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Abstract 

Cognitive alterations have long been reported in patients with mental health disorders, though with 

inconsistent results. These inconsistencies are likely due to highly heterogeneous diagnostic 

categories used for recruitment, and imprecise cognitive task measures. This thesis addresses the 

former by measuring symptoms with continuous questionnaire scales, and the latter by using theory-

driven computational models that summarise participant behaviour using a small number of 

mechanistic parameters. This methodology is applied within the realm of attention set shifting and 

risky decision making to improve understanding of cognition in mental health, using large samples 

collected online. Following a general introduction (Chapter 1), Chapter 2 describes the computational 

approach employed in subsequent experimental chapters.  In Chapter 3, we develop models of 

CANTAB IED (Intra-Extra Dimensional Set Shifting Task) to explore how learning and attention 

processes lead to differences in attention set shifting ability, and to investigate their relationship with 

symptoms of compulsivity. The second study (Chapter 4) applies the computational approach to risky 

decisions with CANTAB CGT (Cambridge Gamble Task) and explores the relationship between model 

parameters and symptoms of depression and anxiety. The final experimental chapter (Chapter 5) 

examines whether specific symptoms of anxiety are related to changes in risky decision making, 

focusing on the relationship between catastrophising and probability weighting. Overall, the 

computational approach offers increased precision when examining behavioural data. In several 

chapters we identify moderate relationships between model parameters and demographic variables 

such as age, gender, and level of education, which often exceed associations with traditional model-

agnostic measures. However, relationships with mental health symptoms are minimal in the general 

population datasets tested here. The general discussion (Chapter 6) considers these findings in 

relation to the wider field of computational psychiatry, discussing both the limitations of the work 

presented and possible future directions. 
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Impact Statement 

Mental health disorders include some of the most debilitating and prevalent conditions, affecting one 

in four people every year (Ginn & Horder, 2012). Despite this, the mechanisms underlying mental 

health disorders remain poorly understood, which limits the efficiency of treatment selection in 

clinical practice. In recent years, computational psychiatry has gained popularity as an approach to 

provide a more mechanistic understanding of mental health disorders that will ultimately lead to 

clinical improvements. This thesis makes several contributions to this field that are outlined below. 

In Chapter 3, we validate a novel model of attention set shifting in a large general population sample. 

This model provides a mechanistic explanation for individual variation in set shifting ability as 

measured by CANTAB IED, in terms of the interaction between attention and learning processes. 

Examining the model parameters also provides a more precise explanation for the relationship 

between symptoms of compulsivity and difficulties in performing set shifts. In Chapter 4, we validate 

a novel model of risky decision making as assessed by CANTAB CGT that describes how individual 

differences in risk and loss aversion lead to individual differences in overall task behaviour, and are 

associated with demographic variables. We also report a noteworthy null finding with respect to the 

relationship between model parameters and mental health symptoms. Both of these chapters apply 

computational models to tasks from the widely used CANTAB task battery, and therefore offer a novel 

analysis approach for researchers using these tasks. In addition, due to the use of these tasks in clinical 

trials, these models offer potential opportunities to explore the impact of pharmacological 

compounds on model parameters, providing further mechanistic insights in the realm of mental health 

and its treatment. Chapter 5 attempts to clarify the relationship between risky decision making and 

symptoms of anxiety. We identify the importance of subjective probability weighting to individual 

differences in how risky decisions are made and report another noteworthy null finding with respect 

to mental health symptoms. These findings are preliminary and require replication, but nevertheless 

offer contributions to the field of computational psychiatry. 
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1 General Introduction 

1.1 Categorical Diagnoses in Psychiatry 

In current clinical practice, diagnostic manuals such as the Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-5, American Psychiatric Association, 2013) and International 

Classification of Diseases, Tenth Edition (ICD-10, World Health Organisation, 2016) operationalise a 

psychiatric nosology which classifies patients into diagnoses based on specific symptom criteria. For 

instance, to be diagnosed with major depressive disorder (MDD), according to the DSM-5, the patient 

must exhibit symptoms of dysphoria (‘low or depressed mood’) or anhedonia (‘markedly diminished 

interest or pleasure in all, or almost all, activities’) most of the day, nearly every day, and at least four 

(or three if both dysphoria and anhedonia are present) of the following symptoms: weight change, 

sleep pattern change, psychomotor change, fatigue or loss of energy, feelings of worthlessness or 

guilt, indecisiveness or diminished ability to think/concentrate, and suicide-related 

thoughts/behaviours. This conceptualisation of mental health conditions aimed to align psychiatric 

disorders with a medical model (akin to physical diseases), whereby discrete diagnoses are established 

based on specific observable symptoms. The relevant cluster of symptoms suggests a common 

underlying mechanistic basis for the disorder and is therefore of potential clinical value through 

guiding differential diagnosis and targeted treatment accordingly.  

The differential efficacy of some medications for certain psychiatric disorders provided some 

affirmation for this model of psychopathology and for a categorical conceptualisation of mental 

health. For instance, the successful use of antidepressant medications for MDD (Cipriani et al., 2018), 

and the efficacy of lithium in patients with bipolar disorder (Baldessarini et al., 2006; Severus et al., 

2014), but not schizophrenia (Bender & Dittmann-Balcar, 2004; Leucht et al., 2015), lent support to 

the idea that these diagnostic categories had some biological underpinning. Another key advantage 

of specifying diagnoses in this way that was particularly crucial to the design of the DSM-III (an earlier 

edition of the current DSM manual) is that it standardised psychiatry practice and improved 

consistency in diagnosis and treatment across clinicians (Spitzer et al., 1980). These outcomes 

somewhat corroborated the medical model framework, with the specified diagnostic categories 

solidifying their application not only in clinical practice and decision making, but also in scientific 

research where participants were recruited according to diagnostic criteria. The DSM in particular, 

having been translated into over twenty languages became the reference for psychiatric practice in 

the US, much of Europe and more recently in some Asian countries. As the gold-standard guideline, it 

had a notable influence on clinical practice, research, and society. 
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Despite their impact and clinical utility, these diagnostic nosologies have come under increasing 

scrutiny, largely due to growing scepticism that the symptomatically defined disorders clearly 

demarcate normality from disease, or one disorder from another (Fried, 2015; Hyman, 2010; 

Jablensky, 2016; Kendell & Jablensky, 2003). Whilst the impact of pharmacological therapeutics, 

particularly antidepressants, in psychiatry has been noteworthy, an important finding was that only 

about 30% of patients with major depression achieved symptom remission in response to first-line 

antidepressants in a large-scale trial of typical community patients, STAR*D (Rush et al., 2003). The 

remission rates reduced with each subsequent antidepressant treatment attempt, and around 40% of 

patients were non-remitters after attempting a range of different antidepressant drugs (Rush et al., 

2003). Crucially, we have very little explanatory or predictive power regarding who will respond to 

antidepressant treatment, let alone to which one of the many available. Results such as these are 

widespread in psychiatry and cast doubt on the idea that DSM categories represent truly distinct 

natural entities (Cipriani et al., 2009; Loerinc et al., 2015; Miura et al., 2014; Seppälä et al., 2021). 

In recent years, substantial attention has been drawn to the vast heterogeneity within psychiatric 

diagnostic groups to explain the high variation in treatment response. From a brief look at the 

aforementioned DSM-5 criteria for depression, for example, it is clear that many distinct combinations 

of symptoms can qualify for a diagnosis of MDD, and as a result the clinical presentation of patients 

with a particular diagnosis is rather diverse (Fried, 2017; Fried & Nesse, 2015). This clinical 

heterogeneity may be underpinned by mechanistic heterogeneity where patients with different 

mechanistic alterations may express similar symptoms; and conversely, closely related biological 

alterations may result in distinct symptom patterns in different patients. In addition to heterogeneity, 

there is a fair amount of overlap in the non-core diagnostic criteria between some disorders. For 

example, fatigue, difficulty concentrating, and difficulty sleeping are all DSM symptoms for both MDD 

and generalised anxiety disorder. Perhaps at least in part due to this imprecise nosology, but also likely 

due to common mechanistic pathways, a high level of comorbidity has been reported between 

psychiatric disorders, most notably between depressive and anxiety disorders (Kessler, 1994; Kessler 

et al., 2015). This degree of comorbidity is especially troubling when considering that most research 

studies recruit participants that have a single diagnosis only (or allow only limited comorbidities), and 

specifically exclude those with most psychiatric comorbidities. The result of this is that many research 

studies prohibit participants that represent the majority of psychiatric patients in real-world practice. 

Given the heterogeneity, and comorbidity in psychiatric diagnoses, is not surprising that in recent 

studies the reliability of diagnosing patients with some DSM-5 disorders including MDD and 

generalised anxiety disorder (GAD) was reported as being in the questionable range (intraclass kappa 

reliability of 0.2 – 0.39) (Regier et al., 2013). This is noteworthy as consistent practice between 
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clinicians was an important motivation for the development of this classification framework in the first 

place (Spitzer et al., 1980). 

In summary, whilst the current categorical psychiatric framework has some utility in clinical practice 

and treatment, there is also little choice but to apply it until a superior alternative is proposed. 

However, in the realm of scientific research, clinging on to a framework rooted in a categorical and 

symptom-based nosology akin to diagnosis of discrete physical illness, which has little grounding in 

behavioural and neuroscientific data, will likely hamper progress in understanding mental health 

disorders. This has led to a momentum to turn to consider other models of psychopathology that 

might better capture its complexity. 

1.2 ‘Symptomics’ and Dimensional Psychiatry 

The high heterogeneity, comorbidity, and lack of a mechanistic basis underlying the categorical 

diagnostic framework has motivated researchers to explore what a more appropriate representation 

of mental health disorders might look like (Hyman, 2010; Jablensky, 2016). This has led to breaking 

down the current diagnostic groups into their constituent symptoms and examining the latter more 

carefully, using a dimensional perspective. Ultimately, the aim is to reach a better understanding of 

the complex presentation and relationships between different symptoms of mental health disorders, 

and build back up to a novel organisation of psychopathology that overcomes the aforementioned 

limitations. This approach involves different kinds of studies, statistics, and analysis. Instead of 

summing the presence or absence of specific symptoms in the diagnostic criteria to allocate a binary 

label (e.g. depressed or not) to a person, symptom-based analysis involves questionnaires that 

measure the degree to which a person expresses a particular symptom (e.g. anhedonia) on a 

continuous scale (Mason et al., 2005; Meyer et al., 1990; Patton et al., 1995). Measuring symptoms of 

mental health disorders on a continuum more clearly acknowledges that most of these are present in 

the general population to some extent (Johns, 2005). Finally, by modelling the interactions between 

symptoms, we can identify those that tend to naturally cluster together and thus to some extent tackle 

heterogeneity and comorbidity, while also providing a better mechanistic understanding of 

psychopathology. Larger-scale datasets combined with data-driven approaches have ushered in an 

era of ‘symptomics’. 

These tools have been used to directly probe the composition of the current diagnostic framework, 

for instance by investigating which psychological symptoms are most connected to others and are 

therefore considered the most central in the development of certain syndromes or disorders. For 

example, Fried and colleagues used such an approach to investigate which symptoms of depression 

are most pivotal in depressive processes in a sample of over 3000 outpatients (Fried et al., 2016). They 
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found that some of the DSM symptoms (e.g. sad mood), but also some of the non-DSM symptoms 

(e.g. anxiety) were among the most central symptoms (Fried et al., 2016). While dysphoria is a core 

symptom of the criteria and therefore consistent with these results, anxiety does not appear on the 

diagnostic criteria for MDD at all suggesting once again that demarcation into discrete diagnoses does 

not reflect the high degree of overlap present in the real world. These results demonstrate further 

that the DSM criteria for MDD (and other disorders) could be better refined from such analyses of its 

component symptoms. 

Further to the reorganisation of the current framework, researchers have turned to using symptoms 

as dimensional measurements of psychopathology in their own right (Jablensky, 2016; Kotov et al., 

2017; Robbins et al., 2012; Widiger & Samuel, 2005). For instance, studies are increasingly examining 

associations between specific depressive symptoms and adverse life events (Keller et al., 2007), risk 

factors (Fried et al., 2014), or neurobiological markers (Fried et al., 2020), as opposed to the traditional 

approach of investigating associations with categorical diagnoses. In alcohol and substance use 

disorders, as well as problem gambling and eating disorders, the recognition of impulsivity and 

compulsivity as distinct components has also been encouraged, with a call to focus on transdiagnostic 

symptoms that may result in the development of transdiagnostic treatments (Robbins et al., 2012). 

Another approach has been the creation of new dimensions by analysing the shared variance across 

different symptoms using methods such as factor analysis. Korszun and colleagues used this method 

in a sample of over 1000 depressed patients who reported on 26 depression symptom items. They 

identified a four-factor solution suggesting the following dimensions best capture the variance in 

depressed patients: ‘Mood Symptoms and Psychomotor Retardation’, ‘Anxiety’, ’Psychomotor 

Agitation, Guilt, and Suicidality’; and ‘Appetite Gain and Hypersomnia’ (Korszun et al., 2004). Gillan 

and colleagues expanded this approach to include a greater variety of symptom types, asking 

participants in the general population to complete nine symptom questionnaires assessing 

compulsivity, depression, trait anxiety, alcohol use, eating attitudes, apathy, impulsivity, schizotypy, 

and social anxiety (Gillan et al., 2016). They reported the solution that best fit their data comprised 

three factors, which they labelled ‘Anxious-Depression’, ‘Compulsive Behaviour and Intrusive 

Thought’ and ‘Social Withdrawal’ (note that these different factors may result from differences in 

symptom covariance within clinical groups vs largely non-clinical samples recruited from the general 

population). This shift in focus from diagnoses to symptoms represents a promising start to 

understanding the interplay and overlap between diagnostic criteria. 

At a more abstract level, the symptom-based approach reformulates the notion of psychiatric 

disorders as a complex web of causally connected symptoms with intricate dynamical patterns 

(Borsboom & Cramer, 2013; Boschloo et al., 2015). Whole new frameworks have been conceptualised 
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to account for this perspective, such as the Hierarchical Taxonomy of Psychopathology (HiToP), which 

has the aim of developing an empirically based organisation of mental disorders using multivariate 

factor analytic methods (Kotov et al., 2017). It posits a layered framework with symptoms, syndromes, 

factors and spectra making up the four levels of the hierarchy. Whilst the realisation of novel, 

comprehensive frameworks in clinical practice may seem far off, the shift in conceptualisation has 

encouraged a corresponding shift in the methodology and practice of scientific research, where 

researchers measure symptoms along a continuous scale rather than recruiting patients from one of 

the discrete diagnoses (Kendler et al., 2011; Robbins et al., 2012). 

1.3 Cognition in Psychiatry 

Cognitive neuroscience has long been used to investigate the mechanisms underlying mental health 

disorders. Whilst self-reported symptoms are easily influenced by recall bias and differences in 

personal experience, objectively measured cognition is thought to provide a more abstract and 

unbiased representation of how an individual acts and performs psychological operations under 

various situations. Cognitive neuroscientists use carefully designed tasks to assess specific processes, 

and they hold huge potential as cheap, rapid and easily administered measures of potential cognitive 

biomarkers. Many behavioural measures, such as those related to attention and decision making, have 

been reported to be associated with mental health symptoms (Paulus & Yu, 2012; Wilson et al., 2018). 

The importance of cognition in mental health is further emphasised by its inclusion in the Research 

Domain Criteria (RDoC; Cuthbert & Insel, 2013) framework which was introduced a decade ago by the 

National Institution of Mental Health (NIMH) whose disappointment in the biological validity of the 

current diagnostic framework led them to develop a system for linking biological markers at different 

levels to different mental health symptoms. However, perhaps unsurprisingly, until now no clear 

biomarker has been found that can differentiate between diagnostic groups or between patients and 

non-patients for a specific disorder (Berggren & Derakshan, 2013). This failure has been blamed, at 

least in part, on the aforementioned highly heterogeneous categories specified in diagnostic manuals 

and the resulting use of these groups in case-control studies of cognition. Further, a variety of task 

adaptations are used in cognitive research which might lead to slight differences in behaviour and 

inconsistent results between studies. Finally, the typical outcome measures used are coarse, and do 

not consider the full complexity of the data available, which may also lead to lack of precision and 

inconsistent results especially in small samples. Below I will highlight some of these inconsistencies in 

the research using the examples of attention set shifting and risky decision making literature, 

particularly using the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra 

Dimensional Set Shifting Task (IED), and Cambridge Gamble Task (CGT), which are the focus of two of 

the experimental chapters in this thesis.  
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1.3.1 Attention set shifting 

Attention set shifting refers to learning and switching the focus of our attention. The ease with which 

we can generalise pre-learnt action-outcome associations, and the flexibility with which we can grasp 

previously irrelevant ones, depends on how and what we learn to attend to. These cognitive faculties 

known as attentional set formation, and attention set shifting, respectively, have commonly been 

assessed with the CANTAB IED (Owen et al., 1991). The task, originally designed as a computerised 

analogue of the Wisconsin Card Sort Task (Berg, 2010; Grant & Berg, 1948), consists of several stages 

requiring participants to use trial and error to learn which feature of a multidimensional stimulus 

signals the correct response for that stage of the task. The introduction of novel stimuli occurs twice, 

first to assess set formation by the reapplication of previously learned rules, and second to assess the 

crucial attentional set shift by switching attentional focus to the previously irrelevant stimulus 

dimension.  

The IED has been used extensively to document cognitive impairments in patients with psychiatric 

diagnoses. Early research identified difficulties in performing attentional set shifts but not simpler 

reversals, as measured by increased errors, in patients such as those with frontal lobe excisions, 

suggesting that attentional set shifts represent a distinct and complex higher-level process (Owen et 

al., 1991). Difficulties in set shifting have also been considered a cognitive hallmark of obsessive-

compulsive disorder (OCD) (Chamberlain et al., 2006, 2007; Purcell et al., 1998; Vaghi et al., 2017; 

Veale et al., 1996) exemplified by the use of CANTAB IED as an endpoint in clinical trials (Tyagi et al., 

2019). Despite this, there have been conflicting reports regarding the nature of these difficulties 

(Gottwald et al., 2018). Furthermore, difficulties in attention set shifting have been reported in 

depression (Purcell et al., 1998; Purcell et al., 1997), schizophrenia (Elliott et al., 1995; Levaux et al., 

2007; Liang et al., 2018) and anxiety (Kim et al., 2019), highlighting that these alterations in cognition 

are not specific to OCD patients.  

As mentioned above, one reason for these differing results between studies is that traditional 

measures of task performance are blunt. Task performance on CANTAB IED is typically measured in 

terms of the errors made per stage, which provides an overview of how an individual has performed 

but is unable to provide a mechanistic account of this performance. More specific to this task, the 

multidimensional nature of CANTAB IED task stimuli means that we cannot easily interpret the reasons 

for participants’ stimulus choices, and therefore what leads to variations in set shifting performance. 

Counting the errors made per stage is coarse - it does not consider the choices participants make at 

the trial-by-trial level and therefore what they learnt or attended to as the task progressed. Without 

a mechanistic account of task performance, it is not clear whether all participants failing the extra-
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dimensional set shift stage are doing so for the same reasons, or whether various behavioural 

alterations can explain this performance.  

1.3.2 Risky Decision Making 

Mental illnesses are often characterised by differences in decision making, particularly in situations 

that involve maximising expected rewards or minimising punishments (Cáceda et al., 2014). This has 

been examined extensively, with different disorders such as depression, obsessive-compulsive 

disorder, and psychosis-related disorders showing some influence on various aspects of decision 

making (Deserno et al., 2016; Halahakoon et al., 2020; Pratt et al., 2021; Sachdev & Malhi, 2005). 

Gambling tasks have often been used to examine such differences in decision making, requiring 

participants to choose between options with uncertain payoffs. These tasks are useful as they simulate 

the risky decisions that we often face in daily life. Early studies suggested that such tasks are sensitive 

to brain damage (specifically to the ventromedial prefrontal cortex, involved in fear and planning - 

Bechara et al., 1994). Within the realm of mental health research, prior studies using gambling tasks 

have suggested that individuals with depressive and anxious disorders have heightened aversion to 

risks and losses (Baek et al., 2017; Charpentier et al., 2017; Smoski et al., 2008), and that patients with 

schizophrenia make more random choices leading to lower winnings overall (Pedersen et al., 2017; 

Woodrow et al., 2019).  

One particularly informative set of studies has used the CGT from the CANTAB task battery, which 

requires participants to bet a proportion of their points on a simple decision. This set of studies is 

noteworthy because a large number of participants with a variety of diagnoses have performed the 

task (Ackerman et al., 2015; Deakin et al., 2004; Hutton et al., 2002; Rogers et al., 1999; Rubinsztein 

et al., 2001). The CGT was originally designed to remove some of the learning confounds present in 

previously popular gambling tasks, such as the Iowa gambling task (Bechara et al., 1994), and presents 

participants with explicit information about the values and probabilities of gambles (Rogers et al., 

1999). One of the most consistent findings with the CGT in mental health research is that, relative to 

controls, depressed individuals choose to bet fewer points overall, particularly when the probability 

of winning is high (Mannie et al., 2015; Murphy et al., 2001; Rawal et al., 2013). This has usually been 

interpreted as reflecting a conservative, or risk-averse, decision making strategy. Studies observing 

this pattern have included diverse groups including adult patients with depression (Murphy et al., 

2001), young people with a family history of depression but who had not been diagnosed themselves 

(Mannie et al., 2015), and adolescents with depression (Rawal et al., 2013). However, this was not 

observed in a smaller study including patients with bipolar depression (Rubinsztein et al., 2006), and 

the opposite pattern was found in a study that included adolescents with recent first episode 
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depression, with patients betting more overall than controls (Kyte et al., 2005). In addition to the small 

sample sizes in these studies, and the different groups examined, another possible explanation for 

these inconsistent results is that the dependent variables typically examined are multifactorial. For 

instance, the ‘overall proportion bet’ measure depends on the proportion of points that a participant 

chose to bet on trials over the entire task, and disregards the specific aspects of different trials, such 

as the probability of winning or the stake. This challenges the interpretation of results as the key 

underlying mechanistic processes cannot be examined.  

1.4 Computational Models of Cognition 

Computational models of cognitive tasks have gained popularity in recent years due to the solutions 

they offer for addressing a number of current issues in mental health research: their ability to account 

for trial-by-trial behaviours, dissect traditional measures into more precise components, and make 

concrete predictions about participants’ choices at an individual level (Adams et al., 2016; Montague 

et al., 2012). 

Traditional measures of overall task performance do not take into account patterns of trial-by-trial 

choices or the underlying mechanisms that are thought to produce them, and are therefore limited in 

the insight they can provide. Computational models overcome this by providing theory-driven 

explanations for how choices are generated on each trial. These models can then be tested against 

data from real participants to assess which model provides the most parsimonious account of the 

data. Further, these models can interrogate the vast heterogeneity present in mental health disorders 

by modelling behaviour at the individual level, rather than assessing group characteristics. Each 

participant’s performance is captured by a small number of mechanistically relevant model 

parameters measured on a continuous scale. Finally, computational models are able to account for 

the level of randomness present in human performance on cognitive tasks, and by accounting for this, 

models can add precision. This is of huge value due to the high level of noise in human behaviour and 

samples. A major theme of this thesis is exploring the additional insights that models of cognitive tasks 

are able to provide. 

1.5 Summary of Chapters 

The overall aim of this thesis is to investigate the computational mechanisms of cognitive functioning 

and its relationship to mental health symptoms. The second chapter will outline the general 

computational methodology applied in all experimental chapters including model development, 

parameter estimation, recovery, and model comparison.  The three experimental chapters focus on 

applying models to different cognitive tasks, specifically attention set shifting and risky decision 
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making tasks, and explore their relationships to demographic variables as well as symptoms of 

compulsivity, depression and catastrophising.  

1.5.1 Chapter 2: Online Data Collection and Computational Analysis 

This chapter outlines computational modelling methodology common to the three experimental 

chapters. The general model development procedure will be explained, along with the expectation-

maximisation iterative algorithm that was used to estimate model parameters under a Bayesian 

hierarchical framework. Methods for parameter recovery, a key technique for assessing model 

validity, are described as well as qualitative and quantitative metrics for comparing model 

performance. Qualitative assessments of model quality include posterior predictive checks comparing 

model-simulated data with real data on typical task outcome measures, whilst quantitative checks 

include calculation of the integrated Bayesian Information Criterion (iBIC). 

1.5.2 Chapter 3: Modelling CANTAB IED 

This chapter focuses on attention set shifting, how the focus of attention is directed and switched. 

Cognitive tasks such as CANTAB IED reveal great variation in set shifting ability in the general 

population, with notable impairments in those with psychiatric diagnoses. The attentional and 

learning processes underlying this cognitive ability, and how they lead to the observed variation 

remain unknown. To directly examine this question, this chapter used a computational modelling 

approach on two independent large-scale (N > 700), general-population samples, tested online, 

performing the CANTAB IED, with one sample including additional psychiatric symptom assessment. 

This data showcases a new methodology to analyse data from the CANTAB IED task and suggests a 

possible mechanistic explanation for the variation in set shifting performance, and its relationship to 

compulsive symptoms. 

1.5.3 Chapter 4: Modelling CANTAB CGT 

Risky decisions involve choosing between options in which the outcomes are not certain. Cognitive 

tasks such as CANTAB CGT have revealed differences in risky decisions in patients with depression, but 

the mechanisms of choice evaluation underlying these cognitive decisions, and how they lead to the 

observed differences in depressed patients remain unknown. To directly test this, this chapter uses a 

computational modelling approach on a large-scale (N = 753), general-population sample, tested 

online, performing CANTAB CGT and completing additional psychiatric symptom assessment, 

including depression scales. We fit five different models, including two novel ones, inspired by 

Prospect Theory. This study showcases a new methodology to analyse data from the CANTAB CGT 

task, and the advantages that computation can offer in cognitive neuroscience.  
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1.5.4 Chapter 5: Probability Weighting in Catastrophising 

Previous research has suggested that anxiety is associated with differences in risky decision making, 

but it remains unclear which specific facets or types of anxiety are most associated with these 

differences. Further, many existing studies of risky decisions have not been able to disentangle all of 

the components of these decisions, and in particular tend to neglect ‘probability weighting’ – how 

people’s subjective weighting of probability differs from the true probability. The hypothesis 

motivating this study was that this component is highly relevant to catastrophising symptoms in 

particular. This was tested using a computational modelling approach in a broad general-population 

sample tested online (N = 212), who performed a novel gambling task and completed questionnaires 

assessing psychiatric symptoms, including catastrophising. This study highlights the importance of 

incorporating probability weighting parameters into studies of risky decision making. 
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2 Computational Modelling Methodology 

This chapter outlines aspects of the methodology that are common to all experimental chapters. 
Where methods differ between experimental chapters, they will be introduced and detailed within 
each specific chapter.  

2.1 Ethical Approval 

All participants were presented with an online information sheet and subsequently provided informed 

consent online. They could leave the study at any time by closing their browser. All participants were 

paid at a rate of £7.50 per hour. All studies were approved by the University College London Research 

Ethics Committee (approval number 5253/001). 

2.2 Model Development 

All models were written in Python 3 (van Rossum, 1995). Initial models were based on previously 

published models from the literature; however, model development was an iterative process in which 

analysis of the parsimony of these models in explaining participant data, and identification of 

discrepancies between simulated and real data, were used to guide development of the next model.  

2.3 Parameter Estimation 

We used a hierarchical Bayesian parameter estimation approach, described previously (Huys et al., 

2011), which finds the maximum a posteriori parameter estimates for each participant, given the 

model and the data, and sets the parameters of the prior distribution to the maximum likelihood 

estimates given all participants’ data. The purpose of using hierarchical estimation here is primarily 

that priors over the parameters act to regularise the estimates such that unrealistic, extreme values 

are avoided. We used an expectation-maximisation (EM) approach which repeatedly iterates over two 

steps until convergence is reached. Briefly, in the E-step the model finds the best-fitting individual 

level parameter estimates for each participant given their data and the current parameters of the prior 

distribution; and in the M-step, the maximum likelihood group level prior parameters are updated to 

reflect the current individual parameter estimates.  

All parameters were transformed to ensure that they were in the appropriate range (such as learning 

rates between 0 and 1). Recoverability of parameters was calculated by simulating 300 datasets with 

parameters drawn randomly from the estimated prior distribution. The best-fitting parameters for 

these data sets were found as above, and parameter recoverability is indicated by the correlation 

between the simulated and recovered parameters. Un-transformed parameter values were used for 

statistical inference as these are estimated to be distributed with a standard multivariate Gaussian 

distribution and therefore are more suitable for parametric analysis. 
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2.4 Model Comparison 

A priori we did not assume that any of the models should be more likely. Therefore, they can be 

compared by examining the approximate model log likelihood with the iBIC (Huys et al., 2011). This 

procedure gives the model that fits the data most parsimoniously, whilst penalising for unnecessary 

added model complexity (additional parameters). 

We carried out posterior predictive checks (i.e. qualitative model comparisons) in which we assessed 

model performance by comparing model-simulated data, using participants’ estimated parameters, 

to real data. This involved comparing overall group level performance patterns, as well as correlating 

individual participant summary statistics with corresponding values calculated from simulated data. 

For the latter, ten simulated datasets were run for each participant and correlations with real data 

were calculated for each iteration. The mean correlation is reported as a metric of model fit. 
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3 A Hierarchical Reinforcement Learning Model Explains Individual Differences in 
Attention set shifting 

3.1 Abstract 

Attention set shifting refers to the ease with which the focus of attention is directed and switched. 

Cognitive tasks such as the widely used CANTAB IED reveal great variation in set shifting ability in the 

general population, with notable impairments in those with psychiatric diagnoses. The attentional and 

learning processes underlying this cognitive ability, and how they lead to the observed variation 

remain unknown. To directly test this, we used a generative computational modelling approach on 

two independent large-scale online general-population samples performing CANTAB IED (N > 700), 

with one including additional assessment of demographic variables and mental health problems. We 

found a hierarchical model that learnt both feature values and dimension attention best explained the 

data, and that compulsive symptoms were associated with slower learning and higher attentional bias 

to the first relevant stimulus dimension. Further, older people, those that spent less time in education 

and women showed more attentional bias to the first relevant dimension. These results establish a 

new model of cognitive processes underlying the CANTAB IED task, and suggest a possible mechanistic 

explanation for the variation in set shifting performance and its relationship to compulsive symptoms. 

3.2 Introduction 

It has long been suggested that the increased difficulty in performing extra-dimensional (ED) shifts 

compared to intra-dimensional (ID) shifts is due to attentional biases in learning (le Pelley et al., 2016; 

Mackintosh & Little, 2013; Trabasso et al., 1966), but these hypotheses have not been specified 

mathematically or formally tested. As there are a number of ways in which attention and learning 

might interact to produce the observed patterns of responses on a particular task, the mathematical 

specification of models and formal comparisons to test how well they fit the data are essential to 

provide a better understanding of these cognitive constructs. Many theoretical models of attention 

and learning have previously been formulated including Kruschke’s connection models ALCOVE and 

EXIT (Kruschke, 1992, 2001). Whilst these models attempt to fully characterise the psychological 

processes behind human performance in a variety of tasks, they are also very complex and possibly 

over-parameterised (Paskewitz & Jones, 2020).  Further, these models are theoretical accounts of 

typical human performance, but their parsimony in explaining variation in individual performance has 

not been examined; therefore, they are unable to provide mechanistic or normative explanations for 

the large individual differences observed in attention and learning tasks. On the other hand, building 

generative models that are fit to individuals’ trial-by-trial choices can enhance the explanatory power, 

and provide a more rigorous test of the specified model. Furthermore, as these models estimate the 
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level of randomness in participants’ choices, they can provide more precise participant-specific 

measures in the form of a small number of interpretable model parameters. Though increasingly 

popular in mental health research, few generative models of attention set shifting have been built. 

The theory-driven field of computational psychiatry involves developing models by mathematically 

specifying our hypotheses of the cognitive processes involved in performing the task that best describe 

variation in symptoms between participants. Reinforcement learning models, in which agents use 

feedback to learn actions that maximise their total reward (Sutton & Barto, 1998), have been 

extensively applied to cognitive tasks where learning is involved, including those assessing cognitive 

flexibility (Daw et al., 2011). For example, Niv and colleagues developed the "dimensions task" to 

explore how selective attention aids learning about complex stimuli (Niv et al., 2015). It is similar to 

CANTAB IED in that participants are shown multidimensional stimuli and have to use feedback to infer 

the 'correct' feature on each block of the task. The authors showed that models of reinforcement 

learning on stimulus features fit participants' choices the best, as compared to reinforcement learning 

on full stimuli, or non-reinforcement learning models (Niv et al., 2015), and subsequently that 

attention biased both learning and decision making on this task (although attention was measured by 

eye-tracking so how attention itself might be learnt was not mathematically specified: (Leong et al., 

2017)). Despite the similarities between the individual stages of these tasks, the different ordering of 

the stages means that the tasks are measuring distinct attentional process. In the dimensions task, the 

correct feature on each stage is randomly chosen, independent of other stages, whereas in IED, the 

'correct' feature is from the same dimension for the first seven stages of the task, which strongly 

promotes the formation of an attentional set. Additionally, it has been suggested that attentional set 

shifts rely on transfer to novel exemplars, which do not truly exist in the dimensions task, meaning 

that intra- and extra-dimensional set shifts cannot be well-defined (Slamencka, 1968). The clearer 

separation of these processes in IED allows for a more straightforward interpretation of attentional 

set formation and cognitive flexibility (Downes et al., 1989). Furthermore, the dimensions task has not 

been used extensively in clinical populations, highlighting the utility of developing models for the 

CANTAB task. 

Only two studies using CANTAB IED have implemented reinforcement learning models. The first of 

these only focused on the simple discrimination and reversal learning stages at the beginning of the 

task (Murray et al., 2008). The authors did not fit computational models to trial-by-trial data but used 

error scores from the relevant task stages to infer that patients with schizophrenia exhibit an 

impairment in basic reinforcement learning. As the analysis did not include the crucial set shifting 

stages, we are unable to draw conclusions about the underlying processes affecting their performance 
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from this study. A recent study fit a more sophisticated attention-weighted learning model to full IED 

data from controls and autism spectrum disorder participants (Yearsley et al., 2021). However, the 

authors did not report the parameter recovery data which is a crucial step in model validation, and 

they used pre-specified values for two parameters instead of estimating them from participants’ data. 

This approach involves a non-trivial assumption and can result in biases to the other estimated 

parameters. Finally, both of these studies compared atypical groups screened with diagnostic criteria 

rather than exploring the relationships between specific symptoms and model parameters. 

In this chapter we present an attempt to develop a full computational model of CANTAB IED that 

incorporates the set shifting stages and fully estimates participant-specific parameters by fitting to 

trial-by-trial data. We use a large dataset of unselected volunteers, tested online, and explore the 

mechanistic insights that the models provide. We validate the model comparison on a second large 

dataset of healthy volunteers and analyse how the model parameters relate to symptoms of common 

mental health disorders, focusing on compulsivity. Our modelling approach is inspired by previous 

models of the 'dimensions task' including feature-based reinforcement learning with attention 

mechanisms to explore whether these models are also able to capture participants' choices on the 

crucial set shifting stages. 

3.3 Methods 

3.3.1 Participants 

Two independent datasets were collected online via Prolific Academic by Cambridge Cognition Ltd. 

Participants were recruited if they a) were over 18 years of age, b) were fluent in English, c) had not 

experienced a significant head injury (resulting in loss of consciousness), d) reported not having been 

diagnosed with an untreated mental health condition (by medication or psychological intervention) 

that had a significant impact on their daily life, e) had never been diagnosed with mild cognitive 

impairment or dementia. Participants’ data was anonymous, and they provided their consent online 

before participating in the experiment. The first dataset includes 731 participants who completed the 

IED task. The second dataset includes 762 participants who completed the IED task and also several 

self-report mental health questionnaires. These sample sizes provide 95% power to detect 

associations of r = 0.13 at alpha = 0.05 (two-tailed). 

3.3.2 CANTAB Intra-Extra Dimensional Set Shift Task 

To assess attention set shifting, participants completed the CANTAB IED, originally designed as a 

computerised analogue of the Wisconsin Card Sort Task (Berg, 2010; Grant & Berg, 1948). The design 
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of the task is presented in Figure 3.1. On each trial, participants were presented with a choice between 

two stimuli, which for most of the task are compound stimuli comprising two dimensions – lines and 

shapes. The chosen stimulus was indicated with a mouse click which resulted in deterministic feedback 

indicating whether the choice was correct. Participants were provided the following instructions: “This 

task will take around 7 minutes to complete. You can see 2 patterns. A rule exists telling you which one 

is correct. You need to try and discover this rule. At first, there is nothing to tell you which pattern will 

be correct. You have to guess and learn from the feedback. Select a pattern to start. We will tell you 

whether the pattern you selected was the correct or the incorrect one. Try and use the feedback to help 

you discover the rule. Once it is clear that you know the rule, it will be changed, but this will not happen 

very often. After it has changed, you will have to learn the new rule to continue being correct.” On 

achieving six correct choices in a row, it is assumed the rule has been learnt, and they move on to the 

next stage where there is a new rule. If a participant completes 50 trials on a stage without achieving 

six correct choices in a row, the stage is failed and the task terminated. Throughout the task, the rule 

is that one of the features indicates the correct stimulus. Critically, this feature is from the line 

dimension for Stages 1-7, and the shape dimension in Stages 8-9 (in the second dataset, this was 

reversed such that the correct feature was from the shape dimension for Stages 1-7, and from the line 

dimension for Stages 8-9). During the task, participants must learn reversals (same stimuli but 

reversed such that the other feature of the same dimension becomes correct), intra-dimensional shifts 

(new stimuli and the correct feature is from the same dimension) and extra-dimensional shifts (new 

stimuli and the correct feature is from the other dimension). An increase in errors on Stage 8 (extra-

dimensional shift) is typical as participants find it difficult to attend to the previously irrelevant 

dimension. No participants were excluded for the analysis of task data. 
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Figure 3.1 CANTAB IED Task Schematic. 

A. Schematic of single example trial from Stage 3 of CANTAB IED. Participants are presented with two stimuli that are 

composed of one feature from each of two dimensions: pink shapes, and white lines. Participants select a stimulus and receive 

deterministic feedback that informs them of whether their choice was correct or incorrect. After the feedback, the screen 

briefly turns blank before the presence of two new stimuli indicates the start of a new trial. B. Illustration of all nine stages of 

CANTAB IED, displaying two example trials from each stage, as well as the target features for each stage. Participants need to 

learn that this feature indicates the correct stimulus for each trial of that stage. 
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3.3.3 Self-Report Questionnaires 

In the second dataset, participants were additionally asked to provide their age, gender, level of 

education1 and answer a series of questionnaires about mental health symptoms. Participants 

completed questionnaires assessing compulsive symptoms (Obsessive Compulsive Inventory Revised, 

OCI-R (Foa et al., 2002)), depressive symptoms (Self-Rating Depression Scale, SRDS (Zung, 1965)), 

anxious symptoms (State Trait Anxiety Inventory, STAI (Spielberger et al., 1970), and schizotypy 

symptoms (Short Scales for Measuring Schizotypy, SSMS (Mason et al., 2005)). Our key measure of 

interest was compulsive symptoms based on previous literature; however we collected additional 

symptom data and demographic variables for use as covariates in our analysis due to the known 

relationships between mental health symptoms and these variables. 

3.3.4 Identifying clusters (K-means) 

For each participant in the second dataset, an ‘error trajectory’ was determined as the number of 

errors at each of the stages of the task. K-means clustering using the sklearn.cluster.KMeans package 

in Python, version 3.7.1 was applied to these trajectories, treating the trajectory as a multidimensional 

point. This divides participants into a prespecified number (K) of clusters, based on the trajectory of 

their errors over the course of the task. Each participant was allocated to the cluster with the nearest 

mean trajectory. The algorithm was run 10 times with different initial mean values, and the best fitting 

output from these runs was used as the final clustering. This clustering was also used to predict cluster 

labels of model-simulated data for each participant, given their best-fitting parameters. Only 

participants with both real and model-simulated data from all nine stages of the IED task could be 

included in this analysis, leaving 611 participants. K was chosen to be three using the elbow method 

(Syakur et al., 2018; Thorndike, 1953) based on the screeplot of the sum of squared distances of 

samples to their closest cluster centre (Figure 3.3A). The participants excluded from the K-means 

analysis, due to failing the task early, formed an additional cluster, giving four behaviourally defined 

clusters. 

3.3.5 Computational models 

CANTAB IED data are traditionally analysed in terms of the number of errors per stage. However, these 

summary statistics do not make full use of the richness inherent in the dataset. Computational models, 

on the other hand, model the trial-by-trial choices of each participant, and therefore capture the 

underlying attention and learning dynamics that are necessary to complete the task. Thus, we 

 
1 1: Left formal education before age 16, 2: Left formal education at age 16, 3: Left formal education at age 17-18, 4: 
Undergraduate degree or equivalent, 5:  Master’s degree or equivalent, 6: PhD or equivalent. 
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developed computational models to capture relevant attentional and learning processes to directly 

test whether they account for the variation in set shifting behaviour. Initial models were based on 

reinforcement learning (see below), whilst subsequent models included an additional layer where 

weights represent the allocation of attention to different stimulus dimensions. The three main models 

that we fit to participants’ trial-by-trial choices are described below. 

1. Feature Reinforcement Learning (fRL)  

This model calculates the values (V) of stimuli (S) by summing the weights (W) of features (f) present 

in the stimuli:  

 

𝑉(𝑆) =  𝑊(𝑓)

∈

 (3.1) 

 
 
All feature weights are initialised to 0. The stimulus values are then entered into a softmax 

probabilistic choice function: 

𝑝(𝑆 = 𝑆 ) =  
𝑒 ( )

𝑒 ( ) + 𝑒 ( )
 (3.2) 

 

where 𝑆  indicates the unchosen stimulus, and where β is the inverse temperature parameter, such 

that large β leads to more deterministic choices of the higher-valued stimulus, and small β leads to 

more random decisions that are less dependent on stimulus values. The model uses a reinforcement 

learning rule (Sutton and Barto, 1998) to update the weights of features in both stimuli on each trial, 

as follows: 

 

𝑊 (𝑓) =  𝑊 (𝑓) +  𝛼(𝑅 , − 𝑉 (𝑆))    ∀𝑓 ∈ 𝑆 (3.3) 

𝑅 represents the outcome of a particular stimulus, and 𝑡 represents the trial number. This model does 

not treat each stimulus as independent, as it takes into account that stimuli share features. However, 

it does not consider that the features are part of two different dimensions, and thus cannot generalise 

across dimensions. Therefore, the next model incorporated an attentional component to estimate 

stimulus values, allowing it to capture within-dimension generalisation to novel stimuli. 

 

The model’s free parameters are: α (learning rate), β (choice determinism) 
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2. Combined Attention-Modulated Feature Reinforcement Learning (Ca-fRL) 

This model incorporates dimensional attention weights to account for the attentional biases towards 

stimulus dimensions that might develop throughout the task, and capture the within-dimension 

generalisation to novel stimuli. These weights play a role in stimulus valuation, where they multiply 

feature weights from the corresponding dimension, thereby weighing the contribution of features 

from different dimensions according to how much attention is being paid to each one: 

 

𝑉(𝑆) =  𝑊(𝑎 )𝑊(𝑓 )

 ∈ [ , ]

 (3.4) 

 
where 𝑎  represents the attention to dimension 𝑑 (of ℎ: shape, or 𝑙: line), and 𝑓  represents the 

stimulus feature from dimension 𝑑. More precisely, the attention weight for the initially relevant 

dimension, 𝑊(𝑎 ), is specified as [𝜎(𝜃)], and for the other dimension as [1 − 𝜎(𝜃)], where 𝜎 

indicates a transformation by the logistic function. Thus, if one of these weights differs from 0, the 

other will also, but in the other direction. When both weights are close to 0, the dimensions are 

weighed equally. For instance, in the first dataset the line dimension was the initially relevant one, 

and stimulus values were calculated as follows: 

𝑉(𝑆) =  𝜎(𝜃) ∙ 𝑊(𝑓 ) + (1 − 𝜎(𝜃)) ∙ 𝑊(𝑓 ) (3.5) 

 
where 𝑓  and 𝑓  represent the line or shape feature within the current stimulus respectively. Stimulus 

values are then entered into a softmax probabilistic choice function as in the fRL model. All feature 

weights are initialised to 0. The initial value of 𝜃 (𝜃 ) is a free parameter inferred from the data and 

represents a dimension primacy effect - the extent to which the initially relevant dimension is 

attended to, and the second dimension is ignored when introduced on Stage 3. Standard 

backpropagation (Kelley, 2012; Rojas, 1996) updates the hidden weights and 𝜃 on each trial by 

differentiating the squared error loss (𝐿) with respect to the weight being updated: 

𝐿 =  
(𝑉(𝑆) − 𝑅(𝑆))

2
 (3.6) 

𝑊 (𝑓 ) =  𝑊 (𝑓 ) − 𝛼
𝜕 𝐿

𝜕 𝑊 (𝑓 )
= 𝑊 (𝑓 ) − 𝛼

𝜕 𝐿

𝜕 𝜃

𝜕 𝜃

𝜕 𝑊 (𝑓 )
 (3.7) 

𝜃 =  𝜃 − 𝛼
𝜕 𝐿

𝜕 𝜃
 (3.8) 

 
Backpropagation of the hidden weights involves multiplication by 𝜃 (using the chain rule of 

differentiation – Equation 3.7). Therefore, when 𝜃 is high (more attention to initially relevant 
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dimension), the weights of features from the other dimension will be updated less on that trial, and 

vice versa; thus capturing the attentional processes missing from the fRL model. Notably, the same 

learning rate is used to update the feature and dimension weights, making the assumption that a 

combined process underlies the learning taking place.  

 

The model’s free parameters are: α (learning rate), β (choice determinism), θ0 (dimension primacy) 

3. Separate Attention-Modulated Feature Reinforcement Learning (Sa-fRL) 

This model is identical to Ca-fRL except that while 𝛼 is still the learning rate for updating feature 

weights, a different learning rate, 𝜀, is used to update 𝜃: 

𝜃 =  𝜃 − 𝜀
𝜕 𝐿

𝜕 𝜃
 (3.9) 

 

The hidden weights are updated using 𝛼, as in equation 3.6. This model allows us to test the possibility 

that identifiably separate learning rates underlie the learning of features values and dimensional 

attention allocation, which cannot be captured by the combined learning model. 

 

The model’s free parameters are: α (learning rate – features), ε (learning rate – dimensions), β (inverse 

temperature), θ0 (dimension primacy) 

3.3.6 Parameter Estimation and Recovery 

Parameters were estimated as described in 2.3 Parameter Estimation and parameter recovery was 

assessed for each model (Table 3.1). 

 

Table 3.1 IED Model Parameter Ranges and Recovery. 

Free parameters of each model, along with summary statistics of their best-fitting values and recoverability. 

Model Parameter Range Mean (±SD) Recovery 

fRL 
Learning Rate 0 - 1 0.62 ± 0.04 0.49 

Choice Determinism 0 - ∞ 0.91 ± 0.33 0.90 

Ca-fRL 

Learning Rate 0 - 1 0.92 ± 0.14 0.84 

Choice Determinism 0 - ∞ 1.34 ± 0.43 0.87 

Dimension Primacy -∞ - ∞ 1.78 ± 0.97 0.91 

Sa-fRL 

Learning Rate - Features 0 - 1 0.91 ± 0.14 0.88 

Learning Rate - Dimensions 0 - 1 0.85 ± 0.24 0.67 

Choice Determinism 0 - ∞ 1.34 ± 0.42 0.87 

Dimension Primacy -∞ - ∞ 1.73 ± 0.87 0.91 
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3.4 Results 

The first dataset includes 731 participants who completed the IED task, but for whom we have no 

other information. This data was used for model development. In the second dataset participants 

completed the IED task, several self-report mental health questionnaires and also provided 

demographic information. This dataset was used for model validation, clustering and subsequent 

analyses of model parameters. It includes 762 participants with an age range of 18 – 77 years (mean 

= 38.8, SD = 13.6), and of which 382 (50%) were women. The raw participant data in Figure 3.2 shows 

that the vast majority of participants make fewer than five errors on the first seven stages of the task. 

On Stage 8, when a feature from the previously irrelevant dimension is now completely predictive of 

the correct stimuli, there is a marked increase in variation in performance, with many participants 

failing this stage (indicated by the crosses). 

3.4.1 Attention-Modulated Reinforcement Learning Accounts for Variation in ED Shift Performance 

We first fit a feature reinforcement learning model (fRL) to participants’ trial-by-trial choices. This 

model considers the dimensional composition of the task stimuli and has been previously used to 

model data from similar tasks with multidimensional stimuli (Niv et al., 2015). This model learns 

weights for individual stimulus features and calculates the overall stimulus value by summing the 

weights of its component features, thereby accounting for the tendency to select a stimulus with a 

particular white line feature (for example), regardless of the pink shape (for example) that it is paired 

with, if participants believe that this feature currently indicates the correct stimulus.  

Figure 3.2A (top) shows posterior predictive checks comparing the errors per stage from fRL model-

simulated data and from real data. The model-simulated error distributions match the real data fairly 

well for most stages, consistent with the notion that participants do not treat each stimulus as 

independent but take into account that stimuli share features. However, it is not able to capture the 

difficulty that many participants have on the ED Shift (Stage 8). Crucially, the model-simulated error 

distributions on the ID Shift (Stage 6) and ED Shift (Stage 8), in which participants are presented with 

novel stimulus features, are identical (and the same is true for their respective reversals: Stages 7 and 

9). This is because the fRL model cannot take into account that the novel features are from the same 

dimensions, and thus does not generalise across dimensions, instead initiating new learning for 

unseen features. This pattern contrasts with the real data, where errors are generally lower when 

novel stimulus features are introduced but the relevant dimension remains the same (ID Shift), than 

when novel stimulus features are introduced and the relevant dimension changes (ED Shift). This is 

further evidenced by the relatively low correlation (r = 0.46) between real and model-simulated errors 

on the ED Shift stage (Figure 3.2A top right). In summary, the fRL model captures participants’ ability 
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to weight stimulus features rather than whole stimuli, as shown by improved model fit on most stages, 

it does not capture their additional tendency to weight dimensions, as shown by poor model fit on 

stage 8. 

Figure 3.2 Qualitative and Quantitative Model Fits to IED data. 

A. Qualitative comparison of real data with a model-simulated dataset for each participant given their best fitting parameters 

for models fRL (top), Ca-fRL (middle), and Sa-fRL (bottom). Left: Posterior predictive checks showing error distributions per 

stage of CANTAB IED. Right: ED Shift errors. Correlation coefficient indicates mean between real data and 10 model-simulated 

datasets. Jitter has been added to scatter points to aid visualisation. B. Quantitative model comparison with iBIC values for 

three models in two independent sets of data. 
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In order to account for dimension-based learning, we modified the above model to include a 

component that captures the dimension to which participants are attending. In line with previous 

work, this attention component biases both stimulus valuation, by overweighting the values of 

features from the more attended dimension, and learning, by updating the weights of features from 

the more attended dimension to a greater extent (Leong et al., 2017). The dimension attention 

weights themselves were updated using backpropagation. We tested two variations of this feature + 

attention reinforcement learning model, one with a single learning rate for both the feature weights 

and dimension weights (Ca-fRL), and one with a separate learning rate for each type of weight (Sa-

fRL). Figure 3.2A (middle and bottom) shows that the addition of the attention layer markedly 

improves model performance, with qualitatively better matched distributions of errors between real 

and model-simulated data on the ID and ED Shift stages. This is confirmed by the greatly superior 

correlation between real and simulated datasets (Ca-fRL: r = 0.88, Sa-fRL: 0.89) on ED Shift errors. 

There is a clear vertical shift in the distribution of real and simulated errors on the ED reversal stages 

in Figure 3.2A, though the correlations between the two are still reasonably high (Ca-fRL: r = 0.67, Sa-

fRL: r = 0.67). 

Whilst the fits of Ca-fRL and Sa-fRL are hard to distinguish qualitatively using model simulations, a 

more formal model comparison considers both the model fit and the model complexity, providing an 

overall measure of model performance. The model comparison (Figure 3.2B) shows that Ca-fRL is the 

more parsimonious model in the first dataset, but that Sa-fRL is the more parsimonious model in the 

second dataset (indicated by the least negative iBIC score). As these iBIC values are very close, 

compared to the fRL model, it is not clear that the added dimension learning rate parameter in the Sa-

fRL model sufficiently improves model fit to justify its added complexity. As we prefer simpler models 

for increased falsifiability and reduced overfitting, and due to the worse parameter recovery of the 

dimension learning rate parameter in the Sa-fRL model, we selected Ca-fRL as the most appropriate 

model for CANTAB IED data, thereby using it for our subsequent parameter analysis. Whilst it is 

somewhat surprising that such a simple learning model can capture almost all of the variation in set-

shifting performance present in our sample, it is interesting that these kinds of models, which were 

initially created to describe how participants learn about multidimensional stimuli (Leong et al., 2017; 

Niv et al., 2015), are also able to account for set formation and shifting. 

3.4.2 Slower Learning, Random Choices and Stronger Dimension Primacy Lead to Difficulties in Set 
Shifting 

In order to assess the Ca-fRL model’s predictions of overall task behaviour in more detail, we applied 

a K-means algorithm to cluster data based on participants’ errors-per-stage trajectories. Using the 

elbow method (Syakur et al., 2018; Thorndike, 1953), the screeplot in Figure 3.3A shows that using 
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more than three clusters does not reduce the sum of squared errors substantially, so a three-cluster 

solution was chosen. The largest cluster (cluster 1) was made up of participants that score few errors 

on all stages of the task. The other two clusters were made up of participants that made more errors 

on the ED shift but were separated by their performance on the subsequent reversal. In this last 

reversal stage, participants should identify the correct feature from within the currently relevant 

dimension, however it is distinguished from the ID reversal on Stage 6, as it directly follows the ED 

shift, and therefore somewhat assesses the extent to which participants have shifted their attention 

to the newly relevant dimension. A final cluster (cluster 4) was added that was made up of the 

participants with incomplete IED task data (failed at Stage 8 or earlier) who could not be included in 

the K-means analysis. Model simulations of how the dimension attention weights change over trials 

for a participant from each cluster are shown in Figure 3.4.  

We then tested whether simulated data from each participant using the Ca-fRL model would fall into 

the same clusters as participants’ real data. Figure 3.3B shows that for the majority of participants, 

simulated data from their best fitting parameters using model Ca-fRL, was allocated to the same 

cluster as their original data. Some misalignment of real and model-simulated clustering is to be 

expected given that the K-means algorithm provides sharp cluster assignments, whereas real world 

behaviour cannot be so cleanly divided, and the assignment of some participants’ data is more 

ambiguous. The largest misalignment is of participants in cluster 3 to cluster 4, which might be because 

the small number of participants in cluster 3 (score high errors on the extra-dimensional shift and the 

subsequent reversal) passed the extra-dimensional set shift by chance rather than having obtained an 

understanding of the key rule change. Nonetheless, this approach provides further evidence that the 

model is able to capture the main features of and differences between participants' task performance 

in our sample. 

To highlight the mechanistic insights that a modelling approach provides, we examined how model 

parameters varied by these behavioural clusters. Figure 3.3C shows that compared to the participants 

in cluster 1 (who score few errors throughout), participants in clusters 2, 3 and 4 have lower learning 

rates, choose more randomly, and pay more attention to the initially relevant dimension in the early 

stages of the task. More specifically, learning rates for participants in cluster 3 seem to be particularly 

low, whilst dimension primacy seems to be particularly high for participants in cluster 4, explaining 

why many in the latter cluster fail the extra-dimensional shift stage altogether.  
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Figure 3.3 K-means Clustering of IED Data. 

A. K-means clustering of error-per-stage trajectories. Screeplot of the sum of squared distances to cluster means with K means 

for different values of K. B. The clusters identified by a 3-cluster solution. The fourth cluster consists of participants who failed 

the task before reaching stage 9 (typically at stage 8, the ED shift) and could not be included in the analysis. Cluster sizes: 

Cluster 1: 532, Cluster 2: 50, Cluster 3: 42, Cluster 4: 138. C.  Agreement between clustering of participants’ real and simulated 

data. Each column shows the proportions of simulated data (from participants in a particular real data defined cluster) that 

were assigned to each cluster. D.  Parameter distributions by clusters. Distributions of best fitting parameter values from Ca-

fRL model, separated by cluster allocation. 
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Figure 3.4 Simulations of Internal Model Values From Best-Fitting IED Model.  

Model-simulated dimension weights and rewards for a selected participant from cluster 1 (A), cluster 2 (B), cluster 3 (C) and 

cluster 4 (D). Lines indicate the dimension weight: when less than 0, participants pay more attention to shapes (the first 

relevant dimension in these examples), but when more than 0, participants may more attention to lines. Shading indicates 

successive stages of IED. Blue dots indicate feedback on each trial: those at the top of the panel indicate correct choices, whilst 

those at the bottom of the panel indicate incorrect choices. 
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3.4.3 Slower Learning and Stronger Dimension Primacy Are Associated with Higher Compulsive 
Symptoms 

To assess whether parameters from our best-fitting model, Ca-fRL, may be relevant to symptoms of 

mental illness, we examined their associations with a variety of symptom questionnaires: 

compulsivity, depression, state and trait anxiety, and schizotypy. Total score on the OCI-R 

questionnaire, which assesses compulsive symptoms, was significantly associated with the learning 

rate parameter (r(760) = -0.13, p = 0.0003) and the dimension primacy parameter (r(760) = 0.12, p = 

0.0008) after applying a Bonferroni correction for the 15 comparisons performed (α = 0.0033). 

Surprisingly, despite the well-established high associations between symptoms of mental health 

disorders in the literature, no other questionnaire scores were significantly correlated with model 

parameters (Table 3.2). The specificity of these relationships was confirmed with a Steiger’s Z test 

(Steiger, 1980), which compares them to the next biggest correlation between parameters and 

symptoms scores, accounting for the association between the two symptom questionnaires of 

interest. For both parameters, this involved the relationship with state anxiety, and in both cases the 

association with compulsivity was significantly greater (learning rate: r = -0.13 v r = -0.05; Z = 2.37, p = 

0.009; dimension primacy: r = 0.12 vs r = 0.05; Z = 2.26, p = 0.01). 

To test whether these relationships were affected by the age, gender, or education level of 

participants, we conducted multiple regression analyses, predicting compulsivity symptoms from 

model parameters, including the demographic variables as covariates. Again, learning rate and 

dimension primacy were significant predictors of OCI-R score when evaluated in separate models, with 

both associations strengthening compared to the unadjusted associations (learning rate: β = -0.82, 

95% CI = [-1.19, -0.46], p = 0.00001, overall model F(4,757) = 16.32, R2 = 0.079; dimension primacy: β 

= 1.66, 95% CI = [0.86, 2.45], p = .00005,  overall model F(4,757) = 15.54, R2 = 0.076). This confirms 

that participants who exhibit more compulsive symptoms are slower to learn the task structure and 

show a greater attentional bias towards the initially correct stimulus dimension. The distributions of 

questionnaire scores are given in Table 3.3. 
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Table 3.2 Relationships Between IED Model Parameters and Symptom Questionnaires. 

Spearman’s rank correlations and p-values for all relationships between symptom questionnaire scores and untransformed 

parameters of best-fitting models. p-values were calculated using a bootstrapping procedure. OCI-R: Obsessive Compulsive 

Inventory-Revised; SDRS: Self-Rating Depression Scale; STAI-S: State Trait Anxiety Inventory-State; STAI-T: State Trait Anxiety 

Inventory – Trait; SSMS: Short Scales for Measuring Schizotypy. * indicates significant after correction for multiple 

comparisons. 

 

 

 

 

Table 3.3 Descriptive Statistics of Questionnaire Measures. 

Range of possible questionnaire scores, along with mean, standard deviation, and median of participant scores. OCI-R: 

Obsessive Compulsive Inventory-Revised, STAI-S: State Trait Anxiety Inventory – State, STAI-T: State Trait Anxiety Inventory – 

Trait, SRDS: Self-Rating Depression Scale, SSMS: Short Scales for Measuring Schizotypy. 

 

 

 

 

 

 

 

 

 

 

 

  Parameters 

 
 Learning Rate 

Choice 

Determinism 

Dimension 

Primacy 

Questionnaire 

OCI-R -0.13, 0.0003* -0.09, 0.01 0.12, 0.0008* 

SDRS -0.04, 0.29 -0.04, 0.24 0.03, 0.42 

STAI-S -0.05, 0.17 -0.02, 0.55 0.05, 0.21 

STAI-T -0.01, 0.88 0.02, 0.64 0.00, 0.97 

SSMS 0.01, 0.88 0.02, 0.50 -0.01, 0.76 

 Measure Possible Range Mean ± SD, Median 

Q
ue

st
io

nn
ai

re
 OCI-R 0 - 72 14.72 ± 10.93, 12 

STAI-S 20 - 80 36.68 ± 12.83, 35 

STAI-T 20 - 80 42.52 ± 14.31, 41 

SRDS 20 - 80 39.89 ± 10.54, 40 

SSMS 0 - 41 12.14 ± 7.07, 11 



 

40 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

To assess which model parameters were related to age, gender and level of education, we calculated 

Spearman’s correlations (with a bootstrapping procedure) and t-tests. After applying a Bonferroni 

correction for the nine comparisons made (α = 0.0055), several remained significant. Age was 

positively associated with dimension primacy such that older people showed more primacy to the first 

relevant dimension (r(760) = 0.11, p = 0.003). Education level was significantly associated with choice 

determinism and dimension primacy such that those that spent longer in education were more 

deterministic, and showed less primacy to the first relevant dimension (choice determinism: r(760) = 

0.11, p = 0.002; dimension primacy: r(760) = -0.11, p = 0.003). Finally gender was associated with all 

three model parameters such that men learnt faster, were more deterministic, showed less primacy 

to the first relevant dimension (learning rate: t(760) = 3.54, p = 0.0004, Cohen’s d = 0.26; choice 

determinism: t(760) = 3.44, p = 0.0006, Cohen’s d = 0.25;  dimension primacy: t(760) = -4.11, p = 

4.44x10-5, Cohen’s d = -0.30). 

3.5 Discussion 

We implemented an algorithmic analysis of the CANTAB Intra-Extra Dimensional Set Shift Task. We 

showed that a hierarchical reinforcement learning model with two simple levels provides a 

parsimonious yet highly accurate account for participant’s choices in two independent samples. In the 

model, lower-level weights represent the learnt values for stimulus features, and higher-level weights 

represent the learnt attention to stimulus dimensions. We also explored how model parameters were 

related to symptoms of common mental health disorders finding that lower learning rates and high 

dimension primacy were specifically associated with higher compulsive symptoms. 

Our modelling analysis suggests a mechanistic explanation for how attention influences learning and 

decision making as well as for how the focus of attention is itself learnt and shifted. Our best-fitting 

model learns feature weights that represent current estimates of the associative value of features, 

and dimension attention weights that bias both the contribution of feature weights to stimulus 

valuation for action selection, but also the learning of the values of feature weights, as has been shown 

previously. Notably, our model extends previous algorithmic descriptions by suggesting that 

dimensional attention is itself learnt by simple prediction error-based update rules. More precisely, 

the dimension attention weights are updated based on tracking the predictive accuracy of the learnt 

values of their corresponding feature weights over time, in line with the idea that attention is directed 

to rewarding features (Mackintosh, 1975). Additionally, the rate of attentional learning is influenced 

by the strength of dimension attention itself, with more biased dimension attention slowing learning, 

in line with the idea that attention is updated faster when uncertainty is higher (Pearce & Hall, 1980). 

Thus, our results suggest that the attention is directed by both the expected reward and the 
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uncertainty of stimuli lending support to hybrid models of attention (le Pelley et al., 2012). More 

specifically, our best-fitting model uses backpropagation to achieve this - updating feature and 

dimension weights to reduce error on each trial. Despite the superior performance of 

backpropagation-based algorithms for predicting human performance in a range of tasks (Kell et al., 

2018; Wenliang & Seitz, 2018), we acknowledge the historical scepticism around its implementation 

in the brain due to biological constraints (Crick, 1989). Recent research has offered biologically 

plausible approximations, such as using activity differences between sets of neurons in a local circuit 

to compute backprop-like weight updates using only locally available signals, providing new insights 

into possible implementations of backpropagation-like algorithms in the brain (Lillicrap et al., 2020). 

The model suggests that a single type of underlying process, albeit in multiple instantiations, can 

explain performance across all IED task stages, including the extra-dimensional set shift. Reports that 

people with frontal lobe lesions, Parkinson’s Disease or obsessive compulsive disorder demonstrate 

impaired performance on the extra- but not intra-dimensional set shift or simple reversal learning 

stages (Downes et al., 1989; Owen et al., 1991; Purcell et al., 1998) has led to the common assumption 

that the generalisation of pre-learnt rules to novel stimuli (intra-dimensional shift), and the shifting of 

attention or behaviour to new rules (extra-dimensional shift) are distinct cognitive processes. 

However, our model contains only a basic type of learning algorithm – albeit arranged hierarchically – 

and is able to account for choices on all task stages with multidimensional stimuli. There are two 

aspects to this finding. First, the need for a hierarchy does suggest the existence of separate processes. 

However, second, the fact that those processes are so similar suggests that the extra-dimensional set 

shifting process shares important attributes with simpler learning and reversal processes lower down 

in the hierarchy.  

Some caveats to our study merit comment. First, the CANTAB IED has only one extra-dimensional set 

shift stage. This could result in noisier subject-specific parameter estimates and reduced sensitivity to 

identify more complex learning process, such as a separate learning rate parameter for the dimension 

weights. Typical computational modelling analysis of cognitive tasks involves repeated measurements 

of the cognitive construct of interest to obtain more reliable behavioural and algorithmic 

measurements. However, the introduction of novel stimuli and the specific ordering of task stages are 

thought to be crucial for the measurement of true attention set shifting and were intentionally 

considered in designing the task (Owen et al., 1991). Modelling analysis of tasks such as the 

‘dimensions task’, akin to the Wisconsin Card Sort Task, which do not involve the introduction of truly 

novel stimuli, lends support to the idea of attention-weighted learning and decision making. The use 

of our specific algorithm to update attention weights on these task versions is yet to be tested and 

will be important to determine whether we could see evidence of a more complex process in a task 
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with multiple set shifts. Second, our algorithm predicts higher errors on stage 9, the extra-dimensional 

reversal, compared to real data. This indicates that our model does not fully capture the flexibility with 

which humans make the extra-dimensional set shift. Relative inflexibility is a well-known feature of 

model-free reinforcement learning algorithms, which can be overcome by using models that 

incorporate more task structure such as ‘model-based’ reinforcement learning or hypothesis testing 

algorithms, suggesting an avenue for future research (Daw et al., 2011; Song et al., 2020; Wilson & 

Niv, 2012). However, as the ‘model-free’ system described here was able to predict ED shift errors to 

a very high degree, any improvement in model performance is unlikely to justify the added complexity 

of these more structural model types (which are also only likely to come in to play in the last one or 

two stages of CANTAB IED). Furthermore, the learnt attention weights in our current model are akin 

to a biased hypothesis testing model where features and dimensions that were previously relevant 

are tested first. 

Analysis of associations with mental health questionnaire data revealed a specific negative 

relationship between the learning rate parameter and compulsivity. This suggests that participants 

with higher compulsive symptoms require more information to update their estimates and adapt their 

behaviour in light of changes in the environment. The majority of our sample had very high learning 

rates (between 0.95 and 1), which indicates that updates of value estimates after a single trial with 

unexpected feedback are sufficient to change behaviour. Such one-shot learning is indeed optimal for 

maximising reward in the IED’s deterministic environment. It is tempting to speculate that the ability 

to adapt behaviour swiftly relies on a better understanding of the structure of the task compared to 

participants with compulsive symptoms. These would be compatible with other modelling analyses of 

the probabilistic “two-step” task (Daw et al., 2011), which measures the extent to which participants 

arbitrate between ‘model-free’ and ‘model-based’ reinforcement learning systems. Whilst the former 

is relatively computationally cheap, it is slower due to reliance on learning from experienced feedback. 

The latter system benefits from fast learning and increased flexibility at the expense of increased 

computational complexity required to use a model or internal representation of the environment. A 

consistent finding in previous literature is an over-reliance on model-free behaviour in compulsive 

disorders (Gillan et al., 2016; Gillan et al., 2020; Voon et al., 2014).  

Our sample consisted of unselected volunteers recruited from the general population. Despite the 

utility of online data collection, particularly for collecting a large number of participants, it is reliant 

on the pool of people who participate in online studies, which has the potential to introduce biases. 

Firstly, despite a very large sample relative to most studies in the field, the majority of participants 

performed very similarly, scoring few errors throughout the IED task. Similarly, the distributions of 

questionnaire scores were skewed towards the lower end of the scales, limiting the size of the 
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relationship that we could detect in this sample. This is reflected in the small effect size detected in 

the present study, which is fairly standard for online studies. However, it is worth noting that the 

correlation between model parameters and compulsive symptoms is greater than that between ED 

shift errors and compulsive symptoms, providing some evidence for the increased validity that a 

modelling approach is able to provide. Future research should focus on replicating this analysis in a 

sample with greater variation of symptom profiles.  

In conclusion, we have shown that modelling analyses of CANTAB IED task performance are able to 

provide more precise explanations of behavioural differences. These explanations can then be 

leveraged to offer mechanistic insights into the symptoms of mental health disorders. 
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4 Individual Variation in Risky Decisions Is Related to Age and Gender but not to 
Mental Health Symptoms 

4.1 Abstract 

Risky decisions involve choosing between options where the outcomes are uncertain. Cognitive tasks 

such as the CANTAB CGT have revealed that patients with depression make more conservative 

decisions, but the mechanisms of choice evaluation underlying such decisions, and how they lead to 

the observed differences in depression, remain unknown. To test this, we used a computational 

modelling approach in a broad general-population sample (N = 753) who performed the CANTAB CGT 

and completed questionnaires assessing symptoms of mental illness, including depression. We fit five 

different computational models to the data, including two novel ones, and found that a novel model 

that uses an inverse power function in the loss domain (contrary to standard Prospect Theory 

accounts), and is influenced by the probabilities but not the magnitudes of different outcomes, 

captures the characteristics of our dataset very well. Surprisingly, model parameters were not 

significantly associated with any mental health questionnaire scores, including depression scales; but 

they were related to demographic variables, particularly age, with stronger associations than typical 

model-agnostic task measures. This study showcases a new methodology to analyse data from 

CANTAB CGT, describes a noteworthy null finding with respect to mental health symptoms, and 

demonstrates the added precision that a computational approach can offer.  

4.2 Introduction 

The most well-known example of a computational model applied to decision making is Kahneman and 

Tversky’s Prospect Theory, which summarises performance in terms of parameters such as risk 

aversion (the degree to which participants avoid uncertainty) and loss aversion (the degree to which 

losses loom larger than gains) (Kahneman & Tversky, 1979). These types of models have been applied 

in mental health research where it has been shown that anxious patients are more risk averse, but not 

more loss averse, than healthy controls (Charpentier et al., 2017). Computational models based on 

Prospect Theory have also been applied to the CANTAB CGT. Romeu and colleagues modified 

traditional models to better fit CGT data from controls and groups of patients with various substance 

use disorders (Romeu et al., 2020). They found that whilst standard task measures such as “quality of 

decision making” (reflecting the tendency to make high-probability choices) and “risk adjustment” 

(the calibration between betting behaviour and probability), showed little difference between 

patients and controls, model parameters such as risk sensitivity and delay aversion did vary between 

groups, highlighting the added precision that the modelling approach can provide. However, in this 

study, the authors did not show some important aspects of model checking, such as parameter 
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recovery and correlations between individual-level summary measures (such as ‘overall proportion 

bet’) from model-simulated and real data. In particular, the latter is more specific than posterior 

predictive checks on the average of group behaviour and is important to highlight potential areas of 

model weakness (R. C. Wilson & Collins, 2019). Additionally, in this prior work the authors focused 

largely on capturing the impulsivity aspect of task performance due to its relevance in substance use 

disorders; however, mood and anxiety disorders are hypothesised to be more closely associated with 

changes in appetite for risk. 

Here, we expand on this prior work by combining several approaches. First, we examine CGT 

behaviour in a large sample with a number of self-reported measures of psychopathology. This allows 

us to jointly assess the relationship between computationally defined decision making processes, 

psychopathology and demographic variables. Second, we build on a previous computational approach 

(Romeu et al., 2020) to develop a model which is fully validated. Third, we collect data online which 

enables fast scaling and replication in novel cohorts. The validated model can then be applied to 

existing datasets to understand the relationship between any group or psychopathology measures 

and well-defined computational processes. 

4.3 Methods 

4.3.1 Participants 

Our dataset was collected online via Prolific Academic. Participants were recruited if they: a) were 

over 18 years of age; b) were fluent in English; c) had not experienced a significant head injury 

(resulting in loss of consciousness); d) had not been diagnosed with an untreated mental health 

condition (by medication or psychological intervention) that had a significant impact on their daily life; 

e) had never been diagnosed with mild cognitive impairment or dementia. Participants were 

anonymous, and they provided informed consent online before participating in the experiment. The 

dataset includes 762 participants who completed the CGT task and also several self-report mental 

health questionnaires. This sample size provides 95% power to detect associations of r = 0.13 at alpha 

= 0.05 (two-tailed). 

4.3.2 CANTAB Cambridge Gamble Task 

Participants completed the CANTAB CGT, as described previously (Rogers et al., 1999). The design of 

the task is presented in Figure 4.1A. Participants start with 100 points and are presented with ten 

boxes at the top of the screen on each trial - some of which are red, and the rest blue. They are told 

that one box has a token in it and that they must guess the colour of the box containing the token by 

selecting their choice at the bottom of the screen. They then have to bet a proportion of their points 
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that their guess is correct. The possible bets (0.05, 0.25, 0.50, 0.75 or 0.95 of their current points) are 

presented in a circle in the centre of the screen for two seconds each. Participants click on the circle 

when they see the amount they want to bet. The result of their choice is shown, and if they are correct, 

the points are added to their total. If not, the points are deducted. A new trial begins with different 

numbers of red and blue boxes. 

Participants completed 8 practice trials in which they first completed the colour choice part of the task 

on its own, before the bet component was added; these trials were not included in task analysis. For 

the first 18 assessed trials, the stakes were shown in descending order, and for the subsequent 18 

trials, in ascending order. Participants were excluded from analysis if they did not attempt all four 

blocks of the task (n = 2), selected either the earliest or the latest bets on all trials (n = 4), or selected 

the non-majority box colour on more than 50% of trials (n = 3) leaving 753 participants for modelling 

analysis. 
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Figure 4.1 CGT Task and Betting Behaviour.  

A. Schematic of a trial from the descending condition of the CANTAB CGT. Red and blue boxes are displayed at the top of the 

screen. After participants select which colour box they think the token is behind, bet options (0.95, 0.75, 0.50, 0.25, 0.05 of 

their current points – here 100) are presented sequentially in the centre of the screen. Participants click on the number they 

want to bet before the token is revealed. The points bet are added or subtracted from the total depending on whether the 

colour choice was correct or incorrect, and a new trial begins with a new box ratio and the new points total. B. Summary of 

real and model-simulated betting behaviour. Plots show the percentage of trials with each majority box number in which 

participants chose each bet proportion. Real data are shown with bars, while model-simulated data is shown by the coloured 

lines (points show the mean from 100 simulations, and error bars depict the standard deviation). Data are shown separately 

for the ascending (left) and descending (right) task conditions, and only trials on which participants chose the majority box 

colour (and all 5:5 trials) are included. RLA – Risk and Loss Aversion; PW-FG – Projected Wealth Fixed Gains, IGL – Inverse Gains 

and Losses. 
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4.3.3 Self-Report Questionnaires 

Participants provided their age, gender and level of education2. They also completed questionnaires 

assessing depressive symptoms (Self-Rating Depression Scale, SRDS (Zung, 1965)), anxious symptoms 

(State Trait Anxiety Inventory, STAI (Spielberger, 1970)), impulsivity (Barratt Impulsiveness Scale, BIS-

11 (Patton et al., 1995)), and anhedonia (Temporal Experience of Pleasure Scale, TEPS (Gard et al., 

2006)). 

4.3.4 Descriptive Measures of CGT Performance 

CANTAB CGT data are typically analysed using a number of descriptive (or model-agnostic) measures 

(Deakin et al., 2004; Rogers et al., 1999), which we detail here as they are used to assess model 

performance throughout the paper: 

1. Quality of Decision Making (QDM) 

The proportion of trials on which the participant chose the majority box colour, calculated over all 

trials on which the number of boxes in each colour differed. 

QDM =  
number of non 5: 5 trials where participant chose the majority box colour

number of non 5: 5 trials
  (4.1) 

 

2. Overall Proportion Bet (OPB) 

The mean proportion of current points gambled by the subject on all gamble trials. 

OPB =  
sum of the proportion bet on all trials

number of trials
  (4.2) 

 

3. Risk Adjustment (RA) 

A measure of a participant’s sensitivity to probability when betting. Higher values suggest that 

participants increase their bets with increasingly favourable odds (box ratio), while lower values 

suggest participants bet consistently irrespective of box ratio. This only includes trials on which 

participants chose the majority box colour and all 5:5 trials. 

 
2 1: Left formal education before age 16, 2: Left formal education at age 16, 3: Left formal education at age 17-18, 4: 
Undergraduate degree or equivalent, 5:  Master’s degree or equivalent, 6: PhD or equivalent. 



 

49 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

RA =  
∑ (mean proportion bet when majority box number is n ×  coeff )

mean propotion bet on trials where participant chose the majority box colour
  (4.3) 

coeff =

⎩
⎪
⎨

⎪
⎧

−2, n = 5
−1, n = 6

0, n = 7
   1, n = 8
   2, n = 9

  (4.4) 

 

4. Delay Aversion (DA) 

The difference between the mean proportion bet in the ascending and descending conditions. This 

only includes trials on which participants chose the majority box colour and the 5:5 trials.  

DA =  mean proportion bet on ascending trials − mean proportion bet on descending trials (4.5) 

4.3.5 Computational Models 

While the above descriptive measures represent intuitive summary statistics of task performance, 

they do not provide insight into why participants are making the choices they are. Computational 

models, on the other hand, use a generative approach to specify how participants interpret the stimuli 

presented to them and use information to make decisions, and therefore capture the underlying 

cognitive mechanisms involved in completing the task. Thus, we developed computational models to 

capture trial-by-trial decision making and risk-taking processes to directly test which processes can 

account for individual differences in gambling task behaviour.  

Each trial of the task requires two decisions - first to choose the box colour, and second to choose 

what proportion of points to gamble. The likelihood for each trial combines the model’s predictions 

of these two choices in the following way: 𝑝(𝑐ℎ𝑜𝑠𝑒𝑛 𝑐𝑜𝑙𝑜𝑢𝑟)  ×  𝑝(𝑏𝑒𝑡|𝑐ℎ𝑜𝑠𝑒𝑛 𝑐𝑜𝑙𝑜𝑢𝑟), such that 

the bet choice is dependent on the prior colour choice. 

All models make the same assumptions about the probability of choosing colours. Let 𝑐  be the choice 

of colour on trial 𝑡, then: 

 

𝑝(𝑐 = 𝑟𝑒𝑑) =  
𝜏(𝐹 )

𝜏(𝐹 ) + (1 − 𝜏)(10 − 𝐹 )
  (4.6) 

 
where 𝐹  is the number of red boxes on the screen on the current trial (range 0 - 10), 𝜏 is a red-bias 

parameter such that higher values mean the participant is more biased to selecting red, and 𝛼 is a 

sensitivity parameter that indicates how sensitive participants are to the box ratio on each trial, 
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equivalent to the slope of a logistic function. Higher values of 𝛼 indicate that the participant chooses 

the majority box colour in a more deterministic manner. 

The models then compute the probability of bets 𝑝(𝑏 |𝑐 ). The first step is the evaluation of the utility 

𝑈 of each bet option. This is where the different models differ, and we will turn to the different 

formulations of this below. Next, the utility of each potential outcome (a win or a loss of a certain 

magnitude, or the future wealth) is weighted by the probability of that outcome based on the choice 

of colour 𝑐 . Finally, a linear delay factor is included which penalizes options that are presented later. 

This results in an overall value 𝑉(𝑏 |𝑐 ) for each bet 𝑏 , conditioned on the first-stage colour choice 

𝑐  as follows: 

𝑉(𝑏 |𝑐 ) =  𝑓(𝑐 )𝑈(𝑏 , 1) + 1 − 𝑓(𝑐 ) 𝑈(𝑏 , −1) −  𝛽𝑑(𝑏 )  (4.7) 

where the function 𝑑(𝑏 ) takes on values {0, 0.25, 0.5, 0.75, 1} for increasing delays 𝑑() of the bets, 

and the function 𝑓(𝑐 ) indicates the fraction (number of boxes/10) of the chosen colour on that 

particular trial. The form and meaning of 𝑈 depends on the particular model as explained further 

below. Finally, the values 𝑉 determine the probabilities of choosing each bet through a softmax 

function: 

𝑝(𝑏 |𝑐 ) =
𝑒 ( | )

∑ 𝑒 ( | )
 (4.8) 

 

and we consider the joint likelihood over probability of colour and bet choices: ℒ(𝜃) =

 ∏ 𝑝 (𝑐 |𝜃)𝑝(𝑏 |𝑐 , 𝜃) for inference of parameters 𝜃. 

1. Risk and Loss Aversion (RLA)  

The first model is based on the influential framework of Kahneman and Tversky (Kahneman & Tversky, 

1979). Prospect Theory assumes that participants subjectively value the potential wins and losses on 

each trial. In the CGT, participants bet a proportion of their points which are either added or 

subtracted from their total, so the potential wins and losses are a product 𝑏 𝑤  of the bet 𝑏  chosen 

on trial 𝑡, and the wealth 𝑤  on that trial.  The bet takes on a fixed set of proportions (𝑏 ∈

 .05, .25, .5, .75, .95). In the RLA model, the subjective utility of the wins and losses is defined as 

follows: 

𝑈 (𝑏 , 𝑟 ) =
log(𝜌𝑏 𝑤 ) , 𝑖𝑓 𝑟 = 1

−δ log(𝜌𝑏 𝑤 ) , 𝑖𝑓 𝑟 = −1
  (4.9) 
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where  𝑟 = 1 indicates that the colour choice was successful, 𝑟 = −1 that it was not. The nonlinear 

logarithm function alters the effective shape of the utility curve, resulting in risk-aversion in the 

domain of gains and risk-seeking behaviour in the domain of losses, with greater values of the risk-

aversion parameter, 𝜌, exaggerating these effects. δ is a loss-aversion parameter, such that large δ 

means that losses are more aversive than the equivalent gain is rewarding.  Note that we have used a 

log function (as opposed to the conventionally used power function) to aid numerical stability. 

The parameters in this model were 𝜃 = {𝛼, 𝑐, 𝜌, 𝛿, 𝛽, 𝛾} where 𝛼 is the colour choice determinism, 𝑐 

the colour choice bias, 𝜌 the risk aversion, 𝛿 the loss aversion, 𝛽 the delay aversion and 𝛾 the bet 

choice determinism. 

2. Projected Wealth (PW) 

The RLA model as formulated above considers the potential wins and losses that would result on each 

trial. We next consider a related model (Bernoulli, 1738; von Neumann & Morgenstern, 1944) which 

assumes that the attractiveness of different bet options depends on the total projected wealth each 

option would result in, 𝑤 +  𝑏 𝑤 𝑟 . The utility 𝑈  of each bet in the wealth model is defined as:  

 

𝑈 (𝑏 , 𝑟 ) = log(1 +  𝜌(𝑤 + 𝑏 𝑤 𝑟 )) (4.10) 

 
Note that this model does not include a loss aversion parameter, and that increasing values of the risk 

aversion parameter, 𝜌,  increases risk averse behaviour. The parameters in this model were 𝜃 =

{𝛼, 𝑐, 𝜌, 𝛽, 𝛾} where 𝛼 is the colour choice determinism, 𝑐 the colour choice bias, 𝜌 the risk aversion, 

𝛽 the delay aversion and 𝛾 the bet choice determinism. 

3. Projected Wealth Fixed Gains (PW-FG) 

We next investigated the winning model from Romeu et al., which is similar to the PW model with the 

exception that the risk aversion parameter in the domain of potential gains is fixed to 1, and the 

parameter is only estimated in the potential loss domain with increasing 𝜌 indicating increased risk 

aversion in the domain of potential losses. Again, we assume that participants subjectively value the 

potential total wealth, 𝑤 +  𝑏 𝑤 𝑟 . 

 

𝑈 (𝑏 , 𝑟 ) =
log(1 +  (𝑤 +  𝑏 𝑤 )), 𝑖𝑓 𝑟 =    1

log(1 +  𝜌(𝑤 −  𝑏 𝑤 )), 𝑖𝑓 𝑟 = −1
  (4.11) 

 
The parameters in this model were 𝜃 = {𝛼, 𝑐, 𝜌, 𝛽, 𝛾} where 𝛼 is the colour choice determinism, 𝑐 the 

colour choice bias, 𝜌 the risk aversion, 𝛽 the delay aversion and 𝛾 the bet choice determinism. 



 

52 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

4. Linear Loss Aversion (LLA)  

We developed further models in order to improve the performance compared to the previously 

published PW-FG model described above. Our first novel model assumes that participants subjectively 

value the bet proportions 𝑏 , independently from their current wealth (note that unlike in the above 

models, 𝑤  does not enter the specification). Gains can be distorted through a power function, in 

which the risk aversion parameter, 𝜌 < 1, represents risk aversion, but 𝜌 > 1 represents risk seeking 

behaviour in the gains domain. Losses are scaled linearly by a loss aversion parameter. 

 

𝑈 (𝑏 , 𝑟 ) =
𝑏 , 𝑖𝑓 𝑟 = 1

−𝛿𝑏 , 𝑖𝑓 𝑟 = −1
  (4.12) 

 
The parameters in this model were 𝜃 = {𝛼, 𝑐, 𝜌, 𝛿, 𝛽, 𝛾} where 𝛼 is the colour choice determinism, 𝑐 

the colour choice bias, 𝜌 the risk aversion, 𝛿 the loss aversion, 𝛽 the delay aversion and 𝛾 the bet 

choice determinism. 

5. Inverse Gains and Losses (IGL)  

Our second novel model also assumes that participants subjectively value the bet proportions 𝑏 , again 

independently from their current wealth. 

 

𝑈 (𝑏 , 𝑟 ) =
𝑏 , 𝑖𝑓 𝑟 = 1

−𝛿𝑏 ,   𝑖𝑓 𝑟 = −1
  (4.13) 

 
In this model, the distortions of loss and gains are linked by an inverse power function, such that if the 

curve is concave (𝜌 < 1, risk averse) in one domain, the other is too, and if the curve is  convex (𝜌 >

1, risk seeking) in one domain, the other is too. This breaks the assumption of Prospect Theory of 

opposite behaviour between domains - risk aversion in the gains domain, combined with risk seeking 

in the losses domain. Losses are again additionally linearly scaled by a loss aversion parameter 𝛿. 

The parameters in this model were 𝜃 = {𝛼, 𝑐, 𝜌, 𝛿, 𝛽, 𝛾} where 𝛼 is the colour choice determinism, 𝑐 

the colour choice bias, 𝜌 the risk aversion, 𝛿 the loss aversion, 𝛽 the delay aversion and 𝛾 the bet 

choice determinism. 

4.3.6 Parameter Estimation and Recovery 

Parameters were estimated as described in 2.3 Parameter Estimation and parameter recovery was 

assessed for each model (Table 4.1) 
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4.3.7 Sensitivity Analysis 

We carried out a sensitivity analysis by removing participants whose bet choice data was not fit better 

by our winning model compared to chance performance. For this, we counted the number of times 

the model assigned the greatest probability to the bet that the participant actually chose and used a 

binomial test to compare this to the number of times we would expect it to happen by chance (where 

the probability of choosing each bet proportion was 1/5). We kept all participants where the outcome 

of this test was significant (suggesting that the winning model provided a significantly better fit to 

their data than chance) leaving a sample size of 727 (N = 26/753 (3.5%) excluded) for this analysis.  

 

Model Parameter Possible Range Mean ± SD, Median Recovery (r) 

1. Risk and Loss 
Aversion 

Colour choice determinism 0 - ∞ 8.30 ± 4.76, 8.48 0.71 

Colour choice bias 0 -1 0.50 ± 0.07, 0.50 0.50 

Risk aversion 0 - ∞ 0.86 ± 0.01, 0.86 0.00 

Loss aversion 0 - ∞ 1.90 ± 1.13, 1.67 0.87 

Delay Aversion -∞ - ∞ 0.22 ± 0.46, 0.15 0.85 

Bet choice determinism 0 - ∞ 3.19 ± 3.00, 2.50 0.89 

2. Projected Wealth 

Colour choice determinism 0 - ∞ 8.38 ± 4.81, 8.58 0.62 

Colour choice bias 0 - 1 0.51 ± 0.07, 0.50 0.57 

Risk aversion 0 - ∞ 0.98 ± 8.06, 0.02 0.00 

Delay Aversion -∞ - ∞ 0.02 ± 0.04, 0.02 0.77 

Bet choice determinism 0 - ∞ 33.27 ± 30.87, 24.15 0.86 

3. Projected Wealth 
Fixed Gains 

Colour choice determinism 0 - ∞ 8.48 ± 5.11, 8.38 0.69 

Colour choice bias 0 - 1 0.51 ± 0.07, 0.51 0.61 

Risk aversion 0 - ∞ 0.13 ± 0.21, 0.03 0.51 

Delay Aversion -∞ - ∞ 0.05 ± 0.13, 0.04 0.93 

Bet choice determinism 0 - ∞ 18.47 ± 10.60, 16.23 0.89 

4. Linear Loss Aversion 

Colour choice determinism 0 - ∞ 8.16 ± 4.53, 8.52 0.58 

Colour choice bias 0 - 1 0.50 ± 0.07, 0.50 0.53 

Risk aversion 0 - ∞ 9.88 ± 20.06, 0.44 0.16 

Loss aversion 0 - ∞ 1.29 ± 1.14, 0.99 0.43 

Delay Aversion -∞ - ∞ 0.08 ± 0.09, 0.04 0.71 

Bet choice determinism 0 - ∞ 38.98 ± 35.68, 29.16 0.43 

5. Inverse Gains and 
Losses 

Colour choice determinism 0 - ∞ 8.38 ± 5.01, 8.55 0.62 

Colour choice bias 0 - 1 0.50 ± 0.07, 0.50 0.53 

Risk aversion 0 - ∞ 0.68 ± 0.35, 0.62 0.85 

Loss aversion 0 - ∞ 2.65 ± 2.36, 1.99 0.95 

Delay Aversion -∞ - ∞ 0.07 ± 0.16, 0.05 0.91 

Bet choice determinism 0 - ∞ 18.47 ± 12.62, 15.65 0.80 
 

Table 4.1 CGT Model Parameter Ranges and Recovery. 

Free parameters of each model, along with summary statistics of their best-fitting values and recoverability. 
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4.4 Results 

Our final dataset consisted of 753 participants with an age range of 18 – 76 years (mean = 41.5, SD = 

13.5), and of which 358 (50%) were women. In Figure 4.1B, the bars show the betting patterns in the 

raw data - people tend to pick smaller bets when the box ratio is more evenly matched (lower majority 

box number) but bet more points when there is greater discrepancy in the box colours (higher majority 

box number). Furthermore, there is a bias towards betting higher values in the descending condition 

compared to the ascending condition (descend vs ascend: t(752) = 9.77, p = 2.63x10-21), suggestive of 

delay-averse (impatient) behaviour. 

Inspired by the modelling framework in  Romeu et al., 2020, all our models had the same colour choice 

(Equation 4.6), probability weighting (Equation 4.7), delay aversion (Equation 4.7), and bet choice 

determinism (Equation 4.8) functions, while the key distinction between models came from the 

valuation functions (Equations 4.9 – 4.13). 

4.4.1 Previous Models of Risky Decision Making Perform Poorly 

We first assessed the performance of three previously published models for risky decision making. 

The first valuation function we used was inspired by the influential Prospect Theory (Kahneman & 

Tversky, 1979). The Risk and Loss aversion model (RLA) proposes that participants subjectively 

evaluate the magnitude that could be won or lost on each trial with risk aversion in the domain of 

gains, risk seeking behaviour in the domain of losses , and loss aversion (losses are more aversive than 

gains are attractive). In the behavioural economics literature, these models are typically fit to group 

behaviour and the average parameter estimates obtained. Here, we are more interested in fitting 

individual-level rather than group-level parameters to explore how differences in e.g., loss aversion 

and risk aversion lead to differences in task behaviour. When examining the predictions made by the 

RLA model, we found that it predicts that participants were most likely to choose either the largest or 

the smallest bet option on all trials. The green line in Figure 4.1B shows how the model predicts that 

the 0.05 or 0.95 bets are chosen the most often regardless of the box ratio, in contrast to the real data 

which displays a clear preference for intermediate bets when the majority box number is between 6 - 

8. Therefore, the RLA model was not able to capture the key betting patterns observed in the real data 

(Figure 4.1B, Figure 4.2A).  

The second established model we tested was inspired by Expected Utility Theory (Bernoulli, 1738; von 

Neumann & Morgenstern, 1944). The model assumes that participants subjectively evaluate their 

projected wealth following the outcome of each trial while making decisions, rather than the 

individual losses and gains, and therefore does not include a loss aversion parameter. Unlike the RLA 

model, this Projected Wealth model (PW) model was able to generate participants’ choosing of 
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intermediate bet proportions (0.25, 0.50, 0.75). However, the model was not able to capture the 

behaviour of the most low-betting participants (Figure 4.2B). 

The Projected Wealth Fixed Gains model (PW-FG; Romeu et al., 2020) is a previously published model 

that was specifically developed to describe behaviour on CANTAB CGT. It is similar to the PW model 

except for the adaptation that the risk aversion parameter was fixed to 1 for potential increases in 

cumulative points while a free parameter was estimated for the case of potential decreases to 

cumulative points. However, the PW-FG model exhibited the same weakness as the PW model, failing 

to account for the behaviour of participants who chose lower bets on average, even at high box ratios, 

as shown most clearly in Figure 4.1B. In particular it overestimates the percentage of participants that 

chose to bet 75% of their points when the majority box number was 7, 8 or 9. This weakness of the 

PW-FG model is further emphasised by the scatterplot of the overall proportion bet measure in real 

vs model-simulated data, where the failure to capture the behaviour of low-betting participants is 

clear (Figure 4.2C). Capturing this conservative betting behaviour is of particular importance as prior 

studies indicate that placing low bets on favourable gambles is related to anxious and depressive 

symptoms (Charpentier et al., 2017; Murphy et al., 2001; Rawal et al., 2013).  
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Figure 4.2 Posterior Predictive Checks Demonstrate Specific Model Weaknesses.  

A. Average Group Fit of Risk and Loss Aversion Model. Real and model-simulated patterns of proportion bet averaged over 

subjects for each box ratio and task condition. Points indicate mean whilst bands represent 95% confidence intervals.  B. 

Individual Differences in Overall Proportion Bet for Projected Wealth Model. Scatter plot of real vs model-simulated scores, r 

= 0.80. C. Individual Differences in Overall Proportion Bet for Projected Wealth Fixed Gains Model. Scatter plot of real vs model-

simulated scores, r = 0.92. D. Individual Differences in Risk Adjustment for Linear Loss Aversion Model. Scatter plot of real vs 

model-simulated scores, r = 0.77. For the lower panels in this figure, the correlation between real and model data was 

calculated for 10 different simulations, and the average of these is reported here. The plots show the comparison with a single 

simulated dataset for visualisation purposes. 

 

 

4.4.2 Participants are Risk Averse for both Gains and Losses, and Indifferent to Current Wealth 

In order to overcome the limitations of the three models described above, we developed two novel 

models in which participants are assumed to subjectively evaluate the bet proportions themselves 

(0.05, 0.25, 0.50, 0.75, 0.95) thus rendering their current number of points irrelevant for decision 

making. The Linear Loss Aversion model (LLA) uses a power function for gains, and a linear function 
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was introduced for losses to prevent the convexity that led to the RLA model being unable to predict 

participants’ choosing intermediate bets. Further, a loss aversion parameter was reincorporated to 

overcome the limitation of the PW and PW-FG models, and better describe the behaviour of 

consistently low-betting participants. This model performed much better than previous ones as shown 

by the promising correlation between real and model-simulated data, particularly for risk adjustment 

scores (Figure 4.2D). We then developed a final model to improve the predictions of participant-

specific risk adjustment further, as this is a key feature of task performance. This model, Inverse Gains 

and Losses (IGL), also uses a power function for gains with the subjective valuation of losses now also 

determined by a power function and parameterised with the inverse risk aversion parameter (1/ρ). 

This has the effect that predicted behaviour is consistent between the domains of gains and losses, 

being either risk-seeking or risk-averse in both, in contradiction to the RLA model. This model was able 

to fully recapitulate the patterns of individual variability observed (Figure 4.1B). 

 

Despite the utility of posterior predictive checks (Figure 4.1B, Figure 4.2) during our iterative model 

development procedure, a more formal model comparison approach is required. Figure 4.3A shows 

the average likelihood per trial, an indication of how well the model predicts participant choices on 

average, as well as the integrated Bayesian Information Criterion, which considers both the model’s 

predictions and simultaneously penalises for added model complexity (a less negative score indicates 

a better model). These graphs both show that each successive model improves overall model 

performance, with the Inverse Gains and Losses model performing best on both measures. Figure 4.3B 

demonstrates how this winning model generates betting choices based on the box ratio presented to 

the participant on a particular trial, using the group median of estimated parameter values. Of note is 

the concavity of the valuation of the bet proportions in the far-left panel, which suggests that 

participants are indeed largely risk averse (with risk aversion parameters < 1) in the domain of both 

gains and losses (in contrast to Prospect Theory), and the quite minimal effect of delay aversion which 

is evident by comparing the middle two panels. Finally, Figure 4.4 shows that the model is able to 

capture both the group-level behaviour (Figure 4.4A), and the individual-level descriptive measures 

(Figure 4.4B) very well, as the correlations with the descriptive measures are all 0.89 and above. 
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Figure 4.3 CGT Model Comparison and Model Simulations. 

A. Model Comparison. Model performance assessed by average likelihood per trial (left) and iBIC (right). The dotted line 

indicates the average likelihood per trial for a model that makes choices at random – 0.1. B. Model Simulations. Internal model 

values simulated using the best fitting Inverse Gains and Losses (IGL) model. Far Left: Subjective valuation of potential wins 

and losses for each bet proportion. Centre Right: Win/loss values are weighted by their probabilities (n boxes of the 

chosen/unchosen colour) to give the expected utility for each bet proportion. Centre Left: Expected utilities are adjusted by 

the order in which they are displayed. This example is from the descending condition such that lower bet proportions are 

shown later, and thus penalised more. Far Right: The delayed utilities are passed through a softmax equation to give the 

probability of a participant choosing each bet. Importantly the IGL model predicts that participants are likely to make 

intermediate-level bets when the box ratio is between 6-8, consistent with real behaviour (cf Figure 1B). The medians of 

estimated parameters were used for simulations: risk aversion – 0.62, loss aversion – 1.99, delay aversion – 0.05, bet choice 

determinism – 15.65. The dotted lines at 0 aid visualisation. RLA – Risk and Loss Aversion; PW – Projected Wealth, PW-FG – 

Projected Wealth Fixed Gains, LLA – Linear Loss Aversion, IGL – Inverse Gains and Losses. 

 

 

 

 

 

 

 

 



 

59 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

 

Figure 4.4 Qualitative Fits to CGT Data for Inverse Gains and Losses Model.  

A. Average Group Fits. Average participant and model-simulated patterns of colour choice (top) and proportion bet (bottom) 

for each box ratio. Points indicate mean and bands represent 95% confidence intervals. B. Individual Differences of Descriptive 

Measures. Scatterplots of scores from real data against those from a model-simulated dataset for Quality of Decision Making, 

r = 0.94 (top left), Overall Proportion Bet, r = 0.99 (top right), Risk Adjustment, r = 0.89 (bottom left), and Delay Aversion, r = 

0.96 (bottom right). The dotted line indicates y = x (perfect prediction). The correlation between real and model data was 

calculated for 10 different simulations, and the average of these is reported here. 

 

 

4.4.3 Risk Aversion Increases with Age, and Women are More Risk Averse Than Men 

To assess which model parameters were related to age, gender and level of education, we calculated 

Pearson’s correlations and t-tests. Age was negatively associated with the risk aversion parameter 

(indicating older people are more risk averse) and delay aversion, but positively associated with loss 

aversion (risk aversion: r(751) = -0.24, p = 1.49x10-11; delay aversion: r(751) = -0.09, p = 0.011; loss 

aversion: r(751) = 0.10, p = 0.0049). Women were less deterministic in both the colour choice and 

betting choice part of the task and were also more risk-averse and loss-averse than men (colour choice 

determinism: t(751) = 2.82, p = 0.0049, Cohen’s d = 0.21; bet choice determinism: t(751) = 2.71, p = 

0.0069, Cohen’s d = 0.20; risk aversion: t(751) = 5.03, p = 6.23x10-07, Cohen’s d = 0.37; loss aversion: 

t(751) = 2.45, p = 0.015, Cohen’s d = -0.18). Finally, higher education level was positively correlated 

with colour choice determinism (r(751) = 0.08, p = 0.027). After applying a Bonferroni correction to 
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account for the 18 comparisons performed (α = 0.0028), the relationships between risk aversion and 

age/gender remained significant (Figure 4.5).  

 

 

Figure 4.5 Associations Between CGT Model Parameters and Demographic Variables.  

A. Older people are more risk averse. Lower values of the risk aversion parameter represent higher risk aversion, r(751) = -

0.24. B. Women are more risk averse. Lower values of the risk aversion parameter represent higher risk aversion, t(751) = 

5.03. Untransformed parameter values are used for statistical inference while transformed values (𝜌 > 0) are used for 

visualisation. Dotted line indicates an objective utility function, 𝜌 > 1 indicates risk seeking behaviour whilst 𝜌 < 1 indicates 

risk aversion. 

 

Age and gender were also associated with the model-agnostic measures: age was negatively 

correlated with overall proportion bet, risk adjustment and delay aversion (overall proportion bet: 

r(751) = -0.14, p = 1.07x10-4; risk adjustment: r(750) = -0.11, p = 3.80x10-3; delay aversion: r(749) = -

0.087, p = 0.017) whilst women bet less, and adjusted their bets less compared to men (overall 

proportion bet: t(751) = 4.13, p = 4.09x10-5, Cohen’s d = 0.30; risk adjustment: t(750) = 3.51, p = 

4.72x10-4, Cohen’s d = 0.26)3. After applying a Bonferroni correction to account for the 12 comparisons 

performed (α = 0.0042), the relationships between overall proportion bet and risk adjustment with 

both age and gender remained significant. Crucially, the size of the relationship between age and the 

computational risk aversion parameter was significantly greater than that with the model-agnostic 

 
3 Note that the degrees of freedom vary slightly as some outcome measures are incalculable from certain data. For 
instance, delay aversion is incalculable if participants never chose the majority box colour in at least one condition. In our 
data, one participant did not obtain a risk adjustment score, and two participants did not obtain a delay aversion score. 
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overall proportion bet measure (r = -0.24 vs r = -0.14: Steiger’s Z = 2.48, p = 0.0066), demonstrating 

the extra sensitivity conferred by the computational approach. The size of the effect of gender on risk 

aversion was also numerically greater than that with the model-agnostic overall proportion bet 

measure, though this difference was not statistically significant (r = 0.14, transformed from d = 0.3 vs 

r = 0.18, transformed from d = 0.37: Steiger’s Z = 0.77, p = 0.2207). These results were unaffected by 

a sensitivity analysis in which participants whose data were not fit significantly better by our winning 

model than by chance were removed (Table 4.2). 

 

 

 

Table 4.2 Key CGT Relationships in a Sensitivity Analysis. 

SRDS: Self-Rating Depression Scale, STAI-S: State Trait Anxiety Inventory – State, STAI-T: State Trait Anxiety Inventory – Trait, 

BIS-11: Barratt Impulsivity Scale, TEPS: Temporal Experience of Pleasure Scale. 

 

4.4.4 Model Parameters are Not Associated with Mental Health Symptoms 

To assess whether model parameters were related to mental health symptoms, we calculated 

Pearson’s correlations between each pair of variables. However, we found no significant relationship 

between any of our model parameters and symptom scores, with all correlations r ≤ 0.07 (Table 4.3). 

Model-agnostic measures of task performance were also not related to mental health symptoms, with 

all correlations r ≤ 0.07 (Table 4.4). These results were unaffected by a sensitivity analysis in which 

participants whose data were not fit significantly better by our winning model than by chance were 

removed (Table 4.2). The distributions of questionnaire scores and model-agnostic measures are given 

in Table 4.5. 

 

Variable 1 Variable 2 Effect Size p value 

Risk Aversion Parameter Age r = -0.25 4.99x10-12 

Risk Aversion Parameter Gender Cohen’s d = 0.38 4.02x10-7 

Overall Proportion Bet Age r = -0.15 3.84x10-5 

Overall Proportion Bet Gender Cohen’s d = 0.32 2.29x10-5 

Risk Aversion Parameter SDRS r = 0.05 0.14 

Risk Aversion Parameter TEPS r = 0.02 0.59 

Loss Aversion Parameter SDRS r = 0.00 0.93 

Loss Aversion Parameter TEPS r = -0.05 0.14 

Overall Proportion Bet SDRS r = -0.01 0.88 

Overall Proportion Bet TEPS r = 0.07 0.07 
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Parameters 

Colour choice 
determinism 

Colour choice 
bias 

Risk aversion Loss aversion 
Delay 

aversion 
Bet choice 

determinism 

Q
ue

st
io

nn
ai

re
 SRDS (746) -0.03, 0.35  0.06, 0.12 0.06, 0.11 -0.00, 0.90 0.04, 0.33 -0.04, 0.29 

TEPS (745) -0.05, 0.19 -0.03, 0.39 0.02, 0.53 -0.06, 0.12 -0.03, 0.49 -0.05, 0.18 
STAI-S (742) -0.03, 0.40 0.06, 0.11 0.04, 0.23 -0.02, 0.68 0.03, 0.42 0.03, 0.47 
STAI-T (742) 0.02, 0.50 0.06, 0.09 0.02, 0.58 -0.01, 0.69 0.01, 0.88 0.02, 0.55 
BIS-11 (741) -0.07, 0.04 0.02, 0.52 0.02, 0.54 -0.07, 0.06 0.06, 0.12 -0.05, 0.21 

 

Table 4.3 Relationships Between CGT Model Parameters and Symptoms.  

Pearson’s correlations and p-values for relationship between symptom questionnaire scores and untransformed parameters 

of the best-fitting model (IGL). The bracketed value by each questionnaire gives the degrees of freedom for the corresponding 

analyses. SRDS: Self-Rating Depression Scale, STAI-S: State Trait Anxiety Inventory – State, STAI-T: State Trait Anxiety Inventory 

– Trait, BIS-11: Barratt Impulsivity Scale, TEPS: Temporal Experience of Pleasure Scale. 

 

 

 

 

Table 4.4 Relationships Between CGT Model-Agnostic Measures and Symptoms.  

Pearson’s correlations and p-values for relationship between symptom questionnaire scores and model-agnostic measures of 

CGT task performance. Bracketed values give the degrees of freedom for the analysis. SRDS: Self-Rating Depression Scale, 

STAI-S: State Trait Anxiety Inventory – State, STAI-T: State Trait Anxiety Inventory – Trait, BIS-11: Barratt Impulsivity Scale, 

TEPS: Temporal Experience of Pleasure Scale. 

 

 

 

 

Model-Agnostic Measure 

Quality of Decision Making Overall Proportion Bet Risk Adjustment Delay Aversion 

Q
ue

st
io

nn
ai

re
 SRDS -0.04, 0.31 (746) -0.00, 0.96 (746) 0.01, 0.70 (745) 0.04, 0.24 (744) 

TEPS -0.03, 0.42 (745) 0.07, 0.07 (745) -0.05, 0.14 (744) -0.05, 0.19 (743) 

STAI-S -0.04, 0.32 (742) 0.01, 0.85 (742) 0.01, 0.70 (741) 0.04, 0.26 (741) 

STAI-T 0.01, 0.88 (742) 0.01, 0.78 (742) 0.05, 0.15 (741) 0.03, 0.43 (741) 

BIS-11 -0.05, 0.17 (741) 0.03, 0.39 (741) -0.05, 0.21 (740) 0.06, 0.09 (740) 
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Table 4.5 Descriptive Statistics of Questionnaire Scores and CGT Model-Agnostic Measures. 

Range of possible questionnaire scores or model-agnostic measures, along with mean, standard deviation, and median of 

participant scores. SRDS: Self-Rating Depression Scale, STAI-S: State Trait Anxiety Inventory – State, STAI-T: State Trait Anxiety 

Inventory – Trait, BIS-11: Barratt Impulsivity Scale, TEPS: Temporal Experience of Pleasure Scale. QDM: Quality of Decision 

Making, OPB: Overall Proportion Bet, RA: Risk Adjustment, DA: Delay Aversion. 

 

 

 

 

 

 

 

 

 

 

4.5 Discussion 

In this study, we used a computational analysis of the CANTAB CGT to more precisely investigate the 

mechanistic relationships between task behaviour, symptoms of mental health disorders and 

demographic variables. We fit five different models, including two novel ones, and found that a novel 

model in which betting strategies are not influenced by the number of current points, and uses an 

inverse power function in the loss domain, captures the characteristics of a large online dataset very 

well. Somewhat surprisingly, we found no significant relationships between model parameters and 

symptoms of mental health problems, but we did find robust associations between the risk aversion 

parameter and age and gender, such that older people and women were more risk averse. It is 

noteworthy that these relationships with demographic variables were stronger than those with raw 

outcome measures such as overall proportion bet, highlighting the added precision and mechanistic 

insight gained from this modelling analysis. 

Our best-fitting model suggests a mechanistic explanation for how participants approach risky 

decisions when provided with explicit information about the amounts and probabilities that may be 

won or lost. Our novel model (Inverse Gains and Losses) varies from traditional risky decision making 

models such as Prospect Theory in two main ways: 1) it assumes that participants’ betting strategies 

are independent of their current number of total points; and 2) it assumes that participants are 

consistently either risk averse or risk seeking across the domains of gains and losses. Both of these 

 Measure Possible Range Mean ± SD, Median 

Q
ue

st
io

nn
ai

re
 SRDS 20 - 80 38.95 ± 10.25, 39 

STAI-S 20 - 80 36.97 ± 12.77, 35 

STAI-T 20 - 80 42.75 ± 13.26, 42 

TEPS 18 - 108 80.28 ± 11.44, 81 

BIS-11 30 - 120 57.99 ± 9.73, 58 

M
od

el
-A

gn
os

tic
 

M
ea

su
re

 

QDM 0 – 1 0.96 ± 0.07, 1.00 

OPB 0 – 1 0.54 ± 0.15, 0.56 

RA -2.4 – 7.2 2.43 ± 1.27, 2.44 

DA -0.9 – 0.9 0.07 ± 0.19, 0.04 
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distinctions are likely to reflect the differences between tasks for which Prospect Theory models were 

developed and the CGT. The former were typically two-alternative forced choice tasks in which 

participants were required to choose between a risky gamble and a certain option (of winning or losing 

a number of points). As the current task asks participants to choose an amount to bet from five 

options, it involves a more fine-grained decision of how much one is willing to bet on a decision rather 

than just which option they choose. It is therefore likely to be more sensitive to characterising 

participants’ risk preferences. Furthermore, it is possible that because of the additional complexity in 

the gambling component (due to there being more options), the current number of points becomes a 

less salient component than the overarching bet choice strategy. Finally, previous literature suggests 

that on average participants tend to be risk averse in the gain domain but risk seeking in the loss 

domain (Kahneman & Tversky, 1979). Due to the power function in the gain domain, the inverse power 

function in the loss domain, and the values of the estimated risk aversion parameter in our winning 

model generally being below one, our model suggests that when performing the CGT participants tend 

to be risk averse in both domains. Again, this is likely to be due to key differences in the CGT compared 

to traditional risky decision making tasks. Classical tasks are typically ‘additive’ in nature, such that the 

amount to be gained or lost is irrespective of the number of points the participant has. This contrasts 

with the CGT, where participants have to choose a bet from different proportions of their current 

number of points, which means that when following previous gains, participants have the potential to 

gain even more, often referred to as a ‘multiplicative’ feature. Multiplicative tasks can also often lead 

to bigger losses than additive tasks, and recent theories in ergodicity economics suggest that a 

multiplicative environment should therefore foster higher levels of risk aversion (Meder et al., 2021), 

which our results support. 

Analysis of relationships between model parameters and symptoms of mental health problems 

revealed no significant findings. This result was somewhat surprising given the previous literature 

reporting more conservative risk attitudes in CGT in various groups with depressive symptoms 

(Mannie et al., 2015; Murphy et al., 2001; Rawal et al., 2013), as well as the previous algorithmic 

analysis of CGT in patients with substance use disorders (Romeu et al., 2020). However, our results 

are consistent with a recent study assessing CGT performance in an adolescent cohort (using standard 

model-agnostic measures) in which there was also no convincing evidence of a relationship between 

risk taking and depressive symptoms (Lewis et al., 2021), while clear relationships with age and gender 

were observed. It is possible that these inconsistencies are due to general population samples not 

capturing many participants at the more severe end of the symptom scales, and therefore limiting the 

size of any relationship. Alternatively, previous findings may have been due to chance or confounding 

variables. It is also possible that these models and parameters are not sufficiently sensitive to capture 
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more specific differences in reward seeking or risk-taking behaviour seen in depression. For example, 

Tavares et al found that unmedicated depressed patients had worse quality of decision making in the 

colour choice component of the task specifically on trials that followed a loss (Taylor Tavares et al., 

2007), which could be further explored with learning models. This highlights an interesting possible 

follow-up computational study for analysis of this task and its relationship with depression. 

We found relationships between many model parameters and demographic variables of which two 

survived correction for multiple comparisons: older people and women were found to show higher 

levels of risk aversion. This finding has been consistently reported in previous literature with large 

cohort samples and model-agnostic CGT outcome measures such as overall proportion bet (Deakin et 

al., 2004; Lewis et al., 2021). Here, we replicated these findings with the behavioural measures, but 

further showed that the relationships between these demographic variables and risk aversion, a 

parameter from a model-based analysis, were stronger. This demonstrates that a modelling analysis 

of task behaviour can lead to more precise measurements, and also that these parameters are more 

mechanistic in nature than traditional model-agnostic behavioural measures. Future research should 

implement this computational approach in existing or novel CGT datasets to better understand 

previous findings. 

There are some caveats to our study that merit comment. Our data was collected online, which is 

important for accessing large samples for research, but there is less control over the participants that 

volunteer to take part in online studies. This might lead to biased samples and spurious correlations. 

However, as the associations with demographic variables have been reported before, including in 

large cohort studies, these are less likely to have led to the results reported here. Another caveat of 

online data collection specific to this task, is the difficulty of drawing a sharp distinction between true 

impulsivity and distraction. It is possible that some participants select the earliest presented bet every 

time to finish the task as quickly as possible, or that some let the timer run out and are not engaging 

with the task properly. We attempted to address this by removing a small percentage of individuals 

who always chose the first or last bets, and those whose data were not well fit by our winning model. 

This did not affect the results. However, it remains difficult to distinguish inattentive behaviour from 

poor decision making and impulsivity in online data collection. 

In conclusion, we have presented a modelling analysis of CANTAB CGT in a novel, large dataset, and 

shown robust relationships with age and gender, but not mental health symptoms in an unselected, 

largely sub-clinical sample. This work highlights the added precision that computational models can 

provide to explore relationships with both demographic and mental health symptom variables. 
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5 Individual Variation In Subjective Probability Weighting Is Important But Unrelated 
to Catastrophising and Anxiety. 

5.1 Abstract 

Gambling tasks have long been used to study how people approach risky decisions. Previous research 

has suggested that elevated anxiety is associated with differences in risky decision making, but it 

remains unclear which specific facets or types of anxiety are most associated with these differences. 

Further, many existing studies of risky decisions have been unable to disentangle all of the 

components of these decisions, and in particular tend to neglect ‘probability weighting’ – how 

people’s subjective weighting of probability differs from the true probability. We hypothesised that 

this component is highly relevant to catastrophising symptoms in particular, which are common in 

anxiety. To test this, we used a computational modelling approach in a broad general-population 

sample (N = 212) who performed a gambling task and completed questionnaires assessing symptoms 

of mental illness, including catastrophising. We found evidence that models incorporating a 

probability weighting function fit participants’ data better than those without it, which replicated in a 

larger sample (N = 946). Despite this, we found no evidence for a relationship between probability 

weighting parameters and catastrophising; and whilst we found some evidence that people with 

higher general anxiety symptoms overweighted the probability of negative gamble outcomes relative 

to the positive ones in the initial sample, this result did not replicate when tested in the larger sample. 

This study showcases the importance of incorporating probability weighting parameters into studies 

of risky decision making and describes a noteworthy null finding with respect to mental health 

symptoms. 

5.2 Introduction 

Catastrophising refers to the tendency to predict the worst outcome. An example would be when 

scoring less highly than hoped on a maths test. Whilst some people might feel disappointed and make 

a mental note to do more preparation for the next test, an individual with high catastrophising might 

take this as a signal that they are incompetent at everything, and will never be able to get a job. These 

kinds of cognitions can be very distressing and have been implicated in common mental health 

disorders, particularly those associated with anxiety such as generalised anxiety disorder, obsessive 

compulsive disorder, and post-traumatic stress disorder (Gellatly & Beck, 2016). Whilst related to 

anxiety disorders, recent research has shown that catastrophising is a separate construct from anxiety 

and worry, suggesting it may be a trans-diagnostic symptom (Pike et al., 2021). Moreover, the 

importance of this symptom for mental health is exemplified by its targeting in cognitive behavioural 

therapy, an evidence-based talking therapy for common mental disorders (Cuijpers et al., 2016, 2019; 
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Hofmann et al., 2012): “decatastrophising” involves asking people to re-evaluate the likelihood and 

severity of the feared event. Despite its significance in mental health, the specification of what 

catastrophising entails remains imprecise. Beck's initial conceptualisation was that of cognitive 

distortion, which he termed magnification, defined as ‘inflation of the magnitude of [one's] problems 

and tasks'. He went on to refine this definition in 1979, as when an individual ‘always think[s] of the 

worst. It's most likely to happen to [them]’ (Beck AT et al., 1979). These definitions highlight two 

aspects of catastrophising: thinking of problems as more severe than they are, and thinking of 

problems as more probable than they are. It has been assumed that catastrophising cognitions 

comprise both of these, though this has not been investigated. The development of a catastrophising 

questionnaire, along with the recent advances in the field of computational psychiatry, offer a 

promising means by which to test these hypotheses. 

Computational models are increasingly used to develop precise explanations of cognitive processes in 

the field of mental health (Adams et al., 2016). Kahneman and Tversky’s Prospect Theory (Kahneman 

& Tversky, 1979) is an influential model used to describe how people make risky decisions and has 

typically been applied to gambling tasks. In these tasks, participants are typically asked to choose 

between two options: a gamble (e.g. 50% chance of winning 50 points and 50% chance of losing 30 

points) and a sure option (e.g. 100% chance of winning 15) in order to maximise their points. Crucially, 

compared to simply measuring the number of times the participant accepted the gamble, Prospect 

Theory offers a theoretical account of why participants make the choices they do in terms of how they 

subjectively value winning or losing different amounts of points. The subjective evaluation is specified 

mathematically and adjusted by setting the values of model parameters such as risk aversion and loss 

aversion. Risk aversion captures participants’ aversion to uncertainty, whilst loss aversion captures 

the extent to which participants find losses more aversive than gains are rewarding. The more recent 

Cumulative Prospect Theory (Tversky & Kahneman, 1992) includes an additional function that 

captures how people subjectively weight the probabilities that are presented to them. They suggested 

that people systematically overweight small probabilities and underweight large probabilities, and 

subsequently several one- or two-parameter functions have been suggested as ways to capture such 

variation. The advantage of using these models is that we gain more precise explanations for the 

observed behaviour, teasing apart the different behaviourally relevant components of interest. Here, 

we are most interested in the ability to measure and separate subjective probability weighting, due 

to its relevance to definitions of catastrophising – i.e., thinking of negative outcomes as more probable 

than they actually are. 
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Prospect Theory models have been used in previous research to disentangle components of risky 

decision making, and differences in behavioural parameters have been reported in anxiety-related 

disorders, particularly OCD. Fitting Prospect Theory models to gambling task data, Charpentier et al. 

found that risk aversion was higher in pathologically anxious patients compared to healthy controls, 

but that there was no difference in loss aversion (Charpentier et al., 2017). Sip et al. found increased 

loss aversion in unmedicated OCD patients as compared to medicated OCD patients and controls, 

though they did not estimate risk aversion (Sip et al., 2017). Neither of these studies incorporated the 

probability weighting aspect of Cumulative Prospect Theory models, and so they cannot distinguish 

whether apparently higher risk or loss aversion might instead be driven by differences in probability 

weighting (Charpentier et al., 2017). In another study, probability weighting parameters were 

estimated from a task in which participants had to choose between two gambles, each with three 

potential outcomes (Aranovich et al., 2017). Parameters were analysed between patients with OCD or 

hoarding disorder and healthy volunteers, and the authors reported that controls overweighted low 

probabilities and underweighted high probabilities (as noted by Kahneman and Tversky), whereas 

patients showed the opposite pattern. In a more recent study with OCD, GAD and social anxiety 

patients, there was no difference in probability weighting parameters between patients and controls 

(George et al., 2019). In summary, whilst there is some evidence of altered risky decision making in 

individuals with anxiety-related disorders, most of these studies did not estimate all parameters of 

the Cumulative Prospect Theory model, making it difficult to adjudicate between competing 

hypotheses as to what might be driving any observed differences. Further, these studies used adaptive 

task designs, which despite their popularity may bias parameter estimates. Until recently (Pike et al., 

2021), it was not possible to readily measure catastrophising using a questionnaire, especially in a 

large-scale online context, so specific relationships with catastrophising have not been tested. 

In this pre-registered study (Talwar et al., 2021), we use cognitive data from an unselected online 

sample on a novel gambling task, as well as mental health symptom data leveraging the behavioural 

variation inherent in larger samples (Gillan et al., 2016). We fit full Cumulative Prospect Theory models 

to task data to estimate subject-specific probability weighting parameters and assess their relationship 

with symptoms of catastrophising. Specifically, we aimed to test whether probability weighting 

parameters are related to symptoms of catastrophising.  
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5.3 Methods 

5.3.1 Participants 

Participants were recruited online via Prolific Academic to complete the Gambling Task and Abstract 

Reasoning Task (ART), and also several self-report mental health questionnaires. Participants were 

recruited if they confirmed they a) were between 18 and 60 years of age, b) were fluent in English, c) 

lived in the UK or US, d) did not have impaired, uncorrected vision or colour blindness, e) had never 

been diagnosed with mild cognitive impairment or dementia, f) had no history of head injury. 

Participants’ data was anonymous, and they provided their consent online before participating in the 

experiment. 

Original Sample 

This sample was collected in July 2021. We recruited 212 participants, which provides over 90% power 

to detect effect sizes over r = 0.2 (in a one-tailed correlation test using a bivariate normal model) (Faul 

et al., 2009).  

Replication Sample 

This sample was collected in January 2022. We recruited 946 participants, which provides over 90% 

power to detect effect sizes over r = 0.1 (in a one-tailed correlation test using a bivariate normal 

model) (Faul et al., 2009). 

5.3.2 Gambling Task 

To assess how probability weighting affects risky decision making, participants completed a gambling 

task (Figure 5.1A). The task involves choosing between two options, which determine how many 

points participants win or lose on that trial. One option has 100% probability of a specified outcome, 

and the other option is a gamble with some probability (x%) of a positive outcome, and the 

complementary probability (100-x%) of a negative outcome. Participants are instructed to pick the 

outcome that they believe will maximise their points overall, but they do not get feedback on their 

decisions. There are three types of trials: gain-only, loss-only, and mixed (Figure 5.1A). In gain-only 

trials, the sure option is a gain of +10, +20, or +30, the positive outcome on the gamble is one of +20, 

+40, +60, whilst the negative outcome is always 0. The loss-only trials feature the equivalent negative 

outcomes, such that the positive outcome on the gamble is always 0, and the negative outcome is one 

of -20, -40, or -60 with the sure option being a loss of -10, -20, or - 30. For the mixed gamble trials, the 

sure option is always 0, whilst the positive outcome on the gamble is a gain of +40, +50, or +60, and 

the negative outcome is a loss of -10, -50, or -90. Furthermore, the probabilities of the good outcome 

in the gamble could be any of 0.3, 0.5, 0.75, 0.9, and 0.95. As there are nine distinct prospects, and 
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five different probabilities for each of three trial types, this gives a total of 135 trials. Participants were 

first shown the instruction page, which included example images of the options they might come 

across in the task. This was immediately followed by an instructions quiz that asked participants three 

questions to ensure that i) they understood that they will always choose between a risky gamble and 

a safe option, ii) they understood the meaning of the options and iii) they understood that they should 

aim to maximise points earned at the end of the task. If participants made errors on the quiz, they 

were redirected to the instructions page and asked to reread them before attempting the quiz again. 

Participants were randomly assigned to one of three pre-set pseudorandomised trial orders. 
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Figure 5.1 Gambling Task and Participants’ Behaviour.  

A. Example trials in which participants chose between a sure option and a gamble (top) and distribution of proportion of 

gambles accepted by each participant (bottom) for each trial type separated by study (original or replication). Left: Gain-only 

gamble. Participants chose between a sure option of winning a number of points (+10, +20, +30), or a gamble option in which 

there was an explicit probability of winning a number of points (+20, +40, +60) or of winning nothing. Middle: Loss-only gamble. 

Participants chose between a sure option of losing a number of points (-10, -20, -30), or a gamble option in which there was 

an explicit probability of losing nothing or of losing a number of points (-20, -40, -60). Right: Mixed gamble. Participants chose 

between a sure option of winning nothing, or a gamble option in which there was an explicit probability of winning a number 

of points (+40, +50, +60) or of losing a number of points (-10, -50, -90). The probabilities of the positive outcome in the gamble 

varied between 0.3, 0.5, 0.75, 0.9, and 0.95 and the negative outcome always had the complementary probability of occurring. 

Participants are most risk averse in the gain-only gamble condition, and most risk-seeking in the loss-only gamble condition, 

in line with classical Prospect Theory findings (Kahneman & Tversky, 1979). B. Distribution of proportion of gambles accepted 

by each participant for each gain probability separated by study (original or replication). 
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5.3.3 Abstract Reasoning Task 

Participants completed a shortened version of the ART (Chierchia et al., 2019) as a proxy for general 

cognitive ability. On each trial, participants were asked to choose one out of four possible options that 

best completed a given pattern. Participants were given a maximum of 30 seconds to answer each 

problem, with a timer appearing for the last five seconds, after which the task progressed to the next 

problem. In this version of this task participants were asked to complete as many puzzles out of 40 as 

possible within four minutes, with the last trial being the one that began before the four-minute timer 

ends. A previous use of the shortened task confirmed that this version of the task preserves the 

psychometric properties of the original eight-minute task, such as a positive correlation between the 

ART task and digit span scores. Furthermore, in this previous analysis there were no floor or ceiling 

effects, a Cronbach’s alpha of 0.6, and a split half reliability of 0.856, demonstrating acceptable 

internal validity (Harada-Laszlo et al., 2021).  

5.3.4 Self-Report Questionnaires 

Participants were additionally asked to provide their age and gender (which was coded as a binary 

variable with women: 0 and men: 1),  and to complete questionnaires assessing catastrophising 

symptoms (Catastrophising Questionnaire, CAT (Pike et al., 2021)), anxiety symptoms (Generalised 

Anxiety Disorder 7-item Scale, GAD-7 (Spitzer et al., 2006)), depressive symptoms (Patient Health 

Questionnaire Depression Scale, PHQ (Spitzer et al., 1999)), trait anxiety symptoms (State Trait Anxiety 

Inventory – Trait Anxiety, STAI-T (Spielberger, 1970)), worry symptoms (Penn State Worry 

Questionnaire, PSWQ (Meyer et al., 1990)), and three questions to assess the impact of the COVID-19 

pandemic (1: How confident are you of a return to a pre-pandemic life in the near future? 2: To what 

extent do you think your health would be affected if you catch the virus? 3: How much are pandemic-

related lifestyle changes (e.g., mask wearing and social distancing) currently affecting your well-

being?). As these questionnaires asked sensitive questions relating to mental health, participants were 

directed to local mental health charities in case they felt concerned about their answers. 

5.3.5 Computational Models 

We fit models (Table 5.1) to participants’ trial-by-trial choices in the gambling task in order to capture 

their decision making and probability weighting patterns. We fit a number of models with different 

probability weighting functions and chose to use the best-fitting one for parameter inference to 

ensure that our model was as close to the true data-generating process as possible 

 

All models use a prospect theory power function to evaluate gains and losses (Kahneman & Tversky, 

2018): 
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𝑉(𝑔𝑎𝑖𝑛) = 𝑔𝑎𝑖𝑛  (5.1) 

 
𝑉(𝑙𝑜𝑠𝑠) = − 𝛿 × |𝑙𝑜𝑠𝑠|  (5.2) 

 
Where V denotes the subjective value of a particular gain and loss, ρ is a risk aversion parameter, and 

δ is a loss aversion parameter (Figure 5.2A).  

All models include the same function for calculating the expected value of each gamble: 

 
𝐸𝑉(𝑔𝑎𝑚𝑏𝑙𝑒) = 𝜋 𝑝 × 𝑉(𝑔𝑎𝑖𝑛) + 𝜋(𝑝 ) × 𝑉(𝑙𝑜𝑠𝑠) 

 
(5.3) 
 

Where π(p) is a probability weighting function that captures how participants subjectively weight 

objective probabilities seen on each trial. This weighting function is the key difference between the 

models. 

All models use the same logit decision function to convert the expected values of the gamble option 

and sure option into probabilities of choosing each one on each trial: 

 

𝑝(𝑐ℎ𝑜𝑜𝑠𝑒 𝑔𝑎𝑚𝑏𝑙𝑒) =  
1

1 + 𝑒 ( ( ) ( ))
 

(5.4) 
 

 
Where γ is an inverse temperature, or determinism, parameter that determines how noisy 

participants’ choices are. Higher parameter values result in more deterministic choices.  

As noted above, models differ in π(p) – the function that specifies how probabilities are weighted 

(Table 5.1). The first model is the Prospect Theory model suggested in Kahneman and Tversky’s 

original prospect theory paper (Kahneman & Tversky, 1979), which does not include any probability 

weighting function. It therefore assumes that participants simply use the objective probabilities of the 

gamble options shown in the task when calculating expected values. For the other models with 

specified probability weighting functions, r is a curvature parameter that determines the non-linearity 

of the weighting function (Figure 5.2B). The Tversky and Kahneman (TK) weighting function was 

specified in their subsequent cumulative prospect theory paper (Tversky & Kahneman, 1992). At r = 1, 

the function is linear, and exhibits more rapidly diminishing sensitivity to probabilities at the 

boundaries (inverse S shape) with decreasing r (Figure 5.2B). Prelec I (PI) behaves similarly to the TK 

function, except that the fixed point is always 1 / e ≈ 0.36 (participants weight this probability 

objectively), and the function is also specified for r > 1, with a more marked S shape with increasing r 

(Prelec, 1998). The Goldstein-Einhorn (GE) model (Goldstein & Einhorn, 1987) includes an elevation 

parameter (s), where decreasing s < 1 indicates a general underweighting of probabilities (due to a 

high inflection point) and increasing s > 1 indicates an overweighting of probabilities (due to a low 
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inflection point). The 2-parameter function Prelec II (PII) behaves similarly to the GE function, though 

in this case, as s increases from 1, individuals underweight probabilities (Prelec, 1998). Further, the GE 

function produces more drastic changes in probability weighting for equivalent changes in parameter 

values, and the over or under-weighting is more pronounced for smaller probabilities. 

We fit three different versions of each probability weighting model above, in which the weighting 

function for gains and losses were specified in different forms (Figure 5.2C): 

a) probability weighting function fit to gains with the probability of losses defined as the 

complementary probability: p(loss) = 1 – p(gain). 

b) probability functions and parameters (elevation parameter only for 2-parameter functions) are fit 

separately for gains and losses. 

c) single probability weighting function and parameters for all probabilities - implying all probabilities 

are weighted similarly regardless of their valence.4 

For the two-parameter probability weighting functions, two of these versions (b and c above) did not 

reach convergence during model fitting, and the parameter recovery was poor. This suggests that they 

were over parameterised, and the parameters were not identifiable (Table 5.2). Thus, the resulting 

set of models included one model with no probability weighting function (PT), six models with a one-

parameter weighting function (TKa, TKb, TKc, PIa, PIb, PIc), and two models with a two-parameter 

probability weighting function (GEa, PIIa), giving a total of nine models (see Table 5.2 for a list of 

parameters in each model).  

 

 

 

 

 

 

 
4 This version was not specified in the pre-registration but was fit to all models for completeness. 
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Table 5.1 Probability Weighting Functions and Versions. 

Top: Name, mathematical specification, and parameter constraints for the different types of probability weighting functions 

tested. Model 1 does not include a weighting function but uses objective probabilities instead. The weighting functions in 

Models 2 and 3 are specified with one parameter (r), whilst those in Models 4 and 5 are specified with two parameters (r, s), 

where r is a curvature parameter and s is an elevation parameter. The models have been named after the authors that first 

seemed to report them (Stott & Stott, 2006). Bottom: Name, and mathematical specifications for different versions of 

probability weighting models. In version a, we fit a probability weighting function for gains 𝜋 with the probability of losses 

defined as the complementary probability. In version b, we fit separate probability weighting functions for gains and losses 

(𝜋 , 𝜋 ) with the probability of losses defined with its own parameters. In version c, the same probability weighting 

function 𝜋 is used to weight gains and losses. 𝑝  and 1 − 𝑝  denote the objective probabilities of the positive and 

negative gamble outcomes respectively. 

 

 

 Name Probability Weighting Function Parameter Constraints 

1. Prospect Theory (PT) 𝜋(𝑝) = 𝑝 (5.5) 
 

 

2. Tversky-Kahneman (TK) 𝜋(𝑝) =
𝑝

 (𝑝 + (1 − 𝑝) )
 (5.6) 

 

0 ≤ 𝑟 ≤ 1 

3. Prelec I (PI) 𝜋(𝑝) =  𝑒  ( )  (5.7) 
 

𝑟 ≥ 0 

4. Goldstein-Einhorn (GE) 𝜋(𝑝) =
𝑠 𝑝

𝑠 𝑝 + (1 − 𝑝)
 (5.8) 

 

𝑟, 𝑠 ≥ 0 

5. Prelec II (PII) 𝜋(𝑝) =  𝑒  ( )  (5.9) 
 

𝑟, 𝑠 ≥ 0 

 Version Gain Probability Weighting  Loss Probability Weighting  

1. a 𝜋 𝑝
𝑔𝑎𝑖𝑛

 1 - 𝜋 𝑝
𝑔𝑎𝑖𝑛

 

2. b 𝜋 𝑝  𝜋 1 − 𝑝  

3. c 𝜋 𝑝
𝑔𝑎𝑖𝑛

 𝜋 1 − 𝑝
𝑔𝑎𝑖𝑛
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Figure 5.2 Cumulative Prospect Theory Model. 

 A. Value Functions. Line colour indicates how the subjective value of points changes for different values of the risk aversion 

parameter (𝜌). Line pattern indicates how the subjective value of points changes for different values of the loss aversion 

parameter (𝛿). B. Probability Weighting Function. Line colour indicates how the subjective probability changes for different 

values of the elevation parameter (𝑠) which affects the over or underweighting of probability. Line pattern indicates how the 

subjective probability changes for different values of the curvature parameter (𝑟) which affects the curvature of the probability 

function. Models with one-parameter weighting functions (r only), have a fixed inflection point (as s = 1). C. Model Versions. 

Model versions all fit probability weighting parameters for gains but differ in how the probability of losses, p(loss), is specified. 

In version a (left), p(loss) is determined to be 1-p(gain). Subjective probabilities retain complementarity, shown by the 

functions being reflected in the y = 0.5 line. In version b (middle), p(gain) and p(loss) are specified by distinct parameters 

offering the flexibility of weighting gains and losses differently. In version c (right), the same parameters are used to specify 

the weighting function for gains and losses. p(loss) is equivalent to p(gain) for the same objective probability of loss/gain, 

shown by the functions being reflected in the x = 0.5 line. Dashed lines indicate objective probability weighting functions for 

gains (green) and losses (red) in a gamble. All panels in this figure use the Prelec IIa weighting function. 
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Table 5.2 Gambling Task Models Parameter Recovery.  

Parameter recovery for each parameter in each of the 13 models tested. Recovery was assessed by simulating data for 300 

participants with parameters drawn randomly from the estimated prior distribution (when fit to real data). The best-fitting 

(recovered) parameters for these data sets were found using the Expectation Maximisation procedure, and parameter 

recoverability is indicated by the Pearson’s correlation between the simulated and recovered parameters. TK: Tversky-

Kahneman, PI:  Prelec I, GE: Goldstein-Einhorn, PII: Prelec II. 

 

 

 

 

 

Model Parameter Recovery Model Parameter Recovery 

Prospect Theory 
Risk aversion (𝜌) 0.75 

GEa 

Risk aversion (𝜌) 0.97 
Loss aversion (𝜕) 0.88 Loss aversion (𝜕) 0.87 

Choice determinism (𝛽) 0.99 Curvature (r) 0.85 

TKa 

Risk aversion (𝜌) 0.95 Elevation (s) 0.94 
Loss aversion (𝜕) 0.92 Choice determinism (𝛽) 0.93 

Curvature (r) 0.93 

GEb 

Risk aversion (𝜌) 0.03 
Choice determinism (𝛽) 0.95 Loss aversion (𝜕) -0.03 

TKb 

Risk aversion (𝜌) 0.95 Curvature (r) 0.76 
Loss aversion (𝜕) 0.94 Elevation gains (s_gain) 0.08 

Curvature gains (r_gain) 0.93 Elevation losses (s_loss) 0.76 
Curvature losses (r_loss) 0.77 Choice determinism (𝛽) 0.25 
Choice determinism (𝛽) 0.96 

GEc 

Risk aversion (𝜌) 0.11 

TKc 

Risk aversion (𝜌) 0.96 Loss aversion (𝜕) -0.05 
Loss aversion (𝜕) 0.93 Curvature (r) 0.88 

Curvature (r) 0.90 Elevation (s) 0.66 
Choice determinism (𝛽) 0.93 Choice determinism (𝛽) 0.50 

PIa 

Risk aversion (𝜌) 0.96 

PIIa 

Risk aversion (𝜌) 0.96 
Loss aversion (𝜕) 0.89 Loss aversion (𝜕) 0.89 

Curvature (r) 0.95 Curvature (r) 0.91 
Choice determinism (𝛽) 0.93 Elevation (s) 0.87 

PIb 

Risk aversion (𝜌) 0.96 Choice determinism (𝛽) 0.93 
Loss aversion (𝜕) 0.90 

PIIb 

Risk aversion (𝜌) 0.30 
Curvature gains (r_gain) 0.88 Loss aversion (𝜕) 0.59 
Curvature losses (r_loss) 0.86 Curvature (r) 0.61 
Choice determinism (𝛽) 0.94 Elevation gains (s_gain) 0.27 

PIc 

Risk aversion (𝜌) 0.95 Elevation losses (s_loss) 0.44 
Loss aversion (𝜕) 0.88 Choice determinism (𝛽) 0.19 

Curvature (r) 0.91 

PIIc 

Risk aversion (𝜌) 0.57 
Choice determinism (𝛽) 0.96 Loss aversion (𝜕) 0.47 

 

Curvature (r) 0.85 

Elevation (s) 0.23 

Choice determinism (𝛽) 0.46 
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5.3.6 Parameter Estimation and Recovery 

Parameters were estimated as described in 2.3 Parameter Estimation and parameter recovery was 

assessed for each model (Table 5.2) 

5.3.7 Statistical Inference 

We used t-tests to assess whether the proportion of gambles accepted differed across conditions in 

the gambling task. We used Pearson’s correlations to assess the effect size of the relationship between 

model parameters of interest and symptoms of interest and used linear regression to assess whether 

these relationships remained significant when accounting for relevant covariates. The scipy.stats 

package in Python was used to carry out t-tests, Pearson’s correlations and linear regressions, and we 

set α to 0.05 for all inference, unless otherwise specified. 

5.3.8 Sensitivity Analysis 

Attention checks were determined from pilot data and were based on participants’ performance on 

so-called ‘easy trials’, where the safe or gamble option was clearly an optimal choice (e.g., none of the 

gamble options give a better outcome than the safe option). There are two types of easy trials, and 

we used a cut-off of 50% incorrect on both trial types to identify inattentive participants. Additionally, 

participants who failed the attention quiz more than five times were classed as inattentive. 

Importantly, participants were not excluded from the primary analysis based on these attention 

checks, but the analysis was rerun without these participants to assess how this affected our 

conclusions. 

5.4 Results 

5.4.1 Descriptive Statistics 

Our initial sample consisted of 212 participants of which 135 (64%) were women, with an age range 

of 18-58 years old. Figure 5.1A shows a summary of the proportion of gambles accepted in each 

condition of the gambling task data from our sample. Participants were most risk averse in the gain-

only gamble condition, and most risk-seeking in the loss-only gamble condition (gain vs loss: t(211) = 

-11.69, p = 1.19x10-24; gain vs mixed: t(211) = -7.83, p = 2.40x10-13; loss vs mixed: t(211) = 7.00, p = 

3.54x1011). This is consistent with results reported by Kahneman and Tversky: people are less willing 

to forego a sure gain for the prospect of a higher gain (risk averse in gain-only gambles), but more 

willing to gamble and potentially incur a greater loss for the possibility of losing nothing at all (risk-

seeing in loss-only gambles) (Kahneman & Tversky, 1979). 
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5.4.2 Model Fitting 

To test our prediction that the best-fitting model would be one with a two-parameter weighting 

function and distinct parameters for gains and losses, we compared model fit using two quantitative 

measures: average likelihood per trial and integrated Bayesian Information Criterion (Figure 5.3A). 

The models including probability weighting functions generally fit the participants’ data better than 

the prospect theory model (PT, no probability weighting parameters; Table 5.1), suggesting that 

participants did not weight probabilities objectively. For the one-parameter models (TK and PI), 

version a consistently fit the data better than versions b and c (which also did not converge for the 

two-parameter models). This suggests that participants did not use distinct weighting functions for 

gains and losses (version b), nor the same one (version c) but rather that whilst weighting of 

probabilities is not objective, complementarity is retained when weighing up the possible outcomes 

of a gamble. This suggests that the probabilities of good outcomes are over or underweighted relative 

to the bad ones (version a; Figure 5.2C). Finally, based on both average likelihood per trial, and iBIC 

scores, the two parameter weighting functions (including an elevation parameter) fit the data more 

parsimoniously than the one parameter weighting functions, suggesting that a more precise 

specification of the weighting function is important for capturing the subtleties of risky decision 

making. In particular, the Prelec IIa (PIIa) model fits marginally better than the Goldstein-Einhorn 

model based on the iBIC score (Figure 5.3A). Qualitative model fits of the Prelec IIa model are shown 

in Figure 5.3B, where average correlations between the proportion of gambles accepted from real and 

model-simulated data are above 0.85 for all three gamble conditions. 

Due to the strong overall fit to the real data, we selected the Prelec IIa model for our subsequent 

analysis and inference on the five model parameters: risk aversion, loss aversion, curvature 

(probability weighting), elevation (probability weighting) and determinism. 

5.4.3 No relationship between model parameters and catastrophising 

We were particularly interested in the relationship between catastrophising symptoms and probability 

weighting parameters. Our winning model, Prelec IIa, has two probability weighting parameters: one 

specifying the curvature of the weighting function and one specifying its elevation. We hypothesised 

that catastrophising questionnaire scores would be associated with higher values of the elevation 

parameter, s, as this suggests a general underweighting of the probability of gains, and a general 

overweighting of the probability of losses. However, there was no relationship between 

catastrophising scores and the elevation probability weighting parameter (r = 0.07, p = 0.30, Figure 

5.4A), or indeed any other parameters in our winning model, including the curvature probability 

weighting parameter. This suggests that contrary to our predictions, there is no evidence that 
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catastrophising symptoms are related to how the probabilities of gambles outcomes are subjectively 

weighted.  

 

Figure 5.3 Gambling Task Model Comparison and Fit.  

A. Qualitative Model Comparison. Average Likelihood per Trial (left) and iBIC (right) for each of the 9 valid models (for which 

the EM algorithm converged) that were tested for both the original and replication datasets. B. Qualitative Model Fit. 

Scatterplots of the proportion of gambles accepted by each subject from real and  a model-simulated dataset in the gain-only 

(left), loss-only (middle) and mixed (right) conditions of the gambling task in the original (top) and replication (bottom) 

datasets. The correlation between real and model data was calculated for 10 different simulations, and the average of these 

(r)̄ is shown on each plot. PT: Prospect Theory, TK: Tversky-Kahneman, PI:  Prelec I, GE: Goldstein-Einhorn, PII: Prelec II. 
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5.4.4 Evidence that anxiety is associated with overweighting the probabilities of negative outcomes 

Due to our hypotheses involving the elevation probability weighting parameter, we conducted 

exploratory analyses to investigate the relationships between the elevation parameter and other 

mental health symptoms. We found a significant positive relationship between the elevation 

parameter from the winning model and GAD-7 scores (r = 0.18, p = 0.01, Figure 5.4A) suggesting that 

those who are more anxious overweight the probability of the negative gamble outcome and 

underweight the probability of the positive gamble outcome. There were no relationships between 

the elevation parameter of the winning model and any other symptom questionnaires. To test 

whether this finding was influenced by other symptom measures or demographic variables, we carried 

out a multiple regression predicting the elevation parameter from the GAD-7 questionnaire, all other 

symptom questionnaires, age, gender and performance on the ART task. GAD-7 scores were the only 

significant predictor of the elevation parameter (GAD-7: β = 0.028, 95% CI = [0.011, 0.045], p = 0.001; 

overall model F(9,201) = 1.545, R2 = 0.065; Figure 5.4B). This provides preliminary evidence that 

general anxiety is related to overweighting the probabilities of negative gamble outcomes, particularly 

as the relationship between these variables is in the expected direction (overweighting the probability 

of negative outcomes could plausibly lead to anxiety or avoidance behaviours). In our sensitivity 

analysis, in which we excluded participants that did not pass the attention checks during the task, the 

results of the model comparison were unchanged. The relationship between GAD-7 and the elevation 

parameter remained significant (r = 0.15, p = 0.03), and GAD-7 remained the only significant predictor 

of the elevation parameter in the multiple regression covarying for age, gender, and other mental 

health symptoms (GAD-7: β = 0.026, 95% CI = [0.009, 0.043], p = 0.003; overall model F(9,192) = 1.700, 

R2 = 0.074; Figure 5.5). 
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Figure 5.4 Relationship Between Symptoms and the Probability-Weighting Elevation Parameter. 

 A. Scatterplots showing the relationships of catastrophising symptoms and general anxiety symptoms with the elevation 

parameter (s) from the Prelec IIa model in the original (left) and replication (right) data sets. B. Regression coefficients and 

95% confidence intervals from a multiple regression in which Gender, Age, ART, CAT, COVID, GAD-7, PHQ-8, PSWQ, and STAI-

T predict the elevation parameter in the original (left) and replication (right) datasets. Standardised regression coefficients are 

used for plotting to aid visualisation. Orange/purple shade indicates significant predictors (p < 0.05). ART: Abstract Reasoning 

Task, CAT: Catastrophising Questionnaire, COVID: Covid Questionnaire, GAD-7: Generalised Anxiety Disorder 7-item scale, 

PHQ-8: Patient Health Questionnaire 8-item scale, PSWQ: Penn State Worry Questionnaire, STAI-T: State-Trait Anxiety Index 

Trait Anxiety. 
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Figure 5.5 Results from Sensitivity Analysis of Gambling Task Data in the Original Dataset. 

Results of analyses that exclude 10 participants who failed our pre-specified attention checks. A. Qualitative Model 

Comparison. Average Likelihood per Trial (left) and iBIC (right) for each of the nine valid models that were tested. B. Regression 

coefficients and 95% confidence intervals from a multiple regression in which Gender, Age, ART, CAT, COVID, GAD-7, PHQ-8, 

PSWQ, and STAI-T predict the elevation parameter. Standardised regression coefficients are used for plotting to aid 

visualisation. Pink shade indicates significant predictors (p < 0.05). ART: Abstract Reasoning Task, CAT: Catastrophising 

Questionnaire, COVID: Covid Questionnaire, GAD-7: Generalised Anxiety Disorder 7-item scale, PHQ-8: Patient Health 

Questionnaire 8-item scale, PSWQ: Penn State Worry Questionnaire, STAI-T: State-Trait Anxiety Index Trait Anxiety. 

 

We also examined which model parameters were related to age, gender and ART scores. Age was 

negatively associated with loss aversion (r(210) = -0.18, p = 0.0069); whilst women had lower 

curvature probability parameters which indicates greater underweighting of probabilities associated 

with good outcomes (t(209) = 2.36, p = 0.019, Cohen’s d = 0.34); and participants with higher ART 

scores also had higher curvature parameters (indicating more objective probability weighting), as well 

as higher risk aversion parameters (indicating lower risk aversion), higher loss aversion and less 

deterministic choices (curvature: r(210) = 0.20, p = 0.0034; risk aversion: r(210) = 0.16, p = 0.018; loss 

aversion: r(210) = 0.31, p = 5.06x10-6; determinism: r(210) = -0.18, p = 0.0083). After applying a 
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Bonferroni correction to account for the 15 comparisons performed (α = 0.0033), the relationship 

between ART scores and loss aversion remained significant. 

5.4.5 Model fitting and relationships with demographic variables replicate, whilst relationships with 
mental health symptoms do not 

In order to confirm whether general anxiety is related to the probability weighting parameter from 

our model, we carried out a replication study. The recruitment criteria, tasks and questionnaires were 

exactly the same as for the original sample (as specified in Methods). Our replication sample consisted 

of 946 participants of which 473 (50%) were women, with an age range of 18-61 years old. Figure 5.1 

shows that the behaviour of participants in both samples on the gambling task is consistent. Figure 

5.3A shows that based on the average likelihood per trial and the iBIC scores, the PIIa is the best fitting 

model for the replication data set, consistent with the results from the model comparison in the 

original sample. However, unlike in the original sample, when examining model parameters from the 

PIIa model, there was no significant association between general anxiety and the elevation probability 

weighting parameter (r(944) = -0.06, p= 0.074; Figure 5.4A), nor was general anxiety a significant 

predictor of the elevation parameter in a multiple regression that used other mental health symptoms 

as covariates (Figure 5.4B). In fact, all correlations between model parameters and symptoms of 

mental health questionnaires were below r = 0.1 (Figure 5.6), suggesting that even significant 

relationships found in this sample do not have a large enough effect size to be of interest, or 

meaningful clinical relevance. 

We also examined which model parameters were related to age, gender and ART scores in our 

replication sample. Age was again negatively associated with loss aversion, as well as the curvature 

probability parameter, but positively associated with determinism (curvature: r(944) = -0.15, p = 

1.80x10-6; loss aversion: r(944) = -0.18, p = 1.85x10-8; determinism: r(944) = 0.12, p = 0.00030); whilst 

women again had lower curvature probability parameters as well as lower risk aversion parameters 

(indicating higher risk aversion) (curvature: t(944) = 7.79, p = 1.77x10-14, Cohen’s d = 0.51; risk 

aversion: t(944) = 6.48, p = 1.51x10-10, Cohen’s d = 0.42); and participants with higher ART scores again 

had higher curvature parameters, higher risk aversion parameters (indicating lower risk aversion), 

higher loss aversion, and less deterministic choices (curvature: r(944) = 0.13, p = 7.05x10-5; risk 

aversion: r(944) = 0.13, p = 6.21x10-5; loss aversion: r(944) = 0.14, p = 1.49x10-5; determinism: r(944) 

= -0.10, p = 0.0018). After applying a Bonferroni correction to account for the 15 comparisons 

performed (α = 0.0033), all of these relationships remained significant. 
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Figure 5.6 Relationships Between Key Variables in Original and Replication Datasets.  

The relationships for the original dataset are shown in the upper triangle, whilst the relationships for the replication dataset 

are shown in the lower triangle. For comparability Cohen’s d has been transformed to Pearson’s r for the gender difference. 

Values in bold are significant after correcting for the multiple comparisons indicated by the coloured rectangles. ART: Abstract 

Reasoning Task, CAT: Catastrophising Questionnaire, COVID: Covid Questionnaire, GAD-7: Generalised Anxiety Disorder 7-item 

scale, PHQ-8: Patient Health Questionnaire 8-item scale, PSWQ: Penn State Worry Questionnaire, STAI-T: State-Trait Anxiety 

Index Trait Anxiety, risk: risk aversion parameter, loss: loss aversion parameter, curv: curvature parameter, elev: elevation 

parameter, det: determinism parameter. 

 

 

To examine the differences between the two datasets, Figure 5.6 shows all correlations between key 

variables for both samples. Whilst the key relationship of interest, between general anxiety and the 

elevation parameter, did not replicate between samples, the overall structure of the relationships 

between variables seems consistent over both samples, as shown by the symmetry in shading 



 

86 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

between the upper and lower triangles. More specifically, there are very high correlations between 

all symptom questionnaire measures, relatively high correlations between some model parameters, 

evidence of relationships between demographic variables and questionnaire measure or model 

parameters, but remarkably low correlations between model parameters and symptom 

questionnaires in general. This is worth noting, as it is these last relationships that cognitive 

neuroscience and mental health research typically focuses on, setting up hypotheses about 

behavioural signatures of mental health symptoms and carefully designing experiments to test these. 

Low correlations between questionnaire measures and mental health symptoms have been reported 

for other cognitive functions (Snyder et al., 2021), suggesting that format of assessment has a large 

influence on how an individual might respond. Due to the high correlation between age and gender 

in the first dataset, we carried out a multiple regression with the demographic variables as predictors 

for each model parameter in both datasets (Figure 5.7). This allows us to make comparisons about the 

relationships with parameters between the datasets more accurately. We further examined the 

differences between our datasets by visualising the distributions of key variables between the two 

samples (Figure 5.8 & Figure 5.9). It is noteworthy that four out of our six questionnaire measures are 

significantly different between the two samples: the catastrophising questionnaire, COVID 

questionnaire, PHQ-8 and GAD-7 (Figure 5.8). In all cases, the replication sample is skewed to lower 

scores, indicating less severe symptoms in this sample. Furthermore, the loss aversion and curvature 

parameters are significantly greater in the replication sample than the original sample. 

 

 

Figure 5.1 Multiple regression with Demographic Variables Predicting Each Model Parameter. 

Standardised regression coefficients are plotted to aid visualisation. * indicates significant predictors after correcting for 

the 6 comparisons performed for each parameter (p < 0.0083). ART: Abstract Reasoning Task. 
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5.5 Discussion 

In this study, we used a computational analysis of a gambling task to investigate the cognitive 

mechanisms underlying catastrophising, specifically whether it is related to difference in subjective 

probability weighting. To do this we fit a Prospect Theory model, and eight different Cumulative 

Prospect Theory models (which varied in their specification of the probability weighting function) to 

participants’ data. The best fitting model included two probability weighting parameters (curvature 

and elevation). In this model the probabilities of gamble outcomes retain complementarity, such that 

Figure 5.2 Distributions of Mental Health Symptom Questionnaires Between Datasets.  

The y axes demonstrates the range of the data. * indicates significant t-test (p < 0.05). CAT: Catastrophising Questionnaire, COVID: Covid 

Questionnaire, GAD-7: Generalised Anxiety Disorder 7-item scale, PHQ-8: Patient Health Questionnaire 8-item scale, PSWQ: Penn State Worry 

Questionnaire, STAI-T: State-Trait Anxiety Index Trait Anxiety. 

Figure 5.3 Distributions of Untransformed Model Parameters from the Winning Model Between Datasets. 

The y axes demonstrates the range of the data. The untransformed parameters are distributed with a standard multivariate normal distribution.

* indicates significant t-test (p < 0.05). 
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subjective probability weighting only affected whether good or bad gamble outcomes were 

overweighted relative to each other. Whilst we did not find a relationship with catastrophising, we 

found some preliminary evidence for a relationship with general anxiety in a discovery sample, though 

this was not evident in our larger replication sample. The results from the model comparison and the 

demographic variables (older people are more loss averse, women are less sensitive to differences in 

probability, and those with higher general cognitive ability are more sensitive to differences in 

probability, less risk averse, more loss averse, and make less deterministic choices) largely replicated 

across datasets, along with the overall structure of relationships between variables. The relationships 

between model parameters and mental health questionnaires were markedly low, compared to 

relationships between symptom questionnaires and also between symptom questionnaires and 

demographic variables.  

Probability weighting models have not been extensively explored in the realm of mental health 

research, and as many different probability weighting functions exist in the literature, we tested how 

well a number of them fit to our data. The winning model (Prelec IIa) was the same in both of our 

datasets. This weighting function is specified by two parameters – curvature and elevation - which 

describe the probability of the positive gamble outcome, while the probability of the negative gamble 

is specified as the complementary probability. This suggests that the complementary of probabilities 

is generally retained during decision making, but that people may tend to pay more attention to either 

the good or the bad potential outcome, and therefore over- or under-weight this outcome relative to 

the other. The fact that most participants had elevation parameters between 0 and 1 suggests that 

the majority of participants overweight the probability of the positive gamble outcome relative to the 

negative one. Probability weighting has long been posited as an important part of risky decision 

making as specified in Cumulative Prospect Theory (Tversky & Kahneman, 1992), and our findings 

indicate that this model component is important in generating good fits to participant choices. Future 

studies investigating risky decision making should ensure they test these models, as they better 

explain participants’ choices and also allow researchers to distinguish between different hypotheses. 

Our primary hypothesis was that catastrophising would be related to probability weighting. However, 

in both samples, we found no significant relationship between catastrophising and probability 

weighting. We found a potential relationship between anxiety and probability weighting in our initial 

sample, but we failed to replicate this result in a larger sample. Moreover, all relationships between 

mental health symptoms and model parameters in our replication sample were weak (less than r = 

0.1). Due to the large sample size in the second dataset, it is therefore tempting to speculate that 

there is little association between risky decision making and symptoms of anxiety and depression in 



 

89 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

the general population, especially since the relationships with demographic variables did mostly 

replicate. 

There are a few potential reasons for the different results between these samples that are worth 

mentioning. It is plausible that due to the relatively smaller sample size in the original dataset, the 

reported association between anxiety and probability weighting was due to noise - setting alpha at 

0.05 means that if the null is true, 5% of the time one would expect to observe an effect of that 

magnitude or greater by chance. Further, it is always possible that there is sampling bias in online 

studies due to the little control we have over participants that choose to participate in research. One 

noteworthy difference between the two datasets is the unusually high correlation (r = 0.34) between 

age and gender in the original dataset, which close to disappears in the replication dataset. This is 

likely to be due to the timing of data collection between the two datasets, specifically as the first 

dataset was collected towards the end of July 2021, when a viral TikTok led to an unusual influx of 

young women entering into Prolific Academic studies around this time, skewing the demographics of 

the dataset. This skew is likely to have led to some of the results reported in the original dataset, such 

as the stronger relationships between age and gender with mental health questionnaires as compared 

to the replication dataset. Some modest differences are evident between the two datasets when 

examining the distributions of mental health symptoms, as the replication dataset is generally skewed 

to exhibiting less severe symptoms, which is significant in three of the five symptom questionnaires. 

We also found significantly lower scores in the replication sample for the COVID impact questionnaire. 

The timing of data collection between the two datasets (original: July 2021, replication: January 2022) 

coinciding with different stages in the COVID-19 pandemic may have led to this difference in 

questionnaire scores. While it is difficult to pinpoint the exact changes that might have led to this 

difference, due to participants being located in the US or UK and therefore governed by different 

national and international regulations around socialising and travel, there was a general relaxation of 

lockdowns and higher rates of vaccination by early 2022 that might have led to the observed 

differences. Despite these slight differences in symptom questionnaire scores between the datasets, 

the overall pattern of relationships between variables is largely similar, with a stark lack of 

relationships between model parameters and mental health symptoms. 

This dearth of associations between parameters and symptom scores in the replication sample is 

somewhat surprising given the existing literature on risky decision making and mental health; 

however, there are some differences between our studies and previous studies that could explain 

these discrepancies. First of all, previous studies often included patients, whereas online studies 

typically aim to recruit samples that are representative of the general population. Whilst the latter 
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approach is beneficial for studying the variation of mental health symptoms that exist in the wider 

population at a subclinical level, the lower symptom severity in these samples limits the size of the 

relationship that are likely to exist. A recent study using another adaptation of a gambling task in a 

general population sample collected online also found no significant effect of anxious or depressive 

symptoms on economic decision making (Zbozinek et al., 2021). It is possible that whilst symptoms of 

mental health disorders exist in the general population to some extent, the greater severity observed 

in diagnosed patients is underpinned by distinct mechanisms. 

Additionally, we adapted our task to vary the probabilities in the gambles, whereas often previous 

studies have used only 50:50 gambles. The incorporation of varying gambles increases the complexity 

of the task and therefore could have subtle effects on the interactions with mental health symptoms 

compared to previous studies. For instance, ART scores were related to model parameters in both 

samples, suggesting that general cognitive ability is an important factor in how people perform this 

task. In particular, higher ART scores were related to more objective probability weighting and making 

less deterministic choices. The former result suggests that those with higher general cognitive ability 

evaluate the information provided on a particular trial to a greater extent and base their decisions 

more closely on the information provided, rather than subjective evaluation of probabilities. The latter 

result is surprising, however, as more deterministic choices are optimal in this task. Is it possible that 

this result is due to the high correlation between the risk aversion and determinism parameters. It has 

also previously been shown that the precise task parameter settings used in gambling tasks can affect 

how participants behave (Peterson et al., 2021), which may also have knock on effects for the 

individual participant parameters that are estimated in different studies. Further, whilst we 

intentionally chose gamble probabilities to probe the behaviour we were interested in – not accepting 

the gambles even when the probability of the positive outcome was very high – it is possible that we 

did not vary the probabilities in the most appropriate range to reliably detect the subtle behavioural 

differences present in those with specific mental health symptoms. Finally, in the graphs showing the 

qualitative model fits, we can see that the model is not capturing the behaviour of the most risk-averse 

participants in the loss-only condition. Whilst this only includes a handful of participants in one task 

condition, it is worth noting, as this type of extreme risk aversion is what we hypothesised would be 

related to catastrophising. 

In conclusion, we have presented a modelling analysis of a gambling task designed to detect 

probability weighting in two datasets. We highlight the importance of incorporating probability 

weighting parameters and find very low associations between model parameters and mental health 

symptoms in our data, as compared to associations with demographic variables.  
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6 General Discussion 

6.1 Summary of Chapters 

6.1.1 Chapter 3: A Hierarchical Reinforcement Learning Model Explains Individual Differences in 
Attention set shifting 

We tested the attentional and learning processes underlying the individual variation in attention set 

shifting abilities using a generative computational modelling approach on two independent large-scale 

online general-population samples performing CANTAB IED. One sample included additional 

assessment of demographic variables and mental health problems. We found a hierarchical model 

that learnt both feature values and dimension attention best explained the data, and that compulsive 

symptoms were associated with slower learning and higher attentional bias to the first relevant 

stimulus dimension. Further, older people, those that spent less time in education and women showed 

more attentional bias to the first relevant dimension. These results establish a new model of cognitive 

processes underlying the CANTAB IED task, and suggest a possible mechanistic explanation for the 

variation in set shifting performance, and its relationship to compulsive symptoms. 

6.1.2 Chapter 4: Individual Variation in Risky Decisions Is Related to Age and Gender but not to Mental 
Health Symptoms 

We tested the mechanisms of choice evaluation in risky decisions, to understand the previously 

reported conservative behaviour in patients with depression, using a computational modelling 

approach in a broad general-population sample (N = 753). Participants performed the CANTAB CGT 

and completed questionnaires assessing symptoms of mental illness, including depression. We fit five 

different computational models to the data, including two novel ones, and found that a novel model 

that uses an inverse power function in the loss domain (contrary to standard Prospect Theory 

accounts), and is influenced by the probabilities but not the magnitudes of different outcomes, 

captures the characteristics of our dataset very well. Surprisingly, model parameters were not 

significantly associated with any mental health questionnaire scores, including depression scales; but 

they were related to demographic variables, particularly age, with stronger associations than typical 

model-agnostic task measures. This study showcases a new methodology to analyse data from 

CANTAB CGT, describes a noteworthy null finding with respect to mental health symptoms, and 

demonstrates the added precision that a computational approach can offer.  

6.1.3 Chapter 5: Individual Variation in Subjective Probability Weighting is Important but Unrelated to 
Catastrophising and Anxiety 

To test our hypothesis that catastrophising is driven by subjective probability weighting, we used a 

computational modelling approach in a broad general-population sample (N = 212) who performed a 



 

92 | Computational Models Describe Individual Differences in Cognitive Function and Their Relationships to Mental Health Symptoms 

gambling task and completed questionnaires assessing symptoms of mental illness, including 

catastrophising. We found evidence that models incorporating a probability weighting function fit 

participants’ data better than those without it, which replicated in a larger sample (N = 946). Despite 

this, we found no evidence for a relationship between probability weighting parameters and 

catastrophising; and whilst we found some evidence that people with higher general anxiety 

symptoms overweighted the probability of negative gamble outcomes relative to the positive ones in 

the initial sample, this result did not replicate when tested in the larger sample. However, we did 

identify reliable associations between general cognitive ability, as measured by ART, and model 

parameters. This study showcases the importance of incorporating probability weighting parameters 

into studies of risky decision making and describes a noteworthy null finding with respect to mental 

health symptoms. 

6.2 Computational Models Offer Precise Mechanistic Insights 

6.2.1 Computational models are mechanistic descriptions 

Computational psychiatry has been hailed as a method for formalising and testing more precise 

theories of the relationship between cognitive function and mental health problems (Adams et al., 

2016; Montague et al., 2012). In this thesis, each experimental chapter develops a theory-driven 

computational model to describe performance on a specific task, offering a more mechanistic 

description of individual differences in behaviour. The mechanistic descriptions offered by these 

models are further supported by the thorough model checking that was carried out, such as good 

parameter recovery and excellent fits to participant data.  

In Chapter 3, we developed a model of attention set shifting that describes the interaction between 

attention and learning processes on CANTAB IED and show that individual differences in attention set 

shifting ability can be explained by a relatively simple hierarchical reinforcement learning algorithm. 

Rather than using errors per stage to measure task performance, this model describes performance 

with three parameters: learning rate, dimension primacy, and choice determinism, and we show that 

lower learning rates, higher dimension primacy, and lower choice determinism lead to more errors on 

the extradimensional shift. Chapter 4 describes the development of models for CANTAB CGT based on 

classical economic decision making models. Our best-fitting model included six parameters: colour 

choice bias, colour choice determinism, risk aversion, loss aversion, delay aversion and bet choice 

determinism. Crucially, people’s betting strategies do not depend on their current number of points, 

and that on this task, participants are generally risk averse in the domains of both gains and losses. 

These parameters provide more mechanistic explanations for participant’s approach to decision 

making compared to typical outcome measures such as ‘overall proportion bet’ or ‘risk adjustment’. 
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In Chapter 5, we explored subjective probability weighting and report evidence that people do not 

weigh the probabilities of gamble outcomes objectively. Our model also suggests that a two-

parameter weighting function, including curvature and elevation parameters, fits the data best, and 

that participants retain complementarity when weighting probability. This level of description is 

considerably more fine-grained than that provided by coarse model-agnostic measures, such as 

proportion of gambles accepted, where the reasons underlying these choices remain ambiguous.  

In Chapters 3 and 5, some of the mechanistic insights we gain are consistent with previous literature 

in relevant fields. For instance, it has long been suggested that attention and learning processes result 

in the added difficulty of extradimensional set shifts compared to intradimensional ones (though these 

had not necessarily been mathematically specified or formally tested by fitting to individual 

participant’s data) (Kruschke, 2001; le Pelley et al., 2012, 2016; Trabasso et al., 1966). Furthermore, 

attention-biased learning algorithms have provided a good fit to other multidimensional stimulus 

learning tasks though they do not include extradimensional set shifts in the same manner as in 

CANTAB IED (Leong et al., 2017; Niv et al., 2015). It has also long been suggested that people do not 

weight probabilities objectively in gambling tasks (Tversky & Kahneman, 1992), which was further 

corroborated by our results reported here. Therefore, the insights gained from these models are 

consistent with previous literature, despite slight changes to the tasks used here. Speculatively, these 

attention and learning processes, or subjective probability weighting, might be somewhat more 

generally applicable mechanisms as they are not fully dependent on task context. 

In Chapters 4 and 5, however, some of the insights from our modelling contradict previous research. 

Our best-fitting model for CANTAB CGT suggests that people’s betting strategy does not vary with 

their number of points, and that they are generally risk averse in the domains of both gains and losses. 

These insights are in direct contrast to the well-established Prospect Theory which suggests that 

participants points or ‘wealth’ should impact their decision making behaviour, and that people are risk 

averse in the domain of gains but risk seeking in the domain of losses (Kahneman & Tversky, 1979). 

Furthermore, whilst the importance of probability weighting is consistent with the previously 

published Cumulative Prospect Theory model (Tversky & Kahneman, 1992), there does not seem to 

be consensus on the specification of the weighting function and our finding of the two-parameter 

Prelec function providing the best fit is inconsistent with earlier research (Stott & Stott, 2006). 

Therefore, the insights gained from these models somewhat contradict previous reports. 

Speculatively, this could be because types of economic risk related behaviours are more context 

dependent, and small changes in task paradigms between studies can have moderate effects on 

behaviour (Peterson et al., 2021). These insights offer an interesting area of future research to delve 
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deeper into cognitive mechanisms by evaluating how the context of an experiment can influence the 

behaviour and best-fitting models of participants. 

6.2.2 Computationally derived parameters are associated with demographic variables 

In all chapters, we found robust relationships between model parameters and demographic variables 

which allows us to make more specific inferences regarding the relevant aspects of model 

performance compared to when using traditional measures of task performance.  For example, in 

Chapter 3, we reported that older people showed more primacy to the first relevant dimension, those 

that spent longer in education were more deterministic, and showed less primacy to the first relevant 

dimension and men learnt faster, were more deterministic, and showed less primacy to the first 

relevant dimension. In Chapter 4, we found that older people and women were more risk averse. 

Finally in Chapter 5, we reported that older people were less loss averse, weighted probabilities more 

objectively, but were more deterministic; that women weighted probabilities more subjectively, and 

were more risk averse; and that individuals with higher ART scores (an index of general cognitive 

ability) weighted probabilities more subjectively, were less risk averse, more loss averse, and made 

less deterministic choices. These findings provide a more precise understanding of why, for example, 

older people might in general score higher errors on the extradimensional set shift stage of CANTAB 

IED, or why women might choose to bet smaller amounts on the CANTAB CGT.  

Some of the associations with demographic variables are comparable across chapters, and consistent 

with the general direction reported in the literature, such as women being more risk averse in 

Chapters 4 and 5 (Deakin et al., 2004; Lewis et al., 2021; van den Bos et al., 2013, 2014). However, 

some of these findings seem somewhat contradictory between chapters, such as spending longer in 

education being related to higher determinism in Chapter 3, but higher ART scores being related to 

lower determinism in Chapter 5. As both of these measures are used as a proxy for general cognitive 

ability, it is somewhat surprising that we find opposite relationships with the choice determinism 

parameter. Furthermore, we even find varying relationships with demographic variables between 

Chapters 4 and 5, despite these both incorporating a kind of gambling task, as well as similarly 

structured models whose mathematical specification of risk and loss aversion parameters is 

comparable. For example, in Chapter 4, we find that older people are more risk averse, but no 

relationship was found with loss aversion; whereas in Chapter 5, we find that older people are less 

loss averse, but no relationship was found with risk aversion. This could in part be due to the different 

participants with distinct behavioural characteristics that happened to make up these samples. 

However, it is also known that subtle variations to tasks can affect the observed behaviour, and that 
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similarly defined parameters are not comparable across different task variations, providing another 

potential explanation for these discrepancies (Eckstein et al., 2022; Peterson et al., 2021). 

In summary, we showed that variation in key demographic variables affects performance on a number 

of cognitive tasks, and that these relationships can be further defined by exploring associations with 

computationally derived model parameters. 

6.2.3 Computational models offer increased precision 

One of the widely touted advantages of the computational approach is that it encourages an increase 

in precision when formulating and conveying theories about cognitive processes (see section 6.2.1). 

In Chapter 4, we showed that the extraction of computational parameters can lead to an increase in 

precision compared to the typical outcome measures. Here, we compared the size of relationship 

between age and gender using CANTAB CGT typical outcome measures (such as ‘overall proportion 

bet’ and model-derived parameters (such as ‘risk aversion’). We found that the size of the 

relationships between the demographic variables and the computational risk aversion parameter 

were numerically greater than those with the model-agnostic task measure. Furthermore, the 

relationship between age and risk aversion was statistically greater than that with overall proportion 

bet when compared with Steiger’s Z test. The increase in the size of these relationships demonstrates 

the extra sensitivity conferred by the computational approach. This is likely due to a number of factors, 

such as that computational parameters are derived using the full trial and task information and that 

the models utilised also account for the noise in human behaviour with choice determinism 

parameters rather than including random responding in the overall performance summary statistic. 

The increase in the size of the relationship also suggests that the model-derived risk aversion reflects 

a construct that more closely tracks age compared to the overall proportion bet measure, further 

strengthening our argument that model parameters provide additional mechanistic insight.  

6.3 Minimal Associations Between Parameters and Symptoms of Mental Health Disorders 

We initially set out to better define the relationship between cognitive processes and mental health 

disorders, thus, we were somewhat surprised to find that the associations between model parameters 

and symptoms of mental health disorders in this body of work were small. 

6.3.1 Attention set shifting  

In Chapter 3, we reported a significant (albeit modest) association between compulsivity scores, as 

measured by the OCI-R, and the learning rate and dimension primacy parameters derived from our 

best fitting model. This suggests a reason why people with more compulsive symptoms tend to score 

more errors on the extradimensional set shift stage – because they incorporate outcome feedback to 
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a lesser extent on each trial and demonstrate a stronger bias to the initially relevant stimulus 

dimension. While set shifting difficulties have been most consistently reported in OCD patients 

(Chamberlain et al., 2006, 2007; Purcell et al., 1998; Vaghi et al., 2017; Veale et al., 1996), it is still 

somewhat surprising that no other mental health symptoms were associated with model parameters 

given previous reports of difficulties performing this task in other patient groups (Elliott R et al., 1995; 

Gottwald et al., 2018; Kim KL et al., 2019; Liang S et al., 2018; Purcell et al., 1998; Purcell R et al., 1997). 

This could be because the association with compulsivity is stronger than with other symptoms of 

mental health and therefore is the only relationship big enough to be detected in a general population 

sample. It could also be because groups of people with high compulsivity are more mechanistically 

homogeneous than groups with other elevated mental health symptoms. Finally, the discrepancy in 

relationships reported here could also be because our best-fitting model partitions task performance 

in a manner that is most consistent with mechanisms of relevance to high compulsive symptoms.  

6.3.2 Risky Decision Making  

In Chapter 4, we did not find any significant relationships between model parameters and mental 

health symptoms. A preliminary data collection in Chapter 5 suggested a potential relationship 

between general anxiety and the elevation probability weighting parameter, but we failed to replicate 

this in a larger sample in which no associations of a noteworthy size were found. Again, the lack of 

associations in both studies is somewhat surprising given that previous literature has reported 

behavioural differences in CANTAB CGT in patients with depression (Mannie et al., 2015; Murphy et 

al., 2001; Rawal et al., 2013), and on gambling tasks similar to that used in Chapter 5 in patients with 

anxiety (Charpentier et al., 2017). Here, we consider the factors that might have led to these 

contradicting findings.  

The most notable difference between the methodology applied to all chapters here, and to previous 

studies of mental health research is that we used a general population sample who were tested online, 

rather than patients with specific diagnoses who are tested in person. In fact, the aforementioned 

observations are not unique - other studies using general population samples have also reported a 

lack of associations with mental health symptoms, some using model agnostic measures on CANTAB 

CGT, and others using computationally derived parameters on modified gambling tasks (Deakin et al., 

2004; Lewis et al., 2021; Zbozinek et al., 2021). One potential reason for these results is that symptoms 

of depression and anxiety actually have a minimal relationship with risky decisions overall, and that 

previous results are due to noise in small samples and the findings have been overstated by 

publication bias. Alternatively, it could be that cognitive processes are altered in patients with mental 

health disorders (as in the literature), but that sub-clinical symptoms of depression and anxiety are 
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unrelated to risky decision making behaviours. This would suggest a mechanistic distinction between 

patients with severe symptoms and those with milder symptoms and cast doubt on a key motivation 

for the ‘symptomics’ approach outlined in the introduction: that symptoms of mental health problems 

exist on a spectrum in the general population, which we would assume lead to detectable 

relationships with cognitive performance within large, unselected samples. Finally, it could be that 

there is a real relationship between these cognitive processes and mental health symptoms but that 

the size of this association is too small to be detected in general population samples due to the 

majority of participants not having very severe symptoms. This could have led to the dearth of 

associations observed here as the size of the relationships we can observe in these samples is limited.   

Future studies will be required to untangle these possibilities, and further clarify the relationships 

between cognition and symptoms of common mental health disorders.  

6.4 Limitations 

There are a number of limitations in this body of work that must be considered when evaluating the 

results and conclusions drawn from them. 

6.4.1 Online Data Collection 

Whilst online data collection is particularly advantageous for psychological research due to the ability 

to rapidly and conveniently collect very large samples, there are many limitations associated with this 

form of data collection (Clifford & Jerit, 2014). For example, researchers have no control over the 

participants that enter their studies. This can result in samples which are heavily skewed in e.g., 

demographics as observed in the original dataset in Chapter 5, or in other variables that might not be 

detected as they are less frequently measured, but may nevertheless affect the overall conclusions 

(Bethlehem, 2010). One example is that people that self-select for online studies might be more likely 

to participate in a number of them, and therefore will be more familiar with cognitive tasks than the 

general public which could be reflected in the data collected (J. Chandler et al., 2014). In the worst-

case scenario, many of the so-called study “participants” could even be bots designed to enter 

numerous studies, resulting in close-to-meaningless data (J. J. Chandler & Paolacci, 2017; Pozzar et al., 

2020). However, this is unlikely as our data showed substantial variability in task performance 

consistent with that seen in human behaviour, and some of our key results (e.g., with compulsivity 

and demographic variables) are in line with what we would expect given previous research. Finally, 

there is no way to guarantee that even in a fully unbiased sample with human participants, that they 

are attending to the task, and not distracted or doing multiple things simultaneously. We tried to 

account for this in Chapters 4 and 5 by performing sensitivity analyses, removing participants who 

failed attention checks or whose data was not well fit by the model. In both cases, our main findings 
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were unaffected, though it is still possible that more specific and subtle effects could occur as a result 

of participant distraction and random responding in online data samples (Zorowitz et al., 2021).  

6.4.2 Questionnaire Measures 

Another potential limitation of this research is the questionnaire measures that were used to assess 

certain symptoms across all three chapters. These questionnaires are somewhat limited in their ability 

to assess the symptoms that they intend to measure, particularly as they rely on self-report which can 

be vulnerable to many cognitive biases and are thought to be less abstract and controlled compared 

to cognitive task measures. For instance, whilst they generally ask the participant about the preceding 

couple of weeks, it is known that questionnaires responses are subject to recall bias such that 

participants will typically respond based on how they are feeling in the moment, which is likely to add 

some noise to the results. This method of assessment was aimed at measuring relevant symptoms on 

a continuous scale; however it is possible that the constructs that we chose to assess in these studies 

do not assess the most appropriate aspect of mental health disorders to the cognitive tasks we used, 

which highlights another potential reason for the lack of associations with mental health symptoms 

observed, particularly in Chapters 4 and 5.  

6.4.3 Computational Models 

There are some general limitations of the computational approach that require discussion here. The 

process of selecting a best-fitting model with which to analyse participant data is apt for selecting the 

model that best explains individual variation (compared to competing models).  However, it rests on 

the assumption that all participants use the same model or strategy to complete the task. This 

assumption does not always hold true, and the winning model will often provide a bad fit to at least 

some of the participants in the sample. We tried to account for this in Chapter 4 by removing 

participants who were not significantly better fit by the winning model than chance. This included 26 

out of 753 participants, indicating that this is a potentially important consideration albeit for a very 

small percentage of participants. Another way to address this would be to use a model-averaging 

procedure, in which participants’ performance can be described by weighting a couple of models that 

seem to describe different participant strategies well (Wasserman, 2000). 

Another limitation of this approach is that some aspects of validity of the model-derived parameters 

have not been thoroughly assessed. For example, the test-retest statistics of model parameters are 

important to determine whether model parameters are more stable compared to model-agnostic task 

measures. Low reliability of measures would suggest that they are not providing particularly 

meaningful insights to participant behaviour. Whilst previous research suggests that model derived 

parameters tend to be more reliable than their associated model-agnostic outcome measures (Haines 
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et al., 2020; Mkrtchian et al., 2021), we cannot fully extrapolate these results to our tasks without 

testing them explicitly. This limitation is particularly relevant to Chapter 3, as the CANTAB IED task is 

known to suffer from poor test-retest reliability due to the extradimensional shift being substantially 

easier on subsequent attempts having passed it the first time. 

Finally, the interpretability of mechanistic insights provided by the models is somewhat limited given 

the work done here in isolation. Whilst, all models were driven by existing cognitive neuroscience 

theories, and parameters were named descriptively according to their roles within these models, it is 

difficult to confirm whether the parameters actually represent something more neurally relevant 

without additional research. Further studies should focus on implementing these models whilst 

collecting neural data to assess whether signatures in the brain track internal model values, or 

whether differences between participants are consistent with their different parameter values. These 

findings would give more weight to the meaning of mechanistically relevant parameters and solidify 

the advantages of using computational models to analyse cognitive data. 

6.5 Future Directions 

The results of these studies have highlighted some promising avenues for future research. Here we 

discuss those that would be the most interesting, or impactful next steps. Both of these would further 

strengthen our understanding of cognitive processes, and the insights that can be gained from a 

computational analysis. 

6..5.1 Exploring insights from computational models in patient studies 

The use of diagnostic criteria in research is no doubt problematic, as outlined in the introduction. 

However, due to the differing results in previous case-control studies and the general population 

results reported here and elsewhere, applying a modelling analysis to case-control datasets could 

potentially lead to a number of additional insights. One suggestion for these differences that was 

previously mentioned is that distinct mechanisms lead to the mild symptoms seen in the general 

population, versus the more severe ones seen in patient populations, such that on a mechanistic level 

there is not a continuum between these groups. This could be investigated by performing the model 

fitting procedure in a patient group and exploring whether the winning model is consistent with those 

reported here. Observing the same model to be the best fit to participant data in both circumstances 

would give more weight to the theory that mental health lies on a continuous distribution in the 

general population, and that diagnosed patients are on the more severe ends of the distribution. In 

particular due to the discrepant results reported in previous studies using case-control approaches, it 

would be enlightening as to the null results reported here if the validated computational models could 

be analysed in patient groups.  
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With a computational analysis in these groups, we would be better placed to examine which 

parameters are relevant and therefore explore mechanistic insights. These studies might also be 

useful for guiding future studies in terms of which symptoms seem most strongly associated with 

model parameters, and therefore future research could be better defined to detect such relationships.  

6.5.2 Examining the effect of pharmacological manipulation on model derived parameters 

Gaining a deeper understanding of the mechanistic insights afforded by a computational analysis is 

essential if we are to fulfil the potential of computational methods in the field. One way to explore 

this would be to assess whether pharmacological manipulation had any effect on model parameters. 

For example, a future study to further explore our findings from Chapter 3 could use a pharmacological 

compound that modulates the cholinergic system (known to be important for cognitive flexibility) in 

healthy volunteers and assess whether model parameters are altered as a result of the drug challenge.  

The observation of a specific effect on model parameters, such as the dimension primacy, would have 

potential implications for targeted treatment of patients with compulsive symptoms in the clinic. 

6.6 Conclusions 

Our shallow understanding of mental health disorders contributes to the trial-and-error treatment 

approach in psychiatry clinical practice. The primary aim of this thesis was to better understand the 

relationships between mental health symptoms and certain cognitive processes. Specifically, two key 

methodologies were enlisted: measuring symptoms in large general population samples, and using a 

computational approach to analyse cognitive processes. We investigated whether utilising these could 

provide further insights into the mechanisms that underpin mental health disorders. Specifically, these 

methods were applied in the field of attention set shifting and risky decision making, where 

differences in task performance between those with mental health disorders and healthy controls 

have been previously reported. This thesis developed computational models that offer mechanistic 

descriptions of individual differences on CANTAB IED, CANTAB CGT, and a novel gambling task. It also 

highlights the added precision that a computational analysis can add. Finally, whilst we found several 

significant relationships between demographic variables and model parameters, limited associations 

were found between model parameters and mental health symptoms: that those with higher 

compulsive symptoms incorporate outcome feedback to a lesser extent after each trial and show a 

stronger bias to the first relevant stimulus dimension on a multidimensional task of attention set 

shifting.  

Speculatively, these models demonstrate mechanistic insights into cognitive processes that vary with 

certain demographic variables, though this should be further investigated with neural measures or 

pharmacological studies. The surprising null results with respect to mental health symptoms are likely 
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due to the effect size between cognitive processes and mental health symptoms being too small to 

detect in these samples, or possibly that they do not even exist. Computational studies in patient 

populations are required to bridge the gap between case-control and general population studies and 

to uncover any major mechanistic differences between these groups. 

Understanding the relationships between symptoms, diagnostic disorders, parameters and 

demographic variables will enhance our understanding of mental health. This thesis has reported 

preliminary findings by validating computational models for three specific tasks. We hope that future 

research will expand on this to better link these models to mental health symptoms, and ultimately 

improve our understanding and treatment of disorders in the clinic.  
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