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Summary:  2-year overall survival in 68 trial arms was best described by a model that 

accounted for classical radiobiological factors, chemotherapy effects and survival-limiting 

toxicity. The fitted / ratio was 4.0 Gy and repopulation negated 0.38 Gy/day. Modelled 

survival peaked at 80 (stage IIIA) and 87 Gy (IIIB) for radiotherapy and sequential 

chemoradiotherapy delivered in 2 Gy fractions over 40 days, and 67 (IIIA) and 73 Gy (IIIB) 

for concurrent chemoradiotherapy, before falling at higher doses. 
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Abstract 

Purpose. To analyze changes in 2-year overall survival (OS2yr) with radiotherapy (RT) 

dose, dose-per-fraction, treatment duration and chemotherapy use, in data compiled from 

prospective trials of RT and chemo-RT (CRT) for locally-advanced non-small cell lung 

cancer (LA-NSCLC). 

Material and methods.  OS2yr data was analyzed for 6957 patients treated on 68 trial arms 

(21 RT-only, 27 sequential CRT, 20 concurrent CRT) delivering doses-per-fraction 4.0 

Gy. An initial model considering dose, dose-per-fraction and RT duration was fitted using 

maximum-likelihood techniques. Model extensions describing chemotherapy effects and 

survival-limiting toxicity at high doses were assessed using likelihood-ratio testing, the 

Akaike Information Criterion (AIC) and cross-validation. 

Results. A model including chemotherapy effects and survival-limiting toxicity described 

the data significantly better than simpler models (p <10-14), and had better AIC and cross-

validation scores. The fitted / ratio for LA-NSCLC was 4.0 Gy (95%CI: 2.8-6.0 Gy), 

repopulation negated 0.38 (95%CI: 0.31-0.47) Gy EQD2/day beyond day 12 of RT, and 

concurrent CRT increased the effective tumor EQD2 by 23% (95%CI: 16-31%). For 

schedules delivered in 2 Gy fractions over 40 days, maximum modelled OS2yr for RT was 

52% and 38% for stages IIIA and IIIB NSCLC respectively, rising to 59% and 42% for 

CRT. These survival rates required 80 and 87 Gy (RT or sequential CRT) and 67 and 73 

Gy (concurrent CRT). Modelled OS2yr rates fell at higher doses. 

Conclusions. Fitted dose-response curves indicate that gains of ~10% in OS2yr can be 

made by escalating RT and sequential CRT beyond 64 Gy, with smaller gains for 

concurrent CRT. Schedule acceleration achieved via hypofractionation potentially offers a 

further 5-10% improvement in OS2yr. Further 10-20% OS2yr gains might be made, 
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according to the model fit, if critical normal structures in which survival-limiting toxicities 

arise can be identified and selectively spared. 
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1. Introduction 

Overall survival (OS) following radiotherapy (RT) for locally-advanced non-small cell lung 

cancer (LA-NSCLC) remains disappointing. While some dose-escalation trials have 

achieved promising results, [1] outcomes have been inconsistent, with median OS in better 

performing studies being 25-28 months. [2,3] Surprisingly, the RTOG-0617 phase III study 

of concurrent chemoradiotherapy (CRT) found a sub-unity median survival ratio (MSR) of 

0.71 for 74 Gy in 37 daily fractions versus 60 Gy in 30 fractions. [2] Although 

hyperfractionated and moderately hypofractionated schedules have been trialled, [1,3-6] 

the standard-of-care remains 60-66 Gy in 30-33 fractions with some UK centres preferring 

55 Gy in 20 fractions. Improved survival has recently been demonstrated using radio-

immunotherapy [7] but the optimal RT schedule has yet to be determined.  

A need therefore exists to reconcile apparently inconsistent trial results, to improve 

outcome prediction for modified RT of NSCLC. Partridge et al analyzed 2-year disease-

free survival (DFS), demonstrating a dose-response using a probit tumour control 

probability (TCP) model. [8] Differences in dose-per-fraction and schedule duration were 

accounted for by standardizing to equivalent doses in 2 Gy fractions delivered over a fixed 

treatment duration (EQD2T), using the time-corrected linear-quadratic formalism. Values 

of /,  and TK parameters describing fractionation sensitivity, accelerated tumor 

proliferation and onset delay are not well established for NSCLC, [9-12], and therefore 

Partridge et al chose 10 Gy, 0.6 Gy/day and 21 days, similar to values obtained from 

analyses of outcomes for head-and-neck squamous cell carcinoma (HNSCC). [13] 

A recent meta-analysis of randomized studies reported an MSR of 1.13 (p=0.002) for 

higher radiation dose arms in RT-only and sequential CRT trials, but 0.83 (p = 0.02) for 

higher dose arms in concurrent CRT trials [6], demonstrating the need for dose-response 
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models to describe differential chemotherapy effects and possible reductions in survival at 

high radiation doses. Here, we analyze 2-year OS rates (OS2yr) compiled for ~7000 

NSCLC patients from published phase I-III trials of RT alone and CRT. Starting from the 

Partridge model, we freely fit /,  and Tk before parsimoniously extending the model to 

describe sequential and concurrent chemotherapy effects, and survival reductions at high 

doses due to radiation toxicity. [14]  

2. Materials and methods 

2.1. Data 

Phase I-III trial data were identified from PubMed, ScienceDirect and Google Scholar 

searches for the MeSH term ‘NSCLC radiotherapy dose-escalation’. Citation-following 

yielded further data. The dataset was limited to studies published after 1995 describing 

outcomes for >20 patients per trial arm. Reports missing unambiguous details of dose, 

fractionation, treatment duration, chemotherapy scheduling, stage-mix and OS2yr data 

were excluded. Strongly hypofractionated schedules used to treat predominantly early-

stage disease (dose-per-fraction >4.0 Gy) were also excluded, substantially weighting the 

dataset towards higher-stage disease. 

Reported prescribed doses and doses-per-fraction were increased by 5% for North 

American trials not employing lung tissue heterogeneity corrections. [15] Doses prescribed 

in the RTOG-0617 study were also raised by 5% despite heterogeneity corrections having 

been applied, since prescription was to 95% of the planning target volume, generating 

physical isocentre doses similar to those of isocentrically-prescribed treatments planned 

without heterogeneity corrections. [16] 

2.2. Fitted dose-response models 
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Three models have been fitted to OS2yr data. The first accounts for dose, dose-per-fraction 

and schedule duration. The second contains two additional parameters describing 

systemic and local chemotherapy effects. The third contains two further parameters 

describing survival reductions at high doses, and one accounting for improvements in 

survival over time. 

Model 1: Standard probit-EQD2 

Model 1, based on that of Partridge et al, [8] describes TCP varying sigmoidally with 

EQD2T delivered to the tumor, EQD2Ttum  

   TCP  =   Φ [
EQD2Ttum − EQD2Ttum,50

𝑚. EQD2Ttum,50
]  ×   100%                        (1) 

where  is the cumulative normal distribution, EQD2Ttum,50 is the tumor EQD2T required for 

50% control, and m defines the dose-response gradient. EQD2Ttum was calculated as 

  EQD2Ttum  =   𝐷 [(1 + (
𝑑

 𝛼 𝛽 𝑡𝑢𝑚⁄
)) (1 + (

2

 𝛼 𝛽 𝑡𝑢𝑚⁄
))⁄ ]  −   𝜆. Max[𝑇 − 𝑇𝑘, 0]              (2) 

D and d being prescribed dose and dose-per-fraction, and T treatment duration. [8] 

Following Partridge’s approach, cohort-specific OS was calculated as a weighted sum of 

modelled TCPs for each disease stage 

  OS2yr
Model1  =   100% × ∑ 𝑓𝑖𝑖  ×  Φ [

EQD2Ttum − EQD2Ttum,50(𝑆𝑖)

𝑚. EQD2Ttum,50(𝑆𝑖)
]                 (3) 

where fi is the fraction of patients in the cohort with stage i (I, II, IIIA or IIIB) disease, 

and EQD2Ttum,50(𝑆𝑖) the EQD2Ttum,50 for that stage. Initially, /tum,  and Tk values were 

fixed at the levels chosen by Partridge, and the five parameters m and 
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EQD2Ttum,50(𝑆I, II, IIIA, IIIB) were fitted to achieve the best description of the data (‘Partridge 

model’). Subsequently all eight model parameters were fitted (‘Model 1’). 

2.2.1. Model 2: Adding chemotherapy effects 

Survival is improved by chemotherapy-driven reductions in the distant failure-rate. [17,18]. 

Model 2 describes this effect via an additional factor  

   OS2yr
Model2   =   (

OS2yr−max

100%
  )  OS2yr

Model1                (4) 

where OS2yr-max values <100% account for patients who died of distant metastases or 

unrelated causes despite achieving loco-regional control. For RT alone, OS2yr-max
RT-only

 was 

fixed at 85%, based on a reported distant failure-rate of 15% post-surgery for patients who 

did not receive chemotherapy. [19] For CRT treatments, OS2yr-max
CRT

 was fitted to obtain the 

best match of the model to the data, a value >85% describing reduced distant failure-

related mortality due to systemic effects of chemotherapy.   

Survival is longer following concurrent than sequential CRT. [20, 21] This is accounted for 

by scaling the EQD2Ttum doses of concurrent CRT treatments by an additional fitted 

parameter RScCRT >1 to describe possible tumor radiosensitization by concurrent 

chemotherapy  

   EQD2Ttum
cCRT   =   RScCRT .  EQD2Ttum                (5) 

Model 2 has ten fitted parameters. Its residuals revealed an unfitted trend for OS2yr to rise 

with study publication year (see Supplementary Information), presumably reflecting 

advances in treatment and staging over time unrelated to CRT scheduling, and concurring 

with a reported trend for significantly longer survival in more recent studies [6]. Survival 

was therefore adjusted further via 
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        OS24m
Model2b  =   OS24m

Model2  (1 − 𝑅. 𝑌)              (6) 

Y being the number of years before 2016 a study was published, and R a fitted parameter 

describing survival benefit with time.  

2.2.2. Model 3: Reduced survival at higher doses 

Model 2 cannot describe falling survival at high doses. However, the concept of a 

therapeutic window implies that OS must rise, plateau and eventually fall as RT dose 

increases. To accommodate this, we extended the model to 

   OS2yr
Model3  =  OS2yr

Model2b  (1 −
𝑆𝐿𝑇

100%
)                 (7) 

where the modelled survival-limiting toxicity-rate, SLT, is given by 

   𝑆𝐿𝑇  =   Φ [
EQD2NT − EQD2NT,50

𝑚NT. EQD2NT,50
]  ×  100%                        (8) 

and increases sigmoidally with the normal tissue EQD2 

    EQD2NT = 𝐷 [(1 + (
𝑑

3
)) (1 + (

2

3
))⁄ ]                     (9) 

calculated using / = 3 Gy. The fitted quantities mNT and EQD250,NT define the toxicity 

dose-response gradient and the EQD2NT at which survival is halved by toxicity, and bring 

the number of fitted parameters in Model 3 to 13. 

2.3. Statistical methods 

Models were fitted to OS2yr data using the maximum-likelihood method, via the mle2 

package within the ‘R’ language (v3.4.0). [22] Significances of improvements in model-fit 

were determined using likelihood-ratio testing. [23] Relative model performance in future 

data was estimated using the Akaike Information Criterion (AIC), which trades off 
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goodness-of-fit against a penalty term that rises with the number of fitted parameters to 

account for possible overfitting of the dataset. [24] Leave-one-out cross-validation was 

performed to check the AIC findings, calculating weighted sums-of-squared residuals. 

For each model, asymptotic confidence intervals (CIs) were calculated on all fitted 

parameters. For the model judged best on AIC and cross-validation, profile-likelihood CIs 

were also determined. [22] 

3. Results 

3.1. Data 

The dataset comprised 6957 patients treated on 68 trial arms of 40 studies, for which 2-

year OS ranged from 6 to 68%. [1-5,25-64] Overall, 9% of patients were stage I, 9% stage 

II, 43% IIIA and 39% IIIB (AJCC 6th edition). RT alone, sequential and concurrent CRT 

treatments were given in 21, 27 and 20 arms respectively (Table 1).  

Figure 1a shows observed OS2yr plotted against prescribed physical dose. Although the 

data appear highly dispersed, local regression (LOESS, smoothing = 0.7) shows survival 

increasing with dose before plateauing at ~80 Gy. Physical dose and dose-per fraction are 

plotted against RT duration in Figure 1b and Supplementary Figure S1. Higher doses were 

typically given using longer schedules (Spearman’s rho = 0.62, p <0.001), but dose-per-

fraction and schedule duration were not significantly correlated (p = 0.66). 

3.2. Data fits 

Model fits to 2-year survival data are detailed in Table 2. The data were described 

significantly better when classical radiobiological parameters /,  and TK were fitted 

rather than fixed at the levels of the Partridge model (p<10-5). The fit was further improved 

by additional terms describing chemotherapy effects (p<10-19), longer survival in later 
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studies (p<10-8, Supplementary Table S1 and Figure S2), and reduced survival at high 

dose-levels (p<10-6). Model 3 included all these factors and described the data best 

(Figure 2). 

Values of OS2yr predicted by Model 3 are plotted in Figure 3a and rise with observed OS2yr, 

with notably less data dispersion than in Figure 1. A plot of predicted and observed OS2yr 

versus EQD2Ttum shows no trend in residuals (Figure 3b). On AIC and cross-validation 

measures Model 3 substantially out-performed the other models (Table 2), indicating that 

its success was not due to over-fitting of this specific dataset.    

The fitted / ratio was 4.0 Gy (profile-likelihood 95% CI: 3.0, 5.4 Gy) for Model 3, with a 

tumor repopulation rate  of 0.38 Gy/day (95%CI: 0.30, 0.48 Gy/day) beginning at day 12 

[95%CI: 12, 17] of RT. Relatively low / ratios were common to fits of Models 1, 2 and 3. 

For Model 2b a higher / value of 7.4 Gy (95%CI: 2.7, 12.4 Gy) was obtained, but Model 

3 described the dataset substantially better. In fits of Models 1 and 2, tumor repopulation 

ran faster at 0.71 and 0.97 Gy/day starting at day 28, but again Model 3 described the data 

significantly better. The Model 3 fit described a maximum dose-response gradient of 

1.25% (95% CI: 1.13, 1.42%) gain in OS2yr per 1% increase in EQD2Ttum, in the absence 

of survival-limiting toxicity. 

3.3. Dose-response curves 

Dose-response curves for OS2yr described by Model 3 are plotted in Figure 4 for RT alone, 

sequential and concurrent CRT. For ease of comparison with a reference schedule 

delivering 60 Gy in 30 fractions over 6 weeks (40 days), OS2yr is plotted against dose 

delivered in 2 Gy fractions over 40 days, EQD2(40d)tum, where 

      EQD2(40d)tum  =  EQD2Ttum +  (40-TK)  =  EQD2Ttum + 10.6 Gy  for Model 3          (10) 
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The plots show predicted OS2yr peaking at 52% and 38% respectively for stages IIIA and 

IIIB NSCLC treated using RT alone, and at 59% and 42% for CRT treatments. For RT 

alone and sequential CRT, peak survival is reached at EQD2(40d)tum doses of 80 and 87 

Gy for stages IIIA and IIIB respectively. For concurrent CRT, peak survival requires 67 and 

73 Gy for IIIA and IIIB disease. Some of these dose-levels, 87 Gy for example, would 

exceed tolerance for serious toxicities [8]. At higher dose-levels the model fit describes 

falling survival, gains in tumor control being more than offset by survival-limiting toxicity.    

Discussion 

NSCLC OS2yr data was described best by Model 3 (Table 2, Figure 2), which includes 

terms accounting for sequential and concurrent CRT, and toxicity-related reductions in 

survival at high doses. Although survival is known to be improved by CRT, [20] and is 

suspected to be limited by toxicity at high doses, [14, 65] to our knowledge this is the first 

time these factors have been included in comprehensive dose-response modelling for 

NSCLC. 

The 4.0 Gy (95%CI: 3.0, 5.4 Gy) / ratio of the Model 3 fit is notably lower than the 10 Gy 

value often assumed for NSCLC [10], and allowed the model to describe the data 

significantly better (p <.002, likelihood-ratio). A similar value of 4.9 Gy (95%CI: 3.0, 6.8 Gy) 

was obtained when the radiobiological parameters of the standard Partridge model were 

freely-fitted (Model 1, Table 2), indicating that the result is robust and not an artefact of 

modelling CRT and toxicity-limited survival. We are unaware of such a low / ratio being 

previously reported for LA-NSCLC, but the 4.0 Gy / value is consistent with an 

observation of Partridge et al. [8]  that hypofractionated schedules appeared to over-

perform in plots of DFS versus EQD2Ttum calculated for / = 10 Gy, and concurs with / 

estimates of 3.9 and 2.8 Gy obtained from fits to stage I NSCLC data [66, 67].  
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Tumor repopulation negates 0.38 Gy EQD2 per day of treatment extension beyond day 12 

of RT according to the Model 3 fit, making RT acceleration worth ~3 Gy per week of 

schedule shortening. Since the fitted tumour / value of 4.0 Gy lies close to the generic 

late toxicity / ratio of 3 Gy, such acceleration might be achieved efficiently via moderate 

hypofractionation (dose-per-fraction >2 Gy) including simultaneous boost techniques. For 

example, 56 Gy in 20 fractions over 26 days offers a modelled 5% advantage in OS2yr for 

stage IIIB NSCLC compared to 63 Gy in 30 fractions over 40 days, the two schedules 

being equivalent for late normal tissue damage (/ = 3 Gy). 

The fitted 0.38 Gy/day loss of EQD2 to repopulation is similar to an early estimate of 0.45 

Gy/day made for NSCLC by Koukourakis et al [68], but is lower than estimates for HNSCC 

(~0.6 Gy/day starting 3-5 weeks into RT [13]), and depends strongly on the introduction of 

the toxicity term into Model 3. Fits of the simpler but less well-performing Models 1, 2 and 

2b described higher loss-rates of 0.6-1.0 Gy/day typically starting at day 28 of RT, a 

consequence of these models using rapid repopulation rather than survival-limiting toxicity 

to fit the observed plateau in OS2yr at high doses, albeit less well.  

The systemic effect of chemotherapy compared to RT alone was described in the Model 3 

fit by a 10% rise in OS2yr-max, the overall survival achievable by a treatment if 100% of 

primary tumours were cured and no survival-limiting toxicity occurred. And the local effect 

of concurrent chemotherapy was described by a modelled 23% increase in effective tumor 

EQD2, greater than estimated previously [9] but consistent with the 0.86 hazard ratio 

reported by O’Rourke et al for concurrent rather than sequential CRT [20]. 

The model fit was significantly improved by the toxicity term, which was introduced to 

account for survival reductions at high dose-levels, and described survival-limiting toxicity 

rates of 4%, 11% and 22% at 50, 66 and 80 Gy EQD2NT respectively following RT alone or 
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sequential CRT, and 8%, 23% and 42% following concurrent CRT. These modelled rates 

suggest that survival in dose-escalation trials may have been reduced by toxicity, and are 

in line with data from a cause-of-death analysis [69], which reported an ~15% rate of non-

malignant cardiac mortality at 2 years post-treatment for a curatively treated stage III 

cohort. Research is being carried out to identify mediastinal substructures in which 

survival-limiting toxicities arise, with a focus on heart [14], offering the prospect of 

improved outcomes if doses to these structures can be limited without compromising 

tumor coverage. 

Whilst Model 3 was designed to parsimoniously account for several classical and novel 

dose-response factors, it nevertheless requires fitting of 13 parameters. This relative 

complexity is justified by the model’s superior AIC and cross-validation scores, compared 

to those of simpler models. Further terms might provide a more complete description of the 

dataset, or might simply overfit it. We have investigated stage-specific survival-limiting 

toxicity terms, motivated by the observation that critical structures are less likely to receive 

high doses during RT of early-stage disease: resulting improvements in AIC score were 

marginal (Supplementary Information). 

In summary, we have fitted a dataset of OS2yr rates reported for many RT and CRT 

schedules using a model that combined a classical description of radiation dose-response 

with novel terms accounting for chemotherapy effects and survival reductions at high 

doses. The model fit had an / ratio of 4.0 Gy and described a rate of EQD2 loss due to 

tumor repopulation of 0.38 Gy/day, implying that moderate acceleration achieved via 

hypofractionation would produce useful survival gains. 

The fit predicts maximal OS2yr rates of 52% (stage IIIA) and 38% (IIIB) for RT alone when 

given in 2 Gy fractions over 6 weeks, and 59% (IIIA) and 42% (IIIB) for CRT, these peak 
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rates being achieved at prescribed doses of 80 Gy (IIIA) and 87 Gy (IIIB) for RT alone and 

sequential CRT, and 67 Gy (IIIA) and 73 Gy (IIIB) for concurrent CRT. According to the fit, 

10-20% further improvements in OS2yr might be achieved if normal tissues in which 

survival-limiting toxicities arise could be identified and spared without compromising tumor 

dose coverage. 
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Table 1. Dataset details. ‘Accelerated’ achedules delivered >1 fraction-per-day; ‘hyperfractionated’ 

and ‘hypofractionated’ schedules gave doses-per-fraction of 1.6 and 3.0 Gy respectively. 

Accelerated and hyperfractionated categories overlap.  

*1174 patients were split 50/50% stage I versus II; the split for a further 37 patients was not published and 50/50% was 
assumed.  

**5682 patients were split 52/48% stage IIIA vs IIIB, with a 50/50 split assumed for the other 64 patients. 

†Tabulated doses have been increased by 5% for trials not employing heterogeneity corrections.  

 
 
  

 68 trial arms, 6957 patients 

Stage I/II = 17% (1211 patients)*, Stage IIIA/IIIB = 83% (5746 patients)** 

Schedules 

 

 

 

 

Patient No. 

RT alone: 21 

Accelerated: 8 

Hyperfractionated: 6 

Hypofractionated: 1 

 

1571 

Stage I/II = 397 

Stage IIIA/IIIB = 1174 

Sequential CRT: 27 

Accelerated: 4 

Hyperfractionated: 1 

Hypofractionated: 0  

 

3023 

Stage I/II = 720 

Stage IIIA/IIIB = 2303 

Concurrent CRT: 20 

Accelerated: 6 

Hyperfractionated: 5 

Hypofractionated: 0 

 

2363 

Stage I/II = 94 

Stage IIIA/IIIB = 2269 

 Mean  Range Mean Range Mean Range 

Dose† (Gy) 64.7  40.0-81.0 70.8 55.0-96.6 67.3 55.0-77.7 

Dose-per-
fraction  (Gy) 

2.10  1.26-4.00 2.10 1.68-2.75 2.02 1.26-2.75 

Number of 
fractions  

33.1  10-58 33.8 20-46 35.2 20-58 

RT duration 
(days) 

35.3  12-55 43.0 16-64 41.4 21-52 

OS2yr (%) 34.0   6-56 36.1 18-59 44.9 23-68 
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Table 2:  Degrees of freedom (DoF), parameter values and 95% CIs for fits of Models 1-3. 

Parameter  

Partridge Model 
Model 1 

Probit-EQD2T 
Model 2 

CRT effects added 
 

Model 3 
CRT, publication date and toxicity effects added 

Fit, DoF= 63 Fit, DoF= 60 Fit, DoF = 58  Fit, DoF = 55  

(asymptotic 95% CI) (asymptotic 95% CI) (asymptotic 95% CI)  (profile-likelihood 95% CI) (asymptotic 95% CI) 

 Fitted parameters 
 

 tum Gy 10† 4.9 (3.0, 6.8) 4.2 (2.1, 6.2)  4.0 (3.0, 5.4) (2.3, 5.6) 

 Gy/day 0.6† 0.71 (0.58, 0.83) 0.97 (0.72, 1.21)  0.38 (0.30, 0.48) (0.26, 0.51) 

Tk Days 21† 28 (27, 29) 28 (27, 29)  12 (12*, 17) (10, 14) 

EQD2Ttum,50(SIIIa) Gy 69 (63, 74) 69 (63, 74) 75 (66, 84)  51 (45, 57) (44, 59) 

 EQD2Ttum,50(SI) Gy -12 (-22, -3) -11 (-19, -4) -33 (-45, -22)  -11 (-21, -6) (-20, -2) 

 EQD2Ttum,50(SII) Gy 38 (9, 77) 49 (13, 85) 17 (-13, 47)  -4.2 (-11.3, 2.4) (-13.6, 5.1) 

 EQD2Ttum,50(SIIIb) Gy 9 (-1, 16) 8 (-2, 18) 13 (-5, 31)  13.2 (4.6, 20.4) (1.3, 25.2) 

m - 0.62 (0.51, 0.73) 0.66 (0.57, 0.75) 0.82 (0.65, 1.00)  0.39 (0.25, 0.55) (0.15, 0.62) 

OS24m-max
Ch-RT  % - - 96 (89, 103)  95 (89, 103) (86, 104) 

RSConc-Ch-RT - - - 1.29 (1.19, 1.39)  1.23 (1.16, 1.31) (1.12, 1.34) 

R per year - - -  0.018 (0.013, 0.020) (0.014, 0.024) 

EQD2NT,50 Gy - - -  105 (97, 116) (94, 115) 

mNT - - - -  0.30 (0.15, 0.80) (-0.08, 0.69) 

 Fixed parameters 

OS24m-max
RT-only

 %  - 85  85  

 NT Gy  - -  3  

 Fit quality measures 

AIC  9147.2 9136.0 9050.4  8985.0  

Cross-validation score  439.1 423.7 363.5  215.1  

Likelihood-ratio p value**  - 5x10-6 3x10-20  2x10-15  

† Parameters fixed at values derived from HNSCC by Partridge et.al. * For TK the profile-likelihood 95% confidence interval lower limit is fixed at 12 days.  **Significance of the 

difference in fit quality between a model and the immediately simpler model in the table. 
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Figure 1. a) Observed OS2yr vs. prescribed physical dose for the analyzed trial arms. LOESS 
regression (solid line) indicates dose-response in the region 40-80 Gy. b) Physical dose vs. RT 
schedule duration (RT only - open, sequential chemo-RT - striped, concurrent CRT - closed; larger 
symbols indicate better OS2yr). 
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Figure 2. Calibration plots of predicted versus observed OS2yr across the dataset, for fits of Models 

1-3. Patients per trial arm are represented by areas of plotted points. Weighted least-square fits to 

the data (solid lines) are shown along with the line-of-identity. The gradients of the plots increase 

with improving fit quality. 
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Figure 3. a) Observed (closed) and predicted (open) OS2yr rates plotted against EQD2Ttum.  b) 

Residuals (grey). Symbol sizes reflect patient numbers per trial arm. 
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Figure 4. (a-c) OS2yr dose-response curves calculated from the Model 3 fit for (a) RT alone, (b) 

sequential CRT, (c) concurrent CRT. Curves for stage I, II, IIIA and IIIB NSCLC are plotted as 

dashed grey, dashed black, solid grey and solid black lines. The peaks of the IIIA curves are 

picked out. (d) Schematic showing composition of OS as a product of survival unlimited by toxicity 

(OSno-tox) and (100% - survival-limiting toxicity percentage rate). 
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Supplementary Information 

 

Study of stage-specific survival limiting toxicity rates 

Goodness-of-fit measures (likelihood-ratio, AIC, leave-one-out cross validation) all indicated that 

Model 3 was preferred over simpler models despite its relative complexity. Here we explore 

whether a more complex model might further improve the data description. 

Early-stage NSCLC tumors are smaller with less mediastinal involvement, and thus critical normal 

structures in patients with early-stage disease are potentially less likely to receive prescription-level 

doses, reducing rates of survival-limiting toxicity in these patients.   

We therefore tested a variant of Model 3 in which the fraction f(SI) of patients with stage I disease 

who might possibly experience survival-limiting toxicity (because critical structures received the 

prescribed dose) was freely fitted rather than being assumed to be 100%. The fitted value of f(SI) 

was 51%, and while the model was preferred on AIC and cross-validation to Model 3, the 

difference was marginal (Table S2). When the fraction was freely fitted for all stages (rather than 

just for stage I and being fixed at 100% for the rest) the resulting model was disfavoured on AIC 

and cross-validation, indicating a risk of overfitting. Overall, therefore, in the main part of the study 

we chose to limit model complexity to that of Model 3. 
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Table S1. Degrees of freedom (DoF), parameter values and 95% confidence intervals for the 
Model 2b fit. 

 

Parameter  

Model 2b 

CRT and publication date 
effects added 

Fit, DoF = 57 

(asymptotic 95% CI) 

  Fitted Parameters 

 tum Gy 7.5 (2.7,  12.4) 

 Gy/day 0.59 (0.42, 0.77) 

Tk Days 12 (10, 14) 

EQD2Ttum,50(SIIIa) Gy 54 (45, 62) 

 EQD2Ttum,50(SI) Gy -25 (-34, -16) 

 EQD2Ttum,50(SII) Gy 3 (-14, 20) 

 EQD2Ttum,50(SIIIb) Gy 16 (-8, 32) 

m - 0.94 (0.68, 1.21) 

OS24m-max
Ch-RT

 % 93 (86, 99) 

RSConc-Ch-RT - 1.22 (1.13, 1.30) 

R per year 0.018 (0.015, 0.022) 

EQD2NT,50 Gy - 

mNT - - 

  Fixed Parameters 

OS24m-max
RT-only

 % 85 

 NT Gy - 

  Fit quality measures 

AIC  9012.1 

Cross-validation score  261.1 

Likelihood-ratio p value†  210-9 

 
              † Significance of the difference in fit quality relative to model 2. 
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Table S2. Effect of fitting the fraction f(SI) of stage I patients in whom critical normal structures 

receive the prescribed dose-level and survival-limiting toxicities can occur (set to 100% for all 

stages in Model 3, and fitted for stage I only in the modified model). 

Parameter  

 
Model 3 

CRT, publication date and toxicity effects added 

 Fit, DoF = 55; f(SI) set to 1 Fit, DoF = 54; f(SI) fitted 

 (asymptotic 95% CI) (asymptotic 95% CI) 

   Fitted parameters 

 tum Gy  4.0 (3.0, 5.4) 4.2 (2.2, 6.2) 

 Gy/day  0.38 (0.30, 0.48) 0.38 (0.26, 0.49) 

Tk Days  12 (12*, 17) 12 (10, 14) 

EQD2Ttum,50(SIIIa) Gy  51 (45, 57) 47 (38, 57) 

 EQD2Ttum,50(SI) Gy  -11 (-21, -6) -5.2 (-17.1, 6.7) 

 EQD2Ttum,50(SII) Gy  -4.2 (-11.3, 2.4) -3.6 (-12.0, 4.8) 

 EQD2Ttum,50(SIIIb) Gy  13.2 (4.6, 20.4) 8.9 (1.5, 16.2) 

m -  0.39 (0.25, 0.55) 0.28 (0.15, 0.40) 

OS24m-max
Ch-RT

 %  95 (89, 103) 95 (86, 105) 

RSConc-Ch-RT -  1.23 (1.16, 1.31) 1.19 (1.10, 1.27) 

R per year  0.018 (0.013, 0.020) 0.018 (0.014, 0.025) 

EQD2NT,50 Gy  105 (97, 116) 100 (85, 115) 

mNT -  0.30 (0.15, 0.80) 0.63 (-0.44, 1.70) 

f(SI) -  1 0.51 (-0.02, 1.04) 

   Fixed parameters 

OS24m-max
RT-only

 %  85 85 

 NT Gy  3 3 

   Fit quality measures 

AIC   8985 8984.7 

Cross-validation score   215.1 217.3 

 

*For TK the profile-likelihood 95% confidence interval lower limit is fixed at 12 days. 
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Figure S1. Dose-per-fraction plotted against RT duration for the trial arms analyzed. Patient 

numbers-per-trial arm are represented by areas of plotted points. 
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Figure S2: Model 2 fit residuals (differences between observed and fitted OS2yr) versus year of 
publication. Symbol sizes reflect patient numbers per trial arm. The solid line is a weighted least 
squares linear fit to the data. 

 

 

 

 

 


