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Abstract

Human decision-making is the flexible way people respond to their
environment, take actions, and plan toward long-term goals. It is commonly
thought that humans rely on distinct decision-making systems, which are either
more habitual and reflexive or deliberate and calculated. How we make
decisions can provide insight into our social functioning, mental health and
underlying psychopathology, and ability to consider the consequences of our
actions. Notably, the ability to make appropriate, habitual or deliberate
decisions depending on the context, here referred to as metacontrol, remains
underexplored in developmental samples. This thesis aims to investigate the
development of different decision-making mechanisms in middle childhood
(ages 5-13) and to illuminate the potential neurocognitive mechanisms
underlying value-based decision-making. Using a novel sequential decision-
making task, the first experimental chapter presents robust markers of model-
based decision-making in childhood (N = 85), which reflects the ability to plan
through a sequential task structure, contrary to previous developmental studies.
Using the same paradigm, in a new sample via both behavioral (N = 69) and
MRI-based measures (N = 44), the second experimental chapter explores the
neurocognitive mechanisms that may underlie model-based decision-making
and its metacontrol in childhood and links individual differences in inhibition and
cortical thickness to metacontrol. The third experimental chapter explores the
potential plasticity of social and intertemporal decision-making in a longitudinal
executive function training paradigm (N = 205) and initial relationships with

executive functions. Finally, | critically discuss the results presented in this
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thesis and their implications and outline directions for future research in the

neurocognitive underpinnings of decision-making during development.






Impact Statement

One’s ability to make good decisions is essential in all facets of society. For
example, understanding that one might need to forego small gains now in favor
of security and larger gains in the future — for example, via the sacrifice of a
portion of salary towards a pension contribution — allows individuals to plan for
their future security and wellbeing. Throughout decision-making research,
scientists have sought to uncover the facets that underlie human decision-
making in the face of uncertainty and how these might be explained by
normative, descriptive, and prescriptive theories. Crucially, through
experimental research into human decision-making, researchers have come to
understand that human decision-making is not purely rational or even
consistent and susceptible to manipulations. An influential theory that sought to
explain this perceived absence of rational decision-making discusses this from
the perspective of bounded rationality. This concept states that human
decision-making is rational, but it is constrained by the limits of the human mind,
which potentially lie in individual differences in working memory capacity,
attention, or cognitive control, abilities that are often captured under the

umbrella term of executive functions.

Importantly, substantial changes in decision-making occur in childhood,
where developmental studies observe that with age, we become more social,
patient, and deliberate decision-makers. Coupled with significant changes in
decision-making are changes in executive functions. From childhood to
adolescence and adulthood, executive functioning generally improves, such
that individuals become able to maintain and manipulate more information in

working memory, have better impulse control over prepotent responses, and
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are better to switch between different tasks flexibly. Alongside this, critical
structural changes occur in brain development, reflected in changes in cortical
thickness. Thus, childhood is an ideal developmental period to investigate
human decision-making and how this may be coupled to executive functioning
improvements and brain anatomy changes. While the underlying
neurocognitive mechanisms underlying reinforcement learning and social and
intertemporal decision-making remain primarily unknown, inspecting these from
a developmental lens provides us the opportunity to investigate the potential

underlying relationships.

This thesis reports three key findings of decision-making in childhood.
First, using a novel paradigm, | show that children are capable of using
sophisticated goal-oriented decision-making strategies and can use the
environment to their advantage, while previous studies suggested this skill only
emerged in late adolescence. Second, | show that the ability to control when to
flexibly exert effort in a reinforcement learning task for reward is linked to
individual differences in cortical thickness and performance in inhibition tasks
in childhood. Third, | investigate the plasticity of social and intertemporal
decision-making in childhood via an executive functioning training paradigm

and find that it did not lead to short-term or long-term training-related changes.

These findings make a significant contribution to the field of decision-
making in development by carefully examining decision-making and linking it to

individual differences in executive functions and brain anatomy.
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Chapter 1. General introduction

1.1 A brief history of decision-making research: from rational

to irrational creatures

In 2008, at the brink of the 2010 financial crisis, Wall Street guru Michael Burry
realized that several subprime home loans in the US were in danger of
defaulting. This information caused Burry to use over $1 billion of his investors’
money to bet against the housing market, so-called “shorting”, and to eventually
make a fortune by taking full advantage of the impending economic collapse in
America (Figure 1). A famous proverb in fiction and non-fiction applications is
“Hindsight is 20/20”, which means that it always seems easy to predict an event
after it has occurred. Economists, researchers, and historians often claim to be
able to predict the market. However, if the uncertainty of an event is

immeasurable, it is nigh impossible to predict any event with certainty.

Figure 1. Christian Bale as Michael Burry in Paramount Pictures' The Big
Short, 2015.
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Chapter 1. General introduction

Despite this uncertainty regarding the future, people must make daily
decisions that affect various domains of life. Some choices may have significant
and long-term implications (e.g., deciding on a field of study, deciding to buy a
house, deciding to have children, whom to marry). In contrast, other choices
may be more short-term but still carry the potential for later implications (e.g.,
having unprotected sex, buying holiday insurance, or passing a vehicle on a
two-way road). Therefore, understanding how we make decisions in uncertain
contexts is crucial.

The emergence of decision-making as a formal field of study was
intertwined with the birth of modern probability theory in the 17™" century and
has evolved significantly since then (Erez & Reyna, 2019). In the field
of judgment and decision-making, choices listed above, whose outcomes are
contingent upon whichever state of the world transpires, are classified
as decision-making under uncertainty (Erez & Reyna, 2019). However, it should
be noted that uncertainty about future events can sometimes be measurable
and other times immeasurable. Thus, in some cases, we can calculate the
available information into numbers that express the likelihood of observing
certain events. For example, when rolling a die, we cannot say which number it
will land on, but we can instead calculate the probability of obtaining the number
six or an even number. However, the likelihood of uncertain events is
incalculable in most real-life cases. For example, what is the probability of an
economic crisis transpiring next year? Or what is our probability of being
involved in a traffic accident in the next decade?

Decision-making research up until now has broadly fallen under three

branches: normative, descriptive, and prescriptive analyses (Erez & Reyna,
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Chapter 1. General introduction

2019). Traditional normative and descriptive decision-making models focused
mainly on logic and cognition when modeling and predicting human choice
behavior. Before the 1950s, normative theories led the way, where scientists
believed that decision-making in the mind took place on a purely rational and
mathematical basis, with the key assumption that the decision-maker was a
logical, deliberative creature that obeyed basic rules of sound behavior (Elliott,
2019; Kacelnik, 1997). In short, normative theories draw from philosophical
standpoints about how the ideal decision-maker ought to choose. This period
gave rise to the Expected Value (EV) and the Expected Ultility Theory (EUV),
which introduced new and fundamental principles in probability theory and were
pioneered by Pascal, Fermat, Cramer, and Bernoulli (Machina, 1987). EV
captures the average across all possible outcomes weighted by their
probabilities. For example, if we would roll a six-sided die six thousand times
and average across all numbers, the EV would be close to 3.5 (Figure 2). The
EV provided the ability to predict the average outcome of uncertain events
accurately and was therefore seen as a guiding principle for rational-choice
behavior. However, it soon became apparent that people do not consistently
follow the EV principle in their decision-making. Thus, other factors must be at

play in human decision-making.
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Chapter 1. General introduction

E(X) = ji = Zx.P(x)

EIf ()] = Zf(x) p(x)

(1+2+3+4+5+6) 21
EQX) = = =—=35

Figure 2. Expected Value of a six-sided die.

After normative theories of decision-making, which assume that the
decision maker is a logical and deliberative creature, descriptive theories of
decision-making became more pervasive. Descriptive analyses focus on how
real, imperfect human beings make choices in practice, how they reason, and
why they behave the way they do (Chandler, 2017; Kacelnik, 1997). In
particular, it examines how human behavior differs from rational axioms derived
from normative decision-making theories (Slavic et al., 1977). This field is,
therefore, primarily based on empirical methods and statistical analysis
conducted on choice behavior (Erez & Reyna, 2019). For example, it
investigates how people’s behavior and choices can be influenced and
manipulated by introducing other factors in the decision-making context.
Descriptive analyses are thus concerned with how real people do make

choices.

Finally, the field of prescriptive decision-making can be seen as a
mixture of both normative and descriptive analyses, with the primary goal to
help people make better and more coherent choices (Slavic et al., 1977). Thus,

prescriptive analyses offer decision-aiding tools in the form of rules and step-
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Chapter 1. General introduction

by-step guidelines to help people navigate their choices in a normative fashion,
i.e., more rational and less biased by inconsistency, illogical decisions, or other

biases (Erez & Reyna, 2019).

A pervasive theory for why humans did not adhere to rational, normative
decision-making theories was introduced with the concept of “bounded
rationality” (Simon, 1957). Herbert Simon was one of the first scientists to
recognize that people’s rationality is limited and that the ideal decision-maker,
as portrayed in normative models, thus could not replicate human decision-
making. He argued that people utilize heuristics, which significantly simplify the
decision-making process. Shortly before the conception of Simon’s theory,
George Miller published his influential paper “The magical number seven, plus
or minus two: Some limits on our capacity for processing information”, where
he identified substantial limitations in human information processing (G. A.
Miller, 1956). In short, he claimed that people could not exhaustively think about
alternatives. Instead, decision-makers can remember and think about only a
few chunks of information at a time (seven according to Miller, four according
to some recent theorists (Erez & Reyna, 2019)), which limits or bounds their

ability to make decisions.

Importantly, this links the ability to make rational decisions to other
cognitive processes. This idea still holds today, and cognitive processes named
executive functions (EFs) are thought to be critical to supporting flexible goal-
directed behavior (Diamond, 2013). EFs capture cognitive abilities
encompassing working memory, cognitive flexibility, and cognitive control in

suppressing prepotent impulses. According to the concept of bounded
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rationality, rather than maximizing across all available alternatives, decision-
makers aim at reaching a “good enough” criteria and then choosing the first
option that reaches the threshold set by these criteria, so-called “satisficing”.
Thus, people are limited but still rational and choose satisfactory but not

necessarily optimal options.

As an example of this concept, imagine you are looking for a pub to have
drinks in with four friends in London tomorrow. Clearly, the number of options
to choose from is enormous, and the amount of relevant information to consider
is exponentially higher: which location works for everyone? Do you want
outdoor seating? How expansive is their drinks selection? Their food selection?
Until what time do they serve food? Do they host pub quizzes? Many variables
can be optimized (e.g., equidistant travel distance for all involved friends or
multiple vegan food and drink options if a person in your group is vegan), and
if you would attempt to pick the ultimate pub by solving this optimization
problem, you might miss the proposed date and time for the drinks altogether.
Thus, a common tactic used by people is to reduce the complexity of the
problem, for example, focusing on familiarity and simply picking the pub you
went to last week, which might cause some of your friends to travel for longer
but allow you to come to a decision and propose a pub within an appropriate

time limit.

In later works, deviations from rational decision-making (such as
inconsistent choice behavior) were often attributed to humans’ bounded
rationality (the brain's limited capacity to process information and perform

complex calculations needed to maximize our well-being), as introduced by
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Miller and Simon. The concept of bounded rationality, therefore, lays the

groundwork for the link between decision-making and EFs.

1.2 A revolution in computation: formalized reinforcement

learning models

Reinforcement learning is another branch of decision-related research
formalized in the 1950s and has since experienced a dynamic history. Initially,
two approaches to reinforcement learning existed independently; one started in
animal psychology and trial-and-error learning. The other was rooted in
engineering in the optimal control problem and how to solve this using value
functions and dynamic programming. In the 1980s, both these approaches
combined to constitute what we now know as modern reinforcement learning

(Sutton & Barto, 2018).

Arguably the most crucial pioneer in trial-and-error reinforcement
learning research in the early 1900s was Edward Thorndike, who coined the

“Law of Effect”. In his own words:

“Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction [to the animal] will, other things
being equal, be more firmly connected with the situation so that, when it recurs,
they will be more likely to recur; those which are accompanied or closely
followed by discomfort [to the animal] will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they will be
less likely to occur. The greater the satisfaction or discomfort, the greater the

strengthening or weakening of the bond.” (Thorndike, 1911, p. 244)
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Thorndike came to these conclusions via his experimental work, where
he used puzzle boxes to study how animals learned. Thorndike placed a cat
inside a puzzle box and then put a piece of meat outside the box. The boxes
were enclosed but contained a small lever that, when pressed, allowed the cat
to escape. He then observed the animal’'s approaches to escaping and
obtaining the food, recording how long it took each cat to learn how to get out
of the box. Eventually, the cats pressed the lever and opened the door so that
they could eat the piece of meat. Even though the first interaction with the lever
occurred by accident, the cats became likely to interact with it again in repeat
experiments because they had received a reward immediately after performing
the action. Thorndike observed that with each trial, the cats became faster at
pressing the lever, opening the door, and obtaining the reward. Because
pushing the lever had a favorable outcome, the cats were likelier to repeat the

action (Thorndike, 1911)."

ey
[4 |
| |
|

Figure 3. Thorndike's puzzle box.
Schematic (left) and photo (right) of Thorndike’s puzzle box (Burnham, 1972).

This stipulation was coined the Law of Effect because it describes

positive reinforcement on the tendency to select actions (Sutton & Barto, 2018).

' This research is similar to later work conducted by B. F. Skinner in operant conditioning.
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This law describes two of the most important aspects of what is meant by trial-
and-error learning. First, it is selectional, meaning that it involves trying
alternatives, observing the outcomes, and selecting the most favorable option.
Second, it is associative, meaning that the alternatives found by selection are
associated with particular situations (Sutton & Barto, 2018). It is thus a simple
way of combining search and memory; search by trying and selecting among
many actions in each situation, and memory in the form of remembering what
actions worked best and associating them with the situations in which they were
the best option (Sutton & Barto, 2018). Importantly, this again links the field of
decision-making research to EFs as supporting mechanisms to learn from
previous rewards and punishments and to plan toward the subsequent

desirable outcome.

In the other branch of reinforcement learning, scientists were concerned
with the problem of “optimal control”, which posits the problem of designing a
controller to minimize a measure of a dynamic system’s behavior over time
(Sutton & Barto, 2018). It is concerned with finding the optimal path of all paths
feasible for a system, for example, sending a rocket to the moon with minimal
fuel consumption due to an optimized trajectory. One of the most influential
approaches to this problem was developed in the mid-1950s by Richard
Bellman and colleagues by applying the Hamilton-Jacobi equation from
classical physics (R. Bellman, 1954; R. Bellman & Dreyfus, 1959; R. E.
Bellman, 1957b). This approach used the concepts of a dynamical system’s
state and a value function or “optimal return function” to define a functional

equation, which is now often referred to as the Bellman equation (Bellman,
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1957). Dynamic programming became known as the class of methods that uses

these equations to solve the optimal control problem.

The Bellman equation shows up everywhere in the field of reinforcement
learning, being a central element of many reinforcement learning algorithms. In
essence, the Bellman equation allows a value function to be decomposed in
two parts, the immediate reward and the discounted future rewards. Thus, this
equation allows a simplification of the computation of the value function, so that
rather than summing over multiple time steps, the optimal solution of a complex
problem can be found by breaking it down into simpler recursive subproblems
and finding their optimal solutions (Figure 4). In simpler terms, the Bellman
equation allows us to determine the value of the current state of the world and

our action, and the next state of the world and action we might take.

Later stages of reinforcement learning research started merging the two
branches of the trial-and-error learning approach rooted in animal psychology
and engineering. This merging led to new computational models that assessed
how an artificial agent could learn from the environment through trial-and-error
and introduced new problems, such as the credit assignment problem (Sutton
& Barto, 2018). This problem revolves around crediting success to the right
actions when many different decisions were made that eventually led to
success, which is essential to learning the right decisions to make to repeat that

success (Minsky, 1961).

A basic reinforcement learning model revolves around an agent (an
animal, human, or artificial agent) who takes certain actions in an environment

and, depending on the state, receives an outcome, which could be a reward or
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punishment (Figure 4). The agent’s goal in this problem is to find a sequence
of actions that will provide them with a reward. Almost all reinforcement learning
problems work by estimating value functions, which can be functions of a
particular state of the world, or of a specific action while in a particular state
(state-action pairs) (Sutton & Barto, 2018). A value function estimates how good
it is for the agent to be in a given state (also written as V(s), where V represents
the value and s the state) or how good a specific action is in a particular state
(also written as Q(s, a) where Q represents the value, s the state and a the
action). In short, the value of a particular state reflects the expected total reward

that is obtainable while being in this state.

Besides the value function, another important function is that of state-
action pairs, also called the action-value function or the Q-function (or just by
Q). The Q-function defines the value of taking action a in state s, which can be

written as Q(s, a) (or R(s, a)) (Sutton & Barto, 2018).
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Figure 4. Reinforcement learning schematic.
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To apply this to a real-world situation, let’s use a contextual multi-armed
bandit problem as an example?. Say we have a human agent, a boy named
Timmy. Timmy is eight years old and visits his aunt Edna every month. Edna is
generally happy, and when she is happy and Timmy shows her his grades, she
sometimes gives Timmy extra pocket money. However, when she’s not happy,
she never gives Timmy extra pocket money. Over the years, Timmy learns that
Edna is happy when it's sunny but becomes sad when it rains. Every time
Timmy visits Edna, he has the choice to show her his grades or not. From his
experience, Edna is happy when it's sunny, so the value of being at his aunt’s
when it's sunny has a higher value than being at his aunt’s when it’s raining.
This reflects the value function, or the value Timmy has learned to associate
with sunny weather. Now, Timmy has the option to show his grades or not.
Thus, the Q-function for this situation can be written as +pocket money (sunny,
show grades), which is positive because there is a probability he will receive a
reward. In short, in this example, Timmy learns to take a certain action
depending on the current state of the world that transpires, based on the

previous reward he experienced.

2 In a multi-armed bandit problem, the agent must maximize the sum of their rewards through
a sequence of actions. It is so named after slot machines in a casino, where a gambler seeks
to find the most rewarding slot machine to play on. In essence, the agent must learn what the
optimal action is (e.g., in this example, whether to take the action (show the grades) or not
(don’t show the grades)).
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Figure 5. Contextual bandit example.

Depending on the context (weather: sunny, rainy), Timmy has to decide which
action to take (show grades to aunt Edna, don’t show grades to aunt Edna) to
attain the reward (+pocket money, -pocket money).

Reinforcement learning models are pervasive because they allow
researchers to capture and quantify specific components of (human) behavior.
For example, in the above example, if we had logged all of Timmy’s and Edna’s
interactions, the weather, and their outcomes, we could have fitted a model to
capture how fast Timmy learned from his previous actions. In addition, we could
have predicted which decision Timmy would be likely to make the next time he
visited his aunt. In this thesis, | will use this approach to determine how children
and adults rely on different strategies to learn from their past actions and make
new decisions. The types of decision-making that are able to be dissociated

with this approach will be discussed in the next section.

1.3 The theory of two minds: model-free and model-based
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decision-making

The decision heuristics discussed in the first section of the introduction are
colloquially referred to as habits. Habits are extremely important and effortless
policies that can dictate our decision-making, which seemingly require little
conscious thought and can be executed as if on autopilot (Dezfouli & Balleine,
2013; Dickinson, 1985; Dolan & Dayan, 2013). Let us consider the following

example:

When commuting to work, you know which route to take without having
to think about it consciously. You automatically walk to the tube station,
habitually get off at the same stop, and walk to your workplace while your mind

wanders. This is an effortless process. However, there is a tube strike today.

While your usual route to the tube was intuitive, you now find yourself
spending some time planning alternative routes to work to select the quickest
one. Are the buses still running? Which bus lines may get too crowded? Can
you perhaps take a bike, or e-scooter, or walk there? How much will an Uber

cost?

Our different responses to these processes demonstrate the distinctions
between quick, intuitive, and habitual decisions and slower, goal-directed
decisions, in short, a dualistic approach to decision-making (Daw et al. 2011).
This dual-systems approach referred not only to decision-making but was also
tied to the idea of cognitive abilities by psychologists Michael Posner and
Charles Snyder in the 1970s in their book Attention and Cognitive Control

(Posner & Snyder, 1975). They dissociated between cognitive processes which
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were either automatic or controlled, where automatic processes were

characterized by four conditions:

-_

. They are elicited unintentionally

N

They only require a small number of cognitive resources

3. They cannot be stopped voluntarily, and

s

They happen unconsciously

Controlled processes were likewise characterized by four conditions:

-_

. They are elicited intentionally

N

They require a considerable amount of cognitive resources

3. They can be stopped voluntarily

s

They happen consciously

Similar to automatic processes, habits, and heuristics are both forms of
model-free learning, where decisions are made based on experience and
learned associations, rather than on a conscious understanding of the
environment. Habits are actions performed automatically in response to specific
stimuli, without conscious thought. Heuristics, on the other hand, are simple
rules-of-thumb or mental shortcuts that allow for quick decisions in situations
where a more deliberate, model-based approach would take too much time or
mental effort. Model-based learning, in contrast, involves using a more explicit
understanding of the environment and the relationships between actions and
outcomes to make decisions. This approach is more flexible and adaptive than
model-free learning, but also requires more computational resources and

mental effort.
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Importantly, the developmental aspect of the dualistic approach is
extremely interesting. For example, do we start as quick, habitual individuals
but progressively become able to “think slow”? Some current developmental
studies seem to suggest that this is, in fact, the case and that we start as
automatic, habitual decision-makers and only slowly develop to become
controlled, goal-directed decision-makers (Davidow et al., 2018; Decker et al.,
2016). This idea is supported by the fact that EFs that allow us to provide
controlled responses, store and manipulate more information in our minds, and
switch flexibly between tasks increase strongly throughout childhood (Buss &
Spencer, 2014; Fiske & Holmboe, 2019; Ganesan & Steinbeis, 2022; Prencipe
et al., 2011; Satterthwaite et al., 2013; Wiebe & Karbach, 2017). This, then
again, leads us to the concept of bounded rationality. Is it the ongoing
development of abilities that controls how many alternatives we can consider in
our minds and how normative our decisions can become? Is childhood merely
a period where we are unable to engage in what will become our peak rational
decision-making once we have attained full brain maturation and executive

control?

The theorized dichotomy between habitual and goal-directed forms of
decision-making inspired a new blend of neuroscience-based reinforcement
learning models. From a neuroscientific perspective, habits and goal-directed
action systems appear to coexist in different corticostriatal circuits (Daw et al.,
2011). While | mentioned in the previous section that these systems are thought
to learn concurrently, they lead to different decisions as they link different
rewards to different actions, as can be determined via g-learning reinforcement

learning models (Balleine & O’Doherty, 2010; Dickinson, 1985; Kool et al.,

43



Chapter 1. General introduction

2016; Lockwood et al., 2020). Computational approaches interpret these
systems as two complementary mechanisms for reinforcement learning. The
temporal-difference learning mechanism is associated with dopamine and
reward prediction errors (RPE) and is model-free in the sense that it works by
directly reinforcing successful actions rather than taking any underlying
structure of the world into account (Daw et al., 2011). The goal-directed
mechanism depends on a separate model-based reinforcement learning
system, which works by using an internal model of the task to evaluate
candidate actions (Beierholm et al., 2011; Daw et al., 2011; Doll et al., 2015;
Kool et al., 2016). Thus, in theory, the choices recommended by model-free
and model-based systems depend on their independent calculations. With good
experimental design and accompanying models, the contributions of each

system to decision-making are therefore possible to be dissociated.

If we revisit Timmy and his aunt Edna, Timmy has learned to associate
the current weather with his aunt’s happiness and, in turn, her happiness with
his probability of receiving extra pocket money. In essence, Timmy has learned
to apply a simple model of the world to predict the outcome of his actions.
However, let’'s now consider that Timmy has a little brother, Howard. Howard
also sometimes receives pocket money from his aunt Edna, but he has failed
to make the connection between his aunt’s happiness and the probability of
pocket money. Instead, he only learned that by showing his aunt Edna his
grades, he might receive pocket money. The next time Timmy and Howard visit
Edna, it's raining, so Timmy decides to just enjoy some tea with his aunt and
not to bother her with his grades. However, Howard confidently shows her his

grades and solely receives a lukewarm verbal response in turn. Essentially,
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Howard has made a decision based on model-free decision-making (he only
learned the action that may lead to reward), while Timmy has applied model-
based decision-making (he used the current state of the world to plan his

decision).

In 2011, Daw and his colleagues developed the two-step task, which is
so named because each trial consists of two distinct steps (Figure 6). In this
task, participants start in the first stage (pink rectangles) and pick one of the
two options. If they pick the first option, 70% of the time, they will transition to
the brown stage, where they will again need to pick between two options. For
both brown options, they will receive a binary reward (0 or 1) according to a
drifting probability bounded between 25% and 75% (Figure 6, bottom).
However, 30% of the time, when selecting the first option in the pink stage, they
will transition to the yellow stage instead. The yellow stage is otherwise identical
to the brown stage in that they again need to pick between two options, where
they will receive a binary reward according to the bounded drifting probability
rate for reward for the two yellow stage options. However, as we can see from
the drifting reward rates, sometimes one option is a lot better than the other
options (in that the probability of receiving reward will be higher). Thus,
participants need to continually assess how good the previous state and their

action was.
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Figure 6. Two-step task structure and drifting reward probabilities.
Recreated from Kool et al. 2016.

An attractive feature of this task is the stochastic transition structure,
meaning that for the same action in the pink stage, 70% of the time (the thick
brown and yellow arrows) will one action lead to the same second stage
(common transition), but 30% of the time (the thin brown and yellow arrows) will
it lead to the other (rare transition). This structure allows assessing how
participants change their behavior following a rare transition and indicate
whether they can effectively plan through the task transition structure. The four
yellow and brown lines at the bottom of the figure represent the changes in
reward probability (ranging between 25-75%) for the two brown and yellow

second-state stages.
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For example, a participant chooses the first pink option, expecting to
transition to the second brown stage. However, they experience a rare
transition and transition to the yellow second stage instead. Here they pick one
of the two options and receive a reward. The difference between a model-free
and model-based decision maker becomes apparent in their next decision. A
model-based decision maker would be more likely to change their initial choice
and instead pick the second pink option because it is more likely to transition to
the yellow second stage, where they just received a reward (Figure 7b).
However, a model-free decision maker would be more likely to choose the first
pink option again because they do not use the internal structure of the task to
plan their decisions (Figure 7a). Instead, they link their choice “pick the first pink
option” to having received the reward, although it is transitioning to the yellow

second stage that led them to the reward.

Therefore, the utility of the task structure in decisions reflects model-
based decision-making, while ignorance of the task structure reflects model-
free decision-making. The leads to the different systems calculating different
values and probabilities for taking each action. To capture the extent to which
participants used one system or the other, the reinforcement learning model
used in Daw et al. 2011 incorporated a weighting parameter w, which when
close to 1 reflects contributions from a pure model-based decision maker, and
when close to 0 reflects contributions from a pure model-free decision maker.
Empirical data from this task shows that people are hybrid decision makers and
will display a mixture of the contributions of both these systems in their behavior

(Figure 7).
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Figure 7. Probability of repeating the first-stage choice for three types of
agents in a two-step task.

For model-free agents (a) the probability of repeating the previous choice is
dependent only on whether a reward was obtained or not on the previous trial,
not on the transition structure, or whether the previous transition was common
or rare. Meanwhile, for model-based agents (b) this is reflected in an interaction
between the previous transition type (common or rare) and previous reward,
and the probability of transitioning to the same state (brown or yellow) where
the reward was obtained. Behavioral performance on this task (c) reflects
features of both model-based and model-free decision-making. Figure edited
from Doll et al. 2015.

The idea of the model-based decision maker goes hand in hand with
rationality and maturity. Since model-based decision-making was considered
an advanced ability, it was considered to be an actual late-developing skill, one
that only became available with finalized brain and behavioral maturation
(Davidow et al., 2018; Decker et al., 2016; Nussenbaum & Hartley, 2019;
Palminteri et al., 2016; Potter et al., 2017). In line with this theory, studies found
that model-based decision-making seemed to be absent in children before 12
years of age and to become apparent and further increase during adolescence,
peaking in young adulthood (Decker et al., 2016; Nussenbaum et al., 2020;
Palminteri et al., 2016; Potter et al., 2017). However, as often found in

developmental studies, this may not truly be the case (Scott & Baillargeon,
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2017; Smid et al., 2022). In addition, the exact underpinnings of model-based

decision-making, although theorized to be supported by EFs, remain unclear.

In the last few decades, empirical research has pointed out flaws in the
dual-systems theories and added nuance to the strong dissociation proposed
between them in earlier works (Dow, 1990; Momennejad et al., 2017). Current
research suggests that while there may be a distinction between more intuitive
and more deliberate forms of thinking and decision-making, they happen
simultaneously, and all decisions are a mix of these systems (Daw et al., 2011;
Feher & Hare, 2019; Glascher et al., 2010; S. W. Lee et al., 2014; Sambrook et
al., 2018). In addition, both systems can be influenced by biases and emotions
and might not necessarily be rational (Stanovich & West, 2003). Even though
this dichotomy between habitual, model-free, and goal-directed, model-based
decision-making is now deemed much less divergent than previously thought,
this proposed dichotomy fueled ground-breaking research into descriptive
decision-making and which strategies people may rely on when making
decisions. Adding to this, the field of reinforcement learning allowed new
methods of quantifying the contributions of different systems to decision-
making: formal models of habitual and goal-directed decision-making would
create different reinforcing values for certain actions under different
circumstances and thus, allow the contribution of either system to decision-

making to be dissociated (Daw et al., 2011; Doll et al., 2015; Kool et al., 2016).

Prior work on the neural underpinnings of model-free and model-based
decision-making has sought to uncover distinct signatures of associated

prediction errors. Some studies suggest distinct regions for model-based
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decision prediction errors, such as the posterior parietal cortex (O’'Doherty et
al., 2015), the dorsomedial prefrontal cortex (PFC) (Doll et al., 2015), and the
(dorso) lateral prefrontal cortex (DLPFC) in particular (Beierholm et al., 2011;
Cremer et al., 2021; Doll et al., 2015; Glascher et al., 2010; S. W. Lee et al.,
2014; Smittenaar et al., 2013), while model-free prediction errors have been
mainly localized to the (ventral) striatum (Beierholm et al., 2011; Glascher et
al., 2010; O’Doherty et al., 2015) or the putamen (Doll et al., 2015, but see also
Daw et al., 2011; Sanfey & Chang, 2008). A potential causal role of the DLPFC
in model-based decision-making was identified via direct manipulation of the
DLPFC via TMS, which led to a reduction in model-based decision-making

(Smittenaar et al., 2013).

In contrast, only a few studies have addressed the neural correlates of
metacontrol concerning switching between decision-making strategies (S. W.
Lee et al., 2014; O’Doherty et al.,, 2015). For example, O'Doherty et al.
suggested that the arbitration between model-free and model-based systems
was encoded by bilateral inferior lateral PFC, the right frontopolar cortex, and
the rostral anterior cingulate cortex (O’Doherty et al., 2015). Meanwhile, Lee et
al. found that the arbitration between habitual and goal-directed systems
depended on activity in the bilateral lateral PFC (S. W. Lee et al., 2014). In
addition, a study on adolescents found that the selective upregulation of
cognitive control for trials with greater reward in contrast to trials with lesser
reward was governed by frontostriatal connectivity (Insel et al., 2017). This
could lead to a similar relationship in the context of stake-based metacontrol
used in the current study. Taken together, findings from these studies suggest

that DLPFC, in particular, may be implicated in both model-based decision-
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making and its metacontrol, however, presumably serving different respective

functions.

In Chapter 2, | will explore model-based decision-making in childhood
from the perspective of an adapted sequential decision-making task, where |
find that it might appear much earlier than previously thought. In Chapter 3, |
will investigate which EFs and individual differences in brain anatomy may be

linked to and support model-based decision-making in childhood.

1.4 A rational or irrational discount: intertemporal decisions

In the first section of this introduction, | outlined the different schools of decision-
making in terms of normative, descriptive, and prescriptive approaches and the
type of choices that the field of judgment and decision-making coined as
decision-making under uncertainty (Erez & Reyna, 2019). Many of the
decisions that people make daily fall under this category, with some decisions
having a substantial long-term impact on our life (e.g., choosing a field of study,
deciding to move abroad, choosing whom to marry). Other decisions are on a
much shorter term, but may still have a significant impact (e.g., conducting a
dangerous over-taking maneuver on a busy road, having unprotected
intercourse). As | stipulated previously, most choices require people to trade off
costs and benefits at different points in time. Decisions that have consequences
in multiple periods are referred to as intertemporal choices. Therefore,
decisions about savings, work, effort, education, nutrition, exercise, avoiding
climate change, and health care are all intertemporal choices (Chapman, 1996;

Hamilton & Potenza, 2012; Kacelnik, 1997; Slavic et al., 1977).
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Understanding how people’s decisions are affected when faced with
different temporal outcomes is essential and critical in understanding how
society tends to tackle challenges and how our decisions may be influenced
and manipulated. For example, environmental policies often require trading
consequences with a differing time horizon: the immediate loss of gain resulting
from banning forest cutting against the delayed, long-term loss caused by losing
biodiversity and atmospheric activity of that forest. To make these types of
decisions, people must, consciously or unconsciously, combine the magnitude
of the immediate and future consequences and the time delay until each of

them, which requires a time-discounting criterion.

The field of normative decision-making is concerned with defining
optimal, rational decision-making, free from biases, and stipulated how people
ought to make rational decisions (Slavic et al., 1977). Inspired by economics,
scientists were interested in whether people adhered to these logical principles
in financial decision-making. Normative theories posit that minimal discounting
with time is a valid normative construct (Elliott, 2019; Kacelnik, 1997). A
problem with normative approaches to temporal discounting is that it is not
evident if there is only one way to be rational about discounting. Psychological
research cannot replace the need for ethical, psychological, and economic input
for socially meaningful decisions such as environmental or health care policies.
In the case of a more personal argument, one’s approach to saving is influenced
by how one feels about postponing immediate gratification and external advice
about the theoretical expectations of economic performance for the money set
aside. Another factor is trust and perceived stability in one’s personal life.

Without trust in financial institutions, one may be less likely to put money aside
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in savings or investment accounts (Guillou et al., 2020, 2021). If there is
instability in one’s personal life, for example, a family struggling to make ends
meet, it may be preferred not to “risk” the uncertainty of time but rather to

choose a guaranteed pay-off today.

In descriptive decision-making approaches, which are concerned with
analyzing how people do make decisions based on empirical approaches, it
quickly became apparent that people discounted rewards that took place further
away in the future. Temporal discounting, or the decrease of utility or value of
a reward over time, has been a consistent finding in decision-making research
(Keidel et al., 2021; Kirby, 2009). The theory of discounted utility is the most
widely used framework for analyzing intertemporal choices (Chapman, 1996).
Frequently, hyperbolic or exponential curves are fitted to choice data, and the
parameters that dictate the steepness of the downwards curve are used to
determine a person’s individual tendency to discount a reward with time
(Kacelnik, 1997). However, recent theories have suggested that fitting these
curves may not provide a complete descriptive account of the cognitive

influences on intertemporal decisions in humans (Bos & McClure, 2013).

Commonly, rewards that are available more immediately are preferred
over rewards that may be larger but are delayed. This preference is known as
temporal discounting, and this preference has been demonstrated in
intertemporal choice studies where individuals are asked to choose between a
smaller sum of money immediately (e.g., 10 dollars now) or a larger delayed
sum (50 dollars in a week); the further away the reward, the less the reward is

valued (Bos & McClure, 2013; Kirby, 2009). However, from a purely economic
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standpoint, the way we process delay should be constant, and we should not
devalue a larger reward because it is only available further in the future3. The
most interesting question, then, becomes what factors predict individual
differences in tendencies to discount rewards more with time. Reduced
sensitivity to temporal discounting, which is therefore preferred, may be
supported by episodic memory (Bulley et al., 2016; Shohamy & Daw, 2015),
working memory (Wesley & Bickel, 2014; Zhao et al., 2022), intelligence
(Rustichini, 2015), and cognitive control (Figner et al., 2010; Steinbeis et al.,
2012, 2016). On the other hand, individual variations in how steeply rewards in
the future are discounted have been linked to psychopathology (Moutoussis et
al., 2021; Story et al., 2014), problems with processing memory (Mellis et al.,
2019; Wesley & Bickel, 2014), and behavioral disorders such as gambling
addiction (Bickel et al., 2007, 2014). In children, developmental studies show
that with age, children become increasingly more patient (Green et al., 1999;
Prencipe et al., 2011), which translates to them discounting future rewards less
steeply with time. However, the mechanisms underpinning this development,
for example, whether improvements in memory or other EFs in childhood may
be driving this move towards more patient decision-making, remains unclear.
In Chapter 4, | will explore the associations between EFs and intertemporal

decision making in childhood.

1.5 The social aspect in rational decision-making

In the previous section, | discussed the commonly observed effect with which

individuals may discount rewards set in the future with progressive time and

3 This is assumed rational in the absence of strong inflation.
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how this can also impact social decisions, for example, regarding climate
change and health care policies. Human beings are naturally social creatures,
and many of our daily decisions also impact the people around us and,

therefore, take place in a social dimension.

Our decisions can also affect our social lives and functioning, as daily
we engage in the social exchange of goods and money (Henrich et al., 2005).
These exchanges can pose a conflict of interest, where both parties aim to
maximize their outcomes (Guth et al., 1982). For example, imagine a child at
school engaging in a popular card trading game. The child may have doubles
of a card, which they want to exchange for a desired card missing from their
collection that another child possesses, the goal being to get the best deal
possible. Therefore, the child needs to make an acceptable offer to the other
child to meet their goal and, ideally, preserve a friendship so they can potentially
trade again in the future if needed (Steinbeis et al., 2012). Cooperation thus
involves a delicate balance of achieving one’s own goal, understanding the
other person’s goal, and maintaining good standing for future interactions
(Wang & Liu, 2022). Being known for generosity and sharing fairly with peers
can help one gain social capital and develop successful ongoing and new
reciprocal relationships (Bull & Rice, 1991). Instead, making more selfish
decisions at the expense of the people around us, for example, stealing money
or items, can make people more cautious or even refuse to interact with us in

the future (Fehr & Gachter, 2000).

The human ability to intuitively assess fairness is a critical factor in our

capacity to cooperate within a larger society of unrelated and often unfamiliar
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individuals. One of its key components is the ability to divide resources equally
among members of a society (Rawls, 1971). How individuals respond to
inequality in the distribution of resources is a useful objective benchmark of
one’s underlying sensitivity to fairness (McAuliffe et al., 2017). A consistent and
cross-cultural observation is that adults dislike receiving less than others, and
adults prefer to receive nothing than accept inequality (Dawes et al., 2007).
Further, adults have been shown to punish the proposers of unfair distributions
even at cost to themselves (Dawes et al., 2007; Henrich et al., 2005). When
participants are put in a situation of control over the division of resources in the
absence of sanctioning threat, dividing the resources equally has been
considered a measure of altruism or unconditional fairness (Benenson et al.,
2007; Edele et al., 2013; Hilbig et al., 2015). Pro-social decision-making has
previously been linked to a better Theory of Mind (Li et al., 2017; Santamaria-
Garcia et al., 2018; Wang & Liu, 2022), empathy (Q. Guo & Feng, 2017; R. Guo
& Wu, 2021; Herne et al., 2022; Zhang & Wang, 2019), and personality traits
(Allgaier et al., 2020; Gummerum et al., 2010; Hilbig et al., 2015). Moreover, it
has also been linked to better EFs, for example, in the context of cognitive
control (Figner et al., 2010; Steinbeis, 2016; Steinbeis et al., 2012; Steinbeis &

Over, 2017).

As previously mentioned, children increasingly make more pro-social
decisions with age, which may be linked to an increase in inequality aversion
(Blake & McAuliffe, 2011; Fehr et al., 2008; Gummerum et al., 2008). However,
even if children understand a situation to be unfair and judge it so, this is not
necessarily reflected in their subsequent behavior (Blake et al., 2014; Smith et

al., 2013; Steinbeis et al., 2012) (however, also see (Paulus et al., 2018)). While
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studies of adults cannot differentiate between the processes acquired through
society and those with deeper biological roots, studies of children can help
distinguish between the foundational and malleable components of social

decision-making (McAuliffe et al., 2017).

Interesting, there must be intrinsic motivation to engage in pro-social
behavior as humans invest time, money, and effort in others even without the
chance of repeated encounters (Steinbeis, 2016). Such altruism, which is
defined as behaviors which incur a personal cost to benefit another in some
way (Fehr & Fischbacher, 2003), already occurs early on in development, and
in addition can be observed in other species, such as chimpanzees (Brosnan
et al., 2010; Warneken & Tomasello, 2006). Altruistic behaviors can include
helping, comforting, and sharing of resources (Schmidt & Sommerville, 2011;
Svetlova et al., 2010; Warneken & Tomasello, 2006). As mentioned before,
children have been found to become more pro-social with age. However, which
psychological mechanisms may underlie pro-social sharing of resources
remains elusive, especially in the middle childhood period. In Chapter 4, | will
discuss age-related changes in social decision-making, and its relation to EFs

in childhood.

1.6 The developmental lens: executive functions and bounded
rationality in decision-making

The concept of bounded rationality argues that humans are rational creatures,
within bounds. How far these bounds stretch is potentially dictated by our

cognitive abilities, such as our ability to search through different options when

considering which decision to make or our ability to access previous
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associations or memories when faced with a similar scenario (Sutton & Barto,
2018). In psychology, cognitive abilities that encompass our ability to expend
attention and focus on a task at hand, or our ability to flexibly shift between
different tasks, are often considered to be executive functions (EFs) (Diamond,
2013). EFs are broadly defined as functions in the realm of working memory,
cognitive flexibility, and cognitive control, or the ability to inhibit prepotent
impulses (Diamond, 2013). Thus, an individual with a large working memory
span and manipulation ability, good ability to flexibly switch between
alternatives and contexts, and cognitive control over their actions, may

therefore make more rational decisions.

Human decision-making can either be split into quicker, cognitively
cheap, and habitual decisions or slower, cognitively expensive, and goal-
directed decisions (Daw et al. 2011). While habitual decisions make up most of
our daily actions (e.g., commuting home via the usual route, putting on the same
t-shirt, making a morning coffee the same way), when faced with a new or
difficult scenario, our goal-directed decision-making is prone to taking over
(Dezfouli & Balleine, 2013; Dickinson, 1985). Using goal-directed decision-
making allows us to approach a problem consciously, consider alternatives, and
pick the right option (Gillan et al., 2015; Wan Lee et al., 2014). Because this
reflects a sophisticated way of thinking and approaching decisions, engaging in
effective goal-directed decision-making is often thought to be a late-developing
skill that only becomes available after brains have matured (Decker et al., 2016;
Nussenbaum et al., 2020; Nussenbaum & Hartley, 2019; Palminteri et al.,
2016). Thus, another bound that may be placed on our rationality is the

constraint of development.
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Research in developmental studies, especially studies that span the
lifespan from childhood to adulthood, is often concerned with tracking the
development of the building blocks of reason and rational decision-making. A
common finding has been that “higher” EFs, such as complex cognitive abilities,
only become available due to the ongoing maturation of brain regions and
connections, as childhood is a period of greater plasticity (Buss & Spencer,
2014; Fiske & Holmboe, 2019; Satterthwaite et al., 2013). Thus, if humans only
reach their potential with developmental maturity, this means that rational

decision-making should be developmentally incomplete.

For example, as previously discussed, research into changes in temporal
discounting across the lifespan observed that in developmental samples,
progressive age is linked to less steep temporal discounting (Green et al., 1999;
Prencipe et al., 2011; Steinbeis et al., 2016). In addition, when we consider pro-
social decision-making, as discussed in the previous section, developmental
research has found that children’s decisions become progressively more pro-
social with age (Bauer et al.,, 2014; Chajes et al., 2022; Fehr et al., 2008;
McAuliffe et al., 2017). In a mirror view of this, when we consider the potential
factors that may “bound” our rationality, such as working memory, cognitive
flexibility, and cognitive control, we again observe a consistent increase with
age (Chevalier, 2015; Davidson et al., 2006; Domenech & Koechlin, 2015;
Ganesan & Steinbeis, 2022; Garon et al., 2014; Prencipe et al., 2011;
Satterthwaite et al., 2013; Wiebe & Karbach, 2017). Potentially, our ability to
expand our bounds may, therefore, underlie our ability to engage in rational

decision-making.
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While economic decision-making provides insight into how we might
allocate resources at the moment or how long we can be persuaded to wait for
a reward, it does not necessarily illuminate how we might learn from our past
decisions. The field of reinforcement learning has been trying to formalize
different ways of decision-making for nearly a century, from formalized models
for animal decision-making to current research on complex decision-making
strategies. A distinction between habitual and reflexive versus deliberate
decision-making processes has been proposed in previous literature. This
distinction ties in with the studies conducted in social and intertemporal
decision-making, as it might require the ability to deliberate and correctly
assess the outcomes of an action to see that the larger delayed reward has a

higher payoff in the end.

Throughout the experimental chapters, | will explore social and
intertemporal decision making and reinforcement learning from a
developmental focus. | will discuss research on the potential underpinnings of
more pro-social and intertemporal decision making, as well as a higher degree
of model-based decision making. In Chapter 2, | will discuss the presence of
model-based decision making in childhood, and that this may emerge much
earlier than previously thought. In Chapter 3, | will review the potential
underpinnings of individual differences in model-based decision making in
childhood. In Chapter 4, | will discuss social and intertemporal decision making

from a developmental and prescriptive lens.

1.7 The potential plasticity of social and intertemporal decision-

making
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Throughout this introduction, | discussed the history of decision-making, and its
shift from the assumption of human beings as rational decision-makers in
normative theories, to describing human decision-making, including all its
inconsistencies and biases in descriptive theories. The third branch of decision-
making research concerns prescribing how human beings should make

decisions, the so-called prescriptive branch of decision-making research.

Based on the types of decision-making | have discussed so far, the
decisions one ought to make seem straightforward. For example, one should
engage in goal-directed decision-making when it is necessary to solve a
complex problem. One should generally be pro-social and fair to maintain
healthy and reciprocal social networks with access to fairly distributed
resources. Furthermore, one should generally aim not to be swayed to strongly
discount time but focus on future outcomes almost as readily as immediate
outcomes so that one can save effectively and lead a successful life by planning
toward future goals. However, as | reviewed early on, humans are not rational
decision-makers that normative theories and philosophies can capture. Instead,

human decision-making is inconsistent, messy, and often irrational.

When the concept of bounded rationality was introduced, it was a way to
explain this absence of rationality in human decision-making. If we can only
maintain so much information in our minds at a time, we can only be rational to
a certain extent. However, with the introduction of this theory, Miller also hinted
at individual differences in this regard in the title “The magical number seven,

plus or minus two: Some limits on our capacity for processing information” (G.
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A. Miller, 1956). If we could extend the limits, would we, in turn, also see

increases in our rational decisions?

These limits may be dictated by our EFs, as they are critical to supporting
goal-directed behavior (Diamond, 2013). Additionally, childhood executive
functioning has been shown to predict various social, academic, and mental
health outcomes later in life (Blair & Razza, 2007; Clark et al., 2010; Moffitt et
al., 2011). As we mentioned before, EF ability undergoes protracted
development from childhood into early adulthood (Davidson et al., 2006; Garon
et al., 2014; Wiebe & Karbach, 2017), likely supported by accompanying
changes in frontoparietal and frontostriatal anatomy and connectivity (Buss &
Spencer, 2018; Fiske & Holmboe, 2019; Insel et al., 2017). Given their strong
links to real-life outcomes and prolonged plasticity throughout development,
EFs have been primary targets for brain training interventions (Diamond & Lee,
2011; Wass et al., 2012). While several training paradigms have had successes
in improving the trained domain, for example, several studies have found that
training working memory capacity does lead to long-term increases in working
memory span (Schmiedek et al., 2010), the ultimate goal of these training
paradigms is to test whether improvement in one cognitive ability also leads to
improvements in a loosely related domain (Smid et al., 2020; Wass et al., 2012;
Wilkinson et al., 2019). However, training studies that report robust effects on
loosely related domains are few and far between, and the current consensus is
that improvements in a correlated function may not effectively translate further
than the trained subject (Gobet & Sala, 2022; Sala & Gobet, 2016, 2017, 2019).
While many studies have investigated how EF training might impact other

cognitive abilities or academic outcomes, not many studies have investigated
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whether improvements in EFs via a training paradigm may lead to changes in
social or intertemporal decision-making (but see (Kable et al., 2017; Steinbeis
& Over, 2017; Zhao et al., 2022)). Intervention studies in childhood may be
particularly interesting because this developmental period is marked by
substantial changes in EFs and decision-making (Wass et al., 2012). Only a
handful of studies have investigated how training EFs may impact decision-
making in childhood specifically (Steinbeis & Over, 2017; Zhao et al., 2022).4 In
the final experimental chapter of this thesis, | will investigate if training cognitive
control led to increases in pro-social decision-making and less steep temporal

discounting in intertemporal decisions.

1.8 Summary

There are three main branches on approaching decision-making research:
normative, descriptive, or prescriptive theories. Normative theories concern
itself with how humans ought to decide, while descriptive research investigate
how humans actually decide. Applying these two concepts, prescriptive
research seeks to make humans more normative decision-makers. Descriptive
research has shown that humans do not adhere to normative theories in their
decision-making. For example, on a daily basis humans make decisions that
impact their health and social wellbeing. Humans have been shown to strongly

discount consequences of positive outcomes that are set further away in time.

A pervasive explanation of why humans do not seem to be rational,

normative decision-makers, is offered via the theory of bounded rationality

4 Steinbeis & Over, 2017 used a behavioral control priming paradigm, rather than the actual
training of the ability.
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which proposes that humans are rational within the limit of their cognitive
abilities. In addition, the concept of dual-systems theory has led to a pervasive
theory of human decision making: humans rely on both a quick, intuitive habitual
system and a slower, deliberate goal-directed system to make decisions. Goal-
directed decision making reflects a conscious and deliberate approach to
decision making, which more closely aligns to the normative theories. The field
of reinforcement learning uses computational models to quantify decision-
making behavior and is able to capture how much of each system one relies on
for their decisions. By quantifying the individual differences in habitual and goal-
directed decision making, these differences can be linked to other cognitive

abilities.

Studies investigating the development of decision-making in humans
report that children make decisions that show a lack of pro-sociality and inability
to effectively consider intertemporal outcomes for decisions when compared to
adults. Childhood is marked by substantial changes and increases in decision
making behavior and cognitive abilities, mirrored by structural and connectivity
related changes in brain development. From a prescriptive lens, if cognitive
abilities are a limiting factor in rational, normative decision making, enhancing
cognitive abilities will potentially translate to improvements in rational decision-
making. With childhood being a critical developmental period marked by greater
plasticity, or the capacity to undergo substantial changes, it may therefore be a
particularly effective period for intervention studies to enhance cognitive

abilities and to impact decision making.
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This thesis aimed to shed light on learning behavior in the context of
decision-making in childhood, using an interdisciplinary computational
approach via reinforcement learning models. Further, it sought to investigate
whether goal-directed decision-making was linked to individual differences in
EFs and brain anatomy. In addition, it sought to revisit the relationships between
EFs and social and intertemporal decision-making, how these relationships
change across childhood, and whether training EFs may lead to improvements
in intertemporal decisions and pro-social decision-making. For all three
experimental chapters, accompanying data and code for the analyses can be

found on my Github (https://github.com/ClaireSmid).
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Part of Chapter 2 was published in a research paper in Developmental Science:

Smid, C. R., Kool, W., Hauser, T. U. & Steinbeis, N. (2022). Computational and
Behavioral Markers of Model-based Decision-making in Childhood.

Developmental Science, e13295. https://doi.org/10.1111/desc.13295

2.1 Abstract

Human decision-making is underpinned by distinct systems that differ in
flexibility and their associated cognitive cost. A widely accepted dichotomy
distinguishes between cheap but rigid model-free and flexible but costly model-
based systems. Typically, humans use a hybrid of both types of decision-
making depending on environmental demands. However, children’s use of a
model-based system during decision-making has not yet been shown. While
prior developmental work has identified simple building blocks of model-based
reasoning in young children (1-4 years old), there has been little evidence of
this complex cognitive system influencing behavior before adolescence. Here,
by using a modified task to make engagement in cognitively costly strategies
more rewarding, | demonstrate that children aged 5 to 11 years (N = 85),
including the youngest children, displayed multiple indicators of model-based
decision-making and the degree of its use increased throughout childhood.
Unlike adults (N = 24), however, children did not display adaptive arbitration
between model-free and model-based decision-making. My results
demonstrate that children can engage in highly sophisticated and costly

decision-making strategies throughout childhood. However, the flexible

66



Chapter 2. Model-based decision-making in childhood

arbitration between decision-making strategies might be a critically late-

developing component in human development.

2.2 Introduction

To navigate our world successfully, we need to learn which of our actions lead
to desirable outcomes. It is commonly theorized that human reward-related
learning is guided by at least two decision-making systems competing for
control (Daw et al., 2005; Glascher et al., 2010). One is a goal-directed and
computationally costly model-based system, which can flexibly compare
actions and their expected outcomes across contexts. The other is a habitual
and computationally cheaper model-free system that ties rewards to specific
cues, enabling the repetition of previously reinforced actions (Dickinson et al.,
2002). The field of reinforcement learning provides a practical computational
framework to dissociate contributions from these two systems to behavior (Daw
et al., 2005; Dolan & Dayan, 2013; Glascher et al., 2010). While model-based
decision-making exploits the underlying hidden structure of an environment and
matches the rewards attained with the appropriate actions, model-free decision-
making relies entirely on previously learned action-outcome contingencies.
Although model-based decision-making can be much more accurate, it comes

at a cognitive cost.

On the other hand, model-free decisions rely on previously learned
action-reward outcomes and are, therefore, efficient but cannot quickly adjust
to environmental changes. Optimally responding to different environmental
demands within the inherent processing limits of the human cognitive system

consequently requires dynamic arbitration between the costs and benefits of
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both decision-making systems (Lieder & Griffiths, 2019). For example, for
everyday tasks, the efficiency of a model-free system might be preferred, while
to be successful in novel or complex scenarios might require a more demanding
but more accurate model-based system. While a wealth of studies show that
adults use both systems when making decisions, little is known about how these

systems come to contribute to decision-making during human development.

Children can make simple value-based decisions from a young age by
learning which actions lead to positive and negative outcomes. For example,
even young infants have been shown to link actions and reward through gaze
following (Ishikawa et al., 2020), to learn the underlying hierarchical structure
of a sequential decision-making task (Werchan & Amso, 2021), and to
understand goal-directed movement (Southgate et al., 2014). In addition, in a
task where children were rewarded with cartoon video clips, preschoolers (3-4
years old) displayed action-outcome learning by repeating actions that were
rewarded in the past and stopping certain actions when they no longer led to
the same reward (Klossek et al., 2008, 2011). In addition, the ability to control
reflexive responses to stimuli, an executive function named inhibition, is present
from a young age and continues to improve and develop further through
childhood (Davidson et al., 2006). While these studies show that children can
learn the relationship between their actions and subsequent reward, it is unclear
whether children rely on model-free action-reward contingencies or further
employ this value-based learning to build an internalized model of the world and
use it to guide goal-directed behavior. Recent developmental studies using
sequential decision-making tasks with 8 to 12-year-old children found no

indication of contributions of a model-based system to choice before the age of
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12 (Decker et al., 2016; Nussenbaum et al., 2020; Palminteri et al., 2016; Potter
et al., 2017). Instead, the results from these studies suggest that the use of
model-based decision-making strategies emerges in and increases through
adolescence. These findings suggest that model-based decision-making might
be a late-developing process, similar to other cognitive abilities such as fluid

reasoning or inhibitory control (Otto et al., 2015; Potter et al., 2017).

Like many other studies investigating model-based decision-making in
humans, these prior studies used a common sequential decision-making
paradigm, often called the “two-step” task. However, crucially, in the traditional
version of the two-step task (Daw et al., 2011), using model-based decision-
making does not yield more reward than model-free decision-making (Akam et
al., 2015; Kool et al., 2016). In short, this is because the stochastic nature of
the rewards and the transitions in the original two-step task make it difficult for
a model-based system to plan effectively through the task structure (Kool et al.,
2016). Indeed, recent variations of the traditional two-step task that simplified
the transitional structure, which do allow a model-based system to outperform
a model-free one, yielded a boost in model-based decision-making in adults
(Akam et al., 2015; Kool et al., 2016). Thus, the prior work reporting a lack of
model-based decision-making in 8 to 12-year-old children cannot disentangle
whether this reflected a general inability or whether the stochastic task structure
and lack of incentive stopped children from utilizing model-based decision-
making. Therefore, in the current work, | investigated whether children aged 5-
11 years could engage in model-based decision-making when using a
sequential decision-making task with a deterministic task structure that allowed

for effective planning and greater incentives for using the model-based system.
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In addition to a deterministic task structure, | used a further reward
manipulation in the task to maximally incentivize the use of a model-based
system. Previously, adults have been shown to increase their model-based
decision-making when greater rewards could be won (Bolenz et al., 2019; Kool
et al., 2017; Patzelt et al., 2019). However, whether or not children engage in
effective and flexible metacontrol over distinct decision-making systems
remains unclear. Therefore, in addition to investigating whether children of this
age range could engage in model-based decision-making, | tested whether they
arbitrated between model-free and model-based decision-making in response
to changes in the potential magnitude of reward. To this end, | used
environmental manipulation in the form of “high-stake” trials, where rewards
were multiplied by a factor of five, and “low-stake” trials, where rewards were
not multiplied. Optimal metacontrol on this task entails approximating the
relative costs and benefits of using each system and increasing model-based
decision-making, which leads to higher rewards for high-stake trials (Bolenz et

al., 2019; Kool et al., 2017; Patzelt et al., 2019).

In sum, | address two questions; first, whether children aged 5 to 11
years can engage in model-based decision-making using a novel sequential
decision-making task; and second, whether children can demonstrate effective
metacontrol over distinct decision-making systems. In contrast to previous
findings, the current results suggest that pre-adolescent children can engage in
model-based decision-making, which | demonstrate using both behavioral and
computational methods. However, optimal metacontrol between goal-directed
and habitual decision-making systems was not yet confidently expressed during

childhood.
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2.3 Materials and Methods

2.3.1 Participants

Children were tested in pairs at a school in Greater London. Parental consent
had been obtained prior to the study. Ethical approval for this study was
obtained from UCL’s Research ethics committee in compliance with UK
national regulations. The present task was part of a larger battery of tests and
was administered at the start of the battery. | used an a priori power analysis
run in G*Power (Faul et al., 2007) to determine the sample size necessary to
achieve similar power as in previous studies (Decker et al., 2016; Eppinger et
al., 2013). Eppinger et al. (2013) found large age-related effects in model-based
decision-making in an adult sample with 60 participants. The information
entered into the power calculation was an a of .05, a power of 90%, and the
effect size found by Eppinger et al. (t < 4.04, p <.001, n2 = 0.20) (Eppinger et
al., 2013; Faul et al., 2007). Additionally, Decker et al. (2016) found an age-
related effect of model-based decision-making across their sample with 59
participants (children, adolescents, and adults), with a medium effect size,
(X2(1) = 26.00, p <.001, effect-size estimate = 0.27, se = 0.05) (Decker et al.,
2016). Based on this, | determined that with a sample size of at least 60
children, | would achieve more than 90% power to detect a true age-related

effect of comparable size.

A total of 114 children were tested in a classroom locally in a school in
Greater London. Every experimenter tested two children simultaneously, and
five experimenters conducted testing in the classroom each day. Children were

tested in between classes with the help of teaching staff. Due to time
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constraints, some participants could not complete the entire task. Therefore, |
included children if they had a) completed at least two-thirds of the task and b)
fewer than 30% missed trials. This led to the exclusion of 29 children (22
because the task was cut short and seven because of missed trials). Missed
trials were excluded from the analysis as participants did not receive rewards
on these trials and, therefore, could not learn from them. On average, children

missed 10% of the trials.

The final sample of children comprised 85 participants (37 girls (44%)
and 48 boys). The mean age of children was 8.2 years (SD = 1.6), ranging from
5.0 to 11.4 years, see Table 1. Adult participants were tested at lab facilities at
University College London. The adult sample consisted of 24 participants (11
females, (46%), 13 males), with a mean age of 25.2 years (SD = 4.7) ranging
from 18.7 to 35.3 years. On average, adults missed 3% of the trials, and none
had to be excluded from the sample based on the two inclusion criteria

described above.

Table 1. Ages and gender for the developmental and adult sample

Total N Subset N Mean age (SD) Gender (F)
Children 85 8.2 (1.6) 43.5%
5-year-olds 7 5.6 (0.3) 42.9%
6-year-olds 18 6.4 (0.3) 44.4%
7-year-olds 15 7.6 (0.2) 46.7%
8-year-olds 16 8.5(0.3) 50.0%
9-year-olds 16 9.5(0.3) 37.5%
10-year-olds 11 10.6 (0.3) 18.2%
11-year-olds 2 11.2 (0.2) 50.0%
Adults 24 25.2 (4.7) 45.8%
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2.3.2 Sequential decision-making task

2.3.2.1 Task design and narrative

We used a modified version of the novel task developed by Kool et al. (2017),
which was designed to be more conducive to model-based decision-making
and to allow testing for the presence of metacontrol via low and high-stake

manipulation that was more salient for children.

Participants were told they were space explorers and that their mission
was to collect as much treasure as possible from the two planets (red and
purple) they could travel to. Each planet had one alien who gave the participants
treasure when they visited their planet. To be manageable for the younger
children in the sample, the current task consisted of 140 trials (compared to 201
trials in Kool et al. 2017). Therefore, | conducted parameter recovery analyses
of the current task with 100, 140, and 200 trials to ensure that the model-based
contribution (w) parameter had good recoverability for the trial numbers
completed by participants in the sample. For these results, please see 2.6.3

Parameter recovery.

Trials consisted of two stages. In the first stage, participants were
randomly presented with one of two possible pairs of spaceships displayed on
an earth-like planet background (see Figure 8a). Each spaceship appeared on
the left and right sides with equal probability. There were four spaceships in
total, and spaceships were always displayed in the same pairs, of which one
spaceship always went to the red planet, and one spaceship always went to the
purple planet (Figure 8a). The choice between the two spaceships had to be

made by pressing one of two keyboard keys (i.e., “F” or “K”) within a time
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window of 2 seconds. After a spaceship was selected, it was outlined by a
border for the remainder of these 2 seconds, meaning trials could not be

progressed through faster but had a fixed duration.

Drifting Scalar Rewards
Gaussian (u = 0, o = 2) within 0-9 points

Reward Rate Per Planet

100 120 140

Trials

Figure 8. Sequential decision-making task design.

a) Schematic of the transition structure with arrows displaying deterministic
transitions; if a participant chose the dark blue or the orange spaceship, they
would always transition to the red planet. b) At the planets, participants received
rewards in the form of space treasure ranging between 0-9 pieces according to
the drifting reward rate per planet. c) At the start of the trial, participants saw
the stake amplifier, which either showed "1x" for low-stake trials or “5x” for high-
stake trials. Next, they saw a pair of spaceships and chose one, after which
they transitioned to either the red or the purple planet, where they had the
opportunity to win pieces of treasure. During low-stake trials, pieces of treasure
were displayed in blue with a red “1” on every piece, and participants received
points equal to the number of treasure pieces shown. d) During high-stake trials,
the blue treasure was displayed first and then, after a delay, turned into gold
treasure with a red “5” on top of it, and the number of points received was
multiplied by five.

In the second stage, participants transitioned to either a red or a purple
planet, as determined by their choice in the first stage. Note that both first-stage
states offered the possibility to visit either planet at the second stage, with one

spaceship always going to the red planet and the other to the purple planet.
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When arriving at the planet, they saw an alien and had to press the spacebar
within 2 seconds to collect “space treasure” from them (e.g., see Figure 8c and
Figure 8d). The reward distributions between the two planets were initialized
within a range of 0 to 4 points for one planet and 5 to 9 points for the other.
Afterward, the reward distributions varied according to a Gaussian random walk
(standard deviation = 2) with reflecting bounds at 0 and 9 for the rest of the
experiment. They were told that the aliens slowly moved between the bad and
good parts of their cave to make the participants aware of this fact. A new set
of randomly drifting reward distributions was generated for each participant
(Figure 8b). Such drifting reward rates have been shown to promote learning
and continuous monitoring of rewards won at each planet, allowing a model-
based system to capitalize on faster changes in rewards compared to the

traditional two-step task (Kool et al., 2016).

Importantly, the spaceships in the first states were practically equivalent.
One spaceship in a pair always led to the red planet, and the other spaceship
always led to the purple planet. Because of this equivalence, model-free and
model-based contributions to decisions can be dissociated since only the
model-based system generalizes across the equivalent starting states. In this
task, the difference between a model-based agent and a model-free agent is
that a model-based agent can generalize between the spaceships that go to
the same planet in each pair. For example, if the dark blue and the orange
spaceship lead to the red planet, then a model-based agent should assign the
same value to both spaceships. Thus, if a model-based agent chooses the
orange spaceship and receives a reward that is higher than expected on the

red planet, the value of choosing both the dark blue and the orange spaceship
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increases, while for a purely model-free agent, only the value of the orange
spaceship increases. In short, the model-based agent generalizes reward
experiences from one first-stage state (one pair of spaceships) to the other
(other pair of spaceships) because they both lead to the same goal (the planet),

whereas a model-free agent does not (Doll et al., 2015; Kool et al., 2016).

The current task was designed to encourage model-based decision-
making by allowing a model-based agent to outperform the model-free agent in
terms of reward gained throughout the tasks. This is accomplished due to the
faster drifting reward rates, which a model-based agent can capitalize on by
planning through an internal model of the task structure. Thus, this design leads
to a positive correlation between the degree of model-based decision-making

and rewards earned, which was absent in previous versions of the task.

2.3.2.2 Stakes manipulation

| employed low and high-stake trials to test whether the participants arbitrated
between employing model-free and model-based systems depending on the
rewards available. During the trials, participants received rewards in the form of
pieces of blue space treasure. At the start of each trial, participants were
randomly presented with one of two “treasure amplifiers” for 2 seconds. These
treasure amplifiers indicated whether the trial was a low-stake (the amplifier
showed “1x”, and the number of points they received was the same as pieces
of treasure shown) or a high-stake trial (the amplifier showed “5x”, meaning that
it was worth five times more points, see Figure 8c and Figure 8d). On a low-

stake trial, the pieces of treasure won directly translated to the number of points
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won on that trial, e.g., four pieces of blue treasure would have a value of four

points (Figure 8c).

In contrast, during a high-stake trial, rewards were multiplied by five, e.g.,
four pieces of treasure would have a value of 20 points. To make this difference
between the stakes more salient for the children, on high-stake trials, the
treasure turned from blue to gold treasure after a short delay and displayed the
number “5” in red on top of the gold treasure pieces, as opposed to “1” on the
blue treasure for the low-stake trials (Figure 8d). High- and low-stake trials were

at an approximate 50/50 ratio and occurred randomly.

Metacontrol was calculated as a difference score in the degree of model-
based decision-making expressed during the low- and high-stake trials. The
degree of model-based decision-making was measured via a weighting
parameter, whereby a value closer to 1 indicated more model-based control,
and a value closer to 0 as more model-free control. Using a model with two
weighing parameters, one for each stake condition, | measured the difference
in the values between the two parameters. A positive value indicated more
model-based decision-making for high-stake trials, and a negative value as
more model-based decision-making for low-stake trials. A higher positive value

reflects better metacontrol.

2.3.2.3 Instruction phase

All participants completed an identical instruction phase, which took
approximately 20 minutes, and the main task itself took approximately 25

minutes to complete. The instruction phase was identical for children and
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adults. No rewards were gained during the instruction phase, and practice trials

were not used for further analysis.

During the instruction phase, participants 1) observed a demonstration
of the drifting reward rates, which showed how fast the amount of treasure could
change over trials. Participants observed two drifting reward distributions of 5
examples per planet. This was fixed identically for all participants. Participants
had to verbally report to the experimenter after each completed demonstration
whether the treasure increased or decreased over the examples and were
corrected if wrong and given feedback; 2) then, they completed a training stage
to practice the transition structure. Here, a criterion of four correct consecutive
transitions to the red and purple planet, respectively, were required to pass for
all participants. After ten tries without successfully passing the requirement,
participants were reminded of which planet they needed to travel to. Therefore,
the task would only continue after participants had learned to successfully
deterministically transition to each planet; 3) to familiarize participants with the
trial sequence; in the third section, they completed six practice trials without
stakes where they traveled to a planet of their choice and collected treasure
using the transition structure. Unlike trials in the main task, no stake cue was
presented, and the trials did not time out, whereas the trials in the main task
had a 2-second response window. Additionally, treasures won were not kept;
4) the last phase was a stake instruction where participants saw the stake cue,
then a picture of one of the planets, randomly chosen, and then the trial
animation associated with the respective stake together with the stake cue in
the corner (“1x” or “5x”; see Figure 8c and Figure 8d). Treasure would be

displayed above the alien with a question mark. Participants then had to
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verbally state how many points they would receive for the treasure shown, e.g.,
if they saw four pieces of treasure, during low-stake trials, the correct answer
would be 4, and during high-stake trials, this would be 20. Participants stated
their answers to the experimenter, who provided feedback and corrected them
if wrong, and then again explained the stake condition. No full trials were

played, and no points could be earned.

At the start of the main task, the drifting reward rates for each planet
were reset, and any learned associations between rewards and planets during
the instruction phase were irrelevant for the main task. As a result, none of the
trials from the task preparation phase were included in the computational

models.

After the task preparation phase, all participants (children and adults)
were asked to report on the transition structure. Participants did this by noting
on a colored print-out sheet which spaceships they thought traveled to the red
and the blue planets. Spaceships were presented next to each other and not
displayed in pairs, as was the case on the computerized task. The transition
structure differed between participants (e.g., which spaceships traveled to
which planets), and whether the participants’' answers were correct was
therefore only assessed after testing and had no influence on the further testing
procedure. However, the practice phase had a criterion of four consecutive
accurate transitions to both planets to pass; this ensured that all participants
learned the transition structure. The transition mappings of spaceships to
planets were random for all children. For the adults, one fixed mapping of

spaceships to transitions was used.
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After the instruction phase, participants were told they would go on four
missions to collect treasure during the main part of the experiment. Children
were told that the more treasure they gathered in the game, the bigger their
present would be at the end of the study. Adults were told that for every 200

points, they would receive 50 cents (GBP).

We examined participants’ understanding of the task by asking them to
report the deterministic transition structure of the spaceships to the planets after
the preparation phase. Due to missing data by tester omission, written
responses from only 44 children were available. 80% of these children
accurately reported the task structure. Of the 24 adults, 75% correctly reported
where the spaceships went after practice. There was no significant difference
in the understanding of the task structure after the practice phase between
children and adults, (#(66) = .43, p = .670, 95% Cls [-.17, -.26]), suggesting that

the majority of the children learned the deterministic structure of the task.

2.3.3 Statistical analysis and corrections

All statistical tests were conducted in R. For general effect sizes, | report 95%
confidence intervals and Cohen’s d, and for regression results, | report the
standard error of the mean (SEM). Cohen’s d was acquired using the Effectsize
package (Ben-Shachar et al., 2020). For t-tests, the default R Welch's t-tests
were used, which do not assume equal variance across groups for an
independent samples t-test, resulting in fractional degrees of freedom. When
groups are compared for t-tests, the confidence interval reflects the 95%
confidence of the mean difference between the groups. For correlations, the

confidence interval reflects the 95% confidence range of values that contain the
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population correlation coefficient. For regression analyses, the package Ime4
in R was used (Bates et al., 2015). When p-values are represented as “q”, these
“g-values” are multiple comparisons (FDR) corrected p-values using the default
R STATS package. Dependent correlations were assessed using the COCOR

package (Diedenhofen & Musch, 2015), and partial correlations were evaluated

using the PPCOR package (S. Kim, 2015).

We used an established dual-systems reinforcement learning model,
which has been tested previously (e.g., Daw et al., 2011; Kool et al., 2016,
2017), to estimate the parameter solutions used to determine the degree of
model-based decision-making in the behavior of the participants. Model-fitting
was conducted using the mfit package in Matlab (Gershman, 2018). In
computational models, priors can be used, which are values used to initialize
the parameters of a model. Using priors helps with the accuracy of model-fitting.
If priors are kept “vague”, they do not influence the parameter solution strongly
and only have a minimal effect on parameter solutions. Therefore, | used the
same vague priors as used in a previous study investigating age effects in
model-based decision-making and metacontrol in aging adults (Bolenz et al.,
2019; Gershman, 2016). | used Beta(2,2) priors for all model parameters
bounded between 0 and 1 (learning rate (a), eligibility trace (A), and the mixing
weight(s) w), and a Gamma(3,0.2) prior for the inverse Softmax temperature
(b), and for the two choice stickiness parameters (11 and r) | used Normal(0,1)

priors (Bolenz et al., 2019).

The model-fitting procedure | used to acquire the parameter solutions

has the potential to introduce noise. To avoid this, | used model-free simulations
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to create a baseline to which | could compare the children (see 2.3.4 Model-
free simulation procedure). For more details on the dual-systems
reinforcement-learning model see 2.6.1 Dual-reinforcement learning model, for
the model-fitting procedure see 2.6.2 Model-fitting procedure, for model
performance and comparisons see 2.6.4 K-fold cross-validation, 2.6.5 Bayesian

model comparison and 2.6.6 Qualitative model validity.

For the generalized linear mixed model, the package Ime4 and the glmer
command with family = binomial(link = “logit”) were used (Bates et al., 2015).
The nested model selection was conducted using the AICcmodAvg package
(Marc, 2020), and to visualize the plots, | used the ggeffects package (Ludecke,

2018).

2.3.4 Model-free simulation procedure

An essential aim of this study was to investigate whether children showed
influences of model-based behavior. However, since the model-based
weighting parameter is bounded between 0 and 1, estimates of this parameter
will always be larger (or equal) to zero, which means that noise in either the
model-fitting procedure or in behavioral performance can only push this
parameter over the lower bound, and not under. Therefore, | needed a more
meaningful baseline value for model-free decision-making. | established this
baseline as the average estimated weighting parameters of simulated data from
agents that were completely model-free but otherwise matched with the

sample.

We simulated 500 iterations of 85 synthetic model-free agents. |

generated these agents the following way. First, | fitted a 5-parameter model, a
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reinforcement learning model with w hardcoded to 0, to the decision data from
the children. Next, | used the parameter solutions from the other parameters in
this model (inverse temperature, learning rate, etc.), with added noise, and
again set w to 0 to fit a generative version of the 5-parameter model to simulate
behavior that would be completely model-free. Next, | fitted the 6-parameter
model that included a free w-weighting parameter for model-based decision-
making over the whole task to this simulated model-free behavior. | used the w-
value that came from the 6-parameter model as the model-free baseline. These
simulations provided us with a true null baseline value for model-free decision-
making as determined by the reinforcement learning model that can be used to

compare data from actual participants meaningfully.

All data, materials, and code for this chapter are publicly available on

Github: https://qithub.com/ClaireSmid/Model-based Model-

free Developmental

2.4 Results

2.4.1 Children perform above chance level and are not random

To assess whether children were sufficiently engaged with and capable of doing
the task, | first compared their performance to chance level. Performance on
the task was calculated as each individual’'s corrected reward rate, which
reflected the average number of points a participant earned per trial, corrected
for each participant's possible rewards based on the drifting reward rates
(Figure 8b). This corrected reward rate tracks task performance against chance
level (0). Scores lower than O indicate performance worse than chance, and

scores higher than 0 indicate better than chance performance.

83



Chapter 2. Model-based decision-making in childhood

There was no difference in mean reward rate (the drifting reward rates),
or, the amount of reward that could be won, between the adults (M = .50, SD =
.04), and the children (M = .49, SD = .05), (t(1, 107) = -.30, d =-.007, p = .768,

95% Cls [-.02, .02], Figure 9a).

The mean corrected reward for children was significantly higher than
chance (#(84) = 3.20, d = .35, p =.002, 95% Cls [.003, .013]). Performance was
also significantly correlated with age (r=.32, p =.003, 95% Cls [.12, .50], Figure
9b). This suggests that the children were meaningfully performing the task and

that performance improved throughout childhood.

To compare reaction times between children and adults, | log-
transformed the reaction times. Between children (M = 0.58, SD = 0.23) and
adults (M = 0.56, SD = 0.17), there was no significant difference in reaction
time, (t(41.08) = 0.89, d = 0.19, p = .377, 95% Cls [-0.03, 0.07], Figure 9c),
suggesting that children and adults could both successfully complete the task,
and children were not at ceiling and therefore not too rushed to make their
response. The two groups were matched on gender (X?(1, N = 109) = .00, ¢ =
.019, p = 1.000). For children, there was no significant correlation between log-
transformed average reaction time and age, (r= .18, p = .098, 95% Cis [-0.03,

0.38]), Figure 9d).
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Figure 9. Performance and reaction time measures for children and
adults.

a) Mean reward drift rate for all children and adults, plotted as density curves
overlaid on histograms per group, (b) Performance metric for children plotted
over ages with adults plotted separately, (c) Log-transformed mean reaction
times per stake for children and adults, (d) Log-transformed average reaction
times for children over age with adults plotted separately. Error bars depict 95%
confidence intervals, and shaded areas around regression lines indicate the
standard error of the mean. On graph c, distribution is shown as violin plots.

2.4.2 Computational signatures of model-based decision-making in

children

The performance metric shows that children were generally able to perform the
task. However, this above-chance level performance could arise from
successfully engaging a model-free or a model-based system. Thus, |
investigated whether children displayed model-based decision-making by fitting
their behavior to an established dual-systems reinforcement-learning model

(Daw et al.,, 2011; Glascher et al., 2010). This model outputs several

85



Chapter 2. Model-based decision-making in childhood

parameters that explain behavior (e.g., inverse temperature and a learning rate)
and includes a weighting parameter that determines the relative contribution of
each decision-making system to behavior, with weights close to 1 indicating a
high degree of model-based decision-making and weights close to 0 as mainly
being model-free. As a higher value reflects a higher degree of model-based
decision-making, | will name this parameter “model-based contribution”

throughout.

For both children and adults, | conducted a formal model comparison
where | assessed four computational models, 1) a random model, 2) a simplified
reinforcement learning model with three parameters (henceforth 3-parameter
model), 3) a 6-parameter stake-agnostic dual-systems reinforcement learning
model (henceforth 6-parameter model), 4) a 7-parameter metacontrol dual-
systems reinforcement learning model with a model-based/model-free
weighting parameter that was allowed to differ across stakes (henceforth 7-
parameter model). | compared the models using k-fold cross-validation,
Bayesian model selection, delta AICs, and parameter recoverability in two
separate parameter recovery analyses and a qualitative model assessment.
From this comparison, the 6-parameter stake-agnostic dual-systems
reinforcement learning model was the winning model overall. | fit the 6-
parameter model to the data to assess model-based decision-making agnostic
of stakes, and | use the 7-parameter model to evaluate metacontrol. For the full
computational model, model comparisons, and parameter recovery analyses,

see 2.6 Supplementary Materials.

86



Chapter 2. Model-based decision-making in childhood

First, | investigated whether children displayed model-based decision-
making on the task over all combined trials. Children had an average model-
based contribution of 0.52 (SD = .17) and given that this value is significantly
larger than 0, (t(84) = 27.40, d = 2.97, p < .001 95% Cls [.48, .56])), it suggests
that children used a model-based system during the task. However, because
the model-based contribution parameter is bounded between 0 and 1, there is
a possibility that noise (introduced during task performance or model fitting)
could elevate the value of the model-based contribution to be greater than zero,

even if the children only used model-free decision-making.

| created model-free simulations based on the children’s data to resolve
this. This resulted in a mean model-based contribution parameter of 0.28 (SD
= .02) from these model-free simulations. Thus, a mixing weight value of 0.28
cannot be distinguished from pure model-free decision-making on the task and
should be perceived as the baseline for testing the presence of model-based

control.

Critically, children’s mean model-based contribution was in the 100th
percentile of the model-free simulation’s model-based contribution mean (100th
model-free percentile: w = 0.33). This means that the mean of the children was
larger than any mean value observed in the model-free simulations indicating
that children between 5 and 11 years of age show significant model-based

decision-making, (£(84.22) = 12.47, d = 3.49 p < .001, 95% Cls [.20, .27]).

Additionally, | investigated whether children's degree of model-based

decision-making increased with age. | found that there was a positive
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relationship between the degree of model-based decision-making and age (r =

22, p =.042) (Figure 10a).

Furthermore, | investigated whether the youngest children also showed
significant model-based decision-making. | conducted t-tests separately for
each year of age, correcting the p-values for false discovery rate. Every binned
year of age showed a higher degree of model-based decision-making than the
model-free simulations, (Figure 10b), (5-year-olds: N = 7, {(6.00) = 4.28, q =
.005, d = 10.36, 6-year-olds: N = 18, t(17.01) =6.53,q < .001,d =7.32, 7-year-
olds: N = 15, 1(14.00) = 5.21, 9 < .001, d = 7.11, 8-year-olds: N = 15, {(14.00) =
3.95,9=.002,d =5.41, 9-year-olds: N =17, 1(16.00) = 4.47,q = .001, d = 5.62,

10 (N = 11) and 11-year-olds (N = 2): {(12.00) = 8.65, q < .001, d = 13.39).

| also investigated whether a linear model with a quadratic age term fitted
the change of model-based decision-making better (e.g., (w ~ Age + Age”2)).
When comparing a linear model with only age to a model with an additional
quadratic age term, there was no significant difference between the models
(F(1,83) = 3.76, p = .056). Thus, | interpret the changes in model-based

decision-making over age as mainly linear.

One of the main aspects of the current task design was that a higher
degree of model-based decision-making leads to higher performance. To
confirm this, | investigated the relationship between performance (the corrected
reward rate) and the degree of model-based decision-making for the
participants. Performance on the task was correlated to the degree of model-
based decision-making for the whole sample (r = .51, p <.001), showing that a

higher degree of model-based decision-making was significantly related to
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better performance. This effect remained significant after controlling for age (r

= .37.p <.001).

Lastly, | inspected potential gender-based differences in model-based
decision-making. First, | looked at whether there were overall differences in
gender for the children. There were no overall differences between males and
females in the degree of model-based decision-making (F(1,83) = 0.01, p =
0.923). When | ran a two-way ANOVA with Gender and age as predictors, only
age was a significant predictor (F(1,81) = 4.24, p = .042), and there was no
main effect of Gender (F(1,81) = 0.01, p = .921), nor an interaction between

Gender and Age (F(1,81) = 0.83, p = .365).

For the adults, there was no overall effect of gender on model-based
decision-making (F(1,22) = 0.07, p = 0.800). In a two-way ANOVA with gender
and age as predictors, neither age nor gender were significant (Gender: F(1,20)
=0.07, p =0.800: Age: F(1,20) = 2.36, p = 0.140), and there was no interaction,

(F(1,20) = 0.05, p = 0.826).
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Figure 10. Model-based decision-making over age for children with the
simulated model-free baseline.

a) The degree of model-based decision-making significantly increased with age
for the children. The dashed line represents the grand mean of the model-free
simulations, which acts as the simulated model-free baseline. The shaded area
around the regression line represents the standard error of the mean. Adults
are plotted separately. b) Boxplots per rounded year of age for the children. As
there were only two 11-year-olds, | combined these children with the 10-year-
olds (10+). The dashed line represents the simulated model-free baseline.
Asterisks indicate significance level, *p<.05; **p < .01; ***p<.001. For panel b,
significance indicates the highest g-value of each binned year of age against
the model-free simulations.

2.4.3 Other computational parameters and age
We also looked at any other potential correlations with age for the children for

the other model parameters for the 6-parameter model. The best-fitting

parameter values are reported in Table 2.
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Table 2. Best-fitting parameter values for the dual-systems
reinforcement learning model without stakes (6 parameters) for children
and adults

B a A m p w

Groups and Inverse learning eligibility choice key model-based
Predictors temperature rate trace stickiness stickiness weight
Parameter bounds [0,20] [0,1] [0,1] [-20,20] [-20,20] [0,1]
Children

25" percentile 0.47 0.31 0.45 -0.17 -0.74 0.39

Median 0.59 0.50 0.48 0.29 -0.30 0.48

75" percentile 0.79 0.66 0.54 0.62 0.41 0.62
Adults

25" percentile 0.59 0.72 0.49 0.08 -0.19 0.61

Median 1.06 0.81 0.55 0.24 -0.06 0.75

75" percentile 2.15 0.89 0.58 0.78 0.07 0.85

None of the other parameters were correlated with age, (inverse
temperature: r = .005, p = .965, 95% Cls [-.21, .22], Figure S2a; learning rate:
r=.12, p =.270, 95% Cls [-.09, .33], Figure S2b; eligibility trace: r = .05, p =
.655, 95% Cls [-.17, .26], Figure S2c; choice stickiness: r = .01, p = .925, 95%
Cls [-.20, .22] Figure S2d; key stickiness: r=-.18, p = .101, 95% Cls [-.38, .04],

Figure S2e).

Regarding correlations with performance for children, inverse
temperature (r = .37, p < .001, 95% Cls [.18, .54]), learning rate, (r= .33, p =
.002, 95% Cls [.12, .50]) and choice stickiness (r = .28, p = .009, 95% Cls [.07,
.471]) were significantly correlated to corrected reward rate, while eligibility trace
was marginally significant (r = .20, p = .064, 95% Cls [-.01, .40]). There were
no significant relationships with performance for key stickiness: r=.01, p =.918,

95% Cls [-.20, .22]).

For the adults, only model-based decision-making during high stakes

was significantly negatively correlated to age (r = -0.45, p =.029), showing that
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older adults had less model-based decision-making for high stake trials. None
of the other parameters were significantly correlated to age (inverse
temperature: r = -0.12, p = .579; learning rate: r = -0.03, p = .889; eligibility
trace: r = -0.09, p = .668; model-based decision-making low stakes: r = -0.07,

p = .757; choice stickiness: r = -.14, p = .522; key stickiness: r = 0.03, p = .884).

A high learning rate is optimal for this task since rewards continuously
change, reflecting how much value participants place on recent information. In
this task, the most recent information is the most valuable since that is the best
way to stay updated on both planets' drifting reward rate distributions.
Meanwhile, the inverse temperature signals how much exploitation and
exploration participants employ. The eligibility trace reflects how much value is
being placed on previously attained rewards on the task, or the reinforcement
learning history, which is not highly important in this task. For the stickiness
parameters, these would ideally be close to 0 to indicate an absence of bias in

choices and keys.

We investigated which parameters differed significantly between the
children and adults. Inverse temperature (t(24.28) = 3.90, p < .001), learning
rate (1(45.72) = 5.74, p <.001), eligibility trace (1(33.51) = 3.47, p =.019), model-
based decision-making during low-stake (1(30.16) = 3.36, p = 0.025) and high-
stake trials (1(30.00) = 4.35, p < .001) were significantly higher for the adults
than for the children. There were no significant differences in choice stickiness

(t(33.70) = 1.67, p = .104) and response stickiness (1(99.65) = 0.62, p = .535).
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Figure 11. Other computational parameters over age for children and
adults.

(a) inverse temperature, (b) learning rate, (c) eligibility trace, (d) choice
stickiness, and (e) key stickiness. For all graphs, the shaded areas represent
the standard error of the mean. The dashed lines in light blue represent the
mean parameter values of the children.2.4.3 Metacontrol of decision-making for
children and adults

2.4.3 Metacontrol of decision-making for children and adults

In the current task, every trial is preceded by a "treasure amplifier" that indicates
whether the current trial is a low or high-stake trial (Figure 8c and Figure 8d).
Any reward obtained on the trial is multiplied by five during high-stake trials,
while on low-stake trials, the reward is multiplied by one and therefore does not
change in value. The current task entailed changes to a previously used task

with adults (Kool et al., 2016, 2017) (see 5.2 On the current and previous
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contrasting findings of model-based decision-making in childhood for details) in
the number of trials (140 as opposed to 201), the visualization of the stake
condition, as well as a different testing environment (Amazon Mechanical Turk
versus in-person testing, changes to task design (Figure 8c and Figure 8d)). |,
therefore, first tested whether | could replicate a stakes effect in an in-person
adult sample. To investigate this, | fitted adult data to a reinforcement-learning
model that included a model-based contribution parameter that differed for each
stake condition (Kool et al., 2017). There were thus two model-based
contribution parameters, one for behavior during the low-stake trials and one
for behavior during the high-stake trials. | conducted k-fold cross-validation to
investigate whether both models could reliably predict choices made by children
and adults. Both models predicted behavior for children and adults significantly
better than chance, but there was no significant difference in accuracy for either
model (for details, 2.6.4 K-fold cross-validation). The best-fitting parameter
values for the 7-parameter model for children and adults are represented in
Table 3.

Table 3. Best-fitting parameter estimates for the dual-systems

reinforcement learning model with stakes (7 parameters) for children
and adults.

B a A o P Wiow Whigh

Groups and Inverse learning eligibility  choice key model- model-
Predictors temperature rate trace stickiness stickiness based low based high
Parameter bounds [0,20] [0,1] [0,1] [-20,20] [-20,20] [0,1] [0,1]
Children

25" percentile 0.19 0.34 0.49 0.08 -0.19 0.44 0.43

Median 0.59 0.50 0.55 0.24 -0.06 0.51 0.50

75" percentile 0.80 0.66 0.58 0.78 0.07 0.57 0.60
Adults

25" percentile 0.60 0.66 0.48 0.10 -0.18 0.50 0.63

Median 1.05 0.83 0.54 0.26 -0.04 0.57 0.74

75" percentile 2.15 0.88 0.62 0.81 0.08 0.72 0.84

94



Chapter 2. Model-based decision-making in childhood

Adults showed a higher degree of model-based decision-making during
high-stake trials (M = .71, SD = 0.19), compared to low-stake trials (M = .61,
SD = 0.18; #(23) = 2.10, p = .047, d = .43, 95% Cls [.001 .185]) (Figure 12a).
This replicates previous findings of a stake effect on adult model-based

decision-making (Bolenz et al., 2019; Kool et al., 2017; Patzelt et al., 2019).

Next, | assessed whether children's use of model-based decision-
making was also affected by the rewards at stake. To investigate this, same as
the adults, | fitted children's data to a reinforcement-learning model that
included separate model-based contribution parameters for each stake

condition (Kool et al., 2017).

Accordingly, | found no significant difference in model-based decision-
making between the low-stake (M = .52, SD = .13), and high-stake (M = .52,
SD = .13) trials (£(84) = -.25, d = -.03, p = .803, 95% Cls [-.03, .03]) for the
children. This suggests that children did not show a stakes effect like adults

(Figure 12a).

When | compared children and adults directly, adults had higher model-
based decision-making than the children both during low-stake (t(30.16) = -
2.36,d =0.65, p = 0.025, 95% Cls [-.18, -.01]), and high-stake trials (1(30.00) =

-4.35,d =1.21, p <.001, 95% Cls [-.27, -.10]).

| next tested whether an effect of stake on model-based decision-making
might emerge with age for the children. Therefore, | correlated the model-based
contribution parameters for the children's low and high-stake trials separately
with age and controlled the age-related slopes during high and low-stake trials

for the correlation between the two contribution parameters (Figure 12b). The
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difference between the slopes was not significant (z = -0.50, p = .616). Thus, a

stakes effect was not apparent in the children's behavior, suggesting that this

ability may emerge later during development (Figure 12c).
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Figure 12. Model-based decision-making over stakes for adults and
children.

a) Adults displayed a significantly higher degree of model-based decision-
making for the high-stake trials. b) While children did not show a difference in
the degree of model-based decision-making over stakes, this did not change
over age. The dashed line represents the model-free baseline. c) connecting
lines for participants’ model-based decision-making across stakes plotted over
the distributions for children and adults separately. Error bars depict 95%
Confidence intervals, and shaded areas indicate SEM. Asterisks indicate
significance level, *p < .05; **p < .01; ***p < .001.
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2.4.4 Behavioral signatures of model-based decision-making for children

and adults

To complement the computational modeling analyses, | used generalized linear
mixed models to approximate a behavioral model-based decision-making
measure, which was the probability of repeating a visit to a planet (stay
probability) as a function of reward on the previous trial. | used the same
regression method as in an earlier task version (Kool et al., 2016). Using this
method, the model-based component consists of a main effect of the previous
reward on the probability of staying, whereas the reduced effect of previous
reward when the starting state is different (compared to when it is the same)
indicates a model-free component (Kool et al., 2016). The previous reward
refers to the continuous points won by the participant on the previous trial.
Starting state similarity refers to whether the current starting state (the rocket
pair) is the same as in the previous trial. The influence of previous reward on
staying behavior approximates the transfer of experience from one starting
state to the other. On the other hand, the differential influence of previous
reward on starting state similarity or difference can reflect a lack of transfer of
experience between the starting states. Model-free and model-based systems
should therefore generate different influences of starting state, as only the

model-based system can effectively generalize over states (Figure 13a).

First, | fitted an identical model to both children and adults that only
looked at the influence of starting state similarity (whether participants saw the
same spaceship pair as on the previous trial or the other pair) and previous
reward on stay behavior. For children, there was a main effect of previous

reward on the probability of stay, indicating a model-based component (beta =
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12, se =.02,z=15.56, p <.001). The interaction between previous reward and
starting state similarity was not significant, showing that previous reward
increased the probability of staying for both starting states similarly (beta = -
.003, se =.02, z=-.14, p = .892). In addition, there was a main effect of starting
state (beta = .05, se = .02, z = 2.35, p = .02). Thus, these results suggest that
children could generalize successfully over starting states and indicated a

model-based component in their behavior (Figure 13b).

For adults, there was also a main effect of reward on staying probability
(beta =1.09, se = .05, z=22.81, p <.001). There was no main effect of starting
state (beta = .06, se = .05, z = 1.44, p = .149), however, there was a small but
significant interaction between starting state and previous reward (beta = .10,
se = .05,z =2.22, p =.026) (Figure 13c). | also included a group term in the
models to compare children and adults. the model-based predictor, previous
reward, remains significant for the whole sample (beta = 0.12, se = 0.02, z =
5.55, p < .001). | found that adults had a stronger effect of the model-based
predictor on staying probability, indicated by an interaction between group and
previous reward (beta = 0.98, se = 0.5, z = 18.67, p <.001), as well as a higher
probability to stay overall, based on a main effect of group (beta = 0.44, se =
0.10,z=4.41, p <.001). Adults also had a higher raw behavioral stay probability

overall than the children (F(1,12631) = 120.9, p < .001).

Thus, this suggests that adults also successfully generalize over starting
states and that the effect of the model-based predictor was stronger for the
adults than the children. The results from the regression models thus mirror the

computational results.
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Figure 13. Model-free and model-based contributions to stay probability.

Stay probability meant repeating a visit to the same planet (red or purple, see
Figure 1a). a) Examples of influences of pure model-free and model-based
decision-making on stay probability following previous reward. For a pure
model-free system, stay probability only increases when the starting state (pair
of spaceships) is the same. b) Predicted results from a model investigating the
influence of starting state. For children, across starting states, stay probability
increased similarly with increasing previous reward, indicating a model-based
effect. Note that the y-axis for children differs, as children generally showed a
lower propensity to ‘stay’. c) For adults, across the starting states, the
probability of staying also increased, indicating a model-based effect. The
dotted lines for children and adults indicate the chance level of stay probability
(50%). Continuous predictors in the models have been z-scored (e.g., Previous
reward).
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2.4.5 Best-fitting behavioral models for children and adults

Next, | conducted a nested model selection to find the best model to separately
predict stay probability for children and adults. In a previous logistic regression
model, additional predictors were included alongside previous reward (the
model-based component) and starting state similarity (same or different
spaceship pairs) to approximate the computational models more closely.
Namely, the difference in available reward across the two planets on the
previous trial (a proxy of reward history) and stake (high and low stakes) allows
for investigating the influence of stake on choice behavior (Kool et al., 2016).
For the current study, | also included age for the children. For both children and
adults, | included a null model with only an intercept and no slope; for neither

children nor adults was this null model the best fit.

For the children, the best-fitting model included previous reward (the
model-based component) and age as fixed effects as well as their interaction
(AIC weight (model probability) = 0.38; Table 4). Previous reward had a
significant main effect on staying probability (beta = .12, se = .02, z = 5.60, p <
.001), while age was not a significant main effect (beta = -.00, se = .04, z = -
.04, p = .967), but the interaction between previous reward and age was
significant (beta =.070, se =.02,z=3.17, p=.002) (Figure 14a). Thus, previous
reward had a main effect on staying probability, indicating a significant model-
based effect on the children’s choice behavior. The positive interaction shows

that the influence of previous reward on staying probability increases with age.
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Table 4. Generalized linear model for children.

Dependent variable:

Stay probability (planet)
Linear Mixed Effects

Previous reward 0.119**=
(0.077,0.160)
Age -0.002
(-0.084,0.081)
Previous reward x Age 0.067***
(0.026,0.109)
Constant 0.122***
(0.039,0.205)

Number of Participants 85
sd(Participant) 0.337
N 9456

Note: p<0.1: **p<0.05: **p=<0.01

For adults, the best-fitting model included previous reward, starting state,
and stake, as well as their interactions (AIC weight (model probability) = 0.83,
Table 5). There were significant fixed effects of previous reward (the model-
based component) (beta = 1.14, se = .05, z = 22.78, p < .001) and stake (beta
= 0.22, se = .05, z = 4.88, p < .001). Additionally, the interaction between
previous points and stake were significant, indicating a stakes effect (beta =
.35, se = .05, z = 7.08, p < .001), (Figure 14b). The interactions between
previous points and state similarity was also significant (beta = .13, se = .05, z
= 2.56, p = .010), and the three-way interaction between previous points,
starting state and stake (beta = .11, se = .05, z = 2.25, p = .025), showed that
there was a small effect for adults to be more likely to ‘stay’ when the starting

state was the same (same spaceship pair) during high stake trials.
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Table 5. Generalized linear model for adults.

Dependent variable:

Stay probability (planet)
Linear Mixed Effects

Previous reward 1.139***

(1.041,1.237)
Starting State 0.080*

(-0.008,0.169)
Stake 0.221*

(0.132.0.310)
Previous reward x Same 0.125°*

(0.029.0.221)
Previous reward x Stake 0.347°*

(0.251.0.443)
Starting state x Stake 0.001

(-0.088.,0.090)
Previous reward x Starting State x Stake  0.110**
(0.014.0.206)

Constant 0.778**
(0.554,1.001)
Number of Participants 24
sd(Participant) 0.512
N 3177
Note: “p<0.1; “*p<0.05; ***p<0.01

To compare children and adults directly, | ran models that included the whole

sample of participants and looked at group-based differences.

First, | assessed group-based differences in the model-based predictor.
When | include group into the model (stay ~ previous reward * starting state
similarity * Group + (1|ID)), the model-based predictor, previous reward,
remains significant for the whole sample (beta = 0.12, se = 0.02, z = 5.55, p <
.001). | also see a significant main effect of group on the probability to stay (beta
= 0.44, se = 0.10, z = 4.41, p < .001), with the adults scoring higher overall. In
addition, there is an interaction between previous reward and group, (beta =
0.98, se = 0.5, z=18.67, p <.001), showing that adults show a stronger effect
of the model-based predictor on stay probability. There is also a main effect of
starting state on the probability to stay overall, (beta = 0.05, se = 0.02, z = 2.34,
p = 0.019), and an interaction for previous reward and starting state for the

adults (beta = 0.11, se = 0.05, z = 2.07, p = 0.039). Based on this analysis, the
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significant interaction between group and previous reward indicates that the

model-based predictor had a stronger effect for the adults.

When | further included stake in the model, | saw that there was a
significant three-way interaction between previous reward (the model-based
indicator), stake, and group (beta = 0.34, se = 0.05, z = 6.40, p < .001),
indicating that adults showed more model-based control during high stake trials.
There was also a significant interaction of stake and group (beta = 0.17, se =
0.05, z = 3.47, p = 0.001), and the interaction between previous points and
groups remained significant (beta = 1.03, se = 0.05, z = 18.89, p < .001), as
well as the main effect of previous points (beta = 0.12, se =0.02,z=5.54, p <
.001), and the main effect of group (beta = 0.47, se = 0.10, z = 4.64, p < .001),
indicating that adults showed higher stay probability overall and higher stay
probability for the model-based predictor, but that the model-based predictor
was still significant for children and adults alike. Additionally, there was a main
effect of starting state (beta = 0.05, se =0.02, z = 2.32, p = 0.020), a three-way
interaction between previous reward, starting state and group (beta = 0.13, se
=0.05,z=2.39, p=.017), and a four-way interaction between previous reward,
starting state, stake and group (beta = 0.11, 0.05, z=2.16, p = .031), indicating
that adults were more likely to stay if the starting state was the same, especially
for high-stake trials and after larger previous rewards. Thus, | see a stake effect
repeated for the adults using the regression methods and an absence of a

stakes effect for the children.
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a  Best fitting GLM for children (focussed) b Best fitting GLM for adults
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Figure 14. Best-fitting generalized linear mixed models of stay
probability for children and adults.

Stay probability meant repeating a visit to the same planet (red or purple, see
Figure 1a). a) Predicted results from the best-fitting model for children. Previous
reward -the model-based component- was a significant predictor of stay
probability, showing that children displayed model-based influences in the
choice data. In addition, there was an interaction between previous reward and
age (z-scored), showing that older children (Age z-scored = 1) showed a
stronger increase in stay probability with reward than the younger children (Age
z-scored = -1). Note that the y-axis for children differs, as children generally
showed a lower propensity to ‘stay’. b) For adults, previous reward was also a
significant predictor and stake. The interaction between previous reward and
stake was also significant, showing that adults increased their stay probability
during the high stakes for more reward. The dotted lines for children and adults
indicate the chance level of stay probability (50%).

2.5 Discussion

| investigated the development of model-based decision-making and how this
is used adaptively across contexts in children aged 5-11. | report that when
using a two-step task that encourages computationally costly decision-making
strategies, children aged 5-11 years demonstrated model-based decision-
making. This finding was supported by both computational and behavioral
measures of model-based decision-making. Crucially, | found that even five-

year-old children showed robust model-based decision-making, while the
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degree to which it was expressed increased further with age. However,
whereas adults showed indicators of metacontrol by selectively increasing
model-based decision-making for higher rewards, children did not. Combined,
these findings demonstrate that children as young as five can engage in
sophisticated decision-making strategies on a sequential choice task but that

the optimal arbitration between strategies undergoes further development.

The finding that children younger than 12 display model-based decision-
making on a sequential decision-making task contrasts with prior studies
reporting an absence of markers of model-based decision-making before
adolescence (Decker et al., 2016; Potter et al., 2017). These studies revealed
a developmental increase in model-based decision-making from childhood to
adulthood. However, they also indicated that children consistently showed
signatures of model-free but not model-based decision-making (Decker et al.,
2016; Palminteri et al., 2016; Potter et al., 2017). In this study, using both
computational and generalized linear models of choice behavior, the findings
show that contributions of a model-based system to behavior are present before
adolescence and in children as young as five years old. | attribute the discrepant

results between the current and prior work to task differences.

Compared to the original and commonly used two-step task (Daw et al.,
2011), the present task encourages the use of model-based decision-making
by allowing a higher certainty in planning due to its deterministic transitions and
an increased rate of change in reward distributions (for an overview of all

changes to incentivize model-based decision-making, see the Discussion,
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section 5.2 On the current and previous contrasting findings of model-based

decision-making in childhood).

Thus, the high complexity and uncertainty in tasks in the original two-
step task, combined with the fact that more effortful model-based decision-
making did not lead to more rewards, may have hampered uncovering model-
based decision-making in children aged 8-12 years previously. Indeed, studies
that employed an alternative two-step task with reduced transition complexity
found increased model-based decision-making in adults (Akam et al., 2015). It
is not uncommon in developmental psychology that the removal of confounding
variables and reduction of task complexity triggers competence shifts to
younger ages (Scott & Baillargeon, 2017). Furthermore, the current account is
in line with previous findings of goal-directed behavior in infants and preschool-
aged children in simple decision-making tasks (Klossek et al., 2008, 2011),
showing that even very young children can engage in sophisticated decision-

making strategies when the task allows for this.

Contrarily, | found that, unlike adults, children did not prioritize model-
based decision-making during high-stake compared to low-stake trials.
Potentially, flexibly and swiftly arbitrating between decision-making strategies
and anticipating which one is best suited to a specific situation might be the
actual late-developing skill (Nussenbaum & Hartley, 2019). For example,
previous studies found that younger children are less aware of different
environmental demands and fail to respond to them proactively, for example,
by avoiding a more difficult condition (Chevalier, 2015; Niebaum et al., 2019).

In addition, even up to late adolescence, children might be less able to detect
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and assign values to relevant environmental cues than adults, leading them to
respond similarly to rewards of different magnitudes (Davidow et al., 2018; Insel
et al., 2019). However, while the absence of metacontrol may reflect a genuine
developmental effect, alternative interpretations are that children did not credit
the high and low-stake conditions accurately enough or that the incentives used
were not strong enough to uncover differences between the stakes (Habicht et
al., 2022; Veselic et al., 2021). Future work may wish to use incentives that are
even more salient to the present age group to establish whether metacontrol is
genuinely absent in middle childhood. Another paper investigating the
development of metacontrol in the form of prioritization of model-based
decision-making for high stakes over low stakes from adolescence to adulthood
(ages 12-25) found that metacontrol continued to increase with age (Bolenz &
Eppinger, 2021), but that in a sample between younger (ages 18-30) and older
adults (ages 57-80), metacontrol declined for older adults (Bolenz et al., 2019).
Thus, metacontrol might be particularly sensitive to developmental changes,
peaking in early adulthood and tapering off with advanced age. Exactly what
drives this progression, for example, whether metacontrol is a unique stand-
alone ability or whether it is reliant on EFs or memory storage or manipulation,

remains unclear.

While model-based decision-making was present throughout the age
ranges in this sample, the display of model-based decision-making was still
variable in this group and further increased with age. Individual differences in
processes linked to model-based decision-making, such as fluid reasoning,
cognitive control, or working memory, may well be able to account for an

increase in the display of model-based decision-making (Otto et al., 2015; Otto,

107



Chapter 2. Model-based decision-making in childhood

Raio, et al., 2013; Potter et al., 2017). Further research investigating such
individual differences could shed light on the neurocognitive mechanisms
underlying model-based decision-making in development. However, it remains
essential to consider the task context in which decision-making and cognitive
control are studied (Plonsky & Erev, 2021), especially in developmental

research.

When investigating the behavioral data, children showed a lower
propensity overall to repeat a visit to the same planet. However, the behavioral
data indicated a higher probability of staying with higher previous reward,
indicating a model-based component in their behavior. The behavioral data
lends itself to interpreting model-based decision-making as it signals that
starting state similarity did not lead to different behaviors of stay behavior similar
to a pure model-free agent. Therefore, in their behavioral data, children also
displayed that they generalized across starting states in the current task.
However, the finding that children were less likely to repeat a visit indicates one
of the most considerable behavioral differences between children and adults.
This might be due to children being less successful in exploiting highly
rewarding previous choices or placing less importance on recent information,
which is also reflected in their lower average values for inverse temperature
and learning rate compared to adults. Thus, while children showed robust
markers of model-based decision-making in that their behavior did not differ
across starting states, their behavior differed from adults, mainly due to being

less likely to repeat visits to the same planet.
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Additionally, | observed that children, on average, missed 10% of the
trials, while adults missed 3%. While there were no differences in average
reaction time between children and adults (suggesting the children were not at
ceiling for responding), this could indicate that the 2-second response window
for the first-stage state was fast for children of this age. Future studies might
want to increase the response window to limit timed-out trials for younger

developmental samples.

Lastly, while the current task is optimized to detect model-based
decision-making compared to the Daw two-step task, it has less pronounced
behavioral assessments of model-based decision-making. Future studies
incorporating younger developmental samples may also want to assess other
two-step tasks that include a clear behavioral indicator of model-based control,
for example, by using more conventional binary probabilistic rewards and how

this may change with age across childhood.

In summary, this study demonstrates the presence of sophisticated
value-based decision-making strategies during childhood. | found that in a task
where model-based decision-making was tied to reward and where the
transitional structure was deterministic, children aged 5-11 years could engage
in model-based decision-making. The current study thus provides a crucial link
between early goal-directed research on preschoolers and the computational
modeling of model-based decision-making in adolescence. Interestingly, the
ability to selectively amplify model-based decision-making during contexts with
increased incentives was absent during childhood, indicating that metacontrol,

rather than model-based decision-making, might be the cognitive process
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undergoing delayed development throughout childhood and adolescence.
Future work spanning a range of paradigms, ages, and methodologies will be
instrumental in charting the emergence and development of model-based
control and its arbitration and link this to performance and competency-based

developmental mechanisms.

2.6 Supplementary Materials

2.6.1 Dual-reinforcement learning model

To estimate the degree of model-based decision-making participants employed
in this paradigm, | fitted an established dual-system reinforcement learning
model (Daw et al., 2011; Glascher et al., 2010; Kool et al., 2016, 2017) to their
behavior. The paradigms consist of four states across two stages (the two pairs
of spaceships and the two planets), with two available actions at the first-stage
states between the spaceships (aa and ag) and one action at the second-stage
state to collect the treasure (ac). The reinforcement-learning model consists of
a model-based and a model-free system that both learn different values for
actions and states, denoted as Q(s, a), which map each state-action pair to its
expected discounted future return. On trial ¢, the first-stage state is denoted by
s1, the second-stage state by s, the first and second stage actions by a4t and
a2+, and the first and second stage rewards as r1 (which is always zero, since

only on the second stage reward is attained) and r.

Model-free agent. The model-free agent relies on the state-action-
reward-state-action (SARSA) temporal difference learning algorithm, which

uses reward prediction errors, the learning rate, and the eligibility trace to

110



Chapter 2. Model-based decision-making in childhood

update the values for each state-action pair (s, a) at stage i and trial t according

to:

Our(s,a) = Qur(s,a) + 2d;.;,(s,a)

where

(ii,l =T+ Q).UF{SH—I.I- iyl J - (;).UF[S.".I- ajy '

Is the reward prediction error for trial t at stage i, a is the learning rate parameter,
which determines to which degree new information is incorporated, and e;«(s,a)
is an eligibility trace parameter, and which is set equal to 0 at the beginning of

each trial and updated according to:

is(Sie i) = €i_14(Sip aiy) + 1

before the Q value update. The eligibilities of all state-action pairs are then

decayed by A after the update.

For the current paradigm, this learning rule applies in the following way.
The reward prediction error is different for the first two levels of the paradigm.
Since at the first stage where they choose the spaceships, there is no reward,
r1¢ is always zero. The reward prediction at the first stage is instead driven by

the value of the selected second stage action Qur(S2t,a24):

014 = Qur(sos, azy) — Ourp(s1s,a1,)

This means that the predicted reward from choosing the spaceships is tied to
the reward attained at the planet stage. Since there is no third stage, the second

stage prediction error is driven by the reward ra
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02s = 1oy — Oumr(s24, azy)

Both the first- and second-stage values are updated at the second stage, with
the first-stage values receiving a prediction error that is down-weighted by the
eligibility trace decay lambda. When lambda = 0, only the values of the current

state get updated, rather than the values in the past.

Model-based agent. The model-based agent uses the same reward
prediction errors and learning rate as the model-free agent, but in addition, uses
the transition map of the paradigm to calculate values of each choice. For this
paradigm, it means that a model-based agent, but not a model-free agent, can
generalize over choices in the two different starting states. To get an intuition
for how this leads to different forms of behavior, say, for example, that a
participant chooses the blue spaceship, which then transitions to the red planet,
and this leads to a large reward. In the next trial, the participant is presented
with the other starting state, the one that does not have the previously chosen
blue spaceship. Now, the model-based system will realize that the orange
spaceship also transitions to the red planet, and because it has just learned that
this planet has become better, it will increase its preference for this choice
option. A model-free agent is not able to make such generalizations since it
relies on direct learning from action-reward contingencies. Therefore, it will not
be more likely to pick the orange spaceship over the light blue spaceship in the
other starting state. In short, a model-free agent would generate four separate
values for all the spaceships, while a model-based agent would only generate

two, correctly learning that two spaceships transition to the same planet.
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The model-based values are defined in terms of the Bellman’s equation,
which specifies the expected values of each first-stage action using the
transition structure P, which means knowing how the spaceships transition to

the planets, and which is assumed to be known to the agent:

Oup(s4,a;) = P(sg|sq.a;) max Quyr(sg,a) + P(sclsq,a;)) max Qwyr(sc,a)

ae{aq,ap) ac{aqap}

where | have assumed these are recomputed at each trial from the current

estimates of the transition probabilities and second-stage reward values.

Decision rule. To connect the model-based and model-free values to

choices, the Q-values are then mixed according to a weighting parameter w:

Oner(5.4,a;) = wOip(s4,a;) + (1 — w)Oar (54, a;).

Where a value closer to 1 means the agent is more model-based, and a value
closer to 0 means the agent is more model-free. To accommodate the stake
manipulation, | defined two different weights that operated on different trial

types. | set w = wiow On low stake trials and w = whign on high stake trials.

In the second stage, the decision is made using only the model-free
values. | used the Softmax rule to translate the weighted Q-values to actions.
This rule computes the probability for an action, reflecting the combination of
the model-based and model-free action values weighted by an inverse
temperature parameter. At both states, the probability of choosing action a on

trial t is computed as:
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exXp(BQ,(s;,, @) + 7 - rep(a) + p - resp(a)])

P =) = e BlQualso) T 7 rep@) + - resp(an)])

where the inverse temperature b determines the randomness of choice or the
exploitation/exploration trade-off. Specifically, when b approaches infinity, the
probability of choosing the action with the highest expected value tends to be
1, whereas, for b approaching 0, the probabilities over actions become equally
likely across all options. The indicator variable rep(a) is defined as 1 if ais a
first-stage action (choosing a spaceship) and is the same one as was chosen
in the previous trial, so the participant chose the same rocket, zero otherwise.
Multiplied with the ‘stickiness’ parameter p. This captures the degree to which
participants show perseveration (when p > 0) or switching (p < 0) at the first
stage. The indicator variable resp(a) is defined as 1 if a is a first-stage action
selecting the same response key as the key that was pressed on the previous
trial, zero otherwise. Multiplied with the response stickiness parameter r, this
captures the degree to which participants repeated (r > 0) or alternated (r < 0)
key presses at the first stage (e.g., whether they pressed the left key twice in a
row). These two stickiness parameters were used since the locations of the
spaceships changed per trial, and participants could therefore show
perseveration or alternation bias towards the spaceships, button presses, or

both.

2.6.2 Model-fitting procedure

| used maximum a posteriori estimation, implemented using the mfit toolbox
(Gershman, 2018), to fit the parameters for the 6 (dual-systems reinforcement

learning model with one mixing weight) and 7-parameter (dual-systems
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reinforcement learning model with two mixing weights per stake) computational
models to observed data. To avoid local optima in the estimation solution, the
optimization was run 100 times for each participant with randomly selected

initializations for each parameter.

2.6.3 Parameter recovery

To test whether the 7-parameter reinforcement learning model could reliably
identify the contributions of both model-free and model-based decision-making
on the task, | conducted parameter recovery for the 7-parameter model by
running the generative version of the model for 500 agents and for 100, 140,
and 200 trials. For each agent, | randomly sampled the initial parameters from
uniform distributions: for all parameters bounded between 0 and 1 (learning rate
a, eligibility trace |, w-low, w-high), | used U(0,1), for inverse temperature b
U(0,2), and for the stickiness parameters 1 and r | used U(-0.5,0.5) (Bolenz et
al., 2019; Kool et al., 2016). Next, | used the same model-fitting procedures as

for the participant data to estimate the model parameters of the simulated data.

For 100 trials, | found substantial correlations between the estimated
parameters for w-low (r = .61) and w-high (r = .60). For 140 trials, the
correlations were slightly stronger (w-low: r = .62, w-high: r = .66), similar to the
estimated parameters for 200 simulated trials (w-low: r = .69, w-high: r = .75).
This indicates that for the trial ranges present, | could extract meaningful

parameter estimates for the model-based parameters across stakes.

For the other parameters, for 100 trials | found: B: r= .87, a: r=.79, A: r
= 45, . = .44, p: = .58. For 140 trials: B: r=.90, a: r=.83, A:r = .53, n: = .52,
p: = .67, and for 200 trials: B: r=.92, a: r= .87, A\: r= .54, t: = .54, p: = .71.
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2.6.4 K-fold cross-validation

| used k-fold cross-validation to test how accurate the models predicted
behavior for children and adults. | conducted the k-fold cross-validation for each
model separately and assessed model performance in four ways for children
and adults. First, | evaluated the mean accuracy of each reinforcement learning
model and tested these against the accuracy of the random model. Second, |
conducted Bayesian model selection for the four models based on the
predictive accuracies as established with the k-fold cross-validation. Third, |
compared model AICs. Lastly, | used an additional parameter recovery analysis
for the winning model to see if | could recreate human behavior and recover the

same parameter solutions for the participants.

The procedure for the k-fold cross-validation was as follows. For the full
task, trials consisted of four blocks of 35 trials each. For every participant, |
created four different combinations of training blocks (3) and left-out blocks (1).
| fitted the model to the three training blocks and then used the parameter
solutions to predict decisions for the left-out block. | evaluated the likelihood of
the choice given the model (parameters) to assess the predictive accuracy. This
provided the model accuracy measure for the four models, 1) the random
decision model, 2) the simplified reinforcement learning model (henceforth 3-
parameter model), 3) the 6-parameter stake-agnostic dual-systems model
(henceforth 6-parameter model), and 4) the 7-parameter metacontrol dual-
systems model (henceforth 7-parameter model). To test whether the model
predicted choice behavior significantly above chance level, | compared the
model accuracies of the three reinforcement learning models to the accuracy of

the random model.
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For the children, both the 6-parameter model (M = .5347, SD = .0868)
and the 7-parameter model (M = .5345, SD = .0864) explained behavior
significantly better than the random model (M = 0.5000, SD = 0), (6-parameter
model: {(84) = 3.68, d = 0.40, p < .001, 95% Cls [.516, .553]; 7-parameter
model: {(84) = 3.68, d = 0.40, p <.001, 95% Cls [.516, .553]). The 3-parameter
model (M = 0.4939, SD = 0.0209), predicted behavior significantly worse than
the random model (t(84) = -2.67, d = 0.29, 95% Cls [0.4894, 0.4985]). There
was no significant difference in model accuracy between the 6-parameter and
the 7-parameter models (#(84) = 0.50, d = 0.05, p = .656, 95% Cls [-.0005,
.0008]), but the 6-parameter model did explain behavior significantly better than
the 3-parameter model (t(84) = -4.58, d = 0.50, 95% Cls [-0.058, -0.023]), and

so did the 7-parameter model (1(84) =-4.58, d = 0.50, 95% Cls [-0.058, -0.023]).

For the adults, | found that the 6-parameter (M = .5442, SD = .0589), the
7-parameter model (M = .5413, SD = .0572), and the 3-parameter model (M =
0.5314, SD = 0.0555) explained behavior significantly above chance level (6-
parameter model: {(23) = 3.67, d = 0.75, p = .001, 95% Cls [.519, .569]; 7-
parameter model: #(23) 3.54, d = 0.72, p = .002, 95% Cls [.517, .565]; 3-
parameter model: 1(23) =2.78, d = 0.57, p =.011, 95% Cls [.5080, .5549]). The
3-parameter model explained behavior significantly worse than both the 6-
parameter (1(23) = -2.61, d = 0.53, 95% Cls [-0.023, -0.003]), and the 7-
parameter model (1(23) =-2.11,d = 0.43, 95% Cls [-0.020, -0.0002]). There was
a significant difference in model accuracy between the 6-parameter and the 7-
parameter model for the adults (£(23) = 2.85, d = 0.58, p =.009, 95% Cls [0.001,

.005]). Overall, the 6-parameter model numerically had the highest accuracy,
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but there was no significant difference between the 6-parameter and the 7-

parameter models for adults.

2.6.5 Bayesian model comparison

Next, | conducted Bayesian Model Comparison (BMS) using the bms function
in the Matlab mfit package (Gershman, 2016, 2018; Stephan et al., 2009). |
used the predictive accuracy of each model as established via the k-fold cross-
validation and reported the winning model based on the exceedance

probabilities for the children and adults separately.

For the children, the 6-parameter model had the highest exceedance
probability (EP = 0.307), while the 7-parameter model came second (EP =
0.280), then the 3-parameter model (EP = 0.249), and lastly the random model

(EP = 0.164).

For the adults, the 7-parameter model had the highest exceedance
probability (EP = 0.309), next the 6-parameter model (EP = 0.297), then the 3-

parameter model (EP = 0.226), and lastly the random model (EP = 0.169).

Next, | compared model AlCs for both the children and adults separately.
First, | assessed the model with the minimum AIC and the delta AIC values with
the other models. For the children, the model with the lowest AIC was the 6-
parameter model (AIC = 163.04). The 7-parameter model had the second
lowest (AIC = 164.86), and the delta AlIC between them was negligible (AAIC =
1.82). The 3-parameter model had the next lowest (AIC = 172.69), and the delta

AIC with the 6-parameter model was substantial (AAIC = 9.65). Lastly, the
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random model (AIC = 173.44) had the most considerable AIC difference from

the 6-parameter model (AAIC = 10.40).

For the adults, the model with the smallest AIC was the 3-parameter
model (AIC = 149.77). The 6-parameter model had the second-lowest AIC (AIC
= 151.92). The difference between the 3-parameter and 6-parameter models
was small (AAIC = 2.14). The 7-parameter model was the third model with the
lowest AIC (AIC = 153.67). The difference between the 7-parameter and 3-
parameter models was small (AAIC = 3.89). Lastly, the random model (AIC =
190.71) had the most considerable AIC difference with the winning 3-parameter
model (AAIC = 40.94). The difference between the 6-parameter model and the

random model was also substantial (AAIC = 38.80).

Overall, for children and adults, the 6-parameter stake-agnostic dual-
systems model comes out as the best-fitting model for the data. |, therefore,
use this model as the winning model. The 7-parameter metacontrol dual-
systems model also has a good fit, performing better than the 3-parameter
simplified reinforcement learning model in the mean accuracy of model
prediction and the Bayesian model comparison. |, therefore, use both these

models in the results going forward.

2.6.6 Qualitative model validity

To test whether the winning model successfully captured human behavior, |
also conducted an additional parameter recovery analysis using the participant
parameter solutions rather than simulated data. This allows us to test whether
the models can successfully capture human behavior and whether unique

parameter solutions are recoverable. The current approach to this was as
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follows; | used the parameter solutions from the participants, children, and
adults ran separately to simulate new behavior using the 6-parameter stake-
agnostic dual-systems model. Next, | fitted the model to the simulated data and
extracted the parameter solutions again. | next correlated the initial and final
parameter solutions to each other. A strong correlation would indicate that the
model can both recover the unique parameter solutions of participants reliably

and able to simulate human behavior.

For the children, all parameter solutions had significant positive
correlations with the initial and recovered parameter solutions (inverse
temperature: r = 0.74; learning rate, r = 0.77; eligibility trace: r = 0.27; model-
based decision-making weighting parameter (w): r = 0.55; rocket stickiness
parameter: r = 0.78; key stickiness parameter: r = 0.78). For the adults, all initial
and recovered parameters were also significant (inverse temperature: r = 0.90;
learning rate: r = 0.82; eligibility trace: r = 0.26; model-based decision-making
weighting parameter (w): r = 0.66; rocket stickiness parameter: r = 0.70; key
stickiness parameter: r = 0.75). Thus, the winning model could simulate human

behavior and recover the parameter solutions.

Lastly, | included a qualitative model assessment of the winning model
by comparing the human behavior to simulated behavior via the number of
points won during the task. | (1) used the parameters obtained from the human
participants to simulate new behavior across ten iterations, and (2) compared
the behavioral performance of the human participants to the simulated
participants. Using an ANOVA, | tested whether there was a difference in the

behavior of the humans and simulated participants across all iterations (where
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one iteration was data from the human participants, Figure 15), and | found no
difference between them (F(9,1080) = 0.77, p = .647,n2 = 0.006). | also tested
this separately for each iteration (we compared the iteration with human
participants to each simulated iteration separately). Here | find that for nine of
the iterations there was no significant difference between the humans and
simulated behavioral performance (it2: F(1,216) = 3.24, p = .073, n2 = 0.015;
it4: F(1,216) = 3.13, p = .078, n2 = 0.014; it5: F(1,216) = 2.54, p = .112, n2 =
0.012; it6: F(1,216) = 3.41, p = .066, n2 = 0.015; it7: F(1,216) = 3.24, p = .073,
n2 = 0.015; it8: F(1,216) = 2.73, p = .100, n2 = 0.012; it9: F(1,216) = 2.82, p =
.094, n2 =0.013; it10: F(1,216) = 3.35, p = .069, n2 = 0.015). For one iteration,
the difference was significant (it3: F(1,216) = 4.34, p = .038, n2 = 0.020).
Combined with the previous results, | conclude that the model seems capable

of reproducing human behavior.

Human performance and simulated performance

1ter
1 - Humans
- Simulations

Figure 15. Qualitative model comparison.

Iteration one (the lightest color) indicates human performance on the task. The
other iterations (2-10) show the performance of the simulated agents based on
human parameters.
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2.6.7 Trial-by-trial analyses of reaction time and performance

2.6.7.1 Reaction Time over Trials

| conducted regression analyses to investigate whether reaction time changed
over the course of the task, using reaction time as the outcome variable and
trial as the predictor with a random intercept per participant for children and
adults separately (RT ~ Trial + (1|Participant)). For children there was no
change in reaction time over trials, (b < .0001, se = 0.0001, p = .969, 95% Cls
[-.02, .02], (Figure 16 top, first plot)), while adults became significantly faster
over trials, (b = -.001, se = 0.0001, p < .001, 95% Cls [-.12, -.06], (Figure 16

bottom, first plot)).

| next ran a model including stakes (RT ~ Trial * Stake + (1|Participant)).

For children, there was no effect of stake or a trial by stake interaction, (trial: b

.0002, se =.0002, p = .301, 95% Cls [-.01, .04], stake: b =.040, se = .022, p

.064, 95% Cls [-.01, .05], stake x trial: b = .0004, se = .0003, p = .135, 95%
Cls [-.06, .01]). For the adults, when including stake, there was also no
significant effect of stake, or a stake by trial interaction, but the effect of trials
remained (trial: b = .0006, se =.0002, p = .001, 95% Cls [-.11, -.03], stake: b =
0182, se = .021, p = .383, 95% Cls [-.07, .04], stake x trial: b = .0003, se =

.0003, p = .187, 95% Cls [-.10, .02]).

Lastly, | investigated whether there was a stake effect on reaction time,
for example, if participants slowed down on high-stake trials. | conducted a
regression analysis for reaction time, using stake and trial predictors. There was
no significant main effect of stake for either children, (b = .04, se = 0.02, p =

.064), or adults, (b = .02, se =.02, p = .383).
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Important to note is that the participants also had time to make their
decision when observing the treasure amplifier, which was always shown for 2
seconds. Thus, participants could have already made their decision before

seeing the spaceship pairs.

2.6.7.2 Performance over trials

To assess potential training or fatigue effects over trials, | analyzed the
performance in the form of points won over trials for children and adults. | also
plot performance over trials separately for children and adults, and | have split
the two samples into three age quantiles to assess if there were age-related
changes. | have plotted all trials, which includes the timed-out trials (where
rewards won = 0), to indicate broader variability in the data (see Figure 16 top,
the second plot for the children, and Figure 16 bottom, the second plot for the

adults).

| ran a linear model investigating whether trial number predicted rewards
won, indicating that the participants became better at the task over time. There
was a positive association between trial, and points won for the children,
showing that with higher trial numbers, children won more rewards (beta =
0.004, se = 0.001, t = 6.48, p < .001). For the adults, this was also positively
significant, (beta = 0.003, se 0.002, t = 2.19, p = 0.029). When | ran a model
including children and adults to see if there was potentially a group interaction,
both trial and group were significant predictors, but there was no significant
interaction between them (beta =-0.0008, se 0.2, t=-0.49, p = .623). Increasing
trial numbers still predicted more rewards won (beta = 0.004, se = 0.001, t =

6.53, p <.001), and adults won more rewards overall (beta =0.9,se =0.1,t =
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5.68, p < .001). Thus, both groups seemed to perform better over time, with
children improving more than adults but adults performing better overall. This
suggests that there are training effects rather than fatigue effects. Do note that
participants were allowed three breaks throughout the main section of the task

for as long as they wanted after completing each block of 35 trials.

Children's data over trials
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Figure 16. Reaction time and performance over trials.

Performance in the form of points won over trials for children (top) and adults
(bottom). Both groups have been split into three age groups of equal numbers
of participants for visualization. Error bars depict 95% confidence intervals, and
shaded areas around regression lines indicate the standard error of the mean.
Shaded areas represent the 95% confidence intervals of the means.

2.6.8 Potential model-based effects on reaction time

| ran two regression models to investigate whether reaction times could serve

model-based decision-making. First, | ran models where | tried to predict
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reaction times on the current trial based on whether the previous trial had been
a “win” (same definition as above), whether the current starting state was the
same or different and whether they chose to “stay” or “switch” (e.g., Imer(RT ~
same * win * stay + (1 | ID)). This model would tell us whether reaction times
might significantly slow down after large reward prediction errors and if this

differed by state similarity.

Next, | ran models where | tried to predict behavioral staying (“stay” or
“switch”) based on reaction time on the current trial, whether the previous trial
had been a “win” and whether the current starting state was the same or
different, (e.g., glmer(stay ~ RT * same * win + (1 | ID)). This model would tell
us whether reaction times predicted behavioral staying as a function of starting
state and previous win. | ran both these models for the children and adults

separately.

For the children, for the first model, there was no significant effect of
either starting state (beta = 0.002, se = 0.008, t = 0.23, p = 0.818), behavioral
staying (beta = -0.006, se = 0.011, t = -0.53, p = 0.595), or previous win (beta
=-0.011,se=0.011,t=-0.97, p = 0.330), on reaction time. Thus, reaction time
during the first stage for children did not seem to be significantly affected by the

predictors, see Figure S5a, the first plot.

For the second model, there was a significant interaction between
reaction time and previous win (beta = 0.36, se = 0.10, z = 3.59, p < .001),
showing that higher reaction times after a win were associated with a higher
stay probability, but that this was not affected by starting state (same: beta =

0.01, se = 0.07, z = 0.19, p = 0.847). Thus, after a win, longer reaction times
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were associated with a higher probability of staying for the children, see Figure

S5a, the second plot.

For the adults, for the first model, there were significant negative main
effects of starting state (beta = -0.03, se = 0.01, t = -2.77, p = .006), and a
significant negative three-way interaction between starting state, behavioral
staying, and a previous win, (beta = -0.06, se = 0.02, t = -2.85, p = 0.003),
showing that adults responded faster on trials in the same starting state as the
previous one, especially if they decided to stay after a previous win. There was
also a positive interaction between starting state similarity and previous win
(beta = 0.04, se = 0.02, t = 2.32, p = 0.020), showing that adults responded
slower when they were in the same starting state after a win, which could reflect

their decision time on whether to stay or switch.

For the second model, there was a main significant effect of previous
win, (beta = 2.14, se = 0.22, z = 9.51, p <.001), and a significant interaction
between starting state and previous win (beta = 0.44, se = 0.22,z=1.99, p =
.047). This suggests that adults were more likely to stay after a previous win
and that they were more likely to stay after a win in the same starting state.
Thus, there were no significant effects of reaction time on staying probability for

the adults.

Thus, there were some indications that reaction times reflected
processing time after previous wins and depending on starting state, but these

were not the same between children and adults.
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Figure 17. Assessing model-based decision-making via reaction times.

There were some indications that reaction times reflected processing time after
previous wins and depending on starting state, but these were not the same
between children and adults.

2.6.9 Behavioral stay-plots for children and adults

A limitation of the current task is that there is no obvious behavioral pattern of
model-based and model-free decision-making. For example, for the
participants, there is no obvious measure of a reward that is lower than
expected or higher than expected without going back to the model-derived
parameters, such<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>