and (f) the 
valuation of reward. Note: to visualize the data, a single imputed dataset was 
used. 
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4.4.4 Long-term training effects 

I also investigated whether any long-term effects emerged as a function of 

training by comparing performance before training to performance one-year 

after the end of training (i.e., follow-up). 

4.4.4.1 Social decision-making 

For the role of the proposer in the Dictator Game, there was no significant main 

effect of session (beta = 0.18, se = 0.12, t = 1.43, p = .154), nor of group (beta 

= 0.26, se = 0.14, t = 1.84, p = .067). There was also no significant group by 

session interaction (beta = -0.15, se = 0.10, t = -1.48, p = .139, BF01 = 5.21, see 

Figure 7a).  

For strategic social decision-making, there was no significant main effect 

of session (beta = -0.17, se = 0.21, t = -0.80, p = .426), but there was a 

significant main effect of group (beta = -0.34, se = 0.16, t = -2.14, p = .033). 

There was no significant group by session interaction (beta = 0.18, se = 0.14, t 

= 1.32, p = .190, BF01 = 0.75, see Figure 7b).  

For the role of the responder in the Ultimatum Game, there was no 

significant main effect of session (beta = -0.35, se = 0.29, z = -1.24, p = .217), 

or group (beta = -0.12, se = 0.34, z = -0.35, p = .730). There was also no 

significant group by session interaction (beta = 0.22, se = 0.24, z = 0.91, p = 

.365, BF01 = 33.31, see Figure 7c).  

4.4.4.2 Intertemporal decision-making 

For the total percentage of delayed choices, there was no main effect of session 

(beta = 0.08, se = 0.12, t = 0.72, p = .474) or group (beta = 0.11, se = 0.14, t = 
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0.77, p = .442), nor a session by group interaction (beta = -0.39, se = 0.09, t = 

-0.42, p = .677, BF01 = 7.79, see Figure 7d).  

 For delay valuation, there was no significant effect of session (beta = -

0.02, se = 0.12, t = 0.19, p = .851) or group (beta = 0.02, se = 0.14, t = 0.13, p 

= .895), nor a session by group interaction (beta = -0.01, se = 0.10, t = -0.11, p 

= .910, BF01 = 14.94, see Figure 7e).  

For reward valuation, there was no significant effect of session (beta = -

0.01, se = 0.13, t = -0.07, p = .944), or group (beta = 0.03, se = 0.16, t = 0.20, 

p = .838), nor a session by group interaction (beta = -0.06, se = 0.11, t = -0.59, 

p = .554, BF01 = 6.84, see Figure 7f).  

Table 8 displays the Bayes Factors for the short- and long-term training-

related effects.  
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Figure 49. Pre-training and one-year follow-up related changes in social 
and intertemporal decision-making for the experimental and control 
groups. 
Social decision-making measures include (a) the number of MUs given during 
the Dictator game, (b) strategic decision-making, which is the difference in coins 
given for the Dictator and Ultimatum Proposer Game, and (c) the probability of 
accepting the unfair offer in the Ultimatum Responder Game. Intertemporal 
decision-making measures include (d) the total percentage of delayed choices 
during the intertemporal choice game, (e) the discounting of delay, and (f) the 
valuation of reward. Note: to visualize the data, a single imputed dataset was 
used. 
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Table 8. Bayes Factors for short-term and long-term training effects. 
Bayes Factors were acquired by running the same model on all imputed datasets, and 
results were then combined in one fitted model object. Conventional cut-off methods 
were used for interpretation, where B > 3 indicates strong support for the null, B < 1/3 
means support for the alternative (training model), and 1/3 > B < 3 shows support for 
neither, reflecting data insensitivity. 

Short-term training-related changes 

P 0.907 0.432 0.073 0.749 0.812 0.456 

B, giving support for 

Null 5.44  6.03 4.17 3.59  

Neither  1.28    1.49 

Training       

Long-term training-related changes 

P 0.145 0.161 0.314 0.910 0.745 0.481 

B, giving support for: 

Null 5.21  33.31 7.79 14.94 6.84 

Neither  0.75     

Training       

 

4.4.5 Age-related training effects 

Lastly, I assessed whether training-related effects might be influenced by age. 

To assess this, I entered continuous age into the linear mixed models (e.g., y ~ 
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group * session * age + testing medium + (1|ID)). There were no significant age-

related effects (e.g., an interaction between group * age, or group * session * 

age effects) for any of the measures, either pre-post training or pre-training to 

the one-year follow-up.  

4.5 Discussion 

In the current chapter, I investigated the relationship between pro-social and 

intertemporal decision-making and cognitive control by looking at correlations 

between decision-making and latent factors of cognitive control, as well as 

studying changes in social and intertemporal decision-making in a large (N = 

205) sample of children aged 6-13 in the context of an eight-week training study. 

First, I investigated age-related changes and relationships to executive 

functions (EFs) with the decision-making measures at the pre-training time 

point. I observed that both pro-social and intertemporal decision-making 

increased with age. While I found several significant relationships between EFs 

and decision-making measures at the pre-training time point, these were not as 

strong as previous studies have reported. The only relationships that survived 

correction were the positive relationship between cognitive flexibility, 

intertemporal choice, and delay devaluation. Second, I investigated training 

effects across three time points (pre-training, post-training, and one-year follow-

up). When I investigated training-related group differences, I found no 

differences after cognitive control training, which targeted inhibition in social 

and intertemporal decision-making in childhood, immediately after training, or 

at the one-year follow-up. I consider Bayesian evidence in favor of the null 

model (no training results), the training model, and data insensitivity and find 

that most evidence points towards an absence of training effects. I conclude 



Chapter 4. Cognitive control and social and intertemporal decision-making in middle childhood 

216 
 

that pro-social and intertemporal decision-making in this current sample does 

not seem to be trainable via cognitive control training.  

 First, I assessed whether I saw the expected patterns of age-related 

changes in the social and intertemporal decision-making measures. For pro-

social decision-making, measured via the offer made in the Dictator Game, I 

saw that children increased their offers with age, which suggests they became 

more pro-social, similar to previous findings in other developmental studies 

(Bauer et al., 2014; Chajes et al., 2022; Fehr et al., 2008; McAuliffe et al., 2017). 

However, I saw that strategic decision-making, or the difference in offers made 

during the Dictator Game and Ultimatum Game Proposer, decreased with age, 

which contrasted with previous work that saw increases in strategic decision-

making with age (Steinbeis et al., 2012). Thus, I observed that the offers of 

older children remained more constant across the two proposer games. In 

comparison, the younger children gave lower offers during the Dictator Game 

and then increased their offers during the Ultimatum Game Proposer to a fairer 

distribution. This indicates that the younger children in the sample displayed 

strategic decision-making. Thus, when faced with the potential consequence of 

punishment (the other child rejecting their offer, upon which both would receive 

nothing), they could adjust their decision accordingly.  

Surprisingly, I saw no age-related effects on the likelihood of accepting 

or rejecting the Ultimatum Game Responder unfair offer. Here, children were 

faced with the decision to accept an unfair offer (five MUs for the other child 

and one MU for themselves), where if they rejected the offer, both children 

would receive nothing (in reality, the other child did not exist). A rejection of the 
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participant in the Ultimatum Game Responder has been interpreted as social 

punishment for norm-violating behavior (making an unfair offer, indicating poor 

cooperation) (Guth et al., 1982; Steinbeis, 2016). However, alternatively, 

accepting the unfair offer could be seen as a logical decision, as by accepting 

the offer, the participant still receives a reward (one MU) rather than zero. Thus, 

even if both theories are valid, neither of these seemed to become apparent 

with age, and instead, other non-age-related factors may be of influence.  

 I did not observe strong age-related effects for the intertemporal choice 

and valuation task. Most importantly, there was no increase in the percentage 

of delayed choices made with age, in contrast to previous studies investigating 

intertemporal choice in childhood (Green et al., 1999; Prencipe et al., 2011; 

Steinbeis et al., 2016). However, in the delay devaluation task, where 

participants rated how much they valued the same larger reward (eight MUs) 

for increasing amounts of delay (one to six days), I saw that with age, children 

progressively rated increases in delay for the same reward as less favorable. 

For the reward valuation, where participants rated how much they valued 

increasing immediate reward (from two MUs to eight MUs), there was no 

increase in valuation with age. Thus, while the older children valued increases 

in delay as less favorable, this was not apparent from their choices.  

For many of the decision-making tasks, older children took longer to 

make their decisions, which could reflect increased processing time. In addition, 

longer reaction times for the Dictator Game resulted in more MUs given away, 

and in the intertemporal choice task, longer reaction times led less steep 

temporal discounting. Both these relationships held after controlling for age. 



Chapter 4. Cognitive control and social and intertemporal decision-making in middle childhood 

218 
 

These results are described in 4.6.5.3 Inter-correlations for social and 

intertemporal decision-making. Thus, in the current sample, longer reaction 

times were linked to more pro-social decisions and less steep temporal 

discounting, which suggests that children had to deliberate longer over these 

types of decisions, and they were not spontaneous or intuitive (Rand et al., 

2012; Zaki & Mitchell, 2013). In contrast, the time taken to deliberate the unfair 

offer in the UG Responder task was not correlated to the likelihood of accepting 

or rejecting the offer.  

 Next, I assessed the relationship between the decision-making 

measures at the pre-training time point and EFs via three factors that captured 

inhibition, cognitive flexibility, and working memory. Several initial correlations 

were significant; for example, better inhibition and working memory were 

related to more MUs given during the Dictator Game, less strategic decision-

making, and stronger delay devaluation. However, after correcting for age, 

these relationships were no longer significant. The only relationships that 

remained statistically significant were between cognitive flexibility, the 

percentage of delayed choices made in the intertemporal choice task, and the 

strength of delay depreciation. Thus, better cognitive flexibility was related to a 

higher percentage of delayed choices and the steeper devaluation of increasing 

delay for the same amount. Previous developmental studies found that working 

memory (Wesley & Bickel, 2014; Zhao et al., 2022) and cognitive control, i.e., 

inhibition (Figner et al., 2010; Steinbeis et al., 2012, 2016), were linked to less 

steep temporal discounting However, I did not replicate those findings in the 

current chapter. It should be mentioned, however, that the decision-making 

tasks and EF measures differed between these previous and current studies. 



Chapter 4. Cognitive control and social and intertemporal decision-making in middle childhood 

219 
 

 The main aim of the current chapter was to investigate whether cognitive 

control training targeting inhibition would lead to short-term and long-term 

changes in social and intertemporal decision-making. I did not find significant 

relationships between inhibition and the decision-making measures at the pre-

training time point. However, significant correlations do not necessarily indicate 

that increasing one ability will lead to increases in the other. Instead, if the 

underlying mechanisms target the same functions, improvements in this 

mechanism may also lead to changes in the other function (Ganesan & 

Steinbeis, 2022; Smid et al., 2020). To this end, I investigated both short-term 

and long-term changes following training. I compared the decision-making 

measures at the pre-training time point to the measures immediately after 

completing the 8-week training paradigm. There were no significant group-by-

session interactions for any of the measures, either for the short-term or long-

term models.  

A focus of the current chapter was assessing potential null effects 

relating to the training in the context of Bayesian evidence. In this case, I used 

the Bayes Factor in support of the null model to assess the training’s 

effectiveness (Dougherty et al., 2016). The Bayes Factor could provide support 

for three types of conclusions; (i) strong evidence for a null effect (no-training 

related changes) (B much greater than 1), (ii) strong evidence for the training 

model (B close to 0); (iii) and the evidence is insensitive (B close to 1) (Dienes, 

2014). In short, a B greater than 3 represents substantial evidence for the null 

model, a B of 1/3 (0.33) provides substantial evidence for the training model, 

and a B between 3 and 1/3 provides support for neither and may indicate data 

insensitivity (Jeffreys, 1961). When I assess the Bayes Factors for the short-
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term training-related changes, I see that the evidence does not support either 

the null or the training model for two measures, strategic decision-making and 

reward valuation. Therefore, I can conclude that the data is insensitive to make 

comprehensive statements about these two measures. However, the Bayesian 

evidence points towards the null model as the most likely explanation for the 

other decision-making measures, e.g., pro-social (the Dictator Game MUs) and 

intertemporal decision-making (the percentage of delayed choices). Thus, I can 

conclude that from both the short- and long-term training-related changes, 

cognitive control training did not enhance pro-social and intertemporal decision-

making as measured in this chapter.  

The absence of any training-related effects is unexpected, as previous 

literature has suggested that EFs, especially relating to inhibitory control, may 

be underlying both social and intertemporal decision-making (Figner et al., 

2010; Knoch et al., 2006; Rachlin, 2002; Steinbeis, 2016; Steinbeis et al., 2012, 

2016). In addition, a previous intervention study that sought to enhance pro-

social decision-making via a storytelling paradigm that encouraged inhibitory 

control saw intervention-related changes (Steinbeis & Over, 2017). The current 

study used one-off economic games (Dictator Game, Ultimatum Game), which 

are so named because the participant only completed one trial for each task, 

instead of repeated trials with small variations. In contrast, in the intertemporal 

choice and valuation tasks, participants completed more trials, but each 

condition (e.g., a specific combination of delayed and immediate reward values) 

only occurred once. This means that these tasks only provide limited 

information on participants’ social and intertemporal decision-making. 

Potentially, decision-making tasks that introduce a component of learning, for 
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example, measuring repeated value-based learning and use of effort in a pro-

social setting, may prove to be a better measurement of potential training-

related effects (Cutler et al., 2021; Lengersdorff et al., 2020; Lockwood et al., 

2017, 2020, 2021). In addition, these types of tasks would allow further 

assessment of potential changes in reaction times following EF training and 

illuminate the fast and intuitive or slow and deliberate debate surrounding pro-

social decision-making (Knoch et al., 2006; Rachlin, 2002; Rand et al., 2012; 

Zaki & Mitchell, 2013). 

 The current chapter used the percentage of delayed choices to measure 

intertemporal choice. While several commonly used mathematical functions are 

available to assess individual differences in delay discounting choice data (e.g., 

hyperbolic, exponential, generalized-hyperbolic, or beta-delta functions), the 

data did not lend itself well to fitting these functions. Many participants did not 

express the expected discounting patterns in their choice behavior. For 

example, they showed randomness in their choices by switching back after 

having chosen a delayed option, or they chose only 100% delayed or immediate 

options. Many participants with poor model fit would have had to be excluded. 

Instead, I decided to use a model-neutral measure, which could be extracted 

for every participant without violating model assumptions. Initially, I calculated 

the Area Under the Curve (AUC) estimate (Myerson et al. 2001), but this was 

so closely correlated to the percentage of delayed choices (e.g., r > .90) that I 

decided to use the most straightforward measure. I am positive that the 

percentage of delayed choices is the best measure I could use in this study to 

capture the temporal discounting preferences regarding choice. However, it is 

a limitation, potentially of the experimental design, that it did not lend itself to 
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capturing the expected discounting behavior in the participants. Future studies 

in this age range may want to use expanded tasks, which, at minimum, include 

an extra block of 18 trials where both the delayed and immediate rewards are 

varied (Figner et al., 2010).  

 In conclusion, this chapter investigated the age-related changes and 

potential plasticity of social and intertemporal decision-making in middle 

childhood. While I observed the previously reported age-related increases in 

pro-social decisions and less steep temporal discounting, I did not observe 

significant relationships to EFs such as inhibitory control and working memory. 

However, there were some significant relationships between intertemporal 

choice and cognitive flexibility. Furthermore, in a randomized controlled trial of 

cognitive control training, targeting inhibition did not lead to short-term or long-

term changes in social or intertemporal decision-making in a large sample of 

children aged 6-13. Thus, contrary to previous findings, I found that EFs were 

not a strong supporting factor in social and intertemporal decision-making in the 

current study. 

4.6 Supplemental materials 

4.6.1 Cognitive control training protocol 

Participants were introduced to the training games as the ‘Treasure Game’ with 

the narrative that they had flown a plane, which had to crash land in the desert. 

To fix their plane, they were required to obtain spare parts from a sage living in 

a distant cave. To get to the sage, participants had to travel through 4 different 

worlds (i.e., forest, desert, snow, and mountains), after which they had to go 

back through the same worlds to return to the plane. While traveling through 



Chapter 4. Cognitive control and social and intertemporal decision-making in middle childhood 

223 
 

each world, participants could collect coins and gems, which could be used to 

trade for spare parts with the sage. Gems and coins were collected in the 

context of seven games designed to train inhibition (experimental group) and 

response speed (control group). The seven training games were 1) Treasure 

collect, 2) Mining, 3) Chest picking, 4) Conveyor belt, 5) AB Driving, 6) Hold-

and-Release (HR) Driving, and 7) Forest Escape (Figure 50). Each training 

session entailed a combination of two games, set in a pre-assigned order at the 

start of training. Before starting the games, participants were presented with an 

option of three different caves that they could choose from to encourage 

engagement and a sense of agency. For both groups, sessions were recoded 

based on date, meaning any data logged on the same date would be grouped 

in the same session. Since the implementation of the games differed in terms 

of key presses and mechanisms tested (Table 9), I only included sessions for 

participants that had a minimum of two games and, for the experimental group, 

sessions that had at least two games with valid SSRT measures (i.e., positive 

SSRT values). For the control group, reaction times were included within two 

standard deviations of the mean reaction time per participant.   
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Figure 50. Seven unique training games. 
 

Table 9. Stimulus response instructions for each game across training 
groups. 

Game Stimulus Experimental Group 
(Response Inhibition) 

Control Group 
(Response Speed) 

Treasure 
collector 

1. Treasure 
2. Dragon 

1. Press space (go) 
2. Do not press space (stop) 

1. Press space 
2. Press space 

Chest 
picking 

1. Wobbling treasure 
chest on other side 

2. Wobbling treasure 
chest on same side 

3. Dragon 

1. Press space to move to 
the other side (go) 

2. Do not press space (stop) 
3. Press space to move and 

avoid dragon (go) do not 
press space if dragon is on 
the same side (stop) 

1. Press space to move 
to the other side 

2. Do not press space 
3. Press space to move 

to dragon 

AB driving 1. Sign pointing left or 
right 

2. Stop traffic sign 

1. Left or Right Arrow key 
(go) 

2. Do not press Left or Right 
arrow key (stop) 

1. Press Left or Right 
arrow key 

2. Press Left or Right 
arrow key 

Forest 
escape 

1. Pile of coins 
2. Monster 

1. Press space (go) 
2. Do not press space (stop) 

1. Press space 
2. Press space 

Mining 1. Rock 
2. Gem 

1. Press space (go) 
2. Do not press space (stop) 

1. Press space 
2. Press space 

HR driving 1. Ghost appears at 
front of car 

2. Ghost appears at 
back of car 

1. Release space (go) 
2. Keep finger on space 

(stop) 

1. Release space 
2. Release space 

Conveyor 
belt 

1. Wobbling treasure 
chest 

2. Dragon 

1. Press space to change 
direction of the belt so that 
the treasure chest moves 
towards the bag (go) 

2. Avoid the chest with the 
dragon by pressing space 
to change direction (stop) 

1. Press space to 
change direction of 
the belt so that the 
treasure chest moves 
towards the bag 

2. Move the chest with 
the dragon by 
pressing space to 
change direction 
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4.6.2 Imputation of missing data 

The current chapter included data from three time points. Patterns of missing 

data are present. After Covid restrictions, behavioral testing was moved online, 

and the psychological battery was shortened to make independent testing at 

home more feasible for the participants. Due to this, the Ultimatum Game 

Proposer was not included in the battery (the Ultimatum Game Responder was 

included), and the participants who were tested online for their first timepoint 

hence did not have this data. In addition, there were also missing data points 

due to participant dropout or incomplete task batteries being completed across 

the time points. In this section, I report the missing data across each timepoint 

and the results of the imputed data. 

Missing data were imputed using the MICE package in R (van Buuren & 

Groothuis-Oudshoorn, 2011), using Predictive Mean Matching (PMM), 50 

maximum iterations, and 50 distinct datasets being generated. The imputation 

was based on a model generated by the Quickpred function in MICE. Decision-

making measures, EF measures, intelligence, and several demographics (age, 

gender, training group, school) were included in the imputation. As this data 

was part of a more extensive training study, the entire dataset with all three time 

points was used for imputation. Only measures that were missing less than 70% 

in total were imputed. To be included, a participant must have participated in 

data collection for at least one time point. Reaction time measures were log-

transformed before imputation.  

For reference, at the pre-training timepoint, 74% of the participants had 

complete data, while 11% missed the Ultimatum Game Proposer data (Figure 
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51). And 0.04% of the participants were missing all data (they were still 

included, and their data was imputed because they had data in the other time 

points). 

 

Figure 51. Pre-training missingness plot. 
 

At the post-training time point, 38% of participants had complete data 

(they were tested in person and completed the whole task battery), while 22% 

missed the Ultimatum Game Proposer data, and 29% had complete missing 

data (Figure 52).  
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Figure 52. Post-training missingness plot. 
 

At the one-year-follow-up time point, 72% of participants had near 

complete data (at the one-year-follow-up, all testing was conducted online, so 

all participants missed the Ultimatum Game Proposer data), while 26% of 

participants had complete missing data (Figure 53). 
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Figure 53. One-year-follow-up missing data. 
 

After imputations, the distributions of the imputed and original datasets 

were inspected (Figure 54). By default, the results presented in the chapter 

were based on the 50 pooled datasets from the imputed data. Only the first 

imputed dataset was used for the factor analysis and the plots. To aid 

robustness, for the analyses based on the resulting decision-making factors, 

these factors were appended to each imputed dataset. Final analyses based 

on the factors report the effect sizes and errors based on all 50 imputed 

datasets. 
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Figure 54. Distributions of the original and imputed datasets. 
The original dataset is depicted in blue, and the imputed datasets in red. 

4.6.3 Confirmatory Factor Analysis for executive measures 

A confirmatory factor analysis (CFA) was performed using Lavaan in R 

(Rosseel, 2012). Full Information Maximum Likelihood (FIML) was used to deal 

with any missing data in the dataset. Multiple models were fit; however, the 

model failed to converge for most models, and some of them displayed negative 

variances suggesting that models were mis specified. Two models did 

converge: a model with a single factor encompassing all tasks and a model with 

three sub-factors of inhibition, shifting, and memory. There were no significant 

differences in model fits. As the purpose of this factor analysis was to create 

latent factors of the different subcomponents of EFs, the model with the three 
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sub-factors of EFs was selected (Figure 55). Values for each individual were 

extracted from this for further analysis. 

 

Figure 55. CFA structure for executive functions. 
 

4.6.4 Linear valuation composite measures 

To simplify the valuation measures, I created composite scores of the linear 

coefficients and intercepts for the delay discounting and reward valuation tasks, 

respectively. The linear valuation measures were created by fitting individual 

linear models to each participant’s valuations and extracting the coefficients 

and intercepts of these models. The coefficient and the intercept provide 

information about the individual’s valuation behavior.  

For example, a more negative delay valuation coefficient indicates that 

a participant discounted progressive delay for the same reward (eight MUs for 

one to six days of delay) as progressively worse. On the other hand, a higher 
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value for the delay valuation intercept indicates that a participant rated the initial 

option (eight MUs for the smallest unit of delay (delay (1 day)) as more 

favorable. 

For the reward valuation coefficient, a more positive reward valuation 

coefficient indicates that a participant valued increasing immediate reward more 

(from two MUs, four MUs, six MUs, to eight MUs). A low value for the reward 

valuation intercept indicates that a participant valued the initial option (two MUs 

immediately) as less valuable.  

When I compare this with age, I see differential relationships between 

the intercepts and the coefficients. For the delay valuation, there was a 

significant negative relationship between age and the coefficient (b = -0.11, se 

= 0.03, t = -3.52, p < .001, Figure 56a), showing that older children rated 

increasing delay as less favorable. On the other hand, there was a positive 

relationship between age and the initial rating of eight MUs for the lowest unit 

of delay (the intercept) (b = 0.79, se = 0.17, t = 4.75, p < .001, Figure 56b), 

showing that older children valued a high reward for less delay as more 

valuable, or that younger children immediately discounted a high reward for 

even the lowest amount of delay.  

For the explicit valuations of reward, participants rated their valuations 

of increasing immediate rewards, starting with two MUs immediately up until 

eight MUs in increases of two MUs (four data points). There was a significant 

positive relationship between the coefficient for the valuations of reward and 

age (b = 0.05, se = 0.02, t = 2.19, p = .030, Figure 56c). This indicates that with 

age, children had a steeper increase in their valuation of increasing immediate 
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reward. The initial valuation of two MUs immediately was not significantly 

correlated to age (b = -0.35, se = 0.20, t = -1.80, p = .073, Figure 56d).  

 

Figure 56. Linear measures derived from the delay and reward valuation 
data. 
The top row displays the linear measures from delay valuation, reflecting the 
(a) steepness of delay valuation and (b) the starting valuation of the largest 
reward for the lowest amount of delay. The bottom row displays the measures 
from reward valuation, reflecting the (c) steepness of reward valuation and (d) 
the initial valuation of the smallest immediate reward. 

The composite measures were created via weighted averaging, where 

the coefficients were weighed double, and the intercepts weighed once. The 

resulting composite scores were highly correlated to the respective coefficients 

and intercepts (Figure 57), (i.e., the delay valuation composite score was 

significantly negatively correlated to the delay valuation coefficient (b = -0.89, 
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se = 0.16, t = -5.61, p < .001, Figure 57a), and significantly positively to the 

delay valuation intercept (b = 0.38, se = 0.01, t = 39.00, p < .001, Figure 57b). 

While the reward valuation composite score was significantly positively 

correlated to the reward coefficient (b = 2.61, se = 0.11, t = 23.00, p < .001, 

Figure 57c), and negatively to the intercept (b = -0.38, se = 0.004, t = -104.30, 

p < .001, Figure 57d). 

The high correlations indicated that the composite scores successfully 

captured both the coefficient and the intercepts. The composite scores were 

used in further analysis of the intertemporal valuation data. 

 

Figure 57. Correlations between the composite scores and the initial 
linear measures. 
Correlations between the weighted averages and the respective coefficients 
and intercepts for delay valuation (top, a, b) and reward valuation (bottom, a, 
b). 
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4.6.5 Decision-making factor analysis 

4.6.5.1 Participants 

A total of 229 (120 (52%) female, 109 (48%) male) participants, with a mean 

age of 9.00 (SD = 1.56), and an age range from 6.03 to 13.32 years old, were 

recruited from a total of 20 London schools. A total of 191 participants were 

tested in person for the data for the factor analysis (the pre-training timepoint), 

and 38 participants were tested online. As the factor analysis was only 

conducted on the first time point (pre-training), participants were not excluded 

if they had not completed one valid training session. Thus, there are 24 more 

participants included in the factor analysis than in the current main chapter. 

4.6.5.2 Statistical methods 

First, the suitability of the dataset for factor analysis was assessed using the 

KMO and Bartlett’s sphericity tests. Next, the Exploratory Factor Analysis (EFA) 

was conducted in R using the EFAtools package (Steiner & Grieder, 2020). To 

inspect the robustness, the average EFA solutions were plotted across three 

different methods (Least Squares, Maximum Likelihood, and Principal Axis 

Rotation) and 10,000 iterations. Lastly, to assess the reliability of the factors, I 

report McDonald’s omega (sub-scale) and Cronbach’s Alpha (Flora, 2020). 

McDonald’s omega and Cronbach’s alpha were calculated via the EFAtools and 

psych package in R.  

The EFA was conducted on a single imputed dataset, but the resulting 

factor loadings were then appended to all 50 imputed datasets. Resulting 

analyses based on the factor analysis results were run by pooling over all 50 
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imputed datasets, offering a more robust analysis of potential associations with 

age, SES, and EFs.  

4.6.5.3 Inter-correlations for social and intertemporal decision-making 

Next, I assessed how the decision-making measures from the same task inter-

correlated. First, I ran bivariate correlations. Next, I controlled these 

relationships for age. These tests were run on the pooled imputed datasets. 

The valuation measures for delay and reward were combined in a composite 

measure, see 4.6.4 Linear valuation composite measures. 

Dictator and Ultimatum Game 
First, for the Dictator Game, the number of MUs given was significantly 

positively correlated to the MUs given during the ultimatum game (b = 0.17, se 

= 0.08, t = 2.13, p = .035), this remained significant after correcting for age (b = 

0.19, se = 0.08, t = 2.33, p = .022), indicating that higher offers during the 

dictator game were correlated to higher offers during the ultimatum game. 

There was a significant positive correlation between reaction time taken to 

distribute the MUs during the Dictator Game and the number of MUs given (b = 

0.28, se = 0.10, t = 2.81, p = .006), and this remained significant after correcting 

for age (b = 0.24, se = 0.10, t = 2.28, p = .024). There was no significant 

relationship between the reaction time during the Ultimatum Game Proposer 

and the number of MUs given (b = 0.04, se = 0.13, t = 0.35, p = .728). 

Regarding the acceptance of the unfair offer during the Ultimatum Game 

Responder, the time taken to decide on how to respond to the Ultimatum Game 

Responder was not correlated to the accepting or rejecting of the offer (b = -

0.02, se = 0.04, t = -0.43, p = .671). There was no significant correlation 
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between the probability to accept the offer and the number of MUs given during 

either the Dictator Game, (b = -0.10, se = 0.14, t = -0.74, p = .462). There was 

also no significant correlation between the probability to accept the offer and 

the number of MUs given during the Ultimatum Game (b = -0.18, se = 0.13, t = 

-1.40, p = .164). 

Intertemporal decision-making 
The percentage of total delayed choices was significantly positively correlated 

to the average reaction time (b = 0.11, se = 0.03, t = 4.40, p < .001), this 

remained significant after controlling for age (b = 0.11, se = 0.03, t = 4.30, p < 

.001), suggesting that participants that took longer to decide chose more 

delayed options. 

 The percentage of delayed choices was significantly positively related to 

delay valuation (b = 0.37, se = 0.04, t = 8.80, p < .001), this remained significant 

after controlling for age (b = 0.39, se = 0.05, t = 8.57, p < .001), indicating that 

a higher percentage of delayed choices was related to steeper delay 

depreciation. The percentage of delayed choices was also significantly 

positively correlated to reward valuation (b = 0.24, se = 0.06, t = 4.13, p < .001), 

this remained significant after controlling for age (b = 0.24, se = 0.06, t = 4.08, 

p < .001), indicating that a higher percentage of delayed choices was related to 

steeper reward valuation.  

4.6.5.4 Relations between Dictator and Ultimatum Game and intertemporal 
decision-making 

Next, I assessed how the main measures from the different decision-making 

measures related to each other. For the Dictator and Ultimatum Game, I 
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focused on the number of MUs given, strategic decision-making (the difference 

in the MUs given), and whether the unfair UG Responder offer was accepted. I 

focused on the percentage of delayed choices and delay and reward valuation 

for intertemporal decision-making.  

For the Dictator Game, a higher number of MUs given was not 

significantly correlated to the percentage of delayed choices (b = 0.03, se = 

0.07, t = 0.44, p = .659). There was a significant positive correlation between 

the number of MUs given during the Dictator Game and delay valuation b = 

0.10, se = 0.04, t = 2.24, p = .026), but this did not remain significant after 

correcting for age (b = 0.07, se = 0.05, t = 1.54, p = .124). There was no 

significant relation with reward valuation (b = 0.03, se = 0.04, t = 0.66, p = .509). 

For the Ultimatum Game Proposer, a higher number of MUs was not 

significantly correlated to the percentage of delayed choices (b = 0.02, se = 

0.08, t = 0.20, p = .842), or delay valuation (b = -0.03, se = 0.04, t = -0.77, p = 

.442), or reward valuation (b = 0.005, se = 0.06, t = 0.08, p = .935). 

Strategic decision-making, or a smaller difference in the MUs given 

during the Dictator and Ultimatum Game, was not significantly correlated to the 

percentage of delayed choices (b = -0.03, se = 0.09, t = -0.30, p = .761). It was 

significantly correlated to delay valuation (b = -0.14, se = 0.06, t = -2.52, p = 

.013), but this did not remain significant after controlling for age (b = -0.10, se 

= 0.06, t = -1.72, p = .086). There was no significant correlation with reward 

valuation (b = -0.03, se = 0.05, t = -0.56, p = .574). 

The probability to accept the unfair offer in the Ultimatum Game 

Responder was not significantly correlated to the percentage of delayed 
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choices (b = 0.02, se = 0.04, t = 0.49, p = .628), delay valuation (b = 0.01, se = 

0.02, t = 0.25, p = .803), or reward valuation (b = -0.04, se = 0.02, t = -1.58 p = 

.119). 

4.6.5.5 Exploratory Factor Analysis 

Previous studies with adults have found latent variables that explain general 

rational decision-making behavior. Thus I was interested if this would be true 

for children as well. First, I selected the most important measures of the different 

social and intertemporal decision-making tasks, z-scored them, and removed 

any highly correlated (r > 0.6) measures from the dataset. For example, the 

difference score between the Dictator and Ultimatum Game MUs given was left 

out in favor of including both the MUs given from the Dictator and Ultimatum 

Game to avoid high inter-correlation. 

Below is an overview of the final measures in the factor analysis (Table 

10).  

Table 10. Decision-making measures for the Experimental Factor 
Analysis (EFA). 
 
Task (with key 

references) 

Broad 

psychological 

domains 

Computational 

constructs  

Key individual parameters 

and descriptive measures 

Dictator and 

Ultimatum 

Game 

(Steinbeis, 

2016; 

Pro-social and 

strategic 

decision-making 

MUs given away to 

an “other child”, 

strategic change in 

MUs given away, 

acceptance or 

rejection of an unfair 

1. MUs given without social 

consequence (DG Game) 

2. Reaction time for Giving 

MUs during the DG Game 
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Steinbeis & 

Over, 2017)  

offer, deliberation 

time for unfair offer 

3. MUs given with social 

consequence (UG Game) 

4. Acceptance or rejection of 

unfair offer  

5. Deliberation time for the 

unfair offer 

Intertemporal 

decision-making  

(Figner et al., 

2010; Steinbeis 

et al., 2012, 

2016)  

Impulsivity, 

future planning 

Inter-temporal 

choice, explicit 

discounting of delay 

and reward valuation, 

the difference in low 

(less likely to 

discount) and high 

conflict (more likely to 

discount) choices 

6. Intertemporal decision-

making (percentage of 

delayed choices) 

7. Average reaction time for 

choosing between immediate 

and delayed options 

8. Delay valuation (weighted 

average of the integer and 

slope for continuous ratings 

of the same reward for 

increasing delay) 

9. Reward valuation 

(weighted average of the 

integer and slope for 

continuous ratings of an 

increasing amount of 

immediate reward) 
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Figure 58. Correlation heatmap of the decision-making measures in the 
exploratory factor analysis (EFA). 
 

The exploratory factor analysis (EFA) was conducted in R using the 

EFAtools package (Steiner & Grieder, 2020). First, I assessed the feasibility of 

the dataset for factor analysis via the Bartlett Sphericity test and the KMO test. 

The Bartlett Sphericity test assesses whether the dataset's variables are 

correlated enough that it diverges from an identity matrix (Tobias & Carlson, 

1969). This test thus assesses whether a data reduction technique such as a 

factor analysis can be used to compress the data in a meaningful way. The 

Kaiser-Meyer-Olkin (KMO) test also determines how suitable data is for 

dimensionality reduction using factor analysis. The KMO value measures the 
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proportion of variance among the measures that might be common (Yong & 

Pearce, 2013). The higher the value, the more suited the data is to factor 

analysis. 

First, I assessed the validity of the dataset for factor analysis. The 

Bartlett’s test of sphericity was significant (X2(36) = 428.82, p < .001), and the 

KMO value at an acceptable value (KMO = 0.62). Since this value is close to 

0.6, the results should be interpreted cautiously. Next, I assessed the optimal 

number of factors to be extracted. I used the Hull method to identify the optimal 

balance between model fit and the number of parameters (Lorenzo-Seva et al., 

2011). Following the Hull method, the ideal number was four factors, with 

RMSEA and CFI as the model fits to be optimized. Then, I ran the exploratory 

factor analysis with four factors, using unweighted least squares as the method. 

I initially used an oblique rotation to assess the inter-correlation between the 

factors (method = “oblimin”) (Yong & Pearce, 2013). The correlation was low (r 

< .33); therefore, I finally used an orthogonal rotation (varimax), which means 

that the resulting factors will be uncorrelated. 

I found that the resulting factor structure returned four factors related to 

decision-making (Table 11). The model fits for the EFA were good; the CFI was 

at 1.00 (with values above 0.9 generally indicating good fit (Bentler, 1990), and 

the RMSEA was at .00 (with values below 0.05 indicating good fit (H. Kim et al., 

2016). 

The loadings for the first factor (F1) consisted of the total percentage of 

delayed choices and the weighted means for explicit delay discounting and 

reward valuation and could therefore be described as a less steep intertemporal 
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discounting factor. The loadings for the second factor (F2) consisted of the UG 

Responder deliberation time and the average reaction time for the intertemporal 

choice task and could therefore be considered a deliberation factor. The third 

factor (F3) consisted of the Dictator Game and Ultimatum Game MUs given and 

could thus be described as a factor capturing social decision-making. The 

loadings for the final and fourth factor (F4) are harder to interpret and consisted 

of the probability of accepting the unfair offer during the UG Responder task 

and average reaction time for the intertemporal choice task, while the amount 

of MUs given during the UG Proposer and the average reaction time for the 

Dictator Game loaded negatively. I will label this factor as Choice RT & 

Acceptance.  

Table 11. Factor loadings for the EFA. 
 

-- Rotated Loadings ---------------------------------------------------------------------- 

 F1 F2 F3 F4 

DG MUs .108 .019 .983 -.138 

UG Offer Accept -.088 -.053 -.034 .371 

UG MUs -.038 -.106 .365 -.337 

UG Decision RT .120 .987 -0.36 .073 

Percentage Delay .856 .009 .004 .150 

DG RT -.116 -.060 .150 -.609 

TD RT .212 .430 -.099 .690 
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Delay Valuation .623 .144 .068 .095 

Reward Valuation .582 .035 -.004 -.122 

-- Model Fit ---------------------------------------------------------------------------------- 

X2(6) = 4.33, p = .632 

CFI = 1.00 

RMSEA [90% CI] = .00 [.00; .07] 

 

 Since not all EFA procedures arrive at the same solution, I next 

performed many EFAs from different methods to provide a summary including 

the confidence intervals and means for the loadings across different methods 

(Figure 59). This plot indicates that the confidence intervals for the factor 

solutions were generally robust, especially for factors 1-3. 
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Figure 59. Average solutions and confidence intervals for the EFA 
across different methods (ULS, ML, PAF) and 10,000 iterations. 
 

To assess the reliability of the factors, I report Cronbach’s alpha and 

McDonald’s omega for each of the factors (α, ω) (Revelle & Condon, 2019). 

Cronbach’s alpha is a measure of internal consistency independent of the 

model used, while the omega measure depends on the model. For alpha and 

omega measures, a value above 0.6 is assumed to indicate sufficient 

consistency for a factor (Revelle & Condon, 2019). 

 The omega value is the most insightful in terms of internal validity. Thus, 

the values of both the omega and alpha measures together suggest that Factor 

1 and 3 (intertemporal decision-making and social decision-making factors) 

have acceptable validity. In contrast, Factor 2 and 4 do not seem to have good 
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validity (Table 12). I, therefore, continue analyses with the solutions for Factor 

1 and 3 only.  

Table 12. Internal validity measures for the four factor solutions. 
Factors Cronbach’s Alpha 

(std) 

McDonald’s omega 

(sub) 

Intertemporal decision-making (F1) 0.72 0.60 

Deliberation (F2) 0.21 0.68 

Social decision-making (F3) 0.58 0.83 

Choice RT & Acceptance (F4) 0.60 0.01 

4.6.5.6 Decision-making factors and executive functions 

I was interested in whether the extracted decision-making factors would relate 

to age similarly to the separate measures and whether the factors would be 

associated with EFs.  

First, I assessed whether the factors were correlated to age, again 

controlling for the testing medium. Both the intertemporal decision-making 

factor (b = 0.10, se = 0.05, t = 2.08, p = .039) and the social decision-making 

factor (b = 0.10, se = 0.04, t = 2.37, p = .019) were positively correlated to age.  

Next, I assessed whether the factors were related to intelligence as 

measured via the WASI, which provided age-standardized measures of 

crystallized intelligence and matrix reasoning (Chapter 3: 3.3.3.4 Intelligence). 

The intertemporal decision-making factor was significantly positively correlated 

to matrix reasoning (b = 0.02, se = 0.01, t = 2.95, p = .004), but not to crystallized 
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intelligence (b = 0.01, se = 0.01, t = 0.95, p = .344). The social decision-making 

factor was not related to either matrix reasoning (b = -0.01, se = .01, t = -1.52, 

p = .130) or crystallized intelligence (b = -0.0003, se = 0.01, t = -0.04, p = .964). 

 Finally, I assessed the potential relationships between the factors and 

the EF measures, controlling for age and testing medium. I used the individual 

EF measures also used in Chapter 3 (3.3.3 Cognitive task battery). The 

intertemporal decision-making factor was not correlated to any of the EF 

measures, either those related to working memory (Corsi: b = 0.06, se = 0.10, 

t = 0.62, p = .637; 1-back: b = 0.16, se = 0.89, t = 0.18, p = .859; 2-back: b = -

0.08, se = 0.31, t = -0.26, p = .794), inhibition (SSRT: b = -0.03, se = 0.08, t = -

0.41, p = .679; Stroop: b = 0.04, se = 0.13, t = 0.32, p = .746; Flanker inhibition: 

b = 0.21, se = 0.16, t = 1.34, p = .181; AX-CPT: b = -0.16, se = 0.14, t = -1.10, 

p = .273), or cognitive flexibility (Flanker switching: b = -0.19, se = 0.15, t = -

1.29, p = .198; Dimensional switching: b = -0.27, se = 0.15, t = -1.75, p = .082). 

 The social decision-making factor was also not significantly correlated to 

any of the EF measures, either to those related to working memory (Corsi: b = 

-0.05, se = 0.09, t = -0.61, p = .543; 1-back: b = 0.85, se = 0.91, t = 0.94, p = 

.349; 2-back: b = 0.35, se = 0.29, t = 1.23, p = .222), inhibition (SSRT: b = 0.12, 

se = 0.07, t = 1.72, p = .086; Stroop: b = -0.05, se = 0.12, t = -0.37, p = .711; 

Flanker inhibition: b = -0.25, se = 0.15, t = -1.65, p = .102; AX-CPT: b = 0.08, 

se = 0.13, t = 0.58, p = .564), or cognitive flexibility (Flanker switching: b = 0.02, 

se = 0.14, t = 0.11, p = .914; Dimensional switching: b = 0.16, se = 0.14, t = 

1.19, p = .234). 
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 Thus, both factors were positively related to age, and the intertemporal 

decision-making factor was correlated to higher matrix reasoning, but there 

were no significant associations between the decision-making factors and any 

of the EF measures.  
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Chapter 5. General discussion 
Part of Chapter 5; section 5.9, has been previously published in a review paper:  

Smid, C. R., Karbach, J., & Steinbeis, N. (2020). Toward a science of 

effective cognitive training. Current Directions in Psychological Science, 29(6), 

531-537.  

5.1 Summary of experimental chapters 

This thesis aimed to investigate the different strategies children use when 

making decisions and how these might depend on underlying neurocognitive 

underpinnings such as cortical thickness and executive functions (EFs).  

 In the first experimental chapter, I researched whether using a sequential 

decision-making task that rewarded the use of more cognitively effortful 

decision-making, 85 children aged 5-11 years old would display model-based 

decision-making. I found robust behavioral and computational markers of 

model-based decision-making in this age group, in contrast to previous 

developmental studies that found no markers of model-based decision-making 

in children before 12. Next, I compared the children’s behavior to a reference 

sample of 24 adults aged 18-35. I found that adults displayed higher levels of 

model-based decision-making and the stake effect (i.e., successful metacontrol 

by prioritizing model-based decision-making for high-stake trials over low-stake 

trials). In contrast, children did not show a robust stake effect and thus showed 

no consistent metacontrol as a group.  

 In the second experimental chapter, I further explored the neurocognitive 

underpinnings of model-based decision-making in childhood and its 
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metacontrol in a new sample of 69 children aged 6-13. In this chapter, I replicate 

the findings of the previous chapter, in that there were both computational and 

behavioral markers of model-based decision-making and an absence of a 

group effect of metacontrol for children. Next, I sought to link model-based 

decision-making to measures of EFs across several domains (inhibition, 

cognitive flexibility, working memory) and intelligence. In addition, I investigated 

whether individual differences in cortical thickness were related to model-based 

decision-making. I found no significant relationships between EFs and cortical 

thickness to model-based decision-making in 6–13-year-old children for both 

these analyses. Finally, I also sought to link EFs and cortical thickness to 

individual differences in metacontrol. Surprisingly, higher metacontrol was 

linked to worse performance on incongruent trials on a Flanker inhibition task. 

Specifically, individuals with higher metacontrol seemed to prioritize 

performance on the congruent over the incongruent trials. In addition, in a 

whole-brain analysis, I found that increased cortical thickness in several brain 

regions linked to memory and contextual learning was linked to higher 

metacontrol. Furthermore, in an ROI analysis, higher cortical thickness of the 

bilateral DLPFC was related to higher metacontrol. Thus, metacontrol was 

linked to performance on an EF task and individual differences in cortical 

thickness. 

 In the third and final experimental chapter, I investigated the potential 

relationships between EFs and social and intertemporal decision-making in 6–

13-year-old children, both from a correlational approach and with a training 

paradigm. Specifically, I researched whether training EFs by targeting inhibition 

led to short- or long-term training-related increases in pro-social and 
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intertemporal decision-making. First, I found several relationships between EFs 

and decision-making measures; however, most of these did not survive 

correction for age. The only significant relations to survive were a positive 

relationship between the cognitive flexibility factor and a higher percentage of 

delayed choices and steeper delay (de)valuation. To test the effectiveness of 

the inhibition response training paradigm, I reported Bayesian evidence for the 

null effect (no effect of training). I found strong evidence for the null, and thus 

there seem to be no short-term or long-term effects of inhibition response 

training on social and intertemporal decision-making. 

5.2 On the current and previous contrasting findings of model-

based decision-making in childhood 

In the first chapter, I found evidence of a sophisticated and planning-based 

approach to value-based decision-making for 5–11-year-old children. 

Specifically, I found behavioral and computational markers of model-based 

decision-making, in contrast to previous work with children suggesting that 

model-based decision-making would only become apparent later in 

adolescence (Decker et al., 2016).  

Daw and colleagues originally developed the two-step task in 2011 to 

investigate the differential contributions of two types of decision-making: 

habitual and goal-directed (Daw et al., 2011). While this task gave insight into 

the duality of these two types of human decision-making, the foundations of the 

two distinct styles differed in cognitive cost to employ (Daw, 2018; Daw et al., 

2011). Therefore, it would make sense that participants would only engage in 

the more cognitively effortful strategy if there was also a pay-off involved (Kool 
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et al., 2016, 2017; Kool & Botvinick, 2014). However, in the original version of 

the two-step task, the display of model-based decision-making was 

spontaneous and was present even in the absence of increased rewards for 

efforts in healthy adults (note: mainly young adult university students, which 

may also not be a representative sample). Later developmental studies that 

investigated model-free and model-based decision-making in developmental 

samples tended to use the same task, although adapted in a child-friendly way 

in terms of stimuli and task narrative (Decker et al., 2016; Potter et al., 2017). 

However, these studies did not observe clear behavioral or computational 

markers of model-based decision-making in children before the age of 12, 

leading to the interpretation that model-based decision-making may be a 

uniquely late-developing skill (Decker et al., 2016; Potter et al., 2017).  

However, literature on effort avoidance in development suggests that 

children may be susceptible to increases in effort and only willing to engage in 

more effortful tasks for substantially larger pay-offs (Chevalier, 2018; Ganesan 

& Steinbeis, 2021; Niebaum et al., 2019). Thus, these studies were ultimately 

unable to determine whether the absence of the display of model-based 

decision-making was due to a developmental limitation or whether children in 

these studies did not find it worthwhile to engage in a more effortful decision-

making strategy. In Chapter 2, I present evidence for markers of model-based 

decision-making in children younger than 12 years old.  

There were critical task-related differences between this work and 

previous work concerning the task design. As it is a relatively common finding 

in developmental literature for complex cognitive abilities to shift to lower ages 
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with reductions in task complexity (Scott & Baillargeon, 2017), this could be the 

case here as well. This thesis used a recently developed task that made 

engaging in model-based decision-making more rewarding in that the degree 

of model-based decision-making displayed was also correlated to the number 

of rewards a participant would win during the task (Kool et al., 2016). This was 

mainly achieved through five major changes to the task paradigm, which were: 

1. a switch to deterministic instead of stochastic transitions, 

2. an increased rate of change for the drifting reward rates during the 

task, 

3. a point-based system of reward rather than binary wins/losses, 

4. coupled with a broader range in scale of rewards (from 0-9 rather than 

a probability of reward from 25% to 75%), and 

5. a simplified task structure, meaning there was only one actual decision 

for participants (i.e., they only needed to choose a rocket to travel to a 

planet and did not need to choose between aliens while on the planet). 

 

These changes either reduced the complexity of the original task (1, 5), 

increased the amount of information available to participants (3, 4), or increased 

the speed with which rewards change, meaning that making the right decision 

all the time became more important (2). While these changes seem substantial, 

the essence of the model-free and model-based dichotomy is preserved; 

participants either use the underlying structure of the task to plan their next 

decision, or they respond habitually without planning through the task (Kool et 

al., 2016, 2017).  



Chapter 5. General discussion 

253 
 

In addition, a recent study suggested that reward-related learning across 

the lifespan remains relatively stable and that instead, action biases decrease, 

and successful learning from punishments increases with age (Pauli et al., 

2022). Previous versions of the two-step task used probabilistic reward; 

participants either won a reward or not. In contrast, in the current task, 

participants received rewards across a point scale. Thus, it is possible that this 

point-based reward system proved to be easier to learn from for the children, 

while it may be differential learning from losses that hampered developmental 

samples previously in employing model-based decision-making. 

To summarize, the changes in the current paradigm made the task less 

complex and reduced the uncertainty. This made choosing the right way to 

engage with the task (applying the task structure) easier to do and more 

rewarding. This could have likely explained why children now engage in model-

based decision-making. Thus, I mainly attribute the differences in the current 

thesis and previous work due to task differences. 

5.3 On the absence of a link between executive functions and 

model-based decision-making in childhood 

In the first two sections of the introduction, I mentioned that essential concepts 

in decision-making research, such as “bounded rationality” and “The Law of 

Effect”, link optimal and rational decision-making to cognitive abilities. In the 

Law of Effect, the ability to associate past actions and outcomes in certain 

situations is supported by the ability to remember the previous circumstances 

and outcomes of making a decision and searching through alternative options. 

According to the concept of bounded rationality, our rational decision-making is 
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bounded by the human mind's capacity to only entertain a few alternatives at a 

time.   

In Chapter 3, I investigated the potential relationship between 

computationally costly model-based decision-making and its metacontrol to 

EFs, reflecting working memory, cognitive flexibility, inhibition, and intelligence. 

While previous studies linked working memory (Otto, Raio, et al., 2013), 

cognitive control (Otto et al., 2015), and intelligence in the form of fluid 

reasoning (Potter et al., 2017) to model-based decision-making, I did not find 

such relationships in the current sample of 6-13-year-old children. Several 

factors may explain this absence. In a previous paper, working memory ability 

was related to model-based decision-making in adults, but only indirectly, in 

protecting against the influence of stress (Otto, Raio, et al., 2013). A relationship 

between model-based decision-making and working memory was found in a 

paper with a sample aged 9-25 years old. However, the working memory 

measure for many participants hit ceiling levels (Potter et al., 2017). While 

ceiling effects can lead to true relationships between performance on two tasks 

being obscured, if a high level of working memory is indeed related to a higher 

display of model-based decision-making, this relationship can still be 

significant. In this study, there was no ceiling to the working memory span 

measure, and I did see a correlation between model-based decision-making 

and working memory that was no longer significant after correcting for multiple 

comparisons. Thus, it may be that the use of a more sensitive working memory 

measure led to the absence of this relationship and that in the previous study, 

while the previous relationship between the working memory measure at ceiling 

might have reflected other abilities.  
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The previous study also found a significant relationship between fluid 

reasoning and model-based decision-making (Potter et al., 2017); however, I 

did not replicate that finding in the current study. Although, the previous 

research reported using raw scores, and every participant completed the first 

32 items of the WASI matrix reasoning task, regardless of age (Potter et al., 

2017). In contrast, the current study used age-standardized scores, and the 

participants completed the maximum number of puzzles they were able to, 

which meant the task was stopped if they reached three incorrect items in a 

row, limited by their age according to the WASI guidelines (participants younger 

than nine did not complete the last five puzzles, even if they were able, with the 

maximum number of items that can be completed being 35) (Wechsler, 2011). 

Therefore, the difference in using raw and age-standardized scores and a cap 

on the maximum number of items participants could complete in the current 

study may explain this absence.  

Another previous study found a relationship between inhibition as 

measured via the Stroop task and cognitive control measured via the AX-CPT 

task and model-based decision-making (Otto et al., 2015), and I did not find a 

significant link between model-based decision-making and the AX-CPT task in 

the current study. However, there were several important differences between 

the previous and current studies. First, the previous study used an adult sample, 

and the current study a developmental sample; secondly, the previous study 

used the classical visual Stroop paradigm, and the present study a visual-

auditory version of Stroop; lastly, the AX-CPT task used in the previous study 

had more trials and a different composition of AX and AY, BX and BY trials. 

Therefore, as the ages between the samples were different, and the tasks 
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themselves had small differences, this could clarify the absence of these 

relationships in the current study. 

The absence of the relationship between working memory and model-

based decision-making in this thesis could be due to a specific aspect of the 

current two-step task. By simplifying the task design, for example, by reducing 

the second stage of the task (the planet stage) to a single choice (press 

spacebar to receive reward) rather than an additional choice (e.g., in Daw et al. 

2011, participants had to choose between two aliens on each planet, each with 

a different drifting reward rate), the working memory load needed to make good 

decisions is reduced. Instead, the focus of the task is almost solely on 

integrating the transition structure in the first stage, when participants choose a 

rocket to travel to a planet. This simplification thus allows assessing whether 

participants are capable of using the transition structure in the task to plan 

through the task structure, as the surrounding “noise” of the original task is 

reduced. Thus, the working memory load is limited to remembering a single 

step, i.e., the choice of which rocket to use to travel to the desired planet. It 

should be noted that even with this simplification, doing the task is still not easy, 

especially with the added time pressure and the rapidly changing reward 

distributions. In addition, participants need to monitor and remember the current 

state of the planets depending on the drifting reward rates. However, the 

working memory load is lessened. This could thus explain the absence of a link 

between working memory and model-based decision-making in the current 

sample.  
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 To my knowledge, the current work is the first to look at the relationships 

between EFs and model-based decision-making in 6–13-year-old children. 

There is the possibility that in this age range, the cognitive functions are still 

separate, whereas, by adulthood, cognitive processes are thought to become 

more integrated (Luna et al., 2001; Luna & Sweeney, 2004; Montez et al., 

2017). For example, a study with participants between the ages of 11 and 37 

observed that age-related changes in executive cognitive ability were related to 

increased neural network functional organization, where brain regions recruited 

for cognitive control showed more functionally integrated brain activity with age 

(Stevens et al., 2009). Thus, previous relationships between EFs, such as 

working memory and cognitive control in adulthood, may not yet hold in 

childhood. However, as previously mentioned, it could also be true that the 

reduced complexity of the current two-step task design reduces the need to rely 

on other EFs. Alternatively, changes in the EF task paradigms across studies 

led to slight variations regarding the exact domain being measured. Future 

studies investigating model-based decision-making across a more extensive 

age range could illuminate when EFs begin to predict model-based decision-

making and whether this differs across different two-step paradigms. 

 Finally, to draw meaningful and reliable inferences based on 

performance on cognitive tasks, the test-retest reliability of such tasks should 

be considered. Poor test-retest reliability can have several implications such as 

problems with validity; the interpretation of results; and the generalization of 

results. Validity problems can call into question the ability of the task to measure 

the construct it was designed to assess. Interpretation problems make it difficult 

to interpret individual differences in performances as real differences in ability 
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or cognition, or whether they reflect other factors such as mood and fatigue. 

Finally, poor test-retest reliability can lead to problems with generalizing results 

and inconsistencies between studies.  

In the current thesis, several cognitive tasks have previously been 

reported to have high test-retest reliability, such as the dimension switching task 

(r = 0.77) (Paap & Oliver, 2016), the AX-CPT (r = 0.73) (Weafer et al., 2013), 

and the N-back task (r = 0.70) (White et al., 2018) and some moderate, such 

as the Stop-Signal Task (r  = .65) (Weafer et al., 2013), the Flanker task (r = 

0.64) (Paap & Oliver, 2016), and the Stroop Task (r = .50-0.80) (Penner et al., 

2012), and some low reliability, such as the Corsi (WM Span) (r = 0.28) (White 

et al., 2018). Thus, while most cognitive tasks used in this thesis offer 

acceptable levels of test-retest reliability based on previous studies, 

interpretations on the forward working memory span as measured via the Corsi, 

should be interpreted with caution.  

5.4 On the model-free and model-based dichotomy 

While the dissociation between model-free and model-based decision-making 

has been widely studied and supported (Bolenz et al., 2019; Bolenz & Eppinger, 

2021; Doll et al., 2015; Gläscher et al., 2010; Kool et al., 2016, 2017; Otto et 

al., 2015; Otto, Gershman, et al., 2013; Patzelt et al., 2019), recent studies 

suggest that this dichotomy might be oversimplified, as well as potentially 

under-estimating the ability of model-free control to approximate model-based 

control, for example via contextual learning or compound representations 

(Collins & Cockburn, 2020). Additionally, how distinct model-free and model-

based prediction errors are in the brain remains under discussion, with some 
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papers suggesting they might not be neurally distinct (Daw et al., 2011; Sanfey 

& Chang, 2008), and other studies reporting that distinct brain areas are 

involved for model-free and model-based prediction errors (Doll et al., 2015; 

Gläscher et al., 2010; Sambrook et al., 2018).  

Alternatively, new theories propose a more nuanced view of reflexive 

habits and planning, combining them into a model that combines predictions 

about future events with flexibility following changes to rewards, dubbed 

successor representation (Momennejad et al., 2017). In short, the successor 

representation model is an intermediate between model-free and model-based 

systems, which balances the efficiency of model-free decision-making with the 

flexibility of model-based decision-making by storing partially computed action 

values which are predictions about future events (Momennejad et al., 2017). 

This model is appealing because, from behavioral data, we see that humans 

already express a hybrid form of decision-making between model-free and 

model-based decision-making. Thus, a model that combines the best of both 

may be able to more closely approximate human decision-making.  

It seems likely that human decision-making is more complicated than a 

simple dichotomy of two opposing strategies that vie for control, and future 

models will likely become increasingly nuanced. However, in the current work, 

the dichotomy has aided in understanding whether children aged 5-11 years 

old could apply an underlying transitional structure to their decisions and is a 

valuable contribution to the field in including a more comprehensive range of 

developmental research.   

5.5 Interpreting the relationship between metacontrol and 
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executive functions 

In Chapter 3, I researched the neurocognitive underpinnings of model-based 

decision-making and metacontrol. While I did not observe the same 

relationships between EFs and intelligence with model-based decision-making 

as in previous studies, I did see a relationship between performance on an 

inhibition task and metacontrol, although not in the expected direction. Instead, 

a prioritization of performance on the congruent trials in a Flanker task, rather 

than the incongruent trials, was linked to a higher degree of metacontrol (for an 

overview of the task, see 3.3.3.1 Inhibition and Figure 21).  

 I believe there could be two reasons for this relationship. First, if children 

are highly susceptible to effort, especially in the absence of increased reward 

(Chevalier, 2018; Niebaum et al., 2019; Niebaum, Jesse C., Chevalier, N., 

Guild, R.M., Munakata, 2020), then the absence of increased reward for the 

Flanker inhibition task’s incongruent trials over the congruent trials could 

explain why this is mirrored in prioritization of the high-stake trials in the two-

step task. Thus, as higher metacontrol is linked to the avoidance of the more 

difficult trials on the Flanker task, this could indicate that this reflects proactive 

control over responses and when to exert effort. Previous studies have shown 

that younger children especially seem unable to avoid more effortful tasks or 

conditions, which may reflect that they do not yet have the cognitive control 

necessary to avoid these higher-effort sections (Ganesan & Steinbeis, 2021; 

Niebaum et al., 2019; Niebaum, Jesse C., Chevalier, N., Guild, R.M., Munakata, 

2020).  



Chapter 5. General discussion 

261 
 

Therefore, cognitive control may be the force through which cognitive 

effort can be selectively exerted (Shenhav et al., 2017). It has been argued 

elsewhere that the development of cognitive control during childhood also 

requires that children coordinate available control strategies more flexibly as 

they age (Chevalier, 2015). This ensures dynamic adjustment of control 

engagement to match moment-to-moment fluctuations in contextual demands. 

Studies on the development of effort-related decision-making have shown that 

between the ages of 6-12, children become increasingly able to coordinate their 

behavior to contextual demands on their cognitive control (Niebaum et al., 

2019). Supporting this view, I observed that a higher degree of metacontrol was 

also linked to a higher display of model-based decision-making overall (3.4.1 

Markers of model-based decision-making and metacontrol); thus, this suggests 

that participants with higher metacontrol can selectively increase their model-

based decision-making when it is worth their while.  

Second, the alternative explanation is that higher metacontrol is related 

to worse inhibitory performance in childhood. However, when I split up the 

metacontrol and Flanker inhibition measures, I saw that this seems to reflect 

different prioritizations: participants with higher model-based decision-making 

during the high-stake trials performed better on the congruent trials. In 

comparison, participants with higher model-based decision-making during the 

low-stake trials performed better in the incongruent trials. Thus, rather than the 

relationship between metacontrol and Flanker inhibition being driven by an 

impairment in the incongruent trials, it suggests that it is driven by better 

performance in the congruent trials. Therefore, the interpretation in the previous 

paragraph seems more sensible: higher metacontrol is reflected in more 
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selective prioritization in the Flanker inhibition task. In sum, higher metacontrol 

seems to be reflected in the ability to exert effort selectively in an inhibitory 

control EF task.  

Finally, while the susceptibility to effort in children offers a plausible 

explanation of the current results, there is conflicting evidence regarding effort 

in relation to performance in childhood and adolescence. Some studies have 

found that children choose to expend more effort, while others have found them 

to be highly avoidant of it (Chevalier, 2018; Niebaum et al., 2019). For example, 

children have been often found to spend more effort on exploration, even when 

they are familiar with the optimal decision trajectory for exploitation (Meder et 

al., 2021). Thus, while in the current thesis, children aged 6-11 seemed to be 

able to selectively choose when to exert effort, further confirmation of this in 

future work could provide more substance to this hypothesis. 

5.6 Metacontrol and cortical thickness 

Chapter 3 investigated the neurocognitive correlates of model-based decision-

making and metacontrol. To this end, I researched their relationship with EFs 

and cortical thickness. While I did not find robust effects for model-based 

decision-making for neither EFs nor cortical thickness, for metacontrol, I found 

several. Two sets of cortical thickness analyses were included. First, I ran 

exploratory whole-brain analyses controlled for age and sex. Second, I ran an 

ROI analysis on the DLPFC.  

 Two clusters were significant for the effect of metacontrol in the whole-

brain cortical thickness analysis. They survived family-wise error (FWE) 

correction and were located in the left temporal and right parietal lobes. Clusters 
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were mapped to anatomical regions using the Desikan-Killiany atlas (Desikan 

et al., 2006). The cluster in the left temporal lobe spanned areas involved with 

memory (Druzgal & D’Esposito, 2001; Jessen et al., 2006; Mion et al., 2010; 

Rodrigue & Raz, 2004), as well as contextual learning (Aminoff et al., 2007; 

Coutureau & di Scala, 2009; X. Peng & Burwell, 2021). Contextual-based 

learning is relevant as metacontrol in the current study represents the ability to 

increase computationally effortful performance when beneficial selectively. The 

right cluster spanned areas that have previously been linked to working memory 

(Koenigs et al., 2009), cognitive control (Loose et al., 2017), and planning 

(Randerath et al., 2017). Thus, these clusters span brain regions previously 

implicated in cognitive abilities relevant to metacontrol. In addition, the previous 

link between the superior parietal cortex with cognitive control and planning is 

relevant, as active prioritization of when to employ model-based decision-

making across contexts relies on being able to control when to use which 

decision-making strategy and selectively switching between them based on 

context.  

Using an ROI analysis, I found that the cortical thickness of the bilateral 

DLPFC was positively related to increased metacontrol, a brain region 

previously found to be involved in cognitive control and computationally effortful 

decision-making strategies (Beierholm et al., 2011; Cremer et al., 2021; Doll et 

al., 2015; Gläscher et al., 2010; S. W. Lee et al., 2014; O’Doherty et al., 2015; 

Smittenaar et al., 2013). Surprisingly, cortical thickness of the DLPFC was not 

linked to model-based decision-making, and no significant clusters remained 

for model-based decision-making for the exploratory whole-brain analysis. 

Previous studies linking the DLPFC to model-based decision-making often 
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focused on adult functional activity, and the current study used brain anatomical 

measures, which may explain these differences. However, structural 

differences in brain anatomy may be a preferred method of assessing individual 

differences as opposed to functional activity, as it supplies a more stable 

measure, less easily influenced by daily variations in attention (Fjell et al., 2015; 

Karama et al., 2011).  

While the sample used in Chapter 3 (N = 44) is a relatively sizeable 

independent childhood sample for MRI data and the largest to date for MRI 

studies investigating model-based decision-making cited in this thesis (e.g., 

Smittenaar et al. 2013: N = 25; Glascher et al.: N = 20; Daw et al. 2011: N = 

17), a recent study investigating brain and behavior associations have 

suggested that a sample of less than a thousand participants might be suffering 

from being underpowered and having inflated effect sizes (Marek et al., 2022). 

Thus, while the relationship between individual differences in brain anatomy 

and behavior found in this study is interesting, this is shown in a relatively small 

sample across a developmental age range. Initially, I had planned to collect 

more MRI data. Unfortunately, due to the onset of Covid-19, I could not continue 

MRI scanning.  

However, several methods were employed in the current study to aid the 

reproducibility and robustness of the current findings. The MRI data used in the 

current study is of high resolution (3T) and high quality. Quality of the scans 

was assured before analysis, where the MRI data was thoroughly inspected 

and cleaned in multiple iterations, and the data were smoothed with a Gaussian 

kernel and registered to a standard template. For the whole-brain assessment, 
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the cluster-defining threshold was set to p < .01. In addition, I limited the ROI 

analysis to a brain area that has been implicated previously in the context of 

model-based decision-making and metacontrol (Daw et al., 2005, 2011; 

Gläscher et al., 2010; Glascher et al., 2012; Smittenaar et al., 2013). Lastly, I 

limit the brain-phenotype associations to direct behavioral measures completed 

by participants as opposed to indirect measurements (e.g., questionnaires) 

(Marek et al., 2022). Therefore, the current work is one of the largest 

(developmental) samples investigating the brain correlates of model-based 

decision-making and metacontrol and following good standards for structural 

MRI analysis. While many of the arguments put forward in the Marek et al. study 

are valid and should be incorporated to the best ability, independent 

developmental studies face difficulty in collecting large samples of MRI-based 

data. Future work would ideally reproduce and expand on these findings in 

more extensive samples so that the robustness of the current results may be 

further assessed. 

5.7 Social and intertemporal decision-making and executive 

functions 

Chapter 4 investigated how social and intertemporal decision-making related to 

EFs. Specifically, I used EF factors based on the measures included in Chapter 

3 (3.3.3 Cognitive task battery) to reduce the task-related variance and create 

a construct measure. The three subdomains of EFs were determined a-priori 

(i.e., inhibition, cognitive flexibility, and working memory), and the individual 

measures were loaded onto these measures. 
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 Initially, I created a single decision-making factor of the social and 

intertemporal decision-making measures to determine whether these measures 

would load onto a single factor (see 4.6.5 Decision-making factor analysis for 

the details). However, I found no general decision-making factor, such as the 

one found in Moutoussis and colleagues (Moutoussis et al., 2021). Instead, I 

found that the social and intertemporal decision-making measures could 

independently be condensed into a factor. As there was no general measure, I 

continued with the independent decision-making measures and related these 

to the EFs’ latent factors.  

 First, I investigated the relationship between social and intertemporal 

decision-making and age. I replicated some of the previously reported age-

related effects (Matsumoto et al., 2016); for example, pro-social decision-

making, as determined via the Dictator Game, increased with age. However, 

strategic decision-making did not increase with age but decreased, contrary to 

previous studies (Steinbeis et al., 2012). This was due to younger children 

increasing their offers in the Ultimatum Game Proposer, while the older children 

had more consistent offers. Contrary to previous work (Blake et al., 2014; Blake 

& McAuliffe, 2011), I did not see age-related changes in the probability of 

accepting the unfair offer of the Ultimatum Game Responder. Instead, I 

observed that older children had longer reaction times for all social decision-

making measures.  

In the Dictator Game, I found that longer reaction times to distribute the 

MUs led to more MUs given away or more pro-social behavior (see 4.6.5.3 

Inter-correlations for social and intertemporal decision-making); this remained 
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significant after controlling for age. Thus, this suggests that more protracted 

deliberation led to more pro-social decision making. In addition, longer reaction 

times when deciding between the immediate and delayed choices were 

correlated to a higher percentage of delayed choices, which also remained 

significant after controlling for age. Previous studies found that people may 

make pro-social decisions slower (Knoch et al., 2006; Krajbich et al., 2015; 

Rachlin, 2002), while people may make faster decisions when they relate to 

themselves (Lockwood et al., 2016). In addition, longer reaction times have 

previously been linked to making more delayed choices (Weber & Huettel, 

2008). This finding thus seems to be in concordance with previous work. 

For intertemporal decision-making, surprisingly, there was no 

relationship between age and the percentage of delayed choices. This thus 

seems to counter the theory that children become less susceptible to temporal 

discounting with age (Green et al., 1999; Steinbeis et al., 2016). However, 

children valued increases in delay for the same reward as progressively worse 

with age. There were also no age-related effects in reward valuation, whereas 

I expected this to increase with age (Veselic et al., 2021). Thus, I observed 

some common age-related changes in social and intertemporal decision-

making. However, I still observed substantial individual differences in the social 

and intertemporal decision-making measures, so this leaves the question if 

other underlying factors may predict these differences. This brings us back to 

the concept of bounded rationality. 

 There are previously reported relationships between pro-social and 

intertemporal decision-making and EFs (Basile & Toplak, 2015; Bickel et al., 
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2014; Hughes & Ensor, 2010; Kenny et al., 2016; Mellis et al., 2019; Steinbeis 

et al., 2012; Wesley & Bickel, 2014). As mentioned in the introduction, 

increased pro-social decision-making has previously been linked to better 

cognitive control in the form of inhibition (Steinbeis, 2016, 2018; Steinbeis et 

al., 2012; Steinbeis & Over, 2017). In addition, decreased temporal discounting 

has also been linked to cognitive control (Figner et al., 2010; Steinbeis et al., 

2016). Thus, these individual non-age-related differences may be explainable 

by individual differences in EFs. However, I found limited significant relations 

between EFs and decision-making in the current work. 

In Chapter 4, to assess these relations efficiently and reduce the amount 

of variance and measures, I used latent factors of EFs, which captured the three 

main domains: inhibition, cognitive flexibility, and working memory (see 4.4.2 

Relationships between executive functions and decision-making measures). 

For inhibition, even though there were initial relationships with pro-social 

decision-making and delay valuation, these relationships did not survive 

correction for age. There was an initial relationship between strategic social 

decision-making and cognitive flexibility, but this relationship did not survive 

correction. However, there was a significant relationship with the percentage of 

delayed choices and delay valuation, and both these relationships survived 

controlling for age. There were initial relationships among pro-social decision-

making, delay valuation, and working memory, but these were no longer 

significant after controlling for age. Thus, in the current work, there do not seem 

to be as strong relationships between EFs and decision-making as previously 

expected.  
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One limitation of the current experimental design for the social and 

intertemporal decision-making tasks is that while comprehension checks were 

used before the start of the task, there were no checks afterward. While a 

common paradigm for these decision-making tasks was followed, I observed 

that some children during the intertemporal decision-making task either 

discounted very steeply or not at all, and on occasion, did not follow the 

expected discounting pattern. Without having quizzed afterward, the reason for 

this behavior is unclear. It could indicate that these children did not value the 

rewards offered or the task or believed in the paradigm. Alternatively, it could 

mean that these children were not sensitive to the delay manipulation. For 

future work, assessing the motivation for certain decisions afterward would help 

to understand unexpected patterns of decision-making. 

The absence of these strong relations may be due to several things. 

First, the lack could be since I used latent factors that reduced the variance of 

the EFs. However, I also conducted a correlation-based analysis between two 

decision-making factors and the separate EF measures, where I did not see 

strong relationships between the two (see 4.6.5.6 Decision-making factors and 

executive functions). Thus, this does not seem solely due to using the latent 

factors for EFs. Second, it could be due to differences in the task designs for 

either the EF or the decision-making tasks. However, in the current work, similar 

task paradigms were used as in a previous study that did find significant 

relationships between cognitive control and decision-making, such as the 

Dictator and Ultimatum Game and the Stop Signal Delay Task (see 3.3.3 

Cognitive task battery) (Steinbeis et al., 2012, 2016; Steinbeis & Over, 2017). 

As the cognitive tasks used in the current thesis have previously been reported 
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to have acceptable levels of test-retest reliability, this would suggest that the 

findings relating to EFs should hold across different studies. However, the test-

retest reliability of model-free and model-based decision-making and 

performance on the two-step task is yet unknown. Future work would be 

advised to allow assessing the reliability of individual differences in decision-

making strategies, to allow reproducible comparisons between studies. Thus, 

the current thesis shows that EFs may not support pro-social and intertemporal 

decision-making in 6-13-year-old children. This is mirrored in the null-finding for 

training-related effects of an inhibitory control paradigm, which will be discussed 

in the next section.  

5.8 Support for the null: interpreting the findings of the 

cognitive control training paradigm on social and intertemporal 

decision-making 

In Chapter 4, I researched whether social and intertemporal decision-making 

could be affected by participating in an inhibitory control training paradigm. 

Training studies have generally been criticized for lack of effectiveness and 

transferability (Sala & Gobet, 2019). In addition, non-significant results in 

training studies can mean that there is evidence for the null hypothesis (training 

does not affect the measure of interest) or that the data are insensitive to 

providing evidence supporting the null hypothesis (Dienes, 2014; Dougherty et 

al., 2016).  

It is, therefore, of interest in training studies to consider evidence in favor 

of the null hypothesis. I used the Bayes factor in support of the null hypothesis 

(cognitive control training did not lead to changes in the decision-making 
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measures) to assess training-related transfer to decision-making tasks. In this 

case, the Bayes Factor B indicates that the data are B times more likely under 

the null model than the training model. Therefore, the Bayes Factor allows three 

different types of conclusions regarding the potential training effects; (i) strong 

evidence for a null effect (no-training related changes) (B much greater than 1), 

(ii) strong evidence for the training model (B close to 0); (iii) and the evidence 

is insensitive (B close to 1) (Dienes, 2014). In Chapter 4, I assess potential 

training-related changes across three time points split into short-term and long-

term effects. The short-term effects focused on potential training-related 

changes between the pre-training and testing time points immediately after 

completing the 8-week training paradigm. The long-term effects focused on 

possible changes between the pre-training and follow-up time points one year 

after completing the training paradigm. 

 For most of the measures in the short-term training-related analysis, I 

found strong evidence supporting the null over the training model. However, for 

two measures, strategic social decision-making and reward valuation, the 

Bayes factor did not provide strong evidence for either the null or the training 

model. Thus, while some ambiguity remains regarding strategic decision-

making and reward valuation, I can conclude from these findings that an 

inhibitory control training paradigm did not lead to changes in pro-social and 

intertemporal decision-making immediately after training. I also investigated 

potential long-term training-related effects, and here, for all measures except 

for strategic social decision-making, did the Bayes evidence strongly support 

the null.  
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 In sum, in Chapter 4, I did not find as strong a relationship between EFs 

and pro-social and intertemporal decision-making as expected. In addition, an 

experimental EF manipulation also did not lead to training-related changes. 

Thus, the results in this thesis did not seem to be in accordance with previous 

studies establishing strong relationships between EFs and pro-social and 

intertemporal decision-making, which provided the foundation of the hypothesis 

that enhancing EFs via inhibitory control training would lead to further changes 

in decision-making. Thus, an inhibitory control training paradigm may not 

effectively improve pro-social and intertemporal decision-making. However, 

other training approaches could be more effective. 

5.9 On effective training paradigms for decision-making 

Despite several studies employing EF intervention paradigms, training EFs, 

such as working memory, cognitive flexibility, or inhibition, have rarely 

translated to real-world effects (Diamond & Ling, 2016; Holmes et al., 2019; 

Kable et al., 2017; Simons et al., 2016). Therefore, EF training studies have 

been criticized for lack of effectiveness and poorly designed paradigms (Sala, 

Gobet, 2019). Specifically, training studies have been criticized for a) poor 

definitions of the training mechanism, b) poor design of training protocols, as 

well as c,) being relatively underpowered to detect small effects (Smid et al., 

2020).  

 A core assumption of training studies has been that training mechanisms 

are fundamentally related to the outcome measures of interest (Noack et al., 

2009). For example, working memory capacity (i.e., the maximal amount of 

information that can be stored in working memory) correlates highly with 



Chapter 5. General discussion 

273 
 

general intelligence (measured as fluid reasoning) (Jaeggi et al., 2008). Thus, 

the logical consequence has been to target working memory capacity to 

increase intelligence. However, as has been argued previously, two correlated 

variables, such as working memory span and intelligence, do not necessarily 

covary when one is artificially being inflated via training because training can 

tap unshared variance between the two constructs (Moreau & Conway, 2014). 

Moreover, although relationships between working memory and intelligence 

might exist at a latent factor level, this is not necessarily the case at the level of 

single tasks typically used in training studies. EFs are higher-order constructs 

that include different processes; for instance, working memory consists of 

storage, rehearsal, and matching, as well as manipulation of information and 

processing skill. Thus, correlating two tasks does not offer sufficient granularity 

or direction to identify the true underlying process-based nature of the 

relationship. Finally, considering task manipulations (e.g., increasing working 

memory span) as tantamount to training for outcome variables is a nontrivial 

endeavor. For example, it might not be working memory span that is related to 

intelligence (Unsworth & Engle, 2005) but rather a shared executive attention-

control mechanism required for the active maintenance of information in the 

face of concurrent processing and inference. Increasing the working memory 

span may, therefore, not lead to improvements in intelligence (Sala & Gobet, 

2017).  

 In the current work, the training design sought to overcome this by 

creating a construct of working memory ability based on different working 

memory tasks (Corsi, n-back tasks) to relate outcome measures to, recruiting 

a large sample with multiple testing points, and in addition, the training 
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comprised of multiple tasks which used different motor responses to train 

inhibition (see 4.6.1 Cognitive control training protocol) to obtain the best way 

to manipulate cognitive control. Furthermore, as training performance is often 

accompanied by substantial inter and intra-individual differences, the current 

training design was adaptive to a participant’s performance across the different 

tasks. Lastly, to interpret the evidence for null or training effects properly, I 

included Bayesian evidence in support of the null to determine whether the 

training was ineffective or the data insensitive and found that this supported the 

null. Thus, although the current study used a high-standard training design, was 

adaptive, and had a considerably large sample (N = 205), I still did not observe 

training-related effects, and Bayesian evidence strongly supported the null 

model (no training-related changes).  

There is a discussion regarding preference for domain-specific or 

domain-general training studies. It has been argued elsewhere that training 

paradigms with the goal of far-transfer would be more effective when embedded 

into the domain they would like to influence (P. Peng & Lee Swanson, 2022; 

Ramani et al., 2017). For example, an intervention study centering around 

inhibitory control aimed to improve counterintuitive reasoning in math and 

science used a paradigm where the training was embedded into the target 

groups’ science and math curriculum and observed modest training-related 

changes in science achievement (Wilkinson et al., 2019). Thus, if the goal is to 

influence pro-social decision-making, training paradigms that focus on, for 

example, increasing empathy may have more potential to lead to training-

related changes. Alternatively, creating a training paradigm with improved 

ecological validity, for example, real-world social interactions, may lead to 
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increases in pro-social decision-making (de Felice et al., 2021), which could 

potentially be aided by virtual reality environments (Pan & Hamilton, 2018). A 

previous study in childhood that used behavioral control in the context of a 

social story-telling setting did observe increases in pro-social decision-making 

(Steinbeis & Over, 2017). Thus, moving to a more ecologically valid paradigm 

embedded in the decision-making realm of interest may achieve transfer effects 

in decision-making.  

 Alternatively, one-shot economic games such as the Dictator and 

Ultimatum Game may not be the best outcome measure to attempt and 

influence via an EF training paradigm. In one-shot economic games, 

participants only provide a single measure of decision-making. In contrast, 

decision-making tasks with more trials may provide more insight into the 

underlying social and intertemporal preferences (Lockwood & Klein-Flügge, 

2021). In particular, reinforcement learning tasks that combine a social 

component would be able to investigate whether pro-social learning could be 

affected by an EF training paradigm (Lockwood et al., 2016; Pauli et al., 2022). 

Interestingly, previous work has shown that, especially when we are young, we 

may learn faster when we make decisions differently that affect ourselves rather 

than someone else (Cutler et al., 2021; Lockwood et al., 2016, 2021). In 

addition, other studies have suggested that especially inhibitory control may be 

needed to suppress the prepotent impulse to benefit ourselves (Steinbeis, 

2018; Steinbeis et al., 2012; Steinbeis & Over, 2017). For example, as in 

Chapter 4, increased reaction times were linked to more pro-social decisions 

and less steep temporal discounting; this could indicate that the ability to 

withhold prepotent responses and deliberate over an action may lead to desired 
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improvements in decision-making. Thus, decision-making tasks that involve 

social learning may be a better candidate to test whether EF training also leads 

to changes in social decision-making. 

In sum, in the current work, a randomized-controlled domain-general and 

adaptive inhibitory control training paradigm did not lead to training-related 

changes in pro-social and intertemporal decision-making. While the current 

training was well designed and sought to counter the common shortcomings of 

training paradigms, other training approaches could be more effective in 

translating to changes in decision-making. Future studies should aim to take 

over the benefits of the current training paradigm in (i) having a range of 

different tasks that tackle the same mechanisms (in this case, inhibitory 

control), (ii) being adaptive to individual performance, and (iii) having a similarly 

large sample size. However, future avenues for training could improve by 

exploring a) more ecologically valid training paradigms embedded in the 

relevant realm of decision-making and b) using decision-making outcome 

measures that offer a better assessment of potential training-related changes, 

such as changes in reaction time.  

5.10 Conclusion 

This thesis sought to investigate value-based decision-making in childhood 

from the perspective of reinforcement learning and social and intertemporal 

decision-making. In the first Chapter, I discussed the three dominant theoretical 

branches of decision-making research: normative, descriptive, and prescriptive 

theories. Next, I discussed how research into decision-making moved from 

assuming people are rational decision-makers to accepting that real people 
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make irrational decisions. Finally, I introduced the concept of bounded 

rationality and how constraints on the number of alternatives we can consider 

or how many contexts can be reflected on are thought to bind the rationality in 

our decisions. The constraints on our rationality can be interpreted as executive 

functions (EFs); our working memory constrains how much information we can 

manipulate in our minds, whereas cognitive control allows us to select the right 

option every time, and cognitive flexibility can enable us to switch between 

options flexibly. To this end, I investigate reinforcement learning and social and 

intertemporal decision-making from the context of executive functions to 

investigate whether these cognitive abilities may support rational decision-

making. In sum, I found that the relationships between EFs and decision-

making were not as robust as expected.  
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